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ABSTRACT 

INVESTIGATING THE DISORDER AND COMPACTION OF DESIGNED 

MINIELASTINS USING NUCLEAR MAGNETIC RESONANCE 

Ma. Faye Charmagne A. Carvajal 

November 30, 2020 

Minielastins are elastin-based proteins with alternating hydrophobic and cross-

link modules similar to tropoelastin. Tropoelastin is the ~70 kDa soluble monomeric 

precursor of elastin. The extracellular matrix protein, elastin provides elasticity to tissues 

and organs such as lungs, arteries and ligaments. The elastic properties of natural elastin 

are believed to be entropic in origin. In vivo, the elastin matrix is approximately 50% 

water by weight. Without water, elastin is brittle and hard.  

Minielastins, like tropoelastin, undergo a liquid-liquid phase transition upon an 

increase in temperature. Factors such as hydrophobicity, chain length and concentration 

affect the coacervation temperature, Tc. The coacervation temperature were modulated by 

changing the number of hydrophobic repeats and the length of cross-link modules. Each 

hydrophobic repeat, VPGVGG and APGVGV, decreases Tc by 1.7 and 1.5 °C, 

respectively. Also, increasing the temperature and pressure causes the hydrodynamic 

radii of minielastins to shrink, similar to other disordered proteins. 
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Elastin-like biomaterials exhibit a great potential in tissue engineering and drug 

delivery. Therefore, it is important, for a wide array of applications, to understand the 

relationship between protein sequence, structure and mechanical properties of elastin 

biomaterials. To obtain residue specific information using nuclear magnetic resonance 

(NMR) spectroscopy, simplified hydrophobic and cross-link modules were designed 

based on the predominant 6-residue repeats found in tropoelastin exon 20 (VPGVGG) 

and 24 (APGVGV) hydrophobic modules and the consensus cross-link motif, 

A4/5KA2/3K, found in the natural elastin.   

In this study, the hydrophobic modules, responsible for the self-assembly of 

elastin-like proteins, were found to be highly disordered. Also, the cross-link modules are 

disordered, but when flanked by hydrophobic modules they are weakly a-helical. These 

conclusions are supported by analysis of complete assignment of backbone 1H, 13C and 

15N chemical shifts and 15N spin relaxation measurements (R1, R2 and NOE) with spectral 

density modeling.  These results show that the amplitude of dynamics in the hydrophobic 

modules approach that of a flexible polymer chain with chain dynamics on two 

timescales, ~1 – 2 ns and ~30 – 80 ps. Well-ordered regions were not found. Finally, the 

ability of minielastins to form insoluble cross-linked products have proved its potential as 

an elastic biomaterial.  
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MINIELASTINS ARE INTRINSICALLY DISORDERED 

PROTEINS 

1.1 Introduction 

1.1.1 Elastin 

Elastin is an insoluble protein found in the extracellular matrix of the cell. It is 

responsible for the elasticity of tissues and organs such as ligaments, arteries, lungs and 

skin. The mechanism of elasticity is known to be entropic, i.e., spontaneous recoil is 

driven by the increase in entropy upon relaxing from stretch. Hydrated elastin is elastic 

and flexible but dry elastin is hard and brittle. Thus, hydration plays an important role in 

the protein’s elasticity.1  

Mature elastin is composed of networks of cross-linked tropoelastin, a soluble 

monomer that has been widely studied since it was first isolated from copper-deficient 

animals.2 Tropoelastin is a ~70-kDa protein with alternating hydrophobic and cross-

linking modules coded by 34 exons, Figure 1.1.  Hydrophobic domains are rich in 

glycine, alanine, proline and valine with predominant GXG, GGX and PGX motifs where 

X is V, A, I or L. Whereas hydrophobic modules contain mainly aliphatic residues, KA 

and KP cross-linking domains contain polyalanyl sequences followed by KAAK or 

KAAAK. Exon 1 contains the signaling sequence whereas exon 36 translates to the 

positively charged RKRK C-termini sequence. The elastin gene undergoes alternative 

splicing resulting to different isoforms of tropoelastin.3 
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Figure 1.1. Human tropoelastin sequence from cDNA divided into different exons with 
stars depicting exons subjected to alternative splicing (adapted from Bashir et al.4). The 
predominant hydrophobic (red) and cross-link (blue) repeats highlighted were used in 
designing minielastin constructs. 

Mature elastin is formed when the lysine residues of tropoelastin are oxidized by 

the enzyme lysyl oxidase, yielding a reactive species, allysine, which condenses with 

lysine or another allysine to create lysinonorleucine or allysine aldol. These further 

condense to form tetrafunctional cross-linkers, desmosine or isodesmosine as shown in 

Figure 1.2.5 In this way,  tropoelastin molecules are connected to form the mature matrix. 
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Intensive cross-linking and hydrophobicity of tropoelastin contribute to the insolubility of 

elastin making it difficult to study. Numerous studies have been made to determine 

structure of the soluble precursor either by isolation or recombinant protein expression. 

Urry proposed a b-spiral secondary structure with Type II b-turns at PG residues in 

hydrophobic modules.6 Foster and coworkers7 suggested presence of a-helical structure 

of the cross-linked peptide using circular dichroism experiments whereas Weiss and 

coworkers8 investigated peptides of cross-linking modules exhibiting a-helical structure, 

albeit induced by adding trifluoroethanol (TFE). Aside from the secondary structure, the 

inverse temperature transition (Tc) of tropoelastin and elastin-like proteins (ELP) have 

been extensively studied. At Tc, tropoelastin self-assembles which decreases the entropy  

Figure 1.2 Formation of the bi-,tri-, and tetrafunctional cross-linker in elastin adapted 
from Vrhovski et al.9 
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of the protein. Self-assembly is driven by the hydrophobic effect. The low entropy 

resulting from ordering of water at hydrophobic surfaces is decreased by a loss of solvent 

accessible hydrophobic surface area and is favored with increased temperature because 

the increase in disorder of water is higher than the decrease in disorder of the protein 

yielding a total increase in disorder of the system.10 Hydrophobicity of the sequence, 

chain length and concentration affect the Tc of elastin-like polypeptides.  

Keeley and coworkers have pioneered a reductionist approach in recombinant 

expression of elastin-based proteins, minielastins. Bacterial expression was utilized to 

make short elastin sequences containing a small number of hydrophobic modules 

alternated with cross-link modules with natural sequences. These constructs have shown 

CD spectra comparable to native tropoelastin and were successfully cross-linked using 

different cross-linking agents.11-15 This approach has shown great potential in 

understanding the structure of tropoelastin. 

1.1.2 NMR spectroscopy 

Nuclear magnetic resonance has been used for studying elastin structure and 

dynamics at atomic resolution structure. Aside from X-ray crystallography and the more 

recent cryo-EM, NMR has been considered a reliable technique in deducing the native 

structure of biomolecules with molecular weights up to ~50 kDa at which point protein 

NMR is limited by the increased rotational correlation time resulting in high R2 relaxation 

rates and broader linewidths. Structure elucidation of proteins using NMR is a routine 

method, particularly for folded proteins that are isotopically labeled via recombinant 

protein expression.  
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Sequence based NMR experiments are used to assign chemical shifts for each 

nucleus in the protein. NMR experiments starting with 15N-1H and 13C-1H heteronuclear 

single quantum coherence (HSQC) experiments gives an overview of spectral resolution 

in 1H and 15N/13C dimensions. These two-dimensional experiments correlates 15N or 13C 

to the proton directly attached. Total correlation spectroscopy (TOCSY) and nuclear 

Overhauser effect spectroscopy (NOESY) are 2D homonuclear experiments that correlate 

proton pairs that are spin-coupled (TOCSY) or spatially close (NOESY). These 

experiments determine coupled spin-systems of protons within a residue and to identify 

nearby proton pairs (less than 5-6 Å apart). A problem in chemical shift degeneracy 

inevitably arises, especially for high molecular weight proteins and disordered proteins. 

In this case, spectral overlap was resolved by adding another dimension i.e. 3D 

experiments are utilized. 

The backbone and side-chains atoms of each residue in a protein form a coupled 

spin system with characteristic chemical shifts and number of protons. Thus, the 3D 15N-

edited TOCSY-HSQC coupled with 3D 15N-edited NOESY-HSQC spectrum are 

commonly used for amino acid assignment of 15N-labelled proteins. For sidechain and 

backbone chemical shift assignment of proteins with known sequence, pairs of straight 

through and out-and-back 3D experiments are generally used. These experiments 

combine time domain spectroscopy and a technique that transfers spin coherence (NMR 

signal) between coupled spins. Importantly, the transfer can be tuned to a particular J-

coupling. J-couplings in polypeptides are summarized in Figure 1.3.16 
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Figure 1.3. Spin system of the peptide backbone and the size of the 1J and 2J coupling 
constants that are used for magnetization transfer in 13C and 15N-labelled proteins. 

A useful starting point is the 3D straight through experiment CBCANH paired 

with CBCA(CO)NH. The coherence transfer path in the latter is from Ca and Cb to CO, 

then to N of the following residue and ultimately to the attached HN proton which is then  

Figure 1.4. NMR strategy for structure elucidation of minielastins features 2D and 3D 
multinuclear experiments. 
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“directly” detected as a function of the time, t3. Incremented time delays, t1, between the 

Cb/Ca to N transfer and t2 between the N to HN transfer yield a 3D data table that, 

following Fourier transformation in the three time dimensions, gives the 3D spectrum 

with the following three correlations: a peak with N and HN shifts in the 2D 15N-1H

HSQC spectrum has the Cb and Ca shifts of the previous residue in the 13C dimension. 

Paired with CBCANH these two experiments provide chemical shifts of Ca and Cb 

correlated with the amide protons and nitrogen of residues i and i–1. This pair of 

experiments are mostly effective in identifying amino acid residues with unique side 

chain carbon chemical shifts such as threonine, alanine, valine, and glycine. The 

HNCO/HN(CA)CO pair of experiments provides C¢ chemical shift values for backbone 

nuclei assignments. Carbonyl backbone chemical shifts are more sensitive to electronic 

environment and thus, can resolve overlapping peaks in 15N-1H HSQC. Prolyl residues 

are not directly observed in the above-mentioned techniques, because of lack of amide 

proton. Hence, side chain and carbonyl nuclei are assigned using correlations from 

neighboring residues. HCAN/HCA(CO)N experiments can also provide intra- and 

interresidue correlation of Ha, Ca to Ni and Ni+1 of prolyl residues. The general NMR 

strategy used in this study is presented in Figure 1.4.  

1.1.3 Secondary Structure 

NMR chemical shifts refers to the resonant frequencies of nuclei that vary with 

electronic environment. The chemical shift index (CSI) developed by Wishart et al.17 

evaluates secondary structure using the difference of observed chemical shifts from 

accepted random coil chemical shifts. These differences are known as secondary shifts. 
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Random coil shifts are obtained from simple, “unstructured” peptides.18 The CSI takes 

advantage of the fact that protein chemical shifts are primarily sensitive to secondary 

structure.19 In general, a-helices have positive Ca, CO and negative Ha and Cb 

secondary shift values. Negative Ca, CO and positive Ha, Cb shifts are obtained for b-

sheets. Previous studies, albeit with limited data, suggested that the VPGV motif in 

elastin-like polypeptides assumes a b-spiral secondary structure where the CO of residues 

1 and the HN of residue 4 form a hydrogen bond and PG residues form the bend.20-21 

These results were deduced from tetra-, penta-, and hexapeptides with no cross-linking 

domains attached. Secondary shifts in free cross-linking domains with natural sequences 

were determined by Tamburro et al. and indicated a-helical structure in trifluoroethanol 

(TFE).22 However, TFE is known to induce a-helix structure.23-25 

Aside from chemical shifts, NOE contacts are good indicators of secondary 

structure. NOE patterns for a-helix and b-sheets are known. For helix, the presence of 

sequential 1H-1H distances up to aN(i,i+4) are observed whereas b-sheets have “long 

range” NOE’s from interstrand contacts.26 Polyproline II (PPII) helices, on the other 

hand, have intense aN(i,i+1)/aN(i,i) as well as the absence of NN(i,i+1) cross peaks 

because of its extended structure.27 Random coil sequences exhibit a nonuniform NOE 

patterns but up to medium range NOEs can be observed.28  

The presence of intramolecular hydrogen bonding also indicates the formation of 

secondary structure. Temperature coefficients of amide proton shifts are useful in 

predicting hydrogen bonding because they are sensitive to hydrogen bonding. Increase in 

temperature causes lengthening of hydrogen bonds, resulting in a decrease of the 

deshielding effect of the acceptor. Thus, amide protons that have intramolecular 
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hydrogen bonding are less susceptible to temperature-induced chemical shift perturbation 

than amide protons that are hydrogen bonded with water.29 Intermolecular hydrogen 

bonding with water is relatively weaker. This yields a larger negative temperature 

coefficient compared to intramolecular hydrogen bonding. 

It is important to know the factors affecting the structural and mechanical 

properties of elastin to fabricate elastin mimetics for a wide array of applications. Elastin-

like biomaterials exhibit great potential in tissue engineering and as self-assembling 

materials. In this dissertation, elastin mimetics that have symmetrized hydrophobic and 

cross-link modules based on common motifs found in native human tropoelastin were 

recombinantly expressed and investigated.  
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1.2 Materials and Methods 

Minielastin constructs were recombinantly expressed in collaboration with Dr. 

Ronald Koder in The City College of New York.  

1.2.1 Protein Expression 

DNA minielastin with N-termini TEV protease cleavage site was synthesized by 

Integrated DNA technologies (Corralville, IA). Expression vector pET32a(+) 

(Novagen,Inc., Madison, WI) were transformed into NiCo21(DE3) competent E.coli 

cells. Transformed cells were initially grown in 5 mL LB media with carbenicillin 

overnight. 100 µL of the LB growth was transferred to 5 mL M9 media overnight. (per 

liter: 12.8 g NaHPO4 • 7 H2O, 3 g KH2PO4, 0.5 g NaCl, 1 g 15N NH4Cl, 2 mL 1M 

MgSO4, 20 mL 20% glucose and 100 µL 1 M CaCl2). The suspension was transferred to 

1 L M9 media with carbenicillin and was incubated at 37 °C until OD600 = 0.8, 

expression induced 200 mg IPTG cold room overnight. 

1.2.2 Protein Purification 

Purification of minielastin constructs were performed as described in Greenland et 

al.30 Cell pellets were obtained via centrifugation of the M9 media growth at 9000 rpm 

(11757 ´ g) for 15 minutes. Wash buffer at pH 8.0 containing 50 mM NaH2PO4, 300 mM 

NaCl, 20 mM imidazole, 3.1 mM NaN3 was used to resuspend the pellets. A pinch of 

protease inhibitor, Pefabloc, and 125 µL of DNase solution were added to the 

resuspended pellets. DNase solution was prepared by dissolving 20 mg DNase I in 10 mL 

of 20% glycerol with 75 mM NaCl. The suspension was placed in tube rotator for an 
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hour. Cell lysis was performed using French press. The Ni-NTA column was loaded with 

the lysate and the flow through was collected. The column was rinsed with wash buffer 

then the protein of interest was eluted using the elution buffer, 50 mM NaH2PO4, 300 

mM NaCl, 250 mM imidazole and 3.1 mM NaN3. 125 µL of 100 mM EDTA, 50 µL DTT 

and 1 mL TEV protease were added to the fractions which then was placed in the tube 

rotator for an hour. Affinity tag was removed using another round of Ni-NTA. The flow 

through containing the minielastin constructs were purified using 250 ´ 20 mm Higgins 

Analytical PROTO 3000 C18 10 μM HPLC column, with a gradient of 20% – 80% 

acetonitrile with 0.1% TFA over 60 min. The purified constructs were verified using 

MALDI.  

 

1.2.3 NMR Sample Preparation 

Isotopically labelled minielastin constructs were dissolved in 110 µL 200 mM 

phosphate buffer pH 6 (90% H2O: 10% D2O) with 25 µL of 20 mM EDTA, 10 µL 1.6% 

NaN3, 8.6 µL 12 mM Pefabloc and 1 µL 100 mM DSS as reference in 500 µL solution. 

Total protein solution was ~300 µM.  

 

1.2.4 NMR Experiments 

NMR spectra were obtained on a 700 MHz Varian NMR spectrometer equipped 

with HCN cryoprobe and were processed using NMRPipe31 and NMRFAM-Sparky.32,33 

15N-1H HSQC was used to monitor sample integrity with at least 64 increments in the 

indirect dimension. 3D experiments,34 CBCANH and CBCA(CO)NH pair of experiments 

combined with HCAN and HCA(CO)N were used to assign backbone and side chain 
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chemical shifts. Carbonyl chemical shifts were assigned using HNCO and HN(CA)CO 

pair of experiments. The HNN experiment were used to confirm assignment in the cross-

link modules.  

NOEs were measured using 15N-edited NOESY-HSQC spectra with 100 ms or 250 

ms mix times paired with 15N-edited TOCSY-HSQC spectrum with 70 ms mix times to 

assign intraresidue and sequential NOEs. All the pulse sequence used were built-in 

Varian Inova BioPack. 
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1.3 Results and Discussion 

1.3.1 Chemical Shift Assignments 

The hydrophobic module 24¢, is a 42-residue construct containing seven six-

residue repeats with the sequence APGVGV. 24¢ is derived from the sequence coded by 

exon 24 of tropoelastin. A narrow range of peaks in the amide proton (HN) dimension 

was observed in the 15N-1H HSQC spectrum which is a characteristic of an intrinsically 

disordered protein.35 The 15N-1H HSQC spectrum shown in Figure 1.5a contains five 

major, high intensity peaks and four minor peaks representing the 42-residue peptide. 

This shows chemical shift averaging and that the APGVGV-repeat peptide is flexible and 

primarily unstructured. The 13C-1H HSQC spectrum, Figure 1.5b, shows anti-phase peaks 

of CH2 carbons. Unique sidechain carbon chemical shifts are helpful in assigning 

resonances in 13C-1H HSQC. Moreover, the 13C-1H HSQC is consistent with the 15N-1H 

HSQC spectrum and that carbon shifts are more sensitive to secondary structure than 

amide proton shifts. The fingerprint region of TOCSY shows five spin systems, Figure 

1.5c. Note that the alanine and glycine are degenerate in HN dimension, however, glycine 

has a distinct upfield Ha at ~3.9 ppm. Also, each valine has unique Hb and Hg chemical 

shifts. Sidechain resonances of P2 were assigned using the TOCSY aliphatic region, 

Figure 1.5d, whereas the glycines, G3 and G5, and the valines, V4 and V6, were 

differentiated using the NOESY experiment. The TOCSY spectrum was superimposed 

with the NOESY spectrum, Figure 1.6, to differentiate the inter-residue NOE versus the 

intra-residue NOE. The fingerprint region shows correlation between the side chain of 

residue i–1 to amide proton of residue i. Glycine (~8.4 ppm) shows NOE peaks from the 

proline side chain, previously assigned using TOCSY. This glycine is assigned as G3  
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Figure 1.5. Two-dimensional NMR spectra of 24¢. (a) The 15N-H HSQC has five major 
peaks correspond to the 6-residue repeat. Proline is not seen due to the absence of an 
amide proton. (b) The 13C-H HSQC spectrum shows the characteristic carbon chemical 
shifts for side chain resonances. (c) The TOCSY fingerprint region shows the spin system 
for each peak in the 15N-1H HSQC utilized in identifying amino acids. (d) Aliphatic 
region of TOCSY spectrum used to assign proton chemical shifts of proline side chain. 
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and the remaining peak with glycine spin system is assigned to G5. V4 was assigned 

using the NOE correlation with G5, as aNi-1-HNi shows sequential cross-peaks. Natural 

abundance 24¢ was used in this experiment, thus, C¢ chemical shifts were not obtained. 

Incomplete resonance assignments reported in Table 1.1. 

 

 

Figure 1.6 NOESY (red) overlaid with TOCSY (blue) fingerprint (top) and amide 
(bottom) region to differentiate peaks from neighboring residues. 
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In this study, two types of cross-link sequence, X and x¢ were utilized. The longer 

sequence, X, is the wild type tropoelastin sequence coded by exon 21 and 23. Both 

contain a single A5KA2/3K motif that is found in all of elastin’s KA cross-link modules. 

Similarly, x¢ is an 11-residue sequence that contains one of the A5KA2K motifs coded by 

exons 21 and 23. The use of this simpler, shorter cross-link sequence makes the NMR 

spectrum less complicated, although, the challenge of assigning sequential alanine 

resonances remains. Since X with 33 residues consists primarily of alanine, it has a more 

complicated spectrum compared to x¢, Figure 1.7a and 1.8a. The A5KA2/3K motifs of X 

are separated by the sequence GVGTP which introduces kinks and/or bends in the cross-

link module. Even with TOCSY and NOESY, because of multiple overlaps of alanine 

signals, complete chemical shift assignments for each resonance were not possible, 

especially in NMR experiments using natural abundance 13C and 15N. Nonetheless, 

TOCSY was used to identify residues such as glycine, threonine, valine and alanine, 

Figure 1.7c. Glycines are generally easy to assign because of the distinct upfield 15N 

chemical shift. G14 and G16 were assigned using sidechain peaks from V15 and T17 

respectively, whereas A19 shows NOE cross-peaks from sidechains of P18. F32 and 

Y13. Both have downfield Hb chemical shifts, ~3 ppm, caused by the deshielding from 

the adjacent phenyl ring. The Y13 Ha, on the other hand, shows correlation with G14 

that differentiated Y13 from F32.  

The natural abundance 15N-1H HSQC spectrum of x¢, Figure 1.8, has 10 peaks 

from 11 residues. Amide protons from the N-terminus are typically not observed in the 

15N-1H HSQC spectrum. Most peaks are resolved in the 15N dimension but not well 

dispersed in the proton dimension as shown in Figure 1.8a. 13C-1H HSQC allowed 



18 

assignment of side chain resonances however, the carbon and proton side chains 

resonances of alanines are very similar. 13C-1H HSQC paired with TOCSY is useful in 

identifying amino acids but even with 2D NOESY experiment and good resolution in 15N 

dimension, it was challenging to provide sequential assignment because of resonance 

degeneracy. The full chemical shift assignment was completed using three dimensional 

experiments. 

Figure 1.7 Two-dimensional of the unlabeled X cross-link module. (a) The 15N-1H HSQC 
shows poor resolution of alanine nitrogen chemical shifts ~122 ppm.  (b) The 13C-1H 
HSQC and (c) TOCSY (red) overlaid with NOESY (blue). 
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Figure 1.8 Two-dimensional spectra of unlabeled x¢. (a) 15N-1H HSQC of x¢ shows ten 
peaks corresponding to 11 residues (N-terminus not seen), mostly resolved in the 15N and 
1H dimension. (b) 13C-1H HSQC assignments based on average carbon and proton 
chemical shifts of protein side chains. High degeneracy observed for alanine side chain 
resonances. (c) TOCSY fingerprint region shows spin system for different type of 
residue. Chemical shifts for alanines are very similar which makes resonance assignment 
challenging. (d) TOCSY aliphatic region shows presence of aspartate, N-terminus, side 
chain proton chemical shifts.  
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1.3.2   Minielastin Constructs 

Tropoelastin is a hydrophobic protein, precursor to elastin. It has alternating 

hydrophobic and cross-link modules. The goal is to understand how the structure of 

tropoelastin contributes to the elastic property of elastin. Keeley and coworkers utilized 

hydrophobic and cross-link sequences from the wild type exons of tropoelastin that 

mimics the alternating hydrophobic and cross-link module as in tropoelastin.  

In the minielastin constructs prepared and studied here, the hydrophobic 

sequences contain only the predominant 6-residue repeats coded by exons 20 and 24 and 

named 20¢ and 24¢. 20¢ has five VPGVGG repeats and 24¢ has APGVGV repeated seven 

times. As previously discussed, two variations of cross-link sequence were used, X and 

x¢. The description of each construct is summarized in the Table 1.2. Note that each 

construct has a tryptophan in N and C-termini to provide absorbance needed for detection 

in HPLC.  

Table 1.2 Names, number of residues, molecular weights and sequences of the 
minielastin constructs.  

Name #aa’s MW (Da) Sequence 

24x¢ 203 16,895 24¢-x¢-24¢-x¢-24¢-x¢-24¢ 

20x¢ 138 11,483 20¢-x¢-24¢-x¢-24¢ 

202424 182 15,364 20¢-X-24¢-X-24¢ 

2020 254 21,060 20¢20¢-X-24¢-X-24¢24¢ 

24:(APGVGV)7; 
20¢:(VPGVGG)5  

X: EAQAAAAAKAAKYGVGTPAAAAAKAAAKAAQFG and x¢: DAAAAAKAAKF 
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The simplest construct, 24x¢, has three short cross-link sequences, x¢ flanked by 

four 24¢ hydrophobic modules. Figure 1.9 shows the overlay of 15N-1H HSQC spectra 

from the minielastin, 24x¢ (red) with spectra of the constituent hydrophobic, 24¢ (black) 

and crosslink, x¢ (blue), modules. Chemical shifts of 24¢ residues are unchanged when 

flanked by x¢ in 24x¢, however, those of x¢ in 24x¢ are changed drastically compared to 

the free peptide. This suggests that the structure of the hydrophobic module is 

independent of the cross-linking module. In addition, the structure of the cross-linking 

module changes when flanked with hydrophobic module. The hydrophobic residues were 

assigned using the previous assignment for 24¢. Note that the amide proton chemical 

shifts of 24x¢ lies within a 1 ppm range which suggests disorder. 15N-1H HSQC of 24x¢ 

showed good resolution at 15N dimension which helped in assigning carbon resonances in 

CBCANH/CBCACONH experiments.  

Each peak in the 15N-1H HSQC corresponds to a Ca and Cb pair that belongs to 

residue i–1 for CBCACONH whereas CBCANH contains peaks for both i and i–1. Figure 

1.10 shows the CBCACONH/CBCANH spectra obtained for the hydrophobic and cross-

link module of 24x¢. CBCANH shows anti-phase peaks for Ca (green) and Cb (red) 

which helps distinguish Ca from Cb aside from more downfield shifts of Ca. Peaks from 

CBCACONH spectrum shown in blue to help visualize peaks belonging to i–1 residue. 

The hydrophobic module assignment was verified as shown in the top panel of Figure 

1.10. G3 shows correlation with P2 (Ca ~63 ppm, Cb ~32ppm), G5 with V4 which has 

more downfield Ca chemical shift than V6. In this experiment, the lysine residues buried 

in the high intensity valine peaks were observed. More upfield Ca chemical shifts of 

lysines distinguish them from valines whereas Cb chemical shifts are very similar.  
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Figure 1.9 15N-1H HSQC of 24x¢ (red), 24¢ (black) and x¢ (blue). All proton shifts are 
within a 1 ppm range. Assignments were taken from 24¢ as it matches the peaks in 24x¢ 
construct.  
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Figure 1.10 Strips from the CBCACONH spectrum (blue) overlaid with those from 
CBCANH. Ca signals are shown in green and Cb are in red except for glycine residues. 
The CBCACONH spectra show side-chain peaks belonging to i-1 residues for both 
hydrophobic (top) and cross-link (bottom) residues. Alanine side chains in the cross-link 
module have very similar chemical shifts.  
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V4 and V6 panels show K7 and K10 lysine residues of the cross-link module. Lysines 

appear as lower intensity peaks at 15N and 1H chemical shifts overlapping with valine 

residues. Therefore, these peaks were not resolved in 15N-1H HSQC spectrum. Moreover, 

alanine carbon side chains have very similar chemical shifts. D1 of the cross-link module 

had a unique downfield Cb chemical shift caused by the adjacent carbonyl. A2 Peaks 

belonging to A3 to A6 and A9 were more challenging to assign because these alanines 

are preceded with alanines. The two lysines have unique carbon chemical shifts. These 

were used to distinguish K7 from K10. K10 is followed by F11 which was assigned due 

to its distinct side chain carbon and proton chemical shifts. Also, identifying A8 verifies 

this assignment. Note that A8 is the only alanine residue preceded by lysine. Nonetheless, 

to assign the cross-link residues in the 15N-1H HSQC, the HNCO/HNCACO pair of 

experiments was utilized. As shown in Figure 1.11, backbone C¢ for the alanines are 

mostly similar but the higher resolution of the 3D experiment  

Figure 1.11 Sequential assignment of the cross-link module using strips from the HNCO 
(green) and HNCACO (red) spectra. 
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resolves each residue in the cross-link module, including the lysine peaks. The C¢ 

chemical shifts of lysines are much different than the valines unlike the side chain 

carbons as previously shown. The summary of the backbone and side chain resonances of 

24x¢ is found in Appendix I-A. 

A variation of 24x¢, 20x¢, has shown similar peaks as 24x¢. As indicated in Table 

1.2, 24x¢ and 20x¢ contains the same cross-link module but has a 20¢ sequence as the N-

terminus hydrophobic module. 20¢ has more glycine residues and is expected to be more 

flexible and unstructured. Shown in Figure 1.12 are the superimposed 15N-1H HSQC 

spectra of 24x¢ (red) and 20x¢ (black). The overlapped area is attributed to the 24¢-x¢-24¢  

part of the 20x¢ sequence. The hydrophobic module 20¢ contributions to the overall 

spectrum are isolated due to their greater peak intensity than the cross-link peaks. 

Interestingly, the cross-link residues after 20¢ have different chemical shifts compared to 

the cross-link residues after 24¢ indicating the different environment provided to cross-

link modules by different hydrophobic modules. Assignments from 24x¢ could be used to 

assign the majority of peaks and additional analysis was done for 20x¢. 15N-labeled 20x¢, 

because it is only 15N enhanced, makes it more difficult to assign carbon chemical shifts. 

Nonetheless, the 3D experiment such as the TOCSY-HSQC and NOESY-HSQC pair was 

utilized to accomplish sequence assignments as shown in Figure 1.13. The resolution of 

some alanine peaks in the proton dimension helped in assigning alanine peaks of cross-

link modules using the NOESY-15N-1H HSQC.  

Similarly, the assignment of lysine peaks was challenging because of overlap with 

intense valine peaks. Carbon chemical shifts were assigned using TOCSY-HSQC with 

13C-1H HSQC. This provided a lower resolution compared to doing a 3D experiment with  
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Figure 1.12 Overlaid 15N-1H HSQC of 20x¢ (black) and 24x¢ (red). Additional peaks 
coming from the cross-link residues after 20¢ were differentiated as these peaks do not 
overlap.     
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Figure 1.13 15N-edited TOCSY-HSQC (red) paired with 15N-edited NOESY-HSQC 
(blue) of 15N-labeled 20x¢, (top) fingerprint and amide region of the hydrophobic module 
20¢ and (bottom) amide region of the cross-link module. 
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Figure 1.14 Overlaid spectra of the 15N-1H HSQC of 202424 (red), 2020 (black) and 24¢ 
(blue).  

doubly labeled protein. Nonetheless, most peaks were assigned previously from 24x¢. 

Shown in Appendix I-B is the chemical shift assignment for 20x¢. 

Figure 1.14 shows how the chemical shifts of the hydrophobic modules are 

conserved. As shown in this chapter, chemical shifts of the hydrophobic modules with or 

without cross-link modules were unchanged and only the chemical shifts of few amino 

acids adjacent the cross-link modules had changed. Not so surprisingly, the spectrum of 
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of the hydrophobic residue peaks. Chemical shift assignment for 202424 and 2020 were 

accomplished using the same approach as 24x¢. Analogous to previous constructs, 

chemical shift assignments for the alanine-rich cross-link module and degenerate peaks in 

15N-1H HSQC will only be possible using multidimensional NMR experiments therefore, 

double-labeled minielastin constructs were expressed.  

Few residues of the two cross-link modules are expected to have different 

chemical shifts as previously observed with 20x¢. E (1,X1) was differentiated with E 

(1,X2) using CBCANH/CBCACONH experiment. E (1,X1) was preceded with glycine  

(Ca ~ 45 ppm) whereas E (1,X1) was preceded with valine (Ca ~ 63 ppm, Cb ~ 32 ppm) 

as shown in Figure 1.15. Moreover, the connectivity of EAQA of X1 and X2 were 

verified by HNCO/HNCACO. Q3 and A4 of X2 were more downfield than that of X1. 

Same strategy was applied with the GVGTP sequence found at the middle of the cross-

link module. G14 was assigned using NOESY-HSQC. V15 was challenging to assign 

because of poor resolution and intense signal coming from the valines of the hydrophobic 

modules. Nonetheless, HCAN/HCACON experiments confirm the 15N chemical shift. 

Threonine, as discussed earlier has a unique 15N chemical shift was determined readily. 

The assignments were confirmed using HNCO/HNCACO, Figure 1.16a. Another 

glutamine residue in the cross-link module, Q31 has a more upfield amide proton and 

nitrogen than Q3. CBCANH/CBCACONH in Figure 1.16b shows side chain carbons of 

Q31 correlated with i–1 residue of F32. Note that F32 has very similar spin system as 

Y13 except that phenylalanine has a more downfield Cb chemical shift. Assignments of 

resolved 15N-1H HSQC peaks were verified using the HNN experiment as shown in 

Figure 1.16c. Most intense peak corresponds to the diagonal and cross-correlated peaks 
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are either shown in-phase or anti-phase depending on the i residue. Residues except 

proline and glycine are depicted as positive diagonal peaks whereas glycine appears as 

negative diagonal peak. Moreover, the former yields a negative cross-correlated peak (i–1 

and i+1) whereas the latter has negative i–1and positive i+1. For the QFG sequence with 

F32 as the i residue, shown in Figure 16c, diagonal peak was shown as positive peak 

(red) and i+1 and i–1 were shown as negative (green). G33 diagonal and i–1 peaks were 

observed to have negative signs whereas i+1 residue was shown a positive.  

Alanine side chains resonances of the cross-link module show highly degenerate 

peaks thus CBCANH/CBCACONH experiments were not as much informative, 

although, alanines after lysines were identified using this experiment. Side chain Ca and 

Cb of P18 were also assign using the correlation from A19. To assign alanine resonances, 

HNCO/HNCACO experiments were used. For resonances that appear as one broad peak 

instead of two resolved peaks for i and i–1, the i–1 resonance (red) was assigned using 

the HNCO spectra (green) as shown in Figure 1.17. Moreover, the full chemical shift 

assignment for 2020 and 202424 are reported in Appendix I-C. 
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Figure 1.15 CBCANH/CBCACONH (top) and HNCO/HNCACO (bottom) of the first 
four residues of the cross-link modules of 2020. Cross-links 1 and 2 are found after the 
hydrophobic modules 20¢ and 24¢ respectively.  
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Figure 1.16 (a) HNCO/HNCACO of GVGT (b) CBCANH/CBCACONH and (c) HNN of 
QFG of the cross-link modules of 2020.  
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Figure 1.17 HNCO/HNCACO of alanine-rich cross-link module used to very resonance 
assignments. HNCO peaks (green) originates from CO i–1 whereas HNCACO peaks 
(red) are from CO of i and i–1 residues.  
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1.3.3 Secondary Structure Analysis 

Chemical shifts reported here were compared against the random coil shift values 

of Poulsen18 to obtain the secondary shift (∆d). Chemical shifts consistent with a-helix, 

b-sheet and polyproline II (PPII) secondary structures for all constructs were obtained 

using Sparta+.36Average chemical shifts were calculated and shown in red and blue 

dashed line in Figure 1.18 for a-helix and b-sheet, respectively. Generally, proteins with 

positive Ca and negative Cb secondary shifts have an a-helical secondary structure17 and 

the opposite is observed for b-sheet with negative Ca and positive Cb secondary shifts. 

PPII on the other hand, has f and j angles near the region of b-sheet in Ramachandran 

plot but adopts a different hydrogen bonding pattern.37 PPII secondary shift values are 

similar to b-sheet average values and, therefore, are not shown.  

 

Figure 1.18 Secondary shift analysis of the hydrophobic modules; top panel for 24¢ and 
bottom panel for 20¢ in 2020. No distinct chemical shift patterns observed that follows 
that of average chemical shifts of structured proteins as shown in red and blue dashed 
lines for a-helix and b-sheet, respectively.30 
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Secondary shift analysis of the hydrophobic modules 20¢ and 24¢ are shown in 

Figure 1.18. It has been previously shown that the chemical shifts of the hydrophobic 

modules are conserved in all constructs. Therefore, in these analyses, the chemical shifts 

obtained from 2020 were used. The experimental chemical shifts (gray bars) for both 

hydrophobic modules show no consistent pattern that are present in folded proteins. In 

comparison with the a-helix and b-sheet chemical shifts, the experimental chemical shift 

values are closer to random coil shift values. Similar analyses were done in the cross-

linking sequence of X and x¢ within 2020 and 24x¢ respectively. The changes in chemical 

shifts were plotted in Figure 1.19 shown as red bars. Both X and x¢ have positive Ca 

secondary shift values whereas Cb  and Ha are negative. Comparing them with a-helix 

(red) and b-sheet (blue) average shifts, the ∆d values lean towards a-helical value. 

Figure 1.19 Secondary shift analysis of the free cross-linking peptides X and x¢ (gray) 
versus the cross-linking module in 2020 and 24x¢ (red). Lysine residues are marked with 
asterisks.30 
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This a-helical trend is observed in the polyalanyl region and leans toward random coil in 

the termini, and in the GVGTP sequence as well, in X. However, the magnitude of the ∆d 

does not reach the values for a-helix. This indicates presence of a weak a-helical or a 

transient a-helical secondary structure. Moreover, when ∆d between the free cross-

linking peptide (shown as gray bars) and the cross-linking module in the constructs are 

compared, it is evident that these a-helical tendencies have increased with the latter. This 

difference was observed with the 15N-1H HSQC spectrum of the free peptide versus the 

cross-link module within the construct having different chemical shifts. Tamburro and 

coworkers proposed that the cross-linking modules are in fact not a-helical in aqueous 

solutions but display an a-helical structure in a hydrophobic environment.22 In this case, 

an increase in a-helical secondary structure are observed when these cross-linking 

modules are flanked with the hydrophobic modules. An increase in hydrophobic 

environment also occurs upon temperature-induced phase transition or when peptides are 

dissolved in TFE.22  

Recently, a construct similar to 24x¢ with simplified cross-link and hydrophobic 

construct was investigated by Reichheld and coworkers.38 They concluded that the cross-

link module in their construct are disordered. The cross-link modules in their construct 

were found at the termini and the middle of the sequence. This supports the hypothesis 

that the cross-link modules only adopt a-helical conformation when flanked with 

hydrophobic domains.   

Aside from secondary shifts, NOE patterns are indicative of secondary structures. 

3D 15N-edited NOESY-HSQC paired with 15N-edited TOCSY-HSQC experiments were 

used to show intra- and inter residue NOE cross-peaks. From this time forward, the focus 
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of the secondary structure analysis will be on the simplest construct, 24x¢, as it has been 

shown that the hydrophobic and cross-link modules have very similar characteristic on all 

constructs. 

NOE intensities are correlated to approximately inverse sixth power of the nuclei 

distances ! !"!",  in this case, proximity of the amide protons to other protons. NOE can

only be observed with nuclei distances up to 5 Å; thus, nuclei distances can be estimated 

using this experiment. For hydrophobic modules, 1H-1H NOE of the i–1 and i side chains 

correlated with HN were observed. The ratio of the NOE of aNseq/ aNintra peak intensities 

plotted in Figure 1.20 shows that the preceding side chain peaks are more intense than the 

Figure 1.20 (a) 15N-edited NOESY-HSQC (red) overlaid with 15N-edited TOCSY-HSQC 
of 24¢ in 24x¢. (b) NOE ratios of sequential and intraresidue aN of 24¢ found in four 
different constructs. 
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intraresidue side chain, suggesting an extended structure.27 The residue before the prolyl 

have the highest ratio indicating that V6-A1 aN(i–1, i) are relatively closer to each other 

than the rest of the residues in the hydrophobic module. Note that NOE ratios for proline 

were not calculated because of lack of amide proton. The NOE ratios were compared 

with the values for a-helix and b-sheet, as shown in the Figure 1.20b.  

For cross-linking module, note that the Ha and Hb of alanyl residues have the 

same chemical shifts, therefore, no aN(i–1, i) values were obtained.  However, the HN-

HN NOE can be observed for peaks resolved in proton dimension. This is true for the 

alanine in x¢ which are more defined than in X. In x¢, NN(i, i+1) can be observed which is 

a characteristic of an a-helix, Figure 1.21. Stronger peak intensities are also observed for 

the HN-HN NOE in the cross-linking than in the hydrophobic module. This shows that 

the residues in x¢ are closer to each other than residues in the hydrophobic region. It also 

supports the result from the secondary shift data analysis that the cross-linking module 

 

Figure 1.21 15N-edited NOESY-HSQC of the cross-link residues showing NOE contacts 
between amide protons.30 
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has weak a-helical secondary structure. An a-helix has a compact structure; therefore, 

more NOE peaks are expected. Lysyl NOEs are not obtained because of the spectral 

overlap with the valines in the hydrophobic module. 

An important characteristic of secondary structure is the presence of hydrogen 

bonding to stabilize the structure. To probe for the presence of hydrogen bonds, the 

temperature coefficients of the amide protons were obtained, Figure 1.22a. For 24x¢,  

DdHN/DT of residues in hydrophobic module are in average –7.8 ± 1 ppb/K, consistent 

with the random coil values of < –6.5 ppb/K.39 Residues in the cross-linking module have 

temperature coefficient range of –8.2 to –3.8 ppb/K as summarized in Figure 1.22b. 

Notably, alanines adjacent to lysine residues have values more positive than –4.6 ppb/K 

which is generally attributed to presence of hydrogen bonding.29, 40 These are all 

consistent with the cross-link module having a weak helical characteristic and the 

hydrophobic module being disordered.  

Lysyl residue peaks were not resolved in 15N-1H HSQC, thus, temperature 

dependence of the HN shift cannot be observed. This experiment only works if there are 

no changes in conformation with increase in temperature.41 This means that the proteins 

are stable and do not denature with increasing temperature. To probe this possible change 

in conformation, 13C-1H HSQC at different temperatures were obtained, Figure 1.22c. Ca 

and Cb as well as Ha chemical shifts, as discussed, are good indicators of secondary 

structure. The 13C-1H HSQC of 24x¢ at 20 °C, 30 °C and 40 °C shows that at these 

temperatures, no significant change in chemical shift was observed. Hence, at these 

temperatures, no change in conformation occurs.  
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Secondary structures obtained from NMR were complemented with circular 

dichroism (CD) spectra provided by the Koder lab.  Note that a similar curve for 202424 

was obtained by Keeley and coworkers11 using exon 20-21-23-24-21-23-24. The same 

was observed with the spectra obtained by Weiss et al.42 for exon 24 when compared to 

24¢. Simplification of the hydrophobic domain thus, did not affect the average secondary 

structure of the polypeptides. Figure 1.23a showed that the addition of 20¢ and 24¢ to 

202424 increased the negative magnitude of the 200 nm dip as well as that in 220 nm. 

These can be attributed to an increase in PPII or disordered secondary structure upon 

addition of hydrophobic domains. Wallace et al.43 showed that negative peaks at 190 – 

200 nm and a positive peak at 220 nm is a characteristic of PPII whereas disordered 

structure lacks the latter.  Apparently, the spectra of 202424 and 2020 are similar with 

that of a denatured protein as shown by the characteristic intense negative peak at 200 nm 

and a small negative peak at 220 nm. Also, the small peak at 220 nm can be attributed to 

a small percentage of a-helix and b-sheet except that at increasing temperature, very 

small change in the 220 nm peak is observed. The same results were obtained from CD 

spectra analysis from Dichroweb44 using SELCON345 and CONTINLL46 algorithms. 

202424 and 2020 have an estimated secondary structure of 10% a-helix; 27% b-sheet; 

23% turns and 40% disordered. These results are not too far from what Weiss and 

coworkers47 had obtained for the recombinant human tropoelastin. Notably, 20x¢ and 24x¢ 

have almost the same estimated secondary structure except that the it lacks the distinct 

negative peak at 220 nm as shown in Figure 1.23b. Moreover, the CD spectra of 202424 

and 24x¢ at increasing temperature (Figures 1.23c and 1.23d) show a very little change at 
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200 nm which is attributed to the denaturation of PPII at increasing temperature.  These 

small changes observed in the CD spectra suggest that at increasing temperature, no 

disruption of intramolecular interactions occurs. 

In this chapter, elastin-like constructs are shown to be disordered with transient a-

helical secondary structure. Spectra from 2D and 3D NMR experiments show chemical 

shift averaging of the hydrophobic modules that is indicative of disordered nature. 

Chemical shift analysis presented not consistent pattern suggesting the absence of 

secondary structure. Moreover, the secondary structure of the cross-link module is 

observed only when flanked with hydrophobic modules. Chemical shift analysis revealed 

secondary shift patterns consistent with a-helical secondary structure. These patterns 

were found in both short (11 residues) and long (33 residues) cross-link modules. 

Moreover, CD spectra are in agreement with the NMR observations. These minielastin 

constructs displayed very similar CD spectra as tropoelastin in solution suggesting 

structural similarity between minielastin and tropoelastin.  
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  MINIELASTINS ARE MORE COMPACT THAN TYPICAL 

IDPS AND UNDERGO LIQUID-LIQUID PHASE TRANSITION LIKE 

TROPOELASTIN 

2.1 Introduction 

In this chapter, the effect of the sequence of minielastin on the hydrodynamic 

radius and the temperature of the inverse transition, known as coacervation, were 

explored. These properties are closely related to assembly of the elastic matrix and the 

mechanism of elastic recoil in the mature elastin matrix.  Secondary shift analysis from 

the previous chapter shows that minielastins are disordered. Likely due to low sequence 

complexity and high proline content.48 Disordered proteins, such as minielastins, have a 

relatively simple, flat energy landscape49-50 allowing a dynamic interconversion of 

conformations. However, the lack of secondary structure does not necessarily inhibit the 

formation of more compact structures found in folded proteins which have predominantly 

stable secondary structure.  

Compaction can be depicted by disordered homopolymers dissolved in a bad 

solvent, i.e., when protein:protein interaction is more favorable than protein:solvent 

interaction.51-52 MD simulations of Li and coworkers show that the elastin-like 

polypeptide, (VPGVG)18, adapts a compact state in aqueous solution without forming a  
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hydrophobic core from which water is excluded.53 Their simulations indicate that the 

systematic distribution of proline residues prevented the formation of the hydrophobic 

core and stable secondary structure. Moreover, Rauscher54 and Kozel55 showed that if an 

elastin-like polypeptide with naturally occurring  prolines PGVGVA and PGVGV repeats 

is mutated to GGVGVA and GGVGV, respectively, they adapt a b-sheet secondary 

structure proving that proline is necessary to prevent the formation of amyloid-like 

fibers.12, 53, 56 Based on MD simulations, the distinction between amyloid-like and elastin-

like polypeptides is based on the proline and glycine content and that these residues 

regulate the hydration and conformational disorder of the monomeric protein.54  

In this study, systematic variations in the transition temperatures and the 

hydrodynamic radii were found with respect to the sequence. Briefly summarized, 

increasing the length of the hydrophobic module, decreasing the length of the cross-link 

module or increasing the hydrophobicity of the hydrophobic repeat decreases the 

coacervation temperature. Also, these minielastins are more compact than other IDPs of 

the same molecular weight including elastin-like proteins that lack cross-link modules. 

Unlike most materials that expand with increased temperature, these minielastins become 

more compact, i.e., the hydrodynamic radius decreases as the temperature is increased 

and the slope of the decrease varies systematically with the length of the minielastin. 

These results are important in modulating the temperature-responsive properties of 

elastin-based biomaterials.  

Pressure-induced decrease in hydrodynamic radii of minielastin constructs 

suggests that at high pressure, minielastins sample conformations with lower total volume 

than at atmospheric pressure and that if void volume is present in minielastins in solution, 
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this volume is smaller than the hydration volume. The effects of temperature and pressure 

on the proton chemical shifts and hydrodynamic radii of minielastin constructs were 

investigated. It is evident that hydration plays a major role in the coacervation process of 

minielastin constructs. 

2.1.1 Compaction 

Protein folding and compaction are commonly compared to homopolymers in bad 

solvents wherein the hydrophobic sidechains tend to form a more favorable hydrophobic 

core and the polar backbones form hydrogen bonding intramolecularly or with 

surrounding water.52, 57 Scaling rules of polymer physics have been used to relate 

hydrodynamic radii of folded, denatured52 and disordered proteins58-59 to its number of 

residues, (N), via RH = R0 Nn.60 The exponent, n, depends on the conformation of the 

polymer with values of ~2/3 for the expanded state, 1/2 for theta conditions and 1/3 for 

folded globular proteins.61-62 Flory defined theta conditions as a polymer dissolved in a 

solvent in which protein-solvent and protein-protein interactions have equivalent 

strengths. Under these conditions, a flexible protein chain executes a random walk and 

behaves like a gaussian chain. Folded globular proteins are compact and the 

hydrodynamic radii are proportional to ~N1/3 i.e., the protein is like an organic molecule 

packed in a crystalline solid. Proteins in the expanded state have some residual secondary 

structure but the absence of a compact folded state. The pre-exponential factor, R0,

describes the average length of the freely jointed segment of the polymer chain.63 It is 

potentially informative to compare experimentally determined values of R0 with the 

pre-exponential factor found in folded and chemically denatured proteins.52, 58-59 
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Marsh and Forman-Kay refined the scaling equation for IDPs to include proline content 

and net charge in the pre-exponential factor.58 Proline favors extended secondary 

structure found in the PPII helix that has similar phi/psi angles as b-sheet secondary 

structure. High net charge, a common characteristic of intrinsically disordered proteins, 

also tends to favor an extended state due to electrostatic repulsion. Tropoelastin and the 

minielastins studied here have high proline content in the hydrophobic modules (~13%) 

and net charge due to lysine residues (~5%) in the cross-link modules. 

 

 

Figure 2.1 The total volume change (DVtot) associated with unfolding of natively folded 
proteins depend on the balance between the change in void volume (DVvoid) and the 
change in hydration volume (DVhyd). Total protein volume is the summation of van der 
Waals volume (VvdW, gray), void volume (black) and hydration volume (blue). Unfolding 
results in a decrease in void volume and increase in hydration volume as voids and more 
molecular surface area become solvent accessible. (Adapted from Chen and Makhatadze, 
201764) 

  

A compact state, as defined in this chapter, is depicted by a low hydrodynamic 

radius, typically associated with globular, folded proteins. However, hydrodynamic 

radius is not sufficient in determining the presence or absence of secondary structures in 

proteins, it provides a general idea on protein’s hydrodynamic volume defined by the 

Stoke’s radius 4pRH3/3.57 Folded states in globular proteins, in general, have greater 

|ΔVhyd|  >  |ΔVvoid|, ΔVT > 0

|ΔVhyd | <  |ΔVvoid|, ΔVT < 0

ΔVtot = Vtot,unfolded - Vtot, folded = ΔVhyd + ΔVvoid 
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volume than their unfolded state. This is attributed to higher void volume resulting in a 

negative volume change upon unfolding.65-70 Void volume is the space occupied neither 

by the protein nor the solvent molecules. The total volume of protein in solution is then 

the summation of van der Waals volume, void volume and hydration volume, Figure 2.1. 

Van der Waals volume is the volume occupied by the protein atoms. Protein dimensions 

are affected by thermodynamic parameters, temperature and pressure. Chen and 

Makhatadze showed that the balance between the void volume and hydration volume are 

responsible for the pressure-dependence of protein volume whereas temperature-

dependence of volume are mostly affected by hydration volume.64, 71 In this chapter, the 

effect of temperatures and pressures on hydrodynamic radii of minielastin constructs 

obtained using PFG NMR were investigated.  

2.1.2 Translational Diffusion 

Measurement of molecular translational diffusion can reveal possible 

interconverting conformations and protein aggregation. Translational diffusion 

coefficient, Dt, describes hydrodynamic properties of diffusing species and is related to 

the hydrodynamic radius, RH. The relationship between the hydrodynamic radius and 

diffusion coefficient is shown in Stokes-Einstein equation,  

!! =
#"$
6&'(#

																																																										eq. 2.1

where kB is the Boltzmann constant, T is the absolute temperature and h is the solvent 

viscosity. RH describes the diffusion of hard spheres diffusing at the same rate as the 

protein of interest, but nonetheless provide a good estimate of protein size when 

compared with the RH of folded and denatured proteins with same number of residues.52 
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RH is determined using various biophysical technique such as pulsed field gradient NMR 

(PFGNMR)52, small angle X-ray scattering (SAXS)72, size exclusion chromatography 

(SEC), dynamic light scattering (DLS)73 and analytical ultracentrifuge (AUC).74 

Toonkool et al. used PFGNMR and AUC to measure the hydrodynamic radius of 

recombinant human tropoelastin. Using AUC, they have demonstrated that two 

interconverting conformations of monomeric species of tropoelastin exist whereas 

PFGNMR showed the weighted average RH of the diffusing species.75 Translational 

diffusion coefficients are extracted by applying pulsed field gradients of increasing 

strength. Stejskal-Tanner, eq. 2.2, shows the effect of diffusion on signal attenuation at 

constant diffusion time, D and gradient length, d. g is the gyromagnetic ratio of nuclei 

being observed. The plot of the squared of gradient strength and the natural logarithm of 

signal attenuation yields a linear correlation.76 

S(2τ) =S(0)exp	-γ2Dδ2(Δ-
δ

3
)g2 	eq. 2.2 

Figure 2.2 (a) Pulsed Field Gradient Spin Echo (adapted from Johnson, 199977) and 
representative magnitude of signal in each step of the pulse sequence. (b) Plot of signal 
intensity with increasing field strength is a gaussian curve.   

a b 
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 Figure 2.2 shows a general schematic of a PFGNMR experiment. A 90° pulse is 

applied to generate transverse magnetization then a gradient encodes the position of the 

nuclei. After some time, a second pulse is applied to refocus the transverse 

magnetization. After the delay time  D, a second gradient is applied to decode the position 

of the nuclei. Diffusion causes incomplete refocusing of the transverse magnetization 

resulting a decrease in signal intensity. Gradient strength is proportional to encoding-

decoding efficiency. Stronger gradients are more sensitive to small changes in position 

thus, higher signal attenuation is observed. 

 

2.1.3 Coacervation 

Coacervation is described as the formation of a dense viscoelastic liquid as it 

undergoes an inverse temperature transition. Inverse temperature transition as defined by 

Urry is the occurrence in which in a multicomponent system, one component decreases 

entropy with increase in temperature.20 To form the mature elastin, tropoelastin is 

transported to the extracellular matrix of the cell. In these conditions, tropoelastin is 

known to attach to microfibrils and coacervate which facilitate cross-linking with the 

presence of lysyl oxidase.78-79 Therefore, the unique property of these proteins to undergo 

inverse temperature transition is crucial in formation of bioelastic materials. Keeley and 

coworkers have shown that minielastins, tropoelastin and elastin-like polypeptides that 

only contain hydrophobic modules,80 all undergo coacervation.12-14, 81 The first stage of 

coacervation is the reversible formation of the liquid-liquid phase and the second phase is 

the irreversible maturation with observed formation of fibrillar proteins.82  
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For recombinant human tropoelastin, coacervation occurs at 37 °C, 150 mM NaCl 

and pH 7 – 8.47 Several factors such as molecular weight, hydrophobicity, salt and protein 

concentration has been known to affect coacervation temperature (Tc). 14, 80, 83 Thus, 

protein molecular weight and hydrophobicity can be manipulated to program an elastin-

like polypeptide to coacervate at the desired temperature. Keeley and coworkers have 

reported coacervation curves for various recombinant elastin polypeptides at different salt 

and protein concentration with constructs of various hydrophobicity and molecular 

weights.12 Increase in salt and protein concentration caused a decrease in Tc whereas 

sequence length and hydrophobicity relationship with Tc were not fully defined. 
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2.2 Materials and Methods 

2.2.1 Pulsed Field Gradient NMR 

NMR samples used in all PFG NMR experiments are described in the previous 

chapter. Diffusion constants were measured on Varian 700 MHz equipped with HCN 

cryoprobe. PFG NMR was conducted using the bipolar pair pulse stimulated echo 

(dbppste) pulse sequence in the Varian NMR DOSY package.84 Gradients were calibrated 

against the known diffusion constants of three samples, 1% H2O in D2O,85 ubiquitin86 and 

lysozyme.87 Signal decay, S, as a function of gradient strength, g, was fit to a Gaussian 

function, S = S$exp(−g%/w%) and diffusion coefficient was determined from the 

equation w&% = Dγ%δ%(∆ − δ/3 − τ/2).77 Diffusion time, D and gradient length, d were 

optimized to cover from 5% to 95% signal attenuation as shown in Figure 2.3 with 

optimum values D = 134.5 ms and d = 5 ms. Twenty 1D interleaved spectra were 

obtained with gradient strength ranging from 1.6 to 36.7 G/cm and 16 scans each 

spectrum.   

The diffusion constant was determined in triplicate at each temperature to confirm 

thermal equilibration and measured again at the starting temperature, 25 °C, following 

each temperature change to confirm reversibility as shown in Figure 2.3b. The standard 

deviation of the multiple determinations at 25 °C was used as the experimental 

uncertainty in the diffusion constants. Hydrodynamic radii, RH, were calculated using the 

Stokes-Einstein relation, D = kBT/6phRH, with the known viscosity of water at each 

temperature.88  
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2.2.2 High-pressure NMR 

High-pressure NMR experiments were conducted using Bruker Avance III HD 

800 MHz NMR spectrometer equipped with 5-mm inverse TCI cryoprobe. Samples were 

placed in a ceramic tube with 3 mm inner diameter attached to a syringe pump (Daedalus 

Innovations LLC, Aston,PA). 300 µL of mineral oil was added to act as a barrier between 

the sample and the hydrostatic pressure source. Spectra were obtained at pressures of 20–

2500 bar with pressures cycled to 20 bar between each pressure measurement to ensure 

reversibility.  The Bruker pulse sequence utilized a double-stimulated echo with bipolar 

gradients (dstebpg3s), a diffusion time of 107 ms and gradient length of 5 ms.   Spectra 

were acquired with 16 scans interleaved with 16 gradient strengths from 1 to 51 G/cm.  

PFG NMR hydrodynamic analyses were confirmed by AUC experiments done in 

collaboration with Dr. William Dean (University of Louisville School of Medicine). RH

Figure 2.3 Normalized signal intensities were plotted versus the gradient strength at a) 
different temperatures and b) different trials at 25 °C of 202424 shows the reversibility 
and reproducibility of the diffusion experiments.  
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values obtained using sedimentation velocity experiment were consistent with NMR 

results as shown in Table 2.1. Protein monomers were observed to have frictional ratio 

f/f0 ~ 2. Frictional ratio denotes the deviation of molecules from an ideal hard, unhydrated 

sphere. This idealized sphere has a value of 1.89 Thus, greater than 1 value suggests 

asymmetry and hydration. The value of  f/f0  for tropoelastin, Toonkool et al.75 was close 

to the value of minielastins studied here.  

2.2.3 Coacervation 

Standard coacervation conditions were utilized in the coacervation experiment as 

described by Keeley and coworkers.11 25 µM protein solution in pH 7.5 Tris buffer, 1.5 

M NaCl and 1 mM CaCl2 was prepared.  The concentrations were calculated from the 

absorbance at 280 nm using extinction coefficients, e of 13940 M-1cm-1 for 202424 and 

2020 and 11380 M-1cm-1 for 20x¢ and 24x¢. Tc is depicted by the onset of turbidity of the 

solution caused by the liquid-liquid phase transition. The absorbance was monitored at 

440 nm using Cary-50 UV-VIS spectrophotometer with a Peltier temperature control 

accessory at a rate of 0.5 °C/min to allow equilibration of the sample. 

Figure 2.4 Schematic of the coacervation experiment for 20x¢ and 24x¢. 
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2.3 Results and Discussion 

Hydrodynamic radii can be obtained using various biophysical technique such as 

dynamic light scattering, analytical ultracentrifugation (AUC) and pulsed field gradient 

NMR (PFG NMR). PFG NMR was used to calculate hydrodynamic radii and the values 

were confirmed by AUC. Hydrodynamic properties are good indicators of secondary and 

tertiary structure of proteins. Folded proteins typically have smaller hydrodynamic radii 

than disordered proteins. However, a decrease in hydrodynamic radius observed in IDPs 

does not necessarily indicate formation of secondary structure. Aggregation or 

oligomerization leads to an increase in hydrodynamic radius which is not observed here. 

Different scaling laws were used to estimate hydrodynamic radii (RH) of folded, 

denatured and intrinsically disordered proteins (IDP) as shown in the following 

equations58: 

!!'()*+* = 4.92	>$.%-.	 	eq. 2.3 

!!*+/0#12+* = 2.33	>$..34	 	eq. 2.4 

!!567 = 2.49	>$..$4	 	eq. 2.5 

!!89: =	 (1.24	(@7;<) 	+ 	0.904)(0.00759	|F| 	+ 	0.963) 	∗ 	2.49	>$..$4							eq. 2.6 

Equation 2.6 for IDPs was optimized by Marsh and Forman-Kay to account for the 

effects of proline content and net charge has a reported RMSD value of 2.37 Å.  

The experimentally obtained hydrodynamic radii of the minielastins were found 

to be lower than the calculated RH for IDPs and, as expected, significantly higher than the 

RH of a folded protein of the same number of residues. These also indicated that the 

constructs were more compact than typical IDPs and less structured than a folded protein. 
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Figure 2.5 Hydrodynamic radii of minielastins at 25 ° C (filled circles) with calculated RH
using scaling laws, eqs. 2.3-2.6.  

Minielastins, on average, have 13% proline content, which according to eq. 2.6 

contributes to a 17% increase in hydrodynamic radii compared to IDPs. Although it is 

expected that prolines increase the hydrodynamic radii of minielastins because of its 

propensity to form the secondary structure PPII, this is not observed here. This is likely 

because all prolines in these minielastin constructs are followed by the highly flexible 

glycine residue. Compared to the minielastins studied here,  ELPs with the sequence 

(VPGVG)n are less compact, have higher proline content (20% vs 13%) and have no net 

charge at neutral pH.90 Hydrodynamic radii of minielastins were fit to RH = R0 Nn, Figure 

2.5, to obtain the scaling exponent, n = 0.480 ± 0.051. This is in good agreement with n = 

0.509 obtained from eq. 2.658 and the theoretical value, n = 0.5, for a freely jointed 

chain.61  The pre-exponential factor 2.73 ± 0.75 Å is consistent with 2.70 Å using eq. 2.6 

with proline and net charge taken into account. These minielastins behave like a freely  
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Figure 2.6 Temperature-dependence of hydrodynamic radii of minielastins. Slopes of the 
RH versus temperature plot are shown in the inset and reported in Table 2.1. 

jointed chain with a segment length intermediate between the per residue lengths of 

known secondary structures i.e., a-helix (1.5 Å), b-sheet and PPII (3.1 Å).  

Consistent decrease in hydrodynamic radii was observed with increasing 

temperature, Figure 2.6. It is surprising that proteins become more compact as the 

temperature increase. In the previous chapter, no change in chemical shifts were observed 

with increasing temperature whereas CD spectra revealed no apparent change in 

intramolecular interactions and possible disruption of PPII conformation. The 

temperature-dependence of RH suggests further compaction with increased temperature.  

In Figure 2.6, a systematic decrease in RH was observed for all 
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minielastin constructs with slopes ranging from –0.08 to –0.18 where the larger change 

was observed for higher molecular weight constructs. The same temperature-dependence 

was observed for intrinsically disordered region of the activator for thyroid hormone and 

retinoid receptors (ACTR) and the cytosolic C-terminal distal tail of human sodium-

proton exchanger 1 (hNHE1cdt) that have shown a decrease in hydrodynamic radii with 

increase in temperature. This was attributed to the redistribution of the populations of the 

statistical coil.72 Similarly, for the intrinsically disordered region of p53 protein, the 

decrease in RH was explained as a result of PPII denaturation.73 In the case of 

minielastins,  compaction can also be attributed to denaturation of PPII albeit 13C NMR 

did not show significant change in chemical shifts due to the similarity in chemical shifts 

of PPII with disordered protein.30, 91 MD simulations of ELP by Li and coworkers have 

shown that increasing temperature causes the exclusion of water molecules, thus, 

decreases the protein-water-protein interactions.53, 92 This leads to a decrease in RH 

consistent with the observed temperature-dependence of RH for minielastin constructs. 

Although the disruption of PPII cannot be completely disregarded, CD spectra for 24x¢ 

has shown no change in 220 nm intensity at increased temperature unlike the observed 

decrease of 220 nm intensity in ACTR and hNHE1cdt. Therefore, the observed decrease 

in RH can be explained by 1) redistribution of the population, 2) denaturation of PPII, and 

3) exclusion of water molecules or hydrophobic collapse.

This observed temperature-dependence of the hydrodynamic radii of minielastins 

is important in understanding the coacervation process. It has been known that ionic 

strength, molecular weight and ELP concentration modulate the coacervation temperature 

(Tc). Meyer and Chilkoti postulated an equation to calculate the coacervation temperature 
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based on protein concentration and ELP constructs.93 As expected, designed minielastins 

undergo coacervation like tropoelastin and ELPs. The coacervation temperatures of the 

minielastin constructs are reported in Table 2.2.  

Previous studies have shown that mean hydrophobicity and MW are inversely 

correlated to Tc. 20, 83, 93 Increasing MW by adding more hydrophobic module decreases Tc

across the minielastin constructs with the same cross-linker. As expected, RH increases 

with increasing MW. The decrease in Tc is then correlated with an increase in RH with 

Pearson’s coefficient r2 = .905. More interestingly, decrease in the cross-linker length and 

RH also decrease Tc as observed in 20x¢ and 202424. Thus, the inverse relationship 

between RH and Tc can only be applied to constructs with the same cross-linker.  

Using constructs with varying length of hydrophobic module, the change in Tc per 

set of six amino acid repeat (VPGVGG or APGVGV) were estimated. An example is the 

addition of (VPGVGG)2 in the N-terminus of 2020 to yield the 12VPG construct resulted 

to an increase of 3 °C in Tc. Therefore, each repeat resulted in a 1.5 °C decrease in Tc. 

The same is true for the addition of (APGVGV)3 that yielded a 5 °C change in the 

transition temperature. Thus, each repeat result to a change of 1.7 °C. Least-square fitting 

using eq. 2.7 and 202424 as the reference protein resulted similar values with fit 

parameters 

!! = !"#$ + (%	∆(%&'('( + 	)	∆((&'('' + *	∆())													eq. 2.7 

a = –1.5 ± 0.2, b = –1.7 ± 0.3, and c = 2.9 ± 1.4. Calculated values are shown in Table 

2.2. 

The signs of the coefficients indicate how the addition of each module affects the 

coacervation temperature. Increasing hydrophobic module length and decreasing cross-
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link module length decreases the coacervation temperature. Similar to Meyer and 

Chilkoti’s equation93 for ELP, eq. 2.7 is specific to the minielastin sequence repeats that 

were studied. The calculated coefficient suggests that the decrease in transition 

temperature from a VPGVGG repeat is somewhat greater than from an APGVGV repeat.  

Table 2.2 Calculated coacervation temperature (Tc) using eq. 2.7. 

Protein #aa 
RH  NMR 

(Å) 
Tc (°C) nAPGVGV nVPGVGG nxa 

Tc (°C) 

calcb 

20x' 138 29 ± 1 44 14 5 2 45 ± 2 

202424 182 32 ± 1 52 14 5 4 50 ± 2 

24x' 203 36 ± 1 36 28 0 3 35 ± 2 

20242424 224 36 ± 1 37 21 5 4 40 ± 2 

2020 254 36 ± 1 32 21 10 4 32 ± 2 

12VPG 266 42 ± 1 29 21 12 4 28 ± 2 

17APG 272 41 ± 1 27 24 10 4 27 ± 2 

a x = D(Q)A5KA2(3)KF(Y), sequence variations are shown in parenthesis. 
b Tc calc was calculated using Dn = ni – nref 

While the difference is comparable to the indicated parameter uncertainties, this is 

surprising given that the coacervation temperature is affected by hydrophobicity and the 

Kyte-Doolittle hydropathies of APGVGV and VPGVGG are 1.3 and 0.93, respectively 

(Figure 2.7). A similar trend was observed by Miao and coworkers.12 Specifically,  
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Figure 2.7 Dependence of coacervation temperature with the average per residue 
hydrophobicity of minielastin constructs using Kyte-Doolittle hydropathy indices. 

 

replacing a module rich in VPGVGG repeats with a longer module rich in APGVGV 

repeat was observed to coacervate at a higher temperature. Factors other than the 

hydrophobicity affect the transition temperature. Reversing the order of P and G in the 

sequence, i.e. (VPGVG)n to (VGPVG)n, was observed by Li and coworkers to increase 

the coacervation temperature, altered the CD spectrum and increased the radius of 

gyration, RG.94 Thus, changing the order of the residues which does not change the 

hydrophobicity also lowers the coacervation temperature. It is possible that the smallest 

residue (glycine) after proline increases flexibility i.e. the configurational entropy and 

this contributes to a decrease in the coacervation temperature. Similarly, VPGVGG 

which is less hydrophobic but more flexible than APGVGV has a greater effect in 

lowering the coacervation temperature. Thus, both hydrophobicity and high 

conformational disorder contribute to coacervation process. 
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In addition to temperature, pressure also perturbs protein structure. Pressure 

increase favors the conformation with lower molar volume. Therefore, pressure-induced 

denaturation suggests that unfolded proteins have lower molar volume than their natively 

folded conformation. This is attributed to higher inherent internal void volume of folded 

proteins. 67, 69, 95-96  High-pressure NMR provides an atomistic insight of pressure effects 

on protein unfolding and allows detection of low lying excited states.97-98 The 

combination of temperature and pressure effects on chemical shifts have revealed 

important changes in protein conformation.99 Temperature-dependence of amide 

chemical shifts for minielastins, as discussed in Chapter 1, were consistent with amide 

protons hydrogen bonded to water. Negative coefficients have been attributed to 

elongation of the hydrogen bonds and positive coefficients are characteristic of 

shortening of these hydrogen bonds.100 While changes in chemical shifts with 

temperature were shown to be linear unlike the changes observed with pressure that are 

nonlinear and follow the relation98:  

,	(--.) = ,* + /+(0 − 0*) + /,(0 − 0*),														 eq. 2.8 

where d and d0 are chemical shifts in ppm at pressure P and P0 (1 bar). B1 and B2 are the 

first and second order coefficients. Koehler and coworkers have reported pressure-

dependent coefficients obtained by least square fitting of chemical shifts versus pressure 

for the model tetrapeptide Ac-GGXA-NH2 for the 20 amino acids, X. Reported first and 

second order coefficients of amide protons for the model peptides have positive and 

negative signs, respectively.101-103 Experimental values, reported in Figure 2.8 and Table 

2.3, were comparable in magnitude to the reported random coil coefficients.  
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Figure 2.8 Pressure-dependence of (a-b) HN and (c-d) Ha chemical shifts of 24x¢ 
measured at 20 to 2500 bar with second order coefficients reported in Table 2.3. 
Resolved HN peaks were plotted (a-b) whereas intense peaks in the Ha region (c-d) 
correspond to the hydrophobic repeat residues that are abundant in this minielastin 
construct. 
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As shown in Figure 2.8a and b, the increase in pressure causes a downfield shift 

in amide proton chemical shifts. This observed trend is consistent with shortening of 

hydrogen bonds. B2, the coefficient of the quadratic term is comparable to the model 

peptides. In contrast, Ha chemical shifts moved upfield with an increase in pressure, 

Figure 2.8c and d. B2 values are eight times higher than that mean value reported by 

Erlach and coworkers.102 Changes in secondary structure will move HN and Ha towards 

the same direction. Thus, the observed pressure-induced changes in HN and Ha chemical 

shifts are not consistent with changes in secondary structure. Recall that HN and Ha 

chemical shifts move downfield with disruption of a-helices and the opposite is observed 

for the disruption of b-sheet structure.17, 19 Changes in secondary structure such as 

enhancement of a-helix will result in an upfield shift of HN and Ha.102 For example,  

Table 2.3 Coefficients of second order polynomial fitting of proton chemical shifts versus 
pressure.  

nuclei d (ppm) B1 (´ 10-5 ppm/bar) B2 (´ 10-9 ppm/bar2) 

HN A(3,x) 8.249 ± 0.001 2.84 ± 0.11 -0.26 ± 0.39 

HN V(4,24) 7.957 ± 0.001 4.97 ± 0.04 -8.92 ± 0.16 

HN G(5,24) 8.510 ± 0.001 1.63 ± 0.02 -3.22 ± 0.08 

HN V(6,24) 7.908 ± 0.001 5.89 ± 0.10 -7.86 ± 0.38 

Ha A 4.582 ± 0.001 -2.73± 0.13 -0.44 ± 0.48 

Ha P 4.404 ± 0.001 -1.02± 0.04 -2.31 ± 0.16 

Ha G 3.936 ± 0.001 -0.79 ± 0.21 -1.07 ± 0.80 

Ha V 4.126 ± 0.001 -1.47 ± 0.02 -5.65 ± 0.08 
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observed upfield chemical shifts for both a-helices and b-sheet structures of lysozyme 

were consistent with the shortening of hydrogen bonds measured via x-ray diffraction.104-

105 Downfield movement of HN chemical shifts was also reported by Roche and 

coworkers for the disordered protein, a-synuclein .95 The chemical shift changes 

observed for the backbone nuclei and changes in 3JHN-Ha were attributed to population 

change from PPII-b to PPII conformations.95 In a more recent study by Ramanujam et al., 

these changes were accompanied by a 3% decrease in hydrodynamic radius.106  

 Hydrodynamic radii of natively folded proteins are smaller than IDPs and 

minielastins, Figure 2.5. Thus, pressure-induced unfolding given that the volume of the 

unfolded state is lower than the natively folded state will result in an increase in RH. The 

volume change with pressure is determined by the balance between the void volume and 

the hydration volume.71 Unfolding of globular proteins will increase the Stokes volume 

(4/3pRH3) but not necessarily the molar volume of the protein because of their different 

shapes. Recall that the AUC frictional ratio, f/f0 ~ 2, found in disordered proteins such as 

minielastins and tropoelastin shows that they are well hydrated and/or asymmetric 

compared to globular proteins.30, 75 High pressure PFG NMR experiments of minielastin 

constructs have consistently shown a decrease in hydrodynamic radii, similar to what was 

observed for a-synuclein. Figure 2.9 shows that minielastin constructs at high pressure 

undergo an ~10% decrease in RH from 20 to 2500 bar. The pressure effect on RH  can be 

explained by changes in population of unfolded states similar to a-synuclein,106 a 

decrease in void volume107, or compression of hydrogen bonds.108 The observed decrease 

in RH suggests that the partial a-helices in the cross-link module are less likely to unfold 

within the range of pressure used.109 Similarly, a small decrease in RH observed for 
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denatured lysozyme was attributed to the compaction of hydrogen bonds and expansion 

of other parts of the protein.104  

The decrease in hydrodynamic radii of minielastin constructs with increased 

temperature and pressure had been observed using PFG NMR. This suggests that at 

higher temperature, where coacervation occurs, the more compact states are favored. This 

also shows that coacervation is an endothermic process (favored at higher temperature) 

analogous to the spontaneous recoil of elastin fibers that were found to have positive heat 

libration and entropy values.1, 110 The degree of compaction was found to be greater with 

temperature (~ 0.13 Å / °C) than pressure (~ 0.002 Å / bar) as the increase in kinetic 

energy allows the access of different conformations given that IDPs has a rather flat free 

energy landscape.  

Figure 2.9 Change in hydrodynamic radii of 17APG, 20242424 and 24x¢ constructs with 
pressure ranges from 20 to 2500 bar.  
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coacervation process of minielastins. Two- and three-dimensional NMR experiments 

with temperature and pressure perturbations will provide an atomistic picture of the 

changes associated with coacervation in terms of hydration and conformational states of 

minielastins. Recently, the effect of temperature and pressure on liquid-liquid phase 

transition of soluble a-elastin was investigated by Cinar and coworkers.107 Using FTIR, 

CD and UV-vis measurements, they have shown that increase in pressure resulted to a 

more compact coacervates with less void volume in between protein solutes. Thus, 

understanding the temperature and pressure effect on hydration and conformational states 

of minielastin constructs relative to protein sequence and length is essential in modulating 

coacervation properties and its potential application in developing stimuli responsive 

elastic biomaterials.  
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 MINIELASTINS ARE FLEXIBLE 

3.1 Introduction 

The structure of tropoelastin has been difficult to elucidate using structural 

biology techniques due to its low sequence complexity, high hydrophobicity and 

disordered nature. In the previous chapter, it has been established that the hydrophobic 

modules of minielastins are disordered whereas cross-link modules have transient a-

helical characteristics when flanked with hydrophobic modules.30 Despite the known 

disorder in hydrophobic domains, Baldock and coworkers using SAXS analysis showed 

that tropoelastin monomer adapts a canonical shape. In addition to its canonical shape, 

based on the cross-links between domains 10,19 and 25 observed by Mecham and 

coworkers111,  it has been proposed that tropoelastin follows a head-to-tail elastin 

assembly. The described assembly of tropoelastin introduces ordering of the monomer 

upon formation of the mature elastin. This has been investigated via replica exchange 

molecular dynamics (REMD) with explicit solvent by Tarakanova et al.  Their 

simulations showed the existence of flexible tropoelastin with its canonical shape 

stabilized by salt bridges.112-113 Contrary to the head-to-tail model, more recent tandem 

mass spectroscopic techniques of purified mature elastin have shown the presence of 

multiple intradomain, interdomain and intermolecular bifunctional cross-links.114-115 This 
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indicates the existence of heterogeneous cross-linking between domains of tropoelastin 

molecules. 

Molecular dynamics simulations also show an increase in flexibility and 

deviations from the canonical shape of tropoelastin upon oxidative deamination of lysine 

residues that occurs before cross-linking.116. In addition, Pometun and coworkers have 

shown that mature bovine nuchal elastin has a flexible backbone carbonyl also consistent 

with presence of high degree of disorder. Using solid state 13C NMR, the order parameter 

of the backbone carbonyl groups was determined to be S < 0.1 indicating a highly 

disordered and dynamic polypeptide.117  

The degree of flexibility of minielastins were investigated using nuclear spin 

relaxation measurements to probe the changes that occur upon the transition from the 

monomer to the mature elastin matrix. NMR relaxation is a standard tool for determining 

dynamics of macromolecules.  

3.1.1 Nuclear spin relaxation 

Relaxation theory makes the extraction of dynamical information from NMR spin 

relaxation experiments possible. Perturbed nuclei in a static magnetic field undergo two 

types of relaxation—longitudinal (spin-lattice) and transverse (spin-spin) relaxation. 

Relaxation is the restoration of the thermal equilibrium, a state at which the spin 

population of the energy levels follows the Boltzmann distribution and the spin coherence 

is zero. There are two energy levels associated with a spin ½, the a and b states. The 

slight difference in populations between these two states results in a non-zero 

magnetization along the applied field, the + z direction. Spins aligned with the magnetic 
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field are slightly in excess of spins aligned antiparallel to the magnetic field. Longitudinal 

relaxation (R1) is the rate at which the population Boltzmann distribution is re-

established. 

The simplest way to measure longitudinal relaxation rate is via inversion 

recovery. In this experiment, a 180° pulse is applied to invert the a and b populations. 

The spins are allowed to relax for the time delay t, then a 90° pulse is applied to place the 

magnetization in the transverse plane for detection. Increasing t allows the magnetization 

to relax prior to detection as shown in Figure 3.1. To maximize NMR signals, it is 

generally useful to measure R1 for every experiment so that the magnetization is in 

thermal equilibrium before subsequent acquisition. 

Figure 3.1 Inversion recovery pulse sequence to measure R1. 180° pulse inverts the a and 
b populations. As time delay, t, increases the more time the spins have to relax back to 
thermal equilibrium.     
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At thermal equilibrium, a net zero coherence is observed since the projection of 

the spin magnetization on x-y plane is randomly arranged. When a pulse is applied, a 

time-dependent correlation of spin orientations in the transverse plane is created.118 

Transverse relaxation (R2) is the rate of loss of coherence of the spins which is measured 

using spin echo experiment that utilizes 90° and 180° pulses. The first pulse takes the 

magnetization to the x-y plane and the second pulse generates the “echo”, i.e., spin 

evolution due to chemical shifts and magnetic field inhomogeneity is reversed but 

evolution due to relaxation is unaffected. As the time delay, t, increases, the spins lose 

coherence resulting in a decrease in magnetization due only to relaxation.  

Figure 3.2 Spin echo pulse sequence to measure R2 relaxation rate. Spin coherence is lost 
with increasing time delay t.  

3.1.2 Spectral Density 
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example, in rotational diffusion, the average time it takes for a molecule to rotate by one 

radian from its starting orientation is the rotational correlation time, 2!. When a system 

fluctuates spontaneously away from equilibrium, the correlation function, C(t), describes 

the time dependence of the return to equilibrium of the fluctuation. The simplest form of 

the correlation function is a single exponential with time constant or correlation time 2!, 

eq. 3.1.  

C(t)=〈Bloc
2〉e-|t|τc 																																														eq. 3.1 

Bloembergen, Pound and Purcell showed how the Fourier transform of the correlation 

function, eq. 3.2, 

	J (ω)=5 C(t)e-iωτ dτ   =
2
5   B

τc

1+(ωτc)
2

+∞

-∞
             eq. 3.2 

could be incorporated in time-dependent perturbation theory to determine the relaxation 

rates R1 and R2, eqs. 3.3 and 3.4. 

The spectral density measures the contribution of motions in the frequency 

domain. Fast reorienting NH bond vectors i.e. low 2!, yield broad spectral density from 

motions at high frequency. Slowly reorienting bond vectors are depicted by a narrow 

spectral density. At zero frequency, the spectral density 6	(0),  represents the area under 

the curve of the correlation function. Therefore, the magnitude of 6	(0) is directly 

proportional to 2!. 

For spin ½, the dominant sources of relaxation are dipole-dipole interactions and 

chemical shift anisotropy. Dipole-dipole interactions are local magnetic field fluctuations 

caused by nearby nuclei. Dipole-dipole interactions are dependent on the distance of the 

nuclei hence, the strength of interaction decreases with 1/r6. The chemical shift depends 
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on the orientation of the molecules with respect to the static magnetic field due to 

anisotropy of the chemical shift interaction. Since it is highly influenced by external 

magnetic field, the contribution from CSA increases with increasing magnetic field 

strength.  The relaxation rates can be expressed in terms of spectral density sampled at 0, 

8., 8/, and 8/ ± 8.  as shown in the following equations for the amide bond vector: 

R1=
d2

4
{ J (ωH	– ωN) + 3 J (ωN) + J (ωH + ωN)} +  c2	J (ωN)            eq. 3.3 

 

R2=
d2

8
{4 J (0) + J (ωH	– ωN) + 3 J (ωN) + 6 J (ωH) + 6 J (ωH + ωN)} +	 

     
c2 

6
{4 J (0) + 3 J (ωN)}																																																	eq. 3.4 

                  
where the dipolar coupling constant d=μ0hγHγN/8π2rNH

3,  μ0 is permeability of free 

space, γH and γN are gyromagnetic ratios of 1H and 15N, respectively. The distance 

between the 1H and 15N is rNH
3=1.02 Å, whereas the chemical shift anisotropy constant 

* = ∆=8./√3, ∆σ = –172 ppm is the CSA for axially symmetric amide and 8.is the 

Larmor frequency of 15N.  

Spin-lattice relaxation rates of 1H and 15N together determine the steady-state 

nuclear Overhauser enhancement, NOE. In this experiment, 1H nuclei are irradiated by a 

strong RF field so the 1H spin state populations are equalized and during irradiation 

cross-relaxation with 15N contributes to a change in the 15N signal intensity. The ratio of 

the signals with and without irradiation is the NOE. In the case of 15N with a negative 

gyromagnetic ratio, the NOE is less than 1 and depends on the spectral density as shown 

below, eq. 3.5. 
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NOE = 1 + 
d2 γH

4 R1γN
{6 J (ωH + ωN) – J (ωH – ωN)}	 	eq. 3.5 

Based on eqs 3.3 – 3.5, nuclear spin relaxation is a powerful tool to probe the rotational 

motions at picosecond to nanosecond timescale.  However, a physical interpretation of 

the dynamics can only be obtained by setting verifiable assumptions and modeling the 

spectral density. 

The dynamical information embedded in the relaxation data can be extracted by 

fitting a parameterized spectral density to the data. Ideally, the fit parameters of the 

spectral density are related to important dynamical properties of the protein under study 

and then validated against the spectral density map (SDM).  

The relaxation observables, R1, R2, and NOE are linear combinations of the 

spectral density at various frequencies, eqs. 3.3–3.5, and can be used to calculate the 

spectral density at five frequencies. The spectral density at 0, wN, wH, wH + wN and wH – wN

cannot be determined given only three equations. Peng and Wagner have shown that J 

(wH) and J (wH ± wN) have very similar magnitude, much lower than J (0) and J (wN) and 

that high frequency spectral densities are insensitive and susceptible to experimental 

errors.119 Farrow and coworkers then used a single frequency, J (0.87wH) to describe the 

high frequency spectral density and resulted a reduced form of spectral density map with 

only three relaxation experiments necessary.120 Reduced spectral density mapping 

(RSDM) although convenient, does not provide any physical interpretation of the spectral 

density. Since no assumptions are made, RSDM is applicable to both folded and unfolded 

proteins and provides a rigorous test of the assumptions made in a model spectral density. 
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A general form of the spectral density, eq. 3.6, has been widely used to extract the 

contributions of each timescale of motions from the relaxation data. The spectral density 

can be expressed as a sum of Lorentzian,  

 J (ω) = 
2
5AB

Aiτi

1+ω2τi
2

1

23+

 C      where    BAi=1
i=1

    eq. 3. 6 

where k is the number of terms contributing to the spectral density function, Ai as the 

weighting coefficient for each term and ti as the timescale of motions. A more elaborate 

form of this spectral density, Lipari-Szabo model-free approach (LS), has been 

commonly used as it provides more pictorial representation of the bond vector 

dynamics.121-125 As the name implies, no specific model of motion is used however, 

assumes a separation in timescale between the overall motion and internal bond vector 

motion. Assuming that internal motions are independent of overall motions, the total 

correlation function describing the amount of motions of molecules tumbling 

isotropically in solution with respect to time interval t is 

C(τ) = CO(τ)CI(τ)    eq. 3.7 

where CO(τ) and CI(τ)	are the correlation functions for overall motions and internal 

motions, respectively.125  

LS describes the internal motions in terms of the squared of the generalized order 

parameter, S2 and an effective internal correlation time, te. S2 is a measurement of spatial 

flexibility of the NH bond vector and has a value between 0 and 1, indicative of flexible 

and rigid motions, respectively, whereas the effective correlation time is the timescale of 

internal motions. The LS model-free approach has a general form 
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 J	(ω) =
2
5   D

S2 τM

1 + (ωτM)2  + 
(1 – S2) τ
1 + (ωτ)2E  where	

1
τ  = 

1
τM

 + 
1
τe

 eq. 3.8 

where tM is the overall rotational correlation time that can be extracted from the 

relaxation data or from hydrodynamic measurements.124, 126 Accuracy of the fit 

parameters, S2 and te, depends on how fast the internal motions are.125 The accuracy 

decreases as the S2 value decreases; thus, LS is more accurate when used in folded 

proteins (S2 ~ 0.8). When LS failed to fit the relaxation measurements, Clore and 

coworkers127 introduced an additional term to describe internal motions with fast and 

slow timescales as shown in equation below 

	J (ω) = 
2
5 		D	

S2 τM

1 + (ωτM)2 +
(1 – Sf

2) τf
'

1 + (ωτf
')2 +

(Sf
2 – S2) τs

'

1 + (ωτs
')2 	E 	 	eq.  3.9 

where  +
7!/#8

	= 	
+
7$
	+ 	

+
7!/#

 . The spatial restrictions of the slow and fast internal motions 

are described by the order parameters Ss2 and Sf2, respectively, where S2 = Ss2 Sf2. In this 

approach, the assumption is that the overall correlation time tM, is isotropic and there is a 

separation between the fast and slow internal correlation times.  Moreover, for systems 

that are highly flexible and have the slowest correlation time that cannot be described by 

a constant tM value as in IDPs, a distribution of the correlation time can be used.128-130 

Buevich et al.131 applied the Cole-Cole distribution adopted from the analysis of 

polymers to the model-free approach to probe the dynamics of natively unfolded pro-

peptide of subtilisin. Lorentzian distribution of the correlation time proposed by 

Ochsenbein and coworkers130 presented a more appropriate representation of the diverse 

motional conformation of disordered proteins. When compared with the model-free 

approach, to, the center of the distribution is similar to ts values and the width of the 
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distribution, D, evolves with the Ss2 suggesting heterogeneity of motions. A similar 

distribution was employed by Modig and Poulsen132on the denatured acyl-coenzyme A 

binding protein. Time-dependent molecular dynamics trajectories application to 

temperature-dependent relaxation measurements were explored by Salvi and coworkers 

to probe the IDP-water interactions and segmental motions dependence on solvent. 128, 133  

In this chapter, a qualitative and quantitative analysis of dynamics of minielastin, 

24x¢, was obtained using nuclear spin relaxation. Various forms of the spectral density 

function were used to obtain the best fit relaxation parameters that describes the 

dynamics of 24x¢. The resulting spectral density from the fit parameters were compared 

with the reduced spectral density map values. The application of distribution on the 

slowest correlation time obtained using PFG NMR diffusion measurements were 

explored. The analysis provided insights on the dynamics of minielastin in solution in 

comparison with the order parameter of insoluble elastin fiber. Evidence that the local 

backbone disorder of the monomer is conserved in the mature elastin is presented. The 

amplitude and timescale of motions contributing to the relaxation rates are consistent 

with the presence or lack thereof of secondary structure. 
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3.2 Materials and Methods 

3.2.1 Sample preparation 

15N-labelled samples of minielastin construct, 24x¢,with sequence 24¢-x¢-24¢-x¢-

24¢-x¢-24¢, where 24¢ = (APGVGV)7, and x¢ = DA5KA2KF, were expressed and prepared 

as described in the chapter 1 and in Greenland et al.30 All protein samples used in the 

relaxation experiments have concentrations ~300 µM at pH 6, 90% H2O / 10% D2O.  

3.2.2 NMR experiments 

Relaxation measurements were obtained using Bruker Avance 500, 600 and 800 

MHz instruments equipped with cryogenically cooled probe. R1 measurements were 

recorded at ten time points, between 10 to 1200 ms with 1 s recycle delay whereas R2 

measurements were recorded at eight time points between 10 to 350 ms with 1 s recycle 

delay. [1H]-15N heteronuclear NOE spectra were obtained using Bruker pulse sequence 

hsqcnoef3gpsi with 10 s saturation period and recycle delay for the 500 MHz and 800 

MHz. NMR spectra from the 500 and 800 MHz were obtained with the assistance of 

Jonathan Preston and Dr. James Aramini of The City College of New York and were 

processed using NMRPipe and TopSpin 3.5pI7 software. 

For the 600 MHz spectrometer, chemical exchange saturation transfer (CEST) 

and steady-state [1H]-15N heteronuclear NOE measurements were recorded and analyzed 

by Dr. T. Michael Sabo of University of Louisville, School of Medicine. R1 and R2 was 

calculated utilizing an in-house python script as described in literature.134-136  
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3.2.3 Relaxation Rate Analysis 

 Relaxation rates were analyzed by plotting the peak intensities at time delay t via 

Igor Pro software that uses Levenberg-Marquardt algorithm for data fitting. The data was 

fitted using a single exponential equation to obtain residue specific relaxation rates:  

G(2) = G*H9:	;%,'    eq. 3.10 

Figure 3a and b shows the plot of intensity versus time obtained for residues V (6,24¢)  of 

the hydrophobic module and A (5,x¢) of the cross-link module. Figure 3c shows the 

superposition of the steady state NOE of proton saturated and unsaturated spectra. The  

 

 

Figure 3.3 Nuclear spin relaxation observables (a) longitudinal relaxation rate R1 (b) 
transverse relaxation rate R2 of residues V (6,24) in red and A (5,x¢) in gray and (c) [1H]-
15N heteronuclear steady state NOE of 24x¢ with  and without proton saturation in green 
and red spectrum, respectively. 
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NOE values are calculated as the ratio of peak intensities of spectra with and without 1H 

saturation, eq. 3.11 

!"#	 = 	 (!"#
($%!"#

     eq. 3.11 

Uncertainties were obtained from the fitting of the relaxation rates whereas the 

uncertainties from the NOE experiments were calculated from the signal to noise. A 

random error of 10% from the experiment and analysis were used in the spectral density 

calculations. 

3.2.4 Spectral Density Mapping and Modeling 

Reduced spectral density mapping  of the 24x¢ relaxation data were performed as 

described by Farrow et al.137 specifically Method 3 as proposed by Kaderavek et al.138 

Experimentally determined relaxation data R1, R2, and [1H]- 15N NOE from three 

spectrometers were used to calculate spectral densities at thirteen frequencies, J (0), J 

(wN), J (0.870wH), J (0.921wH), and J (0.955wH) at 500, 600 and 800 MHz to map the 

correlation function as shown in the following equations: 

NOE = 1 +  
d2

4
γH
γN
	[5 J (0.870ωH)] R1	 	eq. 3.12 

R1=
d2

4
[3	J	(ωN)	+	7	J	(0.921ωH)]	+	c2 J	(ωN)																		eq. 3.13 

R2 = 
d2

8
[4 J (0) + 3 J (ωN) + 13 J (0.955ωH) ] + 

c2

6
[3 J (ωN) + 4 J (0)]			eq. 3.14 

Rearranging the eqs. 3.12-3.14 yields the following expressions for the spectral density at 

five frequencies: 
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 J (0.870ωH) = R1	(NOE – 1)
4

5d2 ∙
γN
γH

	eq. 3.15a 

J	 (εωH)	= J (0.870ωH) + (ε – 0.870)ωH  J'	(0.870ωH)				eq.	3.15b 

J 	(ωN)	=
R1 – 7d2

4  J (0.921ωH)

3d2

4  + c2
 eq. 3.15c 

 J  (0) = 

TR2 – R1
2  – d2

8 [7 J (0.921ωH) + 13 J (0.955ωH)]U

D
3d2 + 4c2

6 E

	eq. 3.15d 

In the above eq. 3.15b, e = 0.921 and 0.955 and J¢(0.870wH) = [ J (0.870wH800) – J 

(0.870wH500)] / [0.870 (wH800- wH500). This approach allows the direct determination of 

spectral densities in four frequency and an average J (0) from the relaxation data at 

multiple magnetic fields. 

The Lipari-Szabo model-free approach, eq. 3.8, and extended Lipari-Szabo, eq. 

3.9 were used in conjunction with eq. 3.6. The approaches used in this study are 

summarized in Table 3.1. The overall correlation time, tM was estimated from 

hydrodynamic radius30 as described by Yao et al.126 Gaussian distribution of 

hydrodynamic radii of disordered proteins was applied with full width at half height 

(FWHH) of ~10 Å shown in eq. 3.16  

0?
#@ = 	VH9(;),*9〈;)〉)

'/,F', where  WXYY = 	2√2	Z(	2	=,    eq. 3.16
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given that 〈[/〉 = \G! 6^_ H̀⁄  from PFG NMR translational diffusion, were used to 

calculate the average overall rotational correlation time, eq. 3.17.  

2I,? =
1
6 "̀

=
4^_[/,?

K

3\G!
and	that		〈2I〉 =B0?

#@
L

?3+

2I,? 												eq. 3.17 

\G is the Boltzmann constant, h is the solvent viscosity and L =18, therefore, the 

correlation function for the overall motion is given as,  

CO(t)=
1
5
B0?

#@H
9 H
:+,* 																																											eq. 3.18

L

?3+

 

Finally, with Gaussian distributed tM in the range at which tM is much greater than the 

inverse of the lowest frequency detected (wN, 500-1 ~ 0.3 ns) and tM>> ts/f, the spectral 

density takes the form 

		J (ω) = 
2
5 		D	

S2

ω2〈τM〉
+

(1 – Sf
2) τf

1 + (ωτf)2 +
(Sf

2 – S2) τs

1 + (ωτs)2 	E 																			eq. 3.19 

 
Table 3.1 Spectral density approaches with adjustable parameters used to fit the 
relaxation data 

Approach Optimized parameters Fixed parameter 
Sum of Lorentzian (eq. 3.6)  
        k:   1 t1 none 
              2 A1, t1, t2 none 
              3 A1, A2, t1, t2, t3 none 
   
Lipari-Szabo model-free    
LS (eq. 3.8) S2, tM, te none 

 S2, te tM 

ELS (eq. 3.9) a S2, Sf2, tM, ts, tf none 

 S2, Sf2, ts, tf tM 

GELS (eq. 3.21) b S2, Sf2, ts, tf átMñ 
a Extended Lipari Szabo 
b Extended Lipari Szabo with Gaussian distribution 
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Note that when tM >> ti, sum of Lorentzian with k = 2 is equivalent to LS, k = 3 to ELS 

with the following relation: A1 = S2, A2 = Sf 2 - S2, A3 = 1- Sf 2 and t2/3 = ts/f, respectively. 

The fit parameters were calculated via c2 minimization using in-house MATLAB 

scripts. The models were assessed using the following criteria: 1) the calculated 

relaxation parameters are within twice the standard deviation of the experimental values 

and 2) the calculated error must not be greater than the fitted parameter.122 If more than 

one model meets the criteria, the model with the least c2 was chosen. c2 is used to 

compare the experimental values to calculated values and defined as122-123 

χ2 = B TD
R1 calc – R1 exp

σR1 exp
E

2

+D
R2 calc – R2 exp

σR2 exp
E

2

+D
NOE calc – NOEexp

σNOE exp
E

2

U 			eq. 3.20
all 

frequencies

 

Best fit parameter were obtained at c2 minimum per residue.123 The uncertainties of the 

fit parameters were calculated using five hundred Monte Carlo simulations.130, 139

Relaxation rates and NOE ratios back calculated from the best fit parameters and 

experimental uncertainties were used as the mean and standard deviation of the gaussian 

distribution. Five hundred simulated sets of relaxation rates from the Gaussian 

distribution were used to calculate simulated model parameters. Reported uncertainties of 

the best fit parameters are the standard deviations of the simulated model parameters.139 

The model functions were evaluated using the c2 goodness of fit test for c2 distribution 

with degrees of freedom, n = n – p, where n is the number of observed values and p is the 

number of parameters. For the relaxation data at a = 0.05 with n = 4 and 5, has critical 

value of 9.49 and 11.07 respectively. Root-mean-square deviation (RMSD) of the 

calculated relaxation rates from the best fit parameters were also determined. 
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3.3 Results and Discussion 

The disordered nature of minielastin and elastin-like polypeptide monomers has 

been previously established using NMR techniques. Moreover, in the aggregated state, 

the structure of elastin-like polypeptides do not drastically change.38 The disorder persists 

in insoluble, mature elastin and that the order parameter for the backbone carbonyl has 

near zero value.117  

For minielastin in solution, nuclear spin relaxation of the amide 15N was used to 

probe the backbone dynamics of 24x¢. Spin relaxation analysis has been effective in 

analyzing motions of IDPs. Average values of 1.37 s-1 and 2.54 s-1 for R1 and R2, 

respectively, and [1H]-15N NOE values less than 0.5 at 800 MHz were observed by Zhang 

and coworkers in a disordered protein, malaria surface protein (MSP2).140 This small 

difference between the R1 and R2 denotes high flexibility of MSP2. IDPs have a 

characteristically lower R1 and R2 and [1H]-15N NOE values compared to folded proteins. 

Farrow and coworkers showed R2 is lowered as a result of lower contribution from J (0) 

in the unfolded Drosophila signal transduction protein drk (drkN SH3) compared to 

folded proteins.137  

 Moreover, study by Bertini and coworkers found that a-synuclein, an 

amyloidogenic IDP, lacks rigidity via model-free approach.141 They reported S2 = 0.08 ± 

0.02 and rotational correlation time of 7.0 ± 1.8 ns for the collective protons of this 140-

residue protein using field-cycling relaxometry. Here, R1, R2 and heteronuclear NOE 

were obtained at different magnetic fields to probe the dynamics of minielastin, 24x¢.  
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Figure 3.4 NMR spin relaxation data R1, R2 and heteronuclear NOE at 500 (blue), 600 
MHz (magenta) and 800 MHz (red) for each residue in 24x¢.  

Shown in Figure 3.4 are the relaxation data obtained at 500, 600 and 800 MHz. R1 

of hydrophobic module has little to no change between 500 and 800 MHz whereas the 

cross-link module has significant decrease in R1 with increased magnetic field. As shown 

in eq. 3.3, longitudinal relaxation are contributions of motions in wN and wH ± wN 

frequencies.  The R1 alone is not very informative as it is not sensitive to ps-ns motions. 

R2, on the other hand, is mostly influenced by slow motions and chemical exchange. The 

difference of R2 values between the hydrophobic and cross-link modules support the 

existence of slower motions for more ordered cross-link module than the flexible 

hydrophobic module. Relative to R2 values of folded proteins (up to ~50 s-1), the values 

obtained were consistent with disordered proteins ~1 to 6 s-1.121, 128, 140, 142-143 Because of 

this magnitude, R2 values are assumed to have little to no contribution from chemical 

exchange and thus, are only affected by dipolar coupling and chemical shift anisotropy. 

Absence of chemical exchange was also confirmed using the CEST experiment by Dr. 

Sabo. As shown in eq. 3.5, NOEs are sensitive to high frequency motions. Observed 

values are less than 0.5 consistent with highly flexible motions. Cross-link module shows 
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higher NOE than the hydrophobic module. Folded proteins generally have positive NOE 

values resulted from slower, restricted  motions.144  Figure 3.4, in general, shows the 

striking difference in timescale of motions between the hydrophobic and cross-link 

modules. Reduced spectral density mapping has been commonly used to describe the 

dynamics of disordered proteins. Using the relaxation data, spectral density at different 

frequencies were calculated for each residue. Figure 3.5 a, b and c shows the spectral 

density at 0, wN, and 0.87wH obtained at 500, 600, and 800 MHz. Note that the 

J(0.87wH500) are greater than J(0.87wH600)  suggests that the plot of the spectral density vs 

frequency is a summation of Lorentzians at different timescales.137 As expected, J(0) and 

J(wN) values, for cross-link modules are higher than hydrophobic modules, consistent 

with more slow motions in the cross-link region. These frequencies are sensitive to 

nanosecond motions. A slightly higher values of J(0.87wH) are observed for hydrophobic 

residues attributed to more flexibility of the hydrophobic module than the cross-link 

module. The comparison of average spectral densities of hydrophobic (red) and cross-link 

(gray) modules in 13 frequencies is shown in Figure 3.6. In summary, there are more low 

frequency motions in the cross-link modules whereas a slightly greater high frequency 

motions were observed in the hydrophobic modules. RSDM is a more accurate way to 

describe the dynamics of disordered proteins because of the broad distribution of motions 

associated with it. The previous statement is true, there is a compromise between the ease 

of analysis and the amount of information that can be extracted from it. RSDM does not 

provide a physical picture of protein dynamics, thus, the importance of spectral density 

modelling.  
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Relaxation is a process caused by the combination of small motions rather than 

one large motion.118 These contributions of motions are embedded in the relaxation 

measurements as shown in eqs. 3.3 – 3.5. Gill and coworkers used both spectral density 

mapping and the model-free approach to analyze the dynamics of transcription factor  

Figure 3.5 Spectral density calculated from the NMR spin relaxation data at a) J (0) 
averaged at three magnetic fields, b) J(wN) and J(0.87wH) obtained from 500 (open 
square), 600 (open triangle) and 800 MHz (open circle) magnetic fields. 
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Figure 3.6 The average spectral density functions for hydrophobic (red) and cross-link 
(gray) were sampled at 0, wN, 0.87wH, 0.921wH, and 0.955wH at 500, 600 and 800 
MHz.137  

 

GCN4 protein.121 The relaxation data of the disordered region of GCN4 protein was fitted 

using extended Lipari-Szabo formalism and yielded spectral density similar to that  

calculated using spectral density mapping. Similarly, Abyzov et al. used spin relaxation 

at multiple magnetic field and different temperatures to study the dynamic modes of the 

disordered C-terminal domain of Sendai Virus nucleoprotein. Using the six-parameter 

model of the spectral density function, they were able to distinguish three dynamic modes 

that were attributed to the fast librational motions (~50 ps), intermediate local backbone 

(~1 ns) and segmental motions (£ 20 ns).145 More recently, they have shown the 

important role of solvent in segmental motions of IDP via MD simulations.128  
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Table 3.2 Fit parameters obtained from sum of Lorentzian with k = 2 and 3 at c2min. 

residue k A1 t1 (ns) A2 t 2 (ns) A3  t3 (ps) c2 

A (1,24) 2 0.352 1.80 0.648 89 12.6 

3 0.007 12.7 0.393 1.44 0.600 84 4.25 

G (3,24) 2 0.585 1.01 0.415 68 17 

3 0.003 28.7 0.603 0.97 0.394 63 7.7 

G (5,24) 2 0.539 1.09 0.461 81 8.2 

3 0.003 35.3 0.543 1.26 0.543 74 6.1 

D (1,x¢) 2 0.48 1.69 0.52 94 21.7 

3 0.029 10.2 0.535 1.31 0.436 83 3.2 

To extract the amplitudes and timescales of motions that affects the relaxation, 

several approaches were used to fit the experimental values. For the sum of Lorentzian 

models, at k = 3, all residues fitted the criteria that were previously established whereas at 

k = 2, only four residues resulted to acceptable fits as shown in Table 3.2. Note that the 

fit parameters for the internal motions are similar but the c2 minimum obtained from k = 

3 is lower than at k = 2. The slowest correlation time at k = 2 is physically impossible to 

be the overall orientation time but can be attributed to local slow motions. NOEs at k = 2 

are smaller than the experimental values contributing to higher calculated c2. 

 The fit parameters with calculated relaxation values within two standard 

deviations of the experimental values for A (1,24¢) with c2 values depicted by the  
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Figure 3.7 Fit parameters of A (1,24¢) with calculated relaxation values within two 
standard deviation of the experimental values obtained from sum of Lorentzian with k = 
3. c2 values indicated by the colormap.
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colormap are shown in Figure 3.7. A non-linear relationship between the slowest 

timescale t1 and coefficient A1 was observed, with A1 ranges from 0 to 0.25 for 3 £ t1 £ 

50 ns. This wide range of values is consistent with a distribution of overall rotational 

correlation time associated with disordered proteins. t2 and t3 have a linear relationship 

with their respective coefficients as shown in Figure 38 b and c. These fit parameters 

show how much each timescale affect the relaxation rates. Small contributions from the 

slowest correlation time (> 3 ns) were observed as well as major contributions from 

fastest motions (< 100 ps). Given the range of timescales used, at (wt1)2 >> 1 and (wt2)2 

<< 1, eq. 3.6 simplifies to  

	J (ω) = 
2
5D

A1

ω2τ1
+

A2τ2

1+ω2τ2
2

+A3τ3	E 	 	eq. 3.21 

The correlation function decays fast at the slowest timescale and the third term no longer 

depend on frequency. Figure 3.8 summarizes the fit parameters obtained per residue. In 

red are the values from Lorentzian k = 3 model and in blue are from fitting with GELS. 

Understanding of the physical representation of minielastin dynamics from the spectral 

density was further analyzed using the model-free approach. LS has been commonly used 

to describe the dynamics of folded, denatured and disordered proteins.121-123, 146 The 

square of the generalized order parameter (S2) describes the spatial restriction of the NH 

bond vector with timescales obtained with minimal assumption on the nature of these 

motions. LS assumes the separation of the timescale of the overall tumbling and internal 

motions whereas the Lorentzian model provided the contributions or weighing of each 

timescale.  

Fit parameters acquired using ELS approach are in good agreement with the sum 

of Lorentzian with k=3 as discussed previously. In eq. 3.19, when tM >> tf , tf¢ reduces to 
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tf  and the effect of tM is more evident in tS term as tM is not much bigger than tS. A wide 

range of overall correlation time and generalized order parameters were observed. The 

zero-frequency term of the spectral density is highly dependent on the S2, given that the 

overall correlation time is much slower relative to the fast internal motions.  The accurate 

calculation of S2 was attempted by setting the overall correlation time constant with 

values at least an order of magnitude slower than the internal correlation time. 

Correlation times were varied based on the average t1 observed from k = 3. Using tM = 4 

ns, value consistent with segmental motions, the fit parameters drastically change but as 

expected, not all residues resulted an acceptable fit. For the hydrophobic modules, the 

change is evident in S2 and Ss2 whereas Sf2 is unchanged. In addition, ts values increased 

and tf is about the same. These suggests that the changes in the slow internal motions do 

not affect the fast internal motions. The tM = 4 ns for cross-link module yielded S2 < 0.2, 

increased Ss2 and Sf2 and decreased ts and tf values. Note that the c2 also increased at 

these fit parameters, suggesting poorer fitting.  

An estimate of tM was calculated from the hydrodynamic radius obtained via PFG 

NMR. Hydrodynamic radius, a good estimate of the radius of the molecule via Stokes 

equation, is related to the rotational correlation time as shown in eq. 3.17. Figure 3.9 

shows how the order parameters vary with overall correlation time. At value estimated 

from hydrodynamic radius, tM ~ 40 ns, S2 < 0.005 for the hydrophobic modules and less 

than 0.02 for the cross-link module. It does not provide additional information about the 

flexibility of the molecule rather affects the order parameter of the slow internal motions, 

Ss2. The order parameter for the slow and fast internal motions were extracted at constant 

tM, Figure 3.9. At these S2 for the hydrophobic and cross-link module, Ss2, are rather 
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small compared to Sf2 therefore, the order parameter for motions slower than ~0.80 ns are 

very small and that these motions are not spatially restricted. When tM is set to 19 ns, 

average calculated overall correlation time from the ELS fitting for all residues, fitting 

parameters are unchanged.   

 

Figure 3.8 Fit parameters obtained for sum of Lorentzian model with k = 3 (red circles) 
and extended Lipari-Szabo with Gaussian distribution (blue squares). 
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Figure 3.9 ELS parameters at tM equal to 4 ns (yellow), 19 ns (red), 40 ns (blue) and tM 
with Gaussian distribution (black). In top left are the Ss2 and Sf2 values given that S2 = Ss2 
Sf2. 

Lastly, a Gaussian distribution of the overall correlation times is applied. As 

previously established, minielastin is intrinsically disordered and thus, samples a range of 

hydrodynamic radii. The Gaussian distribution was applied to the hydrodynamic radii 

with a full width at half height (FWHH) of  10 Å that was found for other intrinsically 

disordered proteins of similar molecular weight.147-148 The distribution was centered at a 

tM of ~40 ns  calculated from the Stokes-Einstein relation using the hydrodynamic radius 

for  24x¢, 34 Å.30 This distribution has tM values greater than 15 ns. Fits of this ELS 

approach with a Gaussian distribution resulted in 0 < S2 < 0.04, and values Sf2, tf and ts 
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essentially unchanged compared to fit parameters when tM is constrained to 19 and 40 ns. 

With tM values at least one order of magnitude slower than ts, Ss2, Sf2 and corresponding 

internal correlation times are constant.  

The order parameters with tM >> ts  are consistent with the values obtained from 

the backbone carbonyl of mature elastin with S < 0.1.117 This shows that the amplitudes 

of motions are conserved from minielastin to mature elastin. With the order parameters 

conserved, it is expected that the timescale of motions of elastin dynamics are elevated 

brought about by intensive cross-linking. It is important to note that the degree of 

disorder presented here is necessary in the recoil mechanism of elastin and that 

coacervation of monomers do not increase the backbone ordering. Reichheld and 

coworkers demonstrated using 15N-1H HSQC of a similar minielastin construct that 

chemical shifts are retained with line broadening due to coalescence of monomers. 38  

Various models were explored to describe the backbone dynamics of minielastin 

molecules in solution. The sum of Lorentzian models and Lipari-Szabo model-free 

approaches were used in parallel with reduced spectral density mapping. Figure 3.10 

shows that fitting parameters obtained from the Lorentzian with k = 3 can describe the 

spectral density map from hydrophobic and cross-link residues without the assumption 

associated with LS. Three terms were found necessary to fit the spectral density because 

of the slightly positive NOE values. c2 min and corresponding RMSD values (see 

Appendix II-B) were calculated to show the accuracy of the fitting parameters. Most 

residues resulted to values within the critical limit for both k = 3 and GELS approaches. 

For residue with best fit parameters that are statistically rejected such as A (6,x¢), 

possibility that the model used was incorrect can be excluded given the good agreement 
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between the RSDM and the calculated spectral density from the best fit parameters, 

Figure 3.10. It is possible that the errors were underestimated that resulted to high c2

value. 

Figure 3.10 (a) Spectral density function of A (1,24) and A (6,x¢) calculated from 
experimental relaxation data using method 3 in red and black circles, respectively. 
Spectral density function with fit parameters calculated using eq. 3.6 are shown in solid 
lines. (b) The contributions of each timescale; (××××××) slowest, (- × - × -) intermediate, and (- 
- - -) fast timescale, to the spectral density of A (1,24) in red and A (6,x¢) black solid 
lines. 

Three different approaches have shown that the minielastin 24x¢ in solution is highly 

flexible with S2 < 0.04 when tM >> tS >> tf . Small contribution from the slowest 

correlation time is important to obtain the best fit dynamical parameters. The hypothesis 

is that the high flexibility of minielastin monomer that is conserved in the coacervate and 

the cross-linked mature elastin is important in the protein function of elastin. It is 

important to note that some intrinsically disordered proteins are known to form secondary 

structures upon binding or oligomerization whereas minielastin remains disordered.
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 MINIELASTIN FORMS AN INSOLUBLE CROSS-LINKED 

PRODUCT WITH GENIPIN 

4.1 Introduction 

Elastin, an extracellular matrix protein, is a vital component of elastic fibers and a 

natural polymer responsible for elastic properties of tissues. Mature elastin is composed 

of a network of cross-linked tropoelastin molecules that provides resilience from 

proteolytic degradation and, thus, long lifetime. The organization and amount of elastin 

in the elastic fiber varies depending on the directionality of deformation and the extent of 

elasticity needed for tissue function.149  

Tropoelastin monomers are transported by a 67 kDa elastin binding proteins 

(EBP) to the outside of the cell. EBP prevents proteolysis and premature coacervation of 

tropoelastin extracellularly.150 EBP dissociates with tropoelastin and is recycled in the 

process. Tropoelastin undergoes coacervation followed by cross-linking facilitated by 

lysyl oxidase (LOX) that converts primary amines of lysyl sidechains into an aldehyde 

groups.78 Elastin cross-links are found to be bi–, tri– and tetra functional, connecting two, 

three and four lysine sidechains, respectively. Bifunctional cross-links form allysine aldol 

and lysinonorleucine whereas trifunctional cross-links form merodesmosine. Finally, the 

tetrafunctional cross-link desmosine is found to be prevalent in mature elastin.151-152 

Protein aggregates are deposited to microfibril scaffolds where further cross-linking and 
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maturation occurs. In mature elastin, > 80% of lysines are cross-linked.153 Schmelzer and 

coworkers have recently shown that elastin undergoes heterogeneous cross-linking 

contrary to the specific cross-links that were proposed by Baldock and coworkers.114-115,

154-155

4.1.1 Cross-linking 

An important characteristic of tropoelastin and minielastins is the ability to form 

insoluble cross-linked products. Cross-linking is the formation of interchain covalent 

bonds that stabilize the polymeric network structure.15 Several cross-linking methods 

have been  applied to tropoelastin and elastin-like proteins (ELP) to synthesize elastic 

biomaterials. For example, Urry and coworkers used g-irradiation by cobalt 6020 to cross-

link ELPs, whereas Zhang and coworkers flanked ELPs with cysteine residues and 

induced disulfide bonds cross-linking by UV light.156 Constructs similar to minielastins 

were cross-linked by Vieth and coworkers using genipin and pyrroloquinoline quinone 

(PQQ). PQQ catalyzes the oxidative deamination of primary amines, a cross-linking 

mechanism similar to LOX, Figure 4.1. The structure of PQQ resembles the active site of 

LOX with lysyl tyrosylquinone (LTQ) cofactor, Figure 4.2. The advantage of using PQQ 

as a cross-linker is the production of the tetrafunctional cross-link, desmosine. Moreover,  

Figure 4.1 Lysyl oxidase catalyzes the oxidative deamination of lysine side chain and 
yields allysine, hydrogen peroxide and ammonia.155 

N
H

O

HN

H3N

lysine

 H2O, O2

Lysyl Oxidase
Cu2+

N
H

O

HN

O

allysine

 H2O2, NH3



100 

Figure 4.2 Several cross-linkers used for tropoelastin and ELP cross-linking. 
Bis(sulfosuccinimidyl)suberate157 is a bifunctional cross-linker whereas genipin,15 lysyl 
oxidase158 and PQQ15, 159 yields bi-, tri- and tetrafunctional cross-links.  

Vieth and coworkers showed that the biopolymers made using genipin produced a cross-

linked material with greater tensile strength than materials cross-linked with PQQ.15 

4.1.2 Genipin 

Genipin has been widely used as a natural cross-linker for primary amines as a 

less cytotoxic alternative to synthetic cross-linkers such as glutaraldehyde.160 Genipin is 

derived from the hydrolysis of geniposide isolated from the fruits of Genipa americana 

and Gardenia jasminoides Ellis. 161 It has gained popularity as a food coloring agent 

since the reaction of genipin with primary amines produces a blue pigment. Moreover, 

cross-linking with chitosan, collagen and gelatin demonstrated the potential of genipin as  
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Figure 4.3 Reaction of genipin with primary amines yields a) yellow and b) brownish-red 
intermediates. Proposed cross-linked products based on the mechanisms of c) Butler and 
coworkers 162 and d-e) Touyama and coworkers.163-164  

a tissue fixation agent.165-168Several mechanisms162, 169-170  have been proposed and cross-

linked intermediates and products163-164 have been elucidated but the structure 

identification of the high molecular weight polymer that consists of ~ 40 – 44 monomer 

units163 have been elusive. Blue pigments were found to be soluble in water, ethanol and 

methanol and were formed in the presence of oxygen. 

In this study, genipin, a natural cross-linking reagent, was used to cross-link the 

minielastin construct, 24x¢. Genipin is nontoxic, biocompatible and is known to produce 

more cross-links than PQQ. Minielastin construct, 24x¢, like tropoelastin, forms an 

insoluble, cross-linked product when genipin is the cross-linking reagent. Since genipin 
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undergoes polymerization, Figure 4.3d and e, the length between cross-link modules 

varies, unlike cross-linking with LOX or PQQ where cross-linked modules are separated 

by the length of two lysyl sidechain.  

4.2 Materials and Methods 

Lyophilized minielastin (2 mg), 24x¢, was dissolved in 0.15 M sodium borate 

buffer pH 8.0 at 4 °C overnight. In a 3 mm tube, 16 µL of 5 M NaCl solution was added 

to 74 µL of a minielastin solution to induce coacervation. 10 µL of 100 mM genipin 

solution, prepared by dissolving 2.27 mg genipin in 100 µL ethanol, was added to the 

solution. The sample was inserted in a prewarmed centrifuge for 7 minutes at 6,000 rpm 

(2060 ´ g, 37 °C) and left to incubate at 37 °C overnight. This cross-linking protocol was 

based on the optimized method for ELPs published by Muiznieks.171To show that genipin 

does not form insoluble products from reaction with primary amines and polymerization 

alone, 12 mg BOC-glycine, glycine and lysine were dissolved in 20 µL 5M NaCl, 20 µL 

genipin and 160 µL buffer (pH 6 phosphate buffer or pH 8 borate buffer). Two buffer 

solutions were utilized to investigate the effect of pH on the cross-linking of amino acids. 

Note that Tris-based buffers cannot be used since they contain a primary amino group. 
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4.3 Results and Discussion 

Cross-linking is an important feature of the elastic fiber facilitated in vivo by the 

enzyme, lysyl oxidase. Extensive cross-linking of tropoelastin provides elastin the 

structural integrity and resistance to proteolytic cleavage. Several designed ELPs have 

been used to synthesize insoluble elastic material with various cross-linking methods. 

ELPs containing only the hydrophobic modules were cross-linked via radical 

polymerization or by addition of cross-linking residues i.e., amine- or sulfide-containing 

residues. Tropoelastin and minielastins, on the other hand, contain cross-linking modules 

characterized by the A4/5KA2/3K moiety. Bellingham and coworkers showed that 

minielastins with at least three hydrophobic modules and two cross-link modules can 

produce an elastic insoluble material.14 Genipin, a natural cross-linker that reacts with 

primary amines,was used to synthesize insoluble cross-linked 24x¢, a construct with three 

crosslink modules flanked by four hydrophobic modules. 

To confirm that genipin specifically reacts to primary amines, preliminary tests 

with BOC-glycine, glycine and lysine amino acids reacted with genipin were performed. 

In Figure 4.4, initial reaction of primary amines, glycine and lysine, with genipin were 

observed to yield a soluble yellow product, that after an hour, forms a brownish - red 

solution. Touyama and coworkers characterized the yellow and brownish-red 

intermediates, Figure 4.4 (10 min and 1 hr), as the dihydropyridine compounds shown in 

Figure 4.3a and b.163-164 After 22 hours, the indigo blue oxidation products of genipin 

described by Touyama are observed. Note that even with genipin polymerization, the 

blue products were observed to be soluble in the buffer solution. The protected glycine 

(BOC-glycine) has no visible reaction with genipin as no yellow compounds were  
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Figure 4.4 Reaction progression of genipin with BOC-glycine, glycine and lysine amino 
acids in pH 6 phosphate buffer and in pH 8 borate buffer. The formation of colored 
intermediates and the final water-soluble blue pigment. 
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observed. Different buffer solutions revealed that the reaction was much slower in pH 6 

phosphate buffer than at pH 8 borate buffer, Figure 4.4. Mi and coworkers showed that 

pH affects the extent of cross-linking of chitosan with genipin. They observed that the 

extent of cross-linking was highest at pH 7.4 (~ 96%) whereas 1% cross-linking was 

observed at pH 13.169 Genipin cross-linking with macromolecules such as collagen,166 

silk-fibroin,172 chitosan173 and minielastin15 show that the stiffness and swelling 

properties of the cross-linked materials were found to be dependent on the extent of 

cross-linking and modulated by pH.169  

The cross-linking of minielastin 24x¢ was done using the protocol published by 

Muiznieks.171 Recall that, prior to cross-linking, the liquid-liquid phase transition of 

tropoelastin must occur. Therefore, it is essential to induce coacervation which is done by 

increasing the salt concentration. Coacervation is depicted by the onset of turbidity as  

Figure 4.5 Progression of the cross-linking process. (a) following addition of NaCl, the 
solution turns turbid, (b - c) following addition of genipin and centrifugation, the 
coacervate appears at the bottom of the 3mm diameter tube as a reddish band, (d) after 6 
hours the solution turned blue. (e) The insoluble, cross-linked 24x¢ removed from the 
tube f) with length ~3mm. 

45 hrs6 hrs2 hrsAfter
coacervation 1 hr

a b c d e f
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shown in Figure 4.5. The denser particles i.e., the coacervates, were separated by 

centrifugation. The reaction progress can be observed with the formation of reddish color 

at the bottom of the tube. After 6 hours, the emergence of the blue pigment originating 

from the top of the tube was observed with the amino acid solutions, Figure 4.4. The blue 

pigment is the oxidation product from genipin cross-linking.164  

An insoluble, cross-linked product of 24x¢ was successfully synthesized. Like 

tropoelastin174 and shorter minielastins with longer cross-link modules that have been 

previously studied,15 24x¢ also produces an insoluble cross-linked product. Future work in 

this project involves the measurement of its mechanical properties such as the Young’s 

modulus and the swelling ratio of the cross-linked product. Moreover, the goal is to study 

the changes in protein dynamics that occur when the cross-linked material is formed and 

to relate the protein’s sequence and length to its mechanical properties. 
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CONCLUSION 

In this work, NMR spectroscopy was used to investigate the structure and 

dynamics of designed elastin mimetics, minielastins. Full chemical shift assignments of 

four minielastin constructs were reported. The hydrophobic module 20¢ and 24¢ of 

minielastins were shown to be highly disordered using secondary shift analysis of 

different nuclei. The secondary shift analysis as well as NOE intensities have shown 

trends not consistent with presence of secondary structures.  Moreover, the secondary 

shift analysis for the cross-link module shows a-helical propensity that is also supported 

by NOEs.  

High polymer disorder is necessary for protein function. Unlike typical IDPs that 

are abundant in charged residues and depleted with hydrophobic residues, elastin and 

elastin-like proteins are rich in PG residues. Using PFG NMR, minielastins were shown 

to be more compact than typical IDPs but less compact than folded proteins. The effect of 

temperature and pressure on the hydrodynamic radii of minielastins were also 

investigated and found that increase in pressure and temperature decreases the 

hydrodynamic radii, however, the conformational or population changes were not 

explored. The effect of the hydrophobic repeats, VPGVGG and APGVGV, to 

coacervation temperature with each repeat was shown to decrease Tc by 1.7 and 1.5 °C, 

respectively. 
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In Chapter 3, the timescales and amplitudes of motions were determined using 

spin relaxation measurements and spectral density modeling. The observed difference in 

secondary shifts between the hydrophobic and cross-link modules from chapter 1 was 

reflected on the spin relaxation analysis with the cross-link region having longer 

intermediate correlation times.  The conservation of high degree of disorder from the 

soluble monomer to the cross-linked material was hypothesized. The order parameter, S2, 

was found to be less than 0.2 for all residues indicating a high degree of backbone 

disorder. This is consistent with the previously reported value of S < 0.1 for the mature 

bovine ligamentum nuchae using solid state NMR.117 The dynamics of other minielastin 

construct is on the works and this will allow us to further understand the difference in 

flexibility of 20¢ and 24¢ as well as the dynamical changes associated with protein length. 

The study on the mechanical properties in relation to minielastin length and 

sequence has yet be explored. Double-labelled (15N, 13C) cross-linked minielastin 

materials can be used to investigate the conformational changes or lack thereof, 

associated with stretch and recoil. It has been previously shown that the change in water 

ordering is negative upon recoil suggesting that the entropy of water plays a major role in 

elastic recoil. Furthermore, changes in backbone dynamics between the monomer and the 

cross-linked products can be directly compared.  

This work takes a step closer to understanding the entropic mechanism of elastic 

recoil. The conserved disorder from the monomer to the cross-linked material implies 

that disorder is necessary for elastin function. Furthermore, understanding the 

relationship between protein sequence and length to elastic properties will help develop 

function-specific, elastin -based biomaterials.    
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APPENDICES 

Appendix I. Chemical shift assignment of minielastin constructs 

Appendix I-A. Chemical shift assignment of doubly labeled 24x¢. 

Residue  N HN Ha Hb Hg Ca Cb Cg CO 

A 129.4 8.42 4.57 1.33 - 50.4 18.3 - 175.3 

P 135.2 - 4.38 2.26 2.02/1.91 63.1 32.0 27.4 177.6 

G 109.1 8.43 3.92 - - 45.2 - 174.1 

V 119.2 7.96 4.11 2.08 0.905 62.4 32.6 21.1 176.7 

G 112.6 8.52 3.92 - - 45.2 - 173.7 

V 119.1 7.92 4.10 2.00 0.868 61.7 32.9 20.3 175.5 

D 123.8 8.41 4.58 2.73/2.63 - 54.1 41.0 - 176.5 

A 125.9 8.39 4.14 1.40 - 54.0 18.9 - 178.9 

A 121.8 8.25 4.19 1.40 - 53.7 18.5 - 179.0 

A 122.2 7.97 4.20 1.40 - 53.7 18.6 - 179.2 

A 121.9 8.11 4.15 1.40 - 53.6 18.3 - 178.8 

A 121.6 7.95 4.21 1.35 - 53.4 18.4 - 178.8 

K 119.1 7.92 4.17 1.80 1.49/1.40 57.1 32.7 25.0 177.0 

A 123.0 7.93 4.22 1.39 - 52.8 18.9 - 177.8 

A 122.1 7.96 4.20 1.40 - 52.8 18.6 - 177.7 

K 119.2 7.96 4.17 1.66 1.32/1.24 56.4 32.8 24.7 176.1 

F 120.3 8.05 4.60 3.11/2.96 - 57.1 39.7 - 174.8 
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Appendix I-B. Chemical shift assignment of 15N-labeled 20x¢. 

Residue N HN Ha Hb Hg Ca Cb Cg 

V (1,20¢) 121.3 8.04 4.41 2.07 0.91 59.8 32.7 21.1 

P (2,20¢) 139.7 - 4.37 2.27/1.92 1.93/1.92 63.2 32.1 27.4 

G (3,20¢) 109.3 8.39 3.93 - - 45.2 - - 

V (4,20¢) 119.4 8.03 4.15 2.08 0.91 62.4 32.7 21.1 

G (5,20¢) 112.8 8.60 3.95 - - 45.2 - - 

G (6,20¢) 108.5 8.25 3.93 - - 45.2 - - 

D (1,x1) 120.8 8.33 4.59 2.67 - 54.3 41.1 - 

A (2,x1) 125.4 8.41 4.18 1.41 - 53.7 19.0 - 

A (3,x1) 122.1 8.19 4.20 1.41 - 52.8 18.6 - 

A (4,x1) 122.3 8.00 4.22 1.40 - 52.8 18.6 - 

A (5,x1) 122.0 8.07 4.19 1.41 - 53.5 18.6 - 

A (6,x1) 121.9 7.98 4.21 1.43 - 52.8 18.6 - 

K (7,x) 119.1 7.90 4.16 1.82 1.43 57.1 32.9 25.0 

A (8,x1) 123.3 7.97 4.20 4.40 - 53.5 19.0 - 

A (9,x1) 122.3 8.00 4.22 1.40 - 52.8 18.7 - 

K (10,x) 119.4 7.96 4.16 1.67 1.36 56.4 33.0 24.6 

F (11,x) 120.4 8.06 4.63 3.12/2.98 - 57.3 39.8 - 

A (1,24¢) 129.5 8.42 4.59 1.35 - 50.4 18.2 - 

P (2,24¢) 135.2 - 4.40 2.27/1.94 2.02/1.99 63.2 32.1 27.5 
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G( 3,24¢) 109.2 8.43 3.93 - - 45.2 - - 

V (4,24¢) 119.4 7.96 4.13 2.10 0.92 62.4 32.7 21.1 

G (5,24¢) 112.7 8.52 3.94 - - 45.2 - - 

V (6,24¢)  119.2 7.92 4.11 2.03 0.89 62.5 33.0 20.6 

D (1,x2) 123.9 8.42 4.60 2.74/2.66 - 54.3 41.1 - 

A (2,x2) 126.0 8.39 4.16 1.41 - 53.7 19.0 - 

A (3,x2) 121.9 8.26 4.20 1.43 - 52.8 18.6 - 

A (4,x2) 122.3 7.97 4.22 1.43 - 52.8 18.6 - 

A (5,x2) 122.0 8.12 4.17 1.41 - 53.7 18.6 - 

A (6,x2) 121.7 7.96 4.20 1.42 - 52.8 18.6 - 

K (7,x) 119.1 7.90 4.16 1.82 1.43 57.1 32.9 25.0 

A (8,x2) 123.1 7.94 4.19 1.40 - 53.5 19.0 - 

A (9,x2) 122.3 7.97 4.22 1.43 - 52.8 18.7 - 

K (10,x) 119.4 7.96 4.16 1.67 1.36 56.4 33.0 24.6 

F (11,x) 120.4 8.06 4.63 3.12/2.98 - 57.3 39.8 - 
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Appendix I-C. Chemical shift assignment of 13C and 15N-labeled 202424. 

Residue  N HN Ha Hb Hg Ca Cb Cg CO 

V(1,20) 121.2 8.04 4.40 2.05 0.91 59.9 32.6 20.9 174.6 

P(2,20) 139.6 - 4.33 2.25/1.90 2.03/2.26 63.6 32.1 27.4 177.4 

G(3,20) 109.2 8.40 3.93 - - 45.2 - - 174.2 

V(4,20) 119.3 8.03 4.15 2.08 0.91 62.4 32.7 20.9 176.8 

G(5,20) 112.7 8.60 3.94 - - 45.2 - - 174.5 

G(6,20) 108.4 8.25 3.93 - - 45.1 - - 173.7 

          
E(1,X1) 121.4 8.60 4.19 1.99 2.28 57.8 29.7 36.3 177.4 

A(2,X1) 124.3 8.44 4.21 1.40 - 53.6 18.8 - 179.1 

Q(3,X1) 119.3 8.28 4.21 2.04 2.39 57.2 28.8 34.0 177.1 

A(4,X1) 124.2 8.21 4.20 1.41 - 53.8 18.7 - 179.0 

A(5,X1) 122.5 8.19 4.19 1.41 - 53.8 18.5 - 179.1 

A(6,X) 122.0 8.06 4.19 1.43 - 53.8 18.6 - 179.2 

A(7,X) 122.2 8.10 4.22 1.42 - 53.7 18.7 - 179.0 

A(8,X) 121.9 8.00 4.20 1.42 - 53.6 18.7 - 179.0 

K(9,X) 119.3 7.92 4.16 1.84 1.48/1.41 57.4 32.7 24.9 177.1 

A(10,X) 122.9 7.96 4.18 1.40 - 53.0 18.5 - 178.1 

A(11,X) 122.0 7.98 4.20 1.36 - 53.0 18.6 - 178.0 

K(12,X) 119.3 7.92 4.16 1.64 1.26/1.14 56.7 32.8 24.7 176.5 

Y(13,Y) 119.5 8.04 4.58 3.12 / 2.90 - 57.8 38.8 - 176.4 

G(14,X) 110.1 8.21 3.92 - - 45.3 - - 174.0 
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V(15,X) 119.0 8.03 4.14 2.11 0.93 62.3 32.8 20.9 176.8 

G(16,X) 112.4 8.56 3.98 - - 45.1 - - 174.0 

T(17,X) 115.3 7.99 4.60 4.21 1.23 60.1 69.9 21.6 173.3 

P(18,X) 138.8 - 4.36 2.25/1.90 2.03/2.26 63.8 32.0 27.4 177.5 

A(19,X) 123.4 8.34 4.20 1.36 - 53.3 18.5 - 178.5 

A(20,X) 122.8 8.19 4.20 1.41 - 53.3 18.5 - 178.6 

A(21,X) 122.5 8.12 4.22 1.40 - 53.2 18.8 - 178.7 

A(22,X) 122.6 8.15 4.21 1.40 - 53.1 18.6 - 178.6 

A(23,X) 122.6 8.07 4.22 1.40 - 53.0 18.6 - 178.8 

K(24,X) 120.1 8.09 4.22 1.80 1.46 57.2 32.7 24.9 177.3 

A(25,X) 123.9 8.11 4.20 1.40 - 53.2 18.5 - 178.4 

A(26,X) 122.6 8.15 4.21 1.40 - 53.1 18.6 - 178.3 

A(27,X) 122.6 8.07 4.22 1.40 - 53.0 18.6 - 178.3 

K(28,X) 120.1 8.10 4.22 1.80 1.46 56.8 32.8 24.9 176.8 

A(29,X) 124.1 8.13 4.22 1.39 - 52.8 19.1 - 177.8 

A(30,X) 122.5 8.12 4.22 1.40 - 53.2 18.8 - 177.7 

Q(31,X) 118.8 8.10 4.13 2.19 1.90 55.9 29.5 33.8 175.7 

F(32,X) 120.6 8.20 4.60 3.17 / 2.99 - 57.9 39.5 - 176.1 

G(33,X) 110.6 8.24 3.85 - - 45.0 - - 173.2 

A(1,24) 129.4 8.42 4.58 1.34 - 50.4 18.2 - 175.4 

P(2,24) 135.1 - 4.38 2.25/1.90 2.03/2.26 63.4 32.1 27.4 177.6 

G(3,24) 109.1 8.43 3.92 - - 45.2 - - 174.1 
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V(4,24) 119.3 7.96 4.12 2.08 0.91 62.5 32.6 20.9 176.7 

G(5,24) 112.6 8.52 3.93 - - 45.2 - - 173.7 

V(6,24) 119.1 7.92 4.10 2.02 0.87 61.8 33.0 20.4 175.5 

E(1,X2) 123.6 8.67 4.19 2.28 2.01 57.8 29.5 36.3 177.5 

A(2,X2) 124.5 8.29 4.21 1.41 - 53.6 18.7 - 179.2 

Q(3,X2) 119.3 8.31 4.21 2.39 2.07 57.3 28.8 34.0 177.3 

A(4,X2) 124.2 8.24 4.20 1.42 - 53.8 18.5 - 179.2 

A(5,X2) 122.5 8.17 4.21 1.42 - 53.8 18.5 - 179.1 
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