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Abstract

In public-key encryption, a long-term private key can be an easy target for hacking

and deserves extra protection. One way to enhance its security is to share the long-term

private key among multiple (say n) distributed servers; any threshold number (t, t ≤ n) of

these servers are needed to collectively use the shared private key without reconstructing

it. As a result, an attacker who has compromised less than t servers will still not be able

to reconstruct the shared private key.

In this thesis, we studied threshold decryption schemes for lattice-based public-key en-

cryption, which is one of the most promising post-quantum public-key encryption schemes.

We developed threshold decryption schemes for Stinson’s, the standard NTRU, and NTRU

with Ring Learning with Errors (R-LWE) cryptosystems. Prototype implementations were

developed for validating the functionality of these threshold decryption schemes. Our de-

signs achieve heuristic security, and its security is supported by mechanisms similar to that

of R-LWE.

vi



Chapter 1

Introduction

In the setting of public-key cryptosystem, a user, Bob, first generates a public/private

key pair and then distributes his public key to other people. Bob’s private key must be kept

confidential and if necessary, online for decrypting incoming ciphertext or digitally signing

messages on the fly. Such an online, long-term secret is an attractive target for hacking and

given enough time and efforts, its compromise seems inevitable.

One way to mitigate the threat against the online, long-term private key is to share

it among multiple (say n, n is an integer) distributed servers in such a way that any

threshold number (say t, t ≤ n) can work together to collectively use the shared private key

without actually reconstructing it in the process. The collective computation by the willing

participating servers can be either decryption or digital signing. This cryptographic scheme

is called threshold decryption or threshold digital signing correspondingly. Together they

are called threshold cryptography [8, 7, 9, 12, 14, 13, 32].

It is worth noting that threshold cryptography is different from threshold secret sharing

[30, 3] in important ways. In both, a long-term secret is shared among n parties in a way

that any t or more of them are capable of working together to reconstruct the shared secret.

In threshold secret sharing, the shared secret is indeed reconstructed in its use and the

reconstruction point will be a single point of attack. In threshold cryptography, however,

the shared secret is never reconstructed and thus there is no single point of attack. In some

sense, threshold cryptography is security extension of threshold secret sharing.

Problem Statement

Most existing popular public-key encryption schemes, including RSA [29], ElGamal [11],

Elliptic-curve [21, 24], are vulnerable to attacks from general quantum computers running

appropriate quantum algorithms [31, 25].

One of the most promising public-key cryptosystems that will be secure in post-quantum

era is based on lattices [18, 26, 23, 28, 34]. Example lattice-based cryptosystems include

NTRUEncrypt [18], Stinson’s NTRU scheme [34], learning with error (LWE) [27], and
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NTRU with R-LWE [33].

How can we add threshold mechanisms to these lattice-based cryptosystems?

Overview

The remaining of this thesis is organized as follows. In Chapter 2, we shall review the

basic concepts and building blocks of lattice-based cryptosystems. Our review will come

with small concrete examples. In Chapter 3, we shall present our threshold lattice cryp-

tosystems, including threshold Stinson’s NTRU, threshold NTRUEncrypt, and threshold

NTRU with R-LWE. Concrete examples will be used in the description of these threshold

schemes.

Security analysis of these schemes and related work will be provided in 4. Concluding

remarks of this thesis will be given in Chapter 5.



Chapter 2

Building Blocks

Rings

A ring is a set with two operations, addition and multiplication, that has special prop-

erties. The set of integers (Z) is a ring, as is Z[x], the set of polynomials with integer

coefficients.

Definition 2.1 (Ring). The set R is a ring if it has binary operations for addition and

multiplication defined that meet the following axioms.

• Addition is associative.

(a+ b) + c = a+ (b+ c)

• Addition is commutative.

a+ b = b+ a

• An additive identity exists.

a+ 0 = a

• An additive inverse exists.

a+ (−a) = 0

• Multiplication is associative.

(ab)c = a(bc)

• A multiplicative identity exists.

1a = a

• Multiplication is distributive with respect to addition.

a(b+ c) = ab+ ac

(a+ b)c = ac+ bc
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Definition 2.2 (Ideal Ring). Let R be a ring. I is an ideal ring if for any x, y ∈ I and

r ∈ R

x+ y ∈ I

rx ∈ I

Definition 2.3 (Quotient Ring). Let R be a ring and I be an ideal of that ring. The

quotient ring is R/I.

If Z[x] is a ring, n is an integer and xn − 1 is an ideal of that ring, the quotient ring

is Z[x]/(xn − 1). Another way to view it is the polynomials in the quotient ring are the

polynomials in R mod I.

Gaussian Distributions

A Gaussian distribution is also known as a normal distribution or bell curve. A value

sampled from a Gaussian distribution is expected to be within one standard deviation from

the mean 68% of the time. It will be within two standard deviations 95% of the time and

99.7% of the time will be within three standard deviations.

Lattices

A vector is an ordered tuple of values where the values are real numbers (R). Let n be

an integer, Rn is a vector of n real numbers. A vector written horizontally is called a row

vector, written vertically it is a column vector. Two vectors can be added and multiplied.

Addition is performed by adding the matching indices

a =
[
a1 a2 . . . an

]
b =

[
b1 b2 . . . bn

]
a+ b =

[
a1 + b1 a2 + b2 . . . an + bn

]
Scalar or dot product multiplication is performed by multiplying the matching indices

and summing the results.

a · b = a1b1 + a2b2 + . . .+ anbn
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Definition 2.4 (Linearly Independent). A set of vectors (v1, v2, . . . vn) is considered linearly

independent if for all scalar values a1, a2, . . . an the equation

a1v1 + a2v2 + . . .+ anvn = 0

only if a1, a2, . . . , an = 0.

Definition 2.5 (Basis). A basis of Rn is a set of linearly independent vectors where any

vector in Rn can be expressed as a linear combination of the basis vectors.

The vectors v1 =
[
1 0

]
and v2 =

[
0 1

]
are a basis for R2 since any vector

[
a b

]
∈ R2

can be written as av1 + bv2. The basis can be written as a matrix where each vector is a

row 1 0

0 1


Definition 2.6 (Determinant). The determinant of a matrix is a scalar measurement of a

square matrix. The determinate of a matrix (M) is denoted by det(M), |M | or ||M ||. The

determinate is calculated as the sum of the products of the permutation of row and column

values. The permutations take one and only one value from each row and column.

A =


a b c

d e f

g h i


|A| = aei+ bgf + cdh− ceg − bdi− afh

A matrix with a determinate of ±1 is called a unimodular matrix. Unimodular opera-

tions on a basis matrix produce another basis matrix. The unimodular operations are

• Multiply any row by −1.

• Interchange any two rows.

• Add an integral multiple of any row to another row.

Definition 2.7 (Lattice). A lattice is the set of all liner combinations of basis vectors with

integral coefficients.
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What makes lattices of interest in cryptography are two problems, the Shortest Vector

(SVP) and Closest Vector (CVP) problems.

Definition 2.8 (Shortest Vector Problem). Given a basis for a lattice L in Rn. Find a

vector v ∈ L where v is not all 0 such that ||v|| is minimized. The vector v is the shortest

vector in L

Definition 2.9 (Closest Vector Problem). Given a basis for a lattice L in Rn and a vector

w ∈ Rn that is not in L. Find a vector v ∈ L such that ||w − v|| is minimized. The vector

v is the closest vector to w in L.

The CVP is known to be NP-hard, and SVP is NP-hard under certain conditions when

the vectors are randomized and independent with uniform distributions chosen over all

vectors in Zn [2].

LLL

The Lenstra-Lenstra-Lovàsz (LLL) algorithm 2.1 is a lattice basis reduction algorithm

[22] that can be used to solve the SVP. The LLL algorithm performs a series of reduce and

exchange steps until it meets the definition of an LLL-reduced lattice. The definition allows

for getting the exact shortest vector or an approximation of it. Getting an approximation

is guaranteed to complete in polynomial time, however, getting the exact vector is not

guaranteed to complete.

In the reduction step it makes use of the Gram-Schmidt process in reducing the matrix.

Definition 2.10 (Gram Matrix). The Gram matrix ∆(L) of a lattice L is the matrix where

the (i, j) entry is the scalar product of the i-th and j-th basis vectors.

Definition 2.11 (Gram-Schmidt Process). The Gram-Schmidt process takes a basis and

generates an orthogonal basis.

• Let v1, v2, . . . , vn form a basis.

• Let the orthogonal basis be v∗1, v
∗
2, . . . , v

∗
n.

• Calculate v∗i by

v∗1 = v1



7

For 2 ≤ i ≤ n:

µij =
vi·v∗j
v∗j v
∗
j

vi∗ = vi −
i−1∑
j=1

uij · v∗i

The Gram-Schmidt coefficient is µij .

Definition 2.12 (LLL Reduced). A basis for a lattice is LLL-reduced with parameter α if

• 1
4 < α ≤ 1

• |µij | ≤ 1
2 for 1 ≤ j < i ≤ n

• |v∗I + µi,i−1v
∗
i−1 ≥ α|v∗v−1|2 for 2 ≤ i ≤ n

The standard value for α is 3
4 . The value of α determines how reduced the basis is, the

higher the value the more reduced a basis produced. For values of α < 1, the algorithm is

guaranteed to complete in polynomial time. A value of 1 will produce the shortest vector

but is not guaranteed to complete.

Learning With Errors

Given a system of linear equations of n variables, it is possible to find solutions efficiently.

Injecting a bit of randomness to the equations makes it more difficult to solve. Based on

this, Regev introduced Learning With Errors (LWE) [27].

Definition 2.13 (Learning With Errors). Let n ≥ 1 and p be prime. The secret s ∈ Zn
p .

Choose ai independently and uniformly over Zn
p . With the probability distribution X : Zp →

R+ on Zp. Chose ei ∈ Zp independently according to X .

bi = 〈s · ai〉+ ei

Given ai and bi, determine s.

The value of p, n and X must be chosen correctly. If not, security may be compromised,

or decryption may not be possible. The value of p must be significantly greater than n and

X should be a Gaussian distribution. Regev proved that for certain choices of p and X

the average-case solution is based on the worst-case lattice problem, Gap Shortest Vector,

which is similar to the SVP. This implies a quantum solution to the problem.
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Algorithm 2.1 LLL

1: procedure Reduce(k, l)

2: if |µkl| > 1
2 then

3: yk ← yk − dµklcyl
4: for j ← (1, 2, . . . , l − 1) do

5: µkj ← µkj − dµklcµlj

6: µkl ← µkl − dµklc

7: procedure Exchange(k)

8: yk, yk−1 ← yk−1, yk

9: v ← µk,k−1; δ ← γk + v2γk−1

10: µk,k−1 ← vγk−1/δ

11: γk ← γkγk−1/δ; γk−1 ← δ

12: for j ← (1, 2, . . . , k − 2) do

13: µkj , µk−1,j ← µk−1,j , µkj

14: for i← (k + 1, . . . , n) do

15: ξ ← µik; µik ← µi,k−1 − vµik
16: µi,k−1 ← µk,k−1µik + ξ

Input: a basis y1, y2, . . . , yn of the lattice L ⊂ Rn and α ∈ R where 1
4 < α < 1

17: for i← (1, 2, . . . , n) do

18: y∗i ← yi

19: for j ← (1, 2, . . . , i− 1) do

20: µij ← (yi · y∗i )/γj

21: γi ← y∗i · y∗i

22: k ← 2

23: while k ≤ n do

24: Reduce(k, k − 1)

25: if γk ≥ (α− µ2k,k−1)γk−1 then

26: for l← (k − 2, . . . , 1) do

27: Reduce(k, l)

28: k ← k + 1

29: else

30: Exchange(k)

31: if k > 2 then

32: k ← k − 1
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Example 2.1 (LLL).

k Action y µ y∗ γ

1 Init


1 1 1

−1 0 2

3 5 6




1 0 0

1
3 1 0

14
3

13
14 1




1 1 1

−4
3 −1

3
5
3

− 6
14

9
14 − 3

14




3

14
3

9
14


2 |µ21| = 1

3 <
1
2 [2.1.2]


1 1 1

−1 0 2

4 5 4




1 0 0

1
3 1 0

14
3

13
14 1




1 1 1

−4
3 −1

3
5
3

− 6
14

9
14 − 3

14




3

14
3

9
14

14
3 > 8

3 [2.1.25]

Reduce

3

|µ32| = 13
14 >

1
2 [2.1.2]


1 1 1

−1 0 2

4 5 4




1 0 0

1
3 1 0

13
3 − 1

14 1




1 1 1

−4
3 −1

3
5
3

− 6
14

9
14 − 3

14




3

14
3

9
14

Reduce

9
14 <

910
196 [2.1.25]


1 1 1

4 5 4

−1 0 2




1 0 0

13
3 1 0

1
3 − 1

14 1




1 1 1

−1
3

2
3 −1

3

44
42

1
42 −82

42




3

2
3

8661
1764

Exchange

2

|µ21| = 13
3 > 1

2 [2.1.2]


1 1 1

0 1 0

−1 0 2




1 0 0

−1
3 1 0

1
3 − 1

14 1




1 1 1

−1
3

2
3 −1

3

44
42

1
42 −82

42




3

2
3

8661
1764

Reduce

2
3 <

8
3 [2.1.25]


0 1 0

1 1 1

−1 0 2




1 0 0

1 1 0

0 1 1




0 1 0

1 0 1

−2 −1 1




1

2

6

Exchange

2

|µ21| = 1 > 1
2 [2.1.2]


0 1 0

1 0 1

−1 0 2




1 0 0

0 1 0

0 1 1




0 1 0

1 0 1

−2 −1 1




1

2

6

Reduce

2 < 1[2.1.25]


0 1 0

1 0 1

−1 0 2




1 0 0

0 1 0

0 1 1




1 1 1

1 0 1

−2 −1 1




1

2

6

Exchange

3

|µ32| = 1 > 1
2 [2.1.2]


0 1 0

1 0 1

−2 0 1




1 0 0

0 1 0

0 −1 1




1 1 1

1 0 1

−2 1 1




1

2

6

Reduce

6 > 4[2.1.25]


0 1 0

1 0 1

−1 0 2




1 0 0

0 1 0

0 −1 1




1 1 1

1 0 1

−2 1 1




1

2

6

Reduce

4 k > n[2.1.23]


0 1 0

1 0 1

−1 0 2




1 0 0

0 1 0

0 1 1




1 1 1

1 0 1

−2 −1 1




1

2

6





10

Ring Learning With Errors

Ring Learning With Errors (R-LWE) [23] is similar to LWE, but uses polynomial rings.

Definition 2.14 (Ring Learning With Errors). Let n be the degree of the polynomials,

q = 1 mod 2n where the coefficients of the polynomial are mod q. Let Φ(x) be an irreducible

polynomial. All polynomials used are from the finite quotient ring Zq(x)/Φ(x). The secret s

is a small unknown polynomial. Let ai(x) be a set of random known polynomials and ei(x)

be a set of small random unknown polynomials.

bi(x) = 〈ai(x) · s(x)〉+ ei(x)

Given ai and bi determine s.

For the correct values of Φ(x), n and q Regev proved the average-case solution is also

based on the Gap Shortest Vector problem.

Standard NTRU

NTRU was first introduced at the rump session of Crypto’96 [15] by Hoffstein, Pipher

and Silverman. It uses polynomial rings for construction and lattices for the security proof.

It was presented as being quantum safe. At EUROCRYPT’97, the original version was

proven to not be as secure as claimed [6]. At ANTS’98 an updated version was presented

that addressed problems in the original. Another update was published in 2009 [18] and is

part of the IEEE P1363 Standard [1]. Although the standard has gone inactive, there has

been academic work on standard NTRU in recent years. Two NTRU variants of interest are

one that was introduced at Eurocrypt 2011 [33] which added R-LWE, and one introduced

by Stinson and Paterson in Cryptography: Theory and Practice [34].

All three use a technique called center mod or mods.

Definition 2.15 (Center Mod or Mods). Take the normal modulus and map it to the

interval [−q/2, q/2]. If the result of the modulus is greater than q/2 subtract q from modulus

result to get the centered mod.

Definition 2.16 (Standard NTRU). Standard NTRU has three public parameters, N a

positive integer, is the degree of polynomials, q is a large modulus and p a small modulus.
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The values of q and p should be co-prime and q >> p. The standard sets p = 3. The

polynomial ring is defined as R = Z[X]/(XN − 1).

• NTRU.KeyGen: let f and g be two small random polynomials with coefficients drawn

from {−1, 0, 1}.

Let fq be f inverted in Rq and fp be f inverted in Rp.

If f is not invertible or g is not invertible in Rq, choose new polynomials.

The private key is the pair (f, fp).

The public key is h = p ∗ g ∗ fq (mods q)

• NTRU.Encrypt: Let r be a small random polynomial. Let m be the messages. The

ciphertext y is calculated as

y = r ∗ h+m (mod q).

• NTRU.Decrypt:

a = f ∗ y (mods q)

m = fp ∗ a (mods p)

A 2017 paper [19], describes choosing the parameters for security and to avoid decryption

failures. For certain combinations of parameters, decryption failure is possible and weakens

the security of NTRU [20] with those parameters. Using the parameter sets from the

previously mentioned paper can reduce the chance of failure and maintain a given security

level.

Bits of Security N q

128 439 2048

256 (optimized for key size) 1087 2048

256 (optimized for encryption/decryption) 1499 2048

256 1171 2048

Example 2.2 (Standard NTRU).

Parameters

N = 11, p = 3 and q = 32
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Calculate the keys

f = −x10 + x9 + x6 − x4 + x2 + x− 1

g = −x10 − x8 + x5 + x3 + x2 − 1

fp = 2x9 + x8 + 2x7 + x5 + 2x4 + 2x3 + 2x+ 1

fq = 30x10 + 18x9 + 20x8 + 22x7 + 16x6 + 15x5 + 4x4 + 16x3 + 9x+ 5

h = 16x10 − 13x9 + 12x8 − 13x7 + 15x6 − 8x5 + 12x4 − 12x3 − 10x2 − 7x+ 8

Encryption

m = x10 + x9 − x8 − x4 + x3 − 1

r = −x7 − x5 + x4 + x3 + x2 − 1

y = 19x10 + 6x9 + 25x8 + 7x7 + 30x6 + 16x5 + 14x4 + 24x3 + 26x2 + 11x+ 14

Decryption

a = 7x10 − 3x9 + 5x8 + 7x7 + 6x6 + 7x5 + 10x4 − 11x3 − 10x2 − 7x+ 3

m = x10 + x9 − x8 − x4 + x3 − 1

Definition 2.17 (Stinson’s NTRU). Stinson’s version uses the same definition for the

public parameters, with the same recommendations.

• SNTRU.KeyGen: Let F and G be polynomials of degree N with coefficients from

{−1, 0, 1}

f = pF + 1

g = pG

Let f−1 be f inverted in Rq

The private key is f .

The public key is h = f−1g (mods q)

The values of F , G, and g are not needed after key generation, but should be kept

secret.

• SNTRU.Encrypt: Let r be a small random polynomial. Let m be the messages. The

ciphertext y is calculated as

y = r ∗ h+m (mods q)
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• SNTRU.Decrypt:

a = f ∗ y (mods q)

m = a (mods p)

Having f = pF + 1 allows the decryption process to be more efficient.

Example 2.3 (Stinson’s NTRU).

Parameters

N = 23, p = 3 and q = 31

Calculate the keys

F = x18 − x9 + x8 − x4 − x2

f = 3x18 − 3x9 + 3x8 − 3x4 − 3x2 + 1

G = x17 + x12 + x9 + x3 − x

g = 3x17 + 3x12 + 3x9 + 3x3 − 3x

h = −13x22 − 15x21 + 12x19 − 14x18 + 8x16 − 14x15 − 6x14 + 14x13 − 3x12 + 7x11 − 5x10

− 14x9 + 3x8 + 10x7 + 5x6 − 8x5 + 4x2 + x+ 8

Encryption

m = x15 − x12 + x7 − 1

r = x19 + x10 + x6 − x2

y = 5x22 − 15x21 + 4x20 + 8x19 + 10x18 − 15x17 + 6x16 + 8x15 − 8x14 + 3x13 − 10x12

− 7x11 − x10 − 9x9 + 12x8 − 14x7 + 15x6 − 10x5 + 15x4 − 14x3 − 5x2 − 15x− 3

Decryption

a = 6x22 + 3x21 − 6x20 − 3x19 − 3x17 + 7x15 + 6x13 − x12 − 9x11 + 3x10 + 3x9

− 5x7 + 6x4 + 3x3 + 6x2 − 3x+ 5

m = x15 − x12 + x7 − 1

NTRU with R-LWE is a provably secure version. Changes are made to the algorithm

that make it compatible with R-LWE, which leads to its proof of security.

Definition 2.18 (NTRU With R-LWE). Parameters for NTRU with R-LWE or provably

secure NTRU (pNE) have some overlap with the other two but adds additional public pa-

rameters.
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• Public Parameters [5]:

N - a power of 2 greater than 8.

q - a large prime. To guarantee decryption q ∈ [dn6ln(n), 2dn6ln(n)] where

d > 512 and q = 1 mod 2n.

p - 2

α - A small standard deviation used to generate coefficients for the error polyno-

mials. α =
√

2n/π

σ - A larger standard deviation used to generate coefficients for the keys. σ =

2n
√
ln(8nq)q

R = Z[X]/(XN + 1) - The change to XN + 1 is from R-LWE, and being an

irreducible polynomial is part of what makes it provably secure.

• pNE.KeyGen: Let F and g be polynomials of degree N with coefficients sampled from

a discrete Gaussian distribution with standard deviation σ.

f = pF + 1

Let f−1 be f inverted in Rq, if not resample F.

Let g be a polynomial invertible in Rq

The private key is f .

The public key is h = pf−1g (mods q)

The values of F , and g are not needed after key generation but should be kept secret.

• pNE.Encrypt: Let r and e be a small random polynomial whose coefficients are sam-

pled form a discrete Gaussian distribution with standard deviation α. Let m be the

messages. The ciphertext y is calculated as

y = r ∗ h+ p ∗ e+m (mods q)

Including p+e in the encryption is also from R-LWE and contributes to the provability

of the security.

• pNE.Decrypt:

a = f ∗ y (mods q)

m = a (mods p)
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Example 2.4 (pNE).

Parameters

N = 16

q = 37

α = 1

σ = 1

Calculate the keys

F = x15 − x13 − x12 − x9 − x8 − x7 − x5 − x4 − x2

f = 2x15 − 2x13 − 2x12 − 2x9 − 2x8 − 2x7 − 2x5 − 2x4 − 2x2 + 1

g = x15 + 2x14 − x13 − x11 − x10 + x9 − 2x7 + x6 + x5 − x2 + x

h = −12x15 + 3x14 + 2x12 − 15x11 − 14x10 + 8x9 + 17x8 + 15x7 + 3x6 + 7x5 + 17x4

+ 13x3 − 18x2 − 10x+ 8

Encryption

m = x15 + x12 + x7 + 1

r = −x15 − x13 + x12 + x11 − x10 − x9 − x4 + 2x3 − x2 − x

e = −x15 + x12 − 2x11 + 2x10 − x9 + x8 − x7 − x5 + 2

y = 8x15 − 12x14 − 12x13 − 15x12 + 2x10 + 4x9 − 8x7 − 8/x5 − 18x4 + 14x3 − 18x2

− 5x− 5

Decryption

a = 5x15 − 6x14 + 2x13 − 3x12 − 12x10 − 4x9 + 6x8 − 15x7 + 4x6 − 12x5 − 10x4 + 10x3

− 14x2 − 10x+ 9

m = x15 + x12 + x7 + 1

NTRUSign

In 2001 some of the same people involved in standard NTRU published NTRUSign

[17] also based on polynomials and lattices. Unfortunately, it was quickly discovered that

it could be broken with far too few transcripts. An update was published in 2003 [16],
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but that was also shown to broken with too few transcripts [10]. The 2003 version of the

algorithm is included for completeness.

Definition 2.19 (NTRUSign). NTRUSign is a digital signature algorithm with four public

parameters, N the degree of the polynomials, q the coefficients modulus, N a norm bound

used to verify the signature and β a balancing factor where 0 < β ≤ 1.

• NTRUSign.KeyGen: The private keys are two small random polynomials, f and g,

that are invertible in Rq. For the public key, first find two polynomials F and G such

that

f ∗G− g ∗ F = q.

The public key is

h = F ∗ fq (mod q) = G ∗ gq (mod q)

• NTRUSign.Sign: To sign a document map it to a vector m ∈ [0, q)N using an agreed

upon hash function. Then set

(x, y) = (0,m)

 G −F

−g f

 /q =

(
−m ∗ g

q
,
m ∗ f
q

)

Then let

ε = −x and ε‘ = −y.

The signature s is calculated as

s = εf + ε‘g

• NTRUSign.Verify: To verify map the document to a vector m the same as it was for

signing. Then calculate

t = s ∗ h mod q.

Then calculate the norm

v = min
k1,k2∈R

(||s+ k1q||2 + β2||(t−m) + k2q||2)1/2.

If v ≤ N the signature is verified.
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Example 2.5 (NTRUSign).

Parameters

N = 11,q = 32,β = 0.38 and N = 200

Key Generation

f = −x10 + x8 + x7 + x5 − x4 − x2 + 1

g = x10 + x7 + x6 − x5 − x4 − x2 + x

F = −3x10 − x8 + x7 + x6 − 3x5 − rs4 − x3 − x2 − 4x− 1

G = 2x10 + x8 − x7 + 4x6 + x5 + 3x4 + 3x2 − x+ 4

fq = 17x10 + 9x9 + 3x8 + 8x7 + 12x6 + 2x5 + 4x4 + 18x3 + 20x2 + 26x+ 10

gq = 15x10 + 12x9 + x84x
726x6 + 25x5 + 18x4 + 10x3 + 21x2 + 17x+ 12

h = 14x10 + 28x9 + 18x8 + 8x7 + 18x6 + 21x5 + 9x4 + 14x3 + 14x3 + 24x2 + 14x+ 8

Signing

m = 160x10 + 112x9 + 32x8 + 192x7 + 80x6 + 128x5 + 224x4 + 224x2 + 144x2 + 144x+ 32

x = −4x10 + 4x9 − 12x8 + 2x7 + 3x6 − 13x5 + 7x4 − 5x3 + 10x2 + 9x− 4

s = 3x10 + 2x9 + 2x8 − x7 − x6 − x5 + x3 − 2x2

Verification

t = −4x10 − 7x9 − 3x8 − 5x7 − 4x6 − 12x5 − 11x4 − x3 − 8x2 − 9x

v = 178

178 ≤ 200

Linear Secret Sharing Scheme

To define linear secret sharing schemes (LSSS), it is first necessary to define some of

the access structures used with LSSS. Access structures are used to define the share matrix

that is used to share the private key.

Definition 2.20 (Monotone Access Structure). Let P = {P1, · · · , PN} be a set of partici-

pants. A collection A ⊆ P(P ) is a monotone collection if for any sets B, C where B ∈ A

and B ⊆ C ⊆ P we have C ∈ A. A monotone access structure on P is a non-empty collec-

tion A ⊆ P(P ). The sets in A are the valid sets and sets from P(P ) that are not in A are

the invalid sets.
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Example 2.6 (Monotone Access Structure).

Let P = {1,2,3,4}

Let A = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}

For any choice of B all supersets of B ∈ A

Example 2.7 (Non-monotone Access Structure).

Let P = {1, 2, 3, 4}

Let A = {{1, 2}, {3, 4}}

If B = {1, 2} the possible values for C are {1, 2}, {1, 2, 3}, {1, 2, 4} and {1, 2, 3, 4}.

Only one possible value for C is in A.

A class of monotone access structures is the collection of monotone access structures

on P . A threshold access structure can be used to create a t-of-N threshold scheme where

only t of the N participants are required to successfully decrypt a ciphertext.

Definition 2.21 (Threshold Access Structure). Let P = {P1, · · · , PN} be a set of par-

ticipants. An access structure At is called a threshold access structure if for every set of

participants S ⊆ P , S ∈ At if and only if |S| ≥ t.

Definition 2.22 (Monotone Boolean Formula). A monotone Boolean formula

C : {0, 1}N → {0, 1}

is a Boolean circuit with the following properties

• There is a single output gate.

• Every gate is one of AND or OR gate with a fan-in 2 and fan-out 1.

• The input wires can have multiple fan-out.

Definition 2.23 (Monotone Boolean Formula Access Structure). Let P = {P1, · · · , PN}

be the set of participants and C : {0, 1}N → {0, 1}. An access structure AC is a monotone

Boolean formula access structure if for every set of participants S ⊆ P , S ∈ Q if and only

if C(x) = 1.
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A threshold access structure is a subset of the monotone Boolean formula access struc-

ture making it possible to write a 2-of-3 threshold as the Boolean formula (P1∧P2)∨ (P1∧

P3)∨ (P2∧P3). The ”Folklore” algorithm 2.2 can be used to convert a monotone Boolean

formula into a share matrix.

Algorithm 2.2 ”Folklore” Algorithm

Input: A special monotone Boolean formula C : {0, 1}N → {0, 1}

Output: An LSSS share matrix M for the access structure C.

1. Label the root r with the vector m1 = (1).

2. Set counter = 1

3. for each node n in the tree formed by C:

(a) If n is an OR, assign its children the value of m.

(b) if n is an AND, pad mn with 0’s to make it length count. Append a 1 to this

value and assign it to one of the children. Assign the other child a vector of

(0, ·,−1) of length count+ 1. Increase count by 1.

4. Take the leaf values and pad them with 0’s to make them of even size.

Example 2.8 (2-of-3 Access Matrix). Let C = (P1 ∧ P2) ∨ (P1 ∧ P3) ∨ (P2 ∧ P3)
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count m[count] left child right child

1 m[1] = (1)

1 m[1] = (1) m[2] = (1) m[5] = 1

1 m[2] = (1) m[3] = (1) m[4] = (1)

1 m[3] = (1) m[6] = (1,1) m[7] = (0,-1)

2 m[4] = (1) m[8] = (1,0,1) m[9] = (0,0,-1)

3 m[5] = (1) m[10] = (1,0,0,1) m[11] = (0,0,0,-1)

The share matrix is



1 1 0 0

0 −1 0 0

1 0 1 0

0 0 −1 0

1 0 0 1

0 0 0 −1


Linear secret sharing schemes (LSSS) [4] use linear algebra and a shared matrix defined

by an access structure to take a private key and generate shared keys.

Definition 2.24 (Linear Secret Sharing Scheme). Let P = {P1, · · · , PN} be the set of

participants and S be a class of access structures on P . A secret sharing scheme SS with

secret key space K = Zp for some prime p is called a linear secret sharing scheme if:

• SS.Share(k,A): There exists a share matrix M ∈ Z`xN
p with each party associated with

a partition Ti ⊆ [`]. To create secret shares of k, sample random values r2, · · · , rn
R←−

Zp and define a vector w = M · (k, r2, · · · , rn)T The shares for Pi consists of the

entries {wj}j∈Ti.

• SS.Combine(B): For any valid set S ∈ A

(1, 0, · · · , 0) ∈ span({M [j]}j∈∪i∈STi)

over Zp where M [j] is the jth row of M . Any valid set of parties S ∈ A can find the

coefficients {cj}j∈∪i∈STi satisfying

∑
j∈∪i∈ST1

cj ·M [j] = (1, 0, · · · , 0)

and recover the secret by computing k =
∑

j∈∪i∈ST1

cj · wj. The coefficients {cj} are

called the recovery coefficients.
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Example 2.9 ({0,1}-LSSS). Using the share matrix from Example 2.8 and p = 47.

1 1 0 0

0 −1 0 0

1 0 1 0

0 0 −1 0

1 0 0 1

0 0 0 −1


·


47

63

2

15

 =



110

−63

49

−2

62

−15


• P1 gets 110 to use with P2 and 49 to use with P3

• P2 gets -63 to use with P1 and 62 to use with P3

• P3 gets -2 to use with P1 and -15 to use with P2

While LSSS works for secret sharing, it does not work well for threshold secret sharing.

A partial decryption would leak information about the share used in the decryption. One

way to resolve the issue would be to add noise to the decryption (LWE). However the noise

adds up quickly and causes decryption failures. A special case of LSSS called {0,1}-LSSS,

does work well by using a monotone Boolean formula access structure.

Definition 2.25 ({0,1}-LSSS). Let P = {P1, · · · , PN} be a set of participants. The class

of access structure {0, 1} − LSSSN is the collection of access structures A ∈ LSSSN for

which there exists a linear secret sharing scheme SS = (SS.Share, SS.Combine) over the

secret space K = Zp satisfying

• Let k be a shared secret and {wj}j∈TI
be the share of participant Pi for i ∈ [N ]. For

every set S ∈ A there exists a subset T ⊆ ∪i∈STi such that k =
∑
j∈T

wj.



Chapter 3

Threshold Lattice-Based Cryptography

Overview

Our scheme relies on a fully trusted dealer. The dealer will generate the key pair based

on the chosen NTRU variant and will be the only party to know the private key. There

will be N participants who fully trust the dealer, but not necessarily each other. We want

t of the N participants to be able to work together to decrypt a ciphertext. By requiring

only t of N , not all participants have to be online to perform a decryption and if one is

compromised it does not compromise the private key.

The dealer will be responsible for generating the key shares. The N participants will

be partitioned into a subset of t participants. This will generate N !
t!(N−t)! partitions. For

each partition, a participant will have a key share to use with the other participants in the

partition. Each participant will have (N−1)!
(t−1)!(N−t)! shares. The dealer will use a variation of

{0,1}-LSSS based on polynomials to generate the key shares.

The participants will need to treat their share as if it were a private key. The loss of

a single key would not compromise the private key, but a loss of all the keys for a valid

subset would reveal the private key. The participants will each create a partial decryption

using their share. The partial decryptions could be used to derive the participant’s share,

so we will need to mask the partial decryption. The mask will need to hide the share, but

at the same time it should not interfere in the final decryption. Once the participants have

generated the partial decryptions, they can be combined into the final decryption revealing

the plaintext message.

Working code for all three written using Sage can be found in the appendix. This is

proof of concept code only and should not be considered production worthy.

Key Sharing

Key sharing will use {0,1}-LSSS, however instead of multiplying the access matrix by

a column vector, a matrix is used. The first row of the matrix will be the private key, the
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remaining rows will be vectors generated using the same rules used to generate the private

key. This works because we can change Zp to be Zm
p in Definition 2.24 and the definition

will still hold.

Definition 3.1 (Polynomial Linear Secret Sharing Scheme). Let P = {P1, · · · , PN} be the

set of participants and S be a class of access structures on P . A secret sharing scheme SS

with secret key space K = Zm
p for some prime p of degree m is called a polynomial linear

secret sharing scheme if:

• SS.Share(k,A): There exists a share matrix M ∈ Z`xN
p with each party associated

with a partition Ti ⊆ [`]. To create secret shares of k, sample random polynomials

r2, ·, rn
R←− Zm

p and define a matrix w = M · (k, r2, · · · , rn)T The shares for Pi consists

of the entries {wj}j∈Ti.

• SS.Combine(B): For any valid set S ∈ A

(1, 0, · · · , 0) ∈ span({M [j]}j∈∪i∈STi)

over Zm
p where M [j] is the jth row of M . Any valid set of parties S ∈ A can find the

coefficients {cj}j∈∪i∈STi satisfying

∑
j∈∪i∈ST1

cj ·M [j] = (1, 0, · · · , 0)

and recover the secret by computing k =
∑

j∈∪i∈ST1

cj · wj. The coefficients {cj} are

called the recovery coefficients.

Making the same change to Definition 2.25 gives

Definition 3.2 (Polynomial {0,1}-LSSS). Let P = {P1, · · · , PN} be a set of participants.

The class of access structure {0, 1} − LSSSN is the collection of access structures A ∈

LSSSN for which there exists a linear secret sharing scheme SS = (SS.Share, SS.Combine)

over the secret space K = Zn
p satisfying

• Let k be a shared secret and {wj}j∈TI
be the share of participant Pi for i ∈ [N ]. For

every set S ∈ A there exists a subset T ⊆ ∪i∈STi such that k =
∑
j∈T

wj.

For Stinson’s and NTRU with R-LWE, there is only one key to share. For standard

NTRU both f and fp must be shared, thus the sharing algorithm must be executed twice.
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Example 3.1 (Polynomial {0,1}-LSSS). Using the share matrix form Example 2.8 and the private

key from Example 2.3

M =



1 1 0 0

0 −1 0 0

1 0 1 0

0 0 −1 0

1 0 0 1

0 0 0 −1



Key =


1 0 −3 0 −3 0 0 0 3 −3 0 0 0 0 0 0 0 0 3 0 0 0 0

1 −3 0 3 0 0 0 0 3 −3 0 −3 0 0 0 3 3 0 0 0 −3 0 0

−2 0 0 0 −3 3 0 0 0 3 3 0 0 0 0 0 −3 0 0 0 0 3 −3

1 0 0 0 0 0 0 0 0 0 −3 −3 0 3 0 0 0 3 0 3 −3 3 −3



w =



2 −3 −3 3 −3 0 0 0 6 −6 0 −3 0 0 0 3 3 0 3 0 −3 0 0

−1 3 0 −3 0 0 0 0 −3 3 0 3 0 0 0 −3 −3 0 0 0 3 0 0

−1 0 −3 0 −6 3 0 0 3 0 3 0 0 0 0 0 −3 0 3 0 0 3 −3

2 0 0 0 3 −3 0 0 0 −3 −3 0 0 0 0 0 3 0 0 0 0 −3 3

2 0 −3 0 −3 0 0 0 3 −3 −3 −3 0 3 0 0 0 3 3 3 −3 3 −3

−1 0 0 0 0 0 0 0 0 0 3 3 0 −3 0 0 0 −3 0 −3 3 −3 3


• P1 gets row 0 to use with P2 and row 2 to use with P3.

• P2 gets row 1 to use with P1 and row 4 to use with P3.

• P3 gets row 3 to use with P1 and row 5 to use with P2
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Partial Decryption

Partial decryption for Stinson’s and NTRU with R-LWE works the same. Calculate the

first step in the decryption algorithm using the share instead of the private key. Let S be

a valid set of participants. Let si ∈ S for Pi. The partial decryption of ciphertext y is

ai = si ∗ y (mods q)

For standard NTRU the previous step uses the shares of f . The partial decryption is

combined, and the process is repeated with the shares of fp.

As defined, the partial decryption can leak the key share. Let t be the number of

participants in S. Let A = (a1, · · · , at) be the set of partial decryptions. Given A and y

it would be possible for an attacker to compute the shares and thus determine the private

key. To avoid this we use R-LWE from Definition 2.14 and add in a small error to each ai.

Definition 3.3 (Partial Decryption).

• SNTRU.PartialDecrypt and pNE.PartialDecryption: Let S be a set of the shares of

valid participants. Let si ∈ S. Let ei be an independently generated polynomial using

a discrete Gaussian distribution with a small standard deviation for the coefficients.

For each si ∈ S

ai = si ∗ y + p ∗ ei (mods q)

• NTRU.PartialDecryption: Let Sf be the set of shares of f for t valid participants. Let

sfi ∈ Sf where i ∈ {1, · · · , t} Let ei be an independently generated polynomial using

a discrete Gaussian distribution with a small standard deviation for the coefficients.

For each sfi ∈ S

ci = sfi ∗ y + p ∗ ei (mods q)

Then sum the ci to get the first partial decryption.

b =

t∑
i=1

ci (mods q)

Let Sfp be the set of shares of fp for t valid participants. Let sfpi ∈ Sfp where

i ∈ {1, · · · , t}. Let epi be an independently generated polynomial using a discrete

Gaussian distribution with a small standard deviation for the coefficients. For each

sfpiinSp

ai = sfpi ∗ b+ p ∗ epi (mods q)
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Example 3.2 (Partial Decryption for SNTRU and pNE). Using the keys and ciphertext

from Example 2.3 and the shares generated in Example 3.1. P1 and P2 would like to decrypt

the ciphertext y. P1 calculates

s1 = −3x20 + 3x18 + 3x17 + 3x16 − 3x12 − 3x10 − 3x9 + 6x8 − 3x4 + 3x3 − 3x2 − 3x+ 2

e1 = x22 + x20 − 2x19 − x18 + x17 − x15 + x14 − x13 + 2x11 − x10 + x8 − 2x6 − x5 − x4

+ x− 1

a1 = s1 ∗ y + p ∗ e1 (mods q)

a1 = −2x22 − x21 + 5x20 − 6x19 + 8x18 + 15x17 + 12x16 + 7x15 − 8x14 + 15x13 − 11x12

− 5x11 − 13x10 + 3x9 − 2x8 + 4x7 + 10x6 − 10x5 − 15x4 − 13x3 − 9x2 + x+ 15

P2 calculates

s2 = 3x20 − 3x17 − 3x16 + 3x12 + 3x10 − 3x8 − 3x3 + 3x− 1

e2 = −x21 − 2x20 + x18 + 2x17 − x16 − x15 − 2x12 − x9 + 2x8 + 2x4 + x3 − x+ 1

a2 = s2 ∗ y + p ∗ e2 (mods q)

a2 = 11x22 + x21 − 14x20 − 3x19 − 8x18 − 9x17 − 15x16 − 6x15 + 11x14 − 12x13 + 4x12

+ 2x11 + 13x10 − 3x9 + 11x8 − 9x7 + 15x6 + 7x5 − 7x4 − 12x3 + 15x2 − 4x− 10

Example 3.3 (Partial Decryption for Standard NTRU). Using the keys and ciphertext

from Example 2.2 P1 and P2 would like to decrypt the ciphertext y. P1 calculates

sf1 = −x10 + 2 ∗ x9 − 2 ∗ x4 + x2 + 2 ∗ x− 1

e1 = x10 − x8 + x7 − x

c1 = sf1 ∗ y + p ∗ e1 (mods q)

c1 = x10 − 4x9 − 12x8 + 11x7 + 7x6 − 2x5 + 12x4 − 13x3 + 2x2 + 5x− 7

P2 calculates

sf2 = −x9 + x6 + x4 − x

e2 = −x8 + x7 + x4 − 1

c2 = sf2 ∗ y + p ∗ e2 (mods q)

c2 = −5x10 + x9 + 11x8 + 2x7 − x6 + 9x5 + x4 + 2x3 − 12x2 − 15x+ 7

P1 and P2 calculate

b = c1 + c2 = −4x10 − 3x9 − x8 + 13x7 + 6x6 + 7x5 + 13x4 − 11x3 − 10x2 − 10x
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Next P1 calculates

sfp1 = −x10 + 2x9 + x8 + 2x7 + x5 + 2x4 + 3x3 − x2 + 2x+ 2

ep1 = −x10 + x9 − x7 + x

a1 = −x10 + x9 − x8 − x7 − x6 − x5 − x4 − x3 + x− 1

P2 calcuates

sfp2 = x10 − x3 + x2 − 1

ep2 = −x10 + x8 − x7 + 1

a2 = −x10 + x7 + x6 + x5 − x3 − x

Final Decryption

Final decryption for all three is the sum of the partial decryptions mods q and mods p.

Definition 3.4 (Final Decryption).

• FinalDecrypt: Let S be a set of valid participants. Let t be the number of participants

in S. Let A = (a1, · · · , at) be the set of partial decryptions. The final decryption of

the ciphertext y is

(

t∑
i=1

ai (mods q)) (mods p)

Example 3.4 (Final Decryption). Using the partial decryptions from Example 3.2:

a1 + a2 = 9x22 + 9x21 − 15x20 + 3x19 + 25x17 − 3x16 + 7x15

− 25x14 + 25x13 − 4x12 + 16x11 − 25x10 + 3x9 + x7 + 25x6

+ 3x5 + 3x4 − 28x3 + 3x2 − 6x− 1

(a1 + a2 (mods q)) (mods p) = x15 − x12 + x7 − 1

Proof. Proof of Correctness for Stinson’s and NTRU With R-LWE. Let S be a set of valid

participants. Let si ∈ S. Let ei be small independent polynomials. Final decryption is

(

t∑
i

ai (mods q)) (mods p)

ai is defined as

ai = si ∗ y + p ∗ ei (mods q)
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Substituting ai into the previous equation gives

(

t∑
i

si ∗ y + p ∗ ei (mods q) (mods q)) (mods p)

Rearranging the terms gives

(

t∑
i

si ∗ y (mods q) (mods q)) (mods p) + (

t∑
i

p ∗ ei (mods q) (mods q)) (mods p)

Which reduces to

(

t∑
i

si ∗ y (mods q)) (mods p)

Which can be rewritten as

(
t∑
i

si) ∗ y (mods q) (mods p)

Recall from Definition 3.2 the sum of the shares is the private key giving

f ∗ y (mods q) (mods p)

Which is the original decryption formula.

The proof for standard NTRU is similar. In the previous proof, replace S with Sf , the

result is the formula for the first step of standard NTRU decryption. Repeat the proof

using Sfp for S and a for y. The result of this proof is the second formula from standard

NTRU.



Chapter 4

Security and Related Work

Related Work

A 2018 paper by Andrew Xia [35] covers a similar topic. That paper uses multiparty

computation to create a dealer free threshold multi-key fully homomorphic lattice-based

encryption scheme. The multiparty computation allows the participants to negotiate the

shares without a dealer and without revealing the secret keys. Fully homomorphic means

addition and multiplication can be performed without having to decrypt the message. In

this paper we focus on single key threshold lattice-based encryption with a dealer. We also

provide examples and working prototypes to validate the functionality of the scheme.

Key Sharing Security

One avenue of attack with secret sharing is to recover the key from one or more shares

from a partition. Could a possessor of a share use that share to discover the private key?

The way the shares are generated, they are random. The possessor of a share will not be

able to reconstruct the private key.

Under certain conditions, the primary share for standard and Stinson’s NTRU can leak

information about the private key in certain cases. For each exponent, the primary share

coefficient is the sum of the matching coefficients from the private key and the random

polynomials. Let N be the degree of the polynomials. Let i ∈ [0, N − 1]. Let t be the

number of polynomials in the partition. Let t0 be the primary key and the remaining the

random polynomials. The coefficient i of the primary share is calculated by

t∑
j=0

cji

If the coefficients are all the same value, the sum divided by t will reveal the coefficient of

the primary key. For example, if the coefficients are all 3 and there are 5 polynomials in the

partition, the sum will be 15 and 15/5 = 3. To avoid the leakage, reject any combination
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of private key and random polynomials where all coefficients are the same value for the

respective exponent.

The R-LWE variant does not have this problem. The coefficient range of the private key

for the R-LWE version is much larger. There are no values that would stand out as unusual.

Although 99.7% of the coefficients will be within 3 standard deviations fo the mean, there

is a 0.3% chance a coefficient will be abnormally large.

With this condition in place, the primary share does not leak any information about

the private key. The random polynomials added to the private key obfuscate enough to

make extracting the private key from the share computationally expensive. The lowest

recommended value for N is 439, the number of combinations to test would be 3439. It

would be higher for NTRU with R-LWE since the coefficients are not limited to three

values.

Partial Decryption Security

Given a partial decryption, could an attacker recover the key share? If partial decryption

was unmodified and an attacker had both the ciphertext and partial decryption, it would

be possible, but difficult, to derive the share used. The security of the partial decryption

can be enhanced by adding a small error.

The security of a partial decryption for NTRU with R-LWE can be derived directly from

R-LWE 2.14 with slight changes. Let Φx be xN + 1 an irreducible polynomial. The finite

quotient is Zq/(x
N + 1). Instead of s being a secret it is the ciphertext and ai(x) are the

shared keys. We have redefined what needs to be kept secret. The values for ei(x) are small

independent random unknown polynomials with the coefficients sampled from the R-LWE

error distribution. Having met the requirements for R-LWE security we can say the partial

decryptions are provably secure.

The same security argument cannot be applied to standard nor Stinson’s NTRU. The

value of Φ(x) is xN − 1 which is reducible. The rest of the R-LWE requirements hold, the

values for ei are still small random independent unknown polynomials with the coefficients

sampled form the R-LWE error distribution. This alters the result just enough to make

deriving the key share from the partial decryption sufficiently complex but does not interfere

with final decryption. Although we cannot claim R-LWE level security, we can still claim

it is secure.
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Final Decryption Security

With the key shares properly masked, there are no secrets to protect in the final de-

cryption. Combining the partial decryptions to get the plaintext is a safe operation. The

only thing an attacker can get is the plaintext, which would be the output of standard

decryption as well.



Chapter 5

Summary

Threshold cryptography provides a secure way to keep a secret online long term. A

user, Bob, can generate a public/private key. After choosing how many servers, N , and a

threshold, t, Bob will create shares of the private key to distribute to the N servers. The

servers can work together to decrypt ciphertext for Bob. The t servers will generate partial

decryptions that can be used to recover the plaintext. The partial decryptions are generated

in a way to avoid leaking the key share. Should a key share be compromised it will not

reveal Bob’s private key. If less than t shares are compromised, Bob can regenerate and

distribute new shares to the servers. Bob’s private key is still secure and the compromised

share is no longer a threat.

In this paper, we explained how to create a threshold cryptography scheme for three

variants of the lattice-based encryption scheme NTRU. We defined a version of {0,1}-LSSS

that works with polynomials to share a private key. The decryption algorithms of standard,

Stinson’s, and R-LWE NTRU were modified to include partial and final decryption steps.

Throughout chapter 3 we included concrete examples of the different steps. Finally, we

included a proof of correctness for the equations involved in the partial and final decryptions.

In chapter 4, we discussed the security of key sharing and partial decryption. When cor-

rectly constructed, the shares do not leak information about the private key. The only way

to reconstruct the private key is to acquire t of N shares from the same partition, excluding

a brute force attack. The shares are used to securely partially decrypt the ciphertext. We

do not claim provable security in all cases, but we can state there is no loss of security by

partial decryption.



Appendix A

Threshold Standard NTRU

from sage.stats.distributions.discrete_gaussian_polynomial \

import DiscreteGaussianDistributionPolynomialSampler

#start https://github.com/kpatsakis/NTRU_Sage/blob/master/ntru.sage

# with bug fixes

R.<x> = ZZ[’x’]

def mods(f, m):

coeffs = f.list()

m2 = m/2

for i in range(len(coeffs)):

coeffs[i] = coeffs[i] % m

if coeffs[i] > m2:

coeffs[i] -= m

return R(coeffs)

def mod(f, m):

return R([ i % m for i in f.list()])

def poly_mod_2(poly):

k = 0; b = 1; c = 0*x

f = poly; g = x^N - 1

res = False

f = mods(f, 2)

while True:

while f(0) == 0 and not f.is_zero():

33
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f = f.shift(-1)

c = c.shift(1)

c = mods(c, 2)

k += 1

if f.is_one():

e = (-k) % N

retval = x^e * b

res = True

break

elif f.degree() == -1 or f.is_zero():

break

if f.degree() < g.degree():

f,g = g,f

b,c = c,b

f += g

b += c

f = mods(f, 2)

c = mods(c, 2)

if res:

retval = retval % (x^N - 1)

retval = mods(retval, 2)

return True, retval

else:

return False, 0

def poly_mod_prime_pow(poly):

success, b = poly_mod_2(poly)

if success:

qr = 2

while qr < q:

qr = qr^2

b = b * (2 - poly * b)
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b = b % (x^N - 1)

b = mod(b,q)

return True, b

else:

return False, 0

def poly_mod_3(poly):

k = 0; b = 1; c = 0*x

f = poly; g = x^N - 1

res = false

while True:

while f(0) == 0 and not f.is_zero():

f = f.shift(-1)

c = c.shift(1)

k+=1

if f.is_one():

e = (-k) % N

retval = x^e * b

res = True

break

elif (-f).is_one():

e = (-k) % N

retval = -x^e * b

res = True

break

elif f.degree() == 1 or f.is_zero():

break

if f.degree() < g.degree():

f,g = g,f

b,c = c,b

if f(0) == g(0):
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f -= g

b -= c

else:

f += g

b += c

f = mods(f, 3)

c = mods(c, 3)

if res:

retval = retval % (x^N - 1)

retval = mod(retval, 3)

return True, retval

else:

return False, 0

#end https://github.com/kpatsakis/NTRU_Sage/blob/master/ntru.sage

def sample():

s=[1]*n1+[-1]*n1+[0]*n0

shuffle(s)

return R(s)

# parameters

N = 439

p = 3

q = 2048

n1 = (N/6).round()

n0 = N - 2*n1

#generating an invertable f is not as easy as the other two

#using a constant key known to work.

f = -1 + x + x^2 - x^4 + x^6 + x^9 - x^10

g = -1 + x^2 + x^3 + x^5 - x^8 - x^10
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# Compute h(x)

success, fp = poly_mod_3(f)

if not success:

print("Something went wrong")

success, fq = poly_mod_prime_pow(f)

if not success:

print("Something went wrong")

h = mods((p * fq * g) % (x^N - 1), q)

# encrypt

m = -1 + x^3 - x^4 - x^8 + x^9 + x^10

r = sample() #-1 + x^2 + x^3 + x^4 - x^5 - x^7

e = mod((r*h+m) % (x^N - 1), q)

fKeys = [f, sample(), sample(), sample()]

v = 4*[[]]

for i in range(len(fKeys)):

v[i] = fKeys[i].list()

v[i] += (N - len(v[i]))*[0]

alpha = sqrt((2*N)/pi)

Da = DiscreteGaussianDistributionPolynomialSampler(R, N, alpha)

fk = matrix(v)

am = matrix([[1,1,0,0],[0,-1,0,0],[1,0,1,0],[0,0,-1,0],[1,0,0,1],[0,0,0,-1]])

fsm = am*fk

print("f shares")

pretty_print(fsm)

fShares = [R(s.list()) for s in fsm]

partial = [mods((s*e + p*Da())%(x^N - 1), q) for s in fShares]

print("b with shares")
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print("p12 + p21:", mods(partial[0]+partial[1],q))

print("p13 + p31:", mods(partial[2]+partial[3],q))

print("p23 + p32:", mods(partial[4]+partial[5],q))

partial[0] = partial[1] = mods(partial[0]+partial[1],q)

partial[2] = partial[3] = mods(partial[2]+partial[3],q)

partial[4] = partial[5] = mods(partial[4]+partial[5],q)

fpKeys = [fp, sample(), sample(), sample()]

v = 4*[[]]

for i in range(len(fpKeys)):

v[i] = fpKeys[i].list()

v[i] += (N - len(v[i]))*[0]

fpk = matrix(v)

fpsm = am*fpk

print("fp shares")

pretty_print(fpsm)

fpShares = [R(s.list()) for s in fpsm]

for i in range(len(partial)):

partial[i] = mod(partial[i],p)

partial[i] = mods((fpShares[i] * partial[i] + p*Da()) % (x^N - 1),p)

print("fp = ", fp)

print("fq = ", fq)

print("h = ", h)

print("m = ", m)

print("r = ", r)

print("e = ", e)

print("m‘ with shares:")
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print("p12 + p21:", mods(mods(partial[0]+partial[1],q), p))

print("p13 + p31:", mods(mods(partial[2]+partial[3],q), p))

print("p23 + p32:", mods(mods(partial[4]+partial[5],q), p))



40

Appendix B

Threshold Stinson NTRU

from sage.stats.distributions.discrete_gaussian_polynomial \

import DiscreteGaussianDistributionPolynomialSampler

#start https://github.com/kpatsakis/NTRU_Sage/blob/master/ntru.sage

# with bug fixes

R.<x> = ZZ[’x’]

def mods(f, m):

coeffs = f.list()

m2 = m/2

for i in range(len(coeffs)):

coeffs[i] = coeffs[i] % m

if coeffs[i] > m2:

coeffs[i] -= m

return R(coeffs)

def mod(f, m):

return R([ i % m for i in f.list()])

def poly_mod_2(poly):

k = 0; b = 1; c = 0*x

f = poly; g = x^N - 1

res = False

f = mods(f, 2)

while True:

while f(0) == 0 and not f.is_zero():
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f = f.shift(-1)

c = c.shift(1)

c = mods(c, 2)

k += 1

if f.is_one():

e = (-k) % N

retval = x^e * b

res = True

break

elif f.degree() == -1 or f.is_zero():

break

if f.degree() < g.degree():

f,g = g,f

b,c = c,b

f += g

b += c

f = mods(f, 2)

c = mods(c, 2)

if res:

retval = retval % (x^N - 1)

retval = mods(retval, 2)

return True, retval

else:

return False, 0

def poly_mod_prime_pow(poly):

success, b = poly_mod_2(poly)

if success:

qr = 2

while qr < q:

qr = qr^2

b = b * (2 - poly * b)
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b = b % (x^N - 1)

b = mod(b,q)

return True, b

else:

return False, 0

def poly_mod_3(poly):

k = 0; b = 1; c = 0*x

f = poly; g = x^N - 1

res = false

while True:

while f(0) == 0 and not f.is_zero():

f = f.shift(-1)

c = c.shift(1)

k+=1

if f.is_one():

e = (-k) % N

retval = x^e * b

res = True

break

elif (-f).is_one():

e = (-k) % N

retval = -x^e * b

res = True

break

elif f.degree() == 1 or f.is_zero():

break

if f.degree() < g.degree():

f,g = g,f

b,c = c,b

if f(0) == g(0):
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f -= g

b -= c

else:

f += g

b += c

f = mods(f, 3)

c = mods(c, 3)

if res:

retval = retval % (x^N - 1)

retval = mod(retval, 3)

return True, retval

else:

return False, 0

#end https://github.com/kpatsakis/NTRU_Sage/blob/master/ntru.sage

def sample():

s=[1]*n1+[-1]*n1+[0]*n0

shuffle(s)

return R(s)

# parameters

N = 439

p = 3

q = 2048

n1 = (N/6).round()

n0 = N - 2*n1

alpha = sqrt((2*N)/pi)

Da = DiscreteGaussianDistributionPolynomialSampler(R, N, alpha)

F = sample()

G = sample()
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f = p*F + 1

g = p*G

# Compute h(x)

success, fq = poly_mod_prime_pow(f)

if not success:

print("Something went wrong")

h = mods((fq * g) % (x^N - 1), q)

# encrypt

m = -1 + x^3 - x^4 - x^8 + x^9 + x^10

r = sample()

e = mod((r*h+m) % (x^N - 1), q)

fKeys = [f, p*sample() + 1,p*sample() + 1,p*sample() + 1]

v = 4*[[]]

for i in range(len(fKeys)):

v[i] = fKeys[i].list()

v[i] += (N - len(v[i]))*[0]

fk = matrix(v)

print("fKeys")

pretty_print(fk)

am = matrix([[1,1,0,0],[0,-1,0,0],[1,0,1,0],[0,0,-1,0],[1,0,0,1],[0,0,0,-1]])

print("access matrix")

pretty_print(am)

fsm = am*fk

print("f shares")

pretty_print(fsm)

fShares = [R(s.list()) for s in fsm]

partial = [mods((s*e + p*Da())%(x^N - 1), q) for s in fShares]
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print("fq = ", fq)

print("h = ", h)

print("m = ", m)

print("r = ", r)

print("e = ", e)

print("m‘ with shares:")

print("p12 + p21:", mods(mods(partial[0]+partial[1],q), p))

print("p13 + p31:", mods(mods(partial[2]+partial[3],q), p))

print("p23 + p32:", mods(mods(partial[4]+partial[5],q), p))
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Appendix C

Threshold NTRU With R-LWE

from sage.stats.distributions.discrete_gaussian_polynomial \

import DiscreteGaussianDistributionPolynomialSampler

R.<x> = ZZ[’x’]

N = 256

p = 2

q = Primes().next(ceil(512*(N^6)*ln(N)))

sigma = 2 * N * sqrt(ln(8*N*q)*q)

alpha = sqrt((2*N)/pi)

def mods(f, m):

coeffs = f.list()

m2 = int(m/2)

for i in range(len(coeffs)):

coeffs[i] = coeffs[i] % m

if coeffs[i] > m2:

coeffs[i] -= m

return R(coeffs)

def inverse_mods(f1, q):

Z = GF(q)

R2 = PolynomialRing(Z,’a’); a = R2.gen()

S = R2.quotient(a^N + 1, ’x’); x = S.gen()

newF = S(f1.list())

resultZ = R((newF^-1).list())

return mods(resultZ, q)
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Ds = DiscreteGaussianDistributionPolynomialSampler(R, N, sigma)

f = p * Ds() + 1

fq = inverse_mods(f, q)

g = Ds()

gq = inverse_mods(f, q)

h = mods((fq * p * g) % (x^N + 1), q)

Da = DiscreteGaussianDistributionPolynomialSampler(R, N, alpha)

r = Da()

e = Da()

m = x^15 + x^12 + x^7 + 1

y = mods((r*h+p*e+m) % (x^N + 1), q)

#compute shares

keys = [f, p*Ds()+1, p*Ds()+1, p*Ds()+1]

v = 4*[[]]

for i in range(len(keys)):

v[i] = keys[i].list()

v[i] += (N - len(v[i]))*[0]

k = matrix(v)

am = matrix([[1,1,0,0],[0,-1,0,0],[1,0,1,0],[0,0,-1,0],[1,0,0,1],[0,0,0,-1]])

sm = am*k

shares = [R(s.list()) for s in sm]

partial = []

for i in range(len(shares)):

partial.append(mods((shares[i]*y + p*Da())%(x^N + 1), q))

print("N:", N)

print("q:", q)
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print("p:", p)

print("sigma: ", sigma.n().str(no_sci=2))

print("alpha:", alpha.n())

print("f: ", f)

print("fq: ", fq)

print("g: ", g)

print("h: ", h)

print("")

print("r: ", r)

print("e: ", e)

print("m: ", m)

print("y: ", y)

print("")

print("shares")

pretty_print(sm)

print("m‘ with shares:")

print("p12 + p21:", mods(mods(partial[0]+partial[1],q), p))

print("p13 + p31:", mods(mods(partial[2]+partial[3],q), p))

print("p23 + p32:", mods(mods(partial[4]+partial[5],q), p))
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