University of San Diego School of Law 13th Annual Climate and Energy Law Symposium

## **Virtual Power Plants and the Climate Challenge**

Kevin B. Jones, PhD Director, Institute for Energy and the Environment,

Vermont Law School

kbjones@vermontlaw.edu



# What is a Virtual Power Plant?

"A collection of privately owned distributed energy resources that can be interconnected and that operate together, but can be controlled centrally, allowing dispersed resources to respond to supply and demand."



A High Level Overview of the Actors and Interactions of the DER Ecosystem



Source: Australian Energy Market Operator 2021

## sonnenBatterie eco compact



**Figure 5.3** Sonnen Eco Compact. (Courtesy of Kevin B. Jones.)

## The Battery as a Distributed Energy Resource

- 1. Dynamic Pricing and Solar Energy Arbitrage
- 2. Demand Charge Reduction
- 3. Home Consumption of Solar
- 4. Back Up Energy Storage

Does this add up to a viable Business Case ?

## FERC Order 841

On 2/15/18 FERC found existing RTO tariffs to not be J&R and required RTOs to revise tariffs to establish participation models for storage and rules must recognize the physical and operating characteristics of storage.

#### Requires RTOs to establish a participation model that must:

- Ensure participating resources are eligible to provide all capacity, energy, and ancillary services the resource is technically capable to provide
- Execute all storage wholesale transactions at locational marginal price
- Ensure resource can be dispatched and set the wholesale price
- Recognize physical and operational characteristics of storage
- Establish a minimum size requirement that does not exceed 100 kW
- Allow storage to de-rate capacity to meet minimum run-time requirements

## FERC Order 2222

On September 17, 2020, FERC issued Order No. 2222 aimed at increasing participation of distributed energy resource (DER) aggregations in the energy, capacity and ancillary services markets operated by RTOs. By requiring the development of market rules for the participation by DER aggregations in RTO/ISO organized markets, Order No. 2222 seeks to address the barriers that individual DERs face due to their inability to meet the size and operational requirements necessary to qualify as market participants.

Order No. 2222 defines a DER as "any resource located on the distribution system, any subsystem thereof or behind a customer meter." The broad definition is technology-neutral and encompasses both current and future technologies. Figure ES1: The range of services that can be provided by electricity storage



### Locational Value Drives Effective VPP Demonstrations

|                                | Transmission and<br>Generation                                                                                                                                                 | Distribution and<br>Substation                                                                                                                                                                                                                  | Community                                                                                                                                                                                                                                       | Customer                                                                                                                                                                                                                                                                       |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Utility<br>Value<br>Streams    | <ul> <li>Renewable Integration</li> <li>Energy Arbitrage</li> <li>Frequency Regulation</li> <li>Transmission Deferral</li> <li>Black Start</li> <li>Voltage Support</li> </ul> | <ul> <li>Renewable Integration</li> <li>Demand Reduction</li> <li>Energy Arbitrage</li> <li>Frequency Regulation</li> <li>Voltage Support</li> <li>Distribution Deferral</li> <li>Transmission Deferral</li> <li>PV Hosting Capacity</li> </ul> | <ul> <li>Renewable Integration</li> <li>Demand Reduction</li> <li>Energy Arbitrage</li> <li>Frequency Regulation</li> <li>Voltage Support</li> <li>Distribution Deferral</li> <li>Transmission Deferral</li> <li>PV Hosting Capacity</li> </ul> | <ul> <li>Renewable Integration</li> <li>Demand Reduction</li> <li>Energy Arbitrage</li> <li>Frequency Regulation</li> <li>Voltage Support</li> <li>Volt Var Optimization</li> <li>Distribution Deferral</li> <li>Transmission Deferral</li> <li>PV Hosting Capacity</li> </ul> |  |
| Customer<br>Value –<br>Streams |                                                                                                                                                                                |                                                                                                                                                                                                                                                 | <ul> <li>Self consumption</li> <li>Backup Power</li> </ul>                                                                                                                                                                                      | <ul> <li>Self consumption</li> <li>Time-of-use bill management</li> </ul>                                                                                                                                                                                                      |  |
|                                | Values Stream                                                                                                                                                                  | Demand Charge Reduction                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                |  |
| 4                              | www.epri.com                                                                                                                                                                   | © 2021 Electric Power Research Institute, Inc                                                                                                                                                                                                   | . All rights reserved.                                                                                                                                                                                                                          | Backup Power                                                                                                                                                                                                                                                                   |  |

## **Battery Storage Value Streams**

Maximizing storage's potential requires capturing multiple value streams. But new regulatory frameworks are needed to capture the full value.



#### Customers

- Increased reliability (reduced outages)
- Increased engagement in power supply
- Retail bill savings

#### **Utility Infrastructure**

• Deferred or avoided investments in distribution and transmission infrastructure

#### **Wholesale Markets**

- Traditional value drivers: energy arbitrage, fastresponse capabilities, and avoided capacity
- Realizing additional value due to higher quality A/S
- Flexibility and clean-energy products will provide additional revenue opportunities in the future

4 | brattle.com

### Source: Brattle Group

# **VPP Case Studies**

## Southern California Edison

- Sunrun
- 300 customers
- \$250 one-time incentive
- Est. 1,500
   customers, 5 7.5 MW gird
   capacity in
   Phase II.

Green Mountain Power

- Tesla PW2 + software
- 2000 units,
   10MW
- Utility owned & in rates.
- Customer pays \$15/mo.
- \$13.50/mo.
   Optional FR.

Australia Energy Market Operator

- 8 VPP portfolios
- 31 MWs
- 7,150 customers
- Frequency control, energy, local network service 11







# The Battery as a DER



### FIVE-MINUTE REAL-TIME LMP GR

Date: 03/01/2019 🔻 🔛







#### 163 Acorn Lane, Colchster, Vermont 05446 (802)655-8764

| Year                                      | 1             | 2             | 3             | 4             | 5             | 6             | 7             | 8             |
|-------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| Benefits (Revenue)                        |               |               |               |               |               |               |               |               |
| RNS                                       | \$ 849,728    | \$ 890,392    | \$ 933,281    | \$ 969,557    | \$ 987,752    | \$ 1,003,486  | \$ 1,019,928  | \$ 1,036,609  |
| FCM                                       | \$ -          | \$ 710,414    | \$ 583,450    | \$ 587,339    | \$ 599,086    | \$ 627,125    | \$ 692,257    | \$ 768,554    |
| ISO NE Day Ahead Energy                   | \$ -          | \$ 243,159    | \$ 229,866    | \$ 224,079    | \$ 218,247    | \$ 212,310    | \$ 207,098    | \$ 201,839    |
| ISO NE Operating Reserve                  | \$ -          | \$ 160,959    | \$ 160,429    | \$ 160,272    | \$ 160,066    | \$ 159,975    | \$ 159,882    | \$ 159,845    |
| ISO NE Frequency Reg                      | \$ -          | \$ -          | \$ -          | \$ -          | \$ -          | \$ -          | \$ -          | \$ -          |
| Customer Payments                         | \$ 381,600    | \$ 381,600    | \$ 381,600    | \$ 381,600    | \$ 381,600    | \$ 381,600    | \$ 381,600    | \$ 381,600    |
| Total Benefits                            | \$ 1,231,328  | \$ 2,386,524  | \$ 2,288,626  | \$ 2,322,846  | \$ 2,346,751  | \$ 2,384,496  | \$ 2,460,766  | \$ 2,548,447  |
| Costs                                     |               |               |               |               |               |               |               |               |
| Program Costs (Make-whole, Software)      | (\$34,100)    | (\$94,816)    | (\$90,895)    | (\$89,772)    | (\$88,639)    | (\$87,505)    | (\$86,511)    | (\$85,518)    |
| Revenue Requirement                       | (\$3,795,113) | (\$2,848,230) | (\$2,618,308) | (\$2,427,054) | (\$2,263,513) | (\$2,111,572) | (\$1,959,631) | (\$1,821,868) |
| Total Costs                               | (\$3,829,213) | (\$2,943,046) | (\$2,709,203) | (\$2,516,827) | (\$2,352,152) | (\$2,199,077) | (\$2,046,142) | (\$1,907,386) |
| Net Benefit to Non-Particpating Customers | (\$2,597,886) | (\$556,522)   | (\$420,577)   | (\$193,981)   | (\$5,401)     | \$185,420     | \$414,624     | \$641,061     |

| Year                                      | 9             | 10            | 11           | 12           | 13           | 14           | 15         | Total          |
|-------------------------------------------|---------------|---------------|--------------|--------------|--------------|--------------|------------|----------------|
| Benefits (Revenue)                        |               |               |              |              |              |              |            |                |
| RNS                                       | \$ 1,051,758  | \$ 1,066,797  | \$ 1,041,773 | \$ 950,732   | \$ 794,860   | \$ 559,568   | \$ 249,551 | \$ 8,872,062   |
| FCM                                       | \$ 848,593    | \$ 931,670    | \$ 989,397   | \$ 957,122   | \$ 818,995   | \$ 600,281   | \$ 298,233 | \$ 6,203,510   |
| ISO NE Day Ahead Energy                   | \$ 196,153    | \$ 190,385    | \$ 178,389   | \$ 156,078   | \$ 124,785   | \$ 84,013    | \$ 37,863  | \$ 1,667,271   |
| ISO NE Operating Reserve                  | \$ 159,755    | \$ 159,705    | \$ 153,618   | \$ 138,042   | \$ 113,659   | \$ 78,780    | \$ 34,728  | \$ 1,278,045   |
| ISO NE Frequency Reg                      | \$ -          | \$ -          | \$ -         | \$ -         | \$ -         | \$ -         | \$ -       | \$ -           |
| Customer Payments                         | \$ 381,600    | \$ 381,600    | \$ -         | \$ -         | \$ -         | \$ -         | \$ -       | \$ 2,805,827   |
| Total Benefits                            | \$ 2,637,858  | \$ 2,730,157  | \$ 2,363,177 | \$ 2,201,973 | \$ 1,852,299 | \$ 1,322,642 | \$ 620,376 | \$ 20,826,715  |
| Costs                                     |               |               |              |              |              |              |            |                |
| Program Costs (Make-whole, Software)      | (\$84,513)    | (\$83,506)    | (\$70,142)   | (\$31,774)   | (\$30,890)   | (\$30,005)   | (\$29,070) | (\$691,520)    |
| Revenue Requirement                       | (\$1,712,784) | (\$1,618,201) | \$0          | \$0          | \$0          | \$0          | \$0        | (\$17,764,627) |
| Total Costs                               | (\$1,797,297) | (\$1,701,707) | (\$70,142)   | (\$31,774)   | (\$30,890)   | (\$30,005)   | (\$29,070) | (\$18,456,147) |
| Net Benefit to Non-Particpating Customers | \$840,561     | \$1,028,450   | \$2,293,035  | \$2,170,199  | \$1,821,409  | \$1,292,637  | \$591,306  | \$2,370,568    |

## Green Mountain Power 13 Month Peak Event Success

|     | Peak Date | kW Reduced | Total Value        |                  |
|-----|-----------|------------|--------------------|------------------|
| RNS | 2/2/18    | 316        | \$3,359            | RNS – Regional   |
| RNS | 3/19/18   | 761        | \$8,086            |                  |
| RNS | 5/31/18   | 1574       | \$16,738           |                  |
| RNS | 6/30/18   | 1570       | \$16,687           | Charges)         |
| RNS | 7/2/18    | -          | \$0                | Onarges)         |
| RNS | 8/28/18   | -          | \$0                |                  |
| FCM | 8/29/2018 | 2981       | \$353 <i>,</i> 598 |                  |
| RNS | 9/5/18    | 3000       | \$31 <i>,</i> 895  |                  |
| RNS | 10/25/18  | 3800       | \$40,401           | FCM - ISO-NE     |
| RNS | 11/14/18  | 4000       | \$42,527           | Forward Capacity |
| RNS | 12/4/18   | 3300       | \$35 <i>,</i> 085  | Market           |
| RNS | 1/21/19   | 5000       | \$53 <i>,</i> 159  |                  |
| RNS | 2/12/19   | -          | <u>\$0</u>         |                  |
|     |           |            | \$601,532          |                  |

"What takeaways are there from these pilots"



There remains a lot of uncertainty and tension over what is the best business model?



Standard communication protocols between utilities and DER aggregators remains a challenge

#### **VPP Demonstration with Multiple DERs** PV Array Ē **Five Different** DER Water **PV** System **Electric Vehicle Charging** Heater **Technologies** OCPP 1.5 Three Different Aggregators Aggregator Aggregator **Open Standard** API Communication, PV Array OpenADR, DERMS Aggregator Protocols Modbus Vendor API

#### Lithium-ion battery global annual sales volume



Growth in EV battery storage capacity offers opportunity to more quickly scale VPPs if we can add them to the VPP resource mix.

19



Institute for Energy and the Environment

VERMONT LAW SCHOOL

Kevin B. Jones, PhD <u>www.vermontlaw.edu/energy</u> <u>kbjones@vermontlaw.edu</u> 802-831-1054 ENERGY RESOURCES, TECHNOLOGY, AND POLICY SERIES

## A Smarter, Greener Grid

Forging Environmental Progress through Smart Policies and Technologies

