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ABSTRACT 

IDENTIFICATION AND STRUCTURAL CHARACTERIZATION OF 

FUNCTIONAL MOTIFS IN THE PORPHYROMONAS GINGIVALIS 

MFA1 SHORT FIMBRIA 

By 

Mohammad K. Roky 

23
rd

 July, 2020

Porphyromonas gingivalis is a causative agent of periodontal disease, initially colonizes 

the oral cavity by adhering to commensal streptococci. Adherence requires the interaction 

of the minor fimbrial protein (Mfa1) of P. gingivalis with streptococcal antigen I/II (Ag 

I/II).  A peptide derived from Ag I/II peptide has been well characterized and shown to 

significantly reduce P. gingivalis colonization and bone loss in vivo, suggesting that this 

interaction represents a potential target for therapeutic intervention. However, the 

functional motifs of Mfa1 involved in the interaction with Ag I/II remain 

uncharacterized. A series of N- and C-terminal peptide fragments of Mfa1 were 

expressed and tested for inhibition of P. gingivalis adherence to S. gordonii. Residues 

225-400 of Mfa1 was identified as essential for P. gingivalis adherence. Using the three-
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dimensional structure of Mfa1, a putative binding cleft was identified and five small-

molecule peptidomimetics based on the AgI/II peptide could be docked in this site. Site‐

specific mutation of amino acids in the predicted cleft, specifically, R240A, W275A, 

D321A and A357P inhibited the interaction of Mfa1 with streptococci. Additionally, 

complementation of an Mfa1‐deficient P. gingivalis strain with wild‐type mfa1 restored 

adherence to streptococci, whereas complementation with the site‐specific mfa1 mutants 

resulted in significantly reduced levels of adherence. 

To develop targeted small molecule inhibitors of this protein-protein interaction, virtual 

screening was performed to identify compounds that exhibit structural similarity with the 

two functional motifs (NITVK and VQDLL) of the AgI/II peptide. Thirty-

three compounds were tested for in vitro inhibition of P. gingivalis adherence, and the 

three most potent compounds, N7, N17 and V8, were further characterized. In vivo 

efficacy of these compounds was evaluated in a murine model of periodontitis. Treatment 

of mice with each of the compounds reduced P. gingivalis-mediated gingival 

inflammation as determined by IL-17 expression and significantly reduced maxillary 

alveolar bone resorption in infected animals. Finally, a series of cytotoxicity tests were 

performed with human and murine cell lines. N17 and V8 did not show any cytotoxic 

activity. In summary, we successfully characterized the Mfa1 binding site and identified 

compounds N17 and V8 as potential lead compounds that will provide the platform to 

design more potent therapeutic agents that may function to limit or prevent 

P. gingivalis colonization of the oral cavity. 
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CHAPTER ONE: INTRODUCTION 

Periodontal disease: The ancient Chinese and Egyptians described the periodontal 

disease as an inflammatory condition over 4000 years ago and Hippocrates (400-335 BC) 

defined the disease as "the gums were bleeding or rotten" [1, 2]. Since then, periodontal 

diseases have been considered to be a group of chronic inflammatory conditions of the 

gingiva (soft tissues surrounding the teeth) and tissues supporting the teeth (collagen 

fiber) caused by dental plaque or a microbial biofilm. This disease represents a significant 

oral health concern and is a substantial contributor to tooth loss [3] and if not treated 

properly could even lead to death [4]. The early stage of periodontal disease is gingivitis 

which is manifest by localized inflammation of gingival tissue, characterized by redness, 

swollen and tender gums or that readily bleed upon probing. If the infection persists, 

disease can advance to chronic irreversible inflammation that leads to the destruction of 

alveolar bone and ligament, resulting in attachment loss that increases the depth of the 

periodontal pockets, which is a hallmark symptom of advanced periodontal disease.  

Epidemiology of Periodontal Disease: According to Tonetti et al., periodontal disease is 

the most prevalent disease in humankind [5]. The global burden of disease study from 

1990 to 2010  ranked periodontal disease as the sixth most pervasive disease in the world 

that affects 11.4% or 743 million people worldwide  [6, 7] and 158 million people face 

consequences of tooth loss, especially older adults  [6]. The World Health Organization 

(WHO) maintains an oral health database that collects data from different countries based 
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on the Community Periodontal Index (CPI)[8]. The CPI score is an indication of the 

severity of periodontal disease in the community and ranges from 0 to 4. As attachment 

loss and probing depth (PD) are considered to be the gold standard for the prevalence of 

the periodontal disease [9], a CPI score of 0 indicates no periodontal disease, a score of 1 

indicates bleeding on probing; 2 indicates the presence of calculus and bleeding; 3  is 

associated with subgingival pocket depths 4-5 mm and 4 represents very deep 

subgingival pockets of 6 mm or greater. Based on these criteria, studies indicate that 35% 

to 70%  of adolescents in developing nations have calculus deposits whereas only 4% to 

34% exhibit calculus in developed countries. In the adult population, 36-63% exhibit 

calculus deposition in developing nations and 14-47% in developed nations [8]. In the 

US, 42% of the adult population at 30 years of age or older suffer from periodontitis and 

7.8% of this adult group have severe periodontitis. Severe periodontitis is mostly 

prevalent in adults 65 years or older, and in Mexican American, non-Hispanic black 

populations, and in smokers [10].   

 Risk factors of periodontal disease: Some of the risk factors of periodontal disease are 

modifiable, and some are non modifiable. Smoking is the major modifiable risk factor of 

periodontal disease, and the smokers suffer three times greater risk of severe periodontitis 

than the non-smoker [11]. The initiation and progression of periodontitis in smokers is 

more rapid and show these individuals show inferior treatment outcomes compare to non-

smokers [11-13]. Diabetes mellitus is the most notable systemic disease considered as a 

risk factor for the onset of periodontal disease both in young people and adults. It 

contributes to periodontal disease by exerting an enhanced inflammatory response 

relative to non-diabetic patients  [14-16]. Globally, socioeconomic conditions also play a 
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vital role in periodontal disease due to the higher cost of treatments  [6, 17]. For example 

in the United States, severe periodontitis is most common in Mexican American and 

African American populations who live under the federal poverty line [9, 10, 18]. Other 

factors such as stress and increased insulin resistance also represent potential risk factors 

for periodontal disease [19, 20].  This anger, job-related stress, or the stress associated 

with military service can predispose individuals to periodontal disease [21-23]. 

Age and heredity are some of the non modifiable risk factors. All of the systemic reviews 

have consistently shown the adults aged 60-69 years are more prone to periodontal 

disease than the 40-50 years age group  [10, 24]. Although no single nucleotide 

polymorphisms related to genetic predisposition to periodontal disease have been 

identified, people with different genetic backgrounds and associated with various 

environmental factors can be more prone to this disease [23, 25].  

Association of periodontal disease with systemic disease: Around 1891, W. D. Millar 

first advanced the notion of the relationship between oral and systemic infection [26]. In 

1900, a British doctor, William Hunter, proposed the focal infection hypothesis and 

suggested that the extraction of the teeth alleviates the disease burden and improves the 

overall health in patients  [26, 27]. In the 1980s, the association of periodontal disease 

and systemic disease became more apparent as a well-defined study observed that 

myocardial infraction was associated with poor oral health [28]. Since then, the number 

of studies have explored the association between oral health and other systemic diseases 

such as atherosclerotic cardiovascular disease [29], diabetes [16] 
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, adverse pregnancy outcome [30], respiratory disease [31, 32], chronic kidney disease 

[33], rheumatoid arthritis [34], cognitive impairment [35], obesity [36], metabolic 

syndrome [37] and cancer [38]. The link between periodontal disease and other systemic 

diseases is bidirectional and exact mechanisms to explain these associations have yet to 

be defined. However, one possible mechanism may be the direct involvement of oral 

pathogens in systemic disease progression and oral pathogens have been detected in 

thrombi from patients with acute myocardial infarction [39]. In addition, an indirect 

mechanism may involve the secretion of inflammatory factors, such as C reactive protein 

which is elevated during chronic periodontitis into the bloodstream [40].    

Pathophysiology of periodontal disease: Periodontal disease is defined as a 

polymicrobial community-mediated chronic inflammatory disease and chronic 

inflammation in the host leads to the destruction of alveolar bone and subsequent sulcus 

formation  [41-43]. The microbes that reside in the oral cavity comprise hundreds of 

species of different bacteria, fungi, and viruses  [44, 45]. These organisms adhere to solid 

surfaces (e.g., the tooth surface or metal implants) and form a highly organized biofilm 

structure [46]. The simple depiction of organized microbial communities in oral biofilm 

represented by the Figure 1.1. The initial stage of biofilm formation is the adsorption of 

salivary macromolecules (mucin, proteins) on the enamel surface to generate the acquired 

pellicle. Gram-positive organisms such as Actinomyces and Streptococcus species 

represent primary colonizers, as these bacteria can readily adhere to this acquired pellicle 

through species-specific receptor-ligand interactions [47]. Once attached, these bacteria 

promote further increases in biofilm biomass through co-aggregation interactions and 

initiate the generation of an extracellular matrix, which also promotes the adhesion of 
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other bacteria. As the biofilm biomass and thickness increases, the consumption and 

diffusion of oxygen and other nutrients promotes the generation of anaerobic 

environments that facilitates the enrichment of the later colonizing pathogenic Gram-

negative flora, including red-complex bacteria Porphyromonas gingivalis, Tannerella 

forsythia, and Treponema denticola [48]. In many cases, the attachment of Gram-

negative organisms to the Gram-positive colonizers is mediated by specific sets of 

adhesin-receptor interactions. Interspecies cell signaling, metabolic cross-feeding, 

synergistic cooperation and interspecies antagonism can each contribute to the 

establishment of this polymicrobial community [49-51]. Finally, calcification of this 

biofilm occurs through the deposition of calcium and phosphate ions from serum (in 

subgingival biofilm) or from the saliva (in supragingival biofilm) to form the mature 

dental plaque or calculus [19, 23]. In a healthy individual, the host-microbe homeostasis 

is important for maintaining oral health. However, disrupting homeostasis and changing 

the overall microbial composition of the dental biofilm, especially by the Gram-negative 

bacterium P. gingivalis, can create a dysbiotic microbiota which can elicit uncontrolled 

inflammation leading to permanent tissue damage  [52-54]. 

Both innate and adaptive immunity is involved in controlling the formation of dental 

plaque. Epithelial cells are the first-line of host defense and act as a physical barrier but 

in response to microbial metabolites can secrete cytokines and stimulate neurons to 

produce neuropeptides that increase blood flow in the local tissue [55]. Dendritic 

Langerhans cells uptake microbial antigens and present the antigen to the lymph node to 

promote the infiltration of neutrophils, granulocytes, and lymphocytes. Neutrophils 

phagocytose bacteria and contribute to maintaining homeostasis between oral microbes 
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and the host. However, a dysbiotic microbiota leads to the hyperactivation of neutrophils 

that increases the production of enzymatic activity and reactive oxygen species leading to 

tissue damage. For example, the increased level of myeloperoxidase produced by 

hyperactive neutrophils impairs the balance of membrane metalloproteinases,  thus 

eventually leading to bone resorption by the degradation of ligament fibers by 

metalloproteinases [56].  Most of the B cells that reach the site of infection represent 

sIgA antibody-producing plasma cells, which may also play a role in controlling the 

microbial growth [57]. However, plasma cells also produce various cytokines such as 

TNFα, IL-6, IL-10, TGFβ and metalloproteinases, which can contribute to tissue 

destruction [58]. Additionally, T cell-mediated immune response occurs through 

stimulation of  Th1, Th2, and Th17 subsets as well as various Treg populations [55].   
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Figure 1.1. Simplified depiction of dental plaque biofilm: Dental biofilm is highly 

organized microbial structure started with acquired pellicle formation where early 

colonizer readily adhere and provide the substrata for late colonizer. Blue line indicate 

adhesin receptor interaction among microbes, also metabolic cross talk common event in 

dental biofilm. Image is modified from Wright et al. 2013 [59]. 
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P. gingivalis:  P. gingivalis is a Gram-negative rod-shaped, asaccharoytic, obligate 

anaerobic bacterium that produces a number of virulence factors. Most notable are the 

Arg- and Lys-specific gingipains that degrade host proteins, including complement 

system activation proteins. In addition, a serine phosphatase (SerB) can suppress IL-8 

production, and lipid A1-4 phosphatase can function to modify lipid A to subvert host 

immune response. Nucleoside diphosphate kinase suppresses ATP induced cell apoptosis 

and P. gingivalis fimbriae mediate the colonization and interbacterial adhesion as well as 

contribute to immunosuppression [51, 60]. Although periodontal disease is caused by a 

polymicrobial infection, P. gingivalis is considered to be a vital contributor to disease 

onset and progression. P. gingivalis is detected in 85% of the disease cases [61], strongly 

correlates with subgingival pocket depth [62] and has been shown to induce alveolar 

bone loss in an animal model  [52, 63]. 

The primary niche of P. gingivalis is the subgingival area of the teeth, where conditions 

are optimal for the successful colonization and growth of the obligate anaerobic bacteria 

[64]. However, to colonize this preferred niche, P. gingivalis must first overcome 

obstacles in the supragingival environment such as the mechanical shearing forces that 

arise from tongue movement or the flow of saliva and gingival crevicular fluid. 

Furthermore, specific salivary molecules can promote microbial clearance via 

expectoration or swallowing [65].  To survive in this hostile environment, P. gingivalis 

adheres to other bacterial species that exist in the supragingival microbiota [66-68]. Co-

adhesion of P. gingivalis with other bacteria is mediated by specific  set of adhesin-

receptor interactions and may be driven by physiologic compatibility of the adherent 

organisms. For instance, Fusobacterium nucleatum co-aggregates with P. gingivalis and 
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supports the growth of P. gingivalis by reducing oxygen levels to that which can be 

tolerated by P. gingivalis [66].  F. nucleatum can also generate ammonia from salivary 

aspartate and glutamate, which raises the pH level, supporting the growth of acid 

intolerant P. gingivalis [69].  Similarly, P. gingivalis can adhere to the oral streptococci, 

specifically to streptococci of the oralis, sanguinis, and mitis groups but not to 

Streptococcus mutans  [67, 70, 71]. The physiological basis for this species-specific 

interaction might arise from the acidophilic nature of the mutans group in contrast to 

other streptococcal groups. Moreover, the introduction of P. gingivalis in human 

volunteers showed P. gingivalis localized exclusively in the supragingival biofilm where 

streptococcal species predominate [72]. Furthermore, S. gordonii secretes the folate 

synthesis precursor para-aminobenzoic acid (PABA), which is essential for histidine 

metabolism in P. gingivalis and thus may support the growth of this organism in 

supragingival biofilm [51]. Thus, P. gingivalis may initially colonize the oral cavity by 

interacting with streptococci in supragingival biofilm as a precursor to becoming 

established in its preferred niche in the subgingival biofilm.        

P. gingivalis fimbriae: P. gingivalis express two distinct types of fimbriae in its surface 

that participate in nearly all host-pathogen interactions as well as bacterial co-adhesion 

with biofilm microbiota [73]. The fimbrial subunit of long fimbriae is FimA encoded by 

the fimA gene [74] which exists in six sub-families designated as genotypes I to VI [73-

75].  However, FimA genotype II is the most common in P. gingivalis, and both 

genotypes II and IV have been suggested to be more virulent than the other groups  [76-

78]. Other accessory proteins that comprise the FimA fimbriae are encoded by the 

fimABCDE operon. FimB localizes in the outer membrane, and facilitates anchoring and 
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the regulation of expression and length of FimA [79]. FimC, FimD, and FimE are 

accessory proteins that mainly contribute to tip formation and may be involved in the 

adhesive functions of the FimA fimbriae [80, 81]. FimA fimbriae play a crucial role in 

the pathogenesis of P. gingivalis as they mediate interaction with the 51-integrin 

family of proteins facilitate the endocytosis of this organism in phagocytic cells by actin 

cytoskeletal remodeling and once inside the host cells, P. gingivalis impairs phagocytic 

killing mechanisms [82]. FimA has also been suggested to be involved in the 

pathogenesis of rheumatoid arthritis since it mediates the initial invasion of osteoblasts 

[83, 84].  In addition, FimA mediates co-aggregation and microcolony formation with 

other bacterial communities in the oral biofilm. For example, FimA mediates adhesion to 

Actinomyces viscosus [85], Treponema denticola [86], Streptococcus gordonii [87], 

and Streptococcus oralis  [88] via specific adhesin receptor interactions and also binds to 

dentilisin of T. denticola and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of S. 

gordonii and S. oralis [51]. 

The short or minor fimbriae of P. gingivalis are comprised of the structural protein Mfa1 

and are antigenically distinct from the long fimbriae (FimA). However, a recent study 

indicates that FimA and Mfa1 are structurally related and contain a conserved fold  [89]. 

Mfa1 is encoded by the mfa1 co-expressed with the other accessory proteins Mfa2, Mfa3, 

Mfa4, and Mfa5  (Figure 1.2a). Mfa2 functions to anchor the fimbriae and regulate 

fimbrial length, similar to the function of FimB. Mfa3, Mfa4, Mfa5 correspond to long 

fimbrial components FimC, FimD, and FimE, and may be involved in tip formation and 

essential for the adhesive function of minor fimbriae [82, 90].  Mfa1 also interacts with 

DC-SIGN (dendritic cell-specific ICAM-3 grabbing nonintegrin) of dendritic cells [91] 
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and induces secretion of inflammatory cytokines such as  IL-1β, IL-8, IL-6, and TNFα 

[91, 92].  Minor fimbriae also stimulate the production of interleukin-1α (IL-1α), IL-1β, 

IL-6, and tumor necrosis factor-α (TNF-α) by macrophages and has been suggested to be 

a causative factor of alveolar bone resorption in animal models  [78, 93].   A major 

function of the minor fimbriae involve the co-aggregation of P. gingivalis with specific 

streptococcal species. Park et al. showed that Mfa1 is required for community formation 

with S. gordonii, and interacts with the S gordonii surface antigen Ag I/II  [94]. Minor 

fimbriae also involved in P. gingivalis autoaggregation, monospecies microcolony 

formation, and mature biofilm formation [95]. 

Recent studies indicate that the biogenesis of Mfa1 and FimA fimbriae most likely occur 

through a donor strand based exchange mechanism (DSE) observed in type I and P 

fimbriae assembly in E. coli but no chaperone-usher pathway is involved in P. gingival 

fimbrial biogenesis  [89, 96-101]. Mfa1 and FimA fimbriae are both synthesized as pre-

proproteins  (Figure 1.2b) containing an N-terminal signal peptide that mediates 

translocation of the proteins across the inner membrane into periplasmic space. Upon 

translocation, the signal peptide is removed by signal peptidase and the proproteins 

become lipidated [102, 103]. The proproteins are secreted across the outer membrane and 

are anchored on the membrane most likely by the lipid moiety.  Each protein then 

undergoes further proteolytic cleavage by Rgp to produce the mature structural subunits 

of the respective fimbriae [103, 104]. Cleavage by Rgp results in the formation of a long 

hydrophobic motif that subsequently interacts with a β-strand from the adjacent subunit 

of the growing fibril (Figure 1.2c)  [89]. Mfa2 act as an anchor protein that anchor the 

Mfa1 fimbriae in the outer membrane and also act as an elongation and assembly 
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terminator [105]. Finally, Mfa3, Mfa4 and Mfa5 accessory protein assembled in the distal 

part of the mature fimbriae [106, 107].  
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Mfa1 Mfa2 Mfa3 Mfa4 Mfa5 

Figure 1.2. Mfa1 polymerization: A)  The anchor protein Mfa2 along with tip protein 

Mfa3, Mfa4 and Mfa5 coexpressed with Mfa1. B) Mfa1 expressed as pre-pro peptide, the 

signal peptide remove by peptidase where the N terminal extension further removed by 

Rgp in the cell surface to produce mature Mfa1 monomer. C)The proposed donor strand 

exchange mechanism of type V fimbria assembly by Xu et al. [89]. 

A) 

B)

Pre-pro 
peptide

Pro-peptide

Signal peptide   N-terminal extension  Mfa1 monomeric 
subunit

C) 

B)
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Oral streptococci: The oral streptococci are Gram-positive, facultative bacteria that 

constitute the majority of the cultivatable bacterial community in dental plaque [47, 108, 

109] and are considered to be beneficial to oral health [110]. Oral streptococci promote 

the colonization and growth of other commensals such as Actinomyces spp and 

Veillonella spp and may antagonize the colonization by pathogenic organisms [111]. The 

presence of beneficial streptococci such as S. gordonii, S. sanguinis, and S. parasanguinis 

is associated with protection against cariogenic S. mutans pathogenesis [112]. 

Streptococcus mutans is notable for its ability to ferment pyruvic acid to lactic acid 

resulting in decreased pH levels (below 5.5) that promotes demineralization of enamel 

and dentin, contributing to cavity formation [113]. In contrast, the commensal 

streptococci produce ammonia by the arginine deaminase system (ads) [114]. Commensal 

streptococci also generate H2O2 which prevents colonization of S. mutans as well as 

downregulates bacteriocin expression by interfering with the S. mutans quorum-sensing 

system [115-118]. Other oral streptococci, such as S. cristatus downregulate FimA 

expression in P. gingivalis, which may interfere with P. gingivalis colonization of the 

subgingival biofilm [118, 119].  However, recent studies indicate that the beneficial role 

of the oral streptococci may be questionable since they also contribute to the 

development of pathogenic dental biofilm. For instance, S gordonii, along with the F. 

nucleatum, may reduce the oxygen concentration to levels which can be tolerated by P. 

gingivalis, resulting in P. gingivalis colonization [120]. A. actinomycetemcomitans, the 

predominant pathogen in localized aggressive periodontitis (LAP) can metabolize lactate 

produced by S. gordonii, an end product of the fermentation of low molecular weight 

carbohydrates, thus support the growth and enhance the virulence of A. 
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actinomycetemcomitans [121, 122]. S. gordonii also enhances Candida albicans hyphal 

formation and promotes community formation in the oral cavity [123]. 

Streptococcal adhesins: Oral streptoccoci possess a plethora of adhesin molecules that 

facilitate the colonization of the tooth surface via interaction with the acquired pellicle, 

epithelial cell interactions and coaggregation with other organisms such as F. nucleatum, 

P. gingivalis and A. actinomycetemcomitans [110]. The most prominent adhesins of oral 

streptococci are the antigen I/II family of adhesins (e.g., SpaP, P1, PAc, SspA, SspB)  

that are expressed by many if not all species of oral streptococci [124]. The primary 

sequences of Ag I/II proteins highlight distinct features of their structure, including a 

signal peptide (residues 1-38), an Alanine rich N-terminal repeat domain (residues 164-

471), a divergent domain (residues 472-770), a Proline repeat domain (residues 771-887), 

a highly conserved C-terminal region (residues 888-1413) and a sorting sequence 

(LPXTG) and transmembrane domain (residues 1537-1556) [125]. These proteins 

mediate streptococcal binding to the salivary glycoprotein gp340 (DMBT1), species-

specific community formation with P. gingivalis and coaggregation with Actinomyces 

and C. albicans [70, 125, 126]. S. gordonii expresses two paralogs of AgI/II (SspA and 

SspB) which are distinct from Ag I/II of S. mutans  [87, 127].  Among other notable 

adhesins of streptococci is the serine rich repeat glycoprotein (srr) involved in binding to 

sialylated glycans of the soluble human salivary mucin [112, 128] and with platelet 

glycoproteins [129]. GAPDH, a glycolytic enzyme found on the streptococcal surface can 

bind to fibronectin, lysozyme, as well as other proteins related to cytoskeletal 

rearrangement [130]. CshA and CshB, fibrillar proteins expressed by many oral 
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streptococci also bind to fibronectin as well as to other organisms in the oral biofilm 

[131, 132].  

Community formation between P. gingivalis with oral streptococci: The adherence of 

P. gingivalis to S. gordonii is multimodal and is mediated by two sets of adhesin-receptor 

interactions (Figure: 1.3) [42]. P. gingivalis FimA binds to GAPDH on the streptococcal 

surface and Mfa1 interacts with specific streptococcal Ag I/II proteins. The binding 

region of GAPDH that interacts with FimA encompasses amino acids 166 to 183, a 

region predicted to be β-sheet and likely involves hydrophobic interactions with FimA 

[133]. However, this interaction alone is not sufficient to drive community formation.  

Park et al. showed that community formation is driven by the interaction of Mfa1 with 

Ag I/II [94] and Daep et al. showed that this interaction is essential for in vitro biofilm 

formation [134] and for the pathogenesis of P. gingivalis in a murine model of 

periodontitis [135]. Demuth et al. showed that SspB residues 1167 to 1192 are essential 

for the interaction of S. gordonii with P. gingivalis and within this region, Asn1182 and 

Val1185
  

were identified as crucial amino acids  [71].  Subsequently, Daep et al. 

demonstrated that a synthetic peptide derived from SspB residues 1167 to 1193 

(designated BAR) functioned as a potent competitive inhibitor of P. gingivalis adherence 

to S gordonii in vitro, exhibiting a 50% inhibitory concentration of 1.3µM [135]. 

Structural dissection of BAR peptide at the molecular level using combinatorial peptide 

libraries that replaced Asn1182,
 
Thr1184, and Val1185 with each of the 19 common 

amino acids showed that positively charged residues at the 1182 position and 

hydrophobic residues at position 1185 improved BAR inhibitory actvity, suggesting that 

this adhesin-receptor interaction requires both electrostatic and hydrophobic interactions 
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[134]. Further dissection of BAR identified a second motif in BAR that was important for 

P. gingivalis adherence.  This motif  (VQDLL) forms an amphipathic α-helix and 

resembles the core element of the eukaryotic nucear receptor (NR) box protein-protein 

interaction domain [135, 136]. Disruption of this motif severely impairs the binding of P. 

gingivalis to streptococci.  Although Ag I/II has been well charecterized, the binding 

region of Mfa1 remains to be characterized. 
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Figure 1.3. Multimodal interaction of P. gingivalis with S. gordonii: Long fimbriae 

FimA of P. gingivalis interacts with GAPDH of S. gordonii, whereas short or minor 

fimbriae Mfa1 interacts with SspA/B surface antigen. Binding region of SspA/B 

encompasses 1167-1193 amino acid residues comprised of VQDLL and NITVK motifs 

(red, underlined). 
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Development of targeted therapeutics for treatment of periodontal disease: Non-

surgical treatment of periodontal disease consists of professional debridement of both 

supragingival and subgingival plaque and calculus with scaling and root planing. In 

conjunction with nonsurgical treatment, antibiotic therapy of several broad-spectrum 

antibiotics can significantly improve gum health [137, 138]. However, this approach is 

inefficient when the subgingival pocket depth is >6 mm.  For these cases, a surgical 

procedure such as open flap debridement is required to separate the gingival tissue from 

the underlying tissue in order to access the plaque and reduce subgingival pocket depth 

[139, 140].  In general, these approaches have limitations.  For instance, treatment with 

broad-spectrum antibiotics indiscriminately kills the oral microbiome, including 

commensal bacteria and concern is growing over the development of antibiotic 

resistance.  The surgical procedures are invasive and expensive and disease often recurs. 

Thus, there is a need to develop novel therapeutic approaches for the targeted (e.g., 

species specific) elimination of pathogenic bacteria. To develop targeted therapy against 

P. gingivalis,  Deap et. al. tested the efficacy of synthetic BAR peptide (SspB adherent 

region) in mouse model of periodontitis and demonstrated peptide-mediated inhibiton of 

P. gingivalis virulence [135]. Patil et. al synthesized small molecule peptidomimetics 

based on BAR that showed promising activity in the reduction of in vitro P. gingivalis 

biofilm formation with S. gordonii [141]. Subsequently, Tan et al. showed that these 

peptidomimetics prevent colonization of P. gingivalis and reduce virulence in the mouse 

model of infection [142]. However, additional structural information is required to better 

understand the Mfa1/SspB interaction in order to develop and design more potent 

inhibitors for species-specific novel therapy against P. gingivalis infections. 
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The studies in this dissertation successfully identified and characterized the binding cleft 

of Mfa1 that interacts with AgI/II and we showed that it is comprised in part of amino 

acids  R240, W275 and alpha-helical residues 321-328 and 351-367.  Furthermore, two 

small molecule inhibitors, N17 and V8, were identified that block the Mfa1/AgI/II 

protein-protein interaction.  These compounds reduced adherence of P. gingivalis to 

streptococci in vitro and prevented P. gingivalis-mediated bone resorption in a murine 

model of periodontitis. Structural information obtained from characterizing the binding 

cleft of Mfa1 and the identification of lead compounds will facilitate a better 

understanding of this protein-protein interaction.  In turn, this information will lead to 

further modification and optimization of the lead compounds to generate more potent P. 

gingivalis species-specific therapeutic agents to control periodontal diseases. 
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CHAPTER TWO: METHODS AND MATERIALS 

2.1. Bacterial strains and growth conditions. 

The strains and plasmids used in this study are shown in Table 2.1 and Table 2.2. P. 

gingivalis ATCC 33277 was grown in TSBY medium comprised of trypticase soy broth 

(Difco) supplemented with 2% yeast extract, 1 µg/ml hemin and 5 µg/ml menadione. For 

growth on plates, this medium was further supplemented with 1.5% agar and 5% sheep 

blood. The Mfa1‐deficient and complemented strains were cultured in medium 

containing the appropriate antibiotics, that is, 1 and 5 µg/ml of tetracycline and 

erythromycin, respectively. All P. gingivalis cultures were incubated under anaerobic 

conditions (10% CO2, 10% H2 and 80% N2). Brain heart infusion agar (Difco) 

supplemented with 5% yeast extract was used to grow S. gordonii DL‐1. E. coli strains 

were maintained in LB medium supplemented with the appropriate antibiotic. Where 

necessary, the final concentration of ampicillin was 100 µg/ml. All bacterial stocks were 

stored at −80°C in the appropriate medium supplemented with 30% glycerol. 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078856/table/omi12280-tbl-0001/
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Table 2.1. Bacterial Strain used in this study  

 Strain or Plasmid Characteristic  Source 

reference 

S. gordonii 

DL1 

  Lab 

stock[143] 

P. 

gingivalis 

33277 ATCC  

Smfa1 Derivative of 33277 with 

insertional inactivation of 

the mfa1 gene; Emr 

[127] 

Csmfa1 SMF1 containing pTCOW-Mfa1, 

complemented strain; Emr Tcr 

[94] 

Csmfa1 R240A Smfa1 containing pTCOW-Mfa1 

with the R240A mutation, 

complemented strain; Emr Tcr 

This study 

Csmfa1 A357P SMF1 containing pTCOW-Mfa1 

with mutation the A357P 

mutation, complemented strain; 

Emr Tcr 

This study 

E coli XL1 blue cells  Agilent 

BL21(DE3)pLysS   
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Table 2.2. Plasmid used in this study 

Plasmid pGEX6p1 GST tag expression vector 

pG-Mfa1 pGEX6p1 containing mfa1(21-563aa 

residues) 

This 

study 

pG-N194 pGEX6p1 containing n terminal 

truncated mfa1(21-194aa residues) 

This 

study 

pG-N225 pGEX6p1 containing n terminal 

truncated mfa1(21-225aa residues) 

This 

study 

pG-N279 pGEX6p1 containing n terminal 

truncated mfa1(21-279aa residues) 

This 

study 

pG-N400 pGEX6p1 containing n terminal 

truncated mfa1(21-400aa residues) 

This 

study 

pG-C280 pGEX6p1 containing n terminal 

truncated mfa1(280-563aa residues) 

This 

study 

pT-COW Shuttle vector plasmid; Amr Tcr in E. 

coli; Tcr in P. gingivalis Mob+Rep+ 

[144] 

pTCOW-Mfa1 pT-COW containing a 2.5-kb fragment 

containing the upstream and coding 

region of the mfa1 gene 

[94] 

pTCOW-Mfa1 

R240A 

pT-MFA containing the R240A 

mutation  

This 

study 

pTCOW-Mfa1 

A357P 

pT-MFA containing the A257P mutation This 

study 
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2.2. Recombinant protein/peptide constructs. 

Nucleotide primers used in this study are shown in Table 2.2. To generate the full‐length 

Mfa1 construct lacking the signal sequence, the mfa1 sequence from 61 bp to 1689 bp 

was amplified using the forward and reverse primers listed in Tablec2.3. from P. 

gingivalis ATCC33277 genomic DNA using platinum PCR supermix (Invitrogen) 

according to the manufacturer's instructions. Briefly, initial denaturation was carried out 

at 94°C for 3 min. This was followed by 30 cycles comprised of denaturation at 94°C for 

30 s, primer annealing at 55°C for 30 s and strand extension at 72°C for 90 s. The 

amplified products were subsequently digested with SalI and XhoI, ligated into the 

pGEX6p‐1 expression vector and transformed into chemically component E. coli BL21. 

For the construction of the Mfa1 N‐terminal and C‐terminal peptide fragments N194, 

N225, N279, N400 and C280, mfa1 gene fragments encoding residues 21–194, 21–225, 

21–279, 21–400 and a C‐terminal fragment encoding residues 280–563 of Mfa1 were 

amplified using the primers shown in Table2.2 from P. gingivalis ATCC33277 genomic 

DNA. A similar approach to that described above was followed to clone these fragments 

in pGEX6p1 expression vector and introduce the constructs into E. coli BL21. 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078856/table/omi12280-tbl-0002/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078856/table/omi12280-tbl-0002/
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Table 2.3:  Primers used in this study.  Restriction enzyme sites are shown in italics. 

Protein/peptide 

name 

Primer sequence 

Mfa1 FP:  5’
 
 ATTA GTCGAC 

AGTAAAGAGGGCAATGGCCCCGATCCG 3’ 

RP: 5’ ATGG CTCGAG TAA GAGATCAACCTCATAG 3’

N194 FP:  5’
 
 ATTA GTCGAC 

AGTAAAGAGGGCAATGGCCCCGATCCG 3’ 

RP: 5’ GAAT CTCGAG TAA ACCATTCTTTTTGGCAATC 

3’ 

N225 FP:  5’
 
 ATTA GTCGAC 

AGTAAAGAGGGCAATGGCCCCGATCCG 3’ 

RP: 5’ TAAT CTC GAG TAA 

CCCTGCGATAGCATTGGCCTCGGATA 3’ 

N279 FP:  5’
 
 ATTA GTCGAC 

AGTAAAGAGGGCAATGGCCCCGATCCG 3’ 

RP: 5’ ACCT CTCGAG TAA 

TTGAGCAACAACCCATCTGA 3’ 

N400 FP:  5’
 
 ATTA GTCGAC 

AGTAAAGAGGGCAATGGCCCCGATCCG 3’ 

RP: 5’ 

ATTACTCGAGTTATTCTTTCTTGGGAGTAAACTTCGC

ACGAACC 3’ 

C280 FP: 5’ AAAA GTCGAC GGAGAACGTCGCCAATACCT 3’ 

RP: 5’ ATGG CTCGAG TAA GAGATCAACCTCATAG 3’ 

N279 R240A FP: 5’ - CGT TCT GTA GCA GCT GCG ATG GTT TCA -

3’ 

RP: 5’- CGT TGA AAC CAT CGC AGC TGC TAC AGA 

ACG CTC -3’ 

N279 W275A FP: 5’- ATT ACG GAT ATC AGA GCG GTT GCT CAA 

GGA -3’ 

RP: 5’- TCC TTG AGC AAC CGC TCT GAT ATC CGT 

AAT -3’ 

N400 D321A FP:  5’ GCT ACC GAG TAT GCT TAT GCC GGT CTG 

TGG 3 ’ 

RP: 5’ CAG ACC GGC ATA AGC ATA CTC GGT AGC 

ATT TGT 3’ 

N400 A357P FP:  5’ ACT GGC GAA TTG CCA AAT GCT CTT TCA 3’ 

RP: 5’ TGA AAG AGC ATT TGG CAA TTC GCC AGT 

CAC 3’ 
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2.3. Expression and purification of truncated Mfa1 peptides. 

To express the full‐length and truncated Mfa1 proteins, an overnight culture containing 

the desired construct was diluted in pre‐warmed LB medium supplemented with 

100 µg/ml ampicillin to an OD600 nm of 0.1 and incubated at 37°C in a rotating shaker at 

speed of 220 rpm. When the OD600 nm reached 0.5, protein expression was induced by 

adding IPTG to a final concentration of 1mM. After further incubation for 4 hr at 37°C, 

cells were harvested by centrifugation at 3,000 x g for 10 min and the cell pellets were 

frozen. One gram of frozen cell pellet was suspended in 5 ml of CellLytic B (Sigma‐

Aldrich) containing lysozyme (0.2 mg/ml) and Benzonase (50 U/ml). A protease inhibitor 

cocktail (Thermo Fisher Scientific) was added as per manufacturer recommendations and 

incubated at 25°C for 30 min with gentle shaking. To complete the disruption of the cells, 

brief sonication was carried out using a Vibra‐Cell ultrasonic Liquid Processor VCX 130 

(Sonics). Cells were pulsed at 20 kHz for 2 min using a 10 s short burst followed by a 

30 s cooling interval. During sonication, all steps were carried out in ice. Cell debris was 

removed by centrifugation at 13,000 x g for 20 min and the supernatant was transferred to 

a fresh tube. 

Purification of GST‐tagged fusion proteins was carried out using the Pierce GST Spin 

Purification Kit (ThermoFisher). Briefly, spin columns were equilibrated with the 

equilibration/wash buffer supplied with the kit at 4°C, and then 15 ml of cell lysate 

supernatant was added to each column and incubated overnight at 4°C. Columns were 

washed three times with 15 ml of wash buffer by centrifugation at 700 x g for 2 min. In 

column cleavage with Precision Protease (ThermoFisher) was carried out by overnight 

incubation at 4°C to generate the truncated Mfa1 proteins. The Mfa1 polypeptides were 
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eluted by centrifugation at 700x  g for 2 min. The eluted peptides were subsequently 

chromatographed in disposable PD‐10 Desalting Columns (GE Healthcare) to remove 

salts. Purity of the eluted proteins was assessed using SDS‐PAGE electrophoresis and 

quantification of proteins was carried out using the BCA assay (Pierce). 

2.4. Dual species biofilm model. 

Interspecies adherence and biofilm formation between P. gingivalis and S. gordonii were 

carried out essentially as previously described [141]. S. gordonii cells were harvested 

from a 10 ml of overnight culture by centrifugation at 3,000x  g for 5 min, washed with 

10 ml of pre‐reduced PBS (10 mM Na2HPO4, 18 mM KH2PO4, 1.37 M NaCl and 2.7 mM 

KCl, pH 7.2) and suspended in 1 ml of PBS. Suspended S. gordonii cells were labeled 

with 20 µl Hexidium Iodide (1.6 mg/ml; Molecular Probes, Eugene, OR) in the dark at 

25°C with gentle shaking on a rocker platform for 15–30 min. Unbound dye was 

removed by washing with PBS and labeled cells were then suspended in 1 ml of pre‐

reduced PBS. Cells were diluted to O.D.600nm of 0.8 and 1 ml of the labeled cells was 

added to each well of a 12‐well microtiter plate (Greiner Bio‐one) containing a circular 

glass coverslip. Plates were incubated for 24 hr on a rotary shaker under anaerobic 

conditions. The following day, P. gingivalis cells were harvested from 10 ml of overnight 

culture, suspended in 1 ml pre‐reduced PBS containing 10 µl of carboxyfluorescein 

(1.6 mg/ml; Molecular Probes) and incubated for 30 min at 25°C on a rocking platform. 

Unbound dye was removed by centrifugation at 3,000 g for 2 min. After removing 

unbound S. gordonii from the plates by aspiration, 1 ml of labeled P. 

gingivalis suspension (O.D.600 nm of 0.4) was added to each well and incubated for 24 hr 
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on a rotary shaker under anaerobic conditions. To determine the functional activity of the 

truncated Mfa1 polypeptides, S. gordonii cells were incubated with 1 uM of peptide (in 

PBS) at 25°C for 30 min prior to adding the labeled P. gingivalis. 

       To visualize P. gingivalis/S. gordonii adherence and biofilm formation, unbound P. 

gingivalis cells were removed by aspiration and coverslips were washed once with PBS. 

Biofilms were fixed by incubating the coverslips with 1 ml of 4% paraformaldehyde for 

5 min followed by two washes with PBS. The coverslips were then removed, placed face 

down on a glass microscope slide containing a drop of anti‐fade reagent (Life 

Technology) and sealed with nail polish. Visualization of biofilms was carried out by 

laser scanning confocal microscopy on a Leica SP8 confocal microscope (Leica 

Microsystems Inc.) using a 488 nm laser to detect labeled P. gingivalis and a 552 nm 

laser to detect S. gordonii. Z‐plane scans of 25 µm in depth were collected at three 

randomly chosen frames on each coverslip using a z‐step thickness of 0.7 µm. 

Background noise was minimized using software provided with the Leica SP8 and three‐

dimensional constructions of the Z‐plane scans and quantification of total green and red 

fluorescence was conducted using Volocity 6.3 Image analysis software (Perkin Elmer, 

Akron, Ohio). Data were expressed as the ratio of total green (P. gingivalis) to red (S. 

gordonii) fluorescence. Each experiment was carried out in triplicate and three 

independent experiments were conducted for each peptide. A pairwise, nonparametric 

analysis of variance was used to determine the statistical difference of  P. 

gingivalis association with S. gordonii between the experimental and control samples. 

A p value of <.05 was considered significant. 
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2.5. SiteMap prediction of a putative binding cleft in Mfa1. 

The Mfa1 protein structure (Protein Data Bank entry 5NF3) [100] was examined using 

SiteMap v4.5.011 (Schrodinger Release 2017‐4). Standard parameters were used with a 

maximum of 10 binding sites reported. The top six sites with a sitescore greater than 0.8 

were examined further. Residues within 5 angstroms of the potential sites were identified 

and the highest scoring site (sitescore 1.04) was used for validation by mutagenesis. The 

five peptidomimetic compounds (pcp‐iii‐201, pcp‐iii‐206, pcp‐iii‐212, pcp‐iii‐293 and 

pcp‐iv‐20) [141] were built and minimized using Macromodel (Schrodinger Release 

2017‐4) and docked using Glide (Schrodinger Release 2017‐4) in SP mode centered on 

the highest scoring site from SiteMap. 

2.6. Site‐directed mutagenesis. 

Site‐specific mutation reactions were carried out using the Quick‐change II XL Site‐

Directed Mutagenesis Kit (Agilent Tech) according to the manufacturer's protocol. 

Mutagenic primers were designed such that the desired mutation was flanked by 10–

15 bp of mfa1 sequence and are listed in Table2.3. The reaction mixture contained 5 µl of 

reaction buffer, 10 ng of plasmid pTCOW‐Mfa1 template DNA [94] (125 ng of each 

primer, 1 µl dNTP mix, 1 µl of Pfu Ultra HF DNA polymerase (2.5 U/µl) and water to a 

final volume of 50 µl. Cycling parameters were as follows: initial denaturation was 

carried out at 95°C for 30 s, followed by 16 cycles of denaturation at 95°C for 30 s, 

annealing at 55°C for 1 min and extension at 68°C for 14 min. After amplification, 

products were immediately transferred to ice. A reaction containing pWhitescript 4.5‐kb 

and primers supplied by the manufacturer was carried out simultaneously and served as 
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positive reaction control. To eliminate parental plasmid following amplification, PCR 

products were digested with DpnI for 1 hr at 37°C. Subsequently 1 µl of the digested 

product was transformed into chemically competent E. coli XL10 blue cells (Agilent 

Tech) by heat shock at 42°C for 45 s. The transformation reaction was transferred into 

500 ul of pre‐warmed SOC medium (2% tryptone, 0.5% yeast extract, 10 mM NaCl, 

2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4 and 20 mM glucose) and incubated at 37°C 

for 1 hr with shaking at 225 rpm. Positive transformation was selected by plating on LB 

agar plates supplemented with 100 µg/ml of ampicillin. Five positive colonies were 

picked for plasmid extraction and successful mutation was confirmed by DNA 

sequencing. 

2.7. Random mutation. 

Random mutagenesis was performed using GeneMorph II Random Mutagenesis kit 

(Agilent Tech.) to generate additional mutations V238A, I252F and ΔK253. Briefly, 

reactions contained 2 µg of plasmid pG‐N279, 5 µl of 10X Mutazyme II reaction buffer, 

1 µl of 10 nM dNTP, 0.5 µl of primer mix (250 ng each), 1 µl Mutazyme II DNA 

Polymerase (2.5 U/µl) and 41.5 µl of deionized water. The PCR profile was as follows: 

denaturation at 95°C for 2 min, 20 cycles comprised of denaturation at 95°C for 30 s, 

annealing at 60°C for 30 s and extension at 72°C for 1.5 min with final extension at 72°C 

for 10 min. Following the amplification, PCR products were excised from an agarose gel 

after electrophoresis, cloned into pGEX6p1 and transformed into chemically 

competent E. coli BL21. Colonies were randomly chosen and plasmids were purified. 

Successful mutation was confirmed by DNA sequencing. 
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2.8. Complementation of P. gingivalis SMF1 with mutated Mfa. 

Complementation of the Mfa1‐deficient P. gingivalis strain SMF1 was carried out using a 

modification of the protocol previously described [94]. P. gingivalis SMF1 was grown on 

a blood agar plate under anaerobic conditions for 2–3 days and donor E. coli S17‐1 was 

grown aerobically on a LB agar plate. pTCOW‐mfa1 containing the desired mutation was 

electroporated into E. coli strain S17‐1 and subsequently conjugated with P. 

gingivalis SMF1 using the agar plate method. Briefly, cells from both donor and recipient 

were scraped from the agar plates and spread on a 4 cm
2
 area on a blood agar plate

containing no antibiotics. After incubation for 24 hr, mixed cells from blood agar plates 

were collected and incubated in TSBY supplemented with hemin (1 µl/ml) and 

menadione (5 µl/ml) for 1 hr at 37°C under anaerobic conditions. Subsequently, 0.1 ml of 

the cell suspension was plated on blood agar containing 20 µg of erythromycin per ml 

and 200 µg of gentamicin per ml and was incubated anaerobically at 37°C for 10 days. 

Transconjugants were subsequently grown in the presence of antibiotics and the purified 

plasmid was confirmed to possess the desired mutation by DNA sequencing. 

2.9. Cell surface expression of mutated Mfa1 polypeptides. 

Cell surface expression of Mfa1 by the transconjugants was determined using an enzyme‐

linked immunosorbent assay (ELISA) after adsorption of P. gingivalis strains onto 

Maxisorp plates (Nunc). Briefly, P. gingivalis cells were centrifuged at 3,000 g for 5 min 

and cell pellets were washed there times with PBS. Subsequently, 10
7
 cells were

incubated in each well for 2 hr at 4°C followed by washing with PBS to remove unbound 

bacteria. Bound cells were incubated with rabbit rMfa monoclonal antibodies (1:5,000 
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dilution) (Covance, Denver, PA) for 1 hr at 37°C. After washing with PBS, wells were 

reacted with horseradish peroxidase‐conjugated goat anti‐rabbit antibody (1:3,000 

[ImmuneReagents Inc.]) for 1 hr at 25°C. Antigen–antibody binding was determined by 

adding 200 µl of 1× TMB ELISA substrate solution [3, 3′, 5, 5′‐tetramethylbenzidine] 

(Invitrogen) and the reaction was incubated for 15 min at 25°C. Reactions were stopped 

using 50 µl of stop solution (0.16 M H2SO4) and the endpoint was measured at 450 nm in 

a Victor Multilabel counter (Perkin Elmer). 

2.10. Mfa1 polymerization. 

Whole cell lysates were prepared using a modification of the procedure previously 

described by Hasegawa et al. [145]. Briefly, P. gingivalis strains were grown until early 

stationary phase in TSBY media supplemented with hemin (5 µg/ml) and menadione 

(1 µg/ml). Following centrifugation at 6,000 g for 5 min, cell pellets were collected and 

suspended in 1× NuPAGE LDS sample buffer (Thermo Fisher) at the final OD of 2. The 

cell suspensions were then denatured by incubation either at 60°C or 100°C for 10 min. 

Following the heat treatment, the whole cell lysate was centrifuged at 20,000 g for 

10 min to remove cellular debris, electrophoresed in 12% Bis‐Tris Plus gel (Thermo 

Fisher) and Mfa1 was visualized by ELISA as described above. 

2.11. Virtual screening of small molecule inhibitors.  The structures of the NITVK and 

VQDLL motifs of SspB were taken directly from the Streptococcus gordonii SspB C-

terminal domain crystal structure (protein databank entry 2WZA) [146]. The structure 

was processed using the Protein Preparation Wizard in Maestro (Schrödinger 

Release 2018-1: Schrödinger, LLC, New York, NY, 2020). The similarity searches for 
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the NITVK and VQDLL motifs were performed with Surflex-sim vers. 2.601 [147] using 

two approaches.  The first approach was to use all atoms of the peptide structures for the 

NITVK and VQDLL motifs as the hypothetical ligand.  The second approach was to use 

the side chains of residues for the NITVK motif, and the side chains of residues VLL for 

the VQDLL motif.  The screened libraries were created from the ZINC [148] drug-like 

library (ZINC 2014 version) containing 24,877,119 compounds and the ZINC 15 [149] 

drug-like library (ZINC 2016 version) containing 17,244,856 compounds. The results 

were ranked and the top 500 compounds of each screen were retained.  Selection of 

compounds was based on compound score, diversity, by eliminating compounds that 

were structurally similar to a higher scoring compound, and finally compounds that were 

commercially readily available for purchase. Seventeen compounds and sixteen 

compounds were purchased for the NITVK and VQDLL motifs, respectively. 

2.12. Murine in vivo model of periodontitis.   The protocol used in this study (protocol 

16486) was approved by the Institutional Animal Care and Use Committee at the 

University of Louisville under Federal guidelines for the use and care of laboratory 

animals.  Ten week old BALB/c/ByJ specific pathogen free mice were obtained from 

Jackson Laboratory (Bar Harbor, ME) and housed in the University of Louisville 

Research Resource Center animal facility.  During the entire course of the study, mice 

were fed with Lab Diet 5001 (Purina Mills, LLC, Gray Summit, MO). 

Oral infection of the mice was carried out essentially as described by Deap et al. [135].  

Prior to infection, mice were subjected to a combined antibiotic treatment for 10 days by 

providing animals with water ad libitum  containing 800 μg/ml sulfamethaxozole (MP 

Biomedical, Solon, OH) and 400 μg/ml trimethoprim (Sigma, St. Louis, MO).  Four days 
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after conclusion of the antibiotic treatment, mice were infected by oral gavage with 

10
9
 cfu/ml of S. gordonii suspended in 2% carboxymethylcellulose (CMC; MP

Biomedical, Solon, OH) in sterile PBS using a 2.25 mm feeding needle (Popper and Son 

Inc., New Hyde Park, NY).  Infections were conducted every other day for a period of 10 

days.  Subsequently, mice were infected with 10
9
 cfu/ml P. gingivalis suspended in 2%

CMC in PBS alone or in 2% CMC in PBS containing the small molecule inhibitors every 

other day for 10 days.  After the last infection with P. gingivalis, the mice were rested for 

47 days and then euthanized by carbon dioxide asphyxiation. 

To obtain the mouse skulls, the heads were removed and autoclaved for 15 min to remove 

flesh and musculature.  The defleshed skulls were then immersed in 3% hydrogen 

peroxide overnight at room temperature to remove any remaining flesh. The skulls were 

submerged in deionized water to remove residual hydrogen peroxide, soaked in 1% 

bleach solution for 30 sec, sonicated at 14 V for 1 min, and washed again with deionized 

water.  Samples were brushed using toothpaste, sonicated again in 1% bleach for an 

additional 30 sec at 14 V and washed with water. The cleaned skulls were stained by 

immersion in 1% methylene blue for 15 sec followed by washing with water until the 

excess dye was removed. 

To measure alveolar bone loss, a dissecting microscope fitted with a video imaging 

marker measurement system (model VIA-170K; Fryer) was used.  Bone loss was 

determined by measuring the distance between the alveolar bone crest (ABC) and 

cemento-enamel junction (CEJ) at eight sites on the buccal sides of both left and right 

maxillary molars.  Bone loss was measured in mm for each group of mice and bone loss 

data was normalized by subtracting the average bone loss that was observed in sham 



35 

infected mice.  Data was analyzed using one way ANOVA (Graph Pad Prism, La Jolla, 

CA) and a pair wise parametric analysis of variance using a Bonferroni multiple-

comparison post-test was used to determine the statistical difference among the 

individual mouse groups.  A p value of ≤0.05 was considered statistically significant.    

2.13. Determination of IL-17 expression.  To assess the level of IL-17 expression, 

gingival tissue from the maxillary molar region was dissected from each mouse and fixed 

in 4% paraformaldehyde overnight. Tissue samples were dehydrated by passing through a 

series of ascending concentrations of ethanol and then cleared in xylene followed by 

paraffin embedding.   Tissue sections (5 – 6 μm in thickness) were prepared and mounted 

on glass slides.  Sections were deparaffinized by immersing in xylol twice for 15 min 

each, and rehydrated by passing through absolute, 95% and 70% ethanol.  Samples were 

washed with distilled water to remove excess ethanol and epitope antigenicity was 

recovered by microwave heating in water for 15 min.  To prevent non-specific binding, 

tissues were treated with 5% bovine serum albumin for 1 hr followed by reaction with IL-

17A monoclonal antibody conjugated with AlexaFluor 488 (eBioscience, San Diego, CA) 

at 4
o
C for 24 hr.  Binding of IL-17 monoclonal antibodies was observed using confocal

microscopy. Three images were taken from each tissue section and IL-17 

immunofluorescence quantification was performed using Volocity software. 

2.14. Tissue culture.  Human telomerase immortalized gingival keratinocytes (TIGKs) 

[150] were cultured at 37°C in basal medium Dermalife K complete kit with Supplements 

(LifeLine, Frederick, MD) and incubated for 5 days in an atmosphere of 5% CO2 to 

attained >95% confluence.  The mouse macrophage cell line J774A.1 was grown in 

Dulbecco modified Eagle medium (DMEM) (Thermo Fisher Scientific, Waltham, MA) 
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supplemented with 4.5 g/ml glucose, 10% fetal bovine serum (FBS), and 100 U/ml 

penicillin-streptomycin (Sigma-Aldrich, St. Louis, MO).  HL60 (ATCC® CCL240™) 

cells were obtained from the American Type Culture Collection and cultured in 

Iscove's Modified Dulbecco's Medium (Sigma-Aldrich, St. Louis, MO) supplemented 

with 20% fetal bovine serum (FBS) (Sigma-Aldrich, St. Louis, MO).  Both J774A.1 and 

HL60 cells were incubated at 37°C in an atmosphere of 5% CO2 for 4 days to reach 

>95% confluence. 

2.15. Determination of lactate dehydrogenase activity. CytoTox 96 nonradioactive 

cytotoxicity assay (Promega Inc. Madison, WI) was used to determine extracellular 

lactate dehydrogenase activity (LDH) in TIGK, J774A.1 and HL60 cell cultures treated 

with the test compounds.  Briefly, cells were inoculated in a 96 well microtiter plate at an 

initial density of 4000 cells per well and grown at 37°C in an atmosphere of 5% CO2 for 

24 hr. The spent medium was removed and replaced with fresh medium containing the 

desired concentration of the compound.  After 18 hr incubation, the cell supernatant was 

collected by centrifugation at 250 × g for 4 min and 50 µl of cell free supernatant was 

transferred into wells of a fresh 96 well microtiter plate.  Subsequently, 50 µl of LDH 

substrate was added in each well and incubated at room temperature for 30 min.   

Reactions were stopped by adding 50 µl of stop solution according to the manufacturer’s 

protocol and the end point was measured by determining optical density at 490 nm.  Cells 

treated with culture medium containing 0.1% DMSO or with medium alone served as 

negative controls and cells incubated with 15 µl lysis buffer (supplied by manufacturer) 

for 1 hr served as a positive control for lysis.  All samples were tested in triplicate. 
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2.16. Measurement of total cellular ATP. To determine the metabolic activity of cells, 

the total cellular ATP level was measured in cell culture samples using CellTiterGlo 

reagent (Promega Inc. Madison, WI).  Cells were grown as described above in the 

presence of the desired concentration of compounds.  The spent medium was decanted 

and cells were washed three times with PBS and subsequently incubated with 100 μl of 

CellTiterGlo substrate.  To facilitate the reaction, plates were incubated at room 

temperature for 2 min with shaking and for an additional 10 min without shaking.  Total 

light production was measured using a Victor 3 multilabel plate reader (PerkinElmer). 

2.17. Determination of apoptotic activity. The apoptotic activity of the compounds was 

determined using the phycoerythrin (PE) annexin V/dead cell apoptosis kit with SYTOX 

green for flow cytometry (Invitrogen, Carlsbad, CA).   Cells were grown in 12 well flat 

bottom microtiter plates at an initial density 2 × 10
5
 cells in 1.5 ml medium per well  for

24 hr.  Following the incubation period, spent medium was replaced with fresh medium 

containing the desired concentration of the test compound and incubated for another 18 

hr.  After trypsinization, cells were harvested by centrifuging at 250 × g for 4 min and the 

cell pellet was suspended in 100 μl of binding buffer supplemented with 1 μl Sytox and 5 

μl annexin V followed by incubation at 37°C for 15 min.  Samples were then diluted by 

adding 400 µl binding buffer and flow cytometry was performed using a FACScalibur 

flow cytometer (Becton Dickinson, Franklin Lakes, NJ), measuring the fluorescence 

emissions at 530 nm and 575 nm.  Cells treated with medium alone or with medium 

containing 0.1% DMSO served as negative controls, while cells treated with 2 mM 

hydrogen peroxide at 37°C for 4 hr served as a positive control for apoptosis.  
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2.18. Measurement of hemolytic activity. The hemolytic activity of compounds was 

determined using both sheep and human red blood cells.  Briefly, 100 μl of 1% sheep or 

human erythrocytes (BioreclamationIVT, MD) was suspended in 1 ml of sterile PBS 

containing 5% FBS and the appropriate concentration of compound was added.  The cell 

suspension was incubated at 37°C for 3 hr, centrifuged at 3,500 × g for 5 min, and a 200 

μl aliquot of the cell free supernatant was transferred into each well of a 96-well 

microtiter plate.  Hemolytic activity was measured by quantifying hemoglobin release in 

the supernatant using a Victor 3 multilabel plate reader (PerkinElmer, Waltham, MA) at a 

wavelength of 538 nm.  All samples were analyzed in triplicate.  Erythrocytes suspended 

in PBS with 5% FBS served as a negative control, and erythrocytes that were lysed by 

suspension in distilled water (dH2O) served as a positive control.   

2.19. Statistical analysis: For each of the cytotoxicity assays described above, data was 

analyzed using a pair wise non parametric t test using GraphPad Prism version 8.0.  A p 

value<0.05 is considered as statistically significant.   
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CHAPTER THREE: IDENTIFICATION AND CHARACTERIZATION OF 

FUNCTIONAL MOTIFS OF MFA1 

3.1. Introduction: Periodontal disease is the sixth most prevalent disease in the world 

and approximately 50% of adults in the USA suffer from some form of periodontitis  [6, 

9]. The human oral cavity is home to ~700 species of bacteria and maintaining 

host/microbe homeostasis is key to maintaining periodontal health.  Porphyromonas 

gingivalis is strongly associated with chronic adult periodontitis and is an important 

pathogen that is capable of modulating the host immune response and disrupting normal 

host/microbe homeostasis [151, 152].  This can lead to the development of a dysbiotic 

microbial community which can induce uncontrolled inflammation leading to the 

destruction of tooth supporting tissues, and ultimately tooth loss  [41-43].  Periodontitis is 

also associated with increased risk of other systemic diseases such as rheumatoid 

arthritis, cardiovascular disease, some cancers, and chronic respiratory disease  [27, 153, 

154]. 

The primary niche for P. gingivalis is the subgingival pocket but the organism also 

adheres efficiently to supragingival bacteria such as various commensal streptococci 

[70, 87, 127]. Indeed, adherence to streptococci can modulate the pathogenic potential of 

P. gingivalis  [51, 135, 155] and may also be important for the initial colonization of the 

oral cavity by the organism.  Thus, adherence of P. gingivalis to streptococci represents a 

viable target for therapeutic intervention.  P. gingivalis adherence to streptococci is 
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driven by a protein-protein interaction between the minor fimbrial antigen, Mfa1, and the 

streptococcal antigen I/II protein  [71, 87, 94, 156].   Deap et al. identified several 

discrete structural motifs in SspB that are essential for adherence and suggested that this 

functional region resembles the eukaryotic nuclear receptor (NR) box protein-protein 

interaction domain   [136].  In addition, a synthetic peptide (BAR) that encompasses this 

region potently inhibited P. gingivalis/streptococcal adherence in vitro and significantly 

reduces P. gingivalis virulence in vivo   [135].  Subsequently, Patil et al. designed and 

synthesized small molecule BAR peptidomimetics that potently inhibit P. gingivalis 

adherence [141, 157].  Thus, the binding region in antigen I/II has been well 

characterized but little is known about the binding domains or motifs of Mfa1 that 

contribute to this protein-protein interaction. 

In this chapter, N‐ and C‐terminal truncated Mfa1 polypeptides were shown to inhibit P. 

gingivalis/streptococcal adherence and suggested that Mfa1 functional motifs are present 

between residues 225–400 of the protein. Using the three‐dimensional structure of Mfa1  

[100], a putative binding cleft was identified using the prediction tool SiteMap. Site‐

specific mutation of amino acids in the predicted cleft, for example, R240A, W275A, 

D321A and A357P inhibited the interaction of Mfa1 with streptococci. Finally, 

complementation of an Mfa1‐deficient P. gingivalis strain with wild‐type mfa1 restored 

adherence to streptococci, whereas complementation with the site‐specific mfa1 mutants 

resulted in significantly reduced levels of adherence. Together, these results identify 

specific residues and motifs that are important for the Mfa1/SspB protein–protein 

interaction. 
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3.2. Results. 

3.2.1 Localization of Mfa1 functional domains 

To identify regions of Mfa1 that contribute to the interaction with antigen I/II, a series of 

N‐ and C‐terminal truncated Mfa1/GST fusion proteins were constructed and expressed. 

The truncated Mfa1 polypeptides were purified by affinity purification and the GST tag 

removed by in column cleavage and were designated as N194, N225, N279, N400 and 

C280 as shown in Figure 3.1. The functional activity of these peptides was determined by 

assessing their ability to inhibit P. gingivalis/S. gordonii adherence and biofilm formation 

using the dual species biofilm model described previously by Patil et al.[141]. 

Representative images of biofilms formed in the presence of each peptide are shown in 

Figure 3.2a and inhibition results are summarized in Figure 3.2b. Peptides N194 and 

N225 were relatively poor inhibitors of P. gingivalis adherence (~20% inhibition) 

compared to the full‐length Mfa1 protein (80% inhibition). In contrast, peptide N279 

exhibited 70% inhibition and adherence inhibition by peptide N400 was similar to that of 

the full‐length Mfa1 protein. Peptide C280 exhibited reduced activity (~40% inhibition) 

compared to peptides N279 and N400 but was significantly more active than peptides 

N194 and N225. Together, these results suggest that essential functional residues that 

contribute to P. gingivalis adherence to streptococci reside in the region of Mfa1 

comprising amino acids 225–400. 
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Figure 3.1. Schematic representation of the series of Mfa1 peptide fragments: The 

full‐length Mfa1 lacking the signal peptide (21–563aa residues), and N‐terminal peptide 

fragments N194, N225, N279 and N400 encoding residues 21–194, 21–225, 21–279 and 

21–400, respectively, are shown. The C‐terminal peptide fragment, C280, is comprised of 

Mfa1 residues 280–563. 
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Figure 3.2. Determination of the inhibitory activity of the peptides: A) Peptide 

mediated inhibition of P. gingivalis adherence in a dual species biofilm model 

comprising S. gordonii (red) and P. gingivalis (green). Panels (a) PBS treated, (b), (c), 

(d), (e), (f) and (g) were treated with peptides N194, N225, N279, N400, full‐length Mfa1 

and C280, respectively. (B) Quantification of relative adherence of P. gingivalis and S. 

gordonii was determined by VOLOCITY software. Each experiment was carried out in 

triplicate and three independent experiments were conducted for each peptide. 

Comparisons of biofilms formed in PBS (control) with peptide‐treated biofilms were 

carried out using one way ANOVA followed by Dunnett’s multiple comparison test. 

*p < .05.
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3.2.2. In silico prediction of a putative Ag I/II binding cleft in Mfa1 

To further highlight the functional region(s) of Mfa1, we took advantage of the recently 

published three‐dimensional structure of Mfa1 [100] to predict putative binding clefts 

using SiteMap. In addition, a series of in silico docking experiments were conducted 

using five peptidomimetic compounds that mimic the BAR peptide and were previously 

shown by Patil et al.  [141, 157] to be potent competitive inhibitors of P. gingivalis/S. 

gordonii adherence. As shown in Figure 3.3a, all five of the mimetic compounds could be 

docked in the putative binding cleft that exhibited the highest sitescore by SiteMap. 

Amino acids of the Mfa1 protein that comprise the putative binding cleft are highlighted 

in red and underlined in Figure 3.3b. 

To validate the predicted binding cleft, a series of Mfa1 site‐specific mutant peptides that 

targeted residues and putative motifs predicted in Figure 3.3b to comprise the binding 

cleft were constructed and expressed. Since the results of the truncated Mfa1 peptides in 

Figure 3.2.b indicated that the region comprising residues 226–279 was important for P. 

gingivalis adherence, site‐specific mutations R240A and W275A were introduced into 

peptide N279 since both of these residues are predicted by SiteMap to be part of the 

binding cleft. Additional mutations, D321A and A357P, were also constructed in peptide 

N400 to disrupt two predicted amphipathic helices in the putative binding cleft (residues 

321–329 and 351–364). Finally, several additional residues in peptide N279 that were not 

predicted to comprise the binding cleft were tested (e.g., V238A, I252F and ΔK253). As 

shown in Figure 3.4., peptides N279 and N400 inhibited P. gingivalis adherence to 

streptococci by 66% and 79%, respectively, consistent with the results shown in Figure 

3.2b. Polypeptide N279 containing the R240A or N275A mutations were significantly 
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less potent inhibitors relative to the parent N279 peptide, exhibiting only 32% and 38% 

inhibition of P. gingivalis adherence, respectively. 

Figure 3.3.(a) Three‐dimensional 

structure of the Mfa1 with a 

composite of five peptidomimetic 

adherence inhibitory compounds 

docked in a putative binding cleft. 

The residues that comprise the 

predicted binding cleft shown in “a” 

are shown in red underlined text in 

the Mfa1 sequence (b) or highlighted 

in red in the Mfa1 structure (c). The 

positions of residues R240 and W275 

(see text) are shown in green and 

cyan, respectively. 
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In addition, peptide N279 containing both mutations, R240A and W275A exhibited 

significantly lower inhibitory activity than either of the peptide fragments containing a 

single mutation. In contrast, peptide N279 containing the mutations V238A, I252F or 

ΔK253 showed no significant reductions in inhibitory activity. Furthermore, mutations 

D321A and A357P, intended to disrupt the two putative helices, also reduced inhibitory 

activity relative to the parent N400 peptide (79% to 59% and 79% to 38%, respectively). 

Together, these results provide preliminary validation of the binding cleft predicted by 

SiteMap and identify specific Mfa1 residues that contribute to adherence of P. 

gingivalis to streptococci. 
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Figure 3.4. Inhibition of P. gingivalis adherence to S. gordonii by mutated Mfa1 

peptides. Each experiment was carried out in triplicate and three independent 

experiments were conducted for each peptide. Biofilms treated with parent and mutated 

peptides were compared and analyzed using an unpaired T test. ***p < .05, ns, not 

statistically significant. 



49 

3.2.3. Complementation of Mfa1‐deficient P. gingivalis with site‐specific Mfa1 

mutants 

To further confirm the functional roles for R240 and A357, full‐length Mfa1 polypeptides 

containing the R240A and A357P mutations were constructed and introduced into the 

Mfa1‐deficient strain P. gingivalis SMF1. As shown in Figure 3.5a, cell surface 

expression of Mfa1 was significantly reduced in P. gingivalis SMF1 compared to the 

wild‐type strain, P. gingivalis 33277. Complementation of P. gingivalis SMF1 with wild‐

type mfa1 or with the site‐specific mutants restored cell surface expression of Mfa1 to 

wild‐type levels (Figure 3.5a). Consistent with its level of cell surface expression, 

adherence of P. gingivalis SMF1 to streptococci was significantly reduced relative to the 

parent strain 33277 but was restored to wild‐type levels by complementation with full‐

length mfa1, as shown in Figure 3.5b. In contrast, although complementation with Mfa1 

containing either the R240A or A357P mutations restored cell surface expression, both of 

these complemented strains showed significantly reduced levels of adherence to 

streptococci. Indeed, adherence by the complemented strain expressing Mfa1‐A357P was 

indistinguishable from P. gingivalis SMF1 (Figure 3.5b). 
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Figure 3.5. Complementation of P. gingivalis SMF1 with wild‐type and site‐specific 

mutants of Mfa1. (a) Cell surface expression of Mfa1 was determined by ELISA using 

polyclonal anti‐Mfa1 antibodies. Cell surface expression was normalized to the level of 

Mfa1 expression in wild‐type P. gingivalis 33277. (b) Adherence of P. gingivalis to 

streptococci was determined using a two species biofilm model as described in Materials 

and Methods. Each experiment was carried out in triplicate for each group. Adherence 

data were normalized to the level of adherence of the wild‐type P. gingivalis 33277 and 

data were analyzed using an unpaired T test. ***p < .001, **p < .01, ns, not statistically 

significant. 
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3.2.4. Polymerization of wild‐type and mutant Mfa1 proteins 

In vivo, P. gingivalis Mfa1 is post‐translationally modified by glycosylation [92] and 

likely polymerizes to form the intact minor fimbrial structure by a donor strand based 

assembly mechanism involving both N‐ and C‐terminal domains in Mfa1  [100, 101]. In 

addition, intact minor fimbriae resist complete denaturation by SDS unless samples are 

incubated at 100°C [94, 158]. To determine whether the mutations described above affect 

Mfa1 polymerization, P. gingivalis cells were suspended in 1x LDS buffer and incubated 

at either 100°C or 60°C. As shown in Figure 3.6a, incubation at 100°C resulted in a 

single protein band of 67 kDa in all samples except the Mfa1‐deficient SMF1 strain, 

consistent with the completely denatured Mfa1 polypeptide. In contrast, incubation at 

60°C produced a high molecular weight smear in all samples except strain SMF1 

(Figure 3.6b), indicating that incomplete denaturation of the minor fimbriae had occurred. 

Mfa1 proteins containing either R240A or A357P mutations behaved similarly to the 

wild‐type protein in the 33277 and complemented cSMF1 strains, suggesting that these 

mutations do not affect Mfa1 processing or polymerization and that the strains expressing 

the mutated Mfa1 polypeptides are still capable of producing intact minor fimbriae. 
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Figure 3.6. Denaturation of P. gingivalis minor fimbriae. P. gingivalis cells were 

suspended in 1× LDS buffer and incubated either at (a) 100°C or (b) 60°C for 10 min. 

Extracts were electrophoresed in a 12% Bis‐Tris gel and after transfer, Mfa1 was 

visualized using polyclonal anti‐Mfa1 antibodies. Lanes 1, P. gingivalis ATCC 33277; 

2, P. gingivalis SMF1; 3, P. gingivalis cSMF1; 4, P. gingivalis cMF1‐R240A; and 5, P. 

gingivalis cSMF1‐A357P; M, size markers. 
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3.3. Discussion: Heterotypic community formation of P. gingivalis with oral streptococci 

is driven by a protein–protein interaction between the minor fimbrial antigen (Mfa1) of P. 

gingivalis and streptococcal surface antigen I/II, for example, SspB of S. gordonii  [71, 

87, 94]. This interaction has been shown to modulate the virulence potential of P. 

gingivalis [43, 51] and may also be important for initial colonization of the oral cavity 

by P. gingivalis. Therefore, disruption of heterotypic community formation by targeting 

the Mfa1/antigen I/II interaction may represent a potential therapeutic approach to 

control P. gingivalis colonization and virulence [135, 142, 159] [135, 142, 159]. The 

region of antigen I/II involved in the interaction with Mfa1 has been extensively 

characterized [134, 135, 160] and these studies led to the development of both peptide 

and small molecule peptidomimetics that potently inhibit P. gingivalis/streptococcal 

adherence in vitro and significantly reduced P. gingivalis virulence in vivo [135, 141, 

142, 161]. However, the interacting interface of Mfa1 that drives this protein–protein 

interaction has not been well characterized. 

Based on peptide mapping, our results indicate that important functional residues and/or 

motifs of Mfa1 reside between residues 225 and 400 of the protein and truncated peptides 

comprising this region inhibited P. gingivalis adherence to streptococci as effectively as 

the full‐length Mfa1 protein. In addition, analysis of the three‐dimensional structure of 

Mfa1 using SiteMap identified a putative ligand binding cleft in which five small 

molecule mimetics of the BAR peptide could be readily docked. Interestingly, many of 

the residues within five angstroms of the peptidomimetic ligands are present in the 225–

400 residue region of Mfa1. BAR peptide can also associate with this site but docking 

studies using the more structurally complex peptide will require further refinement. The 
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functional properties of several of these residues were confirmed by site‐specific 

mutagenesis and peptides containing the R240A, W275A or A357P mutations were 

significantly less effective inhibitors of P. gingivalis adherence that the parent peptide or 

full‐length Mfa1. Amino acids R240 and W275 form hydrogen bonds with residues that 

stabilize the binding cleft and those residues are directly accessible in the binding site 

pocket. The A357P mutation likely disrupts a short amphipathic α‐helix in the binding 

site pocket and we can speculate that this region may interact with the amphipathic 

VQDLL motif of BAR peptide which is essential for its interaction with Mfa1. 

Consistent with this, complementation of an Mfa1‐deficient strain of P. gingivalis with 

full‐length copies of Mfa1 containing the R240A, W275A or A357P mutations did not 

restore P. gingivalis adherence whereas complementation with native Mfa1 restored the 

wild‐type phenotype. Even though the Mfa1/Ag I/II interaction is essential for P. 

gingivalis adherence and stable biofilm formation, it should be noted that inactivation 

of mfa1 did not completely eliminate adherence to streptococci in vitro. One explanation 

for this is that the major fimbrial subunit protein, P. gingivalis FimA, can also interact 

with streptococcal cell surface GAPDH [88] ; however, this interaction by itself is 

insufficient to promote stable P. gingivalis‐streptococcal biofilms     [127]. Together, 

these results validated the ligand binding cleft identified by SiteMap, identified specific 

amino acids that contribute to P. gingivalis adherence and suggest that the central region 

of Mfa1 is essential for the interaction of the minor fimbriae with the BAR motif of 

streptococcal antigen I/II. 
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Biogenesis of the minor fimbriae in P. gingivalis requires proteolytic and post‐

translational processing of Mfa1 and subsequent polymerization to form the fimbrial 

structure, most likely via a donor strand based exchange mechanism. Polymerization of 

Mfa1 may involve β‐strands at both the N‐ and C‐terminal regions of Mfa1  [100, 101]. 

In contrast, our results indicate that the central region of Mfa1, between residues 225 and 

400, is required for P. gingivalis adherence to streptococci and consistent with this, the 

highest scoring ligand binding cleft identified by SiteMap is mostly comprised of 

residues in this central domain. Furthermore, the polymerization of mutated Mfa1 

peptides that are defective in streptococcal adherence was similar to the wild‐type Mfa1 

protein, suggesting that independent domains of Mfa1 are required for fimbrial 

biogenesis and P. gingivalis‐streptococcal adherence. Consistent with this, it was recently 

shown that peptides CT1 and CT2 which are both derived from the C‐terminal region of 

Mfa1 encompassing residues 546–563 inhibit Mfa1 polymerization [162]. Peptide CT2 

also inhibited P. gingivalis‐streptococcal biofilm formation and functioned by interfering 

with minor fimbrial biogenesis. In contrast, the BAR peptide and the BAR 

peptidomimetics function as competitive inhibitors of streptococcal adherence and have 

no effect on minor fimbrial biogenesis. The mature minor fimbriae of P. gingivalis also 

contain three additional tip proteins, Mfa3, Mfa4 and Mfa5. These proteins appear to play 

a role in the assembly of the tip complex itself and its incorporation into the fimbrial shaft 

and are required for optimal surface expression of the minor fimbriae [106, 107, 145]. 

While Mfa1 has been shown to interact with Mfa3 [101], there is little information to 

suggest that the tip proteins contribute directly to P. gingivalis adherence to streptococci. 

Indeed, purified recombinant Mfa1 in the absence of the tip proteins potently inhibits P. 
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gingivalis adherence, suggesting that Mfa3, Mfa4 and Mfa5 do not play a major role in 

the interaction with streptococcal antigen I/II. 

Although several specific amino acids and/or structural motifs of Mfa1 were shown to be 

important for its interaction with Ag I/II, the functional properties of other residues 

predicted to comprise the ligand binding cleft have yet to be determined. For example, 

K70 and Mfa1 amino acids 180–194 were identified as putative cleft residues; however, 

the truncated peptide N225 was only a poor inhibitor of P. gingivalis adherence. This 

suggests that these residues may not interact directly with Ag I/II (or the BAR peptide), 

or alternatively, that they may also require the contribution of downstream residues. 

Since Mfa1 has been recently crystallized  [100], it may be possible to co‐crystallize the 

protein with the BAR peptide or with recently developed peptidomimetics of BAR [161] 

to generate a more complete picture of the Mfa1‐Ag I/II interacting interface. Ultimately, 

a thorough understanding of the mechanism of the Mfa1/Ag I/II interaction will facilitate 

structure‐based drug design and the development of potential therapeutics that may 

limit P. gingivalis colonization of the oral cavity. 
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CHAPTER FOUR: SMALL MOLECULE DRUG DISCOVERY 

4.1. Introduction : Treatment of periodontal disease typically involves the mechanical 

removal of dental plaque by scaling and root planning, antibiotic therapy, and if 

necessary, gingival surgery to reduce the depth of the subgingival pocket [163].  

Although periodontal disease is considered to be a polymicrobial infection, 

Porphyromonas gingivalis has been suggested to function as a keystone pathogen that 

can alter host innate immune functions leading to dysbiosis and chronic inflammation 

[41, 52, 152].  The primary niche of P. gingivalis is the subgingival pocket  [54, 164] but 

initial colonization of the oral cavity by P. gingivalis occurs in the supragingival biofilm 

where the organism can adhere to primary colonizing organisms such as oral streptococci 

[59] [72].  Adhesion of P. gingivalis to streptococci is primarily driven by a protein-

protein interaction between the minor fimbrial antigen of P. gingivalis (Mfa1) and 

specific members of the streptococcal surface antigen I/II family of proteins (e.g., SspB 

of S. gordonii) [94, 127, 135].  As one of the initial interactions contributing to P. 

gingivalis colonization, this protein-protein interaction represents an ideal candidate for 

therapeutic intervention. 

The interaction of Mfa1 with SspB has been well characterized.  Deap et al. identified 

two discrete motifs of SspB comprised of the amino acids NITVK and VQDLL and 

showed that these motifs are essential for the interaction with Mfa1 [134].  Daep et al. 

also showed that these motifs in SspB closely resembled the functional motifs of the 
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eukaryotic nuclear receptor (NR) box protein-protein interaction domain [134, 136].  

Furthermore, a synthetic peptide containing both NITVK and VQDLL (designated BAR) 

potently inhibited P. gingivalis adhesion to S. gordonii and significantly reduced P. 

gingivalis virulence in a murine model of periodontitis [135, 136].  Subsequently, Patil et 

al. synthesized a series of highly active small molecule peptidomimetics of BAR using a 

click chemistry approach and demonstrated that these compounds exhibited no toxicity 

towards a variety of human cells and cell lines [141, 142].   

The advent of computer assisted molecular modeling technologies and structure-based 

virtual screening methods provides an additional platform for rational drug design to 

identify targeted small molecule inhibitors of biologic interactions.  For example, Stone 

et al. utilized a high throughput virtual screening approach of the ZINC database of 

commercially available chemical compounds to identify small molecule inhibitors of P. 

gingivalis m-diaminopimelate dehydrogenase, an essential enzyme involved in protein 

and cell wall synthesis  [165].  In this chapter, I performed virtual screening of the ZINC 

drug-like chemical libraries to identify small molecule homologs similar to the NITVK 

and VQDLL motifs of SspB.  The three most potent compounds that were identified 

inhibited P. gingivalis adherence to streptococci and reduced P. gingivalis virulence in 

vivo.  Two of these active compounds showed no cytotoxic activity towards a variety of 

human and murine cell lines and represent potential lead compounds for the development 

of novel therapies to limit P. gingivalis colonization of the oral cavity. 
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4.2. Results: 

4.2.1. In vitro functional assessment of the identified ZINC library candidates.   After 

virtual screening, a total of 33 commercially available molecules with structural 

similarity to either the NITVK or VQDLL motifs were identified and obtained for 

functional testing. Using the two species biofilm model described by Patil et. al.  [141], 

the in vitro effectiveness of the compounds was determined by their ability to inhibit P. 

gingivalis adherence to S. gordonii and subsequent biofilm formation at an initial 

concentration of 40 µM.   As shown in Figure 4.1A, of the 17 compounds selected based 

on similarity with the NITVK motif, two inhibited adherence and biofilm formation at 

≥40%, N7 (~40%) and N17 (~60%).  In addition, of the 16 selected compounds based on 

similarity with the VQDLL motif, only compound V8 inhibited biofilm formation by 

≥40% (Figure 4.1B).  Subsequently, dose dependent inhibition studies were carried out 

for compounds N7, N17 and V8 using concentrations of 5, 10, 15, 25 and 40 µM.  As 

shown in Figure 4.2, each of these compounds inhibited P. gingivalis adherence and 

biofilm formation in a dose dependent manner.  The structure of the N7, N17 and V8 

presented in Figure 4.3a, b and c respectively and Figure 4.3.d and 4.3.e indicate the 

structural similarities between N17 and NIVTK, and V8 and VQDLL motifs.  Thus, 

compounds that are similar to both of the functional domains of the streptococcal SspB 

protein inhibited P. gingivalis/S. gordonii adherence in vitro.  
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Figure 4.1. In vitro screening of the small molecules. Compounds N1 – N17 (A) and 

V1 – V16 (B) were screened for inhibition of P. gingivalis adherence to S. gordonii at a 

concentration of 40 µM.  Relative inhibition was normalized to the PBS control. Each 

experiment was carried out in triplicate and three independent experiments were 

conducted for each compounds. Data was analyzed by one way ANOVA followed by 

Dunnett’s multiple comparison test using PBS as control. Significance was defined as 

*p<0.05, **p<0.01, ***p<0.001. 
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Figure 4.2.  Dose dependent inhibition of P. gingivalis adherence.  Compounds N7, 

N17 and V8 were each tested at concentrations of 5, 10, 15, 25 and 40 µM and inhibition 

was normalized to the PBS control. 
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Figure 4.3.  Chemical structures of the lead compounds:  A) N7: 1-(4-

chlorophenoxy)-3-{2-imino-3-[2-(piperidin-1-yl)ethyl]-2,3-dihydro-1H-1,3-benzodiazol-

1-yl}propan-2-ol hydrochloride, B) N17: N-(2-hydroxyphenyl)-2-{3-[(2-

hydroxyphenyl)carbamoyl]phenyl}-1,3-dioxo-2,3-dihydro-1H-isoindole-5-carboxamide,  

C) V8: N-(1-cyanocyclopentyl)-2-[3-(5-methyl-1H-pyrazol-3-yl)piperidin-1-yl] 

acetamide,  D) overlay of compound N17 on the NITVK motif,  E) overlay of compound 

V8 on the VXXLL motif.  In the overlay images, compounds N17 and V8 are indicated 

with the tan backbones and the AgI/II motifs are shown with the blue backbones. 

N17:  ZINC03142014 
V8: ZINC84110921 

D. 
C. 

N7: 
ZINC000004797470 

A. B. C. 
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4.2.2. Small molecule inhibition of P. gingivalis virulence.  In vivo activity of 

compounds N7, N17 and V8 was determined using a murine model of periodontitis as 

described by Deap et al. [135] (Figure 4.4). Briefly, Antibiotic pretreated mice were 

challenged with 10
9
 cfu/ml of S. gordonii suspends in 2% carboxyl methyl cellulose

(CMC) using feeding needle for 10 days in every other days. Then mice were infected 

with P. gingivalis in same way of S. gordonii in presence or absence of the compounds at  

concentration of 40µM. After 47 days of post infection, mice were euthanized and mice 

maxillary was recovered.  Since a hallmark of periodontal disease in humans is the 

resorption of alveolar bone anchoring the teeth, P. gingivalis virulence was assessed by 

alveolar bone loss, determined by measuring the distance from the alveolar bone crest 

(ABC) to the cemento enamel junction (CEJ).    Figure 4.5A shows representative images 

of the maxillary jaws of treated and untreated animals.  Infected but untreated mice 

exhibited an uneven ABC and more extensive exposure of tooth roots (arrows in Figure 

4.5A) than control animals or mice treated with N1, N17 or V8.  The quantification of 

bone loss for each group of mice is shown in Figure 4.5B.   Consistent with our previous 

results [135], mice infected with both S. gordonii and P. gingivalis showed significantly 

greater alveolar bone loss than sham-infected mice or animals infected with S. gordonii 

or P. gingivalis alone.  In contrast, infection of mice with S. gordonii and P. gingivalis in 

the presence of N7, N17 or V8 resulted in a significant reduction in alveolar bone loss 

(p<0.001).  
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Figure 4.4: Schematic timeline of the mice model of periodontitis. Mice were treated 

with sulfamethoxazole and trimethoprim in water for 10 days ad libitum. Antibiotic 

pretreated mice were challenged with 10
9
 cfu/ml of S. gordonii suspends in 2% carboxyl

methyl cellulose (CMC) using feeding needle for 10 days in every other days. Then mice 

were infected with P. gingivalis in same way of S. gordonii in presence or absence of the 

compounds. After 47 days of post infection, mice were euthanized and alveolar bone loss 

was measured.   
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Figure 4.5.  In vivo inhibition of P. gingivalis virulence.  A) Representative images of 

maxillary molars of mice infected with P. gingivalis and S. gordonii and treated with 

compounds N7, N17 or V8 at a concentration of 40 µM.  B) Quantification of alveolar 

bone loss.  Bone loss was determined by measuring the distance from the alveolar bone 

crest to the cemento-enamel junction and values were normalized against sham infected 

mice. Each group had eight mice. Statistically significant differences were determined 

using one way ANOVA. *p<0.05;  ***p< 0.001;  ns, not significant. 
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Furthermore, since IL-17-mediated recruitment of neutrophils is an important contributor 

to the inflammatory process leading to alveolar bone resorption [166, 167], we also 

determined whether treatment with N7, N17 or V8 influenced the level of IL-17 

expression in gingival tissue relative to untreated animals.  As shown in Figure 4.6, IL-17 

expression was significantly increased in mice infected with both S. gordonii and P. 

gingivalis relative to animals infected only with S. gordonii.  Treatment of dual infected 

mice with each of the compounds significantly reduced IL-17 expression in the maxillary 

gingiva to levels similar to that in mice infected with S. gordonii alone.  Together, these 

data indicate that treatment with each of the three lead compounds resulted in reduced 

gingival inflammation and reduced alveolar bone loss in mice infected with both S. 

gordonii and P. gingivalis. 
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Figure 4.6. IL-17 levels in gingival tissue.  A) IL-17 expression was determined by 

immunofluorescence staining of maxillary gingival tissue obtained from mice infected 

with S. gordonii alone, S. gordonii and P. gingivalis or from dual infected animals treated 

with compound N7, N17 or V8.  B) Quantification of IL-17 expression in control and 

treated mice. Experiment in each group carried out in triplicate. One way ANOVA was 

performed to determine statistical significance.  ***, p<0.05. 
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4.2.3. Determination of cytotoxicity of the active compounds.  To confirm that N7, 

N17 and V8 function by inhibiting P. gingivalis adherence to S. gordonii rather than 

acting as an antibiotic, microbicidal activity of the compounds was determined by 

growing the organisms in medium containing 40 µM of each compound for 24 hr.  As 

shown in Figure 4.7, none of the compounds affected the growth of S. gordonii or P. 

gingivalis either in early stage or late stage of growth. 
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Figure 4.7. Bacteriocidal activity of the compounds.  S. gordonii (A) and P. gingivalis 

(B) were grown for 24 hr in medium containing 40 µM of each compound and growth 

was quantified by measuring OD600nm for each culture. Each experiment carried out in 

triplicate. 
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Next, to assess compound cytotoxicity towards eukaryotic cells, a series of toxicity tests 

were carried out using telomerase immortalized human gingival keratinocytes (TIGK) 

and the murine J774.A1 and human HL-60 cell lines.  These tests included measuring 

lactate dehydrogenase (LDH) release and overall cell viability (cellular ATP levels) of 

cells after treatment with each compound.  In addition, the apoptotic and hemolytic 

activity of each compound was determined.  As shown in Figure 4.8, LDH release by 

cells treated with compounds N17 and V8 did not significantly differ from the negative 

controls for any of the cell lines.  In contrast, exposure of cells to N7 resulted in a 

significant increase in LDH release at the higher concentrations that were tested (20 – 40 

µM) suggesting that this compound may disrupt the integrity of the cell membrane.  

Compounds N17 and V8 also exhibited minimal effects on cell viability, measured by 

total ATP levels, whereas N7 significantly reduced cellular ATP levels (Figure 4.9).  

Consistent with the results above, N17 and V8 did not induce apoptosis over the control 

reaction whereas treatment with compound N7 significantly reduced the live cell count 

and increased the number of late apoptotic cells (Figure 4.10) and Table 4.1, 4.2 and 4.3.  

Finally, as shown in Figure 4.11, none of the compounds exhibited hemolytic activity 

towards either sheep or human red blood cells.  Together, these data indicate that N17 

and V8 exhibit little cytotoxic activity towards the eukaryotic cell lines tested.  In 

contrast, compound N7 exhibited significant cytotoxicity and may not be biocompatible. 
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Figure 4.8. LDH assay:  Cytolytic activity of compounds N7, N17 and V8 against TIGK 

(A),  J774A.1 (B), and HL60 (C) cells.  LDH activity in cell free medium supernatants 

was determined after incubation of cells with the compounds for 18 hr at a concentration 

5, 20 or 40 µM. *p<0.05, **p<0.01. 
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Figure 4.9. ATP assay:  Effect of compounds N7, N17 and V8 on TIGK (A), J774A.1 

(B), and HL60 (C) cell viability.  Cellular ATP levels were determined after treating cells 

with the compounds for 18 hr at a concentration 5, 20, or 40 µM.  Significant differences 

were determined by comparing experimental samples to the medium only and 

medium/DMSO controls.  *p<0.05, ***p<0.001, ns – not significant.   
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Figure 4.10. Cell death caused by the compounds.  Induction of apoptosis by 

compounds N7, N17 and V8.  HL60 cells were treated for 18 hr with each compound (5, 

20 or 40 µM) and apoptosis was quantified by flow cytometry.  A representative image of 

flow cytometry using treated HL60 cells.  The lower left quadrant represents live cells, 

the lower right quadrant represents cells exhibiting early apoptosis and the upper right 

quadrant represents late apoptotic cells. 
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Table 4.1 Quantification of cells in each quadrant for each compound is shown in 

Figure 4.10. Average of triplicate of each experiment was measured when the TIGK 

cells were treated with the compounds. * indicates a significant increase (p<0.001) in late 

apoptotic cells over medium and medium/DMSO controls. 

    Late apoptosis/ 

Treatment  Conc (µM) Live cells (%)  Early apoptosis (%)    necrosis (%) 

Medium 92.7 2.6 2.7 

Medium/DMSO 91.3 1.4 3.9 

Medium/H2O2 56.6 4.9 21.9* 

N17 5 90.7 2.9 4.2 

20 92.4 2.4 3.6 

40 91.6 1.5 5.1 

V8 5 91.6 3.1 4.2 

20 92.8 2.1 3.5 

40 92.8 2.4 3.4 

N7 5 86.8 2.4 8.3 

20 74.5 1.0 14.9* 

40 48.3 5.9 40.7* 
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Table 4.2: Quantification of early and late apoptotic J774A.1 cells treated with 

compounds at different concentration. Average of triplicate of each experiment was 

measured. * indicates a significant increase (p<0.001) in late apoptotic cells over medium 

and medium/DMSO controls. 

                              Late apoptosis/ 

Treatment        Conc (µM)     Live cells (%)  Early apoptosis (%)         necrosis (%) 

 

Medium    89.6   0.1   5.3 

Medium/DMSO   89.6   0.9   5.6 

Medium/H2O2                                                      41.9                             1.3                              34.7* 

N17                             5                     87.8                             1.0                                6.1 

          20                   85.3                             1.0                                6.9 

          40                   87.3                             1.2                                6.6 

 

V8                               5                     85.1                             1.1                                8.3 

          20                   83.4                             0.9                                8.0 

          40                   84.3                             12.5                              9.1 

 

N7                                 5                    83.9                              2.5                             5.5 

20                  33.4                               16.9*                         46.6* 

40                   36.2                              24.9*                         38.0* 
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Table 4.3: Quantification of early and late apoptotic HL60 cells treated with 

compounds at different concentration. Average of triplicate of each experiment was 

measured. * indicates a significant increase (p<0.001) in late apoptotic cells over medium 

and medium/DMSO controls. 

Late apoptosis/ 

Treatment        Conc (µM) Live cells (%) Early apoptosis (%)        necrosis (%) 

Medium   88.9       1.1 6.9 

Medium/DMSO    90.0       1.2 6.6 

Medium/H2O2 52.7 12.3*           31.4* 

N17 5 91.3 2.7    4.7 

20 90.3 2.2             6.0 

40 91.6         2.3      6.3 

V8 5 91.8       2.9 5.6 

20 91.3           3.7        5.0 

40 88.4 2.4   6.7 

N7 5 87.4        3.6 7.8 

20          27.3 20.9*  43.9* 

40 18.9 7.7       70.8* 
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Figure 4.11. Hemolytic assay:  Hemolytic activity against sheep (A) and human (B) red 

blood cells after 4 hr incubation with compounds N7, N17 and V8 at 5, 20, or 40 µM.  ns, 

not significant. 
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4.3. Discussion 

P. gingivalis may contribute to the initiation and progression of periodontitis by 

functioning as a keystone pathogen that alters host innate immune functions leading to 

dysbiosis and chronic inflammation [41, 52, 152].  This raises the possibility that 

therapeutic approaches that are specific for P. gingivalis may be effective in controlling 

periodontal disease.  One potential therapeutic target is the interaction of Mfa1 with 

streptococcal AgI/II, which may contribute to the initial colonization of the oral cavity by 

P. gingivalis.  

Structural dissection of both AgI/II [134-136] and Mfa1 [168] previously identified 

specific amino acids and motifs that are required for adherence of P. gingivalis with 

streptococci and facilitated the development of a peptide that inhibits this interaction 

[135].  However, P. gingivalis is a highly proteolytic organism, which would likely limit 

the application of this peptide for therapeutic purposes.  To address this limitation, small 

molecule peptidomimetics have been recently synthesized and were shown to inhibit P. 

gingivalis adherence [141, 142, 161].  In this study, we sought to identify additional small 

molecule inhibitors by virtual screening of the ZINC database (https://zinc.docking.org/) 

[148, 149, 169] for commercially available compounds that exhibit similarity with the 

NITVK and VQDLL functional motifs of the streptococcal AgI/II protein.  Three lead 

compounds, N7, N17 and V8, were identified and shown to inhibit P. 

gingivalis/streptococcal adherence in vitro and to reduce P. gingivalis virulence in vivo.  

Of the three compounds, N17 was the most potent inhibitor of P. gingivalis adherence in 

vitro and exhibited an IC50 of ~18 µM, similar to the first generation peptidomimetic 

compounds based on BAR peptide reported by Patil et al. [141] .  Preliminary 

https://zinc.docking.org/
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experiments using equimolar mixtures of N17 and V8 did not indicate significant 

synergistic activity.  One possible explanation for this is that the binding of one 

compound, e.g., N17, to Mfa1 may sterically hinder the association of V8. In vivo, it has 

been previously shown that the presence of S. gordonii in the murine oral cavity 

promotes P. gingivalis virulence [135, 142] and consistent with this, infection of mice 

with both S. gordonii and P. gingivalis induced inflammation leading to resorption of 

alveolar bone.   Treatment of infected animals with each of the compounds resulted in a 

significant reduction in P. gingivalis-mediated inflammation and bone loss.  Indeed, bone 

loss in mice treated with compound N17 was not statistically different from sham-

infected animals. Since compounds effectively reduce the adherence of P. gingivalis to S. 

gordonii, P. gingivalis induced IL 17 expression also reduced in gingival tissue in 

infected mice.  

Compounds N17 and V8 exhibited little cytotoxicity against human gingival epithelial 

cells or human and mouse macrophage cell lines.  In contrast, N7 exhibited a significant 

level of cytotoxicity in each of the cell culture tests that were performed.  However, mice 

that were treated with compound N7 during the infection process did not exhibit any 

overt signs of distress or toxicity.  This could be explained by the difference in the 

duration of exposure to the compound in the in vitro versus in vivo experiments.  Animals 

that were treated with N7 were only transiently exposed (~20 min) to the compound 

during infection with P. gingivalis whereas cell cultures were exposed to N7 for 18 hr 

prior to the toxicity analyses. 

One potential application that we envision for these compounds would be to prevent or 

reduce colonization of the re-developing oral microbiome by P. gingivalis after a patient 
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is treated for periodontitis.  Typically, the oral microbiome re-forms after treatment and 

disease recurrence can often occur.  We speculate that topical application of these 

compounds, formulated in a dental varnish or mouth rinse may direct the re-

development of the microbial community towards a healthy rather than pathogenic 

biofilm by preventing re-colonization of P. gingivalis.  Our observation that transient 

exposure of animals to the compounds significantly reduced P. gingivalis virulence 

provides initial proof of concept that preventing P. gingivalis colonization of the oral 

microbiome may result in positive clinical outcomes.  In addition, we previously showed 

that BAR peptide was also capable of disrupting an established biofilm containing P. 

gingivalis [170], which suggests that N17 and V8 may also have utility in treating 

existing periodontal infections. 

In summary, virtual screening of the ZINC database identified three compounds that 

inhibited P. gingivalis adherence to oral streptococci and represent potential targeted 

therapeutics against periodontal disease.  Two of these exhibited biocompatibility with 

both human and mouse cells and represent lead compounds that will provide a platform 

for further modification to improve potency.  
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CHAPTER FIVE: SUMMARY 

Periodontal disease is one of the most common oral diseases in the world and up to 47% 

of the adult population in the United States suffer from this disease [18]. Managing these 

diseases is also very expensive and each year, it costs $15 billion dollars. Moreover, 

periodontitis is associated with systemic illness and increases the risk of heart disease, 

rheumatoid arthritis, diabetes, renal failure and Alzheimer's disease [153, 171]. 

Porphyromonas gingivalis is strongly associated with chronic adult periodontitis and is 

an important pathogen that is capable of modulating the host immune response and 

disrupting normal host/microbe homeostasis [41, 52, 152]. This can lead to the 

development of a dysbiotic microbial community which can induce uncontrolled 

inflammation leading to the destruction of tooth-supporting tissues, and ultimately tooth 

loss [42, 43]. 

The treatment of periodontal disease involves mechanical removal of dental plaque, a 

combination of antibiotic therapy, surgical removal of infected tissue and tissue 

regeneration therapy. The concern of antibiotic resistance and invasive treatment often 

perturb the complex microbial community that requires to maintain healthy gum. 

Targeted therapeutic approach against major pathogens associated with oral diseases 

could be an interesting avenue to treat periodontal diseases. Identifying and targeting the 

essential genes against pathogenic bacteria and blocking the gene function is one 

approach for targeted therapy. For instance, Stone et al. identified meso-diaminopimelate 
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dehydrogenase which catalyzes the formation of M-DAP (diaminopimelate), an 

intermediate for lysine synthesis that is required for peptidoglycan synthesis as an 

essential P. gingivalis gene and targeting the meso-diaminopimelate with small molecule 

inhibitors effectively kills P. gingivalis cells [165]. Another attractive approach is the 

delivery of naturally occurring antimicrobial peptides or synthetic peptides in the oral 

cavity. For instance, Franzman et al. conjugated the P. gingivalis IgG with naturally 

occurring sheep myeloid antimicrobial peptide (SMAP) that specifically kills P. 

gingivalis in mixed-species biofilm [172]. Mahmoud et al. demonstrated that synthetic 

BAR peptide released by nanoparticles reduced P. gingivalis biofilm formation and 

prevented the loss of alveolar bone in an animal model of periodontitis [170, 173]. Thus, 

targeting pathogenic biofilm formation represents a valid approach to develop targeted 

therapies. Since P. gingivalis fimbriae mediate the physical interaction with other 

organisms and host cells, downregulating the expression of fimbriae, inhibiting fimbrial 

biogenesis, or targeting specific adhesin-receptor interactions are additional potential 

approaches for therapy development. For instance, Ho et al. showed that peptides derived 

from S. cristatus ArcA, designated as Streptococcal-derived anti-P. gingivalis peptide 

(SAAP), reduced FimA and Mfa1 expression along with some other virulence genes in P. 

gingivalis and reduced biofilm formation by this organism [174, 175].   Wright et al. 

screened a small molecule library and identified compounds with 2-aminoimidazole or 2-

aminobenzimidazole moieties that downregulated FimA and Mfa1 expression and 

inhibited biofilm formation of P. gingivalis with S. gordonii [176].  Alei et al. used a 

synthetic peptide derived from the C terminal conserved domain of Mfa1 to block Mfa1 

polymerization and inhibited biofilm formation of P. gingivalis with S. gordonii [162]. 
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P. gingivalis may initially colonize the oral cavity by adhering to streptococci and this 

interaction not only facilitates P. gingivalis colonization of the oral cavity but increases 

its virulence   [51, 70, 72, 127, 135].  Therefore, this interaction is an ideal point for 

intervention.  Adherence of P. gingivalis to streptococci is driven by two sets of adhesin-

receptor interactions but the interaction of the short fimbrial protein Mfa1 of P. gingivalis 

with streptococcal surface antigen AgI/II is crucial [94, 127, 135].  Daep et al. 

characterized the binding region of Ag I/II, designated as BAR, and showed that this 

region is comprised of two distinct structural motifs, NITVK and VQDLL, which 

resembled the eukaryotic nuclear receptor box protein-protein interaction domain [134, 

136]. Subsequently targeting P. gingivalis adherence to streptococci, Daep et al. showed 

that a synthetic peptide representing BAR significantly reduced P. gingivalis-mediated 

bone loss in a mouse model of periodontitis [135].  More recently, Patil et al. synthesized 

peptidomimetics based on the BAR peptide which were effective in preventing in vitro 

community formation [141] and reduced bone loss in the in vivo model [142].  However, 

no other therapeutic compounds currently exist that specifically target P. gingivalis and 

inhibit its colonization of the oral cavity by preventing its association with oral 

streptococci. To develop additional more potent therapeutic agents, characterization of 

the Mfa1 binding site was required in order to better understand the mechanism of this 

protein-protein interaction at the molecular level. 

In this study, I successfully characterized and identified Mfa1 fimbrial residues involved 

in interactions with AgI/II using peptide mapping, in silico docking and mutagenesis 

approaches. From the peptide mapping studies (Figure 3.1), we showed that the 

functional region of Mfa1 resides between residues 225-400 (Figure 3.2). Taking 
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advantage of the Mfa1 3D structure [100] and peptidomimetics based on the BAR 

peptide [141, 142], a putative binding cleft was predicted using Sitemap (Figure 3.3). 

Integrating the findings from peptide mapping with this in silico prediction, R240, W275 

and two amphipathic regions (residues 321–329 and 351–364) were targeted for site-

directed mutagenesis and these studies confirmed the predicted binding cleft by 

demonstrating that these residues were essential for the interaction (Figure 3.4). Finally, 

full length mfa1 genes containing mutations at R240 or A357 were constructed and 

complemented in a P. gingivalis Mfa1 deficient strain and analyzed their ability to adhere 

to S. gordonii (Figure 3.5b).  The complemented strains were deficient in adherence, thus 

further validating that these residues comprise part of the binding cleft involved in the 

interaction with Ag I/II. To rule out the possibility that these mutations may influence the 

secretion or polymerization of Mfa1 [89, 100-102], cell surface levels of Mfa1 and self 

polymerization were examined. Neither mutation affected these events (Figure 3.5a and 

3.6). Together, our findings suggest that R240, W275, amphipathic helical regions 

(residues 321–329 and 351–364) are required for the interaction of Mfa1 with Ag I/II. 

However, K70 and helical regions 180-194 were also predicted to comprise parts of the 

binding cleft, so further studies will be required to determine the functional activity of 

these amino acids in the interaction with Ag I/II. 

To discover candidate drug-like compounds that target P. gingivalis adherence to the 

streptococcal surface, a virtual screening was performed of commercially available 

compounds contained in the ZINC databases [149, 169] to identify compounds with 

structural similarity to the NITVK and VQDLL motifs of Ag I/II  [146].  Three lead 

compounds were identified that inhibit in vitro biofilm formation (Figure 4.1 and 4.2). In 
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vivo effectiveness was also determined in mice by treating animals with compounds N7, 

N17 or V8 at a concentration of 40 µM.  Treatment significantly reduced alveolar bone 

loss relative to untreated mice (Figure 4.5.). IC50 values for these compounds were 

~15µM, similar to the first generation BAR peptidomimetics synthesized by Patil et al. 

[141].  Thus, these compounds represent lead compounds that can be further modified to 

increase their effectiveness similar to synthetic BAR peptide (IC50 1.3 µM) [134].  

Furthermore, consistent with a previous study by Mahmoud et al. [173] that targeted the 

interaction of Mfa1-Ag I/II using BAR peptide encapsulated nanoparticles, treatment 

with N7, N17 or V8 reduced local IL-17 levels in the gingival tissues (Figure 4.6).  

Finally, cytotoxic activity of the compounds was evaluated using various human and 

murine cell lines by measuring levels of LDH release, cellular ATP, cell apoptosis and 

hemolytic activity.   N17 and V8 showed minimal detectable cytotoxic activity, whereas 

compound N7 was toxic to the cells (Figure 4.8, 9, 10, 11, and Table 4.1, 4.2 and 4.3). 

However, none of the compounds exhibited toxic activity in the in vivo experiments.  An 

explanation for this may be that mice were only transiently exposed to the compounds 

during the infection process whereas the cell lines were chronically exposed for 24 hours 

prior to determining in vitro cytotoxicity.  Thus, N17 and V8 represent potential 

therapeutic agents that may be useful in the treatment or prevention of periodontal 

diseases. We also recognize that the microbial community in the oral cavity is complex.  

For example, F. nucleatum is often co-local with P. gingivalis and co-infection with both 

organisms has been associated with increased virulence [177, 178], so further studies will 

be required to determine the efficacy of the candidate compounds in more complex 

biofilm model. 
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In brief, I successfully identified the binding residues of Mfa1 that interact with Ag I/II 

surface antigen and also identified small molecule inhibitors that are effective in reducing 

P. gingivalis virulence.  Overall, the valuable insight of this protein-protein interaction 

will facilitate the structural modification of the lead compounds in order to design more 

potent inhibitors that will reduce P. gingivalis colonization and virulence in the oral 

cavity. It would also be interesting to determine the efficacy of these inhibitors in clinical 

studies. For example, a Specifically Targeted Antimicrobial Peptide (STAMPs) was 

developed (designated C16G2) against the cariogenic pathogen S. mutans that is 

comprised of 16mer S. mutans competence stimulating peptide (CSP) linked to the broad 

spectrum antimicrobial peptide G2.  This STAMP potently killed S. mutans in a mixed-

species community without perturbing the commensal organisms [179, 180]. C16G2 has 

been formulated in a dental varnish and dental strip and is currently undergoing a Phase 2 

clinical trial. Thus, we could hypothesize that formulation of the small molecule 

inhibitors identified in this study might be effective in a mouth rinse, dental varnish or 

dental strip to specifically eliminate P. gingivalis.  A potential limitation of these 

formulations however, is that they would only transiently deliver the active agent to the 

oral cavity.  Recent studies have examined the use of nanoparticles and nanofibers to 

increase the concentration and duration of active agents for oral applications [170, 173, 

181].  Indeed, nanoparticles have been widely used for the delivery of preventive drugs, 

in tooth implantation approaches and for the treatment of oral cancer [182]. We envision 

the possibility of delivering the small molecule inhibitors using nanoparticles and that 

nanoparticles-inhibitor conjugates could be formulated in a rinse, varnish or strip to 

improve the performance of these formulations.  
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Figure 5. Graphical summary: The Minor fimbriae of P. gingivalis 3D structure 

was solved by Hall et al. (2018). Here we identified the binding antigens of Mfa1 that 

interact with Ag I/II depicted in rainbow color. Based on NITVK (cyan) and VQDLL 

(green) motif of SspA/B, lead compounds were identified that reduce P. gingivalis 

colonization and virulence in animal model of periodontitis.  
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CHAPTER SIX: FUTURE DIRECTIONS 

6.1. Co-crystallization of Mfa1 with BAR peptide/peptidomimetics: R240, W275, and 

the amphipathic regions (residues 321-326, 351-364) were identified as crucial amino 

acids of the Mfa1 binding cleft, but residue K70 and a putative helical region (residues 

180-194) were also predicted as binding cleft residues.  Their role in the interaction with 

Ag I/II needs to be further characterized to better understand the mechanism of this 

protein-protein interaction. Since the Mfa1 3D structure was recently published [100], it 

may be possible to co-crystallize Mfa1-BAR peptide or to the Mfa1-peptidomimetics 

(synthesized by Patil et.al.[141, 161]) to obtain a more complete picture of the binding 

interface as well as understanding the mechanism of this protein-protein interaction. To 

achieve this goal, purified Mfa1 can be conjugated with an equimolar concentration of 

BAR or ligands, and X-ray crystallography can be performed. 

6.2. Determine the efficacy of the lead compounds in the presence of bridging 

organism: The dental biofilm is a complex and organized microbial structure where 

other microorganisms such as Fusobacterium nucleatum independently interact with P. 

gingivalis and oral streptococci [50, 183]. So to be considered as functional therapeutic 

agents, it will be necessary to determine the efficacy of the lead compounds in dispersing 

P. gingivalis-streptococcal biofilms in the presence of such organisms.  Tan et al. 

developed a three species biofilm model by introducing the bridging organism F. 

nucleatum in dual-species biofilm [142] and have tested the efficacy of peptidomimetic 



 
90 

 

compounds on the dispersion of this mixed-species biofilm. Fortunately, Tan et al. found 

peptidomimetics effectively inhibit biofilm formation in this three species biofilm model 

and have also shown these compounds effectively  disperse a preformed biofilms [142].  

Thus, it is possible to test the efficacy of the lead compounds in inhibition in the three 

species biofilm model. It will also be interesting to determine the effectiveness of these 

compounds in the dispersion of preformed  dual-species or three species biofilms. 

6.3. Determination the effectiveness of the lead compounds in combined treatment: 

NITVK and VQDLL of Ag I/II were identified as crucial for interaction with Mfa1 [134, 

136]. Patil et al. [141, 157] synthesized peptidomimetics using a click chemistry 

approach, taking into consideration both of these motifs which effectively prevent biofilm 

formation. The lead compounds, N17 and V8 are based on the NITVK and VQDLL 

motifs respectively, and reduce bone loss in mice model of periodontitis but less 

effectively than BAR peptide (IC50 = 1.3µM) [135].  One possibility is that treatment 

with a mixture of both N17 and V8 may increase effectiveness since mimics of both 

motifs will be present.  Our preliminary findings (data not shown) suggest that when 

mice were treated with a combination of these two compounds (each at 5 µM) 

significantly reduced bone loss in the mice model.  However, further studies will be 

required to determine the effectiveness of these compound mixtures at lower 

concentrations. 

6.4. Structure-Activity Relationship (SAR) Study of the Lead compounds: SAR is a 

powerful tool to refine and improve the potency of active compounds by changing their 

chemical structure and subsequently assessing their functionality. SAR study can be 
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performed using the free tools “Chembench” (https://chembench.mml.unc.edu/) 

developed by Tropsha Lab at the University of North Carolina at Chapel Hill [184].    

6.5. Developing drug delivery vehicles: As discussed in Chapter 5, another challenge of 

treating periodontal disease is the localized delivery of the active therapeutic agents in the 

oral cavity because the systemic administration of drugs is ineffective against biofilm in 

the deeper tissue area.  Previous studies suggest that peptide modified nanoparticles 

effectively disperse a preformed biofilm between P. gingivalis and oral streptococci 

[170], and reduced P. gingivalis virulence in the mouse model of periodontitis [173]. 

Therefore, in collaboration with the Bioengineering Department, it may be possible to 

develop poly lactic-co-glycolic acid (PLGA) nanoparticles that are surface-modified or 

that encapsulate the candidate small molecule inhibitors as described by Steinbach et al. 

[185] and assess their efficacy in dispersing a preformed biofilm dispersion in vitro as 

well as in vivo efficacy in the animal model system. Some of the advantages of using the 

PLGA are that it is already FDA approved, widely used as a food additive, relatively safe 

to humans, easy to synthesize and has inherent antimicrobial effects. The goal will be to 

engineering nanoparticle with our potential drug-like compounds to generate a platform 

to effectively deliver the therapeutic agents in the oral cavity.   

https://chembench.mml.unc.edu/
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