
Governors State University Governors State University

OPUS Open Portal to University Scholarship OPUS Open Portal to University Scholarship

Mathematics Theses Student Theses

Summer 2019

Optimization of Mathematical Functions Using Gradient Descent Optimization of Mathematical Functions Using Gradient Descent

Based Algorithms Based Algorithms

Hala Elashmawi

Follow this and additional works at: https://opus.govst.edu/theses_math

 Part of the Mathematics Commons

For more information about the academic degree, extended learning, and certificate programs of Governors State
University, go to http://www.govst.edu/Academics/Degree_Programs_and_Certifications/

This Thesis is brought to you for free and open access by the Student Theses at OPUS Open Portal to University
Scholarship. It has been accepted for inclusion in Mathematics Theses by an authorized administrator of OPUS
Open Portal to University Scholarship. For more information, please contact opus@govst.edu.

https://opus.govst.edu/
https://opus.govst.edu/theses_math
https://opus.govst.edu/student_theses
https://opus.govst.edu/theses_math?utm_source=opus.govst.edu%2Ftheses_math%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=opus.govst.edu%2Ftheses_math%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.govst.edu/Academics/Degree_Programs_and_Certifications/
mailto:opus@govst.edu

Running head: OPTIMIZATION OF MATHEMATICAL FUNCTIONS 1

OPTIMIZATION OF MATHEMATICAL

FUNCTIONS USING GRADIENT DESCENT

BASED ALGORITHMS

by

Hala Elashmawi

B.S. in Architecture, College of Engineering, Mansoura University, Egypt, 1998

THESIS

Submitted in Partial Fulfillment of the Requirements

For the Degree of Master of Science,

With a Major in Mathematics

Governors State University

University Park, IL 60484

2019

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 2

TABLE OF CONTENTS

2

3

4

5

7

11

12

14

16

17

17

18

18

20

21

 23

 26

 29

 30

 32

 33

 35

 36

 44

TABLE OF CONTENTS

TABLE OF FIGURES

ABSTRACT

1 Introduction

2 Gradient Descent

 a. Impact of initialization on gradient descent

 b. Impact of the learning rate .

 c. Number of iterations .

 d. Solving random initialization problem

 e. More effective learning rate .

 f. Other drawbacks with gradient descent

 g. High dimensional function .

 h. Saddle points .

3 Application of gradient descent

4 Momentum

5 Nesterov accelerated gradient

6 Adagrad

7 RMSprop

8 Adam

9 AdaMax

10 Nadam

Conclusion

Appendix A

References

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 3

TABLE OF FIGURES

9

12

14

15

19

 22

 25

 28

 33

1 Figure (1) Shows the sign of derivatives for a function at

various points

2 Figure (2) Graph of a function with four points marked

having different gradients

3 Figure (3) A image comparing Gradient Descent iteration on

same function using big and small learning rate

4 Figure (4) Figure showing the movement of Gradient Descent

with red points for the first few iterations and blue for high

number of iterations

5 Figure (5) A surface with a saddle point.

6 Figure (6) Figure comparing Gradient Descent without (a)

and with (b) momentum.

7 Figure (7) Comparing Momentum and Nesterov accelerated

gradient.

8 Figure (8) Graph comparing Gradient Descent and Adagrad

for minimizing the error in a neural network where �̂� is the

predicted value and x* is the true value which the neural network

is trying to learn

9 Figure (9) Graph comparing accuracy of various algorithms

for optimizing a neural network.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 4

ABSTRACT

Optimization problem involves minimizing or maximizing some given quantity for certain

constraints. Various real-life problems require the use of optimization techniques to find a

suitable solution. These include both, minimizing or maximizing a function. The various

approaches used in mathematics include methods like Linear Programming Problems (LPP),

Genetic Programming, Particle Swarm Optimization, Differential Evolution Algorithms, and

Gradient Descent. All these methods have some drawbacks and/or are not suitable for every

scenario. Gradient Descent optimization can only be used for optimization when the goal is to

find the minimum and the function at hand is differentiable and convex. The Gradient

Descent algorithm is applicable only in the case stated above. This makes it an algorithm

which specializes in that task, whereas the other algorithms are applicable in a much wider

range of problems. A major application of the Gradient Descent algorithm is in minimizing

the loss functions in machine learning and deep learning algorithms. In such cases, Gradient

Descent helps to optimize very complex mathematical functions. However, the Gradient

Descent algorithm has a lot of drawbacks. To overcome these drawbacks, several variants

and improvements of the standard Gradient Descent algorithm have been employed which

help to minimize the function at a faster rate and with more accuracy. In this paper, we will

discuss some of these Gradient Descent based optimization algorithms.

Keywords: Optimization, Gradient Descent, Convex optimization.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 5

 OPTIMIZATION OF MATHEMATICAL FUNCTIONS USING GRADIENT DESCENT

BASED ALGORITHMS

1. Introduction

Many real-life problems involve modelling a real-life problem as mathematical functions,

along with certain constraints with the goal of optimizing it. These optimization problems

require the user to either minimize or maximize a given function. Some optimization

problems also have certain constraints.

Optimization can be simply viewed as selecting certain inputs which result in best outputs or

the best possible outputs that can be achieved. These optimization problems may also include

certain constraints. A number of traditional and non-traditional approaches have been

employed for this task. Some of them are specialized for certain cases, whereas others serve a

general purpose which work in many scenarios. As an example, some of these approaches

can be used for minimizing as well as maximizing a function. When it comes to constrained

optimization, not all of these algorithms are applicable. The goal of discussion here is

optimizing a function to find its minimum, when we know that the function is convex in

nature.

Gradient Descent algorithm as the name suggests, works on the principle of descending along

the direction given by gradient to attain the minimum value. However, sometimes, this may

lead to local minima instead of global minima. This method also encounters other issues

which will be discussed later. We will also review the techniques used for overcoming these

drawbacks and then present the various modified versions of the Gradient Descent algorithm

which were implemented to overcome these drawbacks.

Gradient Descent and its various modified forms as presented in [3], give an overview of all

the optimization algorithms based on gradient descent. The basic idea behind the Gradient

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 6

Descent algorithm is to minimize the value of a convex function by moving along the

gradients. This involves calculating the direction of the gradients from the given point and

then taking a step along the direction of steepest descent. As a simple explanation, Gradient

Descent can be considered as moving down the hill starting from any point. If we keep

moving along the steepest downward slope, we will eventually reach the minimum value.

This approach works well unless there is a saddle point or local minima, in which case, the

algorithm may reach the wrong optimum value. These issues are discussed further in this

paper in later sections. These problems associated with standard Gradient Descent led to the

development of various other optimization algorithms which are based on gradient descent,

which are discussed in later sections of this paper.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 7

2. Gradient Descent

The Gradient Descent algorithm is an optimization algorithm for minimizing convex

functions. It works on the principle that if we continue to move in the direction of the steepest

descent from a particular starting point which may be randomly initialized, then we reach the

minimum of the function, provided that the function to be minimized is differentiable at

every point and convex. The direction of steepest descent is calculated by taking the negative

of the gradient of the function, evaluated at that point. This can be simply viewed as finding

the minimum altitude point in a geographical plane. If we continue to move along the

direction having the steepest descent, then we will eventually reach the point at lowest

altitude. The gradient of the function is taken with respect to the parameters we are updating.

A convex function can be roughly considered as an ‘U’ shaped function with the bottom of

the curve representing the minimum of the function. If we start at any point on this ‘U’

shaped function, we can see that the steepest descent at any point always points towards the

bottom minimum of the function. We will see this in more detail in below.

If the function J(θ) is a convex function to be minimized, where θ is the set of parameters on

which the function is dependent and θi is the i-th coordinate of the parameter, then we start by

randomly initializing the values of θi. This value of θi gives us a starting point on the curve of

the function. Now following the Gradient Descent algorithm, the next step is to find the

direction of steepest descent so that we can move towards the minimum. This is done by

finding the derivative of the function with respect to θ, which can be used to minimize J(θ).

This derivative with respect to θ can be represented as a vector with i values. We take these

derivatives by partially differentiating the function with respect to each component and

treating the rest of these variables as constant. If we visualize the function, it would be a

(i+1) dimensional curve, with each θi representing an axis and the i+1st dimension would

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 8

represent the value of function. So, we can say that ‘i’ dimensions are the input of the function

and the (i+1)st dimension is the output. The vector formed by the derivatives of the i input

variables, represents the direction of steepest ascent, that is, it represents the direction in

which the function increases at the maximum rate from that point. Reversing the direction of

this vector gives the vector pointing to the direction of steepest descent. This direction

represented by the reversed vector is the direction we move along, so as to reach the

minimum value of the function. However, this reversed vector only gives the direction in

which we are supposed to move. The magnitude by which we are supposed to take a step in

that direction is calculated by multiplying the magnitude of the gradient in that direction by a

constant called the learning rate.

This learning rate is a constant value, which is the same for updates along every direction.

The learning rate is fixed through the entire algorithm. The use of the learning rate is to avoid

overstepping in a particular direction, where the point leading to the actual minima is

skipped.

If ∇θJ(θ) is the gradient of 𝐽(𝜃) with respect to 𝜃, then we update the variables in every

iteration by using,

θi ← θi - lr * ∇θ J(θ).

Here, lr is the learning rate and the negative sign reverses the direction of the gradients to get

the direction of maximum descent.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 9

Figure (1) Shows the sign of derivatives for a function at various points. Source -

(https://miro.medium.com/max/1400/1*jNyE54fTVOH1203IwYeNEg.png)

Figure (1) visualizes the Gradient Descent algorithm and shows how the gradient changes

across the minima and the direction in which the algorithm moves. In this image, the

parameters 𝜃 are represented by 𝑊. Gradient Descent works on convex functions because

they have a unique minimum. Consider the function J(θ). Suppose that J has a local minimum at

θ and also another local minimum at Φ with the condition that

J(θ) ≤ J(Φ) ; θ≠Φ. (equation 1)

The definition of strict convexity is,

J(h * θ + (1 − h) * Φ) < h * J(θ)+(1−h) * J(Φ) ; 0 < h < 1

Since h is positive,

J(θ) ≤ J(Φ) ⇒ h * J(θ) ≤ h * J(Φ),

which justifies the condition below,

https://miro.medium.com/max/1400/1*jNyE54fTVOH1203IwYeNEg.png

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 10

h * J(θ)+(1−h) * J(Φ) ≤ h * J(Φ) + (1−h) * J(Φ).

This gives,

h * J(θ)+(1−h) * J(Φ) ≤ J(Φ).

Replacing this condition with the definition of convexity,

J(h * θ+(1−h) * Φ) < J(Φ).

Since lim
ℎ→0

ℎ𝛩 + (1 − ℎ)𝛷 = 𝛷, for sufficiently small h, there is an 𝑥 = ℎ𝛩 + (1 − ℎ)𝛷 that is

arbitrarily close to Φ for which we have J(x) < J(Φ). However, this contradicts the minimality of

J(Φ). Thus it must be that θ = Φ, which shows that J has at most one local minimum.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 11

a. Impact of initialization on gradient descent

After seeing how the Gradient Descent algorithm works, now it’s time to discuss some

important factors related to the algorithm which may affect its performance. While starting

the algorithm, the value of the input variables θ is randomly initialized. However, this random

initialization can lead to the algorithm failing to optimize the given function.

Suppose, there is a function with many minima. The local minima are just minimum values

when compared to their surrounding values. When a function is optimized to find its

minimum value, the goal is to reach the global minimum, but the random initialization of the

points in the first step of the algorithm may result in Gradient Descent converging to a local

minimum.

As an example, consider the image shown below in Figure (2), it shows the graph of a

random hypothetical function which is dependent on only one variable. The graph of the

function can be represented in two dimensions. The x-axis in the figure represents the input

variable θ and the y-axis in the figure represents the value of the function J, at that point. As

can be seen, this function has two minima, the left minimum is the global minimum and the

desired result after optimization, and the right minimum is just a local minimum. Four points

are marked on this graph using different colors.

Suppose the variable is initialized to get the function value at the blue point; the direction of

steepest descent at this point is towards the left side. Hence, the Gradient Descent algorithm

would optimize the function to achieve the minimum value shown by the green point, and

this indeed is the actual global minimum of the function. However, if the variable is

initialized to get the point indicated by red point, the steepest descent is towards the right

side. Following this rule of steepest descent, we would reach the value indicated by orange

point as the minimum. However, this orange point is a local minimum and not the actual

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 12

optimum. In fact, any initialization resulting in the value of function to the right of the peak

between blue and red point would result in the same local minima indicated by the orange

point. This is a drawback of the algorithm, as the solution given by the algorithm does

depends upon the initialization of the variables. A proper initialization would result in the

actual global minima or the optimum value we were looking for, however a wrong

initialization would result in wrong optimized value. However, if other factors are working

fine, we will reach either a global or local minima in any case.

Figure (2) Graph of a function with four points marked having different gradients

b. Impact of the learning rate

The learning rate is a constant value which determines the length of the step the function is

supposed to take while following the direction of steepest descent. The value of the learning

rate can greatly impact the results of the Gradient Descent algorithm. In the conventional

implementation of gradient descent, the value of learning rate is kept constant throughout the

entire algorithm.

Why is the learning rate used? After calculating the gradient and reversing its direction, the

direction of steepest descent from that point is reached. However, how much is the point

supposed to move along this direction? Should it continue to move forever along this same

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 13

direction until we reach the minimum value? This problem is solved by the concept of

learning rate. If we take a closer look at the function from the above example, we can see that

the direction to the steepest descent in the function graph, changes after some significant

interval. This implies that as soon as the point moves along the direction maximum descent,

the direction to maximum descent at this new point has changed. And for a convex

continuous function, this value may change at every infinitely small change in the parameters

or the input variables. This problem of choosing the step size at every point so as to reach the

minimum value is solved by learning rate. The learning rate multiplied by the gradient gives

the updated value to which we are supposed to move. Then from this next point, the direction

and the step size can be calculated. The learning rate can be considered as the rate at which

the algorithm moves towards the minimum value.

Choosing an appropriate value for learning rate is important. If there is an extremely large

value of learning rate, then it may happen that the algorithm never reaches the optimum value

and just keeps bouncing over the minima. This can even lead to the function value increasing

as the algorithm goes on, in case the learning rate is way too large.

Similarly, a learning rate that is extremely small isn’t good either as it can also lead to poor

results (as gradient descent never reaches the minima, in case we define the algorithm to end

after certain fixed number of steps) or unnecessarily large number of computation steps. A

learning rate with a too small value would result in the algorithm, converging really slowly

and it may happen that the algorithm never even reaches the minimum value and just gets

stuck at a point which is really far from the desired value.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 14

Figure (3) A image comparing Gradient Descent iteration on same function using big and

small learning rate. Source -

(https://miro.medium.com/max/1400/0*QwE8M4MupSdqA3M4.png)

Figure (3) represents the effect of learning rate while minimizing a simple ‘U’ shaped

function using gradient descent. As we can see, in the first part, a large value of learning rate

actually resulted in diverging away from the minima. And in the second part of the image, it

resulted in updated being really small and not reaching the minimum value. Hence, it’s

important to choose the learning rate for the algorithm carefully or it may result in a non-

optimum value.

c. Number of iterations

The number of iterations for the Gradient Descent algorithm refers to the number of times the

value of the parameters or the input variables is updated to converge to the optimum value. It

depends on the complexity of the function to be minimized and the distance of the initial

random initialization from the optimum value. If the initialization was made close to the

https://miro.medium.com/max/1400/0*QwE8M4MupSdqA3M4.png

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 15

minimum value, the optimum value can be reached using a small number of iterations.

However, for more complex functions with initial value far from the optimum value, more

iterations are needed. Hence, it is always a good idea to have a sufficiently large number of

iterations, because the optimum value is reached, then further iteration would keep the value

close to the minimum as the gradients become too small and almost zero near the minima,

hence, the updates are small too.

After seeing how Gradient Descent works and the various aspects of this algorithm, now it is

time to see how the problems mentioned above and other problems related to this algorithm

are resolved.

Figure (4) Figure showing the movement of Gradient Descent with red points for the first few

iterations and blue for high number of iterations

Figure (4) shows the effect of number of iterations. If a small number of iterations is used,

then the algorithm may stop at a point before reaching the minimum, which is shown by the

orange points, whereas the purple points represent how the convergence would have

continued for a sufficiently large value of number of iterations, which can be seen,

successfully reaches the minimum of the function.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 16

d. Solving random initialization problem:

In above section it was observed that the random initialization in the beginning of the

algorithm can sometimes result in it converging to a local minimum. This problem can be

solved by repeating the entire algorithm 𝑛 number of times, using different random

initialization from throughout the domain of the function. If 𝑛 initialization points are used,

which are randomly spread throughout the domain, then after running the gradient descent, if

the function to be minimized has more than one minimum, then every initialization would

converge to the minimum which is followed by the steepest descent from that point. The final

optimum value could be the minimum of all these optimum values. A uniform probability

distribution can be used to generate the initial random values and then optimize them using

Gradient Descent and finally select the minimum of all the results [2]. The number of

initializations to test depends on the task. If the function is highly complicated or has a high

degree, then it’s possible that it may have a large number of local minima. In this case, the

value of 𝑛 should be large as the chances of the result getting stuck to the local minima is

very high. For fairly simple function, we can keep the value of 𝑛 small.

If 𝐽(𝜃) is the function to be minimized and opt(𝐽(𝜃)) represents the optimum value of the

function 𝐽(𝜃) with an initialization of θ using Gradient Descent then,

Optimum value = min(opt(J(θi))) for i in range 1 to n,

where, θi represents a sample from uniform probability distribution.

However, even this does not guarantee that the optimum value achieved would be the global

minimum; this method just increases the chances of getting a global minima. We can never

be really sure about the global minima, if the function to be optimized has a very high degree.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 17

e. More effective learning rate:

One major issue with Gradient Descent algorithm is choosing a learning rate to descend in

the direction of steepest slope. Having too large or small of a learning rate can prevent the

algorithm from converging to the right point.

A solution to this problem is to modify the technique to decrease the learning rate as we get

closer to the minimum. This is a modification done to make gradient descent work better.

However, it is not known where the minima are until the algorithm converges. But it is

known that the point in focus keeps on moving closer to the minimum value as the algorithm

progresses, provided that we don’t have a very large learning rate. This can be done by

decreasing the learning rate with each iteration. This would lead to the algorithm taking

smaller and smaller step as it reaches the minimum value. Various methods for decaying the

learning rate with the passing iteration can be used. For example, we can decay the learning

rate based on the number of iterations, the new learning rate decays with increasing number

of iterations.

𝑙𝑟𝑡 =
𝑘

𝑡

Here, lrt is the learning rate at iteration t and k represents a constant which is also the initial

learning rate.

f. Other drawbacks with gradient descent:

Despite the solutions discussed above to some of the problems faced by gradient descent,

there are still other problems which persist and are not solved by the methods discussed

above. These problems are mainly associated with high dimensional functions and saddle

points.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 18

g. High dimensional function:

If the function to be optimized is a high dimensional function, that is, a function which is

dependent on many variables, and the conventional Gradient Descent algorithm is used, the

same learning rate will be applied to all components at once, as a vector, in every step. Even

if decaying learning rate is used, the learning rate used at one particular step would be same

for all directions.

But it may be the case that some components of variable affect the function at a far greater

range than other variables. As in a slight change in some variable may result in a large change

in the function, whereas, a drastic change in certain variables may lead to negligible change

in the function. This may be because the variable affecting the function by greater amount

may have a larger coefficient or the function might be dependent on higher degree for this

variable. If that is the case, we might want to update the variables with different effects on the

function by different learning rates. This is one major problem with the Gradient Descent

algorithm.

h. Saddle points

A saddle point, also known as minimax point, is a point on the surface of the graph of a

function where the derivatives or the slopes of the function in orthogonal directions are all

zero, but this point is not a local extremum of the function. At a saddle point, the various

directions disagree about whether the point is a minima or maxima. So even though the point

is a stable point, and is not an inflection point, it cannot be a local minimum or a local

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 19

maximum. When we apply Gradient Descent algorithm at this point, the algorithm actually

gets stuck at this point with no further update. This leads to wrong convergence.

To solve the above-mentioned problem with the Gradient Descent algorithm, various

modified algorithms have been made available. This makes these modified versions of

Gradient Descent work more efficiently and effectively. All these modified algorithms

however still use the original Gradient Descent algorithm as their base. These algorithms

have been derived by modifying certain aspects of the Gradient Descent algorithm, like the

updating formula or the learning rate.

Figure (5) A surface with a saddle point.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 20

3. Application of gradient descent

The following is an example minimizing the function J using standard Gradient Descent (sgd).

𝐽(𝜃) = (2𝜃1
2 − 5𝜃1 + 4 + 𝜃3

2𝜃4 −
2𝜃3 + 3𝜃4

𝜃2
+ 6𝜃2)/(𝜃3 ∗ 𝜃4)

From the value of J(θ) it can be observed that Gradient Descent works well for this equation

and the value of J(θ) continuously keeps on decreasing with every step. The code shown in

Appendix A-1 iterates the standard gradient descent algorithm.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 21

4. Momentum

Gradient Descent algorithm encounters difficulties when the surface of the function to be

minimized has steeper curves in one direction as compared to others. These surfaces are also

called ravines. When this happens, Gradient Descent keeps on oscillating across the slopes in

the ravine and makes slow progress towards the actual minima.

When momentum is applied to the algorithm, it reduces the oscillations as it dampens them.

Momentum is applied by adding a fraction of the last update vector to the current update

vector. This gives Gradient Descent with momentum algorithm [6].

This can be compared to a ball rolling downhill. When a ball rolls downhill, it keeps on

gaining velocity as it goes down. This gain in velocity results because of the moment of the

ball going downward. At any given point, the movement of the ball not only depends on the

slope at that point, but also on the direction of velocity attained by the ball because of the

previous points.

The momentum term increases the update for the dimensions where the gradients point in the

same direction and it reduces the update for the dimensions whose gradients direction keeps

on changing. This results in less oscillation and makes the algorithm converge faster.

The updating formula used for momentum with Gradient Descent is,

vt = 𝛾 * vt-1 + lr * ∇θ J(θ)

θ ← θ − vt-1.

Here, 𝛾 is the momentum term which decides the fraction of the previous term to be added to

the next term, lr represents the learning rate, and vt is called the momentum term at step t.

The value of 𝛾 determines how much the last update will affect the current update. A high

value of 𝛾 would mean that the next update would be highly dependent on the last update and

a low value of 𝛾 would mean the opposite. If we put 𝛾 as zero, we get the standard Gradient

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 22

Descent algorithm, that is, the past update will no longer affect the current update. Usually a

value of 0.9 is used for 𝛾.

Figure (6) Figure comparing Gradient Descent without(a) and with(b) momentum. Source -

(https://ars.els-cdn.com/content/image/1-s2.0-S1319157818300636-gr2.jpg)

Figure (6) shows the effect of adding momentum to the Gradient Descent algorithm. Part a. is

Gradient Descent without momentum. Part b. is Gradient Descent with momentum. We can

see that the second figure converges faster as it reaches the minima point with fewer updates.

Consider the function,

𝐽(𝜃) = (2 ∗ 𝜃1
2− 5 ∗ 𝜃1 + 4 + 𝜃3

2 ∗ 𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4)

From the value of J(θ) it can be observed that the momentum works better than standard

Gradient Descent and reaches a more minimal point in the same number of iterations. See

Appendix A-2.

https://ars.els-cdn.com/content/image/1-s2.0-S1319157818300636-gr2.jpg

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 23

5. Nesterov accelerated gradient

Gradient Descent with momentum helped in solving certain problems. However, one problem

remaining is that if momentum is given to the point by considering the past update, it may

happen that after reaching the minima, the point would continue to move upward because of

the momentum due to its past update. This problem is solved by using Nesterov accelerated

Gradient Descent algorithm [1], as it also computes an approximate future value of the next

position of the parameters.

Comparing this Nesterov accelerated gradient with momentum gradient descent, it can be

seen that momentum Gradient Descent calculates the current gradient value and then moves

the point in the direction of the accumulated gradient formed by combining this past and

present gradients. Whereas, Nesterov momentum first takes a move in the direction of the

accumulated gradients from the past and then calculates a rough approximate value of the

future gradient. It then uses this future approximate value to correct its path. This prevents the

algorithm to move too fast in a particular direction. This proves helpful in case the direction

of the gradient along the direction with maximum momentum changes.

As an analogy, if a ball keeps on falling down the hill, when it reaches the minimum point, it

doesn’t stop there, but instead continues to move upwards because of the past accumulated

gradients. This happens because the momentum achieved by the ball has no sense of future

position of the ball, but just the past. In the Nesterov accelerated Gradient Descent algorithm,

this problem is solved by finding an approximate value for the future position. So, the ball

rolling downhill actually has an idea that the direction of gradient is going to change, so it

corrects the direction of its movement. This solves the problem faced by momentum Gradient

Descent and results in more sensible updates in the direction of the movement of the point.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 24

Modifying the update methods used for momentum, the updating formula used for Nesterov

accelerated Gradient Descent are,

vt = 𝛾 * vt-1 + lr * ∇θJ(θ − 𝛾 * vt−1)

θ ← θ − vt

The notations used in the above equation are the same as that used for momentum algorithm.

As can be seen when the term 𝜃 – 𝛾 ∗ 𝑣𝑡−1 is computed, which gives a rough approximation

of the updated position of the parameters. This is called an approximate value, as it does not

contain the gradient term. With the exception of the gradient term, this formula is similar to

the momentum Gradient Descent updating formula. The value of gradients is then found at

this point, which is approximated future value and multiply it by learning rate, then add it to

the term which represents past update, the same as in momentum with gradient descent. This

final value calculated is then used for updating the parameters.

Figure (7) Comparing Momentum and Nesterov accelerated gradient. Source -

(https://i.stack.imgur.com/wBIpz.png)

In Figure (7) the combined blue vector shows the update using normal momentum algorithm.

The first small blue vector from point ‘O’ represents the value of movement from the current

gradient. The next blue vector from the tip of current blue vector, represents the movement

because of past updates. The combined blue vectors give the direction of the movement. The

brown vector shows the update because of the accumulated movements from the past

https://i.stack.imgur.com/wBIpz.png

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 25

updates. The red small vector gives the correction vector, which is the approximate value of

the future. This is then added to the previous brown vector to correct its direction. The green

vector then gives the direction of the final update. Two updates are illustrated in the above

image for Nesterov momentum.

Consider the function,

𝐽(𝜃) = (2 ∗ 𝜃1
2− 5 ∗ 𝜃1 + 4 + 𝜃3

2 ∗ 𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4)

From this output it can be observed that Nesterov worked better than the Momentum

algorithm, reaching a minimum value of 4.9902086

From the value of J(θ) it can be observed that Nesterov worked better than the Momentum

algorithm, reaching a minimum value of 4.9902086. See Appendix A-3.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 26

6. Adagrad

The next update in the Gradient Descent algorithm is Adagrad [2]. This variant of Gradient

Descent uses different learning rates for different components of the variable. The previous

versions performed the update for every direction at the same time, as the learning rate was

the same for all of them. But as Adagrad uses different learning rate for each component, we

perform individual updates for all the directions.

One benefit of using Adagrad is that it does not require the learning rate lr to be changed for

every time step t when an update is made as the learning rate is modified for every

component at every time step.

The update formula used in Adagrad is,

gt,i = ∇θt J(θt,i)

Here, gt,i is the gradient of the function with respect to parameter θi at time step t. This

gradient is then used to update the value of θi to get the next updated value which is θi+1 using

the given formula,

θt+1,i = θt,i − lr * gt,i

The value of lr in the above formula is updated for every value of θi at every time step t, so

that the learning rate is different for each θi. The modified learning rate for every parameter is

computed by,

θt+1,i = θt,i − lr /((Gt,ii +ε)^(1/2)) *gt,i

Here, the extra term (𝐺𝑡,𝑖𝑖 + 𝜀)
1

2 takes care of changing the learning rate.

In the above mentioned formula, Gt,ii is the sum of squares of gradients of the function to be

minimized with respect to θ, for all time step up to t. It also may happen that this term may

become zero, hence, to avoid division by zero, we add the term ε.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 27

Figure (8) Graph comparing Gradient Descent and Adagrad for minimizing the error in a

neural network where �̂� is the predicted value and x* is the true value which the neural

network is trying to learn. Source -

(https://akyrillidis.github.io/notes/AdaGrad/GDvsAdaGrad2.png)

Figure (8) shows a comparison between Gradient Descent and Adagrad for minimizing a

function. As we can see, the Adagrad algorithm performs a lot better than the standard

Gradient Descent algorithm and reaches an error value which is much smaller than the

gradient descent.

One major drawback with this algorithm lies in its adaptive learning rate. The learning rate is

divided by the square root of the term Gt,ii which keeps on accumulating, that is, with every

https://akyrillidis.github.io/notes/AdaGrad/GDvsAdaGrad2.png

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 28

update or iteration the gradient keeps on adding, which makes this value very large. Dividing

lr by this very large value decreases the value of learning rate to an infinitesimally small

number. Eventually when the number of updates is too large, this value becomes so small that

the algorithm is not able to update the parameters further as the update becomes almost

negligible.

Consider the function,

𝐽(𝜃) = (2 ∗ 𝜃1
2− 5 ∗ 𝜃1 + 4 + 𝜃3

2 ∗ 𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4)

From the value of J(θ) it can be observed that Adagrad did not provide any exceptional result

while minimizing the function. See Appendix A-4.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 29

7. RMSprop

RMSprop has been developed with the goal overcoming the problem of diminishing updates

in Adagrad [4]. In the presence of saddle points, the RMSprop algorithm goes straight down

the slope even if the gradients are very small. The scaling of learning rate in RMSprop helps

it to move through saddle points faster than any other algorithm seen above.

The update formula used in RMSprop are,

E[g 2]t = 0.9 * E[g 2]t−1 + 0.1 * gt
2

 θt+1 = θt − lr * p/((E[g 2]t + ε) ^(1/2))* gt

Here, the term 𝐸[𝑔2]𝑡 accumulates the sum of squares of gradients up to time 𝑡 and lr is the

learning rate used for updating the parameters.

Consider the function,

𝐽(𝜃) = (2 ∗ 𝜃1
2− 5 ∗ 𝜃1 + 4 + 𝜃3

2 ∗ 𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4)

From the value of J(θ) it can be observed that RMSprop actually attains the lowest minimum

value of all the algorithms discussed until now. See Appendix A-5.

RMSprop suffers from the same problem as the standard gradient descent. When the slope

becomes steeper in one dimension as compared to other, the algorithm keeps on oscillating in

that direction because of larger updates in that dimension and smaller in others. The

momentum algorithm solved this problem with gradient descent. This problem in RMSprop

is solved by combining it with the RMSprop algorithm, which gives the Adam algorithm.

Adam uses momentum to solve this drawback of RMSprop by combining both of them in its

updation rule.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 30

8. Adam

Adam stands for Adaptive Moment Estimation. This method also computes and adapts

learning rate for each parameter separately [7]. Adam can be considered as a union of

Adadelta and Momentum. Like the Adadelta algorithm, Adam also uses the exponentially

decaying average of sum of squares of past gradients and similar to momentum algorithm, it

also uses exponentially decaying average of gradients from the past iterations.

𝑚𝑡 = 𝛽1 ∗ 𝑚𝑡−1 + (1 − 𝛽1) ∗ 𝑔𝑡

𝑣𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2) ∗ 𝑔2

In the above formulas, mt computes the exponentially decaying sum of gradients from the

past, and vt computes the sum of squares of gradients from past with an exponential decay.

In the initial iteration, mt and vt are initialized with zero, they become biased towards zero in

the initial iterations, especially when the decay rates β1 and β2 are too small, where β1 and β2

are manually chosen constants. To overcome this problem, instead of using mt and vt for

updating the value of parameters, we slightly modify both of these vectors by,

�̂�𝑡 =
𝑚𝑡

(1 − 𝛽1
𝑡)

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡

The values of �̂�𝑡 and 𝑣𝑡 are then used to update the value of the parameters associated with

the function by using,

𝜃𝑡+1 = 𝜃𝑡 −
𝑙𝑟

(�̂�𝑡 + 𝜀)
1
2

∗ (�̂�𝑡)

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 31

Figure (9) Graph comparing accuracy of various algorithms for optimizing a neural network.

Source- (https://shaoanlu.files.wordpress.com/2017/05/trn_acc.png?w=788)

Figure (9) shows the graph of training accuracy of a neural network with the number of

epochs which is nothing but number of iterations for minimizing the error in a neural

network, by using various optimization algorithms for a machine learning problem. As we

can see, the Adam optimization performs the best and beats every other optimization

algorithm.

Consider the function,

𝐽(𝜃) = (2 ∗ 𝜃1
2− 5 ∗ 𝜃1 + 4 + 𝜃3

2 ∗ 𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4)

From the value of J(θ) it can be observed that Adam worked better than most of the

algorithms discussed above and reached a minimum value of 2.8517976. See Appendix A-6.

https://shaoanlu.files.wordpress.com/2017/05/trn_acc.png?w=788

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 32

9. AdaMax

AdaMax is a variant of the Adam optimizer [3]. AdaMax offers the advantage of being much

less sensitive to the hyper-parameters, that is, the learning rate and the constants that are

manually chosen while using an optimizer.

Adam updating formula scales the gradient by the l2 norm of past gradients, as well as the

current gradients by calculating,

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)‖𝑔𝑡‖
2

For large order norms, the values become numerically unstable, which is why norms of order

1 and 2 are usually used. However, it is observed that a norm of infinite order is also stable.

This property is used to modify adam optimization to get the AdaMax optimizer. The

updating formula for AdaMax is,

𝑢𝑡 = 𝛽2 ∗ 𝑣𝑡−1 + (1 − 𝛽2)‖𝑔𝑡‖
∞

The above can be simplified to get,

𝑢𝑡 = 𝑚𝑎𝑥 (𝛽2 ∗ 𝑣𝑡−1, ‖𝑔𝑡‖)

This value of ut can then be used in the updating formula rule of adam to get the final

updating formula of AdaMax,

θt+1 = θt − (lr / ut)*m t

It can be seen that the value of ut depends on the max operation, it is not biased towards zero,

hence it is not necessary to update the value of ut to avoid this formula unlike Adam.

Consider the function,

𝐽(𝜃) = (2 ∗ 𝜃1
2− 5 ∗ 𝜃1 + 4 + 𝜃3

2 ∗ 𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4)

From the value of J(θ) it can be observed that Adamax performed exceptionally well by

reaching a minimum value of -1551.8826 but then the value started to move upwards which

can be due to large learning rate. See Appendix A-7.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 33

10. Nadam

As observed in the previous sections, Adam is a combination of Adadelta and momentum

algorithm. It was also observed that Nesterov accelerated momentum works better than the

simple momentum algorithm. Nadam [6] combines Adam and Nesterov accelerated

momentum. This is done by simple modifying the momentum term in Adam.

The momentum update rule is,

𝑔𝑡 = 𝛻𝜃𝑡 𝐽(𝜃𝑡)

𝑚𝑡 = 𝛾 ∗ 𝑚𝑡−1 + 𝑙𝑟 ∗ 𝑔𝑡

𝜃𝑡+1 = 𝜃𝑡 − 𝑚𝑡

This momentum formula is then modified to get the formula for Nesterov accelerated

momentum formula,

𝑔𝑡 = 𝛻𝜃𝑡𝐽(𝜃𝑡 − 𝛾 ∗ 𝑚𝑡−1)

𝑚𝑡 = 𝛾 ∗ 𝑚𝑡−1 + 𝑙𝑟 ∗ 𝑔𝑡

𝜃𝑡+1 = 𝜃𝑡 − 𝑚𝑡

The writers of this paper were advised to use look ahead momentum directly, to modify the

parameters instead of using the momentum step twice. This results in the modified formula

for Nesterov accelerated momentum,

𝑔𝑡 = 𝛻𝜃𝑡 𝐽(𝜃𝑡)

𝑚𝑡 = 𝛾 ∗ 𝑚𝑡−1 + 𝑙𝑟 ∗ 𝑔𝑡

𝜃𝑡+1 = 𝜃𝑡 − (𝛾 ∗ 𝑚𝑡 + 𝑙𝑟 ∗ 𝑔𝑡)

Instead of using the momentum from the past term to update the parameters, the update from

the current term was used.

If the Adam updation rule is expanded, the result is,

𝜃𝑡+1 = 𝜃𝑡 − 𝑙𝑟((𝑣𝑡 + 𝜀)1/2) ∗ (𝛽1�̂�𝑡−1 + (1 − 𝛽1) ∗
𝑔𝑡

1 − 𝛽1
)

Nesterov accelerated momentum can be added to this formula by replacing the past

momentum term �̂�𝑡−1 with the current momentum term of �̂�t to get the Nadam updation

rule,

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 34

𝜃𝑡+1 = 𝜃𝑡 − 𝑙𝑟((𝑣𝑡 + 𝜀)1/2) ∗ (𝛽1�̂�𝑡 + (1 − 𝛽1) ∗
𝑔𝑡

1 − 𝛽1
)

Consider the function,

𝐽(𝜃) = (2 ∗ 𝜃1
2− 5 ∗ 𝜃1 + 4 + 𝜃3

2 ∗ 𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4)

From the value of J(θ) it can be observed that Nadam reached a minimum value close to 1.53

but then again, it started to move upwards like Adamax and ended up with a value of 2.88 by

the end of 10 iterations. See Appendix A-8.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 35

Conclusion

In this paper, the Gradient Descent algorithm, which is an optimization algorithm for finding

the minimum value of a function was analyzed. The drawbacks of this method and how they

are overcome were observed. Problems still remaining with the Gradient Descent algorithm

and various other modified algorithms for optimization which are based on Gradient Descent

and their problems and strengths were observed.

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 36

Appendix A

1. The code shown below iterates the standard gradient descent algorithm

Python Code:

import tensorflow as tf

theta1 = tf.Variable(10.0, trainable=True)

theta2 = tf.Variable(2.0, trainable=True)

theta3 = tf.Variable(3.0, trainable=True)

theta4 = tf.Variable(15.0, trainable=True)

f_x =(2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2

+theta4*3)/theta2 + theta2*6)/(theta3*theta4)

loss = f_x

opt = tf.train.GradientDescentOptimizer(0.1).minimize(f_x)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 for i in range(10):

 print(sess.run([theta1,theta2,theta3,theta4,loss]))

 sess.run(opt)

If this function is minimized using Gradient Descent algorithm, the following output is

obtained for the first 10 iterations in the format of [θ1, θ2, θ3, θ4, J(θ)].

Output:
[10.0, 2.0, 3.0, 15.0, 6.1222224]

[9.922222, 1.9583334, 3.0062964, 15.024148, 6.0384607]

[9.845421, 1.9155577, 3.009418, 15.047722, 5.955703]

[9.769498, 1.8715187, 3.0096257, 15.07076, 5.8734064]

[9.6943655, 1.8260425, 3.0071359, 15.093296, 5.7910576]

[9.619946, 1.7789302, 3.0021262, 15.11536, 5.7081537]

[9.546166, 1.7299496, 2.9947407, 15.136979, 5.624166]

[9.472961, 1.6788257, 2.9850924, 15.158175, 5.5385194]

[9.4002695, 1.6252266, 2.9732645, 15.17897, 5.4505467]

[9.328033, 1.568744, 2.9593098, 15.199381, 5.3594427]

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 37

2. The code shown below iterates the gradient descent algorithm with momentum.

Python Code:

import tensorflow as tf

theta1 = tf.Variable(10.0, trainable=True)

theta2 = tf.Variable(2.0, trainable=True)

theta3 = tf.Variable(3.0, trainable=True)

theta4 = tf.Variable(15.0, trainable=True)

f_x =(2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2

+theta4*3)/theta2 + theta2*6)/(theta3*theta4)

loss = f_x

opt = tf.train.MomentumOptimizer(0.1, momentum = 0.3).minimize(f_x)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 for i in range(10):

 print(sess.run([theta1,theta2,theta3,theta4,loss]))

 sess.run(opt)

If this function is minimized using the momentum algorithm, the following output is obtained

for the first 10 iterations in the format of [θ1, θ2, θ3, θ4, J(θ)],

Output:
[10.0, 2.0, 3.0, 15.0, 6.1222224]

[9.922222, 1.9583334, 3.0062964, 15.024148, 6.0384607]

[9.822087, 1.9030577, 3.0113068, 15.054966, 5.930835]

[9.7164135, 1.8420639, 3.0120802, 15.087081, 5.816583]

[9.6101885, 1.7773033, 3.0078099, 15.118888, 5.6998477]

[9.504784, 1.7089179, 2.9985049, 15.149948, 5.580802]

[9.400476, 1.6364149, 2.984409, 15.180176, 5.4583063]

[9.297221, 1.5589616, 2.9657722, 15.209587, 5.33055]

[9.194885, 1.4753927, 2.9427607, 15.238225, 5.194999]

[9.093315, 1.3840795, 2.915415, 15.26613, 5.0479383]

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 38

3. The code shown below iterates the Nesterov accelerated gradient descent algorithm

Python Code:

import tensorflow as tf

theta1 = tf.Variable(10.0, trainable=True)

theta2 = tf.Variable(2.0, trainable=True)

theta3 = tf.Variable(3.0, trainable=True)

theta4 = tf.Variable(15.0, trainable=True)

f_x =(2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2

+theta4*3)/theta2 + theta2*6)/(theta3*theta4)

loss = f_x

opt = tf.train.MomentumOptimizer(0.1, 0.3,use_nesterov =

True).minimize(f_x)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 for i in range(10):

 print(sess.run([theta1,theta2,theta3,theta4,loss]))

 sess.run(opt)

If this function is minimized using Nesterov accelerated gradient, the following output is

obtained for the first 10 iterations in the format of [θ1, θ2, θ3, θ4, J(θ)],

Output:
[10.0, 2.0, 3.0, 15.0, 6.1222224]

[9.898889, 1.9458333, 3.0081851, 15.031393, 6.013454]

[9.792426, 1.8860236, 3.0115807, 15.063991, 5.898785]

[9.685525, 1.8225658, 3.0096164, 15.096223, 5.7823315]

[9.579504, 1.7556536, 3.0024717, 15.127678, 5.664274]

[9.474617, 1.6848506, 2.9904754, 15.158282, 5.5435586]

[9.37081, 1.609394, 2.9739182, 15.188058, 5.4185534]

[9.267948, 1.5282156, 2.9529932, 15.217049, 5.287042]

[9.16588, 1.4398322, 2.9277678, 15.245298, 5.14588]

[9.06445, 1.3421049, 2.8981497, 15.272844, 4.9902086]

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 39

4. The code shown below iterates the Adagrad variant of the gradient descent algorithm

Python Code:

import tensorflow as tf

theta1 = tf.Variable(10.0, trainable=True)

theta2 = tf.Variable(2.0, trainable=True)

theta3 = tf.Variable(3.0, trainable=True)

theta4 = tf.Variable(15.0, trainable=True)

f_x =(2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2

+theta4*3)/theta2 + theta2*6)/(theta3*theta4)

loss = f_x

opt = tf.train.AdagradOptimizer(0.1).minimize(f_x)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 for i in range(10):

 print(sess.run([theta1,theta2,theta3,theta4,loss]))

 sess.run(opt)

If this function is minimized using Adagrad, the following output is obtained for the first 10

iterations in the format of [θ1, θ2, θ3, θ4, J(θ)],

Output:
[10.0, 2.0, 3.0, 15.0, 6.1222224]

[9.907364, 1.9203434, 3.0195274, 15.060691, 6.0018377]

[9.840183, 1.8561982, 3.0228057, 15.111122, 5.910739]

[9.784887, 1.8004539, 3.016301, 15.155236, 5.833094]

[9.736764, 1.7500898, 3.0034652, 15.194971, 5.763172]

[9.693542, 1.7034986, 2.9865, 15.231447, 5.6982193]

[9.653928, 1.659709, 2.9668767, 15.265378, 5.6366906]

[9.617109, 1.618082, 2.9455829, 15.297251, 5.5776215]

[9.582537, 1.5781717, 2.9232743, 15.327414, 5.520354]

[9.549818, 1.5396513, 2.90038, 15.356125, 5.4644027]

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 40

5. The code shown below iterates the RMSprop variation of the gradient descent

algorithm.

Python Code:

import tensorflow as tf

theta1 = tf.Variable(10.0, trainable=True)

theta2 = tf.Variable(2.0, trainable=True)

theta3 = tf.Variable(3.0, trainable=True)

theta4 = tf.Variable(15.0, trainable=True)

f_x =(2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2

+theta4*3)/theta2 + theta2*6)/(theta3*theta4)

loss = f_x

opt = tf.train.RMSPropOptimizer(0.8).minimize(f_x)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 for i in range(10):

 print(sess.run([theta1,theta2,theta3,theta4,loss]))

 sess.run(opt)

If this function is minimized using RMSprop, the following output is obtained for the first 10

iterations in the format of [θ1, θ2, θ3, θ4, J(θ)],

Output:
[10.0, 2.0, 3.0, 15.0, 6.1222224]

[9.36511, 1.6519765, 3.0530837, 15.202978, 5.4486365]

[8.779703, 1.186784, 2.8852398, 15.376843, 4.635596]

[8.196805, 0.35474062, 2.5559142, 15.535678, 1.3905575]

[7.582406, -2.0904992, 1.4112455, 15.67072, 5.587976]

[6.604772, -2.2830892, 2.8558655, 15.878063, 4.3530188]

[6.1856503, -2.3753843, 2.4671373, 15.948829, 3.930082]

[5.7242384, -2.4813306, 2.115982, 16.016907, 3.505566]

[5.2225194, -2.6035602, 1.8013016, 16.078365, 3.0693698]

[4.685563, -2.7453246, 1.5117476, 16.127918, 2.6082675]

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 41

6. The code shown below iterates the Adam variation of the gradient descent algorithm.

Python Code:

import tensorflow as tf

theta1 = tf.Variable(10.0, trainable=True)

theta2 = tf.Variable(2.0, trainable=True)

theta3 = tf.Variable(3.0, trainable=True)

theta4 = tf.Variable(15.0, trainable=True)

f_x =(2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2

+theta4*3)/theta2 + theta2*6)/(theta3*theta4)

loss = f_x

opt = tf.train.AdamOptimizer(0.8).minimize(f_x)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 for i in range(10):

 print(sess.run([theta1,theta2,theta3,theta4,loss]))

 sess.run(opt)

If this function is minimized using Adam, the following output is obtained for the first 10

iterations in the format of [θ1, θ2, θ3, θ4, J(θ)],

[10.0, 2.0, 3.0, 15.0, 6.1222224]

[9.200001, 1.2000005, 3.799996, 15.799999, 5.2764587]

[8.421813, 0.41791004, 3.26558, 16.558508, 2.7432792]

[7.6467776, -0.17172569, 2.6189187, 17.284792, 11.76774]

[6.8686733, -0.7001622, 2.7730923, 18.02325, 5.673423]

[6.100538, -1.1717173, 2.9014716, 18.729305, 4.6276717]

[5.3514, -1.5871048, 2.939927, 19.388006, 4.086396]

[4.626879, -1.954987, 2.8761785, 19.992569, 3.6687298]

[3.930489, -2.2829752, 2.715311, 20.540276, 3.2696524]

[3.2646527, -2.577186, 2.4678833, 21.030418, 2.8517976]

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 42

7. The code shown below iterates the AdaMax variation of the gradient descent

algorithm.

Python Code:

import tensorflow as tf

theta1 = tf.Variable(10.0, trainable=True)

theta2 = tf.Variable(2.0, trainable=True)

theta3 = tf.Variable(3.0, trainable=True)

theta4 = tf.Variable(15.0, trainable=True)

f_x =(2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2

+theta4*3)/theta2 + theta2*6)/(theta3*theta4)

loss = f_x

opt = tf.contrib.opt.AdaMaxOptimizer(0.5).minimize(f_x)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 for i in range(10):

 print(sess.run([theta1,theta2,theta3,theta4,loss]))

 sess.run(opt)

If this function is minimized using Adamax, the following output is obtained for the first 10

iterations in the format of [θ1, θ2, θ3, θ4, J(θ)],

Output:
[10.0, 2.0, 3.0, 15.0, 6.1222224]

[9.5, 1.5, 3.5, 15.5, 5.5337944]

[9.056901, 1.0570564, 3.2746582, 15.920429, 4.765695]

[8.634653, 0.7260843, 2.9798636, 16.29936, 3.7775757]

[8.22086, 0.47218934, 2.6771438, 16.649302, 2.3131359]

[7.8092017, 0.27379906, 2.4065537, 16.975315, -0.40879026]

[7.396519, 0.11861443, 2.1885688, 17.277468, -8.303569]

[6.9820037, 0.0010245052, 2.0271308, 17.546543, -1551.8826]

[6.566657, -0.086773515, 1.9383408, 17.467293, 22.774347]

[6.152319, -0.16032444, 1.8650105, 17.403164, 14.093249]

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 43

8. The code shown below iterates the Nadam variant of the gradient descent algorithm.

Python Code:

import tensorflow as tf

theta1 = tf.Variable(10.0, trainable=True)

theta2 = tf.Variable(2.0, trainable=True)

theta3 = tf.Variable(3.0, trainable=True)

theta4 = tf.Variable(15.0, trainable=True)

f_x =(2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 -

(theta3*2 +theta4*3)/theta2 + theta2*6)/(theta3*theta4)

loss = f_x

opt = tf.contrib.opt.NadamOptimizer(0.5).minimize(f_x)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 for i in range(10):

 print(sess.run([theta1,theta2,theta3,theta4,loss]))

 sess.run(opt)

If this function is minimized using Nadam, the following output is obtained for the first

10 iterations in the format of [θ1, θ2, θ3, θ4, J(θ)],

Output:
[10.0, 2.0, 3.0, 15.0, 6.1222224]

[9.05, 1.0500008, 3.9499953, 15.949999, 5.1524863]

[8.415877, 0.28182697, 3.2746027, 16.535938, 1.5387307]

[7.822502, -0.3482744, 2.6253784, 17.038128, 8.147704]

[7.2439523, -0.8920035, 2.6691291, 17.566727, 5.4938083]

[6.701645, -1.2484236, 2.5782728, 18.03905, 4.7349067]

[6.1808834, -1.559493, 2.4457068, 18.475872, 4.1901164]

[5.6763115, -1.8375407, 2.2745233, 18.880936, 3.7260313]

[5.1844797, -2.0891466, 2.0679297, 19.255558, 3.296759]

[4.7027717, -2.318992, 1.8304031, 19.599789, 2.882332]

OPTIMIZATION OF MATHEMATICAL FUNCTIONS 44

References

[1] Botev, Aleksandar. Nesterov's Accelerated Gradient and Momentum as Approximations

to Regularised Update Descent. arxiv.org/abs/1607.01981.

[2] Duchi, John. Adaptive Subgradient Methods ForOnline Learning and Stochastic

Optimization. www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.

[3] Fan, Tommy. Co-Attention with Answer-Pointer for SQuADReading Comprehension

Task. web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/reports/2761004.pdf.

[4] Graves, Alex. Generating Sequences With Recurrent Neural Networks.

arxiv.org/abs/1308.0850.

[5] Jaggi, Seema. [PDF] PROBABILITY AND SAMPLING DISTRIBUTIONS - Free

Download PDF. slidex.tips/download/probability-and-sampling-distributions.

[6] Kim, Jihyun. An Effective Intrusion Detection Classifier Using Long Short-Term Memory

with Gradient Descent Optimization.

www.researchgate.net/publication/315638592_An_Effective_Intrusion_Detection_Cl

assifier_Using_Long_Short-Term_Memory_with_Gradient_Descent_Optimization.

[7] Kingma, Diederik P. Adam: A Method for Stochastic Optimization.

arxiv.org/abs/1412.6980.

[8] Ruder, Sebastian. An Overview of Gradient Descent Optimization Algorithms.

arxiv.org/abs/1609.04747.

[9] Sutskever, Ilya. On the Importance of Initialization and Momentum in Deep Learning.

www.cs.toronto.edu/~fritz/absps/momentum.pdf.

	Optimization of Mathematical Functions Using Gradient Descent Based Algorithms
	tmp.1636040804.pdf.dP54B

