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ABSTRACT 

PARTICULATE MATTER EXPOSURE AND COMMUNITY-ACQUIRED 

PNEUMONIA MORTALITY AMONG HOSPITALIZED ADULTS WITH 

PNEUMOCOCCAL PNEUMONIA: INCIDENCE STUDY (HAPPI) PARTICIPANTS 

Jack Anthony Pfeiffer 

March 25, 2021 

 The role of air pollution as an agent of elevated morbidity and mortality has come 

under increasingly intense scrutiny in recent years. As the body of literature grows, so too 

does our understanding of how extensive the harm of such pollutants can be. Particulate 

matter (PM) particularly harmful due to its small size, ability to travel great distance while 

airborne, and capacity to infiltrate numerous bodily systems, often to the detriment of those 

exposed. Besides being associated with increased mortality risk in more heavily exposed 

populations, PM exposure has also been associated with complications in the respiratory, 

cardiovascular, and nervous systems. Additionally, exposures to PM are often unequally 

distributed among populations, with the greatest burden placed upon already marginalized 

groups. The purpose of this dissertation study was to examine the impact of PM exposure 

at the time of hospitalization on pneumonia-related mortality risk among individuals 

hospitalized due to community-acquired pneumonia (CAP). 

 The study sample for this dissertation work came from the Hospitalized Adults with 

Pneumococcal Pneumonia: Incidence (HAPPI) study conducted in Jefferson County, KY, 

USA from 2014 to 2016, containing adult residents of the county who were hospitalized 
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due to CAP during that timeframe. PM10 and PM2.5 concentration data were derived from 

online sources published by the US Environmental Protection Agency (EPA) based on a 

limited number of air monitoring stations located within Jefferson County. A spatial 

interpolation method called spatial averaging was used to determine specific levels of PM 

exposure ascribed to each participant at the time of their hospitalization. Mortality within 

thirty days of hospitalization was the primary outcome examined as it is likely to reflect 

CAP-specific mortality. The relationships between PM exposures and mortality were 

examined using a variety of methods, including logistic and Cox proportional hazards 

regression and we additionally conducted effect modification analyses. Feasibility of 

alternative spatial interpolation methods was also examined. 

 Age and race, as well as a number of hospitalization and medical history-oriented 

covariates, were found to be significantly associated with mortality in preliminary 

regression analysis. According to the preferred model containing all noted confounders and 

strong predictors, the primary PM exposures of interest were not found to be significantly 

associated with mortality; however, effect modification analysis did yield significant 

results. Black participants exposed to higher levels of PM10 had a greater odds of thirty-

day mortality, based on both continuous PM10 (AOR = 1.19 per five-unit increase, 95% CI 

= 1.04-1.37) and PM10 quartiles (greatest versus lowest quartile; AOR = 2.70, 95% CI = 

1.31-5.55). Female participants in the greatest PM10 exposure quartile had higher odds of 

death within thirty days versus those in the lowest quartile (AOR = 1.46, 95% CI = 1.01-

2.14). The same elevated associations were not observed among white or male participants. 

Additionally, the more advanced spatial interpolation method kriging was not found to be 

feasible due to sparsity of monitor data at a given time point. 
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 The results of the study indicate that certain segments of the population may be 

disproportionately impacted by PM10 exposure. Additionally, the results provide insight 

into the risks and benefits associated with specific hospitalization / medical history-

oriented covariates. Given the simplistic nature of spatial averaging and the inability to 

properly conduct kriging with the data that was available, future research on this subject 

would benefit greatly from alternative, more extensive sources of PM data within cities. 

For now, it appears that PM10 exposure is associated with elevated thirty-day mortality 

among Black and female populations within Jefferson County, KY.  
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SPECIFIC AIMS 

 

 

 

 Particulate matter (PM) is a type of air pollutant produced through natural and 

anthropogenic means. Due to its small size, PM travels easily through the air, with exposure 

most commonly occurring through inhalation. PM has been linked to numerous detrimental 

health outcomes, including elevated all-cause and cause-specific mortality risk. Studies 

have shown that exposure to PM is associated with increased pneumonia risk, but limited 

studies exist on the impact of PM exposure on pneumonia mortality. Pneumonia is 

responsible for approximately 50,000 deaths in the United States (US) each year. Given 

the ubiquitous nature of PM and its known association with respiratory complications, 

exacerbation of pneumonia symptoms by PM exposure may pose a serious threat to public 

health, particularly for the populations that are most vulnerable, such as those over the age 

of sixty-five years.  

Jefferson County, Kentucky has a dense automotive-reliant population, has 

occurrences of violations of ambient PM concentration limits set by the US Environmental 

Protection Agency (EPA), and contains many point sources of PM within its boundaries, 

suggesting elevated exposure may be a concern for area residents. In this dissertation, the 

relationship between PM10 and PM2.5 exposure and mortality in adults hospitalized for 

community acquired pneumonia (CAP) in Jefferson County from the Hospitalized Adults 

with Pneumococcal Pneumonia: Incidence Study (HAPPI) cohort acquired from 

University of Louisville (UofL) School of Medicine Division of Infectious Diseases was 
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evaluated. Various spatial interpolation methods exist for estimating PM concentration; 

two methods, one simple and one comparatively complex, were employed to allow for the 

comparison of PM estimation methods. This study examined the relationship between PM 

exposure and pneumonia mortality in the HAPPI cohort of predominately elderly 

population within Jefferson County, KY. 

 To achieve this goal, the following specific aims were evaluated: 

1. Analysis of the relationship between PM10 and PM2.5 exposure and 30-day mortality in 

HAPPI participants, with PM concentration values being interpolated using spatial 

averaging, and said values examined using the following criteria: dichotomization 

based on National Ambient Air Quality Standards (NAAQS) cutoffs, analysis as a 

continuous exposure variable, and creation of quartiles to assess non-linear 

associations with mortality.  

2. Examination of kriging validity as a means of interpolation given sparsity of data. 

3. Investigation of effect modification on 30-day mortality by age, race, and sex. 
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INTRODUCTION 

 

 

 

 Pneumonia can be generally defined as inflammation of the lungs, most commonly 

caused by an infectious agent, and often characterized by the presence of fluid or pus within 

the affected areas. The condition can be categorized based on a variety of parameters, 

including the geographic location where the patient acquired the condition, the type of 

infectious agent causing the condition, and the affected area of the lung. Pneumonia 

symptoms may vary depending on the type of pneumonia present and the individual’s 

profile can include cough, fever, chills, pleuritic chest pain, shortness of breath, sputum 

production, tachypnea, and tachycardia. Despite being treatable in many cases, pneumonia 

remains a leading infectious cause of death among the very young and old and is 

responsible for approximately 50,000 deaths per year in the United States of America 

(USA) alone (1). An estimated three million died from lower respiratory tract infections, 

including pneumonia, globally in 2016 (2).  Community-acquired pneumonia is a type of 

lower respiratory tract infection. Lower respiratory tract infections are a category of 

diseases estimated to be the greatest communicable cause of death and fourth leading cause 

of death worldwide (2).   

 In this introduction, a general background for pneumonia classifications is 

provided, along with epidemiologic information about community-acquired pneumonia 

among adults eighteen years of age and older, and whether air pollutants can affect 

mortality and hospitalization rates in this adult patient population. 
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Pneumonia Classification and Etiology 

 The type of pneumonia diagnosed is classified based upon several factors: where 

the disease was acquired, etiology, and the affected area of the lung. The setting in which 

the disease was acquired is of great clinical importance, as this often helps dictate the type 

of treatment that will be used. Community-acquired pneumonia and nosocomial 

pneumonia are two primary classifications of setting-specific pneumonia (3).  

Community-acquired pneumonia is pneumonia that develops outside of a hospital 

or healthcare-related setting, resulting in either outpatient or inpatient treatment depending 

on severity. Community-acquired pneumonia is the most common type observed (4). In 

addition to high rates of morbidity and mortality, this condition also results in massive cost 

burdens on the US healthcare system; a study published in 2018 estimated the yearly 

amount spent on community-acquired pneumonia hospitalizations of individuals 65 years 

and older alone exceeded one billion dollars (5), and data from 2011 suggested overall US 

pneumonia-related medical expenditures for the year to be in excess of ten billion dollars 

(6).  

The infectious agents capable of inducing community-acquired pneumonia are 

legion, encompassing a wide array of bacterial, fungal, protozoal, and viral entities. 

Bacteria and viruses are the most common causal pathogens. The onset of community-

acquired pneumonia can be attributed to such pathogenic agents as severe acute respiratory 

syndrome coronavirus 2 (COVID-19), human metapneumovirus, human parainfluenza 

virus, influenza, legionnaires disease, Mycoplasma pneumoniae, pneumococcus, 

pneumocystis, respiratory syncytial virus, and rhinovirus, among other etiologies (7). The 

most common etiological causes of community-acquired pneumonia resulting in outpatient 
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treatment are Streptococcus pneumoniae, Mycoplasma pneumoniae, Haemophilus 

influenzae, Chlamydophila pneumoniae, and respiratory viruses such as adenovirus, 

influenza A and B, parainfluenza, and respiratory syncytial virus (7). The most common 

etiological causes of community-acquired pneumonia resulting in non-intensive care unit 

inpatient treatment are Streptococcus pneumoniae, Mycoplasma pneumoniae, 

Chlamydophila pneumoniae, Haemophilus influenzae, Legionella species, aspiration, and 

respiratory viruses – those previously detailed (7). The most common etiological causes of 

community-acquired pneumonia resulting in intensive care unit inpatient treatment are 

Streptococcus pneumoniae, Staphylococcus aureus, Legionella species, gram-negative 

bacilli, and Haemophilus influenzae (7). In light of the recent pandemic, it is likely severe 

acute respiratory syndrome coronavirus 2 would be included in these lists as well. 

Nosocomial pneumonia includes subclassifications such as hospital-acquired 

pneumonia and ventilator-associated pneumonia. Hospital-acquired pneumonia is 

pneumonia that develops after a minimum of two days following hospital admission, 

presumably due to a hospital-related cause. Healthcare-associated pneumonia was a 

classification connected to, but different from hospital-acquired pneumonia, and 

encompassed pneumonia that could be attributed to such factors as being on dialysis 

treatment, use of immunosuppression therapies, recent hospital stays, and being a resident 

of a nursing facility. In recent years, healthcare-associated pneumonia has been removed 

as a classification. It was once believed that those exposed to the various facets of the 

healthcare system connected to the healthcare-associated pneumonia classification were 

more likely to develop pneumonia as a result of infection by multidrug-resistant organisms, 

but this was later contested (8, 9); use of healthcare-associated pneumonia as a 
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classification resulted in the improper usage of antibiotic treatments. Lastly, ventilator-

associated pneumonia is pneumonia that develops after a minimum of two days after 

endotracheal intubation.  

Epidemiology of Community-Acquired Pneumonia 

Incidence of Community-Acquired Pneumonia 

Great efforts have been made to adequately characterize community-acquired 

pneumonia incidence. In the United States, one such effort was the 2010 Etiology of 

Pneumonia in the Community (EPIC) study carried out by the Centers for Disease Control 

and Prevention (CDC) and eight affiliated hospitals and medical centers (6). The purpose 

of the study was to determine the burden of community-acquired pneumonia 

hospitalizations among children and adults. A total of 2,488 adult participants (median age 

was 57 years) hospitalized for pneumonia in any of five affiliated hospitals located in 

Chicago and Nashville were enrolled between January 2010 and June 2012. Among the 

2,320 participants with radiographic evidence of pneumonia, 498 (21.5%) required 

intensive care and 52 (2.2%) died. Among the 2,259 participants with pathogens detected 

from biological specimens and radiographic evidence of pneumonia, viruses were the 

pathogen most frequently found to be present, followed by bacteria. The most common 

pathogens found were human rhinovirus, influenza virus, and Streptococcus pneumoniae.  

The average annual community-acquired pneumonia incidence for the EPIC 

population was found to be 24.8 cases per 10,000 adults (95% CI: 23.5 – 26.1) (6). Older 

adults had higher incidence, with adults 18 to 49 years of age having an incidence of 6.7 

cases per 10,000 adults (95% CI: 6.1 – 7.3), adults 50 to 64 years of age having an incidence 

of 26.3 cases per 10,000 adults (95% CI: 24.1 – 28.7), adults 65 to 79 years of age having 
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an incidence of 63.0 cases per 10,000 (95% CI: 56.4 – 70.3), and adults 80 years of age or 

older having an incidence of 164.3 cases per 10,000 adults (95% CI: 141.9 – 189.3). The 

average annual incidence from EPIC was similar to the 26.7 cases per 10,000 adults found 

in a previous prospective study carried out in Ohio in 1991 (10), suggesting that overall 

community-acquired pneumonia incidence has not changed that greatly in the US. 

Incidence of community acquired pneumonia in the US is higher within older age groups, 

and average incidence is relatively similar to rates seen in some western countries (11-13). 

Another more recent study conducted on this topic was the Pneumonia Incidence 

Study, carried out by the University of Louisville (UofL) Pneumonia Study Group (14). 

The Group was a multidisciplinary association including UofL Infectious Disease, 

Pulmonary Medicine, and Pathology, Louisville Metro Public Health and Wellness, and 

the Kentucky Office of Vital Statistics. The study was a prospective, population-based 

study containing all hospitalized adults with CAP in Louisville, KY between June 1, 2014, 

and May 31, 2016. The purpose of the study was to determine the incidence of patients 

hospitalized with CAP. CAP incidence was calculated for both the study area and for the 

US as a whole; US incidence was calculated by multiplying the Louisville incidence by the 

total approximate US adult population of 2014. Unique (non-repeat) annual CAP incidence 

for the study area was found to be 634 cases per 100,000 adults (63.4 per 10,000 adults); 

age-adjusted annual incidence was 649 cases per 100,000 adults. CAP incidence for the 

US was estimated to be 1,555,034 adults per year; age-adjusted incidence was estimated to 

be 1,591,825 adults per year. Incidence distinctions by age were observed, annual unique 

incidence in patients 18-64 years of age being 327 per 100,000 adults, while annual unique 

incidence in patients 65+ years of age was 2,093 cases per 100,000 adults. 
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Community-acquired pneumonia incidence estimates have been observed to 

fluctuate by country in some instances. For example, the average rates were reported to be 

29.6 cases per 10,000 individuals in Germany in 2009, 15.9 cases per 10,000 individuals 

in Malaysia in 2016, 29.5 cases per 10,000 individuals in the Netherlands in 2015, 31.2 

cases per 10,000 individuals in the United Kingdom (UK) in 2016, and 8.1 cases per 10,000 

individuals in Vietnam in 2013, with incidence varying greatly by age group in a manner 

similar to the patterns observed in the EPIC study (11-13, 15, 16). It is quite possible that 

variations in age distribution of populations in different countries contributed to the 

differences seen in overall incidence rates. 

Risk for acquiring community-acquired pneumonia include several factors, such as 

being of older age, having comorbidities, certain lifestyle factors, and some environmental 

factors (17). Age is a factor of considerable importance when examining the risk of 

acquiring community-acquired pneumonia (18, 19). As demonstrated by the EPIC study, 

being in the elderly population – defined as 65 years of age or greater – results in a marked 

increase in incidence over prior age groups (6). A study published in 2018 analyzing 2014-

2015 Medicare claims data of elderly adults in the US noted that community-acquired 

pneumonia resulted in a higher incidence of hospitalization (846.7 hospitalizations per 

100,000 person-years) than myocardial infarction, osteoporotic fractures, and stroke, 

which resulted in 405, 343.9, and 278.9 hospitalizations per 100,000 person-years, 

respectively (20). 

Elderly individuals are at greater risk for community-acquired pneumonia due to a 

number of factors. First and foremost, the aging process results in certain impairments in 

immune and lung function over time, such as reduced efficiency of nasal mucociliary 



9 
 

clearance, chronic low-grade pulmonary inflammation, and decreased functionality of 

immune cells (21-24). Additionally, the elderly may begin to experience swallowing 

disorders, increasing risk for aspiration – a known risk factor of pneumonia (25). Age-

associated malnutrition, weight loss, general reduction in quality of life, and declines in 

physical functionality are also risk factors for community-acquired pneumonia (26-28). 

Finally, elderly individuals often incur a greater burden of comorbidities than those seen 

in younger age groups, many of which have been associated with community-acquired 

pneumonia (28). 

 The comorbidities associated with risk for community-acquired pneumonia are 

numerous, spanning various bodily systems. Chronic heart disease and respiratory 

conditions, including asthma, bronchitis, chronic obstructive pulmonary disease (COPD), 

and history of pneumonia, have been strongly associated with risk of community-acquired 

pneumonia (18, 19, 29-34). Cerebrovascular disease, such as stroke, and neurological 

conditions such as dementia, epilepsy, multiple sclerosis, and Parkinson’s disease have 

been linked to increased risk; elevated risk may occur due to swallowing disorders resulting 

from these conditions and sedative medications used to treat them, possibly resulting in 

aspiration (17). Conditions that result in immune system deficiencies or dysfunction, such 

as asplenia, cancer, human immunodeficiency virus (HIV) / acquired immunodeficiency 

syndrome (AIDS), and rheumatoid arthritis have been associated with increased risk (19, 

34, 35). Other conditions that have been associated with increased community-acquired 

pneumonia risk are anemia, chronic renal and liver disease, diabetes mellitus, dysphagia, 

and functional impairment (19, 34, 36). 
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 Several demographic and lifestyle factors have been associated with risk for 

community-acquired pneumonia. Some risk factors, such as having poor nutritional status 

(ex. underweight or malnutrition), having poor dental hygiene, and smoking, have been 

definitively linked to increased risk in the literature (19, 32, 33, 37). Others have been less 

consistent in their association; these risk factors include misuse of intravenous drugs, being 

overweight, being male, being unmarried/single, exposure to passive smoking, having high 

alcohol intake, and having regular contact with children (19, 32, 33, 38-41). The literature 

examining protective factors is  inconclusive, but some studies have shown that meeting 

daily physical exercise requirements, higher education level, and being vaccinated against 

influenza can reduce risk (42). The existing adult vaccine for Streptococcus pneumoniae 

has shown varied efficacy in numerous studies, with some studies showing a protective 

effect and others showing minimal efficacy (34, 43). 

 The literature examining community-acquired pneumonia risk as it relates to 

environmental factors is relatively sparse. An association between increased risk and 

occupational exposure to airborne contaminants such as asbestos and agricultural, coal, and 

stone dusts has been detected (44). Another study noted an association between increased 

risk with recent rapid changes in temperature in the occupational setting (32). It has been 

found that self-report of regular occupational exposure to gases, fumes, and chemicals and 

in-home exposure to fumes from gasoline, paints, and solvents has been associated with 

increased risk in individuals aged 65 years and older (19).  

A Canadian study published in 2009 observed that two-year exposure to nitrogen 

dioxide and PM2.5 in individuals aged 65 years and older was associated with significantly 

elevated odds of community-acquired pneumonia hospitalization, with odds ratios of 2.30 
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(95% CI: 1.25-4.21) for nitrogen dioxide and 2.26 (95% CI: 1.20-4.24) for PM2.5, adjusting 

for age, sex, education, smoking history, and history of exposure to workplace 

environmental contaminants (45). Participants were recruited from within the Hamilton 

catchment area in Ontario, Canada, with 345 patients hospitalized for community acquired 

pneumonia randomly recruited and 494 controls from the same community randomly 

recruited. Nitrogen dioxide and PM2.5 data were gathered from monitoring stations 

operated by the Ontario Ministry of Environment; participant address-specific ambient 

pollutant values were estimated using inverse distance weighting and bicubic splines 

methods, and also land use regression for nitrogen dioxide exclusively, though primary 

association results were reported using inverse distance weighting-based exposure values. 

Mortality from Community-Acquired Pneumonia 

 Community-acquired pneumonia associated mortality rates tend to be the highest 

among adults over the age of sixty-five years, with mortality rates ranging from 10% to 

30%, though elevated long term mortality rates have been observed even after adjusting 

for age (46, 47). Several chronic diseases and conditions have been associated with 

increased risk for mortality from community-acquired pneumonia, including 

cardiovascular disease, COPD, human immunodeficiency virus (HIV), malignant cancers, 

neurodegenerative disorders, and malnutrition (46, 48).  The number of factors implicated 

in the risk for community-acquired pneumonia mortality led to the development of a 

pneumonia severity index (PSI) to identify those at low risk for dying from the disease 

within thirty days of presentation (49) and to influence clinical care and management.  

PSI scores are based on the presence, or lack, of several variables that are known 

to be associated with community-acquired pneumonia mortality. The PSI score can range 
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from 0 to 395; point values vary by variable, and points are accumulated depending on 

selections made. These variables fall into several categories, including demographic 

factors, comorbidities, findings from physical examination, and findings from laboratory 

and radiographic examination. Demographic factors include increasing age, nursing home 

residence status, and male sex. Comorbidities include cerebrovascular disease, congestive 

heart failure, liver disease, neoplastic disease, and renal disease. Factors from physical 

examination include altered mental state status, pulse greater than or equal to 125 

heartbeats per minute, respiratory rate greater than or equal to 30 breaths per minute, 

systolic blood pressure less than 90 mmHg, and temperature less than 35 degrees Celsius 

or greater than or equal to 40 degrees Celsius. Risk factors from laboratory or radiographic 

examination include arterial pH less than 7.35, blood urea nitrogen greater than or equal to 

30 mg/dL, glucose greater than or equal to 250 mg/dL, hematocrit less than 30 percent, 

partial pressure of arterial oxygen less than 60 mmHg or oxygen saturation less than 90%, 

presence of pleural effusion, and sodium levels less than 130 mEq/L. 

 The adult PSI is categorized in to five classes, each of which represents a mortality 

risk range to which an individual is assigned (49). The classes are as follows: Class I (0-50 

points) indicates an estimated mortality risk of approximately 0.1%, Class II (51-70 points) 

indicates an estimated mortality risk of 0.7%, Class III (71-90 points) indicates an 

estimated mortality risk of 0.9%, Class IV (91-130 points) indicates an estimated mortality 

risk of 9.3%, and Class V (131-395 points) indicates an estimated mortality risk of 27%. 

Those falling into Classes I and II are at low risk for mortality and are generally referred 

to outpatient care. Those who fall into Class III are at moderate risk for mortality and may 

be either referred to outpatient care or admitted for observation. Classes IV and V are high 
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mortality risk classes, generally resulting in hospitalization for inpatient care. Though often 

cited as being a quality decision aid in pneumonia prognosis, it has been stated that the PSI 

should not be relied upon as the sole indicator for decision to hospitalize due to low positive 

predictive values (50, 51). 

Other comorbidities and conditions not included in the adult PSI have been 

associated with mortality from community-acquired pneumonia, including Barthel Index-

indicated functional status, chronic obstructive pulmonary disease (COPD) status, and 

ineffective antibiotic therapy (35, 52, 53). Additionally, there is a small body of evidence 

that suggests that environmental exposures such as air pollution can increase community-

acquired pneumonia associated mortality risk. A case-crossover study published in 2018 

found that short-term exposure to PM2.5 – within six days of outcome presentation –  was 

associated with increased hospitalization (lag day 1 adjusted odds ratio (AOR) per 10 ug/m3 

over 12 ug/m3: 1.35, 95% CI: 1.16-1.57) and mortality (lag day 5 AOR: 1.50, 95% CI: 

1.03-2.16) from pneumonia in individuals aged 65 years and older, based on results from 

4,336 pneumonia cases from seven hospitals in the Wasatch Front metropolitan area in 

Utah (54). Air pollutant data were derived from ten EPA air monitoring stations located in 

the same topographical basin as the corresponding participant. Participant address-specific 

values were interpolated using inverse distance weighting. An occupational study of 

Swedish construction workers noted that exposure to inorganic dusts, such as those from 

asbestos, cement, concrete, man-made mineral fibers, and quartz, was associated with 

increased mortality from community-acquired pneumonia (55). Additionally, higher levels 

of physical activity have been associated with reduced mortality from community-acquired 
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pneumonia and other respiratory conditions (56). Sequential rounds of antibiotic therapy 

have been shown to be protective, as well (52). 

Pneumonia and Particulate Matter 

Air pollution, including PM, has been increasingly recognized as a global health 

threat by the World Health Organization (WHO), who held the Global Conference on Air 

Pollution and Health at the end of October 2018 to discuss measures to combat this 

increasingly pervasive source of premature death (57). An ever-growing body of research 

has been compiled on the topic of respiratory outcomes and PM exposure, suggesting with 

relative uniformity that there exists a relationship between the two. Despite its status as a 

leading cause of death, pneumonia seems to make up a comparatively small percentage of 

these studies. Some evidence exists that associates environmental exposures such as air 

pollution with increased pneumonia mortality risk; however, likelihood of hospitalization 

is more often studied, and an association is well established (54, 58, 59).  

Particulate matter (PM) is a form of air pollution primarily categorized into 

different size fractions – typically PM10 and PM2.5 (60). PM10 can be defined as particles 

that are less than 10 micrometers in diameter. PM2.5, a subset of PM10, can be defined as 

particles that are 2.5 micrometers in diameter or smaller and are referred to as fine PM. 

Coarse PM is a category of PM where the particles are between 2.5 and 10 micrometers in 

diameter. The chemical compositions of these particles largely depend on their sources of 

origin, which can be both natural and anthropogenic (60, 61). Natural sources include soil, 

dust, minerals, sea salt, and bioaerosols; naturally-derived PM is typically larger, belonging 

to the classification PM10, while PM2.5 is often anthropogenically produced and commonly 

attributed to combustion processes, both anthropogenic and natural (62). Anthropogenic 
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sources include incomplete combustion processes, automobile emissions, dusts from 

agriculture and construction, and emissions from cooking (63). Due to their diminutive 

size, these particles are capable of traveling great distances through the air and are easily 

inhaled. Once inhaled, PM can penetrate deep into the lungs and bloodstream; the fraction 

of inhaled particles capable of penetrating beyond the larynx and unciliated airways are 

known as the thoracic and respirable fraction, respectively (64).  

National Ambient Air Quality Standards (NAAQS) are used by the US EPA to 

determine the cutoff points for maximum levels of unsafe exposure to criteria pollutants, 

which include airborne lead (Pb), carbon monoxide (CO), nitrogen dioxide (NO2) and nitric 

oxides (NOx), ozone (O3), PM10 and PM2.5, and sulfur dioxide (SO2). NAAQS are divided 

into primary and secondary standards (65). Primary standards are generally more stringent 

as they are designed to provide public health protection to both the general population and 

populations deemed to be at-risk or “sensitive,” such as those suffering from chronic 

respiratory conditions, children, and the elderly. Secondary standards can be – but are not 

always – less stringent and are put in place to protect the public welfare by reducing the 

likelihood of such events as reduced visibility and property and resource damage. The 

standard for PM10 is set to a twenty-four-hour average of 150 μg/m3, which cannot be 

exceeded more than once per year on average over three years. PM2.5 has a primary standard 

set to a one-year average of 12.0 μg/m3, based upon the annual mean averaged over three 

years, a secondary standard set to a one-year average of 15.0 μg/m3, based upon the annual 

mean averaged over three years, and a  standard set to a twenty-four-hour average of 35 

μg/m3, based upon the 98th percentile averaged over three years. 
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Exposure to these particles has been associated with all-cause mortality, cause-

specific mortality, and morbidities, including cardiovascular and respiratory outcomes (63, 

66-69), with stronger associations for smaller PM size fractions. The study of PM’s 

influence on pneumonia incidence, mortality, and hospitalization has been complicated by 

the fact that seasonal climate seems to play a significant role on the magnitude of the 

observed associations. A case-crossover analysis including 1,384,813 pneumonia hospital 

admissions based on data from 1986 to 1999 in 36 US cities determined that ambient PM10 

levels, gathered using the US EPA’s Aerometric Retrieval System, were associated with 

increased hospitalization for pneumonia (69). The increase in pneumonia hospital 

admissions was higher by 0.84% (95% CI: 0.50% - 1.19%) for a 10 microgram per cubic 

meter (μg/m3) increase in PM10 at the time of hospital admission, adjusting for day of the 

week and apparent temperature. While PM10 levels generally remained consistent 

throughout the year, it was found that those cities with a higher summer apparent 

temperature and a greater percentage of homes containing central air conditioning 

experienced a lower increase in hospitalizations due to pneumonia, possibly due to the fact 

that those living in homes with central air conditioning would have lower outdoor air 

pollutant exposure within their homes than those relying on open windows for ventilation 

during warmer months. 

Another study by Qui et al., published in 2014, examined the relationship between 

exposure to PM10, PM2.5, and emergency hospital admissions due to pneumonia in Hong 

Kong, China (70), where pneumonia was the second leading cause of death that year. PM 

data were gathered from ten general monitoring stations throughout the region. The study 

included 75,863 hospital admissions for pneumonia spanning the period from January 1, 
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2011 to December 31, 2012.  Utilizing generalized additive Poisson modeling and 

unconstrained distributed lag modeling, it was found that for every 10 μg/m3 increase in 

PM10 over the previous four days, emergency hospitalizations increased by 3.33% (95% 

CI: 1.54% – 5.15%), adjusting for long-term trends, seasonality, weather factors, calendar 

effect, and influenza epidemics. Under the same conditions, it was found that for every 10 

μg/m3 increase in PM2.5 over the previous four days, emergency hospitalizations increased 

by 1.69% (95% CI: 0.68% – 2.70%). 

Air Pollution in Jefferson County, Kentucky 

Jefferson County, Kentucky (KY), is located in the northwest portion of the 

Commonwealth, and falls within the Ohio River Valley. The Ohio River Valley is known 

to contain a high number of pollutant-generating facilities, including coal-fired power 

plants, mining sites, and industrial sites (71). Attributed to the geographic characteristics 

of the Ohio River Valley, it has been shown that pollutants generated in the area become 

trapped during periods of meteorological high pressure, and are subsequently transported 

across the region when low pressure fronts move through (72). These regional 

characteristics suggest particulate matter to be a relevant exposure to study in relation to 

community-acquired pneumonia mortality in Jefferson County, KY.  

Despite being located within this region, in 2018, Jefferson County was reported to 

have met the majority of the EPA-mandated NAAQS for criteria pollutants (73). Of these 

pollutants, Jefferson County failed to meet the NAAQS in 2018 for only ozone, earning 

the designation of “non-attainment” status; failing to meet even one NAAQS is enough for 

a county to be placed in “non-attainment” status by the EPA. Sulfur dioxide levels were 

formerly in “non-attainment,” but have since fallen below the NAAQS, and “attainment” 
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re-designation is being petitioned by the Louisville Metro Air Pollution Control District 

(APCD). The Louisville Metro APCD works alongside the EPA, Kentucky Division for 

Air Quality, and Indiana Department of Environmental Management to implement and 

enforce air-related legislation, such as the Clean Air Act, in Jefferson County. 

Though Jefferson County air pollution generally falls within NAAQS parameters, 

it is possible that specific locations within the county, such as those closer to heavily 

trafficked roadways or point sources, may experience higher levels of PM exposure than 

those recorded at monitoring sites. Many individuals in this county rely upon motor 

vehicles to get to work. According to 2017 American Community Survey data, 293,791 

(80.2%) out of 366,473 surveyed Jefferson County workers aged sixteen years and over 

had access to at least one motor vehicle and used it to drive to work alone (74). A thorough 

satellite-level observation of the county revealed that a number of residential areas fall 

within a short distance of busy highways and other frequently driven roadways (75); 

automobile-generated PM exposure may be increased within these areas.  

Particulate Matter, Mortality, and Effect Modifiers 

 Effect modification occurs when a third variable, present on the proverbial pathway 

linking exposure and outcome, is introduced, and varyingly affects the outcome depending 

on the level, or stratum, of the third variable. Though perhaps not specific to pneumonia 

mortality as the outcome, there have been studies examining effect modification as it 

pertains to the relationship between PM exposure and general and cause-specific mortality. 

Among these studies, the variables age, sex, and presence of specific comorbidities, such 

as type 2 diabetes and cardiovascular disease, are commonly examined, suggesting in some 

cases that they serve as effect modifiers in the aforementioned relationship (76-79). 
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 Older age has been consistently associated with elevated mortality resulting from 

PM exposure in the literature. Individuals 85 years and older within the 2000-2012 US 

Medicare population were found to have significantly elevated relative risk of mortality 

associated with each 10 μg/m3 increase in PM2.5 (79, 80). A study of the residents of Oslo, 

Norway published in 2007 noted that both men and women at or above the age of 51 years 

who were exposed to higher levels of PM10 and PM2.5, indicated by exposure quartiles, had 

significantly elevated adjusted hazard ratios of all-cause and cause-specific mortality 

versus those observed in the referent lowest exposure quartile; significant trend p-values 

were consistently reported among PM quartiles as well (81). A 12-year population-based 

retrospective study carried out in Shenyang, China reported that both those over and under 

60 years of age had significantly elevated adjusted hazard ratios for mortality associated 

with a 10 μg/m3 increase in PM10 (≤60 years: AHR = 1.68, 95% CI = 1.52-1.86; >60 years: 

AHR = 1.66, 95% CI = 1.59-1.74), adjusting for age, gender, education level, smoking 

status, personal income, occupational exposure, BMI, and exercise (82). 

In more than one instance, females have been noted to have greater mortality risk 

from air pollution exposure than males (77-79). This result seems to be more closely tied 

to PM exposure than to other air pollutants. For example, females among the 2000-2012 

US Medicare population had a greater relative risk of mortality due to increased PM2.5 

exposure than males, but such an effect was not seen due to increased ozone exposure (79). 

The possibility that females may experience PM exposure differently from males has been 

examined in past literature. One such study, conducted in a laboratory setting, noted that 

female participants with otherwise normal respiratory health were found to have greater 

total and coarse particle deposition in the lungs versus male participants (83). Another 
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study noted that female marathon runners, but not male runners, had significantly reduced 

performance as a result of PM10 exposure, with performance being reduced by 

approximately 1.4% for every 10 μg/m3 increase in PM10 concentration present during 

events (84). 

Race less commonly appeared as an effect modifier in the literature but was present 

enough for it to warrant investigation. In one study, the geographic distribution of racial 

groups within an area ultimately reveals itself to be a cause for concern, with worse health 

outcomes revealed in predominately African American neighborhoods (85). African 

Americans have been found to have higher hospital mortality due to pneumonia than whites 

within the same hospital as well (86), and have also been found to have a significantly 

greater burden of PM exposure versus the general population (87). In the same 2000-2012 

US Medicare population previously mentioned, non-whites were borderline significantly 

more likely to have increased mortality as a result of increased PM2.5 exposure than whites 

(79) 

Mapping Air Pollution With GIS  

 Air pollution data used in research is commonly gathered from monitoring stations 

established throughout the locations of interest. In the US, the EPA maintains many such 

monitors across the country and makes the data freely and easily available through their 

website. Though offering a plethora of generalized information, the unfortunate downside 

to utilizing these resources is visible when, in certain parts of the country,  the number of 

monitors is sparse compared to the areas being monitored. For example, a single 

monitoring station may be rated for county-wide representation, but it still only reflects 

data from a given geographic point. This is not to say that the information gathered is 
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without use, but a single monitor fails to take into account localized variations in pollutant 

concentrations that may be crucial to understanding variability in air pollution across space 

that impact health outcomes in areas being studied. 

 Geographic Information Systems (GIS) provide a way to circumvent this issue 

through the use of spatial interpolation techniques. Several such techniques exist, ranging 

in complexity and ease of implementation (88). Spatial averaging is a technique in which 

the values for a given pollutant at a specified time are gathered from all monitors within a 

designated radius from the point of interest and are averaged, the result of which is assigned 

to a geocoded location (88). The nearest neighbor technique requires only that a point of 

interest be assigned the pollutant concentration value of its nearest monitoring site, which 

for some points may be quite close while for other points may be very far from the monitor 

(88). Inverse distance weighting involves the calculation of interpolation weights as a 

function of the distance between monitoring sites and the point of interest, with values 

provided by monitoring sites closer to the point of interest weighing more heavily than 

those further away (88). Kriging involves the smoothing of data from point measurements 

scattered across a geographic area, providing weights that can be used to determine values 

for a given variable (88, 89).  

Despite sharing some similarities in that distance is utilized by both methodologies, 

inverse distance weighting and Kriging are separate approaches. While kriging is 

geostatistical, inverse distance weighting is a deterministic interpolation method that 

suggests an inherent simplicity in how it is applied, whereas kriging uses statistical models 

and spatial autocorrelation is considered (90). Inverse distance weighting is more 

appropriately used when the variable value being interpolated is dependent on location and 
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the variable’s value is assumed to decrease as distance increases from the sampling 

location, while Kriging is best used when a spatially correlated distance or directional bias 

is known to exist in the data being examined (90, 91). Given that the air monitoring stations 

simply detect levels of air pollutants and are not sources of these pollutants, it is unlikely 

that the inverse distance weighting assumptions hold true, making it less suitable than the 

kriging interpolative method. Unfortunately, both inverse distance weighting and kriging 

only function properly when sufficient data points are available from which to interpolate. 
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METHODS 

 

 

 

 The primary objective of the study was to examine the relationship between 

exposure to airborne particulate matter at diagnosis and incidence of 30-day mortality 

among adults hospitalized with community-acquired pneumonia in Jefferson County, 

Kentucky. The study analyzed data from the Hospitalized Adults with Pneumococcal 

Pneumonia: Incidence Study (HAPPI) cohort based out of the University of Louisville 

Division of Infectious Diseases (UofL ID). Exposure values were interpolated using GIS 

spatial interpolation methods, which were largely reliant on data gathered by US EPA 

monitoring sites that were available online. 

Hypothesis 

 The hypothesis of this study is that higher exposure to PM10 and PM2.5 is associated 

with increased incidence of mortality among adults hospitalized for community-acquired 

pneumonia in Jefferson County, KY.  

Study Area and Population 

 The study area was Jefferson County in the Commonwealth of Kentucky, USA. 

The county covers an area of approximately 398 square miles. Based upon data from the 

2017 American Community Survey, the total population of the study area was 764,378 

people, 51.7% of which were female and 48.3% of which were male (92). The median age 

of Jefferson County residents was 38.0 years. Approximately 77.4% of the population was 

over the age of eighteen years. An estimated 14.9% of the population was over the age of 
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65 years. 72.3% of residents identified as White, 21.2% as Black or African American, 

2.7% as Asian, 0.1% as American Indian and Alaska Native, 2.8% as two or more races, 

and 0.8% as other race. 

 All HAPPI participants were recruited after being hospitalized in Jefferson County 

due to community-acquired pneumonia between June 1, 2014 and June 1, 2016. In total, 

6,176 participants were recruited. HAPPI participants included adults eighteen years of age 

or older hospitalized and diagnosed with community-acquired pneumonia at one of nine 

HAPPI-affiliated hospitals (Baptist East, Jewish Hospital, Norton Audubon, Norton 

Brownsboro, Norton Downtown, Norton Suburban, St. Mary and Elizabeth, University 

Hospital, or the Veterans Affairs (VA) Hospital) and who had a permanent home address 

and residence in Jefferson County. The addresses could not be PO Boxes or extended stay 

hotels. Participants were excluded from participation in HAPPI if they were in the 

corrections system, had an invalid Social Security Number, had missing vital status data, 

or were missing geocoded address data.  

Outcome 

 The outcome examined was all-cause mortality at or within thirty days. Mortality 

was reported at discharge from initial hospitalization, thirty days, six months, and one year, 

though only those who fell within the first two categories will be included in this analysis. 

Mortality was verified by the Kentucky Office of Vital Statistics through the release of 

limited death certificate information, which included confirmation and date of death but 

not cause. Due to monetary cost, cause of death information was not available for analysis. 

Mortality at or within thirty days was assumed to be most closely linked to pneumonia and 

therefore served as the proxy outcome of pneumonia-specific mortality; this was by 
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recommendation of a member of the committee, but also appears to be a common outcome 

when examining pneumonia-related outcomes (93, 94). 597 (9.7%) of participants had died 

at or within thirty days. Cause of death was only reported for 12 (0.20%) participants, 

which was attributed to the cost of acquiring this information, with 5 of those deaths 

attributed to respiratory complications. 

 Where survival time was needed for Cox proportional hazards regression, person-

time (days) was calculated by finding the difference between date of death and date of 

enrollment, as participants were enrolled at the time of hospitalization. Those who did not 

die were assumed to have the maximum amount of survival time – thirty days.  

Exposure 

 The primary exposures of interest were concentrations of PM10 and PM2.5 at 

hospital admission date. The sources of information for PM10 and PM2.5 were from EPA air 

monitoring sites operated by the Louisville Metro APCD throughout Jefferson County 

(Table 1) (95, 96). In 2014, PM2.5 concentration values were gathered by four monitoring 

sites located at Southwick (site ID – 211110043), Watson Lane (site ID – 211110051), 

Cannons Lane (site ID – 211110067), and Durrett Lane (site ID – 211110075); in 2014, 

PM10 concentration values were gathered by three monitoring sites located at Southwick, 

Wyandotte Park (site ID – 211110051), and Watson Lane, though the Wyandotte Park 

monitor only provided results early in the year and prior to the beginning of HAPPI 

recruitment. In 2015, PM2.5 concentration values were gathered by four monitoring sites 

located at Southwick, Watson Lane, Cannons Lane, and Durrett Lane; in this year, PM10 

concentration values were gathered by two monitoring sites located at Southwick and 

Watson Lane. In 2016, PM2.5 concentration values were gathered by four monitoring sites 
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located at Southwick, Watson Lane, Cannons Lane, and Durrett Lane; in this year, PM10 

concentration values were gathered by two monitoring sites located at Southwick and 

Watson Lane. Data from these sites were generally reported every one to three days and 

are available for download through the EPA’s website (96). Concentration values are 

recorded in units of microgram per cubic meter (μg/m3). See Figures 1 and 2 for mapped 

monitor locations within Jefferson County. 

 
Table 1: Particulate matter (PM) data provided by corresponding Jefferson County monitoring 

station, 2014-2016 

Monitoring Station 2014 2015 2016 

Southwick PM2.5, PM10 PM2.5, PM10 PM2.5, PM10 

Watson Lane PM2.5, PM10 PM2.5, PM10 PM2.5, PM10 

Cannons Lane PM2.5 PM2.5 PM2.5 

Durrett Lane PM2.5 PM2.5 PM2.5 

Wyandotte Park PM10   
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Figure 1 - PM10 monitoring station locations within Jefferson County, 2014-2016. 



28 
 

 
Figure 2 - PM2.5 monitoring station locations within Jefferson County, 2014-2016. 

 

 PM10 and PM2.5 concentration values for geocoded participant addresses at the time 

of hospitalization were interpolated through the use of two different spatial methodologies: 

spatial averaging and Kriging.  

Covariates 

Demographic Variables 

 To better assess the relationship between air pollution exposure and mortality, 

several demographic variables were adjusted for including age, sex, and race. These 

variables were possible predictors of pneumonia-specific mortality. Age, sex, and race 

information were collected from electronic medical records. Age was defined in years and 

primarily presented as a continuous variable; where represented in categories, age 
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categories were established as individuals 18-64 years and individuals 65 years and older. 

Sex was defined as female and male. Race was defined as black, white, and other. 

Other Variables 

 Other variables considered for adjustment were those associated with community-

acquired pneumonia mortality, including PSI classification, active intravenous drug use 

status, alcoholic status, intensive care unit transfer status at time of initial hospitalization, 

past thirty-days oral antimicrobial therapy receival status, past ninety-days intravenous 

antibacterial therapy receival status, pneumococcal vaccine receival status, seasonal 

influenza vaccine receival status, smoking status, suspected aspiration status, and 

ventilatory support requirement status at time of initial hospitalization. Variable data were 

collected from, or calculated using, electronic medical records.  

Participant PSI values represented the cumulative effect of all variables represented 

by this value and were defined as classes I through V. Active intravenous drug use status, 

alcoholic status, intensive care unit transfer status, past thirty-day oral antimicrobial 

therapy receival status,  past ninety-day intravenous antibacterial therapy receival status, 

pneumococcal vaccine receival status, and seasonal influenza vaccine receival status are 

defined as yes or no. Smoking status was defined as either being a current smoker, having 

past history of smoking, or having never been a smoker. Suspected aspiration status was 

defined as yes or no. Ventilatory support requirement status was defined as yes or no.  
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Statistical Analysis 

General Statistical Methods 

Categorical demographic characteristics and other covariates were cross tabulated 

by dichotomous mortality status variables (i.e. death within thirty days), and were 

compared using Chi-square tests of independence.  

 Univariate and regression results were reported as significant when alpha was less 

than 0.05 (p < 0.05). 95% confidence intervals (CI) were also reported. The presence of 

extreme outliers among the exposure data was investigated, with extreme outliers identified 

as being those values that were (3.0 x IQR) below the first quartile or above the third 

quartile; outliers identified in this fashion were removed. Multicollinearity was assessed 

by examining tolerance and variance inflation factors, with the tolerance cutoff set at less 

than 0.2 and variation inflation factor cutoff at greater than 4.0. In instances where 

correlation among categorical variables was examined, the coefficient Cramer’s V was 

utilized, where strength of association was determined by values that fall on a scale of 0 

(no association) to 1 (perfect association); strength of association scale was approximately 

as follows: 0.00-0.10 suggests no relationship or lack of useful information, 0.10-0.20 

suggests a weak association, 0.20-0.25 suggests an association of moderate strength, 0.25-

0.30 suggests a moderately strong association, 0.30-0.35 suggests a strong association, 

0.35-0.40 suggests a very strong association, 0.40-0.45 suggests an extremely strong 

association that may be indicative of measurement of the same concept, and >0.45 suggests 

redundancy in that the variables being examined are likely measuring the same concept 

(97). Statistical analyses were carried out using SAS statistical software. GIS-related 



31 
 

functions were carried using Esri ArcGIS (ArcMap version 10.6.1). The map projection 

for ArcGIS functions was the geographic coordinate system NAD 1983 (2011).  

Aim One Statistical Methods 

 Continuous PM10 and PM2.5 data were examined for normality using the Anderson-

Darling test for normality. Continuous PM10 and PM2.5 data at hospital admission date were 

compared against mortality status using nonparametric Wilcoxon rank-sum tests, as they 

were not normally distributed. Additionally, both PM variables were analyzed as 

dichotomous values using their corresponding twenty-four hour NAAQS means as cutoff 

points, and as quartiles, and compared against mortality status using Chi-square tests, or 

Fisher’s exact test where appropriate. Covariates were cross-tabulated by quartile of PM 

exposure to examine the association between covariate categories and level of exposure. 

Analyses were conducted using interpolated PM data based on the geospatial techniques 

spatial averaging. 

 The spatial averaging technique utilized the PM values detected by each active 

monitoring station within the study area at the day of participant diagnosis. These values 

were averaged and the resulting values were attributed to the participant as their exposure. 

We considered a log-transformation of spatially averaged PM to improve normality; 

however, associations did not change substantially. 

 The relationship between PM exposure and mortality during hospitalization or 

within thirty days was analyzed using crude and multivariable logistic regression. The 

covariates included in this analysis were chosen based upon their known relevance in the 

existing literature, as outlined in the Introduction. Covariates were considered confounders 

if they are independently associated with exposure and outcome, and were not on the causal 
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pathway; determination was achieved by stratifying covariates by outcome and by 

exposure, placing the resulting values in tables, and examining the relationships, in addition 

to examining the impact of covariate inclusion on reported relationships. Non-confounders 

that appeared to have an association with the outcome were included as predictors; this was 

determined based on observed associations with the outcome in the covariate/outcome 

table created, and by examining significance of p-values from the univariate results therein. 

Strong predictors were those predictors that were perceived as being highly related to the 

outcome based upon the results of the covariate/outcome table created. Multiple models 

were presented: a minimally adjusted model containing only confounders, a partially 

adjusted model containing both confounders and strong predictors, and a fully adjusted 

model containing confounders and all predictors. 

A similar process was implemented to analyze the aforementioned relationship 

using Cox proportional hazards regression. Survival time (person/days) was calculated by 

finding the difference between participant date of death and participant enrollment date; 

participant enrollment date corresponds with date of hospitalization. Both regression types 

were included due to the fact that they ultimately examine different outcomes, despite 

yielding results that can be interpretted in a similar manner. The logistic regression in this 

analysis examined a pre-coded dichotomous outcome within the dataset that acted as a 

proxy for mortality associated with CAP; the Cox proportional hazards regression in this 

analysis examined time to death, based upon the presence of a death date for those 

participants who manifested the outcome and calculated survival time. 

 Where PM exposure was examined as quartiles, a p-value of trend was calculated 

to determine if a significant trend existed between quartiles of a given PM type (e.g, PM10). 
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To accomplish this, a dummy variable was created with four different levels, or levels one 

through four, with each level representing a numerically corresponding quartile. The 

median PM value for each numerically corresponding quartile was attributed to the 

appropriate level in the dummy variable; for example, the median value of PM10 within 

quartile one was attributed to all participants within quartile one, and therefore level one 

of the dummy variable. Within the regression models, the dummy variable was run in place 

of the quartile exposure and the resulting p-value of trend was noted. 

Aim Two Statistical Methods 

 Interpolation by the Kriging technique was achieved using the ArcGIS Kriging 

feature under the available Spatial Analyst toolbar, utilizing the relevant PM values from 

each monitor within the study area for the given day and the location of the monitor as the 

location of the point value, as localized PM measurements for each participant address 

were not available. Ordinary Kriging was used, as the mean of the point values was not 

assumed to be constant over the study area. The feasablity of kriging as a valid technique 

given data availability constraints will be examined. Example kriging models were 

generated for ten dates at different points in time (June 1-5, 2014 and December 1-5, 2014) 

to examine model feasibility, usefulness, and variability; these characteristics were 

examined by asking such questions as “what do model distributions look like,” “are 

observed patterns reliable, and “does Kriging appear to function properly given the sparsity 

of data available.” 

Aim Three Statistical Methods 

The potential presence of effect modification was also of interest, and was 

examined for age, race, and sex. Though specific comorbidities may also be effect 
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modifiers, the use of the generalized PSI covariate including such information rather than 

individual comorbidity statuses removed the ability to examine effect modification as a 

result of specific comorbidities within this study. The presence of significant effect 

modification was determined using the likelihood ratio test (LRT), comparing the standard 

partially adjusted model for the PM exposure type against the partially adjusted model 

containing the exposure / potential effect modifier interaction term. Effect modification 

analysis was performed on partially adjusted logistic regression models for all variations 

of exposure; this model was more parsimonious than the full model while still containing 

all covariates of interest. Where determined to be relevant, further examination of 

significant associations was pursued, including examination of relative risk among specific 

participant groups and examination of PSI class distribution between participant groups. 

  



35 
 

 

 

 

RESULTS 

 

 

 

 The following are the results of the statistical analyses carried out during this 

project, broken down by their corresponding specific aim and exposure data group to which 

they belong, when relevant. 

Preliminary Analysis 

In total, data for 8,284 participants were present in the dataset received. Within the 

dataset, 2,088 participants did not belong to HAPPI, and were therefore not included, 

leaving the data of 6,176 participants to be analyzed. The exposure variable “PM10” was 

missing 8 values, and the exposure variable “PM2.5” was missing 1 value. The outcome 

variable “mortality within thirty days” was missing 2 values. Those missing outcome and 

exposure values were excluded, resulting in a total of 8 participants being removed from 

the analysis. An additional 23 participants were removed due to the detection of extreme 

outlier exposure data. Missing values for covariates within the sample are as follows: 1 

missing value for “suspicion of aspiration at time of hospitalization,” 5 missing values for 

“received oral antimicrobial therapy within the past 30 days,” 107 missing values for 

“received pneumococcal vaccination at or prior to time of hospitalization,” and 118 missing 

values for “received seasonal influenza vaccine at or prior to time of hospitalization.” 

Those with missing values attributed to covariates were classified as “missing” and 

included in the analysis. 
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A total of 6,145 participants were included in this analysis, after the removal of 

missing exposure and outcome values. Their characteristics are presented in Table 2. Of 

the 6,145 participants, 46.5% were male and 53.5% were female. The mean age of the 

study sample was 65.9 years, with a standard deviation of 16.5. 84.1% were above the age 

of 50 years, and 55.9% were at or above the age of 65 years. 79.3% identified as White, 

20.2% as Black, and 0.5% as Other. A large portion of the study sample was at moderate 

to high risk of pneumonia-associated mortality, with 18.7% falling into PSI Risk Class III, 

35.6% into Risk Class IV, and 22.9% into Risk Class V. 

Table 2: Descriptive statistics of HAPPI population by mortality within thirty days of hospital admission 

Variables Total Mortality p Valuec 

  N= 6145a Yes 

n= 597b 

No 

n= 5548b 

 

Mean age at enrollment, years (SD) 65.9 (16.5) 75.3 (13.6) 64.9 (16.5) <0.0001 

Sex    0.0012 

Female 3288 (53.5) 282 (47.2) 3006 (54.2)  

Male 2857 (46.5) 315 (52.8) 2542 (45.8)  

Race    <0.0001 

Black 1241 (20.2) 74 (12.4) 1167 (21.0)  

White 4872 (79.3) 522 (87.4) 4350 (78.4)  

Other 32 (0.5) 1 (0.2) 31 (0.6)  

PSId class    <0.0001 

Class I 393 (6.4) 4 (0.7) 389 (7.0)  

Class II 1007 (16.4) 9 (1.5) 998 (18.0)  

Class III 1149 (18.7) 32 (5.4) 1117 (20.1)  

Class IV 2187 (35.6) 193 (32.3) 1994 (36.0)  

Class V 1409 (22.9) 359 (60.1) 1050 (18.9)  

Direct transfer to ICUd upon hospital 

admission 

   <0.0001 

Yes 998 (16.2) 201 (33.7) 797 (14.4)  

No 5147 (83.8) 396 (66.3) 4751 (85.6)  

Received intravenous antibiotic therapy 

within the past 90 days 

   <0.0001 

Yes 1009 (16.4) 146 (24.5) 863 (15.6)  

No 5136 (83.6) 451 (75.5) 4685 (84.4)  

Received oral antimicrobial therapy 

within the past 30 days 

   0.6802 

Yes 1280 (20.8) 129 (21.6) 1151 (20.7)  

No 4860 (79.1) 468 (78.4) 4392 (79.2)  

Missing 5 (0.1) 0 (0.0) 5 (0.1)  

Alcoholic status    0.3098 

Yes 344 (5.6) 28 (4.7) 316 (5.7)  

No 5801 (94.4) 569 (95.3) 5232 (94.3)  

Active intravenous drug use status    0.0418 
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Yes 89 (1.5) 3 (0.5) 86 (1.5)  

No 6056 (98.5) 594 (99.5) 5462 (98.5)  

Smoking history    <0.0001 

Current smoker 2038 (33.2) 121 (20.3) 1917 (34.5)  

Past smoker 2419 (39.4) 288 (48.2) 2131 (38.4)  

Non-smoker 1688 (27.4) 188 (31.5) 1500 (27.1)  

Suspicion of aspiration at time of 

hospitalization 

   <0.0001 

Yes 622 (10.1) 123 (20.6) 499 (9.0)  

No 5522 (89.9) 474 (79.4) 5048 (91.0)  

Missing 1 (0.0) 0 (0.0) 1 (0.0)  

Required ventilatory support at time of 

initial hospitalization 

   <0.0001 

Yes 808 (13.2) 157 (26.3) 651 (11.7)  

No 5337 (86.8) 440 (73.7) 4897 (88.3)  

Received pneumococcal vaccination at or 

prior to time of hospitalization 

   0.0226 

Yes 3356 (54.6) 301 (50.4) 3055 (55.1)  

No 2685 (43.7) 290 (48.6) 2395 (43.2)  

Missing 104 (1.7) 6 (1.0) 98 (1.7)  

Received seasonal influenza vaccine at or 

prior to time of hospitalization 

   0.0138 

Yes 2906 (47.3) 257 (43.0) 2649 (47.7)  

No 3124 (50.8) 334 (55.9) 2790 (50.3)  

Missing 115 (1.9) 6 (1.0) 109 (2.0)  

a: Percentages (%) as percent of total column N 

b: Percentages (%) as percent of total column n 

c: Chi-square / Fisher exact / Wilcoxon rank sum p-value for comparison between mortality status categories 

d: PSI – pnemonia severity index, ICU – intensive care unit 

 

Aim One 

Analysis – Spatial Averaging Data 

Continuous PM10 and PM2.5 data were determined to be non-normally distributed 

using the Anderson-Darling test (p = <0.0050 for both). Log transforming the PM values 

did not result in the achievement of statistical normalcy (p = <0.0050 for both). Preliminary 

univariate analysis was conducted using the nonparametric Wilcoxon rank-sum test; results 

for both PM10 and PM2.5 were not significant, with determined p-values being 0.3008 and 

0.2361, respectively. The median PM10 value was found to be 15.00 μg/m3 (IQR = 10.67). 

The median PM2.5 value was found to be 9.67 μg/m3 (IQR = 6.29). PM10 and PM2.5 
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distributions can be viewed in Figures 3 and 4. Log transformed PM10 and PM2.5 

distributions can be viewed in Figures 5 and 6. 
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Figure 3 - Distribution of spatially averaged continuous PM10 (μg/m3) concentrations at the time of 

hospitalization across the study sample. 

 

 
Figure 4 - Distribution of spatially averaged continuous PM2.5 (μg/m3) concentrations at the time of 

hospitalization across the study sample. 
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Figure 5 - Distribution of spatially averaged continuous, log-transformed PM10 concentrations at the 

time of hospitalization across the study sample. 

 

 
Figure 6 - Distribution of spatially averaged continuous, log-transformed PM2.5 concentrations at the 

time of hospitalization across the study sample. 
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Analysis of dichotomous PM10 exposure using the corresponding twenty-four hour 

NAAQS means cutoff point could not be carried out, as no PM10 values exceeded the cutoff 

point. This was noted even prior to the removal of extreme outliers. Analysis of 

dichotomous PM2.5 exposure using the corresponding twenty-four hour NAAQS means 

cutoff point could not be carried out, as no PM2.5 values exceeded the cutoff point.  

We calculated PM quartiles. The PM10 quartile ranges were established as follows: 

less than or equal to 9.67 μg/m3, greater than 9.67 μg/m3 and less than or equal to 15.00 

μg/m3, greater than 15.00 μg/m3 and less than or equal to 20.50 μg/m3, and greater than 

20.50 μg/m3. The PM2.5 quartile ranges were established as follows: less than or equal to 

7.07 μg/m3, greater than 7.07 μg/m3 and less than or equal to 9.63 μg/m3, greater than 9.63 

μg/m3 and less than or equal to 13.37 μg/m3, and greater than 13.37 μg/m3. Univariate 

analysis of quartiles by mortality status can be viewed in Table 3 and Table 4. Neither 

PM10 nor PM2.5 quartile variables were found to be statistically significant (p = 0.7232 and 

p = 0.4093, respectively) in univariate analysis. Those located within the highest PM10 

quartile had a slightly greater percentage of outcome occurrence versus those in lesser 

quartiles. Those located in the top two PM2.5 quartiles had a slightly greater percentage of 

outcome occurrence versus those in the lower two quartiles. 

Cross tabulation of covariates by quartile of PM10 and PM2.5 can be viewed in 

Tables 5 and 6. Those in the highest PM10 quartile contained a greater proportion of males, 

individuals requiring ventilatory support at time of hospitalization, individuals having 

required IV antimicrobrial therapy in the previous 90 days, active intravenous drug users, 

current smokers, individuals at risk for aspiration, and individuals who did not receive 

either the seasonal influenza or pneumoccocal vaccinations, as compared against the lowest 
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quartile. Proportions of individuals were generally similar in terms of racial distribution, 

ICU direct transfer status, and non-smoker status across quartiles. Observed PM2.5 patterns 

were quite similar to PM10 quartile patterns overall, though slightly reduced in their 

perceived magnitude. 

Table 3: Quartiles (PM10) by mortality at thirty days 

Variables Total Mortality p Valuec 

  N= 6145a Yes 

n= 597b 

No 

n= 5548b 

 

Quartile    0.7232 

1 (≤ 9.67 μg/m3) 1490 (24.2) 136 (22.8) 1354 (24.4)  

2 (> 9.67 μg/m3 and ≤ 15.00 

μg/m3) 

1590 (25.9) 156 (26.1) 1434 (25.8)  

3 (> 15.00 μg/m3 and ≤ 20.50 

μg/m3) 

1527 (24.9) 146 (24.5) 1381 (24.9)  

4 (> 20.50 μg/m3) 1538 (25.0) 159 (26.6) 1379 (24.9)  

a: Percentages (%) as percent of total column N 

b: Percentages (%) as percent of total column n 

c: Chi-square p-value for comparison between mortality status categories 

 

Table 4: Quartiles (PM2.5) by mortality at thirty days 

Variables Total Mortality p Valuec 

  N= 6145a Yes 

n= 597b 

No 

n= 5548b 

 

Quartile    0.4093 

1 (≤ 7.07 μg/m3) 1530 (24.9) 134 (22.4) 1396 (25.2)  

2 (> 7.07 μg/m3 and ≤ 9.63 

μg/m3) 

1536 (25.0) 148 (24.8) 1388 (25.0)  

3 (> 9.63 μg/m3 and ≤ 13.37 

μg/m3) 

1546 (25.2) 163 (27.3) 1383 (24.9)  

4 (> 13.37 μg/m3) 1533 (25.9) 152 (25.5) 1381 (24.9)  

a: Percentages (%) as percent of total column N 

b: Percentages (%) as percent of total column n 

c: Chi-square p-value for comparison between mortality status categories 
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Table 5: Descriptive statistics of HAPPI population by quartile of PM10 exposure at time of 

hospitalization (N = 6145) 

Variable Quartile 1 

(≤ 9.67 μg/m3) 

Quartile 2 

(> 9.67 μg/m3 

and ≤ 15.00 

μg/m3) 

Quartile 3 

(> 15.00 μg/m3 

and ≤ 20.50 

μg/m3) 

Quartile 4 

(> 20.50 μg/m3) 

Number of 

Participants 

n = 1490 n = 1590 n = 1527 n = 1538 

Mean age at 

enrollment, years (SD) 

65.8 (16.1) 66.8 (16.3) 65.7 (16.8) 65.3 (16.8) 

Sex, n (%)     

Female 807 (54.2) 859 (54.0) 831 (54.4) 791 (51.4) 

Male 683 (45.8) 731 (46.0) 696 (45.6) 747 (48.6) 

Race, n (%)     

Black 317 (21.3) 312 (19.6) 284 (18.6) 328 (21.3) 

White 1164 (78.1) 1269 (79.8) 1234 (80.8) 1205 (78.4) 

Other 9 (0.6) 9 (0.6) 9 (0.6) 5 (0.3) 

PSI class, n (%)     

Class I 82 (5.5) 94 (5.9) 106 (7.0) 111 (7.2) 

Class II 266 (17.8) 259 (16.3) 249 (16.3) 233 (15.1) 

Class III 278 (18.7) 307 (19.3) 277 (18.1) 287 (18.7) 

Class IV 532 (35.7) 564 (35.5) 538 (35.2) 553 (36.0) 

Class V 332 (22.3) 366 (23.0) 357 (23.4) 354 (23.0) 

Direct transfer to ICU 

upon hospital 

admission, n (%) 

    

Yes 248 (16.6) 238 (15.0) 261 (17.1) 251 (16.3) 

No 1242 (83.4) 1352 (85.0) 1266 (82.9) 1287 (83.7) 

Received intravenous 

antibiotic therapy 

within the past 90 

days, n (%) 

    

Yes 236 (15.8) 273 (17.2) 243 (15.9) 257 (16.7) 

No 1254 (84.2) 1317 (82.8) 1284 (84.1) 1281 (83.3) 

Received oral 

antimicrobial therapy 

within the past 30 

days, n (%) 

    

Yes 320 (21.5) 336 (21.1) 325 (21.3) 299 (19.4) 

No 1169 (78.5) 1253 (78.8) 1201 (78.6) 1237 (80.5) 

Missing 1 (0.0) 1 (0.1) 1 (0.1) 2 (0.1) 

Alcoholic status, n (%)     

Yes 96 (6.4) 83 (5.2) 77 (5.0) 88 (5.7) 

No 1394 (93.6) 1507 (94.8) 1450 (95.0) 1450 (94.3) 

Active intravenous 

drug use status, n (%) 

    

Yes 14 (0.9) 23 (1.4) 28 (1.8) 24 (1.6) 

No 1476 (99.1) 1567 (98.6) 1499 (98.2) 1514 (98.4) 

Smoking history, n (%)     

Current 

smoker 

486 (32.6) 531 (33.4) 507 (33.2) 514 (33.4) 

Past smoker 597 (40.1) 626 (39.4) 591 (38.7) 605 (39.3) 

Non-smoker 407 (27.3) 433 (27.2) 429 (28.1) 419 (27.3) 
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Suspicion of aspiration 

at time of 

hospitization, n (%) 

    

Yes 143 (9.6) 172 (10.8) 146 (9.6) 161 (10.5) 

No 1347 (90.4) 1418 (89.2) 1381 (90.4) 1376 (89.5) 

Missing 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.0) 

Required ventilatory 

support at time of 

initial hospitalization, 

n (%) 

    

Yes 198 (13.3) 198 (12.4) 199 (13.0) 213 (13.8) 

No 1292 (86.7) 1392 (87.6) 1328 (87.0) 1325 (86.2) 

Received 

pneumococcal 

vaccination at or prior 

to time of 

hospitalization, n (%) 

    

Yes 818 (54.9) 894 (56.2) 839 (54.9) 805 (52.3) 

No 652 (43.8) 675 (42.5) 663 (43.4) 695 (45.2) 

Missing 20 (1.3) 21 (1.3) 25 (1.7) 38 (2.5) 

Received seasonal 

influenza vaccine at or 

prior to time of 

hospitalization, n (%) 

    

Yes 819 (55.0) 807 (50.7) 713 (46.7) 567 (36.9) 

No 649 (43.5) 759 (47.7) 787 (51.5) 929 (60.4) 

Missing 22 (1.5) 24 (1.6) 27 (1.8) 42 (2.7) 
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Table 6: Descriptive statistics of HAPPI population by quartile of PM2.5 exposure at time of 

hospitalization (N = 6145) 

Variable Quartile 1 

(≤ 7.07 μg/m3) 

Quartile 2 

(> 7.07 μg/m3 

and ≤ 9.63 

μg/m3) 

Quartile 3 

(> 9.63 μg/m3 

and ≤ 13.37 

μg/m3) 

Quartile 4 

(> 13.37 μg/m3) 

Number of 

Participants 

n = 1530 n = 1536 n = 1546 n = 1533 

Mean age at 

enrollment, years (SD) 

66.2 (15.9) 65.9 (16.6) 66.1 (16.8) 65.6 (16.7) 

Sex, n (%)     

Female 827 (54.1) 808 (52.6) 837 (54.1) 816 (53.2) 

Male 703 (45.9) 728 (47.4) 709 (45.9) 717 (46.8) 

Race, n (%)     

Black 302 (19.7) 322 (21.0) 315 (20.4) 302 (19.7) 

White 1219 (79.7) 1203 (78.3) 1225 (79.2) 1225 (79.9) 

Other 9 (0.6) 11 (0.7) 6 (0.4) 6 (0.4) 

PSI class, n (%)     

Class I 77 (5.0) 103 (6.7) 105 (6.8) 108 (7.0) 

Class II 262 (17.1) 261 (17.00) 246 (15.9) 238 (15.5) 

Class III 284 (18.6) 286 (18.6) 294 (19.0) 285 (18.6) 

Class IV 545 (35.6) 531 (34.6) 541 (35.0) 570 (37.2) 

Class V 362 (23.7) 355 (23.1) 360 (23.3) 332 (21.7) 

Direct transfer to ICU 

upon hospital 

admission, n (%) 

    

Yes 238 (15.6) 251 (16.3) 259 (16.7) 250 (16.3) 

No 1292 (84.4) 1285 (83.7) 1287 (83.3) 1283 (83.7) 

Received intravenous 

antibiotic therapy 

within the past 90 

days, n (%) 

    

Yes 253 (16.5) 232 (15.1) 264 (17.1) 260 (17.0) 

No 1277 (83.5) 1304 (84.9) 1282 (82.9) 1273 (83.0) 

Received oral 

antimicrobial therapy 

within the past 30 

days, n (%) 

    

Yes 331 (21.6) 296 (19.3) 342 (22.1) 311 (20.3) 

No 1199 (78.4) 1237 (80.5) 1203 (77.8) 1221 (79.6) 

Missing 0 (0.0) 3 (0.2) 1 (0.1) 1 (0.1) 

Alcoholic status, n (%)     

Yes 106 (6.9) 75 (4.9) 85 (5.5) 78 (5.1) 

No 1424 (93.1) 1461 (95.1) 1461 (94.5) 1455 (94.9) 

Active intravenous 

drug use status, n (%) 

    

Yes 22 (1.4) 19 (1.2) 24 (1.5) 24 (1.6) 

No 1508 (98.6) 1517 (98.8) 1522 (98.5) 1509 (98.4) 

Smoking history, n (%)     

Current 

smoker 

520 (34.0) 511 (33.3) 493 (31.9) 514 (33.5) 

Past smoker 611 (39.9) 586 (38.1) 630 (40.7) 592 (38.6) 

Non-smoker 399 (26.1) 439 (28.6) 423 (27.4) 427 (27.9) 
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Suspicion of 

aspiration at time of 

hospitization, n (%) 

    

Yes 144 (9.4) 159 (10.3) 161 (10.4) 158 (10.3) 

No 1386 (90.6) 1376 (89.6) 1385 (89.6) 1375 (89.7) 

Missing 0 (0.0) 1 (0.1) 0 (0.0) 0 (0.0) 

Required ventilatory 

support at time of 

initial hospitalization, 

n (%) 

    

Yes 185 (12.1) 204 (13.3) 211 (13.6) 208 (13.6) 

No 1345 (87.9) 1332 (86.7) 1335 (86.4) 1325 (86.4) 

Received 

pneumococcal 

vaccination at or prior 

to time of 

hospitalization, n (%) 

    

Yes 843 (55.1) 859 (55.9) 826 (53.4) 828 (54.0) 

No 652 (42.6) 657 (42.8) 690 (44.7) 686 (44.7) 

Missing 35 (2.3) 20 (1.3) 30 (1.9) 19 (1.3) 

Received seasonal 

influenza vaccine at or 

prior to time of 

hospitalization, n (%) 

    

Yes 747 (48.8) 750 (48.8) 711 (46.0) 698 (45.5) 

No 746 (48.8) 764 (49.7) 803 (51.9) 811 (52.9) 

Missing 37 (2.4) 22 (1.5) 32 (2.1) 24 (1.6) 

 

 The associations between covariates related to participant hospital stay or medical 

attention received (e.g., direct transfer to ICU status and receival of intravenous antibiotics 

within the past 90 days status, receival of oral antimicrobial therapy in the past 30 days 

status, requirement of ventilatory support at time of hospitalization status, receival of 

pneumococcal vaccine at or prior to hospitalization status, receival of seasonal influenza 

vaccine at or prior to hospitalization status)were examined. Receival of intravenous 

antibiotics within the past 90 days and receival of oral antimicrobial therapy within the past 

30 days were significantly associated (Chi-Square, p = <0.0001), but the association was 

fairly weak (5.1% “yes/yes” and 67.8% “no/no”; Cramer’s V = 0.1151). Direct transfer to 

ICU and both receival of oral antimicrobial therapy within the past 30 days and receival of 

intravenous antibiotics in the past 90 days were significantly associated (Chi-Square, p = 
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<0.0001), though these associations were also noted to be weak (2.5% “yes/yes” / 65.4% 

“no/no” and 3.4% “yes/yes” / 70.8% “no/no,” respectively; Cramer’s V = 0.0553 and 

0.0549, respectively). Requirement of ventilatory support at time of hospitalization was 

found to be significantly and strongly associated with direct transfer to ICU (9.1% 

“yes/yes” / 80.0% “no/no”; Chi-Square, p = <0.0001, Cramer’s V = 0.5624), suggesting 

the two variables were possibly measuring the same concept; the former was chosen to be 

removed from further analysis to enhance parsimony. Direct transfer to ICU was 

significantly associated with receival of the seasonal influenza vaccine (Chi-Square, p = 

0.0067) and not significantly associated with receival of the pneumococcal vaccine (Chi-

Square, p = 0.2295), but associations were weak in both situations (7.1% “yes/yes” / 41.9% 

“no/no” and 8.7% “yes/yes” / 43.3% “no/no,” respectively; Cramer’s V = 0.0404 and 

0.0219, respectively). It is worth noting that no multicollinearity was detected among the 

covariates chosen for further analysis. 

 Review of results viewable in Table 2 and Tables 5-6 were used to determine the 

presence of confounders, predictors, and strong predictors relating to the relationship 

between PM10 exposure and the outcome. The following covariates were determined to be 

confounders: age at enrollment, sex, receival of pneumococcal vaccine, receival of 

seasonal influenza vaccine. The following covariates were determined to be strong 

predictors: race, PSI, direct transfer to ICU, receival of intravenous antibiotic therapy with 

the past 90 days, smoking history, and suspicion of aspiration. The following covariate was 

determined to be a weak predictor: active intravenous drug use status. Confounders, 

predictors, and strong predictors were the same for the relationship between PM2.5 exposure 

and the outcome. 
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 As mentioned, these confounder/predictor determinations were based on 

observations drawn from the aforementioned tables. Consider the following observations 

based upon Table 2 and Table 5. The following observations are relevant to variables 

determined to be confounders, meaning they appeared to be related to both exposure and 

outcome. Mean age in years was higher in those with the outcome than those without (75.3 

versus 64.9), and though variation was generally limited between exposure quartiles, 

enough fluctuation was present that the variable was considered to be a confounder as a 

matter of best practice, given the far-reaching implications of age. A greater percentage of 

males experienced the outcome than females (52.8% among males versus 47.2% among 

females), and percentage variation between exposure quartiles was evident for both males 

(e.g., Q1 = 45.8% versus Q4 = 48.6%) and females (e.g., Q1 = 54.2% versus Q4 = 51.4%). 

Those who received the pneumococcal vaccine appeared to experience the outcome 

comparatively less as a proportion than those who did not (received the vaccine: yes = 

50.4% versus no = 55.1%; did not receive the vaccine: yes = 48.6% versus no = 43.2%), 

and percentage variation between exposure quartiles was present for both those who 

received the vaccine (e.g., Q1 = 54.9% versus Q4 = 52.3%) and those who did not (e.g., 

Q1 = 43.8% versus Q4 = 45.2%). Those who received the seasonal influenza vaccine also 

appeared to experience the outcome comparatively less as a proportion than those who did 

not (received the vaccine: yes = 43.0% versus no = 47.7%; did not receive the vaccine: yes 

= 55.9% versus no = 50.3%), and percentage variation between exposure quartiles was 

present for both those who received the vaccine (e.g., Q1 = 55.0% versus Q4 = 36.9%) and 

those who did not (e.g., Q1 = 43.5% versus Q4 = 60.4%). Variables determined to be 

predictors lacked clear variation between exposure quartiles, but still maintained an 
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observable relationship with the outcome. The variable direct ICU transfer status is a good 

example; a greater proportion of those directly transferred to the ICU at the time of 

hospitalization experienced the outcome versus those who were not transferred 

(transferred: yes = 33.7% versus no = 14.4%; not transferred: yes = 66.3% versus no = 

85.6%), but substantial percentage variation between exposure quartiles was not observed 

for either those transferred (e.g., Q1 = 16.6% versus Q4 = 16.3%) or those not transferred 

(e.g., Q1 = 83.4% versus Q4 = 84.7%). Very similar patterns were noted in Table 6 for 

PM2.5 derived observations.  

Logistic regression results for the relationship between continuous PM10 exposure 

and mortality at thirty days can be seen in Tables 7-8, reflecting minimally and partially 

adjusted models. Logistic regression results for the relationship between continuous PM2.5 

exposure and mortality at thirty days can be seen in Tables 9-10, reflecting minimally and 

partially adjusted models. As fully adjusted models differed only slightly from partially 

adjusted models with minimal change in the primary relationship of interest, the results for 

PM for the fully adjusted models were reported here and not as a full table; fully adjusted 

PM10 (per five ug/m3increase) AOR = 1.02 (p = 0.5136, 95% CI = 0.96-1.08) and fully 

adjusted PM2.5 AOR (per five unit increase) = 1.06 (p = 0.2608, 95% CI = 0.96-1.16).  

The use of log transformed PM10 and PM2.5 variables did not result in significant 

alterations to results in any model; e.g., minimally adjusted PM10 (per one unit increase) 

AOR = 1.08 (p = 0.3980, 95% CI = 0.90-1.29) and minimally adjusted PM2.5 (per one unit 

increase) AOR = 1.14 (p = 0.2009, 95% CI = 0.93-1.38). Non-transformed exposure 

variables were reported due to ease of interpretation. 
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The minimally adjusted PM10 (continuous) logistic model revealed increased age 

at enrollment (AOR = 1.05, 95% CI = 1.04-1.05), male sex (AOR = 1.41, 95% CI = 1.18-

1.67), pneumococcal vaccine receival (AOR = 0.78, 95% CI = 0.64-0.94), and seasonal 

influenza vaccine receival (AOR = 0.82, 95% CI = 0.67-0.99) to be significantly associated 

with the outcome; PM10 (continuous) was not significantly associated. The partially 

adjusted PM10 (continuous) logistic model revealed increased age (AOR = 1.02, 95% CI = 

1.01-1.03), black race (AOR = 0.68, 95% CI = 0.52-0.89), transfer to ICU at hospitalization 

(AOR = 1.65, 95% CI = 1.33-2.06), elevated PSI (Class IV: AOR = 4.05, 95% CI = 1.44-

11.40; Class V: AOR = 11.13, 95% CI = 3.91-31.65), use of intravenous antibiotics within 

the past 90 days (AOR = 1.55, 95% CI = 1.25-1.93), suspicion of aspiration (AOR = 1.62, 

95% CI = 1.27-2.05), and pneumococcal vaccine receival (AOR = 0.76, 95% CI = 0.62-

0.93) to be associated with the outcome; PM10 (continuous) was not significantly 

associated. 

The minimally adjusted PM2.5 (continuous) logistic model revealed increased age 

at enrollment (AOR = 1.05, 95% CI = 1.04-1.05), male sex (AOR = 1.41, 95% CI = 1.18-

1.68), pneumococcal vaccine receival (AOR = 0.78, 95% CI = 0.65-0.95), and seasonal 

influenza vaccine receival (AOR = 0.81, 95% CI = 0.67-0.98) to be significantly associated 

with the outcome; PM2.5 (continuous) was significantly associated. The partially adjusted 

PM2.5 (continuous) logistic model revealed increased age (AOR = 1.02, 95% CI = 1.01-

1.03), black race (AOR = 0.68, 95% CI = 0.52-0.89), transfer to ICU at hospitalization 

(AOR = 1.65, 95% CI = 1.33-2.05), elevated PSI (Class IV: AOR = 4.06, 95% CI = 1.44-

11.42; Class V: AOR = 11.20, 95% CI = 3.94-31.84), use of intravenous antibiotics within 

the past 90 days (AOR = 1.55, 95% CI = 1.25-1.93), suspicion of aspiration (AOR = 1.61, 
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95% CI = 1.27-2.04), and pneumococcal vaccine receival (AOR = 0.76, 95% CI = 0.62-

0.93) to be associated with the outcome; PM2.5 (continuous) was not significantly 

associated.  

Table 7: Logistic regression examining association between PM10 (continuous) exposure at time of 

hospitalization and mortality at thirty days – minimally adjusted (N = 6145, events = 597) 

Variable AORa p-value CI (95%) 

PM10 (continuous), per 

five- ug/m3 increase 

1.02 0.4845 0.96-1.08 

Age at enrollment, per one-

year increase 

1.05 <0.0001 1.04-1.05 

Sex    

Female referent referent referent 

Male 1.41 0.0001 1.18-1.67 

Pneumococcal vaccine 

receival status 

   

No referent referent referent 

Yes 0.78 0.0104 0.64-0.94 

Missing 2.63 0.5282 0.13-52.86 

Seasonal influenza vaccine 

receival status 

   

No referent referent referent 

Yes 0.82 0.0382 0.67-0.99 

Missing 0.16 0.2241 0.01-3.11 

a: Adjusted odds ratio 
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Table 8: Logistic regression examining association between PM10 (continuous) exposure at time of 

hospitalization and mortality at thirty days – partially adjusted (N = 6145, events = 597) 

Variable AORa p-value CI (95%) 

PM10 (continuous), per 

five- ug/m3 increase 

1.02 0.5109 0.96-1.08 

Age at enrollment, per one-

year increase 

1.02 <0.0001 1.01-1.03 

Sex    

Female referent referent  referent 

Male 1.04 0.6911 0.86-1.25 

Race    

White referent  referent  referent 

Black 0.68 0.0051 0.52-0.89 

Other 0.41 0.3960 0.05-3.22 

Transfer to ICU at 

hospitalization 

   

No referent  referent  referent 

Yes 1.65 <0.0001 1.33-2.06 

PSI    

I referent  referent  referent 

II 0.64 0.4631 0.19-2.11 

III 1.50 0.4596 0.51-4.37 

IV 4.05 0.0080 1.44-11.40 

V 11.13 <0.0001 3.91-31.65 

Use of intravenous 

antibiotics within the past 

90 days 

   

No referent  referent  referent 

Yes 1.55 <0.0001 1.25-1.93 

Smoking status    

Non-smoker referent  referent  referent 

Past smoker 0.92 0.4411 0.74-1.14 

Current smoker 0.79 0.1006 0.60-1.04 

Suspicion of aspiration    

No referent  referent  referent 

Yes 1.62 <0.0001 1.27-2.05 

Missing <0.01 0.9799 <0.01->999.99 

Pneumococcal vaccine 

receival status 

   

No referent referent referent 

Yes 0.76 0.0076 0.62-0.93 

Missing 1.14 0.9289 0.07-19.08 

Seasonal influenza vaccine 

receival status 

   

No referent  referent  referent 

Yes 0.85 0.1163 0.69-1.04 

Missing 0.33 0.4441 0.02-5.51 

a: Adjusted odds ratio 
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Table 9: Logistic regression examining association between PM2.5 (continuous) exposure at time of 

hospitalization and mortality at thirty days – minimally adjusted (N = 6145, events = 597) 

Variable AORa p-value CI (95%) 

PM2.5 (continuous), per 

five- ug/m3 increase 

1.05 0.2998 0.96-1.15 

Age at enrollment, per one-

year increase 

1.05 <0.0001 1.04-1.05 

Sex    

Female referent referent  referent 

Male 1.41 0.0001 1.18-1.68 

Pneumococcal vaccine 

receival status 

   

No referent referent referent 

Yes 0.78 0.0114 0.65-0.95 

Missing 2.70 0.5180 0.13-54.90 

Seasonal influenza vaccine 

receival status 

   

No referent referent referent 

Yes 0.81 0.0305 0.67-0.98 

Missing 0.15 0.2224 0.01-3.10 

a: Adjusted odds ratio 
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Table 10: Logistic regression examining association between PM2.5 (continuous) exposure at time 

of hospitalization and mortality at thirty days – partially adjusted (N = 6145, events = 597) 

Variable AORa p-value CI (95%) 

PM2.5 (continuous), per 

five- ug/m3 increase 

1.06 0.2577 0.96-1.16 

Age at enrollment, per one-

year increase 

1.02 <0.0001 1.01-1.03 

Race    

White referent  referent  referent 

Black 0.68 0.0051 0.52-0.89 

Other 0.41 0.3974 0.05-3.23 

Transfer to ICU at 

hospitalization 

   

No referent  referent  referent 

Yes 1.65 <0.0001 1.33-2.05 

PSI    

I referent  referent  referent 

II 0.64 0.4650 0.19-2.11 

III 1.50 0.4553 0.51-4.39 

IV 4.06 0.0079 1.44-11.42 

V 11.20 <0.0001 3.94-31.84 

Use of intravenous 

antibiotics within the past 

90 days 

   

No referent  referent  referent 

Yes 1.55 <0.0001 1.25-1.93 

Smoking status    

Non-smoker referent  referent  referent 

Past smoker 0.92 0.4378 0.74-1.14 

Current smoker 0.79 0.0985 0.60-1.04 

Suspicion of aspiration    

No referent  referent  referent 

Yes 1.61 <0.0001 1.27-2.04 

Missing <0.01 0.9801 <0.01->999.99 

Pneumococcal vaccine 

receival status 

   

No referent referent referent 

Yes 0.76 0.0081 0.62-0.93 

Missing 1.17 0.9142 0.07-19.90 

Seasonal influenza vaccine 

receival status 

   

No referent  referent  referent 

Yes 0.84 0.1005 0.69-1.03 

Missing 0.33 0.4411 0.02-5.52 

a: Adjusted odds ratio 

 

Logistic regression results for the relationship between PM10 exposure divided into 

quartiles and mortality at thirty days can be seen in Tables 11-12, reflecting minimally 

adjusted (Table 11) and partially adjusted (Table 12) models. Logistic regression results 
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for the relationship between PM2.5 exposure divided into quartiles and mortality at thirty 

days can be seen in Tables 13-14, reflecting minimally adjusted (Table 13) and partially 

adjusted (Table 14) models. As fully adjusted models differed only slightly from partially 

adjusted models with minimal change in the primary relationship of interest, the results for 

PM for the fully adjusted models are reported here and not as a full table: PM10 (quartile 

2) AOR = 1.03 (p = 0.8163, 95% CI = 0.80-1.33) and fully adjusted PM2.5 (quartile 2) AOR 

= 1.11 (p = 0.4386, 95% CI = 0.85-1.44), PM10 (quartile 3) AOR = 1.00 (p = 0.9824, 95% 

CI = 0.77-1.30) and fully adjusted PM2.5 (quartile 3) AOR = 1.20 (p = 0.1617, 95% CI = 

0.93-1.55), PM10 (quartile 4) AOR = 1.10 (p = 0.4605, 95% CI = 0.85-1.43) and fully 

adjusted PM2.5 (quartile 4) AOR = 1.17 (p = 0.2372, 95% CI = 0.90-1.52). 

The minimally adjusted PM10 (quartile) logistic model revealed increased age at 

enrollment (AOR = 1.05, 95% CI = 1.04-1.05), male sex (AOR = 1.41, 95% CI = 1.18-

1.67), pneumococcal vaccine receival (AOR = 0.78, 95% CI = 0.64-0.94), and seasonal 

influenza vaccine receival (AOR = 0.82, 95% CI = 0.67-0.99) to be significantly associated 

with the outcome; PM10 (quartile) was not significantly associated and no significant trend 

was detected. The partially adjusted PM10 (quartile) logistic model revealed increased age 

(AOR = 1.02, 95% CI = 1.01-1.03), black race (AOR = 0.68, 95% CI = 0.52-0.89), transfer 

to ICU at hospitalization (AOR = 1.66, 95% CI = 1.33-2.06), elevated PSI (Class IV: AOR 

= 4.05, 95% CI = 1.44-11.40; Class V: AOR = 11.13, 95% CI = 3.91-31.65), use of 

intravenous antibiotics within the past 90 days (AOR = 1.55, 95% CI = 1.25-1.93), 

suspicion of aspiration (AOR = 1.62, 95% CI = 1.27-2.05), and pneumococcal vaccine 

receival (AOR = 0.76, 95% CI = 0.62-0.93) to be significantly associated with the outcome; 

PM10 (quartile) was not significantly associated and no significant trend was detected. 
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The minimally adjusted PM2.5 (quartile) logistic model revealed increased age at 

enrollment (AOR = 1.05, 95% CI = 1.04-1.05), male sex (AOR = 1.41, 95% CI = 1.19-

1.68), pneumococcal vaccine receival (AOR = 0.78, 95% CI = 0.65-0.95), and seasonal 

influenza vaccine receival (AOR = 0.81, 95% CI = 0.67-0.98) to be significantly associated 

with the outcome; PM2.5 (quartile) was not significantly associated and no significant trend 

was detected. The partially adjusted PM2.5 (quartile) logistic model revealed increased age 

(AOR = 1.02, 95% CI = 1.01-1.03), black race (AOR = 0.68, 95% CI = 0.52-0.89), transfer 

to ICU at hospitalization (AOR = 1.65, 95% CI = 1.32-2.05), elevated PSI (Class IV: AOR 

= 4.10, 95% CI = 1.46-11.53; Class V: AOR = 11.30, 95% CI = 3.97-32.15), use of 

intravenous antibiotics within the past 90 days (AOR = 1.55, 95% CI = 1.24-1.92), 

suspicion of aspiration (AOR = 1.61, 95% CI = 1.27-2.05), and pneumococcal vaccine 

receival (AOR = 0.76, 95% CI = 0.62-0.93) to be significantly associated with the outcome; 

PM2.5 (quartile) was not significantly associated and no significant trend was detected.  
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Table 11: Logistic regression examining association between PM10 (quartile) exposure at time of 

hospitalization and mortality at thirty days – minimally adjusted (N = 6145, events = 597) 

Variable AORa p-value CI (95%) 

PM10 (quartile)    

1 (≤ 9.67 μg/m3) referent referent  referent 

2 (> 9.67 μg/m3 and ≤ 15.00 

μg/m3) 

1.02 0.8796 0.80-1.31 

3 (> 15.00 μg/m3 and ≤ 20.50 

μg/m3) 

1.04 0.7805 0.81-1.33 

4 (> 20.50 μg/m3) 1.11 0.3977 0.87-1.43 

p-value (trend) 0.3751 

Age at enrollment, per one-year increase 1.05 <0.0001 1.04-1.05 

Sex    

Female referent referent referent 

Male 1.41 0.0001 1.18-1.67 

Pneumococcal vaccine receival status    

No referent referent referent 

Yes 0.78 0.0105 0.64-0.94 

Missing 2.61 0.5316 0.13-53.03 

Seasonal influenza vaccine receival status    

No referent referent referent 

Yes 0.82 0.0394 0.67-0.99 

Missing 0.16 0.2256 0.01-3.14 

a: Adjusted odds ratio 
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Table 12: Logistic regression examining association between PM10 (quartile) exposure at time of 

hospitalization and mortality at thirty days – partially adjusted (N = 6145, events = 597) 

Variable AORa p-value CI (95%) 

PM10 (quartile)    

1 (≤ 9.67 μg/m3) referent referent  referent 

2 (> 9.67 μg/m3 and ≤ 15.00 

μg/m3) 

1.03 0.8207 0.80-1.33 

3 (> 15.00 μg/m3 and ≤ 20.50 

μg/m3) 

1.00 0.9752 0.76-1.29 

4 (> 20.50 μg/m3) 1.10 0.4604 0.85-1.43 

p-value (trend) 0.4969 

Age at enrollment, per one-year increase 1.02 <0.0001 1.01-1.03 

Sex    

Female referent referent  referent 

Male 1.04 0.7099 0.86-1.25 

Race    

White referent  referent  referent 

Black 0.68 0.0051 0.52-0.89 

Other 0.41 0.3979 0.05-3.23 

Transfer to ICU at hospitalization    

No referent  referent  referent 

Yes 1.66 <0.0001 1.33-2.06 

PSI    

I referent  referent  referent 

II 0.64 0.4629 0.19-2.11 

III 1.50 0.4594 0.51-4.37 

IV 4.05 0.0080 1.44-11.40 

V 11.13 <0.0001 3.91-31.65 

Use of intravenous antibiotics within the 

past 90 days 

   

No referent  referent  referent 

Yes 1.55 <0.0001 1.25-1.93 

Smoking status    

Non-smoker referent  referent  referent 

Past smoker 0.92 0.4411 0.74-1.14 

Current smoker 0.79 0.0996 0.60-1.04 

Suspicion of aspiration    

No referent  referent  referent 

Yes 1.62 <0.0001 1.27-2.05 

Missing <0.01 0.9799 <0.01->999.99 

Pneumococcal vaccine receival status    

No referent referent referent 

Yes 0.76 0.0077 0.62-0.93 

Missing 1.13 0.9308 0.07-19.02 

Seasonal influenza vaccine receival status    

No referent  referent  referent 

Yes 0.85 0.1141 0.69-1.04 

Missing 0.34 0.4453 0.02-5.53 

a: Adjusted odds ratio 
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Table 13: Logistic regression examining association between PM2.5 (quartile) exposure at time of 

hospitalization and mortality at thirty days – minimally adjusted (N = 6145, events = 597) 

Variable AORa p-value CI (95%) 

PM2.5 (quartile)    

1 (≤ 7.07 μg/m3) referent referent  referent 

2 (> 7.07 μg/m3 and ≤ 9.63 

μg/m3) 

1.10 0.4631 0.85-1.41 

3 (> 9.63 μg/m3 and ≤ 13.37 

μg/m3) 

1.21 0.1270 0.95-1.55 

4 (> 13.37 μg/m3) 1.15 0.2700 0.90-1.48 

p-value (trend)  0.2642  

Age at enrollment, per one-year increase 1.05 <0.0001 1.04-1.05 

Sex    

Female referent referent  referent 

Male 1.41 0.0001 1.19-1.68 

Pneumococcal vaccine receival status    

No referent referent referent 

Yes 0.78 0.0113 0.65-0.95 

Missing 2.74 0.5156 0.13-56.86 

Seasonal influenza vaccine receival 

status 

   

No referent referent referent 

Yes 0.81 0.0316 0.67-0.98 

Missing 0.15 0.2227 0.01-3.13 

a: Adjusted odds ratio 
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Table 14: Logistic regression examining association between PM2.5 (quartile) exposure at time of 

hospitalization and mortality at thirty days – partially adjusted (N = 6145, events = 597) 

Variable AORa p-value CI (95%) 

PM2.5 (quartile)    

1 (≤ 7.07 μg/m3) referent referent  referent 

2 (> 7.07 μg/m3 and ≤ 9.63 

μg/m3) 

1.11 0.4347 0.85-1.44 

3 (> 9.63 μg/m3 and ≤ 13.37 

μg/m3) 

1.20 0.1606 0.93-1.55 

4 (> 13.37 μg/m3) 1.17 0.2334 0.90-1.52 

p-value (trend) 0.2390 

Age at enrollment, per one-year increase 1.02 <0.0001 1.01-1.03 

Sex    

Female referent referent  referent 

Male 1.04 0.6746 0.86-1.25 

Race    

White referent  referent  referent 

Black 0.68 0.0050 0.52-0.89 

Other 0.41 0.3928 0.05-3.21 

Transfer to ICU at hospitalization    

No referent  referent  referent 

Yes 1.65 <0.0001 1.32-2.05 

PSI    

I referent  referent  referent 

II 0.65 0.4726 0.20-2.13 

III 1.52 0.4460 0.52-4.42 

IV 4.10 0.0075 1.46-11.53 

V 11.30 <0.0001 3.97-32.15 

Use of intravenous antibiotics within the 

past 90 days 

   

No referent  referent  referent 

Yes 1.55 <0.0001 1.24-1.92 

Smoking status    

Non-smoker referent  referent  referent 

Past smoker 0.92 0.4526 0.74-1.14 

Current smoker 0.80 0.1061 0.61-1.05 

Suspicion of aspiration    

No referent  referent  referent 

Yes 1.61 <0.0001 1.27-2.05 

Missing <0.01 0.9800 <0.01->999.99 

Pneumococcal vaccine receival status    

No referent referent referent 

Yes 0.76 0.0082 0.62-0.93 

Missing 1.17 0.9121 0.07-20.41 

Seasonal influenza vaccine receival status    

No referent  referent  referent 

Yes 0.84 0.1000 0.69-1.03 

Missing 0.33 0.4428 0.02-5.61 

a: Adjusted odds ratio 
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Cox proportional hazards regression results for the relationship between continuous 

PM10 exposure and mortality at thirty days can be seen in Tables 15-16, reflecting 

minimally adjusted (Table 15) and partially adjusted (Table 16) models. Cox proportional 

hazards regression results for the relationship between continuous PM2.5 exposure and 

mortality at thirty days can be seen in Tables 17-18, reflecting minimally adjusted (Table 

17) and partially adjusted (Table 18) models. As fully adjusted models differed only 

slightly from partially adjusted models with minimal change in the primary relationship of 

interest, the results for PM for the fully adjusted models were reported here and not as a 

full table: fully adjusted PM10 (per five unit increase) AHR = 1.02 (p = 0.4831, 95% CI = 

0.97-1.07) and fully adjusted PM2.5 (per five unit increase) AHR = 1.05 (p = 0.2473, 95% 

CI = 0.97-1.14). Total survival time, in person days, was 173,814 person days. 

The use of log transformed PM10 and PM2.5 variables did not result in significant 

alterations to results in any model; e.g., minimally adjusted PM10 (per one unit increase) 

AHR =  1.07 (p = 0.3856, 95% CI = 0.91-1.27) and minimally adjusted PM2.5 (per one unit 

increase) AHR = 1.13 (p = 0.1986, 95% CI = 0.94-1.35). Non-transformed exposure 

variables were reported due to ease of interpretation. 

The minimally adjusted PM10 (continuous) Cox proportional hazards model 

revealed increased age at enrollment (AOR = 1.04, 95% CI = 1.04-1.05), male sex (AOR 

= 1.38, 95% CI = 1.17-1.62), pneumococcal vaccine receival (AOR = 0.79, 95% CI = 0.67-

0.95), and seasonal influenza vaccine receival (AOR = 0.82, 95% CI = 0.69-0.99) to be 

significantly associated with the outcome; PM10 (continuous) was not significantly 

associated. The partially adjusted PM10 (continuous) Cox proportional hazards model 

revealed increased age (AOR = 1.02, 95% CI = 1.01-1.03), black race (AOR = 0.69, 95% 
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CI = 0.54-0.88), transfer to ICU at hospitalization (AOR = 1.59, 95% CI = 1.32-1.93), 

elevated PSI (Class IV: AOR = 4.05, 95% CI = 1.46-11.24; Class V: AOR = 10.19, 95% 

CI = 3.64-28.53), use of intravenous antibiotics within the past 90 days (AOR = 1.45, 95% 

CI = 1.20-1.75), suspicion of aspiration (AOR = 1.49, 95% CI = 1.22-1.83), and 

pneumococcal vaccine receival (AOR = 0.79, 95% CI = 0.66-0.94) to be significantly 

associated with the outcome; PM10 (continuous) was not significantly associated. 

The minimally adjusted PM2.5 (continuous) Cox proportional hazards model 

revealed increased age at enrollment (AOR = 1.04, 95% CI = 1.04-1.05), male sex (AOR 

= 1.38, 95% CI = 1.17-1.62), pneumococcal vaccine receival (AOR = 0.80, 95% CI = 0.67-

0.95), and seasonal influenza vaccine receival (AOR = 0.82, 95% CI = 0.67-0.98) to be 

significantly associated with the outcome; PM2.5 (continuous) was not significantly 

associated. The partially adjusted PM2.5 (continuous) Cox proportional hazards model 

revealed increased age (AOR = 1.02, 95% CI = 1.01-1.03), black race (AOR = 0.69, 95% 

CI = 0.54-0.88), transfer to ICU at hospitalization (AOR = 1.59, 95% CI = 1.32-1.92), 

elevated PSI (Class IV: AOR = 4.06, 95% CI = 1.46-11.26; Class V: AOR = 10.24, 95% 

CI = 3.66-28.67), use of intravenous antibiotics within the past 90 days (AOR = 1.45, 95% 

CI = 1.20-1.75), suspicion of aspiration (AOR = 1.49, 95% CI = 1.21-1.82), and 

pneumococcal vaccine receival (AOR = 0.79, 95% CI = 0.66-0.94) to be significantly 

associated with the outcome; PM2.5 (continuous) was not significantly associated.  
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Table 15: Cox proportional hazards regression examining association between PM10 (continuous) 

exposure at time of hospitalization and mortality at thirty days – minimally adjusted (N = 6145, 

events = 597, person/days = 173814) 

Variable AHRa p-value CI (95%) 

PM10 (continuous), per 

five- ug/m3 increase 

1.02 0.4719 0.97-1.07 

Age at enrollment, per one-

year increase 

1.04 <0.0001 1.04-1.05 

Sex    

Female referent referent referent 

Male 1.38 0.0001 1.17-1.62 

Pneumococcal vaccine 

receival status 

   

No referent referent referent 

Yes 0.79 0.0103 0.67-0.95 

Missing 2.34 0.5279 0.17-32.78 

Seasonal influenza vaccine 

receival status 

   

No referent referent referent 

Yes 0.82 0.0347 0.69-0.99 

Missing 0.18 0.2103 0.01-2.59 

a: Adjusted hazard ratio 
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Table 16: Cox proportional hazards regression examining association between PM10 (continuous) 

exposure at time of hospitalization and mortality at thirty days – partially adjusted (N = 6145, 

events = 597, person/days = 173814) 

Variable AHRa p-value CI (95%) 

PM10 (continuous), per 

five- ug/m3 increase 

1.02 0.4796 0.97-1.07 

Age at enrollment, per one-

year increase 

1.02 <0.0001 1.01-1.03 

Sex    

Female referent referent  referent 

Male 1.04 0.6570 0.88-1.23 

Race    

White referent  referent  referent 

Black 0.69 0.0033 0.54-0.88 

Other 0.43 0.4007 0.06-3.07 

Transfer to ICU at 

hospitalization 

   

No referent  referent  referent 

Yes 1.59 <0.0001 1.32-1.93 

PSI    

I referent  referent  referent 

II 0.65 0.4794 0.20-2.13 

III 1.53 0.4292 0.53-4.42 

IV 4.05 0.0073 1.46-11.24 

V 10.19 <0.0001 3.64-28.53 

Use of intravenous 

antibiotics within the past 

90 days 

   

No referent  referent  referent 

Yes 1.45 0.0001 1.20-1.75 

Smoking status    

Non-smoker referent  referent  referent 

Past smoker 0.93 0.4366 0.77-1.12 

Current smoker 0.81 0.1049 0.64-1.04 

Suspicion of aspiration    

No referent  referent  referent 

Yes 1.49 0.0001 1.22-1.83 

Missing 0.00 0.9693 0.00-0.00 

Pneumococcal vaccine 

receival status 

   

No referent referent referent 

Yes 0.79 0.0090 0.66-0.94 

Missing 1.06 0.9607 0.10-11.60 

Seasonal influenza vaccine 

receival status 

   

No referent  referent  referent 

Yes 0.86 0.1047 0.72-1.03 

Missing 0.39 0.4379 0.03-4.24 

a: Adjusted hazard ratio 
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Table 17: Cox proportional hazards regression examining association between PM2.5 (continuous) 

exposure at time of hospitalization and mortality at thirty days – minimally adjusted (N = 6145, 

events = 597, person/days = 173814) 

Variable AHRa p-value CI (95%) 

PM2.5 (continuous), per 

five- ug/m3 increase 

1.05 0.2959 0.96-1.14 

Age at enrollment, per one-

year increase 

1.04 <0.0001 1.04-1.05 

Sex    

Female referent referent  referent 

Male 1.38 <0.0001 1.17-1.62 

Pneumococcal vaccine 

receival status 

   

No referent referent referent 

Yes 0.80 0.0114 0.67-0.95 

Missing 2.40 0.5167 0.17-34.06 

Seasonal influenza vaccine 

receival status 

   

No referent referent referent 

Yes 0.82 0.0278 0.67-0.98 

Missing 0.18 0.2087 0.01-2.59 

a: Adjusted hazard ratio 
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Table 18: Cox proportional hazards regression examining association between PM2.5 (continuous) 

exposure at time of hospitalization and mortality at thirty days – partially adjusted (N = 6145, 

events = 597, person/days = 173814) 

Variable AHRa p-value CI (95%) 

PM2.5 (continuous), per 

five- ug/m3 increase 

1.05 0.2436 0.97-1.14 

Age at enrollment, per one-

year increase 

1.02 <0.0001 1.01-1.03 

Sex    

Female referent referent  referent 

Male 1.04 0.6366 0.88-1.23 

Race    

White referent  referent  referent 

Black 0.69 0.0033 0.54-0.88 

Other 0.43 0.4018 0.06-3.08 

Transfer to ICU at 

hospitalization 

   

No referent  referent  referent 

Yes 1.59 <0.0001 1.32-1.92 

PSI    

I referent  referent  referent 

II 0.65 0.4813 0.20-2.14 

III 1.54 0.4253 0.53-4.44 

IV 4.06 0.0072 1.46-11.26 

V 10.24 <0.0001 3.66-28.67 

Use of intravenous 

antibiotics within the past 

90 days 

   

No referent  referent  referent 

Yes 1.45 0.0001 1.20-1.75 

Smoking status    

Non-smoker referent  referent  referent 

Past smoker 0.93 0.4354 0.77-1.12 

Current smoker 0.81 0.1009 0.63-1.04 

Suspicion of aspiration    

No referent  referent  referent 

Yes 1.49 0.0001 1.21-1.82 

Missing 0.00 0.9695 0.00-0.00 

Pneumococcal vaccine 

receival status 

   

No referent referent referent 

Yes 0.79 0.0098 0.66-0.94 

Missing 1.09 0.9437 0.10-12.12 

Seasonal influenza vaccine 

receival status 

   

No referent  referent  referent 

Yes 0.86 0.0895 0.72-1.02 

Missing 0.38 0.4349 0.03-4.26 

a: Adjusted hazard ratio 
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Cox proportional hazards regression results for the relationship between PM10 

exposure divided into quartiles and mortality at thirty days can be seen in Tables 19-20, 

reflecting minimally adjusted (Table 19) and partially adjusted (Table 20) models. Cox 

proportional hazards regression results for the relationship between PM2.5 exposure divided 

into quartiles and mortality at thirty days can be seen in Tables 21-22, reflecting minimally 

adjusted (Table 21) and partially adjusted (Table 22) models. As fully adjusted models 

differed only slightly from partially adjusted models with minimal change in the primary 

relationship of interest, the results for PM for the fully adjusted models were reported here 

and not as a full table: PM10 (quartile 2) AHR = 1.04 (p = 0.7620, 95% CI = 0.82-1.30) and 

fully adjusted PM2.5 (quartile 2) AHR = 1.13 (p = 0.3088, 95% CI = 0.89-1.43), PM10 

(quartile 3) AHR = 0.99 (p = 0.9099, 95% CI = 0.78-1.25) and fully adjusted PM2.5 (quartile 

3) AHR = 1.17 (p = 0.1817, 95% CI = 0.93-1.47), PM10 (quartile 4) AHR = 1.10 (p = 

0.4062, 95% CI = 0.88-1.39) and fully adjusted PM2.5 (quartile 4) AHR = 1.17 (p = 0.1906, 

95% CI = 0.93-1.47). Total survival time, in person days, was 173,814 person/days. 

The minimally adjusted PM10 (quartile) Cox proportional hazards model revealed 

increased age at enrollment (AOR = 1.04, 95% CI = 1.04-1.05), male sex (AOR = 1.37, 

95% CI = 1.17-1.61), pneumococcal vaccine receival (AOR = 0.79, 95% CI = 0.67-0.95), 

and seasonal influenza vaccine receival (AOR = 0.83, 95% CI = 0.69-0.99) to be 

significantly associated with the outcome; PM10 (quartile) was not significantly associated 

and no significant trend was detected. The partially adjusted PM10 (quartile) Cox 

proportional hazards model revealed increased age (AOR = 1.02, 95% CI = 1.01-1.03), 

black race (AOR = 0.69, 95% CI = 0.54-0.88), transfer to ICU at hospitalization (AOR = 

1.60, 95% CI = 1.32-1.93), elevated PSI (Class IV: AOR = 4.04, 95% CI = 1.45-11.22; 
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Class V: AOR = 10.17, 95% CI = 3.63-28.47), use of intravenous antibiotics within the 

past 90 days (AOR = 1.45, 95% CI = 1.20-1.75), suspicion of aspiration (AOR = 1.49, 95% 

CI = 1.22-1.83), and pneumococcal vaccine receival (AOR = 0.79, 95% CI = 0.66-0.94) to 

be significantly associated with the outcome; PM10 (quartile) was not significantly 

associated and no significant trend was detected. 

The minimally adjusted PM2.5 (quartile) Cox proportional hazards model revealed 

increased age at enrollment (AOR = 1.04, 95% CI = 1.04-1.05), male sex (AOR = 1.38, 

95% CI = 1.17-1.62), pneumococcal vaccine receival (AOR = 0.80, 95% CI = 0.67-0.95), 

and seasonal influenza vaccine receival (AOR = 0.82, 95% CI = 0.69-0.98) to be 

significantly associated with the outcome; PM2.5 (quartile) was not significantly associated 

and no significant trend was detected. The partially adjusted PM2.5 (quartile) Cox 

proportional hazards model revealed increased age (AOR = 1.02, 95% CI = 1.01-1.03), 

black race (AOR = 0.69, 95% CI = 0.54-0.88), transfer to ICU at hospitalization (AOR = 

1.59, 95% CI = 1.31-1.92), elevated PSI (Class IV: AOR = 4.10, 95% CI = 1.48-11.38; 

Class V: AOR = 10.34, 95% CI = 3.69-28.96), use of intravenous antibiotics within the 

past 90 days (AOR = 1.45, 95% CI = 1.20-1.75), suspicion of aspiration (AOR = 1.49, 95% 

CI = 1.21-1.82), and pneumococcal vaccine receival (AOR = 0.79, 95% CI = 0.66-0.94) to 

be significantly associated with the outcome; PM2.5 (quartile) was not significantly 

associated and no significant trend was detected.  
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Table 19: Cox proportional hazards regression examining association between PM10 (quartile) 

exposure at time of hospitalization and mortality at thirty days – minimally adjusted (N = 6145, 

events = 597, person/days = 173814) 

Variable AHRa p-value CI (95%) 

PM10 (quartile)    

1 (≤ 9.67 μg/m3) referent referent  referent 

2 (> 9.67 μg/m3 and ≤ 15.00 

μg/m3) 

1.02 0.8795 0.81-1.28 

3 (> 15.00 μg/m3 and ≤ 20.50 

μg/m3) 

1.03 0.8071 0.81-1.30 

4 (> 20.50 μg/m3) 1.11 0.3765 0.88-1.40 

p-value (trend) 0.3562 

Age at enrollment, per one-year increase 1.04 <0.0001 1.04-1.05 

Sex    

Female referent referent referent 

Male 1.37 0.0001 1.17-1.61 

Pneumococcal vaccine receival status    

No referent referent referent 

Yes 0.79 0.0104 0.67-0.95 

Missing 2.33 0.5315 0.16-32.96 

Seasonal influenza vaccine receival status    

No referent referent referent 

Yes 0.83 0.0357 0.69-0.99 

Missing 0.18 0.2119 0.01-2.62 

a: Adjusted hazard ratio 
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Table 20: Cox proportional hazards regression examining association between PM10 (quartile) 

exposure at time of hospitalization and mortality at thirty days – partially adjusted (N = 6145, 

events = 597, person/days = 173814) 

Variable AHRa p-value CI (95%) 

PM10 (quartile)    

1 (≤ 9.67 μg/m3) referent referent  referent 

2 (> 9.67 μg/m3 and ≤ 15.00 

μg/m3) 

1.04 0.7657 0.82-1.30 

3 (> 15.00 μg/m3 and ≤ 20.50 

μg/m3) 

0.99 0.9035 0.78-1.25 

4 (> 20.50 μg/m3) 1.10 0.4049 0.88-1.40 

p-value (trend) 0.4646 

Age at enrollment, per one-year increase 1.02 <0.0001 1.01-1.03 

Sex    

Female referent referent  referent 

Male 1.03 0.6934 0.88-1.22 

Race    

White referent  referent  referent 

Black 0.69 0.0033 0.54-0.88 

Other 0.43 0.4042 0.06-3.09 

Transfer to ICU at hospitalization    

No referent  referent  referent 

Yes 1.60 <0.0001 1.32-1.93 

PSI    

I referent  referent  referent 

II 0.65 0.4479 0.20-2.13 

III 1.53 0.4306 0.53-4.42 

IV 4.04 0.0074 1.45-11.22 

V 10.17 <0.0001 3.63-28.47 

Use of intravenous antibiotics within the 

past 90 days 

   

No referent  referent  referent 

Yes 1.45 0.0001 1.20-1.75 

Smoking status    

Non-smoker referent  referent  referent 

Past smoker 0.93 0.4349 0.77-1.12 

Current smoker 0.81 0.1034 0.64-1.04 

Suspicion of aspiration    

No referent  referent  referent 

Yes 1.49 <0.0001 1.22-1.83 

Missing 0.00 0.9691 0.00-0.00 

Pneumococcal vaccine receival status    

No referent referent referent 

Yes 0.79 0.0096 0.66-0.94 

Missing 1.06 0.9621 0.10-11.58 

Seasonal influenza vaccine receival status    

No referent  referent  referent 

Yes 0.86 0.1009 0.72-1.03 

Missing 0.39 0.4385 0.04-4.25 

a: Adjusted hazard ratio 
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Table 21: Cox proportional hazards regression examining association between PM2.5 (quartile) 

exposure at time of hospitalization and mortality at thirty days – minimally adjusted (N = 6145, 

events = 597, person/days = 173814) 

Variable AHRa p-value CI (95%) 

PM2.5 (quartile)    

1 (≤ 7.07 μg/m3) referent referent  referent 

2 (> 7.07 μg/m3 and ≤ 9.63 

μg/m3) 

1.10 0.4159 0.87-1.39 

3 (> 9.63 μg/m3 and ≤ 13.37 

μg/m3) 

1.19 0.1304 0.95-1.50 

4 (> 13.37 μg/m3) 1.14 0.2546 0.91-1.44 

p-value (trend) 0.2615 

Age at enrollment, per one-year increase 1.04 <0.0001 1.04-1.05 

Sex    

Female referent referent  referent 

Male 1.38 <0.0001 1.17-1.62 

Pneumococcal vaccine receival status    

No referent referent referent 

Yes 0.80 0.0111 0.67-0.95 

Missing 2.44 0.5136 0.17-35.55 

Seasonal influenza vaccine receival status    

No referent referent referent 

Yes 0.82 0.0288 0.69-0.98 

Missing 0.18 0.2098 0.01-2.62 

a: Adjusted hazard ratio 
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Table 22: Cox proportional hazards regression examining association between PM2.5 (quartile) 

exposure at time of hospitalization and mortality at thirty days – partially adjusted (N = 6145, 

events = 597, person/days = 173814) 

Variable AHRa p-value CI (95%) 

PM2.5 (quartile)    

1 (≤ 7.07 μg/m3) referent referent  referent 

2 (> 7.07 μg/m3 and ≤ 9.63 

μg/m3) 

1.13 0.3056 0.89-1.43 

3 (> 9.63 μg/m3 and ≤ 13.37 

μg/m3) 

1.17 0.1798 0.93-1.47 

4 (> 13.37 μg/m3) 1.17 0.1870 0.93-1.48 

p-value (trend) 0.2242 

Age at enrollment, per one-year increase 1.02 <0.0001 1.01-1.03 

Sex    

Female referent referent  referent 

Male 1.04 0.6353 0.88-1.23 

Race    

White referent  referent  referent 

Black 0.69 0.0032 0.54-0.88 

Other 0.42 0.3934 0.06-3.03 

Transfer to ICU at hospitalization    

No referent  referent  referent 

Yes 1.59 <0.0001 1.31-1.92 

PSI    

I referent  referent  referent 

II 0.66 0.4886 0.20-2.15 

III 1.55 0.4160 0.54-4.48 

IV 4.10 0.0068 1.48-11.38 

V 10.34 <0.0001 3.69-28.96 

Use of intravenous antibiotics within the 

past 90 days 

   

No referent  referent  referent 

Yes 1.45 0.0001 1.20-1.75 

Smoking status    

Non-smoker referent  referent  referent 

Past smoker 0.93 0.4515 0.77-1.12 

Current smoker 0.82 0.1123 0.64-1.05 

Suspicion of aspiration    

No referent  referent  referent 

Yes 1.49 0.0001 1.22-1.82 

Missing 0.00 0.9694 0.00-0.00 

Pneumococcal vaccine receival status    

No referent referent referent 

Yes 0.79 0.0098 0.66-0.94 

Missing 1.10 0.9379 0.10-12.65 

Seasonal influenza vaccine receival status    

No referent  referent  referent 

Yes 0.86 0.0910 0.72-1.02 

Missing 0.38 0.4373 0.03-4.36 

a: Adjusted hazard ratio 
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Aim Two 

 Due to the presence of only two monitoring stations providing PM10 values within 

the study area and during the study timeframe, kriging could not be conducted. ArcMap 

was unable to conduct the interpolation given the sparsity of data available, despite 

attempting to use different methods to complete the kriging process. Two data points was 

simply too small a sample size. 

 Monitoring stations providing PM2.5 values varied from two to four in number, 

depending on the day, though three appeared to be the most common; the Durrett Lane 

monitoring station provided data approximately every three days, versus approximately 

daily for the other monitoring stations. On days where only two monitoring stations 

provided data, ArcGIS was unable to conduct the interpolation; this was for the same 

reason previously noted for the PM10 data. On almost every day where models were able 

to be created, the models produced seemed to not accurately represent localized PM-related 

fluctuations, but rather broad patterns of distribution based on the directional increase, 

decrease, or plateauing of PM2.5 values (Figures 7 and 8). Rarely, models (Figure 9) were 

created that seemed to account for some degree of local variation, but given the sparsity of 

point data available, the accuracy of such models is questionable. Such observations did 

not seem to vary depending on the time of year examined. Examples are provided. 

 The example models are each problematic in their own ways. Figure 7 indicates an 

east-to-west pattern of gradually increasing PM2.5 concentration, but the basis of the pattern 

is simply that the three included monitors for the given day happened to be spatially located 

from east to west and reported corresponding low-to-high concentration values. The 

monitors are located within mid, west, and southwest Louisville, and likely fail to 
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accurately represent localized concentration variations in other portions of the county. 

Determining such a broad pattern for the relatively large Jefferson county study area based 

upon such a limited source of data is potentially misleading. A similar issue to that of 

Figure 7 manifested in Figure 8. The monitors for the given day all presented similar PM2.5 

measurements, which was ultimately interpreted as the entire county having roughly the 

same level of exposure. Again, given the large size of the study area and only three 

monitors providing localized data for the given day, it seems misleading to assume the 

entire county had the same level of exposure based on the available data. Figure 9 did 

portray a semblance of the localized patterns that should be portrayed when kriging is 

successfully implemented, which was a minor success. However, given the issues seen in 

models constructed based upon three monitors, there is the possibility that these patterns 

are not entirely accurate, as the addition of data from a fourth monitor in much the same 

geographic area as the others is not a substantial increase in sample size or spatial diversity. 
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Figure 7 - Example of directional pattern of low to high values across three point sources from east to 

west 
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Figure 8 - Example of homogenous pattern resulting from similar values across three point sources 

 

 
Figure 9 - Example of localized variation patterns based on differing values across four point sources 
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Aim Three 

Effect Modification in Spatially Averaged Data – PM10 

 We examined effect modification by continuous age, sex, and race on the 

relationship between PM10 (continuous) exposure and mortality at 30 days and did not 

observe statistically significant interactions by PM10 and age, or sex, but did observe 

statistically significant interaction between PM10 and race. Analysis of effect modification 

by continuous age on the relationship between PM10 (continuous) exposure and mortality 

at 30 days yielded a Wald (one additional degree of freedom) p-value of 0.5324. Adjusted 

odds ratio from the partially adjusted logistic regression model with interaction term 

included was 1.01 (95% CI = 0.94-1.08) per five-unit PM10 increase. Analysis of effect 

modification by sex on the relationship between PM10 (continuous) exposure and mortality 

at 30 days yielded a Wald (one additional degree of freedom) p-value of 0.2135. Adjusted 

odds ratios from the partially adjusted logistic regression model with interaction term 

included were as follows: female = 1.06 (95% CI = 0.97-1.15) per five-unit PM10 increase, 

male = 0.98 (95% CI = 0.91-1.07) per five-unit PM10 increase. Analysis of effect 

modification by race on the relationship between PM10 (continuous) exposure and mortality 

at 30 days yielded an LRT p-value of 0.0499. Adjusted odds ratios from the partially 

adjusted logistic regression model with interaction term included were as follows: black = 

1.19 (95% CI = 1.04-1.37) per five-unit PM10 increase, white = 0.99 (95% CI = 0.93-1.05) 

per five-unit PM10 increase, other = 1.27 (95% CI = 0.31-5.22) per five-unit PM10 increase; 

the results indicate that for every five μg/m3 increase in PM10 exposure, the odds of 

experiencing the outcome increased by 19% among black participants. 
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 Regarding models containing quartile-based exposures, adjusted (partial model) 

odds ratios for the potential effect modifiers of interest can be viewed in Tables 23-25 

along with likelihood ratio test (LRT) p-values. It should be noted that due to the small 

number of individuals falling into the race category of “other,” the results were minimally 

useful for that particular category and underpowered in the analysis of the relationship 

between PM10 (quartile) and mortality at 30 days, and were therefore excluded from effect 

modification analysis under these conditions. 

 We examined effect modification by continuous and categorical age, sex, and race 

on the relationship between PM10 (quartile) exposure and mortality at 30 days and did not 

observe statistically significant interactions by PM10 and sex, but did observe statistically 

significant interaction between PM10 and continuous and categorical age, and race. 

Analysis of effect modification by continuous age on the relationship between PM10 

quartiles and mortality at 30 days yielded an LRT p-value of 0.0013. Adjusted odds ratios 

from the partially adjusted logistic regression model with interaction term included were 

as follows: quartile 1 = referent, quartile 2 = 0.77 (95% CI = 0.56-1.05), quartile 3 = 0.97 

(95% CI = 0.73-1.29), quartile 4 = 0.92 (95% CI = 0.68-1.24). Analysis of effect 

modification by categorical age on the relationship between PM10 quartiles and mortality 

at 30 days yielded an LRT p-value of 0.0088. Adjusted odds ratios from the partially 

adjusted logistic regression model with interaction term included were as follows: <65 

years (Q1) = referent, <65 years (Q2) = 0.48 (95% CI = 0.27-0.85), <65 years (Q3) = 0.86 

(95% CI = 0.52-1.40), <65 years (Q4) = 0.67 (95% CI = 0.40-1.12), 65+ years (Q1) = 

referent, 65+ years (Q2) = 1.28 (95% CI = 0.95-1.72), 65+ years (Q3) = 1.05 (95% CI = 

0.77-1.43), 65+ years (Q4) = 1.30 (95% CI = 0.96-1.76). Analysis of effect modification 
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by sex on the relationship between PM10 quartiles and mortality at 30 days yielded an LRT 

p-value of 0.1059. Adjusted odds ratios from the partially adjusted logistic regression 

model with interaction term included were as follows: male (Q1) = referent, male (Q2) = 

0.91 (95% CI = 0.64-1.30), male (Q3) = 1.02 (95% CI = 0.71-1.46), male (Q4) = 0.86 (95% 

CI = 0.60-1.23), female (Q1) = referent, female (Q2) = 1.18 (95% CI = 0.81-1.73), female 

(Q3) = 0.98 (95% CI = 0.67-1.45), female (Q4) = 1.46 (95% CI = 1.01-2.14); the results 

indicate that female participants who fell within the fourth PM10 exposure quartile had 46% 

increased odds of experiencing the outcome. Analysis of effect modification by race on the 

relationship between PM10 quartiles and mortality at 30 days yielded an LRT p-value of 

0.0171. Adjusted odds ratios from the partially adjusted logistic regression model with 

interaction term included were as follows: white (Q1) = referent, white (Q2) = 1.01 (95% 

CI = 0.76-1.32), white (Q3) = 0.89 (95% CI = 0.67-1.18), white (Q4) = 0.96 (95% CI = 

0.72-1.26), black (Q1) = referent, black (Q2) = 1.18 (95% CI = 0.53-2.61), black (Q3) = 

2.01 (95% CI = 0.95-4.27), black (Q4) = 2.70 (95% CI = 1.31-5.55); the results indicate 

that black participants who fell within the fourth PM10 exposure quartile had 170% 

increased odds of experiencing the outcome. 

 Given the large and significant association observed among black participants in 

Q4, further analysis of the relationship was conducted, based solely upon data from each 

racially stratified participant group. Relative risk was examined, calculated as the risk of 

outcome occurrence within the exposure group, which was being within the highest 

exposure quartile, divided by the risk of outcome occurrence within the remaining groups. 

Relative risk was found to be 1.51 (95% CI = 0.95-2.39) for black participants. Individual 

risks for outcome occurrence for each quartile in the black participant group were as 
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follows: Q1 = 4.1%, Q2 = 4.8%, Q3 = 7.0%, Q4 = 7.9%. Relative risk was found to be 

1.04 (95% CI = 0.86-1.25) for white participants. Individual risks for outcome occurrence 

for each quartile in the white participant group were as follows: Q1 = 10.6%, Q2 = 11.1%, 

Q3 = 10.1%, Q4 = 11.0%. In total, those black participants in the highest exposure quartile 

did seem to maintain an elevated association with the outcome compared to those in other 

exposure quartiles, but the association was only of borderline significance. Though white 

participants had individual risks for each exposure quartile that surpassed those of black 

participants in corresponding exposure quartiles, relative risk for the white participants in 

the highest exposure quartile was low and not significant. 

Additionally, though individual comorbidity data was not utilized in this study, the 

variable PSI was assumed to serve as a summary of various factors – comorbidities among 

them. PSI participant percentages for each PSI class were compared for black and white 

participants. The percentage of black participants who fell into each PSI class was as 

follows: Class I = 9.83%, Class II = 20.31%, Class III = 19.74%, Class IV = 30.70%, and 

Class V = 19.42%. The percentage of white participants who fell into each PSI class was 

as follows: Class I = 5.48%, Class II = 15.29%, Class III = 18.51%, Class IV = 36.86%, 

and Class V = 23.85%. Based upon observations from this data, fewer black participants 

fell within the upper two PSI classes than white participants. It is possible this suggests that 

overall pneumonia mortality risk factors were not as great among black participants. Even 

among those black and white participants in the highest exposure quartile, a similar pattern 

was noted. The percentage of Q4 black participants who fell into each PSI class was as 

follows: Class I = 10.67%, Class II = 19.21%, Class III = 21.95%, Class IV = 32.32%, and 

Class V = 15.85%. The percentage of Q4 white participants who fell into each PSI class 
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was as follows: Class I = 6.22%, Class II = 14.11%, Class III = 17.84%, Class IV = 36.76%, 

and Class V = 25.06%. 

 

Table 23: Effect modification by age (category) on the relationship between PM10 (quartile) exposure and 

mortality at 30 days – partially adjusted logistic regression modela with interaction term (N = 6145, events 

= 597) 
 Adjusted Odds Ratios by Category  

PM10 Quantile  
< 65 years (95% CI) 

n = 2712 

65+ years (95% CI) 

n = 3433 
LRT p-value 

1 (≤ 9.67 μg/m3) referent 

n = 658 

x̅b = 7.45 

referent 

n = 832 

x̅b = 7.45 

 
0.0088 

 
 

2 (> 9.67 μg/m3 and ≤ 15.00 μg/m3) 0.48 (0.27-0.85) 

n = 653 

x̅b = 12.37 

1.28 (0.95-1.72) 

n = 937 

x̅b = 12.32 

3 (> 15.00 μg/m3 and ≤ 20.50 μg/m3) 0.86 (0.52-1.40) 

n = 693 

x̅b = 17.73 

1.05 (0.77-1.43) 

n = 834 

x̅b = 17.67 

4 (> 20.50 μg/m3) 0.67 (0.40-1.12) 

n = 708 

x̅b = 27.00 

1.30 (0.96-1.76) 

n = 830 

x̅b = 26.91 
a = Adjusting for age at enrollment (continuous), age at enrollment (categorical), sex, receival of pneumococcal vaccine, 

receival of seasonal influenza vaccine, race, PSI, direct transfer to ICU, receival of intravenous antibiotic therapy within the 

past 90 days, smoking history, and suspicion of aspiration 
b = Mean PM10 (continuous) for exposure / covariate category 

 

Table 24: Effect modification by sex on the relationship between PM10 

(quartile) exposure and mortality at 30 days – partially adjusted logistic regression 

modela with interaction term (N = 6145, events = 597) 

  Adjusted Odds Ratios by Category  

PM10 Quantile  
Male (95% CI) 

n = 2857 

Female (95% CI) 

n = 3288 
LRT p-value 

1 (≤ 9.67 μg/m3) referent 

n = 683 

x̅b = 7.45 

referent 

n = 807 

x̅b = 7.45 

 

0.1059 

 

 

2 (> 9.67 μg/m3 and ≤ 15.00 μg/m3) 0.91 (0.64-1.30) 

n = 731 

x̅b = 12.33 

1.18 (0.81-1.73) 

n = 859 

x̅b = 12.35 

3 (> 15.00 μg/m3 and ≤ 20.50 μg/m3) 1.02 (0.71-1.46) 

n = 696 

x̅b = 17.74 

0.98 (0.67-1.45) 

n = 831 

x̅b = 17.66 

4 (> 20.50 μg/m3) 0.86 (0.60-1.23) 

n = 747 

x̅b = 27.00 

1.46 (1.01-2.14) 

n = 791 

x̅b = 26.90 
a = Adjusting for age at enrollment (continuous), sex, receival of pneumococcal vaccine, receival of 

seasonal influenza vaccine, race, PSI, direct transfer to ICU, receival of intravenous antibiotic therapy 

within the past 90 days, smoking history, and suspicion of aspiration 
b = Mean PM10 (continuous) for exposure / covariate category 
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Table 25: Effect modification by race on the relationship between PM10 

(quartile) exposure and mortality at 30 days – partially adjusted logistic regression 

modela with interaction term (N = 6113, events = 596) 

  Adjusted Odds Ratios by Category  

PM10 Quantile  
White (95% CI) 

n = 4872 

Black (95% CI) 

n = 1241  
LRT p-value 

1 (≤ 9.67 μg/m3) referent 

n = 1164 

x̅b = 7.47 

referent 

n = 317 

x̅b = 7.40 

 

0.0171 

 

 

2 (> 9.67 μg/m3 and ≤ 15.00 μg/m3) 1.01 (0.76-1.32) 

n = 1269 

x̅b = 12.34 

1.18 (0.53-2.61) 

n = 312 

x̅b = 12.37 

3 (> 15.00 μg/m3 and ≤ 20.50 μg/m3) 0.89 (0.67-1.18) 

n = 1234 

x̅b = 17.57 

2.01 (0.95-4.27) 

n = 284 

x̅b = 17.85 

4 (> 20.50 μg/m3) 0.96 (0.72-1.26) 

n = 1205 

x̅b = 26.94 

2.70 (1.31-5.55) 

n = 328 

x̅b = 27.01 
a = Adjusting for age at enrollment (continuous), sex, receival of pneumococcal vaccine, receival of 

seasonal influenza vaccine, race, PSI, direct transfer to ICU, receival of intravenous antibiotic therapy 

within the past 90 days, smoking history, and suspicion of aspiration 
b = Mean PM10 (continuous) for exposure / covariate category 

 

Effect Modification in Spatially Averaged Data – PM2.5 

We examined effect modification by continuous age, sex, and race on the 

relationship between PM2.5 (continuous) exposure and mortality at 30 days and did not 

observe statistically significant interactions by PM2.5 and age, sex, or race. Analysis of 

effect modification by continuous age on the relationship between PM2.5 (continuous) 

exposure and mortality at 30 days yielded a Wald (one additional degree of freedom) p-

value of 0.4933. Adjusted odds ratio from the partially adjusted logistic regression model 

with interaction term included was 1.04 (95% CI = 0.93-1.16) per five-unit PM2.5 increase. 

Analysis of effect modification by sex on the relationship between PM2.5 (continuous) 

exposure and mortality at 30 days yielded a Wald (one additional degree of freedom) p-

value of 0.6974. Adjusted odds ratios from the partially adjusted logistic regression model 

with interaction term included were as follows: female = 1.07 (95% CI = 0.93-1.23) per 

five-unit PM2.5 increase, male = 1.04 (95% CI = 0.92-1.19) per five-unit PM2.5 increase. 
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Analysis of effect modification by race on the relationship between PM2.5 (continuous) 

exposure and mortality at 30 days yielded an LRT p-value of 0.6102. Adjusted odds ratios 

from the partially adjusted logistic regression model with interaction term included were 

as follows: black = 1.18 (95% CI = 0.91-1.53) per five-unit PM2.5 increase, white = 1.04 

(95% CI = 0.94-1.15) per five-unit PM2.5 increase, other = 0.51 (95% CI = 0.01-39.90) per 

five-unit PM2.5 increase. 

Regarding models containing quartile-based exposures, adjusted (partial model) 

odds ratios for the potential effect modifiers of interest can be viewed in Tables 26-28 

along with log ratio test (LRT) p-value. It should be noted that due to the small number of 

individuals falling into the race category of “other,” the results are minimally useful for 

that particular category and underpowered in the analysis of the relationship between PM2.5 

(quartile) and mortality at 30 days, making it necessary to exclude this category from effect 

modification analysis under these conditions. 

 We examined effect modification by continuous and categorical age, sex, and race 

on the relationship between PM2.5 (quartile) exposure and mortality at 30 days and did not 

observe statistically significant interactions by PM2.5 and continuous age, sex, or race, but 

did observe statistically significant interaction between PM2.5 and categorical age. Analysis 

of effect modification by continuous age on the relationship between PM2.5 quartile 

exposure and mortality at 30 days yielded an LRT p-value of 0.2055. Adjusted odds ratios 

from the partially adjusted logistic regression model with interaction term included were 

as follows: quartile 1 = referent, quartile 2 = 1.01 (95% CI = 0.74-1.38), quartile 3 = 1.25 

(95% CI = 0.93-1.67), quartile 4 = 1.06 (95% CI = 0.78-1.45). Analysis of effect 

modification by categorical age on the relationship between PM2.5 quartiles and mortality 
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at 30 days yielded an LRT p-value of 0.0463. Adjusted odds ratios from the partially 

adjusted logistic regression model with interaction term included were as follows: <65 

years (Q1) = referent, <65 years (Q2) = 0.81 (95% CI = 0.46-1.43), <65 years (Q3) = 1.59 

(95% CI = 0.96-2.64), <65 years (Q4) = 0.95 (95% CI = 0.55-1.65), 65+ years (Q1) = 

referent, 65+ years (Q2) = 1.21 (95% CI = 0.90-1.63), 65+ years (Q3) = 1.08 (95% CI = 

0.80-1.46), 65+ years (Q4) = 1.24 (95% CI = 0.92-1.67). Analysis of effect modification 

by sex on the relationship between PM2.5 quartiles and mortality at 30 days yielded an LRT 

p-value of 0.5936. Adjusted odds ratios from the partially adjusted logistic regression 

model with interaction term included were as follows: male (Q1) = referent, male (Q2) = 

0.95 (95% CI = 0.66-1.37), male (Q3) = 1.17 (95% CI = 0.82-1.66), male (Q4) = 1.11 (95% 

CI = 0.78-1.58), female (Q1) = referent, female (Q2) = 1.31 (95% CI = 0.90-1.92), female 

(Q3) = 1.24 (95% CI = 0.85-1.82), female (Q4) = 1.25 (95% CI = 0.85-1.83). Analysis of 

effect modification by race on the relationship between PM2.5 quartiles and mortality at 30 

days yielded an LRT p-value of 0.2888. Adjusted odds ratios from the partially adjusted 

logistic regression model with interaction term included were as follows: white (Q1) = 

referent, white (Q2) = 1.12 (95% CI = 0.84-1.48), white (Q3) = 1.12 (95% CI = 0.85-1.47), 

white (Q4) = 1.11 (95% CI = 0.84-1.47), black (Q1) = referent, black (Q2) = 1.04 (95% CI 

= 0.48-2.26), black (Q3) = 1.95 (95% CI = 0.95-3.98), black (Q4) = 1.65 (95% CI = 0.79-

3.44). 
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Table 26: Effect modification by age (category) on the relationship between PM2.5 (quartile) exposure and 

mortality at 30 days – partially adjusted logistic regression modela with interaction term (N = 6145, events 

= 597) 
  Adjusted Odds Ratios by Category  

PM2.5 Quantile  
< 65 years (95% CI) 

n = 2712 

65+ years (95% CI) 

n = 3433 
LRT, p-value 

1 (≤ 7.07 μg/m3) referent 

n = 662 

x̅b = 5.51 

referent 

n = 868 

x̅b = 5.54 

0.0463 

 

2 (> 7.07 μg/m3 and ≤ 9.63 μg/m3) 0.81 (0.46-1.43) 

n = 678 

x̅b = 8.36 

1.21 (0.90-1.63) 

n = 858 

x̅b = 8.34 

3 (> 9.63 μg/m3 and ≤ 13.37 μg/m3) 1.59 (0.96-2.64) 

n = 681 

x̅b = 11.40 

1.08 (0.80-1.46) 

n = 865 

x̅b = 11.39 

4 (> 13.37 μg/m3) 0.95 (0.55-1.65) 

n = 691 

x̅b = 17.27 

1.24 (0.92-1.67) 

n = 842 

x̅b = 17.23 
a = Adjusting for age at enrollment (continuous), age at enrollment (categorical), sex, receival of pneumococcal vaccine, 

receival of seasonal influenza vaccine, race, PSI, direct transfer to ICU, receival of intravenous antibiotic therapy within the 

past 90 days, smoking history, and suspicion of aspiration 
b = Mean PM2.5 (continuous) for exposure / covariate category 

 

Table 27: Effect modification by sex on the relationship between PM2.5 

(quartile) exposure and mortality at 30 days – partially adjusted logistic regression 

modela with interaction term (N = 6145, events = 597) 
  Adjusted Odds Ratios by Category  

PM2.5 Quantile  
Male (95% CI) 

n = 2857 

Female (95% CI) 

n = 3288 
LRT, p-value 

1 (≤ 7.07 μg/m3) referent 

n = 703 

x̅b = 5.50 

referent 

n = 827 

x̅b = 5.55 

 

0.5936 

 

 

2 (> 7.07 μg/m3 and ≤ 9.63 μg/m3) 0.95 (0.66-1.37) 

n = 728 

x̅b = 8.40 

1.31 (0.90-1.92) 

n = 808 

x̅b = 8.30 

3 (> 9.63 μg/m3 and ≤ 13.37 μg/m3) 1.17 (0.82-1.66) 

n = 709 

x̅b = 11.42 

1.24 (0.85-1.82) 

n = 837 

x̅b = 11.38 

4 (> 13.37 μg/m3) 1.11 (0.78-1.58) 

n = 717 

x̅b = 17.35 

1.25 (0.85-1.83) 

n = 816 

x̅b = 17.16 
a = Adjusting for age at enrollment (continuous), sex, receival of pneumococcal vaccine, receival of 

seasonal influenza vaccine, race, PSI, direct transfer to ICU, receival of intravenous antibiotic therapy 

within the past 90 days, smoking history, and suspicion of aspiration 
b = Mean PM2.5 (continuous) for exposure / covariate category 
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Table 28: Effect modification by race on the relationship between PM2.5 

(quartile) exposure and mortality at 30 days – partially adjusted logistic regression 

modela with interaction term (N = 6113, events = 596) 

  Adjusted Odds Ratios by Category  

PM2.5 Quantile  
White (95% CI) 

n = 4872 

Black (95% CI) 

n = 1241 
LRT, p-value 

1 (≤ 7.07 μg/m3) referent 

n = 1219 

x̅b = 5.55 

Referent 

n = 302 

x̅b = 5.46 

 

0.2888 

 

 

2 (> 7.07 μg/m3 and ≤ 9.63 μg/m3) 1.12 (0.84-1.48) 

n = 1203 

x̅b = 8.36 

1.04 (0.48-2.26) 

n = 322 

x̅b = 8.30 

3 (> 9.63 μg/m3 and ≤ 13.37 μg/m3) 1.12 (0.85-1.47) 

n = 1225 

x̅b = 11.38 

1.95 (0.95-3.98) 

n = 315 

x̅b = 11.47 

4 (> 13.37 μg/m3) 1.11 (0.84-1.47) 

n = 1225 

x̅b = 17.29 

1.65 (0.79-3.44) 

n = 302 

x̅b = 17.10 
a = Adjusting for age at enrollment (continuous), sex, receival of pneumococcal vaccine, receival of 

seasonal influenza vaccine, race, PSI, direct transfer to ICU, receival of intravenous antibiotic therapy 

within the past 90 days, smoking history, and suspicion of aspiration 
b = Mean PM2.5 (continuous) for exposure / covariate category 
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DISCUSSION 

 

 

 

The purpose of this study was to determine the impact of particulate matter 

exposure on the incidence of mortality assumed to be associated with community-acquired 

pneumonia. It is generally understood that PM is detrimental to humans in a number of 

ways, but the extent of this harm is still being studied, with new findings being reported 

each year. Though perhaps falling away from the spotlight in recent time due to the 

demands of the global SARS coronavirus 2 pandemic, the threat of this omnipresent 

pollutant remains present and substantive. PM exposure has placed a great burden upon 

human populations across the world, both in terms of morbidity and mortality, and its 

impact has been felt even more greatly among those populations lacking the resources to 

reduce such exposures. The oft invisible threat of airborne pollutants such as PM is as much 

a matter of health equity, of environmental justice, as it is of general health concern; it is 

only by fully understanding the scope and magnitude of this issue that we can begin to take 

meaningful steps to reverse it. 

The initial regression models examined in Aim One of this study seemed to indicate 

that little in the way of significant association existed between PM exposures and mortality 

within thirty days. The results in the literature are often to the contrary, generally 

suggesting that PM is associated with increased mortality to some degree (54, 69, 79-82, 

98). It is possible that the lack of significant findings in Aim One may have been partly 

due to residual confounding in analyzed relationships, present as a result of variable 
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categorization choices or by failure to include unnoted confounders. Attempts were made 

to reduce residual confounding by utilizing variables as they were defined in the dataset 

and without extensive categorical modification; for example, continuous age was utilized 

over categorized age in the bulk of modeling, as continuous age was the stronger variable 

and was also the variable presented in the dataset. Additionally, spatial averaging is a fairly 

simplistic interpolation technique, and the combination of the use of this method along 

with limited PM monitoring data may have resulted in the presence of error in the utilized 

exposure data. The Aim One results varied little between the two regression types used, as 

well as between the PM groups analyzed. It was only after examining the role of PM and 

mortality among select groups that the less-evident impact of exposure became more 

apparent.  

Analysis of PM10 Exposure 

 Based upon likelihood ratio test results, race was significantly indicated as an effect 

modifier in the relationship between PM10 exposure and mortality at thirty days. This effect 

was seen when examining exposure from both a continuous perspective and as quartiles. 

Black participants in the study had 19% higher odds of death at thirty days for every five-

unit increase of PM10 exposure that occurred on the day of their hospitalization. Those 

black participants that fell into the fourth quartile of PM10 exposure had 2.7-times higher 

odds of death within thirty days than those in the first quartile of exposure after adjusting 

for confounders and strong predictors. No such relationships between PM10 and mortality 

were detected among the white population of the study. Though not the same pollutant, 

increased PM2.5 exposure has been linked to elevated mortality risk among nonwhite and 

black participants among the 2000-2012 US Medicare population compared to white 
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participants, suggesting the harmful impact of PM exposure may be unequally experienced 

among racial groups in the US (79, 80).  

Overall, examination of race and PM10 exposure indicated a possible 

disproportionate and worryingly high association with mortality at thirty days among black 

participants in the highest exposure quartile. Geospatial mapping of participant racial 

distribution placed the vast majority of black participants within west and central 

Louisville; this could be of concern assuming this sample distribution is representative of 

the general population distribution, as localized PM sources within these areas could 

disproportionately impact a large section of the black population due to limited residential 

variation across space. The map itself was not included to protect the identities of study 

participants. To a limited extent, the findings revealed that black participants had slightly 

elevated means of PM10 exposure versus white participants (e.g., Q4 black participants: 

mean = 27.01 μg/m3; Q4 white participants: mean = 26.94 μg/m3). This idea was in line 

with existing literature, which has suggested that black individuals within the US have an 

average PM burden 1.5 times that of the overall population (87), though the magnitude of 

observed mean differences was not as extensive within this study. 

Additional examination of the black participant population revealed that those who 

fell within the highest exposure quartile had elevated relative risk of outcome occurrence 

versus those who fell within the lower exposure quartiles, but the association was only of 

borderline significance (relative risk = 1.51, 95% CI = 0.95-2.39). Though individual risks 

associated with each exposure quartile were below 10% and therefore relatively rare, it was 

possible the calculated relative risk was different from the observed adjusted odds ratio due 

to the inherent possibility that odds ratios can overestimate relative risk; also, the calculated 
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relative risk did not account for confounders and predictors.  It was also noted that black 

participants seemed to fall within the PSI classes IV and V less than white participants, 

possibly suggesting black participants ultimately had fewer risk factors for pneumonia 

mortality than white participants. If that were the case, however, why was it that significant 

or borderline significant elevations in odds or relative risk of outcome occurrence were 

only observed among black participants, and only among those with the highest levels of 

PM10 exposure? Ultimately, the outcome used in the study only examined all-cause 

mortality within thirty days, so it may be that elevated PM10 influenced thirty-day mortality 

due to non-pneumonia causes disproportionately among black participants, despite the 

likelihood of pneumonia mortality being generally lower for this sub-population. Other 

factors not examined in this study, such as socioeconomic status and proximity to roadways 

and other PM point-sources, may have also influenced the observed results, and will be 

included in future analyses (99-101). 

Both continuous and categorized age were also recognized as significant effect 

modifiers in the relationship between PM10 quartiles of exposure and mortality at thirty 

days based upon LRT results, though no significant measures of association were observed 

among the age/quartile relationships examined. Though not significant, the 65+ years old 

group consistently seemed to show increased odds of mortality in PM10 exposure quartiles 

two through three, as compared to the referent quartile (Q2: AOR = 1.28, 95% CI = 0.95-

1.72; Q3: AOR = 1.05, 95% CI = 0.77-1.43; Q4: AOR = 1.30, 95% CI = 0.96-1.76). Greater 

age being attributed to greater mortality associated with PM exposure has been observed 

in past literature, such as in the 2000-2012 US Medicare population previously mentioned, 

where individuals 85 years and older had significantly elevate relative risk associated with 
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each 10 μg/m3 increase in PM2.5 they were exposed to, versus those who were 69 years and 

younger (79). It should be noted that continuous age was also a significant confounder of 

the main relationship examined in the regression models (e.g. 2% increase in odds per one-

year increase in the partially adjusted continuous PM10 logistic model). 

Sex was not recognized to be an effect modifier as the previous two variables were, 

but still presented some significant findings. First, quantile exposure analysis revealed that 

female participants in the fourth exposure quartile had 46% higher odds of death within 

thirty days than those in the first exposure quartile. Such a relationship was not observed 

among male participants. Though not entirely clear, it is possible that female participants 

are more greatly impacted, or simply differently impacted, by environmental contaminants 

such as PM10 than male participants. This phenomenon has been observed in the literature, 

where females have been noted to have greater total and coarse particle deposition in the 

lungs than males (83). Additionally, females have been found to be at greater risk of death 

via respiratory illness induced by PM exposure (78).  Female marathon runners, but not 

their male counterparts, have been found to have significantly reduced performance as a 

result of increased PM10 exposure (84). The findings of our study, as well as those found 

in the literature, suggest the possibility that females experience PM exposure differently 

from males, and that elevated exposure may be a significantly greater source of harm for 

them. 

Sex was also noted to be a confounder in the regression models, though it seemed 

to only maintain statistical significance in the minimally adjusted models. In the minimally 

adjusted Aim One regression models, it was found that male participants had higher odds 

of death at thirty days than female participants (e.g., male participants had increased odds 
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of 41% in the minimally adjusted continuous PM10 logistic model). The outcome reversal 

among the two sexes that occurred at greater levels of PM10 exposure does lend credence 

to the possibility that female participants were more susceptible to the harmful effects of 

PM exposure at higher levels than male participants, despite males seemingly having 

higher thirty-day mortality in general. 

Receival status of both the pneumococcal and seasonal influenza vaccinations were 

variables recognized as confounders, and both presented significant findings of interest in 

the Aim One regression models. Pneumococcal vaccine receival status was consistently 

significant throughout the models and appeared to be associated with a substantial 

reduction in outcome likelihood (e.g., participants who had received the vaccine had 

reduced odds of 24% in the partially adjusted continuous PM10 logistic model). Seasonal 

influenza vaccine receival status was only significant in the minimally adjusted models but 

was associated with reduced outcome likelihood under these conditions (e.g., participants 

who had received the vaccine had reduced odds of 18% in the minimally adjusted 

continuous PM10 logistic model). Though the benefits of the seasonal influenza vaccine are 

questionable for the outcome of this particular study, the results do indicate that the 

pneumococcal vaccine can potentially improve survival likelihood in patients hospitalized 

for CAP. 

Not surprisingly, several variables linked to increased CAP risk or severity of 

disease in past literature were consistently found to be significant predictors of increased 

mortality at thirty days throughout the Aim One models (19, 32, 33, 37, 52); all values 

presented in this paragraph are from the partially adjusted continuous PM10 logistic model. 

Those participants who fell within the PSI classes IV and V had greater odds of mortality 
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within thirty days than those who were in class I, with AORs of 4.05 and 11.13, 

respectively. Those who were transferred to the ICU upon hospitalization had 65% greater 

odds of dying within thirty days than those who were not transferred to the ICU. Those 

who received intravenous antibiotic therapy within the past ninety days had 55% greater 

odds of dying within thirty days than those who did not receive IV antibiotics. Those who 

were considered to be at-risk for aspiration had 62% greater odds of dying within thirty 

days than those not at risk for aspiration. 

Surprisingly, smoking status was not significantly associated with increased 

likelihood of outcome. Most current smokers were comparatively younger in age, with 

68.6% being under the age of 65 years. The majority of past smokers, 73.3%, were 65 years 

or older. Though not significant, it was strange to observe that participants among the 

previously mentioned categories were at reduced likelihood of mortality at thirty days 

compared to non-smokers. It is unclear why such relationships were observed. One 

possibility is that the current smokers who participated in the study may be relatively low-

risk smokers. This could mean that those who were at greater risk of the outcome due to 

smoking may have already died, while those left may be less prone to complications due 

to smoking. In addition to being younger, 55% of the current smokers within the study fell 

within the first three classes of the PSI, suggesting the majority of the included current 

smoker population was at lower risk of mortality resulting from pneumonia, often due to 

having less risk factors (e.g., comorbidities) that would increase pneumonia severity. 

Assuming it is the case that the included current smokers were lower risk smokers, this 

appears to be an example of volunteer bias, meaning that those current smokers who 
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volunteered to take part in the study did not necessarily represent the current smokers 

within the general population.  

Comments Concerning Analysis of PM2.5 Exposure 

 Largely, results of models containing variations of PM2.5 as the exposure closely 

mimicked those of corresponding PM10 models. In Aim One, AORs and AHRs for all 

covariates from models containing variations of PM2.5 as the exposure were very similar to 

those reported in corresponding models containing variations of PM10 as the exposure and 

were significant in all the same ways.  Diverging from this similarity were the PM2.5 

exposure models of Aim Three, which did not reflect the same effect modification results 

and significant findings as those reported for the PM10 exposure models. It was found that 

categorized age was an effect modifier of the main relationship of study, but no other 

significant associations were otherwise revealed. No significant relationships were 

observed among the Aim Three analyses, despite the fact that past studies have found 

increased levels of PM2.5 to be associated with elevated relative risk of mortality for older 

individuals, nonwhites, and female and male individuals (79, 80). PM10 and PM2.5, though 

both forms of particulate matter, are distinct particles, and form from different processes 

and likely have differing chemical compositions (60, 61); it is possible that the differences 

in observed results between the two forms of particulate matter in Aim Three analyses are 

partially due to biological differences in how participants reacted to the two types of 

exposure particulates. 

Comments Concerning the Use of Kriging 

 The models resulting from the attempted use of kriging in this study were ultimately 

of little use from a prediction standpoint. Inability to run kriging models for small amounts 
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of data and the observation of questionable patterns based on sparse data points were 

significant indicators that more advanced geospatial / geostatistical interpolation methods 

require robust sources of data to adequately function. A sufficient sample size is required 

to yield useful results for Kriging. The results clearly illustrated the importance of 

sufficient sample size when conducting kriging. No concrete lower quantity limit of data 

point sources exists for this method, but the number is likely dependent on the size of the 

area being examined. In this case, the study area was quite large, and the number of point 

sources comparatively small, numbering four or fewer for the entire 398 square mile area. 

Future kriging efforts pertaining to PM concentrations would benefit greatly from either 

the use of alternative, more spatially abundant data sources or by the taking of new, 

localized PM measurements for a variety of points across the study area. 

Strengths 

 There are several strengths evident within the study. First, the HAPPI dataset itself 

is robust and effectively mimics the established demographic profile of the study region in 

many ways, with clear exception being given to the average age of study participants versus 

that of the general population. This is to be expected, given the HAPPI population is 

entirely composed of CAP-hospitalized individuals, who tend to be inherently older in age. 

Second, the HAPPI dataset accurately characterizes the burden of CAP among hospitalized 

individuals within the study timeframe, given the relative accessibility of the study and the 

high level of recruitment involved. Third, the HAPPI sample is relatively large in size, 

ensuring adequate power for most of the analyses that were carried out. Fourth, though 

relatively simplistic in methodology, the use of spatial averaging allowed for estimation of 

participant PM exposure where more advanced methods could not adequately function. 
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Fifth, the HAPPI dataset supplied temporal data for the cohort, which allowed for survival 

analysis to be conducted. The temporal data also provided a clear timeline for exposure 

and outcome occurrence, ultimately proving that the former preceded the latter. Sixth, 

participant information was based upon electronic medical records, which are largely 

accurate and up-to-date, and often reduce the chance for issues such as recall bias that result 

from the use of alternate data sources (e.g., self-completed questionnaires). Finally, access 

to limited death certificate information ensured that those who were reported as 

manifesting the outcome did truly experience the outcome. 

Limitations  

As in any study, some limitations were present. Perhaps the most substantial 

limitation was the fact that address-specific PM concentration measurements were not 

available for study participants, and that such values had to be interpolated from data 

provided by the small number of monitoring stations located within the study area. Though 

having to interpolate such values was not ideal, it did provide experience in utilizing 

geostatistical methods. A second limitation was that the sparsity of monitoring stations, 

and therefore PM point values, severely limited the ability to use more complicated 

geostatistical interpolation methods – kriging, in this case. A third limitation was that cause 

of death information was largely unavailable for study participants, necessitating the use 

of a proxy outcome in place of mortality directly attributed to CAP. A fourth limitation 

was that the current study only examined PM exposure at the time of hospitalization. This 

allowed for the examination of the short-term impact of PM on thirty-day mortality, but 

not the long-term impact. Examining the impact of PM concentrations at alternative points 

in time, such as at one month prior to hospitalization, may have given a better 
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understanding of the exposure/outcome relationship in the long-term. Data for analysis of 

long-term impacts are available, meaning the capacity exists to examine these relationships 

going forward. A final limitation was that the current study did not account for 

socioeconomic status, proximity to PM point-sources, or seasonality; these variables were 

not directly included in the datasets utilized. 

Future Research  

            The key associations of interest largely yielded results that were not statistically 

significant; however, the findings that were significant provided useful insights into factors 

that may influence the outcome and into groups that may be at greater risk due to exposure. 

Being able to address the data limitations present in the current study would serve as a boon 

to further research endeavors on the subject. Use of a more abundant exposure data source 

that better characterizes the entirety of the study area would be ideal (e.g., having a larger 

number of sampling sites distributed across the county, use of remote sensing data to 

characterize PM levels (102) by census block group). Having access to cause of death 

information would also be ideal, as it would allow for a more thorough examination of the 

impact of PM on CAP-specific mortality. It is clear from the existing literature, and from 

the study to a certain extent, that PM exposure is potentially harmful, and further work is 

needed to determine the exact nature of the relationship between PM exposure and CAP-

associated mortality. In addition to fixing data limitation issues, such work would include 

examination of long-term PM exposure impact on the occurrence of the outcome, as well 

as incorporation of possible missed confounders (e.g., seasonality). 

Conclusions 
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 Those female and black participants who fell within the highest levels of PM10 

exposure within the established exposure quartiles had significantly increased odds of 

mortality at thirty days, as compared to those who fell within the referent lowest exposure 

quartile. Additionally, numerous other factors, including pneumococcal vaccine receival 

status, elevated PSI class, transfer to the ICU at the time of hospitalization, receival of 

intravenous antibiotic therapy within the past ninety days, and being at risk for aspiration, 

were significantly associated with the outcome, and may influence or help predict outcome 

likelihood. Kriging is a robust spatial interpolation method, and though it was not found to 

be a functional option within this particular study, may be useful in future work where 

exposure point data are more plentiful. All-together, the results indicate that elevated 

particulate matter exposure may increase the odds of mortality among certain groups within 

a population of adults hospitalized for community-acquired pneumonia, suggesting that 

reduction of such exposures could be key in saving lives going forward. 
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