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ABSTRACT 

 

 Three-dimensional acoustic tissue models are a unique means to study ultrasonic 

scattering by tissue microstructure. In this work, the previous methods used to create and 

analyze these models were evaluated and refined. These techniques were then applied to 

a set of 10 human fibroadenomas, a benign tumor of the breast. These models, called 

three-dimensional impedance maps (3DZMs), are created from serial sets of histological 

images which must be properly transformed to recreate the original tissue volume. A 

properly reconstructed 3DZM can then be used to estimate properties, such as the 

effective scatterer size, of the ultrasonic scattering sites in the underlying tissue. These 

estimates can, in turn, be related to histological features of the tissue. For the 

fibroadenoma datasets, the average effective scatterer diameter was estimated to be       

84 ± 40 µm when the entire volume was used for analysis. This result compared roughly 

to the size of the acini in the tissue, although a wide variation was observed in the 

histological layout of the tissue.
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CHAPTER 1  

INTRODUCTION 

 
1.1 Overview 

 Medical ultrasound provides an inexpensive imaging modality when compared to 

other common modalities such as X-ray, computed tomography, or magnetic resonance 

imaging  [1]. Additionally, ultrasound can be used for diagnostic medical applications 

without causing damage to tissue  [2]. These advantages clearly motivate the development 

of additional diagnostic functionality in medical ultrasound. 

 While conventional ultrasound images provide only qualitative depictions of 

tissue macrostructure, quantitative ultrasound (QUS) seeks to provide quantitative 

information about tissue microstructure. This information could greatly improve the 

diagnostic functionality in medical ultrasound. However, this process depends on the use 

of appropriate models for ultrasonic scattering by tissue microstructure  [3]. 

 As a means to investigate ultrasonic scattering by tissue microstructure, a method 

was previously developed to create computational acoustic models of tissue 

microstructure  [1]. These models, called three-dimensional impedance maps (3DZMs), 

provide a means to combine ultrasonic characterization of tissue with histological 

evaluation of the underlying tissue structure. This thesis investigates the development and 

analysis of these models, as well as their application to a common type of benign human 

breast tumor, the fibroadenoma. 3DZMs were made from a collection of human 

fibroadenoma samples, and were analyzed using the techniques described herein. These 
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results were then compared to the histological features of the tissue to identify possible 

scattering sources. 

 

1.2 Quantitative Ultrasound 

Conventional ultrasound images are derived from backscattered radio frequency 

(RF) echo signals. These echoes are a result of scattering by tissue macro- and 

microstructure with varying acoustic properties. Typically, the received RF signals are 

envelope-detected to produce an image, but this processing removes frequency-dependent 

information from the RF signal  [4]. 

QUS uses the frequency information from the RF echo signal to deduce 

quantitative information related to the properties of the tissue microstructure. This 

frequency information can provide details about the statistical properties of the scattering 

structures, such as average size and average concentration. These additional parameters 

could serve to enhance the diagnostic capability of medical ultrasound. Parameterization 

of ultrasonic backscatter has been investigated previously as a means to extend the 

diagnostic capability of ultrasound  [5], [6], and has demonstrated the ability to quantify 

ocular, liver, prostate, renal, and cardiac tissues  [7]. To attain meaningful results, 

however, the relationship between backscattered frequency information and underlying 

tissue properties must be well understood. 

 

1.3 Three-Dimensional Impedance Maps 

3DZMs are volumes in which the value of each volume element (voxel) 

represents an acoustic impedance value. 3DZMs can be constructed from properly 
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aligned and reconstructed sets of histological images, or they can be simulated. The 

details of 3DZM construction are discussed in Chapter 3. 

For media in which the variations in impedance are relatively small, this spatial 

impedance function can be related to the ultrasonic backscatter of the media by the spatial 

Fourier transform. This relationship is discussed in Chapter 2. In this way, 3DZMs can be 

used to study both the ultrasonic backscatter and the histological characteristics of a 

particular medium. This duality illustrates the utility of 3DZMs for the study of ultrasonic 

scattering in tissue as it relates to actual histological features of tissue microstructure; this 

concept is explored in Chapter 4. 
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CHAPTER 2  

THEORY 

 
2.1 Ultrasonic Scattering Theory 

Ultrasonic scattering occurs when an incident pressure wave interacts with a 

volume with acoustic properties (compressibility κ and density ρ) that are different from 

those of the surrounding medium. Backscatter is the portion of this scattered sound that 

propagates in the opposite direction of the incident wave, which is of special interested 

for pulse-echo ultrasound  [2]. This section reviews the theory of weak scattering  [1],  [6] 

as it is relevant to the study of scattering in tissue. 

Weak scattering occurs when the acoustic properties of the scattering sites are 

very close to those of the surrounding medium. In this case, known as the Born 

approximation, it is assumed that the incident pressure wave remains essentially 

unchanged as it propagates through the scattering volume, and multiple scattering is 

ignored  [2]. Consider a scattering volume V0 with compressibility κ(r) and density ρ(r) in 

a medium with equilibrium compressibility κ0 and density ρ0. For a plane wave of unit 

amplitude with wave number k incident on the scattering volume, the backscattered 

pressure far from the volume (r >> λ) can be described by a spherical wave as 

 ( ) (2 )
jkr

bs

e
p r k

r

−

= Φ  (2.1) 

where k is the acoustic wave number, r is the distance from the scattering site, and (2 )kΦ  

is the angle distribution function. For weak scattering, this angle distribution function can 

be described as 
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The terms ( )rκγ  and ( )rργ  represent the relative change in compressibility and density 

at the scattering volume. For weak scattering, ( )rκγ  and ( )rργ  are small and ( )rγ  can be 

approximated by a first-order Taylor series as 

 0

0

( )
( ) 2

z r z
r

z
γ

−
= −  (2.6) 

where 

 0 0 0 0 0z cρ ρ κ= =  (2.7) 

is the characteristic acoustic impedance of the background medium, and 

 ( ) ( ) ( ) ( ) ( )z r r c r r rρ ρ κ= =  (2.8) 

is the acoustic impedance at the scattering volume. The sound speeds in the scattering 

volume and in the background medium are described by c(r) and c0, respectively. 

 Acoustic intensity, described by 2

0/ 2I P cρ=  for a spherical wave  [8], where P 

is the peak pressure amplitude, can then be deduced for the backscattered wave as 
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24 (2 )

bs
I Ak k= Φ  (2.9) 

where A is some proportionality constant. By then substituting Equation (2.6) into 

Equation (2.2), the backscattered intensity for weak scattering can be expressed as 

 4' (2 )
bs

I A k S k=  (2.10) 

where A’ is a new proportionality constant and 
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is seen to be the squared modulus of the spatial Fourier transform of the relative 

impedance function, that is, the power spectrum of the relative impedance function  [9]. 

The backscattered intensity divided by k
4

 (or by frequency f
4

 because 2 /k f cπ= ) is then 

seen to also be proportional to the power spectrum of the relative impedance function. As 

will be seen later, this idea is instrumental in relating 3D impedance maps to ultrasonic 

backscatter. 

 

2.2 Acoustic Form Factors 

 Acoustic form factors (FFs) are functions which describe the behavior of the 

backscattered intensity due to a single scattering volume as a function of frequency  [10]. 

Form factors show the deviation in backscattered intensity for a particular scattering 

volume when compared to a Rayleigh scatter (which has only k
4
 dependence). Regardless 

of the scattering volume geometry, the corresponding FF always approaches unity as k 

approaches zero, because the wavelength becomes very large and the scatterer appears as 

a point scatterer. 
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 Form factors are related to the geometry of the scattering volume by the Fourier 

transform of the 3D spatial autocorrelation function of the volume, or equivalently by the 

squared magnitude of the 3D spatial Fourier transform of the volume (due to the Wiener-

Khintchine theorem)  [9]. Because of this, FFs are clearly proportional to the power 

spectrum S(2k) of a scattering volume as described by Equation (2.11); equivalently, they 

are proportional to backscattered intensity when the k
4
 dependence is removed. 

If a scattering volume has spherical symmetry, then the corresponding FF 

function will only depend on the scatterer size, because the orientation of the volume is 

not important. In this case, scatterer size refers to either the average diameter for discrete 

scatterers or to the average correlation length for scatterers which are continuously 

varying functions  [10]. 

 The FF model used most frequently in this work is the fluid-filled sphere FF. This 

FF describes the acoustic scattering from a filled spherical volume of radius a and 

acoustic impedance zs in a background of impedance z0. This FF is expressed as 

 

2

13 (2 )
(2 )

2

fs

a

j ka
F k

ka

 
=  
 

 (2.12) 

where j1 is the spherical Bessel function of the first kind and the superscript fs refers to 

fluid sphere. The FF is seen to be a function of frequency which depends only on the 

parameter a, the sphere radius. This is also known to be the 3D Fourier transform of a 

sphere  [6]. Figure  2.1 shows a plot of the fluid-filled sphere FF as a function of frequency 

for several values of a. Figure  2.2 shows the same plot on a logarithmic scale. 
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Figure  2.1 Fluid-filled form factor for a = 25, 50, and 100 µm. 
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Figure  2.2 Fluid-filled form factor for a = 25, 50, and 100 µm, displayed on a logarithmic scale. 

 

 A second, commonly used FF model is the Gaussian FF. This FF describes the 

acoustic scattering from a volume which has acoustic properties which vary continuously 
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as a Gaussian function along any radial path away from the center of the volume. In this 

case, the FF is expressed as 

 
2 20.827(2 )g k a

a
F k e

−=  (2.13) 

where, in this case, the superscript g refers to Gaussian. 

 

2.3 Coherent and Incoherent Scattering 

 Acoustic FFs describe the behavior of the backscattered intensity due to a single 

scattering structure. Consider, then, a collection of identical, randomly positioned 

scattering structures with FF function Fa(2k) and spatial relative impedance function 

sa(x). For simplicity, consider the 1D case, in which the scatterers are distributed 

randomly in only the x direction. Then, for a medium containing N non-overlapping 

scatterers, the impedance function can be described as 

 1 2( ) ( ) ( ) ... ( )
ens a a a N

s x s x x s x x s x x= − + − + + −  (2.14) 

where x1, … , xN describe the random spatial delay of each scatterer, and the subscript ens 

refers to ensemble. Then, due to the linearity and shift properties of the Fourier transform 

 [9], the spatial Fourier transform of sens(x) can be expressed as 

 1 2 22 2( ) ( ) ( ) ... ( ) Nj kxj kx j kx

ens a a a
S k S k e S k e S k e

ππ π −− −= + + + . (2.15) 

Taking the squared magnitude of this quantity results in 

 
2 2 2 2

1 1

( ) ( ) p q

N N
j kx j kx

ens a

p q

S k S k e e
π π−

= =

= ∑ ∑ . (2.16) 

The product of summations can then be reduced by considering the symmetry present: for 

each pair p and q for which the exponential argument contains the term p – q, there is an 

opposite pair q and p for which the exponential argument contains the term q – p. 
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Application of Euler’s identity allows this pair of exponentials to be rewritten as a cosine 

term. This is true for all p ≠ q; for the N cases in which p = q, the exponential argument is 

zero and the exponential term evaluates to unity. Finally, by considering that 

2
(2 ) ( )a aF k S k=  and letting 

2
(2 ) ( )ens ensF k S k= , Equation (2.16) can be rewritten as 

 
1

(2 ) (2 ) 2 cos(2 ( ))
N

ens a

p q

F k F k N k p qπ
> =

 
= + − 

 
∑ . (2.17) 

This equation describes the FF of the scattering ensemble. In this equation, the 

first term is referred to as the incoherent scattering term, as it does not relate to 

interaction between particles. Rather, it is simply the acoustic FF of the scattering 

volume, scaled by the number of scatterers N. The second term is referred to as the 

coherent scattering term, as the frequency of each cosine term depends on the relative 

position of the scatterers within the volume. For a large number of randomly positioned 

scatterers and for k > 0, this term presents itself as random variation about the scaled FF 

of the scattering volume with an expected value of zero  [11]. Figure  2.3 shows an 

example of the FF computed from a scattering ensemble containing identical, randomly 

positioned scatterers. The FF from a single scattering volume is also shown for 

comparison. In this example, the variations about the FF for a single scattering volume 

caused by the coherent scattering term can be seen. As expected, this effect is much more 

pronounced at lower frequencies. Figure  2.4 shows a rendering of the scattering volume 

used to generate Figure  2.3. 
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Figure  2.3 Form factor of a scatterer ensemble compared to the form factor for a single scatterer. The 

ensemble was composed of 26 randomly positioned, spherical scatterers with a = 8 µm. 

 

 

Figure  2.4 3D rendering of a scattering ensemble. 
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CHAPTER 3  

IMPEDANCE MAP CONSTRUCTION 

 
 A three-dimensional impedance map is a computational phantom of which each 

element represents an estimate of the acoustic impedance value of the underlying 

medium. A technique for the creation of 3DZMs has been developed previously by 

Mamou  [1]. This chapter provides a brief summary of this technique, followed by a 

description of the updates and modifications that have been made to this process. Finally, 

several examples of 3DZMs created from human breast tumors are presented. 

 

3.1 Three-Dimensional Impedance Map Creation Overview 

 The 3DZM creation process begins with a set of photomicrographs (optical 

images taken at high magnification) of a tissue sample which has been fixed in formalin, 

embedded in paraffin, sectioned, placed on glass slides, and stained with hematoxylin and 

eosin (H&E). In order that this set of 2D images be converted into a 3D volume, several 

effects of the preparation process must be undone. An overview of this creation process is 

depicted in Figure  3.1. 

 First, the images need to be properly registered to each adjacent section so that the 

position within the original volume is properly restored. In addition to simple 

translational and rotational (that is, rigid) registration, the sections must be adjusted for 

any stretching or shearing that occurred as a result of the tissue slicing. Second, the 

photometric properties of the tissue must be equalized. Slight variation in the thickness of 

each section results in varying uptake of the H&E stain; the image properties must be 
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equalized to account for this. Third, some sections are inadvertently destroyed during the 

sectioning process, so these missing sections must be filled in to complete the 

reconstruction of the tissue volume. Finally, each element of the tissue volume must be 

assigned an acoustic impedance value. This is done based on the color value of the pixel, 

because the H&E staining causes tissue with a greater protein concentration to appear 

pink and tissue with a greater nucleic acid concentration to appear blue. 

 

Figure  3.1 Overview of the 3DZM creation process. 

 

3.1.1 Image registration 

 The image registration step in the 3DZM creation process seeks an optimal set of 

six transformations (horizontal and vertical translation, rotation, horizontal and vertical 

scaling, and shear) which align each image to the previous image in the set. Optimality is 

defined by the minimization of some similarity metric; in this case, normalized mutual 

information (NMI) was selected as the metric due to its robustness  [1]. Thus, the 

algorithm seeks to maximize NMI, or equivalently to minimize the negative NMI. 

 The registration of two sections begins by testing a series of random rigid 

registration values to locate a good staring location which best maximizes the NMI. Next, 

a Nelder-Mead simplex search  [12] is performed, beginning at this starting location. First, 
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only the rigid parameters are optimized in this way; the result of this search is then used 

as the initial condition for another simplex search in which all six affine parameters are 

optimized, producing the final transformation values. 

 

3.1.2 Photometric equalization 

 The original 3DZM creation technique applied image contrast adjustment  [13] to 

each image as a means to correct for photometric discrepancies. This technique 

transforms the image intensity values in such a way that the image histogram is made to 

better approximate a uniform distribution. This transformation was applied separately to 

each color component (that is, red, green, and blue or RGB). However, this approach 

tends to alter the color values of the image  [13]. Because the impedance assignment step 

in the creation process depends upon the specific color values of the image, this step was 

modified to prevent the alteration of the image color values; this modification is 

described later in Section 3.5. 

 

3.1.3 Missing section interpolation 

 Following the registration and photometric adjustment steps, the computed 

transformations are applied to each image and a volume is assembled. However, at this 

stage several sections may still be missing. These missing sections are replaced by 

interpolated sections by using cubic Hermite interpolation along each stacked column of 

pixels  [1]. 

 

 



 15 

3.2 Image Acquisition 

 The 3DZMs presented in this thesis were all generated from images acquired 

using the NanoZoomer HT slide scanner (Hamamatsu, Hamamatsu City, Japan). The 

system was set to acquire images with a pixel resolution of 0.46 µm per pixel, and each 

section was sliced to a thickness of approximately 3 µm. 

 The NanoZoomer automatically locates a tissue section on a slide and scans only 

the selected region; this generally results in an image of a section with side length on the 

order of 1 cm. Computationally, this is much too large for direct use (the images are 

frequently up to 6 GB in size), but it enables the creation of multiple 3DZMs from a 

single dataset. 

 

3.3 Global Section Alignment 

 The tissue sections in the raw image sets from the NanoZoomer are not rigidly 

aligned. In fact, the images do not necessarily have the same dimensions. This introduces 

a global alignment step into the 3DZM creation process. Initially, this was addressed by 

the creation and use of a manual section alignment program. Later, the process was 

automated. Regardless of which method is employed, a good global alignment of each 

section makes the succeeding registration steps much easier and more robust. 

 

3.3.1 Manual global section aligner 

 Manual section alignment is accomplished using a graphical user interface (GUI) 

written for MATLAB (The Mathworks, Natick, Massachusetts) called NZalign. This 

program displays two semi-transparent sections and allows the user to translate and rotate 
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one of the sections until the alignment is satisfactory. The transformations needed to align 

each section are then saved, to be used later in the 3DZM creation process. 

 

3.3.2 Automatic global section aligner 

 Automatic global section alignment is performed on a highly downsampled, 

grayscale version of the original tissue image. For each pair of images to be aligned, the 

first image is resized such that the number of rows is reduced to 100 and the number of 

columns is reduced accordingly so that the image aspect ratio is properly maintained. The 

second image of the pair is then downsampled by the same factor as the first; both are 

interpolated using bicubic interpolation. Raw images from the NanoZoomer may have 

more than 30 000 pixels per side, so this represents a downsampling factor of about 300. 

This downsampling is done to reduce the amount of computation needed. The alignment 

of these downsampled images provides a coarse initial registration which is refined later 

in the 3DZM creation process. 

 For each pair of tissue section images, alignment is performed in a series of steps. 

First, only translation is optimized by performing a dense search to minimize the 

pixelwise mean-squared error (MSE) between the images. This effectively places the two 

tissue sections roughly on top of each other. Next, a rough rotational and translational 

optimization is performed. Rotation values are applied at five-degree intervals, a local 

MSE based translational optimization is performed at each interval, and the pixelwise 

correlation coefficient  [13] is maximized. The correlation coefficient between images x 

and y is defined as 

 
[( )( )]

( , )
x y

x y

E x y
corr x y

µ µ

σ σ

− −
=  (3.1) 
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where µx and σx represent the mean and standard deviation, respectively, of image x; 

likewise for µy, σy, and image y. Finally, beginning at the translation and rotation values 

determined earlier, a simplex optimization is performed on the translational and rotational 

transformations to maximize the correlation coefficient between the images to attain the 

final set of transformations, which are then saved for later use. 

 For this automated alignment, the correlation coefficient was selected as a 

similarity metric to exploit the statistical similarity between each image pair. Both MSE 

and the image correlation coefficient were tested. The correlation coefficient was seen to 

be a much more reliable and robust similarity metric. The computational complexity of 

the correlation coefficient is also greater than MSE, but for this work, the quality and 

robustness of the alignment superceded the computational speed. 

 

3.4 Neighborhood Subimage Alignment 

 The images acquired from the NanoZoomer are very large, so only a small 

subimage is used for the creation of a 3DZM. Because of this, a much larger region 

surrounding the each subimage may be extracted and used for image registration, 

allowing for translational alignment errors during the global section alignment step. 

 This step assumes that the global alignment transformations have located a correct 

rotation value, hence this search is only done to correct for errors in translation. The 

rationale behind this assumption is that the global alignment step is performed on a 

highly downsampled image pair, for which the rotational transformation will still be the 

same as for the full images. However, in this same case, a translational error of a single 
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pixel would correspond to a translational error of 300 pixels for a downsampling factor of 

300. 

 As with the global alignment, the neighborhood search is performed using 

downsampled images. In this case, the images are downsampled by a factor of about 10. 

Again, this affords a reduction in computation while increasing the robustness of the 

3DZM creation process by improving the initial conditions for later registration steps. 

 The neighborhood search is conducted for a pair of images with the first image 

having dimensions equal to seven times those of the original subimage and the second 

image having dimensions equal to three times those of the original subimage. The second 

image is translated across the larger, first image over a dense set of points, and the 

translation values which maximize the correlation coefficient are saved for use later in 

the 3DZM creation process. 

 

3.5 Photometric Adjustment 

 By using the NanoZoomer for image acquisition, it can be assumed that the 

lighting conditions and properties of the imaging system are identical for all images 

within a set. However, some variation in the overall brightness of each image still exists 

due to variations in the thickness of the tissue slice and variations in the staining time. 

The notion of saturation refers to the dilution of a pure color by whiteness  [13]; an 

unsaturated color appears white, while a highly saturated color appears as a pure color. 

Then, for stained tissue images, it can be argued that a section which has absorbed more 

stain will be more highly saturated in comparison to a section which has absorbed less 

stain. In order to correct for this effect, the image saturation was modified according to 
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,

,( )( )
S vol

adj S S vol

S

S S
σ

µ µ
σ

= − +  (3.2) 

where S is the original image saturation, Sadj is the adjusted image saturation, µS and σS 

are the image saturation mean and standard deviation, respectively, and µS,vol and σS,vol 

are,  respectively, the saturation mean and standard deviation for the entire volume. This 

transformation normalizes the mean and standard deviation of the saturation of each 

image within the volume to that of the overall volume, thus adjusting for varying levels 

of stain uptake. The advantage of this routine is that the original color information in the 

image is preserved. For display purposes, a similar transformation was applied to the 

intensity (grayscale) component of each image. However, because these components do 

not carry any color information, this is not a necessary step in the 3DZM creation 

process. 

 As an example of this saturation adjustment, two tissue sections are shown in 

Figure  3.2. These sections can be seen to have a difference in brightness levels. Figure 

 3.3 shows the histogram of the saturation components of these images. Clearly, the 

saturation values in each image are seen to fall within different ranges.  

 

Figure  3.2 Original tissue section images. The image on the right is seen to have a lower overall brightness 

level compared to the image on the left. 
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Figure  3.3 Original saturation value histograms corresponding to the images in Figure  3.2. 

 

While saturation indicates the dilution of a pure color by whiteness, the notion of hue 

refers to the pure color itself. The histograms of the hue components of each image are 

shown in Figure  3.4. It is seen that the hue components of each image fall within the 

same range of hue values, motivating the adjustment of only the saturation components. 
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Figure  3.4 Original hue value histograms corresponding to the images in Figure  3.2. 
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 The saturation adjustment described by Equation (3.2) equalizes the mean and 

standard deviation of the image saturation values, as illustrated in Figure  3.5. In the 

figure, the histogram of the second image is seen to be shifted and slightly stretched so 

that the saturation values of each image fall within roughly the same range. Figure  3.6 

shows the resulting image pair after this adjustment has been applied. 
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Figure  3.5 Adjusted saturation value histograms corresponding to the images in Figure  3.2. 

 

 

 

Figure  3.6 Tissue section images after saturation adjustment has been applied. The brightness levels of the 

images are now roughly the same. 
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3.6 Impedance Assignment 

 As discussed previously, impedance assignment is performed based on color 

thresholding of the stained tissue images. The staining of the tissue was used to 

differentiate the underlying tissue components. Impedance values were assigned by 

associating particular impedance values with certain color ranges, using values 

appropriate for each tissue structure. 

 

3.6.1 HSI color space 

 The Hue-Saturation-Intensity (HSI) color space is well suited for converting the 

color images into impedance images. This is because the HSI color space represents 

colors in a way similar to the human descriptions of these colors. Hue describes the pure 

color (i.e., red, yellow, purple, etc.), while saturation describes the degree to which the 

color is diluted by whiteness. Intensity describes the gray level of the image, and does not 

carry color information  [13]. 

 The HSI color space is therefore very useful when a quantitative differentiation 

of, for example, light pink and dark pink is desired. The assignment of impedance values 

is done based on this very principle. 

 

3.6.2 Impedance value selection 

 The assignment of impedance values is a critical step in the 3DZM creation 

process. It is also a very challenging step, as the acoustic impedance of the individual 

constituents of tissue may be estimated, but are difficult to directly measure. Thus, in a 

manner consistent with previous 3DZM work  [1], impedance values were assigned based 
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on reasonable estimates which related stained tissue color to particular elements of tissue 

microstructure. Then, the acoustic properties of these elements could be estimated and 

related to the color of the stained tissue image. 

 Tissue areas with eosin staining (indicating protein concentration) range in color 

from light pink to dark pink, while tissue areas with hematoxylin staining (indicating 

nucleic acid concentration) range in color from light blue to dark blue. For this work, it 

was assumed that the pink image elements represented cell cytoplasm, while the blue 

image elements represented cell nuclei. Other image elements which appeared very light 

or white were assumed to be fat. Thus, impedance values were assigned based on image 

color as indicated in Table 3.1. 

Table  3.1 Impedance assignment values. 

Color Tissue component Impedance value range 

(Mrayls) 

Light to dark pink Cytoplasm 1.5 – 1.7 

Light to dark blue Cell nuclei 1.8 – 2.0 

White Fat 1.45 

 

 

3.6.3 Image color thresholding 

 Impedance value assignment was accomplished by color thresholding. This was 

done in two steps. The first step involved the thresholding of the image hue, thereby 

categorizing each image element as either pink or blue. The second step involved the 

thresholding of the image saturation, further categorizing each element as white, light, or 

dark. Thus, each element was placed into a single hue-saturation category which could be 

directly mapped to an impedance value. 

 The saturation thresholding step also allowed the introduction of additional 

impedance levels by subdividing the range between light and dark. Throughout this work, 
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three subdivisions were used. Then, for example, the range of impedance values 

corresponding to pink hues was divided into three bins: 1.5 Mrayls for light pink, 1.6 

Mrayls for medium pink, and 1.7 Mrayls for dark pink. Typical saturation values for the 

tissue images fell between 0.0 and about 0.8. Thus, the subdivision of the saturation 

values was applied within this range, and pixels with a saturation value greater than 0.8 

were lumped into the highest category. 

A test was run to investigate the effects of subdividing the impedance ranges. In 

this test, a registered histological map was color thresholded as described, while the 

number of subdivisions in each impedance range was varied from 1 to 20. The spatial 

power spectrum of the resulting 3DZM was then estimated (Section 4.1). Comparison of 

these power spectra was used as a means to observe the effect of the number of 

impedance subdivisions. Figure  3.7 shows the mean squared error (MSE) of the power 

spectrum at each subdivision level when compared to the power spectrum for the 

preceding subdivision level. These MSE values are normalized to a maximum of unity. 
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Figure  3.7 MSE of power spectra at each subdivision level when compared to the power spectrum at the 

previous subdivision level. 
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Clearly, additional impedance value subdivisions cause decreasing change 

between subsequent power spectra. Figure  3.8 shows the first three power spectra, for 

two, three, and four subdivisions. It can be seen that the power spectra for three and four 

subdivisions are nearly indistinguishable. 
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Figure  3.8 Power spectra for 2, 3, and 4 subdivisions of the impedance ranges. 

 

  Three subdivisions were chosen for this work because, as the example in Figure 

 3.7 suggests, the spectral change between two and three subdivisions was substantial, 

while the spectral change between three and four subdivisions was almost a factor of 100 

smaller. The choice of three subdivisions capitalized on this, while still maintaining a 

fairly simple model. When scatterer size estimates were made from these power spectra 

(Sections 4.2), the results were identical for three or more subdivisions. 
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3.7 Three-Dimensional Impedance Map Creation Results 

 3DZMs were made from a collection of human fibroadenoma (a benign tumor of 

the breast) samples using these techniques. A sample of the resulting three-dimensional 

histological maps (3DHM) and 3DZMs are presented here. 

 Figure  3.9 shows a 3D rendering of a 3DHM created from a fibroadenoma dataset 

called WI #53. This rendering was created using MATLAB. The top face of the cube 

shows an image from the set, while the two visible side faces show images which were 

synthesized as a result of the image alignment and restoration.  

 

Figure  3.9 3D rendering of WI #53 3DHM. 
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Two slices from this 3DHM are shown in Figure  3.10. The first image was created by 

making a vertical cut through the volume, while the second image is an original image 

from the dataset, that is, a horizontal slice through the volume. From this figure, it can be 

seen that the reconstructed image has similar features to the image from the original 

dataset. Visually, this suggests that the reconstruction process has attained some level of 

success, although it does not provide any quantitative measure. It should be noted that the 

first image appears to be blurred when compared to the second image; this is because the 

slice thickness of 3 µm provides much coarser sampling than the image pixel resolution 

of 0.46 µm. 

 

Figure  3.10 Histological sections from WI #53. Image (a) is a vertical slice through the volume; image (b) 

is an original image from the set. 

 

Finally, Figure  3.11 shows a rendering of the WI #53 volume after impedance values 

have been assigned. This volume is depicted as a pseudo-color image, where each 

impedance value is assigned a particular intensity level for display purposes. 
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Figure  3.11 3D rendering of WI #53 3DZM. 

 

 Results from a second fibroadenoma dataset, called WI #54, are shown in Figure 

 3.12 and Figure  3.13. Again, the reconstructed faces of the volume appear to show 

similar structure when compared to the images from the original data set. 
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Figure  3.12 3D rendering of WI #54 3DHM. 

 

 

Figure  3.13 3D rendering of WI #54 3DZM. 
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CHAPTER 4  

IMPEDANCE MAP ANALYSIS 

 
As a result of the relationship between backscattered intensity and the squared 

magnitude of the spatial Fourier transform of a medium’s relative impedance function, as 

dictated by Equations (2.10) and (2.11), 3DZMs present a useful tool for the study of 

ultrasonic scattering in tissue. This relationship can be exploited in two ways. First, by 

assuming some form factor model, estimates may be made of parameters like scatterer 

size and acoustic concentration from a 3DZM. Second, by using the 3DZM to investigate 

the layout of the tissue microstructure from an acoustic perspective, new scattering 

models may be developed which better represent the underlying tissue structure. 

This chapter presents the techniques and results of 3DZM analysis. First, the 

principles of estimating the power spectra of 3DZMs are discussed, followed by a 

discussion of scatterer size estimation from a 3DZM. Finally, the analysis results from a 

collection of 3DZMs created from human fibroadenomas are presented. 

 

4.1 Spectral Estimation 

 Spectral estimation refers to the signal processing steps taken to compute the 

power spectrum of a 3DZM. In this step, the underlying tissue is treated as a random 

medium, for which it is desired to estimate the statistical power spectrum using the 

limited spatial samples of the volume. 

 The 3D spatial Fourier transform of a volume produces a 3D function of the 

spatial frequency vector ˆ ˆ ˆ
x y zk x k y k z= + +k . In the special case of a spherically 
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symmetric scatterer, the Fourier coefficients along each radial path away from 0=k
�

 are 

equal, regardless of which path is chosen; thus, the value of the 3D spatial Fourier 

transform along any such path is equal to the acoustic form factor of the medium, with 

the wave number 2 2 2

x y zk k k k= + + . For an M-by-N-by-P-element 3D volume f(x,y,z), 

the 3D, spatial, discrete Fourier transform is given by 

 
1 1 1
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x y z
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= = =
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The selection of the radial paths for which two of the spatial frequency variables are 

equal to zero greatly simplifies the computation of this transform. For example, consider 

the case in which ky and kz are equal to zero. Then, Equation (4.1) reduces to 
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which is seen to be simply the 1D, spatial, discrete Fourier transform of the double sum 

term within the brackets. 

 For an ensemble of randomly positioned, identical spherical scatterers, the 

coherent scattering term in Equation (2.17) adds random variation to the underlying 

scattering function. This term is spatially dependent, so different radial paths of the 3D 

spatial Fourier transform will have different coherent scattering terms. Thus, averaging 

multiple radial slices of the 3D spatial Fourier transform together serves to reduce the 

effects of the coherent scattering term. This was done using the three orthogonal radial 

paths along which k = kx, k = ky, and k = kz by using an appropriately modified form of 

Equation (4.2). 
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 A 3DZM presents a finite-duration representation of the underlying medium. If a 

function m(x,y,z) is defined as an infinite medium containing randomly positioned 

scatterers, then an M-by-N-by-P-element 3D volume f(x,y,z) can be expressed as the 

multiplication of this infinite medium with a 3D window function w(x,y,z); that is, 

 ( , , ) ( , , ) ( , , )f x y z m x y z w x y z= . (4.3) 

In the Fourier domain, this implies that the effect of this windowing operation is the 

convolution of the original signal spectrum with the spectrum of the window function, so 

 ( , , ) ( , , ) ( , , )x y z x y z x y zF k k k M k k k W k k k= ∗ . (4.4) 

For this work, a 3D rectangular window was used. However, the proper application of 

some other windowing function, such as a 3D Hamming window, could be applied to 

decrease sidelobe contributions while maintaining good spectral resolution  [9]. 

 The Fourier transform of Equation (4.2) was implemented using the fast Fourier 

transform (FFT) algorithm. Zero padding was used to increase the frequency sampling, 

but this required that the signal be zero-mean. Thus, for the computation of Equation 

(4.2) using a zero-padded FFT, the mean of the windowed signal was subtracted from 

each element. In the Fourier domain, this only affects the zero-frequency component, 

which is not relevant to the analysis of 3DZMs. If this value were needed, it could be 

computed as the mean value of the 3D windowed signal, as indicated by evaluating 

Equation (4.1) with 0=k
�

. 

 

4.2 Scatterer Size Estimation 

 Scatterer size estimation is the task of fitting the deduced form factor of a 3DZM 

to a theoretical FF to produce an estimate of the effective scatterer diameter. FFs of 
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spherically symmetric scatterers, like the fluid-filled sphere FF described by Equation 

(2.12), have a frequency dependence which scales depending only on the scatterer size. 

Thus, a best-fit curve is used to determine the scatterer size estimate using a particular 

theoretical FF. 

 An estimation scheme for 3DZMs has been developed previously by Mamou  [1] 

and is summarized here. This scheme produces an estimate a* of scatterer radius by 

minimizing the mean squared error (MSE) between the log of the deduced FF and the log 

of the theoretical FF scaled by a gain term over some frequency range kmin to kmax. For 

discrete functions, this MSE is expressed as 

 [ ]
max

min

2

min max

max min

1
( , , ) log( (2 )) log( (2 ))

k

a a

k k

MSE a k k S k G F k
k k =

= −
−

∑  (4.5) 

where S(2k) is the deduced FF of a 3DZM, Fa(2k) is a theoretical FF for radius a, and Ga 

is an estimated gain term computed as 
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This gain term is an estimate of the proportionality factor between the theoretical FF and 

the deduced FF. It can be related to a parameter called acoustic concentration  [1], which 

relates to the number density and scattering strength of the scatterers. While acoustic 

concentration is a useful and important parameter, this work focused on scatterer size. 

 This estimation scheme requires the selection of values for the maximum and 

minimum spatial frequencies kmin and kmax. For the optimal value of a, it is desired that 

the range of the product ka be between 0.5 and 2.0  [11]. However, this optimal value of a 

is unknown. Thus, to generate estimates that are not biased by the chosen frequency 

range, an error function was defined as 
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 { }start start( ) max ( , , ) for each  and Err a E a k k k k= ∆ ∆  (4.7) 

where 

 start start start( , , ) ( , , )E a k k MSE a k k k∆ = + ∆ . (4.8) 

Then, to enforce the desired ka range, E(a,kstart,∆k) is set to zero if start 0.5k a <  or 

start( ) 2.0k k a+ ∆ > . Using this scheme, the estimate a* is then defined as 

 start* arg min ( , , )a E a k k= ∆ . (4.9) 

Scatterer size estimation was applied to subvolumes of each 3DZM called regions 

of interest (ROIs). For a given 3DZM, the entire volume was first treated as the ROI. 

Each dimension of the volume was then divided in half, and the eight resulting 

subvolumes were analyzed as ROIs. This process of dividing each volume into eight 

subvolumes could continue until each ROI consisted of only a single voxel; in this work, 

3DZMs were never divided into more than 64 subvolumes. 

 

4.3 Simulations 

Simulated 3DZMs were used to test the analysis techniques described in this 

chapter. These simulations were designed to investigate several aspects of the 3DZM 

analysis techniques, especially the effect of ROI size and the effect of non-spherical 

scatterers on the size estimates. Ultimately, the goal of these simulations was to obtain a 

better understanding of the relationship between the analysis results and the physical 

properties of the 3DZM. 
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4.3.1 Simulation methods 

 The simulated 3DZMs used in this study consisted of fluid-filled scatterers that 

were randomly positioned in a background medium. Fluid-filled spheres (or spheroids) 

were used because they are very simple to generate and are compactly supported (as 

opposed to, for example, Gaussian scatterers which have an infinite support). All 

analyses were performed using the fluid-filled sphere form factor model. 

 Simulated 3DZMs were generated using a simple process. First, the number of 

scatterers in the volume was defined, along with the size and impedance of each scatterer. 

Next, the spatial locations of the scatterers were randomly generated, and finally a 

computational volume was created with scatterers in the specified positions. The spatial 

locations of the scatterers were generated by drawing the coordinates of the scatterer 

center from a uniform probability distribution. The coordinates of the n
th

 scatterer were 

then tested against all preceding scatterers to ensure that no scatterers were overlapping. 

This was done by computing the distance between the most recently generated scatterer 

and each previous scatterer. Then, the new coordinates were rejected if this distance was 

less than the sum of the respective scatterer radii (or an equivalent dimension for non-

spherical scatterers). That is, the condition 

 n k n kx x r r− ≥ +  (4.10) 

was enforced for k = 1, …, n-1, where xk and rk denote the spatial location and radius, 

respectively, of the k
th

 scatterer. If a scatterer location was generated which did not 

satisfy this condition, it was rejected and a new location was generated and tested. 

 Several studies were performed using simulated 3DZMs. Each study was 

performed by simulating and analyzing 50 3DZMs of dimensions 300x300x300 µm. In 
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the first study, each 3DZM contained 20 spheres of radius 25 µm. This study was 

performed to validate the estimation routine for a simple case and to test the effect of ROI 

size on the results. In the second study, two sphere sizes were used: 10 spheres of radius 

25 µm and 40 spheres of radius 8 µm. Again, this was performed to investigate the effect 

of ROI size on the scatterer size estimate results. The third study used prolate spheroidal 

scatterers (shaped like a grain of rice). In this case, the scatterers had a 25 µm radius on 

the major axis and a 15 µm radius on each of the minor axes, and 40 scatterers were 

placed in each volume. The scatterers were placed in the volume at random orientations. 

The fourth study used oblate spheroidal scatterers, which are slightly flattened versions of 

the prolate spheroids, with axial radii of 35 µm, 15 µm, and 10 µm. Finally, the fifth 

study used very long, narrow prolate spheroids with a major axis length which was 

greater than the dimensions of the volume and a minor axis radius of 10 µm. This 

appeared roughly as cylindrical scatterers which passed through the volume. For this 

study, the scattering structures were allowed to intersect within the volume. 

 

4.3.2 Simulation results 

 The first study consisted of simulated 3DZMs containing 20 randomly placed, 

spherical scatterers of radius 25 µm. Figure  4.1 shows a histogram of the results obtained 

using the entire volume as the ROI. Figure  4.2 and Figure  4.3 show the histograms of the 

results obtained by dividing each volume into 8 and 64 subvolumes, respectively. 
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Figure  4.1 Histogram of scatterer radius estimates obtained using the entire volume as the ROI for a 

collection of identical, spherical scatterers of radius 25 µm. 
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Figure  4.2 Histogram of scatterer radius estimates obtained by dividing each 3DZM into eight subvolumes 

for a collection of identical, spherical scatterers of radius 25 µm. 
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Figure  4.3 Histogram of scatterer radius estimates obtained by dividing each 3DZM into 64 subvolumes 

for a collection of identical, spherical scatterers of radius 25 µm. 

 

 As shown in Figure  4.1, the estimates obtained when using the entire volume as 

the ROI are tightly clustered around the true value of 25 µm. Any deviation from this 

value can be attributed to the effect of spheres which intersect the boundary of the 
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volume. Figure  4.2 shows a similar distribution, since the ROI size of 150x150x150 µm 

is still sufficient to completely contain several scatterers of radius 25 µm. However, 

Figure  4.3 shows that the smaller 75x75x75 µm ROIs produced much less reliable 

results. Although this ROI is large enough to fully contain a scattering structure, it is 

likely that most ROIs contained only portions of scattering structures, resulting in the 

wide range of estimates. In particular, the large spike of estimates at the upper end of the 

scatterer size range is likely the result of erroneous estimates obtained when no scatterers 

were present within the ROI. Thus, it is seen that ROI size can affect the estimate results, 

especially when the ROI size is near to the size of the scatterers. 

 The second study consisted of simulated ROIs containing scatterers of both 25 µm 

and 8 µm. The number density of the smaller spheres was four times that of the larger 

spheres. Figure  4.4 shows the results obtained using the entire volume as the ROI, Figure 

 4.5 shows the results obtained using 8 subvolumes, and Figure  4.6 shows the results 

obtained using 64 subvolumes. 
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Figure  4.4 Histogram of scatterer radius estimates obtained using the entire volume as the ROI for a 

collection of spherical scatterers with radii 25 µm and 8 µm. 
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Figure  4.5 Histogram of scatterer radius estimates obtained by dividing each 3DZM into eight subvolumes 

for a collection of spherical scatterers with radii 25 µm and 8 µm. 
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Figure  4.6 Histogram of scatterer radius estimates obtained by dividing each 3DZM into 64 subvolumes 

for a collection of spherical scatterers with radii 25 µm and 8 µm. 

 

 Again, these figures demonstrate the dependence of the estimates on the ROI size. 

It is seen that the estimates from the smallest ROIs tend toward the smaller scattering 

structures, while the estimates from the larger ROIs tend toward the larger scattering 

structures. Additionally, several outlying results are seen, including many estimate results 

in the smallest bin of each histogram. This demonstrates how deviation from the simple 

case presented in the first study can produce some unwanted results. The situation is 

further complicated by the intersection of some scattering structures with the boundary of 

the volume. 

 The third study used non-spherical scatterers. Prolate spheroids were used, with a 

major axis radius of 25 µm and a minor axis radius of 15 µm. Each scatterer was placed 
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with a random orientation. Figure  4.7 shows a 3D rendering of a sample scattering 

volume. 

 

Figure  4.7 Scattering volume example for the prolate spheroid scatterers used in the third study. 

 

 

Figure  4.8 shows the estimation results obtained using the entire volume as the 

ROI, Figure  4.9 shows the results obtained using 8 subvolumes, and Figure  4.10 shows 

the results obtained using 64 subvolumes.  
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Figure  4.8 Histogram of scatterer radius estimates obtained using the entire volume as the ROI for a 

collection of prolate spheroidal scatterers with a major axis radius of 25 µm and a minor axis radius of      

15 µm. 
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Figure  4.9 Histogram of scatterer radius estimates obtained by dividing each 3DZM into eight subvolumes 

for a collection of prolate spheroidal scatterers with a major axis radius of 25 µm and a minor axis radius of 

15 µm. 
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Figure  4.10 Histogram of scatterer radius estimates obtained by dividing each 3DZM into 64 subvolumes 

for a collection of prolate spheroidal scatterers with a major axis radius of 25 µm and a minor axis radius of 

15 µm. 

 

 

 In this situation, it is seen that the estimation results tend to fall between the major 

and minor axis dimensions when the size estimates are made using a spherical scattering 

model. This is an interesting result, since the assumption of spherically symmetric 

scatterers is probably untenable in actual tissue. Thus, this provides some insight into the 

interpretation of estimation results obtained from actual tissue data. Again, however, a 

large number of ROIs produce a meaningless estimate at the extreme low end of the size 

spectrum.   
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 The fourth study also used non-spherical scatterers. In this case, the scatterers 

were oblate spheroids, having three unequal axis lengths. The scatterer size was selected 

to be slightly more eccentric than the scatterers used in the third study; the axis radii were 

set to 35 µm, 15 µm, and 10 µm. Again, the scatterers were placed with random 

orientations within the volume. Figure  4.11 shows a 3D rendering of a sample scattering 

volume. 

 

Figure  4.11 Scattering volume example for the oblate spheroid scatterers used in the fourth study. 

 

 

Figure  4.12 shows the results obtained using the entire volume as the ROI, Figure 

 4.13 shows the results obtained using 8 subvolumes, and Figure  4.14 shows the results 

obtained using 64 subvolumes. 
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Figure  4.12 Histogram of scatterer radius estimates obtained using the entire volume as the ROI for a 

collection of oblate spheroidal scatterers with axis radii of 35 µm, 15 µm, and 10 µm. 
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Figure  4.13 Histogram of scatterer radius estimates obtained by dividing each 3DZM into eight 

subvolumes for a collection of oblate spheroidal scatterers with axis radii of 35 µm, 15 µm, and 10 µm. 
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Figure  4.14 Histogram of scatterer radius estimates obtained by dividing each 3DZM into 64 subvolumes 

for a collection of oblate spheroidal scatterers with axis radii of 35 µm, 15 µm, and 10 µm. 
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 Interestingly, excluding the results at the extreme low end of the size spectrum, 

the results in this case are seen to fall primarily between the dimensions of the two 

smaller axes, with few estimates near the dimension of the major axis. This suggests that 

as the scatterers become more eccentric, the estimates are not strongly biased toward the 

largest dimension of the scatterer, but rather toward the compact, central portion of the 

scatterer. This trend was visible for every ROI size, even though the major axis size of 

the scatterers was nearly equal to the dimensions of the smallest ROIs. 

 The fifth study used prolate spheroidal scatterers with a major axis radius which 

was much larger than the volume. The minor axis radius was set to 10 µm. Thus, each 

volume appeared to contain a web of cylindrical scatterers with random orientation 

within the volume. The scatterers were allowed to intersect for this study. Figure  4.15 

shows an example scattering volume. 

 

Figure  4.15 Scattering volume example for the web of prolate spheroidal scatterers used in the fifth study. 

 

 

Figure  4.16 shows the results obtained using the entire volume as the ROI, Figure 

 4.17 shows the results obtained using 8 subvolumes, and Figure  4.18 shows the results 

obtained using 64 subvolumes. 
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Figure  4.16 Histogram of scatterer radius estimates obtained using the entire volume as the ROI for a web 

of prolate spheroidal scatterers with a minor axis radius of 10 µm.  

 

10 20 30 40 50 60 70 80 90
0

50

100

150

Radius in µm  

Figure  4.17 Histogram of scatterer radius estimates obtained by dividing each 3DZM into eight 

subvolumes for a web of prolate spheroidal scatterers with a minor axis radius of 10 µm. 
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Figure  4.18 Histogram of scatterer radius estimates obtained by dividing each 3DZM into 64 subvolumes 

for a web of prolate spheroidal scatterers with a minor axis radius of 10 µm. 
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 In this case, the results are seen to fall roughly within the range of the minor axis 

radius, especially for the larger ROI sizes. Again, this provides some interesting insight 

into the estimation results obtained from volumes containing randomly positioned, 

randomly oriented, non-spherical scatterers. 

 

4.4 Fibroadenoma Analysis Results 

The collection of human fibroadenoma 3DZMs described in Section 3.6 was 

analyzed with the techniques set forth in this chapter. Size estimates were obtained using 

the fluid-filled sphere form factor model. Figure  4.19 shows a histogram of the size 

estimates obtained by using the entire 3DZM as the ROI; Figure  4.20 shows a histogram 

of the size estimates obtained by using eight ROIs, formed by dividing each dimension of 

the 3DZM in half. 
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Figure  4.19 Histogram of scatterer size estimates obtained from 10 human fibroadenoma 3DZMs using the 

entire 300x300x300 µm volume for ROIs. 
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Figure  4.20 Histogram of scatterer size estimates obtained from 10 human fibroadenoma 3DZMs using 

150x150x150 µm subvolumes for ROIs. 

 

 For estimates made using the entire volume as the ROI, a mean scatterer radius of 

42 µm was obtained, with a standard deviation of 20 µm. For estimates made using eight 

ROIs with dimensions equal to half those of the entire volume, a mean radius of 35 µm 

and a standard deviation of 15 µm was obtained. Table  4.1 displays the scatterer radius 

estimation results for each of the 3DZMs analyzed. 

Table  4.1 3DZM scatterer size estimation results. 

3DZM name 300x300x300 µm ROI 

estimation results (µm) 

150x150x150 µm ROIs 

estimation results (µm) 

WI #50 3DZM 1 42.5 39.7 ± 14.0 

WI #51 3DZM 1 62.5 36.5 ± 14.3 

WI #51 3DZM 2 13.0 29.4 ± 9.4 

WI #52 3DZM 1 28.5 34.1 ± 12.9 

WI #53 3DZM 1 28.5 27.6 ± 11.0 

WI #54 3DZM 1 74.5 39.5 ± 18.5 

WI #55 3DZM 1 68.0 32.6 ± 11.3 

WI #56 3DZM 1 31.0 33.6 ± 9.9 

WI #57 3DZM 1 45.5 38.9 ± 10.3 

WI #58 3DZM 1 26.0 36.6 ± 16.9 

 

 

 The scatterer radius estimates presented in Table  4.1 were obtained by assuming a 

fluid-filled sphere as a scattering model. Thus, the physical meaning of the results 

depends on how well the actual scattering sites can be approximated as fluid-filled 
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spheres; some insight into this interpretation was provided by the simulations in the 

previous section. The results from several fibroadenoma samples are presented here, and 

the estimates from each of these cases are then compared to the histological features of 

the samples. First, the results from the datasets previously presented in Chapter 3 (WI 

#53 and WI #54) are discussed, followed by the results from WI #55. 

 Figure  4.21 shows a histological image section from the WI #53 dataset. Figure 

 4.22 shows a visualization of the surfaces within the 3DZM which have impedance 

values between 1.8 and 2.0 Mrayls. From these figures, it can be seen that the most 

prominent features within the volume appear to be the curvilinear duct formations (the 

dark, web-like structures in Figure  4.21). As indicated by Table  4.1, the scatterer radius 

estimates derived from this 3DZM are about 28 µm for both ROI sizes (that is, a diameter 

of about 56 µm). From these figures, it is difficult to identify any structures within the 

volume which are on the scale of this size estimate, especially structures which could be 

approximated in some way as fluid-filled spheres. The simulation results suggest that this 

value may represent an estimate of the minor dimension of these duct formations, 

although this is difficult to determine from the histological data. 
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Figure  4.21 Histological image of WI #53 fibroadenoma. 

 

Figure  4.22 Surfaces in WI #53 3DZM with impedance values in the range of 1.8 to 2.0 Mrayls. 

 

Other datasets do appear to have structure which agrees with their respective 

scatterer size estimates. Figure  4.23 shows a histological image from the WI #54 dataset, 

Figure  4.24 shows a magnified view of a histological image, and Figure  4.25 shows a 
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view of the 3DZM surfaces with impedance values between 1.8 and 2.0 Mrayls. In this 

case, the estimated scatterer diameter was 149 µm when the entire volume was used as 

the ROI, and 79 µm when the volume was divided into eight smaller ROIs. The acini 

(dark cell clusters in Figure  4.23) appear to have dimensions which are, in some cases, 

consistent with these size estimates. In Figure  4.23, it can be seen that some of these acini 

appear to have dimensions which are even larger than 149 µm. Presumably, this is a 

result of the ROI size and the fact that only a single 3DZM was used to make these 

estimates. Similarly, the reduction in estimated scatterer size which accompanies the use 

of smaller ROIs is likely an issue of scale as well, since it is unlikely that a scatterer with 

a size on the order of 150 µm will be present within a 150x150x150 µm ROI. This effect 

of ROI size was also observed in simulations. 

 

Figure  4.23 Histological image of WI #54 fibroadenoma. 
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Figure  4.24 Magnified view of WI #54 fibroadenoma showing structure on the scale of the computed 

scatterer size estimates. An acinus is visible in the upper left corner. 

 

Figure  4.25 Surfaces in WI #54 3DZM with impedance values in the range of 1.8 to 2.0 Mrayls. 

 

 

 The WI #55 tumor images show similar structure to that of WI #54, although the 

acini appear to be slightly smaller and more densely packed. Figure  4.26 shows a 

histological image, while Figure  4.27 shows the surfaces in the 3DZM with impedance 

values between 1.8 and 2.0 Mrayls. The scatterer diameter estimates are similar to those 
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made for WI #54: 136 µm using the entire volume, and 75 µm using eight subvolumes. 

Again, these estimates seem to be reasonable when the ROI size is considered. Thus, this 

suggests that the acini may be the dominant scattering structures within this tissue 

volume. 

 

Figure  4.26 Histological image of WI #55 fibroadenoma. 

 

Figure  4.27 Surfaces in WI #54 3DZM with impedance values in the range of 1.8 to 2.0 Mrayls. 
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CHAPTER 5  

DISCUSSION 
 

5.1 Three-Dimensional Impedance Map Construction 

 The results presented in Chapter 3 demonstrate the effectiveness of the current 

scheme in which histological images, generated by the NanoZoomer, are processed into a 

3DZM. This process is almost entirely automated, allowing 3DZMs to be created quickly 

and easily when new data sets are available. Also, because the raw tissue images are 

much larger than the 3DZMs that were presented here, many 3DZMs can be created from 

a single data set. 

 As in the previous work  [1], computational efficiency was not a primary concern 

in the development of these 3DZM creation routines. A reduction in the computation 

needed for 3DZM creation would be useful, although not strictly necessary. Faster 

computation would enable larger 3DZMs to be made more easily, which would improve 

tissue analysis using 3DZMs. 

 Validation of the 3DZM construction process remains an important challenge. To 

some degree, the proper registration of the tissue sections can be confirmed visually by 

viewing the histological maps in a variety of ways. For example, the stacked images can 

be viewed as a 3D volume; histological images can be formed by slicing the 3D volume 

vertically; or, each slice can be viewed sequentially as a movie. While none of these 

techniques can be used to quantitatively validate the agreement between the histological 

map and the original tissue volume, they do provide a means to easily identify when 

registration has clearly failed, and they also provide a qualitative means to evaluate the 
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registration results. A more quantitative method which could be used to validate the 

3DZM construction process would be the comparison of spectra obtained from 3DZMs 

with spectra obtained using ultrasonic interrogation of the same medium. This 

comparison would be most effective if it were done using multiple 3DZMs created from 

the medium, rather than using only a single sample, so that an average spectrum from the 

medium could be obtained. 

 The assignment of impedance values is a critical step in the process of 3DZM 

creation, and as such it merits further investigation. As suggested in  [1], an iterative 

method could be used to adjust the impedance values until agreement with some 

reference was obtained. For example, consider a 3DHM which has been assembled from 

tissue data for which ultrasonic backscatter measurements also exist. The impedance 

values could be set to initial values and the spectrum of the resulting 3DZM could be 

compared to the spectrum of the ultrasonic data using some similarity metric. Based on 

this comparison, the impedance values could be adjusted, and the spectrum of the 

resulting 3DZM could again be compared to the ultrasonic spectrum. This process could 

iterate until convergence of the spectra is obtained. The HSI colorspace presents a simple 

framework for this adaptation, since the impedance values, threshold levels, or both could 

be used as adjustable parameters. 

 

5.2 Three-Dimensional Impedance Map Analysis 

 The analysis of human fibroadenoma 3DZMs, as presented in Chapter 4, 

demonstrates the application of 3DZMs as a tool for the study of ultrasonic scattering in 

tissue. In some cases, the scatterer size estimates derived using the fluid-filled sphere 
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form factor provided a means to identify histological tissue structures which could serve 

as the dominant scattering source in this tissue. Still, certain adjustments to the analysis 

process could be made to improve upon these results.  

Larger 3DZMs would be beneficial because more scattering structures and larger 

scattering structures could be contained within the 3DZM. An effect was seen in some of 

the analysis results (WI #54 and WI #55, see Table  4.1) where a reduction in the ROI 

dimensions from 300 µm cubes to 150 µm produced a corresponding drop in estimated 

scatterer dimensions. However, in the cases where this effect was present, the estimated 

scatterer diameter from the larger ROI was approximately equal to the size of the smaller 

ROIs. Thus, the use of larger 3DZMs would facilitate the recognition of larger scattering 

structures, if present. 

The creation of many 3DZMs from a single dataset would improve the process of 

tissue analysis. Each 3DZM provides only a relatively small sample of the tissue volume. 

However, the size of the NanoZoomer images would allow a large number of 3DZMs (10 

or more) to be made from the same dataset. This would provide many estimates of the 

scatterer properties, resulting in a better understanding of the statistical tissue properties. 

 

5.3 Conclusion 

 3DZMs are a unique tool for the study of ultrasonic scattering in tissue. The 

ability to easily create 3DZMs from NanoZoomer data was demonstrated, and some 

analysis techniques and applications of the resulting 3DZMs were explored. Many 

interesting challenges still remain with regards to 3DZM creation and analysis, but the 

fibroadenoma results presented here are promising. 
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 This work focused on the specifics of 3DZM creation and analysis. These 

techniques were demonstrated on a set of 10 3DZMs created from human fibroadenomas; 

the results were then used to identify possible ultrasonic scattering sources. As this work 

continues, additional datasets for which both ultrasonic measurements and 3DZMs are 

available will provide a means to validate the 3DZM creation process. Additionally, such 

datasets would allow the use of adaptive methods for impedance value assignment. 

 Quantitative ultrasound holds great diagnostic potential, and 3DZMs provide a 

powerful means to relate QUS results to actual tissue microstructure. That is, 3DZMs 

allow a connection to be made between QUS parameters and tissue pathology. This 

connection could be an essential step to propel QUS forward as an effective and 

noninvasive diagnostic imaging modality. 
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