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ABSTRACT

SEARCH FOR NEW PHYSICS USING LEPTON FLAVOR VIOLATING
SIGNATURES IN MODERN PARTICLE COLLIDERS

Atanu Pathak

August 3rd, 2020

Charged lepton flavor violation is a clear signal of new physics. Such decays are not

allowed in the Standard Model, but highly anticipated in a large class of new physics

models. The ATLAS and the CMS experiments at the Large Hadron Collider are

only two places where we may discover lepton-flavor-violating decays of the Higgs

boson in the near future. With an increase in the center-of-mass energy at the Large

Hadron Collider (LHC) from 7 and 8 TeV in Run1 (2011-2012) to 13 TeV in Run2

(2015-2018), the rate of production of the Higgs boson has increased. This makes

the search for lepton flavor violating decays of the Higgs boson at the worlds highest

energy particle collider very interesting. Indirect expectations based on current upper

limits on the branching fraction of the lepton flavor violating decays of the τ lepton to

an electron or a muon plus a gamma in the final state at the 10−8 level imply bounds

on lepton flavor violating decays of the Higgs boson at the 10% level.

A direct search for lepton flavor violation in decays of the Higgs boson with the

ATLAS detector at the LHC is presented here. The analysis is performed in the

H → lτ channel, where the leading lepton (`) can be either an electron or a muon,

v



and the τ lepton decays into an opposite flavored lighter lepton or via a hadronic

decay channel. Decays modes where the prompt lepton from Higgs and from the τ

lepton are both electrons or muons are not considered in the final state because of

large irreducible background from di-leptonic decays of the Z boson.

Published results of this search are presented in this thesis based on a data sam-

ple of proton−proton collisions collected by the ATLAS detector corresponding to an

integrated luminosity of 36 inverse femtobarns (fb−1) at a center-of-mass energy (
√
s)

of 13 trillion-electron-volts (TeV) during the 2015-2016 data-taking period (Run2).

The analysis is found to be three times more sensitive than the previous analysis

performed with 20 fb−1 of data collected at
√
s = 8 TeV during the 2012 data-taking

period (Run1). The improvements mainly arise from inclusion of additional kine-

matic regions in the analysis with higher sensitivity to signal, as well as an improved

technique to understand the modelling of the fake-background with a data-driven

method using a transfer factor from control region to signal region. Further improve-

ments are obtained by inclusion of a new phase-space region corresponding to the

Vector Boson Fusion production mechanism of the Higgs boson, as well as use of

multi-variate signal-to-background discriminants. The result is already systematic

error dominated and thus will not improve significantly by adding more data at the

Large Hadron Collider. The upper limits obtained by direct search for lepton flavor

violating decays of the Higgs boson obtained with the present analysis at the Large

Hadron Collider are about twenty-five times lower than the indirect prediction on the

respective branching fractions.

To complement my research goal of searching for new physics with lepton flavor

violating signatures in final states containing the τ lepton, I also studied the generator

level modeling of decays of the τ lepton decaying into Standard Model processes at the

Belle II experiment at the worlds highest luminosity SuperKEKB collider in Japan.

This validation work involves benchmarking of the visible mass distributions from

vi



each one of the allowed final states in the Standard Model decays of the τ lepton

On the technical side, to obtain authorship qualification on the ATLAS exper-

iment, I have worked on the Inner Tracker (ITk) upgrade. I mapped the material

budget of the detector in terms of the radiation length traversed for the current Inner

Detector geometry as well as the proposed ITk layout to be deployed at the Phase II

upgrade of the ATLAS experiment. The materials are separately categorized in terms

of a detailed description of cryogenic, electrical, and mechanical support structures.

I implemented the modeling of the mechanical supports and electrical cabling to be

used in central simulation and incorporated it into a global database. I performed

benchmarking studies of timing requirements of the charged particle reconstruction

as tracks in the Inner Detector currently used in ATLAS versus the new layout of an

upgraded ITk.

To obtain authorship qualification on the Belle II experiment, my technical contri-

butions are related to the K-long and muon detector (KLM). I am the troubleshooting

expert and data-quality monitoring (DQM) liaison of the KLM detector of the Belle II

experiment. I built a web interface, which generates web-pages dynamically, to mon-

itor the performance of the detector, which are crucial to diagnosing changes in the

machine beam background and track changes in the thresholds settings, calibration

constants, and trigger settings.
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CHAPTER I

OUTLINE OF THE THESIS

Searches for new physics using lepton flavor violating signatures in the decays

of the Higgs boson into final states containing the τ lepton using data collected in

proton-proton collisions by the ATLAS experiment at a center-of-mass energy of 13

TeV are presented. Also, modelling of Standard Model decays of the tau lepton at

the Belle II experiment are presented.

The thesis is organized in the following manner, Chapter 1 being this introduction.

In Chapter 2, some of the theoretical backgrounds on the Standard Model of

particle physics building up to the properties of the Higgs boson are presented.

In Chapter 3, the experimental setup of the ATLAS detector at the Large Hadron

Collider is discussed, where the searches for Higgs decays are performed.

In Chapter 4, the technical contributions to the service task are discussed, based

on which I obtained the authorship qualification in the ATLAS collaboration. These

tasks include benchmarking of the CPU requirements for the track reconstruction for

the Phase II upgrade of the Inner Tracker of the ATLAS experiment.

In Chapter 5, the Belle II experimental setup for understanding the decays of the

tau lepton at the SuperKEKB collider is presented.

In Chapter 6, the techincal contributions on data quality monitoring of the muon

detector of the Belle II experiment are mentioned, based on which I obtained the

1



authorship qualification in the Belle II collaboration.

In Chapter 7, the physics analysis on modelling of the Standard Model decays of

the tau lepton at the Belle II experiment are presented.

In Chapter 8, the physics analysis on search of lepton flavor violating decays of

the Higgs boson at the ATLAS expriment are presented.
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CHAPTER II

STANDARD MODEL OF PARTICLE PHYSICS

This chapter motivates and lays the groundwork for the addition of the Higgs

boson to the Standard Model (SM) of particle physics. This requires an understand-

ing of gauge theories, which are intimately related to the notion of symmetry. The

implications of the invariance of the laws of physics under transformations are first

discussed in section 2.1. Following a discussion on the work of Dirac that describes

the Lagrangian of free fermions in section 2.2, the addition of a gauge field to the

Lagrangian satisfying invariance under U(1)Y transformations leads to unification of

Quantum Mechanics (QM) with Maxwell’s laws of electromagnetism are discussed in

section 2.3. This unification is extended in Section 2.4 to combine the electromag-

netic and weak forces into the electroweak force, which lays the foundation of the

Higgs mechanism as discussed in section 2.5. Although the strong interaction is not

directly related to the Higgs mechanism, an understanding of Quantum Chromody-

namics (QCD) forms an integral part of the SM and is discussed in section 2.6. In the

next section (2.7), the production and decays of the Higgs relevant to the LHC are

discussed. Final section 2.8 describes the lepton flavor violating decays of the Higgs

boson as an unambiguous search for new physics, in an attempt to describe Nature

beyond the SM of particle physics.
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2.1 Noether’s Theorem

The fundamental notion of symmetry in nature is the underlying theory of par-

ticles, and physics in general. In 1918 Emmy Noether proved a theorem (known as

Noether’s Theorem) that for every transformation of a field φ(x) which leaves the

action invariant there exists a conserved current [1]. The invariance of the action is

equivalent to invariance of the Lagrangian density L(x), which is a function of both

φ(x) and its derivative ∂µφ(x). The action is defined by the integral of the Lagrangian

density (henceforth referred to simply as the Lagrangian) over all space-time.

S =

∫
L(x)d4x (2.1)

Let us consider an infinitesimal transformation of the field φ(x) → φ(x) + δφ(x)

that conserves the action:

0 = δS

=
∫
d4x

{
∂L
∂φ
δφ+ ∂L

∂(∂µφ)
δ(∂µφ)

}
=

∫
d4x

{
∂L
∂φ
δφ− ∂µ

(
∂L

∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ
)} (2.2)

The third term evaluates to zero assuming no boundary terms in the action. This

indicates that invariance of the action is equivalent to the Euler-Lagrange equation

of motion:

∂L
∂φ
− ∂µ

(
∂L

∂(∂µφ)

)
= 0 (2.3)

One can thus require that a shift in the Lagrangian induced by a local transfor-

mation of the field must be zero up to a local four divergence (∂µJ µ(x)):

L(x)→ L′(x) = L(x) + ∂µJ µ(x)⇒ δL(x) = ∂µJ µ(x) (2.4)
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The shift in the Lagrangian can also be written with respect to the field:

δL(x) = ∂L
∂φ
δφ+ ∂L

∂(∂µφ)
δ(∂µφ)

= ∂L
∂φ
δφ− ∂µ

(
∂L

∂(∂µφ)

)
δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ
)

= ∂µ

(
∂L

∂(∂µφ)
δφ
) (2.5)

Equating the two forms of δL(x), one obtains a conserved current jµ(x):

jµ(x) ≡ ∂L(x)
∂(∂µφ)

δφ+ J µ(x)

∂µj
µ(x) = ∂µ

(
∂L(x)
∂(∂µφ)

δφ
)

+ ∂µJ µ(x) = 0
(2.6)

2.2 Dirac Lagrangian

The behavior of relativistic spin-1/2 fields ψ(x) in free space is described by the

Dirac Lagrangian [2]:

LDirac(x) = ψ̄(x)(iγµ∂µ −m)ψ(x) (2.7)

In 4-dimensions the terms γµ are 4×4 matrices satisfying the anti-commutation

relationship:

{γµ, γν} = 2gµν (2.8)

where gµν is the metric tensor. In the four dimensional Minkowski space, these

matrices can be represented in terms of the 2×2 Pauli sigma matrices σi, i = 1, 2, 3:

γµ =

 0 σµ

σ̄µ 0

 (2.9)

σµ and σ̄µ are the four-vector notations for the Pauli sigma matrices, such that

σµ ≡ (I, σ) and σ̄µ ≡ (I,−σ), with σ ≡ (σ1, σ2, σ3). The term ψ̄(x) ≡ ψ†γ0 requires
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the additional γ0 for the ψ̄ψ term to be Lorentz invariant. The term ψ(x) can be

further decomposed into left and right handed Weyl spinors:

ψ =

 ψL

ψR

 (2.10)

The Dirac equation of motion for ψ(x) is obtained by applying the Euler-Lagrange

formula to LDirac(x):

(iγµ∂µ −m)ψ(x) = 0 (2.11)

This represents the equation of motion for a free (non-interacting) fermion. The

next section shows how interactions with the electromagnetic field can be incorporated

into the Dirac Lagrangian.

2.3 Quantum Electrodynamics

At low energies up to the order of a few GeV, Quantum Electrodynamics (QED)

represents a unification of QM with Maxwell’s laws of electromagnetism that describe

how charged fermions interact with the electromagnetic fields where the effects from

heavy gauge bosons W±/Z0 are negligeble:

∇ · E = ρ
ε0

∇ ·B = 0

∇× E = −∂B
∂t

∇×B = µ0J + µ0ε0
∂E
∂t

(2.12)

E is the electric field, B is the magnetic field, ρ is the electric charge density of

space, µ0 is the permeability of free space, and ε0 is the permittivity of free space.

Switching to natural units and introducing the electromagnetic four-potential

Aµ = (φ,A), where E = −∂A
∂t
− ∇φ and B = ∇ × A, and a corresponding field

6



strength tensor F µν = ∂µAν − ∂νAµ, the Lagrangian for QED is given as:

LQED = ψ̄(iγµDµ −m)ψ − 1

4
FµνF

µν (2.13)

where Dµ ≡ ∂µ − ieAµ is the covariant derivative along the tangent vector of the

manifold as required for gauge invariance, and e = |e| is taken to be positive. This

term ultimately yields the interaction terms in the Lagrangian between the fermion

and electromagnetic field. One recovers Maxwell’s equations after applying the Euler-

Lagrange equation with respect to Aµ:

LQED = ψ̄(iγµDµ −m)ψ − 1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

= ψ̄(iγµDµ −m)ψ − 1
4
(∂µAν∂

µAν − ∂µAν∂νAµ − ∂νAµ∂µAν + ∂νAµ∂
νAµ)

= ψ̄(iγµ∂µ − eγµAµ −m)ψ − 1
2
(∂µAν∂

µAν − ∂µAν∂νAµ)

(2.14)

∂L
∂Aµ
− ∂ν( ∂L

∂(∂νAµ)
) = 0

⇒ ∂ν(∂
µAν − ∂νAµ) = −eψ̄γµψ

(2.15)

Defining the four current jµ ≡ −eψ̄γµψ, the last equation can be written in a

more elegant form:

∂νF
µν = jµ (2.16)

The conservation of jµ follows directly:

∂µj
µ = ∂µ∂νF

µν

= ∂µ∂ν(∂
µAν − ∂νAµ)

= 0

(2.17)

Eq. 2.16 yields four differential equations, one for each index of µ. Writing out the

µ = 0 and µ = 1, 2, 3 components separately and writing jµ = (ρ,J) in terms of its
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temporal and spatial components ρ and J, respectively, one obtains two of Maxwell’s

four equations:

−∇ · ∂A
∂t

+∇2φ = j0 ⇔ ∇ · E = ρ
ε0

∇× (∇×A)− ∂2A
∂t2

+ ∂
∂t
∇φ = ji ⇔ ∇×B = µ0J + µ0ε0

∂E
∂t

(2.18)

Noting that E and B are functions of A and φ, the last two equations follow

directly from the identities of second derivatives:

∇× E = − ∂
∂t
∇×A−∇×∇φ = −∂B

∂t

∇ ·B = ∇ · (∇×A) = 0
(2.19)

Applying the Euler-Lagrange equation with respect to ψ, one obtains the equation

of motion of fermions. With respect to Eq. 2.11, the only additional term is the

interaction term with the field Aµ:

(iγµ∂µ −m)ψ = −eγµAµψ (2.20)

LQED is invariant under a gauge transformation of the field ψ when the gauge field

Aµ is simultaneously transformed in the following way:

ψ(x) → ψ′(x) = ψ(x)eiθ(x)

Aµ(x) → A′µ(x) = Aµ(x) + 1
e
∂µθ(x)

(2.21)

The terms F µν (and therefore F µνFµν) and mψ̄ψ are manifestedly invariant. The

interaction and kinetic terms each pick up a term differing by a sign and cancel:

ψ̄γµDµψ → ψ̄′γµD′µψ
′ = ψ̄e−iθ(x)γµ(∂µ − ieAµ(x)− i∂µθ(x))ψeiθ(x)

= ψ̄γµDµψ + ψ̄iγµ∂µθ(x)ψ − ψ̄iγµψ∂µθ(x)

= ψ̄γµDµψ

(2.22)
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2.4 Electroweak Unification

While QED works well in describing the interactions between charged fermions

and the electromagnetic field, it does not describe phenomena arising from weak inter-

actions [3], such as radioactive β decays. To incorporate a description of radiactivity,

we need to extend the symmetry of the model to a larger symmetry group [4, 5, 6].

The spin-1 gauge fields W a
µ (a = 1, 2, 3) transform under the adjoint of the SU(2)L

group with associated generators T a = 1
2
σa, where σa are the Pauli matrices. The

gauge field Bµ is associated with U(1)Y .

Fermions enter as left-handed doublets ΨL of SU(2)L, while the right handed

fermions ψR are SU(2)L singlets that are charged under U(1)Y . Here, ΨL is a doublet

representation of SU(2)L, and ψR is a singlet under SU(2)L, but transforms under

U(1)Y :

The Electroweak Lagrangian invariant under SU(2)L × U(1)Y can be written as:

LEW = Ψ̄Liγ
µDL

µΨL + ψ̄Riγ
µDR

µψR − 1
4
W µν
a W a

µν − 1
4
BµνBµν (2.23)

where

ΨL =

 ψ′L

ψL

 (2.24)

Here, ΨL and ψR can be either leptons or quarks. There are three generations of

both, which will remain implicit in the notation, shown explicitly only for the first
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νL eL eR uL dL uR dR
Q 0 -1 -1 +2/3 -1/3 +2/3 -1/3
I3 +1/2 -1/2 0 +1/2 -1/2 0 0
Y -1 -1 -2 +1/3 +1/3 +4/3 -2/3

Table 2.1: Eigenvalues of the electromagnetic charge Q, the third component of the
weak isospin I3, and the weak hypercharge Y = 2Q− 2I3 for the fermions of the SM.

generation for example:

Leptons : Quarks : ψ′L

ψL

 =

 νL

eL

 ;

 ψ′L

ψL

 =

 uL

dL


ψR = eR ; ψR = uR, dR

(2.25)

The covariant derivative contains the four gauge fields that will form the inter-

action terms with the fermions. This is different for the left-handed doublets and

right-handed singlets:

DL
µ = ∂µ − ig1

Y
2
Bµ − ig2T

aW a
µ

DR
µ = ∂µ − ig1

Y
2
Bµ

(2.26)

The hypercharge of the fermions is Y = 2Q− 2I3, where Q is the electromagnetic

charge and I3 is the third component of the weak isospin. The eigenvalues of each

for the different fermion flavors in the first generation (taken just as an example) are

listed in Table 2.1.

Here, g1 and g2 are the coupling constants of the fermions to the gauge fields. The

form of the field strength tensor Bµν of Bµ is identical to that of the photon in QED.

W a
µν is the field strength tensor of W a

µ . Because the generators T a of SU(2)L do not

10



commute, W a
µν picks up an additional term:

W a
µν = ∂µW

a
ν − ∂νW a

µ + g2ε
abcW b

µW
c
ν

Bµν = ∂µBν − ∂νBµ

(2.27)

εabc is the antisymmetric tensor that arises due to the commutation relation that

is the SU(2)L algebra. There is no such term in Bµν since the lone U(1)Y generator

Y trivially commutes:

[T a, T b] = iεabcT c

[Y, Y ] = 0
(2.28)

The extra term in W a
µν from the non-abelian nature of SU(2)L gives rise to self-

interactions among the gauge bosons in this group that aren’t present in U(1)Y [7].

An SU(2)L transformation of the Lagrangian yields the transformed fermion dou-

blet and gauge fields required for invariance of the Lagrangian:

Ψ′L = ΨLe
iβa(x)Ta

~W ′
µ = ~Wµ − 1

g2
∂µ~β(x)− ~β(x)× ~Wµ

(2.29)

However, the mass terms breaks this symmetry. Expanding the fermion field in

terms of the left and right handed components illustrates the reason:

mΨ̄Ψ = mΨ̄(1
2
(1− γ5) + 1

2
(1 + γ5))Ψ

= m(Ψ̄RΨL + Ψ̄LΨR)
(2.30)

Since only ΨL transforms under SU(2)L, these mass terms are not invariant un-

der the transformation in Equation 2.29; neither are mass terms M2
aW

a
µW

aµ for the

bosons. Fermions and bosons do acquire mass via the Higgs mechanism desribed in

Section 2.5.

In general, the physical bosons that couple with the fermions can be mixtures of

11



the gauge bosons. The mixing of the W 3
µ and the Bµ can be represented by a rotation

by the Weinberg angle θW .

Using the notations:

sin θW ≡ sW ≡
g1√
g2

1 + g2
2

and

cos θW ≡ cW ≡
g2√
g2

1 + g2
2

the rotation can be written in the following way:

 Aµ

Zµ

 =

 cW sW

−sW cW


 Bµ

W 3
µ

 (2.31)

Thus, Bµ and W 3
µ can be written in terms of Aµ, Zµ, and θW :

Bµ = cWAµ − sWZµ
W 3
µ = sWAµ + cWZµ

(2.32)

The covariant derivative can be written in terms of the mass eigenstates Aµ, Zµ,

and W±
µ corresponding to the physical bosons γ, Z, and W±, respectively in the

following manner:

12



iDL
µ = i

(
∂µ − ig1

Y
2
Bµ − ig2T

aW a
µ

)
=

 a11
µ a12

µ

a21
µ a22

µ

 ,

a11
µ = i∂µ + 1

2
g1Y Bµ + 1

2
g2W

3
µ

= i∂µ + 1
2
(g1cWY + g2sW )Aµ − 1

2
(g1sWY − g2cW )Zµ

a12
µ = 1

2
g2(W 1

µ − iW 2
µ) ≡ 1√

2
g2W

+
µ

a21
µ = 1

2
g2(W 1

µ + iW 2
µ) ≡ 1√

2
g2W

−
µ

a22
µ = i∂µ + 1

2
g1Y Bµ − 1

2
g2W

3
µ

= i∂µ + 1
2
(g1cWY − g2sW )Aµ − 1

2
(g1sWY + g2cW )Zµ

(2.33)

Multiplying the interaction terms with the fermion doublets and rewriting the

coefficients in terms of θW reveals the electroweak fermion-boson interactions:

Ψ̄Liγ
µDL

µΨL =

(
ψ̄′L ψ̄L

)
γµ

 a11
µ a12

µ

a21
µ a22

µ


 ψ′L

ψL


= ψ̄′Lγ

µa11
µ ψ

′
L + ψ̄′Lγ

µa12
µ ψL

+ψ̄Lγ
µa21

µ ψ
′
L + ψ̄Lγ

µa22
µ ψL

= iψ̄′Lγ
µ∂µψ

′
L + iψ̄Lγ

µ∂µψL

+ 1
2
e(Y + 1)ψ̄′Lγ

µψ′LAµ + 1
2
e(Y − 1)ψ̄Lγ

µψLAµ

− 1
2
(g1sWY − g2cW )ψ̄′Lγ

µψ′LZµ − 1
2
(g1sWY + g2cW )ψ̄Lγ

µψLZµ

+ 1√
2
g2ψ̄

′
Lγ

µψLW
+
µ + 1√

2
g2ψ̄Lγ

µψ′LW
−
µ

(2.34)

The identity g1cW = g2sW ≡ e, the electromagnetic charge, has been used in the

Aµ terms. The right handed singlet terms are similar:

ψ̄Riγ
µDR

µψR = ψ̄Riγµ(∂µ − ig1
Y
2
Bµ)ψR

= iψ̄Rγµ∂µψR + 1
2
eY ψ̄RγµψRAµ − 1

2
g1sWY ψ̄RγµψRZµ

(2.35)
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Inserting the SM fermions in place of ψ′L, ψL, and ψR and replacing the weak

hypercharge with its corresponding eigenvalues, one gets the seventeen interaction

terms as listed below:

Left− Handed Interactions :

EM
− −eēLγµeLAµ

2
3
eūLγ

µuLAµ
1
6
ed̄Lγ

µdLAµ

Neutral Current

1
2
(g1sW + g2cW )ν̄ ′Lγ

µν ′LZµ
1
2
(g1sW − g2cW )ēLγ

µeLZµ

− 1
2
(1

3
g1sW − g2cW )ūLγ

µuLZµ −1
2
(1

3
g1sW + g2cW )d̄Lγ

µdLZµ

Charged Current

1√
2
g2ν̄Lγ

µeLW
+
µ

1√
2
g2ēLγ

µνLW
−
µ

1√
2
g2ūLγ

µdLW
+
µ

1√
2
g2d̄Lγ

µuLW
−
µ

Right− Handed Interactions :

EM
− −eēRγµeRAµ

2
3
eūRγµuRAµ −1

3
ed̄RγµdRAµ

Neutral Current
− g1sW ēRγµeRZµ

−2
3
g1sW ūRγµuRZµ

1
3
g1sW d̄RγµdRZµ

(2.36)

Unification of the electromagnetic and weak forces into the electroweak force is

thus acheived by the addition of an SU(2)L gauge symmetry. Although this elec-

troweak Lagrangian is able to describe most of physics around the mass scale of

about a hundred Giga-ElectronVolts (GeV), it cannot explain how the weak bosons

and fermions are observed to be massive given that mass terms break SU(2)L sym-

metry.

2.5 Higgs Mechanism

The Higgs mechanism [8, 9, 10] offers an elegant solution to spontaneously generate

the mass terms for weak bosons and fermions, which otherwise violate the SU(2)L

14



symmetry. This requires adding to the electroweak Lagrangian an extra spin-0 scalar

field Φ as a complex doublet:

Φ =

 φ+

φ0

 =
1√
2

 φ1 − iφ2

φ3 − iφ4

 (2.37)

LHiggs = (DµΦ)†(DµΦ) + µ2Φ†Φ− λ(Φ†Φ)2 (2.38)

where the covariant derivative in the kinetic term is the same as the left-handed

equation 2.26 with YΦ = +1 as the eigenvalue of the weak hypercharge.

The particularly careful construction of the term V (Φ) = −µ2Φ†Φ + λ(Φ†Φ)2 as

the potential term of the Lagrangian has some special features. If µ2 < 0, V (Φ) has

a minimum at Φ = 0. If µ2 > 0, V (Φ) has a minimum at
√
|Φ|2 =

√
µ2

λ
such that

V (Φ) has a non-zero expectation value, and is commonly refered to as a “mexican

hat” potential. It is critical to note that in this form the Lagrangian in Eq. 2.38 is

manifestedly SU(2)L invariant.

To simplify the following algebra, it’s useful to work in the unitary gauge [11].

Since the Largrangian is SU(2)L invariant, one can always make unitary transforma-

tion to this gauge that removes the upper component of Φ:

U(x)Φ = 1√
2

 0

φ(x)


= 1√

2

 0

v + h(x)


(2.39)

Here, the remaining lower component has been expanded around a vacuum ex-

pectation value v by a small perturbation h(x). By minimizing the potential term

with respect to h(x), one can show that the minimum occurs at v, corresponding to
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the minimum
√
|Φ|2 = µ2

λ
of V (Φ) mentioned above. By writing out the potential

term, the self-interaction terms of the field h(x) are revealed:

µ2Φ†Φ− λ(Φ†Φ)2 = 1
2
µ2(v2 + h2 + 2vh)− 1

4
λ(v4 + h4 + 4vh3 + 6v2h2 + 4v3h)

= v(µ2 − λv2)h+ (1
2
µ2 − 3

2
λv2)h2 − vλh3 − 1

4
λh4 + const

= λv2h2 − vλh3 − 1
4
λh4 + const

(2.40)

The term linear in h has been removed by a substitution µ2 = λv2 in the above

derivation. The cubic and quartic self-interaction terms are thus revealed. Also

evident is the mass term λv2h2, yielding MH =
√

2λv.

The kinetic term is written in terms of the gauge bosons in the following way:

(DµΦ)†(DµΦ)

= 1
2

∣∣∣∣∣∣∣
 ∂µ − i

2
eAµ + i

2
(g1sW − g2cW )Zµ −i 1√

2
g2W

+
µ

−i 1√
2
g2W

−
µ ∂µ + i

2

√
g2

1 + g2
2Zµ


 0

v + h


∣∣∣∣∣∣∣
2

= 1
2
(∂µh)2 +

g21+g22
8
v2Z2

µ +
g21+g22

8
h2Z2

µ +
g21+g22

4
vhZ2

µ +
g22
4
v2W+

µ W
−,µ

+
g22
4
h2W+

µ W
−,µ +

g22
2
vhW+

µ W
−,µ

(2.41)

The mass terms
g22
4
v2W+

µ W
−,µ = M2

WW
2
µ ,

g21+g22
8
v2Z2

µ = 1
2
M2

ZZ
2
µ, and 0 = 1

2
M2

AA
2
µ

show the W± and Z bosons masses 1
2
g2v and

√
g21+g22
2

v, respectively, while leaving

the photon massless as observed in nature. Cubic and quartic vertices describing

self-couplings between the bosons arise as well. It also predicts the ratio of W and

Z masses to be MW

MZ
= cW , which has been experimentally verified [12]. The vacuum

expectation value v ≈ 246 GeV is obtained from these relations.

When expanded in terms of the field h(x), the Lagrangian is not invariant under

SU(2)L, although we started with a manifestedly invariant form of the Lagrangian.

This is why the symmetry is said to have been “spontaneously” broken by expanding

around v.
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Fermion masses are accomodated by adding interaction terms between the fermions

and scalar field Φ. For the down-type fermions ψL and ψR with corresponding Yukawa

couplings λd:

Ldown
fermion−Higgs = −λdΨ̄LΦψR + h.c.

= − 1√
2
λd(ψ̄

′
L, ψ̄L)

 0

v + h

ψR + h.c.

= − 1√
2
λdvψ̄LψR − 1√

2
λdψ̄LψRh+ h.c.

= − 1√
2
λdvψ̄ψ − 1√

2
λdψ̄ψh

(2.42)

Masses of down-type fermions md = 1√
2
λdv and the interactions of the Higgs with

fermions are obtained in this manner.

Mass terms for the up-type fermions ψ′L and ψ′R can similarly be generated. The

final mass term is revealed rotating the Higgs field in the Lagrangian terms as follows:

Lup
fermion−Higgs = −λuΨ̄LΦ′ψ′R + h.c.,

Φ′ = −iσ2Φ =

 v + h

0


⇒ Lup

fermion−Higgs = − 1√
2
λu(ψ̄

′
L, ψ̄L)

 v + h

0

ψ′R + h.c.

= − 1√
2
λuvψ̄

′
Lψ
′
R − 1√

2
λuψ̄

′
Lψ
′
Rh+ h.c.

= − 1√
2
λuvψ̄

′ψ′ − 1√
2
λuψ̄

′ψ′h

(2.43)

Thus, the masses mu = 1√
2
λuv for both down-type and the up-type are generated

from fermion-Higgs interaction.
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2.6 QCD

The theory of the strong interaction between quarks mediated by the gluons, via

color charges, is called Quantum Chromodynamics (QCD) [13, 14]. It is described by

the SU(3)C group, which has eight spin-1 massless gluon fields Ga
µ (a=1,...,8). The

quarks Q transform as triplets under the SU(3)C group:

LQCD = Q̄(iγµDµ −m)Q− 1

4
Ga
µνG

µν
a (2.44)

where Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

νG
c
ν is the field strength tensor of Ga

µ, gs is

the strong coupling, and fabc are the associated structure constants of the SU(3)C

algebra:

[ta, tb] = ifabctc (2.45)

The eight ta are one-half times the 3x3 Gell-Mann matrices λa, the generators

of SU(3)C . Similar to SU(2)L, the non-commuting SU(3)C algebra results in self-

interaction among the gluons fields.

In terms of number of colors NC = 3 and the strong coupling constant αs = g2s
4π

, the

structure of QCD gives rise to three types of vertices whose square gives the following

three basic amplitudes:

• gluon bremsstrahlung from quarks with strength =
N2
C−1

2NC
· αS = 4

3
αS,

• gluon bremsstrahlung from gluons with strength = NC · αS = 3αS, and

• gluon splitting into a quark-antiquark pair with strength = 1
2
αS.

2.7 Higgs boson at the LHC

There are four main production modes of the Higgs boson at the LHC: the Feyn-

man diagrams for which are shown in Figure 2.1.
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• The dominant mode is gluon-gluon fusion (gg → H, denoted ggF), in which

a top- and b-quark loop mediates an effective coupling between the Higgs and

two initial state gluons.

• The Vector Boson Fusion (VBF) production mode occurs through the process

qq̄ → q′q̄′V (∗)V (∗) → q′q̄′H (V (∗) = W (∗), Z(∗)), where the vector bosons are

radiated off of two initial state quarks and fuse to give a Higgs boson.

• There is a mode where a Higgs is produced in association with a vector boson

(V H, V = W,Z), also known as Higgs-strahlung, which occurs through the

process qq̄ → V ∗ → V H.

• Finally, there is the tt̄H mode which proceedes through the process gg/qq̄ →

tt̄H.

The production cross sections versus the mass of the Higgs Boson (mH) for these

processes at the center-of-mass energies of 8 and 13 TeV are shown in Figure 2.2.

The cross section for the major production processes for mH = 125 GeV is shown in

Table 2.2 [15].

Production cross sections (pb, mH = 125 GeV)
ggF VBF WH ZH tt̄H

7 TeV 15.32 1.222 0.5729 0.3158 0.0863
8 TeV 19.52 1.578 0.6966 0.3943 0.1302
13 TeV 43.92 3.748 1.380 0.8696 0.5085
14 TeV 49.85 4.180 1.504 0.8830 0.6113

Table 2.2: Cross sections for the major production processes assuming mH = 125
GeV

For a Higgs boson with a mass of 125 GeV, the SM predicts a mean life time

of about 1.6 × 10−22 s. The life time of Higgs boson being very small at masses

larger than a few GeV, it decays immediately into final state fermion or boson pairs.

The decay into pairs of bosons can be divided into two-, three-, and four-body final
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Figure 2.1: Feynman diagrams for the Higgs production modes accessible at the LHC
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Figure 2.3: Possible Higgs boson decays in the SM: (a) shows the leading-order decay
into fermion pairs, (b) shows the two-body decay into vector bosons, (c) shows decay
the into light quarks with QCD corrections, (d) shows the three-body decay into
photon pairs through a W±,∗ loop, (e) shows the decay into Z(∗)γ through a fermion
loop, and (f) shows the decay into gluon pairs through a top-quark loop.

state decays, while other decays into photon pairs, gluon pairs, or Z+photon proceeds

through loop vertices. Feynman diagrams for possible decays are shown in Figure 2.3.

The leading-order partial width to fermions can be written as a function of the

fermion mass [17, 18]:

Γ(H → ff̄) =
1

4π
√

2
GµNcmHm

2
fβ

3
f (2.46)

where Gµ is the Fermi constant, Nc is the color factor, which is 3 (1) for quarks
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Figure 2.4: Branching ratio for various decay modes as a function of the Higgs mass
mH . The range of the left plot has an upper bound of 200 GeV to reveal the structure
of the curves at low mH [19].

(leptons), mf is the mass of the fermion, and βf =
(

1− 4mf
mH

)1/2

is the fermion

velocity in the final state.

The branching ratio to any single mode is the ratio of the partial width to the

total width, where the total width is the sum of all possible partial widths:

B(H → XX) =
Γ(H → XX)∑
i

Γ(H → XiXi)
(2.47)

The branching fraction for various modes as a function of the Higgs mass is shown

in Figure 2.4. The values of the branching ratios for various decay modes assuming

mH = 125 are shown in Table 2.3.

Branching ratios (mH = 125 GeV)

H → WW (∗) H → γγ H → ZZ(∗) H → bb̄ H → τ+τ− H → Zγ H → gg
0.215 0.00228 0.0264 0.577 0.0632 0.00154 0.0857

Table 2.3: Branching ratios for various decay modes assuming mH = 125 GeV [19]
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2.8 Lepton flavour violating decays

Following the discovery of the Higgs Boson at LHC [20, 21], there has been con-

siderable interest in search for its exotic decay modes. The lepton flavour violating

(LFV) decays are unambiguous signatures which predict the discovery of new physics

beyond Standard Model (BSM). LFV decays of Higgs boson are absent in the SM,

but highly anticipated in a large class of new physics models.

The Yukawa Largangian describing the Y a
ij couplings between multiple Higgs fields

(ha) to a pair of fermions (f i, f j) is given by [22, 23]:

LY = −mif̄
i
Lf

i
R − Y a

ij(f̄
i
Lf

j
R)ha + h.c. (2.48)

where the index a runs over all the scalars and Y a
ij is imaginary for pseudoscalar

Higgs.

In a single Higgs theory (ha = H), partial widths, Γ, are related to the couplings

by 1:

Γ(H → `τ) =
mH

8π
(|Yτ`|2 + |Y`τ |2) (2.49)

Using mH = 125 GeV and ΓSM = 4.1 MeV [24], the branching ratio (B) is defined

as:

B(H → `τ) =
Γ(H → `τ)

Γ(H → `τ) + ΓSM

(2.50)

Non-diagonal Yukawa couplings can also induce LFV decays: τ → `γ, partial

width of which can be calculated as [23]:

Γ(τ → `γ) =
αm5

τ

64π4

(
|cL|2 + |cR|2)

)
(2.51)

1Unless explicitly mentioned otherwise, leptons (denoted by ` or `′) refer to electrons or muons
althroughout this thesis.
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where the Wilson coefficients have been calculated to one loop as:

c1loop
L ' 1

12m2
h

YττY
∗
τµ

(
− 4 + 3 log

m2
h

m2
τ

)
, c1loop

R ' 1

12m2
h

YµτYττ

(
− 4 + 3 log

m2
h

m2
τ

)
.

(2.52)

The 2-loop contributions are obtained numerically to be as:

c2loop
L = Y ∗τµ(−0.082Ytt + 0.11)

1

(125GeV)2
= 0.055Y ∗τµ

1

(125GeV)2
, (2.53)

where in the last step the top Yukawa coupling is taken as Ytt = (Ytt)SM = m̄t/v =

0.67, and the results have been normalized to mh for easier comparison. Here m̄t

denotes the top quark mass parameter in the MS renormalization scheme, m̄t '

164 GeV.

The current experimental bounds on LFV decays of the τ lepton B(τ → µγ) <

4.4× 10−8 [25] can thus be used to predict an indirect limit on the LFV decays of the

Higgs boson B(H → µτ) ' 10%, which is within the reach of experimental sensitivity

of the ATLAS experiment at the Large Hadron Collider (LHC). In this thesis, direct

searches for LFV decays H → eτ and H → µτ of the Higgs boson are presented.
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CHAPTER III

LHC & ATLAS

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is located at the European Organization for Nu-

clear Research (CERN), just outside of Geneva, on the border of France and Switzer-

land. The LHC is the world’s largest particle collider, designed to produce high energy

proton-proton and heavy ion collisions [26].

There are four primary detectors along the ring, shown in Figure 3.1: ALICE,

LHCb, ATLAS, and CMS. ALICE (A Large Ion Collider Experiment) is designed to

look at heavy ion collisions. LHCb (Large Hadron Collider beauty) is a dedicated

b-physics detector that operates at low luminosity. ATLAS (A Toroidal LHC Ap-

paratuS) and CMS (Compact Muon Solenoid) are general purpose detectors with

design goals to find new physics in proton-proton interactions, but are also capable

of reconstructing heavy ion collisions and b-quark decays.

The LHC began operation in 2010. Data with substantial luminosity profile has

been taken at the center of mass energies
√
s = 7 TeV and 8 TeV during 2011 and

2012, respectively, referred to as Run 1. The LHC had a long shutdown from 2013

until 2014, at which time it underwent upgrades aimed to increase the center of mass

energy. From 2015 to 2018, it operated at a center of mass energy of 13 TeV, referred

to as Run 2. At the end of 2018, it entered a two-year shutdown period to further
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Figure 3.1: Layout of the LHC ring showing the positions of each experiment at the
collision points as well as injection, beam dump, and beam cleaning regions(Courtesy:
Reference [27]).

upgrade the center of mass energy to 14 TeV.

The circulating proton beams in the LHC cross paths at the four experimental

interaction points where the main LHC experiments are located. The design instan-

taneous luminosity L at LHC is 1034 cm−2s−1 = 10 nb−1s−1, given as a function of

the beam parameters:

L =
N2
b nbfrev γr
4πεnβ∗

F (3.1)

where Nb is the number of particles collected together as a bunch, nb is the number

of bunches per beam, frev is the revolution frequency, γr is the relativistic Lorentz

factor of the beam, εn is the normalized transverse beam emittance (area in position-

27



momentum phase space), β∗ is the beta function at the collision point. The beta

function depends on the bunch cross section, σ, and the transverse beam emittance,

ε, β = πσ2/ε. The beams are squeezed as they approach the interaction point,

decreasing the amplitude such that β∗ is a smaller value of β than at other points.

Finally, the F is the geometric luminosity reduction factor due to the crossing angle

at the interaction point, given by:

F =

(
1 +

(
θc σz
2σ∗

))−1/2

(3.2)

where θc is the full crossing angle at the interaction point, σz is the RMS bunch

length, and σ∗ is the transverse RMS beam size at the interaction point [26].

Nominal design values for these quantities are given in the Table 3.1, which shows

the successful operations of the accelerator teams’ at the LHC during Run 2 [26, 28].

Parameter Symbol LHC Run 2 Value
LHC circumference 26, 659 m
LHC design beam energy 7 TeV
LHC beam energy in Run 2 6.5 TeV
Number of protons per bunch Nb 1.15× 1011

Number of proton bunches per beam nb 2, 808
Revolution frequency frev 11.245 kHz
Lorentz factor (design) γr 7462.69
Lorentz factor at

√
s = 13 TeV 6929.64

Normalized transverse beam emittance εn 3.75 µm
Collision point beta function β∗ 0.55 m
Full crossing angle θc 285 µrad
RMS bunch length σz 7.55× 10−2 m
Transverse RMS beam size σ∗ 16.6 µm

Peak design machine luminosity at 14 TeV L 10 nb−1s−1

Peak design machine luminosity at 13 TeV 9 nb−1s−1

Peak ATLAS recorded machine luminosity 21 nb−1s−1

Table 3.1: Nominal design values of LHC operations parameters at ATLAS for 25 ns
bunch crossing spacing. Design and ATLAS recorded values of the machine luminosity
are also given for LHC Run 2 operations.
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Figure 3.2: Delivered Luminosity versus time for 2011-2018 (p-p data only) (Courtesy:
Reference [29]).

The cumulative luminosity versus day delivered to ATLAS during stable beams

during 2011-2018 and for high energy p-p collisions is shown in Figure 3.2. The work

in this thesis was done with 36.1 fb−1 of 13 TeV of data collected with the ATLAS

detector during 2015 and 2016.

3.2 ATLAS Detector

The ATLAS detector [30, 31] is one of two general purpose detectors on the LHC

ring. ATLAS is the largest of the LHC experiments with dimensions of 44 m in length

and 25 m in height.

The layout of the detector is shown in Figure 3.3. Starting from the beam pipe and

working outward, ATLAS is comprised of an inner detector inside a superconducting

solenoid magnet for vertex and track reconstruction, a liquid argon (LAr) electromag-

netic (EM) calorimeter for EM particle energy measurement, LAr and tile hadronic

calorimeters for hadronic particle energy measurement, and a muon spectrometer for
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Figure 3.3: Layout of the ATLAS detector showing the major subdetectors (Courtesy:
Reference [32]).

the reconstruction of muon tracks.

The inner detector is surrounded by a 2 T superconducting solenoid magnet and

provides excellent tracking coverage in |η| < 2.5. The inner detector is further brack-

eted at each end by end-cap toroid magnets and the entire barrel of the detector out

through the calorimeters is enclosed in a toroid magnet system. These two toroid

systems are both constructed such that they exhibit an eight-fold azimuthal symme-

try.

The following detector coordinate directions are applied: the z axis points along

the beam axis; x and y axes define a plane perpendicular to the beam axis; φ is

the azimuthal angle around the beam axis and θ is the polar angle from the beam

axis. The positive x direction is defined as from the interaction point to the centre

of the LHC ring and the positive y direction as upwards. It is more common for

the angle in θ to be expressed in terms of pseudorapidity, η = −ln[tan( θ
2
)]. This

is a useful spatial coordinate as it approximates to a particles rapidity, 1
2

ln(E+pz
E−pz )

for light particles. The rapidity difference between two particles is Lorentz invariant

under transformations along the longitudinal axis.
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Figure 3.4: Layout of the inner detector in the barrel showing the Pixel, SCT, and
TRT detectors and their geometrical configuration (Courtesy: Reference [33]).

3.2.1 Inner Detector

The ATLAS inner detector (ID) is designed to provide accurate reconstruction

of the charged particle tracks used for the high resolution momentum measurements

and particle identification, as well as the reconstruction of the primary and secondary

vertices. As shown in Figure 3.4, the ID consists of three complementary sub-systems,

the Pixel Detector (PD), Silicon Semiconductor Tracker (SCT) and Transition Radi-

ation Tracker (TRT). The latter also provides an electron identification for 0.5 GeV

< pT < 150 GeV in the region of |η| < 2.0. All sub-systems are fully contained within

the homogeneous magnetic field of 2 T produced by the ATLAS solenoid magnet. Pa-

rameters of each subsystem along with typical resolution are listed in Table 3.2.
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System Position Resolution (µm) η coverage
Pixel detector 1 B-layer r − φ=12, z=66 ± 2.5

2 barrel layers r − φ=12, z=66 ± 1.7
3 end-cap disks (each side) r − φ=12, z=77 1.7-2.5

SCT 4 barrel layers r − φ=16, z=580 ± 1.4
9 end-cap wheels (each side) r − φ=16, z=580 1.4-2.5

TRT Axial barrel straws 170 (per straw) ± 0.7
Radial end-cap straws 170 (per straw) 0.7-2.5

Table 3.2: Parameters of the Inner Detector for each subsystem. For the resolution,
typical values are quoted [34]. The actual resolution in each detector depends on the
impact angle.

3.2.2 Calorimeter

The ATLAS calorimeter system, shown in Figure 3.5, provides excellent energy

deposition measurements for particles with coverage up to |η| < 4.9 with different

calorimetry subsystems for various physics processes. In the pseudorapidity range of

the inner detector (|η| < 2.5) the high granularity electromagnetic (EM) liquid argon

calorimeter system provides measurement of electrons and photons. The more coarse

resolution of the hadronic calorimeter systems provides measurements for jet recon-

struction and missing transverse momentum, in conjunction with the large pseudora-

pidity coverage. These calorimeter designs are both “sampling calorimeters,” where

the “active” materials that provide the signals are different from the “absorber”

materials that reduce the particle energy and cause showering. The calorimeter sub-

systems are also designed to be sufficiently thick as to contain the electromagnetic

and hadronic showers that originate inside them, and to limit punch-through to the

muon systems.

The electromagnetic calorimeter system consists of lead-liquid argon detectors

with a characteristically unique “accordion” lead absorber plate design that allows

for continuous coverage in φ with folding angles of the accordion “waves” that vary

with the radius to keep the gap constant. Liquid argon (LAr) is the active detector
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material for the EM calorimeters as it has a linear behavior, very stable response over

time, and is intrinsically radiation-hard. In the barrel region the LAr EM calorimeter

is split into symmetric half-barrels, and in the end-caps the LAr EM calorimeter

exists as two coaxial wheels, respectively covering the regions of 1.375 < |η| < 2.5

and 2.5 < |η| < 3.2.

The hadronic calorimeter system is composed of the tile calorimeters in the bar-

rel region, and the LAr Hadronic End-cap Calorimeter (HEC) and LAr Forward

Calorimeter (FCal) in the end-cap region. The tile sampling calorimeter resides out-

side the EM calorimeter system and provides coverage to |η| < 1.7 and radial coverage

from 2.28 m to 4.25 m. The tile calorimeter absorber material is steel and uses scintil-

lating tiles as the active material, which are read out using wavelength shifting fibers

into photomultiplier tubes. The HEC exists as two wheels in each end-cap behind

the end-cap EM calorimeter, extending the coverage in the end-caps to |η| < 3.2.

The copper absorber plates of the HEC are interleaved with 8.5 mm spacers of LAr

providing active material. The FCal extends coverage from 3.1 < |η| < 4.9 and is

composed of three modules in each end-cap: a copper module optimized for elec-

tromagnetic measurements, and then two made of tungsten for hadronic interaction

measurements. The modules are a metal matrix with regularly spaced longitudinal

channels consisting of tubes with a concentric rod and LAr filling the gap between

them.

Parameters of each subsystem along with typical resolution are listed in Table 3.3.

Calorimeter ECAL HCAL FCal

Energy resolution σ(E)
E

10%√
E[ GeV]

⊕ 0.7% 5%√
E[ GeV]

⊕ 3% 100%√
E[ GeV]

⊕ 10%

Table 3.3: The design energy resolution of the ECAL, HCAL (barrel and end-caps)
and the FCal [36, 37]. Here the symbol ⊕ means that the errors have been added in
quadrature.
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Figure 3.5: Layout of the calorimetry system (Courtesy: Reference [35]).

3.2.3 Muon Spectrometer

The ATLAS Muon Spectrometer measures coincident hits from particles that are

curved within the field of the toroidal magnet. The spectrometer consists of a barrel

that extends to |η| = 1.05 and two end-caps that cover the range 1.05 < |η| < 2.7

Muon momenta are measured with precision in three layers of monitored drift tubes

(MDT). Additionally an inner layer exists equipped with cathode strip chambers

(CSC), which each consist of four sensitive layers. Three doublet layers of resistive

plate chambers (RPC) covering |η| < 1.05 together with one triplet layer and two

doublet layers of thin gap chambers (TPC) covering 1.05 < |η| < 2.4 are used for

triggering and the measurement of η and φ coordinates. These detectors sit above or

below the MDT chambers as in Figure 3.6.

3.3 Trigger System

The trigger system is an essential component of any hadron collider experiment.

It is responsible for deciding whether or not to record a given beam crossing for later
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Figure 3.6: Cross section of the muon spectrometer in both barrel and end-cap [38].

study. Due to the high bunch crossing rate of 40 MHz, the interaction rate is expected

to be approximately 109 Hz at the design luminosity. It is not possible to store all

the events. For permanent storage, the rate of selected events must be reduced to

about 200 Hz. An overall rejection factor of about 107 against minimum-bias events

must be applied on the one hand, while on the other hand, excellent efficiency must

be retained for interesting physics processes with very low expected cross sections,

such as the Higgs boson decays or SUSY processes. These are the challenging tasks

for the ATLAS trigger and data-acquisition (DAQ) system [39].

In Run 2 the ATLAS detector has a two-level trigger system. The first-level trigger

(Level-1 trigger, L1) is implemented in hardware and uses a subset of the detector

information to reduce the rate of accepted events from an input rate of up to 40

MHz to maximally 100 kHz. This is followed by a software-based trigger (high-level

trigger, HLT) that reduces the rate of recorded events to 1 kHz on average. The

event reconstruction at the HLT of objects such as leptons or jets happens only to

the extent required by the executed trigger algorithms. Event selections in the HLT

are referred to simply as triggers and the collection of all triggers is called the trigger

menu.

During Run 2, the LHC delivered a peak luminosity close to L = 1.7×1034 cm−2s−1
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during most of the data-taking period, and briefly exceeded L = 2.0× 1034 cm−2s−1.

The primary triggers that comprise the standard physics trigger menu and their

measured rates are shown in Figure 3.7.
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Figure 3.7: The observed rates per trigger are reported at a luminosity of 1.7 ×
1034 cm−2s−1 and 〈µ〉 ' 50 as raw rates, including rate overlapping between trig-
gers [40].
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CHAPTER IV

ITk UPGRADE OF THE ATLAS EXPERIMENT

4.1 Introduction

During Run 2 the LHC has been operating at an instantaneous luminosity of

1034 cm−2s−1. As shown in Figure 4.1, the high luminosity upgrade of the LHC (HL-

LHC) has been approved to start from 2024 with a goal of increasing the luminosity

by a factor of 10 beyond the LHC’s design value. This requires an upgrade of the

ATLAS detector, known as the Phase II upgrade. Design of the upgraded ATLAS

detector is underway to deal with the expected increase in luminosity, which also

corresponds to an increase in the average number of interactions per bunch crossing

(〈µ〉), known as pile-up, by a factor of 10 from its present value of 20 up to 200, as

shown in Figure 4.2. Design considerations for a new ITk for the ATLAS Phase II

upgrade at HL-LHC are:

• radiation damage: to cope with 10 times higher integrated luminosity up to

3000 fb−1;

• high flux: to cope with 7 times increase in instantaneous luminosity up to

7.5× 1034 cm−2s−1;

• high granularity: to cope with 10 times higher pile-up.
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Figure 4.1: Schedule for High Luminosity LHC (HL-LHC) upgrade (Courtesy: Ref-
erence [41]).

An all silicon based new Inner Tracker (ITk) with fine granularity and increased

fiducial coverage of pseudo-rapidity (η) up to 4 units is an integral part of this Phase

II upgrade.

Benchmarking of timing studies of track reconstruction in the Inner Detector

(ID) used in Run 2 versus the new proposal of upgraded ITK are presented in this

chapter [42]. Such studies are critical to the development and optimization of a new

detector planned for the Phase II upgrade. In order to have stable results, it is not

appropriate to benchmark the CPU requirements in a shared computing environment.

These studies were performed in a standalone environment run in a single-user mode

after installing the ATLAS software in a new computing environment acquired in

2017 by the Physics Department from a generous gift by an UofL alumni, Sam Lord,

consisting of Intel Xeon Phi 1.3 GHz 64-core CPU, 116 GB RAM memory, a 200 GB

SSD disk and a 5.5 TB raid array. This study measures the track reconstruction times

in terms of HEP-SPEC06 benchmarking units as a function of increasing pile-up for

each algorithm of the tracking software.
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Figure 4.2: More primary vertices seen due to higher pile-up.

4.2 The ATLAS Inner Tracker(ITk) Layout

The ITk is an all-silicon detector consisting of a Pixel subsystem with a pseudo-

rapidity coverage of |η| < 4.0 and a Strip subsystem covering the interval |η| < 2.7.

The Pixel sub-system consists of five inner flat barrel layers and five layers of inclined

or vertical rings providing coverage in the forward region. The Strip subsystem com-

prises four outer strip module layers in the barrel region and six disks in the end-caps.

This combination is designed to have at least 9 precision measurements per track for

the full width of the expected beam spot size, which is assumed to have a Gaussian

shape with a width of 50 mm, for all charged particles with pT > 1 GeV traversing

through the detector within |η| < 4.0.

A simulated view of the new ITk layout is shown in Figure 4.3. The position of

layers in radius (R) versus distance along beam pipe (z) in the ITk layout is compared

with the Inner Detector currently being used in Run 2 (ID-Run2) in Figure 4.4. The

salient differences are:
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Figure 4.3: 3D split view of the ATLAS Phase-II Inner Tracker ITk with the Inclined
Duals detector layout (Courtesy: Reference [43]).

Figure 4.4: R vs. z layout of ITk (left) and ID-Run2 (right).
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• ID-Run2 has 3 sub-components: Pixel, Strip (SCT) and Transition Radiation

straw detector (TRT). The all-silicon based ITK will have only the first two

sub-components.

• Angular coverage of ID-Run2 is up to |η| < 2.5, whereas the new ITk will extend

the coverage up to |η| < 4.0.

• Pixel module size in ID-Run2 is 50 x 250 µm2 in the innermost layer and 50 x

400 µm2 for remaining layers, whereas the ITK currently plans to use 50 x 50

µm2.

• Readout bandwidth for ID-Run2 is about 160 Mbyte/s, whereas for ITk it is

expected to be 5 Gbyte/s.

4.3 Simulation and Track Reconstruction

ITk simulation helps to choose optimal detector layout. Numerous improvements

have been made in the description of the passive material, resulting in a more real-

istic estimate of the ITk tracking material budget. Figure 4.5 shows the simulated

locations of detector material for one quadrant of the detector, while comparisons of

the material description of all detector elements used in the simulation for ID-Run2

and ITk are shown in Figure 4.6. The difference of factor of three in the y-axis shows

the extent of the optimization of material budget in the new ITk, which is greatly

reduced to cope up with the high radiation dose.

4.3.1 Simulation samples

The production of simulated samples follows the following steps: Monte Carlo

event generation, detector simulation using Geant4, digitisation of simulated energy

deposits into the actual detector read-out data format, and event reconstruction start-

ing from the charged tracks seen in the detector. This offline software chain has been
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Figure 4.5: Location of the material for one quadrant of the ITk Layout. The Pixel
detector is shown in red, and the strip detector in blue (Courtesy: Reference [43]).

Figure 4.6: Material map of ITk (left) and ID-Run2 (right) vs. η.
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adapted for the upgrade ITk Detector, including a dedicated tuning of the track

reconstruction software.

To benchmark the CPU requirements, tt̄ events were generated using Powheg-

Box [44, 45, 46, 47, 48, 49] at 〈µ〉 = 0, 60, 140 and 200 with ITk and at 0, 20 and 60

with ID-Run2.

4.3.2 Track Reconstruction

The track reconstruction is important as input for the reconstruction of charged

particles such as muons, electrons, taus and jets. The track reconstruction is broadly

divided into four stages:

• The first step of event reconstruction in ITk is the formation of clusters from

individual channels with a hit in the Pixel and Strip detectors, respectively.

For the Pixel detector, the cluster formation starts by grouping hits in adja-

cent pixels to form clusters. Two algorithms are used to determine the cluster

position. The first algorithm (digital clustering) only uses the information that

a pixel has a hit to determine the cluster position, while the second algorithm

(analogue clustering) makes use of the analogue information capabilities of the

readout chip to further refine the precision of the cluster position, interpolating

the charge measurement of the first and last pixel hit in both directions.

• The next step after the clustering is the space point (SP) formation. Here,

the strip cluster information from both sides of a barrel stave or end-cap petal

is used to construct strip combinations, exploiting the small stereo angle to

obtain precise information. The pixel and strip space points are then used in

the seeding stage. Seeds are formed by three space points in the Pixel or Strip

detector, labelled as PPP and SSS. For each triplet combination, all space points

are required to be on a straight line in R vs. z. They form a circle in R vs. φ,
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allowing an estimate of the initial helix parameters. After applying initial pT

and impact parameter cuts, a confirmation of the seed in a 4th layer is made to

further reject fake combinations. Finally, seeds are accepted after a duplicate

removal.

• The next step is track finding. The track seeding starts with strip space point

triplet combinations in the first iteration and then makes use of the pixel in-

formation to find additional track candidates. For each accepted seed, a search

road is defined, in which a combinatorial Kalman filter is used to find one or

more track candidates.

• The last stage is ambiguity resolution stage. The aim of this stage is to reject

incomplete and duplicate tracks, resolve situations with shared clusters between

several tracks, and remove the fake tracks. This is achieved by scoring the track

candidates based on the presence or absence of hits when crossing the sensor

layers. Each track candidate considered is fitted using the Global χ2 track fit.

The procedure is repeated iteratively, attributing shared clusters to the higher

scoring track candidate, and refitting candidates that got modified, to obtain

the final set of tracks.

4.3.3 CPU Timing

The large multiplicity of tracks in Phase II tracking environment with an average

pile-up of up to 200 presents a computing challenge in terms of CPU time required

in the reconstruction sequence. Acceptance of seeds used to start the combinatorial

Kalman track finder in the third stage and ambiguity resolution in the last stage

are two of the most time consuming components in the pattern recognition. From

the very beginning of the detector optimization process, the timing performance of

each sub-algorithm has been carefully taken into account with an aim of minimiz-
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ing the combinatorial complexity in track reconstruction, and hence the total CPU

requirement.

List of the major blocks in the reconstruction sequence used for both ITk and

ID-Run2, respectively, are listed below:

• ITk: Total = Si Pre-Processing + SpacePoint + Track Finding + Ambiguity +

Vertexing + General + Non-ITk

• ID-Run2: Total = Si Pre-Processing + SpacePoint + Pattern + Ambiguity +

Back-tracking + Vertexing + General + Low-beta + Non-ID

The list of the all algorithms for these blocks for both ITk and ID-Run2 are detailed

in Tables 4.1 and 4.2 respectively.

4.3.3.1 Experimental Procedure

Reconstruction times should preferably be benchmarked in a controlled computing

setup instead of a shared-CPU environment. This study is performed in a single-user

mode in the Intel Xenon 7210 machine with 1.3 GHz, 64 core CPU, 116 GB RAM,

where a dedicated scheduler is used to run the computing jobs without external in-

terference or interruptions. The traditional way to present CPU times use a standard

HEP-Spec06 benchmarking suite. Accordingly, the reconstructed CPU times reported

here are multiplied by a HS06 factor of 3.5, which has been obtained by separately

benchmarking our cluster.

The procedure is:

• reconstruction jobs are split into 20 sets of 50 events each.

• Time taken by 1st event in each set is averaged over 5 separate jobs.

• Averaged initialization time used by the 1st event is subtracted to get total time

used by the remaining 49 events in each set.
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Detector ITk

Si Pre-Processing InDetSCT Clusterization +
InDetPixelClusterization

SP Formation InDetSiTrackerSpacePointFinder

Track Finding InDetSiSpTrackFinderSLHC

Ambiguity Solution InDetAmbiguitySolverSLHC

Primary Vertex InDetPriVxFinder

Non ITk MuonCombinedInDetCandidateAlg

InDetCaloClusterROISelector
InDetCopyAlg

InDetTrackCollectionMerger
ITk General InDetTrackParticles

InDetVxLinkSetter
InDetRecStatistics

Table 4.1: All algorithms for track reconstruction in the full detector with ITk layout.
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Detector ID-Run2

Si Pre-Processing InDetSCT Clusterization +
InDetPixelClusterization

SP Formation InDetSiTrackerSpacePointFinder

InDetSiSpTrackFinderSLHC +
Track Finding InDetSiSpTrackFinderForwardTracks +

InDetTRT Extension +
InDetTRT SeededTrackFinder

InDetAmbiguitySolver +
Ambiguity Solution InDetAmbiguitySolverForwardTracks +

InDetExtensionProcessor +
InDetTRT SeededAmbiguitySolver

InDetTRT RIO Maker +
Back-Tracking InDetTRT TrackSegmentsFinder +

InDetTRT StandaloneTrackFinder

Primary Vertex InDetPriVxFinder

Non ID MuonCombinedInDetCandidateAlg

InDetCaloClusterROISelector
InDetSegmentPRD Association
InDetTRTonly PRD Association

InDetPRD AssociationForwardTracks
InDetTrackCollectionMerger

ID General InDetTrackSlimmer
InDetTrackParticles

InDetForwardTrackParticles
InDetVxLinkSetter

InDetBCM ZeroSuppression
InDetCosmicsEventPhase

InDetRecStatistics

Table 4.2: All algorithms for track reconstruction in the full detector with ID-Run2
layout.
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• Gaussian fit is performed to the distribution of (time/event) over each of the

20 sets.

• Final result is quoted as (fitted mean ± standard deviation /
√

20).

Gaussian fit to distribution of time/event (seconds) over 20 sets in various pile-

up values for adding all individual algorithm for ITk and ID-Run2 are shown in

Figures 4.7 and 4.8, respectively.

One crucial requirement on the track reconstruction software chain is that the total

processing time per event must be minimised, to stay within the limited computing

time budget available for event reconstruction even in the presence of an average of

200 pileup collisions per event. Results of benchmarking the full Detector for ITk in

software release 20.20.12.3 for step 3 using analogue clustering with pitch size 50x50

µm2 are shown in Table 4.3, and for ID-Run2 are shown in Table 4.4.

Due to algorithmic improvements and the move to a full silicon tracker, even with

the current version of the ITk software, the CPU time taken up by track reconstruction

at 〈µ〉 = 200 is expected to be smaller than the corresponding number at 〈µ〉 = 60

for the present detector, as shown in the summary plot Figure 4.9 [42].
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for 〈µ〉 =0 (left) and 60 (right)

for 〈µ〉 = 140 (left) and 200 (right)

Figure 4.7: Reconstruction times studied from RAWtoESD output in analoge clus-
tering for ITk studies for all Algorithms.

for 〈µ〉 =20 (left) and 60 (right)

Figure 4.8: Reconstruction times studied from RAWtoESD output ID-Run2 for all
algorithms.
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Figure 4.9: The total CPU time in HS06 x seconds required to reconstruct a tt̄ event
as well as the CPU time needed for the silicon track finding and for the ambiguity
resolution steps as a function of 〈µ〉 for the ITk Layout with a 50 × 50 µm2 pixel pitch.
For comparison the corresponding performance for the current ID-Run2 detector track
reconstruction is shown for an average of 20 and 60 pileup events.
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CHAPTER V

BELLL II DETECTOR

5.1 Introduction

Modern electron-positron colliders constitute an effective tool for discovery sci-

ence, as demonstrated by the important role played by the Belle and BABAR ex-

periments in the citation of 2008 Nobel Prize in Physics. These electron-positron

annihilations experiments, popularly known as B factories, also serve as τ factories,

thanks to the large and comparable cross-sections for the production of B and τ pair

events of 1.110 ± 0.008 nb and 0.919 ± 0.003 nb, respectively, at a center-of-mass

(CM) energy of 10.58 GeV [50]. While the above two experiments recorded colli-

sions at an instantaneous luminosity of 1034 cm−2s−1 delivered by the KEKB and

PEP-II colliders, the next generation SuperKEKB collider in Japan has now been

designed to go up by almost two orders of magnitude, delivering a peak luminosity

of 8× 1035 cm−2s−1.

The Belle II experiment located at this worlds highest luminosity accelerator

started its data-taking with the full detector configuration in March 2019 as the

lone successor to the previous generation of prominent B and τ factory experiments.

With an ultimate goal of recording 50 ab−1 of data over the next few years, which

will be a factor of 50 and 100 more than Belle and BABAR, respectively, the Belle II

experiment will record the worlds largest sample of 1011 tau-pair events in a pristine
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environment and will play a significant role in moving the field forward.

Compared to its precursor experiment, the Belle II detector operates at 40 times

higher event rates, while the backgrounds rates are higher by a factor of 10 to 20 [51].

In order to maintain excellent performance of the detector, the critical issues are to

mitigate the effects of higher background levels, which lead to an increase in occu-

pancy and radiation damage, as well as higher fake hits and large pile-up noise in

the electromagnetic calorimeter, and to larger amounts from neutron induced back-

grounds hits in the muon detector. Also, hadron identification needs to be improved,

and uniform hermeticity is required at least as good as in the original Belle detector.

5.2 Belle II detector

While the new detector fits the same shell as its predecessor along with the su-

perconducting soleniod magnet and the iron return yoke, all components of the Belle

II detector are either new or considerably upgraded [51]. The complete layout of the

new and upgraded Belle II detector is shown in Figure 5.1. The design parameters of

the Belle II experiment are summarised in Table 5.1, Some critical components are

discussed below in some detail.

5.2.1 Vertex detector (VXD)

The new vertex detector comprises of two layers of the silicon Pixel Detector

(PXD) and and four layers of Silicon Vertex Detector (SVD). These six layers surround

a 2 cm diameter Berrylium beam pipe, as shown in Figure 5.2). The two layers of

PXD with 8 and 12 ladders with 40 sensors in total are placed at radii of r = 14 mm

and r = 22 mm and made up of pixelated sensors of the DEPFET type [52, 53]. The

four layers of SVD are placed at radii of r = 38 mm, 80 mm, 115 mm, and 140 mm

and are equipped with double-sided silicon microstrip sensors.

Currently Belle II is operating in the “Phase 3 commissoning period” from March
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2019 where the installation of PXD has full 8 ladders in the first layer and 2 ladders

with 20 sensors in total. Complete installation is planned during a long shutdown in

2022.

The summary table (Table 5.1) lists the sensor strip pitch sizes of the Belle II

detector. In comparison, for the Belle experiment the beam pipe was at 15 mm, the

innermost layer was at 20 mm and the outermost layer of a 4 layer vertex detector

layer was at a radius of 88 mm. Compared to the Belle vertex detector, the beam

pipe and the first two detector layers are closer to the interaction point, and the

outermost layer is at a considerably larger radius. Significant improvement in the

vertex resolution is expected with respect to Belle as a result of these updates. The

reconstruction efficiency for K0
S → π+π− decays from hits in the vertex detector is

expected to improve as well [51].

Figure 5.2: A schematic view of the Belle II vertex detector with a Be beam pipe, two
pixelated layers and four layers with silicon strip sensors (Courtesy: Reference [50]).

5.2.2 Central Drift Chamber (CDC)

A central tracking device with a large volume drift chamber with small drift cells

known as the CDC is one of the core instruments of the Belle II spectrometer. Due

to the upgrade to a much thinner particle identification device in the barrel region,

the CDC extends to a larger radius of 1130 mm in Belle II as compared to 880 mm

in Belle. The CDC has smaller drift cells than the one used in Belle in order to be
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Figure 5.3: A cosmic muon as recorded by the Belle II Central Drift Chamber (CDC).

able to operate at high event rates with increased background levels in Belle II. In

total, the CDC contains 14 336 sense wires arranged in 56 layers, either in “axial”

orientation, e.g. aligned with the solenoidal magnetic field, or in “stereo” orientation,

e.g. skewed with respect to the axial wires. By combining information from axial and

stereo layers, a full 3D helix track can be reconstructed. The gas chamber in CDC is

filled with a He-C2H6 50:50 mixture, which has an average drift velocity of 3.3 cm/µs

and a maximum drift time of about 350 ns for 17 mm cell size.

The fully constructed drift chamber has been commissioned with cosmic rays in

the Belle II detector. Figure 5.3 shows one such cosmic ray passing through the CDC.

5.2.3 Particle identification system (TOP and ARICH)

Particle Identification (PID) consists of a time-of-propagation (TOP) counter in

the barrel region [54, 55] and a proximity focusing Cherenkov ring imaging detector

with aerogel as Cherenkov radiator (ARICH) in the forward end-cap region. The

design requirements include good separation of pions and kaons up to about 4 GeV/c.

The TOP detector is comprised of 16 modules, as one shown in Figure 5.4. Each

module is composed of four parts glued together: two fused silica bars of dimensions
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Figure 5.4: One of the 16 modules of the TOP detector (Courtesy: Reference [50]).

(125×45×2) cm acting as Cherenkov radiator, a mirror located at the forward end of

the bars, and a 10 cm long prism that couples the bar with an array of micro-channel-

plate photo-multiplier tubes (MCP-PMT) [55, 56]. The TOP detector utilizes total

internal reflection of Cherenkov photons produced in a quartz radiator and measures

the position and precise arrival time of the propagated photons at the radiator ends.

The effect of the mirror is to focus parallel rays of photons into a single pixel of a

photo-sensor while the chromatically dispersed rays are detected by separate channels

instead of a single channel. For such identification to work, the particle production

time has to be known with a precision of about 50 ps, which is indeed challenging,

but has already been achieved for the time-of-flight (TOF) counter of Belle [57].

The ARICH detector uses 2 layers of tiles of aerogel for the particle to transition

through and a photon detector on the opposite side to measure the Cherenkov radi-

ation. Each layer has a different level of refractive index, given by: n1 = 1.045 and

n2 = 1.55, respectively. As shown in Figure 5.5, a hybrid avalanche photon detector

(HAPD) is used for the single photon sensitive high granularity sensor, developed

60



Figure 5.5: Photon detector plane with HAPD sensors of the ARICH (Courtesy:
Reference [50]).

jointly with Hamamatsu [58, 59]. HAPD sensors have dimensions of 73 × 73 mm2

and consists of 144 channels. The photo-electrons are accelerated over a potential

difference of 8 kV, and are detected in avalanche photodiodes.

5.2.4 Electromagnetic Calorimeter (ECL)

The electromagnetic calorimeter (ECL) [60] is a highly-segmented array of thallium-

doped caesium iodide CsI(Tl) crystals assembled in a projective geometry, as shown

in Figure 5.1. All three detector regions, barrel as well as the forward and backward

end-caps, are instrumented with a total of 8736 crystals, covering about 90% of the

solid angle in the centre-of-mass system. Performance similar to the the Belle exper-

iment is expected, where the energy resolution observed with the same calorimeter
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was σE/E = 4% at 100 MeV, 1.6% at 8 GeV, and the angular resolution was 13 mrad

(3 mrad) at low (high) energies; π0 mass resolution was 4.5 MeV/c2 [61].

5.2.5 KL- Muon Detector (KLM)

The K0
L and muon detector (KLM) at Belle was based on glass-electrode resistive

plate chambers (RPC). Since large backgrounds are expected in a high luminosity

environment, the KLM system at Belle II consists of RPC only in some parts of the

barrel. The two innermost layers and the endcaps at Belle II consist of layers of

scintillator strips with wavelength shifting fibers, read out by silicon photomultiplier

(SiPMs, Geiger mode operated APDs) as light sensors [62]. Although the high neutron

background will also cause damage to the SiPMs, and will thus increase the dark count

rate in the light sensor, such a detector system has been shown to operate reliably by

appropriately setting the discrimination threshold during irradiation tests.

5.3 Trigger System

A Belle II trigger extends the list of physics analysis probed in the previous gen-

eration B-factories to a wider range of new physics potentials, including the single

photon trigger for dark sector searches, and the two- and three- photon triggers for

axion-like particle searches.

The Belle II trigger system is composed of two levels: hardware based low level

trigger (L1) and software based high level trigger (HLT). While the nominal L1 trigger

has a latency of 5 µs, and maximum trigger output rate of 30 kHz, it is limited by

the read-in rate of the data acquisition system (DAQ). The HLT suppresses the

event rate to 15 kHz firstly with the information from the CDC track finding and

ECL reconstruction. A total of 6000 CPU cores are employed to process at the

nominal 30 kHz rate. The HLT also reconstructs the event with offline reconstruction

algorithms, thereby allowing access to full granularity event reconstruction using all
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detectors except for the PXD. Only the events passing this first step are considered

for full event reconstruction. Finally, the recorded event rate is further reduced to

10 kHz by using full reconstruction information.
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CHAPTER VI

DATA QUALITY MONITORING OF THE MUON

DETECTOR

6.1 Introduction

KLM is the largest and the outermost subdetector of Belle II [63]. Its purpose is

to detect muons(µ) and long-lived neutral kaons K0
L. It is an updated version of the

Belle KLM detector [64, 65].

6.2 Structure of the KLM Detector

The KLM consists of large-area thin planar detectors interleaved with passive

material consisting of iron plates which are 4.7 cm thick, All the active detector

elements are located outside the superconducting solenoid. The iron plates serve

as the magnetic flux return up to 1.5T for the solenoid, providing 3.9 interaction

lengths of material, beyond the 0.8 interaction lengths of the calorimeter. In the

Belle experiment, gaps in the segmented flux return of the superconducting solenoidal

magnet system, providing a central magnetic flux of 1.5 T, were populated with RPCs.

The main update of Belle II KLM over Belle KLM is the endcaps and two inner

layers of the barrel resistive plate chambers (RPCs) were replaced with scintillator-

based detectors with silicon photomultiplier readout via wavelength shifting fiber light
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Figure 6.1: Schematics of the barrel and endcap sections of the KLM detector (Cour-
tesy: Reference [66]).

collection. This is because of the relatively large deadtime of the RPCs and high levels

of anticipated backgrounds at the Belle II experiment.

KLM is divided into a barrel (BKLM) and endcaps (EKLM), as shown in Fig-

ure 6.1. The barrel is divided into forward and backward halves, eight sectors (oc-

tants) in each half, 15 layers in each sector. Layers 0 and 1 are composed of scintillator

strips, while layers 2-14 are RPCs. Endcaps are divided into four sectors (quadrants)

each, 14 (12) layers in the forward (backward) endcap.

Range of θ (degrees) Range of z (cm) BKLM or EKLM
37 < θ < 130 −180 < z < 275 BKLM

18 < θ < 47 or 122 < θ < 155 z < −180orz > 275 EKLM

Table 6.1: θ and z discrimination for the BKLM and EKLM
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Figure 6.2: Side view of the KLM detector (Courtesy: Reference [50]).
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The KLM side view is shown in the Figure 6.2. The range of theta (θ) and z

are shown in Table 6.1 for BKLM and EKLM. There are 16 6U crates with RPC

front-end electronics (FEE), located all around the detector. The scintillator readout

electronics for the barrel are located in four 9U crates on top of the detector. The

scintillator readout electronics for the endcap are located in eight 9U crates which

are mounted in short racks on top of the endcap doors.

The readout of the KLM detector starts with analog signals being digitized in the

FEE boards. The digitized data from ASIC-based readouts from the scintillators and

discriminator-based readouts from the resistive plate chambers (RPC) are merged

into Data Concentrators (DC). In the barrel (endcaps) all FEE boards of the same

sector are connected to one (two) Data Concentrators (DC). The data collection

from all sub-detectors at Belle II are handled by a Common Pipelined Platform for

Electronics Readout (COPPER), which is a versatile data acquisition (DAQ) board

equipped with various I/O cards and CPUs. Each DC is connected to (i) a High-Speed

Serial Link Boards (HSLB) on a COPPER via Belle2Links, (ii) a front-end timing

switch board (FTSW) for trigger-timing distribution (TTD) and (iii) a universal

trigger board version 3 (UT3) which generates a KLM trigger for the Global Decision

Logic (GDL) where the final online trigger decision is performed.

6.3 KLM Data Quality

In order to scrutinize the performance of the KLM detector in various parts, we

need to create data quality monitoring (DQM) plots for KLM detector. Some of the

KLM data quality plots are shown in this section.

The Figure 6.3 shows the KLM has altogther eight nodes; 4 for the BKLM and

4 for the EKLM. It also shows the 1D and 2D hits for BKLM and EKLM. The

raw data are converted to bklmDigits using sector, layer, channel, time and charge

informations. Finally, the 7 BKLM Digits are coverted to 1 BKLM 1D hits and 2 BKLM
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Figure 6.3: RawKLMs for Barrel and Endcap

1D Hits are converted to 1 BKLM 2D Hits.

The sector occupancy for BKLM and EKLM are shown in Figure 6.4. The x vs

y views of hit occupancy for the BKLM, EKLM backward and EKLM forward are

shown in Figures 6.5, 6.6 and 6.7, respectively. The Figures 6.3 to 6.7 correspond to

experiment 10 with run number 5901.
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Figure 6.4: Sector occupancy for Barrel and Endcap

6.4 Expert-level DQM webpages for KLM

The expert-level DQM webpage has been created for the following reasons:

• to scrutinize the performance of the detector in various parts without logging

in to KEKCC.
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Figure 6.5: Hit occupancy for Barrel in x vs y view

• to generate the DQM plots dynamically, so that one can change the setting of

the plots just clicking some options from inside the web-interface.

• to enable access via any computer/laptop or a mobile device for ease of porta-

bility.

I have prepared an offline library (https://dqm.belle2.org/klm/) of expert-

level DQM of the performance of both the barrel and endcap parts of the KLM

detector for all runs taken during 2019 and 2020 so far. The overhead size is quite

small, being of the order of 2 MBytes. Thus, a whole year of runs with more than

1M events can be displayed before archiving the page.

Six sequential example snapshots from a mobile device of the web-interface are

shown in Figure 6.8. Such plots are crucial to diagnose the changes in data-taking con-

ditions and check the performance of the KLM detector due to changes in threshold

settings, readout calibration and trigger settings. The DQM plots have been catego-

rized in different areas to help experts look into the specific areas if any development

is needed and also prepare summary pdfs for each run. I have been regularly updating
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Figure 6.6: Hit occupancy for Endcap backward in x vs y view
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Figure 6.7: Hit occupancy for Endcap forward in x vs y view
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the reference set of histograms to act as a baseline for comparison with newer runs

in the same data-taking period. Recently, I also updated the offline DQM webpage

with the diagnostic plots from recoverable unmarked runs during 2020 data-taking

period as a posterior check of KLM operations.
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Figure 6.8: Expert-level DQM webpages for KLM.
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CHAPTER VII

MODELLING OF τ DECAYS AT THE BELLE II

EXPERIMENT

7.1 τ decays

The τ lepton is an elementary particle. It is the heavier cousin of the electron

with the same negative charge and spin of 1
2
. The decays of the τ lepton occurs

through the weak interaction. The τ can decay into leptons (τ− → `−ντ ν̄`) as well as

hadrons (τ− → h−ντ )
1 being the only lepton that can decay into hadrons. Taking

into account the color charge, the naive expectation for branching fraction of τ into

the electron or the muon decay channel is 20%, while that of the hadronic decay

mode accompanied predominantely by charged and neutral pions, and sometimes by

kaons, is 60%. Taking into account QED and QCD corrections, these branching ratios

are somewhat modified, as listed in Table 7.1. These are the latest results from the

PDG2020 version of a global fit to all available τ branching fraction measurements,

subject to the unitarity constraint, performed by the Particle Data Group [67]. In

some cases, the coefficient for each decay as in the last column of the Table 7.1 is not

equal to unity, necessary to avoid double counting of similar final states appearing

in decay modes containing or excluding hadronic resonances. Modes containing two

1Charge conjugate modes are implied throughout.
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long-lived neutral kaons K0
L are assumed to contribute as much as modes containing

two short-lived neutral kaons K0
S, as required by isospin symmetry. The sum of

strange decay modes containing a kaon is about 3%, while the remaining part of

the hadronic decays proceed through non-strange decays. The τ decay can also be

classified as 1-prong and 3-prong decays depending on the number of tracks from

charged decay products. The 1-prong decays sum up to about 85%, while the 3-

prong decays are about 15% of all the τ decays. A small fraction of decays contains

5 charged tracks. Seven or higher prong τ decays have not been observed yet.

Decay mode fit result (%) coefficient

µ−ν̄µντ 17.3937 ± 0.0384 1.0000

e−ν̄eντ 17.8175 ± 0.0399 1.0000

π−ντ 10.8164 ± 0.0512 1.0000

K−ντ 0.6964 ± 0.0096 1.0000

π−π0ντ 25.4941 ± 0.0893 1.0000

K−π0ντ 0.4328 ± 0.0148 1.0000

π−2π0ντ (ex.K
0) 9.2595 ± 0.0964 1.0021

K−2π0ντ (ex.K
0) 0.0647 ± 0.0218 1.0000

π−3π0ντ (ex.K
0) 1.0429 ± 0.0707 1.0000

K−3π0ντ (ex.K
0, η) 0.0478 ± 0.0212 1.0000

h−4π0ντ (ex.K
0, η) 0.1118 ± 0.0391 1.0000

π−K̄0ντ 0.8384 ± 0.0138 1.0000

K−K0ντ 0.1486 ± 0.0034 1.0000

π−K̄0π0ντ 0.3817 ± 0.0129 1.0000

K−π0K0ντ 0.1500 ± 0.0070 1.0000

π−K̄02π0ντ (ex.K
0) 0.0263 ± 0.0226 1.0000

π−K0
SK

0
Sντ 0.0235 ± 0.0006 2.0000

π−K0
SK

0
Lντ 0.1081 ± 0.0241 1.0000
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Decay mode fit result (%) coefficient

π−π0K0
SK

0
Sντ 0.0018 ± 0.0002 2.0000

π−π0K0
SK

0
Lντ 0.0325 ± 0.0119 1.0000

K̄0h−h−h+ντ 0.0247 ± 0.0199 1.0000

π−π−π+ντ (ex.K
0, ω) 8.9868 ± 0.0513 1.0021

π−π−π+π0ντ (ex.K
0, ω) 2.7404 ± 0.0710 1.0000

h−h−h+2π0ντ (ex.K
0, ω, η) 0.0981 ± 0.0356 1.0000

π−K−K+ντ 0.1435 ± 0.0027 1.0000

π−K−K+π0ντ 0.0061 ± 0.0018 1.0000

π−π0ηντ 0.1389 ± 0.0072 1.0000

K−ηντ 0.0155 ± 0.0008 1.0000

K−π0ηντ 0.0048 ± 0.0012 1.0000

π−K̄0ηντ 0.0094 ± 0.0015 1.0000

π−π+π−ηντ (ex.K
0) 0.0220 ± 0.0013 1.0000

K−ωντ 0.0410 ± 0.0092 1.0000

h−π0ωντ 0.4085 ± 0.0419 1.0000

K−φντ 0.0044 ± 0.0016 0.8320

π−ωντ 1.9494 ± 0.0645 1.0000

K−π−π+ντ (ex.K
0, ω) 0.2927 ± 0.0068 1.0000

K−π−π+π0ντ (ex.K
0, ω, η) 0.0394 ± 0.0142 1.0000

π−2π0ωντ (ex.K
0) 0.0072 ± 0.0016 1.0000

2π−π+3π0ντ (ex.K
0, η, ω, f1) 0.0014 ± 0.0027 1.0000

3π−2π+ντ (ex.K
0, ω, f1) 0.0775 ± 0.0030 1.0000

K−2π−2π+ντ (ex.K
0) 0.0001 ± 0.0001 1.0000

2π−π+ωντ (ex.K
0) 0.0084 ± 0.0006 1.0000

3π−2π+π0ντ (ex.K
0, η, ω, f1) 0.0038 ± 0.0009 1.0000

K−2π−2π+π0ντ (ex.K
0) 0.0001 ± 0.0001 1.0000
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Decay mode fit result (%) coefficient

π−f1ντ (f1 → 2π−2π+) 0.0052 ± 0.0004 1.0000

π−2π0ηντ 0.0195 ± 0.0038 1.0000

Table 7.1: τ branching fractions from PDG2020 version [67].

7.2 TAUOLA-BBB Monte Carlo

In the current version of Belle II software (release-04-02-08), e−e+ → τ−τ+

events are generated using KKMC [68] and subsequent τ decays are handled by TAUOLA [69]

and PYTHIA [70]. Here update of the TAUOLA Monte Carlo to the TAUOLA-BBB ver-

sion [71] in the Belle II software is presented [72]. This version allows users to choose

between different parameterizations of the underlying current and pre-sample the

available phase space with higher precision necessary avoid soft and collinear diver-

gences in the calculation of invariant mass of e−e+ pairs [73]. Belle II initialization

of the TAUOLA-BBB version to the PDG2020 version of τ branching fractions [67] for 92

τ− decay modes and their branching fractions (BF) are listed in Table 7.2.

Decay mode TauBBMode BF

τ− → e−ν̄eντ 1 0.178175 ± 0.000399

τ− → e−e−e+ν̄eντ 5 0.000028 ± 0.000015

τ− → µ−ν̄µντ 2 0.173937 ± 0.000384

τ− → π−ντ 303 0.108164 ± 0.000512

τ− → ρ−(→ π−γ)ντ 342 0.000115 ± 0.000001

τ− → a−1 (→ π−γ)ντ 341 0.000238 ± 0.000002

τ− → K−ντ 304 0.006964 ± 0.000096

τ− → π−π0ντ 163 0.254941 ± 0.000893

τ− → π−ω(→ π0γ)ντ 110 0.001789 ± 0.005914
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Decay mode TauBBMode BF

τ− → K−π0ντ 165 0.004328 ± 0.000148

τ− → π−2π0ντ 111 0.092595 ± 0.000964

τ− → π−π0ω(→ π0γ)ντ 132 0.000374 ± 0.000038

τ− → K−2π0ντ 106 0.000647 ± 0.000218

τ− → π−3π0ντ 4 0.010429 ± 0.000707

τ− → K−3π0ντ 9 0.000478 ± 0.000212

τ− → π−4π0ντ 67 0.001118 ± 0.000391

τ− → π−K0
Sντ 226 0.004192 ± 0.000069

τ− → π−K0
Lντ 227 0.004192 ± 0.000069

τ− → K−K0
Sντ 228 0.000743 ± 0.000017

τ− → K−K0
Lντ 229 0.000743 ± 0.000017

τ− → π−K0
Sπ

0ντ 126 0.001909 ± 0.000065

τ− → π−K0
Lπ

0ντ 127 0.001909 ± 0.000065

τ− → K−π0K0
Sντ 124 0.000750 ± 0.000035

τ− → K−π0K0
Lντ 125 0.000750 ± 0.000035

τ− → π−2π0K0
Sντ 30 0.000131 ± 0.000113

τ− → π−2π0K0
Lντ 31 0.000131 ± 0.000113

τ− → π−K0
SK

0
Sντ 121 0.000235 ± 0.000006

τ− → π−K0
LK

0
Lντ 122 0.000235 ± 0.000006

τ− → π−K0
SK

0
Lντ 123 0.001081 ± 0.000241

τ− → π−π0K0
SK

0
Sντ 34 0.000018 ± 0.000002

τ− → π−π0K0
LK

0
Lντ 35 0.000018 ± 0.000002

τ− → π−π0K0
SK

0
Lντ 36 0.000325 ± 0.000119

τ− → π−π0η(→ γγ)ντ 133 0.000547 ± 0.000028

τ− → π−π0η(→ π0π0π0)ντ 134 0.000454 ± 0.000024
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Decay mode TauBBMode BF

τ− → π−π0η(→ π−π+π0)ντ 135 0.000318 ± 0.000017

τ− → π−π0η(→ π−π+γ)ντ 136 0.000069 ± 0.000004

τ− → K−η(→ γγ)ντ 242 0.000061 ± 0.000003

τ− → K−η(→ π0π0π0)ντ 243 0.000050 ± 0.000003

τ− → K−η(→ π−π+π0)ντ 244 0.000036 ± 0.000002

τ− → K−η(→ π−π+γ)ντ 245 0.000008 ± 0.000001

τ− → K−π0η(→ γγ)ντ 137 0.000019 ± 0.000005

τ− → K−π0η(→ π0π0π0)ντ 138 0.000016 ± 0.000004

τ− → K−π0η(→ π−π+π0)ντ 139 0.000011 ± 0.000003

τ− → K−π0η(→ π−π+γ)ντ 140 0.000002 ± 0.000001

τ− → π−K0
Sη(→ γγ)ντ 141 0.000019 ± 0.000003

τ− → π−K0
Sη(→ π0π0π0)ντ 142 0.000015 ± 0.000003

τ− → π−K0
Sη(→ π−π+π0)ντ 143 0.000011 ± 0.000002

τ− → π−K0
Sη(→ π−π+γ)ντ 144 0.000002 ± 0.000001

τ− → π−K0
Lη(→ γγ)ντ 145 0.000019 ± 0.000003

τ− → π−K0
Lη(→ π0π0π0)ντ 146 0.000015 ± 0.000003

τ− → π−K0
Lη(→ π−π+π0)ντ 147 0.000011 ± 0.000002

τ− → π−K0
Lη(→ π−π+γ)ντ 148 0.000002 ± 0.000001

τ− → 2π−π+ντ 112 0.089868 ± 0.000513

τ− → π−ω(→ π−π+)ντ 237 0.000298 ± 0.000010

τ− → π−ω(→ π−π+π0)ντ 3 0.044812 ± 0.000936

τ− → π−π0ω(→ π−π+)ντ 131 0.000063 ± 0.000006

τ− → π−π0ω(→ π−π+π0)ντ 66 0.004629 ± 0.000532

τ− → π−K−K+ντ 103 0.001435 ± 0.000027

τ− → π−K−K+π0ντ 23 0.000061 ± 0.000018
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Decay mode TauBBMode BF

τ− → 2π−π+K0
Sντ 32 0.000123 ± 0.000099

τ− → 2π−π+K0
Lντ 33 0.000123 ± 0.000099

τ− → 2π−π+η(→ γγ)ντ 41 0.000037 ± 0.000006

τ− → 2π−π+η(→ π0π0π0)ντ 42 0.000031 ± 0.000005

τ− → 2π−π+η(→ π−π+π0)ντ 43 0.000022 ± 0.000003

τ− → 2π−π+η(→ π−π+γ)ντ 44 0.000005 ± 0.000001

τ− → 2π−π+ω(→ π−π+π0)ντ 45 0.000075 ± 0.000005

τ− → 2π−π+ω(→ π−π+)ντ 46 0.000001 ± 0.000001

τ− → 2π−π+ω(→ π0γ)ντ 47 0.000008 ± 0.000001

τ− → K−ω(→ π−π+π0)ντ 250 0.000366 ± 0.000082

τ− → K−ω(→ π−π+)ντ 251 0.000006 ± 0.000001

τ− → K−ω(→ π0γ)ντ 252 0.000038 ± 0.000008

τ− → K−φ(→ K−K+)ντ 230 0.000022 ± 0.000013

τ− → K−φ(→ K0
SK

0
L)ντ 231 0.000015 ± 0.000013

τ− → K−π−π+ντ 107 0.002927 ± 0.000068

τ− → K−π−π+π0ντ 13 0.000394 ± 0.000142

τ− → π−2π0ω(→ π−π+π0)ντ 48 0.000064 ± 0.000014

τ− → π−2π0ω(→ π−π+)ντ 49 0.000001 ± 0.000001

τ− → π−2π0ω(→ π0γ)ντ 50 0.000007 ± 0.000001

τ− → 2π−π+3π0ντ 85 0.000014 ± 0.000027

τ− → 3π−2π+ντ 68 0.000775 ± 0.000030

τ− → K−2π−2π+ντ 69 0.000001 ± 0.000001

τ− → 3π−2π+π0ντ 84 0.000038 ± 0.000009

τ− → K−2π−2π+π0ντ 89 0.000001 ± 0.000001

τ− → π−f1(→ 2π−2π+)ντ 233 0.000052 ± 0.000004
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Decay mode TauBBMode BF

τ− → π−f1(→ π−π+η(→ γγ))ντ 253 0.000050 ± 0.000003

τ− → π−f1(→ π−π+η(→ 3π0))ντ 254 0.000041 ± 0.000003

τ− → π−f1(→ π−π+η(→ π−π+π0))ντ 255 0.000029 ± 0.000002

τ− → π−f1(→ π−π+η(→ π−π+γ))ντ 256 0.000006 ± 0.000001

τ− → π−2π0η(→ γγ)ντ 37 0.000077 ± 0.000015

τ− → π−2π0η(→ π0π0π0)ντ 38 0.000064 ± 0.000012

τ− → π−2π0η(→ π−π+π0)ντ 39 0.000044 ± 0.000009

τ− → π−2π0η(→ π−π+γ)ντ 40 0.000010 ± 0.000002

Table 7.2: List of 92 initialized τ− decay modes with their BF.

7.3 Modelling of visible mass in τ decays

Validation of the modeling of visible mass mvis distribution for 92 τ− decays whose

branching fractions add up to unity are presented in Figures 7.1 through 7.92 [72].

They are obtained by generating 92 different samples of 10000 events with JAK1 and

JAK2 parameters set to the TauBBMode value listed in Table 7.2.

Figure 7.1: mvis for τ− → e−ν̄eντ Figure 7.2: mvis for τ− → e−e−e+ν̄eντ
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Figure 7.3: mvis for τ− → µ−ν̄µντ Figure 7.4: mvis for τ− → π−ντ

Figure 7.5: mvis for τ− → ρ−(→ π−γ)ντ Figure 7.6: mvis for τ− → a−1 (→ π−γ)ντ

Figure 7.7: mvis for τ− → K−ντ Figure 7.8: mvis for τ− → π−π0ντ
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Figure 7.9: mvis for τ− → π−ω(→
π0γ)ντ

Figure 7.10: mvis for τ− → K−π0ντ

Figure 7.11: mvis for τ− → π−2π0ντ Figure 7.12: mvis for τ− → π−π0ω(→
π0γ)ντ

Figure 7.13: mvis for τ− → K−2π0ντ Figure 7.14: mvis for τ− → π−3π0ντ

84



Figure 7.15: mvis for τ− → K−3π0ντ Figure 7.16: mvis for τ− → π−4π0ντ

Figure 7.17: mvis for τ− → π−K0
Sντ Figure 7.18: mvis for τ− → π−K0

Lντ

Figure 7.19: mvis for τ− → K−K0
Sντ Figure 7.20: mvis for τ− → K−K0

Lντ
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Figure 7.21: mvis for τ− → π−K0
Sπ

0ντ Figure 7.22: mvis for τ− → π−K0
Lπ

0ντ

Figure 7.23: mvis for τ− → K−π0K0
Sντ Figure 7.24: mvis for τ− → K−π0K0

Lντ

Figure 7.25: mvis for τ− → π−2π0K0
Sντ Figure 7.26: mvis for τ− → π−2π0K0

Lντ
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Figure 7.27: mvis for τ− → π−K0
SK

0
Sντ Figure 7.28: mvis for τ− → π−K0

LK
0
Lντ

Figure 7.29: mvis for τ− → π−K0
SK

0
Lντ Figure 7.30: mvis for τ− →

π−π0K0
SK

0
Sντ

Figure 7.31: mvis for τ− →
π−π0K0

LK
0
Lντ

Figure 7.32: mvis for τ− →
π−π0K0

SK
0
Lντ
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Figure 7.33: mvis for τ− → π−π0η(→
γγ)ντ

Figure 7.34: mvis for τ− → π−π0η(→
π0π0π0)ντ

Figure 7.35: mvis for τ− → π−π0η(→
π+π−π0)ντ

Figure 7.36: mvis for τ− → π−π0η(→
π+π−γ)ντ

Figure 7.37: mvis for τ− → K−η(→
γγ)ντ

Figure 7.38: mvis for τ− → K−η(→
π0π0π0)ντ

88



Figure 7.39: mvis for τ− → K−η(→
π+π−π0)ντ

Figure 7.40: mvis for τ− → K−η(→
π+π−γ)ντ

Figure 7.41: mvis for τ− → K−π0η(→
γγ)ντ

Figure 7.42: mvis for τ− → K−π0η(→
π0π0π0)ντ

Figure 7.43: mvis for τ− → K−π0η(→
π+π−π0)ντ

Figure 7.44: mvis for τ− → K−π0η(→
π+π−γ)ντ
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Figure 7.45: mvis for τ− → π−K0
Sη(→

γγ)ντ

Figure 7.46: mvis for τ− → π−K0
Sη(→

π0π0π0)ντ

Figure 7.47: mvis for τ− → π−K0
Sη(→

π+π−π0)ντ

Figure 7.48: mvis for τ− → π−K0
Sη(→

π+π−γ)ντ

Figure 7.49: mvis for τ− → π−K0
Lη(→

γγ)ντ

Figure 7.50: mvis for τ− → π−K0
Lη(→

π0π0π0)ντ
90



Figure 7.51: mvis for τ− → π−K0
Lη(→

π+π−π0)ντ

Figure 7.52: mvis for τ− → π−K0
Lη(→

π+π−γ)ντ

Figure 7.53: mvis for τ− → 2π−π+ντ Figure 7.54: mvis for τ− → π−ω(→
π+π−)ντ

Figure 7.55: mvis for τ− → 2π−π+π0ντ Figure 7.56: mvis for τ− → π−π0ω(→
π+π−)ντ
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Figure 7.57: mvis for τ− → 2π−π+2π0ντ Figure 7.58: mvis for τ− → π−K−K+ντ

Figure 7.59: mvis for τ− →
π−K−K+π0ντ

Figure 7.60: mvis for τ− →
π−π+π−K0

Sντ

Figure 7.61: mvis for τ− →
π−π+π−K0

Lντ

Figure 7.62: mvis for τ− → 2π−π+η(→
γγ)ντ
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Figure 7.63: mvis for τ− → 2π−π+η(→
π0π0π0)ντ

Figure 7.64: mvis for τ− → 2π−π+η(→
π+π−π0)ντ

Figure 7.65: mvis for τ− → 2π−π+η(→
π+π−γ)ντ

Figure 7.66: mvis for τ− → 2π−π+ω(→
π+π−π0)ντ

Figure 7.67: mvis for τ− → 2π−π+ω(→
π+π−)ντ

Figure 7.68: mvis for τ− → 2π−π+ω(→
π0γ)ντ
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Figure 7.69: mvis for τ− → K−ω(→
π+π−π0)ντ

Figure 7.70: mvis for τ− → K−ω(→
π+π−)ντ

Figure 7.71: mvis for τ− → K−ω(→
π0γ)ντ

Figure 7.72: mvis for τ− → K−φ(→
K+K−)ντ

Figure 7.73: mvis for τ− → K−φ(→
K0
SK

0
L)ντ

Figure 7.74: mvis for τ− → K−π−π+ντ
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Figure 7.75: mvis for τ− →
K−π−π+π0ντ

Figure 7.76: mvis for τ− → π−2π0ω(→
π+π−π0)ντ

Figure 7.77: mvis for τ− → π−2π0ω(→
π+π−)ντ

Figure 7.78: mvis for τ− → π−2π0ω(→
π0γ)ντ

Figure 7.79: mvis for τ− → 2π−π+3π0ντ Figure 7.80: mvis for τ− → 3π−2π+ντ
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Figure 7.81: mvis for τ− →
K−2π−2π+ντ

Figure 7.82: mvis for τ− → 3π−2π+π0ντ

Figure 7.83: mvis for τ− →
K−2π−2π+π0ντ

Figure 7.84: mvis for τ− → π−f1(→
2π−2π+)ντ

Figure 7.85: mvis for τ− → π−f1(→
π−π+η)ντ , where η → γγ

Figure 7.86: mvis for τ− → π−f1(→
π−π+η)ντ , where η → 3π0
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Figure 7.87: mvis for τ− → π−f1(→
π−π+η)ντ , where η → π−π+π0

Figure 7.88: mvis for τ− → π−f1(→
π−π+η)ντ , where η → π−π+γ

Figure 7.89: mvis for τ− → π−2π0ηντ ,
where η → γγ

Figure 7.90: mvis for τ− → π−2π0ηντ ,
where η → 3π0

Figure 7.91: mvis for τ− → π−2π0ηντ ,
where η → π−π+π0

Figure 7.92: mvis for τ− → π−2π0ηντ ,
where η → π−π+γ
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CHAPTER VIII

SEARCHES FOR LEPTON-FLAVOR-VIOLATING

DECAYS OF THE HIGGS BOSON WITH THE ATLAS

EXPERIMENT

8.1 Introduction

Although indirect theoretical predictions on the LFV decays of the Higgs boson

are B(H → `τ) ' 10% [22, 23], direct searches at the LHC impose much stricter

limits. Using Run 1 data collected at the centre-of-mass energy
√
s = 8 TeV corre-

sponding to an integrated luminosity of 20.3 fb−1, ATLAS searches [74] put a limit of

1.43% (1.04%) on the H → µτ (H → eτ) branching fraction with a 95% confidence

level (CL). With a similar dataset at Run 1, the CMS collaboration has observed

a 2.4σ excess of events in their search for the decay H → µτ [75]. Their best fit

value for BR(H → µτ) was found to be (0.9 ± 0.4)%, and their observed limit was

BR(H → µτ) < 1.57%. The observed 95% CL limit on BR(H → eτ) is 0.69%. The

CMS Collaboration has recently provided 95% CL upper limits on these branching

ratios of 0.61% and 0.25%, respectively, using data collected at
√
s = 13 TeV, with

an integrated luminosity of 35.9 fb−1 [76].

In this thesis, searches for LFV decays H → µτ and H → eτ of the Higgs boson at

the LHC are presented. Studies are based on data recorded with the ATLAS detector
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Figure 8.1: Final states in search for LFV decays H → µτ .

in 2015 and 2016 from pp collision at
√
s = 13 TeV. The dataset corresponds to an

integrated luminosity of 36.1 fb−1.

The searches presented here involve both leptonic and hadronic decays of τ -

leptons, denoted τlep and τhad respectively, as illustrated for H → µτ in Figure 8.1.

The dilepton final state `τ`′ only considers pairs of different-flavour leptons. Same-

flavour lepton pairs are not considered due to the large lepton pair-production from

decays of the Z boson known as the Drell-Yan background. Thus, two channels are

considered for each of the two searches: eτµ and eτhad for the H → eτ search, µτe and

µτhad for the H → µτ search.

Potential overlap between the H → eτ and H → µτ searches are designed to be

negligible by construction. The two searches are very similar, allowing the analyses

to be almost identical. There are however some key differences in the composition

of the backgrounds. Z/γ∗→ττ is one of the main backgrounds for both, followed

by top-quark production in the `τ`′ channel and by the fake-τ backgrounds in the

`τhad channel. The analysis was thoroughly reviewed by the collaboration [77], before

proceeding to the unblinding of the phase space of the signal region with highest

signal expectation. The main results are based on a Multi-Variate Analysis (MVA).

A cut-based analysis (CBA) cross-check is also performed.

Data and Monte Carlo samples are discussed in Section 8.2, followed by a discus-

sion on object reconstruction in Section 8.3. Event selection is described in Section 8.4
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and background modelling is discussed in Section 8.5. More details of the analysis,

particularly the background modelling are presented for the `τhad channels, as it one of

my primary contributions. Systematic uncertainities and pre-fit results appear in Sec-

tion 8.6. Statistical fit, final results and conclusions are presented in Sections 8.7, 8.8

and 8.9 respectively.

8.2 Data Samples and Monte Carlo Simulation

The data used in this analysis were recorded during Run 2 in proton-proton col-

lisions at the LHC where proton bunches collided every 25 ns at
√
s = 13 TeV. A

combination of several triggers for single leptons and hadronically decaying τ -lepton

were used to record the data for this analysis, depending on the analysis channel.

After data quality requirements, the sample used for this measurement consist of 3.2

fb−1 of data recorded in 2015, with an average of 14 interactions per bunch cross-

ing, and 32.9 fb−1 recorded in 2016, with an average of 25 interactions per bunch

crossing 1.

8.2.1 Simulation samples

Samples of Monte Carlo (MC) simulated events are used to optimize the event se-

lection, and to model the signal and several of the background processes. The samples

were produced with the ATLAS simulation infrastructure [78] using the full detector

simulation performed by the Geant4 [79] toolkit. The Higgs boson mass was set to

mH = 125 GeV [80]. The four leading Higgs boson production mechanisms are con-

sidered: the gluon–gluon fusion (ggF), vector-boson fusion (VBF) and two associated

production modes (WH, ZH), while the others having negligible contributions are

1The good run lists used are data15_13TeV.periodAllYear_DetStatus-v79-repro20-02_

DQDefects-00-02-02_PHYS_StandardGRL_All_Good_25ns.xml for 2015 data and data16_13TeV.

periodAllYear_DetStatus-v88-pro20-21_DQDefects-00-02-04_PHYS_StandardGRL_All_Good_

25ns for 2016 data.
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ignored. The cross-sections of all Higgs boson production processes were normalized

to the SM predictions [81]. The LFV Higgs boson decays as well as the H → ττ

and H → WW background decays were modelled with Pythia 8 [82]. Other back-

ground processes involve electroweak production of W/Z bosons via VBF, Drell–Yan

production of W/Z in association with jet(s) as well as diboson, single top-quark and

top-quark pair (tt̄) production. The MC generators used for the SM H → ττ cross-

section measurement [83] were also employed. The generators and parton shower

models used to simulate different processes are summarized in Table 8.1.
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8.3 Object Reconstruction

The correct identification of H → `τ events requires reconstruction of most physics

objects (electrons, muons, τ -leptons, jets) and the missing transverse momentum

~Emiss
T . In order to remove ambiguities in the object reconstruction, an overlap removal

(OLR) procedure is applied between nearby objects based on ∆R and/or shared

reconstructed tracks [83].

8.3.1 Electrons

Electron reconstruction begins with clustered energy deposits in the electromag-

netic calorimeter that are matched to tracks in the inner detector. Electron candi-

dates are required to pass a “loose” likelihood-based identification selection point,

have pT > 15 GeV and to be in the fiducial volume of the detector, |η| < 2.47. The

transition region between the barrel and end-cap calorimeters (1.37 < |η| < 1.52)

is excluded. After the overlap removal is performed, a medium identification and

gradient isolation criteria are used for the electrons in this analysis, corresponding to

an efficiency of 87% at pT = 20 GeV [109].

8.3.2 Muons

Muon candidates are identified by tracks reconstructed in the muon spectrometer

and matched to tracks reconstructed in the inner detector. Loose identification [110],

pT > 10 GeV and |η| < 2.5 requirements are applied. Medium identification (effi-

ciency of 96.1% for muons with pT > 20 GeV) [110] is imposed for the baseline muon

selection. Similarly to electron definition, a loose muon identification is used for the

overlap removal, but it is later tightened to medium identification and gradient iso-

lation in the analysis selection. The gradient working point is used, featuring an

efficiency of 90% (99%) obtained for leptons with pT > 25 GeV (60 GeV) originating
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from the Z → `` process [109, 110].

8.3.3 Jets

Jets are reconstructed using the anti-kt algorithm [111] as implemented by the

FastJet [112] package. The algorithm is applied to topological clusters of calorimeter

cells [113] with a radius parameter R = 0.4. Only jets with pT > 20 GeV and |η| < 4.5

are considered. Jets from other pp interactions in the same and neighbouring bunch

crossings (pile-up) are suppressed using jet vertex tagger (JVT) algorithms [114, 115].

Jets containing b-hadrons (b-jets) are identified by the MV2c20 algorithm [116, 117]

in the central region (|η| < 2.4). A working point corresponding to 85% average

efficiency determined for b-jets in tt̄ simulated events is chosen. Rejection factors are

2.8 and 28 against c-jets and light-flavour jets respectively.

8.3.4 τ decays

Leptonic τ -decays are reconstructed as electrons or muons. The reconstruction

of the object formed by the visible products of the τhad decay (τhad-vis ) begins from

jets reconstructed by the anti-kt jet algorithm with a radius parameter R = 0.4.

Information from the inner detector tracks associated with the energy deposits in

the calorimeter is incorporated in the reconstruction. Only τhad-vis candidates with

pT > 20 GeV and |η| < 2.5 are considered.2 One or three associated tracks with an

absolute total charge |q| = 1 are required. An identification algorithm [118, 119] based

on boosted decision trees (BDT) [120, 121, 122] is used to reject τhad-vis candidates

arising from misidentification of jets or from decays of hadrons with b- or c-quark

content. Unless otherwise indicated, a tight identification (ID) working point is used

for the τhad-vis , corresponding to an efficiency of 60% (45%) for 1-prong (3-prong)

candidates. Jets corresponding to identified τhad-vis candidates are removed from the

2The transition region in η is excluded, similar to electrons.
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jet collection. The τhad-vis candidates with one track overlapping with an electron

candidate with high ID score, as determined by a multivariate (MVA) approach, are

rejected.

8.3.5 Missing transverse energy

The missing transverse energy ( ~Emiss
T ) definition used in this analysis is an object-

based definition [123]. It is computed using the fully calibrated and reconstructed

physics objects as described above. The SoftTerm of the ~Emiss
T is computed using the

TrackSoftTerm (TST) algorithm as it is the default for Run 2 analysis.

8.3.6 Overlap removal

Geometric overlap between objects passing the above selection creates ambiguity

in the identity of the objects. Thus an overlap removal is applied between the objects

whose ∆R (defined as: ∆R ≡
√

∆φ2 + ∆η2) is less than a certain threshold. When

two objects do not match this requirement, the one that is kept is following this order:

muons, electron, taus and jets. This strategy follows the general recommendations

for overlap removal and the recommendations of the TauCP group.

The ∆R threshold is not the same for the different combinations and hence, is defined

below:

• Jets within a ∆R = 0.2 cone of the leading pT τhad are excluded.

• Jets within a ∆R = 0.2 cone of an electron or muon are excluded.

• τhad within a ∆R = 0.2 cone of electrons or muons are excluded.

• Electrons within a ∆R = 0.2 cone of muons are excluded.

The muon definition for the overlap removal are chosen more loose than the object

definitions given above. Here, muons are required to pass the “loose” identification
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and a minimum pT of 2 GeV. The details of the removal of hadronic taus overlapping

with electrons is described above in the tau object definition.

8.3.7 `τ mass reconstruction

A schematic description of the process H → µτ is shown in Figure 8.2.

Figure 8.2: Schematic description of a signal process. In this example a leptonic
decay of the τ is considered.

In the Higgs rest frame, the τ and the light lepton are produced back to back and

the τ decay products are boosted along the same direction of the τ .

The invariant mass of the Higgs boson reconstructed under the H → `τ decay

hypothesis exhibits the highest signal-to-background separation power and it helps

to distinguish LFV signal from H → ττ and H → WW backgrounds.

Two mass reconstruction methods are considered in the analysis:

• The so-called collinear approximation assumes that the direction of the τ is

estimated from the direction of its visible decay products, and the momentum

of the τ is estimated starting from its visible decay product and the ~Emiss
T of

the event:

`τ`′ : ~pT
τ = ~pT

`′ + ~ET

miss
(8.1)

`τhad : ~pT
τ = ~pT

τhad-vis + ~ET

miss
(8.2)
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The collinear approximation allows to calculate the invariant mass of a system,

called collinear mass (mcoll). The rapidity (y) and transverse mass (mT ) of a

particle are given by:

y =
1

2
ln

(
E + pz
E − pz

)
, mT =

√
m2 + p2

T , (8.3)

Accordingly, the four-momentum, p = (E, px, py, pz) can be expressed as:

p = (mT cosh(y), pT cos(φ), pT sin(φ), mT sinh(y)) . (8.4)

In the case of a mass-less particle (m = 0) or a particle with negligible mass,

the four-momentum can be written as:

p = pT( cosh(η), cos(φ), sin(φ), sinh(η)) , (8.5)

where φ is the azimuthal angle and η is the pseudo-rapidity.

Using the formula for the Lorentz invariant s = p2
H = (p` + pτ )

2 and Eq. 8.5, it

is possible to calculate the invariant mass of the system as:

mH =
√

2p`Tp
τ
T (cosh(∆η)− cos(∆φ)) , (8.6)

where ∆η and ∆φ are the difference in rapidity and azimuthal angle between the

leading lepton and the sub-leading lepton, either a light lepton or a τhad-vis for

the `τ`′ and `τhad channels, respectively. The collinear approximation is finally

used to close the kinematics. From Eqs. 8.5 and 8.6 the collinear mass can be
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defined as follows:

`τ`′ : mcoll =

√
2p`leadT

(
p`sub-leadT + Emiss

T

)
(cosh(∆η)− cos(∆φ)) (8.7)

`τhad : mcoll =
√

2p`T (pτhad-visT + Emiss
T ) (cosh(∆η)− cos(∆φ)) (8.8)

• The Missing Mass Calculator (MMC) [124] is a reconstruction method firstly

used for the mass reconstruction of the H → τ+τ− decay. The method is

adapted to LFV decays of the Higgs boson by assuming that all the source of

missing momentum originates from the neutrinos in the single tau decay of the

event, reducing the complexity of the method with respect to the H → τ+τ−

decay.

The invariant mass is reconstructed using the missing mass solving an under-

constrained system. The unknowns include the x-, y-, and z-components of

the momentum carried by the neutrinos of the tau lepton in the event. The

calculation uses the constraints from the measured x- and y-components of the

missing transverse momentum, and the visible masses of both the tau and light

lepton candidates. A scan is performed over the two components of the missing

transverse momentum vector and the yet undetermined variables. Each scan

point is weighted by its probability according to the ~Emiss
T resolution and the

tau decay topologies. The estimator for the τ` mass is defined as the most

probable value of the scan points. The estimator for the final discriminant, the

mass of the two leptons system mMMC , is then defined as the maximum of the

histogram that has been filled with the weighted scan points.

The performance of MMC is highly correlated with the ~Emiss
T resolution. In

order to compensate this effect, MMC is adjusted to allow for possible mismea-

surements in ~Emiss
T by increasing the dimensionality of the parameter space in

which the scanning is performed to include the two components of the ~Emiss
T
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resolution (for Emiss
x and Emiss

y ). Thus the event probability, accounts for the

corresponding resolution functions for the ~Emiss
T . The MMC algorithm provides

a solution for more than 99% of the H → τ` events.

Based on the observed resolution of the simulated reconstructed signal events

passing the event selection described in Section 8.4, the MMC mass is found to be

optimally performant for `τ`′ channel, while the the collinear mass is found be optimal

for the `τhad channel.

8.3.8 BDT variable

The analysis exploits the Boosted Decision Tree (BDT) algorithms [120, 121, 122]

to enhance the signal separation from the background in the individual channels and

categories. The parameters scanned over for the BDT are:

• Max depth controls the maximum depth on any given decision tree. Deeper

networks are more sensitive but risk overtraining.

• Number of trees controls the number of boosts

• One effective way to slow down the learning in a gradient boosting model is to

use a learning rate, also called shrinkage.

The definition of the BDT parameters for `τ`′ and `τhad channels are shown in Ta-

ble 8.2 and 8.3, respectively. The algorithm divides-up the space into signal-like and

background-like regions and assigns a score to each event depending on which region

it falls into. Boosted decision trees are trained on samples of known composition and

tested on statistically independent samples.

All Higgs production modes are considered in the definition of the signal-like

events. Similarly, all the background processes, including fake leptons, are considered

in the definition of the background-like events. The strategy involved in the Training-

Test part is about 80% and 20% of the whole accepted events respectively. The
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events have been randomly split based on their event number. In this analysis, cross-

validation is performed splitting the data in five sets. Each of the five trainings is

performed with 80% of the accepted events and it is tested with the remaining 20%.

Each of the testing samples is statistically independent from the others, as well as

independent from the events used in the corresponding training. Additionally, since

the data is not involved in the Training-Test part, the BDT for data is obtained

as the average of the five BDT scores. This choice allows to reduce the statistical

fluctuations related to the differences of the five training sets. For the `τhad channel,

the data was split into 80% for training, 10% for validation and 10% for testing and

a 10-fold was used so that all the available statistics were used in every step.

Correlations between the input variables of the BDT discriminant have been care-

fully checked, highly correlated variables have been removed and the remaining ones

are ranked according to their discrimination power [125, 126]. The list of variables

is then optimized, removing the lowest-ranked variables with marginal contribution

to the sensitivity. The ranking of the input variables for `τhad channels is shown in

Table 8.4. The final list of variables is presented in Table 8.5 for each channel and

category.
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Table 8.4: MVA input variables importance `τhad channels.

eτhad µτhad

Variable Importance Variable Importance
1 mcoll(`, τ) 0.602 mcoll(`, τ) 0.595
2 mT(`, Emiss

T ) 0.097 mT(`, Emiss
T ) 0.098

3 mT(τ, Emiss
T ) 0.097 ∆φ(`, Emiss

T ) 0.098
4 ∆φ(`, Emiss

T ) 0.084 Emiss
T 0.093

5 Emiss
T 0.076 mT(τ, Emiss

T ) 0.084
6 mjj 0.070 pT(`) 0.080
7 pT(`) 0.069 ∆R(`, τ) 0.057
8 ∆ηjj 0.060 ∆ηjj 0.057
9 ∆R(`, τ) 0.058 mjj 0.055
10 ∆φ(τ, Emiss

T ) 0.051 Σ cos ∆φ(`, Emiss
T ) 0.038

11 Σ cos ∆φ(`, Emiss
T ) 0.031 ∆φ(τ, Emiss

T ) 0.037
12 pT(τ) 0.019 pT(τ) 0.019
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Table 8.5: BDT input variables used in the analysis. For each channel and category,
used input variables are marked with HR (indicating the five variables with the highest
rank) or a bullet. Analogous variables between the two channels are listed on the same
line.

`τ`′ `τhad

Variable VBF non-VBF Variable VBF non-VBF

mMMC HR HR mcoll HR HR

p`1T • • p`T • HR

p`2T HR HR pτhad-visT • HR

∆R(`1, `2) HR • ∆R(`, τhad-vis ) • •
mT(`1, E

miss
T ) • HR mT(`, Emiss

T ) HR •
mT(`2, E

miss
T ) HR • mT(τhad-vis , E

miss
T ) HR HR

∆φ(`1, E
miss
T ) • • ∆φ(`, Emiss

T ) HR •
∆φ(`2, E

miss
T ) HR ∆φ(τhad-vis , E

miss
T ) •

mjj • mjj •
∆η(j1, j2) HR ∆η(j1, j2) •
pτT/p

`1
T HR

∑
i=`,τhad-vis

cos ∆φ(i, Emiss
T ) • •

Emiss
T HR •
mvis HR

∆η(`, τhad-vis ) •
η` •

ητhad-vis •
φ` •

φτhad-vis •
φ(Emiss

T ) •
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8.4 Event Selection and Categorization

Selected events in the analysis are triggered with single-electron or single-muon

triggers. The pT thresholds depend on the isolation requirement and data-taking pe-

riod [127, 128]. The lowest trigger thresholds correspond to 25−27 GeV for electrons

and 21− 27 GeV for muons.

Events selected in the `τ`′ channel contain exactly one electron and one muon of

opposite charge (OS). Similarly in the `τhad channel, a lepton and a τhad-vis of opposite

charge are required, and events with more than one lepton are rejected.

The selection criteria are summarized in Table 8.6 for the analysis categories as

well as the control regions (CRs), which are described in Section 8.5.

In the `τ`′ channel, `1 and `2 denote the leading and subleading lepton in pT,

respectively. Events where the leading lepton is an electron (muon) are used in the

search for H → eτµ (H → µτe). A requirement on the dilepton invariant mass, equal

to the invariant mass of the lepton and the visible τ -decay products, mvis, reduces

backgrounds with top quarks, and the criterion applied to the track-to-cluster pT ratio

of the electron reduces the Z → µµ background where a muon deposits a large amount

of energy in the electromagnetic calorimeter and is misidentified as an electron in the

µτe channel. The contribution from the H → ττ decay is reduced by the asymmetric

pT selection of the two leptons.

In the `τhad channel, the criterion based on the azimuthal separations of lepton–

Emiss
T and τhad-vis –Emiss

T ,
∑

i=`,τhad-vis
cos ∆φ(i, Emiss

T ), reduces the W+jets background

whereas the requirement on |∆η(`, τhad-vis )| reduces backgrounds with misidentified

τhad-vis candidates.

For both channels of each search, a b-veto requirement reduces the single-top-

quark and tt̄ backgrounds. Events are further categorized into VBF (with a focus

on the VBF production of the Higgs boson) and non-VBF categories. The VBF
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selection is based on the kinematics of the two jets with the highest pT, where j1

and j2 denote the leading and subleading jet in pT, respectively. The variables mjj

and ∆η(j1, j2) stand for the invariant mass and η separation of these two jets. The

non-VBF category contains events failing the VBF selection.

In the dilepton channel, additional selection criteria are applied to further reject

background events in this category. These criteria are also listed in Table 8.6, where

mT stands for the transverse mass 3 of the two objects listed in parentheses, and pτT

represents the magnitude of the vector sum of p`2T and Emiss
T . The requirement on

pτT/p
`1
T reduces the background arising from jets misidentified as leptons.

The VBF and non-VBF categories in each of the `τ`′ and `τhad channels give rise

to four signal regions in each search.

3The transverse mass of two objects is defined as mT =
√

2pT1pT2(1− cos ∆φ), where pTi are
the individual transverse momenta and ∆φ is the angle between the two objects in the azimuthal
plane.
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The cut-based analysis employs an estimator of the Higgs boson mass for the signal

extraction. The MMC is used in `τ`′ channel, while the collinear mass approximation

is exploited in the `τhad final state.

The categorization of the cut-based analysis in the `τ`′ channel is the same as for

the MVA analysis. In the `τhad channel, the VBF definition is also the same, while

the non-VBF category is further split into three orthogonal signal regions (SR1–SR3).

The orthogonal signal regions have been defined to select different signal topologies

as shown in Figure 8.3. Definitions of these signal regions as well as the control

regions used for background modelling as discussed in Section 8.5 are presented in

Tables 8.7, 8.8 and 8.9. The cut-based approach gives results consistent with no LFV

signal, although not as sensitive as the MVA analysis.

Table 8.7: Definition of the categories of the `τhad channel for the cut-based analysis.

Region Requirements

VBF
pτhad-vis

T > 45 GeV, Njets(pT > 30 GeV) ≥ 2, pleading jet
T > 40 GeV

mjj > 400 GeV, |∆η(j1, j2)| > 3
SR1 pτhad-vis

T > 45 GeV, mT(`, Emiss
T ) > 40 GeV, mT(τhad-vis , E

miss
T ) < 30 GeV, fail VBF

SR2 pτhad-vis

T > 45 GeV, mT(`, Emiss
T ) < 40 GeV, mT(τhad-vis , E

miss
T ) < 60 GeV, fail VBF

SR3
25 GeV < pτhad-vis

T < 45 GeV, mT(`, Emiss
T ) > 40 GeV, mT(τhad-vis , E

miss
T ) < 30 GeV,

p`T > 45 GeV, fail VBF

Figure 8.3: Sketches for different SR and CR regions in CBA for `τhad.
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Table 8.8: Summary of the event selection for the `τhad QCD control regions for the
fake factor method.

`τhad

eτhad µτhad

QCD CR Baseline selection
baseline except |∆η(`, τhad-vis )|

|∆η(`, τhad-vis )| > 2
mT(`, Emiss

T ) < 60 GeV
QCD CR1 pT(τhad-vis ) > 45 GeV
QCD CR2 pT(τhad-vis ) > 45 GeV

mT(`, Emiss
T ) < 40 GeV

mT(τhad-vis , E
miss
T ) < 60 GeV

QCD CR3 25 GeV < pT(τhad-vis ) < 45 GeV
QCD CR VBF VBF selection

QCD MVA same as QCD baseline

Table 8.9: Summary of the event selection for the `τhad W+jets control regions for
the fake factor method.

`τhad

eτhad µτhad

W CR Baseline selection
baseline mT(τhad-vis , E

miss
T ) > 40 GeV

mT(`, Emiss
T ) > 60 GeV

W CR1 pT(τhad-vis ) > 45 GeV
W CR2 pT(τhad-vis ) > 45 GeV

mT(τhad-vis , E
miss
T ) > 60 GeV

mT(`, Emiss
T ) > 40 GeV

W CR3 25 GeV < pT(τhad-vis ) < 45 GeV
W CR VBF except

∑
cos ∆φ(`, Emiss

T )∑
cos ∆φ(`, Emiss

T ) < −0.35
VBF selection

W CR MVA except
∑

cos ∆φ(`, Emiss
T )∑

cos ∆φ(`, Emiss
T ) < −0.35
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8.5 Background modelling

The most significant backgrounds in the search are from events with Z → ττ

decays or with (single or pair-produced) top quarks, especially in the `τ`′ channel, as

well as from events with misidentified objects, which are estimated using data-driven

techniques. The relative contribution from misidentified objects to the total back-

ground yield is 5–25% in the `τ`′ channel and 25–45% in the `τhad channel, depending

on the search and the analysis category. The shapes of distributions from the Z → ττ

and top-quark (single-top-quark and tt̄) processes are modelled by simulation in both

the `τ`′ and `τhad decay channels.

In the `τ`′ channel, the relative contributions of Z → ττ and top-quark production

processes are 20–35% and 20–55%, respectively; the top-quark background dominates

in the VBF category. In the `τhad channel, the top-quark background fraction is 1–

10%, while the Z → ττ process contributes to 45–55% of the total background.

Smaller background components are also modelled by simulation and are grouped

together: Z → µµ, diboson production, H → ττ and H → WW .

Details of the background estimation techniques are given below.

8.5.1 `τ`′ channel

Two sets of CRs, as defined in Table 8.6, are used to constrain the normalization

of Z → ττ and top-quark background components. These CRs inherit their defini-

tions from the corresponding analysis category but invert one requirement to ensure

orthogonality with the nominal selection. The normalization factors are determined

during the statistical analysis by fitting the event yields in all signal and control re-

gions simultaneously. For each search, separate Z → ττ normalization factors are

used for the VBF and non-VBF categories. In the case of the top-quark background,

in which leading jets are produced at a lower order of the perturbative expansion of
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the scattering process, a combined normalization factor across the two categories is

used in the `τ`′ channel.

Top-quark CRs are almost exclusively composed of top-quark backgrounds: the

purity is 95% across both searches and categories, with tt̄ process accounting for

more than 90% of the top-quark backgrounds. The Z → ττ CRs achieved a purity of

∼80% in the non-VBF categories, while a lower purity of∼60% is observed in the VBF

categories. The contributions of all other background components are normalized to

their SM predictions when the likelihood fit (Section 8.7) is applied.

The shape and normalization of diboson and Z → µµ background distributions are

validated with data in dedicated regions where their contributions are enhanced. The

latter process only contributes sizeably in the µτe channel, where it represents up to

10% of the total background. Another source of background comes from W+jets, top-

quark and multi-jet events, where jets are misidentified as leptons. This background

is estimated directly from OS data events where an inverted isolation requirement is

imposed on the subleading lepton [83]. Normalization factors are applied to correct

for the inverted isolation requirement. The normalization factors are derived in a

dedicated region where the leptons are required to have same-sign (SS) charges. Ad-

ditional corrections are made by reweighting the MC distributions of ∆φ(`1, E
miss
T )

and ∆φ(`2, E
miss
T ) to data in the SS region, which improves the modelling of az-

imuthal angles between leptons and the Emiss
T direction as well as the modelling of

mT(`2, E
miss
T ). A similar improvement is observed in the nominal OS region. In most

of the cases, the misidentified jet mimics the lepton of lower pT, `2, while the frac-

tion of events where both leptons are misidentified varies between 2% to 8% across

categories. The systematic uncertainties of the estimation of the misidentified lepton

background include contributions from closure tests in SS and OS regions enriched

with misidentified leptons, from the corrections made to the ∆φ distributions, and

from the composition of the misidentified lepton background.
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8.5.2 `τhad channel

The main background contributions come from the Z → ττ process and events

where either a jet or an electron is misidentified as τhad-vis . The shape of the Z → ττ

background distribution is modelled by simulation, and the corresponding normaliza-

tion factors are determined from the simultaneous fit (Section 8.7) of the event yields

in all signal and control regions. The Z → ττ normalization factors are fully corre-

lated with those of the `τ`′ channel, in each VBF and non-VBF category. Top-quark

production represents less than 1% of the total background in the `τhad channel and

is determined by simulation, including its normalization, which is kept fixed in the

fit.

The main contributions to jets misidentified as τhad-vis come from multi-jet events

and W -boson production in association with jets, and a fake-factor method is used

to estimate the contribution of each component separately, as described below in

Sections 8.5.2.1 through 8.5.2.3. A fake factor is defined as the ratio of the number of

events where the highest-pT jet is identified as a tight τhad-vis candidate to the number

of events with a highest-pT jet failing this tau-ID criterion but satisfying a looser one.

The fake-factor method is also adopted to estimate the electron-faking τhad-vis

backgrounds, as described in Sections 8.5.2.4 through 8.5.2.6. Finally validation of

backgrounds with muons are presented in Section 8.5.2.7.

8.5.2.1 Jet-fake background estimation

The background which has jets faking τhad-vis leptons is a dominant background

in the LFV H → `τhad channel. The τhad-vis -fake background is estimated using a

control region (called “anti-identified” region) in which the lepton satisfies the same

identification and isolation criteria as signal region (called “identified” region), while

the τhad-vis fails the “tight” requirement but satisfies a looser criteria. The dominant

contribution to this background comes from W+jets and multi-jet events in which a
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jet produces an object which is reconstructed as a τhad-vis . Other smaller contributions

come from top-quark production (single top and tt̄) and Z+jets events.

The τhad-vis -fake background in the anti-ID region is extrapolated to the signal

region by a “fake factor” FF .

N ID
j→τ = (Nanti−ID

data −Nanti−ID
MC,not j→τ )× FF (8.9)

Since we have more than one source of τhad-vis -fake background, the fake factor

is therefore factorized into individual components (FFi) for each relevant process i.

The combined fake factor is then constructed as the sum of components weighted by

the fractional contributions from the relevant process in the anti-ID region (Ri)

FF =
∑
i

Ri × FFi (8.10)

In practice, the contributions from top-quark production and Z+jets are rather

small and do not play important roles and can be considered to be similar to the fake

factor of the W+jets background. Therefore, we can simplify the above equation to

FF = RW × FFW +RQCD × FFQCD (8.11)

The relative contribution RQCD of multi-jet events is obtained by a data-driven

method, which will be described in the subsequent section, and the corresponding

RW is obtained as RW = 1−RQCD.

The individual fake factors are determined in dedicated W and QCD control

regions, respectively. These control regions are all defined to be the same as the W

and QCD control regions (WCR and QCDCR1) in Section 8.4. The individual FF
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is defined as the ratio of identified to anti-identified numbers of events

FFi =
N ID

data,CRi
−N ID

MC,not j→τ,CRi

Nanti−ID
data,CRi

−Nanti−ID
MC,not j→τ,CRi

(8.12)

FFi is estimated in each signal region as a function of the τhad-vis pT and the number

of prongs of the τhad-vis decay, as shown in Figure 8.4, because, among the τhad-vis

kinematic variables, the fake factors show the greatest dependence versus τhad-vis pT.

The same procedure is also applied in order to obtain the fake background in the

validation regions used in this analysis using Top VR and Zττ VR as described in

Section 8.4.
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Figure 8.4: Distributions of fake factors in each signal region (SR1, SR2 and SR3)
as a function of the τhad-vis pT and the number of prongs of the τhad-vis decay for (a)
H → µτhad and (b) H → eτhad channels.

8.5.2.2 Determination of RQCD

The relative contribution RQCD of multi-jet events is given by

RQCD =
Nanti−ID

QCD,data

Nanti−ID
data −Nanti−ID

MC,not j→τ
(8.13)

The Nanti−ID
QCD,data is estimated from data by multiplying the events in the “anti-Iso” CR

(by inverting the isolation requirement on the lepton) with a transfer factor, called
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“isolation factors” (IF ) accounting for the difference between failing and passing the

lepton isolation.

Nanti−ID
QCD,data = (NantiIso,anti−ID

data −NantiIso,anti−ID
MC,true lepton )× IF (8.14)

The isolation factor is calculated as the ratio of the events passing and failing the

lepton isolation requirement in a dedicated control region. This control region has the

same cuts as the preselection but requires the signs of the τhad-vis candidate and the

lepton to be the same, rather than opposite (denoted as “SSP” region). The isolation

factors are calculated separately for electrons and muons and binned in pT and |η| of

the lepton, as shown in Figure 8.5.

IF =
N Iso,anti−ID

data,SSP −N Iso,anti−ID
MC,true lepton,SSP

Nanti−Iso,anti−ID
data,SSP −Nanti−Iso,anti−ID

MC,true lepton,SSP

(8.15)
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Figure 8.5: Isolation factors for muons (left) and electrons (right) as a function of the
lepton’s pT and |η|.

8.5.2.3 Closure tests of jet fakes

In order to show that the method performs as expected, the same procedure was

repeated with the same-sign region instead of the opposite-sign one, using exactly
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the same setup and selection as for the standard analysis. The results are shown in

Figures 8.6 and 8.7, respectively.
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Figure 8.6: Closure test in the preselection same sign region in µτhad channel. The
statistical uncertainties for all samples and the weight and kinematic systematics for
the background are shown.
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Figure 8.7: Closure test in the preselection same sign region in eτhad channel. The
statistical uncertainties for all samples and the weight and kinematic systematics for
the background are shown.
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8.5.2.4 Electron-fake background estimation

One of the main backgrounds in the LFV H → `τhad channel is Z(→ ``)+jet. In

Z(→ ``)+jet, the τhad-vis candidate can originate either from lepton (muon or electron)

or jet. Since the jet-originated events are estimated by the data-driven method (see

Section 8.5.2.1), the lepton-originated events are based on MC simulation. However,

due to the lack of MC statistics, especially in the H → eτhad channel, Z → ee

background is also estimated by a data-driven method. The methodology used is

based on a fake factor calculation, very similar in nature to the one used for jet-

faking-τhad-vis background, the fake factor method. Only those τhad-vis candidates

with exactly one associated track are considered, as the rate of electrons faking 3-

track τhad-vis is negligible.

Similar to the jet-faking-τhad-vis background, the electron-faking-τhad-vis background

is estimated using an “anti-ID” region in which the τhad-vis lepton satisfies all selection

criteria but fails the 1-track electron veto requirement (BDT score > 0.15). Other

smaller contributions in this region come from jet-faking-τhad-vis , top-quark produc-

tion and Z → ττ events.

The electron-faking-τhad-vis background in the anti-ID region is extrapolated to

the signal region by an “electron fake factor” (eFF )

N ID
e→τ = (Nanti−ID

1−prong data −Nanti−ID
1−prong MC,not e→τ )× eFF +N ID

3−prong MC,e→τ (8.16)

The fake factor eFF is determined in a “so-called” Z → ee control region which is

same as the preselection but with the tauID requirement (medium, but not tight)

instead of tight, to avoid the overlap between Z → ee control region and signal

regions in `τ`′ analysis. In addition, some requirements are also added to enhance the

contribution of Z → ee events in this region, as shown in Figure 8.3:

• |mvis −mZ | < 5 GeV
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• mT(`, Emiss
T ) < 40 GeV

• mT(τ, Emiss
T ) < 60 GeV

In this Z → ee control region, the eFF is defined as the ratio of identified to

anti-identified numbers of events

eFF =
N ID

data,ZeeCR −N ID
MC,not e→τ,ZeeCR

Nanti−ID
data,ZeeCR −Nanti−ID

MC,not e→τ,ZeeCR

(8.17)

eFF is estimated as a function of the τhad-vis pT, as shown in Figure 8.8.
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Figure 8.8: Distribution of eτhad events as function of τhad-vis pT in the Z → ee (a)
ID region (b) anti-ID region.

8.5.2.5 Electron-faking-tau background estimation plots

A set of plots in Figures 8.9, 8.10, and 8.11 show the comparison the mvis, mcoll

and pT(τ) distributions using MC (top row) and data-driven (bottom row) Z → ee

events in the H → eτhad channel for each of the CBA region labelled as SR1, SR2

and SR3, respectively.
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Figure 8.9: Comparison of the distributions of mvis, mcoll and pT(τ) using MC (top
row) and data-driven (bottom row) Z → ee events in the H → eτhad SR1 region.
The statistical uncertainties for all samples and the weight and kinematic systematics
for the background are shown.
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Figure 8.10: Comparison of the distributions of mvis, mcoll and pT(τ) using MC (top
row) and data-driven (bottom row) Z → ee events in the H → eτhad SR2 region.
The statistical uncertainties for all samples and the weight and kinematic systematics
for the background are shown.
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Figure 8.11: Comparison the distributions of mvis, mcoll and pT(τ) using MC (top
row) and data-driven (bottom row) Z → ee events in the H → eτhad SR3 region.
The statistical uncertainties for all samples and the weight and kinematic systematics
for the background are shown.
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8.5.2.6 Closure tests of electron fakes

In order to show that the electron-faking-tau background estimation by using the

fake factor method performs as expected, Figure 8.12 shows the comparison between

MC and data-driven Z → ee samples in the Z → ee control region with the same-sign

requirement instead of the opposite-sign one. Here, the eFF derived opposite-sign

(medium, not tight) region was used to estimate the data-driven Z → ee sample

in the same sign region. The same sign region has a higher jet faking tau component,

which reduces the purity of the region.

In addition, Figure 8.13 shows the comparison between MC and data-driven Z →

`` samples in the opposite-sign (tight) Z → ee control region at preselection level

with (medium, not tight) eFF requirement. The Z → ee purity in the opposite-

sign control region is better than for the same-sign region, especially for low Emiss
T

values. The estimation of the Z → ee background obtained with the data-driven

eFF method models the data better than the Z → ee MC simulation.

8.5.2.7 Z → µµ validation plots

In the case of the Z → µµ background, it is not possible to define a fake factor

in a way similar to the eFF . Additionally, the amount of Z → `` background in the

µτhad channel is significantly smaller than in the eτhad channel. For these reasons,

the MC simulation is used to model the Z → µµ background in the µτhad channel.

Figure 8.14 shows the validation plots of the Z → µµ background modelled by MC.

The plots are shown in the H → µτhad channel. The event selection of the Z → µµ

control region are the same as the opposite-sign Z → ee control region, except for

the leptons selection. There is a ∼ 10% difference in the bins dominated by Z → µµ

events, especially in the mcoll distribution, which is accounted for as systematics in

Section 8.6.
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Figure 8.12: Comparison the distributions of mvis, mcoll and Emiss
T using MC (top

row) and data-driven (bottom row) Z → ee events in the same-sign Z → ee control
region. The hatched band in the upper plot, and the shaded band in the ratio plot,
give the statistical only uncertainty.
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Figure 8.13: Comparison the distributions of mvis, mcoll and Emiss
T using MC (top row)

and data-driven (bottom row) Z → ee events in the opposite-sign Z → ee control
region. The hatched band in the upper plot, and the shaded band in the ratio plot,
give the statistical only uncertainty.
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Figure 8.14: Distributions of µτhad events in the Z → µµ control region. The hatched
band in the upper plot, and the shaded band in the ratio plot, give the statistical
only uncertainty.
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8.6 Systematic uncertainties and pre-fit results

The systematic uncertainties can affect the normalization of signal and back-

ground, and also the shape of their corresponding final discriminant distributions.

Each source of systematic uncertainty is considered to be uncorrelated with the other

sources. The size of the systematic uncertainties and their impact on the fitted branch-

ing ratio are discussed in Section 8.7. Envelope distributions with the magnitude of

the systematics are shown in Section 8.6.2. The evaluation of the systematics follows

the same strategy used in the H → τ+τ− analysis and systematics are discribed in

details in Reference [129].

8.6.1 Sources of systematics

The following sources of systematic uncertainties are associated with the detector

simulation, the signal modelling and the data-driven background determination:

8.6.1.1 Luminosity

The integrated luminosity measurement has an uncertainty of 1.9% for the 2015

data and 2.2% for the 2016 data, and it is applied to all simulated event samples [130].

8.6.1.2 Detector-related uncertainties

Uncertainties related to the detector are included for the signal and backgrounds

that are estimated using simulation. These uncertainties are also taken into account

for simulated events that are used in the data-driven background estimations. All

instrumental systematic uncertainties arising from the reconstruction, identification

and energy scale of electrons, muons, (b-)jets tagging, triggering efficiencies of all

physics objects and the soft term of the Emiss
T measurement are considered. The

effect of the energy scale uncertainties on the objects is propagated to the Emiss
T
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determination.

These systematics include uncertainty associated with:

• the electron and muon trigger, reconstruction and identification efficiencies,

• jet, electron and muon energy scales,

• jet energy resolution and calibration,

• calibration of the Emiss
T ,

• jet flavour tagging systematics.

Any systematic effect on the the overall normalisation or shape of the mcoll dis-

tribution in the signal region is considered.

8.6.1.3 Uncertainties on data-driven background estimations

Systematic uncertainties resulting from the data-driven background estimation

for fakes are described in Reference [129]. In the `τhad channel, the systematic uncer-

tainties are calculated in each of the Signal Region and include both the statistical

uncertainty on the estimation and the closure test. Details of the methodology un-

certainties can be found in Section 8.5.2.

The following systematic uncertainties are considered on the jet-fake factor method:

• The uncertainty on the individual fake factors, FFQCD and FFW.

• The uncertainty on the estimation of RQCD from data. This uncertainty arises

from the measurement of the isolation factor: IF statistical uncertainty; the

difference between SSP and the nominal opposite-sign region; the contamination

of the control region with events with true leptons which is subtracted using

MC (to estimate this effect, the subtracted MC is varied by ±35%).
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• The statistical uncertainty (from both data and subtracted MC) in the anti-ID

region where the fake factors are applied.

Table 8.10 and Table 8.11 show the effect of each of these systematic uncertainties

on the fake estimate in each signal regions.

Table 8.10: Summary of the fake-estimate yields in the LFV H → µτhad signal
regions, as well as the effect of each of the uncertainties discussed in the text with
respect to the nominal yield.

Absolute yields Rel. diff. to nom. (%)

SR1 SR2 SR3 VBF SR1 SR2 SR3 VBF

Nominal 3995.74 1050.33 17793.32 146.18

FF Stat. Unc. (up) 4634.65 1225.80 19723.59 182.35 16 17 11 25

FF Stat. Unc. (down) 3445.54 894.37 16290.49 110.02 -16 -17 -11 25

RQCD (up) 4116.35 1081.45 18503.67 154.95 3 3 4 6

RQCD (down) 3899.32 1019.17 17105.34 137.41 -3 -3 -4 -6

Anti-ID Stat. (up) 4235.44 1167.56 19038.16 156.42 6 11 7 7

Anti-ID Stat. (down) 3769.64 945.71 16697.26 135.95 -6 -11 -7 -7

Table 8.11: Summary of the fake-estimate yields in the LFVH → eτhad signal regions,
as well as the effect of each of the uncertainties discussed in the text with respect to
the nominal yield.

Absolute yields Rel. diff. to nom. (%)

SR1 SR2 SR3 VBF SR1 SR2 SR3 VBF

Nominal 5189.99 1531.45 20734.33 177.81

FF Stat. Unc. (up) 6074.95 1811.57 23015.63 231.62 17 18 11 30

FF Stat. Unc. (down) 4438.29 1298.07 17689.23 124.01 -17 -18 -10 -30

RQCD (up) 5397.04 1577.34 21777.48 188.48 4 3 5 6

RQCD (down) 4991.34 1486.45 19674.93 167.14 -4 -3 -6 -6

Anti-ID Stat. (up) 5439.50 1714.34 21978.29 190.26 5 12 6 7

Anti-ID Stat. (down) 4994.87 1367.40 19854.27 165.37 -4 -12 -6 -7

The following systematic uncertainties are considered on the e→ τhad fake factor
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method:

• The uncertainty on the fake factors, eFF .

• The uncertainty due to the difference between tight and (medium, not tight)

eFF . Figure 8.15 shows the comparisons of different fake factors eFF derived

in tight and (medium, not tight) Z → ee control regions. The difference

between eFF s in the left plot is taken as the systematic uncertainty.

• The contamination of the events with non electron-faking-τhad in the anti-ID

region, which are subtracted before applying eFF .

Table 8.12 shows the effect of each of these systematic uncertainties on the e→ τhad

estimate in each signal regions.
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Figure 8.15: Comparison of eFF derived in tight and (medium, not tight) Z → ee
control regions (a) by fake factor method (b) by using MC Z → ee events.
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Table 8.12: Summary of the e → τhad estimate yields in the LFV H → eτhad signal
regions, as well as the effect of each of the uncertainties discussed in the text with
respect to the nominal yield.

Absolute yields Rel. diff. to nom. (%)

SR1 SR2 SR3 VBF SR1 SR2 SR3 VBF

MC Zll 612.86 ± 210.77 743.18 ± 135.05 1584.62 ± 298.59 52.39 ± 28.16

Data-driven Zll (nom.) 649.13 ± 55.08 575.19 ± 32.87 1598.44 ± 96.88 46.59 ± 6.82

FF Stat. Unc. (up) 741.82 ± 59.32 655.16 ± 39.56 1986.12 ± 115.43 61.50 ± 9.00 14 14 23 32

FF Stat. Unc. (down) 564.91 ± 48.01 504.15 ± 27.32 1299.74 ± 80.37 31.68 ± 4.63 14 14 23 32

Tau ID 762.34 ± 61.32 678.42 ± 40.29 1896.15 ± 104.34 54.51 ± 7.97 18 18 19 17

Bkg subtraction (up) 704.18 ± 58.31 621.25 ± 36.45 1995.15 ± 118.03 55.44 ± 8.11 8 8 25 19

Bkg subtraction (down) 601.62 ± 51.25 533.58 ± 28.99 1278.25 ± 79.04 37.74 ± 5.52 8 8 25 19

8.6.1.4 Main backgrounds uncertainties

Theoretical cross section uncertainties have been applied to the MC background

samples used in this analysis. Uncertainties from missing higher-order corrections, the

PDF parameterization, underlying-event modeling and from parton-shower modeling

are also considered for the dominant Z+jets background. Since its overall normaliza-

tion is constrained separately in the VBF and nonVBF SRs, variations due to these

uncertainties are considered in the event migration within an analysis channel, in the

variable of interest shape and in the relative change in acceptance between the three

analysis channels. These variations are treated as uncorrelated between the VBF and

boosted SRs. In addition, the first two types of variations are treated as uncorrelated

between the two analysis channels. This treatment accounts for the differences in the

corresponding event selections. The largest sources of uncertainties are due to the

CKKW matching and are evaluated depending on the number of true jets and the Z

boson pT.

For Z+jets, generator parameter variations are estimated with Sherpa 2.1 sam-

ples. Both shape and acceptance variations of the following parameters are considered:

ren, fac, qsf and ckkw, as well as parton shower uncertainties:
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• PDF: evaluated using event-weights provided by Sherpa.

• renormalisation and factorisation scales - µR/µF : evaluated using event-

weights provided by Sherpa.

• CKKW: jet-to-parton matching uncertainty, evaluated using truth-level pa-

rameterisation as a function of jet multiplicity and pT(Z).

• qsf : evaluated using truth-level parameterisation as a function of jet multiplic-

ity and pT(Z).

• underlying-event/parton-shower: take MadGraph and Sherpadifference

using Z → ττ events.

The uncertainty in the measured cross section for electroweak Z production with

two associated jets is found to be small compared to the other uncertainties in Z

boson production. All other simulated background contributions are normalized to

their Monte Carlo prediction. For Z+jets and diboson production, uncertainties of 5%

and 6% are used, respectively, combining PDF+αS and scale variation uncertainties

in quadrature.

For tt̄ [131] and single top quark [132, 133] production, a 6% uncertainty is assigned

as total uncertainty based on scale, PDF and top-quark mass uncertainties.

Additional uncertainties include initial- and final-state radiation modelling, tune

and (for tt̄ only) the choice of the hdamp parameter value in POWHEG-BOX v2, which

controls the amount of radiation produced by the parton shower [134]. The un-

certainty on the fragmentation model is evaluated by comparing tt̄ events gener-

ated with POWHEG-BOX v2 interfaced to either HERWIG++ [135] or PYTHIA6. The

POWHEG+HERWIG++ and aMC@NLO+HERWIG++ generators are compared to estimate the

uncertainty in generating the hard scatter.
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8.6.1.5 Uncertainties on Higgs production modelling

The procedures to estimate the uncertainty in the Higgs production cross sec-

tions follow the recommendations by the LHC Higgs Cross Section Working Group.

Uncertainties are evaluated separately for their impact on the total cross section,

their impact on the acceptance in different SRs, and on the shape of the variable

of interest distribution in each SR. For the Higgs samples, uncertainties from the

factorization and renormalization scale choices are estimated from the effect on the

signal acceptance of doubling or halving these factors either coherently or oppositely.

Uncertainties due to the initial- and final-state radiation, as well as multiple parton

interaction for the signal, are also taken into account. These uncertainties are es-

timated from the AZNLO PYTHIA8 tune [136] for the gluon–gluon fusion and VBF

production. The envelope of the variations resulting from the use of the alterna-

tive PDFs in the PDF4LHC15 nlo 100 [97] set is used in order to estimate the PDF

uncertainty for gluon–gluon fusion production.

8.6.2 Pre-fit results

Good modelling of the background is demonstrated for a set of important BDT in-

put variables in Figure 8.16, and themcoll distributions for CBA in Figures 8.17 and 8.18.
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Figure 8.16: Distributions of representative kinematic quantities for different searches,
channels and categories, before the fit as described in Section 8.7 is applied. Top
row: transverse mass mT(`1, E

miss
T ) (eτµ non-VBF), collinear mass mcoll (eτhad non-

VBF) and mMMC (eτµ VBF). Bottom row: mMMC (µτe non-VBF), muon pT (µτhad

non-VBF) and mcoll (µτhad VBF). Entries with values that would exceed the x-axis
range are included in the last bin of each distribution. The size of the combined
statistical, experimental and theoretical uncertainties in the background is indicated
by the hatched bands. The H → eτ (H → µτ) signal overlaid in top (bottom) plots
assumes B(H → `τ) = 1% and is enhanced by a factor 10. In the data/background
prediction ratio plots, points outside the displayed y-axis range are shown by arrows.

143



 [GeV]
coll

m

60 80 100 120 140 160 180 200

D
a

ta
 /

 P
re

d
. 

0.5

0.75

1

1.25

1.5

E
v
e
n
ts

 /
 1

0
 G

e
V

0

500

1000

1500

2000

2500

3000

3500
ATLAS

1 = 13 TeV, 36.1 fbs

τLFV e

 SR1
had

τe

Data 10×=1%)ΒSig.(

MisID ττ→Z

Top ee (d.d.)→Z

Other Uncert.

 [GeV]
coll

m

100 110 120 130 140 150 160 170 180 190 200

D
a

ta
 /

 P
re

d
. 

0.5

0.75

1

1.25

1.5

E
v
e
n
ts

 /
 1

0
 G

e
V

0

200

400

600

800

1000

1200
ATLAS

1 = 13 TeV, 36.1 fbs

τLFV e

 SR2
had

τe

Data 10×=1%)ΒSig.(

MisID ττ→Z

Top ee (d.d.)→Z

Other Uncert.

 [GeV]
coll

m

60 80 100 120 140 160 180 200

D
a

ta
 /

 P
re

d
. 

0.5

0.75

1

1.25

1.5

E
v
e
n
ts

 /
 1

0
 G

e
V

0

1000

2000

3000

4000

5000

6000 ATLAS
1 = 13 TeV, 36.1 fbs

τLFV e

 SR3
had

τe

Data 10×=1%)ΒSig.(

MisID ττ→Z

Top ee (d.d.)→Z

Other Uncert.

Figure 8.17: Pre-fit distributions of the Higgs boson mass for the eτhad SR1–SR3
of the cut-based analysis. Entries with values that would exceed the x-axis range
are included in the last bin of each distribution. The size of the combined statisti-
cal, experimental and theoretical uncertainties in the background is indicated by the
hatched bands. The H → eτ signal with B(H → eτ) = 1% is overlaid and enhanced
by a factor 10. The binning is shown as in the statistical analysis.
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Figure 8.18: Pre-fit distributions of the Higgs boson mass for the µτhad SR1–SR3 of the
cut-based analysis. Entries with values that would exceed the x-axis range are shown
in the last bin of each distribution. The size of the combined statistical, experimental
and theoretical uncertainties in the background is indicated by the hatched bands.
The H → µτ signal with B(H → µτ) = 1% is overlaid and enhanced by a factor 10.
The binning is shown as in the statistical analysis.
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8.7 Statistical analysis

The parameter of interest in the two searches of this thesis is the branching fraction

of the lepton-flavour-violating decays of the Higgs boson in the µτhad and eτhad final

state respetively. The statistical analysis uses a binned likelihood function L(µ, θ),

constructed as a product of Poisson probability terms over all bins considered in

the search. This function depends on the parameter µ, defined as the branching

ratio BR(`τhad) in %, and a set of nuisance parameters θ that encode the effect of

systematic uncertainties in the signal and background expectations.

The fitted central values and errors of the nuisance parameters (NP) are expected

to follow a normal distribution centered around 0 with unit width, if the Asimov

data is used. The fit model construction is obtained with the RooFit [137, 138]

and RooStats [137, 138] software, and the model configuration file (as input to

RooStats) is produced by WorkspaceBuilder [139], which is a software package

interface with HistFactory [139]. WorkspaceBuilder includes additional features

such as histogram smoothing, NP pruning (NPs whose impact are less than a certain

threshold are discarded) and error symmetrization before the fits. A procedure called

local symmetrization to the systematic variational histograms is implemented to sym-

metrize bins with one-sided variations which may cause problems in the fit. The bin

variation is set to the maximum of the up and down variations, the larger variation

determining its sign. The bin-by-bin fluctuations in the combined MC templates are

also treated as NPs. They are incorporated in the model as extra Poisson constraint

terms, and are expected to have a fitted value of 1 and a fitted error reflecting the

relative statistical error in each particular bin.

The best-fit BR(`τhad) is obtained by performing a binned likelihood fit to the data

under the signal-plus-background hypothesis, i.e. maximizing L(µ, θ) over µ and θ.

The test statistic qµ is defined as the profile likelihood ratio, qµ = −2 ln[L(µ,
ˆ̂
θ)/L(µ̂, θ̂)],
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where µ̂ and θ̂ maximize L, and
ˆ̂
θ is the set of values that maximizes L for a given

value of µ.

For the discovery hypothesis, the test statistic is defined by setting µ = 0 in

the profile likelihood ratio. In the absence of any significant excess above the back-

ground expectation, upper limits on BR(`τhad) are derived by using qµ and the CLs

method [140].

There are four parameters freely floating in the fit without any constraints, namely,

the signal strength µ (SigXsecOverSM), the top background normalization factor

(norm top), and the Z → ττ background normalization factor for the inclusive

(norm inc ztt) and VBF regions (norm vbf ztt). The last three are applied on

the top and Z → ττ events in the top and Z → ττ CRs respectively, as well as in the

SR, to determine their rates in the SR in a data driven way. The errors associated

with the different systematics, and the error associated with the top estimation using

top CR, will be properly propagated to the fitted error of µ in a simultaneous fit of

multiple regions via a profiled likelihood scan by the minimization program MINUIT.

This section describes the fit of the Nuisance Parameters of the eτ and µτ search

for the MVA analysis. Figure 8.19 and Figure 8.20 shows the ranking of the Nuisance

Parameters according to their impact on µ. Fakes are the highest contributor for eτ

and µτ respectively. No big pulls are observed, while fake Nuisance parameters are

rather constrained, due to the large fake statistics.

Table 8.13 shows a summary of the uncertainties on µ(H → `τ), listing their

impact on the signal hypothesis of BR(H → `τ) = 1%. The uncertainties associated

with mis-identified leptons/jets and those related to the jet energy scale and resolution

exhibit the highest impact on the measured branching ratio in both searches.

A very important conclusion from this Table 8.13 is that the precision of this

analysis is not limited by size of the dataset analyzed, but the systematic variations

are the dominant component of the total uncertainties.
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Figure 8.19: The S+B fit ranking of different NPs in the combined MVA eτ channel.
The scale of the relative impact on µ (the NP pull) of the NPs is shown on the top
(bottom) axis.
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Figure 8.20: The S+B fit ranking of different NPs in the combined MVA µτ channel.
The scale of the relative impact on µ (the NP pull) of the NPs is shown on the top
(bottom) axis.
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8.8 Results and combined sensitivity

The discriminant distributions after the fit in each channel are shown in Fig-

ures 8.21 and 8.22. Good agreement between data and the background expectation

is observed.
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Figure 8.21: Distributions of the BDT score after the background+signal fit in each
signal region of the eτ search, with the LFV signal overlaid, normalized with B(H →
eτ) = 1% and enhanced by a factor 10 for visibility. The top and bottom plots
display eτµ and eτhad BDT scores respectively, the left (right) column corresponds to
the non-VBF (VBF) category. The size of the combined statistical, experimental and
theoretical uncertainties of the background is indicated by the hatched bands. The
binning is shown as in the statistical analysis.
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Figure 8.22: Distributions of the BDT score after the background+signal fit in each
signal region of the µτ search, with the LFV signal overlaid, normalized with B(H →
µτ) = 1% and enhanced by a factor 10 for visibility. The top and bottom plots
display µτe and µτhad BDT scores respectively, the left (right) column corresponds to
the non-VBF (VBF) category. The size of the combined statistical, experimental and
theoretical uncertainties of the background is indicated by the hatched bands. The
binning is shown as in the statistical analysis. In the data/background prediction
ratio plots, points outside the displayed y-axis range are shown by arrows.
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The individual contributions are listed in Tables 8.14 and 8.15, where the ex-

pected signal event yields are given for B(H → `τ) = 1% and the rest obtained from

background-only fit.

Table 8.14: Event yields and predictions as determined by the background-only fit in
different signal regions of the H → eτ analysis. Uncertainties include both the statis-
tical a nd systematic contributions. “Other” contains diboson, Z → ``, H → ττ and
H → WW background processes. For the eτhad channel the “Z → ee (d.d.)” compo-
nent corresponds to electrons misidentified as τhad-vis . This contribution is summed
with “Other” since there are few events in the VBF category. The uncertainty of the
total background includes all correlations between channels. The normalizations of
top-quark (`τ`′ channel only) and Z → ττ background components are determined
by the fit.

eτµ non-VBF eτµ VBF eτhad non-VBF eτhad VBF

Signal 379± 31 19.8± 2.7 1180± 110 25± 4

Z → ττ 2470± 230 221± 34 73 800± 1900 290± 40
Top-quark 1640± 140 490± 40 1580± 190 56± 12
Mis-identified 1330± 250 73± 33 74 400± 1600 140± 50
Z → ee (d.d.) 15 900± 1800

82± 13
Other 1700± 80 220± 15 2960± 200

Total background 7130± 100 1003± 33 168 700± 1000 570± 40
Data 7128 992 168 883 572

Table 8.15: Event yields and predictions as determined by the background-only fit
in different signal regions of the H → µτ analysis. Uncertainties include both the
statistical and systematic contributions. “Other” contains diboson, Z → ``, H → ττ
and H → WW background processes. The uncertainty of the total background
includes all correlations between channels. The normalizations of top-quark (`τ`′
channel only) and Z → ττ background components are determined by the fit.

µτe non-VBF µτe VBF µτhad non-VBF µτhad VBF

Signal 287± 23 14.6± 1.9 1200± 120 25± 5

Z → ττ 1860± 130 144± 26 96 100± 2000 274± 33
Top quark 1260± 130 390± 34 1620± 210 51± 10
Misidentified 1340± 210 41± 21 63 900± 1600 149± 33
Other 1180± 140 168± 18 23 000± 1000 104± 15

Total background 5640± 100 743± 29 184 500± 1200 580± 30
Data 5664 723 184 508 583
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Candidate background events from data with mass of the `τ system close to mH =

125 GeV are shown in Figures 8.23 and 8.24 for H → eτ and H → µτ searches,

respectively.

Figure 8.23: Candidate events of the H → eτ search: eτµ (top) and eτhad (bottom).
An electron track is shown in blue, a red line indicates a muon. A τhad candidate is
displayed in purple, jets are displayed as dark-yellow cones, the Emiss

T is shown by a
white dashed line.
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Figure 8.24: Candidate events of the H → µτ search: µτe (top) and µτhad (bottom).
An electron track is shown in blue, a red line indicates a muon. A τhad candidate is
displayed in purple, the Emiss

T is shown by a white dashed line.
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The best-fit branching ratios and upper limits are computed while assuming

B(H → µτ) = 0 for the H → eτ search and B(H → eτ) = 0 for the H → µτ

search. The best-fit values of the LFV Higgs boson branching ratios are equal to

(0.15+0.18
−0.17)% and (−0.22± 0.19)% for the H → eτ and H → µτ search, respectively.

In the absence of a significant excess, upper limits on the LFV branching ratios are

set for a Higgs boson with mH = 125 GeV. The observed (median expected) 95%

CL upper limits are 0.47% (0.34+0.13
−0.10 %) and 0.28% (0.37+0.14

−0.10 %) for the H → eτ

and H → µτ searches, respectively. These limits are significantly lower than the

corresponding Run 1 limits of Refs. [141, 142]. The breakdown of contributions from

different signal regions is shown in Figure 8.25, which also compares these results to

the results on 95% CL upper limits and best fit values for the LFV decays of the

Higgs boson BR(H → eτ) and BR(H → µτ) obtained during Run 1 at 8 TeV with

20.3 fb−1 of data by the ATLAS experiment [74].
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Figure 8.25: Upper limits at 95% CL on the LFV branching ratios of the Higgs
boson, H → eτ (left) and H → µτ (right), indicated by solid and dashed lines. Best-
fit values of the branching ratios (µ̂) are also given, in %. The limits are computed
while assuming that either B(H → µτ) = 0 (left) or B(H → eτ) = 0 (right). First,
the results of the fits are shown, when only the data of an individual channel or of
an individual category are used; in these cases the signal and control regions from all
other channels/categories are removed from the fit. These results are finally compared
with the full fit displayed in the last row. Run 1 results are also shown in red.
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8.9 Conclusions

The search for H → µτ and H → eτ decays with the ATLAS detector at the

LHC using 13 TeV data was presented in this thesis. No excess is observed and

the 95% CL limits based on cut-based analysis for BR(H → `τ) are found to be

0.43% (exp. 0.49+0.19
−0.14%) and 0.41% (exp. 0.45+0.18

−0.13%) for the H → eτ and H → µτ

searches, respectively, based on
√
s = 13 TeV of data collected during 2015 and 2016.

Following a review of the internal supporting document [77], these results have been

published by the ATLAS experiment [143].

The analysis is found to be three times more sensitive than the previous analysis,

and very similar to that obtained by the CMS experiment [76]. The main improve-

ments come from the additional kinematic regions used in the analysis with higher

sensitivity to signal, and improved technique employed to model the fake-background

with a data-driven methods using a transfer factor from control region to signal re-

gion. Further improvements are obtained by inclusion of a new phase-space region

corresponding to Vector Boson Fusion production mechanism of the Higgs boson, as

well as use of multi-variate signal-to-background discriminants. The result is already

systematic error dominated, as shown in Table 8.13. Thus, it will not improve by a

huge factor when more data is added to such analysis during further data-taking at

the the Large Hadron Collider.

The branching ratio of the LFV Higgs boson decay is related to the non-diagonal

Yukawa coupling matrix elements [23] by the formula

|Y`τ |2 + |Yτ`|2 =
8π

mH

B(H → `τ)

1− B(H → `τ)
ΓH(SM),

where ΓH(SM) = 4.07 MeV [24] stands for the Higgs boson width as predicted by the

Standard Model.

Thus, the observed limits on the branching ratio correspond to the following limits
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on the coupling matrix elements:
√
|Yτe|2 + |Yeτ |2 < 0.0020, and

√
|Yτµ|2 + |Yµτ |2 <

0.0015.

The limits on the branching ratios can also be expressed as the limits on the

off-diagonal Yukawa couplings, Yij [23], where i, j denote the different charged lep-

tons. Early experimental limits on LFV involing τ leptons are expressed as limits

on
√
|Yτ`|2 + |Y`τ |2 [23], as shown in Section 2.8. Limits are usually compared to a

naturalness limit: |Yτ`Y`τ |v2 . mτm`, so that the mass hierachy is preserved without

fine tuning of cancellations of various terms in the Lagrangian [144].

Figures 8.26 show the limits on the couplings Yτ` and Y`τ together with the limits

from the ATLAS Run 1 analysis and known limits from τ → `γ. The upper limits

obtained in the present analysis from direct searches for lepton flavor violating decays

of the Higgs boson at the Large Hadron Collider are about twenty-five times lower

than the indirect predictions.
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Figure 8.26: Limits on the couplings Yτ` and Y`τ together with the limits from AT-
LAS Run 1 analysis and known limits from τ → `γ [23]. Indicated are also limits
corresponding to different BRs (0.01%, 0.1%, 1%, 10% and 50%) and the naturalness
limit |Yτ`Y`τ |v2 . mτm`.
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