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ABSTRACT

OBSERVATIONAL STUDIES IN GROUP TESTING AND POTENTIAL

APPLICATIONS

Alexander Christopher Noll

April 27, 2021

The use of group testing to identify individuals with targeted outcomes in a popu-

lation can greatly improve the efficiency, speed, and cost effectiveness of testing a

population for an outcome, or at least for identifying the prevalence of an outcome

in a population. The implementation of causal inference techniques can provide the

basis for an observational study that would allow an investigator to gather estimates

for treatment effectiveness if group testing was conducted on the population in a

certain way.

This thesis examines a simulation of the above outlined principles in order to

demonstrate a potential application for determining treatment efficacy from observa-

tional data obtained via testing for disease outcome in a partially treated population.

It is made evident that it is reasonable to make conclusions about treatment condi-

tional incidence of an outcome in a sample of tested individuals based on outcome

tests conducted on groups of individuals. Examining group study observations in the

manner described in this thesis will allow researchers to estimate treatment effective-

ness from partial data in situations where outcome testing may have been limited or

where quick results are required from limited data.
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CHAPTER I

INTRODUCTION

1 Introduction

The problem of determining the effectiveness of treatments has long been studied
by academics. The principles of causal inference allow the investigator to make an
unbiased estimate of the average treatment effect while accounting for the confounder
that at risk individuals are priortized to receive treatment. However, the effort asso-
ciated with gathering necessary observations to obtain reliable estimates can result
in tremendous expenditure in terms of both time and cost. This problem can be
intensified when the incidence rate of the outcome in question is very low, or if the
treatment is particularly effective as these conditions would result in the necessity
of collecting a much larger sample size in order to achieve a similar estimate as that
resulting from a situation with a larger incidence rate in the treated or untreated
populations. It is therefore necessary to consider alternative methods for gathering
the samples.

Group testing proposed by Dorfman (1943) is a method of disease testing that
has been utilized in the past in order to reduce the total number of tests that need
to be used in order to test an entire population for the incidence of a disease. It
works by dividing a population into groups and performing the test for the disease
simultaneously on combined samples from each group. Assuming perfect sensitivity
and specificity, if a group tests negative for the disease, it is obvious that to no
one in the group has the disease and they can be excluded from further testing.
Groups whose combined sample tested positive are therefore implied to contain at
least one individual who has the disease. These groups can then be either split into
smaller groups for more group tests with the process repeated, or instead then tested
at the individual level. There are more complex methods than this that improve
the efficiency of the process and can even account for non-perfect sensitivity and
specificity (e.g., Lin et al., 2019). However, these methods are beyond the scope
being discussed here.

2 Group Testing Applied to Causal Inference

When considering a situation where the effectiveness of a treatment needs to be
rapidly assessed it is reasonable to look towards the concepts of group testing for a
possible solution. One may consider a situation where an emergent disease has become
pandemic and the process for testing the disease is very resource-intensive, very time
consuming, or reliant on difficult to obtain materials or special equipment. In this
situation it would certainly be important for public health authorities to reduce the
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required number of tests that need to be run in order to isolate diseased individuals.
By testing individuals in a group setting using a method with sufficient accuracy, the
number of tests that are utilized can be reduced. By making use of data from a group
testing scenario and implementing causal inference concepts, a consistent estimate of
treatment efficacy can be achieved.

The mathematics behind this theory are not the focus of this thesis. Instead, we
have examined the use of these principles in a simulated environment in order to ex-
amine their practical applications in a hypothetical situation. This process will create
a groundwork for future situations where this methodology is necessary. Of partic-
ular concern is the impact that the group testing will have on estimation accuracy.
While the traditional approach to causal inference is unbiased, we seek to determine
whether a practically unbiased result can be achieved with a reasonable sample size
in a group testing environment. Additionally, we seek to determine guidelines for
how large groups can be in order to further minimize testing.

2



CHAPTER II

METHODOLOGY

1 Definitions

Let X denote the vector of q pre-treatment covariates for a subject in the study, A and
Y denote, respectively, the treatment received (e.g., getting COVID-19 vaccinated)
and the observed outcome for the subject. In this project, we only consider the case
with 2 treatments: control (A = 0) and treated (A = 1) and the binary outcome:
Y = 0 or 1 (whether the subject is infected; 0 denotes no infection and 1 denotes
infection). Each subject would then have had 2 potential outcomes Y (0) and Y (1),
where Y (a) would be the outcome if the subject receives the treatment a, a ∈ {0, 1}.
However, as each subject can only receive one treatment, the observed outcome is the
potential outcome corresponding to the treatment assigned.

Let p∗a := E[Y (a)], that is the average infectious rate of the whole population
receiving treatment a. We can use the average treatment effect (ATE), defined as
p∗0− p∗1 = E[Y (0)]−E[Y (1)] to assess the effectiveness of the treatment. For example,
in the evaluation of the effectiveness of COVID-19 vaccines, the ATE measures the
reduction of the average infectious rate led by the vaccine. We would like to accurately
estimate ATE for group testing data in observational studies.

Suppose there are M groups in the group testing data and there are Ni subjects
in the ith group. We denote the covariates, treatment received, and the outcome
of the jth subject by Xij, Aij, and Yij, respectively. In group testing data, we do
not directly observe the outcome of each subject (i.e., Yij). Instead, we observe Ỹi,
the outcome of the group, that is, whether there is any subject in the group being
infected. It is easy to see that Ỹi = max1≤j≤Ni

Yij.
Let Di = {(Ỹi,Xij, Aij), j = 1, · · · , Ni} denote the data observed for the ith

group. The whole data we observe is D = {Di, i = 1, · · · ,M}.

2 Randomized Controlled Trials

We first consider the randomized controlled trials (RCT), that are considered as the
gold standard to determine the treatment effect between different treatment groups.
In an RCT, the subjects are randomly assigned to different treatment groups and all
confounding baseline covariates, either measured or unmeasured, are assumed to be
balanced. Therefore, p∗a and ATE can be directly estimated (Friedman et al., 2015).
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In RCT, we observe the following

P (Y = 1|A = a) = E [Y |A = a] = E [E[Y |A = a,X]|A = a]

= E
[
E[Y (a)|A = a,X]|A = a

]
= E

[
E[Y (a)|X]|A = a

]
= E

[
E[Y (a)|X]

]
= E[Y (a)] = p∗a,

where the third equality follows from the consistency (Hernán and Robins, 2010),
the fourth equality follows from the conditional exchangeability (Hernán and Robins,
2010), and the fifth equality follows from the fact that the assignment is independent
of X in RCT. Thus,

P (Ỹi = 0|Aij = aij, j = 1, · · · , Ni) = P (Yij = 0|Aij = aij, j = 1, · · · , Ni)

=

Ni∏
j=1

P (Yij = 0|Aij = aij) =

Ni∏
j=1

(1− P (Yij = 1|Aij = aij)) =

Ni∏
j=1

(1− p∗aij),

and then P (Ỹi = 1|Aij = aij, j = 1, · · · , Ni) = 1−
∏Ni

j=1(1− p∗aij). And the likelihood

function using the data D(0) := {(Ỹi, Aij), j = 1, · · · , Ni, i = 1, · · · ,M} is

L(p|D(0)) =
M∏
i=1

[
Ni∏
j=1

(1− pAij
)

]1−Ỹi [
1−

Ni∏
j=1

(1− pAij
)

]Ỹi
,

where p = (p0, p1)
T. Consequently, the log-likelihood function is

`(p|D(0)) =
M∑
i=1

{
(1− Ỹi)

(
Ni∑
j=1

log
(
1− pAij

))
+ Ỹi log

[
1−

Ni∏
j=1

(1− pAij
)

]}
. (1)

If the testing is homogeneous, that is, for each sample j in the group i, all values
Aij’s are the same, and Ni = J are the same for i = 1, · · · ,M , then

L(p|D(0))

=
M∏
i=1

[1− p1]J(1−Ỹi)Ai [1− p0]J(1−Ỹi)(1−Ai)
[
1− (1− p1)J

]ỸiAi
[
1− (1− p0)J

]Ỹi(1−Ai)
,

and the log-likelihood function is

`(p|D(0)) =
M∑
i=1

J(1− Ỹi)Ai log(1− p1) +
M∑
i=1

J(1− Ỹi)(1− Ai) log(1− p0)

+
M∑
i=1

ỸiAi log
(
1− (1− p1)J

)
+

M∑
i=1

Ỹi(1− Ai) log
(
1− (1− p0)J

)
.

Simple algebra yields the following maximum likelihood estimators:

p̂0 = 1−

(∑M
i=1(1− Ỹi)(1− Ai)∑N

i=1(1− Ai)

)1/J

and p̂1 = 1−

(∑M
i=1(1− Ỹi)Ai∑M

i=1Ai

)1/J

,

which coincide with the estimators of p∗a for the individual testing data.
Therefore, we can easily estimate the ATE for group testing data in RCT.
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3 Observational Studies

In practice, conducting an RCT is not always feasible due to many restrictive factors,
including ethics, logistical constraints, and patient preferences (Horwitz, 1987). On
the other hand, the rapid advance of technology in collecting and storing data makes
the observational studies widely available in natural health care settings, which urges
us to develop new methods to estimate the ATE.

In observational studies, the treatment received by a subject may be determined
by the subject’s characteristics, which may also have a significant impact on the out-
come. Thus, the covariates between different treatment groups may be unbalanced,
and the difference in the outcomes between the two treatment groups is not only
attributed to the treatment received (Rubin, 2004). For example, in an observational
study evaluating the efficacy of COVID-19 treatments, patients with severe preexist-
ing respiratory diseases were more likely to receive new treatments. Therefore, pa-
tients in the treatment group are more likely to have severe respiratory diseases than
those without respiratory diseases. Meanwhile, patients with more severe respiratory
diseases tend to have a shorter survival time. If one merely compares the simple aver-
age survival time between the treatment group and the no-treatment group without
controlling for respiratory disease, he or she may reach an erroneous conclusion about
the effectiveness of treatments. Covariates that affect both the choices of treatment
and outcomes, such as the severity of respiratory diseases in COVID-19 studies, are
named confounders in statistics. Thus, we have to control for the confounding fac-
tors in order to correctly estimate p∗a for observational studies(Rosenbaum and Rubin,
1983). In our numerical analysis, we also showed that severe bias would appear if the
confounding factors were not adjusted.

Although estimating ATE has been widely studied for individual data in observa-
tional studies, the related development for group testing data is relatively sparse. In
this project, we develop a new method that can consistently estimate ATE for group
testing data in observational studies.

Since the seminal work by Rosenbaum and Rubin (1983), propensity-score-based
inverse probability weighting (IPW) method and generalized propensity score (GPS)
(Imbens, 2000) have become two popular approaches to control confounding factors
and estimating ATE. The term GPS refers to the probability of receiving some treat-
ment assignments conditional on the observed baseline covariates. The alignment of
GPS across different treatment groups balances confounders and thus approximates
the conditional RCT under the exchangeability condition (Hernán and Robins, 2010).
The GPS is often estimated parametrically by logistic models, or nonparametrically
by random forest and generalized boosting methods (McCaffrey et al., 2013).

Let πa(x) = P (A = a|X = x), a = 0, 1, which are the propensity scores for a
subject having characteristics x. We define the propensity scores for the ith group
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as follows:

Wi =

Ni∏
j=1

(
1∑

a=0

1{Aij = a}π−1a (Xij)

)

=

Ni∏
j=1

(
1{Aij = 1}π−11 (Xij) + 1{Aij = 0}π−10 (Xij)

)
= h∗(Di).

Then we incorporate the proposed group propensity scores into the log-likelihood
function for the RCT (1). Consider the following likelihood function.

`(p|D) =
M∑
i=1

{
(1− Ỹi)

(
Ni∑
j=1

(
1∑

a=0

1{Aij = a} log(1− pa)

))

+Ỹi log

[
1−

Ni∏
j=1

(
1∑

a=0

1{Aij = a}(1− pa)

)]}
Wi, (2)

Take the derivative with respect to p1 and we obtain that

M∑
i=1

Wi

{
Ni∑
j=1

1{Aij = 1}

[
−(1− Ỹi)

1− p1
+ Ỹi

∏
k 6=j
(∑1

a=0 1{Aik = a}(1− pa)
)

1−
∏Ni

k=1

(∑1
a=0 1{Aij = a}(1− pa)

)]} ,
which motivates us to consider the estimating equations S(p) = (S0(p), S1(p))T = 0,
where

S0(p) := M−1
M∑
i=1

[
Ni∑
j=1

1{Aij = 0}Wi

{
−(1− Ỹi) +

Ni∏
k=1

(
1∑

a=0

1{Aik = a}(1− pa)

)}]
(3)

and

S1(p) := M−1
M∑
i=1

[
Ni∑
j=1

1{Aij = 1}Wi

{
−(1− Ỹi) +

Ni∏
k=1

(
1∑

a=0

1{Aik = a}(1− pa)

)}]
.

(4)
In the Appendix, we show that S(p) = 0 are valid estimating equations.

In practice, Wi’s are unknown but can be estimated either parametrically by logis-
tic models or nonparametrically by random forest and generalized boosting methods
(McCaffrey et al., 2013). Let ĥ be some estimate of h∗. Then Wi can be estimated
by Ŵi = ĥ(Di). Moreover, replace Wi in S(p) by Ŵi and we obtain the empirical
estimating equations Ŝ(p).

4 Theoretical results

Given a random sample Z1, · · · , ZM , we adopt the following empirical process nota-
tions. Let GM(f) = GM(f(Zt)) := M−1/2∑M

t=1(f(Zt) − E[f(Zt)]) and EMf(Zt) :=∑M
t=1M

−1f(Zt). We use p̃ and p̂ to denote some solutions of S(p) = 0 and Ŝ(p) = 0,
respectively.

6



Regularity conditions

(A1) (a) Conditional exchangeability: (Y (0), Y (1)) ⊥ A|X; (b) Consistency: if A = a,
Y (A) = Y (a) = Y ; (c) Positivity: π1(x) = P (A = a|X = x) > ν > 0 for all
values of x that f(x) > 0, where f(·) is the density of X and ν is some constant
less that 1/2.

(A2) Boundedness of p∗: 0 < ν ≤ min{p∗0, p∗1} ≤ max{p∗0, p∗1} ≤ 1
2
− ν.

(A3) Group size: 2 ≤ Ni ≤ N , where N satisfies (a) N < 1/ν and (b) ∀p0, p1 ∈
[ν, 1/2−ν], 4((N+1)−Np0−p1)((N+1)−p0−Np1)−(N−1)2(2−p0−p1)2 > ν.

Remark 4.1 Condition (A1) has been widely assumed in observational studies (e.g.,
Hernán and Robins, 2010; Yan et al., 2019). The group size conditions (A3) are
needed to ensure that the monotonicity of the estimation equations S(p) = 0 (Fygen-
son and Ritov, 1994). Simple algebra shows that Condition (A3(b)) is satisfied when
N = 2, 3, 4, 5, 6 under Condition (A2).

Let Ṡbc(p) = ∂Sb(p)/∂pc, b = 0, 1; c = 0, 1 and

Ṡ(p) =

(
Ṡ00(p) Ṡ01(p)

Ṡ10(p) Ṡ11(p)

)
,

Theorem 4.1 Under Conditions (A1) – (A3), (i) there exists solutions p̃ of S(p) = 0
satisfying p̃→p p

∗; (ii)
√
M (p̂− p∗)→d N(0, VΣV T), where V = E[Ṡ(p∗)]−1.

Corollary 4.1 If ‖ĥ − h∗‖∞ = Op(M
−1/2), under Conditions (A1) – (A3), there

exists solutions p̂ of Ŝ(p) = 0 satisfying p̂→p p
∗.

Corollary 4.1 indicates that our proposed estimator is consistent.

5 Simulated Observational Study

We conduct simulated studies to examine the performance of the proposed method.
The purpose of the simulated observational study is to replicate the conditions a

case where a vaccine is being deployed to prevent incidence of a pandemic disease. A
simulated population will be assigned treatment according to risk factors. Then, the
population will be assigned incidence of the event according to risk factors, with risk
negated by administration of the treatment. Following this process, a simulated group
testing model will be applied and results of the estimated ATE will be compared to
the actual ATE. This will allow us to assess the accuracy of our proposed method.

7



6 Population Parameters

To simplify the process of simulating the population, only parameters that impact the
incidence of treatment and outcome. While there are many covariates that could go
into a situation such as the one being examined in this thesis, we will only consider two
confounders, and the treatment assignment impacted by these factors. The outcome
variable will also be present and will be impacted by the two confounders and the
treatment assignment.

Variable
Distribution
Type

Variable Parameters Notes

Age (A) Normal µ = 39;σ = 12

Negative ages
are possible in
this model but
should not im-
pact outcomes of
simulation.

Preexisting
Condition
(PC)

Bernoulli p = .2

A ”Success” in-
dicates that the
sample has a pre-
existing condition.

Treatment
(T)

Bernoulli p = 1
1+e−(−6.5+.1∗A+2∗PC)

p is modeled after
a logistic regres-
sion model and in-
dicates the proba-
bility of receiving
treatment.

Outcome
(O)

Bernoulli p = 1
1+e−(−7.2+.1∗A+3∗PC−5∗T )

p is modeled after
a logistic regres-
sion model and in-
dicates the prob-
ability of an out-
come disease).

Table 1. Relevant Population Parameters

The selection of the parameters that define the above factors was intended to
create a realistic population that was facing a treatment shortage and did not have
a perfect treatment. In the creation of the treatment and outcome variables, the
intention was for a 65 year old sample with no preexisting condition to have a 50
percent chance of receiving the treatment. It can also be seen that an individual
having a preexisting condition is equivalent to that same individual being 20 years
older with no preexisting condition. In the design of the outcome feature, the intent
was for a typical untreated sample to have a roughly 10 percent chance of experiencing
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the outcome. Additionally, it was important that the treatment not be completely
effective, and for there still to be at least a 1 percent chance of a typical treated
individual to experience the outcome.

7 Group Selection

We consider homogeneous grouping here, that is, all groups have the same group size
and groups consist entirely of either treated or of untreated samples. For a generated
population of any given size, the population is split up into equal sized groups (with
excess samples that could not be assigned a group discarded). For the purpose of
this simulated observational study, group assignment is entirely random, saved for
the consideration of treatment.

8 Heterogeneous versus Homogeneous Groups

In this study, all groups consist of either treated or untreated samples. In a different
situation where groups do not consist of all of the same treatment statuses, the
estimates of p∗0 and p∗1 do not have a closed form but can still be obtained by solving
(3) and (4) using a searching algorithm. This is beyond the scope of this project.
Instead, we will be examining the case with homogeneous groups. The calculation
for probability of infection given treatment based on these cases does have a closed
and is calculable using trivial arithmetic.

9 Probability Estimation

In a real observational study it would be very unlikely for the investigators to have
information on the true probabilities of the outcome. However, as this study is
simulated and we have set the parameters ourselves it is trivial to obtain true ATE.
To do this, we calculate the individual probabilities of getting Y = 1 and 0 for each
subject as if they had either received or had not received the treatment.

We restate the notations here. Let Y be the random variable indicating the
outcome, such that Yij = 1 indicates that sample j in group i has the disease (e.g.
tests positive for COVID-19) and Yij = 0 indicates that sample j in group i does
not have the disease. Let Aij be the random variable indicating treatment, such
that Aij = 1 indicates that sample j in group i has received treatment (e.g. has
received the COVID-19 vaccine) and Aij = 0 indicates that sample j in group i has
not received treatment. With these definitions, let pa(Xij) indicate the probability
that an individual with the conditions for sample Xij tests positive for the disease
given either that they have received treatment if a = 1 or that they have not received
treatment if a = 0. So, for each individual we calculate

p0(Xij) =
1

1 + e−(−6.5+.1∗A+2∗PC)
(5)
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and

p1(Xij) =
1

1 + e−(−7.2+.1∗A+3∗PC−5) (6)

Using these values, we can then calculate

p∗a ≈
1

N

N∑
k=1

pa(Xij) (7)

which is the probability of infection for the sample population of size N.
Recall that πa(Xij) = P (Aij = a|Xij) is the probability of a subject with char-

acteristics of Xij getting treatment a. We use a logistic regression model: Treat ∼
Age + Preexisting Condition to estimate πa(Xij) and obtain the estimates π̂a. Then
p̂a, a = 0, 1 obtained by solving (3) and (4) are

p̂0 = 1−

(∑M
i=1(1− Ỹi)

∏J
j=1 1{Aij = 0}π̂−10 (Xij)∑M

i=1

∏J
j=1 1{Aij = 0}π̂−10 (Xij)

)1/J

(8)

and

p̂1 = 1−

(∑M
i=1(1− Ỹi)

∏J
j=1 1{Aij = 1}π̂−11 (Xij)∑M

i=1

∏J
j=1 1{Aij = 1}π̂−11 (Xij)

)1/J

. (9)

Derivations of these results can be found in Appendix A.

10 Simulation Process

Simulations were run 1,000 times each for reach combination of three sample sizes and
twenty group sizes for a total of 60,000 simulations. Represented samples sizes were
2,000, 5,000, and 10,000. Group sizes ranged between 1 and 20. For each simulation
the true and estimated probabilities were collected.
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CHAPTER III

RESULTS AND ANALYSIS

1 Process for Examination of Results

Following the generation of each sample, the ATE and its estimates were calculated
as d∗ = p∗0 − p∗1 and p̂ = p̂0 − p̂1. We examine the performance of the proposed
method by calculating the average of the absolute bias (Bias), standard error (SE),
and means square error (MSE) over one thousands samples.

2 Results

The results of the simulations can be found in Table 2. These results are also presented
in Figures 1,2, and 3.

Sample Size

2,000 5,000 10,000

Group Size MSE SE Bias MSE SE Bias MSE SE Bias

1 0.0001 0.01014 0.00105 0.00004 0.00668 0.00053 0.00003 0.00522 0.00008
2 0.00023 0.01479 0.00285 0.00006 0.00769 0.00077 0.00004 0.00632 0.00018
3 0.00027 0.01651 0.00106 0.00016 0.01284 0.00127 0.00009 0.00925 0.0002
4 0.00043 0.02035 0.00376 0.00042 0.02012 0.00426 0.00016 0.01273 0.00146
5 0.001 0.03146 0.00302 0.00041 0.02005 0.00243 0.00024 0.01527 0.00284
6 0.00194 0.04302 0.00937 0.00102 0.03161 0.00441 0.00034 0.01807 0.00342
7 0.0036 0.05627 0.0208 0.00195 0.04231 0.01245 0.00066 0.02488 0.00623
8 0.00103 0.03186 0.00399 0.0015 0.03644 0.01323 0.00099 0.03034 0.00844
9 0.00384 0.05717 0.02381 0.00156 0.03744 0.01262 0.00089 0.02876 0.00808
10 0.00487 0.06434 0.02709 0.00408 0.05868 0.02526 0.0014 0.03539 0.0121
11 0.00489 0.06228 0.03174 0.00299 0.05013 0.02177 0.00185 0.0402 0.01525
12 0.00502 0.06636 0.02492 0.00306 0.05006 0.02351 0.00197 0.04156 0.01549
13 0.00342 0.05443 0.02136 0.00367 0.05787 0.01793 0.00207 0.04148 0.01866
14 0.00704 0.07654 0.03438 0.00404 0.0552 0.0315 0.00277 0.04799 0.02156
15 0.00727 0.07926 0.03141 0.00336 0.05403 0.02094 0.00241 0.04471 0.02023
16 0.0064 0.07084 0.03723 0.00349 0.04978 0.03185 0.00333 0.0513 0.02638
17 0.00637 0.06618 0.04462 0.0066 0.07197 0.03762 0.00377 0.05487 0.02758
18 0.0114 0.09545 0.04783 0.00438 0.0594 0.02917 0.00415 0.05664 0.03068
19 0.02393 0.13395 0.07739 0.00708 0.07041 0.04605 0.00454 0.05897 0.03267
20 0.01306 0.10168 0.05218 0.00555 0.06265 0.04036 0.00499 0.06073 0.03612

Table 2. Simulation Results
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Figure 1. Error Estimate Results for 1,000 Sample Size 2,000 Simulations

Figure 2. Error Estimate Results for 1,000 Sample Size 5,000 Simulations

3 Naive Estimation

Performing the simulation process again while recalculating infection probabilities
using a naive methodology allows us to see the importance of accounting for proba-
bility of receiving treatment. For the naive estimation, we estimate p∗0 and p∗1 using
the same method but with Ŵi = 1, i.e, without considering the confounders. The
results are presented in Table 3. It can be seen that the bias of the estimate rises
to an unacceptable level, no matter how large the sample size is. It can therefore be
seen that the controlling confounders are definitely needed in observational studies.
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Figure 3. Error Estimate Results for 1,000 Sample Size 10,000 Simulations

Sample Size

2,000 5,000 10,000

Group Size MSE SE Bias MSE SE Bias MSE SE Bias

1 0.00784 0.00929 0.08807 0.00796 0.00453 0.08912 0.00788 0.00371 0.08867
2 0.00759 0.00872 0.08666 0.00789 0.00511 0.08869 0.00781 0.00412 0.0883
3 0.00799 0.01084 0.08871 0.00786 0.00541 0.08847 0.00788 0.00423 0.08869
4 0.00794 0.00902 0.08866 0.00788 0.00577 0.08856 0.00788 0.00405 0.08866
5 0.0077 0.00939 0.08727 0.00795 0.00645 0.08891 0.0079 0.00423 0.08876
6 0.0078 0.00906 0.08785 0.00794 0.00619 0.0889 0.00782 0.00445 0.08831
7 0.00811 0.01021 0.08946 0.0077 0.00551 0.08755 0.00785 0.00424 0.08849
8 0.00805 0.01078 0.08906 0.00785 0.00699 0.0883 0.00776 0.00426 0.08797
9 0.00815 0.01022 0.08969 0.00803 0.00691 0.08933 0.00781 0.00477 0.08823
10 0.00802 0.01125 0.08886 0.00793 0.00618 0.08883 0.00785 0.00498 0.08847
11 0.00833 0.0114 0.09057 0.00781 0.0075 0.08806 0.00765 0.00499 0.0873
12 0.00818 0.01174 0.0897 0.00758 0.00705 0.08676 0.00788 0.00559 0.08859
13 0.00778 0.01176 0.08742 0.00788 0.00662 0.08854 0.00788 0.00499 0.08863
14 0.00818 0.01292 0.08953 0.00805 0.00703 0.08947 0.00792 0.00522 0.08885
15 0.00798 0.00982 0.08882 0.00811 0.00816 0.0897 0.0079 0.00516 0.08874
16 0.00853 0.01332 0.09141 0.00798 0.0068 0.08907 0.00781 0.00552 0.0882
17 0.00799 0.01225 0.08855 0.00827 0.00893 0.09048 0.00766 0.00574 0.08731
18 0.00778 0.01507 0.08688 0.00804 0.00804 0.08929 0.00783 0.00489 0.08837
19 0.00811 0.01283 0.08915 0.00804 0.00801 0.08933 0.00776 0.00542 0.08793
20 0.00834 0.01542 0.09 0.00816 0.00864 0.08993 0.00786 0.00627 0.08842

Table 3. Naive Estimation Results
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4 Analysis

It is clear upon examining the results that Bias of the estimator tends to increase
as group size increases, and tends to decrease as sample size increases. While there
are some inconsistencies in the data, the initial relationship appears to be generally
monotonic accompanied by a steady increase. There is no apparent sign of increase
or decrease in the rate of change of bias as group size increases, and there are not
enough sample sizes to make that observation for that dimension.

The difference between biases for simulations of the same group size but different
sample sizes appears to be sufficient such that a researcher may want to take sample
size into account when determine group size. A group size of 10 with a sample size of
10,000 shows a bias of .012 in our simulations, while the same group size for a sample
of 2,000 shows a bias estimated at .027. Therefore, for at least small sample sizes
researchers may want to retain relatively small group sizes.

It is notable that for all sample sizes, a group size of 5 appears to be around or
below a bias of .003. This would likely be considered acceptable bias for the situation
in which this solution would be deployed, and represents a significant decrease in
tests administered.

Upon examining the figures, it can be seen that the curves represented by the
10,000 sample size simulations are much smoother than the curves represented by the
other populations. We suspect that the large sample size would reduce the variation
in estimations.

Upon examination of the results of these simulations, it is apparent that the
estimator has negligible bias for small group sizes.
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CHAPTER IV

CONCLUSIONS

1 Next Steps

There are several opportunities to build upon the research conducted as part of this
project. One opportunity is to build upon the utilization of the model for heteroge-
neous groups. It may be impractical, either due to time constraints, or due to geo-
graphic constraints, to test all samples in groups with like treatment status. There is
grounding for making estimations for heterogeneous groups. However, the solutions
for estimating p∗0 and p∗1 do not have a closed form. An initial attempt at designing
a program that estimates these values can be found in Appendix B.

Another opportunity for improvement is investigating this method for popula-
tions with different constraints. It would be important to tests the effectiveness of
this method for situations where the treatment or outcome is less frequent, or where
the treatment is far less effective. Also, it may be important to investigate popu-
lations with more complex criteria for treatment and outcome probabilities. Initial
investigations during the course of research indicated that adding additional or more
complex criteria greatly increased variance of the prediction, so it may be important
to investigate this issue further.

2 Conclusions

We have shown that the proposed estimator for ATE is consistent and our numerical
analysis confirmed that when group sizes are low, the bias and mean squared errors
are so low that the technique can be used without extreme concern for significant
random error.

In a typical situation it would seem that a representative sample of 2,000 with a
group size of 5 would be sufficient to accurately estimate outcome probabilities in a
situation with factors similar to the ones outlined in this thesis. The implementation
of group size constraints in such a study would drastically reduce the cost and time
requirements of conducting the study and even greatly increase feasibility of carrying
out the study in some situations.

Of course, with greater sample sizes comes greater degrees of certainty with the
results provided by the prediction. However, the exact relationship with sample and
group size is not yet apparent. For example, it seems that doubling the sample size
would not allow you to also double the group size, as the 5,000 population samples
with group size 5 yielded a bias of .002 and the 10,000 population samples of group
size 10 yielded a bias of .012. Essentially, one cannot increase the sample size and

15



expect to be able to use the same number of tests. However, keeping the group size
constant while increasing the sample size does appear to reduce bias.

Even if investigators are not able to design and implement studies for treatment
efficacy on a large scale, the concepts outlined here will allow them to utilize data
from group testing efforts made by other researchers or medical professionals for the
purposes of estimating disease prevalence. In situations like these, the investigator
will be able to determine if it is reasonable to apply these concepts. Ultimately, it is
up to the investigator to decide what degree of bias is acceptable, what sample size
is available to them, and what resources are available to them in order to make a
decision on using the group testing model to generate predictions.
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APPENDIX A: THEORETICAL FRAMEWORK

The validity of the estimation equations S(p) = 0: We need to show that E[S(p∗)] =
0. Consider E [S1(p

∗)]. Given Ni,

E

[
Ni∑
j=1

1{Aij = 1}Wi

{
−(1− Ỹi) +

Ni∏
k=1

(
1∑

a=0

1{Aik = a}(1− p∗a)

)}]

= E

{
Ni∑
j=1

1{Aij = 1} ×
Ni∏
k=1

(
1∑

a=0

1{Aik = a}π−1a (Xik)

)
×{

−(1− Ỹi) +

Ni∏
k=1

(
1∑

a=0

1{Aik = a}(1− p∗a)

)}}

= E

[
Ni∑
j=1

E

{
1{Aij = 1}π−11 (Xij)

∏
k 6=j

(
1∑

a=0

1{Aik = a}π−1a (Xik)

)
×[

−(1− Ỹi) + (1− p1)
∏
k 6=j

(
1∑

a=0

1{Aik = a}(1− p∗a)

)]}]
= E

[
Ni∑
j=1

Tij1 + Tij2

]

where

Tij1 : = E

[
−(1− Ỹi)1{Aij = 1}π−11 (Xij)

Ni∏
k 6=j

(
1∑

a=0

1{Aik = a}π−1a (Xik)

)]
,

Tij2 : = (1− p∗1)E

[
{1{Aij = 1}π−11 (Xij)

∏
k 6=j

(
1∑

a=0

1{Aik = a}(1− p∗a)π−1a (Xik)

)]
.

We deal with Tij1 and Tij2 separately. Noting that (Aij,Xij)’s are independent j =
1, · · · , Ni, and E [1{Aik = a}|Xik] = πa(Xik), it is easy to see that

Tij2 = (1− p∗1)E
[
1{Aij = 1}π−11 (Xij)

]∏
k 6=j

E

[
1∑

a=0

1{Aik = a}(1− p∗a)π−1a (Xik)

]

= (1− p∗1)E
[
E
[
1{Aij = 1}

∣∣∣Xij

]
π−11 (Xij)

]∏
k 6=j

E

[
E

[
1∑

a=0

1{Aik = a}(1− p∗a)π−1a (Xik)

∣∣∣∣∣Xik

]]
= (1− p∗1)(2− p∗1 − p∗0)Ni−1.
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Next, we evaluate Tij1. Noting that Ỹi = 1−
∏Ni

k=1(1− Yik),

Tij1 = −E

{
E

{
Ni∏
k=1

(1− Yik)× 1{Aij = 1}π−11 (Xij)

×

[∏
k 6=j

(
1∑

a=0

1{Aik = a}π−1a (Xik)

)] ∣∣∣∣∣{Xil}Ni
l=1

}}

= −E

{
E

{
Ni∏
k=1

[
1−

(
1{Aik = 1}Y (1)

ik + 1{Aik = 0}Y (0)
ik

)]
× 1{Aij = 1}π−11 (Xij)

×

[∏
k 6=j

(
1∑

a=0

1{Aik = a}π−1a (Xik)

)] ∣∣∣∣∣{Xil}Ni
l=1

}}

= −E

{
E

[
(1− Y (1)

ij )1{Aij = 1}π−11 (Xij)
∣∣∣Xij

]}
×

∏
k 6=j

E

{
E

[
1∑

a=0

1{Aik = a}π−1a (Xik)
(

1− Y (a)
ij

)∣∣∣Xik

]}
= −(1− p∗1) (2− p∗1 − p∗0)

Ni−1

where the last equality follows from

E

{
E

[
(1− Y (1)

ij )1{Aij = 1}π−11 (Xij)
∣∣∣Xij

]}

= E

{
E

[
1− Y (1)

ij

∣∣∣Xij

]
E

[
1{Aij = 1}π−11 (Xij)

∣∣∣Xij

]}

= E

{
E

[
1− Y (1)

ij

∣∣∣Xij

]}
= E

[
1− Y (1)

ij

]
= 1− p∗1,

and E
{
E
[∑1

a=0 1{Aik = a}π−1a (Xik)
(

1− Y (a)
ij

)∣∣∣Xik

]}
= 2−p∗1−p∗0. Thus,

∑N
j=1 Tij1+

Tij2 = 0 and it holds for all Ni’s. Thus E[S1(p
∗)] = 0. And similarly, we can show

the same for E[S0(p
∗)] = 0. Thus, S(p∗) = 0 are valid estimating equations.

If Aij’s are the same for 1 ≤ j ≤ Ni and Ni = J for 1 ≤ i ≤ N , S(p) = 0 become

M−1
M∑
i=1

J
J∏
k=1

1{Aij = 0}π−10 (Xik)×
{
−(1− Ỹi) + (1− p0)J

}
= 0

M−1
M∑
i=1

J
J∏
k=1

1{Aij = 1}π−11 (Xik)×
{
−(1− Ỹi) + (1− p1)J

}
= 0.
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And we obtain the solutions as

p̂0 = 1−

(∑M
i=1(1− Ỹi)

∏J
j=1 1{Aij = 0}π−10 (Xij)∑M

i=1

∏J
j=1 1{Aij = 0}π−10 (Xij)

)1/J

and

p̂1 = 1−

(∑M
i=1(1− Ỹi)

∏J
j=1 1{Aij = 1}π−11 (Xij)∑M

i=1

∏J
j=1 1{Aij = 1}π−11 (Xij)

)1/J

.

Noting that

∂Sb(p)/∂pc = −EM

[
Ni∑
j=1

1{Aij = b}Wi

(
Ni∑
l=1

1 {Ail = c}
∏
k 6=l

(
1∑

a=0

1{Aik = a}(1− pa)

))]
,

we define classes of functions

Fb :=

{
fb,p :=

Ni∑
j=1

1{Aij = b}Wi

{
−(1− Ỹi) +

Ni∏
k=1

(
1∑

a=0

1{Aik = a}(1− pa)

)}
,

p ∈ [ν, 1/2− ν]× [ν, 1/2− ν]

}
, b = 0, 1.

Gbc :=

{
gbc,p :=

Ni∑
j=1

1{Aij = b}Wi

{
Ni∑
l=1

1 {Ail = c}
∏
k 6=l

(
1∑

a=0

1{Aik = a}(1− pa)

)}
,

p ∈ [ν, 1/2− ν]× [ν, 1/2− ν]

}
, b, c = 0, 1.

Proof of Theorem 4.1: (i) We prove the result by invoking Theorem 3.2 in Crowder
(1986). Thus, we need to check the conditions (i) and (ii) of Theorem 3.2 in Crowder
(1986).

By Lemma 2.1, Fb, b = 0, 1’s and Gbc, b, c = 0, 1’s are Donsker, and hence Glivenko-
Cantelli. Thus,

sup
p∈[ν,1/2−ν]×[ν,1/2−ν]

max
{
‖S(p)→ E[S(p)]‖ ,

∥∥∥Ṡ(p)− E
[
Ṡ(p)

]∥∥∥}→p 0. (10)

Thus, condition (ii) of Theorem 3.2 in Crowder (1986) is satisfied.
Let ∂Br := {p : ‖p−p∗‖ = r} be the boundary of the circle Br := {p : ‖p−p∗‖ ≤

r}. Given a p ∈ ∂Br, consider (p− p∗)TE[S(p)]. Since E[S(p∗)] = 0, by the vector
valued mean value theorem (McLeod, 1965; Furi and Martelli, 1991),

(p− p∗)TE[S(p)] = (p− p∗)T(E[S(p)]− E[S(p∗)])

= (p− p∗)T
(
λ1E

[
Ṡ(p̃1)

]
+ λ2E

[
Ṡ(p̃2)

)]
(p− p∗)

= (p− p∗)T

λ1E
[
Ṡ(p̃1)

]
+ E

[
Ṡ(p̃1)

]T
2

+ λ2
E
[
Ṡ(p̃2)

]
+ E

[
Ṡ(p̃2)

]T
2

 (p− p∗)(11)
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where λ1, λ2 > 0, λ1 + λ2 = 1, p̃1 = t1p + (1 − t1)p∗, and p̃2 = t2p + (1 − t2)p∗, for
some 0 < t1, t2 < 1. When b = c,

E
[
Ṡbb(p)

]
= −E

[
Ni∑
j=1

1{Aij = b}Wi

(
Ni∑
l=1

1 {Ail = b}
∏
k 6=l

(
1∑

a=0

1{Aik = a}(1− pa)

))]

= −E

[
Wi

Ni∑
j=1

1{Aij = b}
∏
k 6=j

(
1∑

a=0

1{Aik = a}(1− pa)

)]

− E

[
Wi

Ni∑
j=1

∑
l 6=j

1{Aij = b}1{Ail = b}(1− pb)
∏
k 6=j,l

(
1∑

a=0

1{Aik = a}(1− pa)

)]
= −E

[
Ni(2− p0 − p1)Ni−1 +Ni(Ni − 1)(1− pb)(2− p0 − p1)Ni−2

]
where the last equation follows from the same arguments used for Tij1 and Tij2.
Likewise, when b 6= c

E
[
Ṡbc(p)

]
= −E

[
Wi

(
Ni∑
l=1

1 {Ail = c}
∏
k 6=l

(
1∑

a=0

1{Aik = a}(1− pa)

))
Ni∑
j=1

1{Aij = b}

]

= −E

[
Wi

Ni∑
j=1

∑
l 6=j

1{Aij = b}1{Ail = c}(1− pb)
∏
k 6=j,l

(
1∑

a=0

1{Aik = a}(1− pa)

)]
= −E

[
Ni(Ni − 1)(1− pb)(2− p0 − p1)Ni−2

]
.

Thus, E[Ṡ(p)] = −E
[
Ni(2− p0 − p1)Ni−2VNi

(p)
]
, where

VNi
(p) =

(
Ni + 1−Nip0 − p1 (Ni − 1)(1− p0)

(Ni − 1)(1− p1) Ni + 1− p0 −Nip1

)
,

and consequently,

E[Ṡ(p)] + E[Ṡ(p)]T

2

= −1

2
E

[
Ni(2− p0 − p1)Ni−2

(
2Ni + 2− 2Nip0 − 2p1 (Ni − 1)(2− p0 − p1)
(Ni − 1)(1− p0 − p1) 2Ni + 2− 2p0 − 2Nip1

)]
.

Under Condition (A3), the eigenvalues of −(E[Ṡ(p)] +E[Ṡ(p)]T)/2 are greater than
Λ for some Λ > 0, uniformly over p ∈ [ν, 1/2−ν]× [ν, 1/2−ν]. Therefore, combining
(11) and the fact above yield (p − p∗)T(−E[S(p)]) ≥ Λ‖p − p∗‖2 = Λr2. Thus,
condition (ii) of Theorem 3.2 in Crowder (1986) is satisfied as well.

By Theorem 3.2 in Crowder (1986), there exists a sequence p̃ such that p̃→p p∗.
(ii) By the vector valued mean value theorem (McLeod, 1965; Furi and Martelli, 1991)
again,

0 = S(p̃) = S(p∗) +
(
λ1Ṡ(p̃1) + λ2Ṡ(p̃2)

)
(p− p∗),
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where λ1, λ2 > 0, λ1 + λ2 = 1, p̃1 = t1p̃ + (1 − t1)p∗, and p̃2 = t2p̃ + (1 − t2)p∗, for
some 0 < t1, t2 < 1. Thus,

√
n(p̃− p∗) = −

(
λ1Ṡ(p̃1) + λ2Ṡ(p̃2)

)−1√
nS(p∗).

By central limit theorem, √
nS(p∗)→d N(0,Σ),

where Σ = E
[
S(p∗)S(p∗)T

]
. Because p̃ →p p∗ by Theorem 4.1 and the continu-

ous mapping theorem,
(
λ1Ṡ(p̃1) + λ2Ṡ(p̃2)

)−1
→p E[Ṡ(p∗)]−1. Then by Slutsky’s

theorem,
√
n(p̃− p∗)→p N(0, E[Ṡ(p∗)]−1Σ(E[Ṡ(p∗)]−1)T.

This complete the proof of Theorem 4.1. �
Proof of Corollary 4.1: Since ‖ĥ− h∗‖∞ = Op(M

−1/2), then max1≤i≤M ‖Ŵi −Wi‖ =
Op(M

−1/2). Noting that Ni ≤ N by Condition (A3) and

Ŝ0(p)− S0(p)

= EM

[
Ni∑
j=1

1{Aij = 0}(Ŵi −Wi)

{
−(1− Ỹi) +

Ni∏
k=1

(
1∑

a=0

1{Aik = a}(1− pa)

)}]
,

we obtain
sup

p∈[ν,1/2−ν]×[ν,1/2−ν]
|Ŝ0(p)− S0(p)| = Op(M

−1/2). (12)

Since both S0(p) and Ŝ0(p) are bounded, by dominated convergence theorem (see,
e.g., Williams, 1991), supp∈[ν,1/2−ν]×[ν,1/2−ν]E[|Ŝ0(p)− S0(p)|]→ 0.

Similarly, supp∈[ν,1/2−ν]×[ν,1/2−ν]E[|Ŝ1(p)− S1(p)|] → 0. Consequently, we obtain
that

sup
p∈[ν,1/2−ν]×[ν,1/2−ν]

E[‖Ŝ(p)− S(p)‖]→ 0. (13)

Thus,

inf
p∈∂B(r)

(p− p∗)T(−E[Ŝ(p)])

≥ inf
p∈∂B(r)

(p− p∗)T(−E[S(p)])− sup
p∈∂B(r)

‖p− p∗‖ ‖E[S(p)]− E[Ŝ(p)]‖

≥ Λ‖p− p∗‖2.

Thus, condition (i) of Theorem 3.2 in Crowder (1986) is satisfied.
Moreover, by (10), (12), and (13),

sup
p∈∂B(r)

∣∣∣Ŝ(p)− E
[
Ŝ(p)

]∣∣∣
≤ sup

p∈∂B(r)

∣∣∣Ŝ(p)− S(p)
∣∣∣+ sup

p∈∂B(r)

|S(p)− E [S(p)]|+ sup
p∈∂B(r)

∣∣∣E [Ŝ(p)
]
− E

[
Ŝ(p)

]∣∣∣
→p 0.

Thus, condition (ii) of Theorem 3.2 in Crowder (1986) is satisfied. Therefore, there
exists a sequence p̂ such that p̂→p p∗. This complete the proof of Corollary 4.1. �
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Lemmas

Lemma 2.1 Under Conditions (A1) – (A3), Fb, b = 0, 1’s and Gbc, b, c = 0, 1’s are
Donsker classes.

Proof: It is easy to see that Fb is of dimension 2. Then by Lemma 2.6.15 of Vaart
and Wellner (1996), Fb is VC-subgraph of index smaller than or equal to 4, where we
refer the definitions of VC-subgraph and VC-subgraph index to Chapter 2 of Vaart
and Wellner (1996).

By Conditions (A1) and (A2), |fb,p| ≤ 2N2ν−N . Thus, 2N2ν−N is an envelop
function for the class Fb. Then by Theorem 2.6.7 of Vaart and Wellner (1996), for
any probability measure Q,

N
(
2N2ν−Nε,Fb, L2(Q)

)
≤ 4K(16e)4ε−6,

for a universal constant K and 0 < ε < 1. We refer the definition of covering number
N(ε,F , L2(Q)) to Pages 83 and 98 of Vaart and Wellner (1996). Noting that∫ ∞

0

sup
Q

√
logN (2N2ν−Nε,Fb, L2(Q))dε =

∫ 1

0

sup
Q

√
logN (2N2ν−Nε,Fb, L2(Q))dε

≤
∫ 1

0

√
log 4K(16e)4 + log ε−6dε ≤

∫ 1

0

√
log 4K(16e)4dε+

∫ 1

0

√
−6 log εdε

=
√

log 4K(16e)4 +

∫ ∞
0

√
6u exp(−u)du <∞,

where u = −logε in the second equality, by Theorem 2.8.3 of Vaart and Wellner
(1996), Fb, b = 0, 1’s are Donsker. Similarly, we can show that Gbc, b, c = 0, 1’s are
Donsker as well. This completes the proof of Lemma 2.1. �

24



APPENDIX B: SIMULATION CODE

Estimation Function

The function below creates estimates for probability of treated or untreated infection
rate. The d input is the data to be inputted. The t function indicates where the
groups in the sample are treated or untreated. The g function describes group size.

prob<- function(d,t,g){

s1<-c()

s2<-c()

stg<- d[which(d$treat == t & d$full.group == 1),]

for (i in min(stg$group):max(stg$group)){

product <- prod((stg$predict[which(stg$group ==i)]^-1))

#numerator

s1<- c(s1,((1-max(stg$positive[which(stg$group==i)]))*product))

#denominator

s2<-c(s2,product)

}

return(1 - (sum(s1)/sum(s2))^(1/g))

}

Population Creation and Estimation

MSE=c()

SE = c()

for (gsize in 1:20){

predicted<-c()

actual<-c()

for (i in 1:100){

#set sample size

num<- 2000

#sample age

age<-round(rnorm(num, 39, 12),0)

#condition

con<-rbinom(num,1,.2)
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xb<- -6.5 + .1*age +2*con

p<-1/(1+exp(-xb))

treat<-rbinom(n=num, size =1, prob = p)

#Create distribution of infections

# Not using actual infection rates or estimated vaccination success rates

# due to small sample size. Try to replicate ~10% positivity among untreated

xb<- -7.2 + .1*age +3*con -5*treat

p<-1/(1+exp(-xb))

positive<-rbinom(n=num, size =1, prob = p)

xb<- -7.2 + .1*age +3*con -5 ### All subjects were treated

p<-1/(1+exp(-xb))

p1 = mean(p) ### average infection rate

xb<- -7.2 + .1*age +3*con ### none got treated

p<-1/(1+exp(-xb))

p0 = mean(p) ### average infection rate

############################

############################

#create data frame

data<- data.frame(n=1:num, age, con, treat, positive)

#randomize and group treated individuals

grp<- gsize

treated<- data[data$treat==1,]

rows<- sample(nrow(treated))

treated2<-treated[rows,]

group<-ceiling((1:nrow(treated2))/grp)

treated3<-cbind(treated2, group)

treated3$full.group<-0

treated3$full.group[(1:(floor(nrow(treated3)/grp)*grp))]<-1
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#randomize and group untreated individuals

untreated<-data[data$treat==0,]

rows<- sample(nrow(untreated))

untreated2<-untreated[rows,]

group2<-ceiling((1:nrow(untreated2))/grp)+max(group)

untreated3<-cbind(untreated2, group2)

untreated3$full.group<-0

untreated3$full.group[(1:(floor(nrow(untreated3)/grp)*grp))]<-1

colnames(untreated3)[6]<-’group’

#recombine groups

data.final<-rbind(treated3,untreated3)

data.final.sorted<-data.final[order(data.final$n),]

data.final.sorted$pt<-pt

#

#

#

#

# Calculations

#

#

#

#

trtProbModel <- glm(treat~age+con,family = ’binomial’, data=data.final.sorted)

data.final.sorted$trtPredictYes<-predict(trtProbModel,

newdata = data.final.sorted[,c(2,3)], type = ’response’)

data.final.sorted$trtPredictNo<-1-data.final.sorted$trtPredictYes

predicted<-c(predicted,prob(data.final.sorted, 0, grp) -

prob(data.final.sorted, 1, grp))

actual<-c(actual,p0-p1)

}

MSE<-c(MSE, mean((predicted-actual)^2))

SE<- c(SE,sd(predicted-actual))

}

Bias<- sqrt(abs(MSE - SE^2))
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Heterogeneous Estimation

Below is the code proposed to estimate conditional infection rates for heterogeneously
composed groups. S0 and S1 are functions that make up part of the function that
searches for the conditional probability values. P.solve is the only function that needs
to be run, and can replace the prob function described in the previous section.

s0<- function(d,g,p0,p1){

s<c()

stg<- d[which(d$full.group == 1),]

for (i in min(stg$group):max(stg$group)){

rowz<-which(stg$group ==i)

w<-prod(stg$treat[rowz]*stg$p_assign[rowz]^-1 +

(1-stg$treat[rowz])*(1-stg$p_assign[rowz])^-1)

s<-c(s,nrow(stg[which(stg$group==i & stg$treat == 0),]) *

w*(-(1-max(stg$positive[rowz])) +

prod(stg$treat[rowz]*(1-p1) + (1-stg$treat[rowz])*(1-p0))))

}

return(mean(s))

}

s1<- function(d,g,p0,p1){

s<c()

stg<- d[which(d$full.group == 1),]

for (i in min(stg$group):max(stg$group)){

rowz<-which(stg$group ==i)

w<-prod(stg$treat[rowz]*stg$p_assign[rowz]^-1 +

(1-stg$treat[rowz])*(1-stg$p_assign[rowz])^-1)

s<-c(s,nrow(stg[which(stg$group==i & stg$treat == 1),]) *

w*(-(1-max(stg$positive[rowz])) +

prod(stg$treat[rowz]*(1-p1) + (1-stg$treat[rowz])*(1-p0))))

}

return(mean(s))

}

p.solve<- function(d){
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jbot<-0

jtop<-.1

j<-mean(c(jtop,jbot))

while(jtop-jbot>.001){

top<-.3

bot<-0

i<-mean(c(top,bot))

while (top-bot>.001){

x<-mean(c(i,top))

if (ssq(d,5,i,j) < ssq(d,5,x,j)){

top<-x

} else {bot<-i}

i<-mean(c(top,bot))

}

xj<-mean(c(jtop,j))

top<-.3

bot<-0

ij<-mean(c(top,bot))

while (top-bot>.001){

x<-mean(c(ij,top))

if (ssq(d,5,ij,xj) < ssq(d,5,x,xj)){

top<-x

} else {bot<-ij}

ij<-mean(c(top,bot))

}

if (ssq(d,5,i,j) < ssq(d,5,ij,xj)){

jtop<-xj

} else {jbot<-j}

j<-mean(c(jtop,jbot))

}

return(data.frame(p0=i,p1=j, ssq= ssq(d,5,i,j),

s0 = s0(d,5,i,j), s1 = s1(d,5,i,j)))

}

ssq<- function(d,g,p0,p1){

return(sqrt(s1(d,g,p0,p1)^2+s0(d,g,p0,p1)^2))

}
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