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ABSTRACT 

 

Optimization problem involves minimizing or maximizing some given quantity for certain 

constraints. Various real-life problems require the use of optimization techniques to find a 

suitable solution. These include both, minimizing or maximizing a function. The various 

approaches used in mathematics include methods like Linear Programming Problems (LPP), 

Genetic Programming, Particle Swarm Optimization, Differential Evolution Algorithms, and 

Gradient Descent. All these methods have some drawbacks and/or are not suitable for every 

scenario. Gradient Descent optimization can only be used for optimization when the goal is to 

find the minimum and the function at hand is differentiable and convex. The Gradient 

Descent algorithm is applicable only in the case stated above. This makes it an algorithm 

which specializes in that task, whereas the other algorithms are applicable in a much wider 

range of problems. A major application of the Gradient Descent algorithm is in minimizing 

the loss functions in machine learning and deep learning algorithms. In such cases, Gradient 

Descent helps to optimize very complex mathematical functions. However, the Gradient 

Descent algorithm has a lot of drawbacks. To overcome these drawbacks, several variants 

and improvements of the standard Gradient Descent algorithm have been employed which 

help to minimize the function at a faster rate and with more accuracy. In this paper, we will 

discuss some of these Gradient Descent based optimization algorithms. 

 

Keywords: Optimization, Gradient Descent, Convex optimization. 
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 OPTIMIZATION OF MATHEMATICAL FUNCTIONS USING GRADIENT DESCENT 

BASED ALGORITHMS 

1. Introduction 

 

Many real-life problems involve modelling a real-life problem as mathematical functions, 

along with certain constraints with the goal of optimizing it. These optimization problems 

require the user to either minimize or maximize a given function. Some optimization 

problems also have certain constraints. 

Optimization can be simply viewed as selecting certain inputs which result in best outputs or 

the best possible outputs that can be achieved. These optimization problems may also include 

certain constraints. A number of traditional and non-traditional approaches have been 

employed for this task. Some of them are specialized for certain cases, whereas others serve a 

general purpose which work in many scenarios. As an example, some of these approaches 

can be used for minimizing as well as maximizing a function. When it comes to constrained 

optimization, not all of these algorithms are applicable. The goal of discussion here is 

optimizing a function to find its minimum, when we know that the function is convex in 

nature.  

Gradient Descent algorithm as the name suggests, works on the principle of descending along 

the direction given by gradient to attain the minimum value. However, sometimes, this may 

lead to local minima instead of global minima. This method also encounters other issues 

which will be discussed later. We will also review the techniques used for overcoming these 

drawbacks and then present the various modified versions of the Gradient Descent algorithm 

which were implemented to overcome these drawbacks. 

Gradient Descent and its various modified forms as presented in [3], give an overview of all 

the optimization algorithms based on gradient descent. The basic idea behind the Gradient 
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Descent algorithm is to minimize the value of a convex function by moving along the 

gradients. This involves calculating the direction of the gradients from the given point and 

then taking a step along the direction of steepest descent. As a simple explanation, Gradient 

Descent can be considered as moving down the hill starting from any point. If we keep 

moving along the steepest downward slope, we will eventually reach the minimum value. 

This approach works well unless there is a saddle point or local minima, in which case, the 

algorithm may reach the wrong optimum value. These issues are discussed further in this 

paper in later sections. These problems associated with standard Gradient Descent led to the 

development of various other optimization algorithms which are based on gradient descent, 

which are discussed in later sections of this paper. 
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2. Gradient Descent 

 

The Gradient Descent algorithm is an optimization algorithm for minimizing convex 

functions. It works on the principle that if we continue to move in the direction of the steepest 

descent from a particular starting point which may be randomly initialized, then we reach the 

minimum of the function, provided that the function to be minimized is differentiable at 

every point and convex. The direction of steepest descent is calculated by taking the negative 

of the gradient of the function, evaluated at that point. This can be simply viewed as finding 

the minimum altitude point in a geographical plane. If we continue to move along the 

direction having the steepest descent, then we will eventually reach the point at lowest 

altitude. The gradient of the function is taken with respect to the parameters we are updating. 

A convex function can be roughly considered as an ‘U’ shaped function with the bottom of 

the curve representing the minimum of the function. If we start at any point on this ‘U’ 

shaped function, we can see that the steepest descent at any point always points towards the 

bottom minimum of the function. We will see this in more detail in below. 

If the function J(θ)  is a convex function to be minimized, where θ is the set of parameters on 

which the function is dependent and θi is the i-th coordinate of the parameter, then we start by 

randomly initializing the values of θi. This value of θi gives us a starting point on the curve of 

the function. Now following the Gradient Descent algorithm, the next step is to find the 

direction of steepest descent so that we can move towards the minimum. This is done by 

finding the derivative of the function with respect to θ, which can be used to minimize J(θ). 

This derivative with respect to θ can be represented as a vector with i values. We take these 

derivatives by partially differentiating the function with respect to each component and 

treating the rest of these variables as constant. If we visualize the function, it would be a 

(i+1) dimensional curve, with each θi representing an axis and the i+1st dimension would 
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represent the value of function. So, we can say that ‘i’ dimensions are the input of the function 

and the (i+1)st dimension is the output. The vector formed by the derivatives of the i input 

variables, represents the direction of steepest ascent, that is, it represents the direction in 

which the function increases at the maximum rate from that point. Reversing the direction of 

this vector gives the vector pointing to the direction of steepest descent. This direction 

represented by the reversed vector is the direction we move along, so as to reach the 

minimum value of the function. However, this reversed vector only gives the direction in 

which we are supposed to move. The magnitude by which we are supposed to take a step in 

that direction is calculated by multiplying the magnitude of the gradient in that direction by a 

constant called the learning rate.  

This learning rate is a constant value, which is the same for updates along every direction. 

The learning rate is fixed through the entire algorithm. The use of the learning rate is to avoid 

overstepping in a particular direction, where the point leading to the actual minima is 

skipped. 

 

If ∇θJ(θ) is the gradient of 𝐽(𝜃) with respect to 𝜃, then we update the variables in every 

iteration by using, 

θi ← θi - lr * ∇θ J(θ). 

 

Here, lr is the learning rate and the negative sign reverses the direction of the gradients to get 

the direction of maximum descent. 
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Figure (1) Shows the sign of derivatives for a function at various points. Source - 

(https://miro.medium.com/max/1400/1*jNyE54fTVOH1203IwYeNEg.png) 

 

Figure (1) visualizes the Gradient Descent algorithm and shows how the gradient changes 

across the minima and the direction in which the algorithm moves. In this image, the 

parameters 𝜃 are represented by 𝑊.  Gradient Descent works on convex functions because 

they have a unique minimum. Consider the function J(θ).  Suppose that J has a local minimum at 

θ and also another local minimum at Φ with the condition that 

J(θ) ≤ J(Φ) ; θ≠Φ.  (equation 1) 

The definition of strict convexity is, 

J(h * θ + (1 − h ) * Φ) < h * J(θ)+(1−h) * J(Φ) ; 0 < h < 1 

Since h is positive, 

J(θ) ≤ J(Φ) ⇒ h * J(θ) ≤ h * J(Φ), 

which justifies the condition below, 

https://miro.medium.com/max/1400/1*jNyE54fTVOH1203IwYeNEg.png
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h * J(θ)+(1−h) * J(Φ) ≤ h * J(Φ) + (1−h) * J(Φ). 

This gives, 

h * J(θ)+(1−h) * J(Φ) ≤ J(Φ). 

Replacing this condition with the definition of convexity, 

J(h * θ+(1−h) * Φ) < J(Φ). 

Since  lim
ℎ→0

ℎ𝛩 + (1 − ℎ)𝛷 =  𝛷, for sufficiently small h, there is an 𝑥 = ℎ𝛩 + (1 − ℎ)𝛷  that is 

arbitrarily close to Φ for which we have J(x) < J(Φ).  However, this contradicts the minimality of 

J(Φ). Thus it must be that θ = Φ, which shows that J has at most one local minimum. 
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a. Impact of initialization on gradient descent 

 

After seeing how the Gradient Descent algorithm works, now it’s time to discuss some 

important factors related to the algorithm which may affect its performance. While starting 

the algorithm, the value of the input variables θ is randomly initialized. However, this random 

initialization can lead to the algorithm failing to optimize the given function. 

Suppose, there is a function with many minima. The local minima are just minimum values 

when compared to their surrounding values. When a function is optimized to find its 

minimum value, the goal is to reach the global minimum, but the random initialization of the 

points in the first step of the algorithm may result in Gradient Descent converging to a local 

minimum. 

As an example, consider the image shown below in Figure (2), it shows the graph of a 

random hypothetical function which is dependent on only one variable. The graph of the 

function can be represented in two dimensions. The x-axis in the figure represents the input 

variable θ and the y-axis in the figure represents the value of the function J, at that point. As 

can be seen, this function has two minima, the left minimum is the global minimum and the 

desired result after optimization, and the right minimum is just a local minimum. Four points 

are marked on this graph using different colors.  

Suppose the variable is initialized to get the function value at the blue point; the direction of 

steepest descent at this point is towards the left side. Hence, the Gradient Descent algorithm 

would optimize the function to achieve the minimum value shown by the green point, and 

this indeed is the actual global minimum of the function. However, if the variable is 

initialized to get the point indicated by red point, the steepest descent is towards the right 

side. Following this rule of steepest descent, we would reach the value indicated by orange 

point as the minimum. However, this orange point is a local minimum and not the actual 



OPTIMIZATION OF MATHEMATICAL FUNCTIONS 12 

 

optimum. In fact, any initialization resulting in the value of function to the right of the peak 

between blue and red point would result in the same local minima indicated by the orange 

point. This is a drawback of the algorithm, as the solution given by the algorithm does 

depends upon the initialization of the variables. A proper initialization would result in the 

actual global minima or the optimum value we were looking for, however a wrong 

initialization would result in wrong optimized value. However, if other factors are working 

fine, we will reach either a global or local minima in any case. 

 

Figure (2) Graph of a function with four points marked having different gradients 

 

b. Impact of the learning rate 

 

The learning rate is a constant value which determines the length of the step the function is 

supposed to take while following the direction of steepest descent. The value of the learning 

rate can greatly impact the results of the Gradient Descent algorithm. In the conventional 

implementation of gradient descent, the value of learning rate is kept constant throughout the 

entire algorithm. 

Why is the learning rate used? After calculating the gradient and reversing its direction, the 

direction of steepest descent from that point is reached. However, how much is the point 

supposed to move along this direction? Should it continue to move forever along this same 
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direction until we reach the minimum value? This problem is solved by the concept of 

learning rate. If we take a closer look at the function from the above example, we can see that 

the direction to the steepest descent in the function graph, changes after some significant 

interval. This implies that as soon as the point moves along the direction maximum descent, 

the direction to maximum descent at this new point has changed. And for a convex 

continuous function, this value may change at every infinitely small change in the parameters 

or the input variables. This problem of choosing the step size at every point so as to reach the 

minimum value is solved by learning rate. The learning rate multiplied by the gradient gives 

the updated value to which we are supposed to move. Then from this next point, the direction 

and the step size can be calculated. The learning rate can be considered as the rate at which 

the algorithm moves towards the minimum value. 

Choosing an appropriate value for learning rate is important. If there is an extremely large 

value of learning rate, then it may happen that the algorithm never reaches the optimum value 

and just keeps bouncing over the minima. This can even lead to the function value increasing 

as the algorithm goes on, in case the learning rate is way too large. 

Similarly, a learning rate that is extremely small isn’t good either as it can also lead to poor 

results (as gradient descent never reaches the minima, in case we define the algorithm to end 

after certain fixed number of steps) or unnecessarily large number of computation steps. A 

learning rate with a too small value would result in the algorithm, converging really slowly 

and it may happen that the algorithm never even reaches the minimum value and just gets 

stuck at a point which is really far from the desired value.  
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Figure (3) A image comparing Gradient Descent iteration on same function using big and 

small learning rate. Source - 

(https://miro.medium.com/max/1400/0*QwE8M4MupSdqA3M4.png) 

 

Figure (3) represents the effect of learning rate while minimizing a simple ‘U’ shaped 

function using gradient descent. As we can see, in the first part, a large value of learning rate 

actually resulted in diverging away from the minima. And in the second part of the image, it 

resulted in updated being really small and not reaching the minimum value. Hence, it’s 

important to choose the learning rate for the algorithm carefully or it may result in a non-

optimum value. 

 

c. Number of iterations 

 

The number of iterations for the Gradient Descent algorithm refers to the number of times the 

value of the parameters or the input variables is updated to converge to the optimum value. It 

depends on the complexity of the function to be minimized and the distance of the initial 

random initialization from the optimum value. If the initialization was made close to the 

https://miro.medium.com/max/1400/0*QwE8M4MupSdqA3M4.png
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minimum value, the optimum value can be reached using a small number of iterations. 

However, for more complex functions with initial value far from the optimum value, more 

iterations are needed. Hence, it is always a good idea to have a sufficiently large number of 

iterations, because the optimum value is reached, then further iteration would keep the value 

close to the minimum as the gradients become too small and almost zero near the minima, 

hence, the updates are small too. 

After seeing how Gradient Descent works and the various aspects of this algorithm, now it is 

time to see how the problems mentioned above and other problems related to this algorithm 

are resolved. 

 

Figure (4) Figure showing the movement of Gradient Descent with red points for the first few 

iterations and blue for high number of iterations 

 

Figure (4) shows the effect of number of iterations. If a small number of iterations is used, 

then the algorithm may stop at a point before reaching the minimum, which is shown by the 

orange points, whereas the purple points represent how the convergence would have 

continued for a sufficiently large value of number of iterations, which can be seen, 

successfully reaches the minimum of the function. 
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d. Solving random initialization problem: 

 

In above section it was observed that the random initialization in the beginning of the 

algorithm can sometimes result in it converging to a local minimum. This problem can be 

solved by repeating the entire algorithm 𝑛 number of times, using different random 

initialization from throughout the domain of the function. If 𝑛 initialization points are used, 

which are randomly spread throughout the domain, then after running the gradient descent, if 

the function to be minimized has more than one minimum, then every initialization would 

converge to the minimum which is followed by the steepest descent from that point. The final 

optimum value could be the minimum of all these optimum values. A uniform probability 

distribution can be used to generate the initial random values and then optimize them using 

Gradient Descent and finally select the minimum of all the results [2]. The number of 

initializations to test depends on the task. If the function is highly complicated or has a high 

degree, then it’s possible that it may have a large number of local minima. In this case, the 

value of 𝑛 should be large as the chances of the result getting stuck to the local minima is 

very high. For fairly simple function, we can keep the value of 𝑛 small. 

If 𝐽(𝜃) is the function to be minimized and opt(𝐽(𝜃)) represents the optimum value of the 

function 𝐽(𝜃) with an initialization of θ using Gradient Descent then, 

Optimum value = min(opt(J(θi))) for i in range 1 to n, 

where, θi represents a sample from uniform probability distribution. 

However, even this does not guarantee that the optimum value achieved would be the global 

minimum; this method just increases the chances of getting a global minima. We can never 

be really sure about the global minima, if the function to be optimized has a very high degree. 
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e. More effective learning rate: 

 

One major issue with Gradient Descent algorithm is choosing a learning rate to descend in 

the direction of steepest slope. Having too large or small of a learning rate can prevent the 

algorithm from converging to the right point. 

A solution to this problem is to modify the technique to decrease the learning rate as we get 

closer to the minimum. This is a modification done to make gradient descent work better. 

However, it is not known where the minima are until the algorithm converges. But it is 

known that the point in focus keeps on moving closer to the minimum value as the algorithm 

progresses, provided that we don’t have a very large learning rate. This can be done by 

decreasing the learning rate with each iteration. This would lead to the algorithm taking 

smaller and smaller step as it reaches the minimum value. Various methods for decaying the 

learning rate with the passing iteration can be used. For example, we can decay the learning 

rate based on the number of iterations, the new learning rate decays with increasing number 

of iterations. 

𝑙𝑟𝑡 =
𝑘

𝑡
 

Here, lrt is the learning rate at iteration t and k represents a constant which is also the initial 

learning rate. 

 

f. Other drawbacks with gradient descent: 

 

Despite the solutions discussed above to some of the problems faced by gradient descent, 

there are still other problems which persist and are not solved by the methods discussed 

above. These problems are mainly associated with high dimensional functions and saddle 

points. 
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g. High dimensional function: 

 

If the function to be optimized is a high dimensional function, that is, a function which is 

dependent on many variables, and the conventional Gradient Descent algorithm is used, the 

same learning rate will be applied to all components at once, as a vector, in every step. Even 

if decaying learning rate is used, the learning rate used at one particular step would be same 

for all directions. 

But it may be the case that some components of variable affect the function at a far greater 

range than other variables. As in a slight change in some variable may result in a large change 

in the function, whereas, a drastic change in certain variables may lead to negligible change 

in the function. This may be because the variable affecting the function by greater amount 

may have a larger coefficient or the function might be dependent on higher degree for this 

variable. If that is the case, we might want to update the variables with different effects on the 

function by different learning rates. This is one major problem with the Gradient Descent 

algorithm. 

 

h. Saddle points 

 

A saddle point, also known as minimax point, is a point on the surface of the graph of a 

function where the derivatives or the slopes of the function in orthogonal directions are all 

zero, but this point is not a local extremum of the function. At a saddle point, the various 

directions disagree about whether the point is a minima or maxima. So even though the point 

is a stable point, and is not an inflection point, it cannot be a local minimum or a local 
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maximum. When we apply Gradient Descent algorithm at this point, the algorithm actually 

gets stuck at this point with no further update. This leads to wrong convergence. 

To solve the above-mentioned problem with the Gradient Descent algorithm, various 

modified algorithms have been made available. This makes these modified versions of 

Gradient Descent work more efficiently and effectively. All these modified algorithms 

however still use the original Gradient Descent algorithm as their base. These algorithms 

have been derived by modifying certain aspects of the Gradient Descent algorithm, like the 

updating formula or the learning rate. 

 

 

 
Figure (5) A surface with a saddle point. 
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3. Application of gradient descent 

 

The following is an example minimizing the function J using standard Gradient Descent (sgd). 

𝐽(𝜃)  =  ( 2𝜃1
2 −  5𝜃1  +  4 +  𝜃3

2𝜃4 −
2𝜃3 + 3𝜃4

𝜃2
+ 6𝜃2)/(𝜃3 ∗ 𝜃4) 

 

From the value of J(θ) it can be observed that Gradient Descent works well for this equation 

and the value of J(θ) continuously keeps on decreasing with every step. The code shown in 

Appendix A-1 iterates the standard gradient descent algorithm. 
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4. Momentum 

 

Gradient Descent algorithm encounters difficulties when the surface of the function to be 

minimized has steeper curves in one direction as compared to others. These surfaces are also 

called ravines. When this happens, Gradient Descent keeps on oscillating across the slopes in 

the ravine and makes slow progress towards the actual minima. 

When momentum is applied to the algorithm, it reduces the oscillations as it dampens them. 

Momentum is applied by adding a fraction of the last update vector to the current update 

vector. This gives Gradient Descent with momentum algorithm [6]. 

This can be compared to a ball rolling downhill. When a ball rolls downhill, it keeps on 

gaining velocity as it goes down. This gain in velocity results because of the moment of the 

ball going downward. At any given point, the movement of the ball not only depends on the 

slope at that point, but also on the direction of velocity attained by the ball because of the 

previous points. 

The momentum term increases the update for the dimensions where the gradients point in the 

same direction and it reduces the update for the dimensions whose gradients direction keeps 

on changing. This results in less oscillation and makes the algorithm converge faster. 

The updating formula used for momentum with Gradient Descent is, 

vt = 𝛾 * vt-1 + lr * ∇θ J(θ) 

θ ←  θ − vt-1. 

Here, 𝛾 is the momentum term which decides the fraction of the previous term to be added to 

the next term, lr represents the learning rate, and vt is called the momentum term at step t. 

The value of 𝛾 determines how much the last update will affect the current update. A high 

value of 𝛾 would mean that the next update would be highly dependent on the last update and 

a low value of 𝛾 would mean the opposite. If we put 𝛾 as zero, we get the standard Gradient 
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Descent algorithm, that is, the past update will no longer affect the current update. Usually a 

value of 0.9 is used for 𝛾.  

 

 

Figure (6) Figure comparing Gradient Descent without(a) and with(b) momentum. Source - 

(https://ars.els-cdn.com/content/image/1-s2.0-S1319157818300636-gr2.jpg) 

 

Figure (6) shows the effect of adding momentum to the Gradient Descent algorithm. Part a. is 

Gradient Descent without momentum. Part b. is Gradient Descent with momentum. We can 

see that the second figure converges faster as it reaches the minima point with fewer updates. 

Consider the function, 

 

𝐽(𝜃)  =  ( 2 ∗  𝜃1
2− 5 ∗ 𝜃1  +  4 + 𝜃3

2 ∗  𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4) 

 

From the value of J(θ) it can be observed that the momentum works better than standard 

Gradient Descent and reaches a more minimal point in the same number of iterations. See 

Appendix A-2.  

https://ars.els-cdn.com/content/image/1-s2.0-S1319157818300636-gr2.jpg
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5. Nesterov accelerated gradient 

 

Gradient Descent with momentum helped in solving certain problems. However, one problem 

remaining is that if momentum is given to the point by considering the past update, it may 

happen that after reaching the minima, the point would continue to move upward because of 

the momentum due to its past update. This problem is solved by using Nesterov accelerated 

Gradient Descent algorithm [1], as it also computes an approximate future value of the next 

position of the parameters. 

Comparing this Nesterov accelerated gradient with momentum gradient descent, it can be 

seen that momentum Gradient Descent calculates the current gradient value and then moves 

the point in the direction of the accumulated gradient formed by combining this past and 

present gradients. Whereas, Nesterov momentum first takes a move in the direction of the 

accumulated gradients from the past and then calculates a rough approximate value of the 

future gradient. It then uses this future approximate value to correct its path. This prevents the 

algorithm to move too fast in a particular direction. This proves helpful in case the direction 

of the gradient along the direction with maximum momentum changes. 

As an analogy, if a ball keeps on falling down the hill, when it reaches the minimum point, it 

doesn’t stop there, but instead continues to move upwards because of the past accumulated 

gradients. This happens because the momentum achieved by the ball has no sense of future 

position of the ball, but just the past. In the Nesterov accelerated Gradient Descent algorithm, 

this problem is solved by finding an approximate value for the future position. So, the ball 

rolling downhill actually has an idea that the direction of gradient is going to change, so it 

corrects the direction of its movement. This solves the problem faced by momentum Gradient 

Descent and results in more sensible updates in the direction of the movement of the point. 
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Modifying the update methods used for momentum, the updating formula used for Nesterov 

accelerated Gradient Descent are, 

vt = 𝛾 * vt-1 + lr * ∇θJ(θ − 𝛾 * vt−1) 

θ ←  θ − vt  

The notations used in the above equation are the same as that used for momentum algorithm. 

As can be seen when the term 𝜃 –  𝛾 ∗  𝑣𝑡−1 is computed, which gives a rough approximation 

of the updated position of the parameters. This is called an approximate value, as it does not 

contain the gradient term. With the exception of the gradient term, this formula is similar to 

the momentum Gradient Descent updating formula. The value of gradients is then found at 

this point, which is approximated future value and multiply it by learning rate, then add it to 

the term which represents past update, the same as in momentum with gradient descent. This 

final value calculated is then used for updating the parameters. 

 

 

Figure (7) Comparing Momentum and Nesterov accelerated gradient. Source - 

(https://i.stack.imgur.com/wBIpz.png) 

 

In Figure (7) the combined blue vector shows the update using normal momentum algorithm. 

The first small blue vector from point ‘O’ represents the value of movement from the current 

gradient. The next blue vector from the tip of current blue vector, represents the movement 

because of past updates. The combined blue vectors give the direction of the movement. The 

brown vector shows the update because of the accumulated movements from the past 

https://i.stack.imgur.com/wBIpz.png
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updates. The red small vector gives the correction vector, which is the approximate value of 

the future. This is then added to the previous brown vector to correct its direction. The green 

vector then gives the direction of the final update. Two updates are illustrated in the above 

image for Nesterov momentum. 

 

Consider the function, 

𝐽(𝜃)  =  ( 2 ∗  𝜃1
2− 5 ∗ 𝜃1  +  4 + 𝜃3

2 ∗  𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4) 

 

From this output it can be observed that Nesterov worked better than the Momentum 

algorithm, reaching a minimum value of 4.9902086 

 

From the value of J(θ) it can be observed that Nesterov worked better than the Momentum 

algorithm, reaching a minimum value of 4.9902086. See Appendix A-3. 
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6. Adagrad 

 

The next update in the Gradient Descent algorithm is Adagrad [2]. This variant of Gradient 

Descent uses different learning rates for different components of the variable. The previous 

versions performed the update for every direction at the same time, as the learning rate was 

the same for all of them. But as Adagrad uses different learning rate for each component, we 

perform individual updates for all the directions. 

One benefit of using Adagrad is that it does not require the learning rate lr to be changed for 

every time step t when an update is made as the learning rate is modified for every 

component at every time step. 

The update formula used in Adagrad is, 

gt,i = ∇θt J(θt,i) 

Here, gt,i is the gradient of the function with respect to parameter θi at time step t. This 

gradient is then used to update the value of θi to get the next updated value which is θi+1 using 

the given formula, 

θt+1,i = θt,i − lr * gt,i 

The value of lr in the above formula is updated for every value of θi at every time step t, so 

that the learning rate is different for each θi. The modified learning rate for every parameter is 

computed by, 

θt+1,i = θt,i − lr /((Gt,ii +ε)^(1/2) ) *gt,i 

Here, the extra term (𝐺𝑡,𝑖𝑖 + 𝜀)
1

2 takes care of changing the learning rate. 

In the above mentioned formula, Gt,ii  is the sum of squares of gradients of the function to be 

minimized with respect to θ, for all time step up to t. It also may happen that this term may 

become zero, hence, to avoid division by zero, we add the term ε. 
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Figure (8) Graph comparing Gradient Descent and Adagrad for minimizing the error in a 

neural network where 𝑥̂ is the predicted value and x* is the true value which the neural 

network is trying to learn. Source - 

(https://akyrillidis.github.io/notes/AdaGrad/GDvsAdaGrad2.png) 

 

Figure (8) shows a comparison between Gradient Descent and Adagrad for minimizing a 

function. As we can see, the Adagrad algorithm performs a lot better than the standard 

Gradient Descent algorithm and reaches an error value which is much smaller than the 

gradient descent. 

One major drawback with this algorithm lies in its adaptive learning rate. The learning rate is 

divided by the square root of the term Gt,ii which keeps on accumulating, that is, with every 

https://akyrillidis.github.io/notes/AdaGrad/GDvsAdaGrad2.png
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update or iteration the gradient keeps on adding, which makes this value very large. Dividing 

lr by this very large value decreases the value of learning rate to an infinitesimally small 

number. Eventually when the number of updates is too large, this value becomes so small that 

the algorithm is not able to update the parameters further as the update becomes almost 

negligible. 

Consider the function, 

𝐽(𝜃)  =  ( 2 ∗  𝜃1
2− 5 ∗ 𝜃1  +  4 + 𝜃3

2 ∗  𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4) 

From the value of J(θ) it can be observed that Adagrad did not provide any exceptional result 

while minimizing the function. See Appendix A-4.  
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7. RMSprop 

 

RMSprop has been developed with the goal overcoming the problem of diminishing updates 

in Adagrad [4]. In the presence of saddle points, the RMSprop algorithm goes straight down 

the slope even if the gradients are very small. The scaling of learning rate in RMSprop helps 

it to move through saddle points faster than any other algorithm seen above. 

The update formula used in RMSprop are, 

E[g 2 ]t = 0.9 * E[g 2 ]t−1 + 0.1 * gt
2 

 θt+1 = θt − lr *  p/( (E[g 2]t  + ε) ^(1/2))*  gt 

Here, the term 𝐸[𝑔2]𝑡 accumulates the sum of squares of gradients up to time 𝑡 and lr is the 

learning rate used for updating the parameters. 

Consider the function, 

 

𝐽(𝜃)  =  ( 2 ∗  𝜃1
2− 5 ∗ 𝜃1  +  4 + 𝜃3

2 ∗  𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4) 

 

From the value of J(θ) it can be observed that RMSprop actually attains the lowest minimum 

value of all the algorithms discussed until now. See Appendix A-5. 

 

RMSprop suffers from the same problem as the standard gradient descent. When the slope 

becomes steeper in one dimension as compared to other, the algorithm keeps on oscillating in 

that direction because of larger updates in that dimension and smaller in others. The 

momentum algorithm solved this problem with gradient descent. This problem in RMSprop 

is solved by combining it with the RMSprop algorithm, which gives the Adam algorithm. 

Adam uses momentum to solve this drawback of RMSprop by combining both of them in its 

updation rule. 
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8. Adam 

 

Adam stands for Adaptive Moment Estimation. This method also computes and adapts 

learning rate for each parameter separately [7]. Adam can be considered as a union of 

Adadelta and Momentum. Like the Adadelta algorithm, Adam also uses the exponentially 

decaying average of sum of squares of past gradients and similar to momentum algorithm, it 

also uses exponentially decaying average of gradients from the past iterations. 

𝑚𝑡 =  𝛽1  ∗  𝑚𝑡−1 +  (1 −  𝛽1) ∗  𝑔𝑡  

𝑣𝑡  =  𝛽2  ∗  𝑣𝑡−1  + (1 − 𝛽2) ∗  𝑔2
 

 

In the above formulas, mt computes the exponentially decaying sum of gradients from the 

past, and vt computes the sum of squares of gradients from past with an exponential decay. 

In the initial iteration, mt  and vt are initialized with zero, they become biased towards zero in 

the initial iterations, especially when the decay rates β1 and β2 are too small, where β1 and β2 

are manually chosen constants. To overcome this problem, instead of using mt and vt for 

updating the value of parameters, we slightly modify both of these vectors by, 

𝑚̂𝑡 =
𝑚𝑡

(1 − 𝛽1
𝑡)

 

𝑣𝑡 =  
𝑣𝑡

1 −  𝛽2
𝑡

 

The values of 𝑚̂𝑡 and 𝑣𝑡 are then used to update the value of the parameters associated with 

the function by using, 

𝜃𝑡+1  =  𝜃𝑡  −
𝑙𝑟

( 𝑣̂𝑡  +  𝜀)
1
2

∗  ( 𝑚̂𝑡) 
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Figure (9) Graph comparing accuracy of various algorithms for optimizing a neural network. 

Source- (https://shaoanlu.files.wordpress.com/2017/05/trn_acc.png?w=788) 

 

Figure (9) shows the graph of training accuracy of a neural network with the number of 

epochs which is nothing but number of iterations for minimizing the error in a neural 

network, by using various optimization algorithms for a machine learning problem. As we 

can see, the Adam optimization performs the best and beats every other optimization 

algorithm. 

Consider the function, 

𝐽(𝜃)  =  ( 2 ∗  𝜃1
2− 5 ∗ 𝜃1  +  4 + 𝜃3

2 ∗  𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4) 

From the value of J(θ) it can be observed that Adam worked better than most of the 

algorithms discussed above and reached a minimum value of 2.8517976. See Appendix A-6.  

https://shaoanlu.files.wordpress.com/2017/05/trn_acc.png?w=788
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9. AdaMax 

 

AdaMax is a variant of the Adam optimizer [3]. AdaMax offers the advantage of being much 

less sensitive to the hyper-parameters, that is, the learning rate and the constants that are 

manually chosen while using an optimizer. 

Adam updating formula scales the gradient by the l2 norm of past gradients, as well as the 

current gradients by calculating, 

𝑣𝑡 =  𝛽2𝑣𝑡−1  +  (1 −  𝛽2)‖𝑔𝑡‖
2

 

For large order norms, the values become numerically unstable, which is why norms of order 

1 and 2 are usually used. However, it is observed that a norm of infinite order is also stable. 

This property is used to modify adam optimization to get the AdaMax optimizer. The 

updating formula for AdaMax is, 

𝑢𝑡  =  𝛽2 ∗ 𝑣𝑡−1 + (1 −  𝛽2)‖𝑔𝑡‖
∞

 

The above can be simplified to get, 

𝑢𝑡 =  𝑚𝑎𝑥 (𝛽2 ∗ 𝑣𝑡−1, ‖𝑔𝑡‖) 

This value of ut can then be used in the updating formula rule of adam to get the final 

updating formula of AdaMax, 

θt+1 = θt − (lr / ut )*m t
 

It can be seen that the value of ut depends on the max operation, it is not biased towards zero, 

hence it is not necessary to update the value of ut to avoid this formula unlike Adam. 

Consider the function, 

𝐽(𝜃)  =  ( 2 ∗  𝜃1
2− 5 ∗ 𝜃1  +  4 + 𝜃3

2 ∗  𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4) 

From the value of J(θ) it can be observed that Adamax performed exceptionally well by 

reaching a minimum value of -1551.8826 but then the value started to move upwards which 

can be due to large learning rate. See Appendix A-7. 
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10. Nadam 

 

As observed in the previous sections, Adam is a combination of Adadelta and momentum 

algorithm. It was also observed that Nesterov accelerated momentum works better than the 

simple momentum algorithm. Nadam [6] combines Adam and Nesterov accelerated 

momentum. This is done by simple modifying the momentum term in Adam. 

The momentum update rule is, 

𝑔𝑡  =  𝛻𝜃𝑡 𝐽(𝜃𝑡) 

𝑚𝑡  =  𝛾 ∗  𝑚𝑡−1  +  𝑙𝑟 ∗  𝑔𝑡  

𝜃𝑡+1  =  𝜃𝑡  −  𝑚𝑡  

This momentum formula is then modified to get the formula for Nesterov accelerated 

momentum formula, 

𝑔𝑡  =  𝛻𝜃𝑡𝐽(𝜃𝑡  −  𝛾 ∗  𝑚𝑡−1) 

𝑚𝑡  =  𝛾 ∗  𝑚𝑡−1  +  𝑙𝑟 ∗  𝑔𝑡  

𝜃𝑡+1  =  𝜃𝑡  −  𝑚𝑡  

The writers of this paper were advised to use look ahead momentum directly, to modify the 

parameters instead of using the momentum step twice. This results in the modified formula 

for Nesterov accelerated momentum, 

𝑔𝑡  =  𝛻𝜃𝑡 𝐽(𝜃𝑡) 

𝑚𝑡  =  𝛾 ∗  𝑚𝑡−1  +  𝑙𝑟 ∗  𝑔𝑡  

𝜃𝑡+1  =  𝜃𝑡  −  (𝛾 ∗  𝑚𝑡  +  𝑙𝑟 ∗  𝑔𝑡) 

Instead of using the momentum from the past term to update the parameters, the update from 

the current term was used. 

If the Adam updation rule is expanded, the result is, 

𝜃𝑡+1 =  𝜃𝑡  −  𝑙𝑟((𝑣𝑡  +  𝜀)1/2) ∗  (𝛽1𝑚̂𝑡−1 +  (1 −  𝛽1) ∗
𝑔𝑡

1 −  𝛽1
) 

Nesterov accelerated momentum can be added to this formula by replacing the past 

momentum term  𝑚̂𝑡−1 with the current momentum term of 𝑚̂t to get the Nadam updation 

rule, 
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𝜃𝑡+1 =  𝜃𝑡  −  𝑙𝑟((𝑣𝑡  +  𝜀)1/2) ∗  (𝛽1𝑚̂𝑡 +  (1 − 𝛽1) ∗
𝑔𝑡

1 −  𝛽1
) 

Consider the function, 

𝐽(𝜃)  =  ( 2 ∗  𝜃1
2− 5 ∗ 𝜃1  +  4 + 𝜃3

2 ∗  𝜃4 −
𝜃3∗2 +𝜃4∗3

𝜃2
+ 𝜃2 ∗ 6)/(𝜃3 ∗ 𝜃4) 

 

From the value of J(θ) it can be observed that Nadam reached a minimum value close to 1.53 

but then again, it started to move upwards like Adamax and ended up with a value of 2.88 by 

the end of 10 iterations. See Appendix A-8.  
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Conclusion 

 

In this paper, the Gradient Descent algorithm, which is an optimization algorithm for finding 

the minimum value of a function was analyzed. The drawbacks of this method and how they 

are overcome were observed. Problems still remaining with the Gradient Descent algorithm 

and various other modified algorithms for optimization which are based on Gradient Descent 

and their problems and strengths were observed. 
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Appendix A 

1. The code shown below iterates the standard gradient descent algorithm 

 

Python Code:  

import tensorflow as tf 

theta1 = tf.Variable(10.0, trainable=True) 

theta2 = tf.Variable(2.0, trainable=True) 

theta3 = tf.Variable(3.0, trainable=True) 

theta4 = tf.Variable(15.0, trainable=True) 

f_x =( 2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2 

+theta4*3)/theta2 + theta2*6)/(theta3*theta4) 

loss = f_x 

opt = tf.train.GradientDescentOptimizer(0.1).minimize(f_x) 

with tf.Session() as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range(10): 

        print(sess.run([theta1,theta2,theta3,theta4,loss])) 

        sess.run(opt) 

 

If this function is minimized using Gradient Descent algorithm, the following output is 

obtained for the first 10 iterations in the format of [θ1, θ2, θ3, θ4, J(θ)]. 

 

Output: 
[10.0, 2.0, 3.0, 15.0, 6.1222224] 

[9.922222, 1.9583334, 3.0062964, 15.024148, 6.0384607] 

[9.845421, 1.9155577, 3.009418, 15.047722, 5.955703] 

[9.769498, 1.8715187, 3.0096257, 15.07076, 5.8734064] 

[9.6943655, 1.8260425, 3.0071359, 15.093296, 5.7910576] 

[9.619946, 1.7789302, 3.0021262, 15.11536, 5.7081537] 

[9.546166, 1.7299496, 2.9947407, 15.136979, 5.624166] 

[9.472961, 1.6788257, 2.9850924, 15.158175, 5.5385194] 

[9.4002695, 1.6252266, 2.9732645, 15.17897, 5.4505467] 

[9.328033, 1.568744, 2.9593098, 15.199381, 5.3594427] 
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2. The code shown below iterates the gradient descent algorithm with momentum. 

 

Python Code: 

import tensorflow as tf 

theta1 = tf.Variable(10.0, trainable=True) 

theta2 = tf.Variable(2.0, trainable=True) 

theta3 = tf.Variable(3.0, trainable=True) 

theta4 = tf.Variable(15.0, trainable=True) 

f_x =( 2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2 

+theta4*3)/theta2 + theta2*6)/(theta3*theta4) 

loss = f_x 

opt = tf.train.MomentumOptimizer(0.1, momentum = 0.3).minimize(f_x) 

with tf.Session() as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range(10): 

        print(sess.run([theta1,theta2,theta3,theta4,loss])) 

        sess.run(opt) 

 

If this function is minimized using the momentum algorithm, the following output is obtained 

for the first 10 iterations in the format of [θ1, θ2, θ3, θ4, J(θ)], 

 

Output: 
[10.0, 2.0, 3.0, 15.0, 6.1222224] 

[9.922222, 1.9583334, 3.0062964, 15.024148, 6.0384607] 

[9.822087, 1.9030577, 3.0113068, 15.054966, 5.930835] 

[9.7164135, 1.8420639, 3.0120802, 15.087081, 5.816583] 

[9.6101885, 1.7773033, 3.0078099, 15.118888, 5.6998477] 

[9.504784, 1.7089179, 2.9985049, 15.149948, 5.580802] 

[9.400476, 1.6364149, 2.984409, 15.180176, 5.4583063] 

[9.297221, 1.5589616, 2.9657722, 15.209587, 5.33055] 

[9.194885, 1.4753927, 2.9427607, 15.238225, 5.194999] 

[9.093315, 1.3840795, 2.915415, 15.26613, 5.0479383] 
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3. The code shown below iterates the Nesterov accelerated gradient descent algorithm 

 

Python Code: 

import tensorflow as tf 

theta1 = tf.Variable(10.0, trainable=True) 

theta2 = tf.Variable(2.0, trainable=True) 

theta3 = tf.Variable(3.0, trainable=True) 

theta4 = tf.Variable(15.0, trainable=True) 

f_x =( 2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2 

+theta4*3)/theta2 + theta2*6)/(theta3*theta4) 

loss = f_x 

opt = tf.train.MomentumOptimizer(0.1, 0.3,use_nesterov = 

True).minimize(f_x) 

with tf.Session() as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range(10): 

        print(sess.run([theta1,theta2,theta3,theta4,loss])) 

        sess.run(opt) 

 

If this function is minimized using Nesterov accelerated gradient, the following output is 

obtained for the first 10 iterations in the format of [θ1, θ2, θ3, θ4, J(θ)], 

Output: 
[10.0, 2.0, 3.0, 15.0, 6.1222224] 

[9.898889, 1.9458333, 3.0081851, 15.031393, 6.013454] 

[9.792426, 1.8860236, 3.0115807, 15.063991, 5.898785] 

[9.685525, 1.8225658, 3.0096164, 15.096223, 5.7823315] 

[9.579504, 1.7556536, 3.0024717, 15.127678, 5.664274] 

[9.474617, 1.6848506, 2.9904754, 15.158282, 5.5435586] 

[9.37081, 1.609394, 2.9739182, 15.188058, 5.4185534] 

[9.267948, 1.5282156, 2.9529932, 15.217049, 5.287042] 

[9.16588, 1.4398322, 2.9277678, 15.245298, 5.14588] 

[9.06445, 1.3421049, 2.8981497, 15.272844, 4.9902086] 
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4. The code shown below iterates the Adagrad variant of the gradient descent algorithm 

 

Python Code: 

import tensorflow as tf 

theta1 = tf.Variable(10.0, trainable=True) 

theta2 = tf.Variable(2.0, trainable=True) 

theta3 = tf.Variable(3.0, trainable=True) 

theta4 = tf.Variable(15.0, trainable=True) 

f_x =( 2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2 

+theta4*3)/theta2 + theta2*6)/(theta3*theta4) 

loss = f_x 

opt = tf.train.AdagradOptimizer(0.1).minimize(f_x) 

with tf.Session() as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range(10): 

        print(sess.run([theta1,theta2,theta3,theta4,loss])) 

        sess.run(opt) 

 

If this function is minimized using Adagrad, the following output is obtained for the first 10 

iterations in the format of [θ1, θ2, θ3, θ4, J(θ)], 

Output: 
[10.0, 2.0, 3.0, 15.0, 6.1222224] 

[9.907364, 1.9203434, 3.0195274, 15.060691, 6.0018377] 

[9.840183, 1.8561982, 3.0228057, 15.111122, 5.910739] 

[9.784887, 1.8004539, 3.016301, 15.155236, 5.833094] 

[9.736764, 1.7500898, 3.0034652, 15.194971, 5.763172] 

[9.693542, 1.7034986, 2.9865, 15.231447, 5.6982193] 

[9.653928, 1.659709, 2.9668767, 15.265378, 5.6366906] 

[9.617109, 1.618082, 2.9455829, 15.297251, 5.5776215] 

[9.582537, 1.5781717, 2.9232743, 15.327414, 5.520354] 

[9.549818, 1.5396513, 2.90038, 15.356125, 5.4644027] 
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5. The code shown below iterates the RMSprop variation of the gradient descent 

algorithm. 

 

Python Code: 

import tensorflow as tf 

theta1 = tf.Variable(10.0, trainable=True) 

theta2 = tf.Variable(2.0, trainable=True) 

theta3 = tf.Variable(3.0, trainable=True) 

theta4 = tf.Variable(15.0, trainable=True) 

f_x =( 2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2 

+theta4*3)/theta2 + theta2*6)/(theta3*theta4) 

loss = f_x 

opt = tf.train.RMSPropOptimizer(0.8).minimize(f_x) 

with tf.Session() as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range(10): 

        print(sess.run([theta1,theta2,theta3,theta4,loss])) 

        sess.run(opt) 

 

If this function is minimized using RMSprop, the following output is obtained for the first 10 

iterations in the format of [θ1, θ2, θ3, θ4, J(θ)], 

Output: 
[10.0, 2.0, 3.0, 15.0, 6.1222224] 

[9.36511, 1.6519765, 3.0530837, 15.202978, 5.4486365] 

[8.779703, 1.186784, 2.8852398, 15.376843, 4.635596] 

[8.196805, 0.35474062, 2.5559142, 15.535678, 1.3905575] 

[7.582406, -2.0904992, 1.4112455, 15.67072, 5.587976] 

[6.604772, -2.2830892, 2.8558655, 15.878063, 4.3530188] 

[6.1856503, -2.3753843, 2.4671373, 15.948829, 3.930082] 

[5.7242384, -2.4813306, 2.115982, 16.016907, 3.505566] 

[5.2225194, -2.6035602, 1.8013016, 16.078365, 3.0693698] 

[4.685563, -2.7453246, 1.5117476, 16.127918, 2.6082675] 
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6. The code shown below iterates the Adam variation of the gradient descent algorithm. 

 

Python Code: 

import tensorflow as tf 

theta1 = tf.Variable(10.0, trainable=True) 

theta2 = tf.Variable(2.0, trainable=True) 

theta3 = tf.Variable(3.0, trainable=True) 

theta4 = tf.Variable(15.0, trainable=True) 

f_x =( 2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2 

+theta4*3)/theta2 + theta2*6)/(theta3*theta4) 

loss = f_x 

opt = tf.train.AdamOptimizer(0.8).minimize(f_x) 

with tf.Session() as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range(10): 

        print(sess.run([theta1,theta2,theta3,theta4,loss])) 

        sess.run(opt) 

 

 

If this function is minimized using Adam, the following output is obtained for the first 10 

iterations in the format of [θ1, θ2, θ3, θ4, J(θ)], 

 
[10.0, 2.0, 3.0, 15.0, 6.1222224] 

[9.200001, 1.2000005, 3.799996, 15.799999, 5.2764587] 

[8.421813, 0.41791004, 3.26558, 16.558508, 2.7432792] 

[7.6467776, -0.17172569, 2.6189187, 17.284792, 11.76774] 

[6.8686733, -0.7001622, 2.7730923, 18.02325, 5.673423] 

[6.100538, -1.1717173, 2.9014716, 18.729305, 4.6276717] 

[5.3514, -1.5871048, 2.939927, 19.388006, 4.086396] 

[4.626879, -1.954987, 2.8761785, 19.992569, 3.6687298] 

[3.930489, -2.2829752, 2.715311, 20.540276, 3.2696524] 

[3.2646527, -2.577186, 2.4678833, 21.030418, 2.8517976] 
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7. The code shown below iterates the AdaMax variation of the gradient descent 

algorithm. 

 

Python Code: 

import tensorflow as tf 

theta1 = tf.Variable(10.0, trainable=True) 

theta2 = tf.Variable(2.0, trainable=True) 

theta3 = tf.Variable(3.0, trainable=True) 

theta4 = tf.Variable(15.0, trainable=True) 

f_x =( 2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - (theta3*2 

+theta4*3)/theta2 + theta2*6)/(theta3*theta4) 

loss = f_x 

opt = tf.contrib.opt.AdaMaxOptimizer(0.5).minimize(f_x) 

with tf.Session() as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range(10): 

        print(sess.run([theta1,theta2,theta3,theta4,loss])) 

        sess.run(opt) 

 

 

If this function is minimized using Adamax, the following output is obtained for the first 10 

iterations in the format of [θ1, θ2, θ3, θ4, J(θ)], 

 

Output: 
[10.0, 2.0, 3.0, 15.0, 6.1222224] 

[9.5, 1.5, 3.5, 15.5, 5.5337944] 

[9.056901, 1.0570564, 3.2746582, 15.920429, 4.765695] 

[8.634653, 0.7260843, 2.9798636, 16.29936, 3.7775757] 

[8.22086, 0.47218934, 2.6771438, 16.649302, 2.3131359] 

[7.8092017, 0.27379906, 2.4065537, 16.975315, -0.40879026] 

[7.396519, 0.11861443, 2.1885688, 17.277468, -8.303569] 

[6.9820037, 0.0010245052, 2.0271308, 17.546543, -1551.8826] 

[6.566657, -0.086773515, 1.9383408, 17.467293, 22.774347] 

[6.152319, -0.16032444, 1.8650105, 17.403164, 14.093249] 

  



OPTIMIZATION OF MATHEMATICAL FUNCTIONS 43 

 

8. The code shown below iterates the Nadam variant of the gradient descent algorithm. 

 

 

Python Code: 

import tensorflow as tf 

theta1 = tf.Variable(10.0, trainable=True) 

theta2 = tf.Variable(2.0, trainable=True) 

theta3 = tf.Variable(3.0, trainable=True) 

theta4 = tf.Variable(15.0, trainable=True) 

f_x =( 2 * theta1* theta1 - 5 *theta1 + 4 + (theta3*theta3) * theta4 - 

(theta3*2 +theta4*3)/theta2 + theta2*6)/(theta3*theta4) 

loss = f_x 

opt = tf.contrib.opt.NadamOptimizer(0.5).minimize(f_x) 

with tf.Session() as sess: 

    sess.run(tf.global_variables_initializer()) 

    for i in range(10): 

        print(sess.run([theta1,theta2,theta3,theta4,loss])) 

        sess.run(opt) 

 

If this function is minimized using Nadam, the following output is obtained for the first 

10 iterations in the format of [θ1, θ2, θ3, θ4, J(θ)], 

 

Output: 
[10.0, 2.0, 3.0, 15.0, 6.1222224] 

[9.05, 1.0500008, 3.9499953, 15.949999, 5.1524863] 

[8.415877, 0.28182697, 3.2746027, 16.535938, 1.5387307] 

[7.822502, -0.3482744, 2.6253784, 17.038128, 8.147704] 

[7.2439523, -0.8920035, 2.6691291, 17.566727, 5.4938083] 

[6.701645, -1.2484236, 2.5782728, 18.03905, 4.7349067] 

[6.1808834, -1.559493, 2.4457068, 18.475872, 4.1901164] 

[5.6763115, -1.8375407, 2.2745233, 18.880936, 3.7260313] 

[5.1844797, -2.0891466, 2.0679297, 19.255558, 3.296759] 

[4.7027717, -2.318992, 1.8304031, 19.599789, 2.882332] 
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