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Abstract

The primary purpose of this study was to develop an understanding of the stability of laminar
flow through bluff body arrays, and investigate the nature of the unsteady vortex shedding regime
that follows. The flow was numerically investigated using a specially developed multi-domain
spectral element solver. Important criteria in the solver development were flexibility, efficiency, and
accuracy. Flexibility was critical to the functionality of the code, as arrays of varying geometry
were investigated. Efficiency with a high degree of accuracy was also of primary importance, with
the code implemented to run efficiently on today’s massively parallel architectures.

Numerical two-dimensional stability analysis of the flow in several configurations of inline and
staggered array geometries was performed. The growth rate, eigenfunction, and frequency of the
disturbances were determined. The critical Reynolds number for flow transition in each case was
identified and compared to that of flow over a single body. Based on the solutions of the laminar
flow, a one-dimensional analytical analysis was performed on selected velocity profiles in the wake
region. The results of this analysis were used to guide the interpretation of the two dimensional
results and formulate a general theory of stability of inline and staggered bluff body arrays. The
nature of the flow in the unsteady regime following the onset of instability was examined for an
inline and a staggered arrangement. Particular attention was focused on the vortex shedding which
was visualized and quantified through computation of the flow swirl, a quantity which identifies
regions of rotary motion. The conditions required for the generation of leading edge vortex shedding
were identified and discussed. Finally, a third geometry related to the inline and staggered arrays

was considered. Flow solution data for this geometry is presented and its suitability as a model for

louvered arrays was discussed.
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Chapter 1

Introduction

1.1 Background, Motivation, and Present Work

The nature of the flow over a bluff body has for many years been the subject of extensive in-
vestigation. Experimental, numerical, and theoretical analysis have all been applied to studying
cases such as the canonical flow over a circular cylinder, and to other cases like flow over square,
rectangular, or elliptic cylinders. It has been observed for all of these geometries that the flow
goes through a progression of regimes (Roshko [43]). At low Reynolds number the flow is steady
and laminar. With increasing Reynolds number the flow becomes unsteady in a two-dimensional
periodic manner with regular vortex shedding forming a Karman vortex street in the wake. At
even higher Reynolds numbers the flow becomes three-dimensional, and finally becomes chaotic
and turbulent. For a given geometry the transition between these states occur at precise values
of the Reynolds number based on the body thickness. Stability analysis has been performed on
bodies of various cross-section, and elongated bodies have been seen to have a higher value of the
critical Reynolds number (Oertel [37], Jackson [20]). For a flat plate oriented normal to the flow
the critical Reynolds number has been found to be 27.8. For a circular cylinder it has been found to
be 45.4, and for an elliptic cylinder of aspect ratio two it has been found to be 76.8. The stability
of these flows is determined by two parameters, the Reynolds number, and the aspect ratio of the
body.

Much of the fundamental work on bluff body flows has been focused on the flow over a single
body. Many applications, however, involve the flow past a large number of bluff bodies in close

proximity to one another. Examples of such applications are porous media flow, fluidized beds,



and compact heat exchéngers. Compact heat exchangers have been the subject of research for
over half and century and continue to be studied due to the complexities of the flow and their
growing importance in applications where high heat transfer efficiency is important. Compact heat
exchangers are generally characterized as interrupted heat transfer surfaces, but they are often
modeled as regular arrays of bluff bodies. Three common models often studied are the inline array,
offset-strip or staggered array, and louvered array, which are shown in Figures 1.1 and 1.2. Similar to
flows involving only a single body, the flow through bluff body arrays sees a similar transition from a
laminar, to unsteady, to turbulent flow (Mochizuki et al. [34]). An important element in the design
of a compact heat exchanger is the heat transfer coefficient between the bodies, or fins, composing
the device and the surrounding fluid. Two mechanisms have been identified in interrupted surfaces
which provide improved heat transfer over that of an uninterrupted-interrupted surface. The first
is interrupted boundary layer growth, which occurs as the flow moves through the array (Sparrow
et al. [45]). As a boundary layer develops along a surface the thermal resistance increases as the
boundary layer thickens. Multiple fins allow for the periodic destruction and re-growth of the
fluid and thermal boundary layers, which enhances the overall heat transfer coefficient. A second
mechanism providing enhanced heat transfer is the self sustained oscillation of the flow occurring
after the transition from laminar to periodic unsteady flow. Heat transfer improvements in this
regime has been attributed to the regular generation of vortices along the surfaces of the bodies.
These vortices act to increase mixing by sweeping hot surface fluid into the free stream and replacing
it with cooler fluid (DeJong and Jacobi [11], DeJong et al. [12]). Unfortunately the heat transfer
improvements associated with both mechanisms come with an associated pressure drop penalty.
Despite the fundamental nature of the transition from laminar to unsteady flow, and the importance
of the vortex shedding mechanism to heat transfer enhancement, the stability of the laminar flow in
bluff body arrays has not been fundamentally described. This is in part due to the large number of
parameters effecting the flow stability, including the Reynolds number, aspect ratio of the bodies,
horizontal and vertical spacing in the array, as well as the type of arrangement of the array.

The primary purpose of this study is, therefore, an investigation of the stability of the laminar
flow through bluff body arrays and an investigation of the nature of the unsteady vortex shedding

regime that follows. The stability of the flow in simple geometries is often analytically investi-
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gated, however the complexity of the bluff body array geometry precludes such an approach, and
instead a numerical investigation has been undertaken. To this end a multi-domain spectral el-
ement solver has been developed. Important criterion in the solver development were flexibility,
efficiency, and accuracy. Flexibility was critical to the functionality of the code, as multiple array
geometries were required to be investigated. Efficiency with a high degree of accuracy was also of
primary importance, and the code was implemented to run efficiently on today’s massively parallel
architectures.

The code developed was applied to performing a two-dimensional stability analysis of the flow in
several configurations of inline and staggered array geometries. The growth rate, eigenfunction, and
frequency of the disturbances were determined. The critical Reynolds number for flow transition
in each case was identified and compared to that of flow over a single body. Based on the numeric
solutions of the laminar flow, a one-dimensional analytical analysis is performed on selected velocity
profiles in the wake region. The results of this analysis were used to guide the interpretation of
the two dimensional results and formulate a general theory of stability of inline and staggered
bluff body arrays. The nature of the flow in the unsteady regime following the onset of instability
was examined for an inline and a staggered arrangement. Particular attention was focused on
the vortex shedding which was visualized through computation of a quantity referred to as swirl,
which identifies regions of rotary motion. The conditions required for the generation of leading
edge vortex shedding were identified and discussed. Finally, a third geometry related to the inline
and staggered arrays was considered. Flow solution data for this geometry is presented and its

suitability as a model for louvered arrays is discussed.

1.2 Literature on Parallel Fins

Two basic and commonly used types of interrupted heat transfer surfaces are the inline and offset,
or staggered, geometries. Idealized two dimensional models of these two geometries are shown
in Figure 1.1. For over half a century research on the flow and heat transfer properties of these
surfaces has been ongoing. This section presents an overview of this past research.

Early investigations of the flow in interrupted heat transfer surfaces by Norris and Spofford [36]

and Manson [31] demonstrated that these surfaces could provide superior heat transfer when com-



pared to that of a continﬁous flat plate surface. Evaluations of the heat transfer and pressure drop
characteristics for a number of these surfaces were performed by Kays and London [24] in 1964 and
by London and Shah [28] in 1968 with a view toward providing practical design information. In
1975 Wieting [51] utilized the available data for offset strip fin arrays, primarily that of Kays and
London [24] and London and Shah [28], to develop correlations for the f and j factors. Two sets of
correlations were developed, one for laminar flow at low Reynolds number, and one for turbulent
flow at high Reynolds number. No correlations were presented for the intermediate Reynolds num-
ber range. It was found that fin thickness did not effect the laminar flow regime, and the channel
aspect ratio did not effect the turbulent regime.

In 1977 Sparrow, Baliga, and Patankar [45] performed perhaps the earliest numerical simulation
of developing flow through an offset strip fin array. Several array configuration were analyzed, but
only steady flow over zero thickness fins was considered. Comparisons where made to the results
for an equivalent continuous flat plate geometry and the offset strip fin arrangement was found to
provide superior heat transfer performance over a range of operating conditions. It was also noted
that the flow entered a periodic fully developed state as it progressed through the array. Using this
observation Patankar, Liu, and Sparrow [38] developed an analytical formulation for studying flow
and heat transfer in geometries with periodic streamwise variation. This methodology allowed for
the investigation of the fully developed flow and heat transfer in large arrays of periodic geometry by
solving only for the flow in a small module. The approach was used to generate the numeric solution
of the flow through an array of zero thickness offset plates oriented in the transverse direction to
the flow. In 1981 Patankar and Prakash [39] applied this methodology to study fully developed flow
and heat transfer in the offset strip geometry for steady flow over finite thickness fins. Their study
focused on the effects of fin thickness on the flow structure, friction factor, and heat transfer. The
finite thickness of the fins was found to produce recirculation regions, and increase the pressure
drop disproportionately more than the increase in heat transfer. Local heat transfer data along the
surface of the fins were also presented. In 1979 Sparrow and Liu [47] presented a computational
study comparing the heat transfer and pressure drop of steady laminar flow over inline, staggered,
and continuous plate surfaces of zero thickness. In this study a finite length array was subjected to

a uniform oncoming flow and it was found that both the inline and staggered configurations yielded



superior performance over the continuous flat plate for a range of operating conditions.

Cur and Sparrow [9] experimentally considered the flow over two collinear flat plates aligned
with the flow in 1978. Average heat transfer results for both plates were determined by using a
naphthalene sublimation technique and the heat-mass transfer analogy. The effects of fin thickness,
fin spacing, and Reynolds number on the heat transfer coefficients were studied parametrically.
Sparrow and Hajiloo [46] also employed the naphthalene sublimation technique in 1980 to study
flow and heat transfer in a staggered array of plates. Plate thickness and Reynolds number were
parametrically varied and their effects on heat transfer and pressure drop were presented. The
flow was observed to become fully developed after the first row of plates for all Reynolds numbers
considered and both heat transfer and friction factor were found to increase with plate thickness.

In 1982 Mochizuki and Yagi [33] performed flow visualization studies of the vortex shedding
for a range of multi-plate configurations including several staggered arrangements with a varying
number of plates in the streamwise direction. Vortex shedding with multiple Strouhal numbers was
observed for staggered arrays with nine or fewer streamwise plate rows while arrays containing more
than nine rows shed with only a single Strouhal number. Vortex shedding was also observed to
begin at the rear of the array and move forward rapidly with increasing Reynolds number. In 1988
Mochizuki, Yagi, and Yang [34] performed wind tunnel and water channel tests on offset strip and
perforated plate arrangements, recording the pressure drop, turbulence intensity, and performing
flow visualizations. Oscillatory vortex shedding and turbulent flows were observed for the offset
strip arrangement, with the location of onset varying within the array dependent on the Reynolds
number.

Yang [55] in 1983 discussed the concept of a secondary laminar flow regime which induces an
upward deviation in the f and j curves for interrupted surfaces due to oscillations in the flow. The
flow oscillation was attributed to the hydro-dynamic instability of free shear layers and analytic
stability theory, based on the Orr-Sommerfeld equation, was used to formulate a frame work for
determining the critical Reynolds number. It was also suggested that the secondary laminar flow
regime is the optimal operational range for heat exchangers.

In 1986 Mullisen and Loehrke [35] experimentally investigated the flow and heat transfer in inline

and staggered arrays in a wind tunnel. Flow visualization was also performed using the Schlieren



technique. Three flow regimes were identified, steady, general unsteady, and periodic unsteady. In
contrast to Mochizuki and Yagi [33] the flow state was found to be uniform throughout the array.
The staggered arrangement was also observed to be more stable than the inline. The impact of
varying the streamwise spacing between bodies on friction factor and heat transfer was investigated
and the performance of the different array configurations was compared to that of a continuous
plate. The interrupted surface geometries were found to provide superior heat transfer, partly
attributable to the increased mixing occurring in the unsteady flow regimes.

In 1987 Joshi and Webb [22] developed a semi-analytic model for the friction factor and heat
transfer coefficient in the offset strip geometry. This model employed different components for
the laminar and turbulent flow regimes, with the laminar components based the numeric results
of Sparrow and Liu [47], and the turbulent component based on correlations of the data of Kays
and London [24] and London and Shah [28]. A correlation were also developed for identifying the
point of transition between laminar and turbulent models. Flow visualization experiments were
also performed and four flow regimes were noted from laminar to vortex shedding flow, with the
regime found not to vary throughout the array. Friction factor data was also gathered for eight
offset strip arrays, and entirely empirical correlations for the f and j factors were also presented.
A discussion of the effect of practical issues such as leading edge burrs and surface roughness was
also given.

In 1988 Kurosaki, Kashiwagi, Kobayashi, Uzuhashi, and Tang [26] used laser holographic in-
terferometry to visualize the isotherms for flow over an isolated body, two bodies in parallel, two
collinear bodies, and several offset array configurations, including a modified one with reported
enhanced heat transfer. In 1991 Xi, Futagami, Hagiwara, and Suzuki [54] followed the work of
Xi, Murata, Suzuki, Hagiwara [53] with a flow visualization experiment of flow through an offset
array. Flow instability was observed to initially arise in the wake of the downstream fins and move
upstream in the array with increasing Reynolds number. The Reynolds number at which the onset
of instability occurred was found to be dependent on the fin pitch, with smaller fin pitch producing
a less stable flow. Fluctuations in the velocity and temperature were found to correlate, indicating
that additional momentum and heat transfer occurred due to the wake instability.

In 1990 Manglik and Bergles [29] compiled an extensive bibliography of the literature associated



with offset strip fins. This was followed in 1995 by Manglik and Bergles [30] wherein the existing
data and correlations for the offset strip geometry were reviewed and new correlations were pre-
sented. The new correlations cover the entire Reynolds number range from laminar to turbulent
flow. This was achieved by asymptotic matching of the correlations in the laminar and turbulent
regimes.

In 1997 DeJong and Jacobi [11] performed naphthalene sublimation experiments on a standard
and a modified staggered array, with the modified staggered array having two different fin pitches. In
addition, water tunnel flow visualizations were performed on the staggered geometry. Fin averaged
heat transfer results were presented for fins at different streamwise locations in the array and local
surface heat transfer data were determined using a laser profilometer. Heat transfer rates were
found to be appreciably effected by the presence of upstream vortex shedding, and vortex shedding
was found to begin at different locations in the array at different Reynolds numbers. The onset of
instability was also found to be effected by the geometric parameters of the array, with a smaller
fin pitch producing a less stable flow.

In 1997 Zhang et al. [59] [58] performed a numeric simulation of flow in staggered and inline
geometries using the periodic formulation of Patankar, Liu, and Sparrow [38]. Simulations were
conducted for unsteady flow over finite thickness fins. In addition, symmeterized simulations pro-
ducing laminar flows at super critical Reynolds numbers were performed and used to determine the
impact of vortex shedding on heat transfer and friction factor. At high Reynolds numbers three

dimensional simulations were performed and showed that two-dimensional models can over predict

heat transfer and friction losses.

1.3 Literature on Louvered Fins

Another form of interrupted surface commonly used in heat exchangers is the louvered fin design,
shown in Figure 1.2. Louvered fin surfaces are easily manufactured in large quantities and therefore
used widely in many industries, such as the automotive industry. Commonly these fins are cut out
of sheet metal and bent to form a louvered geometry. Louvered surfaces have been utilized in heat
exchangers for over fifty years and have been the subject of research for over thirty years.

The earliest reported investigation of the flow in louvered fins arrays was performed by Beau-



vais [4] in 1965. Beauvais’s utilized a smoke visualization technique on 10:1 scale models, which
produced only qualitative observations about the flow. A result of his experiments was the obser-
vation that the flow was largely parallel to the louver direction, previously it had been supposed
that primary function of the louvers was to increase the turbulence of the flow through effective
surface roughness. In 1983 Beauvais’s work was followed by Davenport [10] who performed simi-
lar visualization experiments. Davenport determined that the nature of the direction of the flow
through the louver array was dependent upon the Reynolds number based on louver pitch. At
high values of this Reynolds number the flow direction was observed to be parallel to the louver
direction; however, for low values the flow was largely unaffected by the louvers and traveled in the
duct flow direction. Heat transfer and friction factor data were also presented for eight different
louvered geometries. These data were seen to correlate with the Blasius results for flow over a flat
flat, which in turn suggested that laminar boundary layer mechanisms played a dominant role in
the heat transfer and friction phenomena.

In 1986 Lee [27] performed an experimental investigation in which pressure drop and heat
transfer characteristics were determined for a three by eight array of louver fins at incidence angles
varying from twenty to thirty-five degree. Heat transfer data were determined through a naphtha-
lene sublimation technique applied to the central row of fins. Lee observed a significant increase in
the Nusselt number of the array over that of a continuous flat plate. However, an increase in the
pressure drop was also found. Fin averaged Nusselt number data along the front and back faces
of an individual fin were also reported with the forward face showing a higher value than the rear.
At low Reynolds numbers the average overall Nusselt number was found to closely approximate
that found from laminar short duct theory, but at higher Reynolds numbers significant variation
occurred. A similar study was performed by Zhang and Lang in 1989 [57] in which they studied
the effects of plate length and angle on heat transfer and pressure drop. They present a correlation
for the Sherwood number in the fully developed region, which they found to begin after the fourth
row of fins.

Two investigations of flow in louver arrays were performed by Achaichia and Cowell in 1988, an
experimental study [2] and a numerical investigation [1]. In their experimental investigation, heat

transfer and pressure drop data were determined for fifteen different geometries through wind tunnel



testing. From thess data, correlations for both the Stanton number and the friction factor were
derived. The experimental Stanton number data show good agreement with a duct flow solution
at low Reynolds number and flat plate flow at high Reynolds number. This result further confirms
the earlier observations of flow varying from ”duct” to ”louver” flow with the Reynolds number.
In their numerical work, steady flow around a single zero thickness louver in an infinite array was
calculated through the use of periodic boundary conditions on the edges of the computational
domain. The variation of the flow direction with Reynolds number, louver spacing, and louver
angle was determined and a correlating equation for flow angle was presented. The steady flow
constraint and the zero thickness of the louver precluded evaluation of any unsteady vortex shedding
phenomena.

In 1989 Aoki, Shinagawa, and Suga [3] performed an experimental investigation on a reversing
louver array with a central deflection louver. Wind tunnel tests were performed on several different
array configurations composed of electrically heated louver elements. The overall heat transfer
coefficient for each element in the array was determined. Effects of fin pitch, louver pitch, and
louver angle were noted. The heat transfer coefficient of the louvers directly behind the deflection
louver were found to be lower than those upstream. For a similar geometry Suga and Aoki [49]
performed a two dimensional finite difference simulation. Steady flow and temperature solutions for
finite thickness fins were obtained. The temperature solutions allowed an analysis of the thermal
wake behavior and local Nusselt number data along the fin surface to be obtained. The effect of
the fin thickness, pitch, louver pitch, and angle on the global Nusselt number was also investigated
and design recommendations were made. The steady nature of the solutions did not allow for
an assessment of the effects of flow unsteadiness and vortex shedding. Hiramatsu, Ishimaru, and
Matsuzaki [18] also performed finite difference simulations of the flow and heat transfer for a
similar geometry in 1990. Steady two-dimensional computations were used to predict the flow and
determine when it would be duct or louver directed. The results were compared to experimental
dye visualizations and found to yield good agreement so long as the flow was in the steady laminar
state. Local and global Nusselt number results were also reported for various array configurations.
The flow was noted to be duct directed at low Reynolds numbers and for large values of fin pitch.

Webb and Trauger [50] performed dye visualization experiments on geometries similar to those

10



used in the investigations cited above, in 1991. They defined a flow efficiency based on the mean
flow direction relative to the louver angle and analyzed the effect of varying fin pitch, louver pitch,
and louver angle. Based on their data a correlation was presented for calculating flow efficiency,
which they associate with improved heat transfer. It was also noted that the flow is not laminar
over the range of practical interest.

Huang and Tao [19] investigated heat transfer and pressure drop over arrays of non-uniform
plates using the naphthalene sublimation technique. Nine array configurations were tested, all
having a louver angle of twenty-five degrees, but with varying length ratios of successive plates
and fin to louver pitch ratio. Sherwood number and friction factor data were recorded and the
performance of the non-uniform plate array was compared to that of the uniform plate array. Mass
transfer was found to be superior in the non-uniform plate array at low Reynolds number but below
that of the uniform array at high Reynolds numbers. The friction factor was always lower for the
non-uniform array. The flow and mass transfer were found to be fully developed after the fifth
element in the array. In 1995 Cowell, Heikal, and Achaichia [8] provide an overview and summary
of previous investigations on louvered fin heat transfer surfaces. A discussion of the flow mechanics
is provided followed by a comparison of louvered surface performance to that of the offset strip
configuration, with louvered surfaces found to outperform the offset strip.

In 1999 DeJong [13] studied the flow characteristics and heat transfer in three louvered ge-
ometries experimentally with the naphthalene sublimation technique. A comparison was made to
offset strip geometries, and louvers were found to provide consistently higher heat transfer, but also
have a higher friction factor. Also noted was the approximate point of transition from laminar to
unsteady flow for the geometries tested. The louver arrangements were found to be less stable than
an offset strip arrangement with the same hydraulic diameter. Also in 1996 Zhang [60] performed a
numerical investigation of the flow through a louver array of infinite extent. The infinite array was
modeled through the use of periodic boundary conditions. The simulations were two-dimensional
but included the effects of flow unsteadiness and finite fin thickness. Detailed flow and temperature
solutions were obtained and heat transfer and friction factor data were reported. Steady laminar
flow was observed at lower Reynolds numbers and unsteady, vortex shedding was seen at higher

Reynolds numbers. Data on the local Nusselt number distribution along the fin surface were also
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presented and shown to be effected by the presence of vortices shed from the leading edge of the

louver.
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Chapter 2

Solution Methodology

2.1 Introduction

The solution of fluid flow problems by computational means requires the temporal and spatial
discretization of the set of governing equations. The solution technique must have sufficient accuracy
to properly capture the underlying physics of the flow and still be efficient enough, in terms of
memory usage and computational time, to be of practical use. Furthermore, for the class of problems
being considered it is important that the numerical implementation posses a degree of flexibility
in terms of the range of geometries that it may configured to solve. This chapter describes the
governing equations used in the analysis, the implementation of the various boundary conditions,
the spatial and temporal discretization of these equations, and discusses some of the aspects of the

numerical solution procedure.

2.2 Navier - Stokes Equations

2.2.1 General

Only flows involving incompressible, Newtonian, fluids are being considered. The behavior of such

fluids is represented by the classic incompressible Navier-Stokes equations which have the form:

ou L 1
—a—t+u-V- =-Vp+

7 v2i (2.1)
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V-%=0 (2.2)

In the above equations # is a non-dimensional Cartesian velocity vector having the components
@ = (u,v,w), t is the non-dimensional time, p is the non-dimensional pressure, and V is the
standard three dimensional Cartesian gradient operator in non-dimensional coordinates z, y, and
z. The above variables are made non-dimensional using a length scale £, velocity scale U, time
scale 7, and pressure scale P. This scaling produces a non-dimensional parameter the Reynolds
Number, Re, which is defined as Re = UL /v, where v is the kinematic viscosity. Furthermore, the
time scale can be defined as 7 = L/, and the pressure scale as P = pl{2, where p is the density.
Since the governing partial differential equations are spatially elliptic, boundary conditions
are required on all surfaces bounding the solution domain, for the variables u, v, and w. In the
analytic formulation no boundary condition is required for pressure since it can be thought of as a
Lagrange multiplier, and acts to keep the velocity solution divergence free. The numerical scheme
implemented allows for complex domain geometries along with the application of several types of
boundary conditions. In the discrete formulation utilized, a boundary condition on the pressure
is required, therefore the analytic form of the discrete pressure boundary conditions will be noted
(Gresho and Sani [16], Williams and Baker [52]). The boundary conditions applied to some of the

various bounding surfaces of the computational domain are given in Equation 2.3.

Body : u=0, v=0, w=0,

InflO’w : u=aqc, v = Cg, w = c3, (2 3)

Far — Field : g—:=0, v=0, w=0,

e &Y Fie oo
Il
o o] o [ew]

u =0, %zo, w =0,

The variable n in the above equation represents the direction normal to the bounding surfaces. A
Body boundary surface represents a solid bounding surface on which the no slip, no penetration
conditions are applied. An Inflow boundary is a boundary along which a prescribed velocity is
specified, and the Far-Field condition is used for regions where the flow varies little in the surface
normal direction. The first of the two equations for this condition is applied to horizontal boundaries

which are parallel to the z directions. The second is applied to vertical boundaries, parallel to the
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Figure 2.1: Periodic Geometries

y direction. All of the boundary conditions utilize a Neumann condition on pressure (Gresho and
Sani [16], Williams and Baker [52]). Two additional boundary types have been defined, Periodic
and Qutflow, which require appropriate modification of the governing equations and are described

in the two following sections.

2.2.2 Periodic Boundary Conditions

Periodic boundary conditions can be classified as one of two types: periodicity with translational
invariance and periodicity without translational invariance. In the case of periodicity with transla-
tional invariance, a Fourier expansion along that direction with a uniform grid would be appropriate
and no additional modifications to the governing equations are required. Periodicity without trans-
lational invariance is harder to handle, as a Fourier expansion is inappropriate in this case. The
kind of problems we envision solving with this code are flow, and heat transfer, over an array of
cylinders. The array is assumed to be periodic in z, y, or both as is show in Figure 2.1, while the
cylinder cross-section is assumed to be uniform along the third direction, z. In this case periodic
boundary conditions with translational invariance are appropriate along the z direction. The do-
main of periodicity however must be carefully chosen. Along the z and y directions there is clear
geometric periodicity, but the presence of cylinders breaks translational invariance.

From Figure 2.1 it can be seen that as a result of geometric periodicity a unit cell can be defined

which repeats along the z and y directions. Geometric periodicity does not guarantee a periodic
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flow with a period of one unit cell. A more general description of the flow would be to apply the

following condition on the velocity field (Patankar, Liu, and Sparrow [38])
Periodic: U(z,y,z,t) = @(x +mLg,y + nly, z,1) (2.4)

For periodicity over a single cell m and n are set equal to one. For z periodicity only, n is set to
zero, and for only y periodicity, m is set to zero. A non periodic flow could be approximated with
a large value of m and n. It is clear that computational cost will increase with increasing m and
n. For simplicity we will restrict attention to the approximation m =1 and n = 1.

A similar equation is needed for the pressure; however, in general the pressure will not be
periodic. Whenever there is flow in a periodic direction the pressure will continuously drop in that
direction. Therefore, to implement a periodic boundary condition a modified pressure is introduced,

by removing the secular drift in pressure (Patankar, Liu, and Sparrow [38]). The pressure can be

written as
p(-'L', Y, 2, t) = Pin — me —IByy +ﬁ($ay’z7 t) (25)

In this equation p;, is an arbitrary inlet pressure value, and p is the modified pressure. The terms
Bz Ly and By L, represent linear pressure drops across the length of a cell, which account for the
net pressure drop across the cell. The values chosen for 8, and B, set the pressure gradient which
drives the flow. The ratio 3, /8, determines the direction of the driving pressure gradient and their
magnitude sets the pressure scale, which in turn determines the velocity scale. With the net drop

in pressure accounted for by the linear terms the modified pressure p becomes periodic and has the

boundary equation
Periodic: p(z,y,2,t) = p(x + mLg,y + nly,2,t) (2.6)

A result of the introduction of the modified pressure is that the governing equations 2.1 are modified
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by the substitution of the pressure equation 2.5 to give

ou s 1 o
g—t—+u-v-u—ﬁ Vp+ReVu (2.7

where § = (Bz,By,0). The values of B, and B, now appear as parameters in the Navier-Stokes
equations, and serve to indirectly set the pressure, or velocity, scale. The relation between the

values and the pressure scale can be seen by examining the pressure drop between the same point

in two neighboring cells.
Ap(L:m Ly7 07 0) - p(xa Y,2, t) - p(z + Lwa y+ Ly7 2, t) = /B:EL:B + :ByLy (28)

or

_ Ap*(Ly, Lya 0,0)

P = L.+ BL, 29)

The * superscript denotes a physical variable. Unless otherwise stated, the value of 8, = 1 has

been used with z periodic boundary conditions and 8, = 0 with y periodic conditions.

2.2.3 Owutflow Boundary Condition

In the study of flow over bluff bodies it is often desirable to study the flow in a domain in which
there exists a net influx and efflux of fluid. The bounding surfaces over which an inflow occurs are
generally handled by prescribed velocity over the surface, which is sufficient provided the inflow
condition is far enough upstream. This type of boundary condition is described in Section 2.2.1.
The elliptic nature of the governing equations require a boundary condition for the velocity on all
surfaces bounding the solution domain. However the velocity along the outflow boundaries can not
generally be specified as it is greatly influenced by the flow inside the domain. Thus, a Dirichlet

condition at the outflow boundary is not feasible. Furthermore, simple Neumann conditions, such

as

9i _ (2.10)

oz
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where z is the flow direction, have proven to be inadequate (Joslin et al. [23], Streett and Macaraeg [48]).
This condition can result in the reflection of advecting flow structures at the outflow boundary,
causing errors in the solution within the domain.

Instead, a more accurate implementation of the outflow boundary condition has been utilized
(Joslin et al. [23], Streett and Macaraeg [48]). This approach involves the filtering of the streamwise
(z) diffusion terms in the governing equations 2.1 to change the nature of the governing equations
in the z direction at the outflow boundary from elliptic to parabolic. The diffusion operator in

Equation 2.1 is redefined as

(92 82 62

2
— 2.
and Equation 2.1 becomes
ou 1,
—+4-V-d=— — Vi 2.12
oy TV d=—Vp+ Vi (2.12)

The filter function, f(z), is defined such that it has a value of one throughout most of the com-

putational domain, and drops to zero as the outflow boundary is approached. The filter function
used was defined as

f($)=l z < Tp

tanh —zc))—tanh e—Tc
flz) = tfﬁh(ﬁiiﬁ_ic))))_ilh(é% —Zc)))) T > Ty

(2.13)

In this equation z} is the  coordinate of the beginning of the attenuated region, z. is the center,
and z. is the end. Figure 2.2 depicts a typical geometry and filter function. ¢ is a parameter used
to control the steepness of the attenuation curve, here the value of ¢ was chosen to be 2.5. The
governing equations 2.12 are applied at the outflow boundary where there is no longer an z diffusion
term. The region of space over which the value of the filter function is no equal to one is referred
to as the buffer domain. In this buffer region the character of the governing equations is altered to
allow the flow to smoothly advect through the outflow boundary. Mittal and Balachandar [32] have
used this boundary condition in the context of a cylindrical computational domain and show that

vortices shed from the cylinder are smoothly advected out of the computational domain, without
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Figure 2.2: Outflow Filter and Buffer Domain

any spurious reflections at the outflow boundary.

2.3 Energy Equation

2.3.1 General

In addition to solving the Navier - Stokes equation we also consider the solution to the energy

equation for incompressible flow having constant properties and no viscous dissipation. The energy

equation has the form

or . 1 _,
5 T VT = 5V (2.14)

where T is the non-dimensional temperature field and Pr is the Prandtl number defined as Pr =
v/a, with a being the thermal diffusivity of the fluid. The same scalings used with the Navier -
Stokes equations 2.1 and 2.2 are applied with the addition of a temperature scale, £, and a heat
flux scale, @ = k€/L, where k is the thermal conductivity. Several types of boundary conditions,
similar to those used for the Navier - Stokes equations, have been implemented.

Several basic boundary types have been defined, given by

Temperature: T=c (2.15)
Flux: —VT -7t =q" (2.16)
Far Field. VT -7i=0 (2.17)
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An outflow condition has also been implemented to allow the solution of problems with non-periodic
geometries. This condition is implemented using a buffer domain technique in the same manner
as for-the Navier - Stokes equations, which is described in section 2.2.3. The Laplace operator is
redefined as shown in equation 2.11 and the energy equation becomes

o VT = ——

2
at PrRe Vit (2.18)

2.3.2 Periodic Boundary Condition

Implementation of the periodic boundary conditions for temperature involves many of the same
issues that occurred in handling the pressure. Applying the same technique, the secular increase

or decrease in temperature is removed and the total temperature is written in terms of a modified

temperature as
T(z,y,2,t) = Tin + 122 + 1y + O(z,y, 2, t) (2.19)

where © is the modified temperature. Substituting the above equation into the energy equation 2.14

produces

00

1 2
FG-VO = — + + v 2.20
at " © (urs + ) PrRe © (220)
A periodic boundary condition for © of the form
O(z,y,2,t) = O(z + mLg,y + nly, 2,1) (2.21)

may be applied if the proper values of v, and <y, are used. These values determine the net tem-
perature increase across a periodic cell in the z and y directions respectively. The values of these
parameters must be consistent with the rate at which energy is added to a cell and convected from

it. To insure this condition is met, a first-law control volume analysis may be performed on a cell,
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which yields the relation

— — 1 . R
YyLyQy + V2 LeQz = PrRe //Sq" -nda (2.22)

Q. and Qy are the volumetric flow rates through a cell in the z and y directions. The integral is
over all the internal surfaces within a cell over which there is a heat flux ¢”. The first two terms
in equation 2.22 are the net rate at which energy is advected from a cell in the z and y directions,
while the last term is the rate at which energy enters the cell through the internal surfaces. It is
further necessary to insure that the net advection of energy from a cell is in a direction consistent

with the bulk fluid motion. If the average temperature in each cell, T, is calculated, its gradient

can be found as

VT = Y41 +7yJ (2.23)

The bulk fluid velocity is given by
0= z v 3 2.24
R A (2.24)

The requirement that the direction of these two vector quantities be the same produces the relation
’YzQyLy = ’)’yQ_zLa: (2.25)

which when combined with equation 2.22 gives the following relations for -y, and -y,

QnethLx
Yz = - — : (2.26)
PrRe [(QyLy)2 + (QzLx)2]
Yy = dnet Qy Ly (2.27)

© PrRe[(@yLy)’ + (QuLe)’]
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where

Qnet = // (T” -fida (228)
S

The use of the periodic boundary condition for temperature imposes certain limitations on the type
of flows that may be solved. Equations 2.26 and 2.27 were developed assuming the net amount of
energy in a cell remains constant, and equation 2.20 ignores any temporal variation in the values

of v, and 7y,. Furthermore, under this formulation it is necessary that all internal boundaries have

a constant heat flux boundary condition.

2.4 Temporal Discretization

This section details the temporal discretization employed for both the Navier - Stokes and Energy
equations. The discretization of the Navier - Stokes equations is discussed, with the same method
applied to the Energy equation. The Navier - Stokes equations, in their most general form for this

work, are

Vi (2.29)

V-i=0 (2.30)

where 3 is defined in Section 2.2.2 and V? is defined in Section 2.2.3. This general form includes
the modifications for periodic and outflow boundary conditions. If no periodic boundary conditions
are used the value of E may be set to E = (0,0, 0) and the modified pressure, p, becomes identical to
the standard pressure. Similarly, if an outflow boundary condition is not utilized the filter function,
f(z), has the value f(z) = 1 through out the computational domain and V} becomes the standard
Laplace operator V2.

The temporal discretization is performed using a general two-step time split scheme (Chorin [7],
Kim and Moin [25]). In this scheme an intermediate velocity field, @*, is calculated using the

advection, diffusion, and linear pressure drop terms in equation 2.29 according to the following
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equation:

— % —n 1

u —u
U —u” - —D 2.31
A +NL=LP+DIF (2.31)

The term NL represents the explicitly discretized nonlinear term using a third order Adams -

Bashforth scheme and is given by

5 (@™ v ?) (2.32)

23 16
( 12

=3 @ Vi) - g™t vgnl) +

NL
12

LP is the linear pressure drop coefficients discretized using Crank - Nicholson giving
1 an+1 1=,
LP=_p""+_p (2.33)
2 2
and DIF is the implicitly discretized diffusion term also using Crank - Nicholson, giving

1 1
DIF = §v§a* + §v§a" (2.34)

Due to the missing pressure term the intermediate velocity, @*, will not be divergence free. The
second step of the time split scheme corrects the velocity field by making it divergence free through

the action of the pressure term. This is done using the equations

2n+l __ =%
e = © o= _vpntl (2.35)
V-a"tl =0 (2.36)

which when combined produce the Pressure Poisson equation

1
2~n+1 __ e
VephTt = —tV U (2.37)

The advancement of the solution from @™ to @™*! requires first the solution of equation 2.31 for

the intermediate velocity, 4 *, followed by the solution of equation 2.37 for the pressure at the new
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time, p™*!, and finally the use of equation 2.35 to compute the new velocity, @™ *!.

2.5 Spatial Discretization

The temporal discretization described in Section 2.4 results in a set of elliptic partial differential
equations in spatial variables. Equations 2.31 and 2.37 both have the general form
2
(f(:c)aa—a:2 + gy—z + —6%25 - a) 9(z,y,2) = h(z,y,2) (2.38)
For equation 2.31 the term g is the intermediate velocity @* and o = 2Re/At. For equations 2.37
g is the modified pressure 5”*! and o = 0. With ¢ = 0 equation 2.38 changes from a Helmholtz to
a Poisson equation.

The numerical solution of the above equation requires that it be discretized in the three spatial
dimension z,y, and z. The requirements placed on the spatial discretization where that it posses
a high degree of accuracy, handle moderately complex geometry, readily adapt to new geometries,
and implement efficiently on parallel computer architectures. To meet these requirements a multi-
domain spectral element discretization was chosen for the z and y directions, while a Fourier

discretization was used for the z direction.

2.5.1 Fourier Discretization

The geometries to be analyzed all have a uniform z,y plane cross-section which extends infinitely in
the z direction. This makes discretization by Fourier expansion in the z direction a natural choice.

The forward and inverse Fourier transforms are given by

~ ]. Lz _ik221r
e(z,y) = 1~ /0 9(z,y,2)e”" L= dz (2.39)
Z
and
e -kz2m
dzy2) = > Gila,y)e t (2.40)
k=—o00
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Figure 2.3: Multi Domain Discretization

k is the wavenumber of the Fourier mode, and L, is the largest periodic wavelength in the z
direction. Applying the expansion 2.40 to equation 2.38 produces
0? 5% 2472\ 17 . N
[f(x)W + -0? - (U + _1—33—-)} gr(z,y) = hi(z,y) (2.41)
where §;, and hy are the Fourier coefficients after the z transform. The above equation is a two

dimensional Helmholtz equation in = and y that may be solved by discretizing in those variables.

2.5.2 Multi-Domain Spectral Discretization

The spatial discretization in z and y is performed using a spectral multi-domain technique (Fu-
naro [15], Streett and Macaraeg [48], Carlenzoli and Gervasio [6]). In this technique the overall
computational domain is subdivided into a number of smaller rectangular subdomains, as shown
in Figure 2.3. Within each sub-domain a local spectral Chebyshev discretization is defined (Canu-
to et al. [5]). The discrete approximation of derivatives at each point in a domain utilizes only
points within the same domain. The multi-domain discretization produces several distinct classes
of points, as detailed in Figure 2.3. Interior points lie inside a sub-domain. Boundary points lie
along a sub-domain edge at which a boundary condition is being applied, while Interface points
lie along edges at the interface between two subdomains. Finally, Vertez points are points joining

four subdomains.
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For each point produced by the discretization a- discretized equation must be applied. At
Interior points the discrete collocated form of the governing equation is used. For Boundary
points a discrete form of the appropriate analytic boundary condition is applied. The equations
applied at the Interface and Verter points are referred to as the patching equations. The governing
second order elliptic equations require a patching condition which enforces either strong or weak C!
continuity. For either patching method spectral convergence of the solution with increasing order
of the basis function is achieved (Canuto et al. [5]).

The strong formulation requires continuity of the function and its normal derivative between
two domains at interface points. Thus the following equations are applied for interface points,

depending on the orientation of the interface edge

Vertical Interface: ag’%ﬂf’y) - agg;:,y) =0 (2.42)
Horizontal Interface: ag}c;;,y) - ag’%:’y) =0 (2.43)

The superscripts 1 and 2 denote the two different domains on either side of the interface edge.
Identical equations can be written for the vertez points, where continuity of the function and
its derivatives are also desired. However, only one derivative matching equation, either along x
or along y, can be applied at each vertez point; therefore, continuity of the derivative along the
other direction cannot be enforced. In practice the derivative mismatch in the unenforced direction
is generally small and decreases exponentially as the discretization is refined. Furthermore, the
solution at the vertex points is decoupled from the solution at the interior and boundary points,
thus mismatch at the vertez points has no impact on the overall solution.

An alternative to the strong formulation is the weak formulation where the patching equations
involve a combination of flux matching and enforcement of the governing equation. The collocation
of the governing equations at the interior points and the handling of the boundary conditions
remains the same as for the strong formulation. However, the patching equations are obtained

from the variational formulation of the equations. For the weak form, at an interface, the following
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equation is applied

9g;  94; sl 7 1 2 5\ 2
oo~ o~ (L0k =) = (L6f — Bu) = 0 (2.44)

where the operator L is defined as

2 2 2 2
L= [f(x)gaﬁ-l-aa—yz— <a+k£‘; )] (2.45)

n is the direction normal to the interface, and w) and w2 are the proper Gauss - Lobatto quadrature
weights as defined by Funaro [15]. Unlike the strong formulation, for the weak form, a well defined
equation exists for the interface vertices. The vertex equation is a generalized form of equation 2.44
where weighted derivatives in the z and y directions and the collocated governing equations from
the four surrounding domains are included. The weak form provides greater accuracy, while the
strong formulation allows for easier implementation. For this work the strong formulation was
chosen, but with minor modifications the weak form may be used.

Application of the multi-domain discretization produces a linear set of equations having the

form

B 7 r 3 ( 3\

A 0 - 0 B X1 fi
0 Ay --- 0 B, X9 5
q >=J N (2.46)
0 0 --- Ay By X fr
| G G - Cy D | vy | (| fm41 )

where x; is an ordered vector of interior points for sub-domain 7, M is the number of domains, and
y is an ordered vector of the interface and vertex points. The ith block row of the above equation
enforces the discrete collocated form of the governing equations at all the interior points in the ith
sub-domain. Thus the first M block rows of equation 2.46 complete the enforcement of the discrete
version of equation 2.41 at all the interior points. The last block row of equation 2.46 enforces the
interface and vertex matching conditions. Therefore matrices A and B are block matrices whose

terms are generated by the discrete governing and boundary equations, while C' and D result from
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the interface and vertex equations. The particular form of this linear system lends itself to solution

through an influence matrix technique, which is detailed in the following section.

2.6 Influence Matrix Method

Of critical importance to any numerical solution methodology is its efficiency, both in terms of
CPU utilization and memory usage. A direct solution of the linear system of equations 2.46 would
require the inversion of a matrix of approximate size (N; N, M) x (N; Ny, M), where N, and N, are
the number of grid points in each domain along the z and y directions and M is the number of
domains. One such system must be solved for each of the real and imaginary components of the
N /2 number of Fourier modes along the z directions. This type of direct solution would fail to take
advantage of the sparsity and structure of the matrix. A more efficient technique for solving the
linear system of equations 2.46, referred to as the Influence Matrix Method, exploits the structure
of the matrix (Quarteroni and Sacchi-Landriani [40] [41]). This technique performs the solution of
the system of equations 2.46 in several steps.

In the first step, the Particular solution, is evaluated by assuming an arbitrary vector of unknown
interface and vertez values y. With y a given value the first M block rows of equation 2.46 decouple

and may be solved independently. For y = 0, each of the first M block rows produces the equation
% = A7, (2.47)

This is equivalent to solving the Helmholtz problem locally and independently in each sub-domain
with the interface and vertex points associated with each domain having a value of zero. The
method of solving the Helmholtz problem on an individual sub-domain is detailed in section 2.7.
The second step in the solution involves the calculation of the residual, r, which is the derivative
mismatch at the interface and verter points for the Particular solution, and the solution of the

Influence equation for the interface - vertex vector, y. The residual is calculated from the equation

M
r= fM+1 - Z Cziz (248)

i=1
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and is then used as the right hand side in the influence equation
Gy=r (2.49)
where G is the influence matrix, which is defined as

M
G= [D -y C,-Ang,} (2.50)

i=1
Equations 2.48 - 2.50 can be derived by solving the first M block rows of equation 2.46 for x;
in terms of y, substituting for x; in the last block row equation, and using the definition of the
Particular solution 2.47.
The influence matrix, G, is defined above in terms of block sub-matrices. However, in practice
this definition is neither convenient nor practical. As an alternative, the influence matrix may be
constructed on a column-by-column basis. This can be seen by examining the results of multiplying

the influence matrix with the jth column of the identity matrix, I;.

M
Gj = GI;= [D - ZC’,-A;IBiJ I; (2.51)
=1
M .
= Y Cix! + DI (2.52)
=1

Here G is the jth column of the influence matrix, and xf is the solution in sub-domain 4 for the
Helmholtz equation with zero forcing, zero boundary condition, and all interface - vertex values
set to zero, except for the jth interface - vertez point which is set to one. The jth influence matrix
column is then an evaluation of the derivative mismatch at each interface - vertez point for this
Helmholtz equation solution. In this manner each column of the Influence Matrix is computed and
assembled to form the complete matrix, G.

Once the interface - vertez values, y, have been calculated by solving the Influence equation the

third and final step in the solution of equation 2.46 is the calculation of the Homogeneous solution
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given by
X; = —A;lBiy (253)

This is the solution of the Helmholtz equation in each sub-domain for zero forcing, zero boundary
constants, and the interface and vertexr points having their proper values, as obtained from the

solution of equation 2.49. The final solution is then the sum of the Particular and Homogeneous

solutions
xX; = X; +X; (2.54)

along with the interface - verter values, y.

Overall, the Influence Matrix technique requires two solutions of a Helmholtz equation for each
sub-domain. One for the Particular solution, equation 2.47, and the other for the Homogeneous
solution, equation 2.53. In addition, it requires the solution of the Influence matrix problem;
however, this need only involve a simple matrix vector product, since the influence matrix may be
precomputed and inverted once at the outset.

A difficulty arises in the inversion the of the influence matrix utilized in solving the pressure
Poisson problem. As posed, the equation for pressure is a Poisson equation with a Neumann
condition on the boundaries. The solution of this system of equations is indeterminate to an
arbitrary additive constant. The discrete linear system for this problem, therefore, cannot be
solved through direct inversion of the influence matrix since its condition number is infinite, and
correspondingly the matrix has a null eigen mode. The solution of the linear system can be
determined, with the arbitrary constant set to zero, through an eigen decomposition of the influence

matrix and elimination of the null mode. The influence matrix may be eigen decomposed as
G=VAV! (2.55)

where V is a matrix composed of the eigenvectors of G and A is a diagonal matrix of eigenvalues.
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The inverse of G may then be calculated as
Gl=vAly! (2.56)

Since A is a diagonal matrix its inverse simply contains the inverted diagonal elements. The
eigenvalue of the null mode is zero and its eigenvector is a constant. The inverse of the influence
matrix, as defined by equation 2.56, may be determined by setting the inverted null mode eigenvalue
in A~! equal to zero. This allows the linear system to be solved with the unknown constant value
set to zero.

The advantage to the influence matrix technique lies in the fact that it reduces a single large
problem into many much smaller problems. The solutions to the Particular and Homogeneous
problems may be performed independently in each sub-domain using the fast Helmholtz solver
algorithm detailed in the following section. This domain-wise independence allows for very efficient
implementation under parallel architectures, since each sub-domain may be handled independently
by a different processor. Communication amongst processors only occurs when solving the influence
matrix equation. This communication is limited to collecting the components of the residual vector
and distributing the solution for the interface - vertex points across the processors. Furthermore,
the Influence Matrix technique greatly reduces overall memory usage since a single large solution

matrix is never formed. The largest remaining matrix, the influence matrix, is generally an order

of magnitude smaller in size.

2.7 Sub-domain Solver

Through the use of the Influence Matrix technique the problem of determining the solution to the
set of governing equations over the entire computational domain is essentially reduced to multi-
ple solutions of a Helmholtz or Poisson problem in each sub-domain. The efficiency with which
the solution in each sub-domain is calculated, therefore, has a significant impact on the overal-
1 performance of the numerical implementation. A Fast Helmholtz Solution algorithm has been
implemented to provide highly efficient solution of the sub-domain problems.

The sub-domain problem involves solving a Helmholtz or Poisson equation in the form of Equa-
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tion 2.41 over a rectangular domain with a generally mixed set of Dirichlet and Neumann boundary
conditions applied to the four boundaries. Each sub-domain is discretized into Nz x Ny collocation
points. At the interior points a discrete form of the governing equation is applied, and similarly
at the boundaries a discrete form of the appropriate boundary condition is used. This produces a
linear system of (Nz - Ny) x (Nz - Ny) equations. The discrete equations at the interior points

have the form

Nz Ny 24,2 -
k°4m ~ 1=2—>Nz—1
2 A ~ 2 ~ _
> DXy Gk + D Gy DY (5 — (U Tz ) ki) = Pz (2.57)
=1 =1 z j=2—Ny-1

while at a boundary in the z direction the equations are

Gk = C(ij i=1,Nz
9 (],\,:) (i) (2.58)
or lzai ‘DX(?L,Z) gk(l,j) = c(i’j) j=2—->Ny-1
and for a y boundary
Ok ;) = C(irj i=2—Nz-1
or Zl=yl gk(i,l) DY(%,]') = C(i,5) Jj=1,Ny

In the equations above DX? and DY? are respectively Nz x Nz and Ny x Ny discrete second
derivative matrices (Canuto et al. [5]) and c(; j) is the boundary condition value applied at the point
i j.

The set of equations above may be solved as a simple linear system of the form, Az = b, where
z is the entire list of unknown values and the operator, A, is of size (N, Ny x N;Ny), but sparse.
However an alternative solution method, the Fast Helmholtz Solver, may be utilized to reduce the
number of operations and the amount of memory required to produce the solution. As the first step
in the implementation of the Fast Helmholtz Solver, the system of equations is reduced through
the elimination of the boundary equations and unknown solution values on the boundary. This

is accomplished by combining equations 2.58 and 2.59 with equation 2.57 to produce a system of
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equations of the form
~ 2% 2 2 % 7

f]k is the reduced solution matrix containing only interior point values of g and therefore of size
(Nz — 2) x (Ny — 2). Similarly i:zk is the interior portion of hy of size (Nz — 2) x (Ny — 2)
modified by the incorporation of the boundary condition equations. DX’ and D~Y2 are reduced
second derivative matrices of sizes (Nz — 2) x (Nz — 2) and (Ny — 2) x (Ny — 2) which have
been modified by the incorporation of the boundary equations. Finally, & is a redefined constant,
G =0+ k%4n?/L2.

The system of equations in equation 2.60 may be solved efficiently through the eigen decompo-

. e . ~ 2 ~ 2 . .
sition of the reduced derivative matrices DX~ and DY". These matrices may be written as

DX® = MA,M™! (2.61)

DY = NA,N! (2.62)

. . ~ 2 ~ 2 .
where M and N are matrices whose columns are the eigenvectors of DX and DY respectively, and

Az and Ay are a diagonal matrices containing the corresponding eigenvalues. Using the definitions

= MGN™! (2.63)

MHN! (2.64)

9k
P

and the decompositions 2.61 and 2.62 allows the system of equations 2.60 to be solved for G as

H(i,j) t=1—->Nz—2

Gig) = - (2.65)
Aa(i) + Ay(j,j) -9 j=1-Ny—2

The final solution on the sub-domain interior points, ék, may then be computed from Equation 2.63,
after which the solution at the boundary points may be determined from equations 2.58 and 2.59.

The advantage of the Fast Helmholtz algorithm is that once the eigen decomposition, which can

be done once at the outset, has been performed the number of operations to obtain the solution

33



scale as O(Nz?Ny + NzNy?) and the required storage involves only Nz x Nz, Ny x Ny, and
Nz x Ny matrices. The alternative direct solution technique would require O(Nz2Ny?) operations,
assuming initial inversion of the solution matrix, and storage of an Nz Ny x Nz Ny matrix for each
sub-domain. As a consequence the Fast Helmholtz algorithm produces a substantial improvement

in operation and memory cost over the direct solution method.

2.8 Program Features

The choice and implementation of the algorithms described in this chapter was done with the intent
of producing a computer code which is highly accurate, efficient, and flexible. The spectral multi-
domain technique provides a highly accurate spatial discretization. It shares the characteristics of
a single domain spectral method in that it provides high resolution at a given level of discretization
and has a spectral, or exponential, rate of convergence to the exact solution as the discretization
is increased. The use of the multi-domain technique along with the Influence Matrix method, and
the Fast Helmholtz solver allow for efficient solution of the discrete problem. Memory utilization
and operation count is reduced by converting the discrete linear equations from a single large
matrix equation to many smaller sets of equations. Matrix size then scales with the square of
the sub-domain discretization, as opposed to the square of the complete computational domain
discretization. Virtually all computational operations are performed on a sub-domain-wise basis
utilizing only data local to that sub-domain. This allows the code to run efficiently under parallel
architectures, which at present are the dominant architectures for high performance computing. On
multi-processor machines, each processor handles an equal number of domains, with near perfect
scalability to the point where a single processor handles only a single domain. The code has shown
near linear speedup for a properly optimized parallel implementation of the algorithm (Joseph [21]).

For the present work, an important consideration was the flexibility of the implementation. It
was important that the implemented code be capable of solving a range of problems containing
different geometries and utilizing different boundary conditions. With the multi-domain algorithm,
it is possible to implement the code in a way that allows for easy reconfiguration of the geometry
within the computational domain. Given a rectangular computational domain the number and size

of the of the subdomains can easily be set by specifying a set of horizontal dividers spaced along
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Figure 2.4: Discretization and Solution of Isolated Rectangular Cylinder

the y axis along with a group of vertical dividers along the z axis. This defines an initial grid
for partitioning the computational domain into subdomains as shown in Figure 2.4 (a). Once the
basic subdomains are defined the interior geometry can be specified by removing subdomains and
specifying one of the different velocity or temperature boundary conditions defined earlier along
their periphery, as shown in Figure 2.4 (b). Finally, the boundary conditions along the border of
the computational domain may be set to be either a solid wall, inflow, outflow, periodic, or far field
condition. Figure 2.4 (c) shows the solution to a case with inflow, outflow, and far field conditions,
while Figure 2.5 shows the solution for a fully periodic case. The existing code may also be readily
reconfigured to handle a wide range of problem cases, such as simple channel flow, channel flow
with rectangular irregularities along the channel walls, channel flow with interior objects, or flow
about more general shaped bluff bodies such as T or L shaped objects. At present the principal
restriction on the geometry is that the subdomains must be rectangular. More general four sided
curvilinear domains may also be handled within the general framework outlined above, with the
only major modification required in the sub-domain Helmholtz solver.

With simple modifications the code can be adapted to handle an even broader range of problems.
Yoon [56] has performed modifications that allow the solution of problems in cylindrical coordinates.
The modified code has been applied to solving the flow in a mixing tank stirred by a Rushton turbine
blade, show in Figure 2.6. Each vertical cross section about the tanks center line is rectangular
and has the applied boundary conditions shown in Figure 2.6. The physical turbine blade itself

is not modeled, but instead a theoretical model of the blade tip velocity is applied along an edge
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Figure 2.6: Simulation of Mixing Tank with Rushton Turbine Blade

between subdomains just beyond the physical location of the tip of the blade. The ability to apply
boundary conditions along edges between subdomains is a feature of the original code that allows
the specification of the velocity along lines within the computational domain. Figure 2.6 shows the
multi-domain discretization for a cross section, along with the stream lines of the solution.
Another problem for which the present code has been used is the case of buoyant thermal con-
vection between parallel plates with an internal isothermal body. Here a Boussinesq approximation
has been used to model the buoyancy induced flow. The geometry is shown in Figure 2.7. In
this model the upper and lower walls are isothermal with a temperature of T = 1 and T = 0,

respectively. A periodic boundary condition is applied on the left and right boundaries, modeling
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Figure 2.7: Convection Simulation

the case of an infinitely periodic array of square isothermal bodies placed between a hot lower,
and a cold upper plate. Figure 2.7 shows the discretization used, along with the streamlines of the

solution for the case when the rectangular object in the center is isothermal with a temperature of

T =0.5.
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Chapter 3

Code Validation

3.1 Introduction

In this chapter the proper operation of the multi-domain spectral element code described in Chap-
ter 2 is verified. The flow and temperature solutions produced by the present code will be evaluated
by comparisons to two sets of independent numerical solutions. The first test case will compare
to the results of Zhang [60] for flow through an infinite array of rectangular bodies in a staggered
arrangement utilizing periodic boundary conditions. The second test case will compare to the re-
sults of Robichaux [42] for uniform flow over a square cylinder using inflow and outflow boundary
conditions. The multi-domain code, as implemented, is capable of solving three dimensional prob-
lems; however, the cases considered in this chapter and throughout the rest of the text are two
dimensional, since three dimensional effects play only a limited role for the Reynolds number range
of interest. The following sections detail the results of these comparisons and demonstrate good

agreement between the results of the present code and the test cases considered.

3.2 Infinite Staggered Array

This section compares the results from the present code with those of Zhang [60] for pressure driven
flow through an infinite array of offset rectangular bodies. The basic geometry and associated
parameters are shown in Figure 3.1, this is later referred to as the Staggered 1 case. To model
an infinite geometry a basic periodic geometry or cell is defined, shown by the dotted lines in

Figure 3.1, and periodic boundary conditions are applied along its boundary. The basic periodic
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Figure 3.1: Staggered Array Geometric Parameters

b 0.75

h 6.41

S 0.79

c 3.25

Lx 14.4
Ly 4.0

X Bnd. | Per.
Y Bnd. | Per.
M 58
Nx 20
Ny 14
Bz 1.0
By 0.0

Table 3.1: Staggered 1 Parameter Values

cell can be seen to be composed of two rectangular bodies in a staggered formation. Repetition of
the periodic cell produces an array of infinite extent in which every column of bodies is offset in
the transverse direction from the column upstream.

The specific values of the parameters defining the test case are listed in Table 3.1. The dis-
cretization chosen produces 58 subdomains, each having 20 grid points in the z direction and 14
in the y. The discretization is shown in Figure 3.2. Periodic boundary conditions are employed on
each edge and a fixed streamwise pressure gradient is imposed to drive the flow with £, = 1.0.

With the value of 3, set to 1 the pressure scale is set by Equation 2.9 to

Ap*(Lg,0,0,0)

- (3.1)

P=

where Ap*(L,,0,0,0) is the dimensional pressure drop over the streamwise length of the computa-

tional domain. The velocity scale is then U = (P/p)'/? and the length scale, £, is a quarter of the
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Figure 3.2: Staggered 1 Case Discretization

domain height. The Reynolds number, Re, in Equation 2.1 is therefore defined using these scales.
For the purposes of comparison to the results of Zhang an alternative Reynolds number, Rep, ,
may be defined based on the hydraulic diameter, D}, and mean flow velocity at the minimum cross

sectional area, U}, This Reynolds number is then defined as

7% D*
Rep, = g%h (3.2)

where the dimensional (as denoted by the superscript *) hydraulic diameter and mean velocity, are

given by
. 4Ar. L
Dj = _?;:_LJ_ (3.3)
f
- Q
Upin = —— (3.4)
mwn Amzn

* —

In the above equations Ay is the effective minimum cross flow area defined as Ay, = (Ly—2b%)L},
2% is the combined surface area of the bodies within the computational domain given by Q} =
4(h* + b*)L%, and Q% is the average volumetric flow rate in the z direction. In addition, we will

also define the Darcy friction factor, f, and the Colburn j factor as

Ap* D; D, 1
%P Um2in 4L; 2 Ugu'n
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I Re ” ReDh l ReDh,Zhang [ %lef ” f ' thang | %szf ” J l thang | %szf
15 471 474 0.6 || 0.0645 | 0.0634 1.7 |} 0.0335 | 0.0338 0.9
20 709 720 1.5 || 0.0506 | 0.0490 3.3 || 0.0253 | 0.0253 0.0
25 986 1018 3.1 {{ 0.0409 | 0.0383 6.8 || 0.0206 | 0.0191 79
30 || 1227 1246 1.5 || 0.0380 | 0.0368 3.3 || 0.0184 | 0.0188 2.1

Table 3.2: Comparison of Staggered 1 Flow Values

Figure 3.3: Instantaneous flow solution for Staggered 1 case at Re= 20

J= ;ﬁe-% (3.6)
where < Nu > is the global time averaged Nusselt number for a body, based on the hydraulic
diameter as defined by Equation 3.3.

Comparisons of these quantities with the results of Zhang [60] have been made for flow solutions
obtained at four different Reynolds numbers. The values and the relative differences are presented
in Table 3.2. The results show a good agreement in all quantities for all of the Reynolds numbers
considered. A vector plot of an instantaneous flow solution for Reynolds number, Re = 20, is
shown in Figure 3.3. The expected flow features may be observed; developing boundary layers
along the top and bottom surface of each body, a stagnation point on the front face, a low velocity
recirculating wake region directly behind the body, and waviness in the downstream wake indicative
of shed wake vortices. Figure 3.4 shows the contours of the temperature solution at the same instant
for Re = 20. Thermal boundary layers are seen to develop along the surfaces of the bodies, with
the waviness of the temperature contours in the wake also indicative of the presence of shed wake
vortices. The effects of the periodic vortex shedding phenomena are also manifest in the signatures

of the coeflicients of lift and drag, given by equations 3.7 and 3.8, shown in Figure 3.5 for Re = 20.
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Figure 3.4: Instantaneous temperature solution for Staggered 1 case at Re= 20
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Figure 3.5: Lift and Drag Coefficients for the Staggered 1 case at Re= 20
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Figure 3.6: XY Non-Periodic Geometric Parameters

b 1.0
h 1.0
s 5.0
c 17.0
Lx 23.0
Ly 18.0

X Bnd. | In/Out
Y Bnd. | In/In

M 62
Nx 16
Ny 16
Bz 0.0
By 0.0

Table 3.3: Square XY Non-Periodic Parameter Values

3.3 Square Cylinder

This section presents a comparison of results with those of Robichaux [42] for two dimensional
uniform flow over a square cylinder. The basic geometry of this flow case is depicted in Figure 3.6.
This case is later referred to as the Square XY Non-periodic case. Table 3.3 lists the values of the
parameters used and the discretization is shown in Figure 3.7, which employs 62 subdomains with
16 grid points in the z and y directions in each domain. An inflow boundary condition is utilized at
the left boundary with a uniform streamwise flow specified. The velocity along the upper and lower
boundaries is fixed and set the same as the velocity on the inflow boundary. The right boundary is
specified as an outflow boundary condition of the type described in Section 2.2.3. No streamwise
pressure gradient is imposed for this flow thus the values of 5, and 8, are set to zero. The velocity
scale chosen was the velocity of the oncoming flow, U%, and the length scale set to the object
height, b*. The Reynolds number is therefore defined as Re = U2 b* /v

The flow quantities compared to those obtained by Robichaux are the coefficients of lift and
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| Re | Ca|Cur | %Diff] Cy| Cop|%Diff| C | Cp|%Diff | St| Str|%Err |
100 ][ 1.56 | 1.53 1.9 ] 0.007 | 0.007 0.0 J027[023] 174[0.152[0154] 13
150 || 1.54 [ 1.57 1.9 [ 0.029 [0.024 | 20.0 [042[0.38 | 105/ 0.164 [ 0.166 | 1.2

Table 3.4: Comparison of Square XY Non-Periodic Flow Values

drag, along with the Strouhal number. These quantities are defined as follows

Fy

Cy=—2— 3.7
F,
Cr= =% (3.8)
TUZbL,
fsb
St = 3.9
- (3.9)

where F, and F, are the net force on the body in the corresponding directions and f is the
primary frequency of the lift oscillation. The values of these quantities have been determined at
two Reynolds numbers where the flow is unsteady and are compared with the values reported by
Robichaux [42] in Table 3.4. The value Cj is the mean value of the drag fluctuation and C); and
Cl' are the amplitude of the drag and lift fluctuations. Generally good agreement may be seen
between the two sets of results, with the largest differences occurring in the values of the oscillation
amplitudes.

A vector plot of the instantaneous flow solution for Re = 150 is shown in Figure 3.8. The
flow is seen to be relatively undisturbed upstream of the body and away from the body in the
transverse direction. A wake region is observed, with recirculating flow directly behind the body and
downstream waviness indicative of shed vortices. The vortices may be visualized through calculation
of the swirling strength at each point in the flow field. The swirl, as described by Zhou [61] is plotted
in Figure 3.9 for the same instantaneous solution. Distinct regions of concentrically increasing
swirling strength are observed and represent individually shed vortices. In this plot the presence of
the well known Karman Vortex street may be readily observed, with vortices periodically shed from

alternating surfaces of the body and convecting directly downstream. Smooth convection of the
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Figure 3.10: Lift and Drag Coefficients for Square XY Non-Periodic at Re= 150

vortices from the computational domain is observed with the implemented buffer domain outflow
boundary condition. The effect of the vortex shedding on the lift and drag experienced by the

object are shown in Figure 3.10.
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Chapter 4

Stability of Bluff Body Arrays

4.1 Introduction

This section discusses the numerical and analytic stability results obtained for flow over several
different arrangements of rectangular cylinders. Presented are the numeric laminar base flows,
instability growth rates, critical Reynolds Numbers, and eigenfunctions for the various cases con-
sidered. A simplified one-dimensional stability analysis for Inline arrays is also presented. Based on
the two-dimensional numeric and one-dimensional analytic results the effect of the various geometric
parameters on the flow stability is discussed.

The solution cases considered are listed and described in Table 4.1 and Figure 4.1. The cases fall
into three general classes, as indicated in Figure 4.1. The extent of the computational domain for all
three cases is denoted by the dashed lines and the parameters L, and L,. The Inline and Staggered
cases implement periodic boundary conditions in the z and y directions, making the computational
domain a single cell in an infinite array. The Non-periodic cases have an Inflow condition at the
left z boundary and an Outflow condition at the right z boundary. Both X Non-periodic cases use
a periodic condition at the y boundaries to produce a vertical column of bodies. The Rectangular
XY Non-periodic case used a far - field condition in the y direction for simulation of flow around
an isolated body. The Square XY Non-periodic case, however, used an Inflow condition to apply a
fixed velocity equal to the inlet free stream velocity along the y boundaries. For both of the XY
Non-periodic cases, the y extent of the computational domain was enlarged to reduce the influence
of the y boundary conditions on the solution. The object frontal height, and streamwise length,

are given by the parameters b and h, respectively. While the streamwise and transverse spacing
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| Case | b h | s | c| Lx| Ly|XBnd |Y Bnd.

Inline 1 0.90 | 10.00 | 10.00 | 1.10 | 20.0 | 2.0 | Per. Per.
Inline 2 0.90 | 10.00 | 10.00 | 3.10 | 20.0 | 4.0 |. Per. Per.
Inline 3 0.90 | 10.00 | 20.00 | 1.10 | 30.0 | 2.0 | Per. Per.
Inline 4 0.90 | 10.00 | 20.00 | 3.10 | 30.0 | 4.0 | Per. Per.
Staggered 1 0.75| 641 | 079 | 325|144 | 40| Per. Per.
Staggered 2 0.90 | 10.00 | 0.00 | 3.10|20.0 | 4.0 Per. Per.
Staggered 3 0.90 | 10.00 | 0.00 | 9.10 | 20.0 | 10.0 Per. Per.
Rect. XY Non-periodic | 0.90 | 10.00 | 5.00 | 19.10 | 30.0 | 20.0 | In/Out Far
Rect. X Non-periodic 0.90 | 10.00 | 5.00 | 1.10 | 60.0 | 2.0 | In/Out | Per.
Square XY Non-periodic || 1.00 | 1.00 | 5.00 | 17.0 | 23.0 | 18.0 | In/Out In
Square X Non-periodic 1.00 | 1.00 | 5.00 | 1.00 | 23.0 | 2.0 | In/Out Per.

Table 4.1: Numerical Solution Cases

_______________ y Lo
Ig oo mumm O gy Lly E
Ly h ) y o h :
l. [ B : Lx )
e e mmm—— M *go ] oL A A !
x
] I X
(a) Inline Periodic (b) Staggered Periodic (c) X Non Periodic

Figure 4.1: Inline, Staggered, and Non-periodic Geometries

between objects is given by s and c.

Two basic arrangements of rectangular bodies in an array have been studied: the Inline array,
and the Staggered array. For these two basic cases, variation of the parameters governing the array
geometry allows an assessment of the impact of the array geometry on the onset of unsteadiness and
the resulting Karman vortex shedding process. Most of the existing literature, and correspondingly
our understanding, has been limited to the case of instability of the flow over an isolated cylinder.
In order to place the present results for the inline and staggered arrays in proper context, the case
of an isolated rectangular cylinder has also been considered and is presented as the Rectangular
XY Non-periodic case. The Rectangular XY Non-periodic case may be viewed as the limiting
case of a periodic array with a very large domain of periodicity along z and y, thus permitting
homogenization of the flow from one cylinder to the next. With the flow approaching each element,

therefore, considered to be nearly uniform.
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The inline and staggered cases model an array of infinite extent by assuming flow periodicity
along the streamwise and transverse directions. A consequence of this assumption is that the
disturbance exiting the computational domain is fed back into the domain at the inlet. To discern
what, if any, impact this feedback may have upon the stability results the Rectangular X Non-
periodic case has been considered. This non-periodic case avoids the application of a periodic
boundary condition in the streamwise direction and utilizes an outflow condition at the downstream
boundary along with a uniform inflow condition at the upstream boundary. A comparison of these
results to the inline and staggered array results allows an evaluation of the feedback effect, and also
yields information on the stability of the developing flow in the entry region of a finite array. Finally
two cases employing objects with a square cross-section where examined, Square X Non-periodic

and Square XY Non-periodic, in order to asses the impact of the bodies aspect ratio, h/b, on flow

stability.

4.2 Numerical Two-Dimensional Stability Analysis

The DNS code described in Chapter 2 was utilized to study the stability of the laminar flow
solutions when subjected to a generalized disturbance. The first step in the stability analysis was
the generation of a steady laminar flow solution, U , at a given Reynolds number, herein referred to as
the laminar base flow. A valid laminar flow solution may be found at any Reynolds number through
direct solution of the Navier - Stokes equations, provided no disturbance is introduced to destabilize
the flow. The numerical accuracy of the solution methodology was generally sufficient to allow the
direct calculation of laminar flow solutions at super critical Reynolds numbers. However, the
generation of a laminar solution at these Reynolds numbers was further assured by the application
of a symmetry condition to the flow about each body. The relevant instability is of a form possessing
anti-symmetry about a line, parallel to the streamwise direction, passing through the center of each

body. The application of a symmetry condition about each body, having the form

U(fﬂ,yc‘l”y',z,t) = U(ﬁ,yc —ylaz’t)
Iv(x, Ye + yla z:t) = "’U(x’ Ye — y,’ zat) (41)
P(x,yc‘i'yl,%t) = P($7yc—y’,z,t)
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where y. is the coordinate of the body centerline and y’ is the distance from the center line,
prevents the existence of any anti-symmetric disturbance and thus insures a steady laminar flow.
A streamline plot of the laminar flow solution for each of the general solution cases is show in
Section 4.3.

After a laminar flow solution is obtained, the symmetry condition is removed and a small anti-
symmetric disturbance is added. The added disturbance consists of a small streamwise pressure
gradient, which varies in the y direction from positive to negative. The disturbance is applied over a
fraction of a non-dimensional time unit and its magnitude and sign is varied smoothly over time so
that at the final instant of its application it has the opposite sign of its initial application. Following
the introduction of the disturbance the flow is allowed to evolve in time, with the disturbance
growing in unstable flows and decaying for stable flows. To insure that the base flow remains
constant as the disturbance evolves the flow solution is split at each time step into symmetric and
anti-symmetric components. The symmetric base component is held constant over time by fixing
it to the initial laminar base flow solution, thus allowing only the anti-symmetric component to
evolve in time. This procedure allows for more efficient extraction of the linear instability growth
rate, and as a secondary effect prevents non-linear saturation of the disturbance. The growth of the

disturbance is measured by calculating the Frobenius norm of the difference between the disturbed,
i, and base, U, velocity fields,

1/2
Ny Ny /

@' = 2 - Ol = ¢ S5 [(wig — Uig)? + (vi = Vig)’] (4.2)
i=1 j=1

Figure 4.2 shows the disturbance growth as measured by Equation 4.2 for the Inline 2 case.
All of the other infinite arrays exhibit similar behavior. Below the critical Reynolds number the
perturbation can be seen to decay exponentially. Similarly, above the critical Reynolds number, the
perturbation experiences exponential growth at a constant rate for a given Reynolds number. The
exponential growth constant, or growth rate, can be extracted from these simulations as the value of
the slope of the linear perturbation energy curve on a log linear plot. Under normal circumstances
the perturbation growth would saturate, ceasing to be exponential, once the perturbation had

grown to sufficient size to interact with the base flow in a non-linear fashion. In this analysis,
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Figure 4.2: Growth of Perturbation for Inline 2 Case

however, the base flow is held fixed preventing non-linear interaction and thus saturation.

The results shown in Figure 4.2 provide a global measure of the perturbation growth. An
alternative is to measure the perturbation growth locally at a single point. Figure 4.3 plots on
a log-linear scale the absolute value of the streamwise perturbation velocity at a point near the
upper surface of a body, just beyond the trailing edge, for the Inline 2 case with Reg, = 69.1.
The perturbation velocity has an initial value of zero and oscillates sinusoidally in time with an
exponentially growing amplitude. Measuring the growth of the oscillation amplitude, which is
shown as a straight line in Figure 4.3, yields a growth rate value that agrees to within one percent
with the value obtained through the global measure. Similarly, growth rates calculated at other
points in the flow have the same value, confirming the global nature of the instability and the
uniform growth of the disturbance over the entire domain. The oscillatory behavior seen in Figures
4.2 and 4.3 is a consequence of the unsteady nature of the disturbance, with the steady base flow
being unstable to a periodic state through a Hopf bifurcation.

With the perturbation growth rate, w;, determined at several different Reynolds numbers the
critical value of the Reynolds number, at which the perturbation neither grows nor decays, may

be determined for the solution case. Figure 4.4 shows the extracted growth rates from Figure 4.2
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plotted against the Reynolds number for the Inline 2 case. The value of the the Reynolds number
at which the growth rate becomes zero is the critical value, for this case the value is Reg, = 22.6.

In addition to calculating the linear growth rate of the disturbance, the disturbance velocity field
can be determined by subtracting the laminar base flow solution from the disturbed flow solution.
These results are shown for the Inline 2 case in Figure 4.7. The form of the disturbance was
calculated by subtracting the base flow solution, g , from the disturbed velocity field, i, after the
disturbance was given sufficient time to grow in amplitude. This procedure yields the perturbations
velocity fields, 4@’ = U — @ which is plotted in this figure. The perturbation velocity field calculated
in this manner is analogous to the eigenfunction determined through normal mode analysis. Plotted
in part (c) of the figure is the swirling strength of the perturbation field. Swirl is the magnitude
of the imaginary part of the eigenvalue of the local velocity gradient tensor. This method is a
frame invariant technique of identifying vortices, where high values of swirl occur in regions of
strong rotary motion. As such, swirling strength is an effective tool for the visualization of vortices

(Zhou [61]) with an isolated region of concentrated swirl generally indicative of the presence of a

vortex in that area.
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Figure 4.4: Growth Rate Values for Inline 2 Case

4.3 Two Dimensional Stability Results

This section presents the results of the two dimensional stability analysis for each of the solution
cases described in Figure 4.1 and Table 4.1. For each of the general solution classes: Inline Arrays,
Staggered Arrays, and Non-Periodic, examples of the laminar base flow solution are shown, along
with profiles of the U velocity and examples of the eigenfunction. For each solution case, the critical
Reynolds number has been determined and is presented in Table 4.2. This table shows the critical

value of Reg,, which is the critical Reynolds number based on an average flow velocity defined as

Qi

z (4.3)
Yy

U=

=

where Q) is the net volumetric flow rate through the computational domain in the z direction and
b is the frontal height of the object. This Reynolds number, defined by the choice of velocity and
length scales, is neither the only one possible or even the most natural for a given solution case.
However, it is useful for comparing stability results among the different solution cases and for that
purpose is used in this section. Later, in Sections 4.4 and 4.5 an alternative form of the Reynolds

number is defined which better characterizes the flow in Inline and Staggered arrays. Also shown
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’i]ase | Regyerit | Ao |

Inline 1 31.4 3.3
Inline 2 22.6 6.0
Inline 3 33.8 3.3
Inline 4 21.8 6.9
Staggered 1 48.6 4.3
Staggered 2 60.9 3.7
Staggered 3 25.8 7.2
Rect. X Non-periodic 31.5 3.4
Rect. XY Non-periodic 111.6 6.5
Square X Non-periodic 28.0 3.3
Square XY Non-periodic 43.5 6.0

Table 4.2: Critical Reynolds Number for Numerical Solution Cases

in Table 4.2 is the approximate streamwise wavelength, A;, of the disturbance, which has been
obtained from the disturbance eigenfunctions. Table 4.3 presents a detailed listing of the growth

rate, w;, and frequency, w,, of the disturbance at each Reynolds number, for each of the cases

considered.

4.3.1 Inline Array Results

Numerical stability results have been obtained for each of the four Inline array cases listed in
Table 4.1. In each case, a computational domain with periodic boundary conditions containing a
single rectangular body has been utilized to model an inline array of infinite extent. Each solution
case employs a body of the same dimensions. Two different horizontal, s, and vertical, ¢, spacings
have been used to construct the four cases and evaluate the effects of these parameters on the flow
stability.

The laminar base flow solution is qualitatively similar for all of the Inline solution cases. Fig-
ure 4.5 shows the flow solution for the Inline 2 case at a Reg,;, number of 26.6, which is close to and
slightly above the critical value. In this figure the laminar flow streamlines around four elements
of an infinite array are shown for clarity of visualization, with the actual flow solution obtained for
only one element. The flow about each body is identical and symmetrical, with a stagnation point
on the front face of the body, and a steady recirculation region behind the trailing edge.

Of particular interest is the flow in the wake region behind the trailing edge of each body. It will

later be shown that the primary instability is a wake instability, and thus strongly influenced by
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| Case ” Re L w; [ u?l

Inline 1
20.0 | 4.94x10°310.976
25.0 | 3.28x10°! | 0.811
300 | 5.91 x10~1 | 0.689
350 | 9.06 x 10°1 | 0.625
Inline 2
5.0 | —9.45 x 10=2 | 0.754
6.0 1.49x10°1]0.668
80| 7.10x10"!]0.519
10.0 1.16 x 109 | 0.444
150 [ 2.11 x10° [ 0.336
20.0 | 3.11 x10° | 0.266
Inline 3
15.0 [ —3.23 x 10! | 0.805
16.5 | —=7.90 x 102 | 0.840
175 1.18 x107! ] 0.758
200 | 3.49x10°1 ] 0.694
25.0 | 7.40 x 107! | 0.584
30.0 | 1.14 x10° | 0.508
Inline 4

50| 1.47x107! [ 0.591
55| 2.64x10"T[0.576
6.0 4.17x1071 {0534
80| 1.59x10° [0.371

Staggered 1

15.0 | =1.00 x 10~ | 0.394
170 | 857 x 102 | 0.365
18.0 | 1.95x10°T]0.348
20.0 | 3.43x10°1]0.334
25.0 | 6.82x10"1{0.289
300 | 1.12x10° |0.253

Staggered 2

10.0 | —3.13 x 1071 0.0
20.0 | —=3.14 x 102 ] 0.346
21.0 [ 8.01 x10°2 | 0.327
23.0 [ 2.56 x 10~ | 0.300
30.0 | 9.43x 1071 | 0.249

Staggered 3

40| 325 x10°3]0.761
50| 3.24x10"1]0.58
6.0 5.39x 107! | 0.501

Table 4.3: Perturbation Growth Rates and Frequencies
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LCase Re [ wj , Wy l
Rect. X Non Per.

30.0 | =5.01 x 1072 | 1.739
35.0 | —4.83 x 107% | 1.724
38.0 | 4.33x1072 ] 1.707
40.0 | 6.56 x 102 | 1.700

Rect. XY Non Per.

80.0 [ —6.11 x 10~° | 9.066
100.0 | 7.30 x 1078 | 8.545
125.0 | 1.11 x 1073 | 8.269
150.0 | 1.61 x 1072 | 7.997
175.0 | 3.98 x 1072 | 7.668
200.0 | 5.39 x 1072 | 7.563

Square X Non Per

25.0 | —6.77 x 1072 | 1.772
28.0 | 1.43x1073 | 1.746
300 | 3.75x10°% | 1.729
450 | 222x1071]1.685
55.0 | 3.07 x10~! | 1.626

Square XY Non Per

35.0 | —3.36 x 10~2 | 4.479
41.0 | —8.28 x 1073 | 4.404
45.0 | 7.72x 1073 | 4.337
55.0 | 4.21 x 1072 | 4.309
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Figure 4.5: Streamlines for Case Inline 2 at Reg, = 26.6
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LCoefﬁcient ” Profile 0 I Profile IJ Profile 2 | Profile 3 I Profile 4 [ Profile 51
0 4.933 4.934 4.934 4.934 4.934 4.934
1 4.979 4.591 4.090 3.702 3.322 3.037
2 -0.589 -0.500 -0.353 -0.260 -0.184 -0.136
3 -0.178 -0.016 -0.006 -0.006 -0.005 -0.005
4 0.278 0.028 0.006 0.002 0.001 0.001

Table 4.4: Expansion Coefficients for Case Inline 2 u Velocity Profiles

the nature of the flow in this region. Profiles of the u velocity in this region are shown for the four
solution cases in Figure 4.6. The profiles are located along the dashed lines shown in Figure 4.5
and spaced approximately one non dimensional unit apart in the z direction, with the first at the
trailing edge of the body. The profile is centered along the body centerline and extends over a single
computational domain. From Figure 4.6, the profiles in all four cases may be seen to be similar.
For each case, the profiles are symmetric and with the exception of the profile at the trailing edge,
nearly sinusoidal with amplitude decaying in the z direction.

To quantify the sinusoidal nature of the profiles a Fourier analysis was performed. This analysis

showed that, due to the symmetry of the flow, the profiles may be represented as a cosine series

) (4.4)

with the coefficients, c, given in Table 4.4. It can be seen that the first coefficient ¢, which is the

expansion of the form

> k2my
u(y) =co + I;ck cos ( I,

mean flow rate, remains the same for each of the profiles. The second coefficient, which produces
the sinusoidal shape of the profiles, decays as the profiles move downstream. For all profiles, except
the first, the higher coefficients of the expansion decay, rapidly with increasing k, with the third
coefficient generally an order of magnitude smaller than the second. Given this rapid decay the
profiles could be well represented by an expansion consisting of just the first two coefficients, and
therefore as a simple sinusoid without higher harmonics.

The sinusoidal profile is a result of the channel region existing between each set of paired bodies.
As the oncoming flow enters the region between the two bodies it develops into the parabolic profile
found in Poiseuille flow. If the length of the channel region is sufficient the exiting profile becomes

precisely parabolic, as is shown by the four 0 Profiles in Figure 4.6. At the trailing edge of a column
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of bodies the set of parabolic profiles rapidly join together in the downstream direction to produce
the sinusoidal profile. In cases where the length of the channel region, which is the length of the
fin, is not of sufficient for the parabolic profile to develop the simple sinusoidal profile will not exist.
However, the parabolic profile need not be fully developed in the classical sense, with a reasonable
approximation to the parabolic shape sufficient to produce an essentially sinusoidal profile in the
wake region. Furthermore, in an inline array the oncoming flow entering a channel region will
retain an imprint of the parabolic profile produced by the upstream bodies, which greatly reduces
the length of the channel region needed to produce a sufficiently parabolic profile. Thus, in general,
a large vertical spacing to channel length ratio is needed to generate non sinusoidal profiles. The
cases considered here had an inter-fin channel height to body height, ratio, ¢/b, range of 1.2 - 3.4.
Within this range all of the solution cases considered produced similar sinusoidal profiles. Beyond
this range, flows will still have velocity profiles of the form given in Equation 4.4, however the decay
of the higher coeflicient may be delayed.

Overall the velocity field in the wake regions of an Inline array has a simple description. The u
velocity profiles are of a simple sinusoidal nature. The v velocity profiles are similarly sinusoidal,
with a magnitude which is small in comparison to that of the u velocity. Such velocity fields have
been the subject of one-dimensional stability analysis with useful results and Section 4.4 presents
the results of this type of analysis for the Inline flow cases.

The numerical two-dimensional stability analysis described in section 4.2 was applied to the
laminar flow solutions obtained for the Inline array cases. The resulting critical values of the
Reynolds number are shown in Table 4.2. The critical value of the Reynolds number for arrays
Inline 1 and Inline 3 can be seen to be approximately 32, while the critical value for arrays Inline
2 and 4 is approximately 22. It is therefore clear that the value of the Reynolds number, when
defined using average flow velocity U and body thickness b, is not the sole parameter determining
the stability of the flow. Other parameters that may play a role are the aspect ratio of the body,
h/b, the streamwise spacing, s, and the transverse spacing, c.

The critical Reynolds number data in Table 4.2 show that the streamwise spacing does not
effect the value of the critical Reynolds number at which the onset of instability occurs for these

cases. This is demonstrated by the fact that solution cases Inline 1 and Inline 3, which are identical
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except for differing values of the streamwise spacing, have nearly the same value of the critical
Reynolds number. The same observation can be made from the results for the Inline 2 and Inline
4 cases. Therefore, in general, the streamwise spacing, s, would appear to play little role in the
stability of inline arrays. The instability possesses a wave like nature in the streamwise direction
with wavelengths A;, which are given in Table 4.2 for the Inline cases. This suggests a condition
under which the streamwise spacing could effect the critical Reynolds number. Small enough values
of the streamwise spacing would prevent the instability from existing at the least stable wavelength,
Az, and would likely shift the instability to a smaller, more stable wavelength, thus increasing the
critical Reynolds number.

The data of Table 4.2 show that the transverse spacing, unlike the streamwise spacing does have
a significant impact on the value of the critical Reynolds number. The Inline 1 and Inline 3 cases,
which have the same transverse spacing are seen to have nearly the same critical Reynolds number,
Regy, of approximately 32. When the value of the transverse spacing is increased to produce the
cases Inline 2 and Inline 4, the value of the critical Reynolds number falls to approximately 22.
This shows a strong dependence of the critical Reynolds number for an Inline array on the value of
the transverse spacing. In addition, the streamwise wavelength of the disturbance can also be seen
to be effected, with the value of )\, increasing from 3.3 to over 6 with the increase in transverse
spacing.

Along with the value of the critical Reynolds number the form, or eigenfunction, of the instability
has been determined for each of the Inline solution cases. The form of the disturbance yields further
information about its nature. The eigenfunction for the Inline 2 case at Reg, = 64.6 is shown in
Figure 4.7, with all of the inline array disturbances possessing a qualitatively similar form. The
form of the instability consists primarily of a line of vortices formed behind the trailing edge of
each body, which grow in strength in the downstream direction until the next set of bodies is
encountered. This is seen most clearly in the swirl visualization, part (c) of Figure 4.7, where
the regions of concentrated swirl contours represent individual vortices. A second weaker set of
vortices can be seen to form between the primary vortices behind each body. The secondary vortices
persist downstream into the channel regions formed by the trailing set bodies, where they appear

to be damped out. The disturbance form is wave like in nature in the streamwise direction with
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Figure 4.7: Perturbation for Inline 2 Case at Reg,;, = 26.6

a wavelength set to integer divisions of the streamwise distance between bodies. This form of the
eigenfunction is characteristic of those seen in wake instabilities and may be compared with the
eigenfunctions for isolated bodies with a uniform oncoming stream shown later in Figures 4.15
and 4.16 which show a similar pattern of vortices. Note that what is shown is the form of the
disturbance while still small in amplitude and before the effects of non linear saturation. After
saturation the disturbance assumes a form similar to the well known Karman vortex street, with

vortices shed from alternating sides of the objects trailing edge.
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Figure 4.8: Streamlines for Case Staggered 2 at Reg, = 64.4

4.3.2 Staggered Array Results

In addition to the four Inline array geometries, three Staggered array geometries were considered.
These geometries are described in Table 4.1 and Figure 4.1. In each case the simulation was per-
formed on a computational domain containing two bodies and using periodic boundary conditions
to model an infinite array. It should be observed that the bodies used in the Staggered 1 array are
of slightly different dimension than those used for the Inline and remaining Staggered cases.

A streamline plot of the laminar base flow solution for the Staggered 2 array at Reg, = 64.4 is
shown in Figure 4.8. For clarity the solution is plotted over four computational cells. The laminar
flow solutions for the other two staggered cases are qualitatively similar. It may be observed
that, as for the Inline arrays, the laminar flow solution is steady, symmetric about each body,
has a stagnation point along the front face, and a recirculation region behind each body. However
significant differences between the Inline and Staggered arrays exist in the wake region, as shown by
the profiles of u velocity in Figure 4.9. These profiles can be seen to lack the simple sinusoidal shape
observed for the Inline arrays. This is a result of the wake region of each body being bracketed by
a pair of bodies in the downstream column of the array. The resulting profile of the u velocity in
the wake region is double peaked with a velocity defect in the center produced by the upstream
body. The streamwise velocity in the initial profile (Profile 0) along the trailing edge of the body
is very close to zero in the defect region. However, the magnitude of the velocity defect decreases
as the profile is moved downstream.

Table 4.2 lists the critical value of the Reynolds number calculated for each of the three Staggered

Array geometries. In comparison to the inline cases the staggered arrangement is observed to be
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Figure 4.9: Profiles of u velocity for Cases (a) Staggered 1 at Reg, = 53.4, (b) Staggered 2 at
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generally more stable, with a critical Reynolds numbers, Rey,, of 48.6, 60.9, and 25.8 for cases
Staggered 1, Staggered 2, and Staggered 3, respectively. The Staggered 2 geometry is essentially
the Inline 1 geometry, but with every other row of bodies offset by a body length in the streamwise
direction. The body dimensions and transverse spacing are otherwise the same for the two cases.
The Staggered 2 case has a critical Reynolds number of 60.9 and is significantly more stable the
Inline 1 case, which has a critical Reynolds number of 31.4.

As with an Inline array the Reynolds number, defined using average flow velocity U and body
thickness b, is not the only parameter which determines the onset of flow instability in a staggered
array. In comparing the values of the critical Reynolds number for the Staggered 2 and Staggered
3 arrays it can be seen that, as with the Inline arrays, the transverse spacing of the bodies has a
significant impact on the value of the critical Reynolds number. The increased transverse spacing
of the Staggered 3 array over the Staggered 2 array causes a more than fifty percent drop in the
value of the critical Reynolds number, Reg;, from 60.9 to 25.8. The change in transverse spacing
is also effects the value of the streamwise wavelength, A;, which is 3.7 for the Staggered 2 array
and 7.2 for the Staggered 3 array.

The eigenfunctions for the two staggered array cases Staggered 2 and Staggered 3 are shown in
Figures 4.10 and 4.11. Both eigenfunctions posses the characteristics of a wake instability, with a
line of vortices formed behind the trailing edge of each object- as is seen in the disturbance form for
the isolated bodies shown in Figures 4.15 and 4.16. In addition to the primary set of wake vortices,
the eigenfunction for the Staggered 2 case shows a weak set of secondary vortices occurring near
the primary vortices, similar to what is seen for the Inline array and isolated body disturbances.
Furthermore, a third set of vortices is present and appear to be generated from the leading edge
of the body. In contrast the Staggered 3 eigenfunction has a somewhat different form. In addition
to the primary wake vortices a second set of vortices are present which line up in the streamwise
direction between each row of bodies in the staggered array. Again it should be noted that the
eigenfunctions represents the form of the disturbance while it is small in amplitude, and before the

effects of non linear saturation.
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Figure 4.10: Perturbation for Staggered 2 Case at Re
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Figure 4.11: Perturbation for Staggered 3 Case at Reg, = 41.8
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4.3.3 Non-periodic Results

In addition to the Inline and Staggered array cases, stability results have also been computed for
four Non-periodic cases. These cases serve to provide information on the stability of developing
flow through arrays and allow the similarities and differences of the flow stability of arrays and
isolated objects to be examined.

Two of the four Non-Periodic cases involve flow over a single isolated object. Theses cases are
labeled Rectangular XY Non-Periodic and Square XY Non-Periodic in Table 4.1, where the details
of there geometry are described. The case Rectangular XY Non-Periodic involves flow over an
isolated body having the same dimensions as the Inline array bodies. The computational domain
was chosen to be finite, but large enough to minimize its effect on the flow solution. For this flow
a uniform inflow condition is applied along the upstream boundary, while the outflow boundary
condition described in Section 2.2.3 is used at the downstream boundary. Along the transverse
boundaries the far field boundary condition given by Equation 2.3 is applied. Similarly, the case
Square XY Non-periodic involves flow around an isolated square object. This case utilizes the
same inflow and outflow conditions applied to Rectangular XY Non-periodic; however, along the
transverse boundaries the velocity is set to the free stream velocity. In the context of array flow
stability, these isolated cases may be viewed as the limiting case of an array with infinite extent
for periodicity along both the streamwise and transverse direction. Further the two cases allow for
the assessment of the effect of the body aspect ratio, h/b, on flow stability.

The stability analysis for the isolated cases follows the same procedure applied to the arrays.
Streamline plots of the base flows obtained for the two XY Non-periodic cases are shown in Fig-
ures 4.12 and 4.13. Both flows demonstrate the symmetry, front face stagnation point, and wake
recirculation region observed in all of the array flows. A major difference for the laminar ﬂoW
around an isolated body can be seen in the profiles of the u velocity in the wake region, which are
shown in Figure 4.14. Both solutions show a similar set of velocity profiles which are also similar to
the profiles in the wake of a flat plate (Hannemann and Oertel [17]). In each profile a pronounced
velocity defect is observed in the region directly behind the object. Moving out of the defect region
in the transverse direction, the u velocity rapidly increases until it reaches a peak value moderately

above the free stream velocity. Continuing away from the body in the transverse direction the
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Figure 4.12: Streamlines for Case Rectangular XY Non-Periodic at Reg, = 112.5

velocity slowly decreases to approach the free stream value. These profiles contrast with those seen
for the Inline and Staggered arrays as they lack either sinusoidal periodicity of the Inline arrays or
the double peaked shape observed for the Staggered cases. Since the shape of the velocity profile
in the wake region plays a significant role in determining the stability of the flow, difference in the
stability of isolated bodies and array flows are expected.

The critical Reynolds numbers for the two cases were calculated and determined to be Rey, =
111.6 for the Rectangular XY Non-periodic case, and 43.5 Square XY Non-periodic case. It is
evident that the aspect ratio of the body has a strong influence on the stability of the flow. Fur-
thermore, comparing the Reynolds numbers listed in Table 4.2, it is quite clear that an array of
rectangular cylinders is far less stable than an isolated rectangular cylinder. This difference in
stability is not unexpected given the differences in the base flow profiles between the arrays and

the isolated cases. These critical values of the Reynolds number for an isolated body establish a
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Figure 4.13: Streamlines for Case Square XY Non-Periodic at Reg;, = 45.0
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Figure 4.14: Profiles of u velocity for Cases (a) Rectangular XY Non-Periodic at Reg, = 112.5 (b)
Square XY Non-Periodic at Reg, = 45.0

limiting value for the critical Reynolds number of an array of similar objects in the limiting case
of very large streamwise and transverse spacing.

The eigenfunctions of the instabilities for the two isolated cases are shown in Figures 4.15
and 4.16. Despite the differences in the critical Reynolds numbers the eigenfunctions for the two
isolated cases show a high degree of similarity to each other, and to the eigenfunctions of the
Inline and Staggered arrays. For both eigenfunctions the plots of the swirl contours show a distinct
image of vortices lined up in the streamwise direction and beginning directly behind the body.
Additionally both eigenfunctions show second, smaller, and weaker set of vortices slightly above
and below the principal set of vortices. An eigenfunction of this form is characteristic of a wake
instability and has also been observed, in terms of disturbance streamlines, for circular cylinders
(Jackson [20]) and flat plates (Hannemann and Oertel [17]). Figure 4.17 shows a streamline plot of
the disturbance for the case Square XY Non-periodic.

The pronounced variation in critical Reynolds number for the two isolated bodies of differing
aspect ratios is consistent with previous observations. The critical Reynolds number for an isolated
circular cylinder in cross flow has been well established to be about 47 (Jackson [20]). The corre-
sponding critical Reynolds number for an isolated square cylinder has been found to be about 51

(Sohankar et al [44], Robichaux [42]). In fact, Jackson [20] has considered the onset of periodic

71



-
o

@

o

»

N

y
o

N
Opr
MRS RILAE RSN RAANN LA RN RAREY RANNS Ly N

IS

&

'
«©

'
-
(=}

(a) U Contours

10

s

8k

sF

4F

2F
~0F 1 |

2F

<f

sF

8F

S N S S R B
100 5 10 15 20 25 30

X
(b) V Contours

)
0
o)

2
-4
-
-8
o
[0} 5 10 15 20 25 30
X

(c) Swirl Contours

Figure 4.15: Perturbation for Rectangular XY Non-Periodic Case at Reg, = 112.5
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Figure 4.17: Streamline of the perturbation for Square XY Non-Periodic Case at Reg;, = 45.0

shedding in a series of elliptic cylinders, whose aspect ratio (streamwise length to cross-stream
thickness) was varied from 0 (normal plate) to 2 in a systematic way. For the case of a normal
plate the critical Reynolds number was found to be 27.7, and quickly increases as the bluffness
of the body decreases to a value of 76.8 for an aspect ratio of 2. The increased stability of the
flow with decreasing bluffness of the cylinder is due to the thicker boundary layer compared to the
thickness of the body at the point of separation.

This behavior is likely to be the same for rectangular cylinders, such as the ones considered in
this work. Therefore, for rectangular cylinders the critical Reynolds number is expected to increase
with increasing aspect ratio. In fact, in the limit of the aspect ratio becoming very large we have
the case of very thick boundary layers coxﬁpared to the thickness of the plate. The flow in the wake
approaches that of a plane wake and it is well established that a plane wake is only convectively
unstable and not absolutely unstable.

In addition to the two isolated body cases, two other Non-periodic cases were considered. These
two cases, listed in Table 4.1 as Rectangular X Non-periodic and Square Non-periodic, use an inflow
condition at the upstream boundary and an outflow condition at the downstream boundary. In the
transverse direction a periodic boundary condition is applied. This produces a simulation of flow

over single infinitely long column of bodies. The Rectangular case employs the same rectangular
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Figure 4.18: Streamlines for Case Rectangular X Non-Periodic at Reg, = 31.5

body used in the Inline, Staggered 2, and Staggered 3 cases, while the Square case uses a square
body.

These cases allow for further investigation into the effects of streamwise spacing and body aspect
ratio on the stability of the flow. Furthermore, a consideration in the interpretation of the Inline
and Staggered results is that the application of the streamwise periodic boundary condition used
in the simulation has the effect of feeding-back the disturbance from the exit of the computational
domain to the inlet. It must, therefore, be ascertained that the absolute instability observed in the
array cases is a genuine property of the wake flow and not an artifact of the periodic boundary
condition imposed. These X Non-periodic cases will serve to validate the origin of the absolute
instability, as there is no explicit feed-back of the disturbance from the outflow to the inlet.

Figures 4.18 and 4.19 show the streamline of the laminar base flow for the two cases. While
Figure 4.20 shows the wake velocity profiles. These profiles may be seen to be very similar to each
other, and to the profiles of the Inline 1 and Inline 3 cases shown in Figure 4.6. This is principally
a result of the rapid development of the parabolic velocity profile formed in the channel region
between the bodies. The parabolic profile may be seen to be well developed even for the Square
X Non-periodic case where the oncoming flow is uniform and channel height is the same as the
channel width.

Given the similarity of the wake velocity profiles it is not surprising that the critical Reynolds
numbers for the two cases are close in value to each other, and to those of the Inline 1 and Inline 3
cases. The Rectangular X Non-periodic case was found to have a critical Reynolds number, Reg,,

of 31.5, while the Square X Non-periodic case has a critical Reynolds number 28.0. This may be
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compared to the critical Reynolds numbers of 31.4 and 33.8 for the Inline 1 and 3 cases. Since the
Rectangular X Non-periodic case may be viewed as a variant of the Inline 1 and Inline 3 cases with
infinite streamwise spacing, these results further demonstrate the independence of Rey,, ..y and Ay
on the streamwise spacing of the array.

The influence of streamwise periodicity on the instability of the base flow can also be assessed.
Since the values of the critical Reynolds number of the Rectangular X Non-periodic case are nearly
identical to those observed for the Inline 1 and Inline 3 cases, the absolute instability observed in
the Inline and Staggered arrays is physical and not due to artificial feedback through the periodic
boundary condition. In addition, the influence of the aspect ratio, h/b, on the critical value of the
Reynolds number would appear to be minimal as the value of the critical Reynolds number for the
Square X Non-periodic case is close to the value for the Rectangular X Non-periodic case, despite
an order of magnitude difference in the aspect ratios. Finally, the eigenfunctions for the two cases

are shown in Figures 4.21 and 4.22 and can be seen to be similar to those of the isolated bodies

and Inline arrays.

4.4 One Dimensional Floquet Stability Analysis

The simplicity of the base flow for the Inline solution cases noted in Section 4.3.1 suggests the
possibility of a one dimensional stability analysis of these flows. In this analysis we assume that
the base u velocity has the form given in Equation 4.4 and that the base v velocity is identically
zero. Given the rapid decay of the Fourier coefficients, consideration will be limited to at most 3

terms in the in the u velocity expansion. The form of the base velocity in dimensional variables is

then

. £ 2y « 4my*
U*(y*) = c0+clcos( 7 ) +c2cos< i ) (4.5)
Vi) = 0

Furthermore, variation of the base flow in the streamwise direction is neglected. It should be noted
that the classical one dimensional stability analysis of wall bounded flows with similar sinusoidal

profiles shows that these flows are stable (Drazin and Reid [14]). However the current profile under
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Figure 4.21: Perturbation for Rectangular X Non-Periodic Case at Reg, = 31.5
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consideration is unbounded in the y direction and thus need not be stable.
Development of the stability equations for the Inline array wake velocity profile follows that

of the standard Orr-Sommerfeld equation. The velocity is written as a base component plus a

perturbation, as

u = U+ (4.6)

v = V4

and the stream function is introduced, which is defined as

u'= &gl (4.7)
/ oA
VE T

The equation resulting from the linearized non-dimensional Navier - Stokes equations is then

o, 8 _, OOV 1
av \I"}‘Ug;v —a—y23—l‘—R€1D

viw (4.8)

The scales chosen for this equation are the amplitude of the sinusoidal oscillation of the streamwise
velocity, cj, as the velocity scale and half of the domain height, Ly /2, as the length scale. Therefore,
the Reynolds number Re;p is defined as Re;p = aly /2v

The Normal Mode assumption is made for the stream function- exponential behavior along
the streamwise direction and in time are assumed. The periodic nature of the base flow along
the y direction allows for a Floquet expansion for the perturbation stream function. Owing to the
symmetry of the base flow, the corresponding linear disturbance can be separated into odd and even
modes about the centerline, y = L,/2. The odd mode corresponds to an anti-symmetric stream
function about y = L, /2 and is given by a sine expansion in y. The corresponding v’ and v’ velocity
distributions will be symmetric and anti-symmetric about y = L, /2. The even mode corresponds
to a symmetric stream function and is given by a cosine expansion in y. Instability is expected to
appear in the form of a Hopf bifurcation followed by the onset of vortex shedding. Based on the

literature on wake flow instability (Oertel [37]), we can expect the unstable mode to be even and
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given by a cosine expansion for the stream function. Corresponding odd modes can be expected
to be stable. Furthermore, the dominant unstable mode is expected to be two-dimensional, with
no variation in the spanwise z direction. Thus, the present stability analysis will be restricted to a

two-dimensional disturbance having the form

N
T,y,1) Z ]\If cos(jmy)el@T—wt) (4.9)
Jj=0

Substituting the above expansion along with the three-term expansion for the base flow given in

Equation 4.5 into Equation 4.8 yields the relation

(4.10)

=1

iacs { —[0? + (j — 2)%7?] + 4n2 }

2 a? + j2m?
+z'_a [@®+ (5 — 1?2772] — m? ¥
2 a2 + j27? 7

{a +3271'2} \i'j
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For a temporal stability analysis the frequency of the disturbance, w, is considered to be complex
having real, w, and imaginary, w; components. The above algebraic system constitutes a regular

eigenvalue problem for linear, temporal stability analysis, of the form
Ay =\ (4.11)
where A is an N x N matrix, 1 is the vector of eigenmodes, and X is the eigenvalue, defined as
A = —i(w — acy) (4.12)

The existence of a growing mode is dependent on the eigenvalue of the matrix A which is char-
acterized by the parameters «, c; = ¢3/cj, and Re;p. The parameter & measures the streamwise

wavenumber of the disturbance and the ratio ¢3/c} measures the level of higher harmonics present
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| C;/C){ I RelD,crit |

0.0 4.44
-0.1 4.44
-0.2 4.42
-0.4 4.36

Table 4.5: Critical Reynolds Number from One Dimensional Stability Analysis

in the base flow. The three term expansion for the base flow results in a penta-diagonal system for
the eigenvalue problem shown in Equation 4.10. If we carefully ignore the higher harmonics, which
are deviations from the pure sinusoidal profile, by setting co = 0, then the first and the last terms
on the left hand side of Equation 4.10 reduce to zero, thus resulting in a tridiagonal system for the
eigenvalue problem. Alternatively, if the higher harmonics play an important role, then the base
flow expansion needs to retain more terms and correspondingly the bandwidth of the eigenvalue
system will increase. In the present case, we have already seen that the deviation from the pure
sinusoidal profile for the base flow is not significant. Furthermore, we will show that below even
modest values for the higher harmonic ratio ¢/cj does not change the nature of the instability
significantly.

Figure 4.23 shows the calculated instability growth rate as a function of a for several Re;p
numbers and two values of c;. From Figure 4.23 it can be seen that the value of c; has only
marginal impact on the stability results, especially close to the critical Reynolds number. Further
evidence of the independence of the results with respect to c3/c} can be seen in Table 4.5, which
shows the critical Re;p for several values of c;. The value of the critical Re;p can be seen to
vary little with the value of ¢y over the range considered. It is therefore possible to consider the
flow stability to be determined by the pure sinusoidal base flow profile and controlled by the two
remaining parameters «, and Re;p.

It can be seen that for each Re;p number the growth rate peaks at a specific « value. From
Figure 4.23 data, the critical Re;p number value is found to be 4.44 with an associated a value
of approximately 0.2r. With the Reynolds number defined as Reip = c¢jL;/2v, flow stability is
governed by the amplitude of the U profiles variation in y, ¢}, and not the average U velocity, cj,
which acts as the convective velocity of the perturbation. However, for the base flows considered

the primary Fourier coefficient, ¢, and the secondary coefficient, cj, are generally of similar value,
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Figure 4.23: One Dimensional Stability Analysis Growth Rate for ¢2 = 0.0 (Solid line), and c2 =
-0.1 (Dashed line)

particularly close to the trailing edge of a column of bodies, as is show by Table 4.4. This will
generally be true of any sinusoidal base flow generated by an array of bluff bodies, since the
minimum streamwise velocity will be close to zero in the near wake region. Thus, the critical
Reynolds number for this analysis will be a similar value whether ¢ or ¢} is used for the velocity
scale.

It is also important to note that the length scale used is that of the periodic cell height, or
maximum wavelength in the y direction, Ly, and not the body height b*, which is commonly used
for bluff body flows. As a consequence the body height b* has no direct impact on the stability of
a sinusoidal base flow. As mentioned in Section 4.3.1, extreme values of the ratio of the inter-body
channel height to body height, ¢/b, and correspondingly L, /b, could result in a base flow lacking
a simple sinusoidal nature. However, these cases fall outside the range of cases considered for this
work.

When proper scaling adjustments are made and the critical values of the Reynolds numbers from
the 1D and 2D analysis are compared it is found that the critical Reynolds number determined
from the one dimensional stability analysis is significantly lower than that found in the 2D analysis.

Furthermore, the 1D analysis predicts a wavenumber of @ = 0.27 for the perturbation, while the
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Figure 4.24: Stability Analysis Eigenfunction- Figures (a) and (b) show contours of the u and v
velocities respectively for the 1D eigenfunction. Figure (c) and (d) show similar results for the 2D
Inline 1 eigenfunction.

2D analysis shows a wavenumber of a = 0.557 for a similar scaling. However, the eigenfunction for
the least stable mode in the 1D calculations is shown in Figure 4.24 and compared to the unstable
mode found in the 2D results for the same values of Re and . Shown are contours of «' and v’
velocity, over a comparable  — y range, with the dashed lines indicating negative contour values.
The results show a nearly identical structure of the eigenfunction for the two different stability
analyses. This would indicate that the one and two dimensional analyses are identifying the same
fundamental instability. The discrepancy in the critical values of the Reynolds number and wave
number between the two analysis is most likely due to the evolution of the base flow along the
streamwise direction in the 2D case limiting the range in Reynolds number and wave number at
which the instability can grow. Similar correspondence between the full two-dimensional and one-
dimensional wake profile stability analysis can be seen in the case of an isolated bluff body. Thus,
while not quantitatively predictive the one-dimensional stability analysis can be used to gain insight
into the effect of various parameters on the stability of sinusoidal base flows of the type generate

by in-line arrays.
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| Case ” Recley LReUchanyLwake—|

Inline 1 93.5 127
Inline 2 98.4 129
Inline 3 103.7 137
Inline 4 94.8 125
Staggered 1 - 130
Staggered 2 - 135
Staggered 3 - 144
Rect. X Non-Periodic 92.8 127
Square X Non-Periodic 79.2 112

Table 4.6: Critical Reynolds Numbers for the Numerical Solution Cases

4.5 Rescaling and Parametric Dependence

In this section we will use the results of the two dimensional numerical stability analysis in Sec-
tion 4.2 and the one dimensional analysis of Section 4.4 to develop a more general understanding of
flow stability in Inline and Staggered arrays. An alternate scaling for use in Inline and Staggered
arrays is developed and applied to the numerical stability results described earlier. After which the

effect of each of the array parameters on the stability of the flow is discussed.

4.5.1 Rescaling

The one dimensional analysis of Section 4.4 suggests a possible alternate scaling that may be applied
to the Inline array cases. Instead of a Reynolds number, Reg,, based on the average velocity U*,
defined by Equation 4.3, and the body thickness b*, a Reynolds number, Re;p, based on the
amplitude of the sinusoidal oscillation, cj, and the transverse wavelength L, may be used. Using
this scaling, with the amplitude of the oscillation ¢; estimated from the second extracted velocity
profile (Profile 1) for each case, the critical values of the Reynolds number for the Inline and X
Non-periodic cases have been calculated and are shown in Table 4.6. The result is a close agreement
in the value of the critical Reynolds for all of the rectangular body cases, with the average value
being 96.6.

It should be noted that the value of ¢; is not well determined, since the amplitude of the
sinusoidal oscillation decays as the profile moves downstream, as can be seen in Figure 4.6 and

Table 4.4. Therefore the value of ¢; will vary with the choice of profile. An alternative is to make
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a reasonable estimated of the oscillation amplitude based on the physics of laminar wake flow.
For any flow over a bluff body, there will exist a recirculation region directly behind the body in
which the streamwise velocity is close to zero. Furthermore for in any Inline or Staggered array
the flow at the trailing edge of a body will be exiting a region of channel flow and therefore have

an approximately parabolic profile. Given this parabolic profile, the peak velocity of the exiting

channel flow is

0max = 3Uc% (4.13)
with
Uchan = Lij b (414)

where Q; is the net volumetric flow rate through the array. Therefore, with the flow at the trailing
edge of each body having a peak velocity of U, and a minimum velocity of approximately zero

in the recirculation region, a reasonable estimate of the amplitude of the sinusoidal oscillation is

ﬁma:c 3l7chan
~ = 4.1
C1 B 4 ( 5)
therefore
¢ X Uchan (416)

Equation 4.16 says that the value of the oscillation amplitude, c;, scales like the average velocity
in the region of channel flow, Upen. The velocity Ugpen may then be used as the scaling for the
Reynolds number.

The results of the 1D theory have direct application only to the Inline array cases, where the
flow in the wake region is periodic in the transverse direction. However, the flow in the wake region
for the Staggered arrays shares important similarities with that of the Inline arrays, as may be seen
by comparing the profiles of u velocity in Figures 4.6 and 4.9. In all of these cases a region of near

zero velocity can be observed along the center line of the body, in the profiles close to the trailing
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edge. Moving away from the center line in the transverse direction the velocity smoothly increases
past a point of inflection and on to a peak value, from which it then decays back to a value close
to zero. With the stability of the flow principally determined by the profile of the U velocity in the
wake region, these similarities suggest the scalings applied to Inline arrays may also be applicable
to Staggered geometries. Furthermore the eigenfunctions of the instabilities are most active along
the body centerlines in the wake region, where the similarities in the profiles are most pronounced.

The Inline arrays use a length scale, L, corresponding to the wavelength of the primary sinu-
soidal oscillation in the U velocity along the transverse, y, direction. Since the profiles of the U
velocity in the wake region of a Staggered array are not periodic a modified length scale must be
considered. A reasonable choice for this scaling would be the distance between the peaks in the
velocity profile of the staggered array. The precise value of the peak to peak distance in a staggered
array is not easily determined as it varies depending on the location of the velocity profile, as is
seen in Figure 4.9. However it may be argued that this distance should scale with the width of the
channel region containing the wake profile.

Therefore, a Reynolds number may then be defined as

ReUC _ UchanLwake (4.17)

hansLwake — v

where

L, Inline Array

Lyoke = (4-18)

c/2 Staggered Array
The critical Reynolds numbers for all of the non-isolated numeric solution cases have been recal-
culated using this definition of the Reynolds number and are shown in Table 4.6. The result of
the rescaling is a good collapse of the value of the the critical Reynolds number for the Inline and

Non-periodic cases to a value of approximately 126, while the Staggered cases collapse to a similar

value of approximately 136.
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l Case “ ReUchan:Lwakg h*/L:uake ’ b*/L:uake ] 8*/L:uake I
Inline 1 127 5.00 0.450 5.0
Inline 2 129 2.50 0.225 2.5
Inline 3 137 5.00 0.450 10.0
Inline 4 125 2.50 0.225 5.0
Staggered 1 130 1.97 0.231 0.243
Staggered 2 135 3.23 0.290 0.0
Staggered 3 144 1.10 0.099 0.0
Rect. X Non-Periodic 127 5.00 0.450 00
Square X Non-Periodic 112 0.50 0.500 00

Table 4.7: Values of the Non-dimensional parameters for the Inline, Staggered, and X Non-Periodic
Cases

4.5.2 Parameter Dependence

From Figure 4.1 it is clear that a range of parameters are at play in the case of an array of rect-
angular cylinders. These parameters are the transverse pitch (s*), the streamwise pitch (c¢*), the
body thickness (b*), the body length (h*), the type of arrangement (Inline or Staggered), as well as
the flow rate through the array (QX), and the physical properties of the fluid. Using the numerical
results, the analytic one dimensional analysis, and the Reynolds number defined above we are now
in a position to discern the role played by each of these parameters in determining the stability
of the flow. The set of parameters listed above may be recast as a set of non-dimensional param-

eters determined by the choice of length and velocity scales. Based on the arguments presented

above, U ohan 1S chosen as the velocity scale and L;, .. is chosen for the length scale. The set of
non-dimensional parameters relevant to the stability of the flow is then Rep, [ ., s*/Ly ..,
b*/L7 .ke» and h* /L% . . The value of all of these non-dimensional quantities for each of the Inline,

Staggered, and X Non-periodic solution cases is shown in Table 4.7.

The close agreement in the value of the critical Reynolds number for all of the Inline and
Staggered cases indicates this is the dominant parameter in determining the stability of the flow.
The similarity in the critical values of the Reynolds number for the Inline and Staggered cases
indicates that both arrangements are subject to the same basic type of instability. As long as the
wake profile remains approximately sinusoidal for the Inline cases, as shown in Figure 4.6, and
double peaked for the Staggered, as shown in Figure 4.9, one can expect the Reynolds number to

primarily control the stability of the flow.
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The properties of the base flow are principally determined by the geometric parameters s* /L7 . .,

b*/L* and h*/L? Of these, the parameter that has the most pronounced influence is the

wake? wake*

ratio h* /LY ... This parameter has the most direct effect on the degree to which the sinusoidal
and double peaked velocity profiles are generated. For a fixed value of h*, the sinusoidal and double
peaked profiles (Regime I) can be expected to exist until a limiting transverse pitch, say L} .. is
reached. At transverse spacing larger than this limiting L} , . the wake profile begins alter.

For values of Ly,qke greater than Lllu ke the viscous effects along the channel wall do not propagate
deeply enough across the channel to have a dominant influence on the flow. In this flow regime,
Regime II with (Lygke > L}mke) the flow will become more stable, as one expects to recover the
stability result for an isolate case in the limit of very large transverse pitch. Table 4.2 shows that
isolated bodies are more stable, in terms of the Reynolds number Rey;, which is based on the body
thickness (b). Finally a third regime (Regime III) can be defined for large values of transverse pitch,
where the stability of the flow is no longer influenced by the value of the transverse pitch. The
stability of the flow is now the same as for an isolated body, where only the geometric parameters
h* and b* are applicable.

As shown by the results of Inline and X-Non-periodic cases, the streamwise pitch in general
neither alters the critical Reynolds number, the structure of the eigenfunction, nor is it expected
to greatly affect the base flow. The only exception could be when the streamwise gap (s*) between
two columns of bodies is not sufficient for the development of wake instability. As a rough estimate
one can expect the instability to be suppressed when this streamwise gap becomes less than the
transverse spacing between the bodies. It must be noted here that the streamwise wavelength of
the disturbance obtained from both the one-dimensional theory and the two-dimensional stability
computations scales with transverse spacing (provided Lygre < L,luake) and not with the body
thickness. Thus for streamwise gap greater than transverse spacing, s*/L; . > 1, the influence of
streamwise pitch is not likely to be significant.

It must be cautioned that the above discussion is pertaining to only the onset of wake vortex
shedding. As will be shown in later chapters, the wake vortices once formed can trigger the forma-
tion of leading edge vortices when they encounter the leading edges of the next column of bodies.

These leading edge vortices, are known to be most beneficial for heat transfer enhancement in
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parallel plate heat exchangers (Zhang et al. [59]). The formation and strength of these leading edge
vortices will critically depend both on the existence of wake instability and also on the streamwise
gap between adjacent columns. If the streamwise gap is large, the wake vortices generated in the
near wake of a column of bodies may decay before they encounter the leading edge of the next

column, and thus may not result in the formation of leading edge vortices.
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Chapter 5

Time-Periodic Flow Regime

5.1 Introduction

As discussed in the previous chapter, the Reynolds number plays an important role in determining
the characteristics of the flow in an array of bluff bodies. A steady laminar flow solution of the
type described in Chapter 4 exists for these flows at all Reynolds numbers. However, above a
critical value of the Reynolds number the flow becomes unstable to even infinitesimal disturbances.
Above the critical Reynolds number, any disturbance introduced will grow exponentially, until the
disturbance becomes large enough that non-linear interactions act to damp and ultimately halt its
growth. After the introduction and growth of the disturbance the flow will exist in a state distinctly
altered from its preceding steady laminar state.

For flow over a bluff body the initial laminar flow state is steady and invariant in time. After
the introduction of a disturbance, the flow, when above the critical value of the Reynolds number,
undergoes a bifurcation, or transition, to an unsteady time periodic laminar flow regime. Commonly
this regime is characterized by the regular shedding of vortices from surfaces of the bluff body. At
moderate Reynolds numbers the state of of the flow is such that it may be characterized by a single
frequency or period. Further increases in the Reynolds number generally result in introduction of
additional higher frequencies to the flow solution and three-dimensionality. Eventually, with the
increase in Reynolds number, the flow will become chaotic and characterized as turbulent.

This chapter will primarily focus on the flow in the single frequency regime, which occurs
above the critical Reynolds number but before the onset of subsequent bifurcations and three

dimensionality. The fully developed time-periodic flow regime for an infinite array of rectangular
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bluff bodies in both the Inline and Staggered arrangements has been investigated. Particular

attention is paid to the nature of the vortex shedding and its effects on the flow.

5.2 Time Periodic Flow

The basic characteristics of the flow solutions in the time periodic regimes for the Inline 1 and
Staggered 2 cases are discussed within this section, with a more detailed examination of the vortex
shedding phenomena presented in Sections 5.3 and 5.4. For each of these cases the flow solution
has been obtained over a range of Reynolds numbers. The geometry of each case is depicted in
Figure 4.1, with the parameter values given in Table 4.1. The two cases may be seen to be similar,
with the exception that the Staggered 2 case has every other row of bodies offset by half of the cell
length, L, in the horizontal direction. The two geometries, therefore, posses the same surface area
to volume ratios.

To model flow through an infinite array, a periodic boundary condition of the type described
in section 2.2.2 was applied to the boundaries of the computational domain indicated by dashed
lines in Figure 4.1. This condition requires the introduction the modified pressure form, shown
in Equation 2.5, and the specification of the pressure drop across the domain in terms of the
parameters 3, and B,. The values of 3, and 3, were set to one and zero respectively, producing

a fixed pressure drop in the stream-wise direction which drives the flow. For this value of 3, the

pressure scale is then set to

Ap* (an 07 07 0)

7 (5.1)

P =

where Ap*(L,0,0,0) is the dimensional pressure drop over the streamwise length of the compu-
tational domain. The velocity scale is then U = (P/p)'/? and the length scale, £, has been set
to a fraction of the domain height, L. The Reynolds number, Re, and all the non-dimensional
quantities in Equation 2.1 are then defined using these scales.

The energy relation, Equation 2.14, involves a second non-dimensional parameter in addition
to the Reynolds number. This parameter, the Prandtl number, (Pr) will be set to a value of

0.7, the value for air. Additionally, the energy equation requires the specification of a thermal
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boundary condition on each surface in the interior of the computational domain. The use of the
periodic boundary condition requires a constant heat flux boundary condition of the form shown
in Equation 2.17 be applied. This condition has been applied with the heat flux ¢” set to a value
of one, thus setting the heat flux scale Q to ¢” and therefore the temperature scale, to £ = ¢"L/k.

The basic non-dimensionalization described above does not provide the most useful form of the
Reynolds number for understanding and interpreting the results. An alternative, more commonly
used form is based on the hydraulic diameter, D}, and mean flow velocity at the minimum cross

sectional area, U,*nm. This Reynolds number, Rep,, is then defined as

UpninDi,
Rep, = —m—t (5.2)

and is related to the original Reynolds number by
Rep, = UpninDnRe (5.3)

The dimensional (as denoted by the superscript *) hydraulic diameter and mean velocity, are defined

as

Di = 4.4,61;%

(5.4)

F7k Q*
Umin = A_*ac__ (5-5)

min

*

In the above equations Ay ;. is the effective minimum cross flow area defined as A, ;, = (Ly —b")L;
for the Inline 1 case and Aj,;, = (Lj — 2b*)L} for the Staggered 2 case. The net surface area
within the computational domain, Q%, is given by Q% = 2(h* + b*)L}, for the Inline 1 case and

+ = 4(h* +b*) L} for the Staggered 2 and Q: is the average volumetric flow rate in the z direction.

The resulting hydraulic diameter for the two geometries is the same and has the value Dy, = 4.0367.
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Local heat transfer efficiency will be measured by the Nusselt number, defined as

.y q 1%
NU(S ;t ) - Ts*(s*,t')—T:ef(S*,t*) (5-6)
( D} )

with T{ and T7, ; the dimensional local surface and reference temperatures respectively. The refer-

ence temperature is defined as

* * k) fOL: fOL; T*'U‘*Idy*dz*
ref('s )t ) - L* oL
fO z fO y Iu*ldy*dz*

(5.7)

The absolute value is used to properly represent regions of reverse flow following Patankar and
Prakask [39] and Zhang et al. [59]. Using the basic scaling and the modified form of the temperature,

Equation 2.19, the above equations may be recast as

— Dh
Nu(s,t) = 6.0, — 62, 5.0) (5.8)

= Ly gy dydz
@Tef (37 t) = fO szo Ly | I (59)
Iy [ luldydz

From the above definition of the local Nusselt number the global Nusselt number may be defined
as

Q4D

fnf (Os(s,t) — Ores(s,t)) ds (5.10)

< Nu(t) >=

Finally, the time averaged global Nusselt number, < Nu >, may be calculated by averaging the

global Nusselt number over time.

The Nusselt number may be used to define a modified Colburn j factor,

. < Nu> ‘
7= Rep, Pro4 (5.11)

which is a measure of the overall system performance. Along with the j factor the friction factor,
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f, is defined as

o AP Dy Dn 1
LoUr2 4Ly~ 2 U2

min min

(5.12)

where Ap* is the dimensional pressure drop across the computational domain in the streamwise
direction. Finally, the definitions of the coefficient of lift, coefficient of drag, and the Strouhal

number are given as follows

Cp= o (5.13)
%Ugu‘nbLZ
F,
fUminbLz
st= Jsb (5.15)
min

where F; and Fy are the net force on the body in the corresponding directions and f; is the primary
vortex shedding frequency.

In order to asses the effects of the bifurcation and the resulting time periodic phenomena on
the flow, the calculated time periodic flow quantities were compared to those of a laminar flow
at approximately the same Reynolds number. Laminar flows solutions at supercritical Reynolds
numbers were obtained by preventing the growth of the primary instability. The primary instability
for these cases possesses anti-symmetry about a line passing through the center of each body and
parallel to the streamwise direction. Therefore, the symmetry condition described in Section 4.2
was applied about each body, which prevented the existence of any anti-symmetric disturbance and

thus the growth of the primary instability.

5.2.1 Inline Array

In this section we examine the basic characteristics of the time-periodic flow regime for the Inline

1 geometry. The results of Chapter 4 show that this flow is laminar up to a Reg;, of 31.4, or to a
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Rey_. , of 57, where the velocity scales are the average flow velocity and the average flow velocity
at the minimum cross sectional area respectively. Above this Reynolds number the flow becomes
time periodic. Flow solutions have been obtained for several Reynolds numbers, starting in the
laminar regime and continuing up to the transition to chaotic flow.

The basic nature of the flow in the time periodic regime may be examined by consideration of
the flow solutions at different time instances. A vector plot of the flow solution about a single body
in an infinite array is shown in Figure 5.1 at a Rep . , of 179. This figure shows the solution at
five different time instances which are 0.23 non-dimensional time units apart. Due to the periodic
nature of the flow, the first frame (a) follows the last frame (e) in a repeating sequence. The
unsteady nature of the flow is readily apparent, particular in the wake region. The velocities in the
wake region may be seen to have a substantial component in the transverse direction that was not
present in the laminar flow solution.

The difference in the wake flow is primarily due to the generation of vortices at the trailing edge
of the body. Figure 5.2 shows a plot of the swirl contours of the solution at the same time instances
as Figure 5.1. Alternate generation and shedding of vortices at the upper and lower corners along
the trailing edge of the body may clearly be observed. Furthermore, the alternating generation of
vortices along the upper and lower surfaces at the leading edge of the body is also seen. This basic
pattern of vortex shedding is observed for all of the supercritical Reynolds numbers considered.
The characteristics and effects of the vortex shedding are examined in greater detail in Sections 5.3
and 5.4.

In addition to the flow solution, the temperature solution has also been obtained and is shown
in Figure 5.3. Development of a thermal boundary layer along the top and bottom surfaces of
the body is observed. Regions where the thermal boundary is thick, followed by regions of thin
thermal boundary layer are observed along the top and bottom surfaces and are well correlated to
the location of the leading edge vortices seen in Figure 5.2.

While the flow remains qualitatively similar through out the Reynolds number range considered,
many aspects of it vary as the Reynolds number changes. Table 5.1 shows the variation in the various
flow quantities computed at different Reynolds numbers. The variation in the Strouhal number

shows the basic frequency to the vortex shedding to increase with increasing Reynolds number.
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| Re | Rep, | Rey-. | Ci| C/[<Nu>| St] f ] ]

15 156 35 | 13.380 | 0.000 15.14 - 10.305 | 0.112
20 257 57 | 8.714 | 0.307 15.57 | 0.141 | 0.199 | 0.070
30 505 113 | 5.071 | 0.907 16.91 | 0.154 | 0.116 | 0.039
40 802 179 | 3.571 | 1.095 18.81 | 0.157 | 0.082 | 0.027
50 | 1071 239 | 3.121 | 1.375 21.56 | 0.158 | 0.072 | 0.023
80 | 1935 431 | 2.446 | 1.610 30.60 | 0.167 | 0.056 | 0.018

Table 5.1: Calculated values for the time varying flow of case Inline 1

| Re | Rep, [Reyz | Cal|<Nu>[ f] j]

20 260 58 | 8.549 15.53 | 0.195 | 0.069
30 523 117 | 4.743 16.48 | 0.108 | 0.036
40 862 192 | 3.096 17.44 | 0.071 | 0.023
45 | 1062 237 | 2.583 17.84 | 0.059 | 0.019
60 | 1784 398 | 1.626 19.29 | 0.037 | 0.013

Table 5.2: Calculated values for case Inline 1 with imposed symmetry

The fluctuation in the lift coefficient C] is associated with the strength of the shed vortices and
is seen to increase as the Reynolds number increases. The variation in both these quantities may
be observed by comparing Figures 5.4 and 5.5 which plot the lift coefficient for Re - , equal to
57 and 431. In Figure 5.4 a single frequency of oscillation may be observed while at the higher
Reynolds number in Figure 5.5 more than one frequency is present. Generally the onset of higher
frequency oscillation is associated with the onset of transition to chaos.

The change in quantities such as the Nusselt number with Reynolds number may be associated
with both the increase in flow rate at higher Reynolds number and the effect of vortex shedding. To
isolate the effect of vortex shedding, the data in Table 5.1 may be compared to the data of Table 5.2
which show the relevant quantities for supercritical laminar flow found with imposed symmetry.
At Reynolds numbers close the critical value, the value of the Nusselt number may been seen to be
similar for both the symmeterized and un-symmeterized cases. However, as the Reynolds number
increases, the Nusselt number for the time varying flow may be seen to increase significantly over
that of the laminar solution, until it is approximately fifty percent higher at a Reg__ , of around
400. A comparison of the friction factor f between the time periodic and laminar flows is shown
in Figure 5.6. An increase in the friction factor and therefore pressure drop may be seen to be

produced by vortex shedding. The figure also shows the increased heat transfer, as measured by

100



/\/\/\/\/\/\/\A/\/\/\/\/\\/\\/\")

YV AVAVALVAVAVAVAVAIVAVAV AV,

255 30 35 40 45 50
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Figure 5.5: Plot of the Coefficient of Lift for Inline 1 at Reg, = 431
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Figure 5.6: f and j factors as a function of Reynolds number for the Inline 1 case

the j factor, also attributable to vortex shedding.

5.2.2 Staggered Array

In many respects the flow in the Staggered 2 array is similar to that seen in the Inline 1 array. The
same transition from laminar, to time varying, to chaotic state is observed. However, the Reynolds
numbers at which these transitions occur are very different. The results of Chapter 4 show that for
the Staggered 2 geometry the transition from laminar to time varying flow occurs at a Rey_. , of
111. Thus the transition occurs at a significantly higher Reynolds number than for the Inline case
which became unstable at a Rey__ , 57.

Despite the later transition, the general nature of the time varying flow for the Staggered 2
geometry remains similar to what is observed for the Inline 1 case. Figure 5.7 shows a series
of vector plots of the flow solution for Rey . , equal to 142. Shown are two rectangular bodies
composing a periodic cell of an infinite array. The plots shown are at an increment of 0.12 non-
dimensional time units apart, and due to the periodic nature of the flow the sequence of plots
repeats, with the first plot following the last. Waviness in the solution is again observed in the
wake region to be caused by vortices shed from the trailing edge of bodies, which may be seen

clearly in Figure 5.8, where the contours of swirl at the same time instances as Figure 5.7 are
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(e [Rep, [Fegy | Cal Gl <Nas [ Si] 7] 7]

15 312 70 | 3.30 | 0.000 9.97 - 10.076 | 0.037
21 514 115 | 2.38 | 0.130 10.90 | 0.24 | 0.055 | 0.024
25 637 142 | 2.20 | 0.212 11.75 | 0.25 | 0.051 | 0.021
30 781 174 | 2.12 | 0.695 13.08 | 0.26 | 0.049 | 0.019
40 | 1020 227 | 2.17 | 1.392 16.67 | 0.27 | 0.052 | 0.019

Table 5.3: Calculated values for time varying flow of case Staggered 2

| Re | Rep, | Reyz,p | Ca| < Nu> | /| J]

21 526 117 | 2.27 10.66 | 0.052 | 0.023
25 689 154 | 1.88 10.86 | 0.043 | 0.018
28 819 183 | 1.66 10.86 | 0.038 | 0.015
33 | 1014 226 | 1.50 13.60 | 0.035 | 0.016

Table 5.4: Calculated values for case Staggered 2 with imposed symmetry

plotted. The presence of vortices shed at the leading edge of the bodies may also be noted. The
effect of these leading edge vortices may be seen in the temperature solution shown in Figure 5.9,
where the vortices cause local thinning of the thermal boundary layer on the bodies.

The flow remains qualitatively similar throughout the Reynolds number range considered. How-
ever, quantitative values such as the pressure drop and heat transfer see significant variation. The
variation in these and other quantities with Reynolds number is shown in Table 5.3. From these
data it may be seen that the Nusselt number increases steadily over the range of Reynolds num-
bers considered. The f and j factors initially decrease with Reynolds number but at the highest
Reynolds number the f factor begins to slightly increase while the j factor levels off. At the high-
est Reynolds number the flow has become chaotic as seen in the plot of lift coefficient fluctuation
shown in Figure 5.11. This may be contrasted with the plot at the lower Reynolds number of
Rey, . » = 115 in Figure 5.10 where the flow is periodic with a single frequency. For the Staggered
2 case the onset of the chaotic flow state occurs at a Rey . , between 174 and 227, while for the
Inline 1 case the transition to a chaotic state occurs at a Reynolds number above 431, the highest
value for which calculations were performed.

The trends in the f and j factors are shown in Figur.e 5.12 which shows these quantities plotted
as a function of the Reynolds number based on the hydraulic diameter. Also plotted are the data
from Table 5.4 which show the results for the Staggered 2 case with imposed symmetry. The effect

of vortex shedding may be seen to increase both the pressure drop and heat transfer efficiency. It
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Figure 5.7: Vector plot of the flow solution for case Staggered 2 at Rep, = 142 showing 5 time
instances 0.12 time increments apart
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Figure 5.8: Plot of the swirl contours for case Staggered 2 at Reg;, = 142 showing 5 time instances
0.12 time increments apart
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Figure 5.9: Plot of the temperature contours for case Staggered 2 at Reg, = 142 showing 5 time
instances 0.12 time increments apart
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Figure 5.12: f and j as a function of Reynolds number for the Inline 1 and Staggered 2 case

should be noted that the symmetric case at the highest Reynolds number, Rey . , = 226, exhibited
weak symmetric vortex shedding from the leading edge which causes the upturn in the symmetric
j factor curve. Figure 5.12 also shows the results of the Inline 1 case for comparison purposes. At
low Reynolds numbers the Inline 1 case exhibits significantly higher values of f and 7 than the
Staggered 2 case. However, this difference is greatly reduced at the higher Reynolds numbers. The
difference in these values is largely attributable to the differing effective transverse spacing between

bodies (Zhang et al. [59]), which for the Inline 1 case is 1.1 and for the Staggered 2 case is 3.1 .

5.3 Leading Edge Vortex Shedding

Vortex shedding has long been a phenomenon associated with flow around bluff bodies. In the
canonical geometry of a circular cylinder a train of vortices is observed to be shed from alternating
sides of the body. This phenomenon is also observed for flow over a square cylinder, as seen in the
Square XY Non-Periodic case shown in Figure 3.9 where the Karman vortex street, composed of
vortices shed alternately from the upper and lower surfaces of the body, may be observed.

In the case of rectangular bodies of larger aspect ratio, wake vortices are also observed to shed
from the trailing edge of the body. Furthermore, at Reynolds numbers significantly higher than

that required to produce shedding at the trailing edge, additional vortices may be shed from the
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leading edge. In the two array geometries investigated, Inline 1 and Staggered 2, a body of aspect
ratio, h/b, equal to 11.11 has been employed. An additional case, Rectangular XY Non-periodic,
having only a single body of the same aspect ratio exposed to a uniform oncoming stream has also
been considered. The parameters for this case are given in Table 4.1. From the stability analysis
of Chapter 4 it was determined that the Rectangular XY Non-periodic low becomes unstable and
begins shedding vortices at a Reg, of 111.6. A plot of the swirl contours for this case is shown in
Figure 5.13 for the Reg, of 200, 250, and 300. For all three Reynolds numbers, shedding of vortices
from the trailing edge of the object is observed. At a Reg, of 200, stationary recirculation regions
are observed at the leading-edge of the body, but no vortices are observed to be shed. At a higher
Reynolds number of 250 an asymmetry may be observed in the leading edge recirculation regions,
which indicates either weak or impending leading edge vortex shedding. At a Reynolds number of
300, clear shedding of vortices from the leading edge may be seen. These vortices shed alternately
from the upper and lower surfaces and travel along the body until merging into the vortices shed
from the trailing edge. Thus for this flow two distinct bifurcations occur, the first at a Reg,; of
111.6 which is associated with the shedding of vortices from the trailing edge of the body and the
second at a Reg, of approximately 250 associated with the shedding of vortices from the leading
edge.

For the Inline 1 and Staggered 2 geometries leading-edge vortex shedding of the type shown
in Figures 5.2 and 5.8 is observed for all Reynolds numbers above the critical value. Thus no
secondary bifurcation is observed which produces the vortex shedding at the leading edge, instead
the onset of leading edge shedding occurs simultaneously with the onset of shedding at the trailing
edge. The simultaneous onset of leading and trailing edge vortex shedding, however, is not observed
for the Rectangular X Non-Periodic case, defined in Table 4.1, which consists of a single column of
the Inline 1 array exposed to a uniform oncoming stream. Figure 5.14 shows three bodies in the
column and depicts the vortices produced at a Reg;, of 77. Vortex shedding in the wake may be
clearly observed while no shedding from the leading edge is seen. The simultaneous onset of leading
and trailing edge vortex shedding present for the full arrays Inline 1 and Staggered 2, but absent in
the Rectangular X and XY Non-Periodic cases, where the oncoming flow is uniform, indicates that

the presence of upstream bodies, and most likely the vortices shed in their wake, is instrumental in
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Figure 5.14: Swirl contours for the case Rectangular X Non-Periodic at Reg, = 77

triggering the simultaneous onset of leading and trailing edge shedding.

The presence and relative intensity of the leading edge vortices may be quantified using the
calculated values of the swirl. The swirl values, S’(z,y,t) calculated for each instantaneous flow
solution may be averaged over a shedding cycle to yield the time averaged swirl, S'(z,y). Integrating
the two dimensional time averaged swirl in the y direction and scaling by the average streamwise
velocity at the minimum cross sectional area, Ui, produces a measure of the swirl or vortex
intensity variation in z, S(z). Figures 5.15 and 5.16 plot this value along the length of a body

for the Inline 1 and Staggered 2 cases respectively. For the Inline 1 case the y integration was

performed across the entire gap, ¢ in Figure 4.1(a), between bodies. For the Staggered 2 case the
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y integration of the swirl was performed over the first 1.1 non-dimensional units of the gap ¢ on
either side of the body, the same as the gap length for the Inline 1 case, in order to capture only
the leading edge vortices and not the trailing edge vortices shed from the upstream body, which
from Figure 5.8 may be observed to remain largely confined to the region directly behind the body.

Figure 5.15 shows the variation in swirl intensity along the body for the Inline 1 case, with
regular solutions results shown in part (a) and the results for solutions with imposed symmetry
shown in part (b). High swirl intensities may be observed at the leading and trailing edges of the
body, this is primarily due to extremely high swirl values very close to the corners of the body
where the sharp change in flow direction has a singularity like effect on the calculated swirl. In
addition, small peaks in the swirl may be observed at intervals along the body where sub-domains
meet. This is a consequence of the multi-domain discretization and of no physical significance. The
line for Rey_. , equal to 35 in 5.15(a) shows the swirl intensity for a sub-critical laminar flow, where
no vortices are shed. The results for all of the super-critical laminar flows with imposed symmetry,
which also exhibit no vortex shedding, shown in 5.15(b) are seen to be nearly identical. For the
non-symmetric, supercritical flows shown in 5.15(a) a steady increase in swirl intensity occurs with
increasing Reynolds number, corresponding to stronger leading edge vortex strength. The swirl
intensity may also be observed to decrease along the length of the body, as the vortices shown in
Figure 5.2 weaken as they travel down the body.

Swirl intensity variation along a body in the Staggered 2 arrangement is shown in Figure 5.16.
Again 5.16(a) shows the intensity for the flows without symmetry while 5.16(b) intensity for flow
with symmetry imposed. The line for Rey_. , equal to 70 shows the swirl for a sub-critical laminar
flow with no vortex shedding. The swirl intensity for the symmetric cases may be seen to be similar,
except for Rep . , equal to 226 where symmetric leading edge shedding occurs. For the laminar
flows the swirl exhibits the same large values at the edges of the body as seen in the inline case.
Additional peaks in the swirl are observed inward of both edges and are due to the sharp turns
in the flow produced by the staggered arrangement. The swirl intensities of the non-symmetric
solutions increase with Reynolds number, indicating stronger leading edge vortex shedding. The
values are also generally higher than those of the Inline case.

The shedding of vortices from the leading edge of the body can have a pronounced affect upon
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Figure 5.19: Time averaged local Nusselt number for the case Staggered 2 (a) Periodic flow results
(b) Symmetric flow results
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the rate of heat transfer from a body. The heat transfer results in Tables 5.1 - 5.4 show that the
periodic flows with vortex shedding see an up to fifty percent increase in global Nusselt number
over a symmetric laminar flow at the same Reynolds number. Figure 5.17 shows how the vortices
shed from the leading edge effect the local, and thereby global, heat transfer from the body. The
figure depicts the vortices shed along the lower surface of the body in the Inline 1 array at a Reg_, ,
of 179 in a repeating sequence of five time instances 0.23 time increments apart. Also shown is
the local Nusselt number and the local Nusselt number for a laminar flow at the same Reynolds
number. The vortices may be seen to be associated with an increase in the local Nusselt number
over that of the laminar flow. This is a consequence of the rotary motion of the vortex, which
sweeps cooler fluid into the surface and ejects the warmer surface fluid, thus increasing local the
mixing. The net effect of the vortices on the local Nusselt number can be seen in Figure 5.18 for the
Inline 1 array and Figure 5.19 for the Staggered 2 array. The figures show the average local Nusselt
number along the top or bottom surfaces of a body in the array for the regular flow solutions and

those with symmetry imposed. The average local Nusselt number increases proportionately to the

increase in swirl intensity.

5.4 Trailing Edge Vortex Shedding

Vortex shedding from the trailing edge of a body is a well known and much observed phenomenon.
Numerous studies have investigated this type of shedding for the canonical geometries of circular
or square cylinders. Shedding from these types of bodies takes the form of vortices shed from
alternating surfaces and convecting downstream behind the object to form the well known Karman
vortex street. An example of this for a square cylinder in a uniform flow is shown in Figure 3.9
where the Karman vortex street may be readily observed. Similar behavior at the trailing edge is
observed for an isolated rectangular body of the same dimensions as those used in the Inline 1 and
Staggered 2 arrays when exposed to a uniform oncoming stream. This may be seen in Figure 5.13
which shows the vortices shed from the body in the Rectangular XY Non-Periodic case.

The behavior of vortices shed at the trailing edge of a body in the Staggered 2 arrangement
is very similar to what is seen for an isolated body. This may be observed in Figure 5.8 which

shows the vortices shed in the Staggered 2 array at Rey . , equal to 142. The wake vortices may
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be observed to shed from alternating sides of the body and travel downstream directly behind
the object. The same basic behavior is present at all Reynolds numbers where shedding occurs.
However, at the higher Reynolds numbers some chaotic interaction between the leading and trailing
edge vortices occurs.

For the Inline 1 case, the behavior of the vortices shed from the trailing edge has been found
to be very different from that described above. As a consequence of the stacking of the bodies, in
the form of columns of the array, the trailing edge vortices shed from neighboring bodies interact.
This vortex interaction causes the vortices to split and then form into counter rotating pairs which
propagate at an angle to the mean flow direction. This behavior is shown in Figure 5.20, which
shows eight bodies in an infinite array for a flow with a Rey_. , of 179. The instances shown are
0.23 time increments apart and form a repeating cycle due to the periodicity of the flow. The time
instances shown are the same as those shown in Figure 5.2. Starting in the first frame a vortex
shed from the lower surface of a body is highlighted with dashed lines, while in the third frame a
vortex shed from the upper surfaces is highlighted in grey. The motion of the highlighted vortices
may be followed by tracking the vortex from frame to frame. In the first frame the dashed lower
surface vortex is beginning to shed. By the third frame it is detached from the body. In the fourth
frame the vortex may be seen to have been split by interaction with neighboring vortices, producing
two separate vortices which propagate in differing directions. The upper of the two split vortices
propagates upward at an angle to the free stream, while the lower propagates downward at an angle.
The complete progress of the vortices may be followed by returning to the first frame after viewing
the fifth and repeating. The vortex shed from the upper surface, highlighted in grey, may be seen
to behave in a similar manner. Note also the the split vortices propagate upward and downward in
pairs composed of one of the split vortices from the upper surface and one from the lower surface.
This formation of counter rotating vortex pairs allows the vortices to impel themselves at an angle
to the mean fluid motion which is in the z direction.

This behavior is observed in the Inline 1 case for all Reynolds numbers at which vortex shedding
occurs. Furthermore, it has been observed for all of the Inline cases listed in Table 4.1, and
additionally for the Rectangular X Non-Periodic case which consists of a single column of bodies

exposed to a uniform flow. Therefore this behavior is a consequence of the vertical stacking of
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bodies with close enough proximity to allow interaction of the vortices shed from the trailing edge.
Some variation in the vortex trajectories is observed for the Inline 1 case at different Reynolds
numbers. Trajectories of the vortices are shown for Rey . , 57 and 431 in Figure 5.21. At a
Rey_ ., 57 the vortex splitting does not occur until around z = 21, at which point the vortices
pair and begin to propagate at a small angle to the free stream. For the higher Reynolds number
cases the vortex splitting occurs very close to trailing edge, as seen for the plot of Rey_, ; equal to
431 where the vortices split at around z = 16. As the Reynolds number increases the propagation
angle also increases. The swirl intensity of the vortices also increases with Reynolds number, which

may be what allows the vortices to move at a larger propagation angle.
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Figure 5.20: Swirl contours around eight element of the infinite Inline 1 array at five time instances
0.23 time units apart at Reg;, = 179
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Figure 5.21: Vortex trajectories for the Inline 1 case at Reg, of (a) 57 and (b) 431. Solid lines plot
the paths of vortices shed from the upper surface of the body and dashed lines for the lower.
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Chapter 6

Intermediate Offset Array

6.1 Introduction

In this chapter a final flow geometry related to the earlier Inline 1 and Staggered 2 geometries is
considered. The Inline 1 and Staggered 2 arrays are similar in all respects, except in the offset
between successive rows of fins. For the Inline 1 arrangement each successive row is aligned with
the rows adjacent to it, while for the Staggered 2 geometry every other row is offset by a fin length
in the streamwise direction. We now consider a third arrangement wherein the same bodies and
spacing as the Inline 1 and Staggered 2 cases are employed but each row is offset half a fin length
in the streamwise direction from the one below it. This arrangement is shown in Figure 6.1(a).
In terms of the row offsets this case is an intermediate case between the Inline and Staggered
arrangements.

This intermediate arrangement shares some similarities with a common heat exchanger geome-

try, the louvered fin array. In a louvered fin array the fins are oriented at an angle to the oncoming

SSSSSSSSSS

(b)

Figure 6.1: Intermediate offset geometry and the corresponding louver array
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flow or driving pressure gradient. Such an array is shown in Figures 6.2, where the mean flow
direction would nominally be from left to right. An alternate view of the Intermediate Offset array
is shown in Figure 6.1(b) which is simply the geometry of Figure 6.1(a) rotated as a whole 21.8
degrees. The differences between the louver array model shown in Figure 6.2 and the intermediate
offset arrangement shown in Figure 6.1(a) are the angle of orientation of the bodies relative to the
direction of the oncoming flow or driving pressure gradient and the length of the channel region
between bodies. For the intermediate offset array the bodies are aligned parallel to the driving
pressure gradient, while in the louver geometry the bodies are at an angle of 21.8 degrees to the
pressure gradient. The intermediate offset array also has a channel region between bodies equal to
half the length of the fin, whereas a louvered array has none.

Early research into the flow through louvered arrays by Beauvais [4] and Davenport [10] has
shown that under many conditions the flow becomes aligned with the louver direction and not with
the direction of the driving pressure gradient. These observations were also later confirmed by
Achaichia and Cowell [2] [1]. The phenomenon of louver directed flow was found to be Reynolds
number dependent, with the flow direction being aligned with the driving pressure gradient at
low Reynolds numbers, referred to as duct flow, and aligned with the louver direction at higher
Reynolds numbers, referred to as louver flow. These two types of flow are depicted in Figure 6.2.
This Reynolds number dependence was attributed to the viscous flow resistance occurring in the
louver gap, which is high at low Reynolds numbers and low at high Reynolds numbers. Higher
Reynolds numbers allow more flow between the louver gap, aligning the flow direction with the

angle of the fins.
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Figure 6.3: Periodic cell and geometric parameters for the Intermediate Offset geometry

rCase | bl h[ s| c[LleylelXBnd.lYBnd.l
rLouver 0.90 | 10.00 | 10.00 | 1.10 | 20.0 LS.O l 5.39 [ Per. L Per. |

Table 6.1: Tabulated geometric parameters for the Intermediate Offset geometry

6.2 Definitions

To solve for the flow through an intermediate offset array of infinite extent, periodic boundary
conditions are again applied to a basic periodic cell, indicated in Figure 6.1 by the dashed lines and
shown again in Figure 6.3. The parameters for this geometry are listed in Table 6.1. As discussed
above, the body dimensions, streamwise spacing between bodies, and transverse spacing between
rows are the same as those of the Inline 1 and Staggered 2 cases, which are listed in Table 4.1. As
a consequence of the half fin length offset between rows the basic periodic cell now includes four
fins and extends eight non-dimensional units in the y direction.

The application of periodic boundary conditions again requires the modified form of the Navier-
Stokes momentum equation, Equation 2.7, be solved. This is done with the values of 8; and B, set
equal to one and zero respectively. The base non-dimensionalization used for the intermediate offset
case remains the same as that used for Inline 1 and Staggered 2, and is described in Section 5.2.
The temperature solution is determined by solving the energy equation, Equation 2.14, with the
same constant heat flux boundary conditions.

While the geometry currently under consideration is similar to that of the Inline 1 and Staggered
2 geometries, it will prove useful to alter slightly some of the definition applied to those cases, as

well as define some additional quantities. The mean velocity defined in Equation 5.5, is redefined
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to allow for a net velocity in the y direction, and becomes

- 2 - 213
Urmin = [(AQ? ) +(AQ—?’)} (61)
min,r min,y

where Q, and Qy are the net volumetric flow rate through the domain in the z and y directions

respectively, and the effective minimum cross flow areas are defined as

Aming = (Ly—4b)L, (6.2)

Aminy = (Lz —h)L, (6.3)

The hydraulic diameter is defined as

4Amin,xL:v

o (6.4)

Dy, =

and has the same value as for the Inline 1 and Staggered 2 cases, with the net heat transfer
area within the domain Q¢ = 8(h + b)L,. In addition to the Reynolds numbers based on hydraulic
diameter, Rep,, given by Equation 5.2 and the Reynolds number based on body thickness, Reg_. ;,

an additional Reynolds number based on louver pitch is defined as
U*‘ L*
Rep, = ™2 (6.5)
v
where the louver pitch, Ly, is shown in Figure 6.3. Finally an additional quantity, the mean flow
angle, is also defined as

_ -1 Q:c/Amin,:c
o= tan (Qy/Amin,y ) (6.6)

and is a measure of the mean direction of the flow and is similar to the flow direction angle defined
by Achaichia and Cowell [1]. The definitions for the Nusselt Number, j factor, f factor, lift-drag
coefficient, and Strouhal number are unchanged and remain as defined in Equations 5.6- 5.15, but

use the altered definition of U,,;, in Equation 6.1.
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I Re l Rep, [Rel']m,»nb ReUmianJ o ‘ Cy I C l C l f | < Nu > | 7 l St |

10 | 176.0 39.2 234.8 | 12.6 | 4.64 | -0.015 0.0 | 0.106 6.5 | 0.043 -
15 | 293.1 65.3 391.0 | 9.3 | 3.77 | -0.010 0.0 | 0.086 10.8 | 0.042 -
20 | 444.0 99.0 5924 | 7.7 2.92 | -0.007 0.0 | 0.067 11.5 | 0.030 -
23 | 545.9 121.7 728.3 | 7.2 (255 | 0.021 | 0.119 | 0.058 11.9 | 0.025 | 0.18
25 | 610.6 136.1 814.5 | 6.8 | 2.41 | 0.091 | 0.926 | 0.055 12.2 1 0.023 | 0.17
30 | 759.3 169.3 1013.0 | 6.1 | 2.27 | 0.198 | 1.300 | 0.051 15.4 | 0.023 | 0.16

Table 6.2: Calculated values for the Intermediate Offset case
6.3 Flow Solutions

Flow solutions through the intermediate offset array have been obtained for six different Reynolds
numbers. These Reynolds numbers and the calculated values for the various defined quantities are

listed in Table 6.2. The following sections discuss various aspects of these flows in detail.

6.3.1 Flow Angle

A distinguishing characteristic of the flow in the Intermediate Offset array when compared to that
of the Inline or Stagger cases is that, in a mean sense, the flow is not directed strictly in the z
direction- the direction parallel to the body orientation. Instead the mean flow angle, «, listed in
Table 6.2 may be seen to vary with the Reynolds number, with the flow having a larger angle to
the z direction at smaller Reynolds numbers. In this sense the flow goes from being more duct
directed at low Reynolds numbers to more louver directed at high Reynolds number. This may be
seen in Figure 6.4 which shows the time averaged streamlines for the flow at Reynolds numbers of
10 and 30. At the lower Reynolds number a larger fraction of the flow may be seen to move at an
angle to the z direction through the angled "duct” existing between fins. It is interesting to note
that while the case under consideration is not a true model of flow through a louvered array, the
same phenomena of Reynolds number dependent duct vs louver flow regimes is still observed.

A comparison may be made for the mean flow angle observed in the present simulations to those
found in other examinations of flow through louvered arrays. Webb and Trauger [50] experimentally
observed flow through louvered fin arrays using water channel dye visualization. They present the

following correlation of their observations regarding mean flow angle at low to moderate Reynolds

126



Figure 6.4: Streamlines for the Intermediate Offset case at Re= 10 (a) and for the time averaged
flow at Re= 30 (b)
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rRe| al awt|aac|
10 | 12.6 | 119 | 5.5
151 93| 9.8 4.8
20 77| 7.8 44
23| 72 6.7| 4.2
25| 68| 6.1 4.1
30| 61| 4.7/ 4.0

Table 6.3: Flow angle comparison

numbers,

: )0 30 ( Ly 044 s o\ 03
7 =0.091 (Rer,) " (—) <—) (6.7)
» F, 90

where 7 is a quantity they define as the flow efficiency, Rer, is the Reynolds number based on
louver pitch, L, is the louver pitch, Fj, is the fin pitch, and @ is the louver angle. The equation may

be recast to yield the mean flow angle, o, as tabulated in Table 6.2, giving

030 [ L 0.44 ;g\ 03
Qyt = 0 — tan~"! |0.091 (ReLp)' <F§> (@6) tan @ (6.8)

A comparison of the mean flow angles determined from the Webb-Trauger correlation and from
the present computations are shown in Table 6.3. These results show surprisingly good agreement
givén the differences in the array geometries considered and the difference between the orientations
of the arrays with respect to the driving pressure gradient, or a uniform oncoming flow.

The results for the present flow may be also be compared with the results for louver array flow
studied numerically by Achaichia and Cowell [1]. In their work Achaichia and Cowell present an

correlation for flow direction, which is shown here recast in terms of the flow angle o

B 243 F,
ge =0 — [0.936 — Fer 1.76L—p + 0.9959] (6.9)

Achaichia and Cowell use fins of zero thickness, which requires the louver pitch be related to the
louver gap c by the relation, L,,, = ¢/sinf. In using this correlation for the present case of
finite thickness fins it would appear desirable to redefine the louver pitch to satisfy the relation

for Ly,. above, which yields a louver pitch of 2.96 for the present case. Using this louver pitch
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in Equation 6.9 produces the values of mean flow angle listed in Table 6.3. The agreement is not
particularly good, with the correlation showing a smaller flow angle than what is observed for the
Intermediate Offset case. The disagreement in these results however may be due to the use of zero
fin thickness to produce the correlation and presence of the inter-body channel in the Intermediate
Offset geometry.

In general the present flow shows behavior similar to that observed for flow in louvered arrays.
The direction of the flow is ”"duct” oriented at low Reynolds number and asymptotically approaches
a louver oriented flow at higher Reynolds numbers. The mechanism for determining the flow
angle, or choosing between duct and louver directed flow, has been noted by Daveport [10] and
by Achaichia and Cowell [2] to be the viscous resistance to flow through the channels between
the louvers. At low Reynolds numbers, or high viscosity, this resistance is high causing a larger
portion of the flow to travel in the duct region between rows of louvered fins. At high Reynolds
numbers, or low viscosity, more flow is able to pass through the louver channels allowing the flow
to be more louver directed. This same mechanism is responsible for the determining the flow angle
in the current Intermediate Offset geometry. As stated previously one of the differences between
the current model and a louver flow model is the orientation of the pressure gradient relative to
the fin orientation. Figure 6.5 shows a louver array model where the flow is driven by the pressure
gradient APy, which may be broken into two component parts AP, and AP,. For a louver angle,
0, of 21.8 degrees AP, = 0.93AP;, and AP, = 0.37AP. In the present offset model the flow is
driven by a pressure gradient in the direction of AP,, making the difference between it and a louver
array model the pressure gradient AP,. This difference would tend to manifest by producing a

flow which is moderately more louver aligned for the Intermediate Offset case at a given Reynolds
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Figure 6.6: Profiles of U velocity for the Intermediate Offset Array at Re= 22

number than would occur in the louver flow model. However, the presence of the inter-body channel
in the Intermediate Offset array tends to increase the hydraulic resistance to louver directed flow
making the flow more likely to be duct directed, thus the two effects may tend to cancel each other
out. The degree of difference in the flow angle at the low Reynolds number between the offset
and louver arrays is not clear, but the comparison to the results of Webb and Trauger suggests it
may not be large. On a final note, it would be possible to produce a proper model of louver flow
with the existing code by specifying the proper values of 8; and By, in Equation 2.7 to produce a

properly oriented driving pressure gradient.

6.3.2 Stability

The transition from steady laminar, to periodic unsteady flow does not appear to effect the mean
angle of the flow. This transition for the Intermediate Offset array was found to occur at a Reynolds
number, Re, of 22. This may be observed from the data listed in Table 6.2 where for Reynolds
numbers less than 22 the flow is steady, having zero lift fluctuation, C}, and correspondingly no
Strouhal number. Above the critical Reynolds number the flow becomes unsteady, with fluctuating

lift and periodic vortex shedding.

The value of the critical Reynolds number for the Intermediate Offset array may be compared
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to that of the Inline 1 and Staggered 2 arrays. A comparison based on, Reg,, where U = Q/L,
and b is the fin thickness, shows that the critical Reynolds numbers are 31.4, 60.9, and 62.3 for the
Inline 1, Staggered 2, and Offset cases respectively. Using the alternative scaling for stability results
suggested in Section 4.5 and the Reynolds number, Reg, .. L. Yi€lds critical Reynolds numbers
of 127, 135, and 139 for the Inline 1, Staggered 2, and Offset cases. For consistency the average
velocity in the inter-body channels, Ugqon, was taken as Ugpan = Qz/ (Ly — 2b) and the length scale,
Lyoke, Was set to Lygke = ¢ + b/2. The choice of the value of Ly.ke was motivated by the profiles
of the u velocity in the wake of an offset body shown in Figure 6.6. This figure shows six profiles of
u velocity, starting at the trailing edge of a body and taken at increments of one non-dimensional
length unit in the z direction, with the center line of the upstream body at y = 0. A comparison
to the profiles for the Staggered 2 case shown in Figure 4.9(b) shows a marked similarity in the
profiles over the upper 2.6 non-dimensional length units. Over this range the early profiles for the
two cases exhibit a similar double-peaked structure. The lower portion of the Offset array profiles,
however, deviate from the Staggered profiles due to the lack of a lower bounding surface symmetric
to the upper one. Overall roughly 85% of the Staggered 2 profile is repeated in the profile for the
Offset array, suggesting the choice of L .x. be the same as that of the Staggered 2 array. Given the
similarities of the velocity profiles, and the role of the profiles in determining the flow stability, it .
is not surprising that the critical Reynolds number for the Staggered 2 array and the Intermediate
Offset array are nearly identical.

Due to the similarities in the critical Reynolds numbers and in the unsteady flow regimes, which
will be discussed subsequently for the Offset array, it is evident that the transition from laminar to
unsteady flow in the Offset array is attributable to the same type of wake instability that occurs
in the Inline and Staggered arrays. As the flow is largely louver directed at the point where it
becomes unstable it is not surprising that it should be subject to the same type of instability. The
approximate similarity between the Offset array and louver array models suggests that the same
type of instability may be the cause of transition to unsteady flow in a louvered array where the flow
becomes predominately louver directed before the onset of flow instability. Extrapolating from the
present results it may be argued that the flow will become louver directed before it becomes unstable

for a range of fin pitches. The results of Achaichia and Cowell shown in Equation 6.9 indicate that
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for a given fluid and array geometry increasing the pitch, Ly, will cause the flow to become more
louver directed for a fixed flow velocity, or alternatively the same flow angle can be achieved at a
lower flow velocity. The stability results of Section 4.5 show that the type of instability occurring
in the Offset array causes a transition at a constant Reynolds number, Reg , ; . . Thus for a
given fluid in a given array increasing the pitch will cause the flow to become unstable at a lower
flow velocity. Both the flow velocity needed to obtain a given flow angle and the velocity needed
for the flow to become unstable have a similar 1/L, dependence. It it therefore likely that the
flow will remain predominately louver directed before becoming unstable for a range of fin pitches.
Therefore, in many cases it will not be the duct directéd flow over the irregular louver geometry

that leads to flow instability, but instead the same general wake instability that occurs for Inline

and Staggered arrays.

6.3.3 Unsteady Flow

After the onset of instability the flow in the Offset array changes from a steady flow of the type
shown in Figure 6.4(a), to an unsteady, vortex shedding flow which is depicted in Figures 6.7 - 6.9.
Figure 6.4(a) shows a streamline plot of the flow solution over four bodies in an infinite Offset array
at a Reynolds number, Re, of 10. As previously discussed the flow moves at angle to the bodies,
and a pronounced recirculation region may be observed over the first half of the upper surface of
each fin. A small recirculation region is also present at the rear of each body. Figures 6.7 - 6.9 show
a sequence of vector, swirl, and temperature solutions at a Reynolds number, Re, of 30. Plots are
shown at an increment of 0.18 time units, and the flow is temporally periodic so the first plot (a)
follows the last plot (e) in a repeating sequence. The effects of flow unsteadiness may be readily
observed in these figures. The wake region behind each body may be observed to show an oscillating
waviness in the vector plot, which correspond in the swirl plot to vortices shed from the trailing
edge of each body. As with the Inline and Staggered array the wake vortices are shed alternately
from the top and bottom surfaces of the body and generally propagate in the z direction with a
small deflection attributable to the angled mean flow. Vortices are also shed at the leading edge,
with the vortices shed at the top surface being larger and more intense than those shed from the

lower surface. The vortices shed from the upper leading edge may be seen to propagate through
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a region of low velocity existing over the first half of the upper surface, and are clearly visible in
the vector plot. Both sets of vortices shed from the leading edge propagate along the entire length
of the body, however the upper vortices become weaker and more compact as they pass into the
channel region between bodies. Both the wake and the leading edge vortex shedding have the
same period as does the shedding on different bodies. However, the shedding is not synchronized
between the different bodies, with each body at a different phase. The effects of the vortices may
be observed in the temperature solutions shown in Figure 6.9. The thermal boundary layer may
be observed to be thickest along the first half of the upper surface, or along the region of low flow
velocity. The thickness of the thermal boundary layer in this region, and along the length of the
fin, is effected by the presence of the shed vortices.

As with the Inline and Staggered arrays the intensity of the vortices in the near-surface region
may be quantified by considering the normalized, y integrated swirl. The near surface region was
considered to extend a distance of 1.1 units away from the surface, and the upper and lower surfaces
were integrated separately to evaluate the difference in vortex intensity on the two sides of the body.
Figure 6.10 shows the swirl intensity as it varies along the upper surface of the body (a) and the
lower surface of the body (b). As was expected, the swirl intensity is generally higher along the
upper surface of the body. Along both surfaces the swirl intensity shows sharp peaks at the front
and rear of the body and at the mid point where the leading or trailing edges of adjacent bodies lie.
These peaks are attributable to the sharp deflections that the flow undergoes at these points. Along
the upper surface the swirl intensity may be seen to be highest in the recirculation region along
the front of the body. Along both surfaces the swirl intensity shows an increase with increasing
Reynolds number, with the largest increase occurring for the Re equal to 30 case where strong
vortex shedding is present.

Another significant local quantity is the Nusselt number. Figure 6.11 shows the time averaged
local Nusselt number along the (a) upper and (b) lower surfaces of the body. The Nusselt num-
ber may be observed to differ between the upper and lower surfaces, though the difference exists
primarily over the first half of the body. Along the later half of the body the Nusselt numbers on
the two surfaces are in fairly close agreement. The difference in the Nusselt numbers over the front

portion of the body is attributable to the recirculation region which exist over the upper surface.
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Figure 6.8: Swirl plot of the Intermediate Offset array solution at Re= 30 showing 5 time instances
0.18 time units apart
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Figure 6.10: Swirl Intensity for the Intermediate Offset array over the near surface region along
the upper surface (a) and the lower surface (b)
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For both surfaces the Nusselt number peaks sharply at the start of the body where the new ther-
mal boundary layer is thin. Along the lower surface the Nusselt number generally decays along the
length of the body. Along the upper surface the Nusselt number decays rapidly from the leading
edge peak through the recirculation region. Beyond the recirculation region the Nusselt number
recovers and peaks just beyond the leading edge of the upper adjacent fin, after which it slowly
decays. A significant increase in the local Reynolds number occurs for the Re = 30 case, where
strong vortex shedding is present. The effect of strong vortex shedding is particularly noticeable
in the recirculation region.

Finally the f and j data for the Intermediate Offset array may be compared to that of the
Inline 1 and Staggered 2 arrays. These data are listed in Table 6.2 and plotted in Figure 6.12,
which compares the results for the three array geometries. The values of f and j for the Offset
array lie between those of the Inline and Staggered arrays, but noticeably closer to the results for
the Staggered array. The data for all three cases show nearly the same dependence on the Reynolds

number based on hydraulic diameter, Rep, .
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surface (a) and the lower surface (b)
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Chapter 7

Conclusions

The present study utilized numerical simulations and theoretical analysis to investigate the flow,
stability, and heat transfer characteristics of a dozen different geometries. The geometries consid-
ered consisted of; eight infinite arrays of rectangular bodies in Inline, Staggered, or Intermediate
Offset configurations, a single column of rectangular bodies, a single column of square bodies, a
single square body, and a single rectangular body. Stability results, including perturbation growth
rates, critical Reynolds numbers, and eigenfunctions are reported for each of the above cases. De-
tailed flow and heat transfer solution data are reported for an Inline, Staggered, and Intermediate
offset case, with a focus on the vortex shedding behavior.

The numerical analysis was performed using a specially developed spectral multi-domain solver
for the governing flow and energy equations. This algorithm combines the flexibility of the multi-
domain decomposition with the accuracy of a spectral discretization. Furthermore it provides
excellent scalability on parallel computational architectures. Infinite array simulations were per-
formed using periodic boundary conditions applied to a small unit periodic cell. Simulations for
finite geometries employed a buffer domain outflow boundary condition, and all temperature solu-
tions used a constant heat flux boundary condition.

Numerical two-dimensional stability analysis of the steady base flow was performed for each
of the geometries. Disturbance growth rates were determined by adding a generalized disturbance
to the steady base flow solutions and monitoring the change in disturbance energy. In unstable
base flows the disturbance energy grew exponentially at a constant rate, while for stable flows it
exponentially decayed. Steady base flow solutions at super-critical Reynolds numbers were obtained

through the application of a symmetry condition about the bodies, which prevented the growth of
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the disturbance. From the disturbance growth rates the critical Reynolds number for each geometry
was determined. The proper scaling for defining the critical Reynolds number was determined
through a one-dimensional analytic stability analysis of the sinusoidal streamwise velocity profiles
observed in the Inline array configurations. The proper scaling was found to be based on the
wavelength of the profile, or the transverse pitch of the array, and the magnitude of the primary
sinusoidal oscillation. These scaling results were generalized to include Staggered arrays, and recast
into more physical parameters, producing a general theory for determining the stability of Inline
and Staggered bluff body arrays. The stability of the flow was shown to be dependent primarily
upon the transverse spacing of the bodies and the average velocity in the inter-body channels,
for low to moderate transverse body spacing. For large transverse ‘spacing the stability of the
flow was equivalent to that of a single isolated body. In the intermediate range of transverse
spacings the critical Reynolds number increased from the lower value of an array to the higher
value corresponding to an isolated body. Thus, the primary parameters impacting the point of
transition from steady flow to unsteady flow with vortex shedding have been identified and the flow
velocity at which transition occurs may be predicted for a given geométry. For example, a typical
compact heat exchanger with a 1 millimeter fin pitch may expect to see flow transition at oncoming
flow velocities on the order of 4 m/s.

The predictions for the onset of flow instability in the present work may be compared with
experimental observations. Mullisen and Loehrke [35] present experimental data for inline arrays
and identify the onset of flow instability based on changes in the f and j factor curves. For an
inline geometry similar to that of the present Inline 2 array, Mullisen and Loehrke [35] report a
critical Reynolds number, Reg_, 1 ., of 244, which may be compared with the value of 129 for
the Inline 2 array. The factor two difference in these results may be attributed to the method by
which unsteady flow was identified from the experimental data. From the f and j data for the
present Inline arrays (See Figure 5.6, Tables 5.1 and 5.2) it may be seen that noticeable change in
the f and j curves occur only at Reynolds numbers significantly above the critical value for true
onset of flow unsteadiness. For example in Figure 5.6 a five percent increase in f and j factors
above their steady state values occurs only at a Reynolds number nearly twice as large as the

critical Reynolds number. Thus the data of Mullisen and Loehrke [35] can be considered to provide
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adequate experimental support to the present computational and theoretical results.

A more accurate comparison of critical Reynolds numbers may be performed using data from
water channel dye visualization experiments by DeJong and Jacobi [11]. For a staggered array com-
parable to the present array in geometry and arrangement they report a critical Reynolds number,
Reg,,  L.i.» of 155 which compares favorably to the value of 136 found for Staggered arrays from
the present analysis. The slightly higher critical Reynolds number in the experimental measure-
ment can again be explained in terms of higher saturation amplitude required for experimental
observation of the instability.

The unsteady flow that follows the onset of instability was studied in detail for related Inline
and Staggered arrangements. Detailed flow and temperature solutions were obtained and presented
at differing Reynolds numbers throughout the regime where the flow is unsteady with a single
characteristic frequency. For higher Reynolds numbers the flow was observed to be characterized
by an increasing number of frequencies until the flow became chaotic. Vortex shedding was observed
to occur simultaneously at the leading and trailing edges of the bodies in an array. Simulations
of flow over a single column of bodies showed wake vortex shedding with no initial leading edge
vortex shedding at Reynolds numbers just above the critical value. Leading edge vortex shedding
results from a second bifurcation at a higher Reynolds number. Thus, it can be concluded that
it is the presence of upstream bodies shedding vortices which results in the simultaneous onset of
leading and trailing edge vortex shedding in the case of an array. Trailing edge vortex shedding
behavior was found to be similar to that of an isolated body, with vortices shed periodically from
alternating surfaces of the body. However, a unique angled motion of the trailing edge vortices
was observed for infinite Inline arrays. The strength of the leading edge vortices was quantified
and found to increase smoothly with increasing Reynolds number, with the vortex strength being
relatively weak close to the critical Reynolds number. The position of the leading edge vortices
was shown to be correlated with an increase in the local Nusselt number. The overall effect of
the leading edge vortices on heat transfer was quantified by a comparison of j factor values for
shedding and symmetric non-shedding flows over the same range of Reynolds numbers. A twenty

percent increase in j factor for the shedding vs. non-shedding flows occurs at one and a half times

the critical Reynolds number for the Staggered arrangement and four time the critical Reynolds
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Figure 7.1: Inline 1 f and j data compared with Mullisen and Loehrke

number for the Inline arrangement. These results are consistent with experimentally obtained data
for f and j. A comparison of the present results with the experimental data of Mullisen and
Loehrke [35] for a similar geometry is shown in Figure 7.1, where generally good agreement may
be observed. The difference observed at higher Reynolds number can be attributed to the three
dimensional nature of the flow.

Finally, the flow and heat transfer characteristics of an alternate geometric case, the Interme-
diate Offset array, which is a variant of the Inline and Staggered geometries, was considered. This
case was observed to display the same phenomenon of duct and louver directed flow observed in
louvered arrays. However the stability of the flow was found to be very similar to that of the
Staggered array, as was the nature of unsteady laminar flow regime. The strength of the leading
edge vortices, however, was observed to be asymmetric about the body, with the vortices on the
upper surface being larger and stronger. The relation of the flow stability characteristics to that of
a staggered array plus the rough similarity in geometry and flow characteristic to that of a louvered

array, suggest that the general mechanism of array flow stability reported in this work may extend

to louver array geometries as well.
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