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ABSTRACT 

COMPUTATIONAL FRAMEWORKS FOR MicroRNA FUNCTIONAL 

ANALYSIS OF INTER-KINGDOM AND INDIRECT TARGETING 

 

Mohammed Sayed 

April 19, 2021 

 

Genes are DNA sequences that encode the information needed to synthesize 

molecules necessary for the function of the cell. Some genes are called protein-coding 

genes because they have the code required to manufacture proteins. The expression of a 

certain gene means its product (protein) is produced. Although some genes are not 

protein-coding, they regulate the gene expression of other protein-coding genes. Of these, 

microRNAs (miRNAs) are small RNA molecules that inhibit the expression of other 

genes by binding to their mRNA transcripts. miRNAs have been shown to be linked to 

several biological processes like development and diseases like cancer. 

Recently, researchers have hypothesized that miRNAs are involved in the 

regulation of the expression of genes from other species. Although tools to predict 

miRNA target genes are available in the case when miRNAs and target genes belong to 

the same species, to our knowledge there are no available tools to predict inter-kingdom 

miRNA target genes (miRNA and target genes belong to two different kingdoms). To 

address this limitation, we developed an efficient tool to predict potential gut bacterial



 

vi 
  

genes targeted by miRNAs from edible plants. We successfully predicted ginger miRNAs 

that target two genes from a gut bacterial strain called Lactobacillus rhamnosus GG. To 

maintain the efficiency of our tool while using a larger number of miRNAs and bacterial 

strains, we used a hash-table to index the sequences of bacterial genes. 

To predict the function of a miRNA, we start by compiling the list of direct target 

genes (ones with binding sites) and then we search for biological process in which these 

genes are enriched. This approach does not include other genes affected by the miRNA 

but do not necessarily have a physical binding site (indirect targets). An example of an 

indirect target is the gene that doesn’t have a binding site and is regulated through other 

direct targets like transcription factors. To overcome this limitation, we developed 

miRinGO an interactive web application to include these indirect targets in the functional 

analysis. Our approach showed better performance compared to the existing approach in 

predicting biological processes known to be targeted by certain miRNAs.  
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1 INTRODUCTION 

 

MicroRNAs (miRNAs) are small non-coding RNA sequences (21-24 nucleotides 

long) that have a prominent role in gene regulation. MiRNAs mainly act post-

transcriptionally by binding to mRNA transcripts and either inhibit translation (protein 

synthesis) or initiate the degradation of the target transcript. Computational tools have 

been introduced to predict potential target genes and biological processes affected by a 

specific miRNA or a set of miRNAs. Despite extensive work in miRNA research, the full 

spectrum of the role of miRNAs in gene regulation is still to be revealed.  

1.1 Motivation 

Typically, to predict the function of a miRNA, computational tools follow a two-

step process. The first step is to identify the list of potential target genes and then they 

identify biological processes that are enriched in these target genes. Although many tools 

are developed to do each of the two steps, they have some limitations. For instance, 

miRNA target prediction tools are species-specific (i.e. they are used to predict target 

genes when miRNAs and targets belong to the same species e.g. human). Also, current 

tools include only target genes with physical binding sites (direct targets) in the 

enrichment step.
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In this dissertation, we discuss the need for computational tools to address inter-

kingdom miRNA targeting (part I). We also discuss the motivation to develop new tools 

for miRNA functional analysis (Part II). 

1.1.1 Part I: inter-kingdom miRNA targeting 

The overall goal of this project is to determine how edible plants (e.g. ginger and 

broccoli) affect our gut bacteria and ultimately our health. Gut bacteria play an important 

role in human health. For example, help digest hard-to-digest dietary fibers, defend the 

host against harmful microorganisms, and synthesize essential vitamins and amino acids. 

The imbalance of gut bacteria can lead to multiple diseases including inflammatory 

bowel diseases (IBD), obesity, liver disease, and cancer.  

Studies have shown that food including edible plants can affect the balance of gut 

bacteria. Edible plant cells use secreted nanoparticles called exosomes to communicate 

with other cells and tissues [1]. The cargo of exosomes includes different types of 

molecules: proteins, DNAs, mRNAs, and miRNAs. Researchers hypothesize that 

exosomes from edible plants may interact with gut bacteria.  

MiRNAs play a role in the regulation of target gene expression even across 

kingdoms [2]. In our case, we are dealing with two different kingdoms (plants and 

bacteria), and each has its miRNA targeting mechanism. In animals, a limited number of 

base-pairings (~ 7 bp) is sufficient for miRNA targeting. On the other hand, in plants 

perfect (or near-perfect) base pairing between miRNA and mRNA sequences is required. 

Although miRNAs have been shown to target gut bacteria [3], the actual mechanism is 

still unknown. For the above reasons, new computational tools are needed to identify 

cross-kingdom miRNA targets.  
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1.1.2 Part II: human miRNA functional analysis 

To computationally predict miRNA-targeted biological processes, typically 

potential target genes are compiled using one or more miRNA target prediction tools and 

a standard gene enrichment analysis [4] is used to find potential biological processes 

enriched in these genes. Although current tools are widely used, they have some 

limitations. Of these, existing tools consider only direct targets (ones with physical 

binding sites) of miRNAs but do not consider other targets that do not necessarily have 

miRNA binding sites [5].  

 

1.2 Dissertation Contributions 

To address the aforementioned limitations, we developed the following 

computational frameworks. 

1.2.1 A framework for inter-kingdom miRNA targeting 

Given the importance of the miRNA seed region in targeting mechanisms in 

different kingdoms, animals, plants, and viruses, we developed a seed-based miRNA 

targeting framework to find potential gut bacterial genes targeted by edible plant 

miRNAs. In this framework, first gut bacterial genes were searched for potential plant 

miRNA binding sites. Then, we employed a technique proposed by Murphy et al. [6], 

initially to predict targets of viral miRNAs, to identify target genes with enriched binding 

sites. We showed that using our tool we can identify ginger miRNAs that target genes 

from Lactobacillus rhamnosus GG (LGG) bacteria. To validate our results, two miRNAs 

have been experimentally validated to downregulate and bind to two LGG genes. 
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1.2.2 A web application for human miRNA functional analysis 

We developed, miRinGO, an interactive R Shiny application [7] to predict 

potential biological processes both directly and indirectly targeted by human miRNAs. In 

addition to a list of top-ranked biological processes, the web application gives the user a 

visual summary of the results. It is freely available from GitHub at 

https://github.com/Fadeel/miRinGO 

1.3 Dissertation Outline 

The remainder of this dissertation is organized as follows. Chapter 2 provides an 

introduction to molecular biology and miRNA targeting techniques. Chapter 3 introduces 

a proposed method to predict potential gut bacterial genes targeted by edible plant 

miRNAs. Chapter 4 introduces the proposed framework to find biological processes 

indirectly targeted by miRNAs in humans. Chapter 5 provides conclusions and potential 

future work.



 

5 
  

2 BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction to molecular biology  

2.1.1 Living organisms and cells 

It is estimated that there are more than 10 million different living species on Earth 

[8]. The building block of these organisms is the cell. Although the cell size can vary 

from 1µm (bacteria) to 100 µm (plants), all cells share mainly two characteristics [9]. 

First, the ability to take up nutrients from the environment and converting them to other 

molecules and energy. Second, the ability to make many copies of themselves and 

passing genetic material to their offspring.   

Some organisms are composed of single cells like bacteria but other species like 

humans can have up to 1013 cells. Cells can be categorized into two types: prokaryotic 

and eukaryotic. Prokaryotic cells do not have a nucleus and on the other hand, eukaryotic 

cells have a nucleus where it contains the cell’s DNA. Prokaryotes include bacteria and 

archaea. Animals, plants, and fungi are examples of eukaryotes. 

Cells are surrounded by fat-based molecules (phospholipids) forming what is 

called the cell membrane (or plasma membrane) [10]. Inside the cell membrane, cellular 

machinery and other structural units exist within a water-based environment called 

cytoplasm. Cells contain a variety of molecules including nucleic acid, proteins, 

carbohydrates, and lipids. Nucleic acids and proteins will be discussed in more detail 

below.



 

6 
  

 

 

Figure 2-1: Eukaryotic and prokaryotic cells [11] 

2.1.2 Nucleic acids  

Nucleic acids are the molecules that contain genetic information. There are two 

types of nucleic acids: deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).  

2.1.2.1 DNA 

DNA consists of a sequence of smaller molecules called nucleotides [10]. Each 

nucleotide contains three molecules: a nitrogenous base, a sugar molecule, and a 

phosphate group. There are four different DNA nucleotides based on the nitrogenous 

base: adenine (A), thymine (T), cytosine (C), and guanine (G) as shown in Figure 2-2.  

Although DNA can be found as single-strand polynucleotides, it is more stable 

when two strands come together and bases from one strand are bound (paired) to the 

complementary bases for the other strand via hydrogen bonds as shown in Figure 2-3.  

Each “A” from one strand always pairs with a “T” from the other strand and each “G” 

from one strand pairs with a “C” from the other strand.  
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Figure 2-2: chemical structure of nucleotides  [12] 

 

Figure 2-3: DNA base pairing [12] 
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2.1.3 Proteins 

Proteins are large molecules that contribute to a cell’s function and structure. For 

example, structural proteins maintain cell shape and are part of structural elements of 

connective tissues like cartilage and bone [13]. Other proteins called enzymes work as 

catalysts for biochemical reactions within the cell. Another category of proteins are 

attached to the cell membrane and have diverse functionality e.g. transporting molecules 

from/to the cell, activating an intracellular process upon receiving an extracellular signal 

or attach the cell to a specific location. 

 

Figure 2-4: Example functions of membrane proteins [10] 

Each protein consists of a series of building blocks called amino acids. Each 

amino acid consists of a central carbon atom, an amino group, a carboxyl group, a 

hydrogen atom, and a side chain. Multiple amino acids are bound together by peptide 

bonds to form a long chain of polypeptides or a protein as shown in Figure 2-5. The 

linear sequence of amino acids is considered the primary structure. Protein’s primary 

structure determines its conformation and ultimately the three-dimensional shape. 
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Figure 2-5: Protein building blocks [10] 

2.1.4 The central dogma of molecular biology 

The term “central dogma” was coined by Francis Crick in 1956 to describe the 

flow of information (genetic code needed to form a protein) from DNA to protein. It 

states that  

“once information has got into a protein it can’t get out again” [14].  
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The information flow was classified into three categories. General transfers occur 

in most cells and include DNA  DNA, DNA RNA, and RNA  protein. Special 

transfers occur under specific conditions and include the following transfers RNA 

RNA, RNA  DNA, and DNA  protein. The last category includes transfers unlikely 

to occur (protein   protein, protein  RNA, and protein  DNA). 

2.1.5 Genes and gene expression 

Genes are DNA sequences that encode the information needed to synthesis a 

protein. In humans, a child inherits a copy of the same gene from each parent. Genes are 

expressed when their corresponding proteins are manufactured [15]. Gene expression 

process goes through two main steps: DNA transcription and translation as shown in 

Figure 2-6. 

DNA transcription is the process in which information required for protein 

synthesis is transferred to an intermediate molecule called messenger RNA (mRNA). The 

transcription process is initiated by an enzyme called RNA polymerase where one strand 

of DNA is used as a template [16].  

During translation process, the genetic code in the mRNA molecule is read 

sequentially to produce a linear chain of amino acids (protein). With help of translation 

machinery called the ribosome, every three nucleotides in mRNA correspond to one 

amino acid according to a specific code as shown in Figure 2-7. 
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Figure 2-6: Gene expression process [15]  

 

Figure 2-7: Genetic code [15] 
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2.1.6 Regulation of gene expression  

The process of gene expression involves decoding genetic instructions encoded in 

the DNA to synthesize proteins. The set of proteins expressed in a cell determines the 

structure and function of this cell. Although all cells in a multicellular organism (e.g. 

animals, plants, …) have the same copy of the DNA sequence, different sets of genes are 

expressed in different cell types and some genes are only expressed in a specific cell type, 

for example, Hemoglobin (which is used to carry oxygen) is expressed specifically in red 

blood cells. Another protein, tyrosine aminotransferase (which is used to break down 

tyrosine in food), is specifically expressed in liver cells [8].  

The process of gene expression goes through multiple steps from DNA to proteins 

through RNA, therefore the amount of expression can be controlled at each step. There 

are multiple levels of regulation as detailed below.   

2.1.6.1 Epigenetic alterations 

In which genes are switched on or off without genetic changes (changes in DNA 

sequence) but in response to external factors like development, aging, exercise, and diet 

[17]. There are two main types of epigenetic changes as shown in Figure 2-8. The first 

mechanism is called methylation and is facilitated by adding a methyl group to a DNA 

molecule. If specific regions in the DNA (for example promotor regions) are methylated, 

this will repress the expression of the nearby gene. The second mechanism which is 

called histone modification happens when chemical groups are added to histones. Since 

DNA is wrapped around histones, these modifications can determine which genes are 

available for expression (unwrapped) or turned off (wrapped).  
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Figure 2-8: Epigenetic mechanisms for gene regulation [18] 

 

2.1.6.2 Transcriptional regulation 

In addition to epigenetic mechanisms, a group of protein-coding genes called 

transcriptional regulators (factors) activate or repress the expression of a gene by binding 

to a specific DNA sequence usually 5-10 nucleotides near that gene. This binding 

initiates a sequence of reactions that determines which genes to be transcribed and 

additionally the rate of transcription [19].   
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Figure 2-9: Transcription factors initiate the control of gene expression [20] 

 

2.1.6.3 Alternative splicing 

Transcription of a gene from a DNA sequence produces a long RNA transcript 

called precursor mRNA (pre-mRNA) transcript. Pre-mRNA transcripts typically undergo 

a process called RNA splicing in which non-coding sequences of the gene (introns) are 

removed and protein-coding sequences (exons) are joined back together to form mature 

RNA (mRNA) transcript [21] that has the code to synthesis a specific protein. Some 

genes are alternatively spliced meaning that some exons are either included or excluded 

in the final mRNA transcript. Alternative splicing (AS) makes it possible for a single 

gene to produces multiple proteins as shown in Figure 2-10. 
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Figure 2-10: An example of an alternatively spliced gene [22] 

2.2 MicroRNAs  

MicroRNAs (miRNAs) are small non-coding RNA molecules that are ~22 

nucleotides and are known to be involved in the regulation of the expression of other 

protein-coding genes (target genes) and have an essential role in many biological 

processes including development and diseases like cancer. The first miRNA was 

discovered in Caenorhabditis elegans (C. elegans) (the worm) in 1993 [23] [24] by 

Ambros and Ruvkun groups [25]. This miRNA (lin-4) was found to be essential to the 

normal development of C. elegans by regulating the expression of the lin-14 protein.  

2.2.1 Biogenesis of miRNAs 

miRNA genes can be found within introns of other protein-coding genes 

(Mitrons) or independent from other genes (intergenic miRNAs) [25]. Biogenesis of 

miRNAs starts with transcribing miRNA genes into primary transcripts (pri-miRNAs) 

using RNA polymerase II/III. Processing of pri-miRNAs to produce mature miRNAs 
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follows different pathways depending on the locus of the miRNA gene as shown in 

Figure 2-11.  

In the canonical pathway, longer pri-mRNA transcripts (~1K nucleotides) are 

processed by a microprocessor complex, consists of two proteins (DGCR8 and Drosha) 

to produce a transcript with a stem-loop structure known as pre-miRNA (~60 nucleotides 

in animals). After producing pre-miRNAs, they are exported to the cytoplasm where the 

loop is removed by Dicer protein, and the double-stranded RNA is released. Each strand 

of the mature miRNA can be loaded into one of the Argonaute (AGO) family of proteins 

to form a miRNA-induced silencing complex (miRISC).  

In the non-canonical pathway, some intronic sequences following the splicing 

process have the structural features of pre-miRNAs, therefore bypassing the Drosha-

mediated processing [26].   
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Figure 2-11: Different pathways of animal miRNA biogenesis [27] 

 

2.2.2  MicroRNA targeting mechanism in animals 

The following papers in this section cover the process of miRNA-based gene 

silencing in animals. Such information could enhance the performance of tools developed 

for the computational prediction of miRNA targets. 

Cisse, et al. [28] addressed the question of what the minimum number of base-

pairings is needed to establish a stable association of two DNA/RNA strands. This could 

be used to infer some of the rules governing small RNA-based gene silencing, including 

miRNA-based gene regulation. To answer this question, they synthesized 8 nucleotides 

(nt) sequences representing the seed of human miR125 with mismatches at the 1st nt 



 

18 
  

(leaving 7 contiguous nts) and at the 2nd nt (leaving 6 contiguous nts). The association 

rate with seven contiguous nts was 450 times bigger than the one with 6 nts. This finding 

supports the hypothesis that at least seven Watson-Crick base pairs in the miRNA seed 

region are needed for rapid and effective targeting. 

Wee, et al. [29] provided an insight into how the Argonaute (Ago2) protein in 

RISC (RNA-induced silencing complex) shapes the miRNA guide. They showed that 

Ago2 divides a miRNA sequence into five functional domains. These domains are the 

anchor (1st nt), seed (2nd – 8th nt), central (9th – 12th nt), 3’ supplementary (13th – 16th nt), 

and tail region (17th – 21st nt). Their results showed that the miRNA-guided silencing 

complex is used for translation inhibition without cleaving target mRNA transcript. On 

the other hand, small-intervening RNAs (siRNAs) are responsible for mRNA cleavage. 

Unlike mismatches at the seed ends, mismatches in the center of the seed regions are not 

favorable for effective gene silencing. Although G-U wobbles in the seed region were 

considered by existing miRNA target prediction tools, this paper suggests that G-U 

wobbles should be treated like mismatches and should not be allowed. 

Salomon, et al. [30] studied the binding properties of guide RNA that are bound 

to Ago protein within the RISC complex. They found that seed nucleotides [2nd – 5th nt] 

are involved more at the initial binding to target mRNA and then Ago is conformed to 

expose nucleotides [6th – 8th nt] and [13th – 16th nt] for more stable binding. Also, 

Extensive binding on the 3’ end could compensate for mismatches in the seed region [4th 

– 5th nt]. They also suggested that the binding of nucleotides [9th, 10th] of miRNA should 

be penalized in miRNA target prediction algorithms due to the unfavorable conformation 

in Argonaute. 
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Broughton, et al. [31] investigated the specificity of seed-based miRNA targeting. 

To answer this question, they used individual-nucleotide resolution cross-linking 

immunoprecipitation (iCLIP) to extract miRNA-target chimeras by ligating each miRNA 

to its target. Since miRNA families have common seed regions but different 3’ 

sequences, they were used to determine if all miRNAs in a family have common targets 

or not. The results suggest that miRNA family members have shared targets in addition to 

targets specific to each member. This paper highlights the importance of pairing the 

miRNA 3’ supplementary sequence for enhancing the predictive power of current 

miRNA target prediction tools.   

Chandradoss, et al. [32] studied how the Ago protein finds target sites in mRNA. 

They used a single-molecule FRET (Förster resonance energy transfer) assay to visualize 

the search process used by Ago2 to find miRNA target sites. They found that the 

miRNA-bound Ago employs a lateral diffusion mechanism for searching and identifying 

target sites. First, the sub-seed region [nt 2-4] is used for initial searching and once a 

complete seed pairing is found [nt 2-8], the binding becomes stable. This model suggests 

that target regions might be enriched in the trinucleotides [nt 2-4] of the seed region 

which could be an additional feature to be added to miRNA target prediction tools.  
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2.2.3 Computational prediction of miRNA targets in animals 

Saito et al. [33] discussed six main features currently used by miRNA target 

prediction tools. These features are listed as follows, 

1. miRNA-mRNA base pairing at the 5’ miRNA seed region [1st to 8th 

nucleotide]: this feature is considered the most relevant feature used by the silencing 

complex to find target genes. Stringent seed paring is considered more effective than seed 

pairing with mismatches.  

2. Location of target sites within mRNA transcript: although miRNA-guided 

silencing complex may target 5’UTR and CDS regions, the 3’UTR contains most of the 

target sites.  

3. Conservation of miRNAs and their targets: miRNA targets tend to be in regions 

conserved among closely related species. Using conservation information in miRNA 

target prediction tools could increase specificity. Of course, this increase occurs with a 

cost to sensitivity. 

4. Site accessibility: to enable miRNA-mRNA hybridization, a target site must be 

easily accessible. Estimation of site accessibility can be achieved by calculating the 

minimum free energy of an mRNA secondary structure. Although theoretically, an 

mRNA secondary structure with the minimum free energy is most likely to occur 

naturally, this might not be the actual structure because RNA secondary structure is 

dynamic [34]. Also, the computational complexity of these algorithms is 𝑂𝑂(𝑛𝑛3) [35], 

where n is the length of the RNA transcript.  

5. Multiple target sites Having more than one potential miRNA target site could 

enhance the role of miRNA as a translation inhibitor as it increases the chances of 

binding of silencing complex and mRNA transcript. 

6. Expression profiles of miRNAs and mRNAs: due to their role in translation 

inhibition and mRNA degradation, the expression of miRNAs is expected to be 

negatively correlated with the expression of targeted mRNAs. Although using this feature 

could help exclude some of the false positives, it could overlook some true miRNA-

mRNA pairs that are negatively correlated at the protein level only. 
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Saito et al. [33] provided a useful comparison of approximately 30 different 

prediction tools based on the presence or absence of these six features. On the other hand, 

it did not provide a performance analysis (accuracy and computational complexity) for 

these tools.  

Bradley, et al. [36] provided a review of two classes of miRNA target prediction 

tools, namely, classical tools and tools trained by data generated from CLIP (cross-

linking and immunoprecipitation) or CLIPL (cross-linking and immunoprecipitation and 

ligation) high-throughput experiments. This new class of prediction tools (CLIP & 

CLIPL-based) is an improvement in the identification of transcriptome-wide miRNA 

targets.  

In CLIP-based experiments, RNAs bound to the AGO protein are directly 

sequenced, but there is still ambiguity linking specific miRNA to a specific mRNA.  

Although CLIPL-based experiments use a similar process, an additional step is added that 

ligates a miRNA to its mRNA fragment. By sequencing miRNA-mRNA chimeras, a 

specific miRNA can be linked to its target site. 

Although the high-throughput nature of CLIP&CLIPL experiments makes it 

suitable for training machine learning-based target prediction algorithms, these methods 

still suffer from technical difficulties that require well-trained personnel to manage. 

Another issue with these experiments is that several non-canonical target sites (seed 

pairing with mismatches and bulges) have been reported, which are thought to be 

ineffective sites.  
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Fan, et al. [37] provided an overview of 38 sequence-based miRNA target 

prediction tools and a comparison of seven popular tools based on their predictive 

performance, ease of use, availability, and impact. The authors compared TargetScan 6.2 

[38], PicTar [39] , DIANA-microT-CDS [40], miRanda [41], EIMMo3[42], mirTarget2 

v4 [43], miRmap v1.1 [44]. They assessed the predictive performance based on four 

different datasets, duplex-level (the actual site within mRNA transcript), gene-level, 

mRNA expression-level, and protein-level.  

The results of these assessments suggest that there is no globally best tool. 

Although TargetScan and miRmap provided high overall predictive performance, PicTar 

and MirTarget2 showed high specificity. As expected, gene-level prediction performance 

was better than duplex-level predictions, as gene-level predictions can make use of more 

information (enrichment of multiple seed pairings). Finally, many (>83%) of non-

functional target sites have at least 6bp in their seed-pairings, which makes the miRNA 

target prediction more challenging.  

Oliveira, et al. [45] focused on finding the best approach for using miRNA 

prediction tools. The authors argue that the current trend of using the intersection of 

targets identified with different prediction tools is not the best way to combine results, as 

this approach suffers low sensitivity and often misses many true targets. To address this 

question, they compared the targets generated from four different individual tools 

(TargetScan [46], miRanda-mirSVR [41], Pita [47], and RNA22 [48]) and the 

intersection/union of different subsets of these tools. In terms of prediction performance, 

the authors suggest using the union of target prediction results from Targetscan and 

miRanda when high specificity is needed and the union of target prediction results from 
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Targetscan, miRanda, and RNA22 if higher sensitivity is need while preserving good 

specificity. Although this paper addressed a practical aspect to solve the miRNA target 

prediction problem, it has some limitations. For its test dataset, true negatives were 

defined as those that are neither validated (according to mirTarbase database) nor 

predicted. However, this assumption is not accurate since some true targets might not be 

validated till this point in time Also, they did not provide a plausible explanation for why 

this particular combination of tools might have the best predictive performance. 

Gumienny, et al. [49] introduced MIRZA-G tool for predicting miRNA targets 

and siRNA off-targets. Since siRNA off-target sites are not likely to be conserved, using 

conservation-based miRNA target prediction tools is not suitable. In addition to the 

classical features (site accessibility, position within 3’UTR, flanking G/flanking U 

content, conservation information), MIRZA-G employs miRNA-target interaction energy 

as a new feature. A logistic regression model was used to predict the efficacy of the target 

site based on the previous features.  

Agarwal, et al. [46] introduced the prediction model used in the latest version of 

TargetScan (v7). Although TargetScan is considered the leading tool for miRNA target 

prediction, previous versions were mainly focusing on conserved target sites which 

reduces its sensitivity and increases the likelihood of missing siRNA off-targets. The new 

multiple regression model employs 14 features and covers information regarding seed 

type, context around the target site, 3’ pairing, target transcript, and site accessibility.  

Since TargetScan considers only canonical seed types (no mismatches or GU 

wobbles), the authors examined the efficacy of non-canonical target sites which are 

abundantly discovered in the new CLIP-based experiments. Surprisingly, they found that 
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these sites are not functional concerning translation inhibition. Although the proposed 

model surpassed other miRNA target prediction tools, there are still some limitations. 

First, despite being simple and easy to interpret, the multiple regression model assumes 

that there is a linear relationship between target site efficacy and each of the input 

features which may not be the case for some features. Second, regarding test data, only 

gene expression at the mRNA level was used which may not be sufficient for detecting 

translation inhibition. Third, only target sites within the 3’UTR are included which could 

miss other functional targets in the CDS/5’UTR regions.  
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3 PREDICTION OF POTENTIAL BACTERIAL GENES TARGETED BY PLANT 

MIRNAS 

3.1 Introduction 

Previous studies have shown the role of small non-coding RNAs especially 

miRNAs in the regulation of cross-kingdom gene expression. As described in Liang, et 

al.’s study [50], cross-kingdom regulation occurs when a microRNA and a target gene 

belong to two different species (e.g., different kingdoms such as animals, plants, bacteria, 

viruses, etc.). 

Although the way cells within the same species communicate is known (e.g. 

communication between neurons through hormones in humans [51]), the way cells from 

two different species exchange signals was not discovered until recently.  

In this chapter, we propose a computational framework to investigate a new type 

of cross-kingdom gene regulation by predicting potential gut bacterial genes targeted by 

edible plant miRNAs (e.g. ginger miRNAs). 

3.2 Background 

3.2.1 Cross-kingdom gene regulation 

Liang, et al.’s study [50] provided four different examples of the new role of 

miRNA in cross-kingdom gene regulation. Firstly, Plant miRNAs were found to exist in 

human tissue and sera and at relevant concentrations. Of these plant miRNAs, MIR168a 

was shown to target low-density lipoprotein receptor adaptor protein 1 (LDLR AP1) [52]. 



 

26 
  

Also, Human miRNAs were found within the malaria parasite Plasmodium 

falciparum and were shown to affect its growth [53]. On the other hand, Viral miRNA    

KSHV-miR-K12-11 was found to mimic and share common targets with human miRNA 

miR-155 [54]. Lastly, Human miRNA miR-122 has a role in stimulating the replication 

of the hepatitis C virus by stabilizing its viral RNA and prevent its degradation [55] by 

targeting two 5’ UTR sites. 

Liu et al. [3] provided additional evidence of the role of cross-kingdom miRNA-

based gene regulation. They showed that human miRNAs from epithelial and other cells 

can enter gut bacteria and affect its growth. They also discussed how miRNAs 

manipulate the composition of the gut microbiota. Interestingly, they mentioned that 

miRNAs could target ribosomal RNAs, and they could either repress or promote gene 

expression. 

3.3 Methods 

3.3.1 Datasets 

Top 49 expressed ginger miRNAs (Appendix I) are detected from miRNA-seq 

data of exosomes-like nanoparticles (SRA accession numbers SRX5085431, 

SRX5085432, SRX5085433). Reference genome sequences of 8 common gut bacteria 

(see Table 3-1) were downloaded from NCBI RefSeq database [56] 

(ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/) 

Table 3-1: Common gut bacteria and their RefSeq accession numbers 

Bacterial strain NCBI RefSeq Accession Number 
Akkermansia muciniphila NC_010655.1 

Bacteroides fragilis NC_006347.1 
Clostridium perfringens NC_008261.1 

ftp://ftp.ncbi.nlm.nih.gov/genomes/refseq/bacteria/
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Escherichia coli NC_000913.3 
Enterococcus faecalis NC_004668.1 
Helicobacter pylori NC_000915.1 

Lactobacillus rhamnosus GG NC_013198.1 
Lactobacillus ruminis NC_015975.1 

 

3.3.2 Overall pipeline 

Our pipeline (Figure 3-1) takes as inputs sequences of plant miRNAs and 

sequences of bacterial genes. Then, for each miRNA-gene pair, we search for hits for 

both miRNA seed and its reverse complement (This because miRNAs can target both 

bacterial DNA and mRNA [3]). For fast searching, bacterial gene sequences are indexed 

into a hash-table as detailed in the next section. Finally, for each miRNA-gene, we 

compare the actual number of hits with the expected number to find genes with enriched 

miRNA seed binding sites. 

 

Figure 3-1: Overall pipeline to detect potential bacterial genes targeted by plant miRNAs 
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3.3.3 Hash table-based miRNA seed binding site detection  

Let T represents the sequences of bacterial genes, p to the pattern (e.g. miRNA 

seed sequence) we are searching for in T, and H(p) to be the hash function that converts p 

into an integer number. Our hash table will have H(k-mer) (where k-mer is a subsequence 

of length k of text T ) as key and a list of locations of this p in T as value as shown in 

Table 3-2 

Since our set of keys are static and relatively not too big (for example, the set of 

all 48 possible 8-mers if k = 8), we use a perfect hash function, where each key is 

mapped to a unique row without collisions. Since DNA/RNA has 4 different nucleotides 

(A, C, G, T/U), their integer representation can be as follows I(A) = 0, I(C) = 1, I(G) = 2 

and I(T) = 3. Then the hash value of pattern p of length k (k-mer) can be calculated as 

follows, 

𝐻𝐻(p) = �� 𝐼𝐼(𝑝𝑝[𝑖𝑖]) × 4𝑖𝑖�
𝑘𝑘−1

𝑖𝑖=0

 

For example, 𝐻𝐻(′𝐴𝐴𝐴𝐴𝐺𝐺′) = 2 × 40 +  3 × 41 + 0 × 42 = 14. 

Table 3-2: Target bacterial gene sequences represented as a hash table 

Key Value 

… … 

H(‘ATACACTG’) [<gene1,offset>, <gene656,offset>] 

… … 

H(‘CATCAGGG’) [<gene100,offset>, <gene45,offset>, <gene98,offset>] 

… … 
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3.3.4 Enrichment analysis 

In order to find bacterial genes that are more likely to be targeted, we employ a 

technique proposed by Murphy et al. [6] initially to predict targets of viral miRNAs. To 

quantify overrepresentation (enrichment) of a k-mer in a sequence, the actual count 

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙 is compared to an expected count 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (how many times we expect to see 

this k-mer X by chance). 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is calculated by the following equation, 

𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (𝐿𝐿 − 𝑘𝑘 + 1) × 𝑃𝑃(𝑋𝑋) 

Where P is the probability of seeing this k-mer in a target sequence of length L 

given a specific model of this sequence. We use a first-order Markov chain of the target 

sequence to model it. P can be calculated using the following equation, 

𝑃𝑃(𝑋𝑋) =  𝑝𝑝(𝑥𝑥1)�𝑝𝑝(𝑥𝑥𝑖𝑖 | 𝑥𝑥𝑖𝑖−1)
𝑘𝑘

𝑖𝑖= 2

  

Where 𝑥𝑥𝑖𝑖  is nucleotide at position 𝑖𝑖 of k-mer X, 𝑝𝑝(𝑥𝑥𝑖𝑖 | 𝑥𝑥𝑖𝑖−1) is the probability of 

having nucleotide 𝑥𝑥𝑖𝑖 after nucleotide 𝑥𝑥𝑖𝑖−1 and can be represented as a matrix (Figure 3-2) 

and 𝑝𝑝(𝑥𝑥1) is probability of seeing nucleotide 𝑥𝑥1. 
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Figure 3-2: Example of 1st order Markov chain for a DNA sequence 

For example, if X = ‘ATGC’, then the probability of seeing this 4-mer given the 1st order 

Markov chain model in Figure 3-2 will be calculated as follows, 

𝑃𝑃(′𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶′) =  𝑝𝑝(𝑥𝑥1)[  𝑝𝑝(𝑥𝑥2 | 𝑥𝑥1)  ×   𝑝𝑝(𝑥𝑥3 | 𝑥𝑥2)   ×  𝑝𝑝(𝑥𝑥4 | 𝑥𝑥3) ] 

𝑃𝑃(′𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶′) =  𝑝𝑝(′𝐴𝐴′)[  𝑝𝑝(′𝑇𝑇 ′| ′𝐴𝐴′)  ×   𝑝𝑝(′𝐺𝐺′ | ′𝑇𝑇′)   ×  𝑝𝑝(′𝐶𝐶′ | ′𝐺𝐺′) ] 

𝑃𝑃(′𝐴𝐴𝐴𝐴𝐴𝐴𝐶𝐶′) =  0.25 [0.3 ×   0.4  ×  0.2 ] = 0.006 

And if we assume that the length of the target sequence (L) is 1000, then the expected 

count 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 will be 1000× 0.006 which is 6. 

Using first-order Markov chain allows us to capture any dinucleotide biases, for 

example, CG content. Also, given that the average length of a bacterial gene is ~900, 

there may not be long enough to train higher-order chain models 

To quantify the likelihood of one miRNA to target a specific target gene, we 

calculate Pvalue. Assuming a binomial distribution, Pvalue is the probability of having at 

least 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 binding sites and is calculated by the following formula, 
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𝑃𝑃value = � �
𝐿𝐿− 𝑘𝑘 + 1

𝑖𝑖
� 𝑃𝑃(𝑋𝑋)𝑖𝑖(1 − 𝑃𝑃(𝑋𝑋))𝐿𝐿−𝑘𝑘+1−𝑖𝑖

𝐿𝐿−𝑘𝑘+1

𝑖𝑖=𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

 

3.4 Results 

3.4.1 Identification of potential gut bacterial genes targeted by ginger miRNAs 

Bacterial mRNAs potentially targeted by ginger miRNAs were identified by 

enrichment analysis of the reverse complement of the miRNA seed sequence (8mer  = 

nucleotides 1 – 8 from 5’ end) in the coding sequence (CDS). The enrichment analysis 

adopted a framework that utilizes the 1st order Markov model (MM). In this framework, 

the observed 8mer count in the CDS region of each bacterial mRNA was compared 

against the background count derived from the 1st order Markov chain model. A p-value 

was calculated for each miRNA-mRNA pair to estimate the likelihood of having a 

functional pair. Once all p-values were calculated, the false discovery rate (FDR) was 

obtained using the Benjamini–Hochberg method [57] for multiple p-value correction.  

Table 3-3: Number of potential genes targeted by ginger miRNAs 

Bacterial strain 
Number of 

potential target 
genes 

Percentage of total 
genes (%) GC content (%) 

Akkermansia muciniphila 677 30.0 55.8 
Bacteroides fragilis 1088 26.5 43.1 

Clostridium perfringens 320 11.2 28.4 
Escherichia coli 1168 26.7 50.8 

Enterococcus faecalis 866 32.5 37.5 
Helicobacter pylori 372 24.5 38.8 

Lactobacillus rhamnosus 
GG 726 28.1 47.0 

Lactobacillus ruminis 429 21.3 43.3 
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Table 3-3 shows that hundreds of bacterial genes are potentially targeted by 

ginger miRNAs. The percentage of potentials targets varies for different bacterial strains 

and ranges from 11.2% for Clostridium perfringens to 32.5% for Enterococcus faecalis. 

To see if these variations are related to the nucleotide composition of different bacterial 

genomes, we calculated GC content of each of these genomes. Some bacterial genomes 

with high GC content like Akkermansia muciniphila, Escherichia coli, and Lactobacillus 

rhamnosus GG tend to have a higher percentage of potential target genes. On the other 

hand, bacterial genomes with a low percentage of potential target genes like Clostridium 

perfringens has low GC content. 

3.4.2 Case study 1: Ginger miRNA ath-miR167a-5p targets LGG SpaC gene 

Using the top 49 expressed miRNAs from ginger exosomes, we used our tool to 

find potential bacterial (LGG strain) genes targeted by these miRNAs. We search for 

potential binding sites for the miRNA seed region (7mer) in both reverse and forward 

strands (targeting at the DNA level [3]). Of these genes, LGG pilus gene SpaC has a role 

in the colonization of bacteria into host tissues [58]. Table 3-4 shows potential ginger 

miRNAs targeting the LGG pilus gene. Only six miRNAs have potential binding sites in 

SpaC coding sequence. Of these, miR-167a-5p has shown significant targeting (p-value < 

0.05) with 2 potential seed binding sites.  

Teng et al. [59] showed that SpaC gene is downregulated at both transcriptional 

and protein levels when LGG was treated by ginger exosomes. Also, the authors showed 

that scrambled miR-167a-5p (with mutations at seed region) did not affect the expression 

of SpaC. 
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Table 3-4: potential ginger miRNAs targeting pilus gene (SpaC) 

miRNA ID seed (7mer) # of hits length of 
transcript p-value 

ath-miR167a-5p GAAGCTG 2 2688 0.0118 

ppt-miR319a TTGGACT 1 2688 0.1496 

mdm-miR535a GACAACG 1 2688 0.2078 

aly-miR396a-3p TTCAATA 1 2688 0.2473 

gma-miR396a-3p TCAATAA 1 2688 0.2566 

aly-miR166a-5p GAATGTT 1 2688 0.2664 

 

3.4.3 Case study 2: Ginger miRNAs targeting LGG lexA gene 

Teng et. al. [59] showed that lexA gene is downregulated at both transcriptional 

and protein levels when LGG was treated by ginger exosomes. To find potential ginger 

miRNAs targeting LGG lexA gene, we searched for potential binding sites for all 13 

miRNA seed regions with length equals to 8 nucleotides (with different start positions 

from the 5’ end). We found that only miRNA seeds from miR396 microRNA family have 

potential binding sites on LGG lexA sequence as shown in Table 3-5. 

Table 3-5: potential Ginger miRNAs targeting lexA gene 

miRNA ID Seed (8mer) miRNA seed 
start site 

Target start 
site 

length of 
transcript 

aly-miR396a-5p TTTCTTGA 10 427 626 

gma-miR396e TTTCTTGA 10 427 626 
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aly-miR396b-5p TTTCTTGA 10 427 626 

osa-miR396d TTTCTTGA 10 427 626 

gma-miR396h TTTCTTGA 9 427 626 

 

3.4.4 Computational complexity analysis 

To evaluate the computational complexity of the proposed method, we run our 

program to search for potential binding sites of nucleotides 10 to 17 (8 nucleotides) from 

the 5’end of the miRNA sequence in different numbers of human gut bacterial genomes 

(1 to 8 strains) to see how the program scales with more input sequences. We also used 

different orders of the Markov chain models (0th to 4th order) to measure the effect of 

model order on the program performance. Running time was measured using cProfile 

Python package. For each combination of parameters (number of bacterial genomes and 

model order), we repeated the experiment 3 times and calculated the average run time. 

Figure 3-3 shows that running time linearly increases with an increased number of 

bacterial genomes. Using higher-order Markov chain models to model bacterial 

sequences slightly increased the run time, 4th order models. 
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Figure 3-3: Average running time with different number of bacterial genomes and 
Markov chain model order 

We also wanted to measure the effect of the number of input miRNA seeds (query 

patterns) on the run time of hashing-based pattern searching algorithm. We used different 

numbers of query patterns (1 to 41 miRNA seeds) and different numbers of target 

sequences (1 to 6 bacterial genomes). Note that for this experiment, we only included the 

pattern searching step and excluded other steps (e.g. counting of the number of hits, 

enrichment analysis using Markov chain models, and writing results to output files).  

Figure 3-4 shows that the average run time of the hashing-based pattern searching 

method remains almost constant with increasing the number of miRNAs. On the other 

hand, the run time of the naïve pattern matching algorithm increases linearly with 

increasing the number of miRNAs. 
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Figure 3-4: hashing-based vs naïve string matching 

3.5 Discussion 

Our results provide a proof of concept of the use of miRNA seed-based targeting 

mechanism to predict gut bacterial genes targeted by plant miRNAs. We showed that 

using our tool we can identify ginger miRNAs experimentally validated to target two 

LGG genes (SpaC and LexA). Although, miRNA targeting mechanism is studied in other 

species in the case of both miRNAs and target genes belong to the same species e.g. 

plants and animals, to our knowledge there is no known mechanism for cross-species 

miRNA targeting. Although this framework was used to predict potential mouse bacterial 

genes targeted by ginger miRNAs, it can be applied to human gut bacteria and miRNAs 

from any edible plant. 
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In our framework, we employ a seed-based targeting technique in which we 

perform an overrepresentation analysis of miRNA seed on the target sequence. This 

approach was first introduced to predict miRNA targets in humans [60] and also used 

with viral miRNAs [6]. we search for potential binding sites of miRNA seeds of 7 & 8 

nucleotides long. This is based on previous research by Cisse et. al. [28] that suggests at 

least seven Watson-Crick base pairs in the miRNA seed region are needed for rapid and 

effective targeting. 

We showed that our computational framework can efficiently find potential target 

genes and the positions of individual binding sites in up to 8 bacterial genomes (more 

than 23 million nucleotides) in less than 3 minutes. The run time is a linear function of 

input size, this is because our framework utilizes hash-table and it takes O(n) to build the 

index of target sequences. But once the index is built, one query takes an O(m) time, 

where m is the length of the query pattern (miRNA seed in our case), and since m is a 

constant (usually 7 or 8), the time complexity of one query can be O(1). 

Although our proposed framework is promising, it has some limitations. Of these, 

it only takes into sequence information to predict potential binding sites. Other features 

like conservation, site accessibility can be utilized to increase the accuracy of our 

predictions. Also, experimentally validating more targets in bacterial genes is essential to 

accurately validate our framework and to infer the mechanism by which plant miRNAs 

target gut bacterial genes. 
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3.6 Conclusions 

In this chapter, we proposed a computational framework to efficiently predict 

potential bacterial genes targeted by plant miRNA. To decrease the computational 

complexity of our tool, we employed a hash-table-based index to identify and count 

potential miRNA binding sites. We employed a Markov chain model to quantify how 

likely we see these binding sites by chance. Our tool successfully predicted ginger 

miRNAs that target two experimentally validated LGG target genes. Although our tool 

can be used to predict potential targeting between other plants and bacterial strains, more 

wet-lab experiments are needed to infer the inter-kingdom miRNA targeting mechanism. 
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4 PATHWAY ANALYSIS OF MICRORNA TARGETS IN ANIMALS 

4.1 Introduction 

Recent studies have suggested that microRNAs (miRNAs) are involved in many 

diverse biological processes and pathways including normal development and diseases 

[61]. Animal miRNAs bind to 3’UTR of mRNAs mainly through the short sequence (6-8 

NTs) called seed region and act as repressors of target gene expression [62]. Taking into 

account this short sequence binding, one miRNA can target hundreds or even thousands 

of genes and subsequently perturb many biological pathways [38].  

To computationally predict miRNA-targeted pathways, typically potential target 

genes are compiled using one or more miRNA target prediction tools and a standard gene 

enrichment analysis [4] is used to find potential enriched pathways or gene ontology 

(GO) terms. Although the conventional pipeline is widely used, it has some limitations. 

Of these, existing tools consider only direct targets (post-transcriptionally regulated) of 

miRNAs but do not consider indirect targets (transcriptionally regulated) that are not 

necessarily enriched in miRNA seed-binding sites [5]. Indirect target genes are mainly 

regulated transcriptionally through transcription factors (TFs) [63, 64]. Furthermore, a 

study suggested that TFs are preferentially targeted by miRNAs [65].   

Figure 4-1 shows a scenario where a biological pathway/process can be missed by 

classical miRNA pathway analysis tools. Using the classical method, the percentage of 
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targeted genes is (11%), on the other hand, if we include TF targets (i.e. indirect 

targets), the percentage of targeted genes will be (67%).     

 

Figure 4-1: miRNAs can indirectly target biological pathways through transcriptions 
factors 

Indirectly regulated genes can be enriched in a specific biological pathway or 

phenotype. One notable example is the role of miR-200 family and miR-205 in 

controlling epithelial to mesenchymal transition (EMT) pathway through targeting ZEB1 

and ZEB2 transcription factors [66]. Other studies have shown how miRNAs regulate cell 

differentiation through targeting TFs. Of these, Tay et al [67] demonstrated the role of 

miR-134 in embryonic stem cell differentiation through targeting Nanog and LRH1. 

Another study showed that miR-143 and miR-145 can work together to regulate smooth 

muscle cell differentiation and proliferation through targeting Klf4 and ELK1 

transcription factors [68].  

Several tools and web servers have been developed to predict potential biological 

pathways targeted by miRNAs [69-73]. While they are all similar in terms of using direct 

targets only, they use different databases for both miRNA targets and gene ontology 

annotations [74-78]. miTALOS [70] is the only tool that filters potential targets by 
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incorporating tissue-specific genes.  All tools except for StarBase [71] accept multiple 

miRNAs as input. A comprehensive comparison of widely used miRNA pathway 

analysis tools is shown in Table 4-1. In this study, we introduce miRinGO (miRNA 

indirect target Gene Ontology) that uncovers potential biological pathways affected by 

indirect targets of human miRNAs especially ones related to cell differentiation and 

development.  

Table 4-1: A comparison of current tools of miRNAs pathway analysis 

Features/Tools mirPath v3.0  StarBase  miTALOS  miRWalk 
v3.0  

Predicted targets 
databases 

TargetScan 
(v6) / microT-

CDS (v5.0) 

TargetScan / 
miRanda/ PITA/ 

RNA22/ 
PicTar/… 

TargetScan/ 
miRanda 

TargetScan 
(v7.1) / 
miRDB 

Validated targets 
databases TarBase v7.0 CLIP-Seq data CLIP-Seq data miRTarbase 

Pathways / GO 
terms databases 

KEGG/GO 
categories 

KEGG/GO/ 
Reactome/ 
BioCarta 

KEGG/ 
WikiPathways/ 

Reactome 

KEGG/GO/ 
Reactome 

Inclusion of 
indirect 
targets? 

No No No No 

Tissue-specific? No No Yes No 

Allows multiple 
miRNAs? Yes No Yes Yes 
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4.2 Methods 

4.2.1 Overall pipeline 

Our pipeline to predict indirectly targeted biological processes by miRNAs 

consists of three steps as depicted in Figure 4-2. First, for each miRNA, potential 

directly-targeted TFs were compiled from the TargetScan database v7.2 [46]. Second, 

computationally predicted tissue-specific TF-gene associations were collected from the 

resources’ website of (Sonawane et al., 2017) [79]. In the case of multiple input miRNAs, 

we use the intersection of indirect targets of each miRNA. Third, a hypergeometric test is 

conducted to find potential targeted biological processes.  

 

Figure 4-2: Pipeline of our miRNA GO enrichment analysis tool 

4.2.2 Input Data 

Data used by our tool was compiled from publicly available databases. Putative 

miRNA targets were downloaded from TargetScan v7.2 [46]. We downloaded the file 

with all predictions regardless of conservation of miRNA family or miRNA binding sites 
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and kept high-confidence human miRNA targets (Cumulative weighted context++ score 

< −0.1).  

Computationally predicted tissue-specific TF targets were downloaded from the 

resources website of (Sonawane et al., 2017) [79]. These TF targets were predicted using 

the PANDA (Passing Attributes between Networks for Data Assimilation) algorithm 

[80]. PANDA integrates three complimentary sources of information i.e. TF sequences 

motif data, protein-protein interactions of TFs, and gene co-expression from Genotype-

Tissue Expression (GTEx) RNA-Seq data [81]. It contains TF-gene associations from 38 

different tissues/tissue locations. We aggregated TF-gene associations from different 

locations but belong to the same tissue. We had 29 broad tissues after aggregation. 

Gene ontology annotations were downloaded using Ensembl Biomart [82] 

(version GRCh38). GO terms with less than five genes were removed. 

4.2.3 Test dataset 

To validate our method, we used a ‘gold standard’ dataset of miRNAs and their 

experimentally validated functions (GO terms) [83] from ftp://ftp.ebi.ac.uk/pub/databases/GO/ 

goa/HUMAN/goa_human_rna.gaf. We filtered the dataset to include only high confidence 

annotations (excluded annotations with “Inferred from Sequence or Structural Similarity” 

(ISS), “Non-traceable Author Statement” (NAS), and “Traceable Author Statement” 

(TAS) evidence codes). We also removed annotations with no reference article. To keep 

only relevant annotations, we removed generic GO terms shared by most miRNAs (e.g. 

“miRNA mediated inhibition of translation”, “gene silencing by miRNA” and “gene 

silencing by RNA”). Cell/tissue ontology was downloaded from 

http://www.ontobee.org/listTerms/CL?format=tsv . GO terms with less than five genes were 

ftp://ftp.ebi.ac.uk/pub/databases/GO/%20goa/HUMAN/goa_human_rna.gaf
ftp://ftp.ebi.ac.uk/pub/databases/GO/%20goa/HUMAN/goa_human_rna.gaf
http://www.ontobee.org/listTerms/CL?format=tsv
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removed. The filtered dataset consists of 335 pairs of miRNAs and their associated GO 

terms and is available in Supplementary Table S1. 

4.3 Results 

4.3.1 MicroRNA indirect vs direct targeting 

To test the ability of our methodology to predict functions associated with a 

miRNA, we used a dataset with 335 known miRNA-GO term pairs. All TargetScan-

predicted targets were included in this analysis. For each miRNA-GO term pair, resulting 

GO terms were ranked by the hypergeometric test p-value in ascending order, then rank 

values were converted to a percentile rank by dividing by the total number of GO terms. 

Finally, we picked the related GO term with the smallest p-value (smallest rank value). 

Known GO terms predicted by the indirect targeting method have a significantly lower 

(Wilcox signed-rank test, one-sided p-value = 0.002417) rank compared to canonical 

direct targeting as shown in Figure 4-3.  
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Figure 4-3: Comparison of indirect targeting with direct targeting (** represents p-value < 
0.01) 

4.3.2 Effect of number of miRNA targets 

Since miRNA GO enrichment analysis is affected by targets of the miRNA and 

TargetScan-predicted targets can have false positives, we investigated the effect of the 

number of predicted miRNA targets on predicting the known GO terms. We repeated the 

same analysis but instead of using all predicted targets, we used top (20%, 40%, 60%, 

80% and 100%) of potential targets (sorted by TargetScan context++ score [46]). Figure 

4-4 shows that in all cases, the average percentile rank of GO terms predicted by IT 

methodology is lower than DT. Although increasing the number of miRNA targets 

yielded a lower average rank (better performance), using all of the targets did not give 

significantly better results compared to using the top 80% of targets and 40% of targets in 

case of indirect and direct targeting respectively. 
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Figure 4-4: Effect of the number of miRNA targets on miRNA GO enrichment analysis. 
Error bars represent one standard error. 

4.3.3 Indirect targeting reveals the role of miRNAs in developmental processes 

To investigate biological processes that are more likely to be affected by indirect 

targeting of miRNAs, we calculated TF density per GO term as defined by equation 1. 

𝑇𝑇𝑇𝑇 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖  𝑎𝑎 𝐺𝐺𝐺𝐺 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 𝑜𝑜𝑜𝑜 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑖𝑖𝑖𝑖 𝑎𝑎 𝐺𝐺𝐺𝐺 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(1) 

Table 4-2 shows the top 5 GO BP terms with the highest TF density. All these GO 

terms are related to the “developmental process” and all genes involved are transcription 

factors. 

Table 4-2: Top 5 GO terms with the highest TF density 

GO term ID GO term # of TFs # of genes Parent Process 
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GO:0001714 endodermal cell 
fate 

specification 

5 5 developmental 
process 

GO:0003211 cardiac ventricle 
formation 

5 5 developmental 
process 

GO:0003357 noradrenergic 
neuron 

differentiation 

5 5 developmental 
process 

GO:0021520 spinal cord 
motor neuron 

cell fate 
specification 

7 7 
developmental 

process 

GO:0021902 commitment of 
neuronal cell to 
specific neuron 

type in forebrain 

7 7 
developmental 

process 

 

To see if transcription factors are enriched in development-related GO terms 

compared to other terms, we divided the GO terms (that have at least one TF) into two 

groups; one with development-related terms and the second with other terms or 

processes. We selected development-related terms by searching for GO biological 

process terms with the following keywords ("development", "cell fate", "differentiation", 

"stem cell", "morphogenesis", "cell specification", "formation"). Figure 4-5 shows that 

development-related terms (n = 613) tend to have significantly (p-value < 2.2e-16, 

Wilcoxon rank-sum test) higher TF density compared to other terms (n = 1767). 
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Figure 4-5: Comparison of TF density in development-related GO terms vs. all other 
terms 

4.3.4 Case Study: role of miR-9 in Neurogenesis 

To test the ability of our tool to capture relevant targeted development-related GO 

terms, we picked a miRNA with a known function to be able to compare our predicted 

GO terms with known ones. Of these miRNAs, miR-9 is a brain-enriched miRNA and 

has a prominent role in neurogenesis [84-86]. We ran our tool with the following inputs, 

we selected “brain” as the tissue type, “biological process” as the GO category, “indirect” 

as the targeting mode, and “100” as the percentage of miRNA targets. Two out of the top 

5 GO terms predicted are related to neurogenesis (“Nervous system development” and 

“brain development”).  

To compare our results with existing miRNA pathway analysis tools, we 

downloaded predicted GO biological process terms for “miR-9” from 4 different web 

servers (accessed January 15, 2019): mirPath v3.0 [69], StarBase (mirTarPathway 
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module) v3.0 [71], miTALOS v2 [70] and miRWalk v3.0 [72]. We searched for the 

highest-ranking GO term related to neurogenesis as shown in Table 4-3. Our tool ranked 

neurogenesis-related GO terms higher than other tools.  

Table 4-3: Comparison of highest-ranking GO terms related to neurogenesis from 
different miRNA GO enrichment tools 

Tool Highest ranking GO term related to 
Neurogenesis Rank 

miRinGO  Nervous system development 1 

mirPath v3 regulation of neuron maturation 11 

miRWalk v3 axonogenesis 13 

StarBase v3 Neurogenesis 23 

miTALOS v2 N/A N/A 

 

4.3.5 Multiple miRNAs GO analysis  

In all miRNA GO analyses so far, we have used one miRNA as an input. Several 

studies have shown that miRNAs can work together to regulate certain targets and 

biological processes [87]. Of these, Gregory et al. [66] showed that the miR-200 family 

and miR-205 together regulate epithelial to mesenchymal transition (EMT). The miR-200 

family consists of miRNAs with two different seed sequences: miR-200a/miR-141 and 

miR-200b/miR-200c/miR-429. We ran our tool with the following inputs: “kidney” as the 

tissue type, “biological process” as the GO category, and “indirect” as the targeting mode 

and “100” as the percentage of miRNA targets. The rank of “epithelial to mesenchymal 

transition” GO term (GO: 0001837) was lower when we used the intersection of indirect 
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targets of these three miRNAs compared to ranks of GO terms predicted by each miRNA 

indirect targets as shown in Table 4-4. 

Table 4-4: Effect of using multiple miRNAs in capturing EMT-related GO terms 

miRNAs 
Rank of top GO 
term related to 

EMT 

miR-200a/miR-141 132 

miR-200b/miR-200c/miR-429 147 

miR-205-5p 105 

All three miRNAs 70 

 

4.3.6 R Shiny Application 

For ease of use of our method by researchers, we developed an interactive web 

application, miRinGO, using R Shiny package [7]. It is freely available from GitHub at 

https://github.com/Fadeel/miRinGO. A screenshot of the application is shown in Figure 4-6. 

 

Figure 4-6: A screenshot of the R Shiny application (miRinGO) 

https://github.com/Fadeel/miRinGO
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The application has two panels, the left one for input data and parameters 

selection. A description of different input parameters and possible values is detailed in 

Table 4-5.  

Table 4-5: A description of different parameters of the Shiny application 

Parameter Description Possible values 

Tissue type 29 different tissues Brain, colon, lung,  .. 

input miRNAs miRBase miRNA ID hsa-miR-9-5p 

GO category Choose the category of GO 
annotation 

Biological process OR cellular 
component OR molecular function 

Targeting mode Choose mode of miRNA 
targeting Direct OR indirect 

Percentage of TargetScan 
target genes 

percentage of top-ranked 
targeted genes (sorted by 

TargetScan v7.2 context++ score) 
[20% - 100%], step size 20% 

minimum number of 
genes per GO term 

A threshold to filter out GO 
terms with small number of genes 

Integer value  

(default value is 5) 

number of GO terms for 
visualization 

Top k enriched GO terms to be 
visualized 

Integer value  

(default value is 10) 

 

The right panel has two tabs for showing the results of GO enrichment analysis. 

One tab named “Table of Enriched GO term” to show GO terms more likely to be 

targeted by selected miRNAs and ranked by the hypergeometric p-value. The table 

includes information about GO term, number of genes in that term, number of potential 

miRNA targets that overlap with genes in this term, hypergeometric p-value, and the 

Benjamini & Hochberg [57] adjusted p-value. To get more details about a specific GO 

term, GO term accession numbers are linked to their QuickGO [88] webpages.  
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The other tab named “visualization” provides a visual summary of the enriched 

GO term. It contains a bar plot with bar height represents the -log10(adjusted p-value) 

and bar color represents the proportion of potential target genes out of the total number of 

genes in that GO term. Bar plot of top 15 GO terms indirectly targeted by miR-9-5p in 

the brain is shown in Figure 4-7. 

 

Figure 4-7: Bar plot of top 15 GO terms indirectly targeted by miR-9-5p in brain 

miRinGO also provides a visual summary of the top enriched GO terms as 

WordCloud. To generate the WordCloud, we need to find high-frequency words. First, 

top enriched GO terms are preprocessed to remove punctuation, numbers, English stop 

words, and common biological terms (process, cell, miRNA). We used “tm” R package 

[89] for text preprocessing steps. A snapshot of the WordCloud of top 30 enriched GO 

terms predicted to be indirectly targeted by miR-16 in the colon is shown in Figure 4-8. 

We can see that words like mitotic, cycle, segregation, and division are related to cell 
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cycle. Linsley et. al, had previously shown that overexpression of miR-16 family in 

HCT116 (human colorectal carcinoma) cell lines regulates cell cycle progression [5].  

 

Figure 4-8: WordCloud of top 30 enriched GO terms predicted to be indirectly targeted 
by miR-16 in the colon 

4.4 Discussion 

We propose, miRinGO, a tool that detects biological processes indirectly targeted 

by miRNAs transcriptionally through transcription factors. Using miRinGO, we can 

include potential target genes even if there is no physical interaction between miRNA and 

the regulated genes. To validate this method, we used a dataset of miRNAs and their 

known targeted GO terms [83]. Although this dataset is considered a significant step 

towards having a gold standard to validate different miRNA pathway or GO analysis 

tools, it is still limited to a fraction of human miRNAs and focused more on 

cardiovascular-related processes. Using this dataset, however, indirect targeting showed 

better performance in predicting known targeted processes compared to the direct 

targeting method, even if we use different fractions of input miRNA targets. It is also 

worth noting that although increasing the number of miRNA targets yielded better 
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performance, using all of the targets did not give significantly better results compared to 

using the top 80% of targets and 40% of targets in case of indirect and direct targeting, 

respectively. This could be because miRNA target prediction tools suffer from having 

many false positives [90].  

Since our method is mainly focused on miRNA-targeted TFs and development-

related GO terms or pathways have more TFs than other terms, it is more suitable to use 

this tool to uncover the tissue-specific roles of miRNAs in development and cell 

differentiation. Using this method, we predicted biological pathways known to be 

targeted by miR-9, a miRNA with a known role in neurogenesis. Tan et al. [91] showed 

that miR-9 regulates neural stem cell differentiation and proliferation by targeting HES1 

transcription factor. Using indirect targeting, three genes related to neuron differentiation 

(FEZF2, SOX3, and ZHX2) that are predicted to be targeted by HES1 (but are not direct 

targets of miR-9-5p) are now included in GO enrichment analysis as indirect targets of 

miR-9-5p. 

One limitation of our method is that we use two sets of computationally predicted 

targets: one for miRNA direct targets and the other for tissue-specific TF targets. This 

might increase the effect of false positives in miRNA GO enrichment analysis. This 

limitation can be partly alleviated by using only high-confidence miRNA targets (i.e. 

ones with smaller TargetScan context++ score). Although our method outperformed the 

current miRNA GO analysis method, it is not intended to replace the standard miRNA 

GO analysis method but on the other hand, to give a different perspective of miRNA 

roles in regulating biological processes and to uncover ones that are previously 
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overlooked by current tools, especially ones related to development and cell 

differentiation. 

4.5 Conclusions  

Although miRNAs have emerged as important players in gene regulation, the 

field still lacks computational tools and methods that can predict their functions 

accurately. We propose a method to predict biological processes that are indirectly 

targeted by miRNAs transcriptionally through transcription factors. The proposed method 

provided better performance compared to the existing method. We also developed an 

interactive web application to make it easier for researchers to investigate the function of 

miRNA(s) of choice.  
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5 SUMMARY AND FUTURE WORK 

 

Given the recent advances in DNA/RNA sequencing, new genes/transcripts are 

being discovered and the need to assign functions to these genes grows. Of these genes, 

miRNAs are non-protein-coding genes and act as regulators of gene expression of other 

genes. Recent studies have suggested that miRNAs have a role in many biological 

processes e.g., cell cycle, proliferation, and development. Moreover, miRNAs may 

function as tumor suppressors and oncogene. Current experimental techniques for 

discovering miRNA target genes are either low throughput, costly, or suffer from high 

false-positive rates. For the above reasons, computational tools are needed to predict 

targeted genes and ultimately targeted biological processes.  

In the first part of this dissertation, we developed a tool to predict gut bacterial 

genes potentially targeted by miRNAs from edible plants like ginger. To our knowledge, 

it is the only known tool dedicated to inter-kingdom miRNA targeting. Although we were 

able to correctly predict ginger miRNAs targeting two bacterial genes, there is still a need 

in the future for more experimentally validated targets to get a better idea regarding inter-

kingdom targeting mechanisms.  

Although this tool can find potential target genes of 49 miRNAs in eight different 

bacterial genomes in less than three minutes, there is still room to improve the scalability 

of this tool in the future. For instance, we use an integer representation of miRNA seed 
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sequences (8 nucleotides) which requires 28 bytes in Python 3. This can be 

reduced by taking advantage of the fact that DNA/RNA sequences have 4 letters, and 

each nucleotide can be represented by 2 bits. Using this representation, miRNA seed 

regions can be represented as a vector of 16 bits (2 bytes). 

In the second part, we addressed the problem of functional annotation of human 

miRNAs. Current tools consider only target genes with binding sites. To address this 

limitation, we developed miRinGO, an R Shiny web application that allows researchers to 

include other indirect target genes e.g., genes regulated through transcription factors. 

Indirect targeting showed better performance compared to direct targeting in predicting 

known miRNA-biological process associations. miRinGO provides an easy-to-use GUI 

for researchers with no coding experience to explore potential functions of over 2,000 

miRNAs in 38 tissues. Moreover, it provides visual summaries of the results. miRinGO is 

available at https://github.com/Fadeel/miRinGO. Potential future work includes 

supporting miRNAs from other species e.g. mouse and giving the user the ability to filter 

target genes based on the existing experimental evidence. 

https://github.com/Fadeel/miRinGO
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APPENDIX I 

miRNA ID mature sequence 

gma-miR319a TTGGACTGAAGGGAGCTCCC 

aly-miR319a-3p TTGGACTGAAGGGAGCTCCCT 

ppt-miR319a CTTGGACTGAAGGGAGCTCC 

ppt-miR319c CTTGGACTGAAGGGAGCTCCC 

aly-miR396a-5p TTCCACAGCTTTCTTGAACTG 

gma-miR396e  TTCCACAGCTTTCTTGAACTGT 

gma-miR396h TCCACAGCTTTCTTGAACTG 

ptc-miR319e TTGGACTGAAGGGAGCTCCT 

aly-miR159a-3p TTTGGATTGAAGGGAGCTCTA 

mtr-miR319c-3p TTGGACTGAAGGGAGCTCCCA 

aly-miR166a-3p TCGGACCAGGCTTCATTCCCC 

gma-miR166p TCGGACCAGGCTTCATTCCC 

bdi-miR166f TCTCGGACCAGGCTTCATTCC 

gma-miR166m CGGACCAGGCTTCATTCCCC 

gma-miR166u TCTCGGACCAGGCTTCATTC 

bdi-miR166e-3p CTCGGACCAGGCTTCATTCCC 

gma-miR319p TTTTGGACTGAAGGGAGCTCC 

 



 

65 
  

aly-miR396b-5p TTCCACAGCTTTCTTGAACTT 

miRNA ID mature sequence 

gma-miR6300 GTCGTTGTAGTATAGTGG 

sbi-miR166k TCGGACCAGGCTTCATTCCT 

osa-miR396d TCCACAGGCTTTCTTGAACGG 

aly-miR168a-5p TCGCTTGGTGCAGGTCGGGAA 

gma-miR168b TCGCTTGGTGCAGGTCGGG 

aly-miR162a-3p TCGATAAACCTCTGCATCCAG 

gma-miR162a TCGATAAACCTCTGCATCCA 

aly-miR858-5p TTTCGTTGTCTGTTCGACCTT 

ath-miR858b TTCGTTGTCTGTTCGACCTTG 

zma-miR396g-3p GTTCAAGAAAGCTGTGGAAGA 

gma-miR4995 AGGCAGTGGCTTGGTTAAGGG 

mtr-miR166c TCGGACCAGGCTTCATTCCTC 

aly-miR156a-5p TGACAGAAGAGAGTGAGCAC 

aly-miR396a-3p GTTCAATAAAGCTGTGGGAAG 

ath-miR156j TGACAGAAGAGAGAGAGCAC 

bdi-miR156a TGACAGAAGAGAGAGAGCACA 

gma-miR156f TTGACAGAAGAGAGAGAGCACA 

gma-miR396a-3p TTCAATAAAGCTGTGGGAAG 
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miRNA ID mature sequence 

mdm-miR156t TTGACAGAAGAGAGAGAGCAC 

mdm-miR535a TGACAACGAGAGAGAGCACGC 

osa-miR396a-3p GTTCAATAAAGCTGTGGGAA 

ptc-miR156k TGACAGAAGAGAGGGAGCAC 

stu-miR156f-5p CTGACAGAAGAGAGTGAGCA 

aly-miR167a-5p TGAAGCTGCCAGCATGATCTA 

aly-miR167d-5p TGAAGCTGCCAGCATGATCTGG 

bdi-miR398a TGTGTTCTCAGGTCGCCCCTG 

gma-miR167c TGAAGCTGCCAGCATGATCTG 

aly-miR157a-5p TTGACAGAAGATAGAGAGCAC 

aly-miR157d-5p TGACAGAAGATAGAGAGCAC 

aly-miR164a-5p TGGAGAAGCAGGGCACGTGCA 

aly-miR166a-5p GGAATGTTGTCTGGCTCGAGG 
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 APPENDIX II 

Tissue name miRNA GO term name GO ID reference Cell IDs Cell types 
artery hsa-let-7b-5p positive regulation of angiogenesis GO:0045766 PMID:28159509 CL:0000071 blood vessel endothelial cell 

artery hsa-let-7e-5p negative regulation of DNA-binding transcription 
factor activity GO:0043433 PMID:30670152 CL:0002618 endothelial cell of umbilical vein 

artery hsa-let-7e-5p negative regulation of tyrosine phosphorylation 
of STAT protein GO:0042532 PMID:30670152 CL:0002618 endothelial cell of umbilical vein 

artery hsa-let-7f-5p negative regulation of transforming growth 
factor beta receptor signaling pathway GO:0030512 PMID:28345812 CL:0002618 endothelial cell of umbilical vein 

artery hsa-let-7g-5p negative regulation of inflammatory response GO:0050728 PMID:24291274 CL:0002618 endothelial cell of umbilical vein 

artery hsa-let-7g-5p negative regulation of pathway-restricted SMAD 
protein phosphorylation GO:0060394 PMID:24291274 CL:0002618 endothelial cell of umbilical vein 

artery hsa-let-7g-5p negative regulation of transforming growth 
factor beta receptor signaling pathway GO:0030512 PMID:24291274 CL:0002618 endothelial cell of umbilical vein 

artery hsa-let-7g-5p positive regulation of angiogenesis GO:0045766 PMID:24291274 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-1-3p positive regulation of vascular associated 
smooth muscle cell apoptotic process GO:1905461 PMID:26166810 CL:0002539 aortic smooth muscle cell 

artery hsa-miR-101-3p negative regulation of protein ubiquitination GO:0031397 PMID:24844779 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-106b-5p negative regulation of angiogenesis GO:0016525 PMID:26956882 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-10a-5p 
positive regulation of blood vessel endothelial 

cell proliferation involved in sprouting 
angiogenesis 

GO:1903589 PMID:22955733 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-10a-5p positive regulation of cell migration involved in 
sprouting angiogenesis GO:0090050 PMID:22955733 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-10a-5p positive regulation of vascular endothelial 
growth factor receptor signaling pathway GO:0030949 PMID:22955733 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-10b-5p 
positive regulation of blood vessel endothelial 

cell proliferation involved in sprouting 
angiogenesis 

GO:1903589 PMID:22955733 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-10b-5p positive regulation of cell migration involved in 
sprouting angiogenesis GO:0090050 PMID:22955733 CL:0002618 endothelial cell of umbilical vein 
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artery hsa-miR-10b-5p positive regulation of vascular endothelial 
growth factor receptor signaling pathway GO:0030949 PMID:22955733 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-1224-5p negative regulation of Notch signaling pathway GO:0045746 PMID:28717225 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-1224-5p positive regulation of sprouting angiogenesis GO:1903672 PMID:28717225 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-1224-5p positive regulation of vascular endothelial 
growth factor receptor signaling pathway GO:0030949 PMID:28717225 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-124-3p cellular response to hypoxia GO:0071456 PMID:23853098 CL:0002591 smooth muscle cell of the 
pulmonary artery 

artery hsa-miR-124-3p negative regulation of protein 
dephosphorylation GO:0035308 PMID:23853098 CL:0002591 smooth muscle cell of the 

pulmonary artery 
artery hsa-miR-125a-5p negative regulation of angiogenesis GO:0016525 PMID:25116893 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-125a-5p negative regulation of DNA-binding transcription 
factor activity GO:0043433 PMID:30670152 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-125a-5p negative regulation of tyrosine phosphorylation 
of STAT protein GO:0042532 PMID:30670152 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-125a-5p positive regulation of endothelial cell apoptotic 
process GO:2000353 

PMID:25116893
,PMID:2846751

4 

CL:0002618
,CL:000261

8 

endothelial cell of umbilical 
vein,endothelial cell of umbilical 

vein 
artery hsa-miR-125a-5p positive regulation of sprouting angiogenesis GO:1903672 PMID:27252357 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-125b-5p negative regulation of angiogenesis GO:0016525 PMID:22391569 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-126-3p cellular response to hypoxia GO:0071456 PMID:28578351 CL:2000008 microvascular endothelial cell 
artery hsa-miR-126-3p negative regulation of inflammatory response GO:0050728 PMID:28578351 CL:2000008 microvascular endothelial cell 
artery hsa-miR-126-3p positive regulation of angiogenesis GO:0045766 PMID:23136161 CL:0002544 aortic endothelial cell 

artery hsa-miR-126-3p positive regulation of phosphatidylinositol 3-
kinase signaling GO:0014068 PMID:28578351 CL:2000008 microvascular endothelial cell 

artery hsa-miR-126-3p positive regulation of protein kinase B signaling GO:0051897 PMID:28578351 CL:2000008 microvascular endothelial cell 

artery hsa-miR-126-3p positive regulation of sprouting angiogenesis GO:1903672 
PMID:27780851
,PMID:2857835

1 

CL:0002618
,CL:200000

8 

endothelial cell of umbilical 
vein,microvascular endothelial 

cell 

artery hsa-miR-126-5p 
positive regulation of blood vessel endothelial 

cell proliferation involved in sprouting 
angiogenesis 

GO:1903589 PMID:28124060 CL:0002618 endothelial cell of umbilical vein 
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artery hsa-miR-126-5p positive regulation of cell migration involved in 
sprouting angiogenesis GO:0090050 PMID:28124060 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-130a-3p positive regulation of angiogenesis GO:0045766 PMID:23136161 CL:0002544 aortic endothelial cell 

artery hsa-miR-130a-3p positive regulation of vascular endothelial cell 
proliferation GO:1905564 PMID:24960162 UBERON:0

002012 pulmonary artery 

artery hsa-miR-130a-3p positive regulation of vascular smooth muscle 
cell proliferation GO:1904707 PMID:24960162 UBERON:0

002012 pulmonary artery 

artery hsa-miR-132-3p positive regulation of angiogenesis GO:0045766 PMID:21868695 CL:0000071 blood vessel endothelial cell 
artery hsa-miR-132-3p positive regulation of protein kinase B signaling GO:0051897 PMID:21868695 CL:0000071 blood vessel endothelial cell 
artery hsa-miR-132-5p cholesterol homeostasis GO:0042632 PMID:24924687 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-132-5p fatty acid homeostasis GO:0055089 PMID:24924687 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-132-5p positive regulation of endothelial cell apoptotic 
process GO:2000353 PMID:24924687 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-133a-3p cellular response to cytokine stimulus GO:0071345 PMID:28257760 CL:0000359 vascular associated smooth 
muscle cell 

artery hsa-miR-133a-3p negative regulation of low-density lipoprotein 
particle clearance GO:0010989 PMID:28257760 CL:0000359 vascular associated smooth 

muscle cell 

artery hsa-miR-138-5p negative regulation of G1/S transition of mitotic 
cell cycle GO:2000134 PMID:28450935 CL:0002546 embryonic blood vessel 

endothelial progenitor cell 

artery hsa-miR-138-5p negative regulation of nitric-oxide synthase 
activity GO:0051001 PMID:24244340 CL:2000008 microvascular endothelial cell 

artery hsa-miR-138-5p negative regulation of p38MAPK cascade GO:1903753 PMID:28450935 CL:0002546 embryonic blood vessel 
endothelial progenitor cell 

artery hsa-miR-138-5p negative regulation of sprouting angiogenesis GO:1903671 PMID:24244340 CL:2000008 microvascular endothelial cell 

artery hsa-miR-140-5p cellular response to hypoxia GO:0071456 PMID:27021683 CL:0002591 smooth muscle cell of the 
pulmonary artery 

artery hsa-miR-140-5p positive regulation of BMP signaling pathway GO:0030513 PMID:27214554 CL:0002591 smooth muscle cell of the 
pulmonary artery 

artery hsa-miR-140-5p positive regulation of vascular associated 
smooth muscle cell apoptotic process GO:1905461 PMID:27021683 CL:0002591 smooth muscle cell of the 

pulmonary artery 
artery hsa-miR-143-3p negative regulation of angiogenesis GO:0016525 PMID:25801897 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-143-3p positive regulation of angiogenesis GO:0045766 PMID:26311719 CL:1001568 pulmonary artery endothelial 
cell 
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artery hsa-miR-145-5p negative regulation of angiogenesis GO:0016525 PMID:25801897 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-146a-5p cellular response to cytokine stimulus GO:0071345 PMID:25515214 CL:2000044 brain microvascular endothelial 
cell 

artery hsa-miR-146a-5p cellular response to glucose stimulus GO:0071333 PMID:28433754 CL:0002585 retinal blood vessel endothelial 
cell 

artery hsa-miR-146a-5p negative regulation of angiogenesis GO:0016525 PMID:23619365 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-146a-5p negative regulation of interleukin-6 production GO:0032715 PMID:28433754 CL:0002585 retinal blood vessel endothelial 
cell 

artery hsa-miR-146a-5p negative regulation of NIK/NF-kappaB signaling GO:1901223 PMID:25515214 CL:2000044 brain microvascular endothelial 
cell 

artery hsa-miR-146a-5p negative regulation of tyrosine phosphorylation 
of STAT protein GO:0042532 PMID:28433754 CL:0002585 retinal blood vessel endothelial 

cell 

artery hsa-miR-146a-5p positive regulation of fibroblast growth factor 
receptor signaling pathway GO:0045743 PMID:27121396 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-149-3p negative regulation of fibroblast growth factor 
receptor signaling pathway GO:0040037 PMID:24463821 CL:0002544 aortic endothelial cell 

artery hsa-miR-149-5p negative regulation of fibroblast growth factor 
receptor signaling pathway GO:0040037 PMID:24463821 CL:0002544 aortic endothelial cell 

artery hsa-miR-149-5p negative regulation of interleukin-6 production GO:0032715 PMID:24299952 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-152-3p negative regulation of tumor necrosis factor-
mediated signaling pathway GO:0010804 PMID:24813629 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-155-5p negative regulation of inflammatory response GO:0050728 PMID:21310411 CL:0000071 blood vessel endothelial cell 
artery hsa-miR-155-5p positive regulation of sprouting angiogenesis GO:1903672 PMID:27731397 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-15a-5p cellular response to glucose stimulus GO:0071333 PMID:30365148 CL:0002585 retinal blood vessel endothelial 
cell 

artery hsa-miR-15a-5p negative regulation of angiogenesis GO:0016525 PMID:23867820 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-15a-5p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 PMID:22692216 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-15a-5p negative regulation of G1/S transition of mitotic 
cell cycle GO:2000134 PMID:23867820 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-15a-5p negative regulation of inflammatory response GO:0050728 PMID:30365148 CL:0002585 retinal blood vessel endothelial 
cell 

artery hsa-miR-15a-5p negative regulation of NF-kappaB transcription 
factor activity GO:0032088 PMID:30365148 CL:0002585 retinal blood vessel endothelial 

cell 
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artery hsa-miR-15b-5p branching involved in blood vessel 
morphogenesis GO:0001569 PMID:23688497 UBERON:0

007777 umbilical vein endothelium 

artery hsa-miR-15b-5p negative regulation of angiogenesis GO:0016525 PMID:27208409 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-16-5p branching involved in blood vessel 
morphogenesis GO:0001569 PMID:23083510 UBERON:0

007777 umbilical vein endothelium 

artery hsa-miR-16-5p cellular response to glucose stimulus GO:0071333 PMID:30365148 CL:0002585 retinal blood vessel endothelial 
cell 

artery hsa-miR-16-5p negative regulation of fibroblast growth factor 
receptor signaling pathway GO:0040037 PMID:21885851 CL:0002544 aortic endothelial cell 

artery hsa-miR-16-5p negative regulation of inflammatory response GO:0050728 PMID:30365148 CL:0002585 retinal blood vessel endothelial 
cell 

artery hsa-miR-16-5p negative regulation of NF-kappaB transcription 
factor activity GO:0032088 PMID:30365148 CL:0002585 retinal blood vessel endothelial 

cell 

artery hsa-miR-16-5p negative regulation of vascular endothelial 
growth factor signaling pathway GO:1900747 PMID:21885851 CL:0002544 aortic endothelial cell 

artery hsa-miR-17-5p cellular response to hypoxia GO:0071456 PMID:27640178 CL:0002591 smooth muscle cell of the 
pulmonary artery 

artery hsa-miR-17-5p positive regulation of vascular smooth muscle 
cell proliferation GO:1904707 PMID:22161164 UBERON:0

002012 pulmonary artery 

artery hsa-miR-185-3p negative regulation of ERK1 and ERK2 cascade GO:0070373 PMID:28277742 CL:0002539 aortic smooth muscle cell 
artery hsa-miR-185-5p negative regulation of angiogenesis GO:0016525 PMID:26694763 CL:2000008 microvascular endothelial cell 

artery hsa-miR-193a-3p negative regulation of G1/S transition of mitotic 
cell cycle GO:2000134 PMID:28276476 CL:0002546 embryonic blood vessel 

endothelial progenitor cell 

artery hsa-miR-196a-5p cellular response to vascular endothelial growth 
factor stimulus GO:0035924 PMID:22773844 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-196a-5p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 PMID:22773844 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-19b-3p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 PMID:22197821 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-19b-3p negative regulation of G2/M transition of mitotic 
cell cycle GO:0010972 PMID:22197821 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-19b-3p negative regulation of serine-type 
endopeptidase activity GO:1900004 PMID:24998411 CL:0002618 endothelial cell of umbilical vein 
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artery hsa-miR-200a-3p positive regulation of blood vessel endothelial 
cell migration GO:0043536 PMID:21698760 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-200b-3p negative regulation of angiogenesis GO:0016525 PMID:21081489 CL:2000008 microvascular endothelial cell 

artery hsa-miR-200b-3p negative regulation of blood vessel endothelial 
cell migration GO:0043537 PMID:21081489 CL:2000008 microvascular endothelial cell 

artery hsa-miR-20a-5p cellular response to vascular endothelial growth 
factor stimulus GO:0035924 PMID:22696064 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-20a-5p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 PMID:22696064 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-20a-5p negative regulation of protein kinase activity GO:0006469 PMID:25447536 CL:0002591 smooth muscle cell of the 
pulmonary artery 

artery hsa-miR-20a-5p positive regulation of angiogenesis GO:0045766 PMID:28097093 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-20a-5p positive regulation of vascular smooth muscle 
cell proliferation GO:1904707 PMID:22450430 CL:0002591 smooth muscle cell of the 

pulmonary artery 
artery hsa-miR-20b-5p cellular response to tumor necrosis factor GO:0071356 PMID:28595801 CL:2000008 microvascular endothelial cell 
artery hsa-miR-20b-5p negative regulation of angiogenesis GO:0016525 PMID:24048733 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-20b-5p positive regulation of cellular senescence GO:2000774 PMID:28595801 CL:2000008 microvascular endothelial cell 

artery hsa-miR-21-3p negative regulation of NF-kappaB transcription 
factor activity GO:0032088 PMID:25327529 CL:0002544 aortic endothelial cell 

artery hsa-miR-21-5p BMP signaling pathway GO:0030509 PMID:18548003 UBERON:0
002012 pulmonary artery 

artery hsa-miR-21-5p cellular response to lipopolysaccharide GO:0071222 PMID:29039542 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-21-5p negative regulation of GTPase activity GO:0034260 PMID:22158624 CL:0000359 vascular associated smooth 
muscle cell 

artery hsa-miR-21-5p positive regulation of angiogenesis GO:0045766 PMID:27708252 CL:2000008 microvascular endothelial cell 

artery hsa-miR-21-5p 
positive regulation of blood vessel endothelial 

cell proliferation involved in sprouting 
angiogenesis 

GO:1903589 PMID:30106099 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-21-5p positive regulation of inflammatory response GO:0050729 PMID:21636785 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-21-5p positive regulation of vascular associated 
smooth muscle cell migration GO:1904754 

PMID:20693317
,PMID:2069331
7,PMID:218171

07 

UBERON:0
002012,UB
ERON:0002

pulmonary artery,pulmonary 
artery,femoral artery 
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012,UBERO
N:0002060 

artery hsa-miR-21-5p positive regulation of vascular endothelial 
growth factor signaling pathway GO:1900748 PMID:30106099 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-21-5p positive regulation of vascular smooth muscle 
cell proliferation GO:1904707 

PMID:20693317
,PMID:2181710

7 

UBERON:0
002012,UB
ERON:0002

060 

pulmonary artery,femoral artery 

artery hsa-miR-21-5p regulation of cell shape GO:0008360 PMID:21817107 CL:0000359 vascular associated smooth 
muscle cell 

artery hsa-miR-210-3p positive regulation of angiogenesis GO:0045766 PMID:18417479 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-210-3p positive regulation of cell migration GO:0030335 PMID:23322395 CL:2000008 microvascular endothelial cell 
artery hsa-miR-210-3p tube formation GO:0035148 PMID:23322395 CL:2000008 microvascular endothelial cell 
artery hsa-miR-212-3p negative regulation of angiogenesis GO:0016525 PMID:25217442 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-212-3p positive regulation of Notch signaling pathway GO:0045747 PMID:25217442 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-214-3p cellular response to hypoxia GO:0071456 PMID:27144530 CL:0002591 smooth muscle cell of the 
pulmonary artery 

artery hsa-miR-214-3p negative regulation of cell migration GO:0030336 PMID:25656649 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-214-3p negative regulation of cell proliferation GO:0008285 PMID:25656649 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-214-3p negative regulation of vascular associated 
smooth muscle cell migration GO:1904753 PMID:27927633 UBERON:0

000947 aorta 

artery hsa-miR-214-3p negative regulation of vascular smooth muscle 
cell proliferation GO:1904706 PMID:27927633 UBERON:0

000947 aorta 

artery hsa-miR-214-3p positive regulation of G1/S transition of mitotic 
cell cycle GO:1900087 PMID:27144530 CL:0002591 smooth muscle cell of the 

pulmonary artery 

artery hsa-miR-214-5p positive regulation of vascular smooth muscle 
cell proliferation GO:1904707 PMID:28684904 UBERON:0

002012 pulmonary artery 

artery hsa-miR-218-5p negative regulation of MAP kinase activity GO:0043407 PMID:21385766 CL:0000071 blood vessel endothelial cell 
artery hsa-miR-22-3p positive regulation of inflammatory response GO:0050729 PMID:28112401 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-221-3p negative regulation of inflammatory response GO:0050728 PMID:21310411 CL:0000071 blood vessel endothelial cell 
artery hsa-miR-221-3p negative regulation of sprouting angiogenesis GO:1903671 PMID:27780851 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-221-3p platelet-derived growth factor receptor signaling 
pathway GO:0048008 PMID:19088079 CL:0002591 smooth muscle cell of the 

pulmonary artery 
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artery hsa-miR-221-3p positive regulation of blood vessel endothelial 
cell migration GO:0043536 PMID:19351599 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-222-3p negative regulation of inflammatory response GO:0050728 PMID:21310411 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-223-3p negative regulation of GTPase activity GO:0034260 PMID:27121304 CL:0002591 smooth muscle cell of the 
pulmonary artery 

artery hsa-miR-23a-3p cellular response to vascular endothelial growth 
factor stimulus GO:0035924 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-23a-3p negative regulation of vascular permeability GO:0043116 PMID:27741223 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-23a-3p 
positive regulation of blood vessel endothelial 

cell proliferation involved in sprouting 
angiogenesis 

GO:1903589 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-23a-3p positive regulation of cell migration involved in 
sprouting angiogenesis GO:0090050 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-23a-3p positive regulation of ERK1 and ERK2 cascade GO:0070374 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-23b-3p cellular response to vascular endothelial growth 
factor stimulus GO:0035924 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-23b-3p negative regulation of sprouting angiogenesis GO:1903671 PMID:27741223 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-23b-3p 
positive regulation of blood vessel endothelial 

cell proliferation involved in sprouting 
angiogenesis 

GO:1903589 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-23b-3p positive regulation of cell migration involved in 
sprouting angiogenesis GO:0090050 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-23b-3p positive regulation of ERK1 and ERK2 cascade GO:0070374 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-23b-3p positive regulation of vascular permeability GO:0043117 PMID:27741223 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-24-3p negative regulation of angiogenesis GO:0016525 PMID:23774796 CL:2000008 microvascular endothelial cell 

artery hsa-miR-24-3p positive regulation of endothelial cell apoptotic 
process GO:2000353 PMID:21788589 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-24-3p positive regulation of reactive oxygen species 
biosynthetic process GO:1903428 PMID:21788589 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-24-3p positive regulation of vascular associated 
smooth muscle cell apoptotic process GO:1905461 PMID:23774796 CL:2000008 microvascular endothelial cell 

artery hsa-miR-26a-5p negative regulation of BMP signaling pathway GO:0030514 PMID:24047927 CL:0002618 endothelial cell of umbilical vein 
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artery hsa-miR-26a-5p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 

PMID:24047927
,PMID:2860216

2 

CL:0002618
,CL:000261

8 

endothelial cell of umbilical 
vein,endothelial cell of umbilical 

vein 

artery hsa-miR-26a-5p negative regulation of DNA-binding transcription 
factor activity GO:0043433 PMID:24047927 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-26a-5p negative regulation of G1/S transition of mitotic 
cell cycle GO:2000134 PMID:24047927 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-26a-5p negative regulation of nitric-oxide synthase 
activity GO:0051001 PMID:28602162 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-26a-5p transforming growth factor beta receptor 
signaling pathway GO:0007179 PMID:20857419 CL:0002539 aortic smooth muscle cell 

artery hsa-miR-26a-5p vascular endothelial growth factor signaling 
pathway GO:0038084 PMID:28602162 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-27a-3p cellular response to vascular endothelial growth 
factor stimulus GO:0035924 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-27a-3p 
positive regulation of blood vessel endothelial 

cell proliferation involved in sprouting 
angiogenesis 

GO:1903589 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-27a-3p positive regulation of cell migration involved in 
sprouting angiogenesis GO:0090050 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-27a-3p positive regulation of ERK1 and ERK2 cascade GO:0070374 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-27a-5p negative regulation of NF-kappaB transcription 
factor activity GO:0032088 PMID:25327529 CL:0002544 aortic endothelial cell 

artery hsa-miR-27b-3p cellular response to vascular endothelial growth 
factor stimulus GO:0035924 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-27b-3p 
positive regulation of blood vessel endothelial 

cell proliferation involved in sprouting 
angiogenesis 

GO:1903589 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-27b-3p positive regulation of cell migration involved in 
sprouting angiogenesis GO:0090050 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-27b-3p positive regulation of ERK1 and ERK2 cascade GO:0070374 PMID:21536891 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-296-5p positive regulation of cell migration involved in 
sprouting angiogenesis GO:0090050 PMID:18977327 CL:2000044 brain microvascular endothelial 

cell 

artery hsa-miR-296-5p positive regulation of vascular endothelial 
growth factor receptor signaling pathway GO:0030949 PMID:18977327 CL:2000044 brain microvascular endothelial 

cell 
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artery hsa-miR-29a-3p negative regulation of angiogenesis GO:0016525 PMID:28637396 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-29a-3p positive regulation of angiogenesis GO:0045766 PMID:23541945 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-29a-3p positive regulation of G1/S transition of mitotic 
cell cycle GO:1900087 PMID:23541945 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-29b-3p negative regulation of collagen biosynthetic 
process GO:0032966 PMID:22269326 CL:0002547 fibroblast of the aortic 

adventitia 
artery hsa-miR-29c-5p negative regulation of angiogenesis GO:0016525 PMID:26175848 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-29c-5p negative regulation of insulin-like growth factor 
receptor signaling pathway GO:0043569 

PMID:26045889
,PMID:2617584

8 

CL:0002618
,CL:000261

8 

endothelial cell of umbilical 
vein,endothelial cell of umbilical 

vein 
artery hsa-miR-30a-3p positive regulation of angiogenesis GO:0045766 PMID:23960241 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-30a-3p transforming growth factor beta receptor 
signaling pathway GO:0007179 PMID:23960241 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-30b-5p negative regulation of angiogenesis GO:0016525 PMID:28977001 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-30b-5p negative regulation of endothelial cell apoptotic 
process GO:2000352 PMID:27464494 CL:2000018 endothelial cell of coronary 

artery 
artery hsa-miR-30b-5p positive regulation of protein phosphorylation GO:0001934 PMID:28977001 CL:0000071 blood vessel endothelial cell 
artery hsa-miR-30b-5p positive regulation of sprouting angiogenesis GO:1903672 PMID:23086751 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-30b-5p positive regulation of transforming growth factor 
beta receptor signaling pathway GO:0030511 PMID:28977001 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-30c-5p negative regulation of sprouting angiogenesis GO:1903671 PMID:27780851 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-30e-5p negative regulation of endothelial cell apoptotic 
process GO:2000352 PMID:27464494 CL:2000018 endothelial cell of coronary 

artery 
artery hsa-miR-30e-5p negative regulation of sprouting angiogenesis GO:1903671 PMID:27780851 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-31-5p positive regulation of angiogenesis GO:0045766 PMID:28097093 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-31-5p positive regulation of blood vessel endothelial 
cell migration GO:0043536 PMID:26933040 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-31-5p positive regulation of sprouting angiogenesis GO:1903672 PMID:26933040 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-329-3p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 PMID:23878390 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-329-3p negative regulation of vascular endothelial 
growth factor signaling pathway GO:1900747 PMID:23878390 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-329-3p NIK/NF-kappaB signaling GO:0038061 PMID:23878390 CL:0002618 endothelial cell of umbilical vein 
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artery hsa-miR-342-5p negative regulation of protein kinase B signaling GO:0051898 PMID:26857067 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-342-5p negative regulation of transforming growth 
factor beta receptor signaling pathway GO:0030512 PMID:26857067 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-342-5p negative regulation of vascular endothelial 
growth factor signaling pathway GO:1900747 PMID:26857067 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-34a-5p cellular response to hypoxia GO:0071456 PMID:27302634 CL:0002591 smooth muscle cell of the 
pulmonary artery 

artery hsa-miR-34a-5p negative regulation of angiogenesis GO:0016525 PMID:24048733 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-34a-5p negative regulation of calcium ion import GO:0090281 PMID:27302634 CL:0002591 smooth muscle cell of the 
pulmonary artery 

artery hsa-miR-34a-5p negative regulation of sprouting angiogenesis GO:1903671 PMID:23426265 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-34a-5p negative regulation of vascular associated 
smooth muscle cell migration GO:1904753 PMID:26493107 UBERON:0

000947 aorta 

artery hsa-miR-34a-5p negative regulation of vascular smooth muscle 
cell proliferation GO:1904706 

PMID:24792364
,PMID:2649310

7 

CL:0002546
,UBERON:0

000947 

embryonic blood vessel 
endothelial progenitor cell,aorta 

artery hsa-miR-361-5p negative regulation of angiogenesis GO:0016525 PMID:25203061 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-362-3p negative regulation of G1/S transition of mitotic 
cell cycle GO:2000134 PMID:28890348 CL:0000359 vascular associated smooth 

muscle cell 
artery hsa-miR-377-3p negative regulation of sprouting angiogenesis GO:1903671 PMID:25251394 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-424-5p negative regulation of angiogenesis GO:0016525 PMID:28566713 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-424-5p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 PMID:28566713 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-424-5p negative regulation of ERK1 and ERK2 cascade GO:0070373 PMID:23263626 CL:1001568 pulmonary artery endothelial 
cell 

artery hsa-miR-424-5p negative regulation of fibroblast growth factor 
receptor signaling pathway GO:0040037 

PMID:21885851
,PMID:2326362

6 

CL:0002544
,CL:100156

8 

aortic endothelial 
cell,pulmonary artery 

endothelial cell 

artery hsa-miR-424-5p negative regulation of G0 to G1 transition GO:0070317 PMID:23263626 CL:1001568 pulmonary artery endothelial 
cell 

artery hsa-miR-424-5p negative regulation of vascular endothelial 
growth factor signaling pathway GO:1900747 PMID:21885851 CL:0002544 aortic endothelial cell 

artery hsa-miR-424-5p negative regulation of vascular smooth muscle 
cell proliferation GO:1904706 PMID:23263626 CL:0002591 smooth muscle cell of the 

pulmonary artery 
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artery hsa-miR-451a positive regulation of vascular associated 
smooth muscle cell migration GO:1904754 PMID:25006399 UBERON:0

002012 pulmonary artery 

artery hsa-miR-4632-3p cellular response to platelet-derived growth 
factor stimulus GO:0036120 PMID:28701355 CL:0002591 smooth muscle cell of the 

pulmonary artery 

artery hsa-miR-483-5p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 PMID:21893058 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-487b-3p 
positive regulation of blood vessel endothelial 

cell proliferation involved in sprouting 
angiogenesis 

GO:1903589 PMID:25660232 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-487b-3p positive regulation of cell migration involved in 
sprouting angiogenesis GO:0090050 PMID:25660232 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-492 negative regulation of angiogenesis GO:0016525 PMID:23802567 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-495-3p negative regulation of endothelial cell apoptotic 
process GO:2000352 PMID:25466836 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-495-3p positive regulation of G1/S transition of mitotic 
cell cycle GO:1900087 PMID:25466836 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-503-5p negative regulation of angiogenesis GO:0016525 PMID:28566713 CL:0000071 blood vessel endothelial cell 
artery hsa-miR-503-5p negative regulation of cell-substrate adhesion GO:0010812 PMID:21220732 CL:0002543 vein endothelial cell 

artery hsa-miR-503-5p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 PMID:28566713 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-503-5p negative regulation of endothelial cell migration GO:0010596 PMID:21220732 CL:0002543 vein endothelial cell 

artery hsa-miR-503-5p negative regulation of ERK1 and ERK2 cascade GO:0070373 PMID:23263626 CL:1001568 pulmonary artery endothelial 
cell 

artery hsa-miR-503-5p negative regulation of fibroblast growth factor 
receptor signaling pathway GO:0040037 PMID:23263626 CL:1001568 pulmonary artery endothelial 

cell 

artery hsa-miR-503-5p negative regulation of G0 to G1 transition GO:0070317 PMID:23263626 CL:1001568 pulmonary artery endothelial 
cell 

artery hsa-miR-503-5p negative regulation of vascular smooth muscle 
cell proliferation GO:1904706 PMID:23263626 CL:0002591 smooth muscle cell of the 

pulmonary artery 
artery hsa-miR-505-3p negative regulation of angiogenesis GO:0016525 PMID:25449503 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-638 negative regulation of G1/S transition of mitotic 
cell cycle GO:2000134 PMID:23554459 CL:0002539 aortic smooth muscle cell 

artery hsa-miR-638 platelet-derived growth factor receptor signaling 
pathway GO:0048008 PMID:23554459 CL:0002539 aortic smooth muscle cell 
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artery hsa-miR-665 negative regulation of canonical Wnt signaling 
pathway GO:0090090 PMID:29118903 CL:0002539 aortic smooth muscle cell 

artery hsa-miR-7-5p negative regulation of sprouting angiogenesis GO:1903671 PMID:27431648 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-92a-3p cellular response to low-density lipoprotein 
particle stimulus GO:0071404 PMID:24255059 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-92a-3p negative regulation of inflammatory response GO:0050728 PMID:22267480 CL:1000413 endothelial cell of artery 

artery hsa-miR-92a-3p negative regulation of nitric oxide biosynthetic 
process GO:0045019 PMID:21768538 CL:0000071 blood vessel endothelial cell 

artery hsa-miR-92a-3p positive regulation of interleukin-6 production GO:0032755 PMID:24255059 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-92a-3p positive regulation of monocyte chemotactic 
protein-1 production GO:0071639 PMID:24255059 CL:0002618 endothelial cell of umbilical vein 

artery hsa-miR-92a-3p positive regulation of sprouting angiogenesis GO:1903672 PMID:26299712 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-939-5p negative regulation of angiogenesis GO:0016525 PMID:28115160 CL:0002618 endothelial cell of umbilical vein 
artery hsa-miR-939-5p negative regulation of cell-matrix adhesion GO:0001953 PMID:28115160 CL:0002618 endothelial cell of umbilical vein 
blood hsa-let-7f-5p negative regulation of interleukin-17 production GO:0032700 PMID:21508257 CL:0000813 memory T cell 

blood hsa-miR-106a-5p negative regulation of interleukin-8 secretion GO:2000483 PMID:26265888 CL:2000001 peripheral blood mononuclear 
cell 

blood hsa-miR-144-3p positive regulation of cholesterol storage GO:0010886 PMID:24733347 CL:0000517 macrophage derived foam cell 

blood hsa-miR-144-3p positive regulation of interleukin-1 beta 
secretion GO:0050718 PMID:24733347 CL:0000517 macrophage derived foam cell 

blood hsa-miR-144-3p positive regulation of interleukin-6 secretion GO:2000778 PMID:24733347 CL:0000517 macrophage derived foam cell 

blood hsa-miR-144-3p positive regulation of tumor necrosis factor 
secretion GO:1904469 PMID:24733347 CL:0000517 macrophage derived foam cell 

blood hsa-miR-146a-5p negative regulation of cholesterol storage GO:0010887 PMID:21329689 CL:0000517 macrophage derived foam cell 

blood hsa-miR-146a-5p negative regulation of cytokine production 
involved in inflammatory response GO:1900016 PMID:29896267 CL:0000583 alveolar macrophage 

blood hsa-miR-146a-5p negative regulation of inflammatory response GO:0050728 PMID:21329689 CL:0000517 macrophage derived foam cell 

blood hsa-miR-146a-5p negative regulation of interleukin-6 secretion GO:1900165 
PMID:21329689
,PMID:2989626

7 

CL:0000517
,CL:000058

3 

macrophage derived foam 
cell,alveolar macrophage 

blood hsa-miR-146a-5p negative regulation of interleukin-8 secretion GO:2000483 PMID:21329689 CL:0000517 macrophage derived foam cell 

blood hsa-miR-146a-5p negative regulation of toll-like receptor 4 
signaling pathway GO:0034144 PMID:21329689 CL:0000517 macrophage derived foam cell 
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blood hsa-miR-155-5p cellular response to low-density lipoprotein 
particle stimulus GO:0071404 PMID:21030878 CL:0000517 macrophage derived foam cell 

blood hsa-miR-155-5p cholesterol homeostasis GO:0042632 PMID:21030878 CL:0000517 macrophage derived foam cell 
blood hsa-miR-155-5p negative regulation of inflammatory response GO:0050728 PMID:21030878 CL:0000517 macrophage derived foam cell 

blood hsa-miR-155-5p negative regulation of NF-kappaB transcription 
factor activity GO:0032088 PMID:21030878 CL:0000517 macrophage derived foam cell 

blood hsa-miR-155-5p negative regulation of protein localization to 
nucleus GO:1900181 PMID:21030878 CL:0000517 macrophage derived foam cell 

blood hsa-miR-181a-5p negative regulation of tumor necrosis factor 
production GO:0032720 PMID:23516523 CL:0000235 macrophage 

blood hsa-miR-181b-5p negative regulation of defense response to 
bacterium GO:1900425 PMID:25505240 CL:0000235 macrophage 

blood hsa-miR-181b-5p negative regulation of innate immune response GO:0045824 PMID:25505240 CL:0000235 macrophage 
blood hsa-miR-181b-5p negative regulation of phagocytosis GO:0050765 PMID:25505240 CL:0000235 macrophage 
blood hsa-miR-181b-5p negative regulation of signal transduction GO:0009968 PMID:25505240 CL:0000235 macrophage 
blood hsa-miR-181b-5p positive regulation of inflammatory response GO:0050729 PMID:25505240 CL:0000235 macrophage 
blood hsa-miR-182-5p cholesterol homeostasis GO:0042632 PMID:28855441 CL:0000235 macrophage 
blood hsa-miR-182-5p positive regulation of cytokine secretion GO:0050715 PMID:28855441 CL:0000235 macrophage 
blood hsa-miR-182-5p positive regulation of lipoprotein lipase activity GO:0051006 PMID:28855441 CL:0000235 macrophage 
blood hsa-miR-182-5p positive regulation of NIK/NF-kappaB signaling GO:1901224 PMID:28855441 CL:0000235 macrophage 

blood hsa-miR-183-5p transforming growth factor beta receptor 
signaling pathway GO:0007179 PMID:24586048 CL:0000623 natural killer cell 

blood hsa-miR-19a-3p positive regulation of B cell receptor signaling 
pathway GO:0050861 PMID:26017478 CL:2000001 peripheral blood mononuclear 

cell 

blood hsa-miR-19b-3p cholesterol homeostasis GO:0042632 
PMID:25084135
,PMID:2576559

6 

CL:0000517
,CL:000051

7 

macrophage derived foam 
cell,macrophage derived foam 

cell 
blood hsa-miR-20a-5p negative regulation of inflammatory response GO:0050728 PMID:28972028 CL:0000492 CD4-positive helper T cell 

blood hsa-miR-20a-5p negative regulation of phosphatidylinositol 3-
kinase signaling GO:0014067 PMID:28972028 CL:0000492 CD4-positive helper T cell 

blood hsa-miR-20a-5p negative regulation of protein kinase B signaling GO:0051898 PMID:28972028 CL:0000492 CD4-positive helper T cell 

blood hsa-miR-26b-5p defense response to virus GO:0051607 PMID:26222045 CL:2000001 peripheral blood mononuclear 
cell 
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blood hsa-miR-26b-5p negative regulation of defense response to virus GO:0050687 PMID:26222045 CL:2000001 peripheral blood mononuclear 
cell 

blood hsa-miR-27a-5p cellular response to transforming growth factor 
beta stimulus GO:0071560 PMID:28791023 CL:0000623 natural killer cell 

blood hsa-miR-302a-3p cellular response to low-density lipoprotein 
particle stimulus GO:0071404 PMID:25524771 CL:0000235 macrophage 

blood hsa-miR-302a-3p cholesterol homeostasis GO:0042632 PMID:25524771 CL:0000235 macrophage 
blood hsa-miR-33b-5p cholesterol homeostasis GO:0042632 PMID:24931346 CL:0000581 peritoneal macrophage 
blood hsa-miR-361-5p regulation of inflammatory response GO:0050727 PMID:28444107 CL:0000517 macrophage derived foam cell 
blood hsa-miR-488-3p negative regulation of inflammatory response GO:0050728 PMID:28915828 CL:0000235 macrophage 

blood hsa-miR-488-3p negative regulation of tumor necrosis factor 
biosynthetic process GO:0042536 PMID:28915828 CL:0000235 macrophage 

blood hsa-miR-590-3p cholesterol homeostasis GO:0042632 PMID:25149060 CL:0000235 macrophage 
blood hsa-miR-590-3p negative regulation of inflammatory response GO:0050728 PMID:25149060 CL:0000235 macrophage 

blood hsa-miR-758-3p cellular response to low-density lipoprotein 
particle stimulus GO:0071404 PMID:21885853 CL:0000235 macrophage 

blood hsa-miR-920 negative regulation of inflammatory response GO:0050728 PMID:28915828 CL:0000235 macrophage 

blood hsa-miR-920 negative regulation of tumor necrosis factor 
biosynthetic process GO:0042536 PMID:28915828 CL:0000235 macrophage 

brain hsa-miR-195-5p response to ischemia GO:0002931 PMID:30497184 UBERON:0
000955 brain 

heart hsa-let-7b-5p positive regulation of angiogenesis GO:0045766 PMID:26296645 UBERON:0
002349 myocardium 

heart hsa-miR-1-3p negative regulation of cardiac muscle 
hypertrophy GO:0010614 PMID:19933931 UBERON:0

006566 left ventricle myocardium 

heart hsa-miR-1-3p positive regulation of protein phosphorylation GO:0001934 PMID:19131648 CL:0000746 cardiac muscle cell 
heart hsa-miR-1-3p positive regulation of sprouting angiogenesis GO:1903672 PMID:23625462 CL:0000513 cardiac muscle myoblast 

heart hsa-miR-1-3p regulation of release of sequestered calcium ion 
into cytosol by sarcoplasmic reticulum GO:0010880 PMID:19131648 CL:0000746 cardiac muscle cell 

heart hsa-miR-155-5p negative regulation of cell migration involved in 
sprouting angiogenesis GO:0090051 PMID:28408180 UBERON:0

000948 heart 

heart hsa-miR-155-5p negative regulation of hydrogen peroxide-
induced cell death GO:1903206 PMID:20550618 CL:0010021 cardiac myoblast 
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heart hsa-miR-21-5p regulation of calcium ion transmembrane 
transport via high voltage-gated calcium channel GO:1902514 PMID:25107449 CL:0000746 cardiac muscle cell 

heart hsa-miR-223-3p positive regulation of glucose import GO:0046326 PMID:20080987 CL:0000746 cardiac muscle cell 

heart hsa-miR-223-3p positive regulation of protein localization to 
plasma membrane GO:1903078 PMID:20080987 CL:2000046 ventricular cardiac muscle cell 

kidney hsa-miR-590-5p negative regulation of epithelial to mesenchymal 
transition GO:0010719 PMID:26459119 CL:1000497 kidney cell 

liver hsa-miR-144-3p cholesterol homeostasis GO:0042632 PMID:23519695 CL:0000182 hepatocyte 
liver hsa-miR-148a-3p cholesterol homeostasis GO:0042632 PMID:26437365 CL:0000182 hepatocyte 

liver hsa-miR-148a-3p negative regulation of low-density lipoprotein 
particle clearance GO:0010989 PMID:26437365 CL:0000182 hepatocyte 

liver hsa-miR-185-5p negative regulation of low-density lipoprotein 
particle clearance GO:0010989 PMID:26523989 CL:0000182 hepatocyte 

liver hsa-miR-199a-5p negative regulation of low-density lipoprotein 
particle clearance GO:0010989 PMID:26163491 CL:0000182 hepatocyte 

liver hsa-miR-199a-5p negative regulation of receptor internalization GO:0002091 PMID:26163491 CL:0000182 hepatocyte 
liver hsa-miR-21-5p cellular response to virus GO:0098586 PMID:27571873 CL:0000182 hepatocyte 

liver hsa-miR-27a-3p negative regulation of low-density lipoprotein 
particle clearance GO:0010989 PMID:26318398 CL:0000182 hepatocyte 

liver hsa-miR-27b-3p cholesterol homeostasis GO:0042632 PMID:26520906 CL:0000182 hepatocyte 

liver hsa-miR-27b-3p negative regulation of low-density lipoprotein 
particle clearance GO:0010989 PMID:26520906 CL:0000182 hepatocyte 

liver hsa-miR-30c-5p negative regulation of fatty acid biosynthetic 
process GO:0045717 PMID:23749231 UBERON:0

002107 liver 

liver hsa-miR-548p negative regulation of fatty acid biosynthetic 
process GO:0045717 PMID:28336556 CL:0000182 hepatocyte 

muscle_skelet
al hsa-miR-15b-5p positive regulation of translation GO:0045727 PMID:25403480 CL:0000737 striated muscle cell 

muscle_skelet
al hsa-miR-16-5p positive regulation of translation GO:0045727 PMID:25403480 CL:0000737 striated muscle cell 

nerve hsa-miR-103a-3p negative regulation of cyclin-dependent protein 
serine/threonine kinase activity GO:0045736 PMID:27343180 CL:0000540 neuron 

nerve hsa-miR-103a-3p negative regulation of peptidyl-threonine 
phosphorylation GO:0010801 PMID:27343180 CL:0000540 neuron 
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nerve hsa-miR-106b-5p cellular response to amyloid-beta GO:1904646 PMID:27520374 CL:0000540 neuron 

nerve hsa-miR-106b-5p negative regulation of peptidyl-tyrosine 
phosphorylation GO:0050732 PMID:27520374 CL:0000540 neuron 

nerve hsa-miR-125b-1-
3p positive regulation of protein phosphorylation GO:0001934 PMID:28947385 CL:0000540 neuron 

nerve hsa-miR-125b-1-
3p positive regulation of tau-protein kinase activity GO:1902949 PMID:28947385 CL:0000540 neuron 

nerve hsa-miR-132-3p negative regulation of nitric-oxide synthase 
activity GO:0051001 PMID:28089352 CL:0000540 neuron 

nerve hsa-miR-132-3p negative regulation of nitric oxide biosynthetic 
process GO:0045019 PMID:28089352 CL:0000540 neuron 

nerve hsa-miR-132-3p negative regulation of peptidyl-serine 
phosphorylation GO:0033137 PMID:28089352 CL:0000540 neuron 

nerve hsa-miR-140-5p cellular response to amyloid-beta GO:1904646 PMID:29253717 CL:0000540 neuron 
nerve hsa-miR-146a-5p negative regulation of protein kinase B signaling GO:0051898 PMID:27241555 CL:0000540 neuron 
nerve hsa-miR-146a-5p positive regulation of apoptotic process GO:0043065 PMID:27241555 CL:0000540 neuron 

nerve hsa-miR-15a-5p negative regulation of cyclin-dependent protein 
serine/threonine kinase activity GO:0045736 PMID:27343180 CL:0000540 neuron 

nerve hsa-miR-15a-5p negative regulation of peptidyl-threonine 
phosphorylation GO:0010801 PMID:27343180 CL:0000540 neuron 

nerve hsa-miR-212-3p negative regulation of nitric-oxide synthase 
activity GO:0051001 PMID:28089352 CL:0000540 neuron 

nerve hsa-miR-212-3p negative regulation of nitric oxide biosynthetic 
process GO:0045019 PMID:28089352 CL:0000540 neuron 

nerve hsa-miR-212-3p negative regulation of peptidyl-serine 
phosphorylation GO:0033137 PMID:28089352 CL:0000540 neuron 

nerve hsa-miR-218-5p negative regulation of collagen biosynthetic 
process GO:0032966 PMID:19913496 CL:0000122 stellate neuron 

nerve hsa-miR-29b-3p negative regulation of collagen biosynthetic 
process GO:0032966 PMID:19913496 CL:0000122 stellate neuron 

nerve hsa-miR-98-5p cellular response to amyloid-beta GO:1904646 PMID:27541017 CL:0000540 neuron 

skin hsa-miR-181b-5p negative regulation of toll-like receptor 4 
signaling pathway GO:0034144 PMID:27641447 CL:0000312 keratinocyte 
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skin hsa-miR-200b-3p negative regulation of blood vessel endothelial 
cell migration GO:0043537 PMID:22499991 UBERON:0

002067 dermis 

skin hsa-miR-203a-3p negative regulation of cytokine production 
involved in inflammatory response GO:1900016 PMID:23608026 CL:0000312 keratinocyte 

skin hsa-miR-203a-3p negative regulation of interleukin-8 secretion GO:2000483 PMID:23608026 CL:0000312 keratinocyte 
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