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ABSTRACT 

A GIS-BASED METHOD FOR ARCHIVAL AND VISUALIZATION OF 

MICROSTRUCTURAL DATA FROM DRILL CORE SAMPLES 

Elliott Holmes 

August 5, 2020 

 

     Core samples obtained from scientific drilling could provide large volumes of direct 

microstructural and compositional data, but generating results via the traditional 

treatment of such data is often time-consuming and inefficient.  Unifying microstructural 

data within a spatially referenced Geographic Information System (GIS) environment 

provides an opportunity to readily locate, visualize, correlate, and explore the available 

microstructural data.  Using 26 core billet samples from the San Andreas Fault 

Observatory at Depth (SAFOD), this study developed procedures for: 1.  A GIS-based 

approach for spatially referenced visualization and storage of microstructural data from 

drill core billet samples; and 2.  Producing 3D models of sample billets and thin section 

positions within each billet, which serve as a digital record after irreversible material loss 

and fragmentation of physical billets.  This approach permits spatial registration of 2D 

thin section ‘base maps’ within the core sample billets, where each billet is represented 

by 3D solid surface (produced via SFM photogrammetry) and internal structure models 

(acquired with micro-CT scans) created prior to sectioning.  The spatial positions of the 

base maps were established within locally defined coordinate systems in each core 

billet’s solid surface model.  The GIS database structure provided interactive linkage to 
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the results of various analyses performed throughout the map at a wide range of scales 

(e.g. SEM and CL images as well as text and numerical data) within each thin section.  

The viability of the proposed framework was demonstrated via display of integrated 

microstructural data, creation of vector point information associated with features of 

interest in CL imagery, and development of a model for extraction and unsupervised 

classification of a multi-generation calcite vein network from the CL imagery.  The 

results indicate that a GIS can facilitate the spatial treatment of 2D and 3D data even at 

centimeter to nanometer scales, building upon existing work which is predominantly 

limited to the 2D space of single thin sections.  Conversely, the research effort also 

revealed several challenges, particularly involving intensive 3D representations and 

complex matrix transformations required to create geographically translated forms of the 

within-billet coordinate systems, which are suggested for consideration in future studies.
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INTRODUCTION 

     In recent decades, scientific drilling activities aimed at solid earth research such as 

tectonic deformation, heat flow, and earthquakes have been on the increase.  By 

examining geophysical logs recorded during drilling and cored rock exhumed from the 

boreholes thereafter, the scientific community has gained new insight on Earth’s 

subsurface processes and structures.  Active fault zone drilling has informed critical 

advancements in our understanding of fault system dynamics and composition, and how 

those factors then coalesce to influence seismic hazards experienced by humans at the 

surface. Geophysical instrumentation and core samples thus provide a crucial, “deep” 

perspective on fault systems that is not otherwise attainable solely through surface 

observations or historical analysis of seismic events (Hofmann et al. 2019; Ma et al. 

2006). 

     Structural geologists often utilize traditional analytical techniques such as X-ray 

diffraction (XRD), cathodoluminescence (CL or SEM-CL), electron backscatter 

diffraction (EBSD), and optical and electron microscope imaging to gather data from drill 

cores (Willard and McWilliams 1969).  Although these established techniques generate 

large volumes of reliable measurements, deriving results via the traditional, piecemeal 

treatment of the data is often a time-consuming and inefficient process.  Without a 

method for integrating various 2D and 3D products the ability to see and quantify spatial 

relationships between sample drill core billets, including the multi-modal and -scalar data 

from petrographic thin sections within them, is potentially limited (Tickoff et al. 2018).
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     Unifying core-based data in a Geographic Information System (GIS) allows 

researchers to locate, visualize, correlate, and explore microstructural characteristics in a 

streamlined interface.  While GIS software is mostly utilized in georeferenced-based 

analyses, it provides robust database management and analysis structures that facilitate 

spatially explicit treatment of data regardless of its type or scale (Rose 2012).  As such, in 

situ microstructural data collected at the nanometer-millimeter scale also fundamentally 

contain spatial information that can be efficiently archived and analyzed within a 

geospatial framework.  The time needed for spatial inspection and analyses of data 

collected via traditional analytical techniques can potentially be reduced as a result. 

Recognition of this fact has allowed structural geologists to maximize the potential of 

their data and address interdisciplinary questions that were previously challenging. 

     Building on previous innovative work in ‘micro-GIS’, the methods described here 

leverage GIS tools to integrate various multi-dimensional data layers, both numerical and 

visual, to produce accurately referenced results and digital models of sample billets 

extracted from drill cores.  Utilizing ESRI’s ArcGIS software suite (ESRI 2020), my 

study establishes micro-GIS procedures and tests the data management process with core 

samples from the San Andreas Fault Observatory at Depth (SAFOD).  Core samples were 

obtained through an NSF grant (#1800933), with the larger project objective studying 

microstructural deformation in 26 billets sampled from ~40 meters of core extracted 

during the SAFOD Phase III drilling.  

     The established imaging techniques of structure from motion (SFM) photogrammetry 

and computed tomography (CT) were first used to create 3D digital models of the still-

intact billets' solid surface and internal structure, establishing crucial arbitrary xyz 
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coordinate systems within each digital billet.  In addition, the models serve as a record of 

billet state prior to sectioning and physical degradation from analytical procedures.  The 

petrographic thin sections were subjected to optical light, SEM, and SEM-CL imaging 

following extraction from the sample billets.  Tabulated XRD data were obtained (post-

sectioning) from powdered billet fragments. 

     This thesis first includes a review of relevant threads within the diverse, multi-

disciplinary literature that characterizes the scope of the study.  Upon establishing a 

contextual background on traditional micro-analytical techniques and implementations of 

geospatial tools, the literature review shifts to emergent perspectives on the need for more 

integrative and spatialized geological research.  A brief overview of the SAFOD core 

lithology and the locations of sample billets used in the study is then provided, followed 

by an account of the various microstructural data collected from petrographic thin 

sections extracted from within the billets.  

     The reader should at this point note that, while geospatial software provide a robust 

suite of tools for database management and integration of 3D models and 2D thin section-

based data, ArcGIS was complemented with several other specialized programs designed 

for various initial data collection and pre-processing tasks.  Primary analytical procedures 

and their associated instrumentation and/or software are detailed in the text resuming. 

This includes the steps in image acquisition and processing for 3D model construction, 

spatial registration of 3D models with associated 2D thin section-based data, and micro-

scale database management under the GIS framework.  The results of a GIS-based 

demonstration, focused on image classification and mapping of the spatial distribution of 

microstructural characteristics obtained from cathodoluminescence (CL) image analysis, 
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are then provided in the final component. An overview of the study objectives can be 

seen in Figure 1. 

Figure 1.  Overview of the research effort including project data collection, GIS database 

management, spatial analyses, and results.
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Research Objectives 

1. Develop a GIS-based method for spatially referenced visualization and storage of

microstructural data from drill core billet samples; 

2. Produce 3D models of sample billets and thin section positions within each billet,

which serve as a digital record after irreversible material loss and fragmentation 

of the physical billets; 

3. Demonstrate viability of the micro-GIS framework via: a) geodatabase integration

and display of multi-modal 2D, 3D, and tabulated microstructural data; b) 

digitization of vector point information associated with features of interest in CL 

imagery; and c) creation of a semi-automated model for extraction, followed by 

unsupervised classification and segmentation, of a multi-generation calcite vein 

network from CL imagery. 

Research Questions 

1. How can a geospatial framework be leveraged to enhance efforts in archival,

analysis, and modelling of micro-scale spatial data collected via traditional 

analytical techniques in structural geology? 

2. Does a micro-GIS support effective procedures for spatial digitization of ancillary

vector data, image processing tasks such as feature extraction and classification, 

and quantitative assessment of CL image data and derived outputs? 
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LITERATURE REVIEW 

Scientific Drilling for Solid Earth Research 

     The data returned from borehole logs and direct analyses of cores extracted, in 

conjunction with computational and analytical advances, have contributed to a wealth of 

new knowledge of the physical and chemical processes that govern faulting and resulting 

seismic activity (Hofmann et al. 2019; Ma et al. 2006; Reches and Ito 2007; and Tobin et 

al. 2007).  Several successful drilling projects have been completed in the last 20 years, 

many of which are supported by the International Continental Scientific Drilling Program 

(ICDP).  The following list, though not exhaustive, identifies several projects that have 

been completed in recent decades: 

1. Following the deadly 1995 earthquake that struck the city of Kobe, a series of

boreholes were drilled into the Nojima Fault in Japan.  

2. The Taiwan Chelungpu-Fault Drilling Project (TCDP) saw two boreholes

completed in 2005, complementing the country’s dense array of seismic 

monitoring instrumentation.  

3. Korea completed drilling of two boreholes into the Yangsan fault between 2012

and 2016 at the Pohang Basin Enhanced Geothermal System (EGS) site.  

4. The ICDP has additionally supported notable projects - among many others - such

as the Deep Geodynamic Laboratory (DGLab) in Greece, the Multidisciplinary 

Observatory and Laboratory of Experiments (MOLE) drilling project in Italy, and
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the San Andreas Fault Observatory at Depth (SAFOD) in central California (ICDP 2020). 

Traditional Analyses in Structural Geology 

    Established analytical techniques such as optical and electron microscope imaging, X-

ray powder diffraction, electron backscatter diffraction, energy-dispersive X-rays, and 

cathodoluminescence have been utilized for decades to gather large volumes data from 

geological specimen.  In many applications, a combination of several approaches is 

adopted.  An account of the full array of data collection methods employed in solid earth 

research is not attainable within the scope of this thesis, but the following section does 

provide a review of key contextual information and approaches regarding the data types 

that were collected and integrated during the SAFOD project. 

Optical and Scanning Electron Microscopy (SEM) 

     Optical microscope imaging, also commonly referred to as light microscopy, is widely 

adopted for specimen imaging in a variety of scientific disciplines.  Optical microscopes 

operate by focusing a beam of light on or through and object, producing an enlarged 

image of the specimen via a series of convex lenses.  The images can be directly viewed 

through the microscope, but research typically requires image capture via a digital CCD 

camera or other more specialized sensors.  Optical microscopy offers a high degree of 

flexibility for different applications; the illumination source, color filters, light 

polarization, and lens magnification can be manipulated to suit various investigative 

requirements (Murphy 2002). 
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     Scanning electron microscopy (SEM) is another highly adaptable imaging technique 

that has seen widespread use across the physical sciences. By scanning the surface of a 

specimen with a focused electron beam, SEMs produced a gridded raster image that often 

achieve sub-nanometer spatial resolutions.  Similar to optical light microscopes, the 

electrons can be transmitted through the sample or reflected from its surface.  Depending 

on the type of material, emission, and detector used, atoms emit various signals that can 

be measured and subjected to quantitative analyses (Lin and Cerato 2014; Reed 2005; 

Smith and Oatley 1955). 

   SEM and optical microscopy are also firmly established in the realm of earth systems 

science, structural geology, and geomorphology (Davidson and Lofgren 1991; Trimby 

and Prior 1999).  Common geological applications of these technique include studies of 

micro-structural deformation, temporal evolution of physio-chemical conditions, and 

mineralogical composition of material contained withing petrographic thin sections 

(Hadizadeh et al.  2012; Hadizadeh and Boyle 2018; Holdsworth et al. 2011; Janssen et 

al. 2011; Solum et al. 2006; Willard and McWilliams 1969; Zoback, Hickman, and 

Ellsworth 2011). 

Cathodoluminescence (CL) Microscopy 

     Luminescence, a form of cold-body radiation, is the spontaneous emission of light 

from a substance not produced by heat. When bombarded with a high-voltage electron 

beam, luminescent minerals emit light at various wavelengths depending on their 

composition.  CL detectors attached to scanning electron microscopes (SEM), field 
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emission microscopes (FEM), and electron microprobes (EPMA) can accurately measure 

these emissions and generate high-resolution imagery (Gotze 2002).  

     CL is commonly applied in solid earth science for investigations of growth and 

dissolution features in ore minerals, growth structures in fossils, cementation and 

diagenesis processes in sedimentary rocks, and the chemical and mechanical conditions 

of mineralized systems as they evolve through time (Habermann 2002).  The latter is the 

focus of the GIS-based demonstration discussed later, as the fault gouge at the SAFOD is 

characterized by a host of deformation microstructures including complex, multi-

generation networks of calcite and quartz veins.  Calcite veins are the cemented remnants 

of fluids introduced through repeated fracture-seal episodes within the host rock, each 

episode producing a new generation due to varying levels of trace impurities in the source 

fluid (Verheart et al.  2004).  With well-established spectral proxies, CL allows 

identification of vein generations and the relative time, depth, and fluid conditions in 

which they formed (Barnaby and Rimstidt 1989; Budd, Hammes, and Ward 2000; 

Cazenave, Chapoulie, and Villeneuve 2003; Fairchild 1983; Hadizadeh and Boyle 2018). 

X-Ray Diffraction (XRD) 

     X-ray powder diffraction, also known as ‘XRD’, is an analytical technique for 

measuring the atomic structure of crystalline materials. In this sense, a crystal can be 

considered as a homogeneous ensemble of molecules that correspond to a single mineral 

phase. At this scale, the molecular structure is often described as a crystal “lattice”.  

Based on atomic composition, molecular structure, and stress orientation, lattices diffract 

x-ray light in different but distinct ways.  Researchers working with poly-crystalline 
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substances must often reduce their sample to a fine powder to reduce noise from mixed-

lattice signals; this is the approach adopted in this research (Cullity 1956; Robinson and 

Tweet 1992; Whittig and Allardice 1986). 

     Once a small quantity of powdered sample is staged, the scanner simultaneously 

manipulates its x-ray emitter and detector to measure diffraction along a specified range 

of angles (~1 and 90 degrees) and number of scan iterations.   XRD analysis produces a 

tabulated dataset of the material’s monochromatic x-ray reflectance at each angle in the 

specified interval. Producing a histogram from these data reveals peaks and troughs in the 

sample’s spectral profile, which reveals information about crystal lattice composition and 

orientation and essentially provides a ‘fingerprint’ associated with the presence or lack of 

known material phases.  In structural geology, XRD is commonly applied in tandem with 

other techniques to characterize the minerology, structure, and stresses of materials at the 

atomic level (Hupp and Donovan 2018; Lee and Xu 2017; Tavakoli 2020; Zhou et al.  

2018). Spatially, the results of XRD are tied to the entire sample from which the powder 

was obtained. 

Computed X-Ray Tomography (CT) 

     CT scans are a non-destructive 3D imaging technique with a range of applications in 

core-based research, along with many other subfields in geology and bio-medicine.  Like 

XRD, CT data are derived from a sample’s reflectance of monochromatic x-ray 

emissions.  However, CT differs in that it generates 3D visualizations of the sample’s 

internal structure.  CT imaging involves a stepwise radial scanning process that measures 

the attenuation of x-ray signals throughout the object, generating a series of one or more 
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2D cross sections which are perpendicular to the axis of rotation.  By exploiting 

differences in the degree of signal attenuation, researchers gain spatial insight on the 

composition, density, and energy content of various materials (Coenen et al.  2004; Mees 

et al. 2003; Renter 1989; Sim et al. 2020; Wu and Hu 2019). 

Emergent Perspectives    

     A case-study in Ireland (Whitmeyer et al.  2010) states that geoscience students 

reported difficulty making real spatial associations while interpreting traditional 

geological maps and compartmentalized data sources.  Conversely, the authors found that 

incorporation of geospatial tools and visualization techniques enhanced efforts to display, 

analyze, and thus comprehend geological field data.  In recognition of the database 

management and visual representation challenges with which geology is confronted, 

some studies publications have urged the community to explore more integrated and 

spatialized techniques (Chan, Peters, and Tickoff 2016; Tickoff et al.  2019). 

Geographic Information Systems (GIS) 

     Geographic Information Systems (GIS) have traditionally been used to manage data 

that span scales of meters to kilometers, incorporating images captured via airborne 

sensors or point information collected with GPS-enabled devices.  Local- to global-scale 

studies across multiple disciplines including anthropogenic climate change, socio-

economic conditions, crime distribution, transportation networks, or ecological systems 

dynamics (Edward and Biddle 2017; Gaughan et al.  2013; Malczewski 2004; Zhang and 

Peterson 2007).  One unifying aspect of the majority sample is the relevance of spatial 
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context; the coordinate space that defines the study area is often inseparable from the 

generated results.  This holds true at the micro-scale as well, opening the door for 

structural geologists to utilize GIS database management structures and analytical tools to 

see and quantify spatial data in new ways.  

     Previous work demonstrates the efficacy of GIS for integration and analysis of 2D 

microscopic image data (Barraud 2006; Berrezueta et al.  2017; Haaland et al.  2017; 

Hassanpour 2012; Lezzerini et al.  2016; Ortolano 2018; Tarquini and Favalli 2010; 

Wohlmutter 2017; Yingkui, Onash, and Guo 2008), while others have offered methods 

for orientation of petrographic thin sections to real-world geographic coordinates (Chan 

et al.  2016; Tickoff et al.  2018; Walker et al.  2019).  The work of Linzmeier et al. 

(2018) is particularly informative, creating a framework for spatial registration of multi-

source microstructural data from within a single thin section in arbitrary, two-

dimensional space.  By using GIS software to integrate raster images from optical and 

electron microscopes, along with vector point data from secondary ion mass spectrometry 

(SIMS) and electron probe microanalysis (EPMA), the authors mapped the distribution of 

structural and chemical characteristics across various crystal grains (Linzmeier et al.  

2018).  Another study that my method expands upon is that of Basil Tikoff et al.  (2019). 

They propose a robust framework for defining the orientation of thin sections relative to 

sampled billets and the entire drill core, providing a tractable spatial registration method 

for both local and geographic coordinate systems. 
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Remote Sensing 

Structure from Motion (SFM) Photogrammetry 

     Structure from Motion (SFM) is a low-cost and automated 3D modelling approach 

that is based on the aggregation of multiple 2D images from varying perspectives of an 

object or terrain.  In many cases, standard digital camera images are of adequate quality 

for SFM reconstruction, though the approach requires careful determination of the 

appropriate image offset and overlap to ensure continuous coverage of the desired area.  

Shared pixels (‘tie points’) are first identified from overlapping image pairs via an 

iterative non-linear least-squares minimization process, enabling estimation of the camera 

perspectives.  The complete set of image tie points form a cloud of discrete point 

locations with associated color data, which ultimately inform the final model by serving 

as the vertices from which triangular faces are interpolated. The SFM output can then be 

considered as a multi-resolution ‘solid surface model’ consisting of a 3D object mesh 

bound by a photo-realistic image texture (Hartley and Zisserman 2004; Westoby et al. 

2012). 

     Many successful demonstrations of 3D reconstruction of air- and space-borne imagery 

have established the viability of this technique for a multitude of approaches in the realm 

‘traditional’ remote sensing (Lucieer, Jong, and Turner 2014; Wallace et al. 2016). 

However, micro-scale usage of the technique is not absent in the geoscience literature.  A 

2017 study of small-scale soil erosion concluded that lab-based SFM techniques 

produced reliable topographical data sets for accurate modeling of micro-scale surfaces 

and change detection, indicating that 3D billet modeling is a viable application of 

photogrammetric techniques (Balaguer-Puig et al. 2017). 
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Image Classification 

     One of the more common objectives in remote sensing is to extract meaningful 

information from raw spectral image data (Jensen 2015).  Remote sensing classification 

is a discrete approach to doing this, providing a method to categorize individual pixel 

values into information classes representative of the image surface (Cheng, Han, and Lu 

2017).  From a broad perspective, image classification can be distilled into two distinct 

families: supervised and unsupervised.  Supervised approaches require model training 

data and user intervention, but can often be the most robust method depending on the 

research question and model used (Maggiori et al.  2016; Maxwell, Warner, and Fang 

2018; Pal 2005).  On the other hand, unsupervised classification requires no user 

intervention and is typically performed via a pixel-wise statistical clustering based on 

spectral values alone (Mather 2004; Zhao and Qian 2004).  

     This portion of the literature review narrows its focus upon the Iterative Self-

Organizing Data Analysis Technique (ISODATA) unsupervised classification (Ball and 

Hall 1965), which was utilized in my study on a demonstrative and exploratory basis and 

not in refute of more advanced approaches that may be better suited for classification of 

microstructural image data.  ISODATA’s algorithm performs statistical clustering via an 

iterative cluster merging and splitting procedure.  Based on user-defined thresholds, 

clusters are split if their values surpass a given standard deviation or merged if their mean 

center distances fall within the specified range until the specified number of iterations is 

performed (Memarsadeghi et al. 2007). 

     The ISODATA output is a new raster image where each pixel is categorized into one 

of n-number of spectral clusters (if 10 clusters are specified at the outset, output pixel 
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values would contain whole numbers ranging from 1-10).  Because the algorithm 

operates via pixel-wise statistical grouping that doesn’t consider image context, the initial 

spectral clusters do not correspond directly to meaningful information classes (i.e. 

forested lands, water bodies, built-up environment, or in the case of this study, 

microscopic calcite structures).  As a result, multiple spectral clusters may actually 

correspond to a single information class; in other scenarios, single clusters are split 

among two or more information classes.  To obtain the final classified product, the 

spectral clusters are manually combined, split, and symbolized in accordance with the 

desired information classes using the researcher’s subject matter expertise. 

     This study implements ISODATA for classifying calcite vein generations within 

microscopic cathodoluminescence (CL) imagery.  Because each generation contains a 

unique profile of trace impurities from the source fluid, the spectral properties vary 

between calcite formed at different times and physio-chemical conditions (for additional 

information, see Cathodoluminescence Microscopy).  The unsupervised algorithm 

exploits the variation in the image data and assigns pixels into statistical clusters that 

share similar spectral characteristics.  The spectral clusters may then be merged into 

meaningful information classes (i.e. Calcite generation 1, 2,…n).  

     Calcite classification is useful in geological research because the vein generations 

serve as proxies for the relative age, depth, fluid source, and evolution of mineralized 

systems through time.  By deriving discrete features from the continuous CL image data, 

those proxies and any other desired information may be attributed to a single entity 

representing a given vein generation.  The classified calcite veins also provide an 
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opportunity for areal measurements, determining stress orientations, or other vector-

based spatial analyses. 
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DATA AND METHODS 

     The set of steps outlined below include in-depth descriptions of: 1) 3D modelling of 

the  SAFOD billet samples;  2) establishing local coordinate systems to facilitate spatial 

treatment of data in a micro-GIS;  3) the components of database creation and multi-

modal data integration;  and 4) the demonstration of CL image analysis, extracting 

features of interest, and performing a basic image classification using geospatial tools 

(Figure 2).
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Figure 2.  Workflow diagram of in situ data collection, processes, and resulting outputs 

under a GIS-based framework.  Starred items indicate procedures carried out 

by others.  CT scans were conducted by Huaiyu Zheng and derived outputs 

were produced by Aryan Ghazipour and Grace Embree.  X-ray diffraction raw 

data were collected personally, then composition plots were created by Jafar 

Hadizadeh. Electron microscopy was conducted by Alan Boyle. 
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The Core Samples 

     The method for spatialized archival of core-based data in a micro-GIS environment is 

applied with 26 billets from the San Andreas Fault Observatory at Depth (SAFOD), 

which were sampled from select areas in an approximately 40 m core length (Figure 3a).  

The SAFOD core consists of 3 segments - Hole E, Hole G (Runs 1-3), and Hole G (Runs 

4-6) – which are subdivided into runs, and further still into sections.  Sample 

nomenclature in this paper reflects these designations; for example, a billet extracted 

from Hole E, Run 1, Section 1 (Figure 3b) will be referred to as sample ‘E11’. 

Figure 3.  A) General lithological characteristics of SAFOD core sections with a legend 

for units (measured depth-MD-meters).  Black and white circles represent the 

distribution of sample billets.  B) Color photo of Hole E, Run 1, Section 1 

including red & black core orientation lines.  Core distance markers modified 

after Bradbury (2011).  Image of core section E11 from Earthscope (2007). 

3D Billet Models 

     Two types of 3D digital models were produced for each billet prior to physical 

sectioning: Solid surface models were derived from digital camera images, and internal 

structural models 
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were generated from micro-CT scan data. Both models serve a dual purpose: to define a 

local coordinate system within each billet and to retain visual or structural information of 

the billet’s intact state. The following portion of the paper reviews the procedures for 

obtaining these models and then preparing them for incorporation into the GIS database. 

Solid Surface Models 

     To retain an accurate visual representation of the billet, 3D solid surface models were 

generated for each billet prior to physical sectioning.  These models preserve the detailed 

surface morphology and spatial reference annotations, which are lost upon physical 

sectioning due to irreversible billet fragmentation and material loss.  Each physical billet 

was marked with a core- top arrow, a 2cm scale-bar, and proposed sectioning lines.  The 

core-top arrow is included so that the up-borehole direction is easily identifiable in the 

digital billet model, setting the initial stage for further calibration of billet position.  The 

core orientation lines then allow the rotational position of billets to be established with 

respect to the core axis.  The sectioning lines serve multiple purposes; they provide a 

visual indicator of where to cut the physical billet when preparing petrographic thin 

sections, but also indicate where to virtually cut the 3D billet model in order to carry out 

spatial archival of thin section-based data located within the billet.  Lastly, the 2cm scale 

bar is used to calibrate absolute map units in the processed billet models.  

     A Canon PowerShot G1X Mark II digital camera was used for billet imaging.  

Accurate image reconstruction required carefully controlled camera settings and lighting 

environment.  The camera was placed in aperture priority (AV) mode, which adjusts the 

shutter speed based on the selected aperture size.  In this case, a wide aperture setting of 
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F16 allowed the entire image frame to be in focus.  A low ISO setting of 200 reduced the 

shutter speed and maximized the signal-to-noise ratio.  In turn, the potential for distinct 

features (i.e. prominent grains and fractures) to exhibit spectral variability from one 

image to the next is minimized.  In combination with a stabilizing tripod, a 2-second 

image capture timer was applied to avoid blur from camera vibrations.  

     Consistent billet illumination was established with a light diffusion tent and four 

adjustable LED lights placed outside (Figure 4a).  The LEDs and camera tripod were then 

fixed in place to avoid movement throughout the imaging process.  Once the environment 

and camera parameters were established, images of each entire billet were captured with 

consistent overlap.  This step was performed by placing the billets on a rotating pedestal 

and capturing images at each of the 13.3-degree intervals marked around the perimeter of 

the pedestal.  The adjustable camera tripod was then used to repeat this process at 

consistent nadir, high, and low perspectives.  To minimize visual obstruction in low-

perspective images, billets were placed on a pronged sample mount (Figure 4b). 

Figure 4.  A) Desktop light-diffusing tent and rotating, pronged sample mount for billet 

photography. B) Example of low-perspective image from billet G56, 

including the core-top arrow and proposed sectioning lines. 

 The billet models were then reconstructed via SFM using Agisoft Metashape 

Professional (Agisoft 2018) photogrammetry software.  The software first generated a 
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cloud of image tie points and estimated camera positions (Figure 5a-b).  Visual 

diagnostics of the initial point cloud and confirmation that all images successfully aligned 

determined if the tie point data were sufficient for densification (Figure 5c).  The final 

solid surface models (Figure 5d) were obtained from the dense point clouds by generating 

a ‘mesh’, or 3D volume bound by triangular faces in an arbitrary local coordinate system.  

Agisoft’s ‘build texture’ function then determined how the color information from the 

input images should be mapped to the faces of the mesh. Completed models were 

exported as COLLADA (.dae) files, which are readily accepted into ArcGIS. 

Figure 5.  Procedure for processing 2D images to generate 3D billet models depicting: 

A) camera positions; B) initial tie points; C) dense tie points cloud; and D)

processed 3D billet model. 

Internal Structure Models 

     The internal structure models were derived from computerized X-ray tomography 

(CT-scan) image data consisting of a 3D stack of virtual slices throughout each billet 

(Figure 6b).  These models provided a digital record of internal structure after the 

physical billets were sectioned.  In addition, they offered insight on billet topology and 
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allowed identification of internal features for spatial registration of 2D thin section-based 

data within the local xyz coordinates of respective billet models.  The sectioning lines 

were made visible in the CT-scans by placing elastic bands along the sectioning lines 

(shown as black lines, Figure 6a). 

     The 3Dslicer software (Fedorov et al. 2012; Slicer 2018) allowed entire CT data sets 

to be viewed and analyzed as 3D models, but ArcGIS does not provide native support for 

giga-voxel features.  In compromise, virtual slices along the billets’ section planes were 

isolated within 3DSlicer and exported into ArcGIS as 2D raster images.  The extracted 

rasters were closely associated with the thin sections and so were treated under the same 

spatial procedures as imagery obtained directly from the thin sections, which are 

described later in the thesis (see Spatial Registration Procedures). 

Figure 6.  A) Example solid surface model with visible sample number, core-top arrow 

and orientation line, sectioning lines, and scale bar; and B) Internal structural 

model, displayed at 3 arbitrary cross-sections from coronal, radial, and sagittal 

perspective.  Both examples represent billet G31. 
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X-Ray Diffraction (XRD) Data 

     Once the petrographic thin sections were extracted and the fragmented billet 

remainders were returned, spectral profiles from XRD analysis were produced for each of 

the billets.  The first step in this process entailed manual powdering of the samples using 

a mortar and pestle, grinding the material until the powders were as fine and 

homogeneous as possible. Then, approximately 1 gram of powder from each sample was 

staged inside the instrument and scanned iteratively for x-ray reflectance counts at 

incident angles of 10-90 degrees.  The tabulated XRD data were exported and plotted as 

histograms, allowing the characterization of each billet’s composition based on peak 

signatures in the spectral profile which are known to correspond to specific mineral 

phases. 

Data from Petrographic Thin Sections 

     Microstructural studies of fault rocks use numerous analytical and imaging techniques 

to conduct research, many of which produce data that contain spatially dependent 

information.  Utilizing GIS to process these various data is beneficial because it allows 

them to be integrated with respect to their spatiality 1) within petrographic thin sections, 

2) within core billets, and 3) within the arbitrary coordinates of the drill site and borehole.

The following section details the collection and spatial integration of optical, SEM, and 

CL microstructural imagery and numerical data from the SAFOD thin section samples. 

The optical mosaics of each whole petrographic thin section serve as a base ‘map’ from 

which the other data may be appended (Figure 7). 
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Figure 7.  Traditional microstructural data sources including: A) optical thin section 

mosaic base map; B) CL image from a select region of the thin section; C) 

SEM images of another region at successively finer magnification; D) EBSD 

chemical map; and E) XRD spectra indicating mineral content of powdered 

billet material. 

Procedure for Generating Thin Section Base Maps 

     Optical mosaics in plain polarized light of each whole thin sections were generated to 

provide a detailed base map from which other microstructural data are spatially 

referenced and archived.  Once the microscope’s focus and lighting were established, 

each thin section was imaged in a gridded pattern with approximately 30% vertical and 

horizontal overlap between images.  Overlap was visually determined by using prominent 

features in the camera’s field of view as reference, so overlap deviated slightly 

throughout imaging.  Depending on the aerial extent of the material in the thin sections, 

30 - 80 images were required. 

     Prior to alignment, the images required enhancement to ensure distinct microstructures 

and seamless boundaries in the mosaic.  ImageJ (FIJI 2018) software enabled batch 

correction of each thin section’s whole image set using the ‘Normalize Local Contrast’ 

plugin (Saalfeld 2012).  This step significantly reduced the number of failed image 
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alignments and improved performance during the stitching procedure.  Microsoft Image 

Composite Editor (Microsoft 2015) automated this procedure by identifying common 

pixels between images and a single mosaic image of each thin section.  Adobe Photoshop 

(Adobe 2015) was used to crop and enhance the contrast of the mosaic images, resulting 

in the finalized base maps for import into the micro-GIS. 

Geodatabase Creation 

     ESRI’s ArcGIS v10.7.1 software (ESRI 2019) served as the primary environment for 

integration and visualization of microstructural, compositional, and surface feature data.  

Its database management architecture and geospatial tools facilitated the creation of two- 

and three-dimensional representations of digital billet models with respect to their 

positions in the SAFOD core, and also the position (or superposition) of the various 

layers of thin section data within the billets.  This portion of the thesis covers the steps 

taken to create the integrated geodatabase, which can be divided into two broad 

categories: 1) initial establishment of database structure including key administrative 

settings, import of project data in GIS-supported formats; and 3) defining relationships 

between the data via spatial referencing. 

Establishing Database Structure 

     To load and work with the various modes of data in the GIS as effectively as possible, 

a few considerations needed to be addressed at the outset of database construction.  First, 

a new file geodatabase was created to house the data, relational information, and custom 

geoprocessing toolkits required for the project.  Prior to importing any files, a custom 
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arbitrary coordinate system was created and defined as geodatabase’s spatial reference 

grid.  This was a crucial step to ensure that data were archived correctly within one 

shared digital space.  Additionally, attribute field domains and topological rules were 

established to enforce data integrity when importing, displaying, and editing features.  

Other miscellaneous geodatabase settings were adjusted to suit more specific needs of 

certain data but are not described in extraneous detail due the multitude of approaches 

that could be utilized in other micro-GIS endeavors. 

     At this point, the project imagery and other data were compiled into the geodatabase.  

This process was facilitated by initially creating an empty feature dataset corresponding 

to each of the data sources described throughout the paper, allowing them to be imported 

in batch and with respect to the defined workspace settings.  The 3D solid surface models 

were loaded into a single ‘multipatch’ feature dataset.  The ArcGIS-supported multipatch 

format reads the vertex, edge, face, and color data contained within the input COLLADA 

files and reconstructs an identical version of the model.  2D imagery from petrographic 

thin sections and sliced CT data were stored as raster datasets.  

      Depending on their nature and purpose, tabulated data were either imported into the 

geodatabase as stand-alone tables that could be graphically displayed or associated with 

other features via relationship classes, or joined to the attributes of existing map layers if 

they contained direct spatial information.  The XRD mineral composition plots, for 

example, were uploaded as stand-alone figures because their spatiality is tied to the whole 

extent of the corresponding billet, while the CL data table discussed later is tied directly 

to precise X,Y image coordinates and was joined to point features at those locations. 
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Spatial Registration Procedures 

     Using arbitrary local coordinate systems defined within individual samples, the digital 

billet models and corresponding thin section-based data could be stored and displayed in 

3D space.  Given that a reliable measured depth within a core section and the core-top 

direction for each sample billet is known, it was possible to define the spatial 

relationships of different samples in a core section using both foliation and distance.  This 

procedure entailed assigning the centroids of the solid surface models to the 

corresponding placement point at the correct measured depth in local coordinates. 

Proceeding initial placement, the digital models were scaled using the 2 cm reference 

marked on the physical billet prior to imaging. The arrow indicating the up-borehole 

direction then allowed the models to be oriented relative to the long axis of the core. 

Lastly, core orientation lines and sectioning planes labeled with respect to the plane of 

foliation were consulted to establish the radial position of the models with respect to the 

long axis. 

     Subsequently, the 3D surface models allowed the planar orientation of petrographic 

thin section to be defined within the local coordinates of each billet through a visual 

identification procedure.  The planes from which the thin sections were extracted are 

identifiable in the ‘intact’ surface models by reference lines labeled on the physical billets 

prior to sectioning.  These sectioning lines appear in photo-realistic color in the solid 

surface models and are made apparent in the internal structure models by placing elastic 

bands around the physical billets prior to CT-scanning.  Because the physical cut line was 

visible in both models, the location of the thin section base maps and the corresponding 

slice of CT data could be approximated. 
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Cathodoluminescence (CL) Image Analysis 

   To emphasize the usefulness of the micro-GIS architecture for database management 

and spatial analyses, the following section presents a demonstration involving CL 

imagery captured from a region of interest within one of the petrographic thin section.  

Analysis of the CL image data within the GIS provides a useful application of the 

geospatial framework due to the importance of their spatial context.  As such, the 

procedures for generating results from CL data encompass many of the common 

processing and management tasks within a GIS but are also are well-positioned to benefit 

from geospatial treatment as they often require tedious and time-consuming work. 

Herein, we utilize a GIS-based workflow to: 1) archive CL imagery and create point 

features containing spectral data and additional attribute information; 2) extract spatially-

referenced information layers from raw spectral data via unsupervised classification of 

calcite vein generations within a thin section from the SAFOD core. 

Point Sampling and Spectral Data Acquisition 

     The first component of the demonstration involves spatialized color sampling and 

wavelength determination of RGB pixels from luminescent areas in the CL image.  Areas 

of interest were predetermined by visual inspection and marked on an annotated copy of 

the raw image.  One or more vein generations are present in each area, which were 

interpreted based on the presence or absence of significant luminescence contrast and 

cross-cutting shape relationships (Figure 8).  
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Figure 8.  Raw CL image containing two apparent generations of luminescent calcite and 

pre-determined areas of interest for spectral sampling and data point creation. 

     The raw, unmarked CL image was then imported into the geodatabase as a raster 

dataset and any defaults histogram or gamma stretch settings were turned off.  Before the 

precise spatial location of spectral samples could be recorded directly within the local 

coordinates of the image and assigned attribute information, creation of a feature class to 

contain the points was required.  Following this step, both the CL image and the empty 

feature class were added to an ArcMap workspace.  Navigating through the indicated 

areas of interest, the lightest and darkest pixel of each apparent vein generation were 

identified and immediately marked with a corresponding point feature.  The vein 

generation number associated with each pixel sample was also recorded in the points’ 

attributes at this time. 

      Though CL records light emission from the visible portion of the electromagnetic 

spectrum (350-750 nm), it is not possible to quantitatively derive a spectral wavelength 

from a combination of RGB values.  Because 16 million unique hues are possible in the 
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study’s 8-bit imagery, an extremely high number of RGB combinations exist per each 

unit wavelength in the 400 nm spectral range (Smith and Guild 1932; Wyzecki and Styles 

1982).  Spectral data acquisition from the pixel samples thus required a manual color 

matching procedure using the CIE 1931 RGB color space standard (CIE 1931) depicted 

in Figure 9.  Using the previously created point locations as a guide, rectangular color 

swatches were taken from the lightest and darkest pixels of each calcite generation within 

the areas of interest.  Comparing the swatches against the color standard then allowed 

their corresponding wavelength to be determined.  The finalized spectral dataset was then 

imported to the geodatabase and joined to the attribute table of the mapped point features. 

Figure 9.  The color standard used for spectral wavelength acquisition from CL image 

pixels (CIE 1931).  CIE - The International Commission on Illumination, or 

the French Commission International de l’Eclairage, does systematic work in 

the standardization of human color perception.  Their standard consists of a 

linear stretch of RGB colors with corresponding visible wavelengths given in 

nanometers. 

Unsupervised Classification of Calcite Veins 

     The remainder of the micro-GIS demonstration discusses the development of a 

relatively simple model for CL image classification.  As calcite vein generations were the 

sole target of classification, a fuzzy membership (FM) function was first used to isolate 

and extract the calcite network and remove all other image pixels from consideration. 

The FM function calculated the strength of pixel membership based on the mean and 

standard deviation of the input RGB values (large values were specified as having high 
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membership because luminescing calcite contains the brightest pixels in the image), 

generating a new raster image indicating strength of membership values ranked from 0-1. 

Permitting fuzzy, or partial, pixel membership is useful for partitioning spectral space 

where mixed pixels are present, as is the case with the CL image data.  The continuous 

gradient of membership values offers greater flexibility in defining thresholds that 

determine what pixels are included or excluded in desired information classes (Ahamed, 

Rao, and Murthy 2000; Foody and Cox 1994; Kent and Mardia 1988).  

     The membership raster was then used for two distinct purposes: 1) creating a binary 

dataset indicating if pixels are calcite/not calcite via a simple thresholding procedure, 

providing a mask for clipping the raw CL image data; and 2) input as an additional image 

band in the unsupervised classification algorithm (Figure 10). 

Figure 10.  Intermediate data from the classification procedure including: A) the raw CL 

image; B) the raster band generated via the FM function, with pixel values 

indication strength of membership; C) the binary mask band produced by 

thresholding the original FM image; and D) the clipped raster containing 

RGB pixel values only within the calcite region defined by the mask band. 

Images B and D serve as the input for the unsupervised classification. 
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     Calcite vein generations were classified using the ISODATA unsupervised approach, 

a statistical clustering algorithm that automatically identifies a specified number of 

spectral classes.  Input for the classification consisted of the clipped RGB raster 

containing only calcite, as well the FM raster (the 0-1 membership values were rescaled 

to the 0-255 value range of the 8-bit RGB pixels), for a total of 4 image bands.  The 

classification was then run with a specified output of 10 spectral classes, which were 

combined as needed to achieve the final product with 2 apparent calcite vein generations 

classified. 

     Accuracy assessment was conducted using 50 random points within each class 

(n=100).  Because a classified validation image was not available, the points were 

generated within the clipped raster containing only calcite and then manually assigned to 

the correct reference class.  To reduce the potential for sampling bias, 200 points were 

initially produced and then reordered using randomly generated numbers.  The points 

were then hand-classified in random until the desired 50 points per class were obtained.  

     A confusion matrix was then produced to derive quantitative measures of agreement 

between the classified output and the validation data.  Confusion matrices are a widely 

adopted approach to model validation used not only to quantify classification accuracy, 

but also to characterize errors resulting from interclass confusion (Foody 2002).  Metrics 

derived from the confusion matrix include: overall accuracy- the number of correctly 

classified pixels divided by the total number of pixels; producer’s accuracy- how often 

any one class is omitted or misclassified; user’s accuracy- how often within a reference 

class are pixels from other classes misclassified; and the Kappa coefficient- agreement 
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between classified and reference samples compensated for chance agreement (Congalton 

1991). 

     The described workflow was implemented using the ArcGIS ModelBuilder visual 

programming interface (Figure 11).  All aspects of the procedure could be performed 

individually, but ModelBuilder allowed the series of required processing tools to 

visualized and exported as Python source code.  As a result, the classification model can 

be readily applied to different CL images and with adjusted parameters. 

Figure 11.  Flow chart of the semi-automated procedure developed in ArcGIS 

ModelBuilder for detection, extraction, and classification of calcite veins in 

CL imagery. Blue items correspond to input data, yellow items to processing 

tools, and green items to derived outputs. 

GIS-Based Procedure for CL Image Processing 
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RESULTS 

     The following section details how the proposed micro-GIS method was implemented 

to integrate, visualize, and examine the data content of the SAFOD sample billets.  This 

study saw the successful development of an ArcGIS database that facilitated efforts to 

manage and navigate large volumes of microstructural data.  The various project data 

(recounted below) were able to be imported directly into an optimized environment with 

pre-defined attribute domains, topological constraints, and custom coordinate systems 

suited for analyses in arbitrary space at centimeter to sub-millimeter scales. 

1. 3D solid surface models which provide a geometrically accurate, photorealistic

representation of the physical billets; 

2. Image slices from 3D internal structure models, which consist of gridded CT data

that identify internal characteristics along the sectioning planes of the billets; 

3. X-ray diffraction (XRD) histogram plots that characterize the mineralogical

composition of the billets; 

4. Thin section optical mosaics that serve as a base map layer from which the spatial

positions of other thin section-based data can be registered; and 

5. SEM-CL image data which contain high-resolution spectral information from

areas of interest within the thin sections. 

     Once imported, all data could be navigated via a catalog and examined individually 

using the available visualization and spatial analytical tools.  However, ArcGIS also lent 

many beneficial tools for establishing relationships within and between each type of data
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and producing visual representations that effectively conveyed meaningful information.  

In this study, several of such representations were produced not only to display data but 

also to provide means for interactive navigation throughout the available information 

content for all billets.  

     Navigation begins at the top-most spatial level of the database with a SAFOD core 

overview map.  This map represents the core sections as polygon features and identifies 

each billet sample location with corresponding points, providing a simplified menu from 

which additional information can be explored and basic spatial inferences can be made.  

Arbitrary coordinates for these features were established by adopting their known 

measured depths as the y-axis (the x-axis was only used to define the width of the core 

polygons).  When a point feature for a given billet is selected, the user is presented with 

an HTML pop-up window containing basic information about the sample.  The pop-up 

window also directly displays the mineral composition plots derived through XRD 

analysis, which can simply be viewed in the window or downloaded if required. 

Additionally, any data associated with a given billet may be accessed through hyperlinks 

in the pop-up (Figure 12a-b). 

     To view or analyze the 3D solid surface models, they may be traversed to via 

hyperlink or opened from within the broader database catalog.  Doing so opens an 

ArcScene workspace with the pre-loaded billet model, where the model may be viewed, 

edited, or subjected to various spatial analyses (Figure 12c).  Though the whole 3D 

internal structure models could not be integrated directly into the database management 

framework, they could be accessed using hyperlinks within the GIS by providing the path 

to their 3DSlicer program workspace.   
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     Pop-up windows for the billet models were configured in similar fashion to the 

overview map, allowing rapid navigation to the 2D thin section-based data acquired from 

within each billet (though I follow a top-down path in this review,  note that links were 

established so that users can explore the interactive menu in any order).  Organized on a 

per-sample basis, thethin section maps contain spatially referenced optical base mosaics, 

raster slices extracted from along sectioning planes in the billets’ internal CT data, and 

CL images from SEM.  The base mosaics establish primary local coordinate systems in 

which the other map layers are spatially registered (Figure 12d).
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Figure 12.  Flow diagram illustrating how project microstructural data are structured, 

visualized and explored interactively within the micro-GIS.  The figure depicts 

A) the SAFOD core overview map showing sample billet locations and 

attributes; B) An example of the HTML pop-up window containing attribute 

information, results from XRD analysis, and links to additional data associated 

with sample billet G24; C) the ArcScene workspace containing billet G24’s 3D 

solid surface model; and D) the spatially referenced 2D image data from a thin 

section extracted from the XY plane in G24.
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CL Image Analysis 

     The results of the CL image analysis are discussed in two distinct components: 1) 

creating and editing of vector point features to facilitate spatialized acquisition of spectral 

samples; and 2) leveraging geoprocessing tools to develop a streamlined approach for 

calcite feature extraction, unsupervised classification of vein generations within the 

extracted calcite, and quantitative accuracy assessment of the classified output. 

Spectral Data Points 

     Color sampling and wavelength determination using a spatially explicit framework 

resulted in the creation of tabulated spectral data and their corresponding point locations 

in the local coordinates of the CL image.  The new point features contain XY 

information, indication of if the sample pertains to calcite or a different luminescent 

mineral phase, the sample’s associated calcite vein generation, and also the wavelength 

derived by matching pixel color swatches to the CIE 1931 color standard (Figure 13).  All 

listed attributes are of significant interest in various facets of CL-based research but are 

primarily used in my thesis as a validation dataset for accuracy assessment of the 

unsupervised classification output obtained in the next portion of the demonstration. 

However, the procedures outlined for spatial color sampling warranted their own thesis 

component because they encompassed many important aspects of creating, editing, and 

displaying vector data in the micro-GIS environment. 
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Figure 13.  ArcGIS map view of sample points within the local coordinates of the CL 

image, labeled with custom symbology and relevant attribute information 

regarding spectral wavelength and calcite vein association.  

Classification of Calcite Vein Generations 

     The method described for extraction and classification of calcite generations produced 

two final results: the classified image indicating each pixel’s membership in generation 1, 

2, or neither; and the transferrable model developed within ArcGIS ModelBuilder to 

accomplish the procedures.  This workflow also generated several intermediate but note-

worthy products.  These include the additional classification image band derived via a 

fuzzy membership (FM) function, the binary mask created by thresholding the FM raster, 

and the image containing only the calcite extracted by applying the mask (see Figure 10). 

     The FM-derived mask preliminarily classified a total of 318,156 pixels, or 

approximately 6.5% of the total image, as calcite.  By masking the remainder of the 
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image of the image, a significant amount of noise was removed from consideration by the 

spectral clustering algorithm, resulting in better model performance.  Using both the FM 

raster and the clipped RGB CL image as input bands in the ISODATA classification was 

also found to produce more desirable spectral classes.  The result of this effort is a 

classified raster image that defines each pixel as either calcite generation 1, calcite 

generation 2, or background (Figure 14). 
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Figure 14.  Results of unsupervised classification showing the input CL image, randomly 

generated accuracy assessment points (n=100), and the classified output with 

counts of pixels assigned as either calcite generation 1 or 2. 
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     The results from accuracy assessment of the classified output are shown in Table 1.  

These were derived from 100 points (50 points per class) that were randomly generated 

within the masked calcite and assigned to the correct class.  Overall accuracy was 

reported at 85% with a Kappa coefficient of 70%.  The highest producer’s accuracy was 

observed in the generation 2 class (90%), while the highest user’s accuracy (89%) was 

reported in the generation 1 class.  These statistics indicate that of the 100 reference 

points, 85 were classified correctly.  Of the 50 points from the generation 1 class, 20% 

were mis-classified as generation 2.  Likewise, 10% of generation 2’s points were 

erroneously classified as generation 1.  

Classification Confusion Matrix 

Reference Calcite Generation 1 Calcite Generation 2 Total 

Calcite Generation 1 40 5 45 

Calcite Generation 2 10 45 55 

Total 50 50 100 

Producer's Accuracy 0.80 0.90 

User's Accuracy 0.89 0.82 

Overall Accuracy 0.85 

Kappa Coefficient 0.70 

Table 1.  Results of the confusion matrix analysis providing quantitative accuracy 

assessment of the unsupervised classification output. 
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DISCUSSION 

     The procedures described in this thesis were developed to establish a universal 

framework for spatially explicit integration of 2D and 3D microstructural data obtained 

from drill core samples.  Each of the various stages were ultimately marked with 

successes, but also identified key challenges that should be addressed in future micro-GIS 

efforts.  Though SFM reconstruction proved to be a viable path for generating GIS-ready 

billet models, accurate identification of tie points was strongly dependent upon individual 

billet characteristics and how the input images were captured.  Limitations for storage 

and 3D rendering of large CT data sets were also encountered while attempting to 

incorporate the internal structure from DICOM sections into the geodatabase.  The 

inability to unify both billet models (i.e. the 3D solid surface and CT-scanned volume) in 

the micro-GIS imposed additional constraints on the level of precision with which thin 

section-based data could be mapped.  Several other facets of the multi-scalar and -

dimensional spatial referencing also illuminated challenges (not resulting from software 

limitations) that must be addressed in future studies.  The following discussion reviews 

these difficulties, makes recommendations for future application of micro-GIS to 

structural geology, and finishes with concluding remarks. 
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Digital Modelling to Preserve Physical Records: Successes and Challenges 

Billet Solid Surface Models 

     The SFM approach proved very robust for producing high quality 3D models from 2D 

imagery of the 26 SAFOD sample billets.  Despite significant variance in the billets’ 

composition, size, and shape, enough image tie points could ultimately be identified for 

point cloud densification and subsequent model construction in all samples (Figure 15).  

The interpolated billet meshes were geometrically adequate for reliable volumetric and 

surface area estimates.  In addition, the image textures were mapped to the faces of the 

billet model so that visual representations of the billets were successfully preserved after 

the physical ones had been sectioned and powdered for additional analyses.  Lastly, the 

models met the objective of retaining the necessary reference markings for spatial 

registration of billets to the drill core and thin section-based data to the billets.  

Figure 15.  Illustration containing 6 finalized solid surface models, indicating various 

combinations of the discussed billet reference markings and SFM’s flexibility 

given a wide range of billet composition and geometries. 

     The modelling process did, however, reveal that the SFM approach is highly sensitive 

to billet surface texture, camera parameters, and the lighting environment in which 
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images were captured.  The textures of the SAFOD billets varied widely; some were 

composed of minerals with a matte color and heterogeneity that provided many potential 

tie points in each image, while others were primarily black and moderately reflective.  

Billets with a highly reflective or glossy color, particularly samples impregnated with 

resin to maintain structural integrity, required extra attention to avoid anomalous light 

effects that contribute to failed image alignment and inaccurate construction of tie points.  

If the digital camera was not placed on a low ISO setting, images of those billets were 

additionally prone to noise from reflective materials. 

     Although placing the sample in a light diffusion box during imaging was essential, the 

positioning of the 4 LED lights was found to be equally important.  The light sources 

must be evenly distributed around the diffusion tent to avoid shadows, close enough to 

illuminate the entire billet but not so close as to create uneven lighting across its surface.  

Once the ideal placement was determined, fixing the lights in place was beneficial.  

Additionally, any light emitted from behind the camera’s position contributed to glare 

and reflections, so overhead room lights were turned off and ambient light from windows 

was minimized.  

     Despite efforts to carefully control the billet photography environment, some 

erroneous points were expected in the dense point clouds; these were typically remnants 

of the sample mount used during imaging, but also occurred along the edges and corners 

of the billets.  However, any undesired points could be manually removed until ‘clean’ 

dense point clouds were obtained.  In summary, SFM photogrammetry provides a flexible 

and cost-effective way to obtain accurate 3D solid surface models of drill core billets 



47 

using 2D digital camera imagery if the images were systematically captured and meet the 

discussed quality standards. 

Billet Internal Structure Models 

     The CT-scanning procedure also successfully generated 3D datasets containing 

quantitative structural data from within the 26 billet samples, providing valuable insight 

on their internal topology.  The models could then be rendered as stacks of 2D image 

slices at a consistent interval throughout the billets using 3DSlicer.  Considering the 

structure models as gridded cube of continuous data, the structural characteristics of each 

billet are measured at roughly 1 billion or more unique locations, while a single CT 

measurement corresponds to one voxel with an x-ray reflectance value and a spatial 

resolution of 55 μmᶾ.  As such, the objective of preserving a digital copy of the billets in 

their still-intact state was satisfied.  The faint x-ray signatures of the elastic bands were 

also detected within the CT data, in effect identifying the physical cut lines from 

sectioning helping to establish spatial context while navigating the models. 

    Rendering and navigating the internal structure models within the 3Dslicer software 

allowed the billets’ CT data along the section planes to be isolated and exported into 

ArcGIS. Though this procedure supplied raster images that could be displayed and fully 

manipulated with other data layers in the thin sections, it was not possible to store the 

complete 3D models in the geodatabase without significant data reduction and 

vectorization.  As a result, the internal structure models could not be unified with the 

solid surface models under a single shared coordinate system.  Were this not the case, the 

2D thin section base maps could be registered in their exact position by identifying tie 
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points within the spatially referenced CT data.  In the current database structure, 

however, the thin section base maps are only linked to the centroid of the approximated 

sectioning planes identified from the solid surface models.  In short, a direct link to the 

3D internal structure models was not achieved in this study but appears to be feasible 

with appropriate choice of new and innovative algorithmic tools.  Possible solutions to 

this issue include new programmatic interfaces between ArcGIS and the software used 

for rendering and navigating entire CT data sets, and general enhancements to software 

functionality in support of greater data interoperability.  

Spatial Referencing 

     In the micro-GIS database, the 3D billet models are tied by their centroids to a 

corresponding placement point at the correct measured depth in a 2D SAFOD core 

overview map.  In other words, the models’ centroids are the only precise locations that 

spatially distinguish the models from one another.  In this case the exact distance between 

billet A’s centroid and billet B’s centroid can be measured, but angles or distances 

between any two vertices in billet A and B cannot.  In future core-based GIS mapping, 

this study recommends a unique spatial position for individual billets be defined within 

the geographic coordinates of the drill site by making full use of the geophysical logs 

recorded during drilling.  Doing so would enable geometric transformations that account 

for the compass bearing of the core segment and the clockwise angular relationship 

between the billet and core orientation line.  This operation would be most accurate for 

billets that include a portion of the outer round surface of the core; otherwise, the 
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clockwise angle must be estimated based on the dip of the foliation plane in the billet’s 

respective core section (Figure 16). 

Figure 16.  A) Map view of SAF bearing 137° SE through California, core sections G123 

& G456 cutting across the SAF with compass bearings of 027° NE (plunge of 

67°) and 035° NE (plunge of 68°), respectively.  B) Schematic depiction of 

borehole depicting billet clockwise angle with respect to red and black core 

orientation lines (Hadizadeh 2020 personal communication). 

     The results of this study indicate that instead of tentative placement of the thin section 

base maps inside the models, data from thin sections could be mapped within the local 

3D coordinate space of the billet model with greater precision.  Each pixel in the base 

maps would then contain a unique XYZ position within both the billet and the borehole 

at-large.  A recent study prescribes a universal system for defining the spatial orientation 

of petrographic thin sections (Tickoff et al.  2019), which is primarily based on a robust 

notching procedure that provides all information required for geometric transformation 

into 3D billet space (Figure 17).  Though the authors did not focus on GIS-based 

implementation of the framework,  they have suggested procedures that would 

complement spatially explicit map visualizations of 3D billet models and 2D thin section-

based data from optical, SEM, and CL image analyses. 
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Figure 17.  Schematic representation of thin section orientation framework depicting: A) 

Definition of billet sectioning planes XY, XZ, and YZ with respect to within-

billet foliation plane; and B) Suggested markings to be placed on physical thin 

sections for spatial referencing within the local coordinates of billet models 

(adapted  after Tickoff et al.  2018). 

     The potential extensions to the spatial registration framework discussed here could 

possibly enhance efforts to create geographically translated forms of within-billet and -

thin section coordinate systems.  Though spatial relationships were established to some 

extent between all data in this study (i.e. the measured depth of the corresponding billet), 

the use of multiple arbitrary coordinate systems constrained the ability to achieve high 

spatial precision between billets and also between data products from two or more thin 

sections within individual billets.  Initial efforts were made to establish all billet models 

within a single local coordinate system representing the dimensions of the SAFOD core, 

but were hindered by the complex transformations involved in establishing proper billet 

orientation with respect to the core.  Similar complexities were encountered in attempts to 

transform planar thin section data into the 3D coordinate space of the solid surface 

models.  As such, this study suggests that improved affine transformation matrices should 

be developed in future studies, with emphasis placed on how they might be more 
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seamlessly integrated into the database schema to better facilitate spatial data conversion 

from local to geographic coordinates. 

Remote Sensing Techniques Applied to CL Imagery 

     This thesis evaluated the applicability of GIS-based remote sensing approaches for 

classifying calcite in CL imagery.  The two-stage classification consisted of first 

classifying all pixels in the raw image as either calcite or not calcite using a fuzzy 

membership function, allowing a precise threshold which omitted background pixels, 

while also retaining the desired calcite pixels, to be determined.  The raster containing 

only calcite was then subjected to the ISODATA unsupervised classification to resolve 

information classes pertaining to generational growth morphologies within the calcite 

vein network.  Accuracy assessment indicated that the spectral clustering approach 

identified the correct generation with an 80% success rate. 

     The unsupervised model performance served as a preliminary indicator for the 

viability of common remote sensing techniques and geospatial processing tools for 

extracting meaningful information from raw spectral data.  Furthermore, this suggests 

that variability and complexity among the raw CL image data can be distilled into 

discrete categories of greater intuitive value than the heterogeneous pixels that inform 

them.  This is useful in geological analyses because adequate spatial inspection of calcite 

vein networks often entails significant time investment into tedious procedures.  By 

employing automated or semi-automated remote sensing approaches to identify and 

segment the veins, relevant information such as pressure and temperature conditions of 

formation can be attributed to calcite generations as cohesive entities rather than to image 
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pixels that are only partial representation of the entities.  In addition, classified CL 

images create new opportunities to visually examine and quantitatively evaluate the 

spatial characteristics of micro-scale mineralized systems. 

     Future studies, however, should continue to test the efficacy of other image 

classification approaches for addressing questions related to CL and other microstructural 

image data.  A key consideration when determining appropriate approaches is shape as a 

strong salient characteristic in most calcite vein networks.  In other words, there is often 

strong autocorrelation among near pixels in the images, which is ignored in pixel-wise 

statistical clustering algorithms such as ISODATA.  More advanced, supervised 

approaches such as random forest classifiers, support vector machines, neural networks, 

or deep learning (Chaib et al.  2017; Cheng, Han, and Lu 2017; Kussul et al.  2017) could 

potentially prove more robust ways to approach the salient aspects of calcite veins and 

achieve classification accuracies greater than those of this study. 
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CONCLUSIONS 

     Geographic Information Systems (GIS) comprise an established scientific discipline in 

and of themselves, but are perhaps equally useful when considered as an integrative 

toolkit that can facilitate spatial data management in all disciplines.  A micro-GIS thus 

serves as an ideal repository and analytical workspace for drill core-based microstructural 

data that are traditionally compartmentalized.  This thesis sought to probe the potential 

for treatment of those data with the geospatial framework in a study involving 26 sample 

billets from the San Andreas Fault Observatory at Depth (SAFOD).  Multiple forms of 

3D and 2D data were integrated in a geodatabase that archived not only the input data, 

but also their later-defined spatial relationships and outputs derived from spatial analyses.  

By-products of the method included interactive map visualizations, a hierarchical data 

catalog based on spatial relationships, and ModelBuilder workflows for accomplishing 

the various database management and analysis tasks. 

     Though the research effort was marked with numerous successes, the challenges that 

persist indicate an agenda for ongoing interdisciplinary research using micro-GIS as the 

glue.  ‘Glue’ is perhaps the simplest, but nonetheless appropriate, description of the role 

that geospatial technologies play in science – GIS isn’t an outcome, but rather an 

adhesive tool for creating a whole that is greater than the sum of its parts.  As with any 

glue, however, geospatial tools are not always a one-size-fits-all solution.  The spatial and 

spectral characteristics of microstructural data require different ingredients than those in 

traditional GIS applications. 
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     To this end, future structural geology studies should continue prioritizing the spatial 

relationships within and between the different sources of microstructural data, but also 

work toward a more standardized vernacular around spatially explicit handling of those 

data in a GIS framework.  For example, civil engineers benefit from tailored analytical 

toolkits such as ‘CityEngine’ for 3D modelling and ‘Network Analyst’ for studies 

involving infrastructure and transportation data (ESRI 2020).  Another case can be 

observed with hydrology-specific tools for identifying watersheds, estimating the flow 

and accumulation of surface water, and modelling the path of groundwater contaminants.  

In similar fashion, custom geoprocessing tools and workspace templates should also be 

developed to better facilitate structural geologists working at the micro-scale. 

     This thesis confronted the procedural and conceptual challenges associated with 

spatial integration of core-based microstructural data, built on recent advances to develop 

universal micro-GIS procedures, and demonstrated the usefulness of GIS within the 

broader context of structural geology as a whole.  With continued advances on both 

disciplinary fronts, the novel approaches discussed in this study are well-positioned to 

inform, and simultaneously be informed by, innovations in the future. 
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APPENDIX A 

Instruments utilized for data collection 
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Instrumentation used in billet imaging for SFM reconstruction: Canon Powershot G1 X 

Mark II digital camera, adjustable camera tripod, desktop light diffusing tent, and 

custom-made sample mount. 

Micro-CT scanner used to obtain billet internal structural data: ImTek MicroCAT II.  

Scans were performed by Huaiyu Zhang at the Clinical and Translational Research 

Building at the University of Louisville. 
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Instrumentation used for XRD data collection: Bruker D8 Discover X-Ray 

Diffractometer, housed at the Conn Center for Renewable Energy Research at the 

University of Louisville. 

Instrumentation used for whole-thin section imaging to produce base map mosaics: Zeiss 

Axioplan optical microscope fitted with a Scion Corporation CFW-1312C Color Digital 

Camera, housed in the Department of Geography and Geosciences at the University of 

Louisville. 
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