University of Louisville
ThinkIR: The University of Louisville's Institutional Repository

A master clock for the Speed School impulse clock system using WWV time information

John E. Pfeifer Jr.
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd
Part of the Electrical and Computer Engineering Commons

Recommended Citation

Pfeifer, John E. Jr., "A master clock for the Speed School impulse clock system using WWV time information" (1983). Electronic Theses and Dissertations. Paper 3669.
https://doi.org/10.18297/etd/3669

This Master's Thesis is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

A MASTER CLOCK FOR THE SPEED SCHOOL IMPULSE CLOCK SYSTEM USING WWV TIME INFORMATION

By
John E. Pfeifer, Jr. B.S., University of ${ }^{\text {Louisville, }} 1980$
\section*{A Thesis}
Submitted to the Faculty of the Uhiversity of Louisville Speed Scientific School
as Partial Fulfillment of the Requirements for the Professional Degree

MASTER OF ENGINEERING

Department of Electrical Engineering

A MASTER CLOCK FOR THE SPEED SCHOOL IMPULSE CLOCK SYSTEM USING WWV TIME INFORMATION
submitted by: $\frac{\text { doth \&. Pfeifer gr. }}{\text { john E. Pfeifer, Jr. }}$

A Thesis Approved on
$\frac{\text { February } 18,1983}{\text { Date }}$.
by the Following Reading and Examination Committee:

Thesis Director, William H. Pierce

ACKNOWLEDGEMENTS

The author would like to thank, in general, everyone that contributed to the completion of this thesis project and, in particular:

Dr. William H. Pierce for agreeing to serve as thesis director and for his technical guidance while serving as director.

Dr. Robert L. Collins and Dr. Barry R. Horowitz for serving as thesis committee members.

Mr. Thomas Bisch, Mr. William Hawkins, and Mr. Ernest Williams of the Electronics Shop for their for their cheerful and courteous assistance.

Mrs. Shirley Tomes for her typing "par excellence".
And last, but not least, his parents, Jack and Mary
Margaret Pfeifer, and his brothers and sisters, Marty, Julie, Tom, and Sally for their more than ample encouragement and support.

Abstract

Since approximately February of 1979, the Speed School impulse clock system has not functioned due to a worn-out master clock that was never replaced because of a lack of funds. For this thesis project, a solid-state master clock that performs the same functions as the old mechanical master clock was built for less than $\$ 200$. The new clock features accuracy traceable to the National Bureau of Standards, automatic reset after a power-down and subsequent power-up, and a daylight savings time provision. A decoder that recovers time information broadcast by radio station WWV from Fort Collins, Colorado was built and interfaced to the master clock to provide the accuracy traceable to the National Bureau of Standards.

Page
APPROVAL PAGE ii
ACKNOWLEDGEMENTS iii
ABSTRACT iv
TABLE OF CONTENTS v
LIST OF TABLES vii
LIST OF FIGURES viii
I. INTRODUCTION 1
II. CLOCK SYSTEM DESCRIPTION 3
A. Master Clock. 3
B. Master Control Box 3
C. Relay Box 6
D. School Wall Clocks 8
III. NEW MASTER CLOCK 12
A. General Function. 12
B. Master Clock Hardware 12
l. MC6802 Microprocessor 15
2. MM58167 Real-Time Clock 15
3. WWV Decoder 16
4. EST, EDT Switch 16
5. MC6821 PIA 17
6. 2716 EPROM 17
7. Address Decoding. 17
8. Clock Pulser 19
C. Master Clock Software. 21

1. Addition and Subtraction of BCD Numbers 21
2. Description of Software 22
a. Initialization 22
b. Reset Subroutine 22
c. Monitor Subroutine 23
d. Interrupt Program. 23
e. Pulser Routine 25
f. Second Delay Routine 25
g. Twelve-Hour Format Routine 25
h. Minutes Difference Routine 26
i. Hours Difference Routine 26
Page
j. Update Routine 26
k. Add One Minute to a Time Routine. 26
3. Fifty-Minute Switch Routine 27
m. Catch-up Routine 27
n. Short Delay Routine. 27
IV. WWV DECODER 28
A. Background on Time Services 28
B. Decoding Circuitry 30
V. CONCLUSIONS AND RECOMMENDATIONS 39
REFERENCES 40
BIBLIOGRAPHY 41
APPENDIX I MASTER CLOCK OPERATION PROCEDURE AND MAS'IER CLOCK AND WWV DECODER DISASSEMBLY GUIDE 42
APPENDIX II MM58167 AND MC6802 DATA SHEETS 50
APPENDIX III SYSTEM SOFTWARE ASSEMBLED LISTING AND FLOWCHARTS 61
APPENDIX IV BOARD LAYOUTS AND PIN DIAGRAMS OF NEW MASTER CLOCK AND WWV DECODER. 87
APPENDIX V WWV RECEIVER AND POWER SUPPLY SCHEMATICS 95
APPENDIX VI MASTER CLOCK, WWV DECODER, AND POWER SUPPLY ITEMIZED COSTS 98
APPENDIX VII TROUBLESHOOTING GUIDE 102
VITA 105

LIST OF TABLES

Page
TABLE I SPEED SCHOOL IMPULSE CLOCK SYSTEM. 11
TABLE II MASTER CLOCK PRICE LIST. 99
'TABLE III WWV DECODER PRICE LIST. 100
TABLE IV POWER SUPPLY PRICE LIST. 101

LIST OF FIGURES

Page
FIGURE 1 Old Master Clock 4
FIGURE 2 Master Control Box. 5
FIGURE 3 Relay Box 7
FIGURE 4 Wall Clock Coil Connections 9
FIGURE 5 New Master Clock 13
FIGURE 6 Hardware Block Diagram 14
FIGURE 7 Address Decoding 18
FIGURE 8 Clock Pulser 20
FIGURE 9 WWV Broadcast Format 29
FIGURE 10 WWV Guardband 29
FIGURE 11 WWV Time Code 31
FIGURE 12 Analog Decoding Circuitry 32
FIGURE 13 Envelope Detector 33
FIGURE 14 Schmitt Trigger Characteristics. 35
FIGURE 15 Digital Decoding Block Diagram. 36
FIGURE 16 Timing Diagram. 38
FIGURE 17 Clock Advancement Connections 41
FIGURE 18 Proper Decoder Waveform 47

I. INTRODUCTION

The Speed School impulse clock system has not been working since approximately February of 1979 , when an old mechanical master clock that controlled the school clocks wore out. Shortly after the clocks stopped working, a bid of $\$ 900$ was submitted to make the clocks operational again. No funds were available at the time and the clocks were never repaired. The goal of this thesis project was to build another more advanced master clock that could be hooked up to the existing clock system, yet be all solid-state.

The new master clock was designed to have automatic reset capability after a power-down, a daylight-savings-time provision, and more accuracy than the old master clock. A microprocessor-based system was chosen for implementing the desired functions, since the cost of such systems has become very low, considering the flexibility that such a system provides. An MC6802 microprocessor was chosen since it has an internal clock-generating circuit and on-chip RAM that can be maintained during a power-down. Additional support devices included a microprocessor-compatible real-time clock, Erasable Programmable Read Only Memory (EPROM), and address decoding logic. Software for the master clock was developed with the Tektronix 8002A Development System.

In addition to this microcomputer unit, a separate WWV decoder was built to retrieve time information broadcast by radio station WWV. This decoder was then interfaced to the microcomputer to provide periodic updating of the real-time clock. In the following chapters, specifics of school clock operation, new master clock design, and wWV decoder design are presented.
II. CLOCK SYSTEM DESCRIPTION

The Speed School impulse clock system consists of a master clock, a master control box, two relay boxes, and the individual wall clocks. A brief description of each subsystem follows.

A. Master Clock

The old master clock, shown in FIGURE l, consisted of a series of cam-actuated mechanical switches that opened and closed at different intervals. Switches one through four controlled an AC voltage, while switch five controlled a DC voltage. The time base for the master clock was a large pendulum connected to a series of gears that turned the switch cams. Originally located in Room 102 of W. S. Speed Hall, the master clock was connected to a master control box in Room 3 of W. S. Speed by seven wires in a section of conduit. In 1979, this mechanical clock apparently wore out and has never been replaced. The new master clock built for this thesis project will replace the old master clock.

B. Master Control Box

The master control box, shown in FIGURE 2, contains an AC relay, a selenium rectifier, and an unconnected program unit that at one time controlled bells. The relay is energized when the proper switches in the master clock


```
CONTACT NO.I CLOSES EVERY TWO SECONDS
CONTACT NO.2 ClOSES EVERY MINUTE (58" TO 60") - IMPULSE
CONTACT NO. 3 CLOSES EVERY MINUTE (O1" TO MAX 16") - DURATION
CONTACT NO.4 (LOSES 59'10""OPENS 59'45"" - 35 SECONDS
CONTACT NO.5 CLOSES 59'45'OPENS 49'45'" - 50 MINUTES
```


FIGURE 2 - Master Control Box
are closed (either \#2 is closed or \#1 and \#4 are closed). When the relay is energized, an AC voltage is applied to the rectifier input, which causes a DC voltage to appear across terminals A and C. The potential of terminal B is determined by switch \#5 in the master clock. If the switch is closed, $V=V$, but if the switch is open, $V=0$. CB CA CB These three output terminals are used as inputs to a relay box located immediately to the right of the master control box in Room 3 of W. S. Speed Hall.

C. Relay Box

The relay box, shown in FIGURE 3, receives inputs from the master control box. These three inputs control two relays that determine the status of outputs $1 A, 1 B$, and $1 C$, which go to the school clocks in W. S. Speed Hall, J. B. Speed Hall, and Sackett Hall, and to another relay box in Ernst Hall. By having another relay box in Ernst Hall, the load on the unit in W. S. Speed is significantly reduced. The program unit in the relay box in W. S. Speed Hall controls all of the Speed School bells and is programmed by breaking off tabs from metal strips and then inserting the strips into a cylinder that rotates each time the school clocks are incremented. At the programmed times, a switch closes and rings the bells. If the toggle switches at the bottom of the box are in the "off" position, the bells are disabled. The program unit should still work with the new master clock, but no attempt has been made to make

FIGURE 3 - Relay Box
the bells work again, since the desirability of bell-ringing is controversial.

D. School Wall Clocks

All Speed School clocks contain a 24-volt DC coil that when energized and subsequently de-energized, allows a ratchet mechanism to advance the clocks by one minute. Each clock has three wires (A, B, and C), one of which (wire C) is always connected to one terminal of the coil. The other coil terminal is switched between wires A and B by a cam-actuated switch inside the clock (see FIGURE 4). From four minutes after the hour until 58 minutes after the hour, the coil is connected from A to C. From one minute before the hour until three minutes after the hour, the coil is connected from B to C. With this arrangement, all clocks can be synchronized at one minute before the hour using the following procedure:

1. From 00 minutes to 49 minutes after the hour, 24-volt pulses (duration $=0.5$ second) are applied between C and A as well as C and B.
2. From 50 minutes to 59 minutes after the hour, pulses are applied between C and A only. If any school clock is ahead of the master clock by ten minutes or less, then the school clock will stop advancing at 59 minutes after the hour and "wait" for the master clock to catch up.

FIGURE 4 - Wall Clock Coil Connections
3. At 59 minutes after the hour, ten consecutive pulses are sent between C and A. If any school clock is less than ten minutes behind the master clock, it will catch up when these pulses are sent.

Using the above procedure, any clocks that are at most ten minutes ahead of or one hour behind the master clock time will eventually be resynchronized to the master clock.

The power consumed by each clock is approximately equal to three watts, which at 24 -volts corresponds to a current requirement of about 125 ma . TABLE I lists the locations of all Speed School impulse clocks.

TABLE I

SPEED SCHOOL IMPULSE CLOCK SYSTEM

Master Clock, Room 102, W. S. Speed Hall
Program Machine Room 3, W. S. Speed Hail

Secondary Clocks:
Sackett Hall, 3 Secondary Clocks:
1st floor hall, 2nd floor front hall, 2nd floor rear hall

Main Speed Building, 3 Secondary Clocks:
Basement Center hall, Room 201, Library
W. S. Speed Hall, 9 Secondary Clocks:

Basement Laboratory, Basement Rear Hall, Basement Front Hall
1st floor Laboratory, 1st floor rear hall, ist floor front hall
2nd floor Laboratory, 2nd floor rear hall, 2nd floor front hall
-R. C. Ernst Hall, 9 Secondary Clocks:
lst floor west hall, lst floor center hall, lst floor east hall
lst floor Departmental Office, lst floor Auditorium
. 2nd floor Central Hall (2 clocks), 3rd floor Central Hall (2 clocks)

Totals: 24 Secondary Clocks not including several that have been removed from both Sackett Hall and Main Speed Buildings when these buildings were remodeled from time to time.

III. NEW MASTER CLOCK

A. General Function

The hardware and software for the new master clock simply control two switches, and thus simulate the old master clock. A triac is used in place of switch \#2 in the old master clock and an $S C R$ is used in place of switch \#5 (see FIGURE 5). Switches \#l, \#3, and \#4 in the old master clock are not needed.

Whenever the school clocks are to be advanced or synchronized, the triac switch is closed. This energizes the relay in the master control box, which causes relay \#l in the relay box to close. A DC voltage now appears across output terminals Al and Cl, which go to the school clocks. If the SCR switch is not closed, terminal Bl of the relay box is floating and there is no current path between Bl and Cl. If the $S C R$ switch is closed, a voltage appears across terminals B and C of the master control box. This energizes relay \#2 in the relay box and now $V_{\text {Alcl }}=V_{B l C l}$ since $\mathrm{V}=0$. AlB1

B. Master Clock Hardware

A block diagram of the system hardware is shown in FIGURE 6. A functional description of each block follows.

FIGURE 5 - New Master Clock

1. MC6802 Microprocessor

The microprocessor is the heart of the system, since it decides when to send pulses to the school clocks and how many to send. The 6802 is totally software compatible with the MC6800 microprocessor, but also features 128 bytes of on-chip RAM and an internal clock generating circuit. During a power-down, the first 32 bytes of RAM can be maintained with very little power consumption from a standby source (batteries). This allows the school clock time to always be in RAM, so the microprocessor always "knows" the school clock time. For a more detailed description of the processor, the Motorola Microprocessor Manual should be consulted.

2. MM58167 Real-Time Clock

The MM58167 real-time clock can either be written to or read from by the microprocessor. A 32.768 KHz crystal is used as the clock's time base. The clock is microprocessor compatible and has eight data lines (the 6802 is an eight-bit processor) and five address lines to select among 24 internal registers. Time is kept in a BCD format, which is advantageous since WWV time frames are also given in a $B C D$ format.

The 58167 also features a power-down mode that allows the chip to keep time even during a line-power failure, provided a standby power source is available. With the real time always available, and the school clock time always in RAM, the difference between the school clocks and
real-time clock can be computed when a power-down and subsequent power-up have occurred, and the school clocks can be updated. A full description of the MM58167 can be found in the data sheets in APPENDIX II.

3. WWV Decoder

Operation of the WWV decoder is explained in Chapter IV of this thesis. The decoder is interfaced to the processor by four 74 LSl25 three-state buffers. The buffers are enabled by decoding logic when 3000 H or 3001 H is placed on the address bus. WWV time data can only be read by the microprocessor, whereas the real-time clock can be read from or written into. The end-of-frame 0.1 second pulse generated by the decoder is used as a hardware interrupt to the processor.
4. EST, EDT Switch

This feature allows the school clocks to adjust automatically to what amounts to a change in time zones every six months. This switch must be thrown manually once every six months to allow for the time change. WWV transmits UTC (Coordinated Universal Time), which is referenced to Greenwich, England. Data at the switch location (either four or five hours) is subtracted from the decoded time to obtain Eastern Daylight or Eastern Standard Time. In order for the clocks to adjust themselves, a valid WWV decode (see WWV routine in software section) must be received after the switch is thrown.
5. MC6821 PIA (Peripheral Interface Adapter)

The MC6821 PIA is used to latch and display the
school clock time that is stored in RAM via four
seven-segment displays. Since a BCD format requires 16 bits to represent a time and the PIA has 16 lines that can be configured as outputs, the 6821 is ideal for this application. The PIA output lines are used to drive four BCD to seven-segment decoders which, in turn, drive the four seven-segment displays.
6. 2716 EPROM (Erasable Programmable Read Only Memory)

The 2716 contains 2048 eight-bit-wide memory
locations for storing the system software. A PROLOG programmer was used to program the EPROM. A single +5 volt power supply is required for operation of the EPROM. 7. Address Decoding

Since the microprocessor can only "communicate" with one external device at a time, address decoding is needed to assign each device a unique address. A 74LSl54 four-to-sixteen-line decoder is used for this purpose. The four inputs to the chip are tied to the four most significant bits of the address bus (Al2 - Al5), which means that these four bits are completely decoded. If, for example, an address of 2000 H is placed on the address bus, then output number two of the 74 LS S 54 goes low (all outputs are active low), while all other outputs remain high and the real-time clock is addressed. A diagram of the address decoding scheme is shown in FIGURE 7.

FIGURE 7 - Address Decoding

8. Clock Pulser

The clock pulser hardware consists of two LM555's operating in the one-shot mode, an opto-isolator with an SCR output, an opto-isolator with a triac output, an SCR, and a triac. A diagram of the circuit is shown in FIGURE 8. When an address of 5000 H is placed on the address bus, output \#5 of a 74LSl54 goes low and triggers 555 \#l. When the output of the 555 is high, the LED in the opto-isolator turns the triac output on, which provides a path for gate current in triac \#l. Triac \#l now allows current to flow through the inductive load, which is the relay coil in the master control box, thus closing the relay. The relay will remain closed for the time out period of the 555 (approximately 0.5 seconds). Under normal operation, location 5000 H is addressed once each minute, but when the clocks are being advanced or synchronized, it is addressed once every two seconds.

Operation of the SCR circuit is almost identical to that of the triac circuit except that the SCR is only required to switch a DC voltage. The SCR switch is closed by addressing location 7000 H and is closed from $00-49$ minutes after the hour.

To protect the devices from false triggering due to line transients and inductive kickback, RC "snubber" networks are placed across the devices. These networks limit the rate of voltage rise (dV/dt) across the device and thus greatly reduce any $C(d v / d t)$ charging current that

FIGURE 8 - Clock Pulser
might falsely trigger the device.

C. Master Clock Software

1. Addition and Subtraction of BCD Numbers

Since all times are represented in a BCD (binary
coded decimal) format, a brief explanation of how these numbers are manipulated follows. Addition of two BCD numbers is accomplished by using the DAA (decimal adjust the A accumulator) instruction immediately after either the ABA (add A and B accumulators) or ADD A (add A accumulator to a memory location) instructions. BCD subtraction is performed using ten's complement addition. The ten's complement of the subtrahend is obtained by adding 66 H (hexadecimal) to the subtrahend, complementing the result, and adding one. This result is added to the minuend to give the result of the subtraction. If there is an end carry generated by the ten's complement addition, then the minuend is greater than the subtrahend and the answer is the $B C D$ difference between the two numbers. However, no end carry means that the true answer is the ten's complement of the result with a negative sign attached. If two equal BCD numbers are subtracted, the result is "positive zero" since an end carry is generated. The status of the carry bit in the microprocessor condition code register can therefore be used to test for a positive or negative result after a $B C D$ subtraction.

2. Description of Software

The software for controlling the Speed School clocks is divided into 14 subprograms. A description of each subprogram follows.
a. Initialization. The initialization program is executed every time a power-down and subsequent power-up occur. The first section of the program configures all 16 PIA lines as outputs and allows access to peripheral data registers A and B. The stack pointer is then initialized so that the processor will not get "lost" when jumping to and from the various subroutines. After initialization is completed, the processor determines if the power-up is the first by reading the first location in RAM. If the number in this location is 52 H , then it is not the first power-up. If it is the first power-up, the MM58167 real-time clock and school clock RAM locations are set to 15:00, since this is the time that the school clocks are manually set to before the master clock is ever turned on. If the system has been working previously, then the "first power-up" sequence is skipped and, instead, the processor executes the reset subroutine.
b. Reset Subroutine. During a power-down condition, standby power from batteries allows retention of the first 32 bytes of internal RAM in the 6802 , where the school clock time is stored. The backup power also allows the MM58167 real-time clock to keep time during a line power failure. When power is restored, the reset routine will
calculate the difference between the school clocks and real-time clock, and send out the appropriate number of pulses to the school clocks to synchronize them with the real-time clock. Once the clocks are synchronized, the monitor routine is executed.
c. Monitor Subroutine. The monitor subroutine waits for a change in the real-time clock minutes counter or a wWV decode. Both of these events will generate an interrupt to the processor. When the interrupt is generated, the processor will start executing an interrupt program at the address specified by the contents of memory locations FFF8H and FFF9H. When this program has been executed, the monitor routine will be returned to until another interrupt occurs.
d. Interrupt Program. At the end of each frame of WWV time code information, a 0.1 second pulse that is used as an interrupt pulse is generated by the decoding circuitry. Likewise, at the end of each minute, the real-time clock generates an interrupt signal. If a CLI (clear interrupt mask bit) instruction has been executed and an interrupt occurs, then the processor starts executing the interrupt program.

The interrupt program first determines if the real-time clock or the WWV decoder has generated the interrupt by reading the real-time clock interrupt status register. If bit three of the register is a "l", then the real-time clock has generated the interrupt. An interrupt
from the real-time clock instructs the processor to send out a pulse to the school clocks to advance them by one minute. Program control is then returned to the monitor routine. If, on the other hand, the WWV decoder generated the interrupt, then the WWV interrupt routine is serviced.

The WWV interrupt routine determines if the most recent decode is valid by comparing the time to the previous decode time plus one minute and then to the second previous decode time plus two minutes. If all three times are equal, then the most recent decoded time is assumed to be valid. If the three times are not equal, the frame is assumed to be invalid and one minute is added to the previous decode-time-plus-one-minute value, which is then stored in the second-previous-decode-plus-two location. Likewise, one minute is added to the most recent decode time and the result is stored in the previous decode-plus-one-minute location. The program is now set up for the next WWV interrupt. Due to the nature of the decoding circuitry and the WWV broadcast format, the actual local time when an interrupt occurs (assuming a valid decode) is the decoded time plus one minute, plus 1.15 seconds and minus four or five hours. These differences are accounted for by adding two minutes to a valid decode time and then subtracting four or five hours (depending on the position of the EST, EDT switch). This adjusted time is then used to determine the difference between the school clocks and the actual time. After this difference is determined, the program waits 58
seconds to send out the calculated number of pulses. When all pulses are sent, the school clock time is placed in the appropriate real-time clock locations and program control is returned to the monitor routine. This correction procedure assures that every time a valid wWv time is received, the real-time clock is reset accordingly.
e. Pulser Routine. The pulser routine sends out the number of pulses necessary to synchronize the school clocks with either WWV or the real-time clock at the rate of one pulse every two seconds. If the school clocks need to be advanced by more than eleven hours, the pulser routine will wait for the real-time clock or $W W V$ to catch up. If the hours difference is less than eleven, 62 pulses are sent for each hour of difference. The extra pulses account for the two minute delay inherent in sending 60 pulses. The pulser routine also controls the self-correcting feature of the school clocks by executing the FIFMIN (fifty minute switch) and CATUP (catch-up) subroutines.
f. Second Delay Routine. The second delay routine generates a time delay of approximately one second, since delays of integer multiples of one second are needed for various other subroutines.
g. Twelve-Hour Format Routine. The 12-hour format routine converts a 24 -hour format time to a 12 -hour format time by subtracting 12 hours from the 24 -hour format time. If the result is positive, then the computed time is the correct 12 -hour format time. If the result is negative,
then the original time was already in a 12 -hour format.
h. Minutes Difference Routine. The minutes
difference routine determines the number of minutes pulses that must be sent to the school clocks so that the school clock minutes and WWV or real-time clock minutes are the same. This is accomplished by counting the number of times the school clock minutes must be incremented to equal the WWV or real-time clock minutes. If the school clock minutes reach 60, then the school clock hours are incremented to prepare for the hours difference calculation, the minutes are set equal to zero, and the process continues. The result is a true binary number, not a $B C D$ number.
i. Hours Difference Routine. This subroutine calculates the number of hours that the school clocks must be advanced to equal the WWV or real-time-clock time. This is done by subtracting the 12 -hour format adjusted (refer to minutes difference routine) school-clock time from the 12-hour WWV or real-time clock time. If the result is positive, then the result is the hours difference, but if the result is negative, then the hours difference is the result plus 12.
j. Update Routine. The update routine adds one minute to the school-clock 24-hour format time and displays this time on the seven-segment displays by writing the time to the PIA. This routine is executed immediately after a pulse is sent to the school clocks.
k. Add One Minute to a Time Routine. This routine
adds one minute to a 24 -hour format time. If the minutes are equal to 60 after addition of one minute, then the hours are incremented and the minutes are reset to zero. If the hours are equal to 24 after being incremented, they are reset to zero.

1. Fifty-Minute Switch Routine. This routine determines if the school-clock minutes are equal to 00 to 49 minutes. If they are, a switch is closed by writing to location 7000 H .
m. Catch-up Routine. The catch-up routine determines if the school-clock minutes are equal to 59. If they are, a switch at location 5000 H is opened and closed ten times by writing to this location ten times at two second intervals.
n. Short Delay Routine. This routine is used to provide a short delay between the time a switch at 5000 H closes and the time a switch at 7000 H closes.
IV. WWV DECODER

A. Background On Time Services

Radio station WWV is operated by the National Bureau of Standards and broadcasts from Fort Collins, Colorado on carrier frequencies of $2.5,5,10,15$, and 20 MHz . Among the services offered by wWV are weather announcements, voice time announcements, standard time intervals, standard audio frequencies, and a BCD (binary coded decimal) time code. The entire WWV broadcast format is shown in FIGURE 9.

Of particular interest in this thesis is the BCD time code, which is continuously broadcast on a 100 Hz subcarrier with a modified version of the IRIG-H time code format. With the IRIG-H, a binary zero is represented as 20 cycles of 100 Hz amplitude modulation (0.2 seconds), a binary one is 50 cycles of 100 Hz amplitude modulation (0.5 seconds), and a position marker (used for synchronization purposes) is 80 cycles of 100 Hz amplitude modulation (0.8 seconds). However, WWV also transmits a five millisecond burst of 1000 Hz (which sounds like the tick of a clock) to mark the beginning of each second. This burst has a guardband around it (see FIGURE 10) that deletes the first 30 milliseconds of the time code so, in this modified version, a binary zero is 17 cycles of $100 \mathrm{~Hz} \mathrm{AM}$, binary one is 47 cycles of $100 \mathrm{~Hz} \mathrm{AM}$, is 77 cycles of 100 Hz AM . If the 100 Hz subcarrier is

WWV BROADCAST FORMAT

VIA TELEPHONE: (303) 499-7111

FIGURE 9 - WWV Broadcast Format (see Ref. 2)

FIGURE 10 - WWV Guardband (see Ref. 3)
demodulated, the rectangular pulse train shown in FIGURE 11 is obtained. The beginning of each one minute frame is denoted by a 1.03 second hole in the code during which no pulse is transmitted. The positive-going edges of consecutive pulses are spaced exactly one second apart, but are 30 milliseconds late with respect to the actual time due to the guardband around the five millisecond 1000 Hz burst. By decoding the proper sequence of pulses, hours, minutes, and day of year information can be recovered.

B. Decoding Circuitry

The circuitry used to reconstruct the rectangular pulse train from the 100 Hz subcarrier is shown in FIGURE 12. Recovered audio (containing the 100 Hz code) at the output of the detector of the receiver being used is amplified and applied to the input of an active bandpass filter with a center frequency of 100 Hz and a Q of 10. This filter attenuates unwanted frequencies such as the 500 or 600 Hz audio tones and voice frequencies, but allows the 100 Hz subcarrier to be passed unattenuated. The center frequency $\left(\omega_{0}\right)$ of the filter is adjusted by varying potentiometer $R 5$, while the Q is adjusted independently of ω_{0} by varying potentiometer R9. ${ }^{4}$ The output of the bandpass filter is then applied to the input of an envelope detector that uses an operational amplifier to eliminate the forward voltage drop of the detector diode. ${ }^{5}$ FIGURE 13 shows input and corresponding output waveforms for the envelope

FORMAT H, SIGNAL HOOI, IS COMPOSED OF THE FOLLOWING:

1) 1 ppm FRAME REFERENCE MARKER $R=$ (P_{0} AND 1.03 SECOND "HOLE")
2) BINARY CODED DECIMAL TIME-OF-YEAR CODE WORD (23 DIGITS)
3) CONTROL FUNCTIONS (9 OIGITS) USED FOR UT 2 CORRECTIONS, ETC.
4) 6 ppm POSITION IDENTIFIERS (P THROUGH $P_{5}{ }_{5}$)
) pps INDEX MARKERS

C WEIGHTED CONTROL ELEMENT (0.470 SECOND DURATION) CONTROL FUNCTION \#6 $\{$ BINARY ONE DURING 'DAYLIGHT' TIME \#6 \{BINARY ZERO DURING 'STANDARD' TIME DURATION OF INDEX MARKERS, UNWEIGHTED CODE, AND UNWEIGHTED CONTROL ELEMENTS $=0.170$ SECONDS NOTE: BEGINNING OF PULSE IS REPRESENTED BY POSITIVE-GOING EDGE.

FIGURE 12 - Analog Decoding Circuitry

FIGURE 13 - Envelope Detector
detector. The low-level output (approximately one volt) of the detector is then converted to standard TTL levels using a Schmitt trigger. FIGURE 14 shows the transfer characteristic of the Schmitt trigger. In order to get the proper level input to the Schmitt trigger, potentiometer R2 (see FIGURE 12) can be adjusted without affecting the rest of the circuit. The output of the Schmitt trigger is the logical complement of the BCD time code.

Decoding of the $B C D$ time code is accomplished with the circuit shown in FIGURE 15. The Schmitt trigger output is inverted (to give the time code in its uncomplemented state) and applied to the inputs of positive edge triggered monostables and flip-flops. MSMV (monostable multivibrator) \#l and FF (flip-flop) \#l form a "l-0" detector, while MSMV \#2A and FF \#2 form a position marker detector. Upon a positive edge (corresponding to the beginning of each second), both monostables are triggered and time out. At the end of each respective time out period $(t=0.35 \mathrm{sec}$. or 0.65 sec.$)$, the \bar{Q} outputs of the monostables supply a positive edge to the clock inputs of the D flip-flops, which latch whatever is at the input at that instant. MSMV \#3 and 4 and FF \#3 are needed to detect the beginning of each minute, which is signified by a position marker followed by a 1.03 second period during which no pulse is transmitted. When this occurs, a pulse that resets the counter (74LS90) is generated.

FIGURE 14 - Schmitt Trigger Characteristics

* ALL "NOT" GATES ARE $\frac{1}{6} 7404$

The counter is used to supply clock pulses to the shift register only during the interval between position markers Pl and P3 (see FIGURES 11 and l6) when hours and minutes information is transmitted. MSMV \#2B reduces the pulse length into the counter from one or two seconds to .22 seconds, so that no bits of data are lost. Three 74LSl64 shift registers are used to convert the serial input code to a parallel output.

Due to the method of decoding and the WWV broadcast format, the decoded time will be behind the actual time. The reasons for this are most easily understood by examining FIGURES 11 and l6. From FIGURE ll, it can be seen that the time transmitted during the one minute frame is actually the time at the beginning of the frame. This means that the information latched into the shift register at the end of the minute is one minute behind the actual time. An additional error of approximately 1.15 seconds is incurred due to the method of decoding. As can be seen from FIGURE 16, the pulse that strobes the latches is generated 1.15 seconds after the beginning of the minute. Both of these sources of error are unimportant, since the decoder will be interfaced to a microprocessor that will easily account for such errors (see "Interrupt Routine" in CHAPTER III).

V. CONCLUSIONS AND RECOMMENDATIONS

The new master clock and WWV decoder were built and worked as originally planned. There are, however, several areas for improvement that should be mentioned.

The WWV receiver uses a simple half-wave dipole antenna that is designed for reception of 15.0 MHz only. While it is felt that this arrangement provides adequate reception, a more broadband antenna would allow for better reception of the 5.0 and 10.0 MHz signals that the receiver is capable of receiving. To change the reception frequency, buttons on the presently installed receiver must be pushed manually. Receivers that automatically switch to the strongest carrier signal are commercially available and would be nice to have, but such a receiver might be too expensive to be practical. None of the above modifications would necessitate disabling the master clock at any time.

The real-time clock chip (MM58167) also contains a calendar that could be used for some specialized functions such as eliminating the EST / EDT switch or even ringing the bells on days and times that could be programmed into the EPROM now used to store the master clock software. The only disadvantage to undertaking such projects is that the master clock would have to be disabled while making any modifications.

1. Ramshaw, R. S., Power Electronics, Chapman and Hall, London, 1973, pp. 37-39.
2. Howe, S. L., NBS Time and Frequency Dissemination Services, NBS Special Publication 432, U. S. Government Printing Office, Washington, DC, 1979, p. 2.
3. Ibid., p. 3.
4. Graeme, J. B., Operational Amplifiers, Design and Application, McGraw-Hill, 1971, pp. 293-295.
5. Schilling, D. L., Belove, C., Electronic Circuits, 2nd ed., McGraw-Hill, 1979, pp. 373-374.
6. Howe, S. L., p. 14.

Graeme, J. G., Operational Amplifiers, Design and Applications, McGraw-Hill, 1971.

Howe, S. L., NBS Time and Frequency Dissemination Services, NBS Special Publication $432, \mathrm{U}$. S. Government Printing Office, Washington, DC., 1979.

Kamas, G., Howe, S. L., Time and Frequency Users Manual, NBS Special Publication 559, U. S. Government Printing Office, Washington, DC., 1979.

Motorola, Inc., Microprocessor Data Manual, 1981.
National Semiconductor Corp., MOS/LSI Data Book, 1980.
Ramshaw, R. S., Power Electronics, Chapman and Hall, London, 1973.

Schilling, D. L., Belove, C., Electronic Circuits, 2nd ed., McGraw-Hill, New York, 1979.

Texas Instruments, Inc., The TTL Data Book for Design Engineers, 2nd ed., 1976.

APPENDIX I
MASTER CLOCK OPERATION PROCEDURE AND MASTER CLOCK AND WWV DECODER DISASSEMBLY GUIDE

OPERATING PROCEDURE

First Power-Up Procedure

This procedure must be performed any time the master clock display time and school clock time do not match. All clocks must read within ten minutes of $3: 00$. This is accomplished by connecting normally open switches from wire l to wire 2 (switch \#l) and from wire 4 to wire 5 (switch \#2) (see FIGURE 17). Switch \#1 should be opened and closed 70 times (0.5 second closed, 1.5 seconds open each time) while switch \#2 remains open. All clocks should now read one minute before the hour. To advance to the next hour, close switch \#2 and open and close switch \#l six times (same duty cycle as before). Now open switch \#2, and then open and close switch \#1 70 times. The clocks should now read one minute before the hour. Keep advancing to the next hour until the clocks read 2:59. If any clocks read, say, l:59 or 3:59 while the majority of the others read 2:59, the clocks with erroneous readings must be manually advanced to read 2:59.

System Connections

When making connections, the power supply and WWV receiver should be OFF and UNPLUGGED.

1. Set the EST-DST switch on the master clock to the proper position.

FIGURE 17 - Clock Advancement Connections
2. Using banana leads, connect the power supply terminals to the corresponding banana jacks on the master clock and WWV decoder. BE CAREFUL not to connect the -12 V or +12 V supplies to the +5 V terminal on the master clock.
3. Connect the DIP header from the master clock to the socket on the WWV decoder box. Turn the GAIN ADJUST knob on the decoder fully counterclockwise.
4. Connect the phone plug from the wWV receiver to the phone jack on the decoder.
5. Connect the labeled wires from the master control box to the corresponding terminals on the master clock terminal strip.
6. Connect the antenna to the wWV receiver.
7. Plug the line cord of the power supply into a wall outlet.
8. Turn the power supply on by flipping the switch on the supply to the "on" position at exactly 3:00 PM. The system is now operational.
9. Connect the negative terminal of the standby battery to the GND terminal on the power supply and then connect the positive terminal of the battery to the STBY terminal on the supply.
10. Turn on the shortwave receiver and tune it to WWV at 15 MHz . The volume setting is unimportant, since the input to the decoder is taken before the volume control. When a clear, non-fading signal is present, probe the terminal of the decoder adjacent to the input jack with an oscilloscope. The GAIN CONTROL knob on the decoder should be adjusted so that the signal at this point resembles FIGURE 18. No further adjustment should be necessary unless a different receiver is used in the future. If something happens to the receiver or decoder, the decoder can be disconnected from the master clock at any time without affecting master clock operation.

The system is now fully operational and should not require any further servicing other than replacing the standby battery once a year. To replace the battery, reverse the procedure of step 9 to remove the old one and install the new battery (refer to step 9).

PULSE WIDTHS $\approx .2, .5$, OR .8 SEC ADJUST GAIN CONTROL FOR PULSE HEIGHT OF $\approx 1.0 \mathrm{VOLT}$

DISASSEMBLY GUIDE

Master Clock

1. The master clock must be disconnected from any power source during disassembly.
2. Remove the six Phillips screws from the top panel of the master clock.
3. Remove the two screws that hold the display in place.
4. Remove the two screws that hold the EST-DST switch in place. The top cover may now be removed.
5. Remove the four banana jacks from the cabinet.
6. Unsolder the four wires going from the main board to the smaller board in the left rear of the cabinet.
7. Remove the six screws that hold the main board in place.
8. Pull up on the left side of the board and, at the same time, feed the DIP jumper through the grommet enough to allow the board to be turned over, so that the solder connections are accessible.
9. To remove the smaller board, unsolder the four wires going to the triac and SCR, and then remove the two screws that hold the board in place.
10. To install the board(s), reverse the above procedure.

WWV Decoder

1. The WWV decoder must be disconnected from any power source during disassembly.
2. Remove the four screws from the top of the decoder.
3. Remove the four banana jacks from the cabinet.
4. Remove the two screws that hold the socket on the side of the decoder in place and push the socket toward the inside of the cabinet.
5. Unscrew the input jack retainer and push the jack toward the center of the cabinet.
6. Remove the screw next to the input jack by unscrewing it from the cabinet.
7. Remove the five nuts from the bottom of the box and pull the board from the cabinet.
8. To reinstall the board, reverse the above procedure.

APPENDIX II
 MM58167* AND MC6802** DATA SHEETS

*MM58167 data sheets were taken from 1980 National Semiconductor MOS/LSI Databook.
**MC6802 data sheets were taken from 1980 Motorola Microprocessor Manual.

MM58167 Nicroprocessor Compatible Real Time Clock

General Description

The MM58167 is a low threshold metal-gate CMOS circuit that functions as a real time clock calendar in bus-oriented microprocessor systems. The device includes an addressable counter, addressable latch for alarm-type functions, and 2 interrupt outputs. A power-down input allows the chip to be disabled from the outside world for standby low power operation. The time base is generated from a $32,768 \mathrm{~Hz}$ erystal-controlled oscillator.

Features

- Microprocessor compatible
- Thousandths of seconds, hundredths of seconds, tenths of seconds, seconds, minutes, hours, day of the week, day of the month, and month counters with corresponding latches for alarm-type functions
- Interrupt output (maskable) with 8 possible interrupt signals:
- Latcl and counter comparison
- Every tenth of a second
- Every second
- Every minute
- Every hour
- Every day
- Every week
- Every month
a Power-down mode that disables all outputs except for F-an interrupt output that occurs on a counter latch comparison. This is not the same as the maskable interrupt output
- Don't care states in the latches
- Status bit to indicate clock rollover during a read
$32,768 \mathrm{~Hz}$ crystal reference, with only the input
". .tuning capacitor and load capacitor needed externally - . ${ }^{2}$ Four year calendar

Functional Description

The MM58167 is a microprocessor oriented real time clock. The circuit includes addressable real time counters and addressable latches, each for thousandths of seconds through months. The counter and latch are divided into bytes of 4 bits each. When addressed, 2 bytes will appear on the data I/O bus. The data, in binary coded decimal, can be transferred to and from the counters via the data \because I/O bus so that each set of 2 bytes (1 word) can be -accessad independentiy as grouped in Table I.

If either of the bytes in the above 8 -bit counter words do not legally reach 4 -bit lengths (e.g., day of the week uses only the 3 least significant bits) the unused bits will be unrecognized during a write and held at VSS during a read. If any illegal data is emered into the counters during a write cycle, it may take up to 4 clocks (4 months in the case of the monst counter) to restore legal BCD data to the counter suing normal counting. The latches will read and write all 4 bits per byte. Each of the counter and latch words can be reset with the appropriate address and data inputs. The counter reset is a write function. The latches can be programmed io compare with the counters at all times by writing 1 's into the 2 most significent bits of each iatch, thus establishing a don't care state in the latch. The don't care state is programmable on the byte level, i.e., zens of hours can conitain a don't care state, yet unit hours can contain a valid code necessary for a comparison.

Connection Diagram

Absoiute Maximum Ratings

Voltage at All Inputs and Outputs
Operating Temperature
Storage Temperature
$V_{D D}-V_{S S}$
Lead Temperature (Soldering, 10 seconds)

$$
\begin{array}{r}
V_{D D}+0.3 \text { to } V_{S S}-0.3 \\
-25^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}, \\
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C} \\
6 \mathrm{~V} \\
300^{\circ} \mathrm{C}
\end{array}
$$

Electrical Characteristics $T_{A}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=0 \mathrm{~V}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage					
VDD	Outputs Enabled	4.0		5.5	v
VDD (Note 1)	Power Down Mode	2.0		5.5	v
Supply Current	\ldots		*	-	d
'DD. Static	Outputs TRI-STATE,			10	$\mu \mathrm{A}$
	$f\left(N=D C, V_{D D}=5.5 \mathrm{~V}\right.$			-	
IDD. Dynamic	Outputs TRI-STATE,			20 :	- $\mu \mathrm{A}$
	$\mathrm{fSN}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}$,				
	$V_{\text {IH }} \geq \mathrm{V}_{\text {DD }}-0.3 \mathrm{~V}, \mathrm{~V}_{\text {IL }} \leq \mathrm{V}_{S S}+0.3 \mathrm{~V}$				
IDD. Dynamic	Outputs TRI-STATE,			12	mA
	$\mathrm{V}_{\text {IH }}=2.0 \mathrm{~V}, \mathrm{~V}_{\text {IL }}=0.8 \mathrm{~V}$				
Input Voltage					
Logical Low	:	0.0	,	0.8	V
Logical High		2.0		VOD	V
Input Leakage Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD }}$			1	出
Output Impedance	(1/O and Interrupt Output)				
Logical Low	$V_{\text {OD }}=4.75 \mathrm{~V}, \mathrm{IOL}=1.6 \mathrm{~mA}$			0.4	- V
Logical High	$V_{D D}=4.75 \mathrm{~V}, \mathrm{IOH}=-400 \mu \mathrm{~A}$,	2.4			v
	$1 \mathrm{OH}=-10 \mu \mathrm{~A}$	0.8 VOD			v
TRI-STATE ${ }^{\text {® }}$	VOUT $=0 \mathrm{~V}$,			-1	$\mu \mathrm{A}$,
	$V_{\text {OUT }}=V_{\text {DD }}$.	1	${ }_{\sim}^{4}$
Output Impedance	(Ready and Standby Interrupt Output)				
Logical Low, Sink	$V_{D D}=4.75 \mathrm{~V}, \mathrm{IOL}=1.6 \mathrm{~mA}$			0.4	v
L.ogical High, Leakage	VOUT \leq VDD			10	$\mu \mathrm{A}$

Note 1: 'To insure that no iffegal data is read from or written into the chip during power up, the power down input should be enabled anly aftef all other lines (Read, Write, Chip Select, and Data Bua) are valid.

Functional Description (Continued)
-tablel

COUNTER ADDRESSED	UNITS				MAX USED BCD CODE	TENS				MAX USED BCD CODE
	DO	D1	D2	D3		D4	D5	D6	D7	
Ten Thousandths of a Second	0	0	0	0	0	1/0	1/0	1/O	1/O	9
Tenths and Hundredths of Seconds	1/0	1/0	1/0	1/0	9	1/0	1/0	1/0	1/0	9
Seconds	1/0	1/0	1/0	1/0	9	1/0	1/0	1/0	0	5
Minutes	I/O	1/0	1/0	1/0	9	1/0	1/0	1/0	0	5
Hours	1/O	1/0	1/0	1/O	9	1/0	1/O	0	0	2
Day of the Week	1/0	1/O	1/0	0	7	0	0	0	0	0
Day of the Month	1/O	I/O	1/0	1/0	9	1/0	1/0	0	0	- 3
Month	1/0	1/0	1/0	1/O	9	1/0	0	0	0	1

Functional Description (Continued)

TABLE II. ADDRESS CODES AND FUNCTIONS

A4	A3	A2	A1	AO	FUNCIION
0	0	0	0	0	Counter - Thousandths of Seconds
0	0	0	0	1	Counter - Hundredths and Tenths of Seconds
0	0	0	1	0	Counter - Seconds
0	0	0	1	1	Counter - Minutes
0	0	1	0	0	Counter - Hours
0	0	1	0	1	Counter - Day of the Week
0	0	1	1	0	Counter - Day of the Manth
0	0	1	1	1	Counter - Months
0	1	0	0	0	Latches - Thousandths of Seconds
0	1	0	0	1	Latches - Hundredths and Tenths of Seconds
0	1	0	1	0	Latches - Seconds
0	1	0	1	1	Latches - Minutes
0	1	1	0	0	Latches - Hours
0	1	1	0	1	Latches - Day of the Weak
0	1	1	1	0	Latches - Day of the Manth
0	1	1	1	1	Latches - Months
1	0	0	0	0	Interrupt Status Register
1	0	0	0	1	Interrupt Controf Register
1	0	0	1	0	Counter Reset
1	0	0	1	1	Latch Reset
1	0	1	0	0	Status Bit
1	0	1	0	1	"GO" Command
1	0	1	1	0	Standby Interrupt
1	1	1	1	1	Test Moda
Al 1					

TABLE III. COUNTER AND LATCH RESET FORMAT

D0	D1	D2	D3	D4	D5	D6	D7	COUNTER OR LATCH RESET
1	0	0	0	0	0	0	0	Thousandths of Secands
0	1	0	0	0	0	0	0	Hundredths and Tenths of Seconds
0	0	1	0	0	0	0	0	Seconds
0	0	0	1	0	0	0	0	Minutes
0	0	0	0	1	0	0	0	Hours
0	0	0	0	0	1	0	0	Days of the Week
0	0	0	0	0	0	1	0	Days of the Month
0	0	0	0	0	0	0	1	Months
FOR COUNTER RESET A4-AO MUST BE 10010								

Functional Description (Continued)

Following a read of any real time counter a status bit read should be done. If during a counter read cycle the clock rolls over, the data read out could be invalid. Thus, during a read if the clock rolls over the status bit will be set. The status bit will appear on DO when read, D1 through 07 will be zeros.
To synchronize the clock with real time a "GO" command exists which can be used to reset the thousandths of seconds, hundredths and tenths of seconds, and seconds counters. After setting the lower frequency counters (minutes through months), the appropriate address and a write pulse can be sent to reset all counters mentioned above. This allows the clock to be started at an exactiy known time. It can also be used as a stopwatch function. The "GO" command is the start and a counter read is the stop point. The clock does not stop during or following a read, so each read would be a split time.
A second special command will enable the standby interrupt output. The standby interrupt output is tñe only input or output enabled during the power down or standby mode. Power down occurs when the powar down input goes to a logical zero level. 'In this mode the outputs are TRI-STATED and the inputs ignored regardless of the state of the chip select. The standby interrupt is enabled by writing a 1 on the DO line with the standby interrupt address selected. On the next counter-latch comparison the open drain output device turns on, sinking current. The output will be turned on immediately upon writing a 1 on DO if the comparison occurred before the write, yet is still in effect. To disable the output a zero on DO is written at the standby interrupt address. The write cycles must occur curing normal operation, but the output can become active during power down. This feature can be used to turn the power back on during a power down mode (see Figure 4 for a typical application). Refer to Tables II and III for the address input codes and functions and for the counter and latch reset format.
The interrupt output is controlled by the interrupt status register (8 bits) and the interrupt control register (8 bits). The status register contains the present state of the comparator (compares the counters and latches) and the outputs (1 bit each) of the tenths of seconds, seconds,
minutes, hours, week, day of the month, and month counters (Figure 1). The interrupt status register can only be read! - The interrupt control register is a mask register that regulates which of the 8 bits in the status register goes aut as an interrupt. The control register cannot be read from. A 1 is written into the controk register, to select the appropriate interrupt output If more than a single 1 exists in the control register each selected bit will come out as an interrupt. This will appear as an interrupt occurring at the highest frequency selected. The interrupt is acknowledged by addressing and reading the status register. Once acknowledged the interrupt output and status register are reset. The only way to disable the interrupt output is to write all 0 's into the control register or to enable the power down input.

The I/O bus is controlled by the read, write, ready and chip select lines. During a read cycle ($\overline{R D}=0, \overline{W R}=1$. $\overline{C S}=0, R D Y=0$) the data on the $1 / O$ bus is the data contained in the addressed counter or latch. During a write cycle $(\overline{\mathrm{RD}}=1, \overline{W R}=0, \overline{C S}=0$, RDY $=0)$ the data on the I/O bus is latched into the addressed counter or latch. At the start of each read or write cycle the RDY signal goes low and will remain low until the clock has placed valid data on the bus or until it has completed latching data in on a write. The chip select line is used to enable or disable the device outputs. When the chip is selected the device will drive the $1 / O$ bus for a read or use the 1/O bus: as an input for a write. The 1/0 bus will not be affected when the chip is deselected. The outputs driving the bus will go to the TRI-STATE or high impedance state. The chip will not respond to any inputs when deselected. Refer to Figures 2 and 3 for read and write cycle timing.

The clock's time base is a 32,768 crystal controlled oscillator. Externally, the crystal, the input tuning capacitor, and the output load capacitor are required. Included internally are a high gain inverter, an RC delay, and the bias resistor. To tune the oscillator a constant read can be done on one of the higher frequency coursters. For example, a constant read of the thousandths of seconds counter will place an average 500 Hz signal on the D4 bus line. The period varies slightly due to disable of latches during counter roll.

FIGURE 1. Interrupt Register Format

Read Cycle Timing Characteristics $T_{A}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{D D}=4.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$

	PARAMETER	MIN	TYP	MAX	UNITS
${ }^{\text {taR }}$	Address Bus Valid to Read Strobe	100			ns
tCSR	Chip Select ON to Read Strobe	0			ns
trRy	Read Strobe to Ready Strobe I			150	ns
LRYD	Ready Strobe to Data Valid			800	ns
LAD	Address Bus Valid to Cata Valid			1050	ns
tRH	Data Hold Time from Trailing Edge of Read Strobe	0			ns
ใHZ	Trailing Edge of Aoad Strobe to TRI.STATE Mode			250	ns
try	Read Hold Time.After Ready Strobe	0			ns
LRA	Address Bus Hold Time from Trailing Edge of Read Strobe	50			ns

Data bus londing is 100 pF
Ready output loeding is 50 pF
Input and output $A C$ riming levere ara:
Logical " 1 " = 2.0V
Lopical " 0 " $=0.8 \mathrm{~V}$
Write Cycle Timing Characteristics $T_{A}=-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=4 . \mathrm{oV}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$

PARAMETER			MIN	TYP	MAX		UNITS
LTW	Address Valid to Write Strobe	,	100		+		$n s$
cesw	Chip Select ON to Write Strabe		0				ns
LT	Data Valid Bafora Write Strabe		100				ns
WRY	Write Strobe to Ready Strobe		,	-	150	,	ns
IRY	Ready Strobe Width				800		ns
tRYH	Write Hold Time After Ready Strobe		0		-	-	ns
two	Data Hold Time After Write Strobe		110	,		.	ns
WWA	Address Hold Time After Write Strobe		50		.		ns

Data bus loeding is 100 pF
Reedy output toming is 50 pF
Input and output $A C$ timing levele are:
Logicon "1" = 2.0V
Logical 'tr' $=0.8 \mathrm{~V}$

Switching Time Waveforms

FIGURE 2. Read Cycie Waveforms

Switching Time Waveforms (Continued)

FIGURE 3. Write Cycle Waveforms

Typical Application

FIGURE 4. Standby Interrupt is Enabled (ON) for Normal Oparation and Disabled for Standby Operation

 MOTOPOLA

MICROPROCESSOR WITH CLOCK AND OPTIONAL RAM

The MC6802 is a monotithic 8 -bit microproceesor that contans atl the registers and accumulators of the present MCür X, pius an internal clock oscillator and driver on the same chip. In addition. ine MC6302 has 128 bytes of on-board AAM located at hex adoresses $\$ 0000$ to 5007F The first 32 bytes of RAM, at hex addresses $\$ 0000$ i0 5001 F , may be retamed in a low power mode by utlizing VCC standby, thus, taciltating memory retention during a power-down situation,
The MC6802 is completely sotiware compartible with the MC6800 as weil as the entire M6890 lamily of parts. Hence. the MC6802 is expandable to 64 K words.
The MC6802NS is identical to the MC6802 without standby RAM feature. The MC6808 is identical to the MC6802 without on-board RAM

- On-Chip Clock Circuir
- 128×8 Bit On-Chip RAM
- 32 Bytes of RAM are Rerarnable
- Software-Comparible with ine MC6800
- Expandable to 64K Words
- Standard TTL-Compauble inpurs and Ouipurs
- 8-Bil Word Size
- 16-Bir Memory Addressing
- Interrupt Cadability

PART NUMEEA OESIGNATION BY SPEED		
MC6802	MC6808	MC6802NS
$(1.0 \mathrm{MHz})$	$110 \mathrm{MHz})$	$(1.0 \mathrm{MHz})$
MCE8AO2	MC68A08	
$(1.5 \mathrm{MHz})$	$115 \mathrm{MHz})$	
MC68802	MC68808	
$(2.0 \mathrm{MHz})$	$(2.0 \mathrm{MHz})$	

This Dlock diagram shows a typical cost effective microcompules The MPU is the center of the murocoputer system and is shown in a minimum system interlacing with a AOM combination chip. It is not intended inat ithis sysiem be limited to this function bu: that il be expandable with other parts in the M6800 Mrerocompuler lamily

6802•MC6808•MC6802NS

OPERATING TEMPERATURE RANGE

Device	Spoed	Symbol	Vatue	Unin
MC6802P.L MC6802CP,CL	$\begin{aligned} & 11.0 \mathrm{MHz} \\ & 11.0 \mathrm{MHz} \\ & \hline \end{aligned}$	${ }^{1}$ A	$\begin{gathered} 010+70 \\ -4010+85 \\ \hline \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { MC6BAO2P,L } \\ & \text { MC68A02CP,CL } \end{aligned}$	$\begin{aligned} & \text { (1.5 } \mathrm{MHzl} \\ & 11.5 \mathrm{MHzl} \end{aligned}$	$\mathrm{T}_{\text {A }}$	$\begin{gathered} 010+70 \\ -4010+25 \end{gathered}$	${ }^{\circ} \mathrm{C}$
$\begin{aligned} & \text { MC68B02P.L } \\ & \text { MC68B02CP.CL } \end{aligned}$	(2.0 MHz) 12.0 MHz	$P_{\text {A }}$	$\begin{array}{r} 010+70 \\ -4010+85 \\ \hline \end{array}$	${ }^{\circ} \mathrm{C}$
MC8802NSP.L	$11.0 \mathrm{MHz1}$	$\mathrm{T}_{\text {A }}$	010-70	${ }^{\circ} \mathrm{C}$
MC6ACBP.L MCISACBP, L M. C.fegcep it	\qquad	TA	0 to - 70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS IVCC $=50 \vee \Delta C=5 \%, V_{S S}=0 . T_{A}=01070^{\circ} \mathrm{C}$. uniéss otherwise notedi

Chamecterisic		5 umbal	Min	Tro	Max	Unin
indut High Voltag*	Logic. EXTAL. ${ }^{\text {FESET }}$	$V_{\text {IH }}$	$\begin{aligned} & V_{S S}+2.0 \\ & v_{S S}+4.0 \end{aligned}$	-	Ycc	\checkmark
indut Low Vatage	LOgre. EXTAL. RESET	Y/L.	$v_{\text {S }}$	-	$\mathrm{V}_{55}+0{ }^{\text {2 }}$	v
input Leakage Current $\mathrm{V}_{\text {in }}=0105.25 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=$ maxl	Logic	+r	-	10	2.5	M ${ }^{\text {a }}$
$\begin{aligned} & \text { Output High Vollage } \\ & \text { "Load }=-205 \mu \mathrm{~A}, ~ V C C=\text { mint } \\ & \text { "Load }=-145 \mu \mathrm{~A}, V C C=\mathrm{mmi} \\ & \text { "Load }=-100 \mu \mathrm{~A}, V C C=\text { mint } \end{aligned}$	0007 8A	VOH	$\begin{aligned} & V_{S S}+2.4 \\ & V_{S S}+2.4 \\ & V_{S S}+2.4 \end{aligned}$	-	-	v
Output Low Vontage (LInAS $=16 \mathrm{~mA} . V C C=$ mun)		VOL	-	-	VSS +0.4	V
internal Powel Dissipation ineasureo al ${ }^{\top} A=0^{\circ} \mathrm{C}$)		PINT	-	0.600	1.0	W
VCC Standdy	Power Down Power Up	$\begin{aligned} & \hline v_{58 B} \\ & v_{5 B} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.75 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 5.25 \\ & 5.25 \\ & \hline \end{aligned}$	\checkmark
Stanaby Current		1588		-	80	nA
$\begin{aligned} & \text { Capacitance } \\ & { }^{V_{\text {In }}}=0 . T_{A}=25^{\circ} \mathrm{C}, 1=10 \mathrm{MHz} \end{aligned}$	Logis inpuits. EXTAL	$C_{\text {In }}$		$\begin{array}{r} 10 \\ 65 \\ \hline \end{array}$	$\begin{gathered} 125 \\ 10 \\ \hline \end{gathered}$	of
	AO-AIS, R/W. VMA	Coul			12	of

"In poweric.imm mooe, maximum power dissipsimen is leas inan 42 mW

- Cupaerances ale periodically sampled rather inan 100\% lested

CONTROL TIMING IVCC $=50 \mathrm{~V}+5 \%, Y_{S S}=0, T_{A}=T_{f} 10 T_{H}$. uniess otherwise notedi

Onaractivatica	Symbol	$\begin{array}{\|c\|} \hline \text { MCEsozNSS } \\ \text { MC6eos } \\ \hline \end{array}$		$\begin{aligned} & \hline \text { MCEBAMS } \\ & \text { Mrgeap } \\ & \hline \end{aligned}$				Unik
		Min	Max	Mis.	Max	Min	Mex	
Frequency of Opersion	10	0.1	10	0.1	1.5	0.1	2.0	Mit 2
Crrstal Freavancy	'XTAL	1.0	4.0	1.0	6.0	10	8.0	M ML
Exiernal Oscillator Frequency	$4^{\text {rio }}$	0.4	4.0	04	6.0	0.4	8.0	M ${ }^{\text {Mz }}$
Crysial Oscillator Siart Ud Tume	tre	100	-	100	-	100	-	ms
Processor Controls IHALT, MA, RE, RESET. HU NMMI Prociessor Control Serup Tme Processor Controt Rise and Fail Time IDoes Nol ADDIy to RESETI	IPCS IPCI. TPCI	200	${ }_{100}$	140 -	${ }_{100}$	110 .-	-	ns

MC6802•MC6808•MC6802NS

WAIT state by the occurrence of a maskable (mask bit $1=0$) or nonmaskable interrupt. This output is capable of driving one standard TTL load and 30 pF

interrupt request (inal)

A low level on this input requests that an interrupt sequence be generated within the machine. The processor will wait until it completes the current instruction that is being excuted before is recognizes the request. At that time, if the interrupt mask bit in the condition code register is not ser. the machine will begin an interrupt sequence. The index isgister, program counter, accumulators, and condition code register are stored away on the stack. Next the MPU wif respond to the imterrupt request by setting the interrupt mask bit high so that no further internuots may occur. At the end of the cycle, a 16-bit vectonng address which is located in memory locations SFFF8 and SFFF9 is loaded whuch causes the MPU io branch to an interrupt routine in memory.

The HALT line must be'in the high state for intertuots to be serviced. Interrupts will be latehed internaily while HALT is low.

A nominal $3 \mathrm{k} \Omega$ pullup resistor to VCC should be used for wire-OR and optimusn control of interfupts. $\overline{\mathrm{RO}}$ may be tied directly to $V_{C C}$ if not used.

RESET

This input is used to reset and stant the MPU from a power-down condition, resulting from a power failure or an initial start-up of the processor. When this line is low, the MPU is inactive and the information in the registers will be lost. If a high levet is detected on the input, this will signal the MPU to begin the restart sequence. This will start execu-
tion of a routine to intialize the processor from its reset condition. All the higher order address lines will be forced high For the restan, the last two (SFFFE, SFFFF) locations in memory will be used to load the program that is addressed by the program counter. During the restart routine, the interrupt mask bit is set and must be reset belore the MPU can be interrupted by $\overline{\mathrm{RO}}$. Power-uo and reset uming and power. down sequences are shown in figures 9 and 10 , respectively.

RESET, when brought low; must be held low at least three clock cycles. This allows adeouste time to respond internally to the reset. This is independent of the tre power-up teset that is required.
When $\overline{\text { BESET }}$ is released it must go through the low-rohigh threshold without bouncing, oscillating, or otherwise causing an erroneous reset tless-than three clock cycles). This may cause improper MPU operation until the next valid reser.

NON-MASKABLE INTERRUPT (NMI).

A low-going edge on this ingut requests that a nonmaskable interrupr sequence be generated withun the processor. As with the interrupt request signal, the processor will complete the current instruction that is being executed before it recognizes the $\overline{\mathrm{NM}}$ signal. The interrupt mask but in the condition code register nas no effect on NMI.

The index register, program counter, accumulators, and condition code registers are stored away on the siack. At the end of the cyele, a 16 -bit vectoring address which is located in memory locations SFFFC and SFFFD is loaded causing the MPU to branch to an interrupt senvice routine in mernory.
A nominal 3 kQ pullup resistor to VCC should be used for wire-OR and optimum conerol of interrupis. NMI may be ted

FIGURE 9 - POWER-UP AND RESET TIMING

NOTE: If option I is chosen, $\overline{\text { EESET }}$ and $A E$ pins can be ved logether.

MC6802•MC6808•MC6802NS

AAM ENABLE (RE - MCE802 + MC6802NS ONLY)

A.TTL-compatible RAM enable input controis the on-chip RAM of the MC6802. When placed in the high state, the onchip memory is enabled to respond to the MPU controls. In the low state, RAM is disabled. This pin may also be utlized to disable reading and whting the on-chip RAM during a power-down situatuon. RAM Enable must be low three Gycies belore $V_{C C}$ goes below $4.75 \vee$ during power-down. KAM enable must be lied low on the MC6808. RE should be tied to the correct high or low state if not used.

EXTAL AND XTAL

These inputs are used for the internal oscillator that may be erystal controlled. These connections are for a parallet resonant fundamental crystal (see Figure 12). (AT-cut.) A divide-by-four curcuit has been added so a 4 MHz crystal may be used in lieu of a 1 MHz crystal for a more cost-effective sysiem. An exampie of the crystal ercuit layout is shown in Figure 13. Pin 39 may be driven externally by a TTL input signal four times the required Eclock frequency. Pin 38 is to be grounded.

An AC network is not directly usable as a !requency source on pins 38 and 39. An RC network type TTL or CMOS oscillator will work well as long as the TTL or CMOS output drives the on-chip oscillator.

LC networks are not recommended to be used in place of the erystal.

If an external clock is used, it may not be halied for more than tpWめL. The MC6802, MC6808 and A1C6802NS are aynamic pars excep: for the internal RAM, mid require the Exiernal clock to retain information.

MEMORY FEADY (MA)
MR is a TTL-compatuble input signal controlling the stretching of E. Use of MR requires synchronization with the $4 \times I_{0}$ signal, as shown in Figure 14. When MR is high, E will te in normal operation. When MR is low, E will be stretched integral numbers of hatf periods, thus allowing interface to slow memories. Memory Ready timing is shown in Figure 15.
MR should be thed high iconnected directly to Vcel il not used. This is necessery to ensure proper operation of the pant. A maximum strexch is leye.

ENABLE ((

This pin supplies the clock for the MPU and the rest of the system. This is a single-phase, TTL-compatible clock. This clock may be conditioned by a memory read signal. This is oquivalent to $\$ 2$ on the MC6B00. This output is capable of driving one standard TTL loed and 130 pF .

VEC STANDBY (MCEOO2 ONLY)

This pin supplies the de voltage to the first 32 bytes of RAM as well as the RAM Enable (RE) control logic. Thus, retention of dara in this portion of the RAM on a power-up, power-down, or standby condition is guarenteed. Meximum current drain at VSE maximum is ISEE. For the MC6802NS this pin must be connected to VCC.

APPENDIX III

SYSTEM SOFTWARE ASSEMBLED LISTING AND FLOWCHARTS

00001
00002
00003 00004 00005 00006 00007 00008 00009 00010 00011 00012 00013 00014 00015 00016 00017 00016 00017 00020 00021 00022 00023 00024 00025 00026 00027 00023 00029 $000: 30$
; JAY PFEIFER, THESIS FRDUECT
; THIS IS THE SOFTWARE FGR CONTRULLING THE GFEED SCHOOL
;GLOCKS. TIMES FROM A REAL-TIME CLOCK, WWV, AND THE
; SOHODL CLOUKS ARE GONTINLIOUSLY COMFARED AND PULSES TO
; THE GCHDOL CLOLIKS ARE GENERATED AT THE PROPER INSTANTS.

; TABLE OF MEMORY LUCATIUNS
; ** *
; $00 \mathrm{H}-7 F H$ - RANDOM ACCESS MEMORY (RAM)
$; \mathrm{OOH}$ - LIEEN TO CHECK FOR FIRST FOWER-UP
; $01 \mathrm{H}, 02 \mathrm{H}-24$ HR SIHOOL CLOCK TIME ($02 \mathrm{H}=\mathrm{HR}$ - $01 \mathrm{H}=\mathrm{MIN}$)
; $0: \mathrm{EH}, \mathrm{O} 4 \mathrm{H}$ - 24 HF REAL-TIME CLOCK TIME ($04 \mathrm{H}=\mathrm{HRS}, ~ O 3 H=M I N$)
; $05 \mathrm{H}, 06 \mathrm{H}$ - 24 HR WWV TIME ($06 \mathrm{H}=\mathrm{HRS}, 05 \mathrm{H}=\mathrm{MIN}$)
; OTH, OBH - PREVIQUS 24 HR WWV TIME + 1 MIN (OSH=HRS, O7H=MIN)
; $09 \mathrm{H}, \mathrm{OAH}$ - SECOND FREVIOLS 24 HR WWV TIME + 2 MIN (OAH=HRE; OGH=MIN)
; OBH, OLH - TEMPORARY 24 HR WWV, RTC, OR SCHOOL CLOCK LEIEATION
; (OCH=HFS, OBH=MIN)
; ODH, OEH - 12 HR GCHOIDL CLOEK TIME (OEH=HRS, ODH=MIN)
; $1 \mathrm{SH}, 14 \mathrm{H}$ - TEMFORAFY 12 HF WWV, FTC, OR SCHOOL ELOCK LOCATION
; ($14 \mathrm{H}=\mathrm{HR} 5,13 \mathrm{H}=\mathrm{MIN}$)
;15H - NUMBER DF MINUTES DIFFERENCE IN HEX
; 16 H - NUMEER OF HOURS DIFFERENCE IN BC:II
; 7FH - INITIAL STACKE FOINTER LOCATION ANL LAST ADDRESS OF RAM
; $1000 \mathrm{H}-17 F F H$ - READI ONLY MEMORY (ROM)
$; 2000 \mathrm{H}-2016 \mathrm{H}$ - REAL-TIME ELOCK
; $3000 \mathrm{H}-3001 \mathrm{H}$ - WWV TIME (FRDM DEC:ODER)
; 4000H-4003H - PERIFHEFAL INTERFACE AIIAFTER (FIA)
; 5OOOH - ENE MINUTE SWITLH
$; 6000 \mathrm{H}$ - EST, DST SWITCH
; 7000H - FIFTY MINUTE SWITCH

00165						
0016		; THIS ROUTINE GALCLILATES THE NUMEER OF MINLITES THAT THE				
00167		; SCHOLL	CLO		ADVANCED	IN ORDER TO CATCH LIP WITH
00163		;EITHER WWV OR THE REAL-TIME CLOCK.				
00169						
00170	10035	MINC:AL	CLR	B		; CLEAR COUNTER.
00171	10049600		LLA	A	OLH	: SCHOLL CLOCK MINLIES.
00172	10069113	ZERMIN	CMP	A	13 H	; SEE IF WWV OR RTC MINUTES
00173	100: 2710		BEE		FINISH	; ARE The same as echool cloock minutes.
00174	10CA BBOI		ADD	A	\#O1H	; InCREMENT SChOOL TIME 1 MInUTE.
00175	100019		DAA			; BCD FESULT.
00176	1000 50		INC	B		; INCREMENT COUNTER.
00177	10CE 8160		E:MF	A	\#6OH	; HOUR ROLLOVER?
00178	10002702		BEQ		EUHOUR	; IF Yes, MAKE AD, IUSTMENTS.
00179	100220 Fz		ERA		ZERMIN	; IF SAME, KEEP IIETERMINING DIFFERENCE.
00180	$10 \square 4$ 960E	EOHOUR	LIA	A	OEH	; GET SCHOOL CLK HOURS.
00181	10 DG 8801		ADL	A	\#01H	; INCREMENT HOLIRS.
00182	100619		LIA			; BCII FESULT.
00133	10 LF 8112		CMP	A	\#12H	; HOURS $=12$?
00184	1008 2705		BEQ		ZERHR	; IF YES, MAKE HOURS $=00$.
00185	10LD 970E		ETA	A	OEH	; IF NGT, STORE RESULT.
00186	10 LF 4 F		CLR	A		; SET MIN = 00.
00187	10EO ZOE4		ERA		ZEFMIN	;KEEP DETERMINING MIN DIFFERENCE.
00188	10E2 4F	ZERHR	CLR	A		; $\mathrm{HRS}=00$.
00189	10E3 970E		STA	A	OEH	; STORE HRS= 00.
00190	10ES 2ODF		ERA		ZERMIN	;KEEF DETERMINING MIN DIFFERENCE.
00191	$10 E 7$ [715	FINISH	STA	E	15 H	;GTORE MIN IIfFERENCE.
00192	105939		RTS			; GIO BACK.

00198 1OEA 960 B
00199 10EC SBO1
00200 1OEE 17
00201 1OEF 8160
00202 10F1 270 E
00203 10F3 970 B
0020410 F 539
0020510 FG 4 F
0020610 F 7970 E
00207 10F9 9600
00203 10FB 3EO1
00208 10FD 19
00210 1OFE 3124
0021111002703
0021211029700
00213110437
0021411054 F
0021511069700
00216110839
00217
00218
00219
00220
00221
00222
00223
00224
00225
 ; THIS ROLITINE ADDS ONE MINUTE TO A 24 HOLIR FORMAT BCD TIME, ;TAKING INTO ACCOUNT MINUTES ROLLOVER, HOURS FOLLOVER, AND ; TENS OF HOURS FOLLOVER. EX; 23:59 + 00:01 $=00: 00$

ADIMIN LDA A OBH :MINUTES TO BE INCREMENTED.

 ; THIS ROUTINE SENDS THE NUMBER OF FULSES NEEDED TO SYNCHRONIZE ;THE SCHOOL CLOCKS TO EITHER WWV OR THE REAL-TIME CLOCK. ; IF THE NLMEER IF PLLSES IS >682 (11 HRS WORTH), THEN IT WILL ; JUST WAIT FOR THE SCHOOL CLOCKS TO CATCH UP. IF THE SCHOOL ; LLOCK MINUTES ARE $=59$, A SWITCH AT 5000 H IS GPENED ANI ; CLOSED 10 TIMES TO SYNDHRONIZE ALL CLOCKS. IF THE SCHOOL ;CLOCK MINUTES ARE $=00-49$, A SWITCH AT 7000H IS CLOSED.

00226	1109	9616		Fulseer	LIA	A	16 H	; NUMBER OF HOURS DIFFERENCE.
00227	110 B	2727			BEO		FLSMIN	:SKIF HRS PULSES IF $=0$.
00228	110 D	8111			CMP	A	\#11H	; IF HRS DIFF= 11,
0022%	110 F	2742			BEQ		WAIT	; THEN WAIT.
00280	1111	C63E		FLSHRS	LLA	E	\#6.2	; \# Fulses to be sent.
00231	1113	36		FLSÜld	Fr SH	A	1	; SAVE
00232	1114	37			FSH	E		; DATA.
00233	1115	B75000			STA	A	5000 H	; SEND OUT A PULSE.
00234	1115	EL1190	\rangle		J8R		SHTWAI	; WAIT FOR . OS SEC.
00235	1118	ELI 176	$>$		JER		FIFMIN	:SEE IF SCHOIOL CLOCK
00236								;TIME $=50-58$ MINUTES.
00237	111E	BU10AD	>		JSR		UPDATE	; IJPLATE DISFLAY.
00238	1121	BL1080	>		USR		SECDLY	; WAIT TWO
00239	1124	ED1060	\%		UFR		SECILY	; SECONDS.
00240	1127	EL1185	\geqslant		ISR		CATUF	; TIME TO CORFECT CLOCKS?
00241	112A	33			FUL	B		; RECOVER
00242	112 B	32			PUL	A		; DATA.
00243	1120	5 A			IEC	B		;ONE LESS PULSE TO SENI.
00244	112 D	26E4			BNE		FLSGUT	; ALL 62 FULSES SENT ?
00245	112 F	EB99			ADIA	A	\#9\%H	: SUETRACT 1 FROM HOURS.
00246	1131	19			LIAA			; BCD RESULT.
00247	1132	26DI			ENE		FLSHRS	; HGURS CAUGHT UP ?
00248	1134	9615		FLSMIN	LLA	A	15H	; MINUTES DIFFERENCE.
00249	1136	2730			BEO		ALSENT	; MINUTES TO BE SENT $=0$?
00250	1.156	36		MINAGN	FSH	A		; SAVE IATA.
00251	11:39	B75000			STA	A	5000 H	; SEND A PULSE.
00252	1130	BL119L	>		ISR		EHTWAI	; WAIT FOR . 05 SEC.
00253	113 F	BD1176	2		JSR		FIFMIN	;SEE IF SCHOOL CLOCK
00254								;TIME $=$ 50-53 MINUTES.
00255	1142	BCl10AL	>		USR		UF'LATE	; UFIIATE DISFLAY.
00256	1145	ED10s0	3		JSR		SECILY	; WAIT TWO
00257	1143	ELIOEO	\rangle		ISR		SECILY	; SECONLS.
00258	114B	EL1185	>		ISR		catur	; TIME TO CORFECT CLOCKS?
0025%	114 E	32			FUL	A		; RECOVER DATA.
00260	11.4 F	4A			LIEC	A		; ONE LESS FULSE TO SEND.
00261	1150	26E6			ENE		MINAİN	; ALL PULSES SENT?
00262	1152	39			RTE			; GO BACK.

00263	1153	8630		WAIT	LIA	A	\#60	; WAIT FOR
00264	1155	9015			sub	A	15H	; (60-MINFUL) MIN.
00265	1157	C6.30:		ANMIN PAUSE	LDA	B	\#60	;COUNTER, $60 \mathrm{SEC=} 1 \mathrm{MIN}$.
00266	115\%	36			PSH	A		; SAVE
00267	115A	37			PSH	B		; DATA.
00263	115 B	ED1060	3		dSR		SECDLY	; WAIT A SECOND.
00269	115E	33			FUL	E		; RECOVER
00270	115 F	32			PUL	A		; DATA.
00271	1160	5 A			LEC	E		; ONE LESS SECOND TO WAIT.
00272	1161	26Fb			ENE		PAUSE	; WAITED A MINUTE?
00273	1163	4A			DEC	A		; ONE LESS MINUTE TO WAIT.
00274	1164	26.F1			ENE		ANMIN	; WAITED APFROPRIATE \# IF MINUTES?
00275	1166	2000			BRA		FULSNT	;GO BACK.
00276	116 E	9601		ALSENT	LDA	A	01H	;GET SCHOOL CLOCK MINUTES.
00277	116 A	B74000			STA	A	4000 H	; DISPLAY MINUTES.
00278	116 D	9602			LDA	A	O2H	; GET SCHOLL CLOCK HOURE.
00279	116 F	B74002			STA	A	4002	; DISPLAY HOURS.
00280	1172	EL1080	2		USR		EECDLY	; WAIT A SECOND.
00281	1175	39		FULSNT	RTS			; GO BACK.
00282								
00283				; THis rouitine determines if it is necessary to close a shitieh				
00284				; BEFORE A FULSE IS SENT TO THE SCHOOL CLOCKS. THE SWITCH WILL				
00285				; BE CL	SED	1	UTES TO	47 MINUTES.
00286								
00237	1176	9601		FIFMIN	LDA	A	01H	: SCHOOL CLOCK MINUTES.
00288	1178	E15\%			C.MF	A	\#59H	; $17 \mathrm{MIN}=59$,
00289	117A	2705			EEQ		CLOSSW	; THEN CLOSE THE SWITCH.
00290	1170	6B51			ADD	A	\#51H	; SEE IF SCHODL CLOCK
00291	117E	19			DAA			;MINUTES ARE $=49$-58.
00292	117F	2503			BCS		QED	; IF THEY ARE, NO NOT CLOSE EWITCH.
00293	1181	B77000		CLOSSW	STA	A	7000 H	; CLOSE SWITCH.
002\%4	1184	39		QED	RTS			; GO BACK.

00321					
00.22		；THIS IS THE INTERRUPT FROGRAM．			AN INTERRUPT IS GENERATED IF
00325		；EITHEP	F THE FEEAL－TIME	CLGEKK MIN	NUTES ROLL GVER IF THE WWV IEECIDER
00324		；HAS A	NEW FFiAME THAT	HAS JUST	BEEN DECODED．THIS PFIMIRAM
00325		；LETEFM	MINES WHICH DEVI	CE GENEFRA	TED THE INTEFRLIFT AND TAKES THE
00326		；AFFROIP	PRIATE ACTIUN FO	Fi EAL：H CA	SE．IF THE FEAL－TIME CLILE
00327		；GENERA	ATEI THE INTERRI	IPT，THEN	THE SCHDOL CLCIEKS ARE SIMFLY
00328		；ALVANL	CED EYY ONE MINUT	E．IF，ON	IN THE OTHER HAND，THE WWV IEECODER
00329		；GENERA	ATED THE INTERRL	FT，THEN	THE DIFFERENEE EETWEEN WWV AND
00330		；THE SC	CHOUL CLOCKS IS	COMFIITEI	AND THE ECHOCIL CLOCKS AFE
00331		；UFPIATE	ED \AGSUMING THE	WWV TIME	IS［IETERMINED TO BE VALID］．
00332				＊＊＊＊\＃\＃が米	
00333	11 A 4 EE 2010	INTRPT	LIA A	2010 H	；CHECK FTTC：INTEFIFILFT
00334	11 A 7 SSOS		BIT A	\＃OBH	；STATLIS REGISTEF：．
00335	11 A 9270 A		BER	WWVINT	；IF BIT 3 IS NOT EET，
00366					；WWV GENEFAATED THE INTERFUPT．
00337	$11 \mathrm{AB} \mathrm{4F}$		ELF A		；PREFARE TI
00358	11 AC 9716		STA A	16 H	；EEND ONE
0033%	$11 \mathrm{AE} \mathrm{4C}$		INE A		；FULEE TG
00340	11 AF 9715		ETA A	15 H	；SCHOUL CLOCFS．
00341	1181 ED1109	2	ISR	FULSER	；SENLI ONE FULSE TO ELIICKS．
00342	11 E 4 BE		FTI		；GO EACK TG MONITGR FRIOGRAM．
00543	1185 LEO1	WWVINT	LDX	O1H	；COINVERT SEHOUL
00344	1187 LFOB		STX	OEH	；CLOLK TO
00345	1189 BLIOE7	\geqslant	IER	HFiS12	； 12 HOUF FOFIMAT
00346	118E DE13		LDX	13 H	；AND STORE
00347	118E LFOL		STX	OLH	；AT OLH．
00343	$1100 \mathrm{FE:3000}$		LIIX	3000 H	；WWV TIME．
$00: 349$	110 DFOB		ETX	OBH	；FREF＇ARE TO ALIL 1 MINUTE．
00350	110：LFOS		5 TX	OSH	；WWV TIME LIICATIONE．
00351	11079007		CFX	07 H	：2 SUICOESSFUL DECOLES
00552	11892647		ENE	NOGOOL	；IN A ROW ？
0035	11E日 9009		CF＇X	O\％H	： 3 ELIOESEFILL LECLIES
00354	11C［ 2643		BNE	NOLIOLI	；IN A FiOW ？

00355	11 FF	EridoEA	3		JSR		ADDMIN	; IF YES, ADL 2 MINUTES
00356	1152	ELIIOEA	$>$		AER		ALIDMIN	; TG WWV TIME.
00357	1105	D 60 C			LDA	B	OCH	; WWV HOURS (24).
00358	1107	B66000			LIA	A	6000 H	;EST, DET EWITCH.
00359	11 DA	8405			AND	A	\#O5H	; MAEK ALL BUT DO, D2.
00560	115C	3E66			find	A		FORM
00361	11 DE	43			Com	A		TENS
00362	11磭	3801			AIII	A	\#O1H	; COMPLEMENT.
00363	11E1	19			DAA			; BCD REELLLT.
00364	11 E 2	1B			ABA			; WWV HOURS - (4 OR 5).
00365	11 ES	19			LAA			; BCD FESULT.
00366	11 E 4	2503			BCE		WVTIME	; IF FOS RESILLT, FROUEED AS NORMAL.
00367	11E6	6B24			ALII	A	\#24H	; ALI 24 TO GET A FOSITIVE: ${ }^{\text {a }}$.
00363	11 ES	19			DAA			; BCL RESULT.
00369	1159	9700		WVTIME	ETA	A	OCH	;24 HOUR WWV LOCAL TIME.
00370	11 EB	BL1087	\rangle		JER		HRS12	; CONVERT TO 12 HR FIRMAT.
00371	11 EE	EL1003	3		ISR		MINCAL	; CAlculate min fulsees.
$00: 372$	11F1	EL1097	3		IER		HRSCAL	; Calculate hfs fulses.
00373	11F4	c6.3A			LIA	E	\#SE	
00374	1176	BL1080	\rangle	SECAGN	USR		secdiy	DELAY OF
00375	11F9	5 A			DEC:	B		ES SECONLS.
00376	11FA	$26 F A$			ENE		secagn	
00377	11 FC	BLil 109	>		JER		FULSER	;SENL OLT AFPROFRIATE \# GF Fulses.
00378	11 FF	B72015			STA	A	2015 H	; RESET RTTC SECONLS.
00379	1202	DEO1			LIIX		01H	©FIT SCHOOL CLOCK
00350	1204	FF2003			STX		2003H	;TIME IN RTE,
00581	1207	[1FOS			STX		O3H	; RTE IN RAM.
00382	1209	E602			LIA	A	\#02H	; FUT 2 SECONLS INTO REAL-TIME CLOUSK TO
00683	120 B	B72002			ETA	A	2002H	; ACCOUNT FOR THE SECONDE LOST IN FULSER.
00384	120E	$\mathrm{E} \in 2010$			LIA	A	2010 H	; MAKE SURE INTERRLIFT ETATUS
00385								; REGISTER IS CLEAREL.
00386	1211	3 B			Fiti			; gig back to main frogram.

00587	1212	DE07		NOGOOD	LDX	07H	; ADD 1 MIN TO
00368	1214	DFOB			STX	. OBH	; SECONL MOST RECENT
00389	1216	billoea	3		USR	ADDMIN	; WWV TIME ANI
00390	1219	DEOB			LIIX	OBH	:STORE AT THIRD
00391	121 B	[FO9			STX	O9H	;MOST RECENT LOCATION.
00392	121D	DE05			LIX	05H	; ADD 1 MIN TO
00393	121F	DFOB			ETX	OEH	; MOST RECENT WWV
00394	1221	BLIOEA	\rangle		JSR	ADDMIN	; TIME AND STORE AT
00395	1224	DEOB			LIIX	OBH	; SECOND MOST
00396	1226	DFO7			STX	07H	; RECENT LDC:ATION.
00397	122 s	CESOL14			LnX	\#12500	; WAIT LINTIL WWV
00396	122 B	09		WWVDLY	LEX		; INTERRLIPT FULSE
00399	1220	$26 F D$			ENE	WWVDLY	; IS OVER.
00400	122E	3 B			RTI		; GO back to main frogitam.
00401					END		;END OF CODE

M6800 ASM V3.3 Srmbol Table				
\%WWVO (default) Section (122F)				
ADDMIN - $10 E A$	ADYNC -- 118 C	ALSENT - 1168	ANMIN -- 1157	ANOTHR - 118E
BADRD -- 1052	CATUP -- 1185	CLOSSW - 1181	ENDHR -- 10 F6	EOHOUR - 1004
FIFMIN - 1176	FINISH - $10 E 7$	OTTH12-1090	HRS12 -- 1087	HRSCAL - 1097
HRSDIF - 10AA	INTRPT - 11 A4	LOOP1 -- 1083	MIDNT -- 1105	MINAGN - 1138
MINCAL - 10C3	MONITR - 107 C	NOGOOD - 1212	PAUSE -- 1159	PLSHRS - 1111
PLSMIN - 1134	PLsout - 1113	PULSER - 1109	PULSNT - 1175	QED ---- 1184
REDUCE - 11 AO	RESET -- 1044	SECAON - 11F6	SECDLY - 1080	SHTWAI - 119 D
UPDATE - 10AD	WAIT --- 1153	WUTIME - 11E9	WWVDLY - 122B	WWVINT - 1185
ZERHR -- $10 E 2$	ZERMIN - 1006			

401 Source Lines 401 Assembled Lines 14077 Brtes available
$3>$ No assemblr errors detected 《<<

Pulser Routine

Pulser Routine - Cont.

Pulser Routine - Cont.

Pulser Routine - Cont.

Interrupt Routine

Hours Difference Routine

24 Hr . Format Time to 12 Hr . Format Time Routine

Add One Minute to a 24 Hr . Format Time Routine

Update Display Routine

APPENDIX IV

BOARD LAYOUTS AND PIN DIAGRAMS OF NEW MASTER CLOCK AND WWV DECODER

$$
\begin{array}{ll}
R 1-10 K & R 7-3.3 K \\
R 2-1 K & R 8-3.3 K \\
R 3-3.3 K & R 9-10 K \\
R 4-200 K & R 10-4.7 K \\
R 5-154 K & R 11-1 M \\
R 6-390 K & R 12-1 M \\
& R 13-1 M \\
C 1-20 p F & C 5-.1 \mu F \\
C 2-9-35 p F \text { var. } & C 6-.46 \mu F \\
C 3-20 p F & C 7-.01 \mu F \\
C 4-20 p F & C 8-500 \mu F \\
& \\
D 1-1 N 914(S i) & D 6-1 N 914 \\
D 2-1 N 34 A(G e) & \\
D 3-1 N 34 A & \\
D 4-1 N 914 & \\
D 5-1 N 34 \mathrm{~A} & \\
Q 1-2 N 2222 & \\
Q 2-2 N 2222 & \\
X 1-32.768 \mathrm{KHz} & \\
X 2-2.000 \mathrm{MHz} &
\end{array}
$$

Pin Diagram - Master Clock

FOR ADDITIONAL COMPONENT VALUES, see figure 12.

APPENDIX V

WWV RECEIVER AND POWER SUPPLY SCHEMATICS

SCHEMATIC DIAGRAM

note (i) all resistance values are indicated in "O+M" (K-103 ohm)
(2) ALL CAPACITANCE VALUES ARE indicated in " $\mu \mathrm{F}^{\circ}\left(\mathrm{P} \cdot 10^{6} \mathrm{\mu F}\right)$

Radio Shack WWV Receiver Cat. No. 12-159A

Source : Owner's Manual

Power Supply Schematic

APPENDIX VI

MASTER CLOCK, WWV DECODER, AND POWER SUPPLY ITEMIZED COSTS

TABLE II

MASTER CLOCK PRICE LIST

UNIT PRICE
AMOUNT

TABLE III

WWV DECODER PRICE LIST

QUANTITY	DESCRIPTION	UNIT PRICE	AMOUNT
3	74121 TTL IC	\$. 39	\$ 1.17
3	74 LSI 64 TTL IC	\$. 45	\$ 1.35
2	74LS74 TTL IC	\$. 45	\$. 90
1	$74 \mathrm{LSL23}$ TTL IC	\$1. 25	\$ 1.25
1	7420 TTL IC	\$. 25	\$. 25
1	74LS90 TTL IC	\$. 69	\$. 69
1	74LS04 TTL IC	\$. 29	\$. 29
1	74LS00 TTL IC	\$. 19	\$. 19
1	LM741 Op Amp	\$. 35	\$. 35
2.	LM1458 Op Amp	\$. 59	\$ 1.08
1	LM339 Comparator	\$. 69	\$. 69
1	Project Box	\$2.99	\$ 2.99
2	16 Pin Socket	\$. 30	\$. 60
15	14 Pin Socket	\$. 27	\$ 4.05
	Miscellaneous		\$ 5.00
		TOTAL	\$20.85

TABLE IV

POWER SUPPLY PRICE LIST

QUANTITY	DESCRIPTION	UNIT PRICE	AMOUNT
1	Transformer	\$ 6.29	\$ 6.29
2	1000 $\mu \mathrm{F}$ Capacitor	\$ 1.59	\$ 3.18
1	$2200 \mu \mathrm{~F}$ Capacitor	\$ 2.49	\$ 2.49
1	Switch	\$ 1.89	\$ 1.89
1	Rectifier	\$ 1.59	\$ 1.59
1	LM323 Regulator	\$ 5.95	\$ 5.95
1	7912 Regulator	\$ 1.59	\$ 1.59
1	7812 Regulator	\$ 1.59	\$ 1.59
1	Neon Lamp	\$. 99	\$. 99
1	Battery Holder	\$. 89	\$. 89
1	Fuse Holder	\$. 89	\$. 89
5	Binding Post	\$. 40	\$ 2.00
1	Project Box	\$10.95	\$10.95
	Miscellaneous		\$ 8.00
		TOTAL	\$48.29

APPENDIX VII

TROUBLESHOOTING GUIDE

Master Clock

There are no adjustments required on the master clock and, theoretically, it should never require servicing. If something should go wrong, the most likely cause is a "glitch" that has caused the microprocessor in the master clock to get "lost". As a first step, the system should be turned off and the first power-up procedure (see APPENDIX I) should be followed. If the problem persists, a component in the master clock is probably defective (assuming the power supply voltages are correct) and will have to be replaced. Using the materials provided in the APPENDICES of this thesis and the master clock description in the main text, a good technician should be able to isolate the problem.

WWV Decoder

The real-time clock inside the master clock will lose about four seconds per day if it is not updated with WWV time information. At this rate, it would take about two weeks for the school clocks to lose one minute. Ordinarily, the real-time clock will be updated with WWV time information at least once a day. This means that if the school clock time differs from WWV time by more than one minute, something associated with the decoder.is either malfunctioning or incorrectly adjusted.

To see if the WWV decoder is interrupting the microprocessor in the master clock, pin 7 on the DIP jumper from the decoder to the master clock should be probed with a logic probe. At one second after the beginning of the
minute, a 0.1 second high pulse should appear on pin 7 . If this is not the case over a period of several minutes, the decoder is not transferring any information to the master clock. The most likely reason for this is an incorrectly adjusted "gain control" knob on the decoder (see APPENDIX I), a detuned receiver, or an inadequate signal from WWV due to unfavorable atmospheric conditions. If a clear, non-fading signal is heard at the speaker (remember that the volume control on the receiver can be turned without affecting the decoder) and the "gain control" knob is properly adjusted, but no interrupt occurs, then something in the decoder is either incorrectly adjusted or defective. As with the master clock, the APPENDIX materials and the description of decoder operation in the main text should allow a good technician to isolate the problem.

VITA

John E. Pfeifer, Jr., was born on May 29, 1959, in Louisville, Kentucky to John E., Sr., and Mary Margaret Pfeifer. He graduated from Saint Xavier High School in May 1977, and entered the University of Louisville in the fall of 1977. He received the Bachelor of Science degree from the Speed Scientific School, University of Louisville, in December, 1980. He received the Master of Engineering degree with Specialization in Electrical Engineering, from the Speed Scientific School, University of Louisville, in May, 1983.

