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Abstract 
 
The Prairie Island Indian Community (PIIC) recently purchased property, on which a 
portion of a prominent archeological site, encompassing 67 formerly documented burial 
mounds, resides. In order to better protect the burial mounds and other culturally significant 
material on the site, as well as on sites residing on the remainder of their new property, the 
PIIC enlisted the support of Minnesota State University, Mankato’s Earth Science, 
Archeology, Resources, and Terrestrial Hazards (EARTH) Systems Research Laboratory 
in developing a site treatment plan. Developing a useful site treatment plan necessitated 
conducting a geoarcheological survey of a portion of the archeological site, known as the 
Belle Creek Mounds site, on the acquired property. The survey included both geospatial 
and geophysical survey to locate and identify burial mounds, impacts to burial mounds, 
and evidence of site usage. Limited excavation took place to better understand the extent 
to which buried cultural materials need protection, how ancient people used the 
archeological site in the distant past, and how Belle Creek Mounds relates to other sites in 
the surrounding area. Geophysical techniques produced results supporting their 
effectiveness at identifying impacted and previously unmapped mounds on site. The 
artifacts recovered during limited excavation at Belle Creek Mounds are similar to artifacts 
recovered at previously investigated aggregation villages within the Red Wing Region. 
This thesis is for use by PIIC, in combination with geospatial and geophysical datasets 
generated by this and related projects, to assist in protecting the Belle Creek Mounds site 
and surrounding sites and in setting a precedent supporting greater use of geophysical 
techniques in archeological investigations of potential mortuary features.  
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Chapter 1 – Introduction 

The Prairie Island Indian Community (PIIC), in southeastern Minnesota, is facilitating a 

rekindling of its relationship with locations significant to its ancestry. The community has 

recently purchased a property (Figure 1-1) encompassing six archeological sites, most of 

which are associated with pre-Euro-American contact Native American earthworks 

commonly referred to as mounds.

 
Figure 1-1: Geographic location of PIIC property and Belle Creek Mounds 

Archeological Site. 

Mounds are normally primarily constructed of soils surrounding and within 30 meters of 

their boundary and tend to be roughly circular (Arzigian and Stevenson 2003:65 and 136). 
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Those that are roughly circular average 12.29 meters in diameter and 1.09 meters in height 

(Arzigian and Stevenson 2003:65). Mounds regularly contain ritually buried human 

remains, containing human remains more than 75% of the time (Arzigian and Stevenson 

2003:232). The most prominent of the archeological sites located on PIIC’s new property 

is formally identified as 21GD0072 and known as the Belle Creek Mounds site, which 

archeologists interpret as being associated with the Woodland Tradition, Middle 

Mississippian Tradition influenced Silvernale Phase, as well as the Oneota Tradition 

commonly encountered throughout southern and central Minnesota (Minnesota Office of 

the State Archaeologist 2021b). To protect the Belle Creek Mounds site, as well as the 

other associated archeological sites residing on their new property, the PIIC worked with 

Minnesota State University, Mankato’s Earth Science, Archeology, Resources, and 

Terrestrial Hazards (EARTH) Systems Research Laboratory, on a project to develop a site 

treatment plan informed through a geoarcheological survey, supervised by Dr. Ronald 

Schirmer.  

A site treatment plan for the Belle Creek Mounds site, because of its cultural and 

archeological importance, its similarity to the other archeological sites also present on 

PIIC’s newly acquired property, and its greater visibility and accessibility, gave the 

EARTH Systems Research Laboratory (ESRL) an opportunity to facilitate an 

understanding of the nature, extent, and conditions of archeological and cultural material 

on PIIC’s new property. This site treatment plan seeks to aid the PIIC in both protecting 

and interpreting the archeological materials present on the Belle Creek Mounds site in 

addition to the remainder of their newly acquired property. It also seeks to supplement 
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southeastern Minnesota’s archeological record and further establish the use of geophysical 

and geospatial techniques in archeological site protection. This thesis is one part of what 

will certainly need to be a more extensive site treatment plan; only the cultural resources 

are considered here, but other types of resources and situations (e.g., plants, erosion, etc.) 

will need to be considered in a broader treatment plan for the whole property. 

The PIIC’s acquisition of the northern portion of the Belle Creek Mounds archeological 

site is significant due to North American indigenous communities experiencing, especially 

over the last 200 years, forced disconnection from the sense of place and meaning derived 

through physical interaction with areas of cultural-historical importance. The United States 

of America’s Indian Removal Act of 1830 formalized a long period of intensive 

displacement, dispossession of Native American homelands, and in some cases, genocide 

of Native American peoples (Colwell-Chanthaphonh 2005:377). However, immigrants to 

North America began displacing Native American people long before the Indian Removal 

Act, throughout the colonization of North America and creation and growth of the United 

States (Littlefield and Parins 2011:xiii–xv).  

Following the government of the United States coercing Native American tribes into 

ceding their lands, indigenous people within the United States lost rights to access many 

of the properties linked with their past. The enactment of the National Historic Preservation 

Act (NHPA) of 1966 involved Native American tribes in a consultation process revolving 

around the preservation of areas of historical significance potentially impacted by federally 

associated projects within the United States (U.S.) (U.S. Congress 1966:35–36). However, 

this act did not grant federally recognized tribes the right to unilaterally disallow the 
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destruction of sites that tribes deemed important to protect. The NHPA also failed to give 

tribal members the right to access sites, associated with their past, preventing cultural 

connection with them through presence or ceremony. 

Years of Native American advocacy and protest spurred the U.S. government’s passage of 

stronger legislation allowing tribes and federal agencies to protect areas of cultural 

significance from destruction and looting, as well as granting Native Americans access to 

culturally significant areas to perform religious ceremonies (Horton 2017:23). The Indian 

Religious Freedom Act of 1978 allowed Native Americans to access places they regarded 

as sacred, and the Archaeological Resource Protection Act of 1979 made it illegal for an 

individual to excavate and remove artifacts from federal or tribal lands with the exception 

of arrowheads and excavation and removal done with federal or tribal permission (U.S. 

Congress 1978, 1979:139–145). These acts still allowed for the destruction of Native 

American burial grounds on private land and possession of Native American remains and 

cultural patrimony from burial sites located on public land. In the state of Minnesota, 

Statute 307.08 was updated in 1980 to prevent the molestation of all human remains and 

burials found on public and private land without permission from the State Archaeologist 

and Indian affairs inter-tribunal board, now the Minnesota Indian Affairs Council 

(Minnesota Legislature 1980). This included protections against looting and excavating 

Pre-Contact Native American burial mounds. The Native American Graves Protection and 

Repatriation Act of 1990 gave tribes the ability to repossess Native American human 

remains and cultural patrimony held in public institutions or recovered from public lands 

(U.S. Congress 1990). 



5 
 

 
 

Unfortunately, despite the relatively recent passage of meaningful legislation encouraging 

the protection of Native American burials and archeological sites in the U.S. and 

Minnesota, many Native American burial sites, including mound sites, continue to be 

damaged and neglected. People continue to be ignorant or disrespectful of indigenous 

wishes as to how Native American burial grounds, including mound sites, should be 

treated. One Minnesotan, in 2014, expressed a negligent perspective on Native American 

mounds when he reported being bothered by not having the ability to build onto his house 

or move his garage because of a mound on his property that he believed was looted and 

was therefore meaningless to Native Americans (Smetanka 2014). Additional damage to 

previously impacted burial mounds likely took place in Red Wing, Minnesota, in 2013, 

when a new trail was constructed in an area that once contained mounds, without proper 

review including the Office of the State Archaeologist (Minnesota Office of the State 

Archaeologist 2014:25). Moreover, construction of a border wall by the United States 

along its southern border, knowingly threatened indigenous burial grounds (Ortiz 2020).  

If indigenous communities own the land on which sites with special religious and cultural 

significance reside, the communities have more rights in terms of protection and use, 

resulting in fewer threats to a significant area’s integrity as well as ease of access for 

religious rites (Post 2006). In order to promote the best possible practices in preserving, 

using, and appreciating archeological and cultural sites, it is necessary to understand the 

types and extent of archeological and culturally significant materials present, what their 

condition and history is, and possible threats to their preservation. For this reason, an 

archeological survey is important to perform on newly acquired properties. 
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As is shown in Chapter 4, some of the cultural resources that were formerly visible at the 

site no longer have determinable surface expression and must be sought using advanced 

geophysical means. However, a larger mound in a highly impacted area on site, and 

mounds in formerly uncultivated wooded areas remain visible and have discrete 

geophysical signatures lending complementary data to the identification of mounds 

damaged beyond the point of visual identification and previously unidentified visible 

mounds. Recovered and noted cultural material present among and adjacent to the mound 

group allows for more refined interpretation of the people who potentially used, built, and 

lived among the Belle Creek mound group in the distant past, and gives tangible support 

to substantial village or ceremonial archeological deposits being present in close proximity 

to the mound group.  

Appropriate cultural protocols congruent with the wishes and traditions of the Prairie Island 

Indian Community were followed upon arriving at the site. 
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Chapter 2 – Background 

Location 

The Belle Creek Mounds archeological site is located within Goodhue County in 

southeastern Minnesota partially on property recently purchased by the Prairie Island 

Indian Community in Welch Township, approximately 2 kilometers west of the city limits 

of Red Wing, Minnesota (Figure 1-1) (Minnesota Department of Transportation and 

Minnesota Geospatial Information Office 2009). The Prairie Island Indian Community’s 

property consists of 48.87 hectares of land, 5.58 of which make up the northwestern half 

of the 10.03-hectare Belle Creek Mounds archeological site (Esri Inc. 2020; Goodhue 

County 2020; Minnesota Department of Transportation 2017). The project’s primary area 

of investigation within the Belle Creek Mounds site is a 100 x 40-meter rectangular area 

with a 20 x 20-meter square area appended on to its western edge at its northwestern corner. 

The area of investigation is 0.45 hectares in size, and just northeast of the approximate 

center of the Belle Creek Mounds site, on PIIC property (Figure 2-1). The site occupies a 

terrace positioned along the northern bank of the Cannon River at elevations of 

approximately 245 to 250 meters above mean sea level (MAMSL), about 40 meters higher 

than the elevation of the Cannon River adjacent to the site location (Minnesota IT Services 

- Geospatial Information Office 2011). The site and property are fairly close to the Cannon 

River’s confluence with the Mississippi River, which is approximately 10 kilometers east.  
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Figure 2-1: Primary area of investigation within the Belle Creek Mounds site boundary 

and PIIC property boundary. 

The site and property are both located within the U.S. Department of Agriculture’s Natural 

Resource Conservation Service’s (NRCS’s) Eastern Iowa and Minnesota Till Prairies 

Major Land Resource Area (United States Department of Agriculture Natural Resources 

Conservation Service 2006:324). This area is within the U.S. Interior Plains’ Central 

Lowland Physiographic Provence described as being mostly associated with dissected till 

plains, but in small part with the less-recently glaciated Wisconsin Driftless Section in its 

northeastern portion (United States Department of Agriculture Natural Resources 

Conservation Service 2006:324). Surficial geological geospatial data indicates that the 

Belle Creek Mounds archeological site resides upon glacio-fluvial outwash sands from the 
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Late Wisconsin Subdivision of the Late Pleistocene Epoch or Early Holocene Epoch, 

~10,000 – 8,000 BCE, surrounded by uplands associated with Pre-Illinoian Till, with a 

depositional age less than ~700,000 BP, but greater than ~300,000 BP. This geospatial data 

indicates that the site was not glaciated during any of the Wisconsin Sub-divisions or 

Illinoian Sub-division on the geological time scale (Fullerton et al. 2003; National Soil 

Survey Center 2012:5–9; Ojakangas and Matsch 1982:104 and 233).  

The Wisconsin Driftless Area was likely glaciated during far less recent Pre-Illinoian 

glaciations, but hundreds of thousands more years of wind and water related erosion and 

deposition created a landscape with greater relief and far fewer lakes than the more recently 

glaciated surrounding areas (Ojakangas and Matsch 1982:233). The reason there are so few 

lakes in the area is because of its well-drained soils and extensive dendritic drainage 

pattern. Minnesota’s Geology describes the landscape near Red Wing, Minnesota as:  

one of rolling hills and well-established stream networks… considerably 
eroded and displaying numerous bedrock outcrops on the valley sides. 
Mantling the drift and bedrock is a thin blanket of loess, a fine-textured silt, 
powdery to the touch, deposited by the wind during the last glaciation 
(Ojakangas and Matsch 1982:104). 

Loess deposits can range from 9 meters in depth on broad ridges to less than 30 centimeters 

in depth along valley walls (Minnesota Department of Natural Resources 2021). 

The underlying bedrock geology near Red Wing, Minnesota consists of Paleozoic, 542 Ma 

– 251 Ma, marine sandstones, carbonates, like dolomite and limestone, and shales 

containing fossils. This material is occasionally topped with more recent Cretaceous age 

material, 145 Ma – 65.5 Ma, reflecting both marine and continental environments just 

below glacial deposits from the early and middle Pleistocene, 2.6 Ma – 300,000 BP, and 
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post-glacial sediments from the Holocene, 10,000 – 0 BP (National Soil Survey Center 

2012:5–9; Ojakangas and Matsch 1982:234). The area’s river valleys are filled with recent 

alluvium made up of clay, silt, sand, and gravel (United States Department of Agriculture 

Natural Resources Conservation Service 2006:325). 

Red Wing, Minnesota’s current climate is classified as a humid continental climate using 

the Köppen climate classification system. The average annual temperature in Red Wing is 

7.1°C or 44.8°F with seasonal fluctuations, including a low monthly average of –10.8°C 

or 12.6°F in January and a high average of 22.3°C or 72.1°F in July; the average annual 

precipitation is 774 mm. or 30.5 inches (Climate-Data.org 2021). According to the 

Minnesota Department of Natural Resources’ (MNDNR) and United States Forest 

Service’s (USFS’s) ecological classification system, the posited pre-Euro-American 

settlement vegetation within the Belle Creek Mounds archeological site’s ecological 

subsection consists of tallgrass prairies on broad ridge tops, bur oak savannas on ridge tops 

and dry high slopes, red oak, white oak, shagbark hickory, and basswood forests on moister 

slopes, and red oak, basswood, and black walnut forests in protected valleys (Minnesota 

Department of Natural Resources 2021). As the Belle Creek Mounds archeological site is 

on a broad higher terrace with a south-facing slope within a river valley, a red oak, 

basswood, and black walnut forest or a tallgrass prairie are two probable candidates for its 

pre-Euro-American settlement vegetation. The present land usage distribution for the 

Blufflands Subsection, which the study area resides within, is 30% cropland, 20% pasture, 

and 50% woodland (Minnesota Department of Natural Resources 2021). 
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Making sense of an archeological site, especially while attempting to use geophysical 

methods to do so, is made easier by understanding the soils in the areas being analyzed. 

The soils within the area of investigation at the Belle Creek Mounds archeological site 

consist of moderately eroded Lindstrom silt loam associated with 12 to 18 percent slopes, 

moderately eroded Lindstrom silt loam associated with 6 to 12 percent slopes, and 

moderately eroded Lilah sandy loam associated with 0 to 6 percent slopes (Soil Survey 

Staff 2021). Both Lindstrom series soils are taxonomically classified as fine-silty, mixed, 

superactive, mesic, Cumulic Hapludolls and tend to develop in loess or alluvial sediments 

on foot slopes or toe slopes of dissected uplands (Soil Survey Staff 2005). The Lilah series 

soil is taxonomically classified as a mixed, mesic, Psammentic Hapludalf and tends to form 

in loamy sediments and in underlying gravelly outwash (Soil Survey Staff 2007). The 

Lindstrom series soils comprise the northern 2/3 of this project’s area of investigation and 

the Lilah series soil comprises the remaining southern 1/3 (Figure 2-2) (Soil Survey Staff 

2016). The native vegetation associated with the soil types on site is consistent with the 

MNDNR/USFS ecological classification system’s posited pre-settlement vegetation, noted 

above. Lindstrom series soils are reported as having mixed tall grass prairie and deciduous 

forest as native vegetation. Lilah series soils are reported as having mixed big bluestem, 

switchgrass, and other tall grass prairie grasses and deciduous trees as native vegetation.  

Although the Lindstrom and Lilah series soils have similar native vegetation, their typical 

pedons have significant differences. The profile of the Lindstrom type soil can be broken 

down as: Ap 0–23 cm., black (10YR 2/1) silt loam; A1 23–56 cm., very dark brown (10YR 

2/2) silt loam; A2 56–74 cm., very dark grayish brown (10YR 3/2) silt loam; Bw1 74–97 
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cm., dark brown (10YR 3/3) silt loam; Bw2 97–112 cm., brown (10YR 4/3) silt loam; Bw3 

112–152 cm., dark yellowish brown (10YR 4/4) silt loam; C 152–178 cm., yellowish 

brown (10YR 5/4) loam (Soil Survey Staff 2005). The profile of the Lilah type soil can be 

broken down as: Ap 0–15 cm., very dark grayish brown (10YR 3/2) sandy loam; BA 15–

23 cm., dark yellowish brown (10YR 3/4) sandy loam; Bt1 23–38 cm., brown (7.5YR 4/4) 

gravelly sandy loam; 2Bt2 38–71 cm., strong brown (7.5YR 5/6) gravelly loamy sand; 

2Bt3 71–99 cm., strong brown (7.5YR 5/8) sand; 2C 99–203 cm., strong brown (7.5YR 

5/8) loamy sand (Soil Survey Staff 2007). The Lindstrom soil series has a much thicker A 

horizon, weakly developed B horizons, as well as a consistently silty texture associated 

with a smaller particle size. The Lilah soil series has a sandy texture associated with a 

larger particle size, thinner A horizon, 3 well developed clay rich B horizons, two of which 

are derived from different parent material than the horizons above them, and excessive 

drainage. 
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Figure 2-2: SSURGO soil map including the area of investigation at the Belle Creek 

Mounds Archeological Site.  

The genesis of Lindstrom soil series within the area of investigation (AOI) can be explained 

using the soil catena concept. The Lindstrom soil likely has a much thicker topsoil than the 

Lilah series further south because in the area where the Lindstrom soil is located, colluvium 

from the slope to the north accumulates as a result of the area within the northern part of 

the AOI residing on a toeslope. The two different parent material types present in the Lilah 

soil series profile are explained by eolian loess covering a terrace tread comprised of glacial 

outwash following the outwash’s deposition.  

The formation process of the area’s river channels and their associated terraces is of 

concern to geomorphologists. Local terrace formation on the tributaries of the Upper 
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Mississippi River in the Wisconsin Driftless Area is inferred as beginning with the 

aggradation or buildup of glacial outwash sediment in tributary channels during glacial 

melting followed by stream incision and partial removal of the deposited outwash 

facilitated by drops in water elevation at streams’ mouths (Faulkner et al. 2016:85 and 89–

92). Following incision, a relatively smaller accumulation, aggradation, of sediment on 

either side of streams created somewhat-flat floodplains during minor flood events with 

major riverbed armor breaching flood events and further drops in water elevation at 

streams’ mouths beginning further incision leaving behind portions of unincised former 

floodplain as terraces, higher than where new floodplains formed (Faulkner et al. 2016:85 

and 89–92). For a more detailed description of these fluvial geomorphological processes 

read Faulkner et al. 2016. 

Archeological Theoretical Foundations and Setting 

In attempting to discern the reasons for the presence of and relationships between various 

artifacts and features associated with past people, archeologists developed artificial artifact 

and feature based taxonomies that are ultimately combined to define manifestations of 

specific artificially defined archeological cultural groupings (Hegmon 1992:530–531). 

Here, “artifact” is defined as a human used, modified, or manufactured object, and 

“feature” is defined as non-portable evidence of past human activity including refuse and 

storage pits, architectural remains, fire hearths, artifact clusters, and anthropogenic soil 

stains (Kelly and Hurst Thomas 2017:2 and 29). The stylistic characteristics of artifacts 

and features are inextricably linked to adaptive human technological production, function, 
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and exchange, social organization, communication of ethnic affiliation, and/or expression 

of a particular ideology (Hegmon 1992:519 and 531–532; Schortman 1989:56–59). 

However, ethnographic observations indicate that the artifacts used in distinguishing a 

person’s specific identity may not preserve well, preventing archeologists from ever fully 

reconstructing a past society’s system of affiliations (Schortman 1989:56). Even so, 

through analyses and determinations of associated types of preserved stylistic variations in 

spatially and temporally distinct artifacts and features, cultural associations can be created 

or assigned in connection with inferred past populations that manufactured the recovered 

artifacts and features found at archeological sites (Schortman 1989:56–57). It then stands 

to reason that through analyses of artifacts and features’ stylistic variations, evidence of 

changes within and interactions between cultural groupings can be indicated with the 

adoption of stylistic characteristics lacking presence earlier in a population’s timeline. 

Analogical inference is central to the previously discussed analytical approach, with one 

archeologist and philosopher supporting the validity of analogical inference citing existing 

methodological strategies for evaluating the strength of inferences, for adding support for 

or against specific inferences, and for rejecting false analogies (Wylie 1985:107). 

Archeological cultural classifications in North America consist of a system based primarily 

on Gordon Willey and Phillip Phillips’ system outlined in Method and Theory in 

Archeology (Kelly and Hurst Thomas 2017:141–143). Willey and Phillips’ work defines 

spatial divisions, basic archeological units, temporal series, and integrative units for use in 

organizing archeological data to facilitate its interpretation (Willey and Phillips 1958). The 

spatial divisions are defined as the locality, varying in size from a single site to a district 



16 
 

 
 

not larger than might be occupied by a single community; the region, a unit of area loosely 

applied but very apt to coincide with minor physiographic subdivisions in which cultural 

homogeneity cannot be assumed; and the area, a large spatial unit similar to a cultural area 

of the ethnographer like the Southwest in the United States (Willey and Phillips 1958:18–

21). Basic archeological units consist of the phase, a basic unit designed as being limited 

spatially to a locality or region and chronologically to the briefest possible amount of time 

that is characterized by distinctive and highly specific artifact types that distinguish it from 

all similarly conceived units, and the component, defined as the manifestation of a phase 

within soil stratum or strata that are presumed to be culturally homogenous (Kelly and 

Hurst Thomas 2017:143; Willey and Phillips 1958:21–24). Ideally components are 

eventually combined to create broader archeological phases spanning across space (Willey 

and Phillips 1958:27). Many phases are associated with specific projectile point and pottery 

styles and some extend into multiple regions in practice. Examples of temporal series are 

the local sequence, a formerly exclusively soil stratigraphy-based series of components 

describing the order in which components are present at a single site or locality; the 

regional sequence, the product of correlating similar local sequences at the regional level 

that can result in the extension of defined phases across regions; and the period, a relatively 

long length of time defined through associations with gross changes in archeological 

remains related to highly generalized subsistence methods and material culture (Kelly and 

Hurst Thomas 2017:143; Willey and Phillips 1958:24–29). Integrative units consist of the 

horizon, a wide distribution of recognizable stylistic characteristics occupying a relatively 

brief period of time; the tradition, essentially an archeological manifestation comprised of 
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many phases defined through a broad consistency in observed house styles, settlement 

patterns, pottery or lack thereof, and subsistence systems present through a large span of 

time; and climax, the phase or phases of maximum cultural intensity of a tradition (Kelly 

and Hurst Thomas 2017:142; Willey and Phillips 1958:29–40).  

Traditions are sometimes named in association with archeological periods, but often 

exceed the bounds of the period they are associated with and can overlap in time and space 

with other traditions. People associated with particular phases and traditions are often 

referred to as the phase or tradition’s name followed by culture or people or, in some 

instances, simply a demonymization of the name itself, with the related term cultural 

complex describing an apparent interrelated clustering of cultural traits or characteristics. 

The most frequently applied elements of the previously discussed organizational system in 

the background research related to this project seem to be the locality, phase, component, 

period, and tradition, though sequences are occasionally referenced. It is important to note 

that past people that appear to have been using similar artifacts are not definitively part of 

common cultures, though their association with each other is often inferred as previously 

stated (Anfinson 1979:xi). Though much of the research related to archeology around Red 

Wing, Minnesota refers to the culturally occupied space near what is now Red Wing as the 

Red Wing Locality, recent research combined with the previously cited terminology 

discussed by Willey and Phillips suggests that the Red Wing Region is a more appropriate 

classification for the location. Archeological materials suggest the permanent and long-

term presence of multiple distinct groups, thus invalidating locality as a potential 

taxonomic unit (Schirmer in preparation:4). Cited research referring to an inappropriately 
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named Red Wing Locality has been adjusted in this research to refer to the Red Wing 

Region. 

Prior to listing and briefly describing archeological sites within set distances of the 

project’s area of investigation, identified using the Minnesota Office of the State 

Archaeologist’s web portal, a review of a portion of the interpreted archeological timeline 

and archeological research related to southeastern Minnesota’s human past, is warranted 

to ensure a clearer understanding of archeological data discussed in a more detailed 

manner. The Paleoindian Period in Minnesota, spanning from ~9500 – 6000 BCE, was its 

first period of human occupation that is supported by archeological evidence (Arzigian and 

Stevenson 2003:74; Fleming 2009:2). Beginning around 9500 BCE, wide-ranging hunter-

gathers lived in an environment in transition, as glaciers that once covered the landscape 

retreated. The artifacts most commonly affiliated with the period’s associated Paleoindian 

Tradition are long, sometimes fluted, lanceolate points used to hunt large fauna, including 

mammoth and mastodon early in the period (Arzigian and Stevenson 2003:74; Fleming 

2009:2). In the late Paleoindian Period and early Archaic Period global temperature began 

to rise significantly, ~5°F, reaching a relative high during the Climatic Optimum at ~5800 

BCE, transforming many formerly wooded areas, in what is now Minnesota, into prairie 

(Gibbon 2012:66). The Archaic Period, spanned from ~6000 – 1000 BCE generally and 

~6000 to ~500 or 0 BCE in Minnesota (Arzigian and Stevenson 2003:75). The associated 

Archaic Tradition is characterized by regional differentiation in material culture and 

apparent adaptations in hunting and gathering techniques that took advantage of a greater 

number of resources, some of which were specific to particular landforms in various 



19 
 

 
 

ecological zones, including many species of freshwater fish, mussels, nuts, and berries, 

with the main animal resource being deer in wooded areas and bison on the plains (Arzigian 

and Stevenson 2003:75). The Woodland Period ranges from ~500 BCE or ~0 CE – 1000 

or 1650 CE in Minnesota with the period ending far more quickly in southeastern 

Minnesota than in remote northern parts of Minnesota (Arzigian and Stevenson 2003:79). 

The period’s associated Woodland Tradition is characterized by the broad onset, creation, 

and usage of pottery, burial mounds, the bow and arrow, and horticulture (Arzigian and 

Stevenson 2003:79).  

People residing in southeastern Minnesota during its Late Woodland Period, ~500 – 1100 

CE, may be effectively described as belonging to regional and sub-regional groups, with 

heterogeneous archeological traits, possessing local knowledge and wide-ranging trading 

and interaction networks spanning Minnesota, from Wisconsin to the Dakotas, and spilling 

south, well into what is now Iowa and Illinois (Hildebrant Iffert 2010:38 and 43; Schirmer 

2002:5 and 36–37). These people, referred to as Late Woodland cultural groups, are 

inconsistently archeologically documented in southeastern Minnesota’s Driftless Area, 

possibly due to their relatively mobile and dispersed lifeway (Gibbon and Dobbs 1991, 

302). As a result, little is known specifically about Late Woodland cultural groups in the 

Red Wing Region. Broadly speaking, warm weather lowland villages associated with 

primarily hunting and gathering, including shellfish collection, and some small scale crop 

production, like the cultivation of goosefoot, knotweed, sunflower, maize, and squash; and 

cold weather dispersed mobile sheltered-upland-based family camps, allowing for more 

effective deer hunting, comprise the known pattern of regional Late Woodland cultural 
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subsistence (Hildebrant Iffert 2010:39; Schirmer 2002:36–37). Mound groups regularly 

consisting of two to 15 conical, linear, and effigy shaped mounds are indicative of a Late 

Woodland cultural origin (Hildebrant Iffert 2010:42). Importantly, Late Woodland cultures 

have been regarded as being distinct from the contemporaneous and descendent cultures of 

the Oneota, Middle Mississippian, and Middle Missouri traditions (Schirmer 2002:5).  

The culturally Late Woodland effigy mound building groups, sometimes referred to 

collectively, and arguably too specifically, as the Effigy Mound Tradition or culture, 

occupied an area encompassing southern Wisconsin, northwestern Illinois, northeastern 

Iowa, and land along the Mississippi River in eastern Minnesota around 1000 CE 

(Rosebrough 2010:1; Schirmer 2002:37). Effigy mound building cultures constructed 

zoomorphic effigy mounds thought to be associated with adapted alliance rituals of Late 

Woodland populations more mobile than their predecessors (Rosebrough 2010:556 and 

573). Through the tangible representation of identity, sodality, or social totem, using 

upperworld and lowerworld associated animal symbolism related to particular resources, 

effigy mounds may have allowed builders to bury their dead in multiple locations, without 

returning to communal burial grounds, and claim access to local resources (Rosebrough 

2010:573; Schirmer 2002:122). Claims to burial rights and resources were likely 

established by people involved in carefully planned mound construction, as following the 

completion of effigy mounds, the mounds were regularly obscured with vegetation 

preventing future visibility (Rosebrough 2010:573). Five phases are taxonomically 

regarded as belonging to a defined Effigy Mound variant: the Keyes Phase in northeastern 

Iowa, the Lewis Phase in northwestern Wisconsin, the Eastman Phase in southwestern 
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Wisconsin, the Horicon/Kekoskee Phase in southeastern Wisconsin, and the Des Plaines 

Phase in northeastern Illinois (Rosebrough 2010:111). All these phases have traits that set 

them apart from each other, but their commonly held characteristics are shell midden 

formation, Madison pottery-ware usage, and the use of a specific ceramic motif 

(Rosebrough 2010:111).  

Multiple zoomorphic mounds were, at one time, present on the Mero village’s terrace, with 

others being present throughout the Red Wing Region (Fleming 2009:253; Rosebrough 

2010:107–108; Schirmer 2002:57). However, unlike the effigy mounds in what are now 

Iowa or Wisconsin that were built in association with other effigy mounds, effigy mounds 

in the Red Wing Region are isolated among groups of circular or conical mounds indicating 

that effigy mound building near Red Wing was merely a small part of a larger aggregational 

mortuary tradition (Fleming 2009:254). Effigy mound building groups manufactured and 

used pottery consisting primarily of grit-tempered cord-impressed jars (Rosebrough 2010:2 

and 93). The presence of or interaction with effigy mound building cultural groups in the 

Red Wing Region is supported by locally recovered pottery sherds (Hildebrant Iffert 

2010:39 and 42). 

Madison ware, a pottery type, often consisting of vertically cord-marked, sometimes cord-

wrapped stick impressed, conoidal to sub-conoidal grit-tempered jars with thin walls (4–6 

mm.), wide mouths, slightly constricted necks, and straight to slightly out flaring rims, 

directly associated with studied effigy mounds, appears to have been used by Late 

Woodland people on the Dike archeological site, on Prairie Island, just north of Red Wing 

(Anfinson 1979:74; Hildebrant Iffert 2010:39). Late Woodland Angelo Punctated ware, 
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hypothesized to be associated with effigy mound building groups, was recovered at the 

Mosquito Terrace archeological site, near the confluence of the Cannon and Mississippi 

rivers (Hildebrant Iffert 2010:39; Rosebrough 2010:25). Angelo Punctated pottery consists 

of grit-tempered jars with punctates and incised to thin-trailed line decorations in geometric 

patterns similar to Mankato Incised pottery affiliated with the Cambria Phase, potentially 

indicating that the Lewis Phase associated with Angelo Punctated pottery interacted with 

cultural groups on the prairie (Anfinson 1979:51; Fleming 2009:146; Rosebrough 

2010:113 and 216). This type of pottery was used after 1000 CE and has been found in 

association with Middle Mississippian jars (Rosebrough 2010:113). 

Pottery associated with other Late Woodland cultural groups, unaffiliated with effigy 

mounds, is also present in the Red Wing Region. Clam River Cord-stamped and Onamia-

like pottery, present at the Dike site, indicate a southward movement of culturally Late 

Woodland peoples into the Red Wing Region from near Lake Mille Lacs in eastern 

Minnesota and the Clam River in western Wisconsin (Hildebrant Iffert 2010:39). Clam 

River Cord-stamped ware is defined as having grit temper, exterior surface treatment with 

a crisscross cord wrapped paddle, a globoid body with rounded shoulders and a constricted 

neck, a high neck-rim with outcurve, cord-wrapped stick impressions in simple geometric 

patterns in the rim-neck area, and occasionally cord-wrapped stick punctates forming a 

border below the geometric patterns (Anfinson 1979:67). Clam River pottery is associated 

with non-effigy compound burial mounds (Anfinson 1979:67).  

Although regarded as non-local, Late Woodland pottery consisting of Grant Cord 

Impressed ware and Fred Edwards Cord Impressed ware with shell tempering, are present 
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at the Mero and Bryan pre-contact village areas near Red Wing, on opposite sides of the 

Mississippi River (Fleming 2009:218). The presence of these two pottery types indicates 

interaction with Late Woodland peoples with evidence of having resided in southwestern 

Wisconsin ~1000 – 1200 CE, when the pottery was likely manufactured (Rosebrough 

2010:230). Rosebrough asserts that the use of shell temper indicates that Edwards Cord-

Impressed pottery should be considered a Late Woodland/Middle Mississippian hybrid 

pottery type (Rosebrough 2010:233). In discussing the Late Woodland cultural presences 

in the Red Wing Region, Schirmer explains that, although some are associated with eastern 

and northern groups, the majority are related to south-southeastern, western, and 

southwestern Plains/Prairie groups (Schirmer 2002:58).  

From ~1050 to ~1300 CE, an area encompassing the confluences of the Wind and 

Mississippi, Cannon and Mississippi, and Trimbelle and Mississippi rivers, surrounding 

and including what is now Red Wing, Minnesota, was arguably the most densely occupied 

area in the Upper Mississippi Valley, with an estimated resident population of more than 

500 people and archeological evidence supporting its function as an interaction center 

between Late Woodland cultures and Oneota Tradition, Cambria Phase, Middle 

Mississippian Tradition, and Silvernale Phase related cultural groups (Fleming 2009:11–

12 and 297; Gibbon and Dobbs 1991:295; Hildebrant Iffert 2010:34; Schirmer 2002:6). 

Research focusing on the archeology of the Red Wing Region during this period identifies 

more than 6 major village sites present including: Silvernale, Bryan, Belle Creek, Energy 

Park, Mero/Diamond Bluff, Double, Bartron, and Adams, and puts forth ~150 people as 

the ethnographically supported ideal population size for maintaining social harmony in a 
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relatively egalitarian community, suggesting that the resident population could easily be 

greater than 1,000 people (Fleming 2009:12; Hildebrant Iffert 2010:34–35; Schirmer 

2002:57). These larger villages affiliated with the previously mentioned time period are 

regularly surrounded by mound groups that were of great interest to early antiquarians and 

archeologists of Minnesota and the Midwest, with the number of locally present individual 

mounds exceeding 2,000 (Fleming 2009:20). 

Archeological research pertaining to the Red Wing Region defines the Oneota Tradition as 

a cultural manifestation associated with the Upper Mississippi River, having characteristics 

including villages located to allow access to multiple econiches and the use of large, 

globular, shell-tempered pottery vessels with smoothed surface treatment, high or out-

slanting rims, tool impressions on rims with occasional rim notches, and rectilinear 

decorations made with trailed lines, including chevrons (Anfinson 1979:39–40; Hildebrant 

Iffert 2010:49; Schirmer 2002:5). Oneota villages are thought to have mainly been located 

on terraces and seasonally occupied, with inhabitants procuring shellfish, bison, and deer, 

cultivating maize, squash, beans, tobacco, sunflower, and little barley, and gathering 

acorns, walnuts, fruits and berries, and wild rice (Hildebrant Iffert 2010:46). Oneota 

emergence is complex, with Oneota presence being established with apparent 

independence in both eastern Wisconsin approximately 923 CE and eastern Minnesota 

approximately 1050 – 1100 CE and another independent Oneota origin point located in 

northeastern Illinois, near Lake Michigan (Fleming 2009; Henning and Schirmer 

2020:149–156; Rosebrough 2010; Schirmer 2002, 2016). Oneota artifactual assemblages 

comprised the majority of artifacts at the Bartron and Adams archeological village sites in 
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the Red Wing Region and contributed artifacts to the village sites, including multi-cultural 

aggregation village sites, on both sides of the Mississippi River near Red Wing. Research 

suggests a southerly, later, purer Oneota phase in the Red Wing Region at the Burnside 

School and McClelland sites dating to 1222 – 1419 CE at 2-sigma and 1350 – 1400 CE, 

respectively, following the large-scale occupation of aggregation village sites (Koncur 

2018:13 and 52; Schirmer 2016).  

The Middle Mississippian Tradition was centered around the massive pre-contact 

population center referred to as Cahokia, near modern day St. Louis, Missouri, and had an 

estimated peak population of  ~15,000 people, with estimates being as low as under 5,000 

people and as high as greater than 40,000 people (Woods 2004:255–256). The Middle 

Mississippian cultures, associated with the Emergent Mississippian Period (~800 – 1050 

CE) and the Mississippian Period (~1050 – 1350 CE), spread along the Mississippi River 

and its tributaries (Fleming 2009:15). Middle Mississippians are probable descendants of 

Woodland Tradition related populations from around the American Bottom Region, the 

broad 16-kilometer-wide eastern floodplain spanning from the confluence of the Illinois 

and Mississippi and Missouri and Mississippi rivers to where the Mississippi floodplain 

begins to tighten ~20 km. south of St. Louis (Schirmer 2002:23; Woods 2004:255–256). 

These Woodland populations gradually transitioned from living in small unorganized 

upland and lowland clusters of houses with a disorganized structure of cooking and storage 

pits to highly concentrated, floodplain focused, socially stratified communities with 

numerous domestic compounds and a uniform system of pits organized around a central 

open space with its own pit cluster surrounding a central post. These communities engaged 
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in task specialization and subsisted using an organized system of large-scale agricultural 

food production (Schirmer 2002:5 and 23). Additional characteristics associated with 

Middle Mississippian culture include: platform mounds, wall-trench structures, tri-notched 

projectile points, chipped stone Middle Mississippian hoes, spades, and knives, discoidals 

(also referred to as chunkey stones), pottery trowels, pans, water bottles, and shell-

tempered pottery with rolled rims and curvilinear decorations (Emerson 1999:224; Fleming 

2009:242; Gibbon and Dobbs 1991:288–289).  

The Cambria Phase  consists of mounds and three core villages along the Minnesota River 

(Henning and Schirmer 2020:158). Recent assays date the phase, that includes imitations 

of Stirling Phase Cahokia rolled rimmed angled shouldered jars decorated by broad 

curvilinear designs, from 1000 – 1200 CE or 1050 – 1200 CE with a later variant dating 

from 1200 – 1300 CE (Holley and Michlovic 2013:22). Henning and Toom as well as 

Holley and Michlovic indicate that the Cambria Phase falls within the Northeastern Plains 

Village Tradition due to its lack of artifacts indicating interaction with Initial Middle 

Missouri cultures and its geographic displacement from the Great Oasis Phase that is 

purported to have played a role in the genesis of the Initial Middle Missouri Tradition, 

which Cambria has been placed within previously (Holley and Michlovic 2013:22–26; 

Mollerud 2016:72). The placement of Cambria outside of the Initial Middle Missouri 

Tradition is supported by Cambria’s notable similarities to the Mill Creek and Over phases 

to the west and the Silvernale and Cahokia phases to the east (Holley and Michlovic 

2013:26). However, Mollerud identifies four Great Oasis rim sherds at the Cambria Phase 

type site (Mollerud 2016:182). Other characteristics of the Cambria Phase include: plains 
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side-notched projectile points, semi-subterranean house forms, bell shaped storage pits, 

snub-nosed thumbnail scrapers, sandstone abraders, pottery gaming pieces, scapulae hoes, 

clay elbow pipes, and quantities of bone, shell, and maize refuse (Anfinson 1979:51; 

Gibbon and Dobbs 1991:303). Over 93.7% of 442 individual vessels analyzed through rim 

sherds from the Cambria type site were fragments of grit-tempered jars that had a smoothed 

surface treatment with nearly half exhibiting evidence for polish, reflecting light (Mollerud 

2016:98, 113, and 180). Decorative designs associated with the Cambria Phase are incised 

or trailed, with occasional punctates and rare cord impressions, and are mainly comprised 

of linate horizontal fields, chevrons, meanders, spirals, and filled triangles (Anfinson 

1979:51). The Cambria Phase shares a host of vessel shapes and rim and decorative 

treatments with neighbors to the south and west (Holley and Michlovic 2013:22).  

The Silvernale Phase (~1100 – 1300 CE), has its type site within the Red Wing Region and 

is present in both southeastern Minnesota and extreme western Wisconsin. Artifact and 

feature characteristics associated with this phase are small notched and unnotched 

triangular projectile points, end scrapers, side scrapers, sandstone arrow shaft abraders, 

bison scapula hoes, storage and refuse pits, and flexed primary burials in subsurface pits 

with an indicated mixed hunting and gathering and agricultural economy (Anfinson 

1979:183; Gibbon and Dobbs 1991:298). Village sites of this phase reside on terraces 

above the floodplains of the Cannon and Mississippi rivers (Fleming 2009:23). Silvernale 

culture seemed to disappear from the Upper Midwest by 1300 CE following the collapse 

of Cahokia and the affiliated Middle Mississippian Tradition with the disappearance 

posited as resulting from Red Wing Region Silvernale groups disaggregating due to their 
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function as a prairie-related trading node in a wide-spread Middle Mississippian trading 

network no longer being necessary (Gibbon and Dobbs 1991:301). Recent research has 

concluded that formerly aggregated groups moved away from the Mississippi trench at the 

end of the Silvernale Phase and created villages near more minor drainages in the Red 

Wing Region, identified as Oneota (Henning and Schirmer 2020:151). Village sites that 

have a majority Silvernale component are Silvernale, Bryan, Belle Creek, Energy Park, 

and Mero/Diamond Bluff (Hildebrant Iffert 2010:35).  

Shell tempering is by far the most commonly identified temper type for Silvernale pottery 

and its surfaces are typically wiped smooth with some vessels, usually formed from 

incompletely oxidized grayish paste, appearing to have exhibited polish (Holley in 

preparation:10). Whole and nearly complete Silvernale vessels invariably have hachured 

scrolls and Silvernale nested chevrons were very often rounded or curving as opposed to 

rigid (Holley in preparation:11).  

Isolated scrolls and hachured units… were identified, sometimes in 
association with parallel horizontal lines. Finally, a bull’s-eye, possibly a 
variant of the scroll, was identified in Silvernale deposits as were sherds 
with seemingly unbounded rounded punctations (Holley in preparation:11).  

Holley identifies some of the diagnostic aspects of the Silvernale I facet of Silvernale 

pottery as weakly protruding rolled-rim jars or faceted-rim jars with plain or polished black 

surfaces and moderate width with deeply scribed decoration on angled-shoulder bodies. 

The archetypal pottery vessels within the Silvernale II facet are rolled-rim jars, sometimes 

having large rims, with wide scribed decoration with strong intaglio-effect on the interior 

wall (Holley in preparation:16).  
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Diagnostic characteristics of Link pottery, a pottery type related to the Silvernale Phase, 

include angled-rim and curved-neck jars, intermediately angled to rounded shoulders, and 

rim tabs, which are clay pads added to the rim as a form of decoration that follow the flow 

or direction of the rim (Holley in preparation:17–18). Link scribed decorations resemble 

the previously discussed Silvernale facets’ filling in large areas of the upper jar, but 

sometimes have disconnected scrolls or spirals and large areas of the vessel undecorated 

(Holley in preparation:18). Recent results from the Silvernale site date Bartron pottery, an 

Oneota pottery, at ca. 1170 – 1280 CE and Silvernale and Link pottery at ca. 1190 – 1240 

CE indicating that multiple pottery types appear to have been in use at the same time over 

a period of 100 years (Henning and Schirmer 2020:154). The new data support Oneota 

cultural development being a process separate from Middle Mississippian-related activities 

(Henning and Schirmer 2020:154). 

Project Area of Investigation Archeological Background and Selection Rationale 

The Belle Creek Mounds archeological site was chosen as the focal point of this research 

due to it having features representative of other mound groups on PIIC’s newly acquired 

property, as well as greater prominence and relatively easy accessibility, which facilitates 

study and makes adverse effects to its already impacted mounds more probable. Through 

studying the geophysical results associated with a highly visible mound group, other 

mounds within less prominent mound groups will likely be easier to identify through 

comparison with data collected at Belle Creek Mounds.  
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There are 166 recorded archeological sites in Minnesota within 10 km. of the Belle Creek 

Mounds archeological site (Minnesota Office of the State Archaeologist 2021a). Eighty-

seven of the 166 recorded archeological sites are classified as sites encompassing burial 

mounds, and 16 of the sites are documented as confirmed locations of former aboriginal 

habitation or village locations. Some of the sites formally classified as villages are 

associated with different archeologically derived cultures and traditions that include 

Woodland, Oneota, and Middle Mississippian, affiliated most strongly with Silvernale 

Phase groups.  

Within 1 km. of the Belle Creek Mounds archeological site there are 9 recorded 

archeological sites (Minnesota Office of the State Archaeologist 2021a). Eight of the sites 

are areas encompassing small mound groups, with fewer than 5 identified mounds, and 1 

of the sites is referred to in name as Belle Creek Village. The northeastern portion of the 

Belle Creek Village’s site boundary encompasses the southwestern third of the Belle Creek 

Mounds site. The property, upon which the northern portion of the Belle Creek Mounds 

site (21GD0072) resides, is now owned by the Prairie Island Indian Community (PIIC) 

along with two complete archeological sites, McGregor Mounds I (21GD0066) and 

McGregor Mounds II (21GD0067), and portions of three other archeological sites, 

McGregor Mounds III (21GD0068), Foreman Mounds (21GD0065), and Belle Creek 

Village (21GD0200) (Figure 2-3) (Goodhue County 2020; Minnesota Department of 

Transportation 2017).  
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Figure 2-3: A hillshade map depicting archeological sites on or closely adjacent to 

PIIC’s newly acquired property. 

The mound sites located on PIIC’s property, apart from the Belle Creek Mounds site, are 

relatively small and do not encompass many mounds. The Foreman Mounds site is 

documented as having 3 mounds on 0.81 hectares of land, McGregor Mounds I is 

documented as having 4 mounds on 1.82 hectares of land, McGregor Mounds II is 

documented as having 3 mounds on 1.42 hectares of land, and McGregor Mounds III is 

documented as having 1 mound on 0.4 hectares of land (Minnesota State Historic 

Preservation Office 1990a, 1990b, 1990c, 1990d). All of these sites are assigned as having 

a probable cultural-temporal affiliation with the Woodland Tradition. The Belle Creek 

Village site is documented as having associated depressions, pottery, and debitage, and as 
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occupying 25.1 hectares of land within and south and west of the Belle Creek Mounds site 

(Minnesota Department of Transportation 2017; Minnesota Office of the State 

Archaeologist 2021a; Minnesota State Historic Preservation Office 1990e). The Belle 

Creek Village is documented as being associated with the Oneota Tradition along with a 

high probability of being associated with the Mississippian Tradition (Minnesota State 

Historic Preservation Office 1990e). 

The interpretations present on Belle Creek Village’s site form are likely derived from an 

excavation done on the site with cursory documentation. In the Minnesota Office of the 

State Archaeologist’s (OSA’s) site files there is digitized correspondence written by former 

State Archaeologist Elden Johnson in which he describes flying over the Belle Creek 

Village site, seeing [Pre-Contact Era] house outlines, and, eventually, conducting a test 

excavation on the site that “produced a few pottery sherds much like those from the Bryan 

site downstream” (Minnesota Office of the State Archaeologist 2021b). Because Bryan is 

a complex aggregation site with multiple types of local pottery, Johnson’s description of 

the pottery at Belle Creek is unclear. Johnson went on to note that Belle Creek Village 

offers a good opportunity to potentially answer some of the questions raised at Bryan, but 

that could not be answered due its level of destruction (Minnesota Office of the State 

Archaeologist 2021b). Although the aforementioned excavation is informally documented 

by Johnson, a more detailed summary or report of the work could not be located and does 

not seem to have ever existed (Schirmer 2020, personal communication). 

An 1885 effort to map mounds is the only previous formally documented archeological 

survey that had taken place investigating Belle Creek Mounds. Because of the site’s gross 
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characteristics (i.e., position on the landscape and pattern of mounds), it is thought to be 

associated with the Silvernale Phase or the Bartron Phase Oneota regional occupation, 

whose artifacts are present at mound sites along major drainages near Red Wing, 

Minnesota (Gibbon and Dobbs 1991). With Johnson’s interpretation in mind, the most 

likely nearby sites that may reveal what to expect in terms of cultural affiliation and 

archeological deposits at Belle Creek Mounds would also have villages in close association 

with mound groups on terraces along the Cannon River and possibly the Mississippi River, 

villages like Bryan (21GD0004) and Area 51 (21GD0290) and mound groups like Bryan 

Mounds (21GD0045) and Bryan II (21GD0051) (Minnesota Office of the State 

Archaeologist 2021a). 

Another informally documented excavation took place at Belle Creek Mounds 

archeological site prior to Johnson’s excavation in the late 1960’s or 1970. Dr. Edward W. 

Schmidt assisted in excavating and documented the excavation of a “six-foot conical 

mound” that had load marks and contained 3 dozen cobblestones at varied depths, but no 

other evidence of human presence (Schmidt 1940). Schmidt also excavated a “62 foot 

mound that was 3 feet high at its eastern end but older looking at its western end” (Schmidt 

1940). Schmidt’s excavation located a spall with chipping at the far western end of the 

mound during the excavation of a 12-foot trench. In the eastern end of the mound, 

excavators found bone fragments. Then after hours of careful digging, recovered larger 

human bone fragments from above the hips, a femur and tibia of a right leg, as well as 

small bits of cranium, but no ribs, hand bones, or foot bones (Schmidt 1940). Further 

analysis of the previously mentioned remains, once part of the H188 Goodhue County 
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Historical Society collection that were originally accessioned as 2413 – 2426, reveal that 

the remains are associated with a minimum of four individuals (Blue in preparation). The 

remains indicate the presence of one probable adult male, a possible adult female, and two 

sub-adults associated with skull fragments, a clavicle, and sacral fragments (Blue in 

preparation). The skull fragments and clavicle associated with one of the sub-adults exhibit 

copper staining (Blue in preparation). Schmidt also discussed a mound in an alfalfa field 

at Belle Creek that contained pieces of charcoal that “could not possibly have been 

introduced by roots or animals” and circular and rectangular depressions on the eastern 

portion of the terrace that were surrounded by low embankments, possible hut rings, but 

excavation could not confirm the depressions as such. Though Schmidt’s informal 

excavation of mounds is now seen as unethical, the associated documentation of the 

features within the mounds at the Belle Creek Mounds archeological site gives a modern 

survey a better idea of what mounds contain and how nearby human made mounds might 

be distinguished from natural landforms. 

On September 28th and 29th of 1885, archeologist and surveyor T.H. Lewis mapped 67 

mounds at Belle Creek Mounds long before the archeological site was formally established 

(Lewis 1885:1–3). When looking at a LiDAR derived digital elevation model (DEM) 

colored hillshade, Lewis’ work appears to accurately reflect the various mound locations 

within the Belle Creek Mounds site’s mound group (Figure 2-4). When comparing Lewis’ 

1885 mound survey to the previously mentioned hillshade, agricultural practices look to 

have disturbed 22 of the mounds documented in the 1880’s, while 45 of the mounds seem 

to have avoided cultivation. Horse drawn scrapers could be used to quickly remove mound 
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fill (Arzigian and Stevenson 2003:57). However, some of the uncultivated mounds appear 

to have been looted. A preliminary survey and the appearance of the mounds on the 

hillshade confirm the presence of fairly recently dug human-made pits in the centers of 13 

of the mounds on site. Thirty-two mounds appear intact and undisturbed. Approximately 

0.6 hectares of the 2.5 hectares that seem to have been under cultivation on 21GD0072 

were recently in use as a hay field. 
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Figure 2-4: Lewis sketch map with Belle Creek Mounds depicted on a DEM colored 

hillshade.  
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Mound and Geophysical Background 

The reasons attributed to local mound construction and its cessation are discussed in 

research related to the Red Wing Region and broader area. Community and Aggregation in 

the Upper Mississippi River Valley contends that mounds were not necessarily territorial 

markers, but symbols of cultural interaction and ritual linked to cultural aggregation related 

events (Fleming 2009:234). Another hypothesis explains mound building and burials as 

part of a corporate social strategy to decrease resource related risks across cultural groups 

through establishing shared symbolic claims to resources in multiple areas that waned with 

the onset of horticultural sedentism in favor of then more useful network-based social 

strategies associated with the use of individual burials containing grave goods (Rosebrough 

2010:110 and 239). A poor understanding of mound composition and contents makes 

mound documentation difficult. In order to better understand the internal structure and 

physical nature of Native American mounds, archeologists Constance Arzigian and 

Katherine Stevenson compiled and analyzed data from all well-documented mound 

excavations in Minnesota (Arzigian and Stevenson 2003:1). However, detailed information 

related to mound excavations is fairly difficult to come by, as no excavations have been 

done for solely scientific purposes since the early 1970’s, when legislation began to legally 

protect mounds from human disturbance (Arzigian and Stevenson 2003:1). Also, Arzigian 

and Stevenson found that early surveyors who mapped mounds sometimes mistook natural 

or Euro-American features as Native American mounds and occasionally failed to map 

some of the mounds within surveyed mound groups (Arzigian and Stevenson 2003:56).  
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Artifacts within or near mounds are not necessarily associated with the construction period 

of a mound. Not only are mounds constructed over the course of decades and centuries, but 

people have used village fill containing artifacts associated with time periods and cultural 

groups existing hundreds to thousands of years earlier than the mound construction event(s) 

to build mounds (Arzigian and Stevenson 2003:61). Mounds often contain burials and 

artifacts that were added to them hundreds of years after they were constructed. The most 

reliable method of dating a burial feature is the identification of intentionally placed 

diagnostic artifacts or directly associated radiometrically dateable material (Arzigian and 

Stevenson 2003:104). 

Mounds frequently contain primary burials and secondary burials interred one of four 

ways: in pits below the ground surface; placed on the ground surface and covered; placed 

in a pit dug into an existing mound and buried; or placed on top of an existing mound and 

buried by making the mound larger (Arzigian and Stevenson 2003:168). Secondary burials 

have been posited as a potentially non-cultural seasonal practice when the ground is frozen, 

making immediate burial difficult (Arzigian and Stevenson 2003:228). Burials are more 

common near the center of a mound but can occur out to nearly the margin of the mound. 

Arzigian and Stevenson’s research showed confirmed burials as being present within 

75.9% (217) of 286 well-documented mounds with only 2.8% (8) of mounds not having 

any evidence of burials present (Arzigian and Stevenson 2003:232). Eighty-seven-and-a-

half percent of studied mounds greater than 3 feet in height contained burials with none of 

them confirmed as being negative for a burial (Arzigian and Stevenson 2003:194). The few 



39 
 

 
 

mounds excavated in the Red Wing Region have contained human burials (Fleming 

2009:253). 

Features within mounds are nearly equally split between three vertical positions: in fill, on 

the original ground surface, and in pits in subsoil (Arzigian and Stevenson 2003:169). 

Burial features had a maximum depth of ~3 ft. or ~0.9 meters. below the original ground 

surface in archeological region 3e where the Belle Creek Mounds archeological site 

resides, with the maximum statewide depth being slightly greater than 6 ft. or ~1.85 meters 

(Arzigian and Stevenson 2003:177). The most common types of features in burial mounds 

are: pits, which are identifiable due to their dark stained fill contrasting with lighter 

surrounding subsoil; human remains interred without a visible pit; a cluster of bundle 

burials; a special burial complex; pit interred human remains; fireplaces/hearths; 

rocks/cairns; animal bones; cremated human remains; caches; scattered human remains; 

charcoal; clay ridges; stone vaults; and lithic concentrations (Arzigian and Stevenson 

2003:156). There are also occasionally logs documented above burials. The pits included 

in the study averaged ~5 ft. x ~4 ft. x ~2 ft. or 1.5 meters x 1.2 meters x 0.6 meters. 

The soils on and around mounds differ from their less altered surroundings. At Effigy 

Mounds National Monument, mounds have stripped topsoil at their bases resulting in 

truncated soil strata around the mound’s base (Arzigian and Stevenson 2003:134). Mound 

A horizons have shown that they can stabilize relatively quickly, within 1,000 years, of 

mixed topsoil and subsoil being deposited from areas where fill is taken (Arzigian and 

Stevenson 2003:125). This results in a thicker A horizon on top of the mound than the 

borrow area surrounding the mound from where fill was taken. However, E and B horizons 
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within the mound fill do not develop as rapidly. The borrow areas have been documented 

as having A horizons roughly half as thick as the surrounding soils more than 100 feet 

away from mounds (Arzigian and Stevenson 2003:126).  

Arzigian and Stevenson’s discussion of how mound groups change their area’s soil 

horizonation draws attention to the anthropogenic driven alterations to mound fill borrow 

areas among mound groups. The negative space created by borrow areas likely contribute 

to the local relief, increasing elevation differences between mounds and their surroundings, 

contributing to the appearance of the mounds themselves. Through Arzigian and 

Stevenson’s research it can be inferred that borrow areas among mound groups could 

contribute to mound relocation through comparisons of soil horizon thicknesses. Some of 

the previously reviewed research emphasizes the significance of the areas between 

mounds, within mound groups. Rosebrough writes:  

Ritual at mound centers was not likely to have been limited to the mounds 
themselves. Earthen enclosures are sometimes found adjacent to the mound 
groups. Large pits have been noted in patterned association with mounds at 
the only two sites where significant inter-mound areas have been stripped 
of sod (Rosebrough 2010:96). 

Rosebrough goes on to emphasize that studies have not been done to confirm the breadth 

of ritual practices associated with mound groups and that previous research has neglected 

the space between mounds (Rosebrough 2010:96). Community and Aggregation in the 

Upper Mississippi River Valley: The Red Wing Locality describes mound groups 

surrounding aggregation villages near Red Wing as cemeteries, tacitly emphasizing mound 

groups’ complex social function as a whole (Fleming 2009:305). 
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The Belle Creek Mounds archeological site’s mound group is characterized as the least 

disturbed mound group in the Red Wing Region and is possibly representative of the 

appearance of other mound groups if they had escaped cultivation (Yamada 2007:46). 

Several developed techniques, related to geographic information systems, were used on 

this project to more effectively identify, digitize, and estimate mound locations on the Belle 

Creek Mounds site. One technical procedure relating to determining the locations of 

mounds surveyed in the 1880’s, using a compass and canvas measuring tapes, consists of: 

determining a mound group location with noted legal descriptions, georeferenced aerial 

photography, and visualizable digital elevation datasets, as well as notes collected during 

the original survey; converting noted bearing direction based shots from mound to mound 

into azimuths; subtracting magnetic declination to convert azimuths into true north related 

directional azimuths, as opposed to magnetic north related directional azimuths; and, 

finally, building a digital mound group, using calculated true north related azimuths and 

the distances documented between mounds in the original survey notes, through creating 

connected digital lines corresponding to the determined directions and distances (Yamada 

2007:31–32). At individual and shared vertices of the created surveying shot lines where 

mounds are indicated in the survey notes, relatively accurate geospatial representations of 

mounds can be created by building a digital polygon corresponding to survey noted 

measured mound lengths, widths, or radii.    

Other research was used to improve the accuracy of the process of building digital 

geospatial representations of individual mounds at approximated or verified mound group 

locations. In attempting to locate mounds within the approximate area that the original 
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mound survey described, a method was used in which a LiDAR derived hillshade was 

overlain by a partially transparent colored DEM, with different coloring representing small 

changes in elevation, to ensure that small rises on the represented landscape depicting 

mounds were not obscured by larger rises due to the specific lighting angle of the hillshade 

(Artz et al. 2013:17). This technique was used to more accurately locate mounds which the 

previously mentioned digital geospatial representations of mound groups needed to be tied 

to for a spatially accurate depiction of a mound group to be achieved. Using dynamic range 

adjustment to allow the coloration of the DEM to represent different ranges of elevations 

upon zooming or panning within ArcMap 10.7 was helpful in locating individual mounds. 

Because mounds have spiritual significance and legal protection against their disturbance 

due to their regular association with burials, inherently low-impact geophysical techniques, 

which use the properties of magnetism and electromagnetic radiation in prospection and 

analysis, can be highly effective and appropriate in mound related research. Archeologists 

typically use geophysical methods to measure physical properties of near-surface deposits 

within 2 meters of the ground surface, usually to attempt to locate or define features of 

cultural origin (Kvamme et al. 2006:45). An area’s soil properties can greatly affect the 

utility of different geophysical methods (Kvamme et al. 2006:45). The main geophysical 

methods used in archeology, three of which are used in this project, are: electrical 

resistivity, magnetometry, electromagnetic induction, and ground penetrating radar 

(Kvamme et al. 2006:45). It is important to note that geophysics involves the interpretation 

of detected differences in collected geospatially specific data, referred to as anomalies, 

from small sections of a broad area over which geophysical data were collected at set 
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intervals. As archeological features regularly have different physical and chemical 

properties than the soils that surround them, geophysical data anomalous to their 

surroundings can be used to assist in interpreting archeological sites and features (Kvamme 

et al. 2006:45). 

Resistivity or relative soil resistance survey involves introducing a known electrical current 

into soil and measuring and recording the ease at which the current flows through the soil 

at specific points in space by measuring a drop in voltage between probes in contact with 

the ground (Somers 2006:113). The electrical resistance measurement is traditionally 

represented in ohms. The electrical resistance measured by the equipment used to conduct 

a resistivity or relative soil resistance survey indicates an average electrical resistance of 

all of the soil the current injected into the soil passes through on its way to a probe 

associated with measuring resistance via voltage drop (Somers 2006:113). These 

measurements are usually recorded at regular intervals across a site to locate areas with 

geophysically anomalous readings in relation to more widely prevalent ranges of readings 

across a surveyed area. Soil moisture, soil grain size, temperature, soil compaction, and 

soil salinity contribute to the electrical resistance of a particular portion of a soil matrix 

(Somers 2006:111). Anomalous areas of high resistance in relative soil resistance data can 

be associated with buried walls, mounds, banks, cobbled areas, rubble filled pits, and 

underground voids. Anomalous areas of low resistance are often associated with ditches, 

soil filled pits, hut circles, foundation trenches, and gullies (Geoscan Research 2009:6-3). 

Buried archeological features with higher amounts of organic material than the surrounding 

soil matrix often retain relatively more moisture making them lower in electrical resistance 
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where as those with less organic material (e.g., a refuse pit with a large amount of stone 

debris) often appear as resistance highs (Somers 2006:120). Variations in soils, sediments, 

and geology are also apparent in resistivity surveys (Somers 2006:118). Relative soil 

resistance survey results, like other geophysical methods’ survey results, can vary in 

seemingly counter-intuitive and difficult to predict ways making related interpretations of 

anomalies as specific archeological features tentative (Cuenca-Garcia 2019:70). 

Magnetometry passively measures local variations in the earth’s magnetic field near the 

ground surface, with a practical limit of ~3m in depth (Kvamme 2006:206 and 222). 

Common causes of detected variation in soil magnetism include: differences in the 

magnetic susceptibilities of various deposits and soils, the magnetic enrichment of topsoil 

resulting from chemical and physical processes like weathering and biogenic processes 

involving bacterial excretion of the magnetic material magnetite, and firing increasing 

magnetism due to the thermoremanent effect, in which the normally randomly oriented 

magnetic domains in the iron oxides of soils, clays, or stones become aligned to earth’s 

magnetic field at the time of firing at above 600 degrees Celsius. Magnetic domains in a 

material’s iron oxides freeze in a reset magnetic alignment during and after cooling, 

following the material reaching 600 degrees Celsius (Kvamme 2006:207 and 214). With 

respect to the previously mentioned causes of magnetic variation, human activities that 

reveal why magnetometry is a useful tool in archeological prospection include: people 

making fires, people making constructions and artifacts from fired materials, human 

occupation increasing the magnetic enrichment of surface soils, human constructions 

accumulating topsoil, human constructions removing topsoil, people importing materials 
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for constructions, and people making and using iron artifacts (Kvamme 2006:216–221). 

Cultural anomalies often show up as geometric shapes, including lines, circles, and 

rectangles, in magnetometry survey data as well as in other types of geophysical data 

(Kvamme 2006:222). Mounds may be represented as anomalies with high magnetism due 

to their likely association with the accumulation of anthropogenically altered topsoil or the 

burned prepared surfaces they are often built upon (Betts and Stay 2017:49–50; Kvamme 

2006:217–218). 

Ground Penetrating Radar sends radar waves into the ground through a surface antenna 

that are then reflected off of buried objects, features, bedding contacts, or soil units and 

detected by a receiving antenna (Conyers 2006:136). As radar pulses are transmitted 

through the ground their velocity changes depending on the physical and chemical 

properties of the material they travel through (Conyers 2006:136). The more significant the 

contrast in electrical properties of two materials at a subsurface interface, the greater the 

strength, amplitude, of a detected reflected signal associated with the interface (Conyers 

2006:136). This geophysical method has the ability to produce high resolution 3-

dimensional subsurface data due to radar waves’ known speed being able to be converted 

to distance below the ground and the waves’ capability to continue to propagate through 

the ground following their partial reflection by velocity changes associated with shallower 

fluctuations in subsurface material’s electrical properties (Conyers 2006:136). Areas 

associated with the reception of low amplitude reflections usually indicate a uniform soil 

matrix (Conyers 2006:142). Hyperbolas visible in ground-penetrating radar related 

reflection profiles are generated because energy is recorded from a high contrast point 
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source before and after the receiving antenna is directly above the aforementioned point 

source, which is represented by the apex of a hyperbola (Conyers 2006:137).  

Reflections occur at buried discontinuities where there are changes in the 
electrical properties of the sediment or soil, variations in water content, 
lithologic changes, or changes in bulk density. Reflections can also be 
produced at interfaces between anomalous archaeological features and the 
surrounding soil or sediment. Void spaces in the ground such as caskets in 
cemeteries, tunnels, and buried pipes or conduits made of either metal or 
plastic will also generate strong radar reflections as a result of a significant 
change in radar-wave velocity. These features tend to produce reflection 
hyperbolas generated from a distinct “point feature” in the 
subsurface…(Conyers 2006:136) 

Non-invasive geophysical methods including relative soil resistance, magnetometry, and 

ground penetrating radar (GPR) surveys were used throughout the area of investigation to 

attempt to identify geophysical anomalies present on site. The various areas of 

investigation consist of intact mounds, mounds disturbed by cultivation, areas between 

mounds, and areas between mounds and the mound group’s apparent boundary on site. 

Through analyzing the size, shape, location, and the relationship geophysical anomalies 

have with each other and the visible environment, later analyses of the collected data will 

be able to facilitate the development of interpretations of what identified anomalies indicate 

and the broader implications of those indications.  

Advocates for using geophysical survey as a primary method of archeological investigation 

for architecture and landscape-based research think that non-invasive geophysical survey 

can be used as far more than a prospective tool to assist in successful archeological 

excavations (Thompson et al. 2011: 197–198). They cite identification of: construction 

variation in the built environment, continuities and discontinuities in the use of space, 
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natural and cultural modifications to the landscape, and regularities in the use of space and 

architecture at a regional level, as information that analyses of geophysical anomalies can 

potentially contribute to studies of past people without necessarily requiring the application 

of other investigatory methods (Thompson et al. 2011:197–198). Through analyzing 

geophysical anomalies, geophysicists can make inferences about how past people used and 

viewed space. One small example of geophysical interpretation would be interpreting a 

low-resistance oval shaped anomaly below a mound as a likely mortuary feature, like a 

burial or offering pit, or the result of previous physical examination or testing.  

The current project applies the previously mentioned conceptual methods of geophysical 

anomaly interpretation later in this thesis. Application of these methods stands to increase 

understanding about how the Belle Creek Mounds site was used in the past and what areas 

of the site may warrant protection, including future avoidance of ground disturbance, due 

to areas of the ground’s geophysically anomalous profiles that suggest the possible 

presence of buried culturally sensitive material. 

As alluded to previously, in order to better understand the archeological built environment 

at the Belle Creek Mounds site, geophysical data were collected on mounds, places 

identified as the former locations of now highly disturbed mounds, spaces between 

mounds, and areas with no visible mounds, not identified as previously having mounds by 

Lewis’ 1885 survey. These data allow for the comparison and interpretation of the 

geophysical profiles of these different types of features on the landscape and contribute 

information related to the construction processes and compositions of various types of 

mounds and the geophysical appearances of likely culturally and naturally built features.  
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The amount and quality of conducted archeological research limits understanding of the 

Red Wing Region’s archeological record. Archeologists have excavated very little of the 

culturally complex major archeological village sites in the Red Wing Region in relation to 

their total mapped areas, while using inconsistent documentation methods (Schirmer and 

Fleming in preparation). In some instances, Middle and Late Woodland components have 

been mostly destroyed by later occupations (Schirmer and Fleming in preparation). 

Archeologists have not performed research on some of the known archeological sites in the 

region due to accessibility difficulties. The Belle Creek Mounds site is one of the sites that 

was, until recently, inaccessible to archeologists. Due to the lack of archeological 

information pertaining specifically to the Belle Creek Mounds site, it was essential to 

provide an interpretive context based on nearby archeological sites and a review of local 

archeological research. Keeping an open mind about what archeological evidence may be 

present is important in avoiding biasing the interpretation of collected data and preventing 

the destruction of previously unknown archeology. 

Establishing the area of investigation within the Belle Creek Mounds archeological site 

boundary allowed the interpretation of the Belle Creek Mounds archeological site as being 

associated with a village site, as other large nearby mound sites are, to be preliminarily 

tested. Members of the Minnesota State University, Mankato (MSU, Mankato) ESRL’s 

archeological surveying team visited the site twice, prior to when fieldwork was planned, 

to gain a better understanding of how best to go about conducting a survey for the purpose 

of developing a site treatment plan. One of these visits involved a walkthrough with PIIC 

Land and Environment and Tribal Historic Preservation Office staff to help establish 
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appropriate field procedures and gauge the amount of time and equipment needed to 

perform fieldwork. The primary concern the ESRL archeological surveying team and PIIC 

staff addressed during their collective walkthrough related to brush clearing in preparation 

for geophysical data collection.
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Chapter 3 – Methodology 

The initial generational step in preparing for fieldwork, related to the development of an 

archeological site treatment plan, at the Belle Creek Mounds archeological site involved 

creating shapefiles approximating the locations of visible and non-visible mounds, as well 

as Prairie Island Indian Community’s property boundary in relation to the previously 

mentioned archeological site on PIIC’s newly acquired property. Members of the ESRL’s 

archeological surveying crew used ArcMap 10.7.1 software in combination with: a LiDAR 

derived hillshade, a LiDAR derived digital elevation model (DEM), T.H. Lewis’ notes 

from an 1885 survey of the mound group, satellite imagery from Mapbox, property 

boundary data from the Goodhue County GIS Office, and archeological site boundary data 

from the State of Minnesota to generate the aforementioned shapefiles. 

Using previously discussed geospatial datasets, archeological surveying crew members Dr. 

Ronald Schirmer, and the author, Alexander Anton were able to determine a viable area of 

investigation (AOI) to attempt to fulfill the research goals necessary to develop an informed 

site treatment plan safely within PIIC’s property boundary. A 40 x 100-meter AOI was 

settled upon due to the anticipated difficulty of removing large amounts of brush and fallen 

trees (Schirmer 2020, email message to author, May 28th). The AOI’s location 

encompassed adversely impacted mounds, relatively undisturbed mounds, area between 

mounds, and mound-free area in its southernmost portions. Schirmer thought it appropriate 

to attempt to collect data over a large rectangular contiguous area as it would be easier to 

track (Schirmer 2020, email message to author, May 29th). Schirmer additionally advised 
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the collection of geophysical data between mounds to provide data possibly allowing for 

interpretation as to how past people used those areas as well as the vicinity of the mound 

group as a whole (Schirmer 2020, conversation with author, April 21st). The AOI is 

divisible into 20 x 20-meter squares facilitating the collection of geophysical data. An 

additional 20 x 20-meter grid portion was added onto the western edge of the 

northwesternmost 20 x 20-meter grid portion in the original AOI to attempt to collect 

geophysical data over a likely highly impacted mound within the pasture area previously 

used as a hay field. 

After ESRL archeological crew members determined a viable AOI, crew members used 

ArcMap 10.7.1 software to fishnet the AOI creating digital, geospatially located 20 x 20-

meter squares. The corners of each 20 x 20-meter square were then turned into points with 

geospatial, UTM coordinates to aid in the tangible establishment of each 20 x 20-meter 

square’s corners during fieldwork.  

The initial task done at the beginning of fieldwork involved transporting the materials 

needed for brush clearing and archeological surveying from MSU, Mankato to an 

unloading area within PIIC’s new property’s boundary, above the terrace that Belle Creek 

Mounds archeological site resides upon. Two pickup trucks and two cars owned by 

archeological surveying crew members were used in initial transportation of the materials. 

A UTV operated by PIIC Compliance Officer Franky Jackson then transported the 

materials down to the terrace upon which the determined AOI resides. ESRL Geospatial 

Data Manager Andrew Brown constructed a 4 ft. x 8 ft. x 3 ft. padlock-able box, out of 2-

inch x 3-inch boards for the frame and oriented strand board (OSB) to cover all of its sides, 
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which when covered with a large tarp, could keep sensitive and expensive equipment safe 

and dry on site. Franky Jackson provided a game camera to monitor activity in the vicinity 

of the locked box while the crew was off site for added security. The box allowed the crew 

to avoid multiple trips transporting materials from parking areas to the AOI or vice versa 

before work could start and end each day.  

Following transporting equipment on site, the ESRL crew approximated the location of all 

of the 20-meter x 20-meter grid portion corners within the original 40 x 100-meter AOI, 

using a Trimble Geo7x GNSS receiver. The ESRL archeological field crew, consisting of 

Dr. Ronald Schirmer, Andrew Brown, Anna Wiitanen-Eggen, Luke Burds, and Alexander 

Anton, used plastic stakes to mark the approximate location of each of the original eighteen 

20 x 20-meter grid portion corners and flagging tape on a tree selected near each stake to 

make the locations of the stakes visible through the thick brush initially located throughout 

most of the AOI. These staked and flagged GNSS receiver-based approximations, though 

not sub-meter accurate, allowed for work on brush clearing to begin without the 

establishment of permanent physical datums near the AOI. 

In the next four days of fieldwork following the informal establishment of the location of 

the desired gridded AOI, the ESRL archeological surveying crew, Franky Jackson, and 

PIIC’s Native Food Sovereignty Fellow Esther Lui, as well as Franky’s brother Matt 

Jackson and, for a half of a day, journalist Casey Ek, cleared brush, fallen trees, and small 

standing trees from the AOI to allow for the collection of geophysical data. Gabe Miller, 

PIIC Land and Environment Department Manager/Wildlife Biologist and Ronald Schirmer 

agreed that removing living vegetation smaller than 3 inches in diameter as well as dead 
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vegetation from the AOI would be acceptable in terms of its environmental impacts (Miller 

et al. 2020, conversation via conference call, May 20th). The crew had slight difficulty in 

operating equipment initially, but after a few hours assembling the field and brush mower 

purchased for the project and struggling to start the ESRL’s ECHO string trimmer, which 

are notorious for flooding, equipment issues were resolved and brush clearing was well 

underway. The brush clearing crew used a DR field and brush mower, ECHO string 

trimmer, Stihl chainsaw, and safety glasses to cut brush and downed logs. Gloves, log 

chains, and a motorized cart with 4-wheel drive and a rear box were used to transport brush 

and large downed logs out of the AOI. The PIIC Land and Environment Department 

allowed the brush and logs to be placed in a pile approximately 200 meters west of the 

survey’s AOI, on the western portion of the terrace upon which the Belle Creek Mounds 

archeological site rests (Miller et al. 2020, conversation via conference call, May 20th). 



54 
 

 

 
Figure 3-1: Luke Burds, Andrew Brown, Anna Wiitanen-Eggen, and Ronald Schirmer 

clear brush in northern grid portions. 

While finishing up clearing vegetation, the ESRL archeological surveying crew determined 

viable spots to establish two permanent physical datums to the north and west of the AOI. 

The crew planned to establish these datums to setup a Trimble M3 DR 5” total station to 

more accurately pinpoint the physical locations of the previously approximated grid portion 

corners for use during geophysical data collection. Ronald Schirmer selected a location 

approximately 20 meters north of the center of the northern edge of the eventual central 

northernmost grid portion, referred to as grid portion 9. The crew chose this location for 

Datum 1 because the majority of the previously approximated grid portion corners were 

visible through field glasses from there and it fell between the estimated locations of 
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disturbed mounds. The surveying crew loaded a shapefile with the estimated locations of 

the disturbed mounds, based on Lewis’ 1885 survey of the then more extant mound group, 

onto a Geo7x GNSS receiver for the purpose of avoiding disturbing difficult-to-see mound 

remnants with excavation involved in placing permanent datums. The spot for Datum 2 

was selected, while accounting for estimations of the locations of disturbed mounds, at a 

location roughly 165 meters southwest of Datum 1 near the western edge of the treeless 

pasture area. The crew ensured that Datum 1 and Datum 2 were within each other’s 

viewshed so that Datum 2 could provide a visible point to back-sight to from Datum 1. 

Two points with known geospatial coordinates that are within each other’s viewshed allow 

total station operators to setup a total station able to determine its geographical coordinates 

and sight’s azimuth. The crew marked spots chosen for datum locations with plastic pin 

flags for future reference. 

The day following the determination of ideal permanent datum locations, the ESRL 

archeological surveying crew excavated shovel tests at the previously selected spots. 

Neither of the shovel tests, the shovel test excavated for Datum 1, ST 1, or the shovel test 

excavated for Datum 2, ST 2, yielded artifacts. The crew performed bucket augering, 

approximately 1 meter below the base of Datum 2’s shovel test, to gain a better 

understanding of the site’s deeper soils in the interest of determining the likelihood of 

different archeological features, as well as a preliminary interpretation of the area’s soil 

genesis. Ronald Schirmer concluded that the soils present near ST 2 were not well-drained 

enough to allow Pre-Contact Period peoples to construct effective sub-surface storage or 

cache pits in the nearby area. 
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After the crew excavated and formally documented each shovel test, they mixed concrete 

powder and water in a wheelbarrow with a shovel to make concrete to dump in the hole 

associated with the shovel test. A metal concrete anchor that would later be punched using 

a hammer and nail to create a precise stationary point in space that could be used as a datum 

point was then placed flush in the center of the still wet concrete pad. 

 
Figure 3-2: Ronald Schirmer putting the finishing touches on Datum 2. 

Following the creation of the permanent physical datum points, the field crew needed to 

determine the datums’ precise spatial locations. The crew used a Trimble Geo7x GNSS 

receiver, with Trimble CenterPoint Real Time eXtended (RTX) Correction Services 

activated, linked to a Zephyr 2 RoHS antenna fixed atop a 2.6-meter SECO range pole with 

an attached bipod and circular level to collect both datums’ geospatial coordinates. Center 

Point RTX functions using real-time satellite measurements, from multiple satellite 
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constellations, received at an international network of tracking stations to account for 

satellite clock and orbit position errors (Trimble Navigation Limited 2019:7). RTX uses 

algorithmic atmospheric modeling to differentially correct GNSS signals’ atmospheric 

error at the location of the receiver to produce viable real-time corrections for GNSS 

without the need for a local base station (Chen et al. 2011). The GNSS corrections 

generated are available to receivers through an internet connection or through an additional 

satellite signal (Chen et al. 2011). In order for the GNSS receiver to use RTX it had to be 

linked to a device with access to the internet. Mobile phones with the ability to use their 

phone signals to setup wireless internet hotspots were used to connect the Geo7x GNSS 

receiver to the internet in the field allowing the GNSS receiver to access correction 

information to achieve a high level of geospatial accuracy.  

In determining the datums’ precise locations, the field crew lengthened the telescoping 

range pole with the antenna affixed to its threaded top and entered the appropriate antenna 

height information into the Geo7x GNSS receiver previously attached to the range pole’s 

center. The range pole was lengthened to give the antenna better access to unadulterated 

GNSS satellite signals. The crew then leveled the range pole after placing its base spike 

into the punched point in the center of the previously placed concrete anchor. After this, 

the crew operated the GNSS receiver to collect a point through the collection of multiple 

points at a one second interval at sub-decimeter accuracy, which the GNSS receiver would 

later amalgamate to improve the accuracy of the final single point. The multiple points 

collected seemed to average around 7-centimeter accuracy. That the accuracy was slightly 

worse than RTX’s advertised 2-centimeter accuracy could be due to the high number of 
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trees surrounding the open area within which the crew established the datums, obstructing 

GNSS satellite signals. The GNSS receiver determined Datum 1 to reside at UTM Zone 15 

4933987.868 N 523951.332 E at 247.685 meters above mean sea level (MAMSL) and 

Datum 2 at UTM Zone 15 4933917.777 N 523803.912 E at 246.08 MAMSL. 

 
Figure 3-3: A Trimble Geo7x GNSS Receiver with an antenna collects Datum 2's 

geographic coordinates. 

With the new datums established, the crew setup the Trimble M3 DR 5” total station to 

accurately stake out the 20 x 20-meter grid portions, which included the project area 

boundaries. The first step in setting up the total station involved leveling the instrument 

directly over Datum 1 to maximize the accuracy of the instrument. The crew extended a 

heavy-duty fiberglass tripod to approximately 5 feet in height after unlocking its extendable 
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legs. The three legs were splayed and locked and the tripod’s head was visually leveled 

directly over the punched point on Datum 1’s datum spike. Then, the M3 5” total station, 

also commonly referred to as the instrument, was centered and fixed to the tripod head with 

a screw, permanently attached to the tripod, that could be threaded into the instrument. 

Following securing the instrument to the tripod, the person setting up the total station gazed 

through the plummet sight and gently lifted and moved two of the tripod legs to center the 

sight over the physical datum point. The previous step differs from the setup method 

suggested in the total station’s manual, but the author found it incredibly helpful in 

positioning the total station directly above a fixed datum point (Trimble Navigation 

Limited 2010:27). Though repositioning legs of the total station’s tripod puts the 

instrument at greater risk of damage due to droppage, the crew found it necessary for 

expediency following difficulty in positioning the total station over a fixed physical datum 

point using Trimble’s recommended method.  

After initial positioning of the total station above the physical datum point, a bubble level 

on the evened-out tribrach, an adjustable component attached to the instrument that allows 

the total station to be connected to the tripod head, was used to approximately level the 

instrument through making small adjustments to the tripods legs’ length until leveling 

centered the bubble level’s bubble. Then, the sharp feet of the tripod were pressed into the 

ground and the tribrach bubble level was used to level the instrument again using 

adjustments to leg length. Following the second bubble leveling, the operator setting the 

instrument up gazed through the plummet sight again, slightly loosened the screw attaching 

the instrument to the tripod, and slid the instrument along the tripod’s head until the 
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plummet sight was again centered on the physical datum point. After that, the operator 

turned on the instrument and used its onboard digital level, while the screen of the 

instrument was centered between two of the tribrach’s leveling screws, to adjust the 

tribrach screws to level the instrument with extreme accuracy. 

After the crew leveled the instrument, they setup the instrument, entering weather 

information procured from the National Oceanic and Atmospheric Administration’s 

National Weather Service’s webpage for nearby Red Wing Airport in order to get an 

accurate measurement of local temperature and pressure to allow the instrument to adjust 

for atmospheric conditions that can affect the speed and calculated distance of total station 

shots. Following setting up the instrument, the crew manually keyed in coordinates of 

Datum 1 and Datum 2, putting them into the total station’s digital memory, and then 

indicated to the total station where it was positioned in space, at Datum 1. The crew then 

used the total station’s prism mode Class 1 laser distance meter to shoot a back-sight to 

Datum 2, targeting a prism attached to a leveled range pole, with a bipod, positioned 

directly above Datum 2 (Trimble Navigation Limited 2010:8). Before beginning using 

range poles in locating and determining geospatial coordinates with the total station, the 

crew purchased adapters that made measurement marks on range poles accurate. The marks 

are designed to correspond to the center of a range pole affixed prism’s height above the 

ground. The previously mentioned back-sight allowed the total station to determine its 

azimuth, in simpler terms the direction its pointing, with ~5 second accuracy.  
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Figure 3-4: Luke Burds and Anna Wiitanen-Eggen setup the Trimble M3 DR 5" Total 

Station. 

An estimation of the instrument’s accuracy can be achieved through the calculation of the 

equation ±(10 + 5 parts-per-million (ppm) or 0.000005 * distance in millimeters (D)) mm. 

(Trimble Navigation Limited 2010:53). If the equation is solved for a shot of 200 meters, 

greater than any shot taken during fieldwork at the Belle Creek Mounds archeological site 

in the summer of 2020, the result is 11 mm. Considering that one shot is required for 

azimuth orientation and a second is required for the determination of a geospatial point’s 

coordinates with the total station, less than ±22 mm. of error would be expected when 

shooting or staking out points with the M3 DR 5” using the aforementioned setup for shots 

under 200 meters in length. This means that in combination with the ~±7 cm. accurate 
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datum points, shot and staked out points would have ~±9 cm. total potential error in 

geospatial accuracy, though the survey crew anticipates the true accuracy of the points to 

be higher due to the general likelihood that the amalgamation of hundreds of individually 

recorded high-accuracy coordinates used to create each datum point are well within the 

area of potential error. 

The surveying crew then imported the 18 sets of UTM coordinates corresponding to the 

previously created 20 x 20-meter grid corners into the total station from a flash drive. These 

coordinates were exported out of ArcMap 10.7 to Microsoft Excel and then saved as a .csv 

on the flash drive before being imported into the instrument. The crew then used the total 

station’s stake out feature, which uses the instrument’s orientation and Class 1 laser to 

determine the range pole’s geospatial position, and a second range pole with a prism and 

bipod to locate the grid portion corners in space. Anna Wiitanen-Eggen had the presence 

of mind to use pink plastic pin flags to indicate the locations of grid portion corners that 

had been formally shot in and orange flags to indicate that their positions had, as yet, only 

been roughly approximated using a GNSS receiver during the first day of fieldwork due to 

encountered visual obstructions. 

Twelve of the eighteen grid portion corners were staked out without physically measuring 

off of the range pole or repositioning the total station to make obscured grid portion corners 

visible. The crew performed one resection, R1, which involved moving the total station 

approximately 14.4 meters south-southwest of Datum 1, where the instrument had 

previously been setup, and back-sighting to Datum 1 and Datum 2 from the total station’s 

new location to allow the total station to determine its geospatial position and orientation 
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via triangulation. Crew members were able to shoot in three more of the grid portion 

corners following the resection because of the different vantage point the resection 

provided. The sightlines from the total station to the three remaining, roughly 

approximated, grid portion corners continued to be obstructed by tree trunks following the 

resection. In the interest of providing the crew more time to collect geophysical data within 

the AOI, the three-remaining tree-obstructed grid portion corners were located by 

physically measuring off of the range pole with a tape measure. Measuring took place after 

the range pole’s position matched either the total station’s provided in/out range pole 

repositioning directive or its left/right range pole repositioning directive, associated with 

placing the range pole at unestablished grid portion corners’ appropriate azimuth or 

distance from the total station. The respective remaining unmatching or unzeroed 

repositioning directive was made as close to 0 cm. as the total station’s sight line allowed 

for by carefully moving the range pole either left, right, out, or in incrementally. The 

individual holding the range pole then secured the pole in place with its bi-pod and 

measured from the range pole’s spike in a distance and direction matching the total 

station’s unmatching or unzeroed repositioning directive, placing a flag in the ground at 

the true physical location of the grid portion corner as determined by the total station. 

Following shooting in the grid portion corners, the survey crew used 100-meter long metric 

fiberglass tape measures to determine the level of precision with which the total station 

was geospatially locating the grid portion corners. The crew found that the sides of all 

measured grid portions were within a centimeter of 20 meters in length indicating that the 

total station stake out was a success. The crew’s decision to number grid portions from 1 
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to 10 starting in the southwest corner, with 1, moving to the east, with 2, and then to the 

portion north of 1, with 3, and east of 3, with 4 and so on, helped crew members keep 

communication clear and geophysical data organized (Figure 3-5). In order to collect 

geophysical data over a potential highly disturbed mound, to determine whether or not the 

potential mound had geophysical signatures similar to other known mounds within the 

project’s original AOI, the archeological surveying crew shot in an additional grid portion 

to the west of grid portion 9, grid portion 11. The potential highly disturbed mound in grid 

portion 11 was not clearly visible on a LiDAR derived hillshade, but there was an 

observable change in vegetation corresponding to its location.  
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Figure 3-5: Map of the locations of permanent datums and the geophysics grid with 

numbered portions and its survey points.   

At the same time as part of the survey crew finished up staking out grid portion corners, 

geophysical data collection began. Retired geophysicist Donald Johnson generously 

provided training, advice, and equipment to allow for the collection of relative soil 

resistance and magnetometry data. Johnson and survey crew member Luke Burds began 

geophysical data collection, collecting measurements of relative soil resistance in grid 

portion 7. The ESRL possesses a ground penetrating radar system that the crew used on 

this project. 
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Non-invasive geophysical methods including relative soil resistance, magnetometry, and 

ground penetrating radar (GPR) surveys were used throughout the study area to attempt to 

identify geophysical anomalies present on site. Through analyzing the size, shape, location, 

and the relationship geophysical anomalies have with each other and the visible 

environment, analyses of the collected data can develop interpretations of what identified 

anomalies indicate and the broader implications of those indications.  

The preparation for mappable relative soil resistance data collection involved extending 

two fiberglass tape measures from the northwest and southwest corners of a grid portion to 

its northeast and southeast corners, respectively. Following setting up tapes to run along 

the top and bottom of a grid portion, the crew placed stakes in the ground along the 

previously mentioned top and bottom tape measures starting at 50 centimeters in two-meter 

increments. After the crew placed the stakes, 20-meter-long guide lines, with flagging tape 

marking every even meter of their length and red lines marking every odd meter of their 

length, were strung across the grid in a north-south direction and held in place by stakes at 

matching distances from the starting grid corners with respect to the previously placed tape 

measures. This physical visualization of cells within grid portions allowed the crew to 

document, relatively quickly and accurately, where a specific relative soil resistance 

measurement was recorded. 

The soil resistance meter used is a Geoscan Research RM 15 Resistance Meter. This 

approximates soil resistance between its mobile electrical probes that are pushed into the 

ground ~3–10 centimeters. The Geoscan Research RM 15 Resistance Meter is outfitted 

with two fixed mobile probes, spaced approximately 0.5 meters apart, in addition to two 
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supplementary attachable wings that result in the frame having two more mobile electrical 

probes, approximately 1 meter apart, making the frame’s base roughly 1 meter in length. 

The array used in determining relative soil resistance on site was a twin array. A twin array 

utilizes electrical current traveling between one mobile current probe and one stationary 

remote current probe providing electrical current for the detection of soil resistance 

readings with one potential mobile probe, to measure relative soil resistance at a location 

of interest, and one potential remote probe to measure a stationary background reading to 

determine and account for changes in background voltage as the mobile probes are moved 

around a sampling grid (Geoscan Research 2009:5-9–5-11). The potential probes detect 

the amount of remaining voltage of the current emitted from the current probes in the soil 

where the potential probes are placed and work together to approximate the electrical 

resistance of the arc of soil between the mobile current probe and mobile potential probe 

relative to the remote potential probe’s background reading (Geoscan Research 2009:5-9–

5-11). When extra mobile probes are attached to the mobile probe frame, they can be used 

to take readings of relative soil resistance at a greater depth. Current cannot run through 

two or more pairs of mobile probes simultaneously as this would not allow for soils 

electrical resistance at consistently deeper and shallower depths to be sampled. Creating a 

wider mobile probe spaced twin array with 1 meter between a current and potential probe 

allows for the resistance meter to detect the relative soil resistance at roughly 1 meter in 

depth as opposed to roughly 0.5 meters with the original array, which has a mobile probe 

spacing of 0.5 meters. 
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The crew placed the remote probes ~20 meters from the nearest boundary of the grid being 

sampled so that the remote potential probe’s background reading would not encounter 

significant interference (Geoscan Research 2009:5-9). The remote probes were separated 

~3 feet during sampling of grids 7 and 5 and at 155 cm. for the other grid portions. The 

reason remote probe placement spacing differed between grid portions 7 and 5 and all other 

grid portions was due to miscommunication regarding establishment of a standard 

separation distance. Fortunately, while attempting to make adjustments to allow for the 

successful collection of relative soil resistance readings in higher resistance soils, the crew 

observed that slight differences in the spacing distance of the resistance meter’s remote 

probes had negligible effects on displayed relative soil resistance readings. The crew set 

the RM15 to use an operating frequency of 137 Hz and used an output voltage of 40 V. A 

Constant current range of 1 mA was used in grid portions 5–11 and a range of 0.1 mA was 

used in grid portions 1–4. The crew switched to using a 0.1 mA range for relative soil 

resistance reading collection in the four southernmost grid portions because their sandier 

soil was too resistive to allow the RM15 to display a numerical Ohm reading. Instead, the 

RM15 displayed a message indicating that its reading was out of range. Changing to a 

lower constant current allowed for the RM15 to display a numerical resistance reading in 

the soils of the 4 southernmost grid portions.  
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Figure 3-6: Franky Jackson and Anna Wiitanen-Eggen collect relative soil resistance 

data as Ronald Schirmer observes. 

The archeological surveying crew collected relative soil resistance readings at a 0.5-meter 

north-south interval and a 1-meter east-west interval in a boustrophedonic fashion within 

each of the 11 grid portions, alternating between moving north and south with the 

completion of each data collection transect to make the relative soil resistance survey 

quicker. Data collection was greatly facilitated by the previously mentioned fiberglass tape 

measures laid out along the north and south grid portion boundaries, as well as the guide 

lines, clearly dividing grid portions into many sampling cells. During relative soil 

resistance data collection, one person would move the mobile probe frame to a new cell at 

the established interval and take a shallow and a deep reading with the resistance meter, 
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telling a second person the readings who recorded them in either a notebook for grid 

portions 1, 2, 3, 4, 5, 6, 7 and 11 or Google Sheets for grid portions 8, 9, and 10. When 

relative soil resistance data collection began crew members wrote readings in a physical 

notebook, transferring them from the notebook to Google Sheets to allow for easier data 

visualization. After grid portions 5 and 7 were collected, the crew switched to entering the 

readings directly into Google Sheets while surveying grid portions 8, 9, and 10. After the 

crew determined that entering data directly into Google Sheets slowed down fieldwork and 

left no paper hardcopy to refer back to if readings seemed erroneous, the crew reverted 

back to the method of data recordation used initially. Having to rely on multiple pieces of 

old and heavily used equipment and proprietary software functioning properly to export an 

entire day or two’s worth of collected relative soil resistance data made using the RM15’s 

automatic data logger too big of a risk because of the possibility of not being able to export, 

and effectively losing, collected data. The crew spent much time during ten of the days of 

fieldwork collecting relative soil resistance data over all of the 11 grid portions established 

on site.  

While other crew members were collecting relative soil resistance data, the ESRL’s 

Geospatial Data Manager Andrew Brown developed computer code to allow the manually 

collected data to be normalized across all grid portions and displayed on ArcMap10.7 

digital geospatial mapping software. The reason relative soil resistance data from different 

grid portions needed to be normalized was so that resistance readings collected in different 

grid portions under different soil moisture conditions using different remote probe 

placement locations could be made comparable to one another and seamlessly visualized 
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together. Seamless visualization of relative soil resistance data facilitates more controlled 

data interpretation. Brown’s Python code creates points for each relative soil resistance 

reading, normalizes data values between adjacent readings in separate grid portions, and 

then uses Empirical Bayesian kriging, an interpolation method for generating raster 

datasets that produces little error with small sample sizes, to generate rasters effectively 

visualizing collected relative soil resistance data, predicting values for the areas between 

points within an established AOI (Esri Inc. 2020). Brown’s Python code allows for 

collected relative soil resistance data to be processed without the use of Surfer, commonly 

used software for processing and visualizing geophysical data.  

Following the collection and in-field analysis of some of the initial relative soil resistance 

data, Ronald Schirmer, Franky Jackson, and Andrew Brown took ¾-inch soil probes to 

attempt to locate and better understand existing geophysical anomalies, including 

attempting to infer how the area north of apparent field edge push had been affected 

compared to the relatively agriculturally undisturbed area south of the apparent field edge 

push. They used an Oakfield soil probe to take 13 soil probes in approximated locations 

determined by measuring off of measuring tapes stretched along grid portion borders to 

discern their position within the AOI. These soil probe locations were documented with a 

GeoXH 6000 Series GNSS receiver, as the crew’s CenterPoint RTX demo had expired. 

The GeoXH 6000 Series, linked to a Zephyr 2 RoHS antenna fixed atop a 2.6-meter SECO 

range pole with an attached bipod and circular level, was given access to Minnesota’s State 

differential correction system MNCORS, via a Wi-Fi hotspot. Access to MNCORS 

allowed the device to determine its location with submeter accuracy through using 
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corrective data generated by determining to what degree and direction a nearby GNSS 

receiver was inaccurate in determining its location at a geospatially known point in space, 

due to common sources of GNSS error. 

During the long process of the archeological surveying crew collecting relative soil 

resistance data, Luke Burds collected magnetometry data in all ten of the original grid 

portions. The bulk of the magnetometry data collection was done in three partial days of 

fieldwork by Burds alone. Donald Johnson instructed Burds on using his Geometrics G858 

MagMapper Gradiometer, a device with two magnetometers, placed one above the other, 

with its console in gradiometer mode so Burds could independently collect data over the 

established 20 x 20-meter grid portions. Burds and Johnson set the gradiometer to record 

readings every 0.1 second while Burds walked over transects spaced 1 meter apart marked 

by moving two stakes along two tapes outstretched on the northern and southern edges of 

grid portions. Burds wore clothing and shoes with no metal components during 

magnetometry data collection as metal near the gradiometer’s two cesium sensors can 

disrupt the sensors’ reading of Earth’s localized magnetic field. The gradiometer subtracts 

its top sensor’s reading from its bottom sensor’s reading to derive a measurement referred 

to as a vertical gradient, which eliminates the effects of background temporal variations in 

earth magnetism from the measurement of magnetic readings associated with specific 

sections of the soil matrix in the area being surveyed (Geometrics 2001:20–21; Kvamme 

2006:210). Burds walked at an even speed to attempt to allow the collected magnetometry 

data to be geospatially accurate. The magnetometer determines where it takes readings 

through estimating its geospatial location by recording the time it takes for an equipment 
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operator to walk a full transect and spatially distributes data points along the transect based 

on when the points were recorded. The equipment operator indicates on the console when 

they start and finish walking a transect by hitting the console’s MARK and END LINE 

buttons. All of the magnetometry data were recorded while walking transects in the same 

direction within grid portions to ensure that the vertical magnetic gradient would have more 

geospatial consistency. The gradiometer stored collected data in its console making the 

collection process much quicker than collecting relative soil resistance data on site. 

 
Figure 3-7: Luke Burds collects geophysical data with a Geometrics G858 MagMapper 

Gradiometer. 

Following magnetometry data collection, while assessing magnetically anomalous areas 

Ronald Schirmer located a metal seat belt along the western border of grid portion 1, 
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indicating that it had affected vertical gradient readings in its vicinity (Burds 2021, email 

message to author, January 21st). Ronald Schirmer and Luke Burds located a burned area 

that included metal fragments on the ground surface in the northwestern part of grid portion 

7, explaining an associated large dipole (Burds 2021, email message to author, January 

21st). The survey crew found barbed wire and a shotgun shell in the northeastern part of 

grid portion 10, which could have contributed additional vertical gradient dipoles in the 

northeastern portion of the 2020 fieldwork’s magnetometry results.   

Following data collection, Burds and Brown used MagMap2000 software to export the 

gradiometer readings collected over the AOI’s grid portions to a spreadsheet. Brown made 

alterations to the previously created relative soil resistance visualization code in order to 

create raster maps, using Empirical Bayesian kriging to interpolate between readings at 

geospatially documented points, to approximate and visualize the geophysical magnetic 

signatures associated with the entire grid.  

Geomorphologists and earth scientists came out to the Belle Creek Mounds site to bucket 

auger to develop a clearer understanding of how the terrace, upon which the Belle Creek 

Mounds site resides, formed. These scientists, Dr. Phillip Larson, Dr. Garry Running, Dr. 

Douglas Falkner, Dr. Andrew Wickert, and Jabbari Jones, are interested in the genesis of 

the Cannon River. Their conclusions, based on topography and soils encountered during 

bucket augering, resulted in interpretations related to the terrace’s genesis helpful in 

developing more cogent interpretations of geophysical results. 
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Figure 3-8: Geomorphological bucket augering. 

The ESRL archeological surveying crew collected ground penetrating radar data during 

and following collection of relative soil resistance data. The crew used 100, 200, and 500 

MHz antennae to collect data to help develop a greater understanding of what definitively 

cultural mound signatures look like in GPR data to help identify potential mounds and 

partially destroyed mounds. The 100, 200, and 500 MHz antennae were pulled north to 

south across the entire AOI to see transitions in subsurface geomorphology in addition to 

determining the depth of the base of the most prominent mound within the AOI. Three 

transects were done north to south with each type of antennae and two were done west to 

east. One transect was collected over the two mounds in the southern portion of the AOI 
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and one transect over one potential mound and one mapped mound was collected, which 

ran through grid portions five and six.  

The 500 MHz GPR antennae collected data over parts of seven grid portions within the 

AOI. X and Y lines were collected over grid portion 11 and spanning grid portions 1 and 

3. Y lines were collected over grid portion 9 and in the western halves of grid portions 5 

and 7. Archeological surveying crew members collected 500 MHz GPR at 0.5-meter line 

spacing, using the pull speed dependent Dyna Q setting to determine the number of stacks 

used in data collection and a GPR velocity of 0.06 m/ns for effective results in wet soil. 

Before data collection could start the GPR’s odometer had to be calibrated to ensure that 

the GPR equipment was properly documenting where it was recording data within grid 

portions, in addition to documenting the location of the first break in the radar waves 

emitted by the transmission antenna and detected by the receiving antenna. Following 

setup, a crew of two, one person pulling the antennae and the other wearing the digital 

video logger (DVL) and tending the cables hooking the antennae to the DVL, collected 

GPR data by moving the running equipment over portions of the AOI where GPR data 

were desired.     
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Figure 3-9: Luke Burds and Anna Wiitanen-Eggen collect GPR data with a 500 MHz 

antenna. 

In two of the final four days on site, the crew conducted shovel testing immediately south 

of grid portions 1 and 2 to attempt to determine if the probable former site of a Pre-Contact 

Era village, which are common inside the arcs of the Red Wing Region’s mound groups, 

encroached onto the PIIC’s property (Fleming 2009:20). Shovel testing was also done to 

gain a better understanding of the cultural affiliation of the people who likely constructed 

the mound group. 
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Figure 3-10: Anna Wiitanen-Eggen and Luke Burds excavate a shovel test. 

Due to the thickness of the vegetation south of the area cleared to collect geophysical data 

over mounds and areas in between mounds, 100-meter fiber glass tapes were used to lay in 

the shovel test grid. The grid began at the bottom of grid portions 1 and 2 and extended 

south 20 meters. The archeological surveying crew excavated 45 shovel tests at an interval 

of 5 meters from the southwest corner of grid portion 1 moving east 40 meters to the 

southeast corner of grid portion 2 and south 20 meters at intervals of 5 meters in columns 

starting from each of the initial shovel tests. This created a grid in which there were 9 north-

south columns of 5 shovel tests. These shovel tests were excavated to 30 x 30-centimeter 

dimensions laterally and to depths determined on a test-by-test basis based on artifact 

presence in previous levels, often to around 40 centimeters below surface (cmbs), typically 
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after a sandy, culturally sterile, glacial outwash associated B horizon was encountered. 

Soils were screened through ¼-inch hardwire mesh, onto tarps, to facilitate complete 

artifact recovery and backfilling, minimizing the evidence of disturbance. 

Following collection, artifacts recovered during shovel testing were washed, organized, 

cataloged, and accessioned into the Minnesota State University, Mankato (MSU, Mankato) 

Museum of Anthropology’s archeological repository on MSU, Mankato’s campus in 

Mankato, Minnesota. The cataloging procedures used followed the format outlined in the 

Minnesota Archeological Integrated Database’s (MAID’s) catalog guide. These artifacts 

will be held in MSU, Mankato’s Museum of Anthropology’s archeological repository per 

PIIC’s existing agreement with the institution to temporarily hold collections for purposes 

of analysis and general curation until the tribe requests their return. Artifact analysis 

conducted during cataloging involved the use of MSU, Mankato’s lithic comparative 

collection in addition to using comparative pottery specimens derived from other 

collections held at the repository.  

One final task done in the interest of gauging the extent to which trees interfered with 

collected geophysical data, which Geospatial Data Manager Andrew Brown suggested, 

involved documenting the locations of trees within the AOI. Over the final two days of 

fieldwork Alexander Anton worked using the total station’s Class 3R reflector-less direct 

ranging function and laser sight, and two temporarily placed datums, TEMP DATUM A 

and TEMP DATUM B, established off of Datum 1, to document tree locations. Four 

separate resections were done to allow all 248 trees within the AOI to be mapped from five 

separate shooting locations. Tree trunks were marked with high visibility paint as soon as 
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a tree had been mapped with the total station to ensure the same trees were not mapped 

repeatedly. The approximated sizes of trees were documented as falling within one of three 

size classes: small, less than 25 cm. in diameter, medium, 25 to 50 cm. in diameter, and 

large, greater than 50 cm. in diameter. The archeological surveying crew generated two 

shapefiles from the tree data to be used to aid in geophysical data interpretation, tree points 

and tree polygons.       

All geophysical and geospatial data will be provided to and made available to the PIIC with 

delivery of the Belle Creek Mounds site’s site treatment plan. Physical data collected 

during excavation is curated in the Archeology Division of the Minnesota State Mankato, 

Museum of Anthropology during analysis and held there under the terms of an ongoing 

curation agreement, until such time as requested for return to the PIIC. 
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Chapter 4 – Results 

Geophysical datasets produced by this project are represented by relative soil resistance, 

magnetometry, and ground penetrating radar generated rasters, as well as imagery of 

ground penetrating radar related profiles. Though these data merely indicate anomalous 

areas within the soil matrix, as discussed in a previous chapter, anomalies could be cogently 

interpreted as archeological features if they are in a suitable context and there is adequate 

supporting evidence (Kvamme 2006:206). Shovel testing produced a small assemblage of 

artifacts of precisely-documented 3-dimensional geospatial origin. In the interest of 

communicating this project’s results in a comprehensible manner, the geophysical survey 

results will be presented in one third of the area of investigation at a time, to allow for 

visualization of smaller relative differences within data. Following the presentation of the 

geophysical survey results over the entire area of geophysical investigation, shovel testing 

results are summarized and interpreted. 

Before discussing geophysical results, the mound boundary and shot data used in 

approximating the locations of mounds in disturbed areas warrant more explanation. 

Polygons were generated from T.H. Lewis’ survey of the Belle Creek Mound’s mound 

group that was conducted when, now no longer visibly present, mounds were still 

identifiable on the landscape (Lewis 1885:1–3). Lewis used an open traverse method of 

surveying to map identified locations of the individual mounds comprising mound groups 

in relation to each other during the Northwestern Archaeological Survey. An open traverse 

method of surveying links each measurement of directional bearing and distance to the 
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measurement before it with the initial measurement being tied to physical space via 

landmarks, which in the Northwestern Archaeological Survey’s case was often a 

conveniently located mound identified within a quarter of a quarter section at a specified 

township and range (Dobbs 1991:9; Lewis 1885). There is a potential for both systematic 

and random error in Lewis’ survey data. 

Lewis appears to have used an open surveyor’s compass, canvas tape, and 
an engineer’s level [while surveying mound groups]. Conversations with 
modern surveyors indicate that the open compass had an accuracy of plus 
or minus one degree. Thus, a reading of 37 degrees could in reality, actually 
[be recorded as 36, 37, or 38 degrees] … Lewis’ distance measurements can 
also contain small errors. Although these potential errors are not necessarily 
significant on small groups of mounds, they can create very real problems 
as the errors compound over a large area (Dobbs 1991:9). 

After redrafting Lewis’ mound map of the Belle Creek Mounds mound group with 

polygons and polylines in ArcMap using the original survey data, the general pattern of 

mounds was clearly correct, but the fit was not precisely correct based on clearly visible 

and identifiable mounds on a LiDAR derived hillshade. Consequently, this process 

corroborates that Lewis’ survey contains errors.  

The digital mound polygons and survey shot polylines spatially oriented with respect to 

each other, created with Lewis’ survey data, have been adjusted to pattered elevational 

rises corresponding closely, but not exactly, with the Lewis survey (Figure 4-3). In digital 

shapefiles separate from the shapefiles depicting Lewis’ original survey results, polylines 

representing survey shots have been adjusted to more accurately represent what their 

directions and distances should have been had they been taken with greater accuracy and 

polygons representing locations of mounds not visible on the LiDAR derived hillshade 
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have been adjusted to more accurately estimate formerly mapped mound locations, through 

moving them with the surveyed mound polygons having visible mound expressions on the 

hillshade, from which mound locations without visible expressions were ultimately shot. 

Where groups of mounds are present on a highly accurate LiDAR generated hillshade, 

those mounds and all of the mounds surveyed later in sequence from mounds visible on 

the hillshade had their polygons’ locations adjusted, in a previously alluded to newly 

created polygon shapefile in ArcMap, to correspond with the mound locations visible on 

the hillshade (Figure 4-3). The survey shot polylines were adjusted in a similar fashion. 

Through comparing 40 of the LiDAR hillshade adjusted mounds’ locations to their 

corresponding unadjusted locations communicated by Lewis’ survey, differences in Lewis’ 

shot distances and shot directions between surveyed points and the approximate actual shot 

distances and shot directions between surveyed points, usually mound center points, were 

calculated. Mean absolute percentage error was calculated to determine the average 

percentage of distance error between hillshade related “actual” mound locations and Lewis 

survey derived predicted mound locations using the formula: 

M = (1/n) ∑
n

t=1 abs((At – Ft)/At) 

At represents hillshade adjusted distances between surveyed points or actual values and Ft 

represents Lewis’ derived distances between surveyed points or forecasted values. The 

returned value associated with this process was a 6% error. Degree measurements of the 

absolute values of differences between the hillshade related and Lewis associated mound 

locations were averaged to determine a mean absolute error for Lewis’ shot azimuths. The 

returned value associated with this process was 3.4°. The mean distance of Lewis’ survey 
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shots at Belle Creek Mounds is 22.61 meters. Using these values an approximation of 

expected spatial error per shot may be determined for Lewis’ survey at Belle Creek 

Mounds:  

[0.94x = 22.61] x = 24.05 (the longer of two expected true distance values based on 

calculated 6% error). To determine the distance between points in space at different angles 

and distances from an origin, representing expected error, two formulas were used 

(Guichard 2021:12; Strang and Herman 2021:55). 

 
Figure 4-1: Formula to determine point locations from distance and angle from an origin 

point (Strang and Herman 2021:55). 

 

x1=22.61*cos(0), y1=22.61*sin(0), x2=24.05*cos(3.4), y2=24.05*sin(3.4) 
  
x1=22.61, y1=0, x2=24.01, y2=1.43 
 

 
Figure 4-2: Formula to determine distance between points (Guichard 2021:12). 

 
√ ((24.05–22.61)2 + (1.43–0)2) ≈ 2 meters of average spatial error per Lewis survey shot 

Error compounds with multiple shots in open surveying. 
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The average shot distance error of 2 meters indicates how much Lewis’ survey shot based 

predictions of the location of mound center points and by association mound boundaries 

themselves are expected to vary from their approximate actual locations, which implies 

that mounds lacking a discernable visible surface expression may deviate slightly from 

where Lewis’ survey data suggest they are. Using the previously discussed formulas to 

predict expected spatial error for an uncommonly long 100-meter-shot with an average 

azimuth error of 3.4° yields an expected spatial error value of 8.84 meters. The maximum 

1885 Lewis survey recorded azimuth error of ~13° for a shot of ~17 meters recorded as 

15.24 meters, produced a distance difference of 4.3 meters between Lewis and LiDAR 

hillshade adjusted mound center points. This 4.3-meter distance difference prevented the 

Lewis and the hillshade adjusted mound polygons from overlapping due to the mound 

radius’ size being 3.6576 meters, smaller than the distance difference between the 

unadjusted Lewis survey and hillshade determined center points. If a mound that another 

mound’s location is being predicted off of is in a location unconfirmed via hillshade, then 

the mound location that is being predicted is likely to further deviate from its actual 

location. With more and more expected deviation from true mound locations in long 

sequences of mound locations not visible on the LiDAR derived hillshade, the mound 

locations represented in the adjusted polygon layer become less and less reliable in terms 

of their ability to accurately represent the former locations of mounds visible on the 

landscape. 
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Figure 4-3: Hillshade adjusted mound polygons represented with mound polygons 

generated from Lewis' 1885 survey notes anchored at Mound 8. 

To attempt to adjust for mound center point location errors in the 1885 survey data where 

mounds are no longer visible, a linear regression analysis was performed on the Lewis 

survey distance data, using the LiDAR hillshade adjusted mound location data as known 

actual values, with Shapiro-Wilk, skewness, and kurtosis tests indicating that the residual 

data had a normal distribution (Rogerson 2015). The null hypothesis that the observed 

subtracted from the predicted residuals come from a normal distribution could not be 

rejected. The distance data’s real minus predicted value’s mean is –6.12843109593e –15, 

distribution is approximately symmetric at 0.283619201603, excess kurtosis value is 
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0.417650712365, R2 is 0.990500968463, standard deviation is ±1.42063739255, two 

standard deviations from the mean are represented as [2.8412747850975335,  

–2.8412747850975211]. 

 
Figure 4-4: Lewis distance linear regression line Y_hat = –0.816013963143 + 

1.0972812151x represented with points contributing to its creation (numbers indicate 
meters with points’ x-values representing Lewis survey shot distances and y-values 

representing corresponding hillshade shot distances). 

Linear regression did not produce residual data with a normal distribution for shot azimuth 

values from the 1885 Lewis survey and the LiDAR hillshade adjusted survey as the data 

failed the kurtosis test. The null hypothesis that the observed minus predicted residuals 

come from a normal distribution could be rejected. The azimuth data’s mean is  

–2.1505011946, standard deviation is ±4.00158711373, distribution is approximately 
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symmetric at 0.27005917329, and excess kurtosis value is 2.01392761903. Due to data 

being non-normal, Chebyshev's theorem, which allows for the creation of non-parametric 

confidence intervals, was used to infer an upper bound and lower bound for the percentage 

of shot azimuth difference data likely to be inside of maximum and minimum observed 

values (Shafer and Zhang 2015:36–41). 

Chebyshev’s theorem is written as:  

k = ((mean + mean_adjusted_interval_value) – (mean – mean_adjusted_interval_value)) / 

standard_deviation 

The likely percentage of values falling within the interval created using Chebyshev’s 

theorem is determined with: 

likely_percentage_of_values_in_created_bounds = (1 – (1 / (k * k))) * 100 

The lower bound is the determined mean adjusted interval value subtracted from the mean 

and the upper bound is the determined mean adjusted interval value added to the mean. 

Together these limits create a range or interval. 

The range or interval, which bounds sample azimuth values to achieve a confidence 

interval above 95%, produced for this project using Chebyshev’s theorem with mound 

survey shot azimuth difference data, was (–13.005986213684089, 8.7049838244915065) 

and encompasses at least 96.6% of population azimuth values. The values in the determined 

range can be subtracted and added, respectively, to unadjusted Lewis survey azimuths to 

account for their possible errors with 96.6% certainty.  
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This bound for azimuth values was used in combination with the generated shot distance 

related linear regression line and its associated standard deviation values to produce a 

geospatial boundary encompassing the area in which a mound center point would fall with 

greater than 95% certainty (Figure 4-5). Though this method can produce boundaries that 

have a high likelihood of containing mound center points in areas where mound locations 

are no longer visibly identifiable, its produced areas become unwieldy when attempting to 

predict the location of a mound center point from visually or geospatially unconfirmed 

mound center point locations. This is merely a preliminary exploration of a mound center 

point location prediction process and the discussed techniques need refinement, but their 

discussion establishes useful avenues for future research to promote better preservation of 

mound remnants and fewer disturbances of mound related burials.
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Figure 4-5: Geospatial boundaries with greater than 95% certainty to contain actual 

mound center point locations at Belle Creek Mounds archeological site. 

Geophysics 

Relative elevation and soil texture can have significant impacts on the results of 

geophysical tests, especially in assessments of soil resistance (Geoscan Research 2009:6-

3; Somers 2006:118). With the potential impact of elevation and soil texture in mind, in 

addition to further establishing the locations of the geophysical grid portions where data 

were collected, a map is provided for reference (Figure 4-6). 
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Figure 4-6: Locational elevation map of grid portions including soil series boundaries 

with soil textures. 

In presenting data collected during the aforementioned geophysical survey, grid portions 

1, 2, 3, and 4 are covered first. The reasoning behind presenting this southern third of the 

geophysical grid initially, has to do with highly visible, previously mapped, mounds 

providing information regarding what type of geophysical signature to expect from highly 

impacted and previously unidentified mounds. Lewis’ LiDAR hillshade adjusted 1885 

survey, depicted in Figure 4-3, indicates that previously disturbed mound locations lacking 

an associated elevational physical surface expression are present within this project’s 

geophysical grid, north of the linear field edge push that runs northeast near the northern 
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boundary of grid portions 5 and 6 and the southern boundary of grid portion 8 (Lewis 

1885:1–3). The field edge push can be seen in Figure 4-6.  

 
Figure 4-7: Selected geophysical results for grid portions 1, 2, 3, and 4. 

The geophysical results for grid portions 1, 2, 3, and 4, summarized in Figure 4-7, present 

data collected over two documented mound locations with elevational physical surface 

expression. One of the most noticeable aspects of the relative soil resistance data related to 

grid portions 3 and 4 is the stark contrast in broadly higher relative soil resistance values 

in their southern halves and broadly lower values in their northern halves. This dramatic 

shift in electrical resistance is likely attributable to a change in soil texture from silt loam 
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to sandy loam. The southern soil series line on Figure 4-6 corresponds with the changes 

seen in soil resistance (Soil Survey Staff 2016).  

Though the manual for the soil resistance meter used in collecting data on this project 

suggests that mounds tend to result in the measurement of electrical resistance highs with 

respect to their surroundings, it is apparent here that is not entirely the case (Geoscan 

Research 2009:6-3). This may also be explained as resulting from the apparent abrupt 

change in soil composition. Due to an accumulation of soil being needed from nearby to 

construct mounds and a likely borrow area, represented by an elevational low, immediately 

to the north of the mounds, these mounds may be built on sandy loam with a mixture of 

silt loam and sandy loam, which would be a less electrically resistive material than the 

material that is prevalent in the areas to the west, east, and south of the mounds’ locations. 

The mounds are still relative highs in relation the majority of the land in the grid portions 

that they occupy, probably partially attributable to their greater elevation and the possibility 

of prepared resistive surfaces within the mounds, but the relatively high, in relation the grid 

portions as a whole, area between the mounds is still measured as more resistive. A lack of 

less resistive material deposited in between the mounds in combination with it being 

relatively high in elevation may explain why it is more resistant than the mounds.  

Another factor involved in the mounds lack of noticeably high relative electrical resistance 

may be the trees growing on each of them. Tree root systems may hold more moisture than 

surrounding soils, especially in well-drained courser textured soils, and moisture is 

associated with less electrical resistance (Geoscan Research 2009:6-3). In the window 

displaying the relative soil resistance raster, trees are depicted as brown specks of different 
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sizes relative to their trunk diameter, small under 25 cm., medium 25 to 50 cm., and large 

greater than 50 cm. The two large trees on the western mound, between grid portions 1 and 

3, are associated with significant drops in soil resistance. Trees present off of the mounds 

appear to be associated with drops in relative soil electrical resistance as well. A small pit 

was present at the time of surveying near where the eastern low on the west mound was 

measured. The presence of this pit probably resulted in more moisture accumulation and 

retention in its location. Going forward, the precedent set by the geophysics collected in 

association with these documented, mounds with elevational physical surface expressions 

is that mounds on site will be represented as relative resistance highs either exceeding or 

comparable to other resistance highs in soils residing in locations beyond purported mound 

boundaries. 

Through observing the relative earth magnetism detected over the southern grid portions, 

it is apparent that the mounds have a stronger magnetic signature than the immediately 

adjacent soils. This is in accordance with expectations because of how mounds appear in 

previous geophysical mound studies and are described as appearing in theoretical 

explanations, potentially due to an accumulation of topsoil (Betts and Stay 2017:48–50; 

Kvamme 2006:217–218). An area of low magnetism, similar to what is seen surrounding 

both of the mounds, has been documented in a previously cited mound study (Betts and 

Stay 2017:49–50). There also appear to be smaller magnetic anomalies present within the 

mound boundaries, which might be explained as representative of burned stones, 

magnetized through the thermoremanent effect, buried within the mound (Arzigian and 

Stevenson 2003:140 and 156–158; Kvamme 2006:207–208). Buried burned stones may be 
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detected as a dipolar field, with paired positive and negative magnetic extremes depicted 

within isolated spots (Kvamme et al. 2006:48). 

Curiously, seemingly in contrast to the explanations provided in some of the previously 

cited sources, the relatively topographically low area to the north of both of the mounds 

appears as a magnetically high anomaly like the mounds, with the strongest magnetism 

depicted in congruence with the low area’s lowest spot. In making sense of the 

magnetically high anomaly in the elevational low, erosional deposition of enriched topsoil 

including magnetic materials from accumulated topsoil more easily put in suspension due 

to a smaller size and density and moved via splash and sheet erosion may be the reason for 

its existence (Kvamme 2006:218–219; Kvamme et al. 2006:48). To conclude magnetic 

interpretations, the small dipole to the southwest of the westernmost mound, positioned 

along the western boundary of grid portion 1, is associated with the location an old seatbelt 

was found in following data collection in the grid portion with the gradiometer. 

The results of the ground penetrating radar data collection in grid portions 1 and 3, over 

the western mound, are striking. From roughly one to two meters in depth below the ground 

surface, the ground penetrating radar detected high amplitude returns in a circular pattern 

when viewed in plan. GPR returns are explained as resulting from the contrast in electrical 

properties between two materials at their underground interface, the greater the difference 

between the materials, the higher the amplitude of the return (Conyers 2006:136). This 

explanation of what GPR returns signify suggests that the equipment detected significant 

soil contrasts within the mound’s underlying soils (Figure 4-7). According to research 

discussed previously, the presence of significant inconsistencies in soil properties within 
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the soil matrix may be the result of the mixing of soils or sediments during the construction 

of a mound, possibly through a process referred to as basketloading (Arzigian and 

Stevenson 2003:133; Betts and Stay 2017:46). In basketloading, basket loads of earth are 

taken from mixed or different strata or borrow area locations and deposited together, often 

onto a prepared surface from which the topsoil has been removed in preparation for mound 

construction, resulting in a mound having irregular stratigraphy, including lenses of gravel 

or subsoil along with other types of material (Arzigian and Stevenson 2003:133; Betts and 

Stay 2017:46). Basketloading is described as being present within the first mound that 

Edward Schmidt excavated at the Belle Creek Mounds mound group, making it all the 

more likely that effects of basketloading would be observed in geophysical data collected 

over a mound at the same archeological site (Arzigian and Stevenson 2003:133).  

The depiction of GPR results, associated with data collected over the western mound, in 

profile corroborates the results viewed in plan from 110–112 cmbs. When viewed in 

profile, data collected over the mound’s location indicate many curved truncated soil strata 

at ~90–140 cmbs with properties that appear to be consistent with the interpretation of 

being associated with basketloading-based construction. The mound signatures derived 

from these southern grid portions are used in attempting to understand and make sense of 

the geophysical results in grid portions 5, 6, 7, and 8 and 11, 9, and 10. 
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Figure 4-8: Selected geophysical results for grid portions 5, 6, 7, and 8. 

The geophysical results in grid portions 5, 6, 7, and 8 were collected over: one previously 

mapped mound with elevational physical surface expression in grid portion 6, the field 

edge push running west-southwest to east-northeast  near the northern boundaries of grid 

portions 5 and 6 and the southern boundary of grid portion 8, one circular slight elevational 

rise not previously mapped as a mound in grid portion 5, and three previously mapped, 

impacted mound locations where mounds no longer have elevational physical surface 

expressions, in addition to the areas in between the previously stated current, former, and 

possible mound locations. The previously mapped mound with elevational physical surface 

expression in grid portion 6 has relative soil resistance and earth magnetism readings 
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similar to those of the previously mapped mounds in grids 1, 2, 3, and 4. Relative soil 

resistance values are slightly higher than the area’s resistance values outside of the mapped 

mound’s boundary. Trees present on the mound could be contributing to the relative 

electrical resistance lows within the mound boundary’s western third, as they did on the 

mound straddling grid portions 1 and 3.  However, it appears that with the soil transitioning 

from sandy loam to silt loam with the northward movement out of the southernmost four 

grid portions, trees are not as clearly associated with lower values in relative electrical 

resistance in soils, with some trees appearing to be associated with relative resistance highs 

in grid portions 5, 6, 7, and 8. The recorded earth magnetism is higher within the mound’s 

boundary than over adjacent areas. Like the mounds in more southern grid portions 

discussed previously, the earth magnetism increase over the mound could be interpreted as 

being the result of topsoil accumulation or the creation of a buried burned prepared surface, 

although the lack of dipoles indicative of thermoremanent magnetism give more credence 

to the former interpretation. 

The linear field edge push running through grid portions 5 and 6 near their northern 

boundaries and through grid portion 8 along its southern boundary, in its southeastern 

corner, provides an interesting test case for how geophysical data are impacted by 

elevational rises and topsoil accumulation. The boundary of an apparently cultivated area 

associated with the location of the field edge push is present in an aerial image from 1938 

indicating that the field edge push was established prior to the aerial photo, possibly in 

leveling the area for ease of cultivation (United States Department of Agriculture 1938). 

The processes involved in preparing a field for cultivation and cultivation itself appear to 
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have adversely impacted the mounds north of the field edge push, with many no longer 

having elevational physical surface expression. The field edge push is easily identifiable in 

relative soil resistance data, being represented as a relative high, possibly due to its higher 

elevation than immediately adjacent areas, promoting less moisture retention (Geoscan 

Research 2009:6-3). The field edge push is represented as a magnetic high much like the 

mound in grid portions 1 and 3. The magnetically high signature of the field edge push 

may be the result of the accumulation of magnetically rich topsoil much like the magnetic 

highs associated with the previously discussed mapped mounds (Betts and Stay 2017:48–

50; Kvamme 2006:217–218). The field edge push’s ground penetrating radar related 

signature consists of high amplitude returns indicative of significant soil mixing, similar to  

what is seen in the mapped mound in grid portions 1 and 3 (Conyers 2006:136). 

Within the southwestern corner of grid portion 5, there is a subtle elevational rise that looks 

much like the rises previously mapped as mounds on a LiDAR-based hillshade (Lewis 

1885:1–3). This rise has associated with it, highs in relative soil resistance, discussed as 

being expected over mounds (Geoscan Research 2009:6-3). The rise is also depicted as 

being high in relative earth magnetism, reminiscent of previously mapped mounds and 

indicative of magnetite rich topsoil accumulation (Betts and Stay 2017:48–50; Kvamme 

2006:217–218). Ground penetrating radar returns from 70–75 cmbs viewed in plan show 

high amplitudes associated with the rise, which as mentioned previously could be the result 

of mixing due to construction via basketloading, but in any case matches the general 

tendency of the ground penetrating radar signature of the mapped mound in grid portions 

1 and 3. The GPR data depicted in profile indicates truncated curved stratigraphy from 
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~50–80 cmbs in the area of the elevational rise, encompassed by a green box within a red 

box labeled as the eastern edge of the southern geophysically indicated mound location 

(Figure 4-8). This elevational rise’s geophysical signature appears to match those of 

previously mapped mounds. Although not absolutely conclusive, it is highly likely that this 

is in fact an unmapped mound. It is not uncommon for Lewis to have not mapped all 

mounds in any specific location. In some nearby instances he simply missed them (see, 

e.g., 21GD51), and in other instances he specifically notes that indistinct mounds or 

sections of mound groups were not mapped (see, e.g., 21GD45).  

The southernmost previously mapped mound location in grid portion 7, depicted in white, 

which T.H. Lewis’ 1885 survey, adjusted to a LiDAR-based hillshade, depicts as straddling 

the western boundary of grid portion 7, is geophysically supported as being in a slightly 

different location to the southeast, depicted in red (Figure 4-8). The reasoning behind the 

geophysically indicated mound location differing from the surveyed mound location has to 

do with the discussion earlier in this chapter regarding the differences between mound 

locations visible on a LiDAR derived hillshade and mound locations determined solely 

through the usage of Lewis’ 1885 survey notes, as well as the characteristics of geophysical 

data collected over the area. Interestingly, a relative soil electrical resistance high is 

depicted in an area slightly lower in elevation than the area around it, in the center of the 

geophysically indicated mound location (Figure 4-8). Due to a lower elevation promoting 

more moisture accumulation and a lower resistance value, this area is anomalous. This 

anomaly might be explained by soils being burned or by soils from other surrounding or 

underlying strata being mixed in with topsoils during mound construction, potentially 
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decreasing water retention (Conyers 2012:32–34). The GPR data depicts high amplitude 

returns, known to be associated with mounds, both in plan view from 70–75 cmbs and 

profile from ~70–90 cmbs, where high amplitude returns are encompassed by a green box 

within a red box depicting the northern geophysically indicated mound location in Figure 

4-8. The strongest supporting evidence for this being the former location of the previously 

discussed surveyed mound is the size and shape of the ground penetrating radar high 

amplitude returns matching the circular, highly geometric, dimensions of the Lewis 

surveyed mound (Kvamme 2006:222). There are also magnetic dipoles more strongly 

associated with the geophysically indicated mound location than with the hillshade 

adjusted surveyed mound location (Figure 4-8). These dipoles may be associated with a 

hearth or cairn within the mound, as are discussed as being common mound associated 

features in the background chapter. 

The hillshade adjusted 1885 Lewis survey mound polygon present along the northern 

border of grid portion 7 does not appear to be represented by a relative soil resistance high 

or any clear ground penetrating radar high amplitude returns. The earth magnetism data 

over the surveyed mound polygon are also unhelpful due to the presence of recently 

deposited metallic debris found in combination with evidence of a small fire, both of which 

contributed to a substantial dipole obscuring subtler magnetism that tends to be associated 

with mounds (Kvamme 2006:222). The hillshade adjusted 1885 Lewis survey mound 

polygon within grid portion 8 does not seem to have any significant associated relative soil 

resistance highs. This location is represented by a magnetic high as known mounds are on 

site; however, magnetic data appear to be obscured slightly by linear anomalies that may 
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indicate previous plowing efforts (Kvamme 2006:222). GPR data necessary for generating 

a plan view map or digital subsurface profiles were not collected over grid portion 8. 
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Figure 4-9: Selected geophysical results for grid portions 11, 9, and 10. 
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Grid portions 11, 9, and 10 appear to have been disturbed to a greater degree than 

geophysical grid portions one through eight to the south, due to their position in long used 

artificial pasture (Lewis 1885:1–3; United States Department of Agriculture 1938). Despite 

inferred heavier agricultural usage, geophysical data collected over the three northernmost 

grid portions supports the presence of mounds. Although the two hillshade adjusted 1885 

Lewis survey mound polygons mostly within grid portion 11 do not encompass 

geophysical data suggestive of a mound, if both of these polygons are moved south and 

slightly east, representative geophysical signatures indicative of mounds of the sizes 

specified by Lewis’ 1885 survey exist in relative soil resistance data, relative earth 

magnetism data, and GPR returns from 35–40 cmbs, when viewed in plan and profile 

(Figure 4-9). These geophysical signatures support the geophysically indicated mound 

locations depicted in Figure 4-9 as being the true spatial locations of the previously 

surveyed mounds. The linear low in relative soil resistance, relative earth magnetism, and 

the amplitude of GPR returns, running to the northeast and southwest across the northern 

half of grid portion 11, is representative of a ditch cut that can be clearly seen in Figure 

4-6.  

Both hillshade adjusted Lewis 1885 survey mound polygons partially present in grid 

portion 9 seem to lack clearly associated geophysical anomalies. This may be because of 

previous disturbance. There is, however, a curiously shaped anomaly especially visible in 

relative earth magnetism data (Figure 4-9). This anomaly appears as a spiral, a very 

common decoration on Silvernale pottery representative of the underworld (see Chapter 

2). The anomaly’s shape and presence within a burial mound group that functioned as a 
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cemetery, though it cannot be cogently attributed to any earthwork at this point, draws 

attention to the potential existence of subtler features that may be present among mound 

groups. This anomaly might be associated with intaglio, a three-dimensional reversal of an 

effigy mound dug into the ground (Rosebrough 2010:369). In grid portion 10, the hillshade 

adjusted 1885 Lewis survey mound polygon that is nearly completely encompassed 

appears to have both associated relative soil resistance and relative earth magnetism highs. 

These geophysical data support that its current orientation is representative of a true mound 

location.  

Geophysical indications of mound locations, no longer easily identifiable via changes in 

elevation, could contribute to refining understandings related to Lewis’ errors in surveying 

as well as the known locations of other, individual, mounds lacking elevational physical 

surface expression. Geophysical data provides another means of correcting Lewis survey 

data to more accurately determine mound locations and isolate Lewis survey shot errors to 

allow for a more accurate interpretation of mound groups as they were when originally 

surveyed. 

Shovel Testing 

Prior to and following the collection of geophysical data, the EARTH Systems Research 

Laboratory with the assistance of Franky and Matt Jackson excavated a total of 47 shovel 

tests. The initial two shovel tests were excavated in the pasture area, to the north and west 

of the area of geophysical investigation, in preparation for the placement of permanent 

datums on site. The latter 45 were excavated immediately south of the area of geophysical 
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investigation on Prairie Island Indian Community property. Shovel test excavation took 

place to discern which types of artifacts are present on site and in what concentrations. 

Shovel testing helped with gaining a better understanding of the archeological cultural 

material present on Belle Creek Mounds archeological site and PIIC property that warrants 

protection and with the attempted furthering of archeological knowledge of the Red Wing 

Region. 

 
Figure 4-10: Gridded shovel testing results immediately south of the geophysics grid. 

Of the 47 shovel tests excavated on site, 9 were positive for cultural material. Both shovel 

tests excavated in preparation for the placement of Datum 1 and Datum 2 on site were 

negative, yielding no artifacts. The artifacts associated with the 9 positive shovel tests 
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consisted of pottery sherds, lithic debitage, and fire-cracked rock, with 5 yielding pottery 

sherds, 5 yielding lithic debitage, and 2 yielding fire-cracked rock. In total 7 pottery sherds, 

5 pieces of lithic debitage, 65 pieces of charcoal unassociated with any recognized 

archeological features, and 2 pieces of fire-cracked rock were collected, cataloged, and 

accessioned at the Minnesota State University, Mankato Museum of Anthropology, 

Archeology Division’s curation facility. The surveying crew found pottery sherds in each 

of the three easternmost positive shovel tests, and shovel test 40 E, –20 N encountered a 

buried organically enriched layer that may be part of a feature associated with human 

activity during the Pre-Contact Era. 

The 45 southern shovel test locations are displayed in Figure 4-10. Some of the locations 

had to be slightly repositioned from their initially intended placement, with precise 5-meter 

spacing, to allow for the avoidance of obstructions. Empirical Bayesian kriging was used 

to generate the raster underlying the depicted shovel test points, approximating the 

probability of excavating a positive shovel test in the area encompassed by the shovel 

testing grid, based on whether each of the 45 shovel tests in the grid were positive or 

negative for artifacts.  

Empirical Bayesian kriging differs from other kriging methods by 
accounting for the error introduced by estimating the underlying 
semivariogram… For each prediction location, the prediction is calculated 
using a new semivariogram distribution that is generated by a likelihood-
based sampling of individual semivariograms from the semivariogram 
spectrums in the point's neighborhood (Esri Inc. 2016). 

All 5 pieces of lithic debitage recovered during sub-surface testing were determined to be 

Prairie Du Chien chert with one piece having clear evidence of heat treatment, used in 
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making lithic raw material fracture easily so that it may be more readily knapped and 

pressure-flaked into stone tools. Both pieces of fire-cracked rock were classified as granite. 

Four of the 7 pottery sherds collected were cataloged as having shell temper with one 

having an incised line decoration (Figure 4-11). Shell tempering was indicated by lacunae, 

negative space on the surface of pot sherds where shell has since been leeched out of the 

pottery (Figure 4-12). One pottery sherd has a cordmarked surface treatment and grit 

tempering (Figure 4-13 and Figure 4-14), and two have indeterminate temper and surface 

treatment.  
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Figure 4-11: Smoothed sherd with lacunae. 

 
Figure 4-12: Smoothed sherd with lacunae, zoomed in. 
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Figure 4-13: Cordmarked grit-tempered sherd. 

 
Figure 4-14: Cordmarked grit-tempered sherd, zoomed in.
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Chapter 5 – Discussion and Conclusions 

This research supports that geospatial and geophysical methods including relative soil 

resistance, magnetometry, and ground penetrating radar can be used to assist in locating 

Pre-Contact Native American earthworks and, by association, burials on the Belle Creek 

Mounds site and, quite likely, in similar settings throughout the Red Wing Region. 

Geophysical methods may also provide inroads toward a clearer understanding of how 

mound groups functioned as ritual spaces through the identification of anomalies 

potentially representing previously unencountered or overlooked archeological features 

that can be further explored using other methods. However, the effectiveness of geophysics 

in mound group relocation appear to be contingent on the amount and types of previous 

disturbances in an area. For example, the field edge push visible in Figure 4-8 has a 

geophysical expression similar to known mounds with the exception of its highly linear 

shape.  

Because archeological geophysical data interpretation is dependent on the analysis of 

relative differences in soil properties across space, the presence of borrow areas used in 

mound construction and lack of recent artificial soil build-up, removal, or mixing, facilitate 

the interpretation of geophysical surveys over mound groups. If a mound group has fewer 

significant modifications since its construction and initial usage in rituals, fewer equifinal 

variables need to be taken into serious consideration when interpreting collected 

geophysical data. The relative nature of archeological geophysical data collected and 
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interpreted in this project highlights the importance of the negative spaces around mounds 

within a mound group in creating recognizable mound related geophysical signatures.  

Some of the mounds present in Lewis’ 1885 survey did not seem to have an associated 

geophysical signature generated by relative soil resistance, magnetometry, or ground 

penetrating radar. These mound locations, lacking elevational physical surface expressions 

and a nearby associated geophysical signature, further illustrate the detrimental impact that 

ground disturbing activity can have on an archeological site with earthworks. A lack of 

Post-Contact Era agricultural practices on site would have likely resulted in identification 

of more mound related geophysical signatures in this location. The formerly cultivated area 

within the established geophysical grid was the only part of the grid in which geophysical 

signatures could not be tied to previously identified mounds. 

The use of T. H. Lewis’ 1885 survey proved to be invaluable in geophysical data 

interpretation due to its depiction of mound dimensions and their positions in relation to 

each other. Without referencing this past survey, it would have been far more difficult to 

assess anomalies as evidence of locations of previously visible mounds. One heartening 

result of this project is its contribution in beginning to quantify the error present in Lewis’ 

mound survey data that could allow these 19th century mound surveys to be applied with 

greater care in protecting and understanding mound groups. Future geospatial research 

contributing to knowledge regarding the sources and types of errors present in these 

surveys would likely be of great value in archeological work on formerly mapped mound 

groups. Lewis’ survey in combination with other research cited in earlier chapters, may be 
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used to assist in developing boundaries around mound groups accounting for the presence 

of mound related activity areas. 

Previous research discusses entire mound groups’ sociocultural function as ritual spaces 

and cemeteries (see Chapter 2). With disturbances to mound groups, not only are mounds 

without elevational physical surface expression, with possible intact underlying burials, 

more difficult to identify and more likely to be subjected to further disturbance, the feeling, 

otherwise known as the property’s expression of the aesthetic or sense of the time in which 

the mounds were constructed, is greatly diminished (U.S. Department of the Interior 

National Park Service Cultural Resources Division 2000:36). With a decreased sense of 

the time in which mound group construction and rituals initially happened, these places 

lose some of their value in providing people, particularly indigenous people, with 

opportunities to commune with their past. 

The shovel testing conducted south of the geophysical grid yielded a very small number of 

artifacts mainly consisting of pottery sherds and lithic debitage. The 5-meter spacing used 

for the placement of shovel tests proved to be important in generating a sample of artifacts 

useful for archeological interpretation. If a wider shovel test spacing was used immediately 

outside of the mound group, preliminary results relating to the Belle Creek Mounds 

archeological site’s cultural affiliation would lose significant supporting evidence. The 

presence of pottery is generally associated with and supports the interpretation of past 

habitation within the arc of mounds present on site, comparable to archeologically similar 

settings nearby. The combination of pottery sherds with varied characteristics can be 

tentatively interpreted as indicating that the habitation associated with the mound group is 
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an aggregation village due to cordmarked grit-tempered pottery affiliated with Late 

Woodland groups being present among smoothed shell-tempered pottery affiliated with 

Silvernale and Oneota groups. However, more substantial research needs to be done before 

this interpretation can be made with confidence because of the incredibly small size of the 

analyzed artifactual collection.  

The findings of this project promote the future application of hillshade adjusted Lewis 

mound survey results and geophysical methods around and within a generously estimated 

mound group boundary prior to development or land usage that may have adverse impacts 

on mounds, mound remnants, burials, or other possible mound group features to allow for 

their identification to prevent their disturbance or destruction. This recommendation is 

made because of the promising results of this Lewis mound survey informed 

geoarcheological survey.  
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