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an increasing amount of underwater imagery has 
emerged raising the need for automatic analytical 
methods. Recent research in full automatic detec-
tion and classification of marine images deploy 
deep learning algorithms as they show superior re-
sults for unconstrained underwater environments, 
non-iconic images and variant image deformations 
(Gonzalez-Cid et al. 2017). The latter is one of the 
main challenges as objects in marine images are 
greatly changing due to different lightning condi-
tions, rotation of the camera system, lens distor-
tion and noise (Pavoni et al. 2021). To account for 
this, multilayer convolutional neural network (CNN) 
models are introduced. Learned features can be 
recognised regardless of their position or imaging 
condition and without previous image preproc-
essing or human supervision. In computer vision 
tasks, two main methods for recognising multiple 
objects have emerged: object detection and in-

1 Introduction
Global ocean temperature rise and ocean acidifica-
tion are ubiquitous and threaten especially benthic 
communities in the Southern Ocean where many 
species survive only in a narrow thermal range  
(Griffiths et al. 2017). To detect current ecosystem 
shifts, studies regarding the abundance of mega-
benthic species can provide information as they 
are very sensitive to environmental change (Pie-
penburg et al. 2017). Sponges should be especially 
investigated as they create and shape habitats for 
other species like brittle stars and a decrease in 
sponges might directly lead to a decrease in many 
other species as well (Mitchell et al. 2020).

One of the main methods to study megaben-
thic species is through optical imagery. It is a fast 
and non-destructive sampling method and opti-
cal systems are typically mounted on towed or re-
motely operated vehicles. In light of its advantages, 
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Throughout recent years convolutional neural networks have been applied for various 

image detection tasks. Training data thereby plays an important role for the perfor-

mance of those models. Not only the amount of images is crucial but also the number 

of annotations, classes as well as image dimensions. In view of changing underwater 

environments, the study of benthic communities is increasingly important especially 

in the Southern Ocean as they provide a key link for ecosystem shifts. This study con-

centrates on the automatic detection and classification of benthic species using deep 

learning. It could be shown that glass sponges, brittle stars and soft corals could suc-

cessfully be detected even on few input data and highly biased class distributions in 

varying underwater scenes. Further analyses considering data-driven influences show 

significant performance declines regarding the training on single objects and classes 

per image and the evaluation on large image dimensions. 
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In den letzten Jahren wurden gefaltete neuronale Netze für verschiedene Aufgaben der Bilderkennung 
eingesetzt. Die Trainingsdaten spielen dabei eine wichtige Rolle für die Leistungsfähigkeit dieser Modelle. 
Dabei ist nicht nur die Menge der Bilder entscheidend, sondern auch die Anzahl der Annotationen, Klas-
sen sowie die Bilddimensionen. Angesichts sich verändernder Unterwasserumgebungen wird die Unter-
suchung benthischer Lebensgemeinschaften vor allem im Südlichen Ozean immer wichtiger, da sie hier 
vor allem sensibel auf Veränderungen reagieren. Diese Arbeit konzentriert sich auf die automatische Er-
kennung und Klassifizierung von benthischen Arten mittels Deep Learning. Es konnte gezeigt werden, 
dass Glasschwämme, Schlangensterne und Weichkorallen selbst bei wenigen Eingabedaten und stark 
unterrepräsentierten Klassen in unterschiedlichsten Unterwasserlandschaften erfolgreich erkannt werden. 
Weitere Analysen zu datengetriebenen Einflüssen zeigen deutliche Leistungseinbußen bei einzelnen Ob-
jekten und Klassen pro Bild während des Trainings und großen Bilddimensionen während der Evaluation. 
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stance segmentation. The output of an object de-
tector is a set of bounding boxes around detected 
objects whereas instance segmentation computes 
pixel-accurate masks around detected objects and 
is thus able to grasps the shape of objects. Gen-
erating training data for instance segmentation is 
very laborious and masks are typically generated in 
a second step after the bounding box detection. 
Since this study simply focuses on the detection 
of marine species without the necessity to capture 
shapes of features, instance segmentation was not 
implemented. Several previous works deal with the 
classification and detection of fish (Salman et al. 
2016; Christensen et al. 2018) or benthic communi-
ties (Boulais et al. 2020) using state-of-the art mod-
els such as LeNET, SSD via MobileNet and RetinaNet 
via ResNet50, respectively. 

For CNNs the amount of training data is consid-
ered to be the main driver for accurate network 
inference. Also, better results are achieved with 
deeper layered networks because features can 
be learned at more diverse levels of abstractions. 
As more layers of neurons are added to the net-
work, different feature details ranging from low-
level features such as lines or dots to high-level 
features such as common objects or shapes are 
trained to be recognised. Networks with multi-
ple layers are thus better at generalising because 
they learn more discriminative features (Pauly et al. 
2017). However, deeper layered networks typically 
consists of several million of parameters, increas-
ing the demand of more training data. Therefore, 
training data sets are commonly augmented by 
changing the rotation, sharpness, perspective and 
brightness (Huang et al. 2019) to produce more in-
put data in a cost and time effective way. In view of 
successful training, it is further important to con-
sider data related design choices such as number 
of annotations and classes per image during train-
ing as well as the image input size. While consider-
ing image sizes ranging from 96 to 224 pixels, it 
could be shown that the accuracy linearly increas-
es (Mishkin et al. 2017).

This paper investigates the effect of data driven 
influences on the model accuracy in an attempt to 
create a road map for optimal input training data 
with regards to number of annotations and classes 
per image, class imbalance and image sizes ex-
ceeding those in previous mentioned studies. For 
the detection of benthic morphotypes the state-
of-the-art network CenterMask (Lee and Park 2019) 
via ResNeXt-101 (Xie et al. 2017) was utilised which 
is trained on the three classes: glass sponges, soft 
corals and brittle stars. 

2 Data

2.1 Underwater imagery data set

A seabed survey to investigate the epibenthos was 
carried out during the PS118 cruise of RV Polarstern 

in the western Weddell Sea in 2019 (Purser et al. 
2021). Seafloor images were obtained using the 
towed Ocean Floor Observation and Bathymetric 
System (Purser et al. 2019). For this study images 
from seven different sampling stations at distinct 
depths and with diverse seafloor types were used 
to incorporate various environmental alterations 
in the network training process. The original 3840 
× 5760 sized images were tiled rather than down 
sampled to 1440 × 960 to keep the input resolu-
tion but decreasing the need for computational re-
sources during training. Image annotation for the 
three object classes was conducted on 1000 im-
ages using the web-based annotation tool COCO 
Annotator (Brooks 2019). The selected image set 
was split so that 700 images belong to the training 
set, 100 images to the validation set and 200 im-
ages to the test set. After labelling it was evident 
that a high class imbalance persists because of the 
3550 annotations from the training set, 87 % of the 
labels belong to the class brittle stars, 8 % to the 
class glass sponges and 5 % to the class soft corals. 

2.2 Data augmentation

Data augmentation was conducted using the 
image generator COCO Synth (Kelly 2019) which 
composes new images by placing cut out objects 
as foreground over plain seafloor images. The 
foregrounds are randomly altered in brightness, 
rotation, scale and amount. For training, a total 
of 12,000 synthetic images were created from 30 
foregrounds per class and 30 background images 
(Fig. 1). It is noted, that the selected foregrounds 
and backgrounds originate from images that are 
not part of the original training set mentioned in 
section 2.1. Also, to alleviate class imbalance 4000 
images of the 12,000 images are solely composed 
of glass sponges and soft corals changing the ratio 
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Fig. 1: Synthetically derived image compositions by placing cut out foregrounds 

onto cropped backgrounds
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3.3 Performance metrics

The performance was assessed based on the eval-
uation metrics adopted for COCO which are based 
on the average precision and average recall scores 
(Lin et al. 2014). Both, precision as well as recall are 
evenly important metrics for the classification of 
benthic communities. While precision is the ratio 
of correctly predicted specimen out of all predict-
ed specimen, recall indicates whether all correct 
specimen could be detected and how many were 
missed. Consequently, the precision P defines the 
proportion of false positives FP and the recall R 
reflects the proportion of false negatives FN. With 
TP being the number of true positives they can be 
mathematically computed as follows:
     

TP
           

TP
 P = 

(TP + FP)
     and     R = 

(TP + FN)

Precision and recall scores are then computed into 
average scores (AP and AR) over all classes and at 
varying intersection over union (IoU) thresholds 
which are used to measure the overlap between 
ground truth and predicted bounding boxes. The 
defined IoU are 0.5 and the average of ten IoU lev-
els starting from 0.5 to 0.95 with a step size of 0.05 
(the latter is further denoted as: .50:.95). AP and AR 
are also calculated for varying object sizes (small: 
< 722 pixels, medium: > 722 and < 2142 pixels, large: 
> 2142 pixels) and for different maximum number 
of detections per image (1, 10, 100). AR1 computes 
the mean average recall across all classes and IoU 
thresholds for images where at most one detec-
tion was made while AR10 and AR100 compute the 
mean average recall for images where at most 
ten or at most 100 detections were made, respec-
tively. Additional adopted metrics are the accuracy 
to assess the total number of predictions that are 
correct and the F1 measure which evenly weighs 
between precision and recall (Manning et al. 2009):
        

TP + TN
  

2PR
 accuracy = 

(TP + TN + FP + FN)
   and   F1 = 

P + R

4 Experiments and results
Main experiments in section 4.1 and 4.2 were execut-
ed across varying data sets summarised in Table 1. 

The corresponding test runs were performed on 
the 200 original image test set. Further ablation 
studies performed in section 4.3 and 4.4 were con-

to 33 %, 33 % and 34 % for glass sponges, soft cor-
als and brittle stars.

3 Method

3.1 Deep learning architecture

The neural network which was utilised for the 
detection of benthic species in section 4.1. and 
4.2 is the object detector CenterMask (Lee and 
Park 2019) in combination with the backbone 
ResNeXt-101 (CM-X-101) (Xie et al. 2017). Backbone 
refers to the part of the network which is used to 
extract basic features and creates the feature map 
representation of the input data. They are typically 
initialised by ImageNet pre-trained weights. The 
detection head uses the feature map to perform 
the task of object detection and classification. It 
computes bounding boxes on identified objects 
for each image and calculates the classification 
confidences. Both architectures used in this study 
received excellent results in recent benchmarks 
such as COCO (Lin et al. 2014). For the experiments 
conducted in section 4.3 and 4.4 the more light-
weight backbone VoVNetV2-99 (CM-V-99) (Lee 
und Park 2019) was used instead of ResNeXt-101 
as it comprises fewer network parameters such as 
weights of connections which reduces the com-
puting time. 

3.2 Training details

Training was executed on five NVIDIA Tesla V100 
GPUs of a 64-bit Linux machine equipped with an 
Intel Xeon Gold 6254 CPU @ 3.10 GHz. The base 
learning rate was set to 0.002. To reduce the effect 
of early overfitting on highly differentiated data 
sets, the learning rate was reduced for the first 
5080 iterations by one third (Fig. 2). After 25,400 
and again after 38,100 iterations the base learning 
rate was reduced by a factor of ten. The maximum 
number of iterations one image batch was passed 
forward and backward through the neural net-
work was 50,800 which corresponds to 20 epochs 
defined as the number where the entire data set is 
passed through the network.

Fig. 2: Learning rate at number of iteration

Data set Training set composition

Baseline Original data set (700 images)

Synth-B Synthetic images with equal class distribu-
tion & Baseline composition (12,700 images)

Synth-GS Synthetic images composition including 
extra glass sponges and soft corals & 
Baseline (12,700 images)

Table 1: Data set compositions for main experiments
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ducted on 20 epochs using a smaller synthetically 
derived training set of 2000 images with varying 
image sizes, number of annotations and classes 
considering the respective experiment. Corre-
sponding testing was performed with respective 
300 synthetically derived images. 

4.1 Detection results

To investigate the detection results of the trained 
network, the average precision and average re-
call exhibit best scores around 76.7 % AP for an 
IoU.50 and 63.9 % AR100 on the Synth-GS data set 
( Table 2). Further, deploying synthetically derived 
images to support the training increases the per-
formance of AP.50:.95 by 17 % and AR100 by 16 % 
emphasising the importance of more input data.

With regards to recall scores at varying numbers 
of detections, it can be noted that more detec-
tions per image will lead to better recall evalu-

ations. Additionally, smaller object sizes receive 
lower precision as well as recall scores throughout 
all testing strategies (Table  2). Those low perfor-
mances might be caused by down sampling op-
erations inside pooling layers that are applied on 
each feature map in the model. Down sampling 
output feature maps makes them more robust to 
changes in the translation of a feature in the im-
age but fewer features might get extracted as 
resolution decreases with repeated convolutional 
and pooling layers. Also, there is a relatively large 
ratio between pixel size and object size for smaller 
objects which quickly increases the possibility to 
predict bounding boxes with positional deviations 
from ground truth boxes. Those positional devia-
tions might already be too large to pass the thresh-
old defined for the IoU.

Considering qualitative results, Fig.  3 shows 
detection results for various stations with differ-

Model/Data AP.50:.95 AP.50 APsmall APmedium APlarge AR1 AR10 AR100 ARsmall ARmedium ARlarge

CM-X-101/Baseline 41.7 68.2 25.3 29.3 54.7 21.6 51.6 55.2 25.4 45.1 70.8

CM-X-101/Synth-B 48.8 71.0 27.4 39.1 62.8 24.7 58.8 64.2 27.9 57.3 77.1

CM-X-101/Synth-GS 51.8 76.7 27.5 40.2 66.1 25.7 59.0 63.9 27.9 55.7 77.9

Table 2: Summary of detection results with bounding boxes (in percent)

Fig. 3: Detection results and 

confidences of the model 

CenterMask – ResNeXt-101. Red 

circles show missing brittle stars, 

red arrows indicate inaccurate 

bounding boxes predictions 

and red rectangles reveal wrong 

species detections. Images 

belong to the test set and 

originate from different diving 

locations of the PS118 cruise
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20 annotations show a reduction in precision of 
22 % (59.5 % AP.50:.95) and 18 % (63.3 % AP.50:.95), 
when testing on images with 20 annotations, re-
spectively. Hence, best AP results are received 
when training is performed on images with up to 
20 annotations, and worse results are scored when 
images contain only single objects during train-
ing. Also, it can be argued that images with lots of 
specimen not necessarily need to be implement-
ed for training as the gap between 59.5 % AP.50:.95 
and 63.3 % AP.50:.95 is rather low. Overall, precision 
and recall rates are slightly lower for multiple an-
notations in comparison to single annotations 
per image. A reason could be that synthetically 
derived data sets tend to compose overlapping 
foregrounds the more foregrounds are being used 
which poses incorrect detection results as also 
stated in section 4.1. Considering the number of 
classes, it is evident that multiple classes per image 
yield an increase in AP and AR by 280 % and 158 %, 
respectively (Table 4). Therefore, images with sin-
gle classes on images should be avoided.

4.4 Influence of image pixel dimension

For the investigation regarding different image pixel 
dimensions, the original image was tiled into sizes 
ranging between 1440 × 1280 and 960 × 768 pixels 
as training for larger image sizes result in GPU mem-
ory issues and smaller sizes tend display only single 
or cut objects for original data. The evaluation was 
performed also on the original image size of 5760 × 
3840 pixels to investigate whether tiling has to be 
performed also for model inference. In general, the 
evaluation on image sizes larger than 1440 × 1280 
yield a sharp drop in precision (Fig. 5) which might 
occur because region of interests could be assigned 
to unsuitable feature levels. Also, as image sizes in-
crease, the more GPU memory and inference time is 
being used. Meanwhile, same image sizes adopted 
for both training and evaluation show not neces-
sarily a performance boost which demonstrate that 
images deployed for the evaluation may vary in size 
and aspect ratio from the input training set. Highest 
precision results are achieved by the 1440 × 960 im-
age size trained with adequate (6 GB) GPU memory 
usage. Further, it can be certain that original images 
may contain multiple objects and classes.

5 Conclusion and outlook
In conclusion, this study shows that deep convo-
lutional neural networks are a suitable choice to 
automatically detect and classify benthic species 
in varying underwater environments. Further, large 

ent seafloor types, camera distances, variant illu-
minations and sharpness. It can be seen, that the 
trained model is able to correctly detect almost 
all specimen belonging to the three classes. Even 
blurred images pose no problem in detection just 
very small specimen or such that are lying closely 
to one another might be wrongly detected as one. 

4.2 Influence of class imbalance

The influence of class imbalance where class dis-
tributions are biased is a known problem in deep 
learning applications (Guo et al. 2008). There are 
many approaches to combat class imbalance such 
as oversampling, undersampling or setting class 
weights to emphasise minority classes. In this 
study the underrepresented classes glass spong-
es and soft corals were oversampled because 
this method has proven to be very effective (see 
Guo et al. 2008; Buda et al. 2018). After adopting 
the data augmentation strategy with additional 
distributions of underrepresented classes, the F1 
and AP scores are increased by 5 % and 13 % for 
glass sponges and by 10 % and 6 % for soft cor-
als, respectively (Table  3). Consequently, AP and 
AR scores across all classes are boosted with a per-
centage increase of 24 % AP.50:.95 and 16 % AR100 
compared to the Baseline data set

4.3 Influence of number of annotations  

and classes

Ablation studies with respect to number of an-
notations show that single annotations per image 
have a precision reduction of 27 % when evalu-
ating on images with five annotations and 71 % 
when evaluating on images showing up to 20 an-
notations (Fig. 4). Training performed on five and 

Fig. 4: Number of annotations per image during training and the evaluation regarding average 

precision and recall across varying numbers of annotations per image

AP.50:.95 AR

Single classes 19.9 31.2

Multiple classes 75.6 80.6

Table 4: Performance for number of classes per image dur-

ing training (in percent)

Glass sponges Soft corals Brittle stars

Model/Data F1 AP.50:.95 F1 AP.50:.95 F1 AP.50:.95

CM-X-101/Baseline 67.7 41.4 70.3 36.8 80.2 46.9

CM-X-101/Synth-B 67.8 45.3 69.8 48.8 79.2 52.4

CM-X-101/Synth-GS 71.4 51.4 76.8 51.5 79.9 52.6

Table 3: Summary of performance results per class (in percent)
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Fig. 5: Average precision regarding the evaluation on various image sizes.  

Coloured graphs represent the image sizes used for training
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amount of training data can be synthetically derived 
to feed deep networks with sufficient information 
without risking overfitting. The implemented data 
augmentation strategy is thus not only useful to ex-
tend the input data set but also to alleviate class im-
balances boosting the performance considerably. 
When preparing input data, images not necessarily 
need to exhibit lots of specimen decreasing time 
spend for annotation. However, images with single 
specimen and single classes should be avoided 
as performance may drop significantly. Therefore, 
larger image sizes such as 1440 × 960 pixels may 
be used where chances are high that image tiles 
contain multiple objects. On the contrary, greater 
image sizes consume more GPU memory and if im-
age sizes exceed a critical threshold, the precision 
will drop as region of interests may be assigned to 
wrong feature levels. Next to this challenge, future 
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