
University of Louisville University of Louisville

ThinkIR: The University of Louisville's Institutional Repository ThinkIR: The University of Louisville's Institutional Repository

Electronic Theses and Dissertations

5-2021

Optimization with interval data: new problems, algorithms, and Optimization with interval data: new problems, algorithms, and

applications. applications.

Mohsen Mohammadi Dehcheshmeh
University of Louisville

Follow this and additional works at: https://ir.library.louisville.edu/etd

 Part of the Industrial Engineering Commons, Operational Research Commons, and the Other

Operations Research, Systems Engineering and Industrial Engineering Commons

Recommended Citation Recommended Citation
Mohammadi Dehcheshmeh, Mohsen, "Optimization with interval data: new problems, algorithms, and
applications." (2021). Electronic Theses and Dissertations. Paper 3645.
https://doi.org/10.18297/etd/3645

This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's
Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized
administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of
the author, who has retained all other copyrights. For more information, please contact thinkir@louisville.edu.

https://ir.library.louisville.edu/
https://ir.library.louisville.edu/etd
https://ir.library.louisville.edu/etd?utm_source=ir.library.louisville.edu%2Fetd%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/307?utm_source=ir.library.louisville.edu%2Fetd%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=ir.library.louisville.edu%2Fetd%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=ir.library.louisville.edu%2Fetd%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/310?utm_source=ir.library.louisville.edu%2Fetd%2F3645&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.18297/etd/3645
mailto:thinkir@louisville.edu

OPTIMIZATION WITH INTERVAL DATA: NEW

PROBLEMS, ALGORITHMS, AND APPLICATIONS

Mohsen Mohammadi
M.S., Industrial Engineering, Azad University, Iran, 2013
B.S., Industrial Engineering, Azad University, Iran, 2010

A Dissertation Submitted to the Faculty of
the J.B. Speed School of Engineering of the University of Louisville

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy in Industrial Engineering

Department of Industrial Engineering
University of Louisville

Louisville, Kentucky

May 2021

Copyright 2021, Mohsen Mohammadi

All rights reserved

OPTIMIZATION WITH INTERVAL DATA: NEW

PROBLEMS, ALGORITHMS, AND APPLICATIONS

Mohsen Mohammadi
M.S., Industrial Engineering, Azad University, Iran, 2013
B.S., Industrial Engineering, Azad University, Iran, 2010

A Dissertation submitted on

April 28, 2021

To the following Dissertation Committee

Dr. Monica Gentili, Committee Chair

Dr. Lihui Bai

Dr. Gail W. DePuy

Dr. John S. Usher

Dr. Csaba Biro

ii

ACKNOWLEDGMENTS

First and foremost, I wish to express my wholehearted gratitude to Dr. Monica Gen-

tili, my committee chair and advisor, who not only patiently guided me through every

step of my Ph.D. journey but also stood by me at moments of frustration and disap-

pointment. I feel so grateful that as I will pursue my career in academia, I will always

have a perfect example of a mentor, a scientist, and a wonderful person, to look up

to.

I would like to thank my committee members: Dr. Lihui Bai, Dr. Csaba Biro, Dr.

Gail W. DePuy, and Dr. John S. Usher, for examining my work and providing me

with insightful feedback. Special thanks go to Dr. Milan Hlad́ık from Charles Univer-

sity for his generous help throughout the study and for his research contributions. It

was my great honor to collaborate with and be taught by such a high-caliber scholar.

I also thank Dr. Raffaele Cerulli from the University of Salerno for his contribution

to the fourth chapter of my dissertation. For this, I am grateful. Finally, this research

would not have been possible without the financial support from the School of Inter-

disciplinary and Graduate Studies and the Department of Industrial Engineering at

the University of Louisville.

Getting a Ph.D. is a long and challenging journey. I have been extremely fortunate

to have a loving family to support me along the way. I am grateful for the love

and encouragement that my parents, Houshang and Hamdam, have always given me

through any endeavor I have undertaken. Finally, I also would like to thank my three

sisters for their support in this process.

iii

ABSTRACT

OPTIMIZATION WITH INTERVAL DATA: NEW PROBLEMS, ALGORITHMS,

AND APPLICATIONS

Mohsen Mohammadi

April 28, 2021

The parameters of real-world optimization problems are often uncertain due to the

failure of exact estimation of data entries. Throughout the years, several approaches

have been developed to cope with uncertainty in the input parameters of optimization

problems, such as robust optimization, stochastic optimization, fuzzy programming,

parametric programming, and interval optimization. Each of these approaches tack-

les the uncertainty in the input data with different assumptions on the source of

uncertainty and imposes different requirements on the returned solutions. In this dis-

sertation, the approach we take is that of interval optimization, and more specifically,

interval linear programming. The two main problems we consider in this context are,

considering all realizations of the interval data, the problems of finding the range of

the optimal values and determining the set of all possible optimal solutions. While the

theoretical aspects of these problems are well-studied, the algorithmic aspects and the

engineering implications have not been explored. In this dissertation, we partially fill

these voids. In the first part of the dissertation, we present and test three heuristics

to find bounds on the worst optimal value of the equality-constrained interval linear

program, which is known to be an intractable problem. In the second part of the dis-

sertation, motivated by a real-case problem in the healthcare context, we define and

analyze a new problem, the outcome range problem, in interval linear programming.

iv

The solution to the problem would help decision-makers quantify unintended/further

consequences of optimal decisions made under uncertainty. Basically, the problem

finds the range of an extra function of interest (different from the objective function)

over all possible optimal solutions of an interval linear program. We analyze the prob-

lem from the theoretical and algorithmic perspectives. We evaluate the performance

of our algorithms on simulated problem instances and on a real-world healthcare ap-

plication. In the third part of the dissertation, we extend our analysis of the outcome

range problem, exploring different theoretical properties and designing several new

solution algorithms. We also test our solution approaches on different datasets, high-

lighting the strengths and weaknesses of each approach. Finally, in the last part of the

dissertation, we discuss an application of interval optimization in the sensor location

problem in the traffic management context. Particularly, we propose an optimization

approach to handle the measurement errors in the full link flow observability problem.

We show the applicability of our approach on several real-world traffic networks.

v

TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 Background and contributions . 1

1.2 Structure of this dissertation . 3

2 BOUNDS ON THE WORST OPTIMAL VALUE IN INTERVAL

LINEAR PROGRAMMING 6

2.1 Introduction . 6

2.2 Problem description and existing results 7

2.3 Preliminaries . 9

2.4 Finding lower and upper bounds for z 11

2.4.1 Finding an upper bound . 11

2.4.2 Finding a lower bound . 14

2.5 Experimental results . 16

2.6 Conclusions . 19

3 THE OUTCOME RANGE PROBLEM IN INTERVAL LINEAR

PROGRAMMING 20

3.1 Introduction . 20

vi

3.2 Quantifying an outcome function under uncertainty: a motivating ex-

ample . 23

3.3 The outcome range problem . 28

3.3.1 Our focus . 31

3.4 Computational complexity of the outcome range problem (ORPb) . . 32

3.5 Properties of the outcome range problem (ORPb) 39

3.6 Solution methods . 43

3.6.1 Super-set based method . 43

3.6.2 Local search algorithm . 45

3.7 Experimentation . 49

3.7.1 Description of problem instances 49

3.7.2 Implementation of the algorithms 51

3.7.3 Analysis of the results . 52

3.8 Case study: Healthcare access measurement 55

3.8.1 Optimization model and outcome function 56

3.8.2 Case study . 58

3.8.3 Importance of quantifying sensitivity to data perturbations . . 59

3.8.4 Implementation of algorithms 60

3.8.5 Analysis of the results . 61

3.9 Conclusions . 66

4 HOW TO QUANTIFY OUTCOME FUNCTIONS OF INTERVAL-

VALUED LINEAR PROGRAMS 67

4.1 Introduction . 67

4.2 Problem definition . 70

vii

4.3 Computational complexity . 74

4.4 Properties of ORPb . 76

4.5 How does ORPb relate to other problems? 79

4.5.1 Optimal value range problem 79

4.5.2 Multiobjective optimization 81

4.5.3 Bilevel optimization . 83

4.5.4 Mixed integer LP formulation 84

4.6 Approximating ORPb . 85

4.6.1 Outer approximation: A reformulation-linearization technique 86

4.6.2 Inner approximation: A gradient-restoration based algorithm . 90

4.6.3 Inner approximation: A bases inspection approach 93

4.7 Computational experiments . 96

4.7.1 Test instances . 97

4.7.2 Implementation details . 99

4.7.3 Numerical results . 100

4.8 Concluding remarks . 104

5 FULL LINK FLOW OBSERVABILITY OF TRAFFIC NETWORKS

UNDER MEASUREMENT ERROR 109

5.1 Introduction . 109

5.2 Link flow inference . 113

5.3 Link flow inference under measurement error 117

5.4 Local search algorithm . 121

5.5 Experimental results . 124

5.5.1 Test networks and implementation 126

viii

5.5.2 Analysis of results . 128

5.6 Concluding remarks . 130

6 SUMMARY AND FUTURE DIRECTIONS 132

REFERENCES 136

A SUPPLEMENTS TO CHAPTER 5 156

CURRICULUM VITAE 158

ix

LIST OF TABLES

2.1 Summary of the computational complexity of the optimal value range

problem [58]. 9

2.2 Average running times (sec.) and average gaps from exact values ob-

tained from the three proposed approaches. 18

3.1 Shipping costs, supply and demand levels. 24

3.2 The CO2 emission associated with the arcs of the transportation network. 25

3.3 All the possible realizations of the uncertain demand with the corre-

sponding optimal solutions and values of f(x). 27

3.4 Different types of interval linear constraints [58] 29

3.5 Results related to the computation of f on class 1 instances (average

gap and average running time) . 52

3.6 Results related to the computation of f on class 2 instances. 54

3.7 Distribution of census tracts according to the minimum and maximum

access levels (for different access ranges). 65

4.1 Details of the problems chosen from the MIPLIB 2010 repository. . . 98

4.2 Results related to smaller size problem instances in test bed 1. An

asterisk (*) denotes an average on 29 problem instances. 106

4.3 Results related to larger size problem instances in test bed 1. 107

x

4.4 Comparing algorithms on test bed 2. An asterisk (*) denotes an average

on 29 problem instances. 107

4.5 Results obtained from test bed 3 (part I) 108

4.6 Results obtained from test bed 3 (part II). 108

5.1 Contributions in the literature addressing different configurations of

the full flow-observability problem. 111

5.2 (Example 5.1) True link flows . 116

5.3 A priori interval link flows. 120

5.4 The set of all observed and inferred link flows leading to weak observ-

ability of the network. 120

5.5 (Example 5.2)An initial tableau. 123

5.6 (Example 5.3)Interval link flows and true flows 126

5.7 Results related to gap and running times 129

5.8 Results related to the variability metrics 130

xi

LIST OF FIGURES

3.1 The optimal transportation plan for the problem (3.1-3.4) with input

data as described in Table 3.1. 25

3.2 (Example 3.1) Intersection of all feasible sets in dark gray; union in

light gray; set of all optimal solutions in black. 31

3.3 (Example 3.2) Union of all feasible sets in light gray; set of all optimal

solutions in bold. 38

3.4 (Example 3.3) Union of all feasible sets in light gray; the only optimal

solution is red circled. 42

3.5 Difference in the access measures considering four random realizations

of the input parameters. 60

3.6 Distribution of the census tracts for which the access range varies be-

tween 2 and 20 miles for the two approaches (i.e., Monte Carlo approach

and the local search algorithm). 62

3.7 Difference between the access ranges estimated by the Monte Carlo

approach and those estimated by the local search algorithm. 63

3.8 Minimum and maximum value of the access measures for each census

tract. 64

3.9 Range of the access measure for each census tract. 65

xii

3.10 Classification of the census tracts according to their minimum and

maximum access levels. 65

4.1 (Example 4.1) Union of all the feasible solutions in grey; optimal set

in bold. 73

4.2 (Example 4.2) The set of all the weak feasible solutions and the optimal

set are in grey and bold, respectively. 80

4.3 (Example 4.3) (a) the optimal set of (4.14) is in bold; (b) the set of

all the possibly efficient solutions of (4.15) is shown by a pattern. . . 82

4.4 An illustration of our proposed Algorithm 4.1. We borrowed the figure

from Example 4.1 (Ωb is in bold). 90

4.5 (Example 4.4) The decomposition of interval vector b according to the

basis stability regions of the optimal bases B1, B2, and B3. 95

5.1 A network example. 117

5.2 A network example. 124

xiii

CHAPTER 1

INTRODUCTION

1.1 Background and contributions

Undoubtedly, linear programming (LP) is known to be one of the most widely

used optimization tools to formulate and solve practical problems [88]. A linear pro-

gramming problem indeed is very simple to construct. In practice, however, it is not

always possible to estimate input parameters of a linear program accurately. This may

impair results of the problem and consequently inferences made upon them. The need

to consider uncertainty in input parameters of a linear program has been a subject of

interest since the very first work in this area by Dantzig in mid 1950s [35], where un-

certainty in input parameters were modeled by considering different scenarios occur-

ring with different probabilities. Since then, several approaches have been developed

to deal with data uncertainty in optimization problems, such as robust optimiza-

tion (see, e.g., [4, 6, 7, 10]), stochastic optimization (see textbooks [14, 70, 76, 108]),

fuzzy optimization (see [86, 71, 109] and references therein), parametric programming

[41, 42], and interval linear programming [58, 111, 113]. Each of the approaches bears

its own advantages and limitations. In general, techniques developed to address un-

certainty in optimization problems differ with respect to (i) the source of uncertainty,

and (ii) requirements on the returned solution. In this dissertation, we address the

1

uncertainty in the input parameters by the interval linear programming approach

which assumes that parameters can vary independently within given upper and lower

bounds without any further assumptions. In this sense, interval linear programming

(ILP) investigates overall properties of an interval-valued linear program considering

all the possible realizations of the interval data. Two main problems are subject of

study in interval linear programming:

• the optimal value range problem: Determining the range of all optimal values

of the objective function computed over all realizations of the interval data

[30, 57, 111, 97];

• the optimal solution set problem: Describing the set of all possible optimal so-

lutions resulting from all the scenarios of the interval input parameters [2, 44,

59, 61, 65].

The first problem can become computationally expensive depending on whether con-

straints are in the equality form or variables are unrestricted. The second problem is

in general more computationally demanding as the optimal solution set of an interval

linear program can be nonconvex or even disconnected. This dissertation contributes

to the analysis of the above mentioned problems, introduces a new problem in this

context, and also explores a new application of interval optimization as described

below:

• In general, there are very few studies developing approximation methods for

intractable cases in the optimal value range problem. We design several heuristic

algorithms to approximate one of the intractable cases of the problem, that is,

the worst optimal value of the equality-constrained interval linear program;

• Although basic properties related to the optimal solution set problem have been

addressed in the literature, different aspects and implications of the problem

2

have not been explored. In this dissertation, we partially fill this gap by defining

a novel problem, namely, the outcome range problem, which aims at assessing

further impacts of optimal decision making under uncertainty. Specifically, the

goal is to find lower and upper bounds on an additional linear function, modeled

to describe the further impacts, over the optimal solution set of an interval

linear program. We extensively investigate the problem both theoretically and

algorithmically, and show its real-world implications through a real case study

on healthcare access measurement;

• We explore a new application of interval optimization for the sensor location

problem in the context of traffic management. In particular, we address the full

link flow observability problem assuming errors in the monitored data (described

by real intervals). To the best of our knowledge, our work in this dissertation

would be among the first to explicitly address uncertainty in the monitored data

in flow observability problems for traffic networks.

1.2 Structure of this dissertation

Chapters 2-5 of this proposal are four academic papers. In particular, the second

and third chapters are published papers [93, 94], the fourth chapter is under revision

[95], and the last chapter is in preparation for submission to a journal. The chapters

are therefore self-contained, that is, each of them has its own abstract, introduction,

conclusions, and notations. Next, we give an overview of each chapter.

In Chapter 2, we consider the equality-constrained interval linear program for

which finding the worst optimal value is known to be NP-hard. We design three

heuristics to compute bounds on the worst optimal value. In particular, we present a

constructive greedy algorithm to determine a lower bound and two enclosure-based

approaches to find an upper bound. We evaluate the methods on a set of randomly

3

generated instances.

In Chapter 3, we formulate and study a new problem in the interval linear pro-

gramming literature, namely, the outcome range problem. The problem intends to

quantify further impacts of optimal decision making under uncertainty, which are

modeled by a linear function referred to as outcome function. Particularly, the out-

come range problem is the problem of finding the upper and lower bounds of a given

outcome function over the set of all possible optimal solutions of an interval linear

program. The problem often arises when decisions have differential impacts on differ-

ent communities and sub-populations such as decisions made by government agencies,

public health decision makers, policy makers, etc. In this chapter, we give a general

definition of the problem and focus on a specific case of it where interval uncertainty

only occurs in the right-hand side vector (we focused on inequality-constrained prob-

lems). For this specific case, we assess the computational complexity of the problem

and study some of its theoretical foundations. We then design two heuristics for the

problem, and we test them on two sets of randomly generated problem instances high-

lighting the performance of each algorithm. To show the relevance of our problem in

practice and the efficiency of our algorithms, we provide a healthcare application of

it.

In Chapter 4, we extend our works in Chapter 3 to look deeper into properties

of the outcome range problem. We narrow down our study on the case of interval

right-hand side vector for equality-constrained problems. We study the computational

complexity of the problem, and we also explore theoretical properties related to some

characteristics of the problem in the scenario space. Moreover, we formally discuss

the relationship between the outcome range problem and some other known similar

problems in the literature such as the optimal value range problem, multiobjective

optimization, and bilevel optimization. We develop three heuristics to estimate the

range of an outcome function. We test them on three different datasets and analyze

4

their quality and efficiency.

Chapter 5 considers the problem of locating the minimum number of sensors on

a subset of links of a traffic network to fully observe all link flows, namely, the full

link flow observability problem. A common assumption in this problem is that the

monitored data are error-free (i.e., no measurement error). In this chapter, we relax

this assumption and consider the measurement errors as given intervals. We then

present an optimization problem to cope with the variability in the solution caused

by measurement errors and design a local search algorithm to solve the problem.

Lastly, we test our method on five real traffic networks, showing the validity of our

approach.

5

CHAPTER 2

BOUNDS ON THE WORST OPTIMAL VALUE

IN INTERVAL LINEAR PROGRAMMING

2.1 Introduction

In real life, problems are subject to uncertainty due to inaccurate estimations or

unexpected changes. One of the basic tools to describe uncertainty in a linear pro-

gramming problem is interval linear programming (ILP), where we assume that there

are a-priori known intervals within which parameters of a linear program can vary.

Intervals are appropriate tools to represent uncertainty arising from, for example,

measurement errors, missing data, rounding errors, and statistical estimations. They

are very easy to establish as we only need to know two endpoints for each interval with-

out any other additional assumption. Interval linear programming has applications in

several areas, including portfolio selection problems [79], environmental management

[28, 84], interval matrix games [82, 85], and transportation [27, 75, 129].

Different topics have been addressed in this area (see [58] for a recent survey). One

of them is determining the optimal value range, that is, the problem of finding the

best and the worst optimal values among all the optimal values obtained over all data

perturbations. The optimal value range problem has been addressed in some papers

6

in the literature; most of them propose exact algorithms for the problem [30, 57, 73,

97, 111]. Few contributions focus on getting approximated values (i.e., bounds) for

some of the intractable cases of the problem [1, 62]. In this paper, we propose three

approaches to determine lower and upper bounds to one of the intractable cases of

the problem.

The paper is organized as follows. Next section gives a formal definition of the

problem and reviews the existing contributions in the literature addressing it. Our

proposed approaches are based on some existing theoretical results which are recalled

in Section 2.3. Section 2.4 contains the details of our approaches. Our experimental

results are shown in Section 2.5. Conclusions and further steps of the research are

discussed in Section 2.6.

2.2 Problem description and existing results

An interval linear matrix is defined as

A := [A,A] = {A ∈ Rm×n : A ≤ A ≤ A},

where A and A are given matrices. We define the mid-point (Ac) and the radius (A∆

) of an interval matrix as Ac := 1
2
(A+A), and A∆ := 1

2
(A−A). Interval vectors can

be defined analogously. Throughout we use bold symbols to show interval vectors and

matrices. We focus on the following interval linear programming problem

z(A,b, c) := min cTx subject to Ax = b, x ≥ 0. (2.1)

where x ∈ Rn is the decision vector, c is an interval n-dimensional vector, b is

an interval m-dimensional vector, and A is an interval matrix of the appropriate

dimensions. We refer to any triple (A, b, c), A ∈ A, b ∈ b, and c ∈ c, as a scenario.

7

With each scenario (A, b, c), we can associate a linear programming problem, namely

LP(A, b, c), whose optimal value is denoted by z(A, b, c):

z(A, b, c) = min cTx subject to Ax = b, x ≥ 0. (2.2)

Hence, an ILP problem is a family of linear programming problems associated with

all the possible scenarios. We denote by B an optimal basis of LP(A, b, c). Indeed,

B is the set of indices of basic variables, and index set N similarly stands of for

nonbasic variables. Subscript B on a matrix (vector) denotes its submatrix (subvector)

composed of columns (elements) indexed by B; subscript N is defined analogously.

The optimal value range problem consists of determining the minimum and max-

imum optimal values of (2.1) obtained over all possible realizations of the interval

data, that is, it consists of solving the two following problems

z := inf{z(A, b, c) : A ∈ A, b ∈ b, c ∈ c}, (2.3)

z := sup{z(A, b, c) : A ∈ A, b ∈ b, c ∈ c}, (2.4)

where z is said to be the best optimal value, and z is said to be the worst optimal

value. It is worth noting that the computational complexity of the two problems

varies depending on the structure of the underlying interval linear problem [58]. In

particular, when the underlying interval linear program has equality constraints and

nonnegative constraints on the variables, it is known that computing z is an easy

task, while determining z is NP-hard [111]. Table 2.1 shows an overview of the com-

putational complexity of the optimal value range problem for the three different types

of interval linear programming problems studied in the literature. Few contributions

focus on computing bounds for the intractable cases. Allahdadi and Golestane [1]

applied Monte Carlo simulation to get a lower bound for the worst optimal value

when the problem is of Type I. Hlad́ık [62] computed bounds on the best optimal

8

value when the problem is of Type II. In this paper, we propose three approaches to

determine lower and upper bounds to the worst optimal value of the problem when

the underlying interval linear program is of Type I. Note that the worst optimal value

can be either finite, infeasible or unbounded. In the real-world context, we are gener-

ally interested in problems admitting a finite optimal value. Thus, in our analysis, we

assume the underlying interval linear program always admits a finite worst optimal

value.

Table 2.1: Summary of the computational complexity of the optimal value range
problem [58].

Type I Type II Type III
Ax = b, x ≥ 0 Ax ≤ b Ax ≤ b, x ≥ 0

Best optimal value z Polynomial NP-hard Polynomial
Worst optimal value z NP-hard Polynomial Polynomial

2.3 Preliminaries

In this section, we recall some basic theorems and results which are used in our

solution approaches. One of the basic topics in interval computation is solving interval

systems of equations (inequalities). Consider the following interval system in a general

form

Ax
(≤)
= b (x ≥ 0),

where b is an interval m-dimensional vector, and A is an interval matrix of the appro-

priate dimensions. The solution set of a interval system of equations (inequalities) is

the set of all possible solutions resulting from all scenarios of the interval parameters,

that is,

{x ∈ Rn| ∃ A ∈ A, ∃ b ∈ b : Ax
(≤)
= b (x ≥ 0)}.

Theorems 2.1-2.3 characterize the solution set of the three main types of interval

system of linear equations/inequalities.

9

Theorem 2.1. (see [105]) The solution set of Ax = b is described by

|Acx− bc| ≤ A∆|x|+ b∆. (2.5)

Theorem 2.2. (see [112]) The solution set of Ax = b, x ≥ 0 is described by

Ax ≤ b, −Ax ≤ −b, x ≥ 0. (2.6)

Theorem 2.3. (see [53]) The solution set of Ax ≤ b is described by

Acx− A∆|x| ≤ b. (2.7)

Let us consider the i-th constraint of (2.1), i.e., aix = bi. Let us consider the two

extremal versions associated with it

∑
j

aijxj = bi,
∑
j

aijxj = bi.

We refer to a scenario where each constraint takes either of the above extremal versions

as an extremal scenario. Extremal scenarios are important for our analysis because

of the following theorem.

Theorem 2.4. (see [30, 112]) The worst optimal value of (2.1) occurs on one of the

extremal scenarios of the problem, that is,

z = inf{z(Ac − diag(p)A∆, bc + diag(p)b∆, c) : p ∈ {±1}m}

where diag(p) is a diagonal matrix with entries p1, . . . , pm.

Note that the number of extremal scenarios is 2m. Chinnek and Ramadan [30]

described an algorithm which explores all the 2m extremal scenarios to find the worst

10

optimal value.

2.4 Finding lower and upper bounds for z

In this section, we describe our proposed approaches to find an upper bound and

a lower bound for z, that is, finding two values zU and zL such that zL ≤ z ≤ zU .

2.4.1 Finding an upper bound

We describe two approaches to determine an upper bound. Our first approach

applies a procedure similar to the one used in [62] for an ILP problem with inequality

constraints (Type II). It determines an upper bound using a basis B which is feasible

for each scenario.

Definition 2.1. A basis B is strongly feasible for (2.1) if xB is such that xB = A−1
B b ≥

0, for all AB ∈ AB, b ∈ b.

Initially, we determine a basis B which is feasible for any scenario of a given ILP

problem. We can find such a basis by solving to optimality LP(A, b, c) for an arbitrary

scenario. We consider then the following interval system of equations

ABxB = b, xN = 0. (2.8)

To proceed further, system ABxB = b needs to be solvable for all AB ∈ AB, b ∈ b.

That is, matrix AB needs to be regular for each AB ∈ AB. If this condition holds, we

are interested in the following set

H = {xB ∈ R|B|| ABxB = b for some AB ∈ AB, b ∈ b}. (2.9)

The set (2.9) is described by (2.5) and it is difficult to determine exactly. However,

there exist several methods in the literature to find an interval enclosure of it, that

11

is, an interval vector containing it [112]. Let xB be such an interval enclosure. If the

lower bounds are non negative, that is (xB)j ≥ 0 for all j ∈ B (where (xB)j denotes

the lower endpoint of the j-th component of xB), then B is strongly feasible. As a

result, we can determine an upper bound by using the following proposition.

Proposition 1. If a basis B is strongly feasible for (2.1) , then the following gives

an upper bound on (2.4)

zU1 = max cTBxB subject to xB ∈ xB, xN = 0. (2.10)

Proof. Let x′B be a member of H for a given realization. Since B is strongly feasible,

we have

cTBx
′
B ≥ z(A, b, c) ∀A ∈ A, b ∈ b, c ∈ c,

where xN = 0. Thus, the following holds

z ≤ z′ = max cTBxB subject to xB ∈ H, xN = 0.

We know that H ⊆ xB. Therefore, we can conclude

z ≤ z′ ≤ zU1 .

Note that problem (2.10) can be easily solved by applying interval arithmetic,

that is,

zU1 = cTBx̂B,

where x̂B is such that (x̂B)j = (xB)j if (cTB)j ≥ 0, and (x̂B)j = (xB)j otherwise. In

other words, the j-th component of the vector x̂B is equal to the upper endpoint of

the j-th component of xB if the j-th component of cB is non-negative (i.e., (cTB)j ≥ 0),

12

while it is equal to the lower endpoint of the interval otherwise.

We apply this procedure using different initial starting bases and returning the

minimum among all the obtained bounds. In our experiments, described in section

2.5, we used the Hansen-Bliek-Rohn method [99] for finding xB, and we tried 10

different initial bases. Algorithm 2.1 reports the pseudo-code of our approach.

Algorithm 2.1: Upper bound zU1 on z

1 Input: A,b, c, stopping condition
Result: an upper bound of f

2 Set k ← 0.
3 while stopping condition is not met do
4 put k ← k + 1
5 choose a random scenario LP(A, b, c) and determine an optimal basis B
6 if matrix AB is regular then
7 find an interval enclosure xB of the solution set of (2.8)
8 else
9 go to line 5

10 end
11 if (xB)j ≥ 0 for all j ∈ B then

12 compute zU1
k by interval arithmetic

13 end

14 end

The second approach determines an upper bound for z by solving a linear opti-

mization problem on an enclosure of the set of all optimal solutions of our problem.

More in detail, let us consider the dual of (2.1), that is,

max bTy subject to ATy ≤ c. (2.11)

By extending the strong duality concept in linear programming, we have the following

interval system of linear inequalities

Ax = b, x ≥ 0, ATy ≤ c, cTx = bTy. (2.12)

There are dependencies between the interval coefficients in (2.12) (double occurrences

13

of A,b, c), and they are hard to deal with in general. By relaxing dependencies

between coefficients, we obtain a super set containing all the optimal solutions of

(2.1) and (2.11). By Theorems 2.1- 2.3, the solution set of (2.12) can be described by

the following system of inequalities:

Ax ≤ b, −Ax ≤ −b, x ≥ 0, ATc y − AT∆|y| ≤ c, |cTc x− bTc y| ≤ c∆x+ bT∆|y|. (2.13)

By applying the approach in [59], we can determine an interval enclosure of (2.13)

which contains then all the optimal solutions of our problem. Briefly, the algorithm

in [59] is an iterative refinement algorithm. It first linearizes system (2.13), then it

determines an enclosure of the solution set of the linearized system and contracts such

an enclosure at each iteration until improvement is insignificant. It runs in polynomial

time and it returns a sufficiently tight enclosure. The obtained enclosure, in fact, is

a set including all the optimal solutions of (2.1) and also solutions that are not

necessarily optimal to any scenario. Let x be such an enclosure. It is easy to show

that the following proposition holds:

Proposition 2. Let x be an enclosure of all the optimal solutions of (2.1), then an

upper bound to (2.4) can be obtained by

zU2 = max cTx subject to x ∈ x. (2.14)

Problem (2.14) can be solved by interval arithmetic, that is, taking the right

endpoints of cTx.

2.4.2 Finding a lower bound

We use a greedy approach to determine a lower bound to z. The greedy approach

is based on the fact that the scenario where the worst optimal value is achieved is an

14

extremal scenario (as stated in Theorem 2.4). The main idea of the algorithm is to

choose at each step, according to a greedy criterion, one of the extremal versions of

one of the equality constraints of the system, and to stop when an extremal scenario

is obtained. The bound is then computed by solving the linear program resulting from

the extremal versions of constraints. The greedy criterion, at each step, compares the

optimal values of two linear programs. Each program is associated with one of the

extremal versions of the equality constraint under consideration, and it is defined

such that its feasible set is obtained by considering: (i) an interval enclosure x of the

set of all optimal solutions of (2.1), (ii) the solution set F described by (2.6), and

(iii) one of the extremal versions associated with the constraint under consideration.

Let us assume, without loss of generality, that during the first step, the constraint

under consideration is the i-th constraint. We particularly consider the following linear

programs

z1
i = min cTx subject to

∑
j

aijxj = bi, x ∈ x ∩ F, (2.15)

z2
i = min cTx subject to

∑
j

aijxj = bi, x ∈ x ∩ F. (2.16)

Problems (2.15) and (2.16) are associated with the two extremal versions of the i-th

constraint. The greedy algorithm chooses the extremal version which is associated

with the problem with the highest optimal value. Let us assume that z2
i ≥ z1

i , so that

the chosen extremal version is
∑

j aijxj = bi. In the next step, the greedy algorithm

considers another constraint of (2.1), say the k-th constraint, and the two following

linear programs associated with each of its extremal versions

z1
k = min cTx subject to

∑
j

aijxj = bi,
∑
j

akjxj = bk, x ∈ x ∩ F, (2.17)

z2
k = min cTx subject to

∑
j

aijxj = bi,
∑
j

akjxj = bk, x ∈ x ∩ F. (2.18)

15

The algorithm will choose the extremal version of k-th constraint corresponding to

the highest value between z1
k and z2

k. The algorithm proceeds in this way, by adding

the set of extremal versions of the constraints examined so far to the two linear

programming problems to be considered at each step. It stops when an extremal

scenario is obtained, that is, when an extremal version for each of the constraints is

chosen. The returned lower bound zL is the highest value between the optimal values

of the two linear programs obtained by adding the last examined constraint. Note

that the algorithm assumes an ordered sequence of the constraints to be defined at

the beginning. Of course, with different sequences, the final value would be different.

Hence, we run the greedy algorithm with different initial sequences of the constraints

and consider the tightest bound among all. In our experiment, described in the next

section, we generated 10 initial different sequences. Our proposed approach for finding

a lower bound is described in Algorithm 2.2.

Algorithm 2.2: Lower bound zL on z

1 Input: A,b, c, stopping condition
Result: a lower bound of f

2 Set k ← 0.
3 while stopping condition is not met do
4 put k ← k + 1
5 for each i ∈ I do
6 solve the following problems:
7 z1

i = min cTx subject to x ∈ x ∩ F, x ∈ S,
∑

j aijxj = bi,

8 z2
i = min cTx subject to x ∈ x ∩ F, x ∈ S,

∑
j aijxj = bi.

9 add to S the extremal version of the i-th constraint corresponding to the
highest among the values {z1

i , z
2
i }

10 end
11 set zLk ← max{z1

m, z
2
m}

12 end

2.5 Experimental results

In this section, we present our computational experiments and related results. The

input data for the experiments were generated as follows. For a given problem size

16

(m,n) and uncertainty parameter (γ), we randomly generated entries of A in [−10, 10]

and values of a solution x∗ ∈ Rn in [1, 10], both using a uniform distribution. Vector

b was composed as b = Ax∗. To ensure boundedness of the feasible set, we kept the

coefficients of the last row of matrix A positive. Matrix A and vector b were computed

as A = A+γJ and b = b−γe, where J ∈ Rm×n is a matrix of ones and e = (1, . . . , 1)T

is a vector of ones with the proper dimension. Similarly, the entries of vector c were

randomly generated in [1, 10] using a uniform distribution and c = c+ γe.

The experiments were carried out on a workstation with an Intel(R) Xeon(R) CPU

E31270 processor at 3.4 GHz with 4.00 GB of RAM. All the methods were coded in

MATLAB(R2016b), using IBM ILOG CPLEX 12.6 for solving the linear programs

and INTLAB v10.2 for the interval arithmetic [116].

Results are shown in Table 2.2. Each number in the table is an average of the

results obtained on 20 instances. The first three columns describe the values of the

input parameters. The following two columns are related to the exact value of z,

which we computed by implementing the exhaustive search algorithm described in

[30]. The columns show the running time and the number of the linear programs to be

solved. The last six columns report results of our three proposed methods. We used

the Hansen-Bliek-Rohn method [99] for finding the enclosure (xB) and the algorithm

in [59] to determine x. For each method, the table shows the average running time

and the average gap from the optimum. The gap of the lower bound zL is computed

as |z−zL|/|z|, while the gap of an upper bound zU id computed as |zU−z|/|z|. When

the gap value is not displayed, it means the method failed to find an upper bound on

all the 20 instances because of either the singularity of the underlying matrix AB or

non-positivity of xB. We set the stopping condition in Algorithms 2.1 and 2.2 to 10

iterations, that is, the maximum number of times those algorithms start over.

The greedy algorithm returns a tight lower bound (with a maximum gap of 0.0799

with m = 15, n = 25 and γ = 1) for all the problem sizes and uncertainty parameters,

17

and in many cases, it returns the exact values. For low uncertainty (i.e., γ ≤ 0.1),

zU1 is a reasonable bound (with a maximum gap of 0.2223 with m = 3, n = 5 and

γ = 0.1); however, as either the size or the uncertainty of the instances increases,

it becomes very hard to find a basis which is feasible for each scenario. Although

calculating zU2 is always possible, its gap from the optimal value, even for small sizes

and low uncertainty, is significant. Finally, all the proposed methods perform well in

terms of running times (with an average of 0.1414 of a second for zL, 0.0408 of a

second for zU1 , and 0.7261 of a second for zU2) and in particular, for m ≥ 15, the

average running times of the methods are considerably shorter than those of the exact

approach.

Table 2.2: Average running times (sec.) and average gaps from exact values obtained
from the three proposed approaches.

input z zL zU1 zU2

m n γ time LPs gap time gap time gap time

3 5 0.01 0.0634 8 0 0.0193 0.0035 0.0514 0.0731 0.0539
3 5 0.1 0.0622 8 0 0.0112 0.2223 0.0353 0.4006 0.0477
3 5 0.5 0.0623 8 0 0.0110 0.3268 0.0329 1.3545 0.0495
3 5 1 0.0626 8 0.0018 0.0108 0.7505 0.0312 1.8633 0.0682
5 8 0.01 0.0751 32 0 0.0192 0.0084 0.0339 0.1575 0.0485
5 8 0.1 0.0751 32 0 0.0186 0.1282 0.0316 0.6440 0.0704
5 8 0.5 0.0745 32 0 0.0187 0.9750 0.0303 2.2585 0.1432
5 8 1 0.0753 32 0.0366 0.0196 - - 2.4909 0.1758
10 15 0.01 0.4415 1,024 0 0.0986 0.0204 0.0635 0.3248 0.1530
10 15 0.1 0.4431 1,024 0 0.0978 0.2189 0.0658 1.3740 0.2631
10 15 0.5 0.4421 1,024 0.0045 0.0965 - - 3.0030 0.9261
10 15 1 0.4448 1,024 0.0453 0.0964 - - 2.9160 0.0296
15 25 0.01 18.1444 32,768 0 0.2080 0.0557 0.0634 0.6161 0.4337
15 25 0.1 18.0605 32,768 0 0.2044 - - 2.6752 0.7554
15 25 0.5 18.1189 32,768 0.0203 0.2032 - - 4.9617 0.1125
15 25 1 18.1256 32,768 0.0799 0.2009 - - 4.3123 0.0541
18 50 0.01 821.5837 262,144 0 0.3805 0.0391 0.0671 1.1778 1.2925
18 50 0.1 822.4073 262,144 0 0.3740 - - 7.0895 2.0670
18 50 0.5 822.9145 262,144 0.0030 0.3669 - - 20.4363 7.4967
18 50 1 821.1614 262,144 0.0603 0.3726 - - 16.9554 0.2810

18

2.6 Conclusions

In this paper, we proposed three approaches to calculate bounds on the worst opti-

mal value of equality-constrained interval linear programming problems. We presented

a greedy algorithm to determine a lower bound and two enclosure-based approaches

to determine an upper bound. The methods were tested on a set of randomly gen-

erated instances. Our results show that the three approaches require relatively low

computational times comparing to the exact approach. The greedy algorithm returns

a tight bound for all the problem instances. One of the two approaches to find an

upper bound computes a good bound, however, it fails to return a solution when

uncertainty is high. On the other hand, our second approach to find an upper bound

returns a bound on every instance which, however, is not very tight. A possible direc-

tion of this research is investigating theoretical properties of the problem to design

an exact algorithm, based on a branch and bound strategy, embedding the proposed

methods to determine bounds.

19

CHAPTER 3

THE OUTCOME RANGE PROBLEM IN

INTERVAL LINEAR PROGRAMMING

3.1 Introduction

In real life problems, we are sometimes interested in evaluating additional func-

tions of interest over the results of an optimization problem, that is, we are interested

in evaluating functions of optimal decisions. Let us consider, for instance, an op-

timization problem developed to design a new transportation network. A possible

function of interest, in addition to a cost function which would be optimized, could

be an environmental cost function, useful to evaluate how an optimal transporta-

tion network impacts surrounding areas. As another example, decisions regarding the

optimal location of clinics in a given region, while they can improve public health

in a community, might in turn lead to undesirable consequences on a larger scale,

such as disparities in access to healthcare among different communities. We refer to

the additional functions of interest as outcome functions, which are used to evaluate

unintended consequences of optimal decision making.

Outcome functions do not have a direct role in the decision process. They are not,

in other words, the main objective function of an optimization problem, whereas they

20

might have a significant role in providing important information for future decisions or

actions. This is particularly relevant for government agencies, public health decision

makers, policy makers, city managers and other stakeholders who make decisions that

have differential impacts on different communities and sub-populations. For example,

Nobles et al. [103] and Gentili et al. [48, 49, 50] used outcome functions to evaluate

spatial access to pediatric and adult primary care. They developed an optimization

model for matching patients and providers, and defined two linear outcome functions

to quantify spatial access to healthcare services. In another study, Zheng et al. [136]

presented an application in telecommunication networks, where one is interested in

designing a network such that enough band-width is allocated between two nodes to

minimize the total demand lost. An outcome function of interest, in this context, is

the local performance of each node, defined as the volume of unmet requests from the

node.

Quantifying the impact of decisions using outcome functions becomes even more

relevant when decisions are made in an uncertain environment, which is the focus

of this paper. Uncertainty in optimization problems usually derives from uncertainty

in input parameters, occurring due to measurement errors, missing data, rounding

errors, statistical estimations, etc. Solutions to optimization problems can exhibit

considerable sensitivity to perturbations in the input parameters, thus often returning

a solution which is highly infeasible and/or suboptimal [10].

Throughout the years, several approaches to treat uncertainty in input data have

emerged such as robust optimization, stochastic optimization, parametric program-

ming, fuzzy programming, and interval optimization, depending on the source of

uncertainty and the requirements on the returned solution. In this paper, we adopt

the approach of interval linear programming (ILP) where we assume that input pa-

rameters can vary within a-priori known intervals. Several topics have been subject

of research in this area (see [58] for a comprehensive survey on the topics): (i) Oettli

21

and Prager [105] and Rohn [112] addressed the problem of characterizing the set of all

possible feasible solutions; (ii) Novotná et al. [104] studied the duality gap problem

in interval linear programming; (iii) the problem of describing the set of all possible

optimal solutions was studied by Allahdadi and Nehi [2] and later by Garajová and

Hlad́ık [44] and also its approximation was discussed by [59, 65, 74]; (iv) the problem

of determining a satisficing solution space was subject of study in [127, 137], and

also different approaches to get a robust satisficing solution space were discussed in

[28, 29]. A problem of particular interest, because of its relevance from an applica-

tion perspective, is that of finding the range of optimal values of an interval linear

program, known in the literature as the optimal value range problem. The exact for-

mulation and characterization of the problem was discussed in [30, 57, 97, 111], while

[62, 93] developed some approximation algorithms for the intractable cases. A differ-

ent approach to get a satisficing optimal value range was investigated by [69]. The

optimal value range problem has been applied in several application problems, such as

transportation problems with interval supply and demand [27, 36, 75], matrix games

with interval-valued payoffs [82, 85], and portfolio selection problems with interval

approximations of expected returns [78, 79].

In this context, our focus is on studying a problem close to the optimal value range

problem where we are interested in determining the range of an outcome function

(other than the objective function) associated with an interval linear program. To

this aim, we introduce the Outcome Range Problem which consists of determining the

minimum and the maximum values of a given (additional) linear function over the

set of all possible optimal solutions of an interval-valued linear program. We formally

define our problem, analyze its relation to and differences with the optimal value

range problem, and study a specific case where uncertainty occurs only in the right-

hand side of the underlying linear program. We show that solving the outcome range

problem to optimality is not an easy task; we then study some theoretical properties of

22

the problem and develop two solution approaches to approximate the optimal values.

We evaluate our solution techniques on a set of randomly generated instances, and

finally, to outline the relevance of our problem for reliable decision making, we present

a case study where we apply our approach to quantify spatial access to healthcare

services.

The remainder of the paper is structured as follows. We first present a motivating

example to motivate our problem in Section 3.2. We then introduce some basic nota-

tions, and formally define the outcome range problem in Section 3.3. We assess the

computational complexity of the problem in Section 3.4. In Section 3.5, we explore

theoretical properties of our problem. We describe our solution techniques in Section

3.6. In Section 3.7, we discuss results of our experimental study. Section 3.8 presents a

healthcare application of our problem. Finally, we summarize our findings in Section

3.9.

3.2 Quantifying an outcome function under uncertainty: a motivating

example

Let us consider the classical transportation problem [128] where the main goal is

to decide how to transfer goods from a set of m origins to a set of n destinations with

minimal cost such that the capacity at each origin is not exceeded, and the demand at

each destination is satisfied. The transportation problem can be formulated as follows

min
n∑
i=1

m∑
j=1

cijxij (3.1)

subject to
m∑
j=1

xij ≤ si, ∀i = 1, ..., n, (3.2)

n∑
i=1

xij ≥ dj, ∀j = 1, ...,m, (3.3)

xij ≥ 0, ∀i = 1, ..., n, j = 1, ...,m, (3.4)

23

where xij is a decision variable which determines the size of the shipment from origin

i to destination j, cij is the unit shipping cost from origin i to destination j, si

is the total supply of origin i, and dj is the total demand of destination j. The

objective function of the model minimizes the total transportation cost. The two sets

of constraints ensure that the resulting transportation plan respects the capacity at

each origin (Eq. (3.2)), and meets the demand of each destination (Eq. (3.3)). Let

us consider a specific instance of the problem where there are three origins and three

destinations (see Table 3.1 for shipping costs, supply and demand levels).

Table 3.1: Shipping costs, supply and demand levels.

to
supply (ton)

from destination 1 destination 2 destination 3

origin 1 $40 $21 $23 70
origin 2 $24 $43 $19 75
origin 3 $31 $35 $21 81

demand (ton) 85 64 71

The optimal shipping cost, considering the input data in Table 3.1, is $4,945 and

the optimal solution to the problem is shown in Figure 3.1, where the label on each arc

denotes the total quantity shipped on the arc. We can associate with the transporta-

tion problem an outcome function to evaluate, for example, the environmental impact

[106, 138] of the optimal transportation plan, as total pounds of CO2 emissions.

24

Figure 3.1: The optimal transportation plan for the problem (3.1-3.4) with input data
as described in Table 3.1.

The CO2 emissions depend on the amount of fuel consumed to transport the

products to destinations, and consequently vary with the travel distance and with the

amount of products. Let rij denote the total pounds of CO2 emitted in the atmosphere

per unit of the product shipped from origin i to destination j (the specific values of

these parameters for our example are reported in Table 3.2), and let f(x) =
∑

i,j rijxij

be an outcome function associated with a given transportation problem. The value

of this outcome function on the optimal transportation plan for our example is equal

to 3,940 lb.

Table 3.2: The CO2 emission associated with the arcs of the transportation network.

to

from destination 1 destination 2 destination 3

origin 1 30 lb 17 lb 18 lb
origin 2 19 lb 32 lb 14 lb
origin 3 22 lb 25 lb 17 lb

Now let us assume that the demands are not known with certainty, but rather

25

they vary in given intervals. Then the mathematical formulation reads

min
n∑
i=1

m∑
j=1

cijxij

subject to
m∑
j=1

xij ≤ si, ∀i = 1, ..., n,

n∑
i=1

xij ≥ [dj, dj], ∀j = 1, ...,m,

xij ≥ 0, ∀i = 1, ..., n, j = 1, ...,m,

where [dj, dj] is the range of values which can be assumed by the demand at destina-

tion j, for all j. The question we would like to address is: how does uncertainty in the

parameters affect the environmental cost? That is, how does the environmental cost

(the total CO2 emission) change when the parameters change? If we apply one of the

most commonly used approaches to address uncertainty in optimization models such

as, for example, robust optimization, we would only be able to evaluate the outcome

function on a single robust solution [123] or a number of solutions with some level of

protection against uncertainty in the data [10]. However, such an evaluation would

not answer our question of quantifying the variation of the outcome function in re-

sponse to uncertainty in the parameters. A much more useful information would be,

for example, the range of variation of the outcome function, that is, the best and worst

values of the outcome function over the set of all the optimal solutions corresponding

to all realizations of the uncertain data.

In our example, let us assume the demand level intervals are d1 ∈ [85, 87], d2 ∈

[64, 66], and d3 ∈ [71, 73]. For the sake of clarity in the exposition, let us also assume

that the demand at the destinations can only take integer values in the given intervals.

By applying a conservative robust approach, we would look for a shipment plan

which is feasible under all the possible data perturbations, and would then evaluate

26

Table 3.3: All the possible realizations of the uncertain demand with the corresponding
optimal solutions and values of f(x).

optimal solutions

data
realization

demand values x11 x12 x13 x21 x22 x23 x31 x32 x33 f(x)

1 {d1 = 85, d2 = 64, d3 = 71} 0 64 0 75 0 0 10 0 71 3,940 lb
2 {d1 = 85, d2 = 64, d3 = 72} 0 64 1 75 0 0 10 0 71 3,958 lb
3 {d1 = 85, d2 = 64, d3 = 73} 0 64 2 75 0 0 10 0 71 3,976 lb
4 {d1 = 85, d2 = 65, d3 = 71} 0 65 0 75 0 0 10 0 71 3,957 lb
5 {d1 = 85, d2 = 65, d3 = 72} 0 65 1 75 0 0 10 0 71 3,975lb
6 {d1 = 85, d2 = 65, d3 = 73} 0 65 2 75 0 0 10 0 71 3,993 lb
7 {d1 = 85, d2 = 66, d3 = 71} 0 66 0 75 0 0 10 0 71 3,974 lb
8 {d1 = 85, d2 = 66, d3 = 72} 0 66 1 75 0 0 10 0 71 3,992 lb
9 {d1 = 85, d2 = 66, d3 = 73} 0 66 2 75 0 0 10 0 71 4,010 lb
10 {d1 = 86, d2 = 64, d3 = 71} 0 64 1 75 0 0 11 0 70 3,963 lb
11 {d1 = 86, d2 = 64, d3 = 72} 0 64 2 75 0 0 11 0 70 3,981 lb
12 {d1 = 86, d2 = 64, d3 = 73} 0 64 3 75 0 0 11 0 70 3,999 lb
13 {d1 = 86, d2 = 65, d3 = 71} 0 65 1 75 0 0 11 0 70 3,980 lb
14 {d1 = 86, d2 = 65, d3 = 72} 0 65 2 75 0 0 11 0 70 3,998 lb
15 {d1 = 86, d2 = 65, d3 = 73} 0 65 3 75 0 0 11 0 70 4,016 lb
16 {d1 = 86, d2 = 66, d3 = 71} 0 66 1 75 0 0 11 0 70 3,997 lb
17 {d1 = 86, d2 = 66, d3 = 72} 0 66 2 75 0 0 11 0 70 4,015 lb
18 {d1 = 86, d2 = 66, d3 = 73} 0 66 3 75 0 0 11 0 70 4,033 lb
19 {d1 = 87, d2 = 64, d3 = 71} 0 64 2 75 0 0 12 0 69 3,986 lb
20 {d1 = 87, d2 = 64, d3 = 72} 0 64 3 75 0 0 12 0 69 4,004 lb
21 {d1 = 87, d2 = 64, d3 = 73} 0 64 4 75 0 0 12 0 69 4,022 lb
22 {d1 = 87, d2 = 65, d3 = 71} 0 65 2 75 0 0 12 0 69 4,003 lb
23 {d1 = 87, d2 = 65, d3 = 72} 0 65 3 75 0 0 12 0 69 4,021 lb
24 {d1 = 87, d2 = 65, d3 = 73} 0 65 4 75 0 0 12 0 69 4,039 lb
25 {d1 = 87, d2 = 66, d3 = 71} 0 66 2 75 0 0 12 0 69 4,020 lb
26 {d1 = 87, d2 = 66, d3 = 72} 0 66 3 75 0 0 12 0 69 4,038 lb
27 {d1 = 87, d2 = 66, d3 = 73} 0 66 4 75 0 0 12 0 69 4,056 lb

the outcome function on the returned robust solution. In this case for example, by

applying the worst case robust approach [40], we would choose to ship 87 units to

destination 1, 66 units to destination 2, and 73 units to destination 3 for a total cost

of $ 5,099, and with an environmental impact equal to 4,056 lb.

Let us list, for this simple example, all the realizations of the uncertain data. They

are shown in the first two columns of Table 3.3. For each realization of the data, we

solved the corresponding transportation problem, and evaluated the outcome function

on the corresponding optimal solution. Columns 3-11 in the table report the optimal

solutions, and the last column in the table reports the corresponding value of the

outcome function. In this simple example, the best value of the outcome function is

27

equal to 3,940 lb (corresponding to scenario 1) and the worst value is equal to 4,056

lb (corresponding to scenario 27). Hence, in this case, we can say that given all the

possible realizations of the interval data, the total CO2 emission of the transportation

plan would range between 3,940 lb and 4,056 lb. As can be seen from the results, the

optimal solutions are very sensitive to the demand perturbations. This makes the

problem of finding the best and the worst values of f(x) a nontrivial one.

In this simple example, given a linear program with interval parameters and a

linear outcome function, we determined the best and the worst values of the latter

over all the possible optimal solutions obtained from all the realizations of the interval

data. We refer to this problem as the outcome range problem. Its formal definition is

given in the next section.

3.3 The outcome range problem

Let us introduce some needed notation which is commonly used in the interval

linear programming literature [58, 113]. Given two matrices A,A ∈ Rm×n, we define

an interval matrix as the set

A = [A,A] := {A ∈ Rm×n : A ≤ A ≤ A},

where matrices A,A are called the lower and the upper bounds of A, respectively,

and comparing matrices is understood componentwise. The set of all m-by-n real

interval matrices is denoted by IRm×n. We define an interval vector analogously. For

the sake of simplicity, we write IRm instead of IRm×1 to denote the set of all real

interval vectors of order m. Throughout this paper, we use bold symbols for interval

vectors and matrices. Let us consider the following interval linear programming (ILP)

28

problem in the form of

min cTx subject to x ∈M(A,b), (3.5)

where we are given c ∈ IRn, b ∈ IRm, and A ∈ IRm×n. The set M(A,b) denotes

the feasible set described by linear constraints with the interval coefficient matrix

A and the interval right-hand side vector b. Interval linear programming has been

extensively studied with three main types of M(A,b), which are shown in Table

3.4. The type of constraints and restriction on variables in an interval linear program

can considerably impact its properties. Thus, each type of interval linear programs is

usually treated separately in the literature.1

Table 3.4: Different types of interval linear constraints [58]

type interval linear system

(I) M(A,b) = {x ∈ Rn; Ax = b, x ≥ 0}
(II) M(A,b) = {x ∈ Rn; Ax ≤ b}
(III) M(A,b) = {x ∈ Rn; Ax ≤ b, x ≥ 0}

We refer to any triple (A, b, c), where A ∈ A, b ∈ b, and c ∈ c, as a scenario. With

each scenario (A, b, c), we can associate a linear program, namely LP(A, b, c), whose

feasible set and optimal value are denoted byM(A, b) and z(A, b, c), respectively, i.e.,

z(A, b, c) := min cTx subject to x ∈M(A, b).

Hence, an interval linear program is a family of linear programs associated with all

A ∈ A, b ∈ b and c ∈ c. For a particular scenario (A, b, c), the corresponding

LP(A, b, c) can be infeasible, unbounded or admit a finite optimal value. We denote

by S(A, b, c) an optimal solution (or the set of all optimal solutions) of a linear

program LP(A, b, c), if any, admitting a finite optimal value. We denote by Ω the set

1References [30, 60] address the general form.

29

of all the optimal solutions of an interval linear program, referred to as the optimal

set, that is,

Ω :=
⋃

A∈A,b∈b,c∈c

S(A, b, c).

We are now ready to formally define our problem. Given the ILP (3.5) and an

additional linear function f : Rn → R, where f(x) = rTx with r ∈ Rn, the outcome

range problem consists in solving the two following optimization problems

f := min f(x) subject to x ∈ Ω,

f := max f(x) subject to x ∈ Ω.

We define the pair of optimal values {f, f} to be the optimal solution of the outcome

range problem.

Example 3.1. Consider the following two-dimensional linear program with interval

right-hand sides

min (2,−5)Tx subject to

1 −1

−1 −1

0 1

x ≤

[4, 7]

[−6, 8]

[4, 9]

 , x ≥ 0,

and consider the following outcome function

f(x) = 8x1 + 9x2.

Let us consider Figure 3.2 where the optimal solution {f, f} of the problem is shown.

In the figure, the intersection and the union of all the feasible sets of the linear pro-

grams associated with all the scenarios are shown in dark and light gray, respectively.

Specifically, the intersection of all the feasible sets is obtained by setting the right-

hand sides at their lower bound, while the union of all the feasible sets is obtained

30

by setting all the right-hand sides at their upper bound. The black area represents

the set Ω, that is, the set of all optimal solutions obtained from all the realizations of

the interval data. Both the minimum and the maximum values of f(x) occur at the

endpoints of the bold line and are shown in the figure. Their values are f = 36 and

f = 81, respectively. In particular, f is obtained on the point x1∗ = (0, 9) which is the

optimal point of several linear programs one of which is associated, for example, with

scenario bT = (4,−6, 9), while f is obtained on the point x2∗ = (0, 4) which is the

optimal point of a linear program associated, for example, with scenario bT = (7, 8, 4).

Figure 3.2: (Example 3.1) Intersection of all feasible sets in dark gray; union in light
gray; set of all optimal solutions in black.

3.3.1 Our focus

As can be observed from Example 3.1, the difficulty in solving the outcome range

problem relies on the fact that its feasible set, that is, the set Ω, is not explicitly

known; nor a convenient implicit description of it (e.g., polyhedral description) is

available in general [44, 59] (with some exceptions as outlined in Section 3.4). This is

true even if we consider a simplified version of the underlying ILP where we only deal

with interval right-hand sides. As we mentioned earlier, the three types of interval

linear programs are analyzed separately in the literature because the feasible region

and the optimal set might change when applying standard linear transformations. In

31

the discussion to follow, we will focus on solving the outcome range problem when

the underlying interval linear program is of Type III, that is, it contains inequality

and non-negativity constraints, and uncertainty occurs only in the right-hand side of

the program. Formally, we assume the following interval linear program:

[ILPb] min cTx subject to Ax ≤ b, x ≥ 0, (3.6)

where c ∈ Rn, b ∈ IRm, and A ∈ Rm×n are given. The linear program and an optimal

solution (or the set of all optimal solutions), if one exists, associated with a given

scenario b ∈ b are denoted by LP(b) and s(b), respectively. We also denote by z(b)

the optimal value corresponding to LP(b) (infinity and infeasiblity are also allowed).

We focus on solving the two following optimization problems

f = min f(x) subject to x ∈ Ωb, (3.7)

f = max f(x) subject to x ∈ Ωb, (3.8)

where Ωb is the optimal set of ILPb. In the rest of the paper, we will refer to this

special case of the outcome range problem as ORPb.

Remark 3.1. From an application perspective, solving ORPb is meaningful when

the set Ωb is not empty and bounded (see [43, 44] for conditions for emptiness and

boundedness of Ωb). In what follows, we will assume this is the case.

3.4 Computational complexity of the outcome range problem (ORPb)

We here address the computational complexity of ORPb. Some additional notation

is needed at this point. Let us recall the linear program associated with a given b ∈ b

min cTx subject to Ax ≤ b, x ≥ 0.

32

The standard form reads

min cTx+ 0Td subject to Ax+ Id = b, x ≥ 0, d ≥ 0, (3.9)

where d ∈ Rm is the vector of slack variables and I ∈ Rm×m is the identity matrix.

Let us define Ã := [A|I], c̃T := [cT |0T], and x̃T := [xT |dT]. We rewrite (3.9) as

min c̃T x̃ subject to Ãx̃ = b, x̃ ≥ 0. (3.10)

We similarly define r̃T := [rT |0T].

Definition 3.1. By a basis B we mean an index set B ⊆ {1, . . . , n+m} such that ÃB

is nonsingular, where a subscript B on a matrix (row vector) denotes the submatrix

(subvector) composed of columns indexed by B. That is, set B is the set of indices

associated with basic variables. Analogously, an index set N := {1, . . . , n + m} \ B

indicates indices for nonbasic variables and as a subscript it represents restriction to

nonbasic indices.

A basis B is an optimal basis of LP (3.10) if and only if it satisfies the following

conditions

Ã−1
B b ≥ 0, (3.11a)

c̃TN − c̃TBÃ−1
B ÃN ≥ 0T . (3.11b)

Now let us recall the assumptions under which the optimal set Ωb can be explicitly

defined.

Definition 3.2. An ILPb problem is said to be B-stable, if B is an optimal basis of

LP(b) for all b ∈ b. Furthermore, it is called unique B-stable if it is B-stable and the

optimal basis of LP(b) is unique for all b ∈ b.

33

B-stability is a very important property in interval linear programming because it

can simplify the description of the optimal set. In the case of unique B-stability of

ILPb, the optimal set (Ωb) can be described by a polyhedral set.

Lemma 3.1. [5] If (3.6) is unique B-stable with the optimal basis B, the optimal set

(Ωb) is described by the following linear system 2

ÃBx̃B ≤ b, −ÃBx̃B ≤ −b, x̃B ≥ 0, x̃N = 0.

Another relevant topic in interval linear programming is determining the optimal

value range, that is, the problem of finding the best and the worst optimal values

among all the optimal values obtained over all data perturbations. We define the

optimal value range of ILPb (3.6) as

z := inf {z(b) : b ∈ b}, (3.12)

z := sup {z(b) : b ∈ b}. (3.13)

Note that (3.12) and (3.13) can assume any value, including infinity and infeasibility.

The interval [z, z] then gives the optimal value range. By [30, 125], we know that for

ILPb (3.6) we have:

z = min cTx subject to Ax ≤ b, x ≥ 0, (3.14)

z = min cTx subject to Ax ≤ b, x ≥ 0. (3.15)

Now we analyze the computational complexity of the outcome range problem.

Specifically, Theorem 3.1 assesses the computational complexity of ORPb. Proposition

3 considers a special case of ORPb which is polynomially solvable. Finally, Proposition

4 and Corollary 3.1 investigate another polynomially solvable case by exploiting a

2We adopt Lemma 3.1 from the results discussed in [61] (see [61] for more details).

34

relation between ORPb and the optimal value range problem.

Theorem 3.1. Problem ORPb is NP-hard.

Proof. We proceed by a different interval-related problem which is known to be NP-

hard. Let us consider an ILP problem of Type I with a fixed coefficient matrix and a

fixed objective vector (i.e., fixed A and c), i.e.,

min cTx subject to Ax = b, x ≥ 0. (3.16)

Let Ξ be the optimal set of (3.16). By Theorem 7 in [44] (cf. p. 282), we know that

computing the exact interval hull of Ξ is NP-hard. Now let us reformulate problem

(3.16) as follows

min cTx subject to Ax ≤ b, −Ax ≤ −b, x ≥ 0. (3.17)

We know by Theorem 2 in [47] (cf. p. 606) that the optimal set of (3.17) is equal

to the optimal set of (3.16). For the sake of simplicity, let us introduce the following

notation

A′ :=

 A

−A

 , b′ :=

 b

−b

 .
We then can rewrite the problem (3.17) as an ILPb, that is,

min cTx subject to A′x ≤ b′, x ≥ 0.

Therefore, we can conclude that Ξ = Ωb. As a result, we can say that computing

the exact interval hull of Ωb is also NP-hard. Now if we consider f(x) = xi, for any

i ∈ {1, . . . , n}, we can conclude that ORPb is NP-hard.

35

Proposition 3. If ILPb is unique B-stable, then ORPb is polynomially solvable.

Proof. Let the basis B be the unique optimal basis for all the data realizations, then

based on Lemma 3.1, ORPb is equivalent to solving the two following linear programs

f = min r̃TBx̃B subject to ÃBx̃B ≤ b, −ÃBx̃B ≤ −b, x̃B ≥ 0, x̃N = 0, (3.18)

f = max r̃TBx̃B subject to ÃBx̃B ≤ b, −ÃBx̃B ≤ −b, x̃B ≥ 0, x̃N = 0. (3.19)

Let B be the set of all optimal bases of ILPb (if any). Let us consider a given

B ∈ B. We can associate with it, by (3.11b), a cone containing all the cost vectors

that are optimal for B, that is,

HB := {ψ ∈ Rm+n : ψTN − ψTBÃ−1
B ÃN ≥ 0T}.

We define C as the intersection of all the cones containing all the cost vectors for

which basis B remains optimal, that is,

C =
⋂
B∈B

HB.

The following proposition states another polynomially solvable case of ORPb by lever-

aging a relation with the optimal value range problem.

Proposition 4. Suppose that z and z are finite values. If r is such that r ∈ C, then

ORPb is polynomially solvable.

Proof. Let us recall that the optimal value range of ILPb is polynomially solvable,

36

that is,

[P1] : z = min cTx subject to Ax ≤ b, x ≥ 0,

[P2] : z = min cTx subject to Ax ≤ b, x ≥ 0,

and that ORPb consists in solving the following two optimization problems

[P3] : f = min rTx subject to x ∈ Ωb, [P4] : f = max rTx subject to x ∈ Ωb.

From the hypothesis, we know that z is a finite value. Let x∗ be an optimal solution

of P1, i.e., z = cTx∗. By definition, we know that x∗ ∈ Ωb. Since r ∈ C, we can write

rTx∗ = min rTx subject to Ax ≤ b, x ≥ 0.

Let us now consider a generic x̂ ∈ Ωb in P3, which is an optimal solution of the linear

program associated with a scenario b̂ ∈ b. Again, given r ∈ C, we have

rT x̂ = min rTx subject to Ax ≤ b̂, x ≥ 0.

Since b̂ ≤ b and Ax̂ ≤ b, we can say rT x̂ ≥ rTx∗. This is true for any vector x̂ ∈ Ωb,

and thus x∗ is also an optimal solution to P3. Therefore, we can compute f by

f = min rTx subject to Ax ≤ b, x ≥ 0,

which is polynomially solvable. We can use a similar argument for P2 and P4.

Now it is easy to see that the following special case of Proposition 4 holds.

Corollary 3.1. Suppose that f(x) = cTx. If z and z are finite values, then we have

[f, f] = [z, z].

37

Note that even if we assume that f(x) = cTx, the outcome range problem is not

equivalent to the optimal value range problem in general. Below, we illustrate this by

an example.

Example 3.2. Consider the following ILPb problem

min −4x2 subject to x1 + x2 ≤ [−1, 5], x1, x2 ≥ 0,

and let f(x) = −4x2 also be an outcome function. By (3.15), it is easy to see that

z is infeasible, and by applying (3.14) we get z = −20. Therefore, [−20,∞] gives

the optimal value range.3 However, from Figure 3.3, it is not hard to observe that

Figure 3.3: (Example 3.2) Union of all feasible sets in light gray; set of all optimal
solutions in bold.

f = −20 (scenario b = 5) and f = 0 (scenario b = 0). Hence, the outcome function

f(x) ranges in the interval [−20, 0], which is different from the optimal value range.

Corollary 3.1 and Example 3.2 indeed imply that the outcome range problem can

be seen as a generalized form of a special case of the optimal value range problem

[64].

3We denote infeasibility by the convention min ∅ =∞.

38

3.5 Properties of the outcome range problem (ORPb)

In this section, we study some theoretical properties of ORPb aimed at character-

izing the scenarios corresponding to the optimal values of (3.7) and (3.8). Throughout

this section we only report results related to the computation of f . All the results are

applicable to the computation of f as well. Let us introduce some definitions first.

Definition 3.3. A given scenario b ∈ b is referred to as

(i) a middle scenario if

bi < bi < bi, ∀i ∈ {1, . . . ,m}.

(ii) a weakly extremal scenario if

bi = bi ∨ bi = bi, for some i ∈ {1, . . . ,m}.

(iii) a strongly extremal scenario if

bi = bi ∨ bi = bi, ∀i ∈ {1, . . . ,m}.

Note that, according to the above definition, a strongly extremal scenario is also a

weakly extremal scenario, but the opposite does not hold true. From the geometrical

standpoint, given a hypercube b, a middle scenario is in the interior of the hypercube,

a weakly extremal scenario is on the boundary of the hypercube, and a strongly

extremal scenario is a vertex of the hypercube.

Definition 3.4. b∗ ∈ b is an optimal scenario of (3.7) if f = f(x∗), where x∗ ∈ s(b∗).

Definition 3.5. Given an optimal scenario b∗ for (3.7), an optimal basis B∗ of the

linear program LP(b∗) is a global optimal basis of (3.7).

39

Remark 3.2. Note that, given a global optimal basis B∗ of (3.7), the optimal value f

and the optimal scenario b∗ are the optimal value and an optimal solution, respectively,

of the following linear program

min r̃TB∗Ã
−1
B∗b subject to Ã−1

B∗b ≥ 0, b ∈ b,

in variables b.

The results to follow identify conditions to characterize the optimal scenario b∗

either as a middle or a weakly (strongly) extremal scenario.

Proposition 5. If (0, . . . , 0)T /∈ b, then there exists a weakly extremal scenario b̂

such that b∗ = b̂.

Proof. Let the basis B∗ be a global optimal basis of (3.7). By Remark 3.2, the optimal

scenario b∗ is an optimal solution of the following linear program

min r̃TB∗Ã
−1
B∗b subject to Ã−1

B∗b ≥ 0, b ∈ b. (3.20)

Let us refer to the feasible set of (3.20) as PB∗ . It is known that there exists an optimal

solution of (3.20) which is an extreme point of PB∗ .

We know that each vertex of PB∗ is a vector satisfying all the constraints such that

at least m of the constraints are binding and are linearly independent. We also know

that matrix Ã−1
B∗ is a full rank square matrix of order m. Note that since (0, . . . , 0)T /∈

b, then Ã−1
B∗b 6= 0 for each b ∈ b. Therefore, any extreme point of PB∗ corresponds

to a vector for which at least one of the constraints in b ∈ b is binding. We can then

conclude that there exists i ∈ {1, . . . ,m} such that b∗i = bi or b∗i = bi. This completes

the proof.

Note that b∗ can still be a weakly extremal scenario even in the case of (0, . . . , 0)T ∈ b,

40

but this requires the vector (0, . . . , 0)T not to be a middle scenario.

Corollary 3.2. Suppose that vector (0, . . . , 0)T is such that it is a weakly extremal

scenario of of the interval vector b. Then there exists a weakly extremal scenario b̂

such that b∗ = b̂.

Proposition 5 also reveals an interesting observation related to middle scenarios.

Corollary 3.3. If the optimal scenario b∗ is a unique middle scenario, then we have

b∗ = (0, . . . , 0)T .

Proof. Similar to the proof of Proposition 5, let the basis B∗ be a global optimal basis

of (3.7). Consequently, the optimal scenario b∗ is an optimal solution of (3.20). Suppose

for the sake of contradiction that b∗ is a unique middle scenario, i.e., bi < b∗i < bi

for all i ∈ {1, . . . ,m}, but b∗ 6= (0, . . . , 0)T . Since b∗ is the unique optimal solution

of (3.20), then m linearly independent constraints needs to be binding on b∗ to form

an extreme point. Ã−1
B∗ is a full rank square matrix of order m; thus, we need to have

Ã−1
B∗b = 0. This system possesses one unique solution which is (0, . . . , 0)T . Therefore,

b∗ = (0, . . . , 0)T . We derive a contradiction here, and this completes the proof.

Note that the opposite of Corollary 3.3 is not valid. That is, if the optimal scenario

is b∗ = (0, . . . , 0)T , then this does not necessarily imply neither that b∗ is unique, nor

that it is a middle scenario. The following provides a counterexample.

Example 3.3. Consider the following interval linear program

min 5x1 + 6x2 subject to 4x1 + 5x2 ≤ [0, 5], x1, x2 ≥ 0,

and let f(x) = 10x1 + 3x2 be an outcome function. From Figure 3.4, we observe that

x∗ = (0, 0) is the unique optimal solution for all the linear programs LP(b), for all

b ∈ b, that is, Ωb = {(0, 0)}. Hence, we have f = 0. It is not hard to see that any

41

Figure 3.4: (Example 3.3) Union of all feasible sets in light gray; the only optimal
solution is red circled.

scenario in the interval [0, 5] is an optimal scenario for ORPb. Therefore, b∗ = 0 is an

optimal scenario, but it is neither unique nor a middle scenario.

We now present a condition under which b∗ is a strongly extremal scenario.

Proposition 6. If B∗ is non-degenerate for LP(b∗), then b∗ is a strongly extremal

scenario.

Proof. Let us recall that, given a global optimal basis B∗, the following linear program

returns f and b∗.

min r̃TB∗Ã
−1
B∗b subject to Ã−1

B∗b ≥ 0, b ∈ b

We know that B∗ is a non-degenerate optimal basis of LP(b∗), and thus b∗ is such that

Ã−1
B∗b
∗ > 0. Therefore, to have an extreme point, m linearly independent constraints

in b ∈ b need to binding on b∗, that is, b∗i = bi or b∗i = bi for all i ∈ {1, . . . ,m}. The

proof is now concluded.

Finally, the following observation states another case under which an optimal scenario

b∗ is strongly extremal. It follows directly from Proposition 4 in Section 3.4.

42

Observation 3.1. Assume that z is a finite value. If r is such that r ∈ C, then we

have b∗ = b, which is a strongly extremal scenario.

3.6 Solution methods

In Section 3.4, we show that ORPb is an NP-hard problem in general; however,

when the underlying ILPb is unique B-stable, we can solve ORPb to optimality in

polynomial time. B-stability is unlikely to occur when we are dealing with wide inter-

vals and large problems. Therefore, unless P=NP, there is no hope for any polynomial-

time solvable characterization of the problem in general. As such, we here describe

two different approaches to approximate the optimal solution of ORPb. Specifically,

we present a super-set based method and a local search algorithm.

3.6.1 Super-set based method

As stated in the previous sections, an explicit description of the optimal set Ωb is

not always available. However, if we are able to find a super-set E(Ωb) containing it,

i.e., such that Ω ⊆ E(Ωb), we could then approximate the optimal values f and f by

solving the two following optimization problems

fL = min rTx subject to x ∈ E(Ωb), (3.21)

f
U

= max rTx subject to x ∈ E(Ωb), (3.22)

where fL and f
U

denote a lower bound of f and an upper bound of f , respectively.

To define a super-set E(Ωb), we can apply some duality properties in linear pro-

gramming. More specifically, let us recall the dual of ILPb for a particular b ∈ b,

max bTy subject to ATy ≤ c, y ≤ 0,

43

where y ∈ Rm is the vector of decision variables. By the strong duality condition in

linear programming, we can describe the optimal solution set of LP(b) by means of

the following linear system

Ax ≤ b, x ≥ 0, ATy ≤ c, y ≤ 0, cTx = bTy.

Let us assume, without loss of generality, that b is a vector of decision variables

varying within the interval vector b. We can then characterize the optimal set Ωb as

Ax ≤ b, x ≥ 0, ATy ≤ c, y ≤ 0, cTx = bTy, b ∈ b, (3.23)

in variables x, y, b. This leads to a nonlinear programming problem, due to the non-

linear term bTy, which is very difficult to solve. Therefore, we linearize it by using

McCormick envelope techniques [90]. Let [y, y] be an interval enclosure for y. We

then apply overestimator and underestimator constraints to linearize the nonlinear

constraint cTx = bTy. The resulting system reads

Ax ≤ b, x ≥ 0, ATy ≤ c, y ≤ 0, b ∈ b, (3.24a)

cTx ≤ yT b+ b
T
y − bTy, (3.24b)

cTx ≤ yT b+ bTy − bTy, (3.24c)

cTx ≥ yT b+ b
T
y − bTy, (3.24d)

cTx ≥ yT b+ bTy − bTy, (3.24e)

where (3.24b)-(3.24c) are called overestimators, while (3.24d)-(3.24e) are called un-

derestimators.

System (3.24) is a super-set containing Ωb. Therefore, we can use it to solve prob-

lems (3.21) and (3.22). To compute an interval enclosure [y, y] for y, we can apply the

contractor algorithm in [59]. Briefly, the contractor algorithm is an iterative refine-

44

ment algorithm. It starts with an enclosure of an optimal set and contracts such an

enclosure at each iteration until improvement is insignificant. It runs in polynomial

time, and it returns a sufficiently tight interval enclosure for y. We use this algorithm

in our experiment in Section 3.7 to get the interval enclosure [y, y].

3.6.2 Local search algorithm

In this section, we describe a local search algorithm to approximate f and f . Local

search is a heuristic method which, given a current feasible solution, tries to improve

it by exploring feasible solutions in its neighborhood [120]. Since the returned solution

will be a member of Ωb, the local search algorithm gives a lower bound for f (denoted

as f
L
) and an upper bound for f (denoted as fU). Our algorithm starts with an initial

solution associated with a given scenario b ∈ b, then it explores two neighborhoods

of the solution, obtained by perturbing b, to find a new solution. If the new solution

is better than the current one, then it stores the solution and starts a new iteration.

The algorithm proceeds in this way until a stopping condition is met. We discuss our

neighborhood structure and details of our algorithm next.

3.6.2.1 Neighborhood structure

We define our neighborhood structure in the scenario space, that is, given an op-

timal solution of a linear program associated with a particular scenario b ∈ b, we

define two neighborhood structures, namely plus and minus neighborhoods, obtained

by perturbing b. Specifically, a plus neighbor (minus neighbor) of a scenario b ∈ b

is obtained by increasing (decreasing) some components of b by a given quantity.

The number of components of b to be perturbed and the amount of perturbation

(increment or decrement) are adjustable values. We formally define our neighborhood

45

structures as

N+
k,h(b) := {b̃ ∈ b : b̃i = bi + kφ+

i , b̃j = bj, i ∈ P, j 6= i, P ∈ P (h)}, (3.25)

N−k,h(b) := {b̃ ∈ b : b̃i = bi − kφ−i , b̃j = bj, i ∈ P, j 6= i, P ∈ P (h)}, (3.26)

where φ+
i and φ−i represent the maximum allowable perturbation of bi, and they are

computed, respectively, as φ+
i = bi − bi and φ−i = bi − bi. Both the plus and the

minus neighborhoods of a given scenario are defined depending on two parameters:

parameter k ∈ (0, 1] which is a fraction of φ±i by which we perturb bi, and parameter

h ∈ (0, 1] which is a fraction of the total number of components in vector b which

we perturb simultaneously. Let us consider the set {1, . . . ,m} as the index set of

components in vector b. For each value of the parameter h, we denote by P (h) the

collection of all the possible subsets of {1, . . . ,m} of cardinality bh×mc 4, that

is, P (h) := {P ⊆ {1, . . . ,m} : |P | = bh×mc}. Basically, each subset P in P (h)

represents a choice of bh×mc components of a current scenario b ∈ b, which are

simultaneously perturbed. Given a scenario b ∈ b and a value of h, the number of

neighbors in either N+
k,h(b) or N−k,h(b) is equal to

(
m

bh×mc

)
. Finally, for a particular

b ∈ b, a fixed value of k, a fixed value of h, and a set P ∈ P (h), we determine a

neighbor b̃ in either N+
k,h(b) or N−k,h(b) , and denote by f+

b,k,h,P (f+ for short when no

confusion arises) or f−b,k,h,P (f− for short when no confusion arises) the value of the

outcome function computed on an optimal solution of the linear program associated

with b̃.

4b.c denotes the floor function.

46

Algorithm 3.1: Local search algorithm to compute fU

1 Input: A, b, c, r, Q, V , max-shakes, threshold
Result: an upper bound on f

2 Compute fU
int

.

3 Set fU ← fU
int

and b← b̂int.

4 Put q ← 1 and v ← 1.

5 Set k ← Q(q) and h← V (v).
6 Randomly select a set P in P (h).
7 Put u← 0 and o← 1.
8 while u ≤ max-shakes do
9 Compute f+ and f−.

10 Set f̂ ← min{f+, f−} and let b̂ be the corresponding right-hand side.

11 Determine improvement← fU − f̂ .

12 if improvement ≥ threshold then

13 Set fU ← f̂ and b← b̂.

14 Set k ← Q(1).

15 else if q < |Q| then
16 Set q ← q + 1.

17 Put k ← Q(q).

18 else if v < |V | then
19 if o ≤ b 1

hc then
20 Set o← o+ 1.
21 Let Γ be the set of all indices chosen so far for the current h.
22 Randomly generate a set P in P (h) such that P ∩ Γ = ∅.
23 Set k ← Q(1).

24 else
25 Update v ← v + 1 and o← 1.

26 Put h← V (v).
27 Randomly generate a set P in P (h).

28 Set k ← Q(1).

29 end

30 else
31 Update u← u+ 1.
32 Set k, h to their initial values and set o,q, and v to 1.
33 Randomly generate a scenario b ∈ b.
34 Randomly generate a set P in P (h).

35 end

36 end

47

3.6.2.2 The algorithm

The pseudo-code Algorithm 3.1 shows details of our algorithm to compute fU ; we

can apply a similar scheme to compute f
L
. Line 1 contains input of the algorithm:

A, b, c are parameters of the ILPb, r is the coefficient vector of an outcome function,

Q is an ordered set of all the selected values k, V is an ordered set of all the selected

values h, max-shakes indicates the stopping condition, and threshold represents the

minimum acceptable improvement during execution of the algorithm. We denote by

Q(q) and V (v) the q-th and v-th elements in the two ordered sets, respectively.

Line 2 computes an initial solution fU
int

, and stores the associated scenario b̂int.

An initial solution can be computed by solving ORPb for a randomly generated sce-

nario. The algorithm repeatedly refines an initial solution by using the neighborhood

structures defined earlier. Lines 4-5 set the initial values of parameters k and h. Line

6 generates a set P in the collection P (h). Line 7 initiates counter variables. Line 8

checks whether the stopping condition is met. At each iteration, using the neighbor-

hood structures (3.25) and (3.26), lines 9-11 determine a potential incumbent solution,

and compute the improvement. If the improvement is acceptable (line 12), lines 13-14

update fU and b , and reset k to its initial value. Otherwise, the algorithm tries the

next value of k in Q (lines 15-17). After trying all k ∈ Q, the algorithm chooses a

different set P for the current value of h, or it tries different values of h (lines 18-

29). Specifically, it first randomly selects a new set P in P (h). Note that lines 19-23

generate different sets P so that they are mutually exclusive. After trying a maxi-

mum number b 1
h
c of different sets P in P (h) for a given h, if still no improvement is

achieved, then lines 24-29 choose a new value of h in V . The algorithm continues in

this way until all h in V are selected. Lines 30-35 apply a shaking step. The aim of

this step is to move the search to a different area of the search space. After trying

all values of h and k without getting any improvement, a shaking phase starts. In

48

this phase, the input parameters k and h are set to their initial values, counters are

re-initialized, a random scenario in b is generated, and a set P in P (h) is randomly

generated. The algorithm proceeds in this way until the stopping condition is met.

Finally, it returns the tightest approximation among all.

3.7 Experimentation

Here, we present our computational experiments and related results to evaluate

the performance of our approaches. Since there exists no algorithm in the literature to

compare our approaches with, then, in addition to our super-set based method and our

local search (LS) algorithm, we also use FMINCON, a nonlinear programming solver

in MATLAB, to solve the nonlinear formulation of the ORPb, that is, minimizing

(maximizing) f(x) subject to system (3.23). We compare all the methods on two sets

of randomly generated instances. The first set, referred to as class 1, is a collection of

unique B-stable instances so that the output of our approaches can be compared to

the optimal values of the problem (see Proposition 3). The second set of instances,

referred to as class 2, is a series of general instances for which the unique B-stability

property is not guarantied. Thus, for this set of instances, the optimal values are not

known.

3.7.1 Description of problem instances

We generated class 1 instances using the following procedure. First, for a given

problem size (m,n) and uncertainty parameter (i.e., interval width) (δ), entries of

matrix A ∈ Zm×n were randomly generated in [−10, 10] using uniformly distributed

pseudorandom integers. Similarly, vectors c ∈ Zn, b ∈ Zm, r ∈ Zn were randomly

taken in [−20,−1], [10, 20], and [−20, 20], respectively. Vector b was constructed as

b = b + δe, where e = (1, ..., 1)T is a vector of ones with the convenient dimension.

49

To ensure boundedness of the optimal set, we kept entries of the last row of matrix

A positive. To have a unique B-stable instance, we found an optimal basis by solving

the linear program associated with a randomly chosen scenario, and checked whether

the optimal basis is unique and common to all scenarios, i.e., we checked the following

conditions5

c̃TN − c̃TBÃ−1
B ÃN > 0T ,

Ã−1
B bc − |Ã−1

B |b∆ ≥ 0,

where bc := 1
2
(b+b) and b∆ := 1

2
(b−b) denote the center and the radius of the interval

b. If both conditions held true, we saved the instance. Otherwise, we started over the

process to generate a new instance. In our experimental study, for class 1 instances,

we considered the following problem sizes and values for the uncertainty parameter:

m = {10, 30, 50, 80, 100}, n = {15, 45, 75, 120, 150} and δ = {0.1, 0.25, 0.5, 0.75, 1}.

We studied 25 different combinations of m,n, δ, and generated 30 instances for each

combination, for a total of 750 instances.

We used a similar procedure to generate class 2 instances, except that the unique

B-stability was not required for these instances. For class 2 instances, we consid-

ered the following problem sizes and values for the uncertainty parameter: m =

{10, 30, 50, 80, 100, 200, 300, 400, 500}, n = {15, 45, 75, 120, 150, 300, 400, 500, 600}

and δ = {0.1, 0.25, 0.5, 0.75, 1}. We examined 45 different combinations of m,n, δ,

and again we generated 30 instances for each combination, for a total of 1,350 in-

stances.

5Here, we adopt the unique B-stability conditions for our problem.

50

3.7.2 Implementation of the algorithms

The input parameters for the local search algorithm were chosen as follows.

The two ordered sets Q and V were such that Q = {0.1, 0.25, 0.5, 0.75, 1} and

V = {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.5, 1}. The max-shake parameter was set equal to

one, and the threshold parameter was set equal to 0.001. FMINCON has five stopping

criteria namely maximum iterations, maximum function evaluations, step tolerance,

function tolerance, and constraint tolerance. We set the maximum iterations and the

maximum function evaluations to 300,000, step tolerance to (1.000E− 10), and func-

tion and constraints tolerances to (1.000E − 6). For each problem, we first solved a

linear program associated with a randomly generated scenario, and we then took an

optimal solution of the linear program as the starting point for the FMINCON. We

imposed a time limit of 30 minutes on the solver for each instance such that if the

solver cannot normally converge to a solution within 30 minutes, it is terminated and

its current solution is returned (if it lies within the feasibility tolerance). For the cases

the solver reached one of its internal stopping criteria before reaching the time limit,

it started over from a different starting point and continued in this way until either

it converged to a solution or it reached the time limit. For the cases for which the

solver did not normally converge to a solution within the time limit even after trying

multiple starting points, we report the best feasible solution found among all (if any).

Lastly, the experiments were carried out on a workstation with an Intel(R) Core

(TM) i7-4790 CPU processor at 3.60 GHz with 32.00 GB of RAM. All the methods

were coded in MATLAB(R2019b), using IBM ILOG CPLEX 12.9 for solving linear

programs.

51

Table 3.5: Results related to the computation of f on class 1 instances (average gap
and average running time)

input average gap average time (sec)

m n δ
LS

fU1

FMINCON

fU2

super-set

fL
LS

fU1

FMINCON

fU2

super-set

fL

10 15 0.1 0.0001 0.0035 0.0122 0.3214 0.4921 0.0016
10 15 0.25 0.0001 0.0016 0.1530 0.3212 0.2684 0.0007
10 15 0.5 0.0001 0.0186 0.1618 0.3411 0.3133 0.0007
10 15 0.75 0.0001 0.0052 0.1411 0.3385 0.3034 0.0007
10 15 1 0.0003 0.0190 0.9195 0.3437 0.3516 0.0007

30 45 0.1 0.0004 0.0057 0.1594 0.7657 1.6774 0.0020
30 45 0.25 0.0029 0.0063 1.0221 0.8666 1.6139 0.0020
30 45 0.5 0.0003 0.0094 0.5711 0.9188 1.5557 0.0020
30 45 0.75 0.0004 0.0085 1.5103 0.9019 1.5185 0.0019
30 45 1 0.0043 0.0175 1.4701 0.9346 1.6153 0.0020

50 75 0.1 0.0013 0.0045 0.3009 1.4564 3.2491 0.0042
50 75 0.25 0.0018 0.0148 1.0008 1.5302 3.8956 0.0041
50 75 0.5 0.0017 0.0084 0.9686 1.6549 4.3446 0.0040
50 75 0.75 0.0066 0.0688 2.4971 1.6501 3.3910 0.0040
50 75 1 0.0010 0.0640 4.3327 1.6596 3.6361 0.0040

80 120 0.1 0.0020 0.0381 1.0832 2.9608 12.1033 0.0106
80 120 0.25 0.0142 0.0618 2.3559 3.1187 12.3475 0.0102
80 120 0.5 0.0030 0.0227 1.4559 3.2310 12.5632 0.0102
80 120 0.75 0.0018 0.0514 2.2257 3.2231 13.2636 0.0100
80 120 1 0.0039 0.0510 2.3866 3.3486 11.3097 0.0099

100 150 0.1 0.0030 0.0646 1.5206 4.2595 26.5560 0.0163
100 150 0.25 0.0034 0.0222 1.6112 4.5020 22.6072 0.0158
100 150 0.5 0.0117 0.0504 2.6134 4.7064 23.4783 0.0154
100 150 0.75 0.0153 0.0811 2.4725 4.7758 22.0584 0.0148
100 150 1 0.0063 0.0563 3.6750 4.5380 23.5457 0.0151

3.7.3 Analysis of the results

In this section, we only discuss the results related to f . The analysis of the results

for f led to similar conclusions, so we do not report them in the paper. Table 3.5 shows

the results related to the computation of f on class 1 instances, for which the optimal

value can be computed by solving a linear program (see Proposition 3). Each number

in the table is an average of the results obtained on 30 instances. In the table, the

first three columns show the input parameters, and the following six columns report

the results of the solution approaches. We recall that the super-set based method

returns a lower bound for f (columns fL), while the local search algorithm and

FMINCON return an upper bound (columns fU1 and fU2 , respectively). The gap of

an approximate value f̂ from the optimal value is computed by | f̂−f
f
|. Hence, lower

values correspond to better performance of the approach. For each method, the table

52

reports the average gap and the average running time (in seconds).

The local search algorithm converges fast to a very tight upper bound (with a

maximum average gap of 1.53% and a maximum average running time of 4.78 seconds)

for all the problem sizes and all the values of the uncertainty parameter δ. FMINCON

returns a reasonable upper bound (with a maximum average gap of 8.11%), but it

takes significantly longer time than the local search algorithm to converge (with the

average running time ranges between 0.27 of a second and 26.56 seconds). Although

calculating fL is fast, its gap from the the optimal value, with the exception of small

size instances and low uncertainty, is significant.

For class 2 instances, given the poor performance of the super-set based method,

we only focus on the results obtained from the local search and the solver. As noted

earlier, the unique B-stability property is not guarantied in class 2 instances, and as

a result we are not able to solve ORPb to optimality using existing methods. We here

compare the local search and FMINCON against each other. For instances where the

local search outperforms the solver, i.e. fU1 < fU2 , we calculate the gap as |f
U1−fU2

fU2
|,

while for instances where the solver returns a better solution than the local search,

namely fU2 < fU1 , the gap is determined by |f
U2−fU1

fU1
|. Additionally, the following

measure gives a weighted average gap (WAG) for each method. Specifically, it applies

both the average gap and the number of times an algorithm outperforms the other

(denoted by NI), and reads

WAG =
(NI) ∗ (average gap)

total number of instances
.

Thus, the higher the WAG value, the better the performance. Table 3.6 reports the

results corresponding to the computation of f for class 2 instances. The first three

columns show the input data. Columns 4 and 5 give the frequency of times the local

search outperforms FMINCON and the weighted average gap, respectively. Similarly,

53

Table 3.6: Results related to the computation of f on class 2 instances.

input fU1 < fU2 fU2 < fU1 average time (sec)

m n δ freq. WAG freq. WAG LS FMINCON

10 15 0.1 22 0.0024 8 0.0000 0.3130 0.4605
10 15 0.25 21 0.0074 9 0.0000 0.3190 0.4511
10 15 0.5 21 0.0045 9 0.0084 0.3301 0.5361
10 15 0.75 19 0.0138 11 0.0002 0.3356 0.3225
10 15 1 21 0.0526 9 0.0081 0.3536 0.3164

30 45 0.1 19 0.0107 11 0.0003 0.8241 1.3156
30 45 0.25 19 0.0085 11 0.0010 0.8808 1.3838
30 45 0.5 20 0.0397 10 0.0028 0.8978 1.4990
30 45 0.75 17 0.0514 13 0.0084 0.9450 2.4027
30 45 1 19 0.0390 11 0.0059 0.9791 1.8116

50 75 0.1 17 0.0031 13 0.0003 1.4768 4.8394
50 75 0.25 15 0.0061 15 0.0089 1.5200 4.4078
50 75 0.5 16 0.3897 14 0.0028 1.7290 4.0354
50 75 0.75 16 0.0360 14 0.0067 1.7371 4.2858
50 75 1 14 0.0585 16 0.1042 1.8498 4.9498

80 120 0.1 23 0.0141 7 0.0013 3.0263 13.7443
80 120 0.25 17 0.0112 13 0.0364 3.4131 14.9026
80 120 0.5 19 0.1273 11 0.0750 3.6254 13.2121
80 120 0.75 16 0.0658 14 0.1080 3.5492 15.0886
80 120 1 15 0.0841 15 0.0504 3.6229 19.0471

100 150 0.1 25 0.0143 5 0.0022 4.6070 30.4261
100 150 0.25 23 0.1741 7 0.0109 4.9523 27.6289
100 150 0.5 18 0.0413 12 0.0147 5.3517 31.3020
100 150 0.75 18 0.0816 12 0.0337 5.6269 44.5924
100 150 1 10 0.0904 20 0.0583 5.2683 38.2789

200 300 0.1 26 0.1033 4 0.0078 18.8387 226.2555
200 300 0.25 15 0.2028 15 0.0120 20.0275 242.7648
200 300 0.5 14 0.0415 16 0.1506 21.6897 298.3727
200 300 0.75 9 0.0318 21 0.5077 20.1736 231.7975
200 300 1 11 0.0254 19 0.2233 20.3656 203.9699

300 400 0.1 18 0.0655 12 0.0150 43.7986 1,400.9399
300 400 0.25 18 0.1182 12 0.0424 46.3638 1,601.2650
300 400 0.5 4 0.0539 26 0.2600 48.3374 1,536.8595
300 400 0.75 6 0.0462 24 0.1886 39.8791 1,413.8520
300 400 1 5 0.0434 25 1.0230 40.4988 1,351.4880

400 500 0.1 22 0.1410 8 0.0196 76.7331 1,740.2052
400 500 0.25 17 3.3220 13 0.0188 76.2029 1,800
400 500 0.5 9 0.0247 21 0.4430 76.8172 1,760.1362
400 500 0.75 3 0.0063 27 0.8576 74.1061 1,784.4656
400 500 1 2 0.0027 28 1.3027 70.8703 1,722.2246

500 600 0.1 22 0.0889 8 0.0274 124.1661 1,768.2018
500 600 0.25 12 0.1292 18 0.0410 123.9820 1,800
500 600 0.5 4 0.0224 26 0.3193 110.2257 1,770.3525
500 600 0.75 4 0.0211 26 1.6025 112.0062 1,800
500 600 1 2 0.0048 28 0.9238 108.6081 1,800

54

the following two columns represent the same attributes for when FMINCON outper-

forms the local search. The last two columns indicate the average running times for

each method.

Our results in Table 3.6 suggest that the local search outperformed FMINCON

on 683 instances out of 1,350 instances. Moreover, the weighted average gap of the

local search is larger than that of FMINCON for 28 combinations of m,n, δ out of the

total of 45 combinations. FMINCON tends to return a better weighted average gap

for instances with larger sizes and uncertainty parameters, but it also takes a much

longer time to converge to a solution, see, for example, the instances with m = 300,

n = 400, and δ = 1. For this particular case, FMINCON took 1,351.49 seconds on

average to converge, while our local search converged, on average, in 40.5 seconds.

From the table, we can observe that the WAG measure ranges between 0.0024 and

3.3220 for the local search and between 0.0000 and 1.6025 for FMINCON. We also

see that the computation time of FMINCON grows faster compared to that of the

local search, with a maximum average running time of 1,800 seconds against that of

124.17 seconds for the local search.

3.8 Case study: Healthcare access measurement

Here, we show an application of ORPb when an outcome function is used to

measure spatial access to healthcare services. We first introduce a linear program

which has been recently proposed in the literature to derive a matching between

patients and providers. We then use our approach to evaluate how uncertainty in

input data influences spatial access to healthcare services, and discuss how the results

of our approach can be used for more reliable decision making.

55

Model 1. Modeling access to primary care.
min

∑
i∈T,j∈W gdijxij → Total distance is minimized.

subject to
Coverage constraints:∑

j∈W xij ≤ ei ∀i ∈ T, (C1) → The assignment does not exceed population in need

in census tract i.∑
i∈T,j∈W xij ≥ αE, (C2) → The assignment covers as much population as possible

within the national access policy.
Accessibility constraints:∑

j∈W :dij≥dmax
xij = 0 ∀i ∈ T, (C3) → Patients are not assigned to too far providers.∑

j∈W :dij≥dmob
max

xij ≤ miei ∀i ∈ T, (C4) → Patients that own a vehicle can travel further than

patients without a vehicle.
Availability constraints:∑

i∈T gxij ≤ cmax
j ∀j ∈W, (C5) → Providers’ maximum caseload is not exceeded.∑

i∈T gxij ≥ cmin
j ∀j ∈W, (C6) → Providers are assigned a minimum caseload

to stay in practice.
Non-negativity constraints:
xij ≥ 0 ∀i ∈ T, j ∈W.

3.8.1 Optimization model and outcome function

Optimization models used to quantify potential spatial access to healthcare mimic

the interactions between two sets of actors in the system: the population in need of

service within each geographical area or community (e.g., census tract level), namely

ei with i ∈ T , and the network of provider locations j ∈ W . Model 1 is a sim-

plified version of the mathematical formulation proposed in the literature [50, 103]

to determine a matching between the population in need of healthcare services and

providers providing them. The matching is determined to minimize the total dis-

tance traveled at the system level under a set of constraints: (i) coverage constraints

match as many people in need as possible; (ii) accessibility constraints ensure the

matching takes into account modes of transportation and Health Resources Services

Administration recommendations on the maximum allowed distance for matching;

(iii) capacity constraints account for the maximum and minimum providers’ caseload

to stay in practice.

The decision variables xij in the model determine the number of patients in a

census tract i ∈ T assigned to a specific provider location j ∈ W . Parameters of the

model include:

56

• g: number of yearly visits required by a patient,

• ei: population size in census tract i in need of healthcare services,

• dij: travel distance between the centroid of census tract i and provider location

j,

• E: total population in the system in need of healthcare services,

• α: percentage of the population which should be assigned to a provider,

• dmax: maximum allowed distance between a patient and the assigned provider

according to the Health Resources Services Administration recommendations,

• dmobmax: maximum distance we assume that people without a vehicle are willing

to travel to reach the assigned provider,

• mi: percentage of population in census tract i that owns a vehicle,

• cmaxj (cminj): maximum (minimum) provider’s caseload in location j.

For our analysis, we consider an interval version of Model 1 obtained by allowing

parameters cmaxj to vary within a given interval. Specifically, we assume that the

availability constraints (C5) in the model are of the form

∑
i∈T

gxij ≤ [λcmaxj , βcmaxj] ∀j ∈ W,

where λ and β are the maximum and the minimum perturbations from the nominal

values cmaxj for j ∈ W , respectively. Note that the resulting intervals vary indepen-

dently. Such uncertainty in the capacity of a provider can be due to increasing and/or

decreasing personnel, overtime or days-off of providers, and inaccurate estimations of

the capacity, among others.

57

Access measures are formulated as linear functions of an optimal assignment de-

rived from an optimization model [103]. For this illustrative example, we consider the

access measure fi(x) defined as the average distance traveled by patients in a given

census tract i to reach the assigned provider, which is formally defined as

fi(x) = dmax +
1

ei

∑
j∈W

(dij − dmax)xij ∀i ∈ T.

The above measure returns the weighted average of the distance traveled by patients

in each census tract. We assume that for those patients who are not assigned to a

provider, fi(x) is equal to dmax. Thus, the access measure ranges from 0 to dmax.

The resulting estimates can be used by policy makers to identify where the com-

munities with the greatest need for improvement are, so that they can be targeted

with additional resources, including new providers or facilities, transportation services

improvement, tele-health service development, etc.

3.8.2 Case study

We illustrate our analysis to quantify access to the primary care service for children

in the State of Mississippi in the United States, for a total of 637 census tracts and 897

provider locations. Providers’ practice location addresses are obtained from the 2013

National Plan and Provider Enumeration System (NPPES). The patient population

is aggregated at the census tract level. We used the 2010 SF2 100% census data and

the 2012 American Community Survey data to compute the number of children in

each census tract along with information on ownership of cars, to estimate = access

to private transportation means. We set dmax = 25 miles, dmobmax = 10 miles, α = 0.85,

and g = 2 (see [49] for further details on the input parameters). The resulting model

contains 63,573 variables and 3,706 constraints. To account for uncertainty in cmaxj ,

we set λ = 0.8 and β = 1.2.

58

3.8.3 Importance of quantifying sensitivity to data perturbations

Failing to consider uncertainty in the input parameters may significantly affect

the choice of which census tracts to target for possible interventions. To elaborate

further, we compared the results of Model 1 on two different realizations of interval

data, referred to as realizations 1 & 2. Figure 3.5a shows the difference in the access

measures obtained in the two optimization runs (corresponding to realizations 1 & 2) .

Darker regions represent higher differences, that is, census tracts where the estimate of

the access measure is more unstable. The circled census tracts are those for which the

resulting access measure changes more than 5 miles between the two runs, implying

that some census tracts may be considered having high or low level access depending

on which realization of the data is considered. Consider now Figure 3.5b where the

difference in the access measures, obtained for two different additional realizations

(referred to as realizations 3 & 4) of the parameter cmaxj , is shown. The comparison

between Figures 3.5a and 3.5b tells two different stories, showing completely different

sets of census tracts for which the access measure seems more unstable.

In this sense, quantifying sensitivity of the access measure to data perturbations

would be crucial for reliable decision making. Such an analysis would indeed reveal: (i)

census tracts that are certainly in need of a targeted intervention (e.g., those census

tracts for which the access measure is high and not sensitive to data perturbations),

and (ii) census tracts that are certainly not in need of any intervention (e.g., those

census tracts for which the access measure is low and not sensitive to data perturba-

tions). It would also help to determine census tracts that may fall, due uncertainty

in the data, in either one of the two categories, and for which, therefore, a deeper

investigation might be needed. By solving ORPb in this context, we can assess such

a quantification. Additionally, we are able to answer questions relevant for policy

making, including:

59

(a) Realizations 1 & 2 (b) Realizations 3 & 4

Figure 3.5: Difference in the access measures considering four random realizations of
the input parameters.

• Q1: Given the current primary care resources, what are the minimum and max-

imum access levels for each census tract?

• Q2: What are the census tracts with the highest (lowest) variability in the access

measures?

• Q3: What is the percentage of the census tracts where the access level is higher

(lower) than a given threshold for all the possible realizations of the data?

We applied our local search algorithm to solve ORPb in this context, and addressed

the above questions.

3.8.4 Implementation of algorithms

The outcome function (i.e., the access measure) is associated with each census

tract. Hence, we applied our local search algorithm once for each outcome function

(total of 637 functions). Zheng et al. [136] used the Monte Carlo approach to evaluate

sensitivity of the access measure to uncertainty in the input data. Therefore, we

compare the results of our approach with those returned by the Monte Carlo approach.

60

For the local search algorithm, we defined Q = {0.25, 0.5, 0.75, 1}. Due to the large

size of the problem and the structural dependencies among the decision variables [136],

defining an ordered set V and randomly choosing constraints, whose right-hand sides

are perturbed simultaneously, would not be very efficient. Thus, we defined a set V (i)

for each given census tract i as V (i) = {H1(i), H2(i), H3(i)} for all i ∈ T , where

Hl(i), l = 1, 2, 3, are predefined sets of constraints associated with census tract i.

Note that for this specific application, each constraint to be perturbed corresponds

to a provider j whose max capacity parameter (cmaxj) is perturbed from its nominal

value. The first set of constraints to be explored corresponds to providers who are

not too far from the census tract under study, that is, H1(i) := {j ∈ W : dij ≤ 50}.

The second set of constraints to be explored are those constraints corresponding to

providers who do not correspond to constraints in H1(i) and who are not too far from

census tracts which are neighbors of the census tract under study. Specifically, we

defined two census tracts to be neighbors if the distance between their centroids is

less than 50 miles. Given a census tract i, let us denote the set of neighboring census

tracts as the set A(i) = {a ∈ T : dia ≤ 50}. The second set of constraints is then

defined as H2(i) := {j ∈ W : daj ≤ 50,∀a ∈ A(i)}\H1(i). Finally, the last set H3(i)

consists of the remaining providers, that is, H3(i) := W\{H1(i) ∪H2(i)}.

We set the maximum number of shakes to 1 and the minimum acceptable im-

provement to 0.1. The number of iterations for the Monte Carlo approach was set

equal to 100, which is the maximum number of linear programs solved by the local

search algorithm among all the runs.

3.8.5 Analysis of the results

Monte Carlo simulation is a simple approach to compute the maximum and the

minimum values of the access measure for each census tract; however, in this context,

it might lead to a severe underestimation of the overall quantification. To show this, we

61

computed the range of the resulting access measure for each census tract using both

the local search algorithm and the Monte Carlo approach. The range is computed

as the difference between the maximum and the minimum of the access measure

for each census tract. The difference in the results is shown in Figures 3.6 and 3.7.

Specifically, Figure 3.6 shows the number of census tracts for which the range of the

access measures is within 2 and 20 miles for the two approaches. Results obtained

from the Monte Carlo approach show that the access range of 28 census tracts out of

635 census tracts varies between 4 and 20 miles, where that of 12 census tracts varies

between 8 and 20 miles. However, the local search algorithm reveals that the access

range of 89 census tracts varies between 4 and 20 miles, where that of 47 census tracts

varies between 8 and 20 miles. It is noteworthy that Figure 3.6 does not represent

census tracts with the access range of less than 2 miles.

Figure 3.6: Distribution of the census tracts for which the access range varies between
2 and 20 miles for the two approaches (i.e., Monte Carlo approach and the local search
algorithm).

Figure 3.7 depicts the map of the difference in the ranges obtained comparing the

two approaches. Darker census tracts are those for which the Monte Carlo approach

severely underestimates sensitivity of the access measures, that is, those census tracts

for which the difference between the range estimated by the Monte Carlo approach

and the range estimated by the local search algorithm is greater than 15 miles. From

Figures 3.6 and 3.7, it is evident that the Monte Carlo approach is not a right tool

62

Figure 3.7: Difference between the access ranges estimated by the Monte Carlo ap-
proach and those estimated by the local search algorithm.

to quantify sensitivity of the access measure to uncertainty in the data. Its use to

answer the questions Q1-Q3 would lead to a severe underestimation. Hence, in what

follows, we only focus on the results obtained from our local search algorithm.

Figures 3.8a and 3.8b show the lower and the upper limits of the access measure

for each census tract (Q1), and Figure 3.9 shows the range of the access measure

for each census tract (Q2). Darker areas in Figure 3.9 are those census tracts where

the range of the access measure is greater than 10 miles, which corresponds to 39

census tracts out of 635 (i.e., 6% of the total). Table 3.7 and Figure 3.10 can be

used to address question Q3. The table shows the distribution of the minimum and

maximum of access within the state among all the census tracts. Figure 3.10a divides

the census tracts in two groups according to the value of their minimum access level:

dark (light) tracts have a minimum value which is greater (less than or equal to) 10

miles. Figure 3.10b divides the census tracts in two groups according to the value of

their maximum access value: dark (light) tracts have a maximum access value which is

greater than (less than or equal to) 5 miles. According to Table 3.7, 13% of the census

tracts have a minimum value of access which is greater than 10 miles. In other words,

63

the population in these census tracts always travel on average at least 10 miles to reach

the assigned provider. These census tracts are the dark regions in Figure 3.10a. On

the other hand, 64% of the census tracts (the maximum access level column in Table

3.7) are such that the corresponding population never travel more than 5 miles to

reach the assigned provider. These census tracts are the light regions in Figure 3.10b.

These findings are important for decision makers to prioritize interventions. Indeed,

for example, the dark color census tracts in Figure 3.10a depict those census tracts

which are surely in need for targeted actions to improve their access to healthcare

services because they were identified by accounting for all the possible realizations of

the uncertain data, while the light color census tracts in Figure 3.10b have a good

access to healthcare services over all the possible realizations of the uncertain data;

hence, they are unlikely to be the object of targeted interventions.

(a) Minimum access level (b) Maximum access level

Figure 3.8: Minimum and maximum value of the access measures for each census
tract.

64

Figure 3.9: Range of the access measure for each census tract.

Table 3.7: Distribution of census tracts according to the minimum and maximum
access levels (for different access ranges).

access (mile) minimum access level maximum access level

0-5 69% 64%
5-10 18% 14%
10-15 2% 2%
15-20 3% 4%
20-25 8% 15%

(a) Minimum access level (b) Maximum access level

Figure 3.10: Classification of the census tracts according to their minimum and max-
imum access levels.

65

3.9 Conclusions

We formulated and studied the outcome range problem in the context of inter-

val linear programming. Our problem aims at quantifying unintended consequences

of optimal decisions made in an uncertain environment. The problem is particularly

relevant for government agencies, public health decision makers, policy makers, city

managers and other stakeholders who make decisions that have differential impacts on

different communities and sub-populations, and we showed this on a real case study

related to healthcare access measurement. In this paper, we gave a very general defi-

nition of the outcome range problem, and addressed a specific version of it for which

we assessed the computational complexity and studied some theoretical properties.

We then offered two approximation methods. Our proposed local search algorithm

seems promising in computing a cheap but tight approximation of the problem. In

contrast, the proposed super-set based method does not return a tight approximation;

thus, there is room for improvement. We tested our methods on two sets of randomly

generated instances and on a real case instance. We plan to further explore theoretical

properties and solution methods for a more general version of the problem.

66

CHAPTER 4

HOW TO QUANTIFY OUTCOME FUNCTIONS

OF INTERVAL-VALUED LINEAR PROGRAMS

4.1 Introduction

Throughout the years, linear programming has been broadly used to formulate and

solve real-world problems. In traditional linear programming, one always assumes that

parameters are known exactly. However, in practice, it is quite common to confront

imprecise input data which might impair the obtained results and consequently the

decisions made upon them. So far several different approaches have been developed

to incorporate uncertainty of input parameters into mathematical models. In this

paper, we adopt the approach of interval linear programming (ILP), where all (or

some) parameters are assumed to vary within given real-valued intervals.

Interval linear programming has been applied in several application areas, such

as transportation problems where the supply and demand can vary within a-priori

known intervals [27, 36, 75, 129], matrix games with interval-valued payoffs [82, 85],

portfolio selection problems with interval approximations of expected returns [78, 79],

project management with interval task durations [38], and environmental [28, 84] and

waste [124] management problems with interval input parameters.

67

The main interest of interval linear programming is studying overall properties

of an interval problem, considering all possible scenarios of the interval data [58,

111, 113]. Different topics have been studied in interval linear programming (see [58]

for a thorough survey on the topics). The two main problems discussed in the ILP

literature are (i) finding the range of optimal values of the objective function among all

optimal values obtained over all data perturbations [30, 46, 57, 97, 111] and its tight

approximation [62, 93] and (ii) describing the set of all optimal solutions resulting

from all the possible realizations of the interval data [2, 44, 47] and its inner [65] and

outer [59] approximations. Recently, Mohammadi and Gentili [94] formulated the

outcome range problem where the goal is to find the range of an additional function

of interest (namely, an outcome function) over the set of all possible optimal solutions

of an interval linear program.

Outcome functions are extra functions of interest associated with the set of optimal

solutions of an optimization problem. So far, there has been several studies quanti-

fying outcome functions over an optimal solution of a linear program. For example,

Nobles et al. [103] and Gentili et al. [48, 49, 50] formulated some linear programs

to match patients and healthcare providers, and then they quantified some outcome

functions over the results of the optimization models to evaluate spatial access to

healthcare services. As another example, in a transportation problem, an outcome

function could be an environmental cost function assessing the environmental im-

pact of an optimal transportation plan on the surrounding areas [94]. Similarly, the

notion of the outcome function can be of great interest in the telecommunications net-

work design and evacuation planning [136]. Quantifying outcome functions was also

mentioned in [81] as a motivation of addressing uncertainty in linear programming.

Outcome functions are also relevant in multiobjective optimization problems where

it is common to optimize an extra function over the set of all efficient solutions of

a multiobjective program to get a preferred solution, see, for example, [16, 121, 131]

68

and references therein.

Generally speaking, linear optimization problems under right-hand side uncer-

tainty often arise in practical problems and have been subject of numerous studies,

see [3, 9, 40, 89, 107, 114] and references therein. Hence, in this paper, we address a

special class of the outcome range problem where we consider a linear real-valued out-

come function associated with an equality-constrained linear program with interval

right-hand sides. We first review some preliminaries and formally define the problem

(Section 4.2). We then discuss the computational complexity of the problem (Section

4.3). We also study some theoretical aspects, related to property and geometry of

scenarios, of this special class of the problem (Section 4.4). There are some overlaps

between the outcome range problem and other known problems such as the optimal

value range problem, bilevel optimization, and multiobjective optimization. Here, we

clarify the relation between the problems, and discuss different reformulations of the

outcome range problem (Section 4.5). Furthermore, given the hardness of computa-

tion of the outcome range problem, we offer some heuristics to solve the problem

(Section 4.6). In particular, we present an outer approximation for our problem using

the reformulation-linearization technique (Section 4.6.1). We also design two inner

approximation algorithms to approximate the range of an outcome function: our first

algorithm is based on the gradient-restoration algorithm [91] where the goal is to

improve a current incumbent solution by moving alternately between feasible and

infeasible solutions at each iteration (Section 4.6.2), and for the second algorithm, we

develop a guided optimal bases search (Section 4.6.3). We test our methods on three

test beds (Section 4.7), and finally in the last section, we summarize our findings and

discuss some future directions.

69

4.2 Problem definition

Let us start by introducing some notation. Consider a linear program

z(A, b, c) := min cTx subject to x ∈M(A, b), (4.1)

where c ∈ Rn is the objective vector, and M(A, b) denotes the feasible region de-

scribed by some linear constraints with matrix coefficient A ∈ Rm×n and right-hand

side vector b ∈ Rm. Linear program (4.1) essentially can be in one of the following

forms

z(A, b, c) = min cTx subject to Ax = b, x ≥ 0, (I)

z(A, b, c) = min cTx subject to Ax ≤ b, (II)

z(A, b, c) = min cTx subject to Ax ≤ b, x ≥ 0. (III)

An interval matrix is a set of matrices

A = [A,A] := {A ∈ Rm×n : A ≤ A ≤ A},

where A,A ∈ Rm×n are given, and comparing matrices is understood componentwise.

We denote by IR the set of all real intervals. We use similar notation for interval

vectors, i.e., we consider them as one column interval matrices. Throughout the paper,

bold symbols stand for interval matrices and vectors.

Given A ∈ IRm×n, b ∈ IRm, and c ∈ IRn, we define an interval linear program as

a family of linear programs with A ∈ A, b ∈ b, and c ∈ c, i.e.,

{min cTx subject to x ∈M(A, b) : A ∈ A, b ∈ b, c ∈ c}.

70

In short, we can write the preceding as

min cTx subject to x ∈M(A,b).

We refer to any triplet (A, b, c) with A ∈ A, b ∈ b, and c ∈ c as a scenario, and thus

LP (4.1) is associated with the scenario (A, b, c). We denote by S(A, b, c) the set of

optimal solutions of (4.1), if any, admitting a finite z(A, b, c). The set of all optimal

solutions to an ILP problem, namely the optimal set, is

Ω :=
⋃

A∈A, b∈b, c∈c

S(A, b, c).

Now consider an extra function f : Rn → R where f(x) = rTx with r ∈ Rn.1 The

outcome range problem is the problem of finding the maximum and the minimum

vaules of f(x) over the optimal set (Ω) [94], that is,

f := min f(x) subject to x ∈ Ω,

f := max f(x) subject to x ∈ Ω.

In this sense, the range [f, f] is called the outcome function range.

It is known that transformations such as splitting equalities into inequalities or

imposing non-negativity on unrestricted variables, used in classic linear programming,

are not applicable in ILP problems in general, due to the so-called dependency prob-

lem [47, 63]. Hence, the three main forms of ILP problems, that is, ILP problems

described in the forms of (I)-(III), are usually addressed separately in the literature

[58]. We here narrow down our study on a special class of ILP problems with interval

right-hand sides. This special case contains a large class of problems in practice where

often A and c are fixed and uncertainty only happens in the right-hand side vector

1In general, outcome functions can be in any form, i.e., they need not be necessarily linear.

71

b. This is particularly true for network optimization problems such as transportation

problems, maximum flow problems, minimum-cost flow problems, multicommodity

network flow problems, etc [8, 98]. We formally consider

min cTx subject to Ax = b, x ≥ 0, (4.2)

where A ∈ Rm×n, b ∈ IRm, and c ∈ Rn. By LP(b) we mean the linear program

associated with ILP (4.2) for a given b ∈ b. Similar to the general form of the ILP

problems, we denote by S(b) and z(b) the set of optimal solutions (if any) of LP(b),

and the optimal value of LP(b) for a particular b ∈ b, respectively. We refer to the

optimal set of (4.2) as Ωb. Hereinafter, we only focus on solving the following problems

f = min f(x) subject to x ∈ Ωb, (4.3)

f = max f(x) subject to x ∈ Ωb. (4.4)

We refer to this special class of the outcome range problem as ORPb.

Observation 4.1. By [43, 44], we know that Ωb is path connected. It is bounded if

S(b) is non-empty and bounded for some b ∈ b. Therefore, in the case of ORPb, we

can say that f(x) is continuous in [f, f] if Ωb is bounded.

Note that, in practice, we are usually interested in finite f and f . In what follows,

we assume that this is the case. The following formally states our assumption.

Assumption 4.1. We assume that there exists b ∈ b such that LP(b) admits a finite

optimal value.

Our assumption implies that LP(b) is either infeasible or admits a finite optimal

value for any b ∈ b. Now we discuss an example of the ORPb below.

72

Figure 4.1: (Example 4.1) Union of all the feasible solutions in grey; optimal set in
bold.

Example 4.1. Consider the following interval linear program 2

min 5x1 subject to x1 − x2 = [−5, 5], x1, x2 ≥ 0,

and an outcome function f(x) = 3x1− 2x2. Figure 4.1 depicts the above program. In

the figure, union of all the feasible solutions arising from all the realizations of the

interval data is shown by the grey area, and the optimal set (Ωb) is represented by

the bold lines. The goal is to minimize (maximize) f(x) over the bold lines. As can

be observed from the figure, the outcome function range is [−10, 15]. Particularly, f

is achieved on x∗ = (0, 5) which is the optimal solution of the linear program with

b = −5, while f is obtained on x∗ = (5, 0) which is the optimal solution of the linear

program with b = 5.

As already noted, the outcome range problem was initially motivated and studied

in [94]. In this paper, we extend our previous results to address the outcome range

problem for a more general type of ILP problems (i.e., Type I). We look deeper into

properties of the problem and study how it is situated in a broader optimization

context. Our solution approaches are more problem-specific here, and we test them

2This is a modification of Example 3 in [44].

73

on a wider range of problem instances.

4.3 Computational complexity

From Figure 4.1, we can see that even for a simple example with one real interval,

the optimal set is nonconvex. In fact, a convenient description of the optimal set is

not available in general [59]. This builds complexity of the outcome range problem.

In this section, we address complexity of the ORPb. We need some definitions at this

point. We define the optimal value range problem as the problem of finding the best

and the worst optimal values among all the optimal values obtained over all data

perturbations. The optimal value range of (4.2) reads as

z := inf{z(b) : b ∈ b}, (4.5)

z := sup{z(b) : b ∈ b}, (4.6)

where z and z can take on finite values, infinity or infeasiblity. The range [z, z] then

gives the optimal value range.

Theorem 4.1. Problem of finding (4.3) and (4.4) is NP-hard.

Proof. By Theorem 7 in [44] (p. 282), we know that computing the exact interval

hull of the optimal set of ILP (4.2) is NP-hard. Now if we put f(x) = xi, for any

i ∈ {1, . . . , n}, we can conclude that ORPb also is NP-hard.

Now let us proceed with an observation related to z.

Proposition 7. Checking whether z is attained for a given b ∈ b is a co-NP-hard

problem. This is true even for a class of problems with finite z.

Proof. By [45], checking strong solvability (i.e., solvability of each realization) of an

74

interval system Ax = b, x ≥ 0 is co-NP-hard, where A and b have the form

A =

−M M 0

eT eT 1

 , b =

[−e, e]

1

 ,

where M is a non-negative positive definite matrix and e is a vector of all ones (both

with proper dimensions). For the realization b := (0T , 1)T , the system is solvable, and

one of its solution is x := 1
n
(eT , eT , 1)T . Consider the following ILP

min eTy + eTy′ subject to Ax+ y − y′ = b, x, y, y′ ≥ 0.

The problem is strongly feasible and the objective function is bounded from below.

Therefore, each realization has a finite optimal value and also z is finite, since it is

attained for one of the realizations [110]. If b is the worst case scenario, then z = 0 and

the original system is strongly solvable. Otherwise, z > 0, meaning that the system

is not strongly solvable.

Proposition 7 reveals the following results related to ORPb.

Corollary 4.1. Checking whether f (f) is obtained on a given b ∈ b is co-NP-hard.

Proof. It follows from Proposition 7 by setting r := ±c.

Corollary 4.2. Checking whether f (f) is attained for a given x ∈ Rn is a co-NP-

hard problem.

Even though ORPb is an NP-hard problem in general, there are few polynomially

solvable cases of the problem. We present below one of these cases.

Proposition 8. Suppose that in ILP (4.2), coefficient matrix A is a square matrix

of full rank. Then, ORPb is polynomillay solvable.

75

Proof. Since we assume that A is a square matrix of full rank, LP(b) has at most one

feasible solution for any given b ∈ b. Thus, we can solve ORPb by the means of two

linear programs

min(max) rTA−1b subject to A−1b ≥ 0, b ∈ b,

in variable b.

Remark 4.1. For the sake of brevity, hereinafter, we only discuss results related to

the computation of f , that is, problem (4.3). All the results are also applicable to

problem (4.4).

4.4 Properties of ORPb

Here, we investigate some theoretical properties of ORPb. Before going into the

details, let us review some definitions.

Definition 4.1. A vector x ∈ Rn is called a weak feasible solution of ILP (4.2) if

there exists b ∈ b such that Ax = b, x ≥ 0.

Proposition 9. (see [112] for a proof) The set of all the weak feasible solutions of

ILP (4.2) is described as

F := {x ∈ Rn : Ax ≤ b, −Ax ≤ −b, x ≥ 0}.

Now let us recall ILP (4.2) for a given b ∈ b,

min cTx subject to Ax = b, x ≥ 0. (4.7)

By a basis B we mean an index set B ⊆ {1, . . . ,m} such that AB is nonsingular,

where a subscript B on a matrix (row vector) denotes the submatrix (subvector)

76

composed of columns indexed by B. That is, set B is the set of indices associated

with basic variables. Similarly, an index set N := {1, . . . ,m} \B indicates indices for

nonbasic variables and as a subscript it represents restriction to nonbasic indices. A

basis B is an optimal basis of (4.7) if and only if the following conditions hold

A−1
B b ≥ 0, (4.8a)

cTN − cTBA−1
B AN ≥ 0T . (4.8b)

Since vector c is fixed, for a given optimal basis, we call (4.8a) its basis stability

region. An ILP problem may have several optimal bases, and consequently several

basis stability regions.

Proposition 10. The set of all scenarios b ∈ b for which there exists x ≥ 0 such

that Ax = b is a bounded convex polyhedron.

Proof. Let A(F) denote the set of all b ∈ b for which there exists x ≥ 0 such that

Ax = b. Set A(F) is naturally bounded by the box b and is the image of convex

polyhedron F under a linear map, so it is a bounded convex polyhedron.

The above proposition implies that the uncertainty space of ILP (4.2) can be

seen as a convex polyhedron, even though it is not always easy to describe it more

explicitly. Below, we discuss another observation related to the above proposition.

Corollary 4.3. The union of all the basis stability regions of ILP (4.2) is convex.

We use this observation in one of our algorithms in Section 4.6. Also, Example 4.4

in Section 4.6.3 gives an illustration of the above corollary.

We now explore a property related to the scenario corresponding to f .

Definition 4.2. b∗ is an optimal scenario of (4.3) if f = f(x∗), where x∗ ∈ S(b∗).

77

Definition 4.3. Given an optimal scenario b∗ of (4.3), an optimal basis B∗ corre-

sponding to x∗ ∈ S(b∗) such that f = f(x∗) is a global optimal basis of (4.3).

Given a global optimal basis B∗, it is natural to find f and b∗ by solving the

following linear program

min rTB∗A
−1
B∗b subject to A−1

B∗b ≥ 0, b ∈ b, (4.9)

in variable b.

Proposition 11. Optimal scenario b∗ is either a vertex of b or a realization b∗ ∈ b,

for which LP(b∗) is degenerated.

Proof. If no optimal scenario is a vertex of b, then at least one optimal scenario lies

on the boundary of at least two polyhedra characterized by the feasible solution set

of (4.9). Therefore, the optimal solution of LP(b∗) is degenerated.

As stated earlier, in practical problems, we are interested in problems with the

finite range of the outcome function, i.e., finite f and f . Here we discuss a condition

for the finiteness.

Proposition 12. If 0 = min rTx subject to Ax = 0, x ≥ 0, then f > −∞.

Proof. By Proposition 9, we know that the set of all the weak feasible solutions is

described by

Ax ≤ b, −Ax ≤ −b, x ≥ 0.

Its recession (or characteristic) cone is described by Ax = 0, x ≥ 0. So if the minimum

of rTx over the recession cone is 0, then the minimum of rTx over F is bounded, and

therefore also the minimum of rTx over Ωb is bounded.

78

4.5 How does ORPb relate to other problems?

ORPb lies somewhere between the optimal value range problem, multiobjective

optimization, and bilevel optimization. In this section, we discuss the relation between

ORPb and these problems. We also provide a mixed integer LP formulation of ORPb.

4.5.1 Optimal value range problem

Let us recall the optimal value range problem from Section 4.3, that is, problems

(4.5) and (4.6). There is a relation between ORPb and the optimal value range prob-

lem. Indeed, ORPb can be seen as a generalized form of a special case of the optimal

value range problem. We formalize the relation between the two problems by means

of the following observation.

Observation 4.2. If z and z are finite, we then can reformulate the optimal value

range problem as

z = min cTx subject to x ∈ Ωb, (4.10)

z = max cTx subject to x ∈ Ωb. (4.11)

We see that, under the assumption of Observation 4.2, f (f) would be a generalization

of z (z). Indeed, in such a case, if f(x) = cTx then looking for [f, f] is equivalent to

looking for [z.z]. Note that such a relationship between f (f) and z (z) does not hold

in general, as shown in the following example.

Example 4.2. Consider the following ILP problem

min 3x1 + 5x2 subject to x1 + x2 = [−1, 5], x1, x2 ≥ 0,

and let f(x) = 3x1 + 5x2 be also the outcome function. Figure 4.2 depicts the above

79

ILP problem. From the figure, we see that z = 0. It is also easy to see that LP (b = −1)

is infeasible and, by convention [111], we set z(b = −1) =∞. Thus, the range [0,∞)

gives the optimal value range. However, from Figure 4.2, it is not hard to observe

that f(x) ranges in [0, 15], which is different from the optimal value range.

Figure 4.2: (Example 4.2) The set of all the weak feasible solutions and the optimal
set are in grey and bold, respectively.

Moreover, apart from the relation in the theory, the two problems are essentially

different from the application stand point. In particular, the optimal value range

problem returns the best and the worst values of an objective function taking into

account all the realizations of the uncertain parameters. This problem provides a

decision maker a sense of the risk involved in his/her decision from the operational

perspective. However, the outcome range problem consists of computing the best and

the worst values of a given (additional) linear function over the set of all optimal

solutions of a linear program with interval data. The problem particularly aims at

quantifying unintended consequences of optimal decisions in an uncertain environ-

ment; hence, providing additional important information on a system to decision

makers who are observing it from outside (e.g., policy makers).

80

4.5.2 Multiobjective optimization

A multiobjective linear programming problem is defined as

min Cx subject to M(A, b), (4.12)

where C ∈ Rv×n and M(A, b) is the feasible set defined by linear constraints with

matrix coefficient A ∈ Rm×n and right-hand side vector b ∈ Rm. A solution xe ∈

M(A, b) is said to be an efficient solution of (4.12) if there exists no x ∈ M(A, b)

such that Cx ≤ Cxe with at least one strict inequality.

One may see a relation between ORPb and multiobjective linear programs with

interval right-hand sides. Let us reformulate (4.3) as the following interval multiob-

jective linear program

min f1(x) = rTx

min f2(x) = cTx

subject to Ax = b, x ≥ 0. (4.13)

Definition 4.4. A solution xe is called a possibly efficient [15, 72] solution of (4.13)

if it is feasible and efficient for some b ∈ b.

Problems (4.3) and (4.13) are not equivalent because the latter always deals with

a larger set of solutions. We show this by the following example.

Example 4.3. Consider the following linear program with an interval right-hand side

min 2x1 subject to x1 + x2 = [0, 5], x1, x2 ≥ 0, (4.14)

and an outcome function f(x) = −2x1 + 5x2. Now let us recall the multiobjective

81

(a) (b)

Figure 4.3: (Example 4.3) (a) the optimal set of (4.14) is in bold; (b) the set of all
the possibly efficient solutions of (4.15) is shown by a pattern.

reformulation of (4.3):

min (−2x1 + 5x2, 2x1) subject to x1 + x2 = [0, 5], x1, x2 ≥ 0. (4.15)

Figure 4.3a shows the optimal set of (4.14), while Figure 4.3b depicts the set of all the

possibly efficient solutions of (4.15) obtained from all the realizations of the uncertain

data. As can be seen, the two sets represented in the figures are not equivalent. From

Figure 4.3a, we can observe that f = 0. By considering the set of all the possibly

efficient solutions in Figure 4.3b, the minimum value of the first objective is −10,

which is different from what we observe from Figure 4.3a. Thus, we can conclude that

(4.3) and (4.13) are not equivalent problems in general. However, the two problems

are not totally irrelevant. The following reveals a relation between the two problems.

Proposition 13. Let x∗ ∈ Ωb be given such that f = f(x∗). Then x∗ is a possibly

efficient solution of (4.13).

Proof. Let b∗ be an optimal scenario of (4.3). We can see that in (4.13), the following

82

holds

f2(x∗) ≤ f2(x̂), ∀x̂ ∈ {x : Ax = b∗, x ≥ 0}.

We also know that

f = f1(x∗) ≤ f1(x̃), ∀x̃ ∈ Ωb.

Therefore, there exists no x̂ ∈ {x : Ax = b∗, x ≥ 0} such that either f2(x̂) < f2(x∗),

or f2(x̂) = f2(x∗) and f1(x̂) < f1(x∗). Thus, x∗ is a possibly efficient solution of

(4.13).

4.5.3 Bilevel optimization

Let us reformulate (4.3) as the following bilevel linear program

“ min ” 0T b+ rTx

subject to (4.16)

b ∈ b, x ∈ arg min
x
{cTx subject to Ax = b, x ≥ 0}.

Here, b denotes the leader decision vector and x denotes the follower decision vector.

In the above formulation we use quotation in the leader problem due to a vagueness

that arises when the follower problem admits multiple optimal solutions for any given

b ∈ b. In other words, in case of multiple follower optimal solutions for a given b ∈ b,

it is not clear how the follower behaves.

Let us rewrite the constraint defined by the follower problem as a set-valued

mapping

Ψ(b) = arg min
x
{cTx subject to Ax = b, x ≥ 0},

where Ψ : Rm → Rn. An equivalent formulation of (4.16) can be seen as

“ min ” 0T b+ rTx subject to b ∈ b, x ∈ Ψ(b).

83

Now suppose that we expect the follower to be collaborative and to behave in favor

of the leader, choosing the most favorable solution for the leader (i.e., optimistic

position). The reaction set of the follower is then given by

Ψo(b) = arg min
x
{0T b+ rTx : x ∈ Ψ(b)}.

Bilevel linear program (4.16) under the optimistic position of the follower can be

formulated as

min 0T b+ rTx subject to b ∈ b, x = Ψo(b). (4.17)

By considering Assumption 4.1 in Section 4.2, it is easy to see that (4.3) and (4.17) are

equivalent problems. Thus, ORPb can be equivalently formulated as two optimistic

bilevel linear programs. However, bilevel linear programming is too general to solve

ORPb efficiently as it is known to be strongly NP-hard [55]. We also confirm this by

our numerical experiments3.

4.5.4 Mixed integer LP formulation

Let us here remind you the program (4.7), which corresponds to ILP (4.2) for a

given b ∈ b. The dual of (4.7) reads

max bTy subject to ATy ≤ c, (4.18)

where y ∈ Rm is the vector of dual variables. By using the complementary slackness

condition, (x, y) is a pair of primal (4.7) and dual (4.18) optimal solutions if and only

if they solve the system

Ax = b, x ≥ 0, ATy ≤ c, xT (c− ATy) = 0.

3Interested readers are referred to Ref. [122] for a review on bilevel optimization.

84

Now we assume, without loss of generality, that b is a vector of variables with given

lower and upper bounds (i.e., b ∈ b). We can then describe the optimal set of ILP

(4.2) by the following parametric system

Ax = b, x ≥ 0, ATy ≤ c, xT (c− ATy) = 0, b ∈ b. (4.19)

This is a nonlinear system. Note that c − ATy ≥ 0. Thus, let us define an auxiliary

variable h ≥ 0 where h = c − ATy. Then the complementary slackness constraint

reads xTh = 0. Since x and h are non-negative, we can restate the constraint as

xi = 0 ∨ hi = 0, ∀i ∈ {1, . . . , n}.

Thus, the complementary slackness constraint can be seen naturally as a logical con-

straint. Let us define a binary variable φ ∈ {0, 1}n. We can rewrite (4.19) as

Ax = b, x ≥ 0, c− ATy = h, x ≤ φL, h ≤ (1− φ)L, h ≥ 0, b ∈ b, φ ∈ {0, 1}n,

(4.20)

where L is a sufficiently large constant. We now can solve ORPb to optimality by

solving two mixed integer linear programs, that is, minimizing (maximizing) f(x)

subject to system (4.20).

4.6 Approximating ORPb

Since the structure of the optimal set (Ωb) can be very complicated, we often are

not able to solve ORPb to optimality. Thus, in this section, we present three methods

to approximate ORPb. Particularly, we develop a method based on the reformulation-

linearization technique to get an outer approximation of the outcome function range.

We also design two iterative improvement algorithms to find an inner approximation

of the outcome function range. We now discuss our methods in detail.

85

4.6.1 Outer approximation: A reformulation-linearization technique

The idea behind our method is that we first describe Ωb by a nonlinear system,

and we then linearize it by utilizing the reformulation-linearization technique (RLT)

introduced in [119].

If, instead of the complimentary slackness condition in Section 4.5.4, we consider

the strong duality condition in linear programming, we then can describe Ωb as the

set of solutions to the following system

Ax = b, ATy ≤ c, cTx = bTy, x ≥ 0, b ∈ b, (4.21)

in variables x, y, and b. Constraint cTx = bTy is the strong duality constraint. This

system includes bilinear terms (i.e., bTy), and thus it is very hard to deal with in

general. We apply the RLT to linearize the above system. The RLT consists in two

steps: (i) the first step generates valid quadratic constraints by suitably multiply-

ing some constraints of the system by a combination of nonegative variable factors,

constructed using the problem constraints, and (ii) the second step linearizes the

nonlinear terms by defining new variables. The resulting linear system is known to

enclose the nonlinear system.

Remark 4.2. System (4.19) has n bilinear terms in n constraints, while system (4.21)

has m bilinear terms in one constraint. This makes applying RLT to the former system

more cumbersome than the latter system. Hence, we here chose to work with system

(4.21).

Reformulation phase. Let y and y be the lower and the upper bounds on the dual

86

decision vector y, respectively. We define the following bound factors for y

yi − yi ≥ 0 ∀i ∈ {1, . . . ,m}, (4.22a)

yi − yi ≥ 0 ∀i ∈ {1, . . . ,m}. (4.22b)

We similarly define the bound factors for b as

bi − bi ≥ 0 ∀i ∈ {1, . . . ,m}, (4.23a)

bi − bi ≥ 0 ∀i ∈ {1, . . . ,m}. (4.23b)

The goal is to construct the nonlinear terms biyi in the constraints of (4.21) by using

the above bound factors. This can be done in many ways one of which is pairwise

multiplying constraints in (4.22) and (4.23). For the sake of illustration, suppose the

multiplication of (4.22a) and (4.23a)

(yi − yi)(bi − bi) ≥ 0 ∀i ∈ {1, . . . ,m}.

This can be then rearranged into

−yibi + yibi + biyi ≥ yibi ∀i ∈ {1, . . . ,m}.

System (4.21) together with all the bilinear constraints, generated as explained above,

87

yields an equivalent reformulation of Ωb, that is,

[R1] Ax = b, ATy ≤ c, cTx = bTy, x ≥ 0, b ∈ b,

−yibi + biyi + biyi ≥ biyi ∀i ∈ {1, . . . ,m},

−yibi + biyi + biyi ≥ biyi ∀i ∈ {1, . . . ,m},

yibi − biyi − biyi ≥ −biyi ∀i ∈ {1, . . . ,m},

yibi − biyi − biyi ≥ −biyi ∀i ∈ {1, . . . ,m}.

Note that R1 is one reformulation of (4.21). We can have a variety of reformulations by

multiplying more constraints by the bound factors. In general, the more constraints

of this type we construct, the better the resulting approximation would be. That

being said, the size of the reformulation gets large dramatically as we multiply more

constraints. Therefore, from a computational efficiency standpoint, a proper trade-off

is needed.

Here, we also offer another reformulation of (4.21) where, in addition to the valid

constraints obtained by pairwise multiplying the bound factors, we construct some

additional quadratic constraints by pairwise product of ATy ≤ c and (4.23). As an

example,

(c− ATy)(bi − bi) ≥ 0 ∀i ∈ {1, . . . ,m}.

As can be noted, we create new bilinear terms since we have biy for each i ∈

{1, . . . ,m}. These additional terms also need to be taken care of when we multiply

88

(4.22) and (4.23). After a simplification, an alternative reformulation of Ωb reads

[R2] Ax = b, ATy ≤ c, cTx = bTy, x ≥ 0, b ∈ b,

−biATy + cbi + biA
Ty ≥ cbi ∀i ∈ {1, . . . ,m},

biA
Ty − cbi − biATy ≥ −cbi ∀i ∈ {1, . . . ,m},

−yjbi + biyj + biyj ≥ biyj ∀i, j ∈ {1, . . . ,m},

−yjbi + biyj + biyj ≥ biyj ∀i, j ∈ {1, . . . ,m},

yjbi − biyj − biyj ≥ −biyj ∀i, j ∈ {1, . . . ,m},

yjbi − biyj − biyj ≥ −biyj ∀i, j ∈ {1, . . . ,m}.

Linearization phase. We linearize nonlinear constraints in R1 and R2 through an

appropriate variable substitution. Particularly, to linearize system R1, we substitute

wi = biyi ∀i ∈ {1, . . . ,m},

and for linearizing system R2, we put

wij = biyj ∀i ∈ {1, . . . ,m}, j ∈ {1, . . . ,m}.

Let E(R1) and E(R2) be respectively the linearized systems R1 and R2 after such

a substitution. In our computational experiments discussed in Section 4.7, we assess

the performance of the two following outer approximations (i.e., lower bounds)

[RLT1] fL1 = min rTx subject to (x, y, b, w) ∈ E(R1), (4.24)

[RLT2] fL2 = min rTx subject to (x, y, b, w) ∈ E(R2). (4.25)

89

4.6.2 Inner approximation: A gradient-restoration based algorithm

We here design an algorithm to explore Ωb. The idea builds from the gradient-

restoration algorithm which was originally developed to minimize constrained non-

smooth functions [91]. Our algorithm basically alternates between an improving phase

and a restoration phase and can be applied to find an upper bound for f . Figure 4.4

is an illustration on how the algorithm works. From a high level perspective, we start

from a feasible point of (4.3), that is, a given xk ∈ Ωb (Figure 4.4a). We then obtain a

new point u in a neighborhood of xk, namely N(xk), such that f(u) ≤ f(xk) (Figure

4.4b). If the new point u belongs to Ωb, then we store the value of f(u) and start

over with u as the new feasible point. Otherwise, we apply a restoration phase where

we perturb a given u /∈ Ωb to obtain a new point x̂ such that x̂ ∈ Ωb (Figure 4.4d).

The restoration phase, indeed, ensures that we have an incumbent solution at each

iteration. After this phase, a new iteration starts with x̂ as the new feasible point. The

algorithm iterates until the improvement is not significant. A general pseudo-code of

the algorithm is given in Algorithm 4.1. We now discuss each step in detail.

Figure 4.4: An illustration of our proposed Algorithm 4.1. We borrowed the figure
from Example 4.1 (Ωb is in bold).

90

Algorithm 4.1: A gradient-restoration based algorithm

1 Input: input data
Result: an upper bound of f

2 Set k ←− 0.

3 Step 0. (initial point): Find an initial xk ∈ Ωb and set f̂
k
←− f(xk).

4 while we can move to a new point in the weak feasible solution set do
5 Step 1. (improving step)
6 Select u ∈ N(xk) such that f(u) ≤ f(xk).
7 Step 2. (certification step)
8 Set k ←− k + 1.
9 if u ∈ Ωb then

10 Put xk ←− u and f̂
k
←− f(u).

11 else
12 Step 3. (restoration step)
13 Retrieve a x̂ ∈ Ω.

14 Set xk ←− x̂ and f̂
k
←− f(x̂).

15 end

16 end

Step 0. (initial point) We can get an initial point x0 simply by solving LP(b) to

optimality for a random scenario b ∈ b.

Step 1.(improving step) In the improving step, it is natural to perturb xk in the

direction of d := −r. In particular, we perturb xk as

u = xk + ξαmaxd,

where ξ ∈ (0, 1], and αmax is the maximum perturbation in direction of d such that

weak feasibility of u is preserved. By Proposition 9, the following univariate linear

program yields αmax

max α subject to b ≤ A(xk + αd) ≤ b, xk + αd ≥ 0, α ≥ 0.

Step 2.(certification step) In this step, the goal is to check whether u belongs to Ωb.

That is, we would like to examine whether u is an optimal solution of ILP (4.2) for

91

some b ∈ b.

Theorem 4.2. (see [83]) Let u be a weak feasible solution of ILP (4.2), and assume

that uq1 > 0, . . . , uqp > 0, uqp+1 = 0, . . . , uqn = 0. Then u is an optimal solution of

ILP (4.2) for some b ∈ b if and only if the following system is solvable

ATqj ,.t = cqj , j = 1, . . . , p, (4.26a)

ATqj ,.t ≤ cqj , j = p+ 1, . . . , n, (4.26b)

where Aj,. denotes the j-th row of matrix A, and t ∈ Rm is a decision vector.

Note that to check solvability of system (4.26), we can either directly use the well-

known Farkas’ lemma, or check whether the following linear program with a dummy

objective function has a feasible solution

min 0T t subject to (4.26).

Step 3. (restoration step) Our aim, in this step, is to retrieve a point from Ωb. To

this end, we first obtain b := Au, and we then find an optimal basis of LP(b), say B.

The set of all optimal solutions with the optimal basis B is equal to the set of all the

weak feasible solutions of the following interval linear system

ABxB = b, xB ≥ 0, xN = 0,

which by Proposition 9 can be described by a polyhedral set

ABxB ≤ b, −ABxB ≤ −b, xB ≥ 0. (4.27)

92

Therefore, we can retrieve a x̂ ∈ Ωb by solving the following linear program

min rTBxB subject to (4.27).

Remark 4.3. If αmax = 0, we are on the border of the weak feasible solution set

of ILP (4.2). Hence, to be able to move, we relax the weak feasibility condition and

perturb xk as

u′ = xk + ξd.

The resulting u′ is not a weak feasible solution of (4.2), i.e., u′ /∈ F . To gain weak

feasibility, we project u′ onto the set F by solving the following least square problem

min
u∈F
‖u− u′‖2,

in variable u. The above projection indeed returns the vector u that we need for

Step 1; however, it might not necessary preserve the condition of f(u) ≤ f(xk). For

the sake of avoiding getting trapped at border points, in this case, we relax that

condition.

4.6.3 Inner approximation: A bases inspection approach

In this section, we design an algorithm in the scenario space. Given an optimal

basis B, we can compute the lowest achievable value of f at the basis stability region

of B by solving a linear program, that is,

min rTBA
−1
B b subject to A−1

B b ≥ 0, b ∈ b, (4.28)

in variable b. Basically, this implies that the box b can be decomposed into subparts

according to its basis stability regions, and thus the outcome function can be evaluated

for each subpart.

93

Example 4.4. Consider the following ILP problem

min (−7, 9,−10,−5)x subject to

 −9 2 12 12

−10 2 15 19

x =

[1, 6]

[4, 7]

 , x ≥ 0,

and an outcome function

f(x) = (11,−5, 4,−10)x.

The above problem possesses three optimal bases, B1 = {1, 2}, B2 = {2, 3}, and

B3 = {1, 3}. For each optimal basis, the constraint A−1
B b ≥ 0 from (4.28) reads

B1 : b1 − b2 ≥ 0, b1 − 0.9b2 ≥ 0,

B2 : b1 − 0.8b2 ≥ 0, −b1 + b2 ≥ 0,

B3 : −b1 + 0.8b2 ≥ 0, −0.67b1 + 0.6b2 ≥ 0.

Solving (4.28), the lowest achievable values of f(x) at B1, B2, and B3 are −38, −15,

and 1.07, respectively. Hence, we have f = −38. Figure 4.5 depicts the interval vector

b and its subparts corresponding to the basis stability regions of the three optimal

bases.

One natural way to approximate f is to compute the lowest achievable value of

f for as many optimal bases as we can, and then to take the tightest approximation

among all. Although the number of bases are exponentially large in general, an ILP

problem might possess a limited number of optimal bases.

Here, we present a guided optimal bases search. We start with a random scenario

bθ ∈ b. We find an optimal basis of LP(bθ), namely, B. LP (4.28) returns the lowest

achievable f at the optimal Basis B. Let b̃θ be an optimal solution of (4.28). Now to

go to another optimal basis, we slightly change b̃θ in the direction of the derivative of

94

Figure 4.5: (Example 4.4) The decomposition of interval vector b according to the
basis stability regions of the optimal bases B1, B2, and B3.

outcome function, i.e., `B := −rTBA−1
B . That is,

b′ = b̃θ + λ`B, (4.29)

where λ is a small positive constant. Hence, the outcome function locally acts as a

linear function of −rTBA−1
B . We start the next iteration of the algorithm with b′ as

the new bθ. We repeat the above procedure until we are not able to move to a new

optimal basis. Algorithm 4.2 summarizes the steps of our proposed method.

Remark 4.4. In the case that we get stuck in one basis stability region and cannot

move to another one, we choose another extreme point (different from the optimal

one) of the current basis stability region and proceed along a different direction.

Specifically, this can be done by selecting an arbitrary objective vector for (4.28).

After solving (4.28) with the arbitrary objective vector, we compute b′ according to

the new `B.

95

Remark 4.5. For the case b′ /∈ b, we project it onto the set b by solving

min
b∈b
‖b− b′‖2,

in variable b.

Algorithm 4.2: A bases inspection algorithm

1 Input: input data
Result: an upper bound of f

2 Set θ ← 0.
3 Generate a random scenario bθ ∈ b.
4 while it is possible to move to a new optimal basis do
5 Find an optimal basis of LP(bθ)
6 Compute an approximation of f by (4.28).

7 Determine b̃θ and `B.
8 Find b′ using (4.29).
9 if b′ /∈ b then

10 Project b′ onto b.
11 end
12 Put θ ← θ + 1.
13 Set bθ ← b′.

14 end

4.7 Computational experiments

In this section, we empirically evaluate the performance of our outer and inner

approximation methods. Since there exists no standard algorithm in the literature

to address the outcome range problem, we assess the quality of our methods against

some standard solvers. In particular, we use FMINCON solver in MATLAB to solve

the nonlinear formulation of ORPb, that is, optimizing f(x) subject to nonlinear

system (4.21). FMINCON returns an inner approximation of the range of an outcome

function. Additionally, to solve ORPb to optimality, we use CPLEX to solve the MILP

reformulation (see (4.20)) and YALMIP [87] to solve the bilevel reformulation (see

(4.17)). It is not surprising that these general purpose solvers can only handle the

96

problem efficiently up to a certain point. We show this in the following sections.

4.7.1 Test instances

We evaluate our methods on three test beds. Our first test bed contains the set of

randomly generated problem instances. The problem instances in this case are general

with no specific structure. For the second test bed, we generated problem instances

with a special structure where the coefficient matrix is an arc-node incidence matrix.

Finally, for the third test bed, we considered four problems from the MIPLIB 2010

repository [77]. These problems were also used in [81] as benchmark problems.

Test bed 1. Given the size parameters (m,n), we randomly generated entries of

A ∈ Zm×n in [−10, 10]. The boundedness of the feasible solution set was ensured

by generating the last row of A in [0, 10]. We also randomly generated a solution

vector x0 ∈ Zn in [0, 10]. We then constructed interval vector b as b = Ax0 and

b = b+δe, where δ is the interval width and e is an all-ones vector with the convenient

dimension. This procedure guaranties weak feasibility of the problem instances. We

similarly randomly generated vectors c, r ∈ Zn in [−10, 10]. We generated 30 problem

instances for each triplet (m,n, δ), for a total of 2,100 problem instances.

Test bed 2. We here used a similar procedure to the first test bed except that ma-

trix A was constructed such that it is an arc-node incidence matrix. Specifically, given

(ω, ρ), we considered the coefficient matrix of a balanced transportation problem with

ω origins and ρ destinations. Since the rank of matrix A in transportation problems is

ω+ ρ− 1, to proceed further, we eliminated one row from matrix A for each problem

instance. In other words, the problem instances in this case are basically transporta-

tion problems missing one constraint. The interval vector b was then composed as

in test bed 1. Also, we randomly generated the all-integer vector c in [1, 30] and the

all-integer vector r in [−10, 10] (both with convenient dimensions). Similar to the first

test bed, we generated 30 problem instances for each combination of ω, ρ and δ, for a

97

Table 4.1: Details of the problems chosen from the MIPLIB 2010 repository.

problem
number

of constraints
number

of variables
non-zeros

in A
non-zeros

in c

enlight13 169 338 962 169
enlight15 225 450 1,290 225

mik-250-1-100-1 401 652 6,002 251
roll3000 3,460 4,452 33,837 1

total of 360 problem instances.

Test bed 3. We used four problems from the MIPLIB 2010 repository, namely,

enlight13, enlight15, mik-250-1-100-1, and roll3000. These problems are mixed integer

programs containing a combination of inequality and equality constraints. We relaxed

integrality constraints and transformed all the problems to the standard form LP

with equality constraints (i.e., Type I). Table 4.1 reports size of the problems and

number of non-zero elements in input parameters. As noted above, these problem

instances were used in [81] as a test bed. Lee et al. [81] assume that A, c are fixed

but a set of right-hand side parameter values are given. They generated the set of

right-hand side vectors from different multivariate distributions with different sample

sizes. In our test bed, we took a similar approach and generated the right-hand side

vectors using a multivariate normal distribution with different sample sizes.4 We then

computed the interval hull of the generated vectors to construct the interval vector

b. We refer readers to Appendices in [34, 81] for details of sampling procedures for

each problem. We also randomly generated the all-integer vector r in [−10, 10] for

enlight13, enlight15 and roll3000 and in [0, 500] for mik-250-1-100-1 (all with proper

dimensions). In total, for this test bed, we deal with 32 problem instances.

4Sample sizes here are similar to those considered in [81].

98

4.7.2 Implementation details

For the first two test beds, we tried the gradient-restoration based algorithm (GR)

and the bases inspection approach (BI) with two randomly generated initial points

and chose the best solution among the two resulting outputs. However, for test bed

3, due to the large size of the problem instances, we ran the two algorithms with

only one initial point, and we also imposed a limit of 50 on the number of basis

stability regions that BI can check. We set parameter ξ in BI to 0.2 and parameter λ

in GR to 0.1. In our MILP reformulation, for test bed 1, we considered a conservative

constant of L = 1, 000 for each problem instance, while we set L, for test bed 2,

to the maximum value of vector b in each problem instance. For our reformulation-

linearization technique, we applied the contractor algorithm in [59] to get bounds on

y, i.e., [y, y].

There are five internal stopping conditions in FMINCON, namely, maximum it-

erations, maximum function evaluations, step tolerance, function tolerance, and con-

straint tolerance. We set the first two conditions to 1, 000, 000, the step tolerance to

(1.000E − 10), and function and constraint tolerances to (1.000E − 6). Moreover,

we fed the solver with an initial solution which is an optimal solution of LP(b) for

a random b ∈ b. We additionally considered a time limit of 30 minutes for solving

a problem instance. For each problem instance, in the case that the solver reached

the time limit without converging to a solution before meeting its internal stopping

conditions, we considered the returned solution a valid one if it was within the feasi-

bility tolerance. For the cases the solver met either of its internal stopping conditions

before reaching the time limit, we saved the solution if it was a feasible one, and we

started over using another initial solution. For these particular cases, we continued

in this way until either the solver normally converged to a solution or the time limit

was reached. Finally, we returned the best solution among all the saved solutions (if

99

there was any).

We implemented our algorithms using MATLAB (R2019b). We used CPLEX 12.9

to solve linear programs, mixed integer programs and least square problems. We also

used YALMIP solver to solve the bilevel reformulation. We carried out our exper-

iments on a computer with an Intel(R) Core (TM) i7-4790 CPU processor at 3.60

GHZ with 32.00 GB of RAM.

4.7.3 Numerical results

We here discuss results of our computational experiments. Let us recall that

we compare results obtained by the reformulation-linearization technique (RLT1 &

RLT2), bases inspection approach (BI), gradient-restoration based algorithm (GR),

FMINCON solver used for solving the nonlinear formulation (FMIN), CPLEX solver

employed for solving the MILP formulation, and YALMIP solver applied for solving

the bilevel formulation. It is also worth reminding that we only report the results

related to the computation of f .

We divided the results related to the first test bed into two parts. The first part

corresponds to the results obtained over a set of smaller size problem instances for

which we were able to solve f to optimality efficiently. The second part reports the

results computed over a set of larger size problem instances for which we could not

obtain the exact value of f in a reasonable time. Given an estimation f̂ , we computed

its gap from the optimal value by

gap :=

∣∣∣∣∣ f̂ − ff
∣∣∣∣∣ .

Hence, the lower the gap, the better the performance. To reduce the effects of possible

outliers on our results, for the cases that the average gap was greater than 1, we

reported the average gap after eliminating the maximum gap (i.e., an average on 29

100

problem instances). We marked these cases by an asterisk (*) in the tables.

Table 4.2 shows the results related to smaller size problem instances in test bed 1.

In the table, the first two columns show the characteristics of the problem instances,

that is, the size of problem instances (m × n) and the interval width (δ). The first

five grouped columns report the average gap from the optimum, and the last seven

grouped columns display the average running time (sec.). Every value in the table

denotes an average on 30 problem instances, except those values marked by an asterisk

which correspond to an average on 29 problem instances. As it was expected, we can

see that the average running times of CPLEX and YALMIP dramatically increase by

increasing the size of the problem instances, with an average of, respectively, 134.37

seconds and 363.56 seconds for the problem instances of size 40×60. However, BI , GR

and RLT1 are quite fast with a maximum average computation time of less than one

second. As can be noted, computation times of FMIN and RLT2 grow by changing

the size of problem instances, but in a less steeper manner compared to CPLEX and

YALMIP. In particular, the average running time of FMIN ranges between 0.23 and

3.92 seconds and that of RLT2 between 0.22 and 4.72 seconds. Regarding the gap

from the optimal value, BI returns tighter inner approximations than FMIN in 34

rows out of a total of 35, and in the worst case its average gap from the optimum

is 0.072. Moreover, GR outperforms FMIN in 28 rows out of 35 rows, while in the

worst case its average gap is 0.44 which is higher than that of BI. In short, the order

of algorithms in terms of the tightness of the inner approximations is BI, GR, and

FMIN. In contrast, RLT1 and RLT2 do not tend to return very tight approximations

in general. However, the quality of RLT2 seems more reasonable than RLT1, which

is also paid off by the computation time.

Table 4.3 highlights the results related to larger size problem instances in test

bed 1. Our findings from Table 4.2 show that RLT1 & RLT2 do not return a tight

approximation for smaller size problem instances. Thus, for this set of problem in-

101

stances, we only focus on the performance of the inner approximation methods. As

mentioned earlier, the optimal values for these problem instances are not known.

Hence, we benchmarked the results of FMIN to evaluate the other two algorithms.

Particularly, given an inner approximation (f ∗) attained by BI or GR, if it outper-

forms an estimation found by FMIN (f ∗∗), i.e., f ∗ ≤ f ∗∗, we computed their relative

distance by

distance :=
f ∗∗ − f ∗∣∣f ∗∗∣∣ .

Thus, a higher distance measure indicates a better performance of BI or GR compared

to FMIN. In Table 4.3, for the algorithms BI and GR, we report the number of problem

instances for which each algorithm outperforms FMIN (column freq.) and also the

average distance from FMIN (column avg. dist.). The last three columns display the

average running times for the three methods. As an example, for the problem size

50 × 70 with δ = 5, GR outperformed on 22 problem instances out of a total of

30 problem instances, and the average distance from FMIN computed on those 22

problem instances is 0.0457. It is worth noting that in each row of the table, the

average running time was computed on all the 30 problem instances. In total, BI

outperformed on 1,005 problem instances out of a total of 1,050 problem instances

with the maximum average distance of 0.1368, and GR outperformed on 861 problem

instances with the maximum average distance of 0.2273. While the frequency of the

outperformance is persistent for BI, the number tends to drop for GR as δ increases.

Moreover, BI and GR converged to a solution very fast with a maximum average

running time of, respectively, 1.05 seconds and 0.3 of a second. However, FMIN is less

computationally efficient with the average running time ranges from 3.53 seconds to

185.20 seconds.

We represent the results related to test bed 2 in Table 4.4. The problem instances

in test bed 2 are of importance since their matrix A is an arc-node incidence ma-

trix, i.e., coefficient matrices are sparse. For test bed 2, we focused on the problem

102

instances for which we were able to get the optimal values thorough CPLEX. For

this class of problem instances, we tried wider δ compared to the previous test bed.

Similar to Table 4.2, Table 4.4 reports the average gap from the optimum and the

average running time. The algorithms showed the same behaviour here as they did

in test bed 1, that is, BI and GR are still promising in computing a cheap but tight

approximation, while FMIN returned reasonable solutions in a much longer time (see,

for example, problem instances of size 39×400 in the table). Our findings also confirm

that while RLT1 and RLT2 are fast, they do not yield very usable estimations.

Problem instances in test bed 3 are distinguished from the other two test beds in

the following aspects: (i) they are larger in size, (ii) sparsity occurs in both A and

c, and (iii) interval vector b was constructed differently. Given the poor performance

of RLT1 and RLT2, we again here concentrate on BI, GR, and FMIN. For problems

enlight13 and enlight15, FMIN was able to return a solution; however, it failed to

converge to even a feasible solution within the time limit for mik-250-1-100-1 and

roll3000. Thus, for problems enlight13 and enlight15, we benchmarked FMIN and

summarized our results in Table 4.5. In the table, the first column represents the

model names, the second column denotes the number of generated samples based on

which we constructed interval vector b, and the third column shows an average δ

obtained over all the right hand sides. It is worth noting that each row of the table

corresponds to only one problem instance, that is, Table 4.5 reports results for 16

problem instances. The following two columns denote the distance measure. Note

that a negative value in the table means outperformance of FMIN. The last three

columns report the running time. As the results in the table read, BI returns a better

solution compared to FMIN on every problem instance. GR outperformed FMIN on

10 problem instances. Furthermore, GR is the cheapest algorithm among all with a

maximum running time of 0.32 of a second, while FMIN is the most expensive one

with the running times range from 91.46 seconds to 857.06 seconds.

103

Table 4.6 outlines the results on mik-250-1-100-1 and roll3000. Since FMIN was

not able to return any solution within the time limit, we here benchmarked GR and

reported the obtained distance measures for BI (column 4). We also displayed the

running times in the last two columns of the table. Similar to Table 4.5, Table 4.6

corresponds to 16 problem instances. For mik-250-1-100-1, both algorithms run fast,

but BI outperformed GR, in terms of quality of solutions, on five problem instances

out of a total of eight problem instances. In the case of roll3000, we can see from the

table that BI and GR yielded more or less same solutions, but BI took significantly

longer time than GR to converge, with an average running time of 196.19 seconds for

BI versus that of 7.96 seconds for GR.

4.8 Concluding remarks

Quantifying extra functions (i.e., outcome functions) over optimal solutions of

an optimization problem can be of great value in practice since it provides decision

makers with additional information on a system. This becomes even more relevant

when input parameters of an optimization problem are subject to uncertainty, which

can often cause the optimal solutions to change and consequently impair results of

outcome functions. In this paper, we considered uncertainty in the form of interval

data. In particular, we addressed the outcome range problem which consists of find-

ing the lower and upper bounds of an outcome function of interest over the set of all

the possible optimal solutions of a linear program with interval data. We narrowed

down our study on linear programming problems with interval right-hand sides, mo-

tivated by the fact that uncertainty usually, in real-world problems, only affects the

right-hand sides of the constraints. We investigated the outcome range problem for

this special case. We discussed the computational complexity of the problem, showing

that the problem is non-trivial. We also explored some of its theoretical properties

related to some characteristics of the problem in the scenario space. The outcome

104

range problem can have overlaps with other known problems such as optimal value

range problem, bilevel optimization, and multiobjective optimization. We formally

established the relation between the outcome range problem and the aforementioned

problems. Moreover, we developed several heuristics to solve the problem. Specifically,

we presented a nonlinear formulation of the outcome range problem and employed the

reformulation-linearization technique to linearize the problem. Our numerical experi-

ments show that this approach does not lead to a very tight outer approximation and

could be even computationally inefficient depending how we perform the reformula-

tion phase. To estimate the range of an outcome function from inside, we designed

a gradient-restoration based algorithm and a bases inspection approach. Our results

show that these algorithms are promising both in terms of quality of the solution and

the running time.

We see several future directions for this work. From the computational perspec-

tive, there is room for improvement of the outer approximation. Having a tight outer

approximation is particularly important in designing an exact algorithm for the prob-

lem. From the theoretical standpoint, it seems promising to study the outcome range

problem with the uncertainty set described as a general convex polyhedron. We al-

ready showed in Section 4.4 that the union of all scenarios for which there exists a

weakly feasible solution is a bounded convex polyhedron. Hence, it would be interest-

ing to investigate the problem under such a generalization. Furthermore, in practical

applications, uncertainty may also affect the objective function coefficients. Thus, an-

other future direction could be addressing the outcome range problem where intervals

occur in the objective function and the right-hand side vector of the underlying linear

program.

105

Table 4.2: Results related to smaller size problem instances in test bed 1. An asterisk
(*) denotes an average on 29 problem instances.

size
(m× n)

δ
average gap from the optimum average running time (sec.)

BI GR FMIN RLT1 RLT2 BI GR FMIN RLT1 RLT2 MILP Bilevel

5× 10

0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0873 0.0363 0.2859 0.1890 0.2944 0.0213 0.0770
0.1 0.0000 0.0000 0.0001 0.0000 0.0000 0.0822 0.0359 0.2261 0.0935 0.2305 0.0197 0.0651
0.5 0.0000 0.0000 0.0004 0.0000 0.0000 0.0841 0.0383 0.2486 0.0927 0.2248 0.0219 0.0624
1 0.0000 0.0000 0.0005 0.0031 0.0001 0.0774 0.0379 0.2487 0.0926 0.2341 0.0199 0.0653
2 0.0000 0.0000 0.0090 0.0238 0.0000 0.0794 0.0342 0.2507 0.0928 0.2237 0.0192 0.0642
3 0.0000 0.0158 0.0182 0.0864 0.0224 0.0798 0.0359 0.2467 0.0902 0.2273 0.0177 0.0643
5 0.0000 0.1689 0.0061 0.6498 0.0000 0.0821 0.0365 0.2265 0.0935 0.2280 0.0209 0.0650

10× 20

0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0746 0.0373 0.3526 0.0908 0.3861 0.0505 0.0837
0.1 0.0000 0.0000 0.0000 0.0036 0.0000 0.0787 0.0352 0.3590 0.0913 0.4004 0.1012 0.1107
0.5 0.0000 0.0006 0.0017 0.0045 0.0000 0.0760 0.0376 0.5149 0.0908 0.3873 0.0428 0.0878
1 0.0000 0.0000 0.0018 0.0431 0.0000 0.0751 0.0353 0.4407 0.0927 0.3916 0.0537 0.0893
2 0.0000 0.0001 0.0012 0.1455 0.0000 0.0780 0.0357 0.6320 0.0906 0.3974 0.0427 0.1030
3 0.0000 0.0007 0.0026 0.0486 0.0008 0.0876 0.0351 0.5148 0.0895 0.3920 0.0411 0.0906
5 0.0034 0.0046 0.0017 0.3498* 0.0102 0.0864 0.0363 0.3419 0.0890 0.3898 0.0475 0.0927

30× 40

0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0799 0.0530 0.9929 0.0937 1.7302 0.2901 0.3169
0.1 0.0000 0.0000 0.0000 0.0016 0.0000 0.0839 0.0496 1.1156 0.0980 1.7686 0.2953 0.3120
0.5 0.0003 0.0003 0.0006 0.1139 0.0020 0.0951 0.0471 1.9141 0.0983 1.8384 0.2760 0.3469
1 0.0000 0.0006 0.0033 0.3051 0.0030 0.0830 0.0463 2.0208 0.0912 2.2073 0.2547 0.3036
2 0.0003 0.0018 0.0022 0.5165 0.0075 0.0929 0.0484 1.5685 0.0935 1.8376 0.3004 0.3397
3 0.0013 0.0602 0.0061 0.6378 0.0379 0.1068 0.0454 1.7416 0.0967 1.9524 0.2687 0.3311
5 0.0718 0.1550 0.1295 1.1998* 0.0959 0.1096 0.0437 1.6457 0.0978 1.9345 0.2906 0.3659

35× 50

0.01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0817 0.0516 1.6714 0.0972 2.5672 3.8792 5.1899
0.1 0.0000 0.0000 0.0002 0.0041 0.0000 0.0835 0.0510 2.1046 0.1002 2.7249 4.7702 6.2908
0.5 0.0000 0.0001 0.0011 0.2572 0.0010 0.0865 0.0477 2.5242 0.1017 2.7380 4.4642 5.1958
1 0.0015 0.0022 0.0027 0.2257 0.0008 0.0913 0.0512 2.6540 0.0979 2.8993 3.4865 5.5339
2 0.0000 0.0000 0.0268 0.4280* 0.0192 0.0943 0.0525 3.1656 0.0996 2.9291 3.6767 5.5078
3 0.0006 0.0149 0.0064 0.6389* 0.0489 0.1055 0.0561 2.8826 0.0991 2.8787 3.3620 4.8888
5 0.0016 0.4397 0.4686 0.9214* 0.0669* 0.1246 0.0508 2.0565 0.0971 2.9162 4.3270 5.7803

40× 60

0.01 0.0000 0.0000 0.0001 0.0002 0.0000 0.0923 0.0575 2.0462 0.0996 3.8424 75.6026 187.0493
0.1 0.0084 0.0084 0.0088 0.0219 0.0002 0.0909 0.0580 2.7956 0.1004 4.0631 179.0062 462.5520
0.5 0.0001 0.0001 0.0081 0.2882 0.0003 0.0935 0.0607 3.9244 0.1038 4.5062 84.4636 295.5671
1 0.0000 0.0031 0.0019 0.1636 0.0029 0.1022 0.0617 3.5551 0.0993 4.5801 128.3584 364.8113
2 0.0016 0.0006 0.0645 0.5998* 0.0415* 0.1111 0.0569 3.4730 0.1016 4.3808 68.0187 199.7742
3 0.0001 0.0080 0.0214 0.9694* 0.2194 0.1178 0.0558 3.6880 0.1082 4.6443 164.9271 370.6350
5 0.0060 0.0246* 0.0121 0.7669* 0.9710 0.1376 0.0577 3.3003 0.1026 4.7164 240.2099 664.5236

106

Table 4.3: Results related to larger size problem instances in test bed 1.
size

(m× n)
δ

BI GR average running time (sec.)

freq. avg. dist. freq. avg. dist. BI GR FMIN

50× 70

0.01 30 0.0001 30 0.0001 0.1056 0.0643 3.5349
0.1 30 0.0002 30 0.0002 0.0972 0.0669 4.2482
0.5 30 0.0047 29 0.0041 0.1054 0.0616 4.6234
1 29 0.0040 28 0.0040 0.1083 0.0669 4.2916
2 28 0.0018 25 0.0007 0.1277 0.0662 3.9946
3 30 0.0132 25 0.0108 0.1412 0.0667 3.9562
5 29 0.1368 22 0.0457 0.1747 0.0680 4.3333

75× 100

0.01 30 0.0000 30 0.0000 0.1245 0.1069 8.2529
0.1 30 0.0002 29 0.0002 0.1269 0.1073 12.7975
0.5 30 0.0010 26 0.0006 0.1526 0.1036 9.2031
1 29 0.0033 27 0.0022 0.1529 0.1033 11.8664
2 28 0.0110 18 0.0053 0.1834 0.1044 9.9408
3 24 0.0955 21 0.2273 0.2098 0.1074 12.9671
5 29 0.0236 24 0.0132 0.2686 0.1130 8.2542

100× 125

0.01 30 0.0001 30 0.0001 0.1686 0.1247 20.7063
0.1 30 0.0003 30 0.0003 0.1718 0.1243 25.0344
0.5 30 0.0257 22 0.0349 0.2060 0.1219 21.4619
1 30 0.0061 25 0.0052 0.2425 0.1212 22.3853
2 25 0.0066 21 0.0044 0.2783 0.1228 16.8147
3 28 0.0273 21 0.0162 0.2994 0.1316 15.4256
5 28 0.0252 17 0.0340 0.4149 0.1292 16.1904

125× 150

0.01 30 0.0001 30 0.0001 0.2284 0.1941 38.6138
0.1 30 0.0014 30 0.0014 0.2454 0.1892 42.4585
0.5 27 0.0049 22 0.0005 0.2735 0.1812 31.8195
1 29 0.0037 26 0.0029 0.3142 0.1848 25.3423
2 28 0.0101 22 0.0029 0.3819 0.1926 31.2585
3 27 0.1368 19 0.1881 0.4442 0.2014 28.9812
5 25 0.0391 18 0.0158 0.6013 0.2035 27.3384

150× 200

0.01 30 0.0004 30 0.0004 0.3495 0.2680 136.6920
0.1 30 0.0015 28 0.0016 0.3621 0.2661 185.1950
0.5 30 0.0117 26 0.0083 0.4948 0.2640 143.9452
1 30 0.0414 25 0.0127 0.5107 0.2671 106.9154
2 26 0.0485 20 0.0302 0.6148 0.2761 99.1450
3 29 0.0225 21 0.0187 0.7456 0.2829 75.4403
5 27 0.0690 14 0.0390 1.0509 0.3005 86.3719

Table 4.4: Comparing algorithms on test bed 2. An asterisk (*) denotes an average
on 29 problem instances.

size
(m× n)

δ
average gap from the optimum average running time (sec.)

BI GR FMIN RLT1 RLT2 BI GR FMIN RLT1 RLT2 MILP

5× 9
5 0.0000 0.0013 0.0000 0.7280 0.0019 0.2309 0.0969 0.2498 0.1933 0.2980 0.0130
10 0.0000 0.0100 0.0080 0.4368 0.1088 0.2174 0.0837 0.1449 0.0940 0.2301 0.0120
20 0.0096 0.0101 0.2415 0.6541* 0.0677 0.1818 0.0853 0.1048 0.0888 0.2248 0.0144

9× 25
5 0.0000 0.0010 0.0007 0.9433* 0.0729 0.1826 0.1354 0.3142 0.0890 0.3383 0.0261
10 0.0037 0.0283 0.0446 0.7666* 0.0391 0.2063 0.1474 0.2767 0.0892 0.3358 0.0297
20 0.3420 0.0355 0.1561 4.0432* 0.6522* 0.3269 0.1480 0.3345 0.0883 0.3373 0.0281

19× 100
5 0.0123 0.0008 0.0325 0.9667* 0.0997 0.5164 0.1187 1.3525 0.0908 0.7341 0.4781
10 0.0075 0.0410 0.0650 2.2254* 0.2577 0.5117 0.1302 1.4178 0.0890 0.7360 0.4854
20 0.0046 0.0606 0.0269 6.0464* 0.8460* 0.9457 0.1727 1.5092 0.0926 0.7524 0.5937

39× 400
5 0.0032 0.0051 0.0176 0.9740 0.1146 0.6752 0.1740 33.7814 0.0954 2.7094 54.9777
10 0.0489 0.0355 0.0222 1.9538* 0.2681 0.5799 0.1943 33.1993 0.0966 2.8882 73.8604
20 0.0838 0.0804 0.2677 5.8244* 0.8112* 0.6733 0.1585 30.9603 0.0966 2.9259 118.7083

107

Table 4.5: Results obtained from test bed 3 (part I)

model
no. of

samples
average

δ
distance from FMIN running time (sec.)

BI GR FMIN BI GR

enlight13

100 8.10 0.0046 -0.0904 91.4576 0.6921 0.3063
500 9.66 0.0658 -0.0633 119.6879 1.8702 0.1685

1,000 10.54 0.0431 -0.0905 187.4409 1.9958 0.0900
5,000 11.88 0.1463 -0.0021 173.4079 1.8712 0.1357
10,000 12.40 0.0562 -0.0822 104.4437 2.0197 0.1277
50,000 13.67 0.0945 0.0906 212.5396 1.9538 0.2463
100,000 14.10 0.1743 0.0291 161.4438 1.7396 0.1236
500,000 15.26 0.1349 0.0801 180.5201 1.8871 0.1176

enlight15

100 9.40 0.1773 -0.1880 272.7402 2.3203 0.2195
500 11.35 0.2083 0.0140 384.2658 2.4595 0.1049

1,000 12.23 0.0927 0.0388 412.5042 2.3922 0.1653
5,000 13.81 0.4270 0.2473 857.0598 2.4483 0.1562
10,000 14.42 0.4120 0.2953 408.9520 2.4486 0.1694
50,000 15.93 0.6289 0.4405 437.0599 2.4954 0.1734
100,000 16.43 0.3316 0.1691 442.2985 2.4671 0.1622
500,000 17.75 0.2305 0.1942 455.2568 2.5617 0.3205

Table 4.6: Results obtained from test bed 3 (part II).

model
no. of

samples
average

δ
distance from GR running time (sec.)

BI BI GR

mik-250-1-100-1

100 1,958.06 0.0093 5.7573 0.2289
500 2,272.89 0.0064 5.8112 0.2984

1,000 2,426.95 0.0104 5.8371 0.3118
5,000 2,756.56 0.0118 5.7987 0.4776
10,000 2,884.56 0.0069 5.7627 0.2503
50,000 3,168.52 -0.0081 5.6830 0.3584
100,000 3,303.37 -0.0105 5.7294 0.3359
500,000 3,550.52 -0.0085 5.7810 0.3148

roll3000

100 0.0011 0.0000 194.2224 8.4392
500 0.0013 0.0000 194.5361 7.8458

1,000 0.0014 0.0000 201.1792 8.0117
5,000 0.0016 0.0000 194.5419 7.9430
10,000 0.0017 0.0000 193.9927 7.9305
50,000 0.0018 0.0000 194.5831 7.8395
100,000 0.0019 0.0000 194.9193 7.8310
500,000 0.0020 0.0000 201.5826 7.8350

108

CHAPTER 5

FULL LINK FLOW OBSERVABILITY OF

TRAFFIC NETWORKS UNDER

MEASUREMENT ERROR

5.1 Introduction

The continuous growth in the demand for transportation is the main reason for

traffic congestion, air pollution, greenhouse gas emissions, vehicle accidents, and in-

creased fuel costs in large urban areas. Monitoring traffic flow volumes on a network

allows to control and manage these undesirable situations. Information on traffic flows

is usually obtained through locating sensors on the traffic network. In this context,

the problem of optimally locating sensors on traffic networks (referred to as the sensor

location problem) to gather data for monitoring and managing traffic volumes has

rapidly gained attention since its first introduction in the late 1990s [134] (see [52] for

a comprehensive survey on the relevant topics).

Following the classification by Gentili and Mirchandani [52], there are two classes

of sensor location problems:

• Flow-Observability Problems: locating sensors to fully (partially) observe flow

109

volumes on a traffic network;

• Flow-Estimation Problems: locating sensors to estimate flow volumes on a traffic

network.

This classification is derived from the observation that the location of sensors on a

traffic network can be translated into a system of linear equations where columns

(variables) represent traffic flows of interest, and rows correspond to the deployment

of sensors and the structure of the network. If the system of linear equations admits

a unique solution, we say the network is observable, and, under the assumption of

error-free monitored flows, we can uniquely determine all flows of the network. In

this context, the flow-observability problem is the problem of finding the optimal

placement for sensors which allows the full observability of traffic flows on a traf-

fic network. If the network is not observable (i.e., the system is underdetermined),

we have an infinite number of solutions. In this case, the interest is in locating sen-

sors to obtain the best flow estimates according to some quality metrics, see, e.g.,

[32, 37, 80, 132, 133, 135, 140]. Generally, the flow-estimation problem arises when

full observability of a network is not possible due to a budget constraint which limits

the number of sensors to be located or when we are interested in determining ori-

gin–destination flow volumes by locating counting sensors on the links of the network.

In this paper, our focus is on the flow-observability problem. In general, this class

of the problem can be differentiated according to (i) the type of sensors used, (ii)

the location of sensors, (iii) the available a priori information, and (iv) the traffic

flows of interest. There are two main classes of sensors considered in the literature:

counting sensors and scanning sensors. Counting sensors, based on vehicle counts, can

monitor volumes, density, occupancy, and speed of traffic volumes; examples of this

class includes inductive loop detectors, magnetic detectors, piezoelectric pads, pneu-

matic road tubes, among others [52]. Scanning sensors, on the other hand, are able

110

Table 5.1: Contributions in the literature addressing different configurations of the
full flow-observability problem.

configurations sensor type location flows of interest publication

1 counting node link flows [11, 12, 13, 33, 96]
2 counting link link flows [17, 18, 56, 66, 67, 68, 100]
3 counting node/link route flows/ link flows/OD trips [115]
4 scanning link route flows [20, 23, 26, 51]
5 mixed link route flows [39, 118]
6 scanning link route flows/OD trips [54]

to uniquely identify a vehicle, by taking images of moving flows or using Automatic

Vehicle Identification readers. Sensors can be located either on links or on nodes de-

pending on the type of sensors. Available a priori information include, among others,

link chose proportions (fraction of traffic volumes using a given link), split ratios (frac-

tion of outgoing flows of a given node using a specific outgoing link), set of routes.

Such information can be attained through survey data, historical data, data from pre-

viously located sensors, or calibrated static traffic assignment models. Finally, traffic

flows of interest are usually origin-destination (OD) flow volumes, link flow volumes,

route flow volumes, or a combination of them. Table 5.1 summarizes the contributions

in the literature addressing various configurations of the full flow-observability prob-

lem. It is also worth mentioning that a special class of the flow-observability problem

is the partial flow-observability problem where sensors are placed sufficient that a

predefined number of flows of interest can be deduced from sensor readings, see, e.g.,

[21, 24, 92, 101, 115].

Here, we particularly focus on the problem of locating counting sensors

on a subset of the links of the network to fully observe all the link flow

volumes. Hu et al. [67] considered the full link flow observability problem assuming

route information is given and proposed a Gaussian elimination method to solve it.

Ng [100] presented a node-based approach to address the problem where the route

information is not needed; he also extended the approach to the partial link flow

observability problem [101]. Also, the graphical approach proposed in [56] to solve

111

the link flow observability problem does not require knowledge of route information;

the problem was basically reduced to the problem of finding a spanning tree. Castillo

et al. [17, 18], using the concept of linearly independent paths, determined an upper

bound on the number of sensors to be located on the links to allow full link flow

observability. Hu et al. [68] studied the problem assuming a priori information on

turning ratios at nodes and developed a greedy algorithm to solve it. Rubin and Gentili

[115] proposed a general mathematical formulation of the flow-observability problem,

limited to locating counting sensors, but allowing any type of a priori information,

any type of flows of interest, and any type of placements for sensors; their approach

can be adopted to solve the full link flow observability problem.

A common assumption to all the existing works on the flow observablity problem

is that the data gathered from the sensors does not contain measurement errors (i.e.,

errors in traffic counts). To the best of our knowledge, there are only few papers

addressing the presence of errors in the sensor data. Castillo et al. [20] consider scan-

ning errors when locating vehicle-ID sensors to observe route flow volumes. This case

errors occur because visibility and weather conditions have a major impact on the ef-

ficiency of the image-based vehicle-ID sensors. They propose the idea of locating more

than one sensor on the same link to identify (and reduce) the number of assignment

errors in the image scanning process. In a more recent study, Xu et al. [130] stud-

ied the problem of locating sensors on a subset of the links of the traffic network to

observe all the link flows, where they implicitly consider measurement errors. In par-

ticular, they proposed a robust approach minimizing the number of unobserved links

involved in the nodal flow conservation equations. They discussed that the results of

their indirect approach will have a lower chance of accumulating measurement errors.

Unlike the latter approach, this paper explicitly addresses the measurement errors in

the full link flow observability problem. We propose an optimization approach which

describes the measurement errors by compact intervals and seeks for locations for

112

sensors with minimum uncertainty in the inferred link flows. Given the complexity

of our proposed optimization problem, we present a local search algorithm to solve

it. Through numerical experiments, we show that our approach returns more reliable

inferred link flows compared to those obtained using the approach proposed in [130].

In short, we summarize our contributions as follows:

• we motivate and propose an optimization problem to address the full link flow

observability problem considering the measurement errors;

• we show that our approach outperforms the only existing approach in this con-

text;

• we develop an algorithmic scheme to solve our problem and show its efficiency

on some real traffic networks.

This paper is structured as follows. Section 5.2 presents the link flow inference

problem. Section 5.3 motivates the need for directly addressing the measurement

errors in the link flow observability problem and proposes an optimization approach

to handle the measurement errors in this context. In Section 5.4, we develop a local

search algorithm to solve our optimization problem. Our numerical study is presented

in Section 5.5 to show the applicability of our approach. Finally, we summarize our

concluding remarks in Section 5.6.

5.2 Link flow inference

The link flow inference problem is the problem of placing sensors on a subset of

the links of the network sufficient that the unobserved link flows (i.e., those links not

equipped with sensors) can be inferred from the observed link flows. We here adopt the

node-based approach by Ng [100] which does not require route information. A traffic

network can be represented by means of a graph H = (N,E) where N represents the

113

nodes in the network (e.g., intersections points) and E represents links (e.g., streets

of the network). For a given traffic network represented by a graph H, let us consider

the graph G = (N∗, E) where N∗ ⊆ N denotes non-centroid nodes. Centroid nodes

in the traffic network are the nodes originating or absorbing the traffic flows, and

non-centroid nodes are all other nodes in the network. Let us assume that |N∗| = n

and |E| = m with m >> n (this is a realistic assumption in traffic networks). Let

A ∈ Rn×m be the non-centroid node-link incidence matrix; we define the entries as

aij =

1 j ∈ I(i)

−1 j ∈ O(i)

0 otherwise

,

where I(i) and O(i) respectively represent the set of incoming and outgoing links at

node i ∈ N∗. We can then write the flow conservation equations for the non-centroid

nodes in the matrix form as

Af = 0, (5.1)

where f ∈ Rm is the decision vector corresponding to the link flows. Let us partition

A into AU ∈ Rn×n and AO ∈ Rn×(m−n) such that AU is non-singular. We also properly

partition f into fU and fO. We then have

(AU , AO)

fU
fO

 = 0,

which can be rearranged as

fU = −A−1
U AOfO. (5.2)

This implies that by locating sensors on links O, we can infer link flows of links U .

From the algebraic standpoint, the set of solutions to (5.1) describes the null space

114

of A and (5.2) can be reduced to finding a basis for the column space of matrix A.

Assumption 5.1. We assume that the network is connected, and there exists at least

one centroid node in the network.

This is a realistic assumption since in a given traffic network, there are usually

nodes that originate or absorb the traffic flows; basically, having centroid nodes make

the traffic flow observability problem meaningful.

Remark 5.1. We know that the rank of the node incidence matrix of a connected

directed graph with p nodes (including centroid and non-centroid nodes) is p− 1 (see

[98]). Given Assumption 5.1 and the assumption of m >> n, we can say that the

rank of matrix A is n. Hence, it is always possible to partition A to AU and AO where

AU is non-singular. Also, this implies that to uniquely observe all the link flows, we

need to locate a minimum of (m−n) sensors on the links of the network. That is, we

have |U | = n and |O| = m− n [100].

Example 5.1. Consider the network of Figure 5.1 with six nodes and nine links. Let

us assume that nodes 1 and 3 are centroid nodes in this network. Hence, we can write

the non-centroid node-link incidence matrix as

A =

1 2 3 4 5 6 7 8 9

2 1 0 −1 −1 −1 0 0 0 0

4 0 1 1 0 0 0 0 −1 0

5 0 0 0 1 0 −1 0 0 −1

6 0 0 0 0 0 0 −1 1 1

,

where rows correspond to non-centroid nodes and columns denote links. Suppose we

115

Table 5.2: (Example 5.1) True link flows
links 1 2 3 4 5 6 7 8 9
true flow 27 7 5 11 11 5 18 12 6

locate sensors on links in O1 = {1, 2, 5, 6, 9}; we then partition A into

AO1 =

1 0 −1 0 0

0 1 0 0 0

0 0 0 −1 −1

0 0 0 0 1

, AU1 =

−1 −1 0 0

1 0 0 −1

0 1 0 0

0 0 −1 1

.

Now let us assume the sensors located on links in O1 are error-free, and therefore

they returns the true link flows (they are reported in Table 5.2). Then, by (5.2) we

can infer the unobserved link flows, that is,

f3 = 5, f4 = 11, f7 = 18, f8 = 12.

As an alternative set of sensor placements, if we locate sensors on links in O2 =

{1, 3, 5, 6, 8}, we similarly can partition matrix A and infer the following unobserved

flows:

f2 = 7, f4 = 11, f7 = 18, f9 = 6.

Indeed, for this simple example, 66 different sets of sensor placements with minimum

cardinality allow full observability of the network. However, in the case of erroneous

observed flows, not all the 66 sets of sensor placements lead to a meaningful flow

inference. We further elaborate this in the following section.

116

Figure 5.1: A network example.

5.3 Link flow inference under measurement error

Suppose in Example 5.1 the sensor on link 1 reports 20 instead of 27. For the

sensor placement O1, the inferred link flows would be then

f3 = −2, f4 = 11, f7 = 11, f8 = 5,

and for the placement O2, we would have

f2 = 7, f4 = 4, f7 = 11, f9 = −1.

The two sets of the inferred link flows are not valid estimations as they contain nega-

tive link flows, resulting in useless information. However, inferred link flows obtained

by another sensor placement O3 = {1, 2, 4, 8, 9} is:

f3 = 5, f5 = 4, f6 = 5, f7 = 18.

As can be noted, only the inferred flow of link 5 was impacted by the error, but still

the inferred flows are useful. A natural question that arises in this context is

where to locate sensors such that the resulting inferred flows are valid and the

effect of erroneous data on the unobserved link flows is minimized?

To answer the above question effectively, we need to explicitly address the measure-

117

ment errors in sensor readings. To this end, we assume that readings of sensors lie in

predefined intervals. These intervals correspond to some a priori knowledge of the link

flows. This is a reasonable assumption which reflects the level of trust of the decision

maker on the available information. Indeed, prior flow estimates are usually available

through empirical observations, or they can be attained by using some models. A

confidence interval that describes the uncertainty or accuracy of the prior estimates

is usually associated with them [126]. Let us assume a priori link flows are described

by compact intervals, that is, we can denote the readings as

f = [f, f] := {f ∈ Rm : f ≤ f ≤ f},

where f, f ∈ Rm are given and inequality “≤” is understood componentwise. Let the

symbol IR denote the set of all real intervals. For two real intervals fi, fj ∈ IR and

constant α ∈ R, we have the following interval arithmetic operations

fi ± fj = [f
i
± f

j
, f i ± f j], α.fi = [min{αf

i
, αf i},max{αf

i
, αf i}]. (5.3)

Thus, for a specific set of sensor placements O, we can infer the interval link flow on

links U by (5.3) as

f∗U = [f ∗
u
, f
∗
u] = −A−1

U AOfO, (5.4)

where f∗U denotes the vector of inferred interval link flows.

Remark 5.2. In real-life, sensor readings can only report integer values in interval

f . Hence, it is reasonable to assume the a priori interval vector f has integer upper

and lower bounds.

Definition 5.1. A network with unobserved links U and observed links O = E\U

is called weakly observable if f∗U = −A−1
U AOfO admits non-negative flows for some

f ∗U ∈ f∗U .

118

There could be many different sets U and O = E\U for which the network is

weakly observable. We denote by W the set of all possible U and O allowing weak

observability, that is,

W := {U ⊂ E : Af = 0, fU ≥ 0, fO ∈ fO, O = E\U}.

Our goal is to find a set of sensor placements such that the variability of the inferred

link flows is minimum. There are different ways of evaluating such a variability (see

Section 5.5), one of which is, for example, obtained by considering the width of the

resulting inferred interval link flows associated with the unobserved links. Specifi-

cally, given an interval vector of inferred flows [f ∗
U
, f
∗
U], a measure for assessing the

variability of the inferred flows can be attained by

n∑
i=1

(f
∗
U(i) − f ∗U(i)

); (5.5)

the lower the measure, the better the sensor placement.

As an illustration, let us consider that in Example 5.1, we have the a priori interval

link flows as presented in Table 5.3. In the real-world context, this information is

usually available from historical data . Note that depending on the quality of the

available information, the interval link flows do not necessarily contain the true link

flows. For example, in Table 5.3, interval flows corresponding to links {5, 6, 8, 9} do

not contain the true flow of the links (see Table 5.2). Table 5.4 summarizes the set of

all observed and inferred link flows for which the network is weakly observable. As it

can be seen, with the given data, out of 66 sets of sensor placements, only 22 sets of

sensor placements ensure weak observability of the network. The last column in the

table display the values of equation (5.5) associated with each location set. The set

of sensor placements {2, 3, 4, 5, 7} minimizes the variability in the inferred flows.

119

Table 5.3: A priori interval link flows.
links 1 2 3 4 5 6 7 8 9

[f, f] [22,32] [6,8] [4,6] [9,13] [21,29] [15,21] [14,22] [22,31] [16,22]

Table 5.4: The set of all observed and inferred link flows leading to weak observability
of the network.

no. observed link flows inferred link flows variability

1 {f1, f2, f3, f4, f7} f5
∗ = [3, 19], f6

∗ = [−3, 13], f8
∗ = [10, 14], f9

∗ = [0, 12] 48
2 {f1, f2, f3, f5, f7} f4

∗ = [−13, 7], f6
∗ = [−23, 5], f8

∗ = [10, 14], f9
∗ = [0, 12] 64

3 {f1, f2, f3, f6, f7} f4
∗ = [15, 33], f5

∗ = [−15, 11], f8
∗ = [10, 14], f9

∗ = [0, 12] 60
4 {f1, f2, f4, f5, f7} f3

∗ = [−20, 2], f6
∗ = [−23, 5], f8

∗ = [−14, 10], f9
∗ = [4, 36] 106

5 {f1, f2, f4, f7, f8} f3
∗ = [14, 25], f5

∗ = [−16, 9], f6
∗ = [9, 30], f9

∗ = [−17, 0] 74
6 {f1, f2, f6, f7, f8} f3

∗ = [14, 25], f4
∗ = [−2, 21], f5

∗ = [−15, 11], f9
∗ = [−17, 0] 77

7 {f1, f2, f6, f7, f9} f3
∗ = [−16, 0], f4

∗ = [31, 43], f5
∗ = [−15, 11], f8

∗ = [−8, 6] 68
8 {f1, f3, f4, f7, f8} f2

∗ = [16, 27], f5
∗ = [3, 19], f6

∗ = [9, 30], f9
∗ = [−17, 0] 65

9 {f1, f3, f5, f7, f8} f2
∗ = [16, 27], f4

∗ = [−13, 7], f6
∗ = [−13, 24], f9

∗ = [−17, 0] 85
10 {f1, f3, f6, f7, f8} f2

∗ = [16, 27], f4
∗ = [−2, 21], f5

∗ = [−5, 30], f9
∗ = [−17, 0] 86

11 {f1, f4, f5, f7, f8} f2
∗ = [20, 51], f3

∗ = [−20, 2], f6
∗ = [9, 30], f9

∗ = [−17, 0] 91
12 {f2, f3, f4, f5, f7} f1

∗ = [34, 48], f6
∗ = [−3, 13], f8

∗ = [10, 14], f9
∗ = [0, 12] 46

13 {f2, f3, f5, f6, f7} f1
∗ = [42, 66], f4

∗ = [15, 33], f8
∗ = [10, 14], f9

∗ = [0, 12] 58
14 {f2, f3, f5, f6, f9} f1

∗ = [56, 78], f4
∗ = [31, 43], f7

∗ = [26, 36], f8
∗ = [10, 14] 48

15 {f2, f4, f5, f7, f8} f1
∗ = [44, 67], f3

∗ = [14, 25], f6
∗ = [9, 30], f9

∗ = [−17, 0] 72
16 {f2, f5, f6, f7, f8} f1

∗ = [42, 66], f3
∗ = [14, 25], f4

∗ = [−2, 21], f9
∗ = [−17, 0] 75

17 {f2, f5, f6, f7, f9} f1
∗ = [42, 66], f3

∗ = [−16, 0], f4
∗ = [31, 43], f8

∗ = [−8, 6] 66
18 {f2, f5, f6, f8, f9} f1

∗ = [66, 97], f3
∗ = [14, 25], f4

∗ = [31, 43], f7
∗ = [38, 53] 69

19 {f3, f4, f5, f7, f8} f1
∗ = [34, 48], f2

∗ = [16, 27], f6
∗ = [9, 30], f9

∗ = [−17, 0] 63
20 {f3, f5, f6, f7, f8} f1

∗ = [23, 56], f2
∗ = [16, 27], f4

∗ = [−2, 21], f9
∗ = [−17, 0] 84

21 {f3, f5, f6, f7, f9} f1
∗ = [56, 78], f2

∗ = [−14, 2], f4
∗ = [31, 43], f8

∗ = [−8, 6] 64
22 {f3, f5, f6, f8, f9} f1

∗ = [56, 78], f2
∗ = [16, 27], f4

∗ = [31, 43], f7
∗ = [38, 53] 60

Our goal is then to solve the following optimization problem:

min
U∈W

n∑
i=1

(f
∗
U(i) − f ∗U(i)

). (5.6)

Note that sensor readings are not known until after locating them, and they provide

a point value for the observed flows, and hence we can infer point estimations for

unobserved links. One of the main advantages of using our approach is that the

resulting sensor placements reduce the chance of having negative point estimations

for unobserved links.

120

5.4 Local search algorithm

As can be noticed, the difficulty in solving problem (5.6) relies on the fact that the

feasible set W is not explicitly known. As such, we design a local search algorithm to

solve the problem. Recall that a feasible solution of the problem is a set U ∈ W , that is,

a basis of the column space of matrix A. From a high-level perspective, starting from

an initial feasible solution, we iteratively search in the neighborhood of a basis to find

a set of sensor placements with lower variability in the inferred link flows. If we find a

better set of sensor placements, we move to the new basis and start over; otherwise, we

continue our search. We continue this procedure until a predefined stopping condition

is met. To move from one basis to a neighboring one, our algorithm uses a simplex-

like tableau to explore different sensor location candidates. Particularly, we consider

a simplex tableau where basic variables represent the unobserved link flows, while

non-basic variables denote the observed link flows. We now discuss the steps of the

algorithm in detail. A general pseudo code of the algorithm is also given in Algorithm

6.

Initial tableau. To get an initial tableau, we can put matrix A into its reduced row

echelon form (RREF) for a random order of columns. We then consider the link flows

corresponding to the basis of the column space as the unobserved links and check

weather the network is weakly observable for this case. If so, the RREF can be used

to set up the initial simplex-like tableau, where basic variables are those associated

with the basis of the column space. Otherwise, we repeat the process with a different

order of columns of matrix A. We continue this procedure until we get a valid initial

tableau (i.e., an initial set of sensor placements which allows weak obervability of

the network). Note that we can get a different basis of the column space with a

different order of columns of matrix A (Ng [100] also mentioned that matrix AU is

not necessarily unique).

121

Neighborhood Search. We define the neighborhood function as the function of

unobserved links (i.e., the basic variables in the tableau). Specifically, two sets of

unobserved links are neighbors if they are different in only one link. Hence, our neigh-

borhood is defined as

N(U) = {U ′ ⊆ E : |U ′ ∩ U | = n− 1}.

In a tableau, a number of neighbors is equal to the number of non-zero elements in

non-basic columns. To move to a new basis, we first check whether the new set of

unobserved link flows will lead to weak observability of the network. This can be done

by solving the following linear program with a dummy objective function:

min 0Tf subject to Af = 0, fO ∈ fO, fu ≥ 0. (5.7)

If the network is weakly observable, we then compute the corresponding objective

function using (5.4). We apply a first improvement strategy, and therefore we move

to the new basis if the objective function value is better than the current value. Note

that we do not need to explicitly compute the term A−1
U AO in (5.4) in each iteration

since it can be derived from the tableau after performing a pivoting operation. From

the computational standpoint, the simplex-like tableau plays an important role as

it enables us (i) to ensure AU is non-singular and (ii) to compute A−1
U AO without

explicitly computing matrix inverse. To show how our algorithm works, we now discuss

one iteration of the algorithm on an example.

Example 5.2. Consider the network of Example 5.1 for which the interval link flows

are reported in Table 5.3. Suppose we initiate the algorithm with the set of unobserved

link flows {1, 2, 4, 8} with the objective function value of 64. Table 5.5 represents the

initial tableau, where the rows are unobserved (basic) links. According to the table,

122

Algorithm 5.1: A local search algorithm

1 Input: A, f, f
Result: a set of sensor placements

2 while a stopping condition is not reached do
3 Initialize a simplex-like tableau
4 Compute the corresponding objective function value
5 while we can improve the objective function do
6 Select a neighboring basis from the tableau
7 if the network is weakly observable for the selected basis then
8 Compute the objective function value
9 if it is better than the current value then

10 Update the objective function value and the tableau
11 end

12 end

13 end

14 end

Table 5.5: (Example 5.2)An initial tableau.

unobserved link/all links 1 2 3 4 5 6 7 8 9

1 1 0 -1 0 -1 -1 0 0 -1

2 0 1 1 0 0 0 -1 0 1

4 0 0 0 1 0 -1 0 0 -1

8 0 0 0 0 0 0 -1 1 1

there are 11 candidate neighboring bases (i.e., number of non-zero values in columns

{3, 5, 6, 7, 9}). The algorithm starts with the column labeled ‘3’ and by (5.7), checks

that by moving to neighboring basis {3, 2, 4, 8}, the network is not weakly observable,

this is also the case for neighboring basis {1, 3, 4, 8}. The algorithm continues in this

way until it reaches to the column labeled ‘7’ where the neighboring basis{1, 7, 4, 8}

leads to weak observabilty of the network with the objective function value of 48.

Since the algorithm found a better solution, it moves to the new basis and updates

the tableau (the first improvement strategy).

123

Figure 5.2: A network example.

5.5 Experimental results

In this section, we empirically evaluate the performance of our approach. We

compare our algorithm with the approach taken by Xu et al. [130]. They implic-

itly/indirectly consider the propagation of measurement errors in the link flow infer-

ence; they particularly relate the error accumulation to the number of unobserved

links connected to the non-centroid nodes of the network saying that the fewer unob-

served links connected to the non-centroid nodes, the lower uncertainty in the inferred

link flows. This is based on their experimental observation that for a node that has

more than one unobserved link, we need to borrow from other flow conservation equa-

tions for the full observability of the link flows, resulting in higher uncertainty in the

inferred link flows. They basically proposed two optimization models (referred to as

min-max and min-sum models) to minimize the number of unobserved links con-

nected to non-centroid nodes. In particular, min-max and min-sum models are binary

integer linear programs which minimize the largest and the cumulative number of

unobserved links connected to all non-centroid nodes, respectively. Both models are

presented in Appendix A. Although the models can be solved to optimality using

off-the-shelf solvers, in the case of directly considering the measurement errors, they

may return unusable results (that is, sensor locations such that the resulting inferred

link flows are not valid). We further explain this in the following example.

Example 5.3. We consider the parallel highway network in Figure 5.2 which was

also considered by Xu et al. [130]. This network has 14 links and 9 nodes, where

124

nodes {1, 2, 8, 9} are centroid nodes. Both min-max and min-sum models select links

{3, 4, 9, 11, 13} as the unobserved links (see [130]). The largest number of unobserved

links connected to non-centroid nodes is 2 (the objective function value of min-max

model), corresponding to node 6 and links {9, 11}, while the cumulative number

of unobserved links connected to each node is 6 (the objective function value of

min-max model). Now suppose that interval link flows representing the measurement

errors are given and reported in the second and third rows of Table 5.6. For the sake of

illustration, let us assume that we also have the true link flows and they are presented

in the last row of the table. Now let us compute interval flows of links {3, 4, 9, 11, 13}

by (5.4), i.e.,

f3
∗ = [−166,−45], f4

∗ = [89, 145], f9
∗ = [−29, 50], f11

∗ = [−68, 54], f13
∗ = [72, 180].

As can be seen, interval f3
∗ does not have any positive realization. That is, for any

value of the flows monitored by the sensors located on links {3, 4, 9, 11, 13}, the re-

sulting inferred flows on the non-observed links are not valid. Thus, the solution

returned by the two models is not meaningful. This is particularly the case when the

interval flows do not contain the true flows. In this example, interval link flows of

links {1, 3, 5, 6, 8, 13} do not include the true flows. Moreover, the optimal solution of

problem (5.6) for this example, by exploring all U ∈ W , is U = {1, 8, 10, 12, 14} with

inferred interval flows of

f1
∗ = [62, 118], f8

∗ = [47, 101], f10
∗ = [33, 90], f12

∗ = [15, 70], f14
∗ = [18, 127],

and the objective function value of 331. It should be also noted that the largest

number of unobserved links connected to the non-centroid nodes for this solution is 3

and the cumulative number of unobserved links connected to each non-centroid nodes

is 7. That is, the set of sensor placements yielding the lowest variability in the inferred

125

Table 5.6: (Example 5.3)Interval link flows and true flows

links 1 2 3 4 5 6 7 8 9 10 11 12 13 14

f 269 25 41 101 91 56 37 125 56 118 62 78 74 95
f 192 17 29 67 64 39 25 89 38 78 42 52 52 63

true flow 160 21 24 84 114 70 31 74 47 98 52 65 93 79

link flows does not admit a good objective function value in min-max and min-sum

models. This example reveals the need for directly considering the measurement errors

in the link flow observability problem.

Remark 5.3. For the sake of having a meaningful comparison between our approach

and that of Xu et al. [130], in our numerical study, we assume that the a priori

interval link flows always include the true link flows; this ensures that the solutions

by min-max and min-sum models remain meaningful (i.e., positive) when we explicitly

considering the measurement errors.

5.5.1 Test networks and implementation

We applied our approach to solve the full link flow observability problem under

measurement error for five different traffic networks , which were used as test networks

in previously published works. We particularly consider the following networks:

• Parallel network: this network was used in [67, 100, 130] as a test network

for the link flow observability problem. As explained above, this network has 14

links 5 non-centroid nodes and 4 centroid nodes.

• Nguyen-Dupuis network: This network was introduced by Nguyen and

Dupuis [102] and later used in other papers as a test network, e.g., [17, 23,

24, 115]. It has 13 nodes and 38 links; we randomly set one of the node as a

centroid node (to meet Assumption 5.1).

126

• Sioux Falls network: The traffic network of Sioux Falls in South Dakota,

United States was studied in [56, 67, 101, 117, 130, 134], among others, and

contains 24 nodes and 76 links. Similar to the Nguyen-Dupuis network, we

removed one row from the node-link incidence matrix to meet Assumption 5.1.

• Irvine network: This network is a large traffic network in California, United

States containing 162 nodes and 496 links, where 67 of the nodes are centroid.

The network was used as a test network in many papers, including [31, 117,

130, 139].

• Cuenca network: This is another large traffic network widely used in the

literature, see, for example, [19, 20, 22, 24, 25, 92]. The network has 232 nodes

and 672 links; we considered 7 nodes as centroid nodes.

Given a traffic network, we generate the a priori link flows by solving the following

linear program with a dummy objective function

min 0Tf subject to Af = 0, f ≥ `,

where ` ∈ Zm is a randomly generated vector. Let f t be a solution to the above

program. For the purpose of our experimental study, we assumed that vector f t is

the vector of the true link flows of the traffic network, and we composed the interval

flows as f = [0.8f t, 1.2f t]. Hence, as outlined in the next section, we can compare

the results of our approach and those obtained by the min-max and min-sum models

against the true link flows. In our test networks, we generated the all-integer vector `

in [50, 100] for the parallel network, in [100, 500] for the Sioux Falls network, and in

[500, 1000] for Nguyen-Dupuis, Irvine and Cuenca networks.

We set the stopping condition for our local search algorithm to 15 minutes of

running time or trying 3 different initial tableaux, whichever reaches first. We imple-

127

mented our algorithm using MATLAB (2019b), and we used CPLEX 12.9 to solve

min-max and min-sum models. We carried out our experiments on a computer with

an Intel (R) Core (TM) i7-4790 CPU processor at 3.60 GHZ with 32.00 GB of RAM.

5.5.2 Analysis of results

In this section, we discuss results of our computational experiments. Let us recall

that we compare the results obtained by our local search algorithm against those of

min-max and min-sum models. We applied the methods on five test networks, and we

divide the results into two parts. In the first part, we evaluate the results according

to the error accumulation (see (5.5)) and the running times. For the second part,

we discuss the variability of the solutions using different metrics. The optimal value

of (5.6) is not known; hence, we benchmarked the results of min-max and min-sum

models to evaluate our algorithm. Particularly, given the error accumulation by our

local search algorithm (f ls), we computed its relative gap from the error accumulation

(fm) yielded by either min-max or min-sum models (by applying (5.5)) as

gap :=
fm − f ls

fm
.

Thus, a higher gap measure indicates a better performance of our local search algo-

rithm compared to min-max and min-sum models. In Table 5.7, the first three columns

report the networks and their specifications. The following two columns report the

relative gap of the results of the local search algorithm from those of min-max and

min-sum models. Columns 6-8 show the running times, and the last column denotes

the average number of explored basis by the local search algorithm over all iterations.

As it was expected, the min-max and min-sum models can be solved very fast using

the CPLEX solver; for all the networks, the running time of the solver is less than

one second. On the other hand, the local search algorithm takes longer time to con-

128

verge, and for the Irvine and Cuenca networks, the algorithm reaches to the time

limit (15 minutes). Regarding the gap metric, the local search outperforms min-max

and min-sum models on all the networks with the gap ranges between 0.03 and 0.90.

Table 5.7: Results related to gap and running times

network # nodes # links
gap running time (sec)

avg. # bases
min-sum min-max LS min-sum min-max

Parallel 9 14 0.03 0.11 0.15 0.02 0.02 49.33
Ng.-Dep. 13 38 0.33 0.39 1.13 0.00 0.03 269
S. Falls 24 76 0.90 0.88 18.58 0.02 0.00 2027
Irvine 229 496 0.22 0.21 900 0.00 0.02 7622

Cuenca 232 672 0.26 0.17 900 0.02 0.02 4249

Now that we have the solutions, we can compare the results according to different

measures of variability. We here define a metric which measures the non-negative

portion of inferred interval link flows, that is,

ratio :=
1

n

∑
i∈N∗

w+(f∗U(i))

w(f∗U(i))
,

where w(.) denotes the interval width (i.e., (f
∗
U(i) − f ∗U(i)

)), and w+(.) computes the

non-negative portion of the interval width. Thus, a higher ratio shows that a larger

part of the inferred interval link flows lies on the positive orthant, meaning that it is

less likely to get negative flows. As explained earlier, for the sake of evaluating the

quality of the results, we assumed that we have the knowledge of the true link flows.

Hence, we can compute the overestimated portion of the inferred interval link flows

by

plus :=
1

n

∑
i∈N∗

σ+
U(i)

f tU(i)

,

where σ+
U(i) = (f

∗
U(i)− f tU(i)). Similarly, we can determine the underestimated portion

129

Table 5.8: Results related to the variability metrics

network
ratio plus/minus

LS min-sum min-max LS min-sum min-max

Parallel 1.000 1.000 0.951 0.448 0.492 0.798
Ng.-Dep. 0.993 0.873 0.874 0.686 1.338 1.317
S. Falls 0.971 0.820 0.822 0.722 1.968 1.930
Irvine 0.922 0.879 0.872 1.132 1.508 1.544

Cuenca 0.863 0.835 0.843 1.767 2.316 2.092

of the inferred interval link flows as

minus :=
1

n

∑
i∈N∗

σ−U(i)

f tU(i)

,

where σ−U(i) = (f tU(i)−f
∗
U(i)

). Thus, the lower the plus/minus, the better the estimation.

Table 5.8 summarizes the results of the above metrics; each grouped columns represent

one of the metric. Note that the plus and minus metrics are similar in our experiments

because of the way we generated the interval link flows (i.e., the true link flows are

always the center of the interval flows), and thus we report them together in the

table. The inferred interval link flows by the local search algorithm admit a bigger

portion of positive flows than those by the min-max and min-sum models. As can be

noted, the ratio tends to drop as the size of the network increases. This is also the

case with the plus/minus metric where the local search outperforms the two models.

The outperformance is more significant for larger size traffic networks.

5.6 Concluding remarks

The full link flow observability problem is the problem of locating counting sen-

sors on a subset of the links of a given traffic network to fully observe all the link

flows of the network. There are few studies in the literature proposing a minimum

cardinality for such a subset. However, this subset of minimum cardinality need not

130

be unique; basically, there could be several subsets with a same minimum number

of links allowing full observability of the network. In the case of error-free data, any

of those subsets can be used to uniquely observe all the link flows. However, in this

paper, we showed that failing to take into account the sensor measurement error may

result in getting useless information (i.e., negative link flows). This is due to the fact

that the measurement errors of the links equipped with sensors are accumulated and

propagated to the unobserved links through the inference process, resulting in having

negative link flows. In this paper, we proposed an optimization approach to address

this problem. Particularly, we assumed that we have a priori interval link flows and

presented an optimization problem which minimizes the variability of the inferred in-

terval link flows. The feasible set of our optimization problem is the set of all possible

sets of sensor placements with minimum cardinality for which the inferred interval

link flows admit positive realizations. This ensures that we do not get all-negative

link flows; however, this feasible set cannot be described explicitly in general. Thus,

we developed a local search algorithm which with the help of a simplex-like tableau,

explores the feasible set without explicitly constructing it to find a set of sensor place-

ments with minimum variability in inferred link flows. A future direction of this work

can be an extension of our approach to address the measurement errors in a more

general form of the flow-observability problem, allowing any type of sensors, any type

of a priori information, any type of flows of interest, and any type of placements for

sensors (nodes or links).

131

CHAPTER 6

SUMMARY AND FUTURE DIRECTIONS

In this dissertation, we considered linear programming problems where input data

can vary in some given real compact intervals. We focused on two main problems in

this context: the optimal value range problem and the optimal solution set problem.

Given an interval linear program, the former is the problem of finding the best and

the worst optimal values over all the realizations of the interval data, while the latter

determines the set of all possible optimal solutions considering all the realizations

of the interval data. The goal of this dissertation was to contribute to the computa-

tional and applications aspects of the two problems and of the interval optimization

literature in general.

In Chapter 2, we revisited the optimal value range problem for equality-

constrained interval linear programs for which computing the worst optimal value

is known to be NP-hard. We developed three heuristics to solve the problem where

one of the methods returns a lower bound to the worst optimal value, while the

other two methods compute an upper bound of the worst optimal value. Through

numerical experiments, we showed that our greedy approach of getting a lower bound

is promising in computing a cheap but tight bound. However, our enclosure-based

methods of finding an upper bound may not return a reliable bound; hence, there is

an opportunity for improvement.

132

Our work in Chapter 3 was motivated by a real-world problem, the healthcare

access measurement problem, where access to healthcare services is evaluated using

functions of the optimal matching of patients and providers, obtained by solving a

linear program. The question which intrigued our research was: How to evaluate access

to healthcare services when input parameters of the linear program matching patients

and providers are uncertain? To answer the question, we introduced a new problem

in the context of interval linear programming – the outcome range problem – where

the goal is quantifying unintended/further consequences of optimal decisions made

under uncertainty, modeled by an extra linear function (referred to as an outcome

function). Specifically, the outcome range problem finds the upper and lower bounds

of a function (other than the objective function) over all possible optimal solutions

of an interval linear program. We then focused on programs with interval right-hand

sides and studied the computational complexity of the problem for this case, showing

the problem is Np-hard even for this particular case. We also addressed some of

its theoretical properties aimed at characterizing the optimal scenarios. Given the

complexity of the problem, we designed and numerically tested two heuristics to

approximate the range of an outcome function. Finally, we show the applicability

of our approach in the real-world context by using the outcome range problem to

evaluate access to the primary care service for children in the State of Mississippi,

United States.

In Chapter 4, we extended our work on the outcome range problem. We again

focused on the case where the uncertainty of the underlying linear program occurred

only in the right-hand side vector and studied the computational complexity of check-

ing the optimality of a certain solution or scenario to the outcome range problem. We

also investigated how our problem stands in a broader optimization context with re-

spect to well-known classes of optimization problems, including bilevel optimization,

multiobjective optimization, and the optimal value range problem. We developed

133

three new heuristics to solve the problem and numerically tested the algorithms on

three different datasets. Our results indicated that our two methods of computing an

inner approximation of the range of an outcome function are promising in computing

good quality solutions with low running times. In contrast, our method of finding

an outer approximation of the range of an outcome function did not return tight

approximations.

In Chapter 5, we studied an application of interval optimization in the context

of traffic management. We particularly considered the full link flow observability

problem, which is the problem of locating the minimum number of sensors on a

subset of links of a traffic network to observe traffic flows on all links in the network,

and we investigated the case where the data from sensors contain errors. Our work in

this chapter is the first attempt to explicitly address the measurement errors in the

full link flow observability problem. We motivated the need to explicitly considering

the measurement errors and proposed an optimization approach to handle them.

Our optimization approach describes the measurement errors in the observed link

flows by real compact intervals and seeks a set of sensor placements minimizing the

variability in the inferred link flows. We presented a local search algorithm to solve

our optimization problem. The results on several real traffic networks demonstrated

that our approach is promising in selecting a set of sensor placements with low error

accumulation in the inferred link flows.

We summarize some possible future directions of our work as follows:

• Computing a tight upper bound on the worst optimal value of the equality-

constrained interval linear program can be of interest. Having a tight upper

bound is very useful in designing an exact method for the problem.

• One may consider a more general uncertainty set and address the outcome

range problem in this context. For example, we can describe the uncertainty

134

set as a general convex polyhedron, or in the case of interval right-hand sides,

we can describe each right-hand side entry as a linear combination of interval

parameters b1, . . . ,bk (i.e., Bb).

• Computing a tight outer approximation of the range of an outcome function

seems challenging. Hence, it would be interesting to work on a method that

returns a tight outer approximation efficiently.

• In this dissertation, we studied the outcome range problem where the interval

uncertainty occurs only in the right-hand sides of the underlying linear pro-

gram. A future direction could be addressing the problem where the interval

uncertainty occurs in technological coefficients (matrix A) or objective function

coefficients (vector c).

• In Chapter 5, we addressed the measurement errors in the full link flow ob-

servability problem. One can generalize the approach to address measurement

errors in a more general form of the flow observability problem.

135

REFERENCES

[1] Allahdadi, M., and Golestane, A. K. Monte carlo simulation for comput-

ing the worst value of the objective function in the interval linear programming.

International Journal of Applied and Computational Mathematics 2, 4 (2016),

509–518. https://doi.org/10.1007/s40819-015-0074-2.

[2] Allahdadi, M., and Nehi, H. M. The optimal solution set of the interval

linear programming problems. Optimization Letters 7, 8 (2013), 1893–1911.

https://doi.org/10.1007/s11590-012-0530-4.

[3] Atamtürk, A., and Zhang, M. Two-stage robust network flow and design

under demand uncertainty. Operations Research 55, 4 (2007), 662–673. https:

//doi.org/10.1287/opre.1070.0428.

[4] Bandi, C., and Bertsimas, D. Tractable stochastic analysis in high dimen-

sions via robust optimization. Mathematical programming 134, 1 (2012), 23–70.

https://doi.org/10.1007/s10107-012-0567-2.

[5] Beeck, H. Linear programming with inexact data. Technical Report

TUM-ISU-7830, Technical University of Munich, Munich (1978).

[6] Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. Robust optimization,

vol. 28. Princeton University Press, 2009. https://www2.isye.gatech.edu/

~nemirovs/FullBookDec11.pdf.

136

https://doi.org/10.1007/s40819-015-0074-2
https://doi.org/10.1007/s11590-012-0530-4
https://doi.org/10.1287/opre.1070.0428
https://doi.org/10.1287/opre.1070.0428
https://doi.org/10.1007/s10107-012-0567-2
https://www2.isye.gatech.edu/~nemirovs/FullBookDec11.pdf
https://www2.isye.gatech.edu/~nemirovs/FullBookDec11.pdf

[7] Ben-Tal, A., and Nemirovski, A. Robust solutions of linear programming

problems contaminated with uncertain data. Mathematical programming 88, 3

(2000), 411–424. https://doi.org/10.1007/PL00011380.

[8] Bertsekas, D. P. Network optimization: continuous and discrete models.

Athena Scientific Belmont, MA, 1998.

[9] Bertsimas, D., and Goyal, V. On the power and limitations of affine

policies in two-stage adaptive optimization. Mathematical Programming 134,

2 (2012), 491–531. https://doi.org/10.1007/s10107-011-0444-4.

[10] Bertsimas, D., and Sim, M. The price of robustness. Operations Research

52, 1 (2004), 35–53. https://doi.org/10.1287/opre.1030.0065.

[11] Bianco, L., Cerrone, C., Cerulli, R., and Gentili, M. Locating sen-

sors to observe network arc flows: exact and heuristic approaches. Computers

& Operations Research 46 (2014), 12–22. https://doi.org/10.1016/j.cor.

2013.12.013.

[12] Bianco, L., Confessore, G., and Gentili, M. Combinatorial aspects

of the sensor location problem. Annals of Operations Research 144, 1 (2006),

201–234. https://doi.org/10.1007/s10479-006-0016-9.

[13] Bianco, L., Confessore, G., and Reverberi, P. A network based

model for traffic sensor location with implications on o/d matrix estimates.

Transportation Science 35, 1 (2001), 50–60. https://doi.org/10.1287/trsc.

35.1.50.10140.

[14] Birge, J. R., and Louveaux, F. Introduction to stochastic programming.

Springer Science & Business Media, 2011.

137

https://doi.org/10.1007/PL00011380
https://doi.org/10.1007/s10107-011-0444-4
https://doi.org/10.1287/opre.1030.0065
https://doi.org/10.1016/j.cor.2013.12.013
https://doi.org/10.1016/j.cor.2013.12.013
https://doi.org/10.1007/s10479-006-0016-9
https://doi.org/10.1287/trsc.35.1.50.10140
https://doi.org/10.1287/trsc.35.1.50.10140

[15] Bitran, G. R. Linear multiple objective problems with interval coefficients.

Management Science 26 (1980), 694–706.

[16] Boland, N., Charkhgard, H., and Savelsbergh, M. A new method

for optimizing a linear function over the efficient set of a multiobjective integer

program. European Journal of Operational Research 260, 3 (2017), 904–919.

https://doi.org/10.1016/j.ejor.2016.02.037.

[17] Castillo, E., Calviño, A., Lo, H. K., Menéndez, J. M., and Grande,

Z. Non-planar hole-generated networks and link flow observability based on link

counters. Transportation Research Part B: Methodological 68 (2014), 239–261.

https://doi.org/10.1016/j.trb.2014.06.015.

[18] Castillo, E., Calvino, A., Menendez, J. M., Jimenez, P., and Ri-

vas, A. Deriving the upper bound of the number of sensors required to

know all link flows in a traffic network. IEEE Transactions on Intelligent

Transportation Systems 14, 2 (2013), 761–771. https://doi.org/10.1109/

TITS.2012.2233474.

[19] Castillo, E., Gallego, I., Menéndez, J. M., and Jimenez, P. Link flow

estimation in traffic networks on the basis of link flow observations. Journal of

Intelligent Transportation Systems 15, 4 (2011), 205–222. https://doi.org/

10.1080/15472450.2011.620487.

[20] Castillo, E., Gallego, I., Menéndez, J. M., and Rivas, A. Optimal

use of plate-scanning resources for route flow estimation in traffic networks.

IEEE Transactions on Intelligent Transportation Systems 11, 2 (2010), 380–

391. https://doi.org/10.1109/TITS.2010.2042958.

[21] Castillo, E., Gallego, I., Sanchez-Cambronero, S., and Rivas,

A. Matrix tools for general observability analysis in traffic networks. IEEE

138

https://doi.org/10.1016/j.ejor.2016.02.037
https://doi.org/10.1016/j.trb.2014.06.015
https://doi.org/10.1109/TITS.2012.2233474
https://doi.org/10.1109/TITS.2012.2233474
https://doi.org/10.1080/15472450.2011.620487
https://doi.org/10.1080/15472450.2011.620487
https://doi.org/10.1109/TITS.2010.2042958

Transactions on Intelligent Transportation Systems 11, 4 (2010), 799–813.

https://doi.org/10.1109/TITS.2010.2050768.

[22] Castillo, E., Jiménez, P., Menéndez, J. M., Rivas, A., and Gallego,

I. A ternary-arithmetic topological based algebraic method for networks traf-

fic observability. Applied Mathematical Modelling 35, 11 (2011), 5338–5354.

https://doi.org/10.1016/j.apm.2011.04.044.

[23] Castillo, E., Menéndez, J. M., and Jiménez, P. Trip matrix and path

flow reconstruction and estimation based on plate scanning and link observa-

tions. Transportation Research Part B: Methodological 42, 5 (2008), 455–481.

https://doi.org/10.1016/j.trb.2007.09.004.

[24] Castillo, E., Nogal, M., Rivas, A., and Sánchez-Cambronero, S.

Observability of traffic networks: optimal location of counting and scanning

devices. Transportmetrica B: Transport Dynamics 1, 1 (2013), 68–102. https:

//doi.org/10.1080/21680566.2013.780987.

[25] Castillo, E., Rivas, A., Jiménez, P., and Menéndez, J. M. Ob-

servability in traffic networks. plate scanning added by counting informa-

tion. Transportation 39, 6 (2012), 1301–1333. https://doi.org/10.1007/

s11116-012-9390-0.

[26] Cerrone, C., Cerulli, R., and Gentili, M. Vehicle-id sensor location for

route flow recognition: Models and algorithms. European Journal of Operational

Research 247, 2 (2015), 618–629. https://doi.org/10.1016/j.ejor.2015.

05.070.

[27] Cerulli, R., D’Ambrosio, C., and Gentili, M. Best and worst values

of the optimal cost of the interval transportation problem. In International

139

https://doi.org/10.1109/TITS.2010.2050768
https://doi.org/10.1016/j.apm.2011.04.044
https://doi.org/10.1016/j.trb.2007.09.004
https://doi.org/10.1080/21680566.2013.780987
https://doi.org/10.1080/21680566.2013.780987
https://doi.org/10.1007/s11116-012-9390-0
https://doi.org/10.1007/s11116-012-9390-0
https://doi.org/10.1016/j.ejor.2015.05.070
https://doi.org/10.1016/j.ejor.2015.05.070

Conference on Optimization and Decision Science (2017), Springer, pp. 367–

374. https://doi.org/10.1007/978-3-319-67308-0_37.

[28] Cheng, G., Huang, G., and Dong, C. Convex contractive interval linear

programming for resources and environmental systems management. Stochastic

Environmental Research and Risk Assessment 31, 1 (2017), 205–224. https:

//doi.org/10.1007/s00477-015-1187-1.

[29] Cheng, G., Huang, G., Dong, C., Baetz, B., and Li, Y. Interval re-

course linear programming for resources and environmental systems manage-

ment under uncertainty. Journal of Environmental Informatics 30, 2 (2017).

https://doi:10.3808/jei.201500312.

[30] Chinneck, J., and Ramadan, K. Linear programming with interval coef-

ficients. Journal of the Operational Research Society 51, 2 (2000), 209–220.

https://doi.org/10.1057/palgrave.jors.2600891.

[31] Chootinan, P., Chen, A., and Recker, W. Improved path flow estima-

tor for origin–destination trip tables. Transportation Research Record 1923, 1

(2005), 9–17. https://doi.org/10.1177%2F0361198105192300102.

[32] Cipriani, E., Fusco, G., Gori, S., and Petrelli, M. Heuristic methods

for the optimal location of road traffic monitoring. In 2006 IEEE Intelligent

Transportation Systems Conference (2006), IEEE, pp. 1072–1077. https://

doi.org/10.1109/ITSC.2006.1707364.

[33] Confessore, G., Dell’Olmo, P., and Gentili, M. Experimental eval-

uation of approximation and heuristic algorithms for the dominating paths

problem. Computers & Operations Research 32, 9 (2005), 2383–2405. https:

//doi.org/10.1016/j.cor.2004.03.008.

140

https://doi.org/10.1007/978-3-319-67308-0_37
https://doi.org/10.1007/s00477-015-1187-1
https://doi.org/10.1007/s00477-015-1187-1
https://doi:10.3808/jei.201500312
https://doi.org/10.1057/palgrave.jors.2600891
https://doi.org/10.1177%2F0361198105192300102
https://doi.org/10.1109/ITSC.2006.1707364
https://doi.org/10.1109/ITSC.2006.1707364
https://doi.org/10.1016/j.cor.2004.03.008
https://doi.org/10.1016/j.cor.2004.03.008

[34] Curry, S. Statistical inference for optimization models: Sensitivity anal-

ysis and uncertainty quantification, 2019. Ph.D. Thesis, Georgia Institute

of Technology, School of Industrial and Systems Engineering, Atlanta, US.

http://hdl.handle.net/1853/62265.

[35] Dantzig, G. B. Linear programming under uncertainty. Management science

1, 3-4 (1955), 197–206. https://doi.org/10.1287/mnsc.1040.0261.

[36] D’Ambrosio, C., Gentili, M., and Cerulli, R. The optimal value range

problem for the interval (immune) transportation problem. Omega 95 (2020),

102059. https://doi.org/10.1016/j.omega.2019.04.002.

[37] Ehlert, A., Bell, M. G., and Grosso, S. The optimisation of traffic count

locations in road networks. Transportation Research Part B: Methodological

40, 6 (2006), 460–479. https://doi.org/10.1016/j.trb.2005.06.001.

[38] Fortin, J., Zieliński, P., Dubois, D., and Fargier, H. Criticality analysis

of activity networks under interval uncertainty. Journal of Scheduling 13, 6

(2010), 609–627. https://doi.org/10.1007/s10951-010-0163-3.

[39] Fu, C., Zhu, N., Ling, S., Ma, S., and Huang, Y. Heterogeneous sen-

sor location model for path reconstruction. Transportation Research Part B:

Methodological 91 (2016), 77–97. https://doi.org/10.1016/j.trb.2016.

04.013.

[40] Gabrel, V., Murat, C., and Remli, N. Linear programming with interval

right hand sides. International Transactions in Operational Research 17, 3

(2010), 397–408. https://doi.org/10.1111/j.1475-3995.2009.00737.x.

[41] Gal, T. Linear parametric programming—a brief survey. In Sensitivity,

Stability and Parametric Analysis. Springer, 1984, pp. 43–68. https://doi.

org/10.1007/BFb0121210.

141

http://hdl.handle.net/1853/62265
https://doi.org/10.1287/mnsc.1040.0261
https://doi.org/10.1016/j.omega.2019.04.002
https://doi.org/10.1016/j.trb.2005.06.001
https://doi.org/10.1007/s10951-010-0163-3
https://doi.org/10.1016/j.trb.2016.04.013
https://doi.org/10.1016/j.trb.2016.04.013
https://doi.org/10.1111/j.1475-3995.2009.00737.x
https://doi.org/10.1007/BFb0121210
https://doi.org/10.1007/BFb0121210

[42] Gal, T. Postoptimal Analyses, Parametric Programming, and Related Topics:

degeneracy, multicriteria decision making, redundancy. Walter de Gruyter,

2010.

[43] Garajová, E. The optimal solution set of interval linear program-

ming problems. Master’s thesis, Charles Univesity, Faculty of Mathemat-

ics and Physics, Prague, Czech Republic. https://is.cuni.cz/webapps/zzp/

detail/168259/?lang=en, 2016.

[44] Garajová, E., and Hlad́ık, M. On the optimal solution set in interval linear

programming. Computational Optimization and Applications 72, 1 (2019), 269–

292. https://doi.org/10.1007/s11590-012-0530-4.

[45] Garajová, E., Hlad́ık, M., and Rada, M. On the properties of interval

linear programs with a fixed coefficient matrix. In International Conference

on Optimization and Decision Science (2017), Springer, pp. 393–401. https:

//doi.org/10.1007/978-3-319-67308-0_40.

[46] Garajová, E., Hlad́ık, M., and Rada, M. The best, the worst and

the semi-strong: optimal values in interval linear programming. Croatian

Operational Research Review (2019), 201–209. https://doi.org/10.17535/

crorr.2019.0018.

[47] Garajová, E., Hlad́ık, M., and Rada, M. Interval linear programming

under transformations: optimal solutions and optimal value range. Central

European Journal of Operations Research 27, 3 (2019), 601–614. https://

doi.org/10.1007/s10100-018-0580-5.

[48] Gentili, M., Harati, P., and Serban, N. Projecting the impact of the

affordable care act provisions on accessibility and availability of primary care

142

https://is.cuni.cz/webapps/zzp/detail/168259/?lang=en
https://is.cuni.cz/webapps/zzp/detail/168259/?lang=en
https://doi.org/10.1007/s11590-012-0530-4
https://doi.org/10.1007/978-3-319-67308-0_40
https://doi.org/10.1007/978-3-319-67308-0_40
https://doi.org/10.17535/crorr.2019.0018
https://doi.org/10.17535/crorr.2019.0018
https://doi.org/10.1007/s10100-018-0580-5
https://doi.org/10.1007/s10100-018-0580-5

providers for the adult population in georgia. American Journal of Public Health

106, 8 (2016), 1470–1476. https://doi.org/10.2105/AJPH.2016.303222.

[49] Gentili, M., Harati, P., Serban, N., O’connor, J., and Swann,

J. Quantifying disparities in accessibility and availability of pediatric pri-

mary care across multiple states with implications for targeted interventions.

Health Services Research 53, 3 (2018), 1458–1477. https://doi.org/10.1111/

1475-6773.12722.

[50] Gentili, M., Isett, K., Serban, N., and Swann, J. Small-area estimation

of spatial access to care and its implications for policy. Journal of Urban Health

92, 5 (2015), 864–909. https://doi.org/10.1007/s11524-015-9972-1.

[51] Gentili, M., and Mirchandani, P. B. Locating active sensors on traffic

networks. Annals of Operations Research 136, 1 (2005), 229–257. https://

doi.org/10.1007/s10479-005-2047-z.

[52] Gentili, M., and Mirchandani, P. B. Locating sensors on traffic networks:

Models, challenges and research opportunities. Transportation Research Part

C: Emerging Technologies 24 (2012), 227–255. https://doi.org/10.1016/j.

trc.2012.01.004.

[53] Gerlach, W. Zur lösung linearer ungleichungssysteme bei störimg der rechten

seite und der koeffizientenmatrix. Mathematische Operationsforschung und

Statistik. Series Optimization 12, 1 (1981), 41–43. https://doi.org/10.1080/

02331938108842705.

[54] Hadavi, M., and Shafahi, Y. Vehicle identification sensor models for origin–

destination estimation. Transportation Research Part B: Methodological 89

(2016), 82–106. https://doi.org/10.1016/j.trb.2016.03.011.

143

https://doi.org/10.2105/AJPH.2016.303222
https://doi.org/10.1111/1475-6773.12722
https://doi.org/10.1111/1475-6773.12722
https://doi.org/10.1007/s11524-015-9972-1
https://doi.org/10.1007/s10479-005-2047-z
https://doi.org/10.1007/s10479-005-2047-z
https://doi.org/10.1016/j.trc.2012.01.004
https://doi.org/10.1016/j.trc.2012.01.004
https://doi.org/10.1080/02331938108842705
https://doi.org/10.1080/02331938108842705
https://doi.org/10.1016/j.trb.2016.03.011

[55] Hansen, P., Jaumard, B., and Savard, G. New branch-and-bound rules

for linear bilevel programming. SIAM Journal on Scientific and Statistical

Computing 13, 5 (1992), 1194–1217. https://doi.org/10.1137/0913069.

[56] He, S.-x. A graphical approach to identify sensor locations for link flow in-

ference. Transportation Research Part B: Methodological 51 (2013), 65–76.

https://doi.org/10.1016/j.trb.2013.02.006.

[57] Hlad́ık, M. Optimal value range in interval linear programming. Fuzzy

Optimization and Decision Making 8, 3 (2009), 283–294. https://doi.org/

10.1007/s10700-009-9060-7.

[58] Hlad́ık, M. Interval linear programming: A survey. In In Chapter 2. In: Mann

ZA (ed) Linear programming—new frontiers in theory and applications. Nova

Science Publishers, New York, 2012, pp. 85–120.

[59] Hlad́ık, M. An interval linear programming contractor. In: J. Ramik and

D. Stavarek (eds.), Proceedings 30th Int. Conf. Mathematical Methods in

Economics 2012, Karvina, Czech Republic (2012), 284–289. Silesian Univer-

sity in Opava.

[60] Hlad́ık, M. Weak and strong solvability of interval linear systems of equations

and inequalities. Linear Algebra and its Applications 438, 11 (2013), 4156–4165.

https://doi.org/10.1016/j.laa.2013.02.012.

[61] Hlad́ık, M. How to determine basis stability in interval linear program-

ming. Optimization Letters 8, 1 (2014), 375–389. https://doi.org/10.1007/

s11590-012-0589-y.

[62] Hlad́ık, M. On approximation of the best case optimal value in interval

linear programming. Optimization Letters 8, 7 (2014), 1985–1997. https:

//doi.org/10.1007/s11590-013-0715-5.

144

https://doi.org/10.1137/0913069
https://doi.org/10.1016/j.trb.2013.02.006
https://doi.org/10.1007/s10700-009-9060-7
https://doi.org/10.1007/s10700-009-9060-7
https://doi.org/10.1016/j.laa.2013.02.012
https://doi.org/10.1007/s11590-012-0589-y
https://doi.org/10.1007/s11590-012-0589-y
https://doi.org/10.1007/s11590-013-0715-5
https://doi.org/10.1007/s11590-013-0715-5

[63] Hlad́ık, M. Transformations of interval linear systems of equations and in-

equalities. Linear and Multilinear Algebra 65, 2 (2017), 211–223. https:

//doi.org/10.1080/03081087.2016.1180339.

[64] Hlad́ık, M. The worst case finite optimal value in interval linear programming.

Croatian Operational Research Review 9, 2 (2018), 245–254. https://doi.

org/10.17535/crorr.2018.0019.

[65] Hlad́ık, M. Two approaches to inner estimations of the optimal solution set

in interval linear programming. In Proceedings of the 2020 4th International

Conference on Intelligent Systems, Metaheuristics & Swarm Intelligence (New

York, NY, USA, 2020), ISMSI ’20, Association for Computing Machinery,

p. 99–104. https://doi.org/10.1145/3396474.3396479.

[66] Hu, S.-R., and Liou, H.-T. A generalized sensor location model for the

estimation of network origin–destination matrices. Transportation Research

Part C: Emerging Technologies 40 (2014), 93–110. https://doi.org/10.1016/

j.trc.2014.01.004.

[67] Hu, S.-R., Peeta, S., and Chu, C.-H. Identification of vehicle sensor lo-

cations for link-based network traffic applications. Transportation Research

Part B: Methodological 43, 8-9 (2009), 873–894. https://doi.org/10.1016/

j.trb.2009.02.008.

[68] Hu, S.-R., Peeta, S., and Liou, H.-T. Integrated determination of network

origin–destination trip matrix and heterogeneous sensor selection and location

strategy. IEEE Transactions on Intelligent Transportation Systems 17, 1 (2015),

195–205. https://doi.org/10.1109/TITS.2015.2473691.

[69] Huang, G. H., Baetz, B. W., and Patry, G. G. Grey integer pro-

gramming: an application to waste management planning under uncertainty.

145

https://doi.org/10.1080/03081087.2016.1180339
https://doi.org/10.1080/03081087.2016.1180339
https://doi.org/10.17535/crorr.2018.0019
https://doi.org/10.17535/crorr.2018.0019
https://doi.org/10.1145/3396474.3396479
https://doi.org/10.1016/j.trc.2014.01.004
https://doi.org/10.1016/j.trc.2014.01.004
https://doi.org/10.1016/j.trb.2009.02.008
https://doi.org/10.1016/j.trb.2009.02.008
https://doi.org/10.1109/TITS.2015.2473691

European Journal of Operational Research 83, 3 (1995), 594–620. https:

//doi.org/10.1016/0377-2217(94)00093-R.

[70] Infanger, G. Planning under uncertainty solving large-scale stochastic linear

programs. Tech. rep., Stanford Univ., CA (United States). Systems Optimiza-

tion Lab., 1992.

[71] Inuiguchi, M., Ichihashi, H., and Tanaka, H. Fuzzy programming:

a survey of recent developments. In Stochastic versus fuzzy approaches to

multiobjective mathematical programming under uncertainty. Springer, 1990,

pp. 45–68. https://doi.org/10.1007/978-94-009-2111-5_4.

[72] Inuiguchi, M., and Sakawa, M. Possible and necessary efficiency in possi-

bilistic multiobjective linear programming problems and possible efficiency test.

Fuzzy Sets and Systems 78, 2 (1996), 231–241.

[73] Jansson, C. Rigorous lower and upper bounds in linear programming. SIAM

Journal on Optimization 14, 3 (2004), 914–935. https://doi.org/10.1137/

S1052623402416839.

[74] Jansson, C., and Rump, S. M. Rigorous solution of linear programming

problems with uncertain data. Zeitschrift für Operations Research 35, 2 (1991),

87–111. https://doi.org/10.1007/BF02331571.

[75] Juman, Z., and Hoque, M. A heuristic solution technique to attain the

minimal total cost bounds of transporting a homogeneous product with varying

demands and supplies. European Journal of Operational Research 239, 1 (2014),

146–156. https://doi.org/10.1016/j.ejor.2014.05.004.

[76] Kall, P., Wallace, S. W., and Kall, P. Stochastic programming.

Springer, 1994.

146

https://doi.org/10.1016/0377-2217(94)00093-R
https://doi.org/10.1016/0377-2217(94)00093-R
https://doi.org/10.1007/978-94-009-2111-5_4
https://doi.org/10.1137/S1052623402416839
https://doi.org/10.1137/S1052623402416839
https://doi.org/10.1007/BF02331571
https://doi.org/10.1016/j.ejor.2014.05.004

[77] Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold,

T., Bixby, R. E., Danna, E., Gamrath, G., Gleixner, A. M., Heinz,

S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy,

D. E., and Wolter, K. MIPLIB 2010. Mathematical Programming

Computation 3, 2 (2011), 103–163. http://mpc.zib.de/index.php/MPC/

article/view/56/28.

[78] Kumar, P., Panda, G., and Gupta, U. An interval linear programming

approach for portfolio selection model. International Journal of Operational

Research 27, 1-2 (2016), 149–164. https://doi.org/10.1504/IJOR.2016.

078463.

[79] Lai, K. K., Wang, S., Xu, J., Zhu, S., and Fang, Y. A class of linear

interval programming problems and its application to portfolio selection. IEEE

Transactions on Fuzzy Systems 10, 6 (2002), 698–704. https://doi.org/10.

1109/TFUZZ.2002.805902.

[80] Larsson, T., Lundgren, J. T., and Peterson, A. Allocation of link

flow detectors for origin-destination matrix estimation—a comparative study.

Computer-Aided Civil and Infrastructure Engineering 25, 2 (2010), 116–131.

https://doi.org/10.1111/j.1467-8667.2009.00625.x.

[81] Lee, I., Curry, S., and Serban, N. Solving large batches of linear programs.

INFORMS Journal on Computing 31, 2 (2019), 302–317. https://doi.org/

10.1287/ijoc.2018.0838.

[82] Li, D. Interval-valued matrix games. In Linear Programming Models and

Methods of Matrix Games with Payoffs of Triangular Fuzzy Numbers. Springer,

2016, pp. 3–63. https://doi.org/10.1007/978-3-662-48476-0.

147

http://mpc.zib.de/index.php/MPC/article/view/56/28
http://mpc.zib.de/index.php/MPC/article/view/56/28
https://doi.org/10.1504/IJOR.2016.078463
https://doi.org/10.1504/IJOR.2016.078463
https://doi.org/10.1109/TFUZZ.2002.805902
https://doi.org/10.1109/TFUZZ.2002.805902
https://doi.org/10.1111/j.1467-8667.2009.00625.x
https://doi.org/10.1287/ijoc.2018.0838
https://doi.org/10.1287/ijoc.2018.0838
https://doi.org/10.1007/978-3-662-48476-0

[83] Li, W., Luo, J., Wang, Q., and Li, Y. Checking weak optimality of the solu-

tion to linear programming with interval right-hand side. Optimization Letters

8, 4 (2014), 1287–1299. https://doi.org/10.1007/s11590-013-0654-1.

[84] Li, Y., Huang, G. H., Guo, P., Yang, Z., and Nie, S.-L. A dual-interval

vertex analysis method and its application to environmental decision making

under uncertainty. European Journal of Operational Research 200, 2 (2010),

536–550. https://doi.org/10.1016/j.ejor.2009.01.013.

[85] Liu, S.-T., and Kao, C. Matrix games with interval data. Computers and

Industrial Engineering 56, 4 (2009), 1697–1700. https://doi.org/10.1016/

j.cie.2008.06.002.

[86] Lodwick, W. A., and Kacprzyk, J. Fuzzy optimization: Recent advances

and applications, vol. 254. Springer, 2010.

[87] Löfberg, J. Yalmip : A toolbox for modeling and optimization in matlab.

In In Proceedings of the CACSD Conference (Taipei, Taiwan, 2004). https:

//doi.org/10.1109/CACSD.2004.1393890.

[88] Lovász, L. A new linear programming algorithm—better or worse than the

simplex method? The Mathematical Intelligencer 2, 3 (1980), 141–146. https:

//doi.org/10.1007/BF03023055.

[89] Luo, H., Ding, X., Peng, J., Jiang, R., and Li, D. Complexity results

and effective algorithms for worst-case linear optimization under uncertainties.

INFORMS Journal on Computing (2020). https://doi.org/10.1287/ijoc.

2019.0941.

[90] McCormick, G. P. Computability of global solutions to factorable non-

convex programs: Part i — convex underestimating problems. Mathematical

Programming 10, 1 (1976), 147–175. https://doi.org/10.1007/BF01580665.

148

 https://doi.org/10.1007/s11590-013-0654-1
https://doi.org/10.1016/j.ejor.2009.01.013
https://doi.org/10.1016/j.cie.2008.06.002
https://doi.org/10.1016/j.cie.2008.06.002
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1109/CACSD.2004.1393890
https://doi.org/10.1007/BF03023055
https://doi.org/10.1007/BF03023055
https://doi.org/10.1287/ijoc.2019.0941
https://doi.org/10.1287/ijoc.2019.0941
https://doi.org/10.1007/BF01580665

[91] Miele, A., Pritchard, R. E., and Damoulakis, J. Sequential gradient-

restoration algorithm for optimal control problems. Journal of Optimization

Theory and Applications 5, 4 (1970), 235–282. https://doi.org/10.1007/

BF00927913.

[92] Mı́nguez, R., Sánchez-Cambronero, S., Castillo, E., and Jiménez,

P. Optimal traffic plate scanning location for od trip matrix and route estima-

tion in road networks. Transportation Research Part B: Methodological 44, 2

(2010), 282–298. https://doi.org/10.1016/j.trb.2009.07.008.

[93] Mohammadi, M., and Gentili, M. Bounds on the worst optimal value

in interval linear programming. Soft Computing 23, 21 (2019), 11055–11061.

https://doi.org/10.1007/s00500-018-3658-z.

[94] Mohammadi, M., and Gentili, M. The outcome range problem in interval

linear programming. Computers & Operations Research 129 (2021), 105160.

https://doi.org/10.1016/j.cor.2020.105160.

[95] Mohammadi, M., Gentili, M., Hlad́ık, M., and Cerulli, R. How to

quantify outcome functions of interval-valued linear programs. Under revision

for INFORMS Journal on Computing.

[96] Morrison, D. R., and Martonosi, S. E. Characteristics of optimal so-

lutions to the sensor location problem. Annals of Operations Research 226, 1

(2015), 463–478. https://doi.org/10.1007/s10479-014-1638-y.

[97] Mraz, F. Calculating the exact bounds of optimal values in LP with interval

coefficients. Annals of Operations Research 81 (1998), 51–62. https://doi.

org/10.1023/A:1018985914065.

[98] Nemhauser, G. L., and Wolsey, L. A. Integer and Combinatorial

Optimization. Wiley-Interscience, USA, 1988.

149

https://doi.org/10.1007/BF00927913
https://doi.org/10.1007/BF00927913
https://doi.org/10.1016/j.trb.2009.07.008
https://doi.org/10.1007/s00500-018-3658-z
https://doi.org/10.1016/j.cor.2020.105160
https://doi.org/10.1007/s10479-014-1638-y
https://doi.org/10.1023/A:1018985914065
https://doi.org/10.1023/A:1018985914065

[99] Neumaier, A. A simple derivation of the hansen-bliek-rohn-ning-kearfott en-

closure for linear interval equations. Reliable Computing 5, 2 (1999), 131–136.

https://doi.org/10.1023/A:1009997221089.

[100] Ng, M. Synergistic sensor location for link flow inference without path enumer-

ation: A node-based approach. Transportation Research Part B: Methodological

46, 6 (2012), 781–788. https://doi.org/10.1016/j.trb.2012.02.001.

[101] Ng, M. Partial link flow observability in the presence of initial sensors: Solu-

tion without path enumeration. Transportation Research Part E: Logistics and

Transportation Review 51 (2013), 62–66. https://doi.org/10.1016/j.tre.

2012.12.002.

[102] Nguyen, S., and Dupuis, C. An efficient method for computing traffic

equilibria in networks with asymmetric transportation costs. Transportation

Science 18, 2 (1984), 185–202. https://doi.org/10.1287/trsc.18.2.185.

[103] Nobles, M., Serban, N., and Swann, J. Spatial accessibility of pedi-

atric primary healthcare: measurement and inference. The Annals of Applied

Statistics 8, 4 (2014), 1922–1946. https://doi.org/10.1214/14-AOAS728.

[104] Novotná, J., Hlad́ık, M., and Masař́ık, T. Duality gap in interval linear

programming. Journal of Optimization Theory and Applications 184, 2 (2020),

565–580. https://doi.org/10.1007/s10957-019-01610-y.

[105] Oettli, W., and Prager, W. Compatibility of approximate solution of

linear equations with given error bounds for coefficients and right-hand sides.

Numerische Mathematik 6, 1 (1964), 405–409. https://doi.org/10.1007/

BF01386090.

[106] Park, Y. S., Lim, S. H., Egilmez, G., and Szmerekovsky, J. Envi-

ronmental efficiency assessment of u.s. transport sector: A slack-based data

150

https://doi.org/10.1023/A:1009997221089
https://doi.org/10.1016/j.trb.2012.02.001
https://doi.org/10.1016/j.tre.2012.12.002
https://doi.org/10.1016/j.tre.2012.12.002
https://doi.org/10.1287/trsc.18.2.185
https://doi.org/10.1214/14-AOAS728
https://doi.org/10.1007/s10957-019-01610-y
https://doi.org/10.1007/BF01386090
https://doi.org/10.1007/BF01386090

envelopment analysis approach. Transportation Research Part D: Transport

and Environment 61 (2018), 152 – 164. https://doi.org/10.1016/j.trd.

2016.09.009.

[107] Peng, J., and Zhu, T. A nonlinear semidefinite optimization relaxation

for the worst-case linear optimization under uncertainties. Mathematical

Programming 152, 1-2 (2015), 593–614. https://doi.org/10.1007/

s10107-014-0799-4.

[108] Prékopa, A. Stochastic programming, vol. 324. Springer Science & Business

Media, 2013.

[109] Ramik, J. Fuzzy linear optimization. In Linear Optimization Problems

with Inexact Data. Springer, 2006, pp. 117–164. https://doi.org/10.1007/

0-387-32698-7_5.

[110] Rohn, J. Proofs to “Solving interval linear systems”. Freiburger Intervall-

Berichte 84/7, Albert-Ludwigs-Universität, Freiburg, 1984.

[111] Rohn, J. Interval linear programming. In Linear Optimization Problems with

Inexact Data, M. Fiedler et al., Ed. Springer, 2006, pp. 79–100. https://doi.

org/10.1007/0-387-32698-7_3.

[112] Rohn, J. Solvability of systems of interval linear equations and inequalities.

In Linear Optimization Problems with Inexact Data. Springer, 2006, pp. 35–77.

https://doi.org/10.1007/0-387-32698-7_2.

[113] Rohn, J. A handbook of results on interval linear problems, 2012. Techni-

cal Report 1163. Institute of Computer Science. Academy of Sciences of the

Czech Republic. Prague. http://www.nsc.ru/interval/Library/Surveys/

ILinProblems.pdf.

151

https://doi.org/10.1016/j.trd.2016.09.009
https://doi.org/10.1016/j.trd.2016.09.009
https://doi.org/10.1007/s10107-014-0799-4
https://doi.org/10.1007/s10107-014-0799-4
https://doi.org/10.1007/0-387-32698-7_5
https://doi.org/10.1007/0-387-32698-7_5
https://doi.org/10.1007/0-387-32698-7_3
https://doi.org/10.1007/0-387-32698-7_3
https://doi.org/10.1007/0-387-32698-7_2
http://www.nsc.ru/interval/Library/Surveys/ILinProblems.pdf
http://www.nsc.ru/interval/Library/Surveys/ILinProblems.pdf

[114] Roos, E., and den Hertog, D. Reducing conservatism in robust optimiza-

tion. INFORMS Journal on Computing (2020). https://doi.org/10.1287/

ijoc.2019.0913.

[115] Rubin, P., and Gentili, M. An exact method for locating counting sen-

sors in flow observability problems. Transportation Research Part C: Emerging

Technologies 123 (2021), 102855. https://doi.org/10.1016/j.trc.2020.

102855.

[116] Rump, S. INTLAB - INTerval LABoratory. In

Developments in Reliable Computing, T. Csendes, Ed. Kluwer Academic

Publishers, Dordrecht, 1999, pp. 77–104. http://www.ti3.tuhh.de/rump/.

[117] Salari, M., Kattan, L., Lam, W. H., Lo, H., and Esfeh, M. A.

Optimization of traffic sensor location for complete link flow observability in

traffic network considering sensor failure. Transportation Research Part B:

Methodological 121 (2019), 216–251. https://doi.org/10.1016/j.trb.2019.

01.004.

[118] Shan, D., Sun, X., Liu, J., and Sun, M. Optimization of scanning and

counting sensor layout for full route observability with a bi-level programming

model. Sensors 18, 7 (2018), 2286. https://doi.org/10.3390/s18072286.

[119] Sherali, H. D., and Alameddine, A. A new reformulation-linearization

technique for bilinear programming problems. Journal of Global Optimization

2, 4 (1992), 379–410. https://doi.org/10.1007/BF00122429.

[120] Siarry, P. Metaheuristics. Springer, 2016. https://doi.org/10.1007/

978-3-319-45403-0.

[121] Sierra Altamiranda, A., and Charkhgard, H. A new exact algorithm

to optimize a linear function over the set of efficient solutions for biobjective

152

https://doi.org/10.1287/ijoc.2019.0913
https://doi.org/10.1287/ijoc.2019.0913
https://doi.org/10.1016/j.trc.2020.102855
https://doi.org/10.1016/j.trc.2020.102855
http://www.ti3.tuhh.de/rump/
https://doi.org/10.1016/j.trb.2019.01.004
https://doi.org/10.1016/j.trb.2019.01.004
https://doi.org/10.3390/s18072286
https://doi.org/10.1007/BF00122429
 https://doi.org/10.1007/978-3-319-45403-0
 https://doi.org/10.1007/978-3-319-45403-0

mixed integer linear programs. INFORMS Journal on Computing 31, 4 (2019),

823–840. https://doi.org/10.1287/ijoc.2018.0851.

[122] Sinha, A., Malo, P., and Deb, K. A review on bilevel optimization: from

classical to evolutionary approaches and applications. IEEE Transactions on

Evolutionary Computation 22, 2 (2017), 276–295. https://doi.org/10.1109/

TEVC.2017.2712906.

[123] Soyster, A. L. Convex programming with set-inclusive constraints and ap-

plications to inexact linear programming. Operations Research 21, 5 (1973),

1154–1157. https://doi.org/10.1287/opre.21.5.1154.

[124] Sun, W., An, C., Li, G., and Lv, Y. Applications of inexact programming

methods to waste management under uncertainty: current status and future

directions. Environmental Systems Research 3, 1 (2014), 15. https://doi.

org/10.1186/s40068-014-0015-9.

[125] Vajda, S. Mathematical Programming. Addison-Wesley, Reading Mass., USA,

1961.

[126] Wang, N., Gentili, M., and Mirchandani, P. Model to locate sensors

for estimation of static origin–destination volumes given prior flow information.

Transportation Research Record 2283, 1 (2012), 67–73. https://doi.org/10.

3141%2F2283-07.

[127] Wang, X., and Huang, G. Violation analysis on two-step method for interval

linear programming. Information Sciences 281 (2014), 85–96. https://doi.

org/10.1016/j.ins.2014.05.019.

[128] Winston, W. L., Venkataramanan, M., and Goldberg, J. B.

Introduction to Mathematical Programming, vol. 1. Thomson/Brooks/Cole

Duxbury; Pacific Grove, CA, 2003.

153

https://doi.org/10.1287/ijoc.2018.0851
https://doi.org/10.1109/TEVC.2017.2712906
https://doi.org/10.1109/TEVC.2017.2712906
https://doi.org/10.1287/opre.21.5.1154
https://doi.org/10.1186/s40068-014-0015-9
https://doi.org/10.1186/s40068-014-0015-9
https://doi.org/10.3141%2F2283-07
https://doi.org/10.3141%2F2283-07
https://doi.org/10.1016/j.ins.2014.05.019
https://doi.org/10.1016/j.ins.2014.05.019

[129] Xie, F., Butt, M., Li, Z., and Zhu, L. An upper bound on the minimal total

cost of the transportation problem with varying demands and supplies. Omega

68 (2017), 105–118. https://doi.org/10.1016/j.omega.2016.06.007.

[130] Xu, X., Lo, H. K., Chen, A., and Castillo, E. Robust network sensor

location for complete link flow observability under uncertainty. Transportation

Research Part B: Methodological 88 (2016), 1–20. https://doi.org/10.1016/

j.trb.2016.03.006.

[131] Yamamoto, Y. Optimization over the efficient set: overview. Journal of

Global Optimization 22, 1-4 (2002), 285–317. https://doi.org/10.1023/A:

1013875600711.

[132] Yang, H., Iida, Y., and Sasaki, T. An analysis of the reliability of an

origin-destination trip matrix estimated from traffic counts. Transportation

Research Part B: Methodological 25, 5 (1991), 351–363. https://doi.org/

10.1016/0191-2615(91)90028-H.

[133] Yang, H., Yang, C., and Gan, L. Models and algorithms for the screen line-

based traffic-counting location problems. Computers & Operations Research 33,

3 (2006), 836–858. https://doi.org/10.1016/j.cor.2004.08.011.

[134] Yang, H., and Zhou, J. Optimal traffic counting locations for origin–

destination matrix estimation. Transportation Research Part B: Methodological

32, 2 (1998), 109–126. https://doi.org/10.1016/S0191-2615(97)00016-7.

[135] Yim, P. K., and Lam, W. H. Evaluation of count location selection meth-

ods for estimation of od matrices. Journal of Transportation Engineering 124,

4 (1998), 376–383. https://doi.org/10.1061/(ASCE)0733-947X(1998)124:

4(376).

154

https://doi.org/10.1016/j.omega.2016.06.007
https://doi.org/10.1016/j.trb.2016.03.006
https://doi.org/10.1016/j.trb.2016.03.006
https://doi.org/10.1023/A:1013875600711
https://doi.org/10.1023/A:1013875600711
https://doi.org/10.1016/0191-2615(91)90028-H
https://doi.org/10.1016/0191-2615(91)90028-H
https://doi.org/10.1016/j.cor.2004.08.011
https://doi.org/10.1016/S0191-2615(97)00016-7
https://doi.org/10.1061/(ASCE)0733-947X(1998)124:4(376)
https://doi.org/10.1061/(ASCE)0733-947X(1998)124:4(376)

[136] Zheng, Y., Lee, I., and Serban, N. Regularized optimization with spatial

coupling for robust decision making. European Journal of Operational Research

270, 3 (2018), 898–906. https://doi.org/10.1016/j.ejor.2017.10.037.

[137] Zhou, F., Huang, G. H., Chen, G.-X., and Guo, H.-C. Enhanced-interval

linear programming. European Journal of Operational Research 199, 2 (2009),

323–333. https://doi.org/10.1016/j.ejor.2008.12.019.

[138] Zhou, G., Chung, W., and Zhang, Y. Measuring energy efficiency per-

formance of china’s transport sector: A data envelopment analysis approach.

Expert Systems with Applications 41, 2 (2014), 709–722. https://doi.org/

10.1016/j.eswa.2013.07.095.

[139] Zhou, X., and List, G. F. An information-theoretic sensor location model

for traffic origin-destination demand estimation applications. Transportation

Science 44, 2 (2010), 254–273. https://doi.org/10.1287/trsc.1100.0319.

[140] Zhu, S., Guo, Y., Chen, J., Li, D., and Cheng, L. Integrating optimal

heterogeneous sensor deployment and operation strategies for dynamic origin-

destination demand estimation. Sensors 17, 8 (2017), 1767. https://doi.org/

10.3390/s17081767.

155

https://doi.org/10.1016/j.ejor.2017.10.037
https://doi.org/10.1016/j.ejor.2008.12.019
https://doi.org/10.1016/j.eswa.2013.07.095
https://doi.org/10.1016/j.eswa.2013.07.095
https://doi.org/10.1287/trsc.1100.0319
https://doi.org/10.3390/s17081767
https://doi.org/10.3390/s17081767

APPENDIX A

SUPPLEMENTS TO CHAPTER 5

Here, we briefly discuss the min-max and min-sum models proposed in [130]. Let

us recall that we define graph G = (N∗, E) where N∗ denotes non-centroid nodes and

E represents the links. Let xa for all a ∈ E be a binary decision variable, where xa

is 1 if link a is selected as an unobserved link, 0 otherwise. We also define parameter

γia as the node-link indicator: γia = 1 if link a is connected to node i and 0 otherwise.

Xu et al. [130] used the concept of the new links, originally introduced in [17], to

ensure that matrix AU is non-singular for a given U . According to the concept, we

assign to each non-centroid node a set of new links that are not already assigned to

another non-centroid node. Let Ei be the set of new links connected to non-centroid

node i ∈ N∗; it follows the following rules:

E =
⋃
i∈N∗

Ei,

Ei ∩ AN∗/i = ∅.

156

There are different ways of creating the set of new links Ei. We applied the node

ranking procedure presented in [130]. The min-max formulations is as follows:

min max
i∈N∗
{
∑
a∈E

γiaxa}

subject to∑
a∈Ei

xa = 1, i ∈ N∗, (A.1)

xa = {0, 1}, a ∈ E. (A.2)

We can reformulate the above program by introducing an additional variable y, that

is,

min y subject to
∑
a∈E

γiaxa ≤ y ∀i ∈ N∗, (A.1)− (A.2).

The above formulation addresses the worst case (the largest number of the unobserved

links connected to all non-centroid nodes). However, the min-sum model considers the

cumulative number of unobserved links connected to each non-centroid node, i.e.,

min
∑
i∈N∗

∑
a∈E

γiaxa subject to (A.1)− (A.2).

.

157

CURRICULUM VITAE

NAME: Mohsen Mohammadi

ADDRESS: Department of Industrial Engineering
University of Louisville, Louisville, KY, 40292

EDUCATION: Ph.D., Industrial Engineering
University of Louisville, Louisville, KY, 2021

M.S., Industrial Engineering
Azad University, Najafabad, Iran, 2013

B.S., Industrial Engineering
Azad University, Najafabad, Iran, 2010

AWARDS: Industrial Engineering Doctoral Dissertation Award,
J. B. Speed School of Engineering, University of Louisville, 2021

Graduate Dean’s Citation Award, University of Louisville, 2021

Doctoral Fellowship Award, Department of Industrial Engineering,
University of Louisville, 2021

National Science Foundation Innovation Corp Award, University
of Louisville, 2018

The 2nd place, Excellence in Health Disparities Award,
Research!Louisville 2018

Graduate Dean’s Recognition for the publishing academy, University
of Louisville, 2017

School of Interdisciplinary and Graduate Studies Fellowship Award,
University of Louisville, 2016

.

158

	Optimization with interval data: new problems, algorithms, and applications.
	Recommended Citation

	INTRODUCTION
	Background and contributions
	Structure of this dissertation

	BOUNDS ON THE WORST OPTIMAL VALUE IN INTERVAL LINEAR PROGRAMMING
	Introduction
	Problem description and existing results
	Preliminaries
	Finding lower and upper bounds for
	Finding an upper bound
	Finding a lower bound

	Experimental results
	Conclusions

	THE OUTCOME RANGE PROBLEM IN INTERVAL LINEAR PROGRAMMING
	Introduction
	Quantifying an outcome function under uncertainty: a motivating example
	The outcome range problem
	Our focus

	Computational complexity of the outcome range problem
	
	Solution methods
	Super-set based method
	Local search algorithm

	Experimentation
	Description of problem instances
	Implementation of the algorithms
	Analysis of the results

	Case study: Healthcare access measurement
	Optimization model and outcome function
	Case study
	Importance of quantifying sensitivity to data perturbations
	Implementation of algorithms
	Analysis of the results

	Conclusions

	HOW TO QUANTIFY OUTCOME FUNCTIONS OF INTERVAL-VALUED LINEAR PROGRAMS
	Introduction
	Problem definition
	Computational complexity
	Properties of
	How does relate to other problems?
	Optimal value range problem
	Multiobjective optimization
	Bilevel optimization
	Mixed integer LP formulation

	Approximating
	Outer approximation: A reformulation-linearization technique
	Inner approximation: A gradient-restoration based algorithm
	Inner approximation: A bases inspection approach

	Computational experiments
	Test instances
	Implementation details
	Numerical results

	Concluding remarks

	FULL LINK FLOW OBSERVABILITY OF TRAFFIC NETWORKS UNDER MEASUREMENT ERROR
	Introduction
	Link flow inference
	Link flow inference under measurement error
	Local search algorithm
	Experimental results
	Test networks and implementation
	Analysis of results

	Concluding remarks

	SUMMARY AND FUTURE DIRECTIONS
	REFERENCES
	SUPPLEMENTS TO CHAPTER 5
	CURRICULUM VITAE

