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identical points have to be detected to calculate 
their coordinates with help of the intersecting rays 
from the images. That is also demanding, because 
the submerged ground is often homogeneous 
and in addition there is attenuation in the water. 
Also, because of reflection and other factors the 
same points can appear differently when taken 
from different perspectives.

Because of different magnitudes of absorp-
tion of light for various spectral bands in the 
water column, it is also possible to fit a linear or 
higher dimensional regression model to band ra-
tios, approximating the relation from radiometry 
to depth. But as soon as the scene contains dif-
ferent types of vegetation on the ground of the 
water basin, a more complex regression model is 
needed. Furthermore, spectrally based bathym-
etry estimation is commonly carried out based on 
orthophotos. Not only are orthophotos of waters 
prone to geometric errors due to neglection of 
ray refraction at the water surface, but most also 
ignore the fact that only pixel values from the im-
age centre (nadir direction) directly relate to water 
depth whereas pixels from the edge of an image 
rather show the slanted water distance. Each pixel 
of an aerial image, in turn, stores radiometric infor-

1 Introduction
Reconstructing the surface of the earth by means 
of photogrammetry is an established method. Co-
ordinates of object points can be computed via 
forward intersection when the respective point is 
observed in two or more images. However, apply-
ing this procedure to water surfaces is more com-
plex. Nevertheless, charting water depths is neces-
sary, especially in shallow water areas for example 
when considering safe routing of ships, or when 
determining the volume of a lake which is needed 
for extinguishing fires. The complexity involves 
measuring of identical points due to the specular 
and dynamic nature of the water surface. Further-
more, there is refraction on the water surface be-
cause of transition of the image ray between two 
media. For generating an orthophoto this particu-
larly means that every pixel in each image has its 
unique refracted ray corresponding to the water 
surface which also may show local dynamics. Thus, 
to find the corresponding ground points of each 
pixel, this ray has to be traced from the respective 
image position, with its direction given by the ori-
entation of the image, also considering the refrac-
tion on the water surface. Another point is that 
even if the direction of each ray is known, enough 
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In letzter Zeit wurde die Wassertiefe von Gewässern häufiger mit optischen Ansätze abgeleitet. In flachen 
Bereichen kann die Tiefe hauptsächlich durch Modellierung der Signaldämpfung in verschiedenen Bän-
dern abgeleitet werden. Bei diesem Ansatz wird untersucht, wie gut ein Convolutional Neural Network 
(CNN) in der Lage ist, die Wassertiefe aus multispektralen Luftbildern abzuschätzen. Um auf den tat-
sächlich beobachteten schrägen Wasserabständen zu trainieren, wird das Netz mit den Originalbildern 
und nicht mit dem Orthophoto trainiert. Das trainierte CNN zeigt eine Standardabweichung von 3 bis 4 
Dezimetern. Es ist in der Lage, Trends für unterschiedliche Tiefen und Bodenbedeckungen zu erkennen. 
Probleme traten vor allem bei Glanzlichtern oder in schattigen Bereichen auf.
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mation which is mainly related to the potentially 
slanted under water distance of the respective 
image ray. Especially for aerial images taken with 
wide-angle lenses, it is therefore beneficial to per-
form the bathymetry estimation based on the (ori-
ented) images rather than the orthophoto.

To extend the linear regression approach, a 
convolutional neural network (CNN) can be used 
to cope with variations in bottom reflectance. 
Pixel-wise depth estimation based on the oriented 
aerial images require the slanted water distance 
for the image pixels for training. This information 
can e.g. be derived from bathymetric LiDAR (light 
detection and ranging), especially when carried 
out concurrently with the image capture. The CNN 
based approach has the advantage that spatial 
context information is taken into account. The reli-
ability of the net is therefore increased, since prox-
imity often implies similar depths.

In this thesis, the approach of training a convolu-
tional network to predict the slanted distances from 
image rays inside a waterbody, will be examined. 
Next to quality assessment and critical discussion, 
it will also be discussed to which extent the Coastal 
Blue channel has an influence on the network.

2 Data set
Multi view stereo

In the following, the acquisition of the investigated 
data is addressed. The images used for the pro-
cessing were taken at the Autobahnsee in Augs-
burg (Fig. 1), which is approximately up to 5 metres 
deep and has a small isle as well as multiple veg-
etation patches and a complex elevation profile. 
For data acquisition two IGI DigiCAM 100 cameras 
are used, which are based on PhaseOne iXU-RS 
1000 cameras with 11,608 by 8,708 pixels each, one 
equipped with an RGB sensor and the other with 
a pan-chromatic sensor and a filter for the Coastal 
Blue wavelength (Mandlburger et al. 2018). Using 
the information from both images, the same po-
sition and orientation is required. But for practical 
reasons the cameras had to be mounted side by 
side. Therefore, the Coastal Blue image is trans-
formed into the RGB datum using a homography 
with the Software MATLAB (2018).

LiDAR

Moreover, the employed hybrid sensor system also 
integrates a RIEGL VQ-880- G topo-bathymetric 
laser scanner (Riegl 2019) to obtain a point cloud, 
from which the water surface model and ground 
model can be extracted. In Fig. 2 the ground mod-
el for the observed area is depicted. It is noted that 
there are complex structures at the ground of the 
lake caused by the distribution of soil and vegeta-
tion. These will be used to extract the reference 
data, being the slanted distances of the image 
rays in the water. The scanner is designed for shal-
low water mapping. Therefore, a green laser with 

wavelength 532 nm is used, because of its capabil-
ity to penetrate water for measuring the ground 
of a waterbody and available high energy laser 
sources (Doneus et al. 2015). The mean point den-
sity of the obtained point cloud is about 40 points 
per square metre to get a dense model.

3 Methods
Preprocessing reference data

The following section is discussing the applied 
methodology to derive the reference data the ap-
plied CNN is to be trained with. It is given by the 
respective slanted distances of the rays of every 
pixel in the water. To obtain them, the orientations 
of the camera and a water surface model (WSM), 
as well as a ground model are used to trace the 
path of rays from the camera to the correspond-

 

Fig. 1: Orthophoto Autobahnsee with different ground covers

 

Fig. 2: Topo-bathymetric LiDAR-derived digital terrain model Autobahnsee



34 Hydrographische Nachrichten

DHyG Student Excellence Award I

The refracted ray starting from the particular 
intersection point with the water surface, is after-
wards intersected with the ground model, which 
gives the observed ground point in the respective 
pixel. By knowing the two intersection points, the 
euclidean distance can be calculated, constituting 
the slanted distance through the waterbody. With 
that information a reference raster for every image 
can be created. An example of that can be seen in 
Fig. 5a. The last step of preprocessing the data, is to 
mask the multispectral images, so that only pixels 
with valid reference depths are included.

Deep Learning

The U-Net (Ronneberger et al. 2015) serves as basis 
for the applied CNN. Other than in most approaches, 
the net is not being used for segmentation, but for 
fitting a regression model. So instead of having mul-
tiple classes with a normalised output for every pix-
el, only one quantity is trained, containing floating 
point numbers for the water distance of each pixel.

To train a net, the images have to be separated 
into training images, which also contain a percent-
age of validation data, and test images which are 
not used at the training. For that, the lake area is 
split into two parts, which are marked in Fig. 4. To 
make sure that the test data is completely new to 
the net, the images containing both areas were 
neither used in training, nor for testing. The struc-
tures in the chosen areas differ rather strongly, so 
that it is possible to evaluate if the network is over-
fitting to the training area, or if it is learning char-
acteristics that may be transferable also to other 
waterbodies.

4 Results and discussion
Applying the trained net to previously unseen 
data provides an independent performance test of 
the net. This data consists of a subset of all images, 
marked as test images. Thus, it can be verified how 
well the net really learned certain characteristics 
instead of just memorising the training data. An 
example for the prediction of a test image com-
pared to the reference data can be seen in Fig 5a 
and Fig 5b. Despite the area on the upper right, in 
which the slanted underwater distances are pre-
dicted as too large, the predicted values seem to 
match the reference. Besides, there is no major dis-
crepancy considering the trend of the water dis-
tances. What can be observed however, is a certain 
noise that may be caused by the camera sensor or 
by dynamics of the water surface.

After all test images are predicted, per-pixel dis-
tance deviations can be calculated by subtracting 
the predicted distance from the reference dis-
tance. By merging the deviations for all pixels of all 
test images, a histogram over all depth deviations 
(Fig. 6) can be obtained. It is noted that only water 
pixels are taken into account whereas all pixels in 
vegetation and on dry land are masked.

ing ground point with consideration of refraction 
at the water surface. The WSM is estimated from 
the first echoes of the laser scanner, while the last 
echoes constitute the basis for filtering the ground 
points and, finally, calculating the digital terrain 
model (DTM) as the ground model.

In order to get the slanted distances, the rays 
corresponding to the individual pixels can be 
calculated in the local camera coordinate system 
using the interior orientation of the camera. They 
can then be transformed into a global coordinate 
system with help of the pixel coordinates, as well 
as positions and orientations of the camera at the 
time of exposure (Kraus 1996). Those steps are im-
plemented in python, using the orientation file 
containing the interior and exterior orientations.

The next step then is to intersect the rays with 
the WSM, which is done using the Software OPALS 
(Pfeifer et al. 2014). After the intersection points of 
the rays with the water surface are known, for their 
further propagation they have to be corrected due 
to refraction following Snell’s law (Kotowski 1988). 
That results in a change of direction for the ray de-
pending on the incidence angle (Fig. 3).

Fig. 4: Distribution of training and testing area observed in the images

Fig. 3: Refraction of image ray on the water surface

 



The histogram is showing an offset of one to two 
decimetres in negative direction, meaning that the 
predicted distances are larger than the reference 
(i.e. over estimation of water depth). It is nearly nor-
mally distributed with a median absolute deviation 
of 31.9 cm. The standard deviation is higher but the 
value is not as robust, considering outliers.

While convolution kernels are taking informa-
tion from surrounding pixels into account, they 
tend to blur strong edges. Thus, large deviations 
can be found at transitions from vegetation (dark) 
to bare soil (bright).

5 Conclusion and outlook
Considering that the area in the test images is un-
known to the model, the predictions are consist-
ent. If the desired accuracy has to be more pre-
cise than decimetre range, the method of choice 
would still be sonar or LiDAR. If not, advantages of 
CNN based bathymetry estimation over the stereo 
photogrammetric and linear regression approach 
are shown in this thesis. Because of the different 
ground covers of the lake, a more complex model 
than linear regression is required.

A common issue when trying to predict features 
is the lack of data. The major advantage from re-
maining in the image system instead of projecting 
into a global system is shown here. It results in the 
possibility of using the whole dataset with all over-
lapping areas without reducing it. This also is the 
reason, why it was possible to reject the images 
that covered both, the training and testing area, so 
that there was no connection.

To see how well the net is performing for alike 
data sets it is reasonable to apply or transfer it to 
another lake or shallow waterbody. Ideally, the net 
can be used without any changes. Otherwise, the 
pre-trained weights could be adapted by training 
with new reference under-water distances. In that 
case less training data should be necessary. When 
thinking about the advantages in terms of effort it 
would furthermore be interesting to see how well 
it performs for satellite imagery, probably after ap-
plying atmospheric corrections.

Proceeding with this method, the next logical 
step would be to derive a 3D point cloud from 
the predicted under-water distances in the im-
ages. For this purpose, an estimated water surface 
model and the orientations of the camera for each 
slanted distance image would be required. By do-
ing so, it is possible to analyse the overlapping ar-
eas of consecutive images, to see how well they fit. 
Furthermore, outliers that only occur in single im-
ages, for example because of sunglint, could be re-
jected by calculating the median in a certain area 
when creating a DTM. This could avoid the neces-
sity of introducing further postprocessing steps. //
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Fig. 5a: Reference (slanted water) distances of test image

 

Fig. 5b: Predicted (slanted water) distances of test image

 

 

Fig. 6: Histogram of deviations of predicted under-water 
distances compared to reference distances for 24 test images
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