

I would like to thank my family for supporting the work and also Dr. Walter R. McCollum, PhD—Walden University Dean

of Student Affairs/Executive Director—for co-authoring this manuscript for submission to the International Journal of

Management and Technology.

International Journal of Applied
Management and Technology

2021, Volume 20, Issue 1, Pages 124–142
DOI: 10.5590/IJAMT.2021.20.1.07

© The Author(s)

Original Research

Determinants of Effective Change Management for
Software Deployment Projects

Abebaw Zeleke, DBA candidate
University of Maryland Global Campus, Adelphi, Maryland, United States
 https://orcid.org/0000-0002-6351-6501

Walter McCollum, PhD
Vice President/Senior Associate Vice Provost, Miami Dade College Online, Miami, Florida, United States
 https://orcid.org/0000-0003-1306-9181

Contact: abebaw@gmail.com

Abstract
Software application deployment change management is one of the emerging research themes that is gaining
increased focus day by day. Our study examined the factors that affect software application deployment change
management in Agile software development settings. Our study provided a systematic review and synthesized
the approaches, practices, and challenges reported for adopting and implementing deployment change
management. The prime objective of our study was to systematically synthesize the data extracted and formulate
evidence-based practical recommendations that are influential in software deployment change management. Six
research themes are proposed to evaluate the rationale of the research question. This qualitative study and
systematic review explored the pertinent research articles and key findings from prominent academic databases.
Based on the selected criteria, the final screening revealed 25 articles from an immense set of publications. Key
findings that emerged from these publications are correlated with the six research themes: (a) timely
communication with all stakeholders; (b) the reliance of deployment approaches on past experience; (c) the
importance of collaboration among team members having adequate knowledge of DevOps tools; (d) the
ramification of the differences among development, test, and production environments; (e) the influential areas
that reap the benefits of continuous delivery and deployment; and (f) the challenges of the effective use of
containerization. We also found indications of the significance of Lewin’s three-step change process model in the
Agile development and deployment environment. Overall, our study deepens understanding of this thriving
research area and contributes to the literature on Agile deployment and the software change management
process.

Keywords: DevOps, continuous deployment, continuous improvement, change management, software deployment

Date Submitted: June 22, 2021 | Date Published: November 14, 2021

Recommended Citation

Zeleke, A., & McCollum, W. (2021). Determinants of effective change management for software deployment projects.
International Journal of Applied Management and Technology, 20, 124–12.
https://doi.org/10.5590/IJMAT.2021.20.1.07

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 125

Introduction
In an increasingly globalized world, effective software deployment has gained prime significance among
industries, software companies, and research communities. The innovative ways and practices in software
deployment are considered key drivers in implementing a successful business for many enterprises. Software
deployment management entails building, testing, and delivering reliable services to customers. Effective
software applications change management and process implementation involve multiple aspects and add
value to the customers. In this perspective, the Agile manifesto has become a great indicator of reliance due to
frequent software updates, embedding new features, and adding security protection shields from time to time.
Agile development and deployment offer short development cycles, accommodate changes at every phase of
development, provide an influential interaction of users in the development cycle, and offer a platform for
change management. Recent successful software change management in Agile environments has boomed in
the online business of mega companies, such as Amazon, Google, and Facebook. The implementation of fast
and frequent software updates, timely handling the customers’ logged complaints, dealing with online bugs,
and related management issues are referred to as continuous software deployment. In this regard, software
development (Dev) and IT operations (Ops), are referred to as DevOps. DevOps functions have emerged to
integrate software delivery organizations and cross-functional continuous collaboration teams and customers.

Many research studies have highlighted the importance of software application deployment change management
in Agile software development settings. For instance, Baouya et al. (2021) noted that managing software
deployments in a coordinated and planned way plays a pivotal role in an organization’s application stability. The
inconsistencies in software deployment management and lack of ability to cope with the changing business and
users’ needs by improving software capabilities affect all areas of an organization.

Continuous delivery and deployment of software solutions and services is crucial for increasing business
demands for continuous improvement. A continuous change management aims to constantly keep the
software up to date, which enhances the stakeholders’ visibility and empowerment. The reported studies have
explained that, at the core of continuous change management, lies effective continuous software deployment.
However, the evidence on Agile change management to deliver autonomous software deployment projects is
limited and sporadic, and it is mostly focused on a few case studies of specific organizations (Lwakatare et al.,
2019). Existing studies are mainly focused on general change management of software development with
specific case studies but not directly addressing the determinants of effective change management for
continuous software deployment. Such an up-front understanding is eminent from the research performed by
Timans et al. (2016). Their study argued a need for a specific and practical implementation of continuous
improvement change management. Likewise, research by Kamal et al. (2020) highlighted that lack of proper
documentation in an Agile development process increased the complexities of the software deployment
change management process.

Our study investigated the various dimensions and key factors that decisively affect the areas of change
management in the continuous software deployment and provided empirical means on continuous
deployment and delivery. Our study is beneficial for software organizations and practitioners to get insights
on software deployment and change management process within their software development and operations
departments. Our results also outlined key factors that can be applied in the three stages of Lewin’s
unfreezing-changing-freezing change model; i.e., code development, testing, and production.

Research by Rousseau (2020) suggested the key components of a well-formulated review question, including
context, intervention, mechanisms, and outcomes. Our research looked at the significant factors affecting
effective change management in software deployment and explored the answer to the following research
questions:

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 126

1. How does timely communication with all stakeholders affect successful software deployment?
2. Which software deployment approaches heavily rely on past project experience?
3. What is the impact of collaboration and knowledge sharing among existing team members and

those with relevant experience in new DevOps tools for effective change management?
4. Which areas in the development, testing, and production environment (hardware and software)

reap the benefits of continuous delivery and deployment?
5. Which elements and dependencies between applications limit the adoption of continuous

deployment?
6. What are the dimensions and challenges of effective use of containerization?

Given the nature of the study and the objectives, a qualitative research methodology was adopted. From the
preliminary review of 370 research articles, we focused on a total of 25 articles that pertained to software
deployments and change management practices. The selected articles also included some case studies on
software deployment and proposed constructive recommendations. Some of the focused studies were related
to the effective change management beyond the scope of software deployment. Despite the importance of the
presented topic, to the best of our knowledge, there are no research studies that went beyond the explanation
of the software deployment knowledge management and its tools or DevOps scenarios. The limited studies
and lack of specific focus on global continuous Agile software deployment challenges have prompted the need
for this research (Efe & Demirors, 2019). Prototyping methods and iterative life cycle models were developed
and applied, but the results were not as expected. Our report aims to bridge the gap in this important topic.

Our research was structured to (a) outline a brief introduction and importance of our research study, which
was reported in the preceding section; (b) present the conceptual framework and literature review in the next
section; (d) describe the research methods applied, main aspects, and a detailed description of the qualitative
analysis in this study; (d) discuss the implications for software deployment practice; and (e) conclude with
limitations and (f) suggestions for future research.

Literature Review and Conceptual Framework
Due to the growing importance of software deployment management in Agile environments, an increasing
amount of literature is being reported describing approaches, innovative tools, and technologies (such as big
data, cloud computing, and Internet of Things [IoTs]), up-to-date practices, and challenges under diverse
scenarios. However, global continuous Agile software deployment challenges are still underexplored. The
faster-paced software development and deployment are linked with some stressing factors, such as iterative
development cycles, prioritizing new releases, accelerated productivity, and prompt coordination with
customers. In this scenario, predicting and diagnosing the shortfalls of any accomplished tasks and
deliverables become ambiguous and rely only on self-evaluation practices. The self-evaluation practices
involve systematic appraisal of all factors and variables that are associated with systems-level outputs.
Shogren et al. (2018) argued that, for evaluating the optimal deployment management, the individual-level
outcomes metered and valued are important for the next execution. An exhaustive body of literature is
available that supports the software deployment outcomes by using logical models. These models facilitate the
alignment of support delivery development, implementation, and evaluation.

In our present study, we have used a three-step change model. This model explains a theoretical conceptual
framework that was initially proposed by Kurt Lewin (Lewin, 1947) and later improved by Schein
(1996/1999). The model is shown in Figure 1. This framework supports the whole system architecture and
examines the interdependencies within the system. The three-step framework involves unfreezing, changing,
and then freezing the model. Rajan & Ganesan (2017) also support Lewin’s change management framework
and suggest that change management processes are a sheer necessity for organizational emancipation,
sustenance, and growth and demonstrate the competence level of an organization.

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 127

Figure 1. A Conceptual Framework of Change Model (Lewin, 1947; Schein, 1999)

The dynamic nature of software application changes and its subsequent deployment scheduling affects all
stakeholders. Akbar et al. (2019) mentioned that one of the most challenging issues in such projects is the
dynamic nature of change process requirements. The new technological means, big data analytics, and cloud
computing are providing prompt solutions to the customers’ changing requirements; however, the change
management process can be made more predictable if the factors affecting the change process are identified.
Considering this, Lewin’s change model provides an ideal framework to establish the key parameters for
software change management and deployment.

Research Methodology
Our study aimed to fill the gap of the approaches, tools, challenges, and practices of software deployment
change management in an Agile environment by means of a Systematic Literature Review (SLR). This SLR is
adopted because it provides a detailed understanding of the challenges and helps to identify the optimum
parameters and areas of improvement. The SLR is preferred for this study because it provides a
comprehensive view of the efficacy of software deployment management for different types of organizations
and software-intensive applications.

SLRs frequently consider framing the highest point of the Hierarchy of Evidence, especially in the applied
sciences. For instance, Popay et al. (2006) explained that systematic reviews use the Hierarchy of Evidence to
decide the nature of examination considered. As explained in Figure 2 (adopted from the University of
Illinois), articles and well-qualified assessments form the base of the pyramid; case series and case reports
come next; case-control studies are next; the cohort studies are set in the center; the Randomized Control
Trials take the second position from the top; and systematic reviews are set at the highest point of the
pyramid.

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 128

Figure 2. Hierarchy of Evidence (Systematic Reviews)

Another aspect of adopting a systematic review for this study was to examine the consequences of past
investigations within a selected time. The traditional literature reviews just sum up a given point without
disclosing the models used for methodological examination of the pertinent investigations. Popay et al.
(2006) explained that conventional reviews frequently extract useless detail from research perspectives. The
systematic reviews specifically and artfully concentrate on methodological quality and need to be
straightforward. Research by Sorrell (2007) points out that systematic reviews, in general, answer micro
inquiries with respect to specialized proficiency instead of large-scale strategy questions.

The area of software deployment and change management is becoming rich with publications and reports;
therefore, our study has focused only on the most recent research articles, those published within the last 6
years. Dingsøyr & Lassenius (2016) highlighted that the study of Agile software application development is
more reliable when a diverse number of case studies are included in the research theme, especially the studies
representing the changing speed of delivery, data security, and ecosystems. Considering this, the presented
review has explored the disparity in change management and software deployment by undertaking different
documents, including case studies, advanced application tools, and software change management approaches.
In our review, we have systematically identified and precisely reviewed 370 relevant papers and analyzed the
data obtained to answer a set of research questions (described in the Introduction). The University of
Maryland Global Campus (UMGC) electronic database was used in this research. This database covers more
than 50 libraries, including OneSearch, Scopus, ABI/Inform, ProQuest Dissertations, and Google Scholar.
Appropriate search strings, operators, and strategies were adopted to extract the precise publications from
well-renowned databases. For instance, the search string used the keywords ‘DevOps Software Delivery’ OR
‘software deployment’ OR ‘continuous software deployment’ OR ‘effective software change management’ AND
‘software change management’ including OneSearch, Scopus, ABI/Inform, ProQuest Dissertations, and
Google Scholar. We applied snowballing technique (Budgen et al., 2008) to choose the references of the
selected papers and cited the relevant publication in this research. The initial search resulted in more than
370 articles from different databases. After a detailed analysis and study, 178 articles were excluded, which
were not highly pertinent to the scope of the topic. From the remaining articles, 46 were screened to be
relevant to the factors that affect software deployment studies. In the second phase, we applied TAPUPAS
multiple methods (Pawson et al., 2003) and Weight of Evidence (WoE, Gough, 2007) to critically evaluate the
selected articles. By applying these methods, only 25 articles satisfied the eligibility criteria. For the WoE

Systematic
Reviews

Randomized Controlled
Trials

Cohort Studies

Case-Control Studies

Case Series, Case Reports

Editorials, Expert Opinion

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 129

method, we used a score of 1 to 3 (1 = low and 3 = high). This is demonstrated in Appendix A. To be more
precise with WoE score, an aggregated score was evaluated to estimate how the articles are rated for each
measurement.

To cope with the reliability and validity issues, our presented study has applied the TAPUPAS method. The
findings of this are explained and presented in Appendix B. This method critically appraises, evaluates, and
systematically examines the selected articles to evaluate their trustworthiness and their relevance in the
context of the research questions. To further support the reliability of selected articles, Appendix C explains
the coding of 25 articles and their relation to each other. The data are analyzed as part of the process to
identify key study themes by searching and identifying concepts and finding relations between them. To
ensure the reliability, we have followed three complementary analyses of each article to establish how past
research relates software change management and presents a comprehensive picture of software deployment
in Agile environments. The reliability is enhanced through coding and comparing individual results.
Moreover, consistency was checked by conducting two pilot coding rounds.

Appendix B and C indicate that the selected articles are highly reliable under the proposed criteria.

Results and Analysis
Moreover, the findings are expected to be used as guidelines for practitioners to become more aware of the
approaches, tools, and challenges and to implement appropriate practices that suit their industrial
arrangements. This section presents the findings to research questions based on the SLR. The SLR has
identified the main determinants of effective change management in global continuous Agile software
deployments. The key findings are categorized into six themes, as presented in Appendix D (CERQual). These
are explained and discussed in the following sections.

Timely Communication With All Stakeholders

The SLR has identified some imperative findings, which are associated with timely communication and
feedback from all stakeholders. A set of papers discussed that, when deployment preparation and
postdeployment training is scheduled, there should be coordinated communication for geographically
dispersed stakeholders (Anwer et al., 2019). The review also highlighted that information technology
managers and stakeholders must focus on the deployment plan. Shifting or changing the initially proposed
software deployment methodologies in the middle of a project resulted in added costs, hampered the project
schedule, and reduced the overall quality (Gablas et al., 2018). The results also indicated that, when a project
involves hybrid teams, clear communication becomes necessary to keep everyone on board while
implementing the change management plan. Research by Zasa et al. (2021) advocated that hybrid teams must
include internal and external stakeholders to get an appraisal and clear visibility on the project’s progress and
its deployment. A set of papers has indicated that, when application deployment is scheduled as a continuous
deployment Agile project plan, the communication strategy can evolve as a retrospective of the previous
sprint. The SLR highlighted the importance of user training on software deployment. The study by Volker and
Prostean (2016) suggested that a successful software deployment and change management project is
guaranteed with all stakeholders’ satisfaction on the training plans. In cases where there is a lack of relevant
training, software deployment projects are adversely affected, even in the presence of skillful teams (Akbar et
al., 2020). Overall, the key findings on this theme indicated that timely communication and appropriate
training at all levels is crucial to a successful deployment and adoption of the deployed change.

Deployment Approaches Heavily Rely on Past Project Experience

Our analysis has revealed that new IT projects often follow similar approaches as those that were adopted in
accomplished projects. Extensive experience enables professionals to understand business requirements and

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 130

transform these into Agile system settings (Palacios et al., 2018). Some studies considered the preference of
new approaches if the project team experience can be leveraged to the new project. However, this approach
may involve a resistance to adopting new deployment approaches (Tüzün et al., 2019). Our review has
identified that both business and IT stakeholders involved in the change management process rely on
established approaches rather than newly invented methods (Jayatilleke et al., 2018). The findings revealed
that previous experience is coupled with meeting tight project timelines, efficient use of development
resources, and preference to adopt existing deployment approaches.

Collaboration and Knowledge Sharing Among Existing Team Members and Those With
Relevant Experience in New DevOps Tools

Our analysis identified the practices that are common in successfully adopting and implementing software
deployment. A set of papers argued that achieving real benefits of successful practices required developers
and testers to be more responsible in the production environment to fix problems that appear after
deployment. Akbar et al. (2019) supported this approach by arguing that, during the real production
environment, silo work arrangements are broken and developers foresee the issues with IT operations, and
deployment teams realize the limitations of IT operations while dealing with technical constraints. The results
of this SLR indicated that DevOps has a significant influence on the success of practicing deployment
management. DevOps is a set of activities that integrates software development and IT operations. Its main
goal is to shorten the development cycle and provide high-quality software delivery on a continuing basis to
users. The review also indicated that DevOps is a useful addition to Agile software development. Lwakatare et
al. (2019) argued that DevOps is not well understood among software practitioners and lacked top
management support. Adequate support was important to transfer knowledge of development resources and
new DevOps tools. Some studies have indicated that adopting DevOps was decisive for improving cycle times
to deliver optimum deployment applications to production and meet overall system quality. The outcomes of
this research theme reflected that knowledge sharing between development and operations played a
significant role in supporting the application (Efe & Demirors, 2019; Schuh et al., 2017).

Development, Test, and Production Environment (Hardware and Software) Differences

The results of this SLR indicated that, if proper DevOps practices are not followed, then the application code
deployed for testing environment for Quality Assurance may fail. The main cause of this failure was the
incompatibility of the test environment adapted to the environment of the application that was initially
developed (Leonardo et al., 2019). In DevOps practice, application developers usually develop tasks that are
operationalized by IT staff, including server management (Ali, 2021). To overcome these issues, the testing
process is performed repeatedly. The developers write test cases during the development environment. This is
the idea as explained in Figure 3.

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 131

Figure 3. Continuous Deployment Requirement to Have Identical Development, Test, and Production
Servers.

This coherence provides efficient working and stability when the application code is tested and deployed
during a development and test environment. Sailer and Petric (2019) suggested that coherence is the main
factor that contributes to the successful execution of DevOps. It is reported that identical hardware and
software setups among development, testing, and production successfully accept all deployment functional
requirements (Rodríguez et al., 2017). These include servers, coding platform, tester bridge, etc.

Dependencies Among Applications Limited the Adoption of Continuous Deployment

Some papers defined the concept of continuous deployment. The review revealed that IT organizations are
focused on the Continuous Delivery Practice where a development application is set, ready to be deployed to
production when needed. The study by Shahin et al. (2017) elaborated that, in conventional deployment
practices, no automation and dependency were associated with systems and applications. A manual
verification and coordination were done to check the compliance of systems and applications. In Continuous
Deployment (CD) approach, however, deployment steps are fully scripted, and all conditional logic is handled
by automated processes. A CD framework produced a more structured and managed environment for Agile
development. The main limitations of a CD are knowing all dependencies for an automation task (Arulkumar
& Lathamanju, 2019; Luz et al., 2019; Morris et al., 2017). The dependency with hardware and compatibility
with multiple versions posed a major challenge for an automatic deployment of software into customer
environments.

Challenges of Effective Use of Containerization

We found several studies discussing that inappropriate workstations and application architectures created
hindrance in a smooth transition toward CD practices. The highly coupled architectures can cause severe
challenges for deployment and change management systems. An application developed on a local computer or
cloud environment may take an enormous amount of time and setup when deployed through a different
platform. Parra et al. (2018) indicated an application developed in a complex development environment may
require similar setup when the application moves to a test environment. To avoid this issue, containers are
introduced with all embedded dependencies for coding, testing, and deployment. Containerization enables
packaging an application with self-contained units, such as Docker and Kubernetes. Investigations by Zhang
et al. (2018) showed that 45.8% of the respondents have changed from one form of the container flow to
another and centralized logging allows containers to share information with an entire set of all components.
Among the popular containers, Docker runs on a single node, whereas Kubernetes is designed to run across a
cluster. Because the centralized logging in a container is sustained for only a short time, the log messages are
susceptible to being lost when a container is redeployed (Poniszewska-Marańda et al., 2021). The SLR

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 132

highlighted the importance of identifying the appropriate type of container for the long-term setup. An
organization must perform a comparative analysis to find the optimal container tools and workflow
approaches (Timans et al., 2016).

Discussion and Conclusions
Our work has presented a rigorous analysis of software deployment challenges and systematic synthesis of
change management from selected publications through a SLR. All important approaches, tools, challenges,
and practices identified through the SLR were discussed in the form of key findings. Overall, this study
provided insights into software development, deployment, and change management issues. The results of the
study showed that there is a positive correlation between software deployment and change management if all
the dependencies are known to stakeholders. The results of the study showed that software application
development managers and stakeholders must consider the key factors that affect the successful execution of
continuous software deployment. The three-step process we discussed must be practiced during the change
management process. The research identifies some challenges that are associated with environments. For
instance, with a layered architecture, the complexity of software at several levels, including many modules or
packages, made it difficult to adopt a change (Stojanov et al., 2018). In contrast, in data-driven software
applications, the applied methods and tools can reduce the application complexity and simplify the
management of changes.

Our study illustrated the key change management practices that lead to efficient development, testing,
delivery, and operations. We also highlighted the importance of new methods, concepts, and procedures, like
DevOps. The study manifested that a change (unfreezing) triggered through a change system management
allowed the organization to reevaluate it and take remedial actions for future occurrences. Once the
unfreezing was done, the next step was to ensure cognitive redefinition, restructuring, and learning
(changing) by involving all stakeholders on a timely basis. A clear and collaborative communication among all
stakeholders was important in this three-step change management cycle. Once the change was tested and
implemented, its status was changed to permanent (freezing).

The SLR revealed some imperative factors that were not properly valued during the conventional deploy, test,
and production environment. For instance, the successful implementation of software deployment changes
was also associated with compatibility of hardware and software configurations and system architecture.
Differences among development, testing, and production impact the integration and software deployment
process. Due to the scope of the study and limited availability of published studies on this topic, only 25
articles satisfied the proposed criteria. However, from the findings of the selected articles, all the research
questions were answered convincingly.

Limitations
Our research has undertaken the case studies of organizations that have openly shared their software
deployment challenges and experiences in the form of publications. Some organizations have not shared the
challenges with their software deployment process due to the proprietary nature of the software development
and delivery business. Considering this, it can be viewed that a biased sample has been selected that does not
cover all CD circumstances included in the software change management process. However, the selected
sample provided adequate external resources and databases within the specified timeframe.

Implications for Practice
Our findings are directly relevant to the IT sector that implements continuous software development and
deployment. The practice of software change management keeps evolving with time due to the dynamic
nature of information technology, business, and the stakes of customers involved in this process. Continuous

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 133

software change delivery can be achieved when all the challenges for software change management are
addressed.

Future Research
The preceding sections have highlighted the importance of adopting identical environments for successful
software change management during all phases, starting from the development and following through until
production and the quality assurance process. However, our study has identified that only limited
publications are available that explain the key factors for the entire change management process, including
automating build tests. To minimize the impact of manual deployment build test errors, we intend to
undertake future research studies focusing on automated build, test errors, the impact of code repository
choice, and deployment tests.

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 134

References
*Denotes articles included in the systematic review (SLR).

*Akbar, M. A., Naveed, W., Alsanad, A. A., Alsuwaidan, L., Alsanad, A., Gumaei, A., Shafiq, M., & Riaz, M. T.
(2020). Requirements change management challenges of global software development: An empirical
investigation. IEEE Access, 8, 203070–203085. https://doi.org/10.1109/ACCESS.2020.3035829

*Akbar, M. A., Sang, J., Nasrullah, Khan, A. A., Mahmood, S., Qadri, S. F., Hu, H., & Xiang, H. (2019). Success
factors influencing requirements change management process in global software
development. Journal of Computer Languages, 51, 112–130.
https://doi.org/10.1016/j.cola.2018.12.005

Ali, B. J., & Anwar, G. (2021). The mediation role of change management in employee
development. International Journal of English Literature and Social Sciences, 6(2), 361–374.

*Anwer, S., Wen, L., Wang, Z., & Mahmood, S. (2019). Comparative analysis of requirement change
management challenges between in-house and global software development: Findings of literature
and industry survey. IEEE Access, 7, 116585–116611. https://doi.org/10.1109/ACCESS.2019.2936664

Arulkumar, V., & Lathamanju, R. (2019). Start to finish automation achieve on cloud with build channel: By
DevOps method. Procedia Computer Science, 165, 399–405.
https://doi.org/10.1016/j.procs.2020.01.032

Baouya, A., Mohamed, O. A., Ouchani, S., & Bennouar, D. (2021). Reliability-driven automotive software
deployment based on a parametrizable probabilistic model checking. Expert Systems With
Applications, 174, 114572. https://doi.org/10.1016/j.eswa.2021.114572

Budgen, D., Turner, M., Brereton, & Kitchenham, B. (2008). Using mapping studies in software engineering.
Proceedings of the 20th Annual Meeting of the Psychology of Programming Interest Group (PPIG),
2008, pp. 195–204.

Dingsøyr, T., & Lassenius, C. (2016). Emerging themes in agile software development: Introduction to the
special section on continuous value delivery. Information and Software Technology, 77, 56–60.
https://doi.org/10.1016/j.infsof.2016.04.018

*Efe, P., & Demirors, O. (2019). A change management model and its application in software development
projects. Computer Standards & Interfaces, 66, 103353. https://doi.org/10.1016/j.csi.2019.04.012

*Gablas, B., Ruzicky, E., & Ondrouchova, M. (2018). The change in management style during the course of a
project from the classical to the Agile approach. Journal of Competitiveness, 10(4), 38–53.
https://doi.org/10.7441/joc.2018.04.03

Gough, D. (2007). Weight of evidence: A framework for the appraisal of the quality and relevance of
evidence. Research papers in education, 22(2), 213–228.
https://doi.org/10.1080/02671520701296189

*Jayatilleke, S., Lai, R., & Reed, K. (2018). Managing software requirements changes through change
specification and classification. Computer Science and Information Systems, 15(2), 321–346.
https://doi.org/10.2298/CSIS161130041J

Kamal, T., Zhang, Q., Akbar, M. A., Shafiq, M., Gumaei, A., & Alsanad, A. (2020). Identification and
prioritization of Agile requirements change management success factors in the domain of global
software development. IEEE Access, 8, 44714–44726.
https://doi.org/10.1109/ACCESS.2020.2976723

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 135

Lwakatare, L. E., Kilamo, T., Karvonen, T., Sauvola, T., Heikkilä, V., Itkonen, J., & Lassenius, C. (2019).
DevOps in practice: A multiple case study of five companies, Information and Software
Technology, 11, 217-230.

Lewin, K. (1947). Frontiers in group dynamics: Concept, method and reality in social science; social equilibria
and social change. Human Relations, 1(1), 5–41. https://doi.org/010.1177/001872674700100103%20

Leite, L., Rocha, C., Kon, F., Milojicic, D., & Meirelles, P. (2019). A survey of DevOps concepts and
challenges. ACM Computing Surveys (CSUR), 52(6), 1-35.

Luz, W. P., Pinto, G., & Bonifácio, R. (2019). Adopting DevOps in the real world: A theory, a model, and a case
study. Journal of Systems and Software, 157, 110384.

*Morris, D., Voutsinas, S., Hambly, N. C., & Mann, R. G. (2017). Use of Docker for deployment and testing of
astronomy software. Astronomy and Computing, 20, 105–119.
https://doi.org/10.1016/j.ascom.2017.07.004

*Palacios, R. C., Fernandes, E., Soto-Acosta, P., & Larrucea, X. (2018). A case analysis of enabling continuous
software deployment through knowledge management. International Journal of Information
Management, 40, 186–189. https://doi.org/10.1016/j.ijinfomgt.2017.11.005

*Parra, P., da Silva, A., Polo, Ó. R., & Sánchez, S. (2018). Agile deployment and code coverage testing metrics
of the boot software on-board Solar Orbiter’s Energetic Particle Detector. Acta Astronautica, 143,
203–211. https://doi.org/10.1016/j.actaastro.2017.11.037

Pawson, R., Boaz, A., Grayson, L., Long, A. & Barnes, C. (2003). Types and quality of knowledge in social care.
Knowledge review 3. London Social Care Institute of Excellence.
https://www.scie.org.uk/publications/knowledgereviews/kr03.asp

Poniszewska-Marańda, A., Czechowska, E., & Chen, Y.-S. (2021). Kubernetes cluster for automating software
production environment. Sensors, 21(5), 1910. https://doi.org/10.3390/s21051910

Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M., Britten, N., Roen K., & Duffy, S.
(2006). Guidance on the conduct of narrative synthesis in systematic reviews. A product from the
ESRC methods programme Version, 1, b92.

Rajan, R., & Ganesan, R. (2017). A critical analysis of John P. Kotter’s change management framework. Asian
Journal of Research in Business Economics and Management, 7(7), 181–203.
https://doi.org/10.5958/2249-7307.2017.00106.2

*Rodríguez, P., Haghighatkhah, A., Lwakatare, L. E., Teppola, S., Suomalainen, T., Eskeli, J., Karvonen, T.,
Kuvaja, P., Verner, J. M., & Oivo, M. (2017). Continuous deployment of software intensive products
and services: A systematic mapping study. The Journal of Systems and Software, 123, 263–291.
https://doi.org10.1016/j.jss.2015.12.015

Rousseau, D. M. (2020). The realist rationality of evidence-based management. Academy of Management
Learning & Education, 19(3), 415–424. https://doi.org/10.5465/amle.2020.0050

*Sailer, A., & Petric, M. (2019). Automation and testing for simplified software deployment. EPJ Web of
Conferences, 214, 1–7. https://doi.org/10.1051/epjconf/201921405019

Schein, E. H. (1996/1999). Kurt Lewin’s change theory in the field and in the classroom: Notes toward a
model of managed learning. Reflections, 1(1): 59-74. https://doi.org/10.1162/15241739957028

Shogren, K. A., Schalock, R. L., & Luckasson, R. (2018). The use of a context-based change model to unfreeze
the status quo and drive valued outcomes. Journal of Policy and Practice in Intellectual
Disabilities, 15(2), 101–109. https://doi.org/10.1111/jppi.12233

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 136

Stojanov, Z., Dobrilovic, D., & Stojanov, J. (2018). Extending data-driven model of software with software
change request service. Enterprise Information Systems, 12(8/9), 982–1006.
https://doi.org/10.1080/17517575.2018.1445296

Sorrell, S. (2007). The Rebound Effect: an assessment of the evidence for economy-wide energy savings from
improved energy efficiency.

Schuh, G., Anderl, R., Gausemeier, J., ten Hompel, M., & Wahlster, W. (2017). Industrie 4.0 maturity
index. Managing the digital transformation of companies. Munich: Herbert Utz.

Shahin, M., M. Babar, A., & Zhu, L. (2016). The intersection of continuous deployment and architecting
process: Practitioners’ perspectives, ESEM’16, September 8–9, 2016, Ciudad Real, Spain.
https://doi.org/10.1145/2961111.2962587

Smite, D., Moe, N.B., Sablis, A., Wohlin, C. (2017). Software teams and their knowledge networks in large-
scale software development. Information and Software Technology, 86, 71-86.

*Timans, W., Ahaus, K., van Solingen, R., Kumar, M., & Antony, J. (2016). Implementation of continuous
improvement based on Lean Six Sigma in small- and medium-sized enterprises. Total Quality
Management & Business Excellence, 27(3/4), 309–324.
https://doi.org/10.1080/14783363.2014.980140

*Tüzün, E., Tekinerdogan, B., Macit, Y., & İnce, K. (2019). Adopting integrated application lifecycle
management within a large-scale software company: An action research approach. The Journal of
Systems and Software, 149, 63–82. https://doi.org/10.1016/j.jss.2018.11.021

Volker, S., & Prostean, G. (2016). Research of automotive change management and combined risk-
management models. Procedia—Social and Behavioral Sciences, 221, 395–404.
https://doi.org/10.1016/j.sbspro.2016.05.129

*Zasa, F. P., Patrucco, A., & Pellizzoni, E. (2021). Managing the hybrid organization: How can Agile and
traditional project management coexist? Research Technology Management, 64(1), 54–63.
https://doi.org/10.1080/08956308.2021.1843331

*Zhang, Y., Vasilescu, B., Wang, H., & Filkov, V. (2018, October). One size does not fit all: An empirical study
of containerized continuous deployment workflows. In Proceedings of the 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software
Engineering (pp. 295–306).

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 137

Appendix A
Weight of Evidence

Study Author & Year Coherence Appropriateness Relevance Average

1 Akbar et al. (2019) 3 3 3 3.00

2 Ali (2021) 3 3 3 3.00

3 Arulkumar & Lathamanju (2019) 3 3 3 3.00

4 Palacios et al. (2018) 3 3 3 3.00

5 Efe & Demirors (2019) 2 1 1 1.67

6 Gablas et al. (2018) 3 3 3 3.00

7 Jayatilleke et al. (2018) 3 3 3 3.00

8 Leonardo et al. (2019) 3 3 3 3.00

9 Luz et al. (2019) 3 2 1 1.33

10 Lwakatare et al. (2019) 3 3 3 3.00

11 Morris et al. (2017) 3 3 3 3.00

12 Akbar et al. (2020) 3 2 2 2.33

13 Parra et al. (2018) 3 3 3 3.00

14
Poniszewska-Marańda et al.
(2021)

3 3 3 3.00

15 Rodríguez et al. (2017) 3 3 3 3.00

16 Sailer & Petric (2019) 3 3 3 3.00

17 Anwer et al. (2019) 3 3 3 3.00

18 Schuh et al. (2017) 3 2 2 2.33

19 Shahin et al. (2017) 3 3 3 3.00

20 Šmite et al. (2021) 3 3 3 3.00

21 Timans et al. (2016) 3 3 1 2.33

22 Tüzün et al. (2019) 3 3 3 3.00

23 Volker & Prostean (2016) 3 3 3 3.00

24 Zasa et al. (2021) 3 3 3 3.00

25 Zhang et al. (2018) 3 3 3 3.00

Note: No explicit evidence = 0, Methodology briefly explained = 1. Considerable complementary works written = 2,

Extensive justification and supporting body of knowledge = 3. High WoE (2.5 to 3.0), Medium (1.5 to 2.5), or Low (0 to

1.5) for each article. Adapted from Gough (2007).

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 138

Appendix B
TAPUPAS

Study Author & Year T
ra

n
sp

a
re

n
cy

A
cc

u
ra

cy

P
u

rp
o

si
vi

ty

U
ti

li
ty

P
ro

p
ri

e
ta

ry

A
cc

e
ss

ib
il

it
y

S
p

e
ci

fi
ci

ty

A
ve

ra
g

e

1 Akbar et al. (2019) 3 3 3 3 3 3 3 3.00

2 Ali (2021) 3 3 3 3 3 3 3 3.00

3 Arulkumar & Lathamanju (2019) 3 3 3 3 3 3 3 3.00

4 Palacios et al. (2018) 3 3 3 3 3 3 3 3.00

5 Efe & Demirors (2019) 2 1 2 1 2 3 2 1.86

6 Gablas et al. (2018) 3 3 3 3 3 3 3 3.00

7 Jayatilleke et al. (2018) 3 3 3 3 3 3 3 3.00

8 Leonardo et al. (2019) 3 3 3 3 3 3 3 3.00

9 Luz et al. (2019) 3 2 2 3 2 3 3 1.86

10 Lwakatare et al. (2019) 3 3 3 3 3 3 3 3.00

11 Morris et al. (2017) 3 3 3 3 3 3 3 3.00

12 Akbar et al. (2020) 3 2 2 1 2 3 3 2.29

13 Parra et al. (2018) 3 3 3 3 3 3 3 3.00

14 Poniszewska-Marańda et al. (2021) 3 3 3 3 3 3 3 3.00

15 Rodríguez et al. (2017) 3 3 3 3 3 3 3 3.00

16 Sailer & Petric (2019) 3 3 3 2 2 3 3 2.71

17 Anwar et al. (2019) 3 3 3 3 3 3 3 3.00

18 Schuh et al. (2017) 3 2 2 1 2 3 3 2.29

19 Shahin et al. (2017) 3 3 3 3 3 3 3 3.00

20 Šmite et al. (2021) 3 3 3 3 3 3 3 3.00

21 Timans et al. (2016) 3 3 1 1 2 3 3 2.29

22 Tüzün et al. (2019) 3 3 3 3 3 3 3 3.00

23 Volker & Prostean (2016) 3 3 3 3 3 3 3 3.00

24 Zasa et al. (2021) 3 3 3 3 3 3 3 3.00

25 Zhang et al. (2018) 3 3 3 3 3 3 3 3.00

Note: Note: Scoring: 3 = Highest standards met, 2 = Most standards met and 1 = Some standards Adapted
from Pawson et al. (2003).

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 139

Appendix C
Word Cloud of Codes

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 140

Appendix D
CERQual

Summary of
review finding

Studies
contributing

Methodological
limitations Coherence Adequacy Relevance

CERQual
assessment

Timely
communication
with all
stakeholders.

6, 12, 17, 23,
24

12 used survey
data from a total
of 31 RCM
challenges.
Others were
qualitative review
software
deployment and
change
management
practices. No concern.

Minor
concern on
12 since it
only
included a
total of 31
RCM
challenges.

Minor
concern on
12 regarding
relevance
since the
study
focuses on
software
development
rather than
software
deployment
factors,
which is the
focus of this
study.

All studies
were detailed
and to the
point to
address the
research
question.

Deployment
approaches
heavily rely on
past project
experience. 4, 7, 22 None. No concern.

No
concern. No concern.

All studies
were detailed
and especially
study 4
demonstrated
about orgs that
are trying to
embrace
DevOps
principles by
using a
widespread of
knowledge-
based tools.
Indeed, the
results from
this study
show that
DevOps is
more a cultural
shift for IT
than a process
tools shift.

Collaboration
and knowledge
sharing between
existing team
members and
those with
relevant
experience in
new DevOps
tools. 1, 5, 10, 18, 20

5, 18, and 20
embrace the
change and use it
as an opportunity
but did not
demonstrate tools
that exist for
plan-driven
project
management,
specifically for No concern.

No
concern. No concern.

All studies
were
adequately
researched and
analyzed.
Collaboration
related
software
engineering
projects. Study
10 findings

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 141

depicting the
status
quantitatively
and establishing
future estimates.
Overall, 1 and 10
provided best of
both worlds
traditional
project
management
methods, tools,
and techniques.

show toolchain
use and
support for the
activities of the
deployment
pipeline in all
cases.

Development,
test, and
production
environment
(hardware and
software) 2, 8, 15, 16,

1, 15, and 16
demonstrated a
balanced
qualitative
approach and 8
indicated
limitations when
building software
for government
since it involves
more
bureaucratic
processes;
requirements and
prioritization can
often change due
to political
reasons. No concern.

No
concern. No concern.

All studies
were detailed
and to the
point to
address the
research
question, but
study 8
compared
building for
the
government
and addressed
bureaucratic
processes,
requirements,
and
prioritization.

Dependencies
between
applications
limited the
adoption of
continuous
deployment. 3, 9, 11, 19

Study 9 authors
pointed out that
the first four
concepts are
related to the
CAMS
framework,
proposed by
Willis (2010).
Studies 11 and 19
conclude that
there is a great
opportunity for
empirical
researchers to
study
organizations
experimenting
with DevOps. No concern.

Minor
concern on
9 since the
authors
pointed
out that
the first
four
concepts
are related
to the
CAMS
framework,
proposed
by Willis
(2010). No concern.

All studies
were detailed
and to the
point to
address the
research
question. The
authors
pointed out
that the first
four concepts
are related to
the CAMS
framework,
proposed by
Willis (2010).
The paper
concludes that
there is a great
opportunity
for empirical
researchers to
study
organizations
experimenting
with DevOps.

Zeleke & McCollum, 2021

International Journal of Applied Management and Technology 142

Challenges of
effective use of
containerization. 13, 14, 21, 25

Study 13 focuses
on embedded
software
development,
which is
commonly
accepted that the
use of virtual
platforms is
essential,
especially for
hardware-
dependent
software
development. 14,
21, and 25 also
complement 13 to
justify the
challenges and
benefit of
monetarization
by sampling case
studies. No concern.

No
concern. No concern.

The research
studies 13, 14,
21, and 25
demonstrated
the
dependencies
of software
development
on hardware
availability
and facilitate
the use of Agile
methodologies.
All studies
were detailed
and to the
point to
address the
research
question.

Note: Adapted from Lewin et al. (1947).

The International Journal of Applied Management and
Technology (IJAMT), sponsored by Walden University's College
of Management and Technology, is a peer-reviewed, online
journal that addresses contemporary national and international
issues related to management and technology.

