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ABSTRACT 

IDENTIFYING THE CARDIOVASCULAR EFFECTS OF MULTIPLE POLLUTANTS 

Katlyn E. McGraw 

7 April 2021 

Cardiovascular disease (CVD) is the leading cause of death from environmental 

exposures. Although exposure to PM2.5 is an established risk factor for CVD, the contribution of 

other hazardous pollutant exposure to CVD is less clear. Overall, this work aimed to examine the 

effect of pollutants with lesser documented effects on cardiovascular disease using a multi-

pronged approach to exposure assessment. The three aims were to examine the relationship 

between county-level toxic chemical releases and CVD mortality in the contiguous United States 

between 2002 and 2012, to assess the relationship between individual-level VOC metabolites 

and vascular function, and to build multipollutant models from the previous two aims to assess 

the role of mixtures and mixture components in CVD mortality and vascular function. In our 

national, county-level study, we found that for every 25% increase in annual county-level toxic 

release, we found a 2.8% (1.2, 4.4; p-value=0.0006) increase in CVD mortality rate. We also 

found that for every 25% increase in annual county-level risk score, there was a 3.0% (95%CI 

1.3, 4.6; p-value=0.0003) increase in CVD mortality. Using the multipollutant method, elastic net, 

we identified five out of 467 potentially toxic chemicals at the county-level: bromoform, 

dichlorobromomethane, dichlorotrifluoroethane, nitrophenol, and thallium. In our study of 

individual-level VOC metabolites, we found that the acrolein metabolite, 3HPMA, was positively 

associated with systolic BP (+0.98 per SD of 3HPMA; CI: 0.04, 1.91; P=0.04). For each IQR of 

3HPMA or DHBMA (a 1,3-butadiene metabolite), there was a 3.3% (CI: -6.18, -0.37; p-value: 

0.03) or a 4.0% (CI: -7.72, -0.12; P=0.04) decrease in endothelial function. Urinary levels of the 

1,3-butadiene metabolite, MHBMA3, were positively associated with a 2.9% increase in urinary 

epinephrine (CI: 0.48, 5.37; P=0.02). Using the multipollutant method, Bayesian Kernel Machine 
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Regression, we found that the whole mixture of VOC metabolites (CEMA, 3HPMA, DHBMA, 

MHBMA3, and HPMMA) was significantly associated with blood pressure, which was primarily 

driven by 3HPMA. Taken together, these findings suggest that exposure to under regulated 

pollutants like TRI chemicals and VOCs contribute to CVD mortality and vascular dysfunction. 

Further research is required to corroborate these findings. 
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 POLLUTION AND CARDIOVASCULAR DISEASE 

INTRODUCTION 

Cardiovascular disease (CVD) is the leading cause of death from environmental 

exposures, surpassing cancer mortality.1  In 2017, the Lancet Commission on Pollution and 

Health estimated the global burden of disease caused by pollution is responsible for 9 million 

premature deaths annually.2 Approximately seven million premature deaths are attributed to 

either household or ambient air pollution.3 The World Health Organization estimates that 

exposure to air pollution is associated with 1.4 million deaths from stroke and 2.4 million deaths 

from heart disease, annually.3  

Air pollution is a mixture of particulates and gaseous components, including particulate 

matter, nitrogen oxides, sulfur dioxides, ozone, carbon monoxide, organic and black carbon, and 

volatile organic compounds (VOCs).The majority of air pollution studies use population weighted, 

annual mean concentrations of particulate matter of diameter 2.5 µm (PM2.5) and tropospheric 

ozone (O3) to estimate air pollution exposure-related mortality.4 However, even though the links 

between exposure to these two pollutants and CVD are well-documented,5-7  PM2.5 and O3 only 

represent a portion of multifactorial pollution. Therefore, there is a need to understand the role of 

other pollutants in the development of CVD in exposed individuals. 

Volatile organic compounds (VOCs) are gaseous compounds that comprise a major part 

of indoor and outdoor air pollution. Primary sources of VOCs are combustion from tobacco smoke 

and vehicle exhaust, industrial releases, hazardous waste sites, consumer goods production, and 

products that contain organic solvents.8 VOCs also interact with other pollutants to create 

intermediates and secondary pollutants such as tropospheric O3 and secondary organic aerosols 

(SOAs), a major component of particulate matter.9, 10 However, compared with PM2.5, VOC 

exposure approximation is complicated by a lack of routine air monitoring of VOCs,11, 12 large 
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variations of VOCs in space and time,13, 14 and a high volume of chemicals in production each 

year.15 Despite decreasing national trends in pollutants,11, 12, 16 VOCs remain under-regulated and 

uncharacterized in relation to cardiovascular health. 

Although there are difficulties inherent in the quantification of VOCs and VOC exposure, 

some evidence suggests exposure to VOCs causes adverse health effects such as CVD. Previous 

epidemiological studies have shown significant associations between exposure to ambient VOCs 

such as alkenes, alkynes, and BTEX compounds (benzene, toluene, ethyl benzene and xylene) 

and cardiovascular events such as heart failure,17 stroke, 18 ischemic heart disease, 18, 19 and 

cardiovascular mortality rates.20  Indoor exposure to total VOCs has been associated with 

increased blood pressure and heart rate,21 and VOC metabolites measured in blood are associated 

with an increased prevalence of doctor-diagnosed CVD in the National Health and Nutrition 

Examination Survey (NHANES) cohort.22 Hazardous air pollutants (HAPs) released from industrial 

facilities are associated with cardiovascular mortality in an ecological study, many of which are 

classified as VOC.19 Likewise, VOC-containing mixtures of pollutants such as automobile and 

diesel engine emissions, and tobacco smoke have been linked to the development of CVD.23-29 

However, the role of individual VOCs and mixtures of VOCs in CVD pathophysiology remains to 

be identified in human studies.  

To better understand the role of VOC exposure in the development of CVD, I proposed 

three distinct methods to assess human exposure to VOCs: source proximity, human 

biomonitoring, and mixture modelling. These three methods were then used to assess the 

relationship between VOC exposure and CVD, the overall research goal. This study fills a gap in 

existing literature around VOCs, specifically in exposure assessment methods, as well as 

presenting further evidence of a relationship between VOC exposure and CVD. Although these 

exposure assessment methods have been used before, this study extends prior research by 

using both aggregate and individual level data, longitudinal data, mixed models, and mixture 

analyses to improve previously published work. This study improves and provides new models to 

elucidate the link between exposure to VOCs and CVD in humans.  
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To provide context for this study, I briefly describe national VOC trends, classification, 

and sources of VOCs. Next, I describe the regulation, surveillance, and measurement of VOCs to 

give context to the exposure assessment problem. I then evaluate the literature on exposure to 

VOCs and CVD in ecological and epidemiological studies. The problem is then stated with an 

outline of the hypotheses and aims. I further introduce the rationale, relevance, and significance 

of the study, and describe assumptions, limitations, and delimitations of the study. Terms are 

defined and a description of the following chapters ends the introductory chapter. 

BACKGROUND 

General Overview of VOCs 

The National Emissions Inventory Report estimated VOC emissions represent 13.7% of 

total emissions in 2014. Despite reductions in VOC emissions from approximately 20.2 million 

tons in 2002 to 16.9 million tons in 2014,30 VOCs continue to be prevalent as they arise from 

other major, area, and mobile sources. The regulation of VOCs occurs largely via maximum 

control technologies, emission reduction programs, and mobile source regulation. However, the 

extent to which VOCs are present in our environment is underestimated by the lack of routine 

monitoring. Thus, it is important to acknowledge the impact of VOCs in our environment and to 

better understand their role in contributing to adverse health effects.  

VOCs represent a large class of chemicals defined by high vapor pressure, low boiling 

point, and low molecular weight. Therefore, these compounds volatilize quickly into the 

atmosphere, signifying their importance as an environmental pollutant in indoor and outdoor air. 

They contain carbon and are emitted from liquids and solids, or are released during combustion.31 

High vapor pressure is the property which first led to regulation and nomenclature of VOCs due to 

their ability to vaporize into the atmosphere and contribute to photochemical smog or ozone, a 

federally regulated secondary pollutant. The U.S. Environmental Protection Agency (EPA) defines 

a VOC as ‘…any compound of carbon, excluding carbon monoxide, carbon dioxide, carbonic 

acid, metallic carbides or carbonates, and ammonium carbonate, which participates in 

atmospheric photochemical reactions.’32 Although VOCs are prevalent in air as primary and 
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secondary pollutants, they also contaminate soil and drinking water, especially in close proximity 

to hazardous waste sites.33, 34 

VOCs are ubiquitous in the environment, varying spatially and temporally because of 

weight and reactivity.20 They arise from both anthropogenic and natural sources. Natural sources 

include volcanoes, vegetation, and animals. Anthropogenic sources include combustion 

processes such as vehicle exhaust or fuel combustion, industry emissions, chemical feedstocks 

to produce consumer products, oil and gas, and waste sites. Source types include point, area, 

and mobile sources. Point sources, or major sources, are stationary sources such as industrial 

facilities, chemical plants, steel mills, oil refineries and hazardous waste incinerators. Area 

sources are multiple, smaller sources which release pollutants into the air like dry cleaners, gas 

stations, and woodstoves. Mobile sources are cars, trucks, trains, airplanes, marine vessels, and 

other non-road equipment. Major sources are divided into sectors: agriculture, dust, fire, fuel 

combustion, industrial processes, miscellaneous, mobile, and solvent. Point source pollution is a 

localized source of toxics while area source emissions are well-distributed. Federal regulation of 

VOCs occurs only at area and point sources.  

VOCs are a major source of indoor pollution as well. The average person spends at least 

80% of time indoors.35 According to the EPA, indoor VOC levels are much higher than outdoor, 

mostly due to inadequate ventilation after diffusion of ambient pollution indoor. Indoor VOCs 

come from many household and common consumer products such as cosmetics, personal care 

products, furniture, cleaning products, and building materials. Thus, these organics are ubiquitous 

in the indoor and outdoor environment, threatening all routes of human exposure. 

Exposure to VOCs can cause varied human health effects, such as neurological 

disorders, organ toxicity, and cancer, dependent on the chemical compound. Many VOCs are 

thereby classified hazardous air pollutants (HAPs) or air toxics.36 The Clean Air Act (CAA) lists 

188 chemicals as HAPs known to be harmful to human health (Table 1-1), several of which are 

VOCs. Federal public health and regulatory agencies, such as the Environmental Protection 

Agency (EPA), the Agency for Toxic Substances and Disease Registry (ATSDR), and the 

Occupational Health and Safety Administration (OSHA) publish permissible rates of human 
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exposure, based on established toxicological studies of humans and animals. However, many 

permissible rates originate from occupational cohorts with large doses, values not indicative of 



Table 1-1. 

Hazardous Air 

Pollutants under the 

Clean Air Act. 

Acetaldehyde 
Acetamide 
Acetonitrile 
Acetophenone 
2-Acetylaminofluorene 
Acrolein 
Acrylamide 
Acrylic acid 
Acrylonitrile 
Allyl chloride 
4-Aminobiphenyl 
Aniline 
o-Anisidine 
Asbestos 
Benzene-including 
gasoline 
Benzidine 
Benzotrichloride 
Benzyl chloride 
Biphenyl 
Bis(2-ethylhexyl)phthalate 
Bis(chloromethyl)ether 
Bromoform 
1,3-Butadiene 
Calcium cyanamide 
Caprolactam 
Captan 
Carbaryl 
Carbon disulfide 
Carbon tetrachloride 
Carbonyl sulfide 
Catechol 

Chloramben 
Chlordane 
Chlorine 
Chloroacetic acid 
2-Chloroacetophenone 
Chlorobenzene 
Chlorobenzilate 
Chloroform 
Chloromethyl methyl ether 
Chloroprene 
Cresols/Cresylic acid  
o-Cresol 
m-Cresol 
p-Creso 
Cumene 
2,4-D, salts and esters 
DDE 
Diazomethane 
Dibenzofurans 
1,2-Dibromo-3-
chloropropane 
Dibutylphthalate 
1,4-Dichlorobenzene(p) 
3,3-Dichlorobenzidene 
Dichloroethyl ether  
1,3-Dichloropropene 
Dichlorvos 
Diethanolamine 
N,N-Dimethylaniline 
Diethyl sulfate 
3,3-Dimethoxybenzidine 
Dimethyl 
aminoazobenzene 
3,3'-Dimethyl benzidine 
Dimethyl carbamoyl 
chloride 
Dimethyl formamide 
1,1-Dimethyl hydrazine 
Dimethyl phthalate 
Dimethyl sulfate 
4,6-Dinitro-o-cresol 
2,4-Dinitrophenol 
2,4-Dinitrotoluene 

1,4-Dioxane  
1,2-Diphenylhydrazine 
Epichlorohydrin 
1,2-Epoxybutane 
Ethyl acrylate 
Ethyl benzene 
Ethyl carbamate  
Ethyl chloride  
Ethylene dibromide  
Ethylene dichloride  
Ethylene glycol 
Ethylene imine  
Ethylene oxide 
Ethylene thiourea 
Ethylidene dichloride  
Formaldehyde 
Heptachlor 
Hexachlorobenzene 
Hexachlorobutadiene 
Hexachlorocyclopentadie 
Hexachloroethane 
Hexamethylene-1,6-
diisocyanate 
Hexamethylphosphoramid 
Hexane 
Hydrazine 
Hydrochloric acid 
Hydrogen fluoride  
Hydrogen sulfide  
Hydroquinone 
Isophorone 
Lindane  
Maleic anhydride 
Methanol 
Methoxychlor 
Methyl bromide  
Methyl chloride  
Methyl chloroform  
Methyl ethyl ketone  
Methyl hydrazine 
Methyl iodide  
Methyl isobutyl ketone 
Methyl isocyanate 

Methyl methacrylate 
Methyl tert butyl ether 
4,4-Methylene bis(2-
chloroaniline) 
Methylene chloride  
Methylene diphenyl 
diisocyanate (MDI) 
4,4'-Methylenedianiline 
Naphthalene 
Nitrobenzene 
4-Nitrobiphenyl 
4-Nitrophenol 
2-Nitropropane 
N-Nitroso-N-methylurea 
N-Nitrosodimethylamine 
N-Nitrosomorpholine 
Parathion 
Pentachloronitrobenzene  
Pentachlorophenol 
Phenol 
p-Phenylenediamine 
Phosgene 
Phosphine 
Phosphorus 
Phthalic anhydride 
Polychlorinated biphenyls 
1,3-Propane sultone 
beta-Propiolactone 
Propionaldehyde 
Propoxur  
Propylene dichloride  
Propylene oxide 
1,2-Propylenimine  
Quinoline 
Quinone 
Styrene 
Styrene oxide 
2,3,7,8-
Tetrachlorodibenzo-p-
dioxin 
1,1,2,2-
Tetrachloroethane 
Tetrachloroethylene 

Titanium tetrachloride 
Toluene 
2,4-Toluene diamine 
2,4-Toluene diisocyanate 
o-Toluidine 
Toxaphene  
1,2,4-Trichlorobenzene 
1,1,2-Trichloroethane 
Trichloroethylene 
2,4,5-Trichlorophenol 
2,4,6-Trichlorophenol 
Triethylamine 
Trifluralin 
2,2,4-Trimethylpentane 
Vinyl acetate 
Vinyl bromide 
Vinyl chloride 
Vinylidene chloride  
Xylenes all isomers 
o-Xylenes 
m-Xylenes 
p-Xylenes 
Antimony Compounds 
Arsenic Compounds  
Beryllium Compounds 
Cadmium Compounds 
Chromium Compounds 
Cobalt Compounds 
Coke Oven Emissions 
Cyanide Compounds 
Glycol ethers  
Lead Compounds 
Manganese Compounds 
Mercury Compounds 
Fine mineral fibers 
Nickel Compounds 
Polycyclic Organic Matter 
Radionuclides  
Selenium Compounds

Abundance of data: > 20 monitoring sites with sufficient data to create a valid annual average between 2003-2005, up to 434 sites 
Little data: < 20 monitoring sites with sufficient data to create a valid annual average between 2003-2005, between 1-17 sites 
No data: No valid annual averages between 2003-2005 from http://www.epa.gov/ttn/atw/188polls.html 
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the public health impact. Furthermore, toxicological studies focus on organ toxicity and 

more easily measurable effects such as cancer, in lieu of more prevalent chronic diseases, such 

as CVDs. Therefore, the effect of VOC exposure on cardiovascular and metabolic toxicity 

remains under characterized.  

Regulation of VOCs 

Due to the ubiquity and harmful effects of VOCs, the federal government promulgates 

regulations for emission reduction and efforts to reduce adverse health effects. There are two 

major federal laws governing VOCs, the Clean Air Act (CAA), and the Emergency and 

Community Right to Know Act (EPCRA). Both laws are part of Title 42 of the United States Code 

on Public Health and Welfare. Title 40 is the Protection of the Environment which largely outlines 

how these promulgations will be followed. The CAA was first promulgated in 1970 and continues 

to be amended to meet public health and welfare needs. In Title 42, Chapter 85, Subchapter 1 

Part A of the U.S. code, congress recognizes that rapid urbanization, growth in amount and 

complexity of air pollution, and ability of pollution to cross boundaries as important evidence for 

the regulation of air pollution for the protection of public health and welfare. The U.S. code 

specifically declares ‘to protect and enhance the quality of air resources to promote public welfare 

and productive capacity of the working public.’37  

The key regulations of the CAA are the primary and secondary national ambient air 

quality standards (NAAQS). Six criteria pollutants were named NAAQS: particulate matter (PM), 

ozone (O₃), carbon monoxide (CO), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and lead (Pb). 

Established NAAQS are to be thoroughly reviewed by the administrator and an independent 

scientific review committee every five years to uphold applicability and relevance. States are 

required to adopt and submit a plan for implementation, maintenance, and enforcement of 

standards in each air quality region within the state.38 Conversely, VOCs do not have regulatory 

ambient air concentrations to meet in the CAA. Instead, Section 7412 of the CAA classifies a list 

of 188 hazardous air pollutants (HAPS) or air toxics, of which several are volatile organic 

pollutants. According to the section, emission regulations will be promulgated by source type: 

major, stationary, or area source; excluding mobile or off-road sources. Major sources are 
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stationary or multiple stationary sources with potential to emit 10 tons per year of any HAP, or 

potential to emit 25 tons per year of any combination of HAPs. Hazardous air pollutants are any 

pollutant listed in section 7412 (and Table 1) and represent pollutants which present or may 

present adverse health effects including but not limited to carcinogenicity, teratogenicity, 

mutagenicity, neurotoxicity, reproductive dysfunction, or are acutely or chronically toxic through 

route of inhalation. HAPs also represent pollutants which present or may present adverse 

environmental effects whether through ambient concentrations, bioaccumulation, deposition, or 

releases. 

Under the CAA, EPA must regulate HAPS using maximum allowable control technologies 

(MACTs) or national standards for fuels, cars, and trucks. Major sources releasing HAPS (10 tons 

per year) are regulated by standards requiring the application of air pollution controls known as 

MACTs. Air toxics or HAPS are monitored through an air toxics program which focuses primarily 

on reducing HAPS by applying available control technologies for industrial sources and area 

sources. Air toxics monitoring programs measure success in reduction in emissions, not air 

quality. The three primary objectives of the air toxics monitoring program are 1) determine trends 

and account for program progress, 2) support exposure assessments by providing comparison 

data for personal measurements, and 3) provide a basic structure for models for exposure 

assessments, emission control standards, and program effectiveness assessments.39 The 

National Air Toxics Monitoring Program uses three distinct monitoring methods: National Air 

Toxics Trends Stations, Community Scale projects, and existing state and local program 

monitoring. The EPA uses air dispersion modeling to estimate the impact of HAP emissions on 

ambient air and human health through the National Air Toxics Assessment. 

The second major federal law governing VOCs in the environment is the Emergency 

Planning and Community Right to Know Act (EPCRA) which was first promulgated in 1986 as 

Title III of the Superfund Amendments and Reauthorization Act. Title 42, Chapter 116, 

Subchapters I, II, and III cover EPCRA. The chapter promulgates emergency planning and 

notification, reporting requirements, and general provisions regarding hazardous chemicals and 

extremely hazardous chemicals. Extremely hazardous substances require creation and 
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submission of a comprehensive emergency response plan by the local emergency planning 

committee (LEPC). Alternatively, the owner or operator of a facility with ten or more employees 

that manufactures, processes, or otherwise uses more than 25,000 pounds of a hazardous 

chemical must complete a toxic chemical release form. The administrator of the EPA establishes 

and maintains a national toxic chemical release inventory based on data submitted under section 

Title 42 Chapter 116 Subchapter II Section 11023. The inventory is known as the annual toxic 

release inventory (TRI). 

Surveillance of VOCs 

To monitor and regulate VOCs and air pollution, the National Emissions Inventory (NEI) 

program measures criteria pollutants, criteria precursors, and HAPs or air toxics from air 

emissions sources. National, regional, state, and local air monitoring is key to regulation and 

human health and ecology assessment. Ambient air monitoring is the systematic, long-term 

assessment of pollution in surrounding, outdoor air and is integral to managing and maintaining 

air quality and protecting public health. Some reasons to collect air pollution data are to assess 

the extent of pollution, provide air pollution data to the public, support implementation of air 

quality standards or goals, evaluate the effectiveness of emission control strategies, provide 

information on air quality trends, provide data for the evaluation of air quality models, and to 

support research. Monitoring plans are developed based on the type of pollutant and what the 

data is trying to achieve.40  

Public health surveillance systematically collects data on specific health events affecting 

a population, analyzes and interprets those data, and effectively communicates those data to 

public health professionals and lawmakers.41 Air monitoring surveillance acquires data via 

stationary monitoring stations to meet four objectives: 1) to define air quality in heavily polluted 

areas, 2) to define air quality in less populated areas, 3) to provide area wide representation of 

ambient air quality, and 4) to define air quality with respect to the source category, or source, or 

both, to provide feedback relative to the effectiveness of adopted control strategies.42 National 

level surveillance helps to provide a clear distribution of the data while states collecting data 
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provide more specific characteristics on a site by site basis. Monitoring is required at all levels to 

understand and reduce risk, the primary objective of air toxics monitoring.43  

There are two major national monitoring efforts specific to monitoring air toxics: the 

National Air Toxics Trends Stations and the Urban Air Toxics Monitoring Program. Other ambient 

air monitoring programs developed for other purposes but which still provide air toxics data are 

Photochemical Assessment Monitoring Station program, the Chemical Speciation Network and 

the Speciation Trends Network, and the Interagency Monitoring of Protected Visual Environments 

(Figure 1-1 and 1-2). State and local government operate air toxics monitoring programs and 

design special studies to understand air toxics in their communities. 

The National Air Toxics Trends Stations (NATTS) were first created in 2003 to meet the 

requirements of the Clean Air Act regarding the 187 HAPs causing adverse health effects. The 

primary objective of NATTS are to provide long-term monitoring of air toxics to assess trends, 

emission reduction program efficiency, and to assess and verify air quality models across the 

nation. The goal of the monitoring network is to be able to detect a 15% difference between 

successive 3-year annual mean concentrations.44 The NATTS currently include 27 national air 

toxics trends sites with 20 in urban areas and 7 in rural areas. The National Air Toxics 

Assessment (NATA) is a screening tool based on air quality monitoring and includes data from 

NATTS. NATA is a screening tool for state, local, and tribal agencies that assesses outdoor air 

quality with respect to emissions. NATA helps to identify areas of concern, characterize risk, and 

track progress.43 Air toxic concentrations are reported at the census level. Six assessments have 

been conducted and published for years 1996, 1999, 2002, 2005, 2011, and 2014. 

The Urban Air Toxics Monitoring Program (UATMP) is a voluntary monitoring program 

which encourages state, local, and tribal agencies to understand the nature and extent of 

potentially toxic pollution in urban areas. The UATMP includes some NATTS, local scale 

monitoring stations, and approximately 105 funded air toxics monitoring sites.45 The Integrated 

Urban Air Toxics Strategy is part of the National Air Toxics Program and was developed by the 

EPA in 1999 to further regulate air toxics in urban areas by collectively looking at large and small 

industrial and commercial operations and mobile sources. The strategy addresses air toxics in  
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Figure 1-1. Federal air monitoring programs monitoring hazardous air pollutants in the contiguous 

United States. 

Figure 1-2. Select air monitoring stations measuring volatile organic compounds classified as 

hazardous air pollutants in the contiguous United States. 
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urban areas and outlines actions to reduce emissions and improve understanding of the health 

risks of air toxics. The goals of the strategy are 1) reduce by 75% the risk of cancer associated 

with air toxics from industrial and commercial sources; 2) substantially reduce noncancer health 

risks associated with air toxics from industrial and commercial sources; and 3) address 

disproportionate impacts of air toxics hazards across urban areas, such as those known as hot 

spots and minority and low-income communities. Air toxics pose special threats in urban areas 

because they are densely populated areas with a variety of toxic sources. These pollution 

sources combined could potentially pose significant health threats. Furthermore, minority and low 

income communities are often closely located to industrial and commercial urbanized areas 

indicating environmental injustice.46 

Other programs under which VOCs are monitored are the Photochemical Assessment 

Monitoring Station Program, Chemical Speciation Network, and the Interagency Monitoring of 

Protected Visual Environments. The primary objective of the Photochemical Assessment 

Monitoring Station Program (PAMS) is to assess ozone control programs by identifying key 

constituents, tracking trends, characterizing transport, assisting in forecasting episodes, and 

assisting in improving emission inventories. The VOCs measured in the PAMS network include 

acetaldehyde, benzene, ethylbenzene, formaldehyde, styrene, toluene, and xylenes. State 

implementation plans are required to implement measures for monitoring ozone precursors. Title 

40 of the Code of Regulations, Part 58 requires states to establish PAMS as part of their state 

implementation plan monitoring networks in ozone nonattainment areas classified as serious, 

severe, or extreme.47 The Chemical Speciation Network (CSN) supports the PM2.5 NAAQS. The 

purpose of the CSN is to provide nationally consistent speciated PM2.5 data for the assessment 

of trends. The CSN quantifies mass concentrations and PM2.5 constituents which include trace 

elements, elemental carbon, and organic carbon.43 The Interagency Monitoring of Protected 

Visual Environments (IMPROVE) program also provides PM2.5 speciation and mass 

measurements in national parks and wilderness areas. However speciated PM2.5 metals are the 

only toxics measured in this network. 43 
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Finally, state and local air monitoring programs inform local air quality. The EPA began 

programs to fund local scale monitoring programs in the 2004 fiscal year. The goal of local air 

monitoring is to provide more flexibility to address middle and neighborhood scale issues that are 

not handled well by national networks. Specific objectives include identifying and profiling air 

toxics sources, developing and assessing emerging measurement methods, characterizing the 

degree and extent of local air toxics problems, and tracking progress of air toxics reduction 

activities. Projects are selected through an open competition process. Local scale monitoring is 

typically conducted for one and a half to three years. Expected outcomes of these projects are 

increased state, local, and tribal agency ability to 1) characterize the sources and local 

distribution of HAPS, and 2) assess human exposure and risk at a local scale. The program is 

referred to as the Community Scale Air Toxics Ambient Monitoring (CSATAM) projects.43, 48 

Measurement of VOCs in Air 

Air toxics or HAPS are present in the atmosphere in gaseous, particulate, and semi-

volatile form and are therefore difficult to quantify with one single measurement method. 

Differences in chemical and physical properties of compounds further complicate quantification of 

HAPS. The choice of measurement technique depends on the objectives of data collection 

including chemical species of interest, funds available, and desired detection limit. 

Measurement in air requires three main components: sample method, extraction method, 

and detection method.49 Sampling methods include active, passive, and grab sampling. Active 

sampling uses a pump to draw in a specified volume of air through an absorbent tube, at a 

constant, low flow rate. Active sampling is advantageous in long-term or regulatory settings due 

to the ability to constantly monitor. Passive sampling contains an absorbent material covered by 

cross-section tube and functions by diffusion. The distance between the cross-section and 

absorbent material determines the sampling rate. Grab sampling uses a stainless steel cannister 

with a flow restrictive inlet. Grab sampling is useful for short sampling times of 10-30 seconds in 

microenvironments. 

Sample extraction is important to remove the sample for further analysis. Some common 

extraction methods are chemical and thermal desorption, solvent extraction, and solid phase 
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microextraction. Chemical desorption uses organic solvent to desorb target VOCs from solid 

sorbent. Thermal desorption subjects the sorbent to high temperatures of 200°C to 380°C to 

remove the analyte. Passive sampler membrane extraction transfers analyte from a donor to an 

acceptor phase using a multi-membrane device. 

Gas chromatography is the commonly employed method for VOC detection. 

Chromatography separates the analyte in a column containing liquid stationary phase. A carrier 

gas transports the analyte through the column to be eluted by polarity. The detector produces 

quantified measurements of peaks and retention times for speciated VOCs as they come off the 

column. Gas chromatography varies by detection method and includes mass spectrometer (MS), 

flame Ionization (FID), thermal conductivity (TCD), electron-capture (ECD), atomic emission 

(AED), chemiluminescence (CS), and photoionization (PID). Depending on mixture sample, a 

specific detector may be more applicable. Mass spectrometers are the most beneficial due to 

their ability to identify unknown components and applicability to any sample. Flame ionization is 

commonly used for analysis of hydrocarbons of low molecular weight. Specifically, FID is 

unaffected by flow rate, noncombustible gases, and water, allowing high sensitivity and low noise. 

Electron capture detectors are highly selective and sensitive of electronegative groups. 

Photoionization detectors are selective of aromatic compounds, and inorganic and organic 

species and commonly used for air, water, and soil samples.50 

Measurement of VOCs in air is difficult due to the large variation in chemicals, multiple 

available techniques, and a lack of standardized and documented methods. The EPA has 

established a compendium of methods which can be found in Table 1-2. The methods are 

federally regulated monitoring methods and are considered a standard for measuring toxic 

organics in air. Monitoring occurs at multiple stations across the nation to assess trends, assess 

exposure, and to evaluate air quality models. The goal of air toxics monitoring is to support the 

reduction of exposure to HAPs. However, the data is not quite granular enough to estimate health 

effects as these ambient air concentrations are sparse, indirect measures of human exposure. 
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Table 1-2. Toxic organic (TO) method for quantifying toxic organic compounds in air as defined 

by the Environmental Protection Agency. 

Method No. Compound Sample Collection Device Analytical Methodology 

TO-1 VOCs Tenax Solid Sorbent GC/MS 

TO-2 VOCs Molecular Sieve Sorbent GC/MS 

TO-3 VOCs Cryotrap GC/FID 

TO-4 Pesticides/PCBs  Polyurethane Foam GC/MD 

TO-5 Aldehydes/Ketones Impinger HPLC 

TO-6 Phosgene Impinger HPLC 

TO-7 Anilines Adsorbent GC/MS 

TO-8 Phenols Impinger HPLC 

TO-9 Dioxins Polyurethane Foam HRGC/HRMS 

TO-10 Pesticides /PCBs Polyurethane Foam GC/MD 

TO-11 Formaldehyde Adsorbent HPLC 

TO-12 NMOC Canister or on-line FID 

TO-13 PAHs Polyurethane Foam GC/MS 

TO-14 VOCs (nonpolar) Specially-Treated Cannister GC/MS and GC/MD 

TO-15 VOCs (polar/nonpolar) Specially-Treated Cannister GC/MS 

TO-16 VOCs Open Path Monitoring FTIR 

TO-17 VOCs Single/Multi-Bed Adsorbent GC/MS, FID, etc 

Risk Assessment Framework 

A major pillar of environmental health science is the risk assessment framework which is 

focused around the methods to evaluate exposure, predict health risks and outcomes, and inform 

decision making to control or otherwise respond to unacceptable exposures to environmental 

hazards.51 Human health risk assessment consists of four major parts: hazard identification, dose 

response assessment, exposure assessment, and risk characterization. Hazard identification 
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determines whether the environmental chemical has the potential to cause harm to humans. 

Dose response assessment identifies the relationship between the dose of exposure and effect 

response. Exposure assessment investigates the source, frequency, and timing of exposure to 

the environmental chemical. Risk characterization quantifies and communicates the risk of the 

environmental chemical to human health.52  

Exposure assessment aims to answer the questions of how much of the pollutant are 

people exposed to during a specific period and how many people are exposed. Exposure is the 

contact between a hazard in the environment and an individual, group, or population by 

inhalation, ingestion, dermal contact, or via placental transfer.53 The exposure assessment step 

identifies the affected population; calculates the amount, frequency, length of time, and route of 

exposure; identifies sources of containment; identifies exposure pathways and environmental 

fate; and finally, measures or estimates the dose or intake based on calculations.54 Exposure is 

the most important and least informed step in the hazard, exposure, and outcome pathway. 

Despite being the most informative pathway, exposure is often the weakest link with little 

information describing the hazard, exposure, or disease pathway.53  

To measure exposure, researchers utilize direct or indirect measures of exposure. Direct 

measures of exposure are biological samples or personal monitoring and represent the gold 

standard of exposure assessment. Indirect measures of exposure are approximations of human 

exposure. Indirect measures of exposure include environmental samples and models. Direct and 

indirect methods of exposure assessment exist on a continuum of cost and precision (Figure 1-2). 

Indirect methods of exposure are often lower cost and approximate ambient exposure. Direct 

methods of exposure are more expensive and better approximate personal exposures. A 

comprehensive exposure assessment uses multiple methods to measure exposure, both direct 

and indirect. 

As human beings, we interact with multiple microenvironments. We all interact with a 

global environment, and then we each interact with multiple microenvironments. 

Microenvironments are highly variable across individuals. Typical microenvironments are 

workplaces, school, indoor, and outdoor. Humans interact with each microenvironment at 
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different rates and frequencies. The two major microenvironments are indoor and outdoor. While 

outdoor might be considered uniform, many pollutants vary spatially and temporally, as well as by 

nearby sources. Indoor environments are typically divided into work or school, or home 

environment. Thus, depending on the individual and their geographical region, an individual’s 

exposure metric will be unique. Exposure assessment methods function to quantify the most 

appropriate exposure based on the primary microenvironment, or multiple microenvironments.  

To assess the risk of a hazard to human health, it is important to assess exposure as 

accurately as possible using both direct and indirect monitoring, sampling of microenvironments, 

and consider tradeoffs. Exposure misclassification is a common source of bias in epidemiological 

studies. Additionally, exposure assessment in environmental epidemiology is a methodological 

problem due to long induction times between presumed causal action and incidence of disease.55  

Therefore, exposure assessment methods must function to reduce as much bias as possible.  

-Source Proximity 
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Figure 1-3. Cost and exposure approximation tradeoffs in exposure assessment 

methods. 
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Conceptual Framework 

 Cardiovascular disease (CVD) is the leading cause of mortality worldwide, accounting for 

31% of all deaths in 2015.56 In the United States, one in three adults have some type of CVD. By 

the year 2030, approximately 44% of the US population is projected to have at least one form of 

CVD, of which the direct medical costs are projected to reach $818 billion.57 Cardiovascular 

disease encompasses a group of diseases of the heart and blood vessels, which result from 

gene-environment interactions.58 Behavioral risk factors of CVD include unhealthy diet, physical 

inactivity, tobacco use, and excessive alcohol use.56 Although much effort has been invested in 

the prevention of CVD by reducing or ceasing behavioral risk factors, rates of heart disease 

continue to climb. Traditional risk factors neglect to account for 10-25% of CVD prevalence.59 

Furthermore, risk factors and gene-environment interactions can act as modifiers which influence 

CVD penetrance.60 Cardiovascular disease is largely regarded as a behavioral disease 

dependent on lifestyle changes, yet recent evidence shows that environmental exposure plays a 

key role in disease incidence as well as clinical events.61  Thus, it is important to identify 

attributable risk factors, such as environmental chemicals, in CVD etiology; because genetic 

changes alone cannot account for the immense changes in disease incidence over short 

durations of time.62 

In the 2010 update to the American Heart Association’s scientific statement, authors gave 

evidence of a causal link between exposure to PM2.5 and CVD, establishing PM2.5 as a risk factor 

for the development of heart disease.6 In addition, the contributors to this statement released a 

call to action to better understand the role of other pollutants in the development of CVD, 

specifically of VOCs as constituents of particulate matter. The authors proposed three biological 

mechanisms by which exposure to environmental pollutants is linked to CVD. The three 

generalized intermediary pathways include 1) systemic oxidative stress and inflammation, 2) 

autonomic nervous system imbalance, and 3) transmission of PM or constituents into the blood. 

These generalized pathways were formulated on previous studies evidencing acute vascular 

dysfunction, chronic biological effects like atherosclerosis progression, and molecular level 

reactive oxygen species dependent pathways.  
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This research aims to evaluate the relationship between exposure to pollutants like VOCs 

and CVD. We use the large review of PM and CVD and the proposed mechanisms as the basis 

for our research of pollutant exposure. Although there is a clear link between exposure to air 

pollution and cardiovascular disease, adverse effects of many gaseous pollutants such as VOCs, 

are less understood. Therefore, we hypothesize that VOC exposure occurs via similar biological 

pathways as PM. Already there is epidemiological research supporting a relationship between 

VOC exposure and CVD events such as heart failure,17 stroke, 18 ischemic heart disease, 18, 19 

and cardiovascular mortality rates.20  Indoor exposure to VOCs has been associated with 

increased blood pressure and heart rate,21 and VOC metabolites measured in blood have been 

linked to an increased prevalence of doctor-diagnosed CVD.22 Similarly, HAPS released from 

industrial facilities are associated with cardiovascular mortality,19 and VOC-containing mixtures of 

pollutants such as automobile and diesel engine emissions, and tobacco smoke have been linked 

to the development of CVD.23-29  

 However, measuring exposure to VOCs is specifically challenging due to minimal routine 

air monitoring,11 spatial and temporal variability,14, 20 and quick transformation to secondary 

pollutants in the atmosphere.9, 10 While exposure is the most important and least informed step in 

the hazard, exposure, and outcome pathway of the risk assessment process, exposure is often 

the weakest link with potential for bias in environmental epidemiological investigations.53 

Therefore, our research utilizes multiple exposure assessment methods to assess the 

relationship between VOC exposure and CVD. To conduct impactful environmental 

epidemiological investigations of the relationship between exposure to VOCs and CVD, we will 

use source proximity, human biomonitoring, and mixture modelling. Given that exposure metrics 

vary in strength, new epidemiological studies must investigate relationships using multiple 

measures of exposure. 

Literature Review of Relationship between VOC Exposure and CVD 

Until now, we have identified 187 chemicals of concern classified as HAPs, of which 

several are VOCs. For the remainder of the work, we will focus on seventeen VOCs which are 

also classified as HAPs and are measured in the National Health and Nutrition Health Survey 
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(Table 1-3). The seventeen included VOCs are acrolein, acrylamide, acrylonitrile, benzene, 1-

bromopropane, 1,3-butadiene, crotonaldehyde, N,N-dimethylformamide, ethylbenzene, ethylene 

oxide, propylene oxide, styrene, tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and 

xylene. Since CVD is our outcome of interest, we will focus on both direct, personal measures of 

exposure in observational and experimental human studies as well as indirect measures such as 

environmental monitoring or modeling and their link with CVD outcomes.  

To review the literature, we entered the following search in NCBI PubMed database 

((((volatile organic compounds) OR hazardous air pollutants) OR air toxics) OR industrial 

chemicals) AND cardiovascular disease. Eighty-three articles were chosen based on abstract and 

title content. These articles were then imported into the Health Assessment Workplace 

Collaborative platform (www.hawcproject.org). The HAWC project integrates and documents the 

overall workflow of a systematic literature review.63 The HAWC project has been adopted for use 

by the National Toxicology Program (NTP), the U.S. Environmental Protection Agency (US EPA), 

and the Texas Commission for Environmental Quality (TCEQ). From the 83 articles, 20 

epidemiological studies were chosen after thorough review of abstracts. Articles were published 

between 1998 and 2019. Two were published in 1998 while the rest were published in the last ten 

years. 

Volatile organic compounds are ubiquitous in the environment. Primary sources of 

anthropogenic VOCs include combustion, dry cleaners, hazardous waste sites, contaminated 

environmental media, and consumer goods. VOCs are classified by low molecular weight and 

high vapor pressure which subsequently allows quick vaporization into the air. Thus, the primary 

route of exposure to VOCs is inhalation. Due to spatial and temporal variation of VOCs, the 

literature includes several methods of approximating or measuring exposure in humans. Direct 

exposure measurement includes personal monitoring and biomonitoring. Indirect exposure 

measurement includes environmental or indoor monitoring, existing surveillance programs, 

occupational exposures, and proximity to sources. Of the 20 reviewed articles, 4 use direct 

exposure measurements and 16 use indirect exposure measurements. 

http://www.hawcproject.org/


21 

Table 1-3. Volatile organic compound parent names, urinary metabolite long names, short 

names, and estimated half-lives. 

Parent Compound Metabolite Short Name Half-Life 

Acrolein N-Acetyl-S- (2-carboxyethyl)-L-cysteine CEMA Unknown 

N-Acetyl-S- (3-Hydroxypropyl)-L-cysteine 3HPMA 10h 

Acrylamide N-Acetyl-S-(2-carbamoylethyl)-L-cysteine AAMA 3.5h 

N-Acetyl-S-(2-carbamoyl-2-hydroxyethyl)-
L-cysteine  

GAMA 3.5h 

Acrylonitrile N-Acetyl-S-(2-cyanoethyl)-L-cysteine  CYMA 8h 

Acrylonitrile, vinyl 
chloride, ethylene 
oxide  

N-Acetyl-S- (2-hydroxyethyl)-L-cysteine HEMA Unknown 

Benzene trans, trans -Muconic acid MU 5h 

1-Bromopropane N-Acetyl-S-(n-propyl)-L-cysteine BPMA Unknown 

1,3-Butadiene  N-Acetyl-S- (3,4-dihydroxybutyl)-L-
cysteine  

DHBMA Unknown 

N-Acetyl-S-(1-hydroxymethyl-2-propenyl)-
L-cysteine  

MHBMA1 >9h 

N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-
cysteine  

MHBMA3 >9h 

Crotonaldehyde N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-
cysteine  

HPMMA Unknown 

N, N- 
Dimethylformamide 

N-Acetyl-S-(N-methylcarbamoyl)-L-
cysteine  

AMCC 23h 

Ethylbenzene, 
styrene  

Phenylglyoxylic acid PGA 6h 

Propylene oxide N-Acetyl-S-(2-hydroxypropyl)-L-cysteine 2HPMA Unknown 

Styrene  N-Acetyl-S-(1-phenyl-2-hydroxyethyl-L-
cysteine + N-Acetyl-S-(2-phenyl-2-
hydroxyethyl)-L-cysteine  

PHEMA Unknown 

Mandelic acid  MA 2h 

Tetrachloroethylene N-Acetyl-S-(trichlorovinyl)-L-cysteine TCVMA 14h 

Toluene  N-Acetyl-S-(benzyl)-L-cysteine BMA Unknown 

Trichloroethylene  N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine 1,2DCVMA 5.6h 

N-Acetyl-S-(2,2-dichlorovinyl)-L-cysteine 2,2DCVMA 5.6h 

Xylene Urinary N-Acetyl-S-(dimethylphenyl)-L-
cysteine 

DPMA Unknown 

2-Methylhippuric acid  2MHA Unknown 

3-Methylhippuric acid + 4-Methylhippuric 
acid  

3MHA & 
4MHA 

Unknown 
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Cardiovascular disease is a chronic condition encompassing a group of diseases of the 

heart and blood vessels, which result from gene-environment interactions.58 Modifiable and non-

modifiable risk factors contribute to the development of heart disease. Modifiable risk factors 

include physical activity, diet, obesity, high blood pressure, and blood lipids. Non-modifiable risk 

factors include age, sex, race or ethnicity, socioeconomic status, family history of CVD, diabetes, 

and environmental factors. Risk factors contribute to the development of hypertension, 

atherosclerosis, thrombosis, and ischemia resulting in cardiovascular events such as stroke, 

myocardial infarctions, heart failure, and eventually, mortality. Outcomes from the literature 

review included high blood pressure and heart rate, electrocardiograph changes, oxidative stress 

and inflammatory markers, measures of endothelial function, doctor diagnosed CVD, CVD events 

and hospital admissions, and mortality. 

The major differences found in review were the methods of assessing relationships 

between exposure to VOCs and CVD outcomes. Classification of VOCs includes a wide range of 

chemicals difficult to assess individually or together. Many papers utilize dimension reduction 

techniques by further grouping VOCs into subclasses based on structural similarities, reactivity, 

benzene or substituted benzenes, BTEX compounds, or by using cluster or principal component 

analyses. Therefore, the exposure measurement varies widely throughout this review. The major 

themes of methods are 1) individual VOC 2) structural similarities 3) total VOCs or 4) principal 

component analysis. Principal component analysis is a technique often used to understand 

exposures to multiple components and the sources from which they are derived. 

Six articles assessed the relationship between VOC exposure and blood pressure or 

hypertension. In a subset of the Detroit Exposure and Aerosol Research Study (DEARS), 63 

participants wore personal exposure vests for six seasons to assess personal exposures to 12 

VOCs. These exposures were further reduced to three principal components based on a primary 

petroleum source, a butadiene source indicating industrial exposure, and a freon source. Systolic 

blood pressure (SBP) was not significantly associated with any of the three principal components. 

Diastolic blood pressure (DBP) was consistently negatively associated with the butadiene 

principal component. Two large pregnancy cohorts, the Consortium on Safe Labor and the 
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Consecutive Pregnancy Study, were used to assess the relationship between VOC exposure and 

gestational hypertension. Exposure to ambient VOCs was estimated with the Community 

Multiscale Air Quality Models (CMAQ). Nobles et al. found no significant associations with 

ambient VOCs and gestational hypertension, though there were increased risks for preeclampsia 

when estimating ambient VOCs.64 Contrary to Nobles, Zhu et al found significant associations for 

gestational hypertension and exposure to ambient ethylbenzene, toluene, and m- and o-xylene.65 

Two studies in Taiwan measured indoor and personal exposure to total VOCs (TVOCs). In 

Taipei, 200 healthy homemakers were visited 12 times in two years. There were significant 

changes in blood pressure, a 4.32% (2.41, 6.23) change in SBP per IQR (0.65ppm) of TVOCs 

and a 2.47% (1.13, 3.81) change in DBP.66 From the cross-sectional study in Taiwan, TVOCs 

measured in the workplace were significantly associated with SBP, DBP and heart rate, 

independent of BMI.67 Finally, in a case-control occupational study, 345 workers were split among 

three exposure groups 1) benzene exposure, 2) xylene and benzene exposure, and 3) phenol 

exposure. Both SBP and DBP were significantly higher than controls. Arterial hypertension was 

prevalent in group 1, 30.51% [OR = 2.44; 95% CI 1.24-4.85; P = 0.0054] and in group 2, 27.92% 

(OR = 2.00; 95% CI 1.11-3.61; P = 0.0136).68 

Five papers assessed the relationship between VOC exposure and CVD biomarkers or 

ECG changes. Biomarkers of CVD are noninvasive measures of endothelial function, oxidative 

stress, clotting, or inflammation. These biomarkers can be useful sensitive, subclinical outcomes 

for CVD. In an occupational study, solvent and paint workers had significantly greater relative 

risks for cardiovascular effects of arrythmia, P wave changes, and QRS complex changes.69 

Chuang et al found a 2.41% (1.63, 3.19) change in inflammatory marker hs-CRP, and a 2.18% 

(1.83, 4.01) change in oxidative stress marker 8-OHdG per IQR (0.665ppm) of TVOCs.66 In the 

DEARS sub cohort, heart rate, flow mediated dilation (FMD) and basal arterial tone were 

positively associated with the petroleum source. Non endothelial mediated dysfunction was 

negatively associated with the petroleum source.70 Metabolites of BTEX compounds were 

assessed in an occupational cohort of Korean shipbuilding workers. Only toluene metabolites 

were significantly associated with the oxidative stress biomarker MDA.71 In a cross-sectional 
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study of 300 healthy participants in Taiwan, indoor TVOCs were significantly associated with hs-

CRP (19.7% 10.2,29.1), 8-OHdG (3.8% 1.5,6.1), fibrinogen (8.9% 4.2,13.6), the standard 

deviation of normal-to-normal intervals of heart rate variability (-6.2% -9.1,-3.2), and the square 

root of the mean of the sum of the square of differences between adjacent normal-to-normal 

intervals of heart rate variability (-2.6% -4.7, -0.5) in mixed linear models.72 

In a subset of NHANES participants enrolled during 1999-2002, 2001-2002, and 2003-

2004, n=3,408 participants were assessed for alkylbenzene metabolites in blood and their 

relationship to doctor diagnosed cardiovascular disease. Greater exposure to toluene was 

associated with greater prevalence of CVD (50-85th percentile OR 2.3, >85th percentile 3.49). 

Greater exposure to styrene was also associated with prevalence of CVD (50-85th percentile OR 

2.03, >85th percentile 4.64). Additionally, greater exposure to Ethyl benzene (50-85th percentile 

OR .81, >85th percentile 3.1), M/p-xylene (50-85th percentile OR 1.12, >85th percentile 2.31), 

and O-xylene (50-85th percentile OR 1.49, >85th percentile 2.68) were associated with 

prevalence of CVD.22 

Two papers assessed the relationship between VOC contaminated drinking water or 

domestic water and stroke. Benzene and trichloroethylene (TCE) contaminated drinking water 

occurred from contaminated hazardous waste sites on the Superfund National Priorities Lists. 

Participants were enrolled in the National Exposure Registry. On the basis of 60 cases of 

reported stroke, the prevalence odds ratios were 4.14 (1.54, 11.09; 2-12ppb TCE); 3.88 (1.4, 

10.74; >12-60ppb TCE); and 3.2 (1.14, 8.99; >60-12,800ppb TCE).34 In Lybarger et al., the 

authors estimated the economic health burden associated with VOC contamination at Superfund 

sites. They found the excess prevalence rate for stroke was 5 per 1000 people and the excess 

prevalence rate for diabetes was 5 per 1000.33 

Four papers assessed the relationship between ambient VOC exposures and 

cardiovascular events such as emergency department visits for CVD, emergency hospital 

admissions for heart failure, cardiovascular events at labor and delivery, and cardiovascular 

events at delivery admission. Two studies used the Consortium on Safe Labor to determine 

cardiovascular events at labor and delivery or at delivery admission. Both studies estimated 
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ambient VOCs from the CMAQ. In Ha et al., there were increased odds of a cardiovascular event 

at labor and delivery for all VOCs at different lag times. However, models were not adjusted for 

other criteria pollutants such as PM. Specifically, 1,3-butadiene and cyclohexane had increased 

odds for the weekly average.73 Mannisto et al. found that recent exposure (5-day lag) to high 

ambient concentrations of some VOCs, specifically, exposure to ethylbenzene (OR 1.50, 99% CI 

1.08 to 2.09), m-xylene (OR 1.54, 99% CI 1.11 to 2.13), o-xylene (OR 1.51, 99% CI 1.09 to 2.09), 

p-xylene (OR 1.43, 99% CI 1.03 to 1.99) and toluene (OR 1.42, 99% CI 1.02 to 1.97), were 

associated with increased odds of cardiovascular events.74 In Hong Kong, exposure to benzene 

and alkynes was significantly associated with emergency hospital admissions for heart failure.75 

Daily 24-hour average concentrations of VOCs were measured in the five county area of Atlanta, 

GA and split into groups of hydrocarbons (alkane, isoalkane, other alkane, cycloalkane, alkene, 

alkyne, aromatic) and oxygenates (aldehydes, acids, ketones). Almost all hydrocarbon groups 

were associated with cardiovascular ED visits. Oxygenates were not.76 

Four studies assessed the relationship between ambient VOCs and cardiovascular 

mortality. Three studies estimated ambient VOC concentrations from fixed monitoring stations. 

The fourth study approximated exposure from industrial releases using the Toxic Release 

Inventory. In Hong Kong, benzene was significantly associated with a 4.1 (1.0, 7.4) and 5.8 (1.0, 

10.8) percent excess risk in circulatory deaths per IQR of benzene for lag days 5-9 and 0-9. TEX 

compounds were also significantly associated with circulatory deaths 2.9 (1.1, 4.6) and 3.5 (1.0, 

6.1) for lag days 5-9 and 0-9.77 In Taichung City, Taiwan, benzene, m,p-xylene, and o-xylene 

were all associated with all-cause mortality. Only benzene was significantly associated with 

cardiovascular mortality.78 In Ontario, Canada, adjusted relative risks showed weak positive 

associations for benzene, hexane, and total hydrocarbons with cardiovascular mortality.20 In the 

U.S., HAPS and CERCLA chemicals released from industry were significantly associated with 

cardiovascular mortality (1.87, p:0.0001 and 1.73 p:0.0001) and ischemic heart disease (1.57, 

p:0.0001 and 1.32, p:0.0001).19 
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PROBLEM STATEMENT 

In our literature review, we found significant associations between several individual 

VOCs including acrolein, benzene, 1,3-butadiene, ethylbenzene, toluene, and xylene and 

cardiovascular outcomes like blood pressure, endothelial function, doctor-diagnosed CVD, and 

CVD mortality. Additionally, we found several significant associations between groups of 

chemicals like total VOCs, hydrocarbons, and component sources such as butadiene and 

petroleum, and cardiovascular outcomes. The reviewed works include both direct and indirect 

exposure assessment methods such as ambient air concentrations, indoor air concentrations, the 

CMAQ, drinking water concentrations, source proximity, and metabolite concentrations from 

human biomonitoring. While there is some evidence of an association between VOC exposure 

and CVD, results are limited by cohort and exposure assessment method. Several studies 

assessed VOC exposure in exposed workers which may not represent real-world exposures 

outside the studied industry.79, 80 The one study which examined direct measures of VOC 

exposure and doctor-diagnosed CVD in a nationally representative cohort used VOC metabolites 

in blood, those which are not as robust in capturing an individual’s daily exposure. 16, 81, 82 Studies 

using fixed monitoring stations and community modelling to assess VOCs in ambient air are 

limited by the sparsity of national coverage.83-85 Finally, several of these studies grouped VOCs 

by structure, source, or federal regulatory classification to improve interpretability. Given that 

there are more sophisticated and robust methods to assess exposure to individual pollutants and 

pollutant mixtures, we must employ more recently developed methods to better elucidate the role 

of environmental exposure in the development of CVD. 

PURPOSE OF THE STUDY 

The purpose of this study is to identify environmental stressors in the development of 

CVD using a multi-pronged approach to exposure assessment. Three methods of exposure 

assessment are used to evaluate the relationship between exposure to VOCs and CVD: 1) 

source proximity, 2) human biomonitoring, and 3) mixture modelling. Two populations are used in 

this study to evaluate VOC exposure. The first is a national population of the contiguous United 

States in which there is county-level data of industrial releases and age-adjusted, all cause and 
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CVD mortality. The independent variable, industrial releases, and the dependent variable, 

mortality, are assessed longitudinally in an ecological study during the years 2002-2012. The 

second is a local population in Louisville, Kentucky in which there is individual-level urinary VOC 

metabolites and multiple CVD risk markers. The independent variables, the VOC metabolites, 

and the dependent variables, CVD risk markers, are assessed cross-sectionally. Finally, mixture 

modelling is used to assess multi-pollutant exposure in these two populations with two distinct 

methods: 1) the Bayesian Kernel Machine Regression, and 2) the variable selection procedure, 

elastic net. 

The proposed study will contribute to the field by presenting more granular and 

mechanistic evidence of human exposure to environmental pollutants like VOCs and their role in 

the development of CVD. This study highlights the use of both aggregate-level and individual-

level human data to understand population and individual effects. The methods used to evaluate 

this relationship are more sophisticated than previous methods used, specifically the longitudinal 

evaluation and the newer mixture modelling methods. Finally, this study assesses multiple CVD 

outcomes that are mechanistic steps in the development of CVD as well as CVD endpoints like 

mortality. The study further illuminates the need for better environmental health and pollution 

regulations for improved public health. 

RESEARCH QUESTIONS AND HYPOTHESES 

For this dissertation, we hypothesize that exposure to environmental pollutants like VOCs 

contribute to the development of CVD. This study takes a three-pronged approach to exposure 

measurement to assess the link between VOC exposure and CVD. To measure and model 

exposure to VOCs, we use publicly available inventories of toxic chemicals collected and 

maintained by the federal government, human biomonitoring to quantify VOCs in urine, and 

machine learning and variable selection to model exposure to mixtures of VOCs. Our three 

specific aims include: 

1. Examine the relationship between county level toxic chemical releases and CVD

mortality. We will acquire publicly available data at the county level to create a dataset
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for an ecological analysis of the association between toxic releases and circulatory 

disease mortality. Variables will be obtained from CDC Wonder, EPA, IHEH, and the U.S. 

Census to accurately assess county level associations. Data will be acquired for 

consecutive years 2002-2012 in the contiguous United States. We will use mixed models 

to longitudinally assess fixed and random effects using the restricted maximum likelihood. 

We will create a county level risk score to account for chemical potency within the 

releases. 

2. Assess the relationship between individual level VOC metabolites and vascular

function. We will conduct a secondary data analysis of a cross-sectional cohort, the

Louisville Healthy Heart Study. We will restrict the analysis to nonsmokers since tobacco

smoke is a major source of VOCs. We will examine the associations between exposure

to 17 individual VOCs and the classical cardiovascular risk factors. In addition, we will

analyze the associations between exposure to individual VOC metabolites and

biomarkers of vascular injury and dysfunction such as endothelial function and urinary

metabolites of catecholamines, to assess the function and significance of these changes.

3. Apply multipollutant models to existing aims using new statistical methods. We will

use statistical methods like the Bayesian Kernel Machine Regression (BKMR) to

determine the effects of exposure to multiple VOCs on the development of CVD. BKMR

flexibly models the exposure response function of multiple components on one health

outcome, incorporating non-linearity and interaction among the mixture components. We

will use the elastic net procedure to identify potential toxic chemicals associated with

CVD mortality at the county level. Elastic net is a variable selection method which uses

penalized regression to select more contributive variables.

RATIONALE, RELEVANCE, AND SIGNIFICANCE OF THE STUDY 

An exposure assessment is the study of the distribution and determinants of substances 

and factors affecting human health. Exposure assessments address variable microenvironments 



29 
 

using direct and indirect measures of exposure. Direct methods include biological monitoring and 

personal air monitoring. Indirect methods include exposure estimates and proxies such as 

environmental monitoring, modeling, and questionnaires. A combination of both direct and 

indirect methods provides a more complete view of exposure. Exposure assessments are a major 

factor of environmental epidemiology, the study of factors in the environment that are out of the 

individual’s control, which often affect many people simultaneously.55  

Exposure assessment in environmental epidemiology is a methodological problem due to 

long induction times between presumed causal action and incidence of disease.55 Exposure is the 

most important and least informed step in the hazard, exposure, and outcome pathway. The 

exposure metric is the estimate of exposure for each individual or group of the study quantified by 

using direct and indirect methods. Researchers must consider tradeoffs of cost and data 

availability in exposure quantification. To assess the risk of a hazard to human health, we assess 

exposure as accurately as possible with the data available and the most appropriate models. We 

use three methods to assess exposure: 1) source proximity, 2) human biomonitoring, and 3) 

mixture modelling. 

In the first aim, we use source proximity to ecologically assess the relationship between 

industrial releases and CVD mortality in the contiguous United States. The Toxic Release 

Inventory (TRI) is a publicly available dataset which quantifies industrial releases by location and 

chemical each year, a beneficial proxy for exposure to VOCs. Due to the time series nature of the 

data, we were able to assess the relationship longitudinally in small area units known as counties 

across the United States. The spatial and temporal methodology improve the strength of the 

study. Data acquisition required no cost.   

In the second aim, we use human biomonitoring to individually assess the relationship 

between urinary VOC metabolites and risk markers of CVD in a cross-section of time. Human 

biomonitoring of blood and urine plays a major role in assessing human health risk. Assessing 

exposures in biofluids offers a whole measurement of exposure, including absorption, adsorption, 

injection, ingestion, and inhalation. Urine analysis for VOC metabolites is advantageous due to 

longer half-lives of metabolites compared with parent compounds and the specificity of 
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mercapturic acid metabolites. Urinary analysis is sensitive enough to detect background exposure 

from tobacco smoke or solvent exposure. 86, 87 Although exposures are acute, they offer a real-

time perspective of prevalent chemicals in everyday environments. 

In the third aim, we use statistical methods to model exposure to mixtures in our previous 

two aims. Although people are exposed to a myriad of environmental chemicals every day, 

epidemiological studies have historically assessed the relationship between one exposure and 

multiple adverse health effects. As a result, the impact of multiple exposures has not been well 

characterized. To combat this gap in the literature, we use two supervised methods to assess 

mixtures, a variable selection technique called elastic net, and a machine learning technique 

called the Bayesian Kernel Machine Regression in the previous two aims. 

The proposed research uses a multi-pronged approach to assess exposure to VOCs and 

the relationship to CVD. There is a lack of critical information on the health effects of chemicals in 

our environment. Furthermore, new evidence suggests that there are no safe exposures and the 

effect of low level exposure on chronic diseases such as CVD. This project aims to gain 

information on cardiovascular effects of exposure to VOCs. Although much research has 

explored organ toxicity and carcinogenicity of VOCs, cardiovascular toxicity remains under 

researched. Additionally, there is deficient environmental monitoring of VOCs. Therefore, the 

project will assess how exposure to VOCs contributes to cardiovascular risk and disease rates 

using multiple exposure assessment methods. 

The potential implications of results of this research are many. First, new methods of 

exposure assessment create new models of exposure to VOCs which better estimate the 

relationship to CVD. Traditional ordinary least squares regression is no longer the best estimate 

in assessing health effects. Here, we use mixed models for repeated measures, generalized 

linear models, penalized regression, and machine learning regressions, methods superior to 

traditional ordinary least squares estimation. Second, there is a deficiency in monitoring and 

quantification of VOCs in the environment. New information about environmental exposures to 

VOCs calls to action better surveillance and regulation of environmental pollutants. Third, we 

uncover more information about how the environment contributes to CVD, the leading cause of 
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death in the world. These results implicate new CVD prevention methodology and require the 

need for more research. 

SUMMARY AND ORGANIZATION OF THE REMAINDER OF THE STUDY 

In summation, we know that CVD is the leading cause of death from environmental 

exposures.1 Environmental exposures are complex and infinite, targeting multiple routes of 

human exposure. Volatile organic compounds are pervasive environmental pollutants known to 

cause adverse health effects such as neurological effects, organ toxicity, and cancer.7, 8 However, 

the role of VOC exposure in the development of CVD is less understood. The approximation of 

human exposure to VOCs is complicated by a lack of routine air monitoring of VOCs,11 large 

variations of VOCs in space and time,13, 14 and high chemical production each year.15 The goal of 

this study is to identify environmental stressors in the development of CVD using a multi-pronged 

approach to exposure assessment. Three methods of exposure assessment are used to evaluate 

the relationship between exposure to VOCs and CVD: 1) source proximity, 2) human 

biomonitoring, and 3) mixture modelling. 

The following three chapters are individual studies using each exposure assessment 

method. Each of the three individual study chapters will commence with an introduction to the 

topic, the methods of the analysis, description of the results, and a discussion of the results. 

Chapter 2 describes the assessment of the longitudinal relationship between county-level toxic 

releases and all cause and CVD mortality. Chapter 3 describes the assessment of the cross-

sectional relationship between individual urinary VOC metabolites and CVD risk markers. Chapter 

4 evaluates the role of mixtures of these exposures in the previous outcomes in Chapters 2 and 

3, CVD mortality and blood pressure. Finally, Chapter 5 concludes the dissertation by 

summarizing results and generalizability of the three individual studies. 
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DEFINITION OF TERMS 

The following terms were used operationally in this study. 

Cardiovascular Disease (CVD), the name for the group of disorders of heart and blood 

vessels, and include: hypertension (high blood pressure), coronary heart disease (heart attack), 

cerebrovascular disease (stroke), peripheral vascular disease, heart failure, rheumatic heart 

disease, congenital heart disease, and cardiomyopathies (World Health Organization 2021) 

Air Pollution, a heterogeneous, complex mixture of gases, liquids, and particulate matter 

(Brook et al 2004) 

Particulate Matter (PM), particulate matter ("thoracic particles" [PM10] <10 [mu]m in 

aerodynamic diameter, "fine particles" [PM2.5] <2.5 [mu]m, and "coarse particles" [PM10 to 2.5]) 

(Brook et al 2004) 

Ozone (O3), a highlight reactive, colorless-to-bluish gas with a characteristic odor 

associated with electrical discharges. O3 has been recognized since the 1950s as the principal 

component of photochemical smog. In the troposphere, it is formed by the action of solar UV 

radiation on nitrogen oxides and reactive hydrocarbons, both of which are emitted by motor 

vehicles and many industrial sources. (Brook et al 2004) 

Volatile Organic Compounds (VOCs), any compound of carbon, excluding carbon 

monoxide, carbon dioxide, carbonic acid, metallic carbides or carbonates, and ammonium 

carbonate, which participates in atmospheric photochemical reactions (40 CFR § 51.100) 

Hazardous Air Pollutants (HAPs), Hazardous air pollutants, also known as toxic air 

pollutants or air toxics, are those pollutants that are known or suspected to cause cancer or other 

serious health effects, such as reproductive effects or birth defects, or adverse environmental 

effects (EPA 2017) 

Exposure Assessment, a cornerstone of environmental epidemiology, the development 

of the exposure metric, the estimate of exposure for each individual of the study population (Weis 

et al 2005) 
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Direct Methods, direct measurements obtained in external (to the individual’s body) 

environmental media or through the determination of contaminants or their metabolites in biologic 

medium (Weaver et al 1998) 

Indirect Methods, an indirect approach to exposure assessment which relies on 

validated models that evolve from well-characterized relationships between causative variables 

and exposure from studies using direct measurements (Weaver et al 1998) 

Source Proximity, an indirect exposure assessment based on spatial analysis theory 

where location denotes the disposition of objects with respect to one another, in this case, 

distance. Distance is defined in terms of relationships and in qualitative terms. Proximity acts a 

proxy for frequency. Used for proximity to contaminant source. (Haining 2003) 

Human Biomonitoring (HBM), a noninvasive process which provides an integrative 

perspective to one's whole, acute exposure, across all routes, and from all environmental media, 

and effective and useful method in quantifying risk (National Research Council 2006) 

Mixture, three or more independent chemicals which cause multiple stressors. Stressors 

can include chemical and non-chemical stressors (NIEHS 2021) 

Bayesian Kernel Machine Regression (BKMR), statistical approach that assumes 

linear and additive associations between each mixture component and health. The health 

outcome is modeled as a smooth function (h), represented using a kernel function, of the 

exposure variables, adjusted for possible confounding factors. Variable selection is used to 

identify which of these components are responsible for the health effects of the mixture (Bobb et 

al 2015) 

Elastic Net, penalized least squares regression method which shrinks coefficients toward 

zero but also has the ability of selecting grouped variables (Zou and Hastie 2005) 

Cross-Sectional Study, observational study design which examines the relationship 

between a disease and an exposure among individuals in a defined population at a point in time 

(Aschengrau 2020) 

Longitudinal Study, an observational or experimental study design which evaluates an 

association over time (Aschengrau 2020) 
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Ecological Study, an observational study design which evaluates an association using 

the population rather than the individual as the unit of analysis (Aschengrau 2020) 

Microenvironment, a component of the personal exposure assessment, the 

microenvironment is where a person’s action takes place, at work, at home, commuting (Steinle 

et al 2013) 
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 COUNTY LEVEL TOXIC RELEASES ARE ASSOCIATED WITH 

CARDIOVASCULAR MORTALITY BETWEEN 2002 AND 2012 

INTRODUCTION 

Pollution is the largest environmental cause of disease and premature death in the world 

today.2  Air, soil, and water pollution and toxic chemical pollution are among the leading 

noncommunicable disease (NCD) risk factors globally; and are responsible for an estimated 71% 

of all NCD mortality.2 Cardiovascular diseases (CVDs) account for the majority of NCD 

deaths,88  as well as the majority of deaths from environmental exposures.1 In 2015, pollution was 

responsible for 21% of deaths from all CVDs, 26% of deaths from ischemic heart disease, and 

23% of deaths due to stroke.89 Although there are several well quantified pollutants such as 

particulate matter, ozone, and lead, other known toxic chemical pollutants are poorly defined in 

their contribution to CVD mortality. 

Toxic chemical pollution is a growing global problem. Between 1970 and 1995, 

production volume of synthetic organic chemicals tripled from 50 million tons to 150 million tons.90 

Specifically, the United States Environmental Protection Agency (EPA) estimates 84,000 

chemicals are in commerce from the Toxic Substances Control Act.91 Yet, thousands of these 

pollutants are not well monitored or quantified in the environment.90 Furthermore, many of these 

chemicals have not been well-assessed for adverse health effects. The lack of surveillance 

presents a challenge to scientists in the assessment of adverse health effects from exposures to 

environmental chemicals. 

The Toxic Release Inventory (TRI) may provide a remedy to understanding the effects of 

chemical pollution on mortality, although with limitations. The United States EPA launched the 

first pollutant release and transfer register known as the TRI under the Emergency Planning and 

Community Right to Know Act (EPCRA) of 1986.92 The TRI is a reporting system for facilities with 
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a primary sector industry code included in the required reporting list, facilities employing ten or 

more people, or facilities manufacturing, processing or using EPCRA Section 313 chemicals. 

Qualifying facilities must report estimates of annual releases if they exceed thresholds of 25,000 

pounds per year for manufacturing; 25,000 pounds per year for processing; or 10,000 pounds per 

year for otherwise use. There are currently 767 listed chemicals and 33 chemical categories 

covered under EPCRA Section 313. Chemicals reported in the TRI are classified as metals, 

Clean Air Act chemicals, or carcinogens and thus may have overlap in multiple categories. 

Although this list is not comprehensive, the TRI provides a starting point for assessing the burden 

of disease from toxic chemical pollution.  

Previous studies have used the TRI to assess racial and sociodemographic disparities,93-

96 to describe toxic release trends and the need for risk communication,97-99 to assess cancer 

incidence,100-103 and to assess the association with mortality.19, 104, 105 However, few studies have 

examined the role of toxic releases in cardiovascular disease, and none have examined the effect 

longitudinally. We hypothesize that changes in annual toxic releases are associated with changes 

in annual age-adjusted all cause and CVD mortality rates. Here, we conduct a longitudinal, 

ecological study by using the TRI to approximate county-level exposure and assess the 

relationship to all cause and CVD mortality in the contiguous United States from 2002 to 2012. 

METHODS 

Study Design and Population 

Our overall objective was to assess the longitudinal relationship between county-level 

toxic releases from the TRI and age-adjusted, all cause, and circulatory disease (CVD) mortality 

in the contiguous United States. Our secondary aim was to create a risk score based on toxicity 

of the chemicals released and the relationship to mortality. This National County Level TRI Study 

(NCLTS) is a longitudinal ecological study measured at the small area or county level to assess 

the change in mortality over time in relation to hazardous chemicals. All data was publicly 

available at the county level and thus inexpensive and easily accessible. 



37 

We initially intended to analyze the period between 2000 and 2018 for two reasons: First, 

the USA switched from the ninth revision to the tenth revision of the International Classification of 

Disease (ICD) system in 1999, so data from 2000 on would contain a consistent assignment of 

the medical cause of death. Second, data from this period would be the most recent and relevant 

information. However, due to the unavailability of other determinants of mortality, we trimmed the 

data to the period of 2002 to 2012.  

Data Sources 

We used data on deaths by underlying cause of death and county of residence from vital 

registration through the National Center for Health Statistics106 and on population from the U.S. 

Census Bureau107 for intercensal estimates of county-level percentages of age, sex, and race. 

From 2002 to 2012, there were a total of 31.8 million deaths in the contiguous U.S.; 11 million of 

these deaths were from circulatory disease (ICD-10 codes beginning with I) for which there is 

evidence of an association with toxic chemical pollution.2 Annual toxic chemical releases were 

acquired from the TRI database.92 We downloaded national annual basic data files from the U.S. 

Environmental Protection Agency website for the consecutive years of 2002 to 2012.  

We also gathered publicly available data on other county descriptors that may affect mortality: 

➢ Population and Housing Unit Estimates 

Population and housing unit estimates were downloaded from the United States Census 

Bureau108, 109 for the census years 2000 and 2010.  

➢ Unemployment, Median Household Income, Education, and Poverty Estimates 

Unemployment, median household income, and education were published by the U.S. 

Department of Labor, Bureau of Labor Statistics, Local Area Unemployment Statistics (LAUS) 

and acquired from United States Department of Agriculture’s Economic Research Service. 

Educational attainment for adults age 25 and older for the U.S. by state and county was 

published by the U.S. Census Bureau for the years 2000 and 2010. The data was acquired from 

the United States Department of Agriculture’s Economic Research Service.  

➢ Alcohol and Smoking 
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The Institute for Health Metrics and Evaluation (IHME)110 is an independent global health 

research center at the University of Washington. Results were published in ‘Cigarette Smoking 

Prevalence in US Counties: 1996-2012’ with prevalence estimates by county, year, and sex.111 

Similarly, IHME published alcohol use prevalence estimates by county, year, and sex for 2002-

2012. Estimates include any drinking, heavy drinking, and binge drinking. Estimates were 

produced by applying small area models to data from the Behavioral Risk Factor Surveillance 

System (BRFSS). Results were published in ‘Drinking Patterns in US Counties from 2002 to 

2012’.112 

➢ Temperature and Heat Index 
 

Temperature and heat index data were acquired from the CDC Wonder website. The North 

America Land Data Assimilation System (NLDAS) published daily air temperatures and heat 

index for the years 1979 to 2011.113 Data are available for the 48 contiguous United States plus 

the District of Columbia. We downloaded data from 2000 to 2011. The variables we include are 

the average daily maximum temperature in degrees Fahrenheit (°F) and the average maximum 

daily heat index in °F. 

➢ PM2.5 and Ozone 
 

Kim et al published Land Use Regression models of outdoor concentrations for PM2.5 and ozone 

(O3) throughout the contiguous U.S for the years 1979-2015.114 Model estimates include annual 

average values for PM2.5 and the average during May through September of the daily maximum 

8-hour moving averages for O3. The variables included were PM2.5 in micrograms per cubic meter 

(µg/m3) and O3 in parts per billion (ppb). Data are available at national, state, county, and census 

tract. We acquired data from the Center for Air, Climate, and Energy Solutions (CACES) website. 

➢ National Priority List Sites 
 

The U.S. Environmental Protection Agency published a list of all National Priority List sites as of 

February 2014. We acquired the data from Columbia University’s Socioeconomic Data and 

Applications Center.115 Sites at the national level were accounted for. The frequency of sites per 

county ranged from zero to 23. We created a categorical variable where a county with zero sites 

was classified as zero and a county with greater than zero sites was classified as one. 
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➢ Rural Urban County Codes 

The NCHS developed a six-level urban rural classification scheme for U.S. counties and county-

equivalent entities.116 The classifications are updated every ten years with the most recent in 

2013. Counties are classified by four levels of metropolitan areas and two levels of 

nonmetropolitan areas. The classes of metropolitan areas include large central, large fringe, 

medium, and small metropolitan. The classes of nonmetropolitan areas include micropolitan and 

noncore.  

Units of Analysis 

There were 3,108 counties in the contiguous U.S. in 2010. A total of 2,603 counties had 

TRI chemical observations and recorded mortality rates between 2002-2012. The number of 

counties reporting each year ranged from 1,569 to 1,630. There were n=264 unmatched 

observations due to no mortality counts. Therefore, we excluded the counties Broomfield CO, 

Campbell SD, Esmeralda NV, Eureka NV, Jackson SD, Oliver ND, and Sheridan MD. 

We used the log-transformed, age-adjusted mortality rate for all cause and CVD as the 

outcome variables. We used two exposure variables to differentially assess toxic releases by 

volume and risk. The volume-based exposure variable was created by summing total facility 

releases by county and year. The risk-based exposure variable was created by summing the 

toxicity of the releases which was calculated by dividing the chemical volume by the reportable 

quantity (RQ) or the toxicity equivalent score (TES) as reported by the Agency for Toxic 

Substances and Disease Registry (ATSDR). We refer to the volume-based predictor variable as 

the county sum (Cij) and the risk-based predictor variable as the risk sum (Rij). Both predictor 

variables were log transformed for analysis. 

𝐶𝑖𝑗 =  ∑ 𝑇𝑅𝑖𝑗 

For each county (i), each year (j), we summed the total chemical releases in pounds (TR). 
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For each county (i), each year (j), we summed the product of each chemical release (CR) in 

pounds (m) multiplied by the inverse of the RQ or the TES as determined by the ATSDR. 

k=1:m chemicals released (CR), where m is possible number of chemicals released 

CR= chemical released in pounds in each county each year 

RQ= EPA reportable quantity or ATSDR toxicity environmental score 

There are currently 767 individually listed chemicals and 33 chemical categories covered 

by the TRI program. Chemicals covered are those that cause cancer or chronic human health 

effects, significant adverse acute human health effects, and significant adverse environmental 

effects. 

To account for the toxicity level of each chemical reported by amount, in each county, each year, 

we created a risk score. 

The ATSDR creates a biannual point system ranking hazardous substances based on 

three criteria: the frequency of occurrence at a NPL site, of at least three or more sites, the 

toxicity as a reportable quantity (RQ) or toxicity equivalent score (TES), and the potential for 

human exposure based on the concentration of substances in environmental media at sites, and 

the exposure status of population at sites. We decided to use a regulatory agency developed 

value for toxicity to create our own risk score. Because TRI releases are not typically at 

Superfund or NPL sites, we could not use their definition of frequency or human exposure. 

Therefore, we used the toxicity equivalent to build our risk score. The toxicity component was 

developed by EPA to set RQs for hazardous substances as required by CERCLA Section 103(a). 

The EPA assigns CERCLA substances to one of five tiered RQ categories (1, 10, 100, 1000, 

5000) based on acute toxicity, chronic toxicity, carcinogenicity, aquatic toxicity, and ignitability 

𝑅𝑖𝑗 =  ∑ 𝐶𝑅𝑖𝑗𝑘 ∗
1

𝑅𝑄𝑘

𝑚

𝑘
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and reactivity. For chemicals without RQs, ATSDR applied RQ methodology to candidate 

substances to create a TES. 

Missing Data 

After merging of all variables and reduction to the years 2002 to 2012, there were 17,700 

observations from a total of 2,603 counties in the contiguous United States. There were no 

missing predictor variables for all observations. However, some counties report zero pounds or 

grams of releases. Reasons for zeroes include 1) facilities that report NA for a quantity on form R 

because the release or waste management quantity is not possible for that facility, 2) facilities do 

not respond to quantity questions and leave them blank which may have occurred more when 

paper reporting was still accepted, or 3) facilities may submit a form A certification statement 

which allows facilities to certify that they do not exceed annual releases of 500 pounds for a 

particular chemical.  

A total of 1,015 counties (39%), had at least one observation with a reported release of 

zero pounds. A total of 506 counties had zero values that occurred only once per FIPS code in 

1,015 counties, approximately 50% of the counties. The second largest frequency was two 

zeroes per FIPS code; 27% of missing values. Because it is difficult to replicate analyses with 

60% or more missing data, we excluded FIPS with seven or more missing observations for initial 

analyses. Therefore, we excluded four counties in total with seven or more missing observations. 

The final cohort includes 2,599 counties with repeated observations for the consecutive years 

2002 to 2012 (Figure 2-1). 
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Figure 2-1. Data acquisition flow chart for the National County Level TRI Study. 

 
 

 

Data Distribution 

County level toxic substance releases and calculated county level risk scores were 

gamma distributed and log transformed prior to analysis. Mortality rates were log normally 

distributed. County level demographic percentages were not normally distributed. We use the 

logit transformation of the demographic variables: percent male, percent White, percent Black, 

and percent Hispanic. Education of percent less than high school was normally distributed. 

Unemployment and poverty estimates were gamma distributed and log transformed. Median 

household income was gamma distributed and log transformed. County level alcohol use and 

tobacco use were normally distributed. Superfund NPL frequency was categorical and further 

dichotomized into counties with zero classified NPL sites or more than zero classified NPL sites. 

All environmental variables (PM2.5, ozone, maximum heat index, and temperature) were 

normally distributed. 
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Statistical Analyses 

This is a longitudinal ecological study. We use repeated measures mixed models where 

all variables are measured at the group level (the county-level), and the time in years. We use 

FIPS codes for each county as the subject identification number (ID). Observations are time-

series observations occurring for each consecutive year from the year 2002 to 2012. 

Mixed models examine and compare responses over time, estimating individual and 

population level regression parameters. Mixed models are preferred methodology over the 

traditional ordinary least squares method because they do not assume that observations are 

independent. Because time series data are measured on the same aggregate unit, the county, 

over a series of time points, observations are not likely independent. Mixed models account for 

this shortcoming by using maximum likelihood or restricted maximum likelihood (REML) to 

estimate effects. REML instead assumes that the subjects (the counties) are independent and 

that the observations within subjects (the annual measures) are correlated. REML reduces both 

type I and type II error rates. The model assumes that random effects and error terms are 

normally distributed and independent, and that the relationship between response variable and 

predictor variable is linear.117 Therefore, we used the general linear mixed model.  

𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜀 

𝑦 is the vector of observed responses 

𝑋 is the design matrix of predictor variables 

𝛽 is the vector of regression parameters 

𝑍 is the design matrix of random variables 

𝛾 is the vector of random effect parameters 

𝜀 is no longer required to be independent and homogenous 

Within subject correlation is addressed by a series of covariance structures. Estimation in 

mixed models employs the use of the variance-covariance matrix. The covariance structure of the 

random effects is referred to as the G matrix. The covariance structure of the random errors is 
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referred to as the R matrix. The G and R matrices are estimated using the maximum likelihood 

method. Maximum likelihood estimation finds the parameter estimates that are most likely to 

occur given the data, ie, the joint probability of obtaining the data expressed as a function of 

parameter estimates. 

Covariance structures model the variability in the data which cannot be explained by the 

fixed effects. They represent the background variability that the fixed effects are tested against. 

Covariance structures must be carefully selected to obtain valid references for the parameters of 

the fixed effects. To select the appropriate covariance structure, we must find a reasonable 

estimate for matrix R, a block diagonal covariance structure where the block corresponds to the 

covariance structure for each subject. Observations outside the blocks are assumed to be 

independent. One must select the covariance structure that best fits the true covariance of the 

data. We want to know which component of variability is the dominant component. The 

components of variability include 1) random effects, 2) serial correlation, and 3) measurement 

error. Variograms can describe the association among repeated measures.  

Model Fitting 

To fit the model, we conducted an exploratory data analysis of the cross-sectional and 

longitudinal relationships in the data. We then fit a complex mean model by both backward 

elimination and forward addition of covariates. Once final covariates were decided, we output 

OLS residuals to create a sample variogram to assess the appropriate covariance structure.118 

The sample variogram had a process variance of 0.029. The fitted line was horizontal with a 

slope close to zero indicating little serial correlation. Because the curve did not tend to zero as the 

time interval tended to zero, there seems to be some measurement error. Random effects were 

also observed in the sample variogram because the fitted line did not reach the process variance, 

indicating unexplained between subject variance. We chose the compound symmetry covariance 

structure because constant correlation is assumed regardless of the lag between pairs of 

repeated measurements. Compound symmetry is best for models with little to no serial 

correlation. We added the LOCAL statement to PROC MIXED to correct for measurement error 

and included a random intercept for between subject variability. Because the model would not 
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converge, we removed the random intercept option from the model. Finally, we used the Akaike 

Information Criteria (AIC) to determine the best fit for each covariate addition or elimination after 

final selection of the covariate structure for each mortality outcome. 

Data acquisition, merge, and data cleaning were conducted using tidyverse119 in R 

software (version 3.1.3),120 in addition to all figures and maps. Statistical analysis was performed 

using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). 

Key assumptions and limitations of the methods 

Our study is an ecological study and is thus prone to ecologic bias and nondifferential 

classification. Bias may be introduced by interaggregate variation in the disease rate among 

those not exposed to the risk factor, by groups acting as effect modifiers in the dose response 

relationship, or by confounding. Nondifferential misclassification may come from within group, ie 

within county, misclassification. Finally, the risk score that we created is only available for some, 

not all chemicals required to be reported under the TRI and therefore may reduce the number of 

observations. 

RESULTS 

The difference in population estimates between the baseline year 2002 and the final year 

2012 are reported in Table 2-1. Mean values of county-level exposure variables, county sum, and 

outcome variables, all cause and CVD mortality rates, declined between 2002 and 2012, 

indicating a time-series association. However, the risk sum did not decline significantly. 

Population demographics changed significantly with a decline in percent White population and an 

increase in percent Black and Hispanic populations. Educational attainment, income, and poverty 

estimates were unchanged between 2002 and 2012, but unemployment levels increased. 

Mortality risk factors of smoking status and environmental risk factors of PM2.5 and O3 declined. 

Hazardous waste sites and facilities releasing toxic chemicals prevail across the 

contiguous United States, especially in the eastern region and are concentrated in more populous 

areas (Figure 2-2). Between 2002 and 2012, there were 21,642 unique TRI facilities, with an 

average of 5,502 reporting each year. Additionally, there were 1,816 listed Superfund NPL sites. 
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However, annual toxic releases declined by 34%, from 70 million to 46 million pounds during this 

period (Mann Kendall trend p-value: 0.043). Similarly, age-adjusted, all-cause and CVD mortality 

rates decreased during this period, from 909.6 in 2002 to 807.7 in 2012 and from 344.7 in 2002 to 

248.1 in 2012 (Mann Kendall trend p-value: 0.0003 and 2.6e-05), respectively (Figure 2-3).   

Table 2-1. Descriptive statistics (number and median [minimum, maximum]) for counties in the 

contiguous U.S. for the baseline year, 2002 and the final year, 2012. 

Variable 2002 2012 p 

n 1616 1613 

County Sum (lbs) 230665 (1872745) 134585 (567164) 0.031 

Risk Sum 1434 (32766) 1418 (27087) 0.727 

All Age Adjusted Mortality Ratea 909.58 (127.68) 807.69 (133.41) <0.001 

CVD Age Adjusted Mortality Rateab 344.67 (65.74) 248.06 (56.99) <0.001 

% Male 0.49 (0.02) 0.50 (0.02) <0.001 

% White 0.86 (0.15) 0.84 (0.16) 0.015 

% Black 0.11 (0.15) 0.11 (0.15) 0.406 

% Hispanic 0.06 (0.10) 0.09 (0.12) <0.001 

Median Household Incomec 38k (9549) 39k (9640) 0.998 

% Smoking 27.07 (3.58) 23.27 (3.95) <0.001 

% Alcohol 49.03 (12.67) 51.10 (10.95) <0.001 

% Less Than High School 21.61 (7.80) 21.20 (7.71) 0.902 

% High School Diploma 34.41 (6.83) 34.21 (6.90) 0.996 

% Some College or Associates 26.27 (5.12) 26.59 (5.08) 0.891 

% Bachelor or Higher 17.72 (8.07) 18.00 (8.23) 0.999 

% Unemployment 5.78 (1.67) 7.93 (2.40) <0.001 

Populationc 153 (396) 152 (395) 1 

Average Daily Temperature (F°) 64.77 (8.15) 66.51 (9.48) <0.001 

Average Heat Index (F°) 90.56 (2.80) 92.36 (4.06) <0.001 

Ozone (ppb) 52.79 (6.08) 48.97 (5.57) <0.001 

PM2.5 (µg/m3) 11.16 (2.49) 8.54 (1.39) <0.001 

NPL Frequencyd 0 [0,19] 0 [0,19] 0.997 

a Age-adjusted mortality rates are estimated at the county-level as per 100,000 people. 
b Age adjusted CVD mortality rate are circulatory disease mortality rates with ICD10 codes 
starting with I 
c Measured in thousands (k) 
d National Priority List hazardous waste sites are measured as median [minimum, maximum] 
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Figure 2-2.Toxic Release Inventory (TRI) sites in dark blue and hazardous waste sites (NPL) in 

light blue in the contiguous United States. 

Figure 2-3. Secular trends in county-level TRI releases and All Cause and CVD Cause Mortality 

between 2002 and 2012. 



48 

There are currently 767 listed chemicals and 33 chemical categories covered under 

EPCRA Section 313. The top chemicals released each year include metal compounds, acids, and 

solvents like ammonia, n-hexane, methanol, and toluene. Lead compounds were the most 

released compounds between 2002 and 2012 at a total of 762 million pounds and qualify as the 

most released Clean Air Act chemical, and metal (Figure 2-4). Styrene was the most released 

carcinogen. 

Maps of median releases between 2002-2012 show variation is low between quantity-

based releases and risk -based releases. Compared to the quantity-based map in panel A, the 

risk-based map shows few differences, specifically in the Gulf region in Louisiana and Texas, and 

in Utah and Nevada (Figure 2-5). Counties with high volume of toxic releases were not the same 

counties with high-risk scores. Calcasieu Parish, LA, Sumter County, AL, and Will County, IL 

released chemicals with the most risk in 2002, 2010, and 2011, respectively. Humboldt County, 

NV, Pinal County, AZ, and Salt Lake County, UT released the highest chemical volume in 2005, 

2002, and 2006, respectively (Figure 2-6).  

Both toxic release county sums and risk sums were significantly associated with age-

adjusted all cause and CVD mortality rates between 2002 and 2012 (Figure 2-7). However, 

estimates from risk scores differed based on cause of mortality. For every 25% increase in county 

sum, we found a 1.7% (0.8, 2.6; p-value=0.0002) increase in all-cause mortality rate. For every 

25% increase in risk sum, we found a 1.1% (0.2, 2.0; p-value=0.0006) increase in all-cause 

mortality rate. For every 25% increase in toxic releases at the county level, we found a 2.8% (1.2, 

4.4; p-value=0.0006) increase in CVD mortality rate. Additionally, we found that for every 25% 

increase in county level risk score, there was a 3.0% (95%CI 1.3, 4.6; p-value=0.0132) increase 

in CVD mortality. Models were adjusted for intercensal demographic estimates of county percent 

male, percent White, percent Hispanic, and percent less than a high school diploma earned, 

unemployment, median household income, alcohol, smoking, frequency of National Priority List 

Superfund sites, and PM2.5.  
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Figure 2-4. Top chemicals released at the county-level, annually, between 2002 and 2012 in the 

contiguous United States.
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Figure 2-5. Comparison of county-level exposure indices, county sum and risk sum, in the 

contiguous United States. 

Figure 2-6. Comparison of counties with highest annual county sum and risk sum.



51 

Figure 2-7. Percent increase in annual, county-level mortality rates (per 100k people) per 25% 

increase in county sum or risk sum. 

DISCUSSION 

In our study, we described the top released chemicals between 2002 and 2012 as 

several acids, metals, and solvents, including lead, toluene, and styrene. We found significant 

associations between county-level toxic releases and both all cause and CVD cause mortality 

between 2002 and 2012 despite decreasing trends. County-level risk scores were also 

associated with both all cause and CVD cause mortality with a larger effect estimate in relation to 

CVD mortality. Counties releasing the highest risk chemicals were not the same as those 

releasing the highest volume of chemicals, indicating a clear need for better risk reporting to the 

TRI and more risk assessment for newer chemicals. 

The TRI is a quasi-regulatory mechanism that provides publicly available data on toxic 

emissions and requires reporting to relevant environmental authorities.121 There are currently 

more than 700 chemicals and 33 chemical categories required to be reported under the TRI. 

Between 2002 and 2012, we found an overall trend decrease in TRI emissions. Consistent with 

these results, the TRI National Analysis reports overall declines except for years 2010 to 2012.122 
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Similarly, the TRI National Analysis reported lead and lead compounds accounted for 98% of total 

releases in 2012 and substantially increased from 2009 to 2011 by 102%.122 Overall, our 

descriptive analysis of the national TRI data between 2002 and 2012 followed the trends reported 

by the Environmental Protection Agency. 

There is little reported evidence of the longitudinal association between county-level toxic 

releases and all-cause and circulatory disease mortality. To the best of our knowledge, Hendryx 

et al. was the only study to examine aggregate TRI releases across the U.S., and reported 

average annual, county-level TRI releases between 1990 and 1999 were significantly associated 

with higher all cause and cardiovascular mortality in 2006-2010.19  However, there are several 

reports of the association between CVD mortality and exposure to arsenic,123-125 cadmium,125, 126 

dioxins,127 lead,128 pesticides,129 and several other chemicals and metals which are covered 

under the TRI. Additionally, previous epidemiological studies have shown significant associations 

between exposure to volatile organic compounds and cardiovascular events18, 20, 75 and 

cardiovascular mortality rates.20 Thus, our study provides new models of national, ecological data 

to understand the longitudinal relationship between pollutants and population mortality rates. 

In addition to our aggregate exposure measure, we created a risk score for each county 

to examine the effect of chemical toxicity on mortality rates. We found that our county-level risk 

scores were more strongly associated with CVD mortality rates than the toxicity independent 

exposure score. To create the score, we used a pre-existing toxicity component called the 

reportable quantity established by the ATSDR. Although there is an existing TRI risk score called 

the Risk Screening Environmental Indicators Model (RSEI), we created our own score for 

aggregation and to expand the toxicity included. Compared to the RSEI score, which is only 

based on chronic effects, the reportable quantities are based on acute toxicity, chronic toxicity, 

carcinogenicity, aquatic toxicity, and ignitability and reactivity. Furthermore, RSEI scores are only 

available for approximately 400 covered TRI chemicals. Previous studies have neglected to 

account for the TRI chemical risk level when modelling adverse health effects.97-99 

Our ecological study has several limitations. First, although our ecological study is 

longitudinal, it is an observational study and cannot prove causation. Second, because the study 
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uses an aggregate exposure and outcome variable, we cannot extrapolate the results to the 

individual level. Furthermore, the ecological design introduces ecological bias: bias due to 

interaggregate variation in the disease rate among those not exposed to the risk factor, bias due 

to groups acting as effect modifiers in the dose response relationship, and bias due to 

confounding variables. Finally, even though our study accounted for chemical toxicity, the values 

used were already established by the ATSDR. While advantageous to our development of a risk 

score, reportable quantities are often based on limited or dated toxicology studies and do not 

represent more sensitive cardiovascular endpoints. 

Pollution is the largest environmental cause of disease and premature death in the world 

today.2 Yet the effects of pollution on non-communicable diseases like CVD have largely been 

underestimated. Particularly, the effects of chemical pollution on human health are poorly defined 

due to poor knowledge of many chemicals in common use.90, 91, 130-132 Pollution is a primary 

concern due to increases from globalization, technological industrialization, and urbanization. 

Furthermore, these increases greatly impact low- and middle-income countries, Black and Brown 

populations, and low-income communities in the U.S., and children. 

In our study, we found that pollution defined by county-level toxic releases, in quantity 

and risk, are associated with county-level, age-adjusted all cause and CVD mortality rates in the 

contiguous United States between 2002 and 2012. The most released chemicals during this time 

were metal compounds, especially lead, solvents, and acids. Our study implicates the importance 

of pollution reduction to reduce deaths. Furthermore, it highlights the need to comprehensively 

understand pollution sources. Future studies must determine the most contributive chemicals 

both individually, and as mixtures. Even though our study used a composite value, there is value 

in parsing out contributions of individual chemicals. 
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 EXPOSURE TO VOLATILE ORGANIC COMPOUNDS IS ASSOCIATED WITH 

VASCULAR DYSFUNCTION 

INTRODUCTION 

Cardiovascular disease (CVD) is the leading cause of death from environmental 

exposures, surpassing the number of attributable deaths to cancer mortality.1  The World Health 

Organization estimates that annually, exposure to air pollution is associated with 1.4 million 

deaths from stroke and 2.4 million deaths from heart disease, worldwide.3 To estimate the health 

effects of air pollution, most studies examine particulate matter of diameter 2.5 µm (PM2.5) and 

tropospheric ozone (O3).4 However, even though PM2.5 and O3 show strong associations between 

CVD progression and mortality,5-7   these pollutants represent only two components of complex 

real-world ambient air pollution, which in most locations around the world is a mixture of different 

pollutants, including oxides of nitrogen and volatile organic compounds (VOCs). Therefore, there 

is urgent need to assess the health impact of other commonly found pollutants, and to understand 

how they affect the risk and progression of cardiovascular and other diseases. 

Volatile organic compounds (VOCs) are pervasive environmental pollutants and 

exposure to VOCs has been found to be associated with health effects such as CVD, 

neurological effects, organ toxicity, and cancer.16, 36 Although these gaseous compounds are 

present across all environmental media, they are major components of indoor and outdoor air 

pollution due to high vapor pressure and low molecular weight.31, 133, 134 Primary sources of VOCs 

include tobacco smoke and vehicle exhaust, industrial releases, consumer goods production, 

products that contain organic solvents, and hazardous waste sites.8 VOCs also interact with other 

pollutants to create intermediates and secondary pollutants such as tropospheric O3 and 

secondary organic aerosols, a major component of fine particulate matter (PM2.5).9, 10 However, 

compared with the wealth of epidemiological studies of PM2.5, the approximation of human 
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exposure to VOCs is complicated by a lack of routine air monitoring of VOCs,11 large variations of 

VOCs in space and time,13, 14 and high chemical production each year.15 

The classification of multiple chemicals as VOCs further challenges the understanding of 

VOC exposure. Previous epidemiological studies have grouped ambient VOCs by alkenes, 

alkynes, and benzene, toluene, ethyl benzene and xylene (BTEX) compounds to show 

associations with cardiovascular events such as heart failure,17 stroke,18 ischemic heart 

disease,18, 19 and cardiovascular mortality.19, 20  Total VOC exposure is often measured indoors 

and has been associated with increased blood pressure (BP) and heart rate,21 heart rate 

variability,135 and autonomic nervous system changes.136 Individual VOC metabolites from human 

biomonitoring have been associated with doctor-diagnosed CVD22 and metabolic syndrome.137 

Likewise, VOC-containing pollutants such as automobile and diesel emissions and tobacco 

smoke have been variably linked to the development of CVD and CVD risk.23, 25, 26, 138 

Nonetheless the role of exposure to VOCs in CVD pathophysiology in humans remain to be 

identified. 

In addition to environmental monitoring, VOC exposures can also be monitored by 

measuring urinary metabolites of VOCs. The urinary metabolites of VOCs include specific, stable 

mercapturic acids with short physiological half-lives quantified by non-invasive sampling.86, 139 

Such measurements provide more proximal and individual-level assessments of VOCs. 

Therefore, in this study, we measured urinary VOC metabolites to assess the relationship 

between short-term exposure to individual VOCs and vascular outcomes. We assessed primary 

risk factors for CVD, BP and endothelial function, and sympathetic nervous system 

neurotransmitters/ catecholamines, which are reflective of stress leading to the development of 

CVD.6 Because personal monitoring and biomonitoring are considered the gold standard of 

exposure assessment,140 we measured urinary VOC metabolite levels to test the hypothesis that 

VOC exposure contributes to CVD risk in a nonsmoking, diverse, urban cohort.141 

METHODS 

Both exposure and outcome data were from a cross-sectional study designed to examine 

the relationship between exposure to environmental pollutants and CVD risk in an urban cohort. 
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The Louisville Healthy Heart Study (LHHS) recruited 615 participants with moderate to high CVD 

risk (individuals undergoing primary or secondary prevention for CVD) at University of Louisville 

Hospital and associated clinics in Louisville, KY between October 2009 and April 2017. The 

primary prevention group refers to those who have known CVD risk factors (e.g. hypertension, 

hypercholesteremia, obesity, diabetes) that require management but who have no overt CVD. 

The secondary prevention group refers to those who have CVD risk factors that need to be 

treated, as well as overt CVD. Participants who met enrollment criteria gave informed consent 

and were administered a questionnaire to acquire baseline characteristics and demographic 

information. Inclusion criteria were: 1) age 18 years or older; and 2) treatment for CVD at the 

University of Louisville Hospital and associated clinics. Persons excluded were: 1) those unwilling 

to consent; 2) pregnant or lactating individuals; 3) incarcerated individuals; 4) persons with severe 

comorbidities (including lung, liver, kidney disease, cancer, and coagulopathies); 5) substance 

abuse; and 6) chronic cachexia. The Institutional Review Board at the University of Louisville 

approved the study. 

Measures of Vascular Function 

Blood pressure and endothelial function were measured at time of enrollment. Systolic 

and diastolic BP were measured after ten minutes of rest with an automated cuff and recorded as 

continuous variables. Three measurements were taken one minute apart with the last two 

measurements averaged. Peripheral endothelial function was measured in a subset of 

nonsmoking participants with and without diabetes (n=70) to assess the role of endothelial 

function in the manifestation of diabetes. Participants with diabetes were classified by HbA1c > 

6.5%, fasting plasma glucose > 126mg/dL, or random plasma glucose > 200mg/dL. Peripheral 

endothelial function was measured using fingertip peripheral arterial tonometry, i.e., EndoPAT, 

and calculated as a reactive hyperemia index (RHI).142 

Urinary Catecholamines and Metabolites 

Spot urine samples were collected at day of enrollment. Urinary catecholamines, 

monoamines, and their metabolites were quantified by ultra-performance liquid chromatography-
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tandem mass spectrometry (UPLC-MS/MS) as previously described.143 Briefly, frozen urine 

samples were thawed on ice, vortexed, and diluted (1:50) with 0.2% formic acid containing 

isotopically labeled internal standards. The method quantified epinephrine (EPI); norepinephrine 

(NE); dopamine (DA); serotonin (5-hydroxytryptamine, 5HT); metanephrine (MN); 

normetanephrine (NMN); 3-methoxytyramine (3MT); homovanillic acid (HVA); vanillylmandelic 

acid (VMA); and, 5-hydroxyindole-3-acetic acid (5HIAA) using a Waters Acquity Class-H UPLC 

coupled with Xevo TQ-S micro mass spectrometer.143 Analytes were normalized to urinary 

creatinine levels and reported as levels (nanograms of metabolite per milligram of creatinine, 

ng/mg).  

Accuracy was measured by creating four levels of quality control (QC) samples of spiked, 

known amounts of analytes. Within and between run accuracy was measured in three 

independent runs with five replicates. Accuracy was calculated as the ratio of measured and 

expected concentration of analyte. The accuracy of within- and between runs of all analytes was 

100 ± 16%. The within- and between run precision values, expressed as coefficient of variation 

(CV), were<15% for all analytes, with the exception of 5-HT at LOQ level (17.3%). Recovery was 

within the range of 92–113% at all spike levels (SD ± 16%). Collectively, these results 

demonstrate excellent precision and accuracy for the determination of all the analytes in urine 

samples.143 

Urinary VOC Metabolites 

Volatile organic compounds are ubiquitous environmental pollutants. Although there are 

several sources of VOCs, the major non-occupational source of exposure is tobacco smoke. 

However, VOCs can also arise from hazardous waste sites, vehicle exhaust, industrial releases, 

and household products.8 Urinary VOC metabolites are the preferred method to assess human 

exposure because of high spatial and temporal variability of VOCs in air,13, 14 urine collection is 

non-invasive, and mercapturic acids are specific and stable with longer physiological half-lives 

than parent compounds.86 Given that half-lives of urinary VOC metabolites range from 2.1 to 34 

hours,86 urinary VOC metabolites represent an individual’s short-term or acute exposure.144 We 
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measured the most common urinary VOC metabolites, a well-developed panel of 22 metabolites 

of 17 parent VOCs86, 139 in spot urine samples collected on the day of enrollment. 

To assess VOC exposure, the levels of 22 urinary metabolites of 17 parent VOCs, 

(acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, crotonaldehyde, 

N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, 

tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene; were quantified using a 

modified version of the UPLC-MS method.86, 145 In brief, urine was diluted with 15mM ammonium 

acetate and spiked with isotopically labeled internal standards. The analysis was performed on an 

Acquity UPLC core system coupled to a Quattro Premier XE triple quadrupole mass spectrometer 

with an electrospray source (Waters Inc, MA).145   

The VOC metabolites were analyzed using a method adopted from CDC.86, 139 The 

method was validated139 and the results showed that the sensitivity, precision, and accuracy of 

our method are comparable to the method reported. Specifically, the limit of detection (LOD) of 

each analyte is typically within 1 to 10 ng/ml. Precision, assessed by the coefficient of variation of 

quality control samples, was within 17%. Accuracy, assessed by analyzing spiked urine, was 

determined at three different levels of VOC metabolites, and was within 80 to 120%. The method 

is highly reproducible, with relative standard deviations <8%. The sensitivity, accuracy, and 

precision were similar to those associated with the method developed by the CDC.  

The primary exposure variables were 22 VOC urinary metabolites: N-Acetyl-S-(2-

carboxyethyl)-L-cysteine (CEMA), N-Acetyl-S-(3-hydroxypropyl)-L-cysteine (3HPMA), N-Acetyl-S-

(2-cyanoethyl)-L-cysteine (CYMA), N-Acetyl-S- (2-hydroxyethyl)-L-cysteine  (HEMA), t,t-Muconic 

Acid (MU), N-Acetyl-S-(n-propyl)-L-cysteine (BPMA), N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine 

(DHBMA), N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine (MHBMA3), N-Acetyl-S-(3-

hydroxypropyl-1-methyl)-L-cysteine (HPMMA), N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine 

(AMCC), Phenylglyoxylic acid (PGA), N-Acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA), N-

Acetyl-S-(1-phenyl-2-hydroxyethyl)-L-cysteine + N-Acetyl-S-(2-phenyl-2-hydroxyethyl)-L-cysteine 

(PHEMA), Mandelic Acid (MA), N-Acetyl-S-(trichlorovinyl)-L-cysteine (TCVMA), N-Acetyl-S-

(benzyl)-L-cysteine (BMA), N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (12DCVMA), N-Acetyl-S-
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(2,2-dichlorovinyl)-L-cysteine (22DCVMA), Urinary N-Acetyl-S-(dimethylphenyl)-L-cysteine 

(DPMA), 2-Methylhippuric acid (2MHA), and 3-Methylhippuric acid + 4-Methylhippuric acid 

(3,4MHA). Analytes were normalized to individual urinary creatinine levels to adjust for dilution 

and reported as levels (nanograms of metabolite per milligram of creatinine, ng/mg). 

Covariates 

Data on age, sex, race, body mass index, and self-reported tobacco exposure were 

collected at baseline using questionnaires. Information on medication use, cardiovascular history, 

and cardiovascular risk factors was obtained from medical records and questionnaires. We 

calculated the Framingham risk score (FRS), the risk for coronary heart disease, using the 

National Heart, Lung, and Blood Institute calculator.146 Because PM2.5 is an established CVD risk 

factor,5, 6 we estimated PM2.5 exposure on the day of enrollment for adjustment in our models. We 

assessed the spearman correlation between PM2.5 and urinary VOC metabolites and found no 

significant correlations or correlations of ρ>07. Average daily PM2.5 values for all monitors in the 

Louisville Metropolitan Statistical Area were collected from the U.S. Environmental Protection 

Agency to estimate daily mean values of PM2.5.  

Statistical Analysis 

Smoking is a known risk factor for CVD, and a major source and possible confounder of 

VOC exposure.138, 145, 147 To assess environmental VOC exposure in individuals, we restricted the 

cohort to nonsmokers. We excluded individuals who were smokers, classified as individuals with 

urinary cotinine levels greater than 40 ng/mg of creatinine (n=222), despite self-reported positive 

smoking status.   This range also excludes those exposed to secondhand smoke.148  Participants 

without measured VOC metabolite data (n=46) and one participant with catecholamine outliers 

(six times the 99th percentile of 21,633 ng/mg) were removed from the analysis. The remaining 

cohort (n=346) had ≤10% missing data for other covariates. Observations with unobserved 

outcomes were removed from models. Thus, the final cohort for each outcome was n=308 for BP, 

n=70 for endothelial function, and n=323 for catecholamines. To summarize these data, variables 

were stratified into low and high levels of total VOC metabolites. We created a ‘total VOC score’ 
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by summing the Z-score of each of the log transformed and creatinine-corrected metabolites. 

Values were dichotomized into low and high groups, using the median value of summed Z-scores 

(-0.3143426). To determine significant differences between low and high total VOCs, we used Chi 

square tests for categorical variables and t-tests for continuous variables. Values of continuous 

variables are reported as mean ± SD and categorical variables as n (%).  

 To examine the link between environmental VOC exposures and CVD risk, we 

constructed individual linear regression models by regressing normally distributed BP against 

each urinary VOC metabolite after adjusting for potential confounders. The levels of 

catecholamines and their metabolites, and RHI values were positive and right skewed; therefore, 

we used generalized linear models (GLMs) with a gamma distribution and log link function. Model 

adjustments were chosen a priori based on the literature for BP and RHI6, 56, 62 and by creation of 

a directed acyclic graph. The relationships between levels of urinary VOC metabolites and BP 

were adjusted for age, sex, race, BMI, angiotensin converting enzyme (ACE) inhibitors, 

angiotensin II receptor blockers (ARBs), beta blockers, and PM2.5. Models including the 

covariates temperature, seasonal adjustment, median household income by census tract, 

diabetes, and cotinine did not change the effect estimate by more than 10% and were therefore 

not included in final models. The relationship between VOC exposures and RHI was adjusted for 

age, sex, race, BMI, diabetes status, and PM2.5. Additionally, we tested BP medications as 

moderators of the relationship between VOC exposures and BP, and diabetes and hypertension 

as moderators of the relationship between VOC exposures and RHI. To simulate a dose-

response curve, we split the urinary VOC metabolite levels into equal tertiles and constructed 

adjusted generalized linear models of predicted means for each tertile as the new exposure 

variable to determine the shape of the exposure-response relationship. The lowest tertile 

concentration of each VOC metabolite was the reference group. To determine susceptible 

groups, we performed sub-analyses based on race and sex strata for blood pressure and 

catecholamine outcome variables. The data was not stratified by age due to high median age 

among the cohort. RHI was not included in sub-analyses due to small sample size. 
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To examine the association between VOC exposures and catecholamines, monoamines, 

and their metabolites, we constructed generalized linear models by regressing each of the ten 

catecholamines against each urinary VOC metabolite. We built individual models for each VOC 

metabolite and adjusted for significant (p<0.1) differences between low and high concentrations 

of each VOC metabolite. To determine susceptible groups, we performed sub-analyses based on 

race and sex strata.  

To understand the relationship between exposure to VOCs and BP, we conducted a 

mediation analysis of VOCs and BP mediated by catecholamines. The mediation analysis was 

conducted by assessing the direct and indirect effects of each VOC metabolite (X variable) on 

SBP and DBP (Y variables) with each urinary catecholamine (M) as mediator. Analysis was 

conducted using the PROCESS macro in SAS.149  Additionally, we tested the exposure-mediator 

interaction in the relationship to BP. 

Although there were multiple exposure variables, we did not correct for multiple testing to 

test the null hypothesis that all associations were null.150, 151 Furthermore, this is an exploratory 

analysis where the VOC and CVD connection is not very strong. Thus, we wanted to minimize 

false negatives. We did not presume that all associations were due to random variation. Values 

are reported as mmHg or percent difference in outcome per interquartile range (IQR) of VOC 

metabolite concentration. Statistical analysis was performed using SAS version 9.4 (SAS Institute 

Inc., Cary, NC, USA) for individual VOC models of CEMA, 3HPMA, DHBMA, MHBMA3, and 

HPMMA, and R software (version 3.1.3) was used for graphical displays.  

Sensitivity Analysis 

We constructed models with and without normalization of VOC metabolites to creatinine. 

When the VOC metabolites were not normalized to creatinine, the creatinine variable was 

included as a covariate in the model. All models were used with the concentrations of VOC 

metabolites normalized to creatinine. Finally, 11 self-reported smokers were included despite 

cotinine values of <40ng/mg. The maximum values of cotinine (24.13ng/mg) for the self-reported 

smokers was much lower than the maximum values of self-reported nonsmokers (38.10 ng/mg). 

We conducted sensitivity analyses to determine changes in associations with and without self-
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reported smokers with no difference in result. Thus, we kept nonsmoker status using the above 

cotinine cut-off of <40ng/mg. 

RESULTS 

In Table 3-1, we present descriptive statistics for the restricted non-smoking LHHS 

participants (n=346) after excluding smoking participants with urinary cotinine values >40ng/mg 

creatinine. Data for individual covariates were missing for ≤10% of participants. More than half 

the study population was White, about a third was Black, the mean age was 51.9 years, and the 

mean BMI was 32.9 kg/m2. Participants with higher VOC metabolite concentrations were older, 

had higher Framingham risk scores, more comorbidities, and were prescribed more CVD 

medications. 

At least 85% of all VOC metabolite observations in the nonsmoking population were 

above the LOD. All VOC metabolites were gamma distributed and highly variable. Boxplots of log 

transformed VOC metabolites normalized to creatinine are presented in Figure 3-1A. Women 

(n=198) had higher concentrations of DHBMA and HPMMA compared with men (Figure 3-1B); 

and White participants (n=214) had higher concentrations of 3HPMA, DHBMA, and HPMMA 

compared with Black participants (Figure 3-1C). Parameter estimates were reported for IQR 

increase in each VOC metabolite: 88.3ng/mg of creatinine for CEMA, 148.9ng/mg for 3HPMA, 

195.0ng/mg for DHBMA, 4.7ng/mg for MHBMA3, and 107.2ng/mg for HPMMA. Systolic and 

diastolic BPs and RHI had a log-normal distribution. The levels of catecholamines and 

metabolites were gamma distributed.  

Figure 3-2A shows fully adjusted estimates for associations with systolic blood pressure 

(SBP), which were positive per IQR increase in 3HPMA (0.98 mmHg higher; 95% CI: 0.06, 1.91; 

P=0.038). As shown in Figure 3-2B, 3HPMA was associated with SBP in an exposure dependent 

manner. Likewise, for each IQR of 3HPMA or DHBMA, there was a -3.3 % (95% CI: -6.18, -0.37; 

P=0.024) or a -4.0 % (95% CI: -7.72, -0.12; P=0.012) difference in RHI, respectively, indicating 

decreased endothelial function. Notably, RHI was lower in an exposure-dependent manner with 

DHBMA concentrations (1.8%; 95% CI: 1.65, 2.06; P=0.011). Although the reduction in absolute 

RHI index was similar between 3HPMA and DHBMA, it did not reach statistical significance for 



63 

3HPMA. The other acrolein metabolite, CEMA, approached significance in the association with 

SBP (1.53mmHg; 95% CI: -0.27, 3.34; P=0.097) and RHI (4.3%; 95% CI -10.0, 0.9; P=0.123).  
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Table 3-1. Descriptive Statistics [number (%) and mean (± standard deviation (SD))] for 

nonsmoking participants in the Louisville Heathy Heart Study (n=346), stratified by low and high 

VOC metabolite concentrations. 

Participant Characteristic Low VOCa High VOC p-valueb 

Age 49.3 ± 11.9 54.5 ± 11.2 <0.001 

Male 96 (56.1) 102 (59.3) 0.63 

Race 0.8 

   Black (Black v Other) 55 (32.2) 50 (28.9) 0.56 

   White (White v Other) 104 (60.5) 110 (64.0) 0.24 

   Other (Other v All) 13 (7.6) 12 (6.9) 0.84 

BMI 32.9 ± 8.0 32.8 ± 8.1 0.85 

Daily Mean PM2.5 (µg/m3) 12.9 ± 5.0 13.7 ± 6.0 0.26 

Daily Max O3 (µg/m3) 0.05 ± 0.02 0.05 ± 0.02 0.14 

Temperature (C°) 12.4 ± 13.2 13.3 ± 12.9 0.55 

Humidity (mg/L) 22.3 ± 10.7 22.2 ± 10.8 0.91 

Median Household Incomed 49K ± 31K 45K ± 26K 0.22 

Framingham Risk Score 21.1 ± 11.8 25.3 ± 9.1 0.002 

Hyperlipidemia 77 (45.6) 102 (59.6) 0.013 

Hypertension 99 (58.6) 129 (75.4) 0.001 

Diabetes 44 (26.0) 62 (36.0) 0.06 

Myocardial Infarction 30 (17.9) 46 (26.7) 0.07 

Stroke 10 (5.9) 13 (7.6) 0.70 

Heart Failure 18 (10.8) 28 (16.4) 0.18 

Beta Blockers 60 (35.9) 88 (52.4) 0.003 

Ace Inhibitors 64 (37.9) 76 (44.7) 0.24 

ARBsc 11 (6.6) 20 (11.9) 0.14 

Statins 59 (35.3) 82 (48.8) 0.017 

Aspirin 60 (35.9) 83 (48.8) 0.022 

Diuretics 46 (27.5) 73 (43.5) 0.003 

Vasodilators 5 (4.0) 11 (8.0) 0.28 

Calcium Channel Blockers 34 (20.4) 40 (23.8) 0.53 

a Low and high VOC strata are dichotomized Z-score sums of the log transformed VOC 
metabolite concentrations normalized to creatinine (ng/mg). 
b Continuous variables compared between strata by t-tests and categorical variables compared 
between strata by χ² tests 
c Angiotensin II Receptor Blockers 
d Reported in thousands (K) 
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Systolic and diastolic blood pressure in the entire cohort centered around 129.1±19.7 and 

79.6±11.1 mmHg, respectively. In comparison, Black participants had higher mean SBP 

(135.6±23.0 mmHg) and DBP (83.5±11.7.0 mmHg) than White participants’ mean SBP 

(126.4±17.4 mmHg) and DBP (77.9±10.4 mmHg). Compared with the relationship between 

3HPMA and SBP found in the total cohort, Black participants showed a larger association with 

SBP (5.1 mmHg higher; 95% CI: 1.5, 8.8; P=0.006), despite lower levels of urinary 3HPMA in this 

population (Figures 3-1C and 3-2C). Additionally, women had a larger association with SBP per 

IQR of 3HPMA (1.2 mmHg higher; 95% CI: 0.08, 2.4; P=0.038). In White participants, estimates 

were higher for SBP (0.8 mmHg higher; 95% CI: 0.05, 1.5; P=0.037) and diastolic blood pressure 

(DBP) (0.6 mmHg higher; 95% CI: 0.2, 1.0; P=0.007) per IQR increase in MHBMA3 (Figure 3-

2C).  

Several catecholamines were significantly associated with VOC metabolites. Urinary EPI 

levels were positively associated with IQR increases in MHBMA3 (3.1% higher; 95% CI: 0.5, 

5.7%; P=0.018) and HPMMA (0.04% higher; 95% CI: 0.0, 6.6%; P=0.036) (Figure 3-3). Urinary 

DA levels were positively associated with IQR increases in HPMMA (3.3% higher; 95% CI: 1.1, 

4.4%; P=0.001). In Black participants, urinary NE and NMN levels were positively associated with 

IQR increases in DHBMA (15.7% higher; 95% CI: 5.6, 27.0%; P=0.001; and 11.6% higher; 95% 

CI: 3.7, 20.0%; P=0.002) compared with the entire cohort. DA and serotonin end products, HVA 

and 5HIAA, were positively associated with 3HPMA, DHBMA, MHBMA3, and HPMMA.  

To understand whether catecholamines modify or mediate relationships between VOC 

metabolites and markers of vascular dysfunction, we tested for both interaction and mediation. 

Mediation analyses showed null results. Although we observed significant direct effects between 

the acrolein metabolites and catecholamines, there were no significant indirect effects of 

catecholamines mediating the effects of VOC exposure on blood pressure. However, EPI levels 

were shown to modify the associations of MHBMA3 with DBP. Similarly, DA levels modified the 

association between HPMMA and SBP (data not shown). There was a positive association 

between MHBMA3 and DBP (0.5% higher; 95% CI: 0.0, 1.0%) in participants with higher urinary  
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Figure 3-1. Exposure distributions of each VOC metabolite, CEMA, 3HPMA, DHBMA, MHBMA3, 

and HPMMA, reported as totals (A), and stratified by sex (B) and race (C). 

Values are reported as the log of the concentration of creatinine corrected urinary VOC 
metabolites (ng/mg creatinine). Wilcoxon unpaired two sample tests used to compare means. 
Single asterisk indicates p-values<0.05, 3 asterisks indicate p-values<0.001, and ns indicates not 
significant, p-values>0.05. 
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Figure 3-2. Differences (mmHg) and percent differences, and 95% confidence intervals in blood 

pressure and RHI per IQR of VOC metabolite (A). Predicted means and 95% confidence 

intervals(mmHg) in blood pressure and % difference in RHI with increasing tertile of 3HPMA and 

DHBMA (B). Differences and 95% confidence intervals (mmHg) in blood pressure, stratified by 

sex and race (C). 

Model adjustments for blood pressure (n=308) include age, sex, race, BMI, daily PM2.5, ace 
inhibitors, ARBs, and beta blockers. Model adjustments for RHI (n=70) include age, sex, race, 
BMI, diabetes, and daily PM2.5. Asterisks indicate p-values<0.05. Model estimates can be found 
in supplemental information. 
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Figure 3-3. Percent differences and 95% confidence intervals in catecholamines per IQR of VOC 

metabolite in the total cohort (+). Models were stratified by male participants (filled circle), female 

participants (open circle), Black participants (fliled triangle), and White participants (open 

triangle). 

Catecholamines include epinephrine (EPI), norepinephrine (NE), dopamine (DA), 5-
hydroxythreonine (5HT), metanephrine (MN), normetanephrine (NMN), 3-methoxytyramine 
(3MT), homovanillic acid (HVA), vanillymandelic acid (VMA), and 5-hydroxyindole acetic acid 
(5HIAA). Asterisks indicate p-values<0.05. Model estimates can be found in supplemental 
information. 
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levels of EPI tertiles (between 6.6 and 31.5ng/mg). There was a positive association between 

HPMMA and SBP (3.3% higher; 95% CI: 0.7, 5.9%) in participants with lower levels of EPI 

(between 0.0 and 3.1 ng/mg). Similarly, there was a positive association between HPMMA and 

SBP (2.7% higher; 95% CI: 0.0, 5.4%) in participants with lower levels of DA tertiles (between 5.2 

and 133.7 ng/mg). 

DISCUSSION 

In this study of participants with moderate to high CVD risk, we found that metabolites of 

acrolein and 1,3-butadiene, (3HPMA and DHBMA, respectively), were significantly associated 

with SBP and endothelial dysfunction. We also found that Black participants may be more 

susceptible to the effects of acrolein (with respect to SBP) and they had higher levels of NE and 

NMN associated with 1,3-butadiene exposure. DHBMA was consistently associated with the 

dopamine metabolite homovanillic acid, across all strata. The crotonaldehyde metabolite, 

HPMMA, was strongly associated with the serotonin metabolite, 5-hydroxyindole acetic acid. 

Finally, we report null results of catecholamines mediating the relationship between VOC 

exposure and blood pressure. 

Acrolein is a reactive unsaturated aldehyde known to be associated with CVD risk.25 

Acrolein can be produced both endogenously from lipid peroxidation, and exogenously from 

combustion, chemical production, cigarette smoke, and e-cigarette vapors.147, 152 In the city of 

Louisville, Jefferson County census tracts were estimated to have some of the highest ambient 

acrolein concentrations across the state of Kentucky in 2011 and 2014, with point and mobile 

source emissions (airport and heavy duty vehicles) as top contributors.153 In our analysis, we 

found that the acrolein metabolite, 3HPMA, was significantly associated with increased SBP in a 

dose-dependent manner.  

Similar to our results, previous studies have shown that exposure to acrolein increases 

BP in both normotensive and hypertensive rats.154, 155 Additionally, several experimental studies 

have shown that exposure to acrolein affects endothelial function by  suppressing endothelial 

nitric oxide synthase activation,156 attenuating endothelial cell migration,157 blocking vascular 

endothelial growth factor,158 and reducing circulating levels of angiogenic cells.25 Specifically, an 
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intact endothelium mediates dilation of the mesenteric bed in response to acrolein exposure; thus 

indicating a blunted response with increased sympathetic tone.159 Endothelial function was 

similarly impaired in tobacco smokers160-162 and e-cigarette users163-166 -two sources of acrolein 

exposure in the general population. Finally, CVD risk markers, EPI and NE did not increase with 

respect to acrolein exposure in male Wistar and GK rats.167  

The chemical - 1,3-butadiene is an alkene reported to have a possible epidemiological 

association with arteriosclerotic heart disease.168-170 This chemical is primarily used to make 

synthetic rubber, but it is also produced from petroleum processing and combustion sources such 

as vehicle exhaust and cigarette smoke.171 Although our study did not show associations 

between 1,3-butadiene exposure and BP, one study found normotensive pregnant women had 

increased odds of high BP when exposed to ambient 1,3-butadiene two hours prior to admission 

to labor and delivery.18 Another cross-sectional study used principal component analysis of 

nonsmokers’ personal exposures to ambient VOCs; the authors observed decreased endothelial 

function and increased DBP in relation to a 1,3-butadiene source in the Detroit Exposure and 

Aerosol Research Study (DEARS). No effect on SBP was seen.172 Similar to acrolein, several 

studies suggest 1,3-butadiene as a major cardiovascular risk driver in cigarette smoke.169, 173 

However, from these data  the singular contribution of 1,3-butadiene exposure to endothelial 

dysfunction in humans could not be ascertained, as in our study. 

Crotonaldehyde is an unsaturated aldehyde and an atherogenic compound.174-176 

Crotonaldehyde is produced endogenously from the metabolism of 1,3-butadiene and 

exogenously from combustion sources like vehicle exhaust and cigarette smoke.177-179 

Crotonaldehyde and acrolein did not seem to share similar adverse health effects in our study 

despite a potential shared mode of action.178 However, crotonaldehyde exposure was weakly 

associated with EPI, NE, DA, HVA, and 5HT and strongly associated with serotonin metabolite 

5HIAA, but had little or no relationship with BP or endothelial function. Consistent with this 

observation, a recent study shows that chronic inhalation exposure of mice to crotonaldehyde led 

to decreases in SBP and DBP and enhanced endothelial function.180 Crotonaldehyde is a 

noncompetitive inhibitor of aldehyde dehydrogenases which have been suggested to be involved 
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in DA metabolism, release, and synthesis.181-183 Furthermore, cigarette smoke, a major source of 

acrolein, 1,3-butadiene, and crotonaldehyde, has been shown to inhibit monoamine oxidase, a 

catalyst for the biotransformation of both DA and 5HT to metabolites HVA and 5HIAA, 

respectively.143 Therefore, our study suggests exposure to crotonaldehyde may affect 

dopaminergic pathways. 

We found that Black participants may be more susceptible to acrolein exposure with 

respect to SBP, despite lower levels of exposure when compared with White participants. Black 

individuals are at an increased risk for CVD184 which may be explained by increased susceptibility 

to acrolein exposure, a major driver of CVD.185 Similar to our study, a previous analysis of 

NHANES 2005-2006 data reported Black individuals have lower urinary 3HPMA concentrations 

compared with White individuals.186 However, racial disparities in the relationship between 

acrolein and blood pressure has not previously been reported. This susceptibility may be 

explained by a myriad of factors such as access to healthcare or increased stress from systemic 

racism, and thus requires future research. In Louisville, Kentucky, the National Air Toxics 

Assessment estimates higher concentrations of acrolein in lower percent Black census tracts, but 

the health impact of such exposures has not been evaluated.153  

Black individuals also had higher levels of NE and NMN associated with 1,3-butadiene 

exposure. Two large, retrospective epidemiological studies have reported increased standardized 

mortality ratios for arteriosclerotic heart disease in 1,3-butadiene exposed rubber plant workers, 

particularly in the Black male population.168-170 Similarly, another study found that Black 

hypertensive subjects had the more sensitive and highest-density β-receptors,187 and increased 

α1 and β-adrenergic receptor responsiveness compared with White subjects. 188 Because EPI, 

NE, and DA are agonists for β-adrenergic receptors, increased catecholamines could produce a 

higher β-adrenergic response in Black individuals leading to an increased risk for CVD. Additional 

studies with larger populations are needed to replicate these findings.  

In our analyses, catecholamines did not mediate the relationship between VOC exposure 

and blood pressure. Mediation is the sum of the direct effect (c’) and the indirect effect (a x b) of X 

on Y, the total effect.149 Although we found significant direct effects between the acrolein 



72 

metabolites and catecholamines, the indirect effects were null. Therefore, we cannot conclude 

that catecholamines mediate the effects of VOC exposure on blood pressure in our study. These 

null effects may be explained by the small magnitude of change in catecholamines. Blood 

pressure medications, however, may be effect modifiers or confounders of these analyses 

because they reduce changes in catecholamines and may attenuate the mediating relationship 

between VOC exposures and blood pressure. 

CVD is a complex group of pathological conditions that affect the heart and blood 

vessels.  Although rare cases of CVD can be linked to specific gene-defects, a majority of CVD 

risk can be attributed to environmental factors such as poor nutrition, physical inactivity, smoking 

and exposure to air pollution.58, 189, 190 There are three proposed biological pathways through 

which exposure to air pollution could contribute to the development of CVD: 1) systemic oxidative 

stress and inflammation, 2) autonomic nervous system imbalance, and 3) transmission of 

constituents from the lung into the blood.6 We observed that exposure to 1,3-butadiene and 

crotonaldehyde were associated with endothelial dysfunction and biogenic monoamines, and that 

acrolein exposure was associated with SBP and endothelial dysfunction, suggesting that the risk 

of CVD attributable to the environment may be in part derived from exposure to VOCs that are 

ubiquitously present in the environment.  

A major advantage of this study is that interindividual differences in exposure were 

accounted for by using human biomonitoring in the exposure assessment. Another advantage is 

the removal of smokers based on urinary cotinine values greater than 40 ng/mg of creatinine. 

Most studies of VOC exposure are unable to account for smoking, or they overestimate the 

contribution of smoking to VOC exposure. Here, we show how low levels of VOCs may contribute 

to CVD effects, and that these effects are independent of smoking. Although we chose to use 

urinary cotinine values greater than 40 ng/mg creatinine to remove smoking individuals, 

participants could still be exposed to low levels of VOCs from marijuana use, or intermittent 

smoking.  

Limitations of this study include the small sample of nonsmokers, potential bias from 

cross-sectional study design and classification of nonsmokers, and exposure and outcome 
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measurement error. Misclassification of exposure and outcome is an important source of bias 

in epidemiologic studies and is a likely limitation of our study. To quantify exposure, we measured 

urinary metabolites. However, urinary metabolites of VOCs range widely in half-life, and therefore 

their variable levels due to differences in times of exposure may account for some of the 

variability in the data and exposure misclassification. Finally, even though we tested multiple 

associations from individual VOC metabolites, we did not adjust for multiple comparisons which 

may have allowed for some spurious associations.150   

Further work is required to corroborate the findings of our study.  Data from larger cohorts 

with VOC metabolite data may be particularly informative about these associations in the general 

population.  However, cohorts like NHANES do not have extensive data on CVD risk factors or 

markers of sub-clinical disease progression.  While several cohorts such as the Multi-Ethnic 

Study of Atherosclerosis (MESA) or the Framingham Heart Study have rich data on CVD risk, 

progression, and outcomes, they do not have VOC exposure estimates.  Nonetheless, 

characterization of VOC exposure in these cohorts may be useful in further strengthening the 

associations identified in our work. Additional work is also required to identify sources of 

exposure. Source apportionment based on area of residence could be useful in defining 

geographic exposure contributors.  

Approximately 70% of noncommunicable diseases like CVD are attributable to air 

pollution, the fifth leading human health risk factor.191 Although the effects of PM2.5 exposure on 

CVD are well documented in the literature, there is a lack of data regarding VOC exposures,  

which are a major component of air pollution, tobacco smoke, consumer products, and Superfund 

site generated pollutants. This gap is most likely attributable to the gap in VOC emission 

inventories and quantification of VOCs in ambient air,11, 13-15 as well as the lack of measurements 

of VOC metabolites in exposed populations.  Recently, volatile chemical products such as 

pesticides, coatings, printing inks, adhesives, cleaning agents, and personal care projects were 

reported to make up half of fossil fuel VOC emissions in industrialized cities.8 Our findings 

suggest that low levels of VOCs can contribute to CVD at least in an at-risk population,16, 145 and 

highlight the importance of investigating VOC exposure as a risk factor in the development of 
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CVD. Finally, our findings highlight the need to further survey, reduce, and regulate 

environmental pollutants for the prevention of CVD.
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 POLLUTION MIXTURES ARE ASSOCIATED WITH CARDIOVASCULAR 

MORTALITY AND BLOOD PRESSURE 

INTRODUCTION 

More than 70% of diseases caused by environmental factors are non-communicable 

diseases, of which CVDs are a major component.2  Specifically, evidence supports the 

association between exposure to VOCs,18, 20, 25, 26, 75, 77 exposure to metals,192, 193 and exposure to 

ambient PM2.5 6, 194, 195 in the development of CVD. However, it is well known that these 

exposures do not occur singularly, in a vacuum. Yet, epidemiological studies have historically 

assessed the relationship between one exposure and multiple health effects. As a result, the 

impact of multiple environmental exposures on health has not been well characterized. The 

National Institute of Environmental Health Science 2018-2023 strategic plan highlights this gap by 

listing the assessment of co-exposures as a primary goal for advancing environmental health 

sciences.196  

Environmental exposure data consisting of multiple exposures present challenges of high 

dimensionality, multi-collinearity, and multiple comparisons in biostatistical analysis. Therefore, 

there are two major types of statistical methods used to overcome these challenges in the study 

of mixtures, unsupervised and supervised methods.197 Unsupervised methods commonly use 

dimension reduction techniques independent of the modelled outcome and include clustering, 

principal component analysis, and exploratory factor analysis. Supervised methods are informed 

by the outcome of interest and include the penalized regression, otherwise known as variable 

selection, the weighted quantile sum regression, and the Bayesian Kernel Machine Regression 

(BKMR). Due to the myriad methods of assessing mixtures, one must consider the research 

question of interest and the data to be analyzed prior to choosing a method to assess mixtures. 
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Until now, this dissertation work has focused on single exposure models to assess the 

association with CVD mortality and the CVD risk factors in Chapters 2 and 3. Here, we will use 

the previously mentioned TRI and LHHS data to cross-sectionally assess mixture patterns in 

relationship to our CVD outcomes of CVD mortality and blood pressure. The TRI dataset is a 

longitudinal study of county level toxic releases from industries and age-adjusted all cause and 

CVD cause mortality between 2002 and 2012. The LHHS dataset is a cross-sectional study of 

Louisville residents with moderate to high CVD risk. Between October 2009 and April 2017, 

participants were recruited at baseline at the University of Louisville Hospital and associated 

clinics. The entire cohort was comprised of 615 participants. The Institutional Review Board (IRB) 

at the University of Louisville approved the study.  

As we are interested in how these environmental mixtures are associated with a 

cardiovascular outcome of mortality or blood pressure, we will be using two supervised methods, 

variable selection and BKMR. The variable selection procedure, elastic net, will be used to 

assess the relationship between mixtures of county level toxic releases and age-adjusted CVD 

mortality in 2012. The BKMR method will be used to assess the relationship between mixtures of 

urinary VOC metabolites and systolic and diastolic blood pressure (SBP and DBP). Each method 

will aid in the identification of potentially toxic mixture components. 

METHODS 

Study Populations, Exposures, and Outcomes 

National County Level TRI Study 

The National County Level TRI Study (NCLTS) is an ecological, longitudinal study 

designed to examine the relationship between county-level toxic releases and county-level, age-

adjusted all cause and circulatory disease mortality, otherwise referred to as CVD mortality, 

between 2002 and 2012 in the contiguous United States. Exposure and outcome data was 

acquired from publicly available data from the EPA Toxic Release Inventory database and CDC 

Wonder database. County-level covariates were acquired from the U.S. Census Bureau, the U.S. 

Department of Labor, and the Institute for Health Metrics and Evaluation. The dataset includes 
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2,599 counties in the contiguous United States with repeated observations for the consecutive 

years 2002 to 2012, a total of 17,730 unique observations. 

To assess county-level exposures, we acquired annual toxic chemical releases from the 

TRI.92 We downloaded national annual basic data files from the U.S. Environmental Protection 

Agency website for the consecutive years of 2002 to 2012. Section 313 of the Emergency 

Planning and Community Right to Know Act (EPCRA) promulgates the TRI. The TRI is a 

reporting system for facilities with a primary sector industry code included in the required 

reporting list, facilities employing ten or more people, or facilities manufacturing, processing or 

using EPCRA 313 chemicals. Facilities must report estimates of annual releases if they exceed 

thresholds of 25,000 pounds per year for manufacturing; 25,000 pounds per year for processing; 

or 10,000 pounds per year for otherwise use. 

To assess mortality outcomes, we used data on deaths by underlying cause of death and 

county of residence from vital registration through the National Center for Health Statistics106 and 

on population data from the U.S. Census Bureau107 for intercensal estimates of county-level 

percentages of sex, and race. From 2002 to 2012, there were a total of 31.8 million deaths in the 

contiguous U.S.; 11 million of these deaths were from circulatory disease (ICD-10 codes 

beginning with I) for which there is evidence of an association with toxic chemical pollution.2 All 

exposure and outcome variables and covariates were harmonized and merged to create a 

dataset of publicly available data. All variables were matched by county-level FIPS codes, the 

Federal Information Processing Standard. 

Louisville Healthy Heart Study 

The Louisville Healthy Heart Study (LHHS) is a cross-sectional study designed to 

examine the relationship between exposure to environmental pollutants and CVD risk. The study 

recruited 615 participants with moderate to high CVD risk at University of Louisville Hospital and 

associated clinics in Louisville, KY between October 2009 and April 2017. Smoking is a known 

risk factor for CVD, and a major source and confounder of VOC exposure.138, 145, 147 To assess 

environmental VOC exposure in individuals, we restricted the cohort to nonsmokers. We 
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excluded individuals who were smokers, classified as individuals with urinary cotinine levels 

greater than 40 ng/mg of creatinine (n=222), despite self-reported positive smoking status.   

To assess VOC exposure, the levels of 22 urinary metabolites of 17 parent VOCs, 

(acrolein, acrylamide, acrylonitrile, benzene, 1-bromopropane, 1,3-butadiene, crotonaldehyde, 

N,N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, 

tetrachloroethylene, toluene, trichloroethylene, vinyl chloride, and xylene) were quantified using a 

modified version of the UPLC-MS method.86, 145 In brief, urine was diluted with 15mM ammonium 

acetate and spiked with isotopically labeled internal standards. The analysis was performed on an 

Acquity UPLC core system coupled to a Quattro Premier XE triple quadrupole mass spectrometer 

with an electrospray source (Waters Inc, MA).145   

The VOC metabolites were analyzed using a method adopted from CDC.86, 139 The 

method was validated139 and the results showed that the sensitivity, precision, and accuracy of 

our method are comparable to the method reported. Specifically, the limit of detection (LOD) of 

each analyte is typically within 1 to 10 ng/ml. Precision, assessed by the coefficient of variation of 

quality control samples, was within 17%. Accuracy, assessed by analyzing spiked urine, was 

determined at three different levels of VOC metabolites, and was within 80 to 120%. The method 

is highly reproducible, with relative standard deviations <8%. The sensitivity, accuracy, and 

precision were similar to those associated with the method developed by the CDC.  

The primary exposure variables were 22 VOC urinary metabolites: N-Acetyl-S-(2-

carboxyethyl)-L-cysteine (CEMA), N-Acetyl-S-(3-hydroxypropyl)-L-cysteine (3HPMA), N-Acetyl-S-

(2-cyanoethyl)-L-cysteine (CYMA), N-Acetyl-S- (2-hydroxyethyl)-L-cysteine  (HEMA), t,t-Muconic 

Acid (MU), N-Acetyl-S-(n-propyl)-L-cysteine (BPMA), N-Acetyl-S-(3,4-dihydroxybutyl)-L-cysteine 

(DHBMA), N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine (MHBMA3), N-Acetyl-S-(3-

hydroxypropyl-1-methyl)-L-cysteine (HPMMA), N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine 

(AMCC), Phenylglyoxylic acid (PGA), N-Acetyl-S-(2-hydroxypropyl)-L-cysteine (2HPMA), N-

Acetyl-S-(1-phenyl-2-hydroxyethyl)-L-cysteine + N-Acetyl-S-(2-phenyl-2-hydroxyethyl)-L-cysteine 

(PHEMA), Mandelic Acid (MA), N-Acetyl-S-(trichlorovinyl)-L-cysteine (TCVMA), N-Acetyl-S-

(benzyl)-L-cysteine (BMA), N-Acetyl-S-(1,2-dichlorovinyl)-L-cysteine (12DCVMA), N-Acetyl-S-
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(2,2-dichlorovinyl)-L-cysteine (22DCVMA), Urinary N-Acetyl-S-(dimethylphenyl)-L-cysteine 

(DPMA), 2-Methylhippuric acid (2MHA), and 3-Methylhippuric acid + 4-Methylhippuric acid 

(3,4MHA). Analytes were normalized to individual urinary creatinine levels to adjust for dilution, 

and reported as levels (nanograms of metabolite per milligram of creatinine, ng/mg). 

Blood pressure was collected and measured at time of enrollment. Systolic and diastolic 

BP were measured after ten minutes of rest with an automated cuff and recorded as continuous 

variables. Three measurements were taken one minute apart with the last two measurements 

averaged. 

Statistical Analysis 

Variable Selection 

In simple linear regression, we draw a line of best fit given data points x and y to 

summarize the relationship between x and y. To find the beta estimate and the best fit line, we 

minimize the residual sum of squares, otherwise known as ordinary least squares (OLS). 

However, traditional OLS offers poor prediction accuracy and interpretation, due to low bias and 

large variance, and multiple predictors. 

Penalization techniques have been proposed to improve OLS estimates. There are three 

types of penalization techniques: ridge regression, least absolute shrinkage and selection 

operator (lasso), and elastic net. Ridge regression is a continuous shrinkage method which 

minimizes the residual sum of squares subject to a bound on the L2-norm of the coefficients (the 

sum of the squared coefficients).198 This method improves prediction through a bias-variance 

trade-off, but it does not reduce the number of interpretable predictors. The lasso technique is a 

penalized least squares method imposing an L1-penalty on the regression coefficients (the sum of 

the absolute coefficients). The lasso does both continuous shrinkage, as in ridge regression, and 

automatic variable selection, reducing the number of interpretable predictors.199 Limitations of the 

lasso are model saturation when there are more predictors than observations (𝑝 > 𝑛), prediction 

performance domination by ridge regression when there are more observations than predictors 

(𝑛 > 𝑝), and selection of one variable when predictor correlations are high.200 Elastic net has the 
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advantage of simultaneously doing automatic variable selection, continuous shrinkage, and 

selection of groups of correlated variables. Elastic net constrains the model by shrinking 

regression coefficients of highly correlated variables towards each other, with a combination of 

the penalty terms L1 and L2 norm.200  

If the dataset has 𝑛 observations and 𝑝 predictors, let 𝑦 = (𝑦1 … 𝑦𝑛)𝑇  be the response

and 𝑋 = (𝑥1| … |𝑥𝑝) be the model matrix, where 𝑥𝑗 = (𝑥𝑖𝑗 , … 𝑥𝑛𝑗)𝑇, 𝑗 = 1, … 𝑝, are the predictors.

For any fixed non-negative 𝜆1and 𝜆2, we define the naïve elastic net criterion: 

𝐿(𝜆1, 𝜆2, 𝛽) = |𝑦 − 𝑋𝛽|2 + 𝜆2|𝛽|2 + 𝜆1|𝛽|1

where |𝛽|2 = ∑ 𝛽𝑗
2𝑝

𝑗=1 , 𝛽1 = ∑ |𝛽𝑗|
𝑝
𝑗=1 . 

The naïve elastic net estimator 𝛽̂ is the minimizer of 𝛽̂  = 𝑎𝑟𝑔𝑚𝑖𝑛(𝜆1, 𝜆2, 𝛽). This 

procedure can be viewed as a penalized least squares method. Let 𝛼 = 𝜆2/(𝜆1 + 𝜆2); then solving 

beta hat is equivalent to the optimization problem 𝛽̂  = 𝑎𝑟𝑔𝑚𝑖𝑛|𝑦 − 𝑋𝛽|2, subject to (1 − 𝛼)|𝛽|1 +

𝛼|𝛽|2 ≤ 𝑡 for some 𝑡. We call the (1 − 𝛼)|𝛽|1 + 𝛼|𝛽|2 the elastic net penalty, which is a convex

combination of the lasso and ridge penalty.  

To begin, we subset the data to the year 2012 and summed the chemicals per FIPS 

codes based on total releases in pounds. Any chemicals made up of entirely zeroes were 

removed. We log transformed the outcome variable and predictor variables and any covariate 

county-level percentages were logit transformed. Then we created a training dataset and testing 

data set based on 80% of the data to build a predictive model, and 20% to evaluate the model. 

The X variables included 467 chemicals (predictors/exposures), and 8 model sociodemographic 

and characteristic model adjustments, a possibility of 2467 = 3.81 E +140 models. The GLMNET 

package in R fits the generalized linear model via penalized maximum likelihood. The algorithm is 

quite fast and can reduce quickly the number of 2p models.201 For each variable selection method, 

we used the GLMNET procedure to fit the final model on the training data of the matrix of X 

variables (the 467 chemicals and the 8 model adjustments). The 8 covariates were forced into the 
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model by setting the penalty to zero so that model adjustments were not penalized. We tested the 

ridge regression model (α=0), the lasso model (α=1) and the elastic net model by using a tuning 

grid to determine the best α for the data. The α value controls the penalty and bridges the gap 

between ridge regression (α=0), elastic net (α= between 0 and 1), and lasso (a=1). We found the 

best λ by using the cross-validation technique. We use the minimum lambda to fit the model on 

the training data because it is the value of λ at which the cross-validation takes the minimum 

mean squared error. Finally, we checked the prediction error for the test data to choose the best 

model. 

Bayesian Kernel Machine Regression 

Simple parametric models typically used in variable selection assume a simple functional 

form like a normal distribution. Semi- or nonparametric techniques are preferred in the 

identification of potentially synergistic effects of mixture components because they do not assume 

the functional form and allow adjustment for potential confounders.202 The Bayesian Kernel 

Machine Regression is a semi-parametric technique that models the exposure response 

relationship as a non-parametric kernel function of the mixture components, adjusting for 

covariates parametrically. The Gaussian kernel flexibly captures underlying functional forms 

without specifying the shape of the exposure-response curve. The BKMR method can assess 

independent effects, estimate the overall mixture, and assess for interactions among mixture 

components.203 

Using BKMR, we can assume: 

𝑌𝑖 = ℎ(𝑧𝑖) + 𝑥𝑖
𝑇𝛽 + 𝜖𝑖

Where 𝑌𝑖 is a health endpoint, 𝑧𝑖 = (𝑧𝑖1, … , 𝑧𝑖𝑀)𝑇 is a vector of 𝑀 exposure variables, 𝑥𝑖 contains a

set of potential confounders, and 𝜖𝑖
𝑖. 𝑖. 𝑑

~
 𝑁(0, 𝜎2). In the context of mixtures, ℎ(. ) characterizes a 

high-dimensional exposure-response function that may incorporate non-linearity and interaction 

among the components of the mixture. Therefore, it is difficult to represent ℎ(. ) and is instead 
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presented as a kernel machine representation. The Gaussian kernel is 𝐾(𝑧, 𝑧′) =

exp [− ∑ (𝑧𝑚 − 𝑧′
𝑚)2𝑀

𝑚=1 /𝑝] with 𝑝 tuning parameter. The Gaussian kernel flexibly captures a wide 

range of underlying functional forms for ℎ(. ).203 

We created models for multiple VOC exposures. Results are reported for the following 

five VOC metabolites (CEMA, 3HPMA, DHBMA, MHBMA3, and HPMMA) of three parent 

compounds (acrolein, 1,3-butadiene, and crotonaldehyde). To assess multiple VOC models, we 

included VOC metabolites that showed statistically significant associations with vascular 

outcomes in single-VOC models in chapter 3. We applied a BKMR approach to flexibly model the 

relationship between VOC metabolites CEMA, 3HPMA, DHBMA, MHBMA3, and HPMMA and 

blood pressure. The method also allowed us to examine statistical interactions between VOC 

metabolites within the mixture and joint associations between the whole mixture and blood 

pressure. The BKMR creates posterior inclusion probabilities (PIPs) that quantify the relative 

importance of each exposure in the model.203 Hierarchical variable selection is used when 

components of the mixture are highly correlated (ρ>0.7). Because the VOC metabolites were not 

highly correlated (Figure 3), we did not use the hierarchical variable selection procedure of the 

BKMR. 

All statistical analyses and visualizations were created with R software (version 4.0.2).120 

Additionally we used the tidyverse,119 glmnet,204 and kmbayes205 packages to analyze the data. 

RESULTS 

Variable Selection 

County-level population estimates for year 2012 are reported in Table 4-1. There are 

currently 767 listed chemicals and 33 chemical categories covered under EPCRA Section 313. 

We removed 300 TRI chemicals from analysis due to missing values, leaving a total of 467 

predictors to be included in the matrix (Appendix A). The top released chemicals in pounds in 

2012 include metal compounds lead, copper, arsenic, and zinc. Lead compounds were the most 

released compounds in 2012 at a total of 109 million pounds and qualify as the most released 

Clean Air Act chemical.  
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For ridge regression, the best λ value obtained from cross-validation is 11.2265 (Table 4-

2). Using this λ generated 446 out of 467 non-zero coefficients. The mean squared error was 

0.0252, the largest error of the three models. 

 

Table 4-1. Descriptive statistics [mean (± standard deviation (SD))] for county-level characteristics 

in the National County Level Study (n=2,287) in 2012. 

Variable Mean (SD) 

n 2287 

CVD Age Adj Rate a 251.61 (59.20) 

% Male 0.50 (0.02) 

% White 0.85 (0.15) 

% Hispanic 0.08 (0.12) 

% Less than High School 22.26 (8.29) 

Median HH Income b 37237.08 (9462.44) 

Total Mean Smoking 23.68 (3.97) 

Alcohol 50.09 (11.34) 

PM2.5 
c 8.45 (1.35) 

 
a County level age-adjusted circulatory disease mortality rate in 2012 
b County-level median household income in 2012 
c County-level PM2.5 concentrations in 2012 
 
 
Table 4-2. Mean squared errors (MSE) and tuning parameters of the three variable selection 

techniques, ridge regression, lasso, and elastic net. The ridge regression uses a tuning 

parameter of α=0, lasso uses a tuning parameter of α=1, and the elastic net procedure uses a 

tuning parameter of α =0.3. 

Ridge 
Lambda 

Ridge 
MSE 

Lasso Lambda Lasso  
MSE 

Elastic Net 
Lambda 

Elastic Net 
MSE 

11.2265 0.0252 0.0111 0.0245 0.0256 0.0244 

 
 
 

For lasso, the best λ value obtained from cross-validation is 0.0111. Using this λ in the 

lasso model did not generate any non-zero coefficients for any TRI chemicals. County-level 

demographics and characteristics were forced into the model and thus were the only variables for 

which there were non-zero coefficients. 
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With elastic net, we estimated α=0.3 and λ=0.0256 from cross-validation. The elastic net 

model using these λ and α values generated non-zero coefficients for five of the 467 TRI 

chemicals included (Figure 4-1). The five chemicals included were bromoform, 

dichlorobromomethane, dichlorotrifluoroethane, nitrophenol, and thallium. Given that the α=1 for 

the lasso procedure, different non-zero coefficients are expected for an elastic net regularization 

with α=0.3, an alpha closer to the ridge regression. The mean squared error was smaller for the 

elastic net procedure (Table 4-2) and is the preferred variable selection technique for the data. 

Figure 4-1. Beta coefficients plotted for each selected variable in the elastic net regularization 

technique. 
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Bayesian Kernel Machine Regression 

Because the VOC metabolites were not highly correlated (Figure 4-2), we did not use the 

hierarchical variable selection procedure of the BKMR. In the BKMR model, the metabolites 

3HPMA and DHBMA had higher posterior inclusion probabilities (PIPs) for SBP and DBP, 

respectively (Table 4-3), indicating that 3HPMA and DBHMA were the most important metabolites 

of the group in relation to SBP and DBP. When VOC metabolite predictors were fixed to the 50th 

percentile, the 3HPMA exhibited a linear relationship with SBP and several individual VOCs 

exhibited a linear relationship with DBP in univariate analysis (Figure 4-3 and 4-4). There was a 

positive linear relationship between the whole mixture and SBP, and between the whole mixture 

and DBP, when all other predictors were fixed at a range of percentiles (25th to 75th by 0.05), 

compared with when they were fixed to the 50th percentile (Figure 4-5 and 4-6). There was no 

evidence of interaction between VOC metabolites when all other exposures were fixed to a 

percentile or a second VOC was fixed to either the 25th, 50th, or 75th percentile (Figure 4-7 and 4-

8). However, 3HPMA was a critical component of the mixture acting as the primary driver in the 

relationship with SBP. 

Figure 4-2. Beta coefficients plotted for each selected variable in the elastic net regularization 

technique. 
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Table 4-3. Posterior inclusion probabilities of individual VOC metabolites in the Bayesian Kernel 

Machine Regression model. 

VOCa SBPa DBPc 

CEMA 0.0448 0.0412 

3HPMA 0.1212 0.0128 

DHBMA 0.099 0.0838 

MHBMA3 0.0462 0.0082 

HPMMA 0.0786 0.0242 
 

aVolatile organic compound metabolite short name 
bSystolic blood pressure 
cDiastolic blood pressure 
 
 
 
Figure 4-3. Single-VOC metabolite exposure response association when all other metabolites are 

fixed to their 50th percentile. 

 
 
 
BKMR models adjusted for age, sex, race, BMI, ace inhibitor, ARBs, beta blockers, and daily 
PM2.5. 
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Figure 4-4. Overall effect of the VOC mixture on systolic and diastolic blood pressure when all 

other predictors are at a particular percentile when compared with the value when all predictors 

are at their 50th percentile.  

BKMR models were adjusted for age, sex, race, BMI, ace inhibitors, ARBs, beta blockers, and 
daily PM2.5. 

Figure 4-5. Systolic and diastolic blood pressure for an interquartile range increase comparison of 

individual VOC metabolite concentrations when all other VOC metabolites have been fixed to the 

25th, 50th, and 75th percentiles. 
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DISCUSSION 

Using two supervised methods to assess mixtures, we were able to understand the 

scope of environmental exposures and how they are associated with CVD outcomes. Using the 

variable selection technique, elastic net, we identified five TRI chemicals bromoform, 

dichlorobromomethane, dichlorotrifluoroethane, nitrophenol, and thallium as the chemicals most 

strongly associated with increased county-level age-adjusted CVD mortality rates in 2012. Using 

the machine learning technique, BKMR, we identified 3HPMA and DHBMA as the most toxic 

VOC metabolites associated with SBP and DBP and found a significantly positive overall mixture 

effect, but no interactions. 

The variable selection technique, elastic net, identified five chemicals most associated 

with CVD mortality, bromoform, dichlorobromomethane, dichlorotrifluoroethane, nitrophenol, and 

thallium. Bromoform and dichlorobromomethane are two trihalomethanes otherwise known as 

disinfection byproducts with some evidence of congenital anomalies.206-209 Dichlorotrifluoroethane 

is a hydrochlorofluorocarbon (HCFC) more commonly known as refrigerants like Freon. 

Regulatory agencies have been phasing out HCFCs as part of the Montreal Protocol due to their 

ozone depleting nature. However, the extent to which HCFCs affect cardiovascular health is less 

studied. Nitrophenol is used in the production of drugs, fungicides, insecticides, and dyes. A 

recent longitudinal study of pesticide biomarkers found that type-1 diabetes diagnosed 

adolescents with high concentrations of nitrophenol had high HbA1c and low fasting C-peptide 

levels, two risk factors in the development of CVD.210 Thallium is a heavy metal produced from 

cigarette smoke, mine waste discharge, ore-processing, and coal-burning plants. The primary 

symptom of thallium poisoning in humans is hypertension.211 

Bayesian Kernel Machine Regression revealed 3HPMA and DHBMA were the most 

important contributors of the mixture associated with SBP and DBP, respectively. The parent 

compounds, acrolein and 1,3-butadiene are known to be associated with CVD risk.25, 168-170 

Acrolein can be produced both endogenously from lipid peroxidation, and exogenously from 

combustion, chemical production, cigarette smoke, and e-cigarette vapors.147, 152 1,3-Butadiene is 

primarily used to make synthetic rubber, but it is also produced from petroleum processing and 
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combustion sources such as vehicle exhaust and cigarette smoke.171 Similar to our results, 

previous studies have shown that exposure to acrolein increases BP in both normotensive and 

hypertensive rats.154, 155 Another study found normotensive pregnant women had increased odds 

of high BP when exposed to ambient 1,3-butadiene two hours prior to admission to labor and 

delivery.18 Another cross-sectional study used principal component analysis of nonsmokers’ 

personal exposures to ambient VOCs. The authors observed decreased endothelial function and 

increased DBP in relation to a 1,3-butadiene source in the Detroit Exposure and Aerosol 

Research Study (DEARS). No effect on SBP was seen.172  

The advantages of this study are the use of methods to assess the association between 

mixtures of environmental exposures and CVD. These methods reduce high dimensionality, high 

correlation, and multiple comparisons in large datasets. Compared to unsupervised methods, 

supervised methods are advantageous due to the consideration of the outcome of interest in the 

model. Finally, supervised methods have better prediction accuracy than traditional ordinary least 

squares methods.  In the National County Level TRI Study, we used three variable selection 

procedures, ridge regression, lasso, and elastic net, to determine the best fit model for the most 

toxic components associated with county-level age-adjusted mortality rates. Variable selection is 

a regularization technique used to penalize lesser contributing predictors in the model toward 

zero and select the most important predictors. Variable selection reduced a high dimension 

dataset of 467 toxic chemical predictors to five chemical predictors associated with CVD 

mortality, which created a more interpretable set of data. In the Louisville Healthy Heart Study, we 

used the Bayesian Kernel Machine Regression technique to flexibly model the effect of the VOC 

metabolite mixture on blood pressure. This technique allowed us to visualize the univariate and 

bivariate relationship of VOC metabolites and blood pressure, assess interactions between VOC 

metabolites, and model the effect of the whole mixture on blood pressure. Furthermore, this 

method served as a confirmatory analysis to our initial single-pollutant model in Chapter 3. 

Finally, to the best of our knowledge, elastic net and BKMR have not yet been used on TRI data 

or VOC metabolite data. 
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The major disadvantages of this study are the cross-sectional nature of both datasets, 

and the aggregate units in our national county-level study. Both studies are observational studies 

and cannot prove causation. Because the national county-level study uses an aggregate 

exposure and outcome variable, we cannot extrapolate the results to the individual level. 

Furthermore, the ecological design introduces ecological bias: bias due to interaggregate 

variation in the disease rate among those not exposed to the risk factor, bias due to groups acting 

as effect modifiers in the dose response relationship, and bias due to confounding variables. 

Finally, exposure misclassification may be another important source of bias in both datasets. 

In our use of variable selection to assess the National County Level TRI data, we are 

unable to estimate confidence intervals for nonzero coefficients, a major limitation of prediction. 

Additionally, estimated coefficients depend on the scaling of the predictors and may hinder 

interpretability. In our use of BKMR to assess the Louisville Healthy Heart data, we had a small 

dataset. The BKMR needs a large dataset due to the non-parametric kernel function. The kernel 

estimates the mixture-response relationship with a smoothing function and reduces the power. 

Finally, because measurement error varies across datasets, a statistical method will choose a 

chemical with less error over a more toxic chemical, as long as the two are correlated.212, 213 

Human populations are exposed to many anthropogenic pollutants which remain as 

complex mixtures in the environment.6, 33 Although there is growing analysis of mixtures and co-

pollutants in epidemiology studies, large gaps in mixture assessment persist. This study used two 

supervised methods, elastic net and BKMR, to determine the relevance of mixture components 

and the whole mixture in CVD outcomes. In our large matrix of 467 TRI chemicals, the elastic net 

procedure identified five potentially toxic chemicals associated with county-level CVD mortality in 

2012. In our smaller mixture of five VOC metabolites, the BKMR identified two metabolites as the 

most toxic VOC metabolites associated with blood pressure. This study implicates further study of 

the toxic compounds identified, acrolein, bromoform, 1,3-butadiene, dichlorobromomethane, 

dichlorotrifluoroethane, nitrophenol, and thallium and their role in the development of CVD. This 

study also highlights the importance of applying novel, supervised mixture assessment methods 

to a range of environmental exposure data. Finally, we want to emphasize the public health 
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implications of using these methods to determine and better understand less studied pollutants 

and their contribution to adverse health effects. 
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 SUMMARY AND CONCLUSIONS 

SUMMARY OF STUDY 

Overall, this work aimed to examine the effect of pollutants with lesser documented 

effects on cardiovascular disease using a multi-pronged approach to exposure assessment. The 

three aims were to examine the relationship between county-level toxic chemical releases and 

CVD mortality in the contiguous United States between 2002 and 2012, to assess the relationship 

between individual-level VOC metabolites and vascular function, and to build multipollutant 

models from the previous two aims to assess the role of mixtures and mixture components in 

CVD mortality and vascular function. Cardiovascular disease is the leading cause of death from 

environmental exposures.1 Because criteria pollutants require heavy surveillance under the Clean 

Air Act, evidence linking criteria pollutants and CVD preclude investigations of under regulated 

pollutants like TRI chemicals and VOCs. The significance of this work is outlined by new, 

longitudinal observations using publicly available TRI data, the elucidation of the mechanism of 

gaseous pollutants on vascular function, and the identification of potential toxic contributors to 

CVD. Furthermore, this work implicates the need for new environmental policies to regulate, 

surveil, and reduce pollutants in addition to the six criteria pollutants.  

MAJOR FINDINGS 

National County Level TRI Study 

Exposure to environmental pollution is widespread, threatens all routes of exposure, and 

thus is the largest cause of disease and premature death in the world.2 Non-communicable 

diseases like CVD have largely been underestimated in relation to pollution. Particularly, the 

effects of chemical pollution on human health are poorly defined due to poor knowledge of many 

chemicals in common use.90, 91, 130-132 Furthermore, the number of chemicals in commerce 

continues to grow exponentially despite unstudied potential adverse health effects.90 Therefore, 
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the National County Level TRI Study was designed to examine the effect of pollution from eligible 

industries on age-adjusted all cause and circulatory disease mortality rates at the county level 

between 2002 and 2012. 

County-level age-adjusted all-cause mortality rates, circulatory disease mortality rates, 

and the total pollution by quantity and by risk declined between 2002 and 2012. These declines 

indicate improvements in pollution reduction programs and public health prevention. Few studies 

have examined the effects of county-level toxic releases across the nation, but the declines in 

mortality previously seen during industrial shutdowns and post pollution reduction programs214 

indicate the rationale for further study. As this decline in mortality is attributed to declines in 

pollution, longitudinal examination in the National County Level TRI Study could help clarify the 

benefits of further reduction. Additionally, the use of risk reporting in reporting toxic releases to 

the TRI could further reduce mortality rates. Our longitudinal analysis of changes in county-level 

quantity-based and risk-based pollution showed significant associations with changes in both 

age-adjusted all-cause and circulatory disease mortality. Although the association between the 

risk-based pollution measure and all-cause mortality was smaller than that for the quantity-based 

measure, the association for the risk measure was somewhat larger for circulatory disease 

mortality. 

Additional nationwide, longitudinal studies of pollution are needed to further strengthen 

these findings. Moreover, large studies must be more spatially granular to better understand the 

true extent to which pollution exposure affects individuals. However, this study is the first of its 

kind to longitudinally assess county-level pollution using mixed effects models. Additionally, the 

ecological nature of the study further supports previous reports on the benefits of pollution 

reduction in reducing mortality. 

Louisville Healthy Heart Study 

Volatile organic compounds (VOCs) are another group of pervasive environmental 

pollutants classified by their low molecular weight and high vapor pressure. Exposure to VOCs 

has been found to be associated with health effects such as CVD, neurological effects, organ 

toxicity, and cancer.16, 36 However, most epidemiological studies examine the effects of VOC 
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exposure using indirect exposure assessment methods such as ambient air monitoring stations. 

The Louisville Healthy Heart Study was designed to examine the effect of environmental 

pollutants from human biomonitoring on cardiovascular health. This study focused on the 

individual effect of single VOC pollutants on cardiovascular effects such as blood pressure, 

endothelial function, and sympathetic response. 

Nonsmoking participants with higher VOC metabolite concentrations were older and had 

poor cardiovascular health. Specifically, there were significant associations between the acrolein 

metabolite, 3HPMA, and systolic blood pressure and endothelial dysfunction, and between the 

1,3-butadiene metabolite, DHBMA, and endothelial dysfunction. Black participants had a larger 

association between 3HPMA and systolic blood pressure despite lower concentrations of 

3HPMA. Several catecholamines were significantly associated with VOC metabolites. The 

crotonaldehyde metabolite, HPMMA, was weakly associated with epinephrine, norepinephrine, 

dopamine, homovanillic acid, and 5-hydroxytryptamine and strongly associated with serotonin 

metabolite 5-hydroxyindole acetic acid. These results seem to indicate that exposure to VOCs, 

acrolein, 1,3-butadiene, and crotonaldehyde play a mechanistic role in the development of CVD 

by increasing blood pressure, decreasing endothelial function, and increasing the sympathetic 

response. 

Further work is required to corroborate the findings of our study.  Data from larger cohorts 

with VOC metabolite concentrations at multiple timepoints may be particularly informative about 

these associations in the general population. However, this study lays the groundwork to begin to 

understand biological mechanisms that link air pollution constituents with cardiovascular disease, 

which can be used to help inform environmental health policy. 

Mixture Assessment 

Environmental exposures are multifactorial, heterogeneous mixtures. Observed adverse 

health effects associated with individual pollutants may be attributable to the combined effects of 

multiple pollutants.215 However, because environmental exposures are often highly correlated, 

conventional linear regression is complicated by issues of collinearity, high-dimensionality, and 

multiple comparisons. Therefore, the mixture assessment methods of the National County Level 
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TRI Study and the Louisville Healthy Heart Study were designed to account for these issues in 

the data. We used three types of penalized regression, the ridge, lasso, and elastic net, to 

determine the potential toxic chemicals associated with circulatory disease mortality rates in the 

National County Level TRI Study. Additionally, we used the Bayesian Kernel Machine Regression 

to assess the exposure response function of the whole mixture of VOC metabolites and blood 

pressure in the Louisville Healthy Heart Study. 

In the National County Level TRI Study, the best fit model used the elastic net variable 

selection procedure with an estimated α=0.3 and λ=0.0256 from cross-validation. The elastic net 

model generated non-zero coefficients for five of the 467 TRI chemicals included in the matrix. 

The five chemicals included were bromoform, dichlorobromomethane, dichlorotrifluoroethane, 

nitrophenol, and thallium. In the Louisville Healthy Heart Study, 3HPMA and DHBMA had higher 

posterior inclusion probabilities (PIPs) for systolic and diastolic blood pressure, respectively, 

indicating that 3HPMA and DBHMA were the most important metabolites of the group in relation 

to systolic and diastolic blood pressure. When VOC metabolite predictors were fixed to the 50th 

percentile, the whole mixture exhibited a linear relationship with systolic and diastolic blood 

pressure. The acrolein metabolite, 3HPMA, was a critical component of the mixture acting as the 

primary driver in the relationship with SBP. 

In general, more work is needed to understand the adverse health effects of pollutant 

mixtures and pollutant mixture components. The National County Level TRI Study analysis would 

be strengthened from a longitudinal penalized regression. Moreover, the large database of annual 

TRI emissions by chemical from 1979 to 2018 would be a great data source for further mixture 

assessment, particularly using penalized regression. Additionally, the Bayesian Kernel Machine 

Regression would be a useful method to apply to the wealth of urinary VOC metabolite data as 

well as other national biomonitoring studies. 

STRENGTHS 

There are several strengths of our multipronged approach to examine the effects of 

multiple pollutants on cardiovascular disease in human populations. Although ecological, the 

National County Level TRI Study modelled TRI chemicals and mortality rates at multiple 
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timepoints using mixed models. Previous investigations have used averages to assess 

associations across multiple years using this data.19, 104, 105 In addition, we created a county-level 

risk score to better assess the toxicity of the chemicals released. Previously, studies have 

neglected to account for the TRI chemical risk level when modelling adverse health effects.97-99 

Finally, to the best of our knowledge, supervised methods to assess mixtures have not yet been 

used to assess potential toxicity of TRI chemicals and their effect on cardiovascular health 

outcomes. Penalized regression methods reduced a high dimension dataset of 467 toxic 

chemical predictors to five chemical predictors associated with CVD mortality, which created a 

more interpretable set of data.  

The Louisville Healthy Heart Study investigation was strengthened by a strong exposure 

assessment method and cotinine cutoff to remove confounding of VOC exposures from smoke 

exposure.23, 138, 216 Most studies of VOC exposure are unable to account for smoking, or they 

overestimate the contribution of smoking to VOC exposure.64, 65, 172 In addition, about two-thirds of 

the cohort reported a diagnosis of some type of CVD. As the prevalence of CVD continues to 

increase, it is important to capture susceptible individuals to provide accurate data for the 

prevention of CVD. Finally, our supervised methods were advantageous due to the consideration 

of the outcome of interest in the model and the better prediction accuracy than traditional ordinary 

least squares methods. We used the Bayesian Kernel Machine Regression technique to flexibly 

model the effect of the VOC metabolite mixture on blood pressure. This technique allowed us to 

visualize the univariate and bivariate relationship of VOC metabolites and blood pressure, assess 

interactions between VOC metabolites, and model the effect of the whole mixture on blood 

pressure. 

LIMITATIONS 

Limitations of this study include potential bias from cross-sectional and ecological study 

designs, and exposure and outcome measurement error. Misclassification of exposure and 

outcome is an important source of bias in epidemiologic studies and present limitations in our 

study. Ecological study designs, while beneficial, are aggregated data which cannot be 

extrapolated to the individual. Cross-sectional designs only provide one time point, muddying the 
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inference for chronic diseases like CVD. Finally, in our method of modelling exposure to mixtures, 

we only assume exposure to the chemicals for which we have data. We do not consider the 

myriad other exposures present in the environment. 

Although our ecological National County Level TRI Study is longitudinal, it is an 

observational study and cannot prove causation. Second, because the study uses an aggregate 

exposure and outcome variable, we cannot infer results to the individual level. Furthermore, the 

ecological design introduces ecological bias: bias due to interaggregate variation in the disease 

rate among those not exposed to the risk factor, bias due to groups acting as effect modifiers in 

the dose response relationship, and bias due to confounding variables. Finally, even though our 

study accounted for chemical toxicity, the values used were already established by the Agency 

for Toxic Substances and Disease Registry. While advantageous to our development of a risk 

score, reportable quantities are often based on limited or dated toxicology studies and do not 

represent more sensitive cardiovascular endpoints. 

Limitations of the Louisville Healthy Heart Study include the small sample of nonsmokers, 

potential bias from cross-sectional study design and potential misclassification of nonsmokers, 

and exposure and outcome measurement error. Misclassification of exposure and outcome is an 

important source of bias in epidemiologic studies and is a likely limitation of our study. To quantify 

exposure, we measured urinary metabolites. However, urinary metabolites of VOCs range widely 

in half-life, and therefore their variable levels due to differences in times of exposure may account 

for some of the variability in the data and exposure misclassification. Finally, even though we 

tested multiple associations from individual VOC metabolites, we did not adjust for multiple 

comparisons which may have allowed for some spurious associations.150   

The major limitations of assessing mixtures in the National County Level TRI Study and 

the Louisville Healthy Heart Study are the cross-sectional nature of both datasets, and the 

aggregate units. Although these methods were better predictive models, we could only predict at 

a cross-section of time, further limiting the strength of associations. In our use of variable 

selection to assess the National County Level TRI data, we are unable to estimate confidence 

intervals for nonzero coefficients, a major limitation of prediction. Additionally, estimated 
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coefficients depend on the scaling of the predictors and may hinder interpretability. In our use of 

BKMR to assess the Louisville Healthy Heart data, we had a small dataset. The BKMR needs a 

large dataset due to the non-parametric kernel function. The kernel estimates the mixture-

response relationship with a smoothing function and reduces the power. Finally, because 

measurement error varies across datasets, a statistical method will choose a chemical with less 

error over a more toxic chemical, as long as the two are correlated.212, 213 

FUTURE DIRECTIONS 

More research is needed to explore less understood pollutants like TRI chemicals and 

VOCs. The TRI database is an under-utilized source of toxic chemical data dating back to 1987. 

Although the database tracks 737 eligible chemicals, it is an untapped resource of chemicals 

polluting our environment, many of which are not regulated. More work needs to be done to 

understand the role of specific chemicals and their toxicity in the development of cardiovascular 

disease. Additionally, all chemical data have geographic coordinates and have the potential to be 

significant spatial data for adverse health outcomes at the individual level. Therefore, future 

studies must be designed to better understand chemical specificity and chemical toxicity using 

spatial granularity. 

There is also a wealth of VOC metabolite data in several national cohorts, as well as the 

potential to measure these data in cohorts like the Multi-Ethnic Study of Atherosclerosis or the 

Framingham Heart Study. As the measurement of VOCs in human tissue is a sensitive exposure 

assessment method, this wealth of data must be used to better understand the mechanistic role 

of toxic VOC metabolites in the development of cardiovascular disease. Analyzing these cohorts 

will further strengthen the associations identified in our work by providing more statistical power. 

More work must be done to understand the role of mixtures in environmental exposure 

data. Innovative statistical methods have been developed to investigate the role of multiple 

pollutants and must be used in addition to traditional single pollutant models. As environmental 

policy is governed by single pollutants, additional work on multiple pollutants will move 

environmental policy forward to better regulate multiple pollutants and reduce real-world 

exposures. Furthermore, there is a gap in risk reporting of known toxic chemicals, specifically to 



99 

the TRI, as well as an increasing amount of untested chemicals. We want to emphasize the 

public health implications of better understanding less studied pollutants and their contribution to 

adverse health effects.  

CONCLUSIONS 

Overall, the work described here demonstrates the adverse cardiovascular health effects 

induced by exposure to pollutants and supports the hypothesis that exposure to pollutants such 

as TRI chemicals and VOCs contribute to the development of and mortality from cardiovascular 

disease, particularly through increased blood pressure, endothelial dysfunction, and increased 

sympathetic response. The aim of this work was to employ three distinct methods of exposure 

assessment to evaluate the relationship between exposure to pollutants and CVD. These 

methods include the indirect measure of source data from the Toxic Release Inventory, a direct 

measure of human biomonitoring, and the assessment of multiple pollutants using the novel 

statistical methods elastic net and Bayesian Kernel Machine Regression. Although the results of 

these methods were not directly comparable, they contribute novel assessments of environmental 

data to the field of environmental cardiology. These results elucidate the potential mechanisms of 

environmental pollutants on the development of CVD and identify potential contributors to CVD 

mortality. These results further implicate the need for improved environmental policy to prevent 

and reduce the prevalence of CVD. 
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APPENDICES 

APPENDIX A 

Variable Mean Std Dev Min Max 

_1__3_CHLOROALLYL__3_5_7_TRIAZA_ 46.7 1940.3 0 92183 

_1_CHLORO_1_1_DIFLUOROETHANE 66.1 2552.5 0 121220 

_1_CHLORO_1_1_2_2_TETRAFLUOROETH 3.6 128.6 0 5938 

_1_1_DICHLORO_1_FLUOROETHANE 18.3 516.6 0 21908 

_1_1_DIMETHYL_HYDRAZINE 0.0 0.4 0 17.32 

_1_1_1_TRICHLOROETHANE 47.5 1008.1 0 36502 

_1_1_1_2_TETRACHLORO_2_FLUOROETH 0.0 0.2 0 10 

_1_1_1_2_TETRACHLOROETHANE 2.5 85.8 0 3430 

_1_1_2_TRICHLOROETHANE 9.9 219.0 0 8334 

_1_1_2_2_TETRACHLOROETHANE 1.9 44.6 0 1387.81 

_1_2_BUTYLENE_OXIDE 2.1 44.3 0 1376 

_1_2_DIBROMO_3_CHLOROPROPANE 0.0 0.2 0 10.78 

_1_2_DIBROMOETHANE 0.8 33.9 0 1619 

_1_2_DICHLORO_1_1_DIFLUOROETHANE 12.9 616.7 0 29580 

_1_2_DICHLORO_1_1_2_TRIFLUOROETH 46.1 2133.8 0 102300 

_1_2_DICHLOROBENZENE 27.6 1120.3 0 52950 

_1_2_DICHLOROETHANE 230.9 3835.8 0 115996.4 

_1_2_DICHLOROETHYLENE 3.7 120.3 0 5507 

_1_2_DICHLOROPROPANE 30.4 1162.3 0 55197 

_1_2_DIPHENYLHYDRAZINE 0.0 0.4 0 15.06 

_1_2_PHENYLENEDIAMINE 1.6 66.6 0 3168 

_1_2_3_TRICHLOROPROPANE 2.7 96.3 0 4173 

_1_2_4_TRICHLOROBENZENE 3.8 118.9 0 5450 

_1_2_4_TRIMETHYLBENZENE 2690.5 19369.0 0 408713 

_1_3_BUTADIENE 547.2 10591.1 0 345413.8 

_1_3_DICHLORO_1_1_2_2_3_PENTAFLU 0.0 1.5 0 73 

_1_3_DICHLOROBENZENE 0.0 0.6 0 22.49 

_1_3_DICHLOROPROPYLENE 3.2 57.4 0 1845 

_1_3_PHENYLENEDIAMINE 14.4 424.9 0 17403.8 

_1_4_DICHLORO_2_BUTENE 2.6 121.4 0 5824 

_1_4_DICHLOROBENZENE 18.1 618.2 0 27128 

_1_4_DIOXANE 513.4 21612.4 0 1035580 

_2_ACETYLAMINOFLUORENE 0.1 3.3 0 158.44 

_2_CHLORO_1_1_1_TRIFLUOROETHANE 19.5 606.7 0 25028 

_2_CHLORO_1_1_1_2_TETRAFLUOROETH 166.5 3959.2 0 129000 

_2_ETHOXYETHANOL 16.7 587.3 0 27406 

_2_MERCAPTOBENZOTHIAZOLE 16.8 427.6 0 18788 

_2_METHOXYETHANOL 38.3 1674.5 0 80237.87 

_2_METHYLLACTONITRILE 104.1 4882.1 0 234144 

_2_METHYLPYRIDINE 25.4 786.4 0 27783 
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_2_NITROPHENOL 1.5 69.7 0 3344 

_2_NITROPROPANE 14.4 684.1 0 32814 

_2_PHENYLPHENOL 1.5 64.2 0 3071 

_2_2_BIS_BROMOMETHYL__1_3_PROPAN 0.1 3.0 0 145 

_2_2_DICHLORO_1_1_1_TRIFLUOROETH 91.3 1755.5 0 53928 

_2_3_DICHLOROPROPENE 2.0 88.9 0 4255 

_2_4_D 173.6 5954.4 0 277319 

_2_4_D_2_ETHYLHEXYL_ESTER 0.5 15.6 0 612 

_2_4_D_BUTOXYETHYL_ESTER 0.6 28.8 0 1380 

_2_4_D_SODIUM_SALT 0.0 0.2 0 9 

_2_4_DIAMINOTOLUENE 1.1 38.1 0 1710.7 

_2_4_DICHLOROPHENOL 124.7 5417.4 0 259321 

_2_4_DIMETHYLPHENOL 21.4 845.9 0 40470.4 

_2_4_DINITROPHENOL 3.4 121.8 0 5500 

_2_4_DINITROTOLUENE 3.1 137.5 0 6576 

_2_4_DITHIOBIURET 0.0 0.2 0 7.49 

_2_4_5_TRICHLOROPHENOL 0.0 1.0 0 41.97 

_2_4_6_TRICHLOROPHENOL 0.0 0.8 0 29 

_2_6_DINITROTOLUENE 0.8 39.9 0 1915 

_2_6_XYLIDINE 0.0 1.7 0 80 

_3_CHLORO_1_1_1_TRIFLUOROPROPANE 0.1 3.5 0 169 

_3_CHLORO_2_METHYL_1_PROPENE 0.0 1.4 0 52 

_3_CHLOROPROPIONITRILE 0.0 0.2 0 8 

_3_IODO_2_PROPYNYL_BUTYLCARBAMAT 106.9 4939.5 0 236887 

_3_3__DICHLOROBENZIDINE 0.0 0.3 0 13.52 

_3_3__DICHLOROBENZIDINE_DIHYDROC 0.0 0.0 0 1.4 

_3_3__DIMETHOXYBENZIDINE 0.0 0.3 0 13.62 

_3_3__DIMETHOXYBENZIDINE_DIHYDRO 0.1 5.3 0 255 

_3_3__DIMETHYLBENZIDINE 0.0 0.3 0 13.6 

_3_3_DICHLORO_1_1_1_2_2_PENTAFLU 1.6 77.2 0 3704 

_4_AMINOAZOBENZENE 0.4 17.0 0 814 

_4_AMINOBIPHENYL 0.0 0.2 0 11 

_4_DIMETHYLAMINOAZOBENZENE 0.0 0.3 0 13.52 

_4_NITROPHENOL 0.2 7.7 0 371 

_4_4__DIAMINODIPHENYL_ETHER 0.4 15.7 0 752.6 

_4_4__ISOPROPYLIDENEDIPHENOL 715.2 12516.3 0 405328 

_4_4__METHYLENEBIS_2_CHLOROANILI 0.2 7.0 0 250 

_4_4__METHYLENEDIANILINE 55.4 2528.7 0 121267 

_4_6_DINITRO_O_CRESOL 0.0 0.0 0 1 

_5_NITRO_O_TOLUIDINE 0.0 0.4 0 21.06 

ABAMECTIN 6.1 265.9 0 12684.4 

ACEPHATE 1.9 90.9 0 4359 

ACETALDEHYDE 4125.8 18828.5 0 316488 

ACETAMIDE 574.7 20107.5 0 938500 
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ACETONITRILE 7619.5 189245.6 0 6601129 

ACETOPHENONE 277.4 8960.5 0 397371.1 

ACIFLUORFEN__SODIUM_SALT 0.0 0.3 0 12.3 

ACROLEIN 358.6 11549.1 0 551074 

ACRYLAMIDE 2255.5 57407.3 0 2111600 

ACRYLIC_ACID 1642.4 60080.8 0 2855236 

ACRYLONITRILE 4736.9 170216.6 0 7801250 

ALACHLOR 0.0 0.6 0 28 

ALDICARB 0.0 1.5 0 69.9 

ALDRIN 0.4 17.1 0 820 

ALLYL_ALCOHOL 210.8 5352.4 0 226675.9 

ALLYL_CHLORIDE 11.6 281.7 0 12328 

ALLYLAMINE 3.0 88.6 0 3472 

ALPHA_NAPHTHYLAMINE 0.0 0.3 0 13.59 

ALUMINUM__FUME_OR_DUST_ 6908.8 73851.6 0 1954989 

ALUMINUM_OXIDE__FIBROUS_FORMS_ 4691.3 88376.7 0 3032740 

ALUMINUM_PHOSPHIDE 0.0 2.1 0 99.55 

AMETRYN 44.9 1527.9 0 63412 

AMITROLE 0.0 0.3 0 15.15 

AMMONIA 73401.7 494953.2 0 1177202
3 

ANILAZINE 100.0 4795.1 0 230015 

ANILINE 752.4 31841.2 0 1524786 

ANTHRACENE 20.5 529.7 0 23727.3 

ANTIMONY 360.3 12367.6 0 584866.5 

ANTIMONY_COMPOUNDS 2459.5 32822.1 0 963955 

ARSENIC 587.2 11805.4 0 434362.4 

ARSENIC_COMPOUNDS 33190.1 1112963.0 0 5100052
6 

ASBESTOS__FRIABLE_ 6119.1 181833.6 0 8559260 

ATRAZINE 374.7 9920.6 0 412017 

BARIUM 2514.5 51997.9 0 2014596 

BARIUM_COMPOUNDS 88172.7 454228.4 0 1253163
3 

BENFLURALIN 0.5 21.5 0 1000 

BENZAL_CHLORIDE 0.1 3.9 0 186 

BENZENE 1778.2 13834.3 0 456093.5 

BENZIDINE 0.0 0.4 0 13.1 

BENZO_G_H_I_PERYLENE 52.8 1020.1 0 33490.75 

BENZOIC_TRICHLORIDE 0.0 0.3 0 13.93 

BENZOYL_CHLORIDE 1.3 40.1 0 1817 

BENZOYL_PEROXIDE 18.4 423.9 0 13804 

BENZYL_CHLORIDE 6.7 135.1 0 4473 

BERYLLIUM 0.7 19.8 0 790 

BERYLLIUM_COMPOUNDS 209.3 2434.4 0 61981.75 

BETA_NAPHTHYLAMINE 0.0 0.3 0 13.55 
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BIFENTHRIN 1.3 63.3 0 3037 

BIPHENYL 197.9 3980.5 0 131408 

BIS_2_CHLORO_1_METHYLETHYL__ETH 0.0 1.8 0 86 

BIS_2_CHLOROETHOXY_METHANE 0.0 0.5 0 21.59 

BIS_2_CHLOROETHYL__ETHER 0.1 3.8 0 168.0524 

BIS_CHLOROMETHYL__ETHER 0.0 0.2 0 7.49 

BORON_TRICHLORIDE 0.4 14.3 0 657.2 

BORON_TRIFLUORIDE 5.1 159.4 0 5656 

BROMINE 193.2 6633.8 0 312000 

BROMOCHLORODIFLUOROMETHANE 1.4 47.9 0 2081 

BROMOFORM 4.1 195.8 0 9392 

BROMOMETHANE 120.8 2656.4 0 94400 

BROMOTRIFLUOROMETHANE 3.0 88.5 0 3238 

BROMOXYNIL 0.0 0.4 0 17.5 

BROMOXYNIL_OCTANOATE 0.0 1.1 0 54 

BRUCINE 0.0 0.2 0 7.49 

BUTYL_ACRYLATE 182.6 4650.6 0 156967.7 

BUTYRALDEHYDE 170.5 3586.2 0 141549 

C_I__DIRECT_BLACK_38 0.0 0.3 0 11 

C_I__DIRECT_BLUE_218 0.1 5.4 0 255 

C_I__SOLVENT_YELLOW_34 0.0 0.3 0 13.82 

CADMIUM 181.3 3963.8 0 156611 

CADMIUM_COMPOUNDS 3984.0 139831.5 0 6640948 

CALCIUM_CYANAMIDE 0.0 0.4 0 17.63 

CAPTAN 0.0 0.9 0 27 

CARBARYL 0.5 16.8 0 743.92 

CARBOFURAN 0.1 1.9 0 89 

CARBON_DISULFIDE 4041.6 94352.4 0 3752500 

CARBON_TETRACHLORIDE 100.1 2173.2 0 72999.47 

CARBONYL_SULFIDE 5880.2 104835.2 0 4100000 

CARBOXIN 0.0 0.3 0 12.66 

CATECHOL 6.9 101.5 0 3782.4 

CERTAIN_GLYCOL_ETHERS 7029.2 37529.1 0 915213.1 

CHLORDANE 0.6 20.5 0 949.02 

CHLORIMURON_ETHYL 0.0 0.2 0 9.27 

CHLORINE 2567.6 86506.5 0 4138718 

CHLORINE_DIOXIDE 214.9 2586.2 0 73690 

CHLOROACETIC_ACID 473.0 22576.6 0 1082972 

CHLOROBENZENE 217.7 7281.2 0 337786 

CHLOROBENZILATE 0.0 0.3 0 13.73 

CHLORODIFLUOROMETHANE 1014.3 21768.6 0 850088.9 

CHLOROETHANE 69.4 1629.3 0 67186 

CHLOROFORM 197.2 2508.0 0 57486.68 

CHLOROMETHANE 558.6 6669.6 0 216252 
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CHLOROMETHYL_METHYL_ETHER 0.5 25.0 0 1200 

CHLOROPHENOLS 30.2 1406.1 0 67439.92 

CHLOROPICRIN 2.0 49.7 0 2070.91 

CHLOROPRENE 114.5 5455.2 0 261675 

CHLOROTHALONIL 170.4 5216.0 0 208162.8 

CHLOROTRIFLUOROMETHANE 6.0 286.7 0 13753 

CHLORSULFURON 0.0 0.2 0 9.39 

CHROMIUM 3912.4 38631.4 0 890005 

CHROMIUM_COMPOUNDS_EXCEPT_CHRO
M 

20548.6 193615.2 0 7152107 

COBALT 204.0 4950.0 0 218387 

COBALT_COMPOUNDS 1711.5 11994.2 0 284233.2 

COPPER 6217.4 60476.5 0 1738355 

COPPER_COMPOUNDS 58918.7 1262744.0 0 5164740
2 

CREOSOTE 259.0 3386.8 0 104730 

CRESOL__MIXED_ISOMERS_ 937.2 9490.3 0 232200 

CROTONALDEHYDE 23.7 979.2 0 46305 

CUMENE 380.0 6387.3 0 197016 

CUMENE_HYDROPEROXIDE 38.3 1169.5 0 54463.1 

CYANAZINE 6.5 312.7 0 15001 

CYANIDE_COMPOUNDS 1815.3 31339.7 0 882800 

CYCLOHEXANE 1713.0 20121.8 0 680158 

CYCLOHEXANOL 909.5 34606.7 0 1610800 

CYFLUTHRIN 1.1 52.5 0 2518.95 

DAZOMET 0.6 15.2 0 543.3 

DECABROMODIPHENYL_OXIDE 115.5 1375.1 0 40002 

DI_2_ETHYLHEXYL__PHTHALATE 367.5 4970.7 0 163525 

DIALLATE 0.0 0.4 0 14.82 

DIAMINOTOLUENE__MIXED_ISOMERS_ 2.0 87.1 0 4165 

DIAZINON 9.7 463.6 0 22236.25 

DIBENZOFURAN 5.5 130.0 0 5627.9 

DIBROMOTETRAFLUOROETHANE 0.0 2.0 0 95 

DIBUTYL_PHTHALATE 71.9 2249.8 0 101451 

DICAMBA 59.4 2239.0 0 101661.8 

DICHLOROBENZENE__MIXED_ISOMERS_ 0.7 28.4 0 1356.8 

DICHLOROBROMOMETHANE 1.8 85.0 0 4075 

DICHLORODIFLUOROMETHANE 32.2 735.5 0 25935 

DICHLOROFLUOROMETHANE 0.1 5.4 0 260 

DICHLOROMETHANE 1431.9 14343.1 0 369092 

DICHLOROTETRAFLUOROETHANE__CFC_ 117.1 4038.7 0 184195 

DICHLOROTRIFLUOROETHANE 0.0 0.2 0 9 

DICHLORVOS 0.0 0.3 0 10 

DICOFOL 15.8 758.0 0 36362.24 

DICYCLOPENTADIENE 156.3 4138.5 0 183911.8 
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DIEPOXYBUTANE 0.0 0.3 0 13.58 

DIETHANOLAMINE 495.3 7585.4 0 228941 

DIETHYL_SULFATE 2.6 96.3 0 4515 

DIGLYCIDYL_RESORCINOL_ETHER 0.0 0.1 0 3 

DIHYDROSAFROLE 0.0 0.3 0 13.55 

DIISOCYANATES 1021.7 15537.1 0 562488.1 

DIMETHIPIN 0.1 5.2 0 250 

DIMETHOATE 0.1 2.3 0 109 

DIMETHYL_PHTHALATE 40.5 534.9 0 14698 

DIMETHYL_SULFATE 0.3 5.4 0 167.7 

DIMETHYLAMINE 114.5 2286.1 0 83868 

DIMETHYLAMINE_DICAMBA 0.2 6.6 0 305 

DIMETHYLCARBAMYL_CHLORIDE 0.0 0.3 0 13.57 

DINITROBUTYL_PHENOL 19.9 868.3 0 41429.7 

DINITROTOLUENE__MIXED_ISOMERS_ 49.5 1966.5 0 93632 

DIOXIN_AND_DIOXIN_LIKE_COMPOUND 0.1 1.4 0 56.89069 

DIPHENYLAMINE 15.0 442.4 0 19540 

DIPOTASSIUM_ENDOTHALL 1.5 64.0 0 3028 

DIPROPYL_ISOCINCHOMERONATE 0.0 0.2 0 10 

DIURON 22.5 938.7 0 44744 

EPICHLOROHYDRIN 52.3 856.1 0 29803.1 

ETHOPROP 0.0 1.9 0 90 

ETHYL_ACRYLATE 90.8 3156.4 0 150509.4 

ETHYL_CHLOROFORMATE 0.2 5.8 0 255 

ETHYL_DIPROPYLTHIOCARBAMATE 0.0 0.3 0 12 

ETHYLBENZENE 1629.0 16234.4 0 675617.4 

ETHYLENE 7775.0 116900.8 0 3952796 

ETHYLENE_GLYCOL 4615.8 69610.1 0 2960751 

ETHYLENE_OXIDE 135.7 1714.3 0 42929 

ETHYLENE_THIOUREA 0.5 14.2 0 559 

ETHYLENEBISDITHIOCARBAMIC_ACID_ 0.0 1.4 0 66 

ETHYLENEIMINE 0.0 0.2 0 7.49 

ETHYLIDENE_DICHLORIDE 12.8 407.6 0 14214 

FENPROPATHRIN 0.0 0.7 0 33 

FERBAM 0.0 0.2 0 9.59 

FLUOMETURON 0.4 20.0 0 961 

FLUORINE 20.8 409.4 0 14208 

FOLPET 0.1 4.2 0 201 

FOMESAFEN 95.4 4558.2 0 218648.4 

FORMALDEHYDE 8794.5 240336.8 0 1124903
2 

FORMIC_ACID 6721.0 187411.7 0 7604518 

FREON_113 199.6 6578.4 0 274832 

FURAN 1.4 65.6 0 3146 

GLYCIDOL 39.7 1150.7 0 42201 
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HEPTACHLOR 0.5 21.3 0 1019.17 

HEXACHLORO_1_3_BUTADIENE 1.5 57.1 0 2617.33 

HEXACHLOROBENZENE 11.3 414.6 0 19709 

HEXACHLOROCYCLOPENTADIENE 0.1 6.6 0 313.6 

HEXACHLOROETHANE 1.3 33.1 0 1151.8 

HEXACHLOROPHENE 0.0 0.6 0 29.53 

HEXAZINONE 0.8 34.6 0 1658 

HYDRAZINE 218.2 10439.1 0 500750.8 

HYDRAZINE_SULFATE 51.2 2456.5 0 117834 

HYDROCHLORIC_ACID__1995_AND_AFT 52993.8 266312.6 0 5986600 

HYDROGEN_CYANIDE 2946.1 50569.3 0 1878928 

HYDROGEN_FLUORIDE 14556.4 84458.9 0 2036184 

HYDROGEN_SULFIDE 11493.0 110970.6 0 4647397 

HYDROQUINONE 610.9 22793.6 0 1083808 

IRON_PENTACARBONYL 18.5 885.4 0 42472 

ISOBUTYRALDEHYDE 63.4 1933.7 0 83540 

ISODRIN 0.0 0.0 0 0.3 

ISOPRENE 70.1 1670.1 0 61593.4 

ISOPROPYL_ALCOHOL__MANUFACTURIN 0.2 11.8 0 567 

ISOSAFROLE 0.0 0.4 0 21.08 

LACTOFEN 0.0 0.2 0 8 

LEAD 4906.8 57863.3 0 2006487 

LEAD_COMPOUNDS 97319.3 2329421.0 0 1.09E+0
8 

LINDANE 0.0 0.6 0 27.86 

LINURON 0.2 10.6 0 509 

LITHIUM_CARBONATE 96.8 2453.7 0 85811 

M_CRESOL 73.9 3382.6 0 162201.2 

M_DINITROBENZENE 2.4 113.5 0 5443 

M_XYLENE 114.5 2183.5 0 71000 

MALATHION 3.5 158.7 0 7606.19 

MALEIC_ANHYDRIDE 384.8 9892.5 0 446870.9 

MALONONITRILE 0.0 0.3 0 13.67 

MANGANESE 6682.6 99069.2 0 4362300 

MANGANESE_COMPOUNDS 69236.6 456307.2 0 9559607 

MECOPROP 0.1 5.5 0 265 

MERCURY 31.2 426.8 0 16873.91 

MERCURY_COMPOUNDS 1845.4 50968.1 0 1954509 

METHACRYLONITRILE 289.8 13900.2 0 666777 

METHAM_SODIUM 0.7 31.7 0 1520 

METHANOL 59486.3 304890.8 0 5437770 

METHOXONE 15.2 723.0 0 34683 

METHOXONE_SODIUM_SALT 0.0 0.1 0 4 

METHOXYCHLOR 0.0 0.6 0 30.36 

METHYL_ACRYLATE 41.6 693.7 0 20167 
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METHYL_CHLOROCARBONATE 0.1 5.5 0 260 

METHYL_HYDRAZINE 0.0 0.2 0 8.05 

METHYL_IODIDE 9.5 312.2 0 14295 

METHYL_ISOBUTYL_KETONE 1614.7 16465.8 0 471920 

METHYL_ISOCYANATE 0.0 0.2 0 8.63 

METHYL_METHACRYLATE 1314.1 21684.5 0 886657 

METHYL_TERT_BUTYL_ETHER 824.4 32565.4 0 1550810 

METHYLENE_BROMIDE 3.3 84.7 0 2899 

METRIBUZIN 1.1 52.7 0 2528.77 

MIXTURE 302.7 11179.4 0 532750 

MOLYBDENUM_TRIOXIDE 636.3 7827.5 0 248254.4 

MONOCHLOROPENTAFLUOROETHANE 12.7 511.5 0 24285 

MYCLOBUTANIL 0.0 0.1 0 5 

N_BUTYL_ALCOHOL 4724.0 26977.3 0 451529.6 

N_HEXANE 14654.8 88169.6 0 1950400 

N_METHYL_2_PYRROLIDONE 2939.6 52931.5 0 1572984 

N_METHYLOLACRYLAMIDE 11.2 420.9 0 19958.26 

N_NITROSO_N_ETHYLUREA 0.0 0.2 0 8.59 

N_NITROSO_N_METHYLUREA 0.0 0.2 0 8.56 

N_NITROSODI_N_PROPYLAMINE 0.0 0.0 0 1 

N_NITROSODIPHENYLAMINE 0.0 0.2 0 10 

N_NITROSOMETHYLVINYLAMINE 0.0 0.2 0 7.49 

N_NITROSOPIPERIDINE 0.0 0.4 0 21.07 

N_N_DIMETHYLANILINE 0.9 29.6 0 1258 

N_N_DIMETHYLFORMAMIDE 437.2 12857.3 0 600490 

NABAM 3.3 157.2 0 7540 

NALED 0.0 0.2 0 10 

NAPHTHALENE 922.6 7168.1 0 147697 

NICKEL 2510.0 36824.5 0 1654067 

NICKEL_COMPOUNDS 12382.3 172867.0 0 6909875 

NICOTINE_AND_SALTS 316.9 4351.0 0 120836 

NITRAPYRIN 0.0 0.5 0 21.603 

NITRATE_COMPOUNDS 114715.
1 

722307.2 0 2137602
5 

NITRIC_ACID 7944.2 162499.5 0 6303631 

NITRILOTRIACETIC_ACID 18.4 597.6 0 22363 

NITROBENZENE 104.4 3340.6 0 146196 

NITROGLYCERIN 107.9 3060.8 0 118369 

NITROMETHANE 28.7 1167.8 0 55523 

O_ANISIDINE 0.1 5.0 0 242 

O_CRESOL 18.6 689.5 0 32015 

O_DINITROBENZENE 2.3 108.7 0 5212 

O_TOLUIDINE 3.0 88.0 0 3461 

O_TOLUIDINE_HYDROCHLORIDE 0.0 0.5 0 21.68 

O_XYLENE 99.0 1818.5 0 73000 
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OCTACHLOROSTYRENE 0.2 6.6 0 315.92 

OSMIUM_TETROXIDE 0.0 0.2 0 7.36 

OXYDIAZON 0.1 5.3 0 250 

OXYFLUORFEN 0.0 1.4 0 64.77 

OZONE 301.5 4976.7 0 141280.2 

P_CHLOROANILINE 0.6 30.2 0 1450 

P_CRESIDINE 0.2 6.9 0 260 

P_CRESOL 38.1 1730.4 0 82960.48 

P_DINITROBENZENE 0.6 27.1 0 1298 

P_NITROANILINE 0.0 0.4 0 20.7 

P_PHENYLENEDIAMINE 8.9 311.7 0 14250 

P_XYLENE 294.2 6244.9 0 237000 

PARALDEHYDE 0.1 1.3 0 45.2 

PARAQUAT_DICHLORIDE 14.2 488.0 0 22573 

PENDIMETHALIN 27.3 1252.8 0 60080 

PENTACHLOROBENZENE 0.3 10.0 0 459.41 

PENTACHLOROETHANE 0.7 29.5 0 1411 

PENTACHLOROPHENOL 2.6 70.9 0 2858.5 

PENTOBARBITAL_SODIUM 0.0 0.1 0 3 

PERACETIC_ACID 19.6 464.3 0 20691 

PERMETHRIN 2.4 115.3 0 5532 

PHENANTHRENE 76.0 1963.9 0 89048.2 

PHENOL 3253.0 22994.2 0 569862 

PHENOTHRIN 0.0 0.4 0 20 

PHENYTOIN 0.5 25.0 0 1200 

PHOSGENE 6.2 175.1 0 7600 

PHOSPHINE 2.4 102.2 0 4845.3 

PHOSPHORUS__YELLOW_OR_WHITE_ 23.1 536.9 0 18399.55 

PHTHALIC_ANHYDRIDE 102.6 1889.0 0 68264 

PICLORAM 0.1 4.4 0 204 

PICRIC_ACID 29.9 1427.7 0 68483 

PIPERONYL_BUTOXIDE 0.0 0.3 0 15 

POLYCHLORINATED_ALKANES 0.2 6.8 0 319 

POLYCHLORINATED_BIPHENYLS 1988.0 37594.1 0 1104719 

POLYCYCLIC_AROMATIC_COMPOUNDS 938.2 14545.6 0 541907.9 

POTASSIUM_BROMATE 0.1 5.2 0 250 

POTASSIUM_DIMETHYLDITHIOCARBAMA 2.2 107.8 0 5173 

POTASSIUM_N_METHYLDITHIOCARBAMA 17.4 831.0 0 39862 

PROMETRYN 1.1 38.7 0 1455 

PRONAMIDE 0.0 0.4 0 16.03 

PROPACHLOR 0.0 0.1 0 4.01 

PROPANE_SULTONE 0.1 6.9 0 333.03 

PROPANIL 14.9 498.7 0 20500 

PROPARGITE 0.0 2.3 0 110 
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PROPARGYL_ALCOHOL 0.6 18.5 0 844 

PROPICONAZOLE 96.4 4347.3 0 208160.9 

PROPIONALDEHYDE 94.9 1714.9 0 54668 

PROPYLENE 3644.0 44834.8 0 1519031 

PROPYLENE_OXIDE 167.7 2730.8 0 80153 

PROPYLENEIMINE 0.1 5.1 0 228.4 

PYRIDINE 327.0 5927.0 0 160005 

QUINOLINE 7.0 311.3 0 14924 

QUINONE 0.2 7.5 0 357 

QUINTOZENE 0.2 5.6 0 247 

S_S_S_TRIBUTYLTRITHIOPHOSPHATE 0.1 3.8 0 180 

SACCHARIN__MANUFACTURING__NO_SU 0.0 0.0 0 0.97 

SAFROLE 0.0 0.5 0 21.06 

SEC_BUTYL_ALCOHOL 213.1 2929.1 0 100890.6 

SELENIUM 122.4 2722.7 0 109136 

SELENIUM_COMPOUNDS 794.7 6650.8 0 155841 

SILVER 125.7 2895.3 0 118216 

SILVER_COMPOUNDS 105.0 1652.3 0 45311 

SIMAZINE 34.6 1167.4 0 40202 

SODIUM_AZIDE 1.1 52.5 0 2520.44 

SODIUM_DICAMBA 4.5 157.4 0 6350 

SODIUM_DIMETHYLDITHIOCARBAMATE 87.1 2434.9 0 100677.5 

SODIUM_FLUOROACETATE 0.0 0.3 0 12.62 

SODIUM_NITRITE 4104.2 107186.1 0 4800500 

STRYCHNINE_AND_SALTS 0.0 0.1 0 5 

STYRENE 11876.8 49754.2 0 1090671 

STYRENE_OXIDE 0.0 0.7 0 33.97 

SULFURIC_ACID__1994_AND_AFTER_A 43005.9 252987.4 0 4477500 

SULFURYL_FLUORIDE 194.8 2407.8 0 51275 

TERT_BUTYL_ALCOHOL 708.8 24657.4 0 1170380 

TETRABROMOBISPHENOL_A 55.4 1783.1 0 68882 

TETRACHLOROETHYLENE 438.7 5053.5 0 184062 

TETRACHLORVINPHOS 0.1 5.3 0 255 

TETRACYCLINE_HYDROCHLORIDE 0.8 39.8 0 1908 

TETRAFLUOROETHYLENE 142.5 4504.3 0 199390.4 

THALLIUM 47.0 2252.3 0 108038 

THALLIUM_COMPOUNDS 535.9 5886.1 0 128103 

THIABENDAZOLE 45.7 2179.0 0 104520.8 

THIOACETAMIDE 0.0 0.6 0 29.44 

THIOBENCARB 0.0 0.2 0 10 

THIODICARB 0.5 24.3 0 1165 

THIOPHANATE_METHYL 0.6 28.4 0 1361 

THIOSEMICARBAZIDE 0.0 0.2 0 7.49 

THIOUREA 1.9 86.7 0 4158 
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THIRAM 22.9 433.4 0 18788 

TITANIUM_TETRACHLORIDE 14.1 365.9 0 15005 

TOLUENE 11914.7 67310.6 0 2075190 

TOLUENE_2_4_DIISOCYANATE 1.1 24.6 0 940 

TOLUENE_2_6_DIISOCYANATE 0.2 7.2 0 250.2 

TOLUENE_DIISOCYANATE__MIXED_ISO 21.5 272.8 0 8677.83 

TOXAPHENE 0.1 2.8 0 131.503 

TRADE_SECRET_CHEMICAL 0.7 35.3 0 1695 

TRANS_1_3_DICHLOROPROPENE 0.2 9.1 0 430 

TRANS_1_4_DICHLORO_2_BUTENE 0.0 0.3 0 13.55 

TRIADIMEFON 0.0 0.2 0 9 

TRIALLATE 0.0 0.5 0 24 

TRIBENURON_METHYL 0.0 0.2 0 9.27 

TRICHLORFON 0.0 0.1 0 5 

TRICHLOROACETYL_CHLORIDE 0.0 0.2 0 7.2 

TRICHLOROETHYLENE 1055.1 10365.2 0 285471.5 

TRICHLOROFLUOROMETHANE 68.7 2063.7 0 94578 

TRICLOPYR_TRIETHYLAMMONIUM_SALT 0.0 0.0 0 1 

TRIETHYLAMINE 165.6 2298.0 0 62706 

TRIFLURALIN 2.8 83.8 0 3099.45 

TRIPHENYLTIN_HYDROXIDE 0.9 29.4 0 1278 

TRYPAN_BLUE 0.0 0.6 0 27.63 

URETHANE 9.7 427.0 0 20440.8 

VANADIUM__EXCEPT_WHEN_CONTAINED 263.6 4998.9 0 166427 

VANADIUM_COMPOUNDS 13417.0 74032.2 0 2025898 

VINYL_ACETATE 788.0 14326.5 0 613894.9 

VINYL_CHLORIDE 227.7 3320.1 0 92047 

VINYL_FLUORIDE 31.1 923.8 0 33176 

VINYLIDENE_CHLORIDE 16.0 400.4 0 15552 

WARFARIN_AND_SALTS 0.0 0.2 0 7.6 

XYLENE__MIXED_ISOMERS_ 7189.9 34767.4 0 907146.1 

ZINC__FUME_OR_DUST_ 3603.6 111308.4 0 5291548 

ZINC_COMPOUNDS 111384.
3 

890554.2 0 2264803
4 
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