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ABSTRACT

CONVOLUTION INEQUALITIES AND APPLICATIONS TO PARTIAL DIFFERENTIAL

EQUATIONS

Matthew Reynolds

July 28, 2020

In this dissertation we develop methods for obtaining the existence of mild solu-

tions to certain partial differential equations with initial data in weighted Lp spaces

and apply them to some examples as well as improve the solutions to some known

PDEs studied extensively in the literature. We begin by obtaining a version of a

Stein-Weiss integral inequality which we will use to obtain general convolution in-

equalities in weighted Lp spaces using the techniques of interpolation. We will then

use these convolution inequalities to make estimates on PDEs that will help us obtain

mild solutions as fixed points of certain contraction mappings. Then Lorentz spaces

will be introduced and interpolation will be used again to obtain convolution inequal-

ities in weighted Lorentz spaces. Finally, the possibility of investigating PDEs with

initial data in weighted Lorentz spaces will be discussed.
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CHAPTER 1

INTRODUCTION

1.1 PRELIMINARIES

We begin with some notation and definitions. Throughout this dissertation we will

frequently refer to Banach spaces. This means the usual normed vector space that

is complete with respect to the metric induced by the norm. Particularly we will be

interested in Banach Spaces in the form of weighted Lp spaces. To this end we begin

by defining the usual Lp space with respect to an arbitrary measure.

Definition 1.1: (Lp spaces) Let u : Rn → C be measurable with respect to the

measure ν. Define a functional, called the p-norm, like so:

‖u‖p =

(∫
Rn
|u|pdν

) 1
p

Then the usual Lp space with respect to the measure ν on Rn is defined as:

Lp(Rn) = {u : Rn → C | ‖u‖p <∞}

There is an analogous more general definition of Lp spaces for arbitrary measure

spaces instead of just Rn but this dissertation will focus on Rn. It’s well known that

Lp spaces are Banach spaces with respect to the p-norm. When Lp spaces are defined

with respect to arbitrary measures, the weighted Lp spaces are in fact a special case

of the usual ones.

Definition 1.2: (Weighted Lp spaces) A weighted Lp space is just a usual Lp
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space where the underlying measure ν is Radon-Nikodym differentiable with respect

to Lebesgue measure.

When w(x) is the Radon-Nikodym derivative of ν we will write w(x)dx in place

of dν. In this dissertation we will concern ourselves mostly with weights of the form

w(x) = (1 + |x|)αp for reasons that become clear later. Therefore we will use two

forms of notation for norms, namely ‖u‖w,p when the underlying measure is w(x)dx

and ‖u‖α,p when w(x) = (1 + |x|)αp. This pattern will be abolished in the chapter

on Lorentz spaces in order to make how certain theorems are being applied more

apparent. In that chapter the distinction will be made clear. Next we define the

convolution of two functions f and g.

Definition 1.3: (Convolution of two functions) The convolution of two measure-

able functions f and g is denoted by f ∗ g(x) and is given by:

f ∗ g(x) =

∫
Rn
f(y)g(x− y)dy

In our study of mild solutions of partial differential equations it will be useful to

obtain bounds on norms of convolutions of the following form:

‖f ∗ g‖θ;a ≤ C‖f‖γ;b‖g‖σ;c

where the constant C is independent of functions f and g. Inequalities of this form are

the convolution inequalities to which we will frequently refer. However the convolution

operator is only a bilinear operator and sometimes we will present theorems about

multilinear operators. In those cases we will use:

T : Lp1,u1 × ...× Lpl,ul(Rn)→ Lp,u(Rn)

2



to mean that T is an l-linear operator from Lp1,u1 × ...× Lpl,ul(Rn) into Lp,u(Rn). If

the norm of the operator is needed it will be stated explicitly.
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CHAPTER 2

A STEIN-WEISS INTEGRAL INEQUALITY WITH NEW WEIGHTS

2.1 A USEFUL INTEGRAL INEQUALITY

Our development of useful convolution inequalities will require obtaining bounds on

norms of operators of the form:

Tλ,α,β(f) =

∫
Rn

f(y)

wβ(x)wλ(x− y)wα(y)
dy

Building on the work of Hardy and Littlewood [1], Stein and Weiss [2] obtained such

bounds when w(x) = |x|α. A simplified proof of this result was offered by Swanson

[3]. In this chapter we will adapt the methods of Swanson to obtain a similar result

of Stein and Weiss for weights of the form w(x) = (1 + |x|)α. We will see these

weights arise naturally in our study of partial differential equations. To this end, for

f ∈ Lp(Rn), define:

Tf(x) =

∫
Rn

f(y)

(1 + |x|)α(1 + |x− y|)λ(1 + |y|)β
dy

The following theorem is the main theorem of this chapter.

Theorem 2.1 Suppose that 1 < p ≤ q < ∞. Then there exists a constant C in-

dependent of f such that ‖Tf‖q ≤ C‖f‖p if and only if the following holds:

a) α + λ > n
q

b) β + λ > n
p′

c) α + β + λ ≥ n
p′

+ n
q

4



d) α + β ≥ 0

e) α + β + λ = n and p = q =⇒ λ < n

The proof of theorem 2.1 will involve writing the operator T as a sum of three oper-

ators T1, T2, and T3 that we estimate individually.

2.2 PROOF OF INEQUALITY

For nonnegative measureable f : Rn → R define:

T1,γ,βf(x) = (1 + |x|)γ
∫
|y|≤|x|

f(y)

(1 + |y|)β
dy

Lemma 2.2: Suppose that 1 < p ≤ q < ∞. Then there is a constant C indepen-

dent of f such that ‖T1,γ,βf‖q ≤ C‖f‖p if and only if γ−β ≤ −n( 1
p′

+ 1
q
) and γ < −n

q
.

First we prove sufficiency for the p = q case. Suppose that γ − β ≤ −n and γ < −n
p
.

‖T1,γ,βf‖p =

(∫
Rn

(
(1 + |x|)γ

∫
|y|≤|x|

f(y)

(1 + |y|)β
dy

)p
dx

)1/p

=

(∫
Rn

(∫
|y|≤|x|

(1 + |x|)γ

(1 + |y|)β
f(y)dy

)p
dx

)1/p

Now we switch to polar coordinates and let y = rω with |y| = r and then apply

Minkowski’s inequality:

‖T1,γ,βf‖p =

(∫
Rn

(∫
Sn−1

(∫ |x|
0

(1 + |x|)γ

(1 + r)β
f(rω)rn−1dr

)
dω

)p

dx

)1/p

≤
∫
Sn−1

(∫
Rn

(∫ |x|
0

(1 + |x|)γ

(1 + r)β
f(rω)rn−1dr

)p

dx

)1/p

dω
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Switching coordinates again using x = sθ, |x| = s and recognizing that

(∫
Sn−1

dθ

)1/p

is a constant yields:

‖T1,γ,βf‖p =

∫
Sn−1

(∫
Sn−1

∫ ∞
0

(∫ s

0

(1 + s)γ

(1 + r)β
f(rω)rn−1dr

)p
sn−1dsdθ

)1/p

dω

≤ C

∫
Sn−1

(∫ ∞
0

(∫ s

0

(1 + s)γ

(1 + r)β
f(rω)rn−1(sn−1)1/pdr

)p
ds

)1/p

dω

Substituting r = st with dr = sdt, applying Minkowski’s inequality, and finally

Fubini’s theorem gives:

‖T1,γ,βf‖p ≤ C

∫
Sn−1

(∫ ∞
0

(∫ 1

0

(1 + s)γ

(1 + st)β
f(stω)sntn−1(sn−1)1/pdt

)p
ds

)1/p

dω

≤ C

∫
Sn−1

∫ 1

0

(∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1ds

)1/p

dtdω

≤ C

∫ 1

0

∫
Sn−1

(∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1ds

)1/p

dωdt (1)

We consider the case the case γ + n > 0. When 0 < t < 1 we have:

(1 + s)γ

(1 + st)β
sn ≤ (1 + s)γ

(1 + st)γ+n
sn ≤

(
1 + s

1 + st

)γ+n

≤ t−γ−n

Applying Holder’s inequality to the integral over Sn−1 and then applying this esti-

mate gives:

∫
Sn−1

(∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1ds

)1/p

dω

≤
(∫

Sn−1

∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1dsdω

)1/p(∫
Sn−1

1p
′
dw

)1/p′
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= C

(∫
Sn−1

∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1dsdω

)1/p

≤ C

(∫
Sn−1

∫ ∞
0

(
f(stω)t−γ−1

)p
sn−1dsdω

)1/p

= Ct−γ−1

(∫
Sn−1

∫ ∞
0

f(stω)psn−1dsdω

)1/p

(2)

Combining (2) with the substitution s = 1
t
r with ds = 1

t
dr gives:

∫
Sn−1

(∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1ds

)1/p

dω

≤ Ct−γ−1

(∫
Sn−1

∫ ∞
0

f(rω)p
rn−1

tn−1
∗ 1

t
drdω

)1/p

= Ct−γ−1−n/p
(∫

Sn−1

∫ ∞
0

f(rω)prn−1drdω

)1/p

= Ct−γ−1−n/p‖f‖p (3)

The assumptions on γ imply that −γ − 1− n/p > −1. Combining this with (1) and

(3) gives:

‖T1,γ,βf‖p ≤ C

∫ 1

0

t−γ−1−n/p‖f‖pdt = C‖f‖p

Alternatively suppose that γ + n ≤ 0. For 0 < t < 1 we have:

(1 + s)γ

(1 + st)β
sn ≤ (1 + s)γ

(1 + st)γ+n
sn ≤ (1 + s)γ+n

(1 + s)γ+n
= 1

Similarly, we apply Holder’s inequality, the above estimate, and again substitute

s = 1
t
r giving:

∫
Sn−1

(∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1ds

)1/p

dω

7



≤ C

(∫
Sn−1

∫ ∞
0

(
f(stω)tn−1

)p
sn−1dsdω

)1/p

≤ C

(∫
Sn−1

∫ ∞
0

(f(rω)tn−1)p
rn−1

tn−1
∗ 1

t
drdω

)1/p

= Ctn−1−n/p‖f‖p

Noting that n− 1− n/p > −1 we obtain:

‖T1,γ,βf‖p ≤ C

∫ 1

0

tn−1−n/p‖f‖pdt = C‖f‖p

Thus the conditions on γ and β are sufficient for the p = q case. We now generalize

and assume 1 < p < q <∞ and that

γ − β ≤ −n
(

1

p′
+

1

q

)
, γ < −n

q

We have that:

(T1,γ,βf(x))q = (1 + |x|)γq
(∫
|y|≤|x|

f(y)

(1 + |y|)β
dy

)q−p(∫
|y|≤|x|

f(y)

(1 + |y|)β
dy

)p
≤ (1 + |x|)γq

(∫
|y|≤|x|

f(y)

(1 + |y|)γ+n(1/p′+1/q)
dy

)q−p(∫
|y|≤|x|

f(y)

(1 + |y|)β
dy

)p
= (1 + |x|)γq+pn−pγ−pn(1/p′+1/q)

(∫
|y|≤|x|

f(y)

(1 + |y|)γ+n(1/p′+1/q)
dy

)q−p

×
(

(1 + |x|)γ+n(1/p′+1/q)−n
∫
|y|≤|x|

f(y)

(1 + |y|)β
dy

)p
(4)

Now, Holder’s inequality and elementary calculus tells us that:

∫
|y|≤|x|

f(y)

(1 + |y|)γ+n(1/p′+1/q)
dy

8



≤ ‖f‖p
(∫
|y|≤|x|

1

(1 + |y|)(γ+n(1/p′+1/q))p′
dy

)1/p′

≤ C‖f‖p(1 + |x|)n/p′−γ−n(1/p′+1/q) (5)

Combining (4) and (5) and recognizing that

γq + pn− pγ − pn(1/p′ + 1/q) + (n/p′ − γ − n(1/p′ + 1/q))(q − p) = 0

we have:

(T1,γ,βf(x))q ≤ C‖f‖q−pp

(
(1 + |x|)γ+n(1/p′+1/q)−n

∫
|y|≤|x|

f(y)

(1 + |y|)β
dy

)p
(6)

Since γ + n(1/p′ + 1/q) − n − β ≤ −n and γ + n(1/p′ + 1/q) − n < −n/p we may

combine (6) with the p = q case to obtain:

‖T1,γ,βf‖q ≤ C

(∫
Rn
‖f‖q−pp

(
(1 + |x|)γ+n(1/p′+1/q)−n

∫
|y|≤|x|

f(y)

(1 + |y|)β
dy

)p
dx

)1/q

≤ C‖f‖1−p/q
p (‖f‖pp)1/q = C‖f‖p

This establishes sufficiency of the conditions on γ and β. To show necessity we

assume the existence of the constant C and consider f ∈ Lp(Rn) defined by f(y) =

(1 + |y|)−
n
p
−ε where 0 < ε < 1. Observe that for |x| > 1:

T1,γ,βf(x) ≥ (1 + |x|)γ
∫

1
2
|x|≤|y|≤|x|

(1 + |y|)−
n
p
−ε−βdy

≥ C min{1, 2
n
p

+ε+β}(1 + |x|)γ−
n
p
−ε−β|x|n

≥ C min{1, 2
n
p

+ε+β}min{1, 2γ−
n
p
−ε−β}|x|γ−

n
p
−ε−β+n

≥ C|x|γ−
n
p
−ε−β+n

where we used the boundedness of ε between 0 and 1 to make the constants inde-

9



pendent of ε. Certainly, we must have ‖T1,γ,βf‖q <∞ and so γ− n
p
− ε−β+n < −n

q

for every 0 < ε < 1 which implies γ − β ≤ −n( 1
p′

+ 1
q
). To establish the necessity of

the condition on gamma we consider f = χ
B(0,1) and observe that for |x| > 1:

T1,γ,βf(x) = (1+|x|)γ
∫
|y|≤|x|

χ
B(0,1)

(1 + |y|)β
dy ≥ (1+|x|)γ

∫
|y|≤1

1

(1 + |y|)β
dy = C(1+|x|)γ

Finally, the existence of C forces γ < −n
q

as desired.

Obtaining the necessary bounds on T2 will make use of the following sequence of

definitions and propositions. These results are well known but for a brief develop-

ment see section 2.8 in [4].

Definition 2.3: The Hardy-Littlewood maximal function Mf of a locally integrable

function f : Rn → R is defined by:

Mf(x) = sup
r>0

r−n
∫
B(x,r)

|f(y)|dy

Proposition 2.4: If 1 < p < ∞ and f ∈ Lp(Rn) then Mf ∈ Lp(Rn) and ‖Mf‖p ≤

Cp,n‖f‖.

Definition 2.5: For 0 < α < n the Riesz potential of order α for each f is given by:

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy

10



Proposition 2.6: If 0 < δ < n, ρ > 0, and f : Rn → R is locally integrable then:

∫
|x−y|≤ρ

f(y)

|x− y|δ
dy ≤ Cn,δρ

n−δMf(x)

The following is called the Sobolev inequality.

Proposition 2.7: Let α > 0, 1 < p < ∞, p < n
α

. Then there is a constant C,

independent of f , such that:

‖Iα(f)‖p∗ ≤ C‖f‖p, p∗ =
np

n− αp

for all f ∈ Lp(Rn).

Now define:

T2,γ,λf(x) = (1 + |x|)γ
∫

1
2
|x|≤|y|≤2|x|

f(y)

(1 + |x− y|)λ
dy

Lemma 2.8: Suppose that q ≥ p. Then ‖T2,−α−β,λf‖q ≤ C‖f‖p if the following are

satisfied:

α + β ≥ 0

α + β + λ ≥ n

(
1

p′
+

1

q

)
α + β + λ = n

(
1

p′
+

1

q

)
=⇒ λ > 0

p = q, α + β + λ = n =⇒ λ < n

Case 1. α+β+λ > n( 1
p′

+ 1
q
). Since α+β ≥ 0 and that 1

2
|x| ≤ |y| ≤ 2|x| =⇒ |x| >

C|x− y| we have that:

T2,−α−β,λf(x) ≤
∫
Rn

f(y)

(1 + |x− y|)α+β+λ
dy

11



Notice that this integral is a convolution of the functions f , and g(x) = 1
(1+|x|)α+β+λ .

Define 1
r

= 1
p′

+ 1
q
. Since 1

q
+ 1 = 1

p
+ 1

r
, Young’s convolution inequality tells us that:

‖T2,−α−β,λf‖q ≤ ‖f‖p‖(1 + |x|)−(α+β+λ)‖r ≤ C‖f‖p

where the last inequality follows from the fact that (α + β + λ)r > n.

Case 2. α + β + λ = n( 1
p′

+ 1
q
), and q > p. In this case we get λ < n for free since

λ ≤ α + β + λ = n( 1
p′

+ 1
q
) < n. Also 1

2
|x| ≤ |y| ≤ 2|x| =⇒ |x − y| ≤ 3|x| =⇒

(1 + |x|)−α−β ≤ C(1 + |x− y|)−α−β. Therefore:

T2,−α−β,λf(x) ≤ C

∫
Rn

f(y)

(1 + |x− y|)α+β+λ
dy ≤ C

∫
Rn

f(y)

|x− y|n( 1
q

+ 1
p′ )
dy

Now just apply the Sobolev inequality with α = n− n
q
− n

p′
to get the result.

Case 3. α + β + λ = n( 1
p′

+ 1
q
), and q = p. We have:

T2,−α−β,λf(x) ≤ |x|λ−n
∫
|x−y|≤3|x|

f(y)

|x− y|λ
≤ CMf(x),

where the last inequality follows from proposition 2.6. Now simply taking the p-norm

and applying proposition 2.4 gives the result.

Define:

T3,γ,βf(x) = (1 + |x|)γ
∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

Lemma 2.9: Suppose that 1 < p ≤ q <∞. Then T3,γ,βf ∈ Lq(Rn), and ‖T3,γ,βf‖q ≤

C‖f‖p if and only if β > n
p′

, and γ − β ≤ −n(1
q

+ 1
p′

).

We begin by proving sufficiency.

12



Case 1. p = q. We have:

‖T3,γ,βf‖p =

(∫
Rn

(∫
|y|≥|x|

(1 + |x|)γ

(1 + |y|)β
f(y)dy

)p
dx

)1/p

We proceed identically to the |y| ≤ |x| case. After the step involving Fubini’s theorem

we obtain:

‖T3,γ,βf‖p ≤ C

∫ ∞
1

∫
Sn−1

(∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1ds

)1/p

dωdt

Subcase 1. β ≥ n. We claim that (1+s)γ

(1+st)β
sn ≤ Ct−n whenever t > 1. If s > 1 we have:

(1 + s)γ

(1 + st)β
sn ≤ (1 + s)β−n

(1 + st)β
sn ≤ C

sβ−nsn

sβtβ
≤ Ct−n

And if 0 ≤ s ≤ 1 then (1 + s)γ ≈ C so that:

(1 + s)γ

(1 + st)β
sn ≤ Csn

(1 + st)β
≤ Csn

(1 + st)n
≤ Csn

sntn
= Ct−n

Now we proceed identically to the |y| ≤ |x| case and and apply Holder’s inequal-

ity to the integral over Sn−1 before applying the previous estimate and making the

substitution s = 1
t
r.

∫
Sn−1

(∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1ds

)1/p

dω

≤ Ct−1

(∫
Sn−1

∫ ∞
0

f(stω)psn−1dsdω

)1/p

≤ Ct−1−n
p ‖f‖p

which ensures the integral over t is finite giving ‖T3,γ,βf‖p ≤ C‖f‖p as desired.
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Subcase 2. n
p′
< β < n. If t > 1 we have:

(1 + s)γ

(1 + st)β
sn ≤ (1 + s)β−n

(1 + st)β
sn ≤ sβ−nsn

(1 + st)β
≤ sβ

sβtβ
= t−β

We again use Holder’s inequality, the previous estimate, and the substitution s = 1
t
r:

∫
Sn−1

(∫ ∞
0

(
(1 + s)γ

(1 + st)β
f(stω)sntn−1

)p
sn−1ds

)1/p

dω

≤ Ctn−β−1

(∫
Sn−1

∫ ∞
0

f(stω)psn−1dsdω

)1/p

≤ Ctn−β−1−n
p ‖f‖p

= Ct
n
p′−β−1‖f‖p

which will integrate over t so that ‖T3,γ,βf‖p ≤ C‖f‖p as desired.

Case q > p. In this case we have:

(T3,γ,βf(x))q = (1 + |x|)γq
(∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

)q−p(∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

)p

= (1 + |x|)γq+np−βp
(∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

)q−p(
(1 + |x|)β−n

∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

)p

≤ (1+|x|)γq+np−βp
(
‖f‖p

(∫
|y|≥|x|

1

(1 + |y|)βp′
dy

) 1
p′
)q−p(

(1 + |x|)β−n
∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

)p

≤ C(1+|x|)γq+np−βp‖f‖q−pp

(∫ ∞
|x|

(1 + r)n−1−βp′dr

) q−p
p′
(

(1 + |x|)β−n
∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

)p

= C(1 + |x|)γq+np−βp‖f‖q−pp

(
(1 + |x|)n−βp′

) q−p
p′
(

(1 + |x|)β−n
∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

)p

= C(1 + |x|)γq+np+
n
p′ (q−p)−βq‖f‖q−pp

(
(1 + |x|)β−n

∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

)p

≤ C‖f‖q−pp

(
(1 + |x|)β−n

∫
|y|≥|x|

f(y)

(1 + |y|)β
dy

)p

14



where we used Holder’s inequality in the first inequality and some basic calculus. Now

just integrate, use the p = q case and raise to the 1
q

to get the result.

Now we show that γ−β ≤ −n(1
q

+ 1
p′

) is necessary. Assume that ‖T3,γ,βf‖p ≤ C‖f‖p,

fix 0 < ε < 1, and suppose that f(x) = (1+ |x|)−
n
p
−ε. Note that f ∈ Lp(Rn) We have:

‖T3,γ,βf‖qq =

∫
Rn

(1 + |x|)γq
(∫
|y|≥|x|

(1 + |y|)−
n
p
−ε−βdy

)q
dx

Obviously the inner integral must be finite for almost all x so we must have β+ n
p

+ε >

n ∀0 < ε < 1. This forces β ≥ n
p′

.

≥
∫
Rn

(1 + |x|)γq
(∫
|x|≤|y|≤2|x|

(1 + |y|)−
n
p
−ε−βdy

)q
dx

≥ 1

2
nq
p

+εq+βq

∫
Rn

(1 + |x|)γq
(∫
|x|≤|y|≤2|x|

(1 + |x|)−
n
p
−ε−βdy

)q
dx

≥ C

2
nq
p

+εq+βq

∫
|x|>1

(1 + |x|)γq−
nq
p
−εq−βq|x|nqdx

≥ C min{1, 2γq−
nq
p
−εq−βq}

2
nq
p

+εq+βq

∫
|x|>1

|x|γq−
nq
p
−εq−βq+nqdx

Since the constants are exponential functions of ε and 0 < ε < 1 they are bounded

away from zero and therefore can be made independent of ε. So we must have:

γq − nq
p
− εq − βq + nq < −n. Letting ε go to zero and rearranging gives: γ − β ≤

−n(1
q

+ 1
p′

).

To show that β = n
p′

is not allowed we will provide a specific function for which

15



the desired inequality fails to hold when β = n
p′

. Consider a function of the form:

f(x) =
∞∑
k=1

Ckχ{2k−1≤|x|≤2k}

It will suffice to select Ck ≥ 0 so that f ∈ Lp(Rn), but T3,γ,βf(x) = ∞ on a set of

non-zero measure. When |x| < 1 we have (1 + |x|)γ ≈ 1. Moreover, |y| ≥ 1 =⇒

(1 + |y|)β ≈ |y|β so that:

T3,γ,βf(x) ≥ C

∫
{|y|≥1}

f(y)

(1 + |y|)β
dy

≥ C
∞∑
k=1

Ck

∫
{2k−1≤|y|≤2k}

1

|y|β
dy

≥ C
∞∑
k=1

Ck2
k(n−β)

Now, ‖f‖pp ≈
∑∞

k=1 C
p
k2nk so with β = n

p′
we will be done if we can find {Ck} so that∑∞

k=1C
p
k2nk <∞ but

∑∞
k=1 Ck2

k n
p =∞. Choosing Ck = 1

k2
nk
p

gives this result.

As stated previously what we’re ultimately trying to achieve are useful bounds on

the norms of the convolution operator which we can use in our analysis of partial

differential equations. In addition to being an important step in proving the neces-

sity of the conditions on the boundedness of the integral operator of this chapter, the

following lemma makes explicit the connection between the integral operator of this

chapter and convolution inequalities of the form we wish to use.

Lemma 2.10: Suppose that the forward direction of the main theorem is true, i.e.

that there is C independent of f such that ‖Tf‖q ≤ C‖f‖p. Then constants indepen-
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dent of f can be found so that:

‖f ∗ g‖−α;q ≤ C‖f‖β;p‖g‖λ;∞

‖f ∗ g‖−λ;1 ≤ C‖f‖β;p‖g‖α;q′

Proof: To get the first inequality observe that:

(1 + |x|)−αf ∗ g(x) = (1 + |x|)−α
∫
Rn
f(y)g(x− y)dy

=

∫
Rn

(1 + |y|)βf(y)(1 + |x− y|)λg(x− y)

(1 + |x|)α(1 + |x− y|)λ(1 + |y|)β
dy

≤ ‖g‖λ,∞
∫
Rn

(1 + |y|)βf(y)

(1 + |x|)α(1 + |x− y|)λ(1 + |y|)β
dy

= ‖g‖λ,∞T [(1 + |x|)βf(x)]

Now just q-norm both sides and apply the hypothesis. The proof of the second in-

equality is virtually identical.

The following important lemma will be proved in the section on weighted Lp space

convolution inequalities. It will be obtained as a necessary condition on the inequal-

ities in that section.

Lemma 2.11: If there is C independent of f and g such that ‖f∗g‖θ;p0 ≤ C‖f‖σ;p1‖g‖γ;p2

then σ + γ ≥ 0.

Since |y| ≤ 1
2
|x| =⇒ |x − y| ≈ |x|, |y| ≥ 2|x| =⇒ |x − y| ≈ |y|, and

1
2
|x| ≤ |y| ≤ 2|x| =⇒ |x| ≈ |y| we have that:

Tf(x) ≈ T1,−α−λ,βf(x) + T2,−α−β,λf(x) + T3,−α,λ+βf(x)

17



so that the forward direction of the main theorem follows immediately from Lemmas

2.2, 2.8, and 2.9. Lemmas 2.2, 2.8, and 2.9 also prove some of the necessary conditions

with the necessity of α + β ≥ 0 following from Lemma 2.10 and 2.11.

2.3 A CLARIFICATION

It’s useful to take a moment to ensure there is no circular reasoning happening in this

chapter and the next. The forward direction of Theorem 2.1 will be used to obtain

convolution inequalities of the form seen in Lemma 2.11 in the next chapter. At that

point we will prove Lemma 2.11 without relying on the backward direction of The-

orem 2.1 so we may use 2.11 in this chapter for the backward direction of Theorem

2.1.
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CHAPTER 3

CONVOLUTION INEQUALITIES IN WEIGHTED Lp SPACES

3.1 A MULTILINEAR INTERPOLATION THEOREM

In this chapter we will use the inequalities obtained from the previous chapter and

the techniques of interpolation of operators in deriving more general convolution in-

equalities that will help us in our analysis of PDEs. The main interpolation theorem

we will use is a multilinear version of the Riesz-Thorin interpolation theorem that

also allows for change of measures. We present a proof whose inspiration is due to

two passing hints in the exercises of [5]. In particular, see Exercises 12 and 13 in

Section 1.6. The structure of the proof will be similar to the classic one and therefore

make use of the Hadamard three lines lemma stated below:

Lemma 3.1 (Hadamard Three Lines Lemma) Let F (z) be a complex valued func-

tion defined on 0 ≤ Re(z) ≤ 1. For 0 ≤ θ ≤ 1 define Mθ = supy∈R |F (θ + iy)|. If F

is bounded and continuous for 0 ≤ Re(z) ≤ 1 and analytic on 0 < Re(z) < 1 then for

all 0 ≤ θ ≤ 1 we have Mθ ≤M1−θ
0 M θ

1 .

Theorem 3.2. Suppose that 0 < θ < 1, 1 < p, q, r <∞ and ∀ 0 ≤ j ≤ l:

1

rj
=

(1− θ)
pj

+
θ

qj

1

r
=

(1− θ)
p

+
θ

q

and that for suitable weight functions ui(x), vi(x), and wi(x):

T : Lp1,u1 × ...× Lpl,ul(Rn)→ Lp,u(Rn)
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T : Lq1,v1 × ...× Lql,ul(Rn)→ Lq,v(Rn)

with norms M0 and M1 respectively (i.e. T is an l-linear operator between two pairs

of spaces) then:

T : Lr1,w1 × ...× Lrl,wl(Rn)→ Lr,w(Rn)

with norm M ≤M1−θ
0 M θ

1 and uj, wj, vj, u, v, w defined analogously to w = u
rj

(1−θ)
pj v

rj
θ
qj .

Proof. We will sometimes use y in place of x to emphasize that the quantity is asso-

ciated with the output spaces above. Define the following:

〈h, g〉 =

∫
Rn
h(y)g(y)dw

Let r′ denote the Hölder conjugate of r. Using the fact that:

‖h‖r,w = sup
‖g‖r′,w=1

|〈h, g〉|

we get:

M = sup
‖fj‖pj,wj=1

‖T (f1, ..., fl)‖r,w = sup
‖fj‖pj,wj=‖g‖r′,w=1

|〈T (f1, ..., fl), g〉|

Due to the density of bounded compactly supported functions in Lp for suitably

weighted Lesbegue spaces, it will suffice to prove that if fi, g are compactly supported

simple functions with ‖fj‖pj ,wj = ‖g‖r′,w = 1 we get:

|〈T (f1, ..., fl), g〉| ≤M1−θ
0 M θ

1

For 0 ≤ Re(z) ≤ 1 define ∀1 ≤ j ≤ l:

1

rj(z)
=

(1− z)

pj
+
z

qj
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1

r′(z)
=

(1− z)

p′
+
z

q′

Let {u(k)
j (x)}, {v(k)

j (x)}, {u(k)(x)}, {v(k)(x)} be increasing sequences of simple func-

tions converging pointwise to ui(x), vi(x), u(x), v(x) respectively. Define w(k)(x),

u(k)(x), v(k)(x) analogously to w. Then define:

φ
(k)
j (x, z) = |fj(x)|

rj
rj(z)

fj(x)

|fi(x)|
w

(k)
j (x)

1
rj(z)u

(k)
i (x)

− 1−z
pj v

(k)
j (x)

− z
qi

ψ(k)(y, z) = |g(y)|
r′
r′(z)

g(y)

|g(y)|
w(k)(y)

1
r′(z)u(k)(y)

− 1−z
p′ v(k)(y)

− z
q′

with the understanding that if any of |fj(x)|, |g(y)| are zero we say the correspond-

ing φ
(k)
j (x, z), ψ(k)(y, z) is zero as well. In the calculations that follow we will make

frequent use of the fact that if a ≥ 0 and x, y ∈ R then |ax+iy| = ax. Define the

following function:

Fk(z) = 〈T (φ
(k)
1 (z), ..., φ

(k)
l (z)), ψ(k)(z)〉

We will show that Fk satisfies the hypotheses of the Three Lines Lemma. Note that

φ
(k)
i , ψ(k) are compactly supported simple functions multiplied by simple functions.

Therefore T (φ
(k)
1 (z), ..., φ

(k)
l (z)) ∈ Lq,v, and ψ(k)(z) ∈ Lq′,v for all k, z. To see that Fk

is analytic on 0 < Re(z) < 1 and continuous on 0 ≤ Re(z) ≤ 1 ∀k check that the

linearity of T allows us to write Fk(z) as a function of z as linear combinations of real

numbers raised to a complex power.

In the calculations that follow we will make frequent use of the fact that for a ∈ R+,

x, y ∈ R we have |ax+iy| = ax. For t ∈ R and ∀ 1 ≤ j ≤ l we have:

1

rj(it)
=

1

pj
− i
(
t

pj
− t

qj

)
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so that:

|φ(k)
j (x, it)| = |fi(x)|

rj
pj w

(k)
j (x)

1
pj u

(k)
j (x)

− 1
qj

We claim that limk→∞ ‖φk(it)‖pj ,uj = 1. Observe:

lim
k→∞
‖φ(k)

j (it)‖pjpj ,uj = lim
k→∞

∫
Rn
|φ(k)
j (x, it)|pjuj(x)dx

= lim
k→∞

∫
Rn
|fj(x)|rjw(k)(x)u

(k)
j (x)−1uj(x)dx

Notice that due to the the compact support of f and the fact that all functions in

sight are simple, the following function is a majorant for the integrand:

|fj(x)|rjw(x)u
(1)
j (x)−1uj(x)

so that we can continue the previous sequence of equalities with:

=

∫
Rn

lim
k→∞
|fj(x)|rjw(k)(x)u

(k)
j (x)−1uj(x)dx

=

∫
Rn
|fj(x)|rjw(x)dx = ‖f‖rjrj ,w = 1

Similarly since:

1

rj(1 + it)
=

1

qj
+ i

(
t

qj
− t

pj

)
we get limk→∞ ‖φ(k)

j (1 + it)‖qj ,vj = 1. Similar arguments give:

lim
k→∞
‖ψ(k)(it)‖p′,u = lim

k→∞
‖ψ(k)(1 + it)‖q′,v = 1

So that for any ε > 0 we can select k and use Hölder’s inequality to bound Fk at the

edges of the strip:

|Fk(it)| ≤ ‖T (φ
(k)
1 (it), ..., φ

(k)
l (it))‖p,u‖ψ(k)(it)‖p′,u ≤M0 + ε
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|Fk(1 + it)| ≤ ‖T (φ
(k)
1 (1 + it), ..., φ

(k)
l (1 + it))‖q,v‖ψ(k)(1 + it)‖q′,v ≤M1 + ε

so that ∀t ∈ R and 0 < θ < 1 the three lines lemma gives us:

|Fk(θ + it)| ≤M1−θ
0 M θ

1

and in particular for t = 0 we get that

|Fk(θ)| = |〈T (f1, ..., fl), g〉| =≤ (M0 + ε)1−θ(M1 + ε)θ

so that by taking suprema over all such functions fj and g, and letting ε go to zero

we get:

M ≤M1−θ
0 M θ

1

3.2 CONVOLUTION INEQUALITIES

One well known convolution inequality we will make use of is Young’s Inequality

presented below along with the lesser known Peetre’s Inequality.

Theorem 3.3: (Young’s Inequality) If f ∈ Lp(Rn) and g ∈ Lq(Rn), p, q, r ≥ 1,

and 1 + 1
r

= 1
p

+ 1
q

then f ∗ g ∈ Lr(Rn) and:

‖f ∗ g‖r ≤ ‖f‖p‖g‖q

Theorem 3.4: (Peetre’s Inequality) If t ∈ R and x, y ∈ Rn, then:

(
1 + |x|2

1 + |y|2

)t
≤ 2|t|(1 + |x− y|2)|t|
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Our methods for obtaining general convolution inequalities will be to apply the mul-

tilinear interpolation theorem to the bilinear convolution operator. For this we will

need two convolution inequalities that satisfy the hypotheses of theorem 3.2 to inter-

polate between. One will be obtained via Young’s inequality and the other will be

obtained using the convolution inequality derived using our version of the Stein-Weiss

inequality in Chapter 2. We will divide our sufficient conditions on the convolution

inequality in the weighted Lp space over three portions.

Theorem 3.5: There exists C independent of f and g so that:

‖f ∗ g‖θ;a ≤ C‖f‖γ;b‖g‖σ;c (7)

whenever the following holds (or the identical set of conditions with the roles of (γ; b)
and (σ; c) switched):

i) 0 < 1 + 1
a
− 1

b
− 1

c
< 1

ii) 1 < b ≤ a <∞, c <∞

iii) γ + σ − θ ≥ n+ n
a
− n

b
− n

c

iv) γ − θ ≥ 0

v) σ − θ, γ + σ > 0

vi) 2σ + γ − θ > n+ n
a
− n

b
− n

c

vii) σ − θ > n
a
− n

c

viii) γ + σ > n− n
b
− n

c

ix) a = b and γ + σ − θ = n− n
c

=⇒ σ < n− n
c

x) a = b =⇒ 1 < c <∞

For easy reference, the following is a restatement of a portion of lemma 2.10 from the
previous section.

Proposition 3.6: There are constants C1 and C2 independent of f and g such that

‖f ∗ g‖−α;q ≤ C1‖f‖β;p‖g‖λ;∞
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‖f ∗ g‖−λ;1 ≤ C2‖f‖β;p‖g‖α;q′

whenever the following holds:

a) 1 < p ≤ q <∞

b) α + λ > n
q

c) β + λ > n
p′

d) α + β + λ ≥ n
p′

+ n
q

e) α + β ≥ 0

f) α + β + λ = n and p = q =⇒ λ < n

Proof of Theorem 3.5: If a = b choose t = 1 + 1
a
− 1

b
− 1

c
= 1 − 1

c
. If a > b choose

1 + 1
a
− 1

b
− 1

c
< t < 1− 1

c
. The hypotheses imply that we may select p′ > 1 so that:

max{n+
n

a
− n
b
− n
c
−(σ−θ), n− n

b
− n
c
, 0} < nt

p′
< min{γ+σ, n− n

b
, n+

n

a
− n
b
− n
c
}

(8)

Choose q so that nt
q

= n+ n
a
− n

b
− n

c
− nt

p′
. Then q and p’ satisfy:

1 +
1

a
− 1

b
− 1

c
= t

(
1

p′
+

1

q

)
(9)

The choice of p′ guarantees that q > 0 and choice of t combined with (9) implies that

1
p′

+ 1
q
≤ 1. Hence 1 < p ≤ q < ∞. Define indices α = − θ

t
, β = γ

t
, λ = σ

t
. It is

readily shown that these indices satisfy a) through e) of proposition 3.3. When a > b

the choice of t and (9) forces 1
p′

+ 1
q
< 1 and so p < q in this case, giving f), satisfied

vacuously. In case a = b our choice of t and (9) gives us
(

1
p′

+ 1
q

)
= 1 and so q = p.

If γ + σ − θ > n+ n
a
− n

b
− n

c
= n− n

c
then α+ β + λ > n and so f) is again satisfied

vacuously. If γ + σ− θ = n+ n
a
− n

b
− n

c
= n− n

c
then α+ β + λ = n and so we must

use ix) to deduce that λ < n and conclude that f) is satisfied in this case as well. We

25



apply proposition 3.6 to obtain:

‖f ∗ g‖ θ
t
;q ≤ C‖f‖ γ

t
;p‖g‖σt ;∞ (10)

Define indices r1, r2, r3:

r1 =
1− t
1
a
− t

q

, r2 =
1− t
1
b
− t

p

, r3 =
1− t

1
c

The choice of t, p, and q guarantees that r1, r2, r3 ≥ 1 and some algebra shows that

1 + 1
r1

= 1
r2

+ 1
r3

so we may apply Young’s Inequality to obtain:

‖f ∗ g‖0;r1 ≤ C‖f‖0;r2‖g‖0;r3 (11)

It is clear that:

1

a
=
t

q
+

1− t
r1

,
1

b
=
t

p
+

1− t
r2

,
1

c
=

t

∞
+

1− t
r3

It’s readily checked that with weights of the form w(x) = (1 + |x|)αp this is sufficient

for the conditions of the main interpolation theorem of this chapter to be satisfied.

So we may interpolate between (10) and (11) using theorem 3.2 to get the result.

Theorem 3.7: There exists C independent of f and g such that:

‖f ∗ g‖θ;a ≤ C‖f‖γ;b‖g‖σ;c (12)

whenever the following holds:

i) 0 < 1 + 1
a
− 1

b
− 1

c
≤ 1

a

ii) b, c > 1

iii) γ + σ − θ ≥ n+ n
a
− n

b
− n

c
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iv) γ + σ − 2θ > n+ n
a
− n

b
− n

c

v) γ + σ ≥ 0

vi) σ − θ, γ − θ > 0

vii) σ − θ > n
a
− n

c

viii) γ − θ > n
a
− n

b

ix) 1 = 1
b

+ 1
c

and σ + γ − θ = n
a

=⇒ θ > −n
a

The case where the right half of condition i) is equality is not trivial but is similar

to the following and therefore left to the reader.

Proof of Theorem 3.7 Suppose i) through ix) and select 1 + 1
a
− 1

b
− 1

c
< t < 1

a
. The

hypotheses imply that if a > 1:

max{n+
n

a
− n

b
− n

c
− (σ − θ), n

a
− n

b
, 0} < min{γ − θ, n− n

b
, n+

n

a
− n

b
− n

c
} < nt

and, if a = 1:

max{n+
n

a
− n

b
− n

c
− (σ − θ), 0} < n− n

b
< min{γ − θ, n+

n

a
− n

b
− n

c
} < nt

So we may select p′ > 1 so the following are simultaneously satisfied:

n

a
− n

b
≤ nt

p′
≤ n− n

b
(13)

nt

p′
< n+

n

a
− n

b
− n

c
(14)

γ − θ > nt

p′
> n+

n

a
− n

b
− n

c
− (σ − θ) (15)

Now select q so that nt
q

= n+ n
a
− n

b
− n

c
− nt

p′
. Together p′ and q satisfy:

t

(
1

p′
+

1

q

)
= 1 +

1

a
− 1

b
− 1

c
(16)
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By (14), q is positive and so t > 1+ 1
a
− 1

b
− 1

c
combined with (16) forces 1

p′
+ 1

q
< 1 and

hence 1 < p < q <∞. It is readily checked that the stated hypotheses and (16) imply

that the indices α = σ
t
, β = γ

t
, and λ = −θ

t
satisfy the hypotheses of Proposition 3.6

and so we conclude:

‖f ∗ g‖ θ
t
;1 ≤ C‖f‖ γ

t
;p‖g‖σt ;q′ (17)

Define indices r1, r2, r3 (We say they are ∞ if the denominators are zero):

r1 =
1− t
1
a
− t

, r2 =
1− t
1
b
− t

p

, r3 =
1− t
1
c
− t

q′

Some algebra shows that 1 + 1
r1

= 1
r2

+ 1
r3

and choice of t and (13) implies that

r1, r2, r3 ≥ 1, so we may apply Young’s Inequality to conclude:

‖f ∗ g‖0;r1 ≤ C‖f‖0;r2‖g‖0;r3 (18)

It is clear that:

1

a
=
t

1
+

1− t
r1

,
1

b
=
t

p
+

1− t
r2

,
1

c
=

t

q′
+

1− t
r3

So we may interpolate between (17) and (18) to get the result.

The following theorem is a generalization of Young’s Inequality to weights of the

form (1 + |x|)α.

Theorem 3.8: There is a constant C independent of the functions f and g such

that:

‖f ∗ g‖θ;a ≤ C‖f‖γ;b‖g‖σ;c

whenever the following hold:
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i) 1 + 1
a
− 1

b
− 1

c
= 0

ii) θ ≤ min{γ, σ}

iii) γ + σ ≥ 0

We will see near the end of the chapter that conditions ii) and iii) are necessary

for the general convolution inequality. Therefore Theorem 3.5 fully characterizes the

boundary case 1 + 1
a
− 1

b
− 1

c
= 0.

Lemma 3.9: Suppose that 1 + 1
a
− 1

b
− 1

c
= 0. Then for all θ ∈ R we have that

there is a constant C independent of f and g so that:

‖f ∗ g‖θ;a ≤ C‖f‖|θ|;b‖g‖θ;c

(Proof of Lemma 3.9) WLOG let’s assume f, g ≥ 0. We will make direct use of

Peetre’s and Young’s Inequalities.

‖f ∗ g‖θ,a =

(∫
|f ∗ g(x)|a(1 + |x|)θadx

) 1
a

≤
(∫ (∫

|f(y)g(x− y)|dy
)a

(1 + |x|)θadx
) 1

a

=

(∫ (∫
|f(y)g(x− y)|(1 + |x|)θdy

)a
dx

) 1
a

so that Peetre’s Inequality gives us:

‖f ∗ g‖θ,a ≤ C

(∫ (∫
|f(y)(1 + |y|)θg(x− y)|(1 + |x− y|)|θ|dy

)a
dx

) 1
a

= C

(∫
f · (1 + |x|)θ ∗ g · (1 + |x|)|θ|adx

) 1
a

= C‖f · (1 + |x|)θ ∗ g · (1 + |x|)|θ|‖a
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≤ C‖f‖θ,b‖g‖|θ|,r

where the last inequality follows from Young’s Convolution Inequality.

(Proof of Theorem 3.8) Without loss of generality assume γ ≥ σ. Then γ ≥ |σ|

and so we apply Lemma 3.9:

‖f ∗ g‖θ;a ≤ ‖f ∗ g‖σ;a ≤ C‖f‖|σ|;b‖g‖σ;c ≤ C‖f‖γ;b‖g‖σ;c

3.3 NECESSARY CONDITIONS

Now we find necessary conditions for the existence of a constant C independent of

the functions f , and g so that:

‖f ∗ g‖θ,p ≤ C‖f‖γ,p0‖g‖σ,p1 (19)

We will see that in an important subcase the necessary conditions meet necessity

up to boundary cases. Our methods will involve assuming the existence of such a

constant and selecting appropriate choices for f and g. To this end observe that if τ ,

ρ > 0 we have that:

τnχB(x0+y0,ρ)
(x) = C

∫
Rn
χ
B(y0,τ)

(x− y)χB(x0+y0,ρ)
(x)dy

= C

∫
Rn
χ
B(x0,τ+ρ)

(y)χB(y0,τ)
(x− y)χB(x0+y0,ρ)

(x)dy

≤ C

∫
Rn
χ
B(x0,τ+ρ)

(y)χB(y0,τ)
(x− y)dy

To obtain the second equality above we observed that:

{y : |x− y − y0| < τ} ∩ {y : |x0 + y0 − x| < ρ} ⊂ {y : |x0 − y| < τ + ρ}

30



The last integral is of the form f ∗g(x), which motivates choosing f(x) = χ
B(x0,τ+ρ)

(x)

and g(x) = χ
B(y0,τ)

(x). The hypothesis tells us there is a constant C independent of

τ , ρ, x0, and y0 so that:

τn‖χB(x0+y0,ρ)
‖θ,p ≤ C‖χB(x0,ρ+τ)

‖γ,p0‖χB(y0,τ)
‖σ,p1

Our task now is to select appropriate values for these parameters in order to obtain

necessary conditions on p, p0, p1, θ, γ, and σ. To this end we observe by direct

calculation that in general ‖χB(α,ρ)
‖α,p ≈ |x0|αρ

n
p when |x0| ≥ 2 and ρ < 1

2
|x0| and

then impose the following restrictions:

ρ <
1

2
|x0 + y0|, ρ+ τ < |x0|, τ < |y0|, |x0 + y0| ≥ 2, |x0| ≥ 2, |y0| ≥ 2 (20)

so that the convolution inequality becomes:

τnρ
n
p |x0 + y0|θ ≤ C(ρ+ τ)

n
p0 |x0|γτ

n
p1 |y0|σ (21)

The restrictions on the parameters allow for |x0| = |y0| = |x0 + y0| = 2 and ρ = τ so

that (7) reduces to:

ρn+n
p ≤ Cρ

n
p0

+ n
p1

The constant C must be independent of ρ and this inequality must continue to hold

for small ρ which forces:

1 +
1

p
− 1

p0

− 1

p1

≥ 0 (22)

Now take |x0| = |y0| to be large with |x0 + y0| = 2 and let ρ = τ be fixed and small

so that the restrictions (10) are still satisfied. Then using (7) we see that there must

be a constant C independent of |x0| so that C ≤ |x0|γ+σ. Since we are free to take
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|x0| as large as we like:

γ + σ ≥ 0 (23)

Remark 3.10: Obtaining (23) establishes Lemma 2.11 in the previous chapter.

Now suppose that |x0 + y0| = |x0|, y0 = 2, τ = 1
2

and ρ is fixed. Then (7) again

tells us there must be a constant C independent of |x0| so that |x0|θ ≤ C|x0|γ. Since

we’re still free to take |x0| large, we must have θ ≤ γ and similarly θ ≤ σ which gives

the necessary condition:

θ ≤ min{γ, σ} (24)

Now if we select ρ = 1
4
|x0| and take |x0| → ∞ we get:

γ − θ ≥ n

p
− n

p0

(25)

and similarly with ρ = 1
4
|y0| and |y0| → ∞:

γ − σ ≥ n

p
− n

p1

(26)

By selecting |x0 + y0| = |x0| = |y0| and ρ = τ = 1
4
|x0| and again taking |x0| → ∞ we

get:

n+
n

p
− n

p0

− n

p1

≤ γ + σ − θ (27)

Finally, take |x0| = |y0|, |x0 + y0| = 2, τ = 1
4
|x0| and fix p to get:

n− n

p0

− n

p1

≤ γ + σ (28)

We’ve established the following theorem:

Theorem 3.11: The inequalities (22) through (28) are necessary for the existence of
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a constant C independent of f and g so that (19) holds.

It’s not difficult to check that these necessary conditions do not quite meet suffi-

ciency in the general case. However we will see in a later section that a special case

of our weighted Lp space convolution inequality will be of particular importance, and

in that case our conditions reduce to a complete characterization up to boundary

inequalities. We present that special case now. The following corollary is just the

sufficient conditions on the general case with p = p0 = p1.

Corollary 3.12: Let 1 < r < ∞. Then there is a constant C independent of the

functions f and g so that ‖f ∗ g‖γ,r ≤ C‖f‖α,r‖g‖β,r when:

i) α + β − γ > n
r′

ii) α− γ, β − γ, α + β > 0

iii) α + β > n
r′
− n

r

Moreover these sufficient conditions are necessary up to boundary cases, i.e. i), ii),

and iii) are necessary if you replace > with ≥.

To see that these conditions are necessary up to boundary conditions, one need only

replace p, p0, and p1 with r in the necessary conditions on the general case. In later

sections we will use this subcase to help us find solutions to PDE with initial data in

weighted Lp spaces. We will see that at least in the case of the chosen weighted Lp

spaces the question of sufficiency at the boundary cases becomes irrelevant. Hence

the corollary as stated is already sufficient for obtaining the best possible solutions

given the techniques used.
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CHAPTER 4

FORMULATION OF A MILD SOLUTION

4.1 PARTIAL DIFFERENTIAL EQUATION FORMULATION

In this chapter we begin our discussion of the types of partial differential equations

we are interested in as well as develop the notion of a mild solution. To this end let

W be a Banach space with A an operator on W and observe the following equation:

∂tu+ Au = F (u, t), u(t0) ∈ W, 0 ≤ t0 ≤ T (29)

We will consider these equations as evolutionary equations in W . Note that in this

equation the partial derivative is a W valued derivative with respect to t and F maps

into W , so that this equation makes sense. This means that solutions to (29) will be

W -valued functions of the real variable t. The solutions we will be interested in will

be of a form known as a mild solution which we will develop shortly. For this we need

some definitions.

4.2 FORMULATION OF MILD SOLUTION

Definition 4.1: Let W be a Banach space and L(W ) the collection of bounded

linear operators on W . We say that T (t) is a semigroup of bounded linear op-

erators on W if T (t) ∈ L(W ) ∀t ≥ 0, T (0) = I, and T (t)T (s) = T (t+ s) ∀s, t ≥ 0.

Definition 4.2: We say that T (t) is a C0-semigroup if in addition to being a

semi-group of bounded linear operators on W , we have continuity from the right with

respect to the norm topology on W ; i.e. that: limt→0+ T (t)w = w ∀w ∈ W .
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Example 4.3: Let W be an Lp space with respect to Lebesgue measure. Then

for w ∈ W define T (t)w = e−|x|
2tw.

Definition 4.4: Let T (t) be a C0-semigroup on W . The infinitesimal genera-

tor of T (t) is an operator A on W with domain D satisfying:

D(A) = {w ∈ W : limh→0+
T (h)− I

h
w ∈ W}

Aw = limh→0+
d+(T (t+ h)w)

dt

∣∣∣∣
t=0

In other words Aw is the righthand W valued derivative of T (t)w evaluated at t = 0.

Example 4.5: If W is an Lp space with respect to Lebesgue measure and Aw = |x|2w

then −A generates e−|x|
2t. This motivates the notation T (t) = e−At when −A is the

infinitesimal generator of T (t). We will return to infinitesimal generators of this form

in later sections.

We are now prepared to formally state the definition of a mild solution to the initial

value problem.

Definition 4.6: (Mild Solution) Let −A be the infinitesimal generator of a C0-

semigroup e−At on W . We say that u is a mild solution in W on the interval

[t0, T ] ⊂ R+ of the initial value problem (29) if u : [t0, T ] → W is continuous with

respect to the norm topology on W and a solution of the integral equation:

u(t) = e−A(t−t0)u0 +

∫ t

t0

e−A(t−s)F (u(s), s)ds, t0 ≤ t ≤ T
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Henceforth we will assume t0 = 0. It’s important to note that the integral is a W val-

ued integral in the Bochner sense so that all terms in the above equation are W valued

functions of t. Our methods will involve demonstrating that under certain conditions,

the integral equation above is a contraction mapping of the form Su = g + b(u, u) to

which we can apply the Banach fixed point theorem to obtain solutions. To this end

we state the following existence theorem.

4.3 THE EXISTENCE THEOREM

Theorem 4.7: (Existence Theorem) Let Σ be a Banach space with norm ‖ · ‖Σ

and let q : Σ→ [0,∞) be a subaddtive functional satisfying q ≤ ‖ · ‖Σ. Suppose g ∈ Σ

and b : Σ × Σ → Σ is bilinear. Let: E = {u ∈ Σ | q(u − g) ≤ q(g)} If there exists

0 < θ < 1
2

such that:

‖b(u, v)‖Σ ≤ θq(v)

whenever u ∈ E and v ∈ Σ, and

‖b(u, v)‖Σ ≤ θq(u)

whenever u ∈ Σ and v ∈ E then there is a unique u ∈ Σ satisfying u = g + b(u, u).

See [12] for a proof.
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CHAPTER 5

FINDING A MILD SOLUTION TO A SIMPLE PDE

5.1 PRESENTING A SIMPLE PDE

In this chapter we will use a simple initial value problem in one spatial dimension to

demonstrate our methods for finding mild solutions to partial differential equations.

The techniques follow the methods used by Animikh Biswas and this dissertation

author’s advisor, David Swanson in their analysis of the Kuramoto-Sivashinsky equa-

tion [12]. The methods used here differ in that we will employ our own improved

convolution inequalities over the simple convolution inequalities used in their original

analysis. We will look more closely at the KSE in the next chapter. Consider the

following:

∂

∂t
u =

∂2

∂x2
u+

1

2

∂

∂x
u2 + u2 u0 = u(x, 0)

where solutions are of the form u(x, t). These can be interpreted as mappings that

assign to each value of t a function of a single real variable x. We will look for mild

solutions in Fourier space with initial data in W = Lpα(R). The membership of the

Fourier transform of u0 in Lpα is related to the smoothness of u0. In particular if u is

a tempered distribution then û ∈ L2
α(R) if and only if u is in the Sobolev space Hα.

A lower value of α corresponds to fewer orders of differentiability and hence allows

for rougher initial data. We proceed by applying the Fourier transform.

∂

∂t
û = −x2û+ û ∗ ûx + û ∗ û

∂

∂t
û = −x2û+

∫
R
ûx(z)û(x− z)dz +

∫
R
û(z)û(x− z)dz

∂

∂t
û = −x2û+

∫
R
(1 + iz)û(z)û(x− z)dz
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which suggests the definition of the operator A and the bilinear operator B so that

we can write this as ut = −Au + B(u, u) after omitting the hats for convenience.

After converting to integral form this is in the form of the equation satisfied by the

mild solutions.:

u(t) = e−tAu0 −
∫ t

0

e−(t−s)AB(u, u)(s)ds (30)

Definition 5.1: Let φ(x) be a nonnegative function satisfying φ(x + y) ≤ φ(x) +

φ(y) +C. We say that a solution u of (30) on the time interval 0 ≤ t ≤ T is Gevrey

regular if:

sup
0≤t≤T

‖u(t)‖tφ,α,p <∞,

where the generalized Gevrey norm used above is defined with respect to the function

φ in n dimensions by:

‖u(t)‖φ,w,p =

(∫
Rn
epφ(x)|u(t)|pw(x)dx

) 1
p

Take note of the fact that these norms are computed with respect to the space variable

x and not the time variable so that ‖u(t)‖tφ,α,p still depends on t. Gevrey regularity

guarantees that the solutions decrease rapidly in time so as to counteract the growing

exponential factor. It’s particularly useful for obtaining estimates on radii of analyt-

icity of solutions in terms of the initial data. We now state and prove the existence

of a Gevrey regular solution to (30).

5.2 SOLVING A SIMPLE PDE

Theorem 5.2: (Existence of a Mild Solution) Let α > 1
p′

and u0 ∈ Lαp (R) with

1 < p < ∞. There exists T > 0 and a corresponding u ∈ C([0, T ], Lαp (R)) with

u(0) = u0 satisfying (30). Moreover u is Gevrey regular.

38



In the propositions and theorems that follow assume that C is always independent of

the functions u and v and the variable T after it is introduced. Occasionally this will

be restated for emphasis along with any other dependencies or lack thereof that are

important.

Theorem 5.3. There exists C ≥ 0 such that:

‖B(u, v)‖φ,σ,p ≤ C‖u‖φ,γ+1,p‖v‖φ,γ+1,p

so long as:

1 < p <∞ 2γ − σ > 1

p′
, γ > σ, γ > 0, 2γ >

1

p′
− 1

p

Proof. The stated conditions are a special case of our own convolution inequality.

Thus there exists C ≥ 0 such that:

‖u ∗ v‖σ,p ≤ C‖u‖γ,p‖v‖γ,p

Note that ‖B(u, v)‖σ,p = ‖u ∗ (1 + ix)v‖σ,p. Apply the convolution inequality and use

the fact that the norm is nondecreasing in γ and |1 + ix|p ≤ (1 + |x|)p to obtain:

‖B(u, v)‖σ,p ≤ C‖u‖γ+1,p‖v‖γ+1,p

Finally, we extend to the Gevrey norm using an identical argument to the one in

[12].

Lemma 5.4: ∀η > 0 and θ ∈ R we have:

sup
x∈R

e−ηx
2

(1 + |x|)θ ≤ Cθ(1 + η−
θ
2 )
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Proof. It’s clear when θ ≤ 0 because the lefthand side is bounded by 1. Otherwise

note that e−ηx
2
(1 + |x|)θ ≤ Cθe

−ηx2(1 + |x|θ) ≤ Cθ(1 + e−ηx
2 |x|θ). Now apply the first

derivative test to the final term.

Theorem 5.5. Under the same conditions as Theorem 5.3 we have:

‖e−ηAB(u, v)‖φ,δ,p ≤ C(1 + η−
δ
2

+σ
2 )‖u‖φ,γ+1,p‖v‖φ,γ+1,p ∀η > 0 ∀δ ∈ R

with the constant independent of η.

Proof.

e−pηx
2

(1 + |x|)pδ = e−pηx
2

(1 + |x|)pδ−σp(1 + |x|)σp ≤ Cδ,σ,p(1 + η−
pδ
2

+σp
2 )(1 + |x|)σp

where the last inequality follows from the previous estimate. Now:

‖e−ηAB(u, v)‖φ,δ,p =

(∫
R
epφe−pηx

2

(1 + |x|)δp|B(u, v)|pdx
) 1

p

≤ C(1 + η−
δ
2

+σ
2 )

(∫
R
epφ(1 + |x|)σp|B(u, v)|pdx

) 1
p

= C(1 + η−
δ
2

+σ
2 )‖B(u, v)‖φ,σ,p

≤ C(1 + η−
δ
2

+σ
2 )‖u‖φ,γ+1,p‖v‖φ,γ+1,p

Theorem 5.6 ∀0 ≤ s ≤ t ≤ ∞ and ∀α ∈ R we have:

‖e−(t−s)Au‖tφ,α,p ≤ eC(t−s)‖e−
(t−s)

2
Au‖sφ,α,p

Proof. Define C = 1
2

supx∈R(2φ(x)− |x|2). Since φ is subadditive up to a constant, it

has sublinear growth and so the squared term guarantees C <∞. Some rearranging
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guarantees that:

|x|2 − φ(x) ≥ |x|
2

2
− C

And so:

e−p(t−s)(|x|
2−φ(x)) ≤ e−p(t−s)(

|x|2
2
−C) = e−p

(t−s)
2
|x|2epC(t−s)

Therefore:

‖e−(t−s)Au‖ptφ,α,p =

∫
R
e−p(t−s)|x|

2

eptφ(x)(1 + |x|)αp|u(x)|pdx

=

∫
R
epsφ(x)e−p(t−s)|x|

2+ptφ(x)−psφ(x)(1 + |x|)αp|u(x)|pdx

=

∫
R
epsφ(x)e−p(t−s)|x|

2+p(t−s)φ(x)(1 + |x|)αp|u(x)|pdx

=

∫
R
epsφ(x)e−p(t−s)(|x|

2−φ(x))(1 + |x|)αp|u(x)|pdx

≤
∫
R
epsφ(x)e−p(t−s)(

|x|2
2
−C)(1 + |x|)αp|u(x)|pdx

= epC(t−s)
∫
R
epsφ(x)e−p

(t−s)
2
|x|2(1 + |x|)αp|u(x)|pdx

= epC(t−s)‖e−
(t−s)

2
Au‖psφ,α,p

Theorem 5.7. ∀t ≥ 0, α, β ∈ R we have:

‖e−tAu‖tφ,α+β,p ≤ eCtC(1 + t−
β
2 )‖u‖α,p

where the constants do not depend on t.

Proof. First we apply Theorem 5.6 with s = 0:

‖e−tAu‖tφ,α+β,p ≤ eCt‖e−
t
2
Au‖α+β,p
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Now observe that:

e−
pt
2
|x|2(1 + |x|)(α+β)p = e−

pt
2
|x|2(1 + |x|)βp(1 + |x|)αp

≤ C

(
1 +

pt

2

−βp
2

)
(1 + |x|)αp

= C(1 + t−
βp
2 )(1 + |x|)αp

Therefore:

‖e−
t
2
Au‖α+β,p =

(∫
R
e−

pt
2
|x|2(1 + |x|)(α+β)p|u(x)|pdx

) 1
p

≤ C(1 + t−
β
2 )

(∫
R
(1 + |x|)αp|u(x)|pdx

) 1
p

= C(1 + t−
β
2 )‖u‖α,p

In order to prove the main theorem of this section we will construct an appropriate

Banach space and associated components of the existence theorem, and then use the

above estimates to show that the hypotheses of the existence theorem are satisfied.

Proof. (Theorem 5.2) Let α > 1
p′

and u0 ∈ Lpα(R). Select β > 0 and σ ∈ R so that

the following holds:

2(α + β − 1)− σ > 1

p′
, α + β − 1 > σ, α + β − 1 > 0, 2(α + β − 1) >

1

p′
− 1

p

β < 1,
α

2
− σ

2
< 1,

α + β

2
− σ

2
< 1,

σ

2
− α

2
+ 1− β > 0

Let’s convince ourselves that this is possible and that the requirement on α can’t

be relaxed. We will begin by eliminating σ. Rearranging the conditions shows that
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ultimately σ must satisfy:

max{α− 2, α + β − 2, α− 2 + 2β} < σ < min{2(α + β − 1)− 1

p′
, α + β − 1}

which means that choosing a valid σ requires choosing B > 0 so that:

α− 2 + 2β < min{2α + 2β − 2− 1

p′
, α + β − 1}

α + β − 1 > 0, α + β − 1 >
1

2p′
− 1

2p
, β < 1

The first line combined with 0 < β < 1 reduces to α > 1
p′

. Now we can rearrange and

eliminate β. The second line gives the following conditions:

max{0, 1− α, 1

2p′
− 1

2p
− α + 1} < β < 1

but this interval of validity for β is already guaranteed nonempty due to the require-

ment that α > 1
p′

. Define g(t) = e−Atu0. We claim that:

sup
0≤t≤T

‖g(t)‖tφ,α,p ≤ eCT‖u0‖α,p <∞ (31)

sup
0≤t≤T

t
β
2 ‖g(t)‖tφ,α+β,p ≤ CeCT (T

β
2 + 1)‖u0‖α,p <∞ (32)

To get (31) apply Theorem 5.6 with s = 0 and use the fact that sup0≤t≤T e
− t

2
|x|2 = 1:

‖g(t)‖tφ,α,p = ‖e−tAu0‖tφ,α,p ≤ eCt‖e−
t
2
Au0‖α,p ≤ eCT‖u0‖α,p

To get (32) we again apply Theorem 5.6 with s = 0:

‖g(t)‖tφ,α+β,p = ‖e−tAu0‖tφ,α+β,p ≤ eCt‖e−
t
2
Au0‖α+β,p
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Then we use the fact that on the given interval, 1 ≤ e
t
2
φ(x) and then Theorem 5.7 to

get:

‖e−
t
2
Au0‖α+β,p ≤ ‖e−

t
2
Au0‖ t

2
φ.α+β,p ≤ CeCt(1 + t−

β
2 )‖u0‖α,p

Now just multiply by t
β
2 on both sides. Define:

‖u||Σ′ = sup
0≤t≤T

t
β
2 ‖u‖tφ,α+β,p

‖u‖Σ = max{ sup
0≤t≤T

‖u‖tφ,α,p, sup
0≤t≤T

t
β
2 ‖u‖tφ,α+β,p}

And consequently define the Banach space:

Σ = {u ∈ C([0, T ], Lαp (R)) | ‖u‖Σ <∞}

(31) and (32) guarantee that g ∈ Σ and that:

‖g||Σ′ ≤ CeCT (T
β
2 + 1)‖u0‖α,p (33)

Define:

b(u, v) = −
∫ t

0

e−(t−s)AB(u, v)(s)ds

We claim that if u, v ∈ Σ then b(u, v) ∈ Σ and:

‖b(u, v)‖Σ ≤ CeCT (T 1−β
2 + T 1−β + T

σ
2
−α

2
+1−β)‖u‖Σ′‖v||Σ′ (34)

To see this let δ ∈ R, 0 < s < t < T , and write γ = α+ β − 1. Then by Theorem 5.5

we have:

‖e−
1
2

(t−s)AB(u, v)(s)‖sφ,δ,p ≤ C(1 + (t− s)−
δ
2

+σ
2 )‖u‖sφ,γ+1,p‖v‖sφ,γ+1,p
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≤ C(1 + (t− s)−
δ
2

+σ
2 )s−β‖u‖Σ′‖v‖Σ′

Now we use the triangle inequality, Theorem 5.6, and then the previous inequality:

‖b(u, v)‖tφ,δ,p ≤
∫ t

0

‖e−(t−s)AB(u, v)‖tφ,δ,pds

≤ eCT
∫ t

0

‖e−
(t−s)

2
AB(u, v)‖sφ,δ,pds

≤ CeCT‖u‖Σ′‖v‖Σ′

∫ t

0

(1 + (t− s)−
δ
2

+σ
2 )s−βds

This integral converges when β < 1 and δ
2
− σ

2
< 1 and is then bounded by a constant

times (t1−β + t
σ
2
− δ

2
−β+1). (To see this substitute s = rt.) The hypotheses guarantee

that these two conditions are met with δ = α and δ = α + β. Therefore we get the

following estimates:

‖b(u, v)‖tφ,α,p ≤ CeCT (t1−β + t
σ
2
−α

2
−β+1)‖u‖Σ′‖v‖Σ′

and

t
β
2 ‖b(u, v)‖tφ,α+β,p ≤ CeCT (t1−

β
2 + t

σ
2
−α

2
+1−β)‖u‖Σ′‖v‖Σ′

Since the conditions on α, β, and σ guarantee that the exponents on t are positive, we

can combine these two estimates to get (34). Define E = {u ∈ Σ | ‖u−g‖Σ′ ≤ ‖g‖Σ′}

Now suppose u ∈ E and v ∈ Σ. Then:

‖u‖Σ′ ≤ ‖u− g‖Σ′ + ‖g‖Σ′ ≤ 2‖g‖Σ′

So that from (34) and then (33) we get:

‖b(u, v)‖Σ ≤ CeCT (T 1−β
2 + T 1−β + T

σ
2
−α

2
+1−β)‖g‖Σ′‖v||Σ′

≤ CeCT (T
β
2 + 1)(T 1−β

2 + T 1−β + T
σ
2
−α

2
+1−β)‖u0‖α,p‖v||Σ′
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And likewise when u ∈ Σ and v ∈ E we get:

‖b(u, v)‖Σ ≤ CeCT (T
β
2 + 1)(T 1−β

2 + T 1−β + T
σ
2
−α

2
+1−β)‖u0‖α,p‖u‖Σ′

Since C has no T dependence we can just choose T small enough so that:

θ = CeCT (T
β
2 + 1)(T 1−β

2 + T 1−β + T
σ
2
−α

2
+1−β)‖u0‖α,p <

1

2

Now apply Theorem 4.7 with q(·) = ‖ · ‖Σ′ to obtain u ∈ Σ satisfying u = g + b(u, u)

which is precisely a solution to (30) as desired.
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CHAPTER 6

IMPROVED SOLUTIUONS TO THE KURAMOTO-SIVASHINSKY EQUATION

6.1 THE KURAMOTO-SIVASHINSKY EQUATION

We turn our attention to a more established PDE in the literature. In this section

we will apply the techniques developed in the the previous section to the Kuramoto-

Sivashinsky equation (KSE). This section will serve as an improvement to the results

obtained by David Swanson and Animikh Biswas in their analysis of the KSE [12].

The KSE is:

ut + ∆2u+ ∆u+
1

2
|∇u|2 = 0 u(x, 0) = u0(x) (35)

with u(x, t) defined on Rn × [0, T ].

6.2 THE RESULT TO BE IMPROVED

In their paper, Swanson and Biswas found conditions on the parameter α under

which the KSE has Gevrey regular mild solutions in Fourier Space with initial data

in Lpα(Rn) just as was done with the one dimensional PDE in the previous section.

Using convolution inequalities obtained via simple integral estimates, the sufficient

conditions for existence were that max{ n
2p′
− 1, n

p′
− 2} < α < n

p′
+ 1. In this section

we will employ our improved convolution inequalities obtained via interpolation to

completely remove the upper bound on α and decrease the lower bound. To this end

we apply the Fourier transform to (35) as was done in the previous section. Then we

use properties of the Fourier transform and omit the hats for convenience and get:

∂

∂t
u(x, t) + |x|4u(x, t)− |x|2u(x, t)− 1

2

∫
Rn
z · (x− z)u(z)u(x− z)dz = 0 (36)
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We define the operator A by: Au(x, t) = (|x|4 − |x|2)u(x, t) and B(u, v) defined by:

B(u, v) = −1

2

∫
Rn
z · (x− z)u(z)u(x− z)dz

so that (36) can be expressed as:

∂

∂t
u(x, t) + (A2 − A)u(x, t) +B(u, u)(x, t) = 0

so that integral form for the formulation of the mild solution with initial condition

u0 = u(0) is:

u(t) = e−t(A
2−A)u0 −

∫ t

0

e−(t−s)(A2−A)B(u, u)(s)ds (37)

We now state our main result for this section:

Theorem 6.1: (Existence of a Mild Solution) Let α > max{−1, n
p′
−2, n

2p′
− n

2p
−1}

and u0 ∈ Lpα(Rn) with 1 < p < ∞. There exists T > 0 and a corresponding

u ∈ C([0, T ], Lαp (R)) with u(0) = u0 satisfying (37). Moreover u is Gevrey regu-

lar.

The proofs for virtually all of the propositions that follow are nearly identical to

the previous section with a few minor changes. Therefore many proofs and details

will be omitted in this section. For the rest of this section assume that φ denotes a

non-negative sub-additive function up to a constant; i.e. that there exists C such that

for all x, y ∈ Rn, we have that φ(x+ y) ≤ φ(x) + φ(y) + C. Also in the propositions

and theorems that follow assume that C is always independent of the functions u

and v and the variable T after it is introduced. Occasionally this will be restated for

emphasis along with any other dependencies or lack thereof that are important.
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Proposition 6.2: Suppose that 1 < p < ∞. There exists C independent of η, u

and v such that:

‖e−η(A2−A)B(u, v)‖φ,δ,p ≤ Ce
η
2 (1 + η−

δ
4

+σ
4 )‖u‖φ,γ+1,p‖v‖φ,γ+1,p, ∀δ ∈ R, η > 0 (38)

whenever the following conditions are satisfied:

2γ − σ > n

p′
, γ > σ, γ > 0, 2γ >

n

p′
− n

p

Similarly to the previous section, (38) was obtained by using convolution inequali-

ties. Notice that again, the conditions are exactly a sub-case of the corollary of our

own weighted Lp space convolution inequality with the appropriate indices replaced.

Proposition 6.2 is analogous to Lemma 16 in [12]. Note the more general conditions

obtained with our improved convolution inequalities. Our improvement of their re-

sults hinges on this proposition.

Proposition 6.3: ∀0 ≤ s ≤ t ≤ ∞ and ∀α ∈ R we have:

‖e−(t−s)(A2−A)u‖tφ,α,p ≤ eC(t−s)‖e−
(t−s)

2
(A2−A)u‖sφ,α,p

with the constant dependent upon at most φ.

Proposition 6.4: ∀t ≥ 0, α, β ∈ R we have:

‖e−t(A2−A)u‖tφ,α+β,p ≤ eCtC(1 + t−
β
4 )‖u‖α,p

where the constants do not depend on t.
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6.2 SOLVING THE KURAMOTO-SIVASHINSKY EQUATION

Proof of Theorem 6.1. Suppose that α > max{−1, n
p′
− 2, n

2p′
− n

2p
− 1} and

u0 ∈ Lpα(Rn) with 1 < p < ∞. By arguing as in the previous session it can be

shown these conditions on α are necessary and sufficient for selecting β and σ so that

the following is satisfied:

2(α + β − 1)− σ > n

p′
, α + β − 1 > σ, α + β − 1 > 0, 2(α + β − 1) >

n

p′
− n

p

0 < β < 2,
α + β

4
− σ

4
< 1,

α

4
− σ

4
< 1,

σ

4
− α

4
+ 1− β

2
> 0 (39)

Like in the previous chapter, the first line of inequalities guarantees we will have

Proposition 6.2 at our disposal with γ = α + β − 1 and the second line guarantees

that the appropriate integrals converge and that we have the necessary control in

selecting θ < 1
2

for the existence theorem. To this end let T > 0 be arbitrary and

define g(t) = e−(A2−A)tu0. Then define Σ and Σ′ like so:

‖u||Σ′ = sup
0≤t≤T

t
β
4 ‖u‖tφ,α+β,p

‖u‖Σ = max{ sup
0≤t≤T

‖u‖tφ,α,p, sup
0≤t≤T

t
β
4 ‖u‖tφ,α+β,p}

And then the Banach space:

Σ = {u ∈ C([0, T ], Lαp (R)) | ‖u‖Σ <∞}

Note that there are some slight changes in these norms as compared to the previous

section. Propositions 6.3 and 6.4 can be used to show that g ∈ Σ and there exists C
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and C ′ independent of T so that:

‖g‖Σ′ ≤ CeC
′T (T

β
4 + 1)‖u0‖α,p

Now for 0 ≤ t ≤ T define:

b(u, v) = −
∫ t

0

e−(t−s)(A2−A)B(u, v)(s)ds

By repeating the procedure of the previous section, the second line of the conditions

(39) can be used along with Propositions 6.2 and 6.3 to obtain the following propo-

sition:

Proposition 6.5: If u, v ∈ Σ then b(u, v) ∈ Σ and there are constants C and

C ′ independent of T such that:

‖b(u, v)‖Σ ≤ CeC
′T (T 1−β

4 + T 1−β
2 + T

σ
4
−α

4
+1−β

2 )‖u‖Σ′‖v||Σ′ (40)

Once again we define E = {u ∈ Σ | ‖u − g‖Σ′ ≤ ‖g‖Σ′} and use Proposition 6.5 to

obtain θ needed for the existence theorem:

θ = CeC
′T (T

β
4 + 1)(T 1−β

4 + T 1−β
2 + T

σ
4
−α

4
+1−β

2 )‖u0‖α,p

which due to the exponents on T being positive, can be made less than 1
2

by selecting

T > 0 small enough. Applying the Theorem 4.7 gives u ∈ Σ satisfying (37), which is

a Gevrey regular mild solution to the KSE as desired.

51



CHAPTER 7

CONVOLUTION INEQUALITIES IN WEIGHTED LORENTZ SPACES

7.1 WHY LORENTZ SPACES?

In this chapter we define and derive convolution inequalities involving weighted Lorentz

spaces in hopes that we may investigate solutions to partial differential equations

with initial data in Lorentz spaces. Lorentz spaces are generalizations of the usual

Lp spaces and much of this author’s understanding of how they work is due to the

masters thesis of Erik Kristiansson [6]. The convolution inequalities obtained in this

chapter for Lorentz spaces with our weights of the form w(x) = (1 + |x|)αp were

studied by Kerman [7] for weights of the form w(x) = |x|αp. We will employ very

similar methods here; i.e. we will derive convolution inequalities of the form seen

previously in this dissertation, again using techniques from interpolation. There are

numerous ways to define the Lorentz spaces but here we will present the definition

used by Kerman.

7.2 DEFINITION AND FACTS OF LORENTZ SPACES

Definition 7.1:(Weighted Lorentz Spaces) We define the weighted Lorentz or Lp,q,w

spaces to be the set of Lebesgue measurable functions on Rn for which the following

is finite:

‖f‖p,q;w =

(
q

∫ ∞
0

sq−1µf (s)
q
pds

) 1
q

, 1 < p <∞, 1 ≤ q <∞

sups>0sµf (s)
1
p , 1 < p <∞, q =∞
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where:

µf (s) =

∫
Es

w(x)dx, Es = {x ∈ Rn : |f(x)| > s}

In general the Lorentz spaces are only quasinorms (they only have the triangle in-

equality up to a constant). However, here we’ve restricted p and q so that these spaces

are normed. It’s straightforward to check that ‖f‖p,p;w = ‖f‖p;w and also that we

get the usual non weighted spaces when w(x)dx is Lebesgue measure. The function

µf (s) is commonly referred to as the distribution function of f with respect to the

measure w(x)dx. Next we present some basic facts about Lorentz spaces.

Theorem 7.2 The following holds:

‖f‖p,q2,w ≤ ‖f‖p,q1,w ∀1 ≤ q1 ≤ q2 ≤ ∞

7.3 FOUNDATIONS OF THE METHOD

The techniques applied in this chapter will be analogous to but significantly more

abstract than those used in the Lp case in previous chapters. In order to interpolate

to obtain general convolution inequalities we will need preliminary inequalities to in-

terpolate between as well as some new interpolation theorems applicable to Lorentz

spaces. Through the work of Hunt [8] and Stein and Weiss [9] we will be able to

obtain the necessary inequalities simply by getting a handle of the behavior of the

convolution operator on characterstic functions of sets of finite measure. To begin we

will use the following boundedness condition that need only hold on this relatively

small class of functions. As presented by Stein and Weiss [9]:

Definition 7.3(Restricted Weak Type) An operator T mapping w(x)dx measurable

functions into µ measurable functions is said to be of restricted weak type (p, q)
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if there exists some constant C independent of the sets E such that:

sµTχE (s)
1
q ≤ C‖χE‖p;w ∀s > 0

where E is of finite w(x)dx measure.

Remark 7.4: In the case that µ is of the form w′(x)dx this condition is exactly

equivalent to ‖TχE‖q,∞,w′ ≤ C‖χE‖p,1,w where C is independent of E.

Contrast this with the more general notion of weak type which is simply a more

conventional boundedness condition on simple functions. Our analysis of the convo-

lution operator will involve fixing one component at a time and analyzing each as a

conventional mono-linear operator. The following theorem due to Stein and Weiss [9]

will help us decide when that operator is of restricted weak type.

Theorem 7.5 An operator T is of restricted weak type (p, q) with constant C1 if

and only if there exists some constant C such that for all sets F and G of finite

Lebesgue measure:

∫
G

TχF (x)w′(x)dx ≤ C

(∫
F

w(x)dx

) 1
p
(∫

G

w′(x)dx

) 1
q′

where C1 ≈ C.

Finally, the following theorem due to Hunt [8] will enable us to extend operators

satisfying restricted weak type conditions to all measurable functions. This will give

us the inequalities that we can interpolate between. As stated by Hunt:

Theorem 7.6 Suppose Tf is a w′(x)dx measureable function for each simple function
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f ∈ Lp,1,w and:

‖TχE‖q,∞;w′ ≤ C‖χE‖p,1,w

for every set E with finite w(x)dx measure.Then T can be extended to a bounded

operator on all of Lp,1,w:

‖Tf‖q,∞;w′ ≤ C‖f‖p,1,w

Remark 7.7: Due to the first remark this simply states that restricted weak type

operators can be extended to bounded and linear operators on the entire space of

measurable functions.

Similarly to our previous analyses we seek sufficient conditions on indices

α, β, γ, p, p0, p1, q, q1, q2 so that:

‖f ∗ g‖p,q,w ≤ C‖f‖p0,q0,w0‖g‖p1,q1,w1

This notation now represents the following as discussed below:

w = (1 + |x|)γp, w0 = (1 + |x|)αp0 , w1 = (1 + |x|)βp1

and of course the constant C is independent of the functions f and g. For the rest

of this chapter assume that w, w0, and w1 represent the weights defined above. In

this chapter we will stray from our usual notation for norms to make applications of

certain theorems clearer. In previous chapters we’ve been using the notation ‖u‖p,w

to represent Lp spaces weighted by w(x) and ‖u‖p,α when the weights are of the form

w(x) = (1 + |x|)αp. Take note of the fact that in this section we will continue to

write ‖f‖p,q,w even when the weights are of the form w(x) = (1 + |x|)αp in order

to make certain applications of theorems more manageable. Finally, we present the
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interpolation theorems to be used in this analysis. The first one is reffered to as the

Off-Diagonal Marcinkiewicz Interpolation Theorem in [10]. See Theorem 1.4.19

Theorem 7.8 Suppose that T is an operator satisfying:

‖Tf‖p′i,∞;w′ ≤ Ci‖f‖pi,1,w i = 0, 1

Then T also satisfies:

‖Tf‖p′t,r;w′ ≤ C‖f‖pt,r,w ∀ 1 ≤ r ≤ ∞ ∀0 < t < 1

with C ≈ max{C0, C1}, provided that:

1

pt
=

1− t
p0

+
t

p1

1

p′t
=

1− t
p′0

+
t

p′1

Notice that in Theorem 7.8, t parameterizes a line between
(

1
p0
, 1
p′0

)
and

(
1
p1
, 1
p′1

)
.

Therefore the previous two equations are equivalent to requiring that
(

1
pt
, 1
p′t

)
lies

on the open line segment connecting the points
(

1
p0
, 1
p′0

)
and

(
1
p1
, 1
p′1

)
in the

(
1
pt
, 1
p′t

)
plane. Understanding Theorem 7.8 in a geometric sense will be crucial to under-

standing proofs that follow. We will be applying Theorem 7.8 by constructing lines

as opposed to finding valid values for t. Visually the resulting inequality holds for

any point on the following line segment:

Theorem 7.9 Suppose that T is a multilinear operator satisfying:

‖T (f, g)‖p′′i ,q′′i ,w′ ≤ Ci‖f‖p′i,q′i,w′‖g‖pi,qi,w, i = 0, 1
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Then T also satisfies:

‖T (f, g)‖p′′t ,q′′t ,w′ ≤ C‖f‖p′t,q′t,w′‖g‖pt,qt,w, 0 < t < 1

with C ≈ C1−t
0 Ct

1, whenever:

1

pt
=

1

p0

(1− t) +
1

p1

t,
1

p′t
=

1

p′0
(1− t) +

1

p′1
t,

1

p′′t
=

1

p′′0
(1− t) +

1

p′′1
t,

1

qt
=

1

q0

(1− t) +
1

q1

t,
1

q′t
=

1

q′0
(1− t) +

1

q′1
t,

1

q′′t
=

1

q′′0
(1− t) +

1

q′′1
t

Remark 7.10 It is possible to state Theorem 7.9 in the language of lines much

like Theorem 7.8. The variable t parameterizes two line segments in
(

1
pt
, 1
p′t
, 1
p′′t

)
and(

1
qt
, 1
q′t
, 1
q′′t

)
space. But for our purposes here, the chosen language will be more useful.

Finally, we have the main theorem of this chapter.

7.4 THE MAIN LORENTZ SPACE RESULT

Theorem 7.11 (Convolution on the Lorentz spaces) There exists some constant C

independent of the functions f and g such that:

‖f ∗ g‖p,q,w ≤ C‖f‖p0,q0,w0‖g‖p1,q1,w1 (41)
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Provided that 1 < p, p0, p1 <∞, 0 ≤ 1
q
≤ 1

q0
+ 1

q1
≤ 1, and one of the following sets of

conditions holds:

B1 :

0 < 1 +
1

p
− 1

p0

− 1

p1

< 1

p0 < p

α + β − γ ≥ n+
n

p
− n

p0

− n

p1

α− γ, β − γ, α + β > 0

2β + α− γ > n+
n

p
− n

p0

− n

p1

β − γ > n

p
− n

p1

α + β > n− n

p0

− n

p1

B2 :

0 < 1 +
1

p
− 1

p0

− 1

p1

<
1

p

α + β − γ ≥ n+
n

p
− n

p0

− n

p1

α + β − 2γ > n+
n

p
− n

p0

− n

p1

α + β > 0

α− γ, β − γ > 0

β − γ > n

p
− n

p1

α− γ > n

p
− n

p0
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B3 :

1

p0

+
1

p1

< 1

p < p0, p < p1

α− γ > n

p
− n

p0

β − γ > n

p
− n

p1

α + β > n− n

p0

− n

p1

α + β − γ > n+
n

p
− n

p0

− n

p1

B4 :

0 < 1 +
1

p
− 1

p0

− 1

p1

< 1

p0 ≤ p, p1 ≤ p

α + β − γ > n+
n

p
− n

p0

− n

p1

α− γ, β − γ, α + β > 0

2β + α− γ > n+
n

p
− n

p0

− n

p1

2α + β − γ > n+
n

p
− n

p0

− n

p1

α + β > n− n

p0

− n

p1

The proof will make direct use of the previously obtained weighted Lp space convo-

lution inequalities. We now present several important theorems that will be used.

Theorem 7.12 If B3 is satisfied then there exists some constant C such that for
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all F,G,H ⊂ Rn of finite Lebesgue measure we have:

∫
H

χ
F ∗ χG(x)(1 + |x|)γpdx

≤ C

(∫
F

(1 + |x|)αp0dx
) 1

p0

(∫
G

(1 + |x|)βp1dx
) 1

p1

(∫
H

(1 + |x|)γpdx
) 1

p′

(42)

where p′ denotes the Holder conjugate of p.

(Proof of Theorem 7.12) We begin by considering the following three sets:

E1 = {|y| > 2 |x|}

E2 = {|y| < 2 |x| , |x− y| > |x|
2
}

E3 = {|y| < 2 |x| , |x− y| ≤ |x|
2
}

And then define:

Ii(x) =

∫
Ei

χ
F (y)χG(x− y)dy i = 1, 2, 3

so that:

χ
F ∗ χG(x) = I1(x) + I2(x) + I3(x)

Since (1 + |x− y|) ≈ (1 + |y|) on E1 we have:

I1(x) ≤ C

∫
E1

χ
F (y)(1 + |y|)αχG(x− y)(1 + |x− y|)β(1 + |y|)−α−βdy

With indices p0, p1, and s with 1
s

= 1 − 1
p0
− 1

p1
we apply Holder’s inequality to the

functions χF (y)(1 + |y|)α, χG(x− y)(1 + |x− y|)β, and χ
E1

(1 + |y|)−α−β to get:
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I1(x) ≤ C

(∫
F

(1 + |x|)αp0dx
) 1

p0

(∫
G

(1 + |x|)βp1dx
) 1

p1

(∫
E1

(1 + |y|)−(α+β)sdy

) 1
s

Since 1 < 1
p0

+ α
n

+ 1
p1

+ β
n

=⇒ (α + β)s > n we have that:

(∫
E1

(1 + |y|)−(α+β)sdy

) 1
s

≤ C(1 + |x|)
n
s
−(α+β)

so that: ∫
H

I1(x)(1 + |x|)γpdx

≤ C

(∫
F

(1 + |x|)αp0dx
) 1

p0

(∫
G

(1 + |x|)βp1dx
) 1

p1
∫
H

(1 + |x|)
n
s
−(α+β)(1 + |x|)γpdx

Using (1 + |x|)γpdx as the measure we may apply Holder’s inequality with indices p

and p′ so that: ∫
H

(1 + |x|)
n
s
−(α+β)(1 + |x|)γpdx

≤
(∫

(1 + |x|)
np
s
−(α+β)p+γpdx

) 1
p
(∫

H

(1 + |x|)γpdx
) 1

p′

The lefthand factor here is a constant since 1 + 1
p

+ γ
n
< 1

p0
+ α

n
+ 1

p1
+ β

n
=⇒

(α + β)p− γp− np
s
> n. Therefore we’ve obtained:

∫
H

I1(x)(1 + |x|)γpdx

≤ C

(∫
F

(1 + |x|)αp0dx
) 1

p0

(∫
G

(1 + |x|)βp1dx
) 1

p1

(∫
H

(1 + |x|)γpdx
) 1

p′
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On E2 we have (1 + |x− y|) ≈ (1 + |x|) so that:

∫
H

I2(x)(1 + |x|)γpdx

≤ C

∫
H

∫
E2

χ
F (y)χG(x− y)(1 + |x− y|)β(1 + |x|)γp−γ(1 + |x|)γ−βdydx

A reversal of the order of integration gives:

∫
H

I2(x)(1 + |x|)γpdx

≤ C

∫
F

∫
χ
G(x− y)(1 + |x− y|)βχH(x)(1 + |x|)γp−γχE2

(x)(1 + |x|)γ−βdxdy

We apply Holder’s inequality with indices p1, p
p−1

= p′, and s with 1
s

= 1
p
− 1

p1
to the

functions χG(x− y)(1 + |x− y|)β, χH(x)(1 + |x|)γp−γ, and χ
E2

(x)(1 + |x|)γ−β to get:

∫
H

I2(x)(1 + |x|)γpdx

≤ C

(∫
G

(1 + |x|)βp1dx
) 1

p1

(∫
H

(1 + |x|)γpdx
) 1

p′
∫
F

(∫
E2

(1 + |x|)(γ−β)sdx

) 1
s

dy

Using the fact that 1
p

+ γ
n
< 1

p1
+ β

n
=⇒ (β − γ)s > n, applying Holder’s inequality,

and then using the fact that 1 + 1
p

+ γ
n
< 1

p0
+ α

n
+ 1

p1
+ β

n
=⇒

(
α + β − γ − n

s

)
p′0 > n
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we get:

∫
F

(∫
E2

(1 + |x|)(γ−β)sdx

) 1
s

dy

≤
∫
F

(∫
{|x|> |y|

2
}
(1 + |x|)(γ−β)sdx

) 1
s

dy

≤ C

∫
F

(1 + |y|)
n
s

+γ−βdy

= C

∫
F

(1 + |x|)
n
s

+γ−β−α+αdx

≤ C

(∫
(1 + |x|)(

n
s

+γ−β−α)p′0dx

) 1
p′0
(∫

F

(1 + |x|)αp0dx
) 1

p0

= C

(∫
F

(1 + |x|)αp0dx
) 1

p0

To handle the final case, we change variables, then reverse the order of integration to

get:

∫
H

I3(x)(1 + |x|)γpdx =

∫
H

∫
χ
F (x− z)χG(z)χE3

(x− z)(1 + |x|)γpdzdx

=

∫
G

∫
χ
F (x− z)χH(x)χE3

(x− z)(1 + |x|)γpdxdz

with E3 expressed as {|x−z| < 2|x|, |z| ≤ |x|
2
}. On E3 we have (1+ |x−z|) ≈ (1+ |x|)

so that: ∫
H

I3(x)(1 + |x|)γpdx

≤ C

∫
G

∫
χ
F (x− z)(1 + |x− z|)αχH(x)(1 + |x|)γp−γχE3

(x− z)(1 + |x− z|)γ−αdxdz

Similar to the E2 case we apply Holder’s inequality with indices p0, p′ and s with

1
s

= 1
p
− 1

p0
to get: ∫

H

I3(x)(1 + |x|)γpdx ≤

C

(∫
F

(1 + |x|)αp0dx
) 1

p0

(∫
H

(1 + |x|)γpdx
) 1

p′
(∫

G

(∫
{|x|≥2|z|}

(1 + |x|)(γ−α)sdx

) 1
s

dz

)

63



where the integral over G is handled using 1
p

+ γ
n
< 1

p0
+ α

n
=⇒ (α−γ)s > n, Holder’s

inequality, and 1 + 1
p

+ γ
n
< 1

p0
+ α

n
+ 1

p1
+ β

n
=⇒

(
α + β − γ − n

s

)
p′1 > n.

(Proof of Theorem 7.11.) When B3 is satisfied, we get (42) by Theorem 7.12. When

B1, B2, or B4 is satisfied, we apply Holder’s inequality to the functions χH and χF ∗χG
and use the main Lp space convolution inequality derived in Chapter 3:

∫
H

χ
F ∗ χG(x)(1 + |x|)γpdx ≤ ‖χF ∗ χG‖p,w‖χH‖p′,w

≤ C‖χF‖p0,w0‖χG‖p1,w1‖χH‖p′,w

For a fixed F, the operator TF (χG) = χ
F ∗ χG satisfies the integral inequality in The-

orem 7.5 with constant essentially equal to ‖χF‖p0,w0 . Therefore TF is of restricted

weak type (p1, p), meaning that for all sets G with finite w1(x)dx measure we have:

s

(∫
Es

w(x)dx

) 1
p

≤ C‖χF‖p0;w0‖χG‖p1;w1 ∀ s > 0

where Es = {x ∈ Rn : |TF (χG)| > s}. A straightforward calculation shows that

‖χG‖p1,w = ‖χG‖p1,1,w. Taking the supremum over all s > 0 and extending TF using

Theorem 7.6 gives:

‖χF ∗ g‖p,∞;w ≤ C‖χF‖p0,1;w0‖g‖p1,1;w1

Considering the operator defined by Tg(χF ) = χ
F ∗g and applying Theorem 7.6 again

we obtain:

‖f ∗ g‖p,∞;w ≤ C‖f‖p0,1;w0‖g‖p1,1;w1

We now discuss separate cases in order to obtain the following inequality:

‖f ∗ g‖p,r;w ≤ C‖f‖p0,∞;w0‖g‖p1,r;w1 ∀1 ≤ r ≤ ∞ (43)

64



Equivalently, due to symmetry of the indices in the hypotheses,

‖f ∗ g‖p,r;w ≤ C‖f‖p0,r;w0‖g‖p1,∞;w1 ∀1 ≤ r ≤ ∞ (44)

Case 1: Suppose B1, B2, or B3. In the first two cases there exists K ≥ 0 so that

α+β−γ = n+ n
p
− n

p0
− n

p1
+K. In case B3 we have that K > 0. It’s straightforward

to check that
(

1
p0
, 1
p

)
lies on the line:

1 +
1

p′t

(
1 +

c

n

)
=

1

pt

(
1 +

k

n

)
+

1

p1

+
β

n
+K

in the
(

1
pt
, 1
p′t

)
plane with c = γp and k = αp0. On this line it is possible to choose

points
(

1
p′0
, 1
p′

)
and

(
1
p′′0
, 1
p′′

)
sufficiently close to

(
1
p0
, 1
p

)
with 1

p′0
< 1

p0
< 1

p′′0
and

corresponding indices γ′, γ′′, α′, α′′ so that γp = γ′p′ = γ′′p′′ and αp0 = α′p′0 = α′′p′′0

so that the hypotheses of Theorem 7.11 remain true after replacement of the unprimed

variables with the primed ones. We obtain the following two inequalities:

‖f ∗ g‖p′,∞;w ≤ C‖f‖p′0,1;w0
‖g‖p1,1;w1

‖f ∗ g‖p′′,∞;w ≤ C‖f‖p′′0 ,1;w0
‖g‖p1,1;w1

By considering the operator defined by Tg(f) = f ∗ g we may use Theorem 7.8 to

interpolate between these two inequalities to obtain:

‖f ∗ g‖p,r;w ≤ C‖f‖p0,r;w0‖g‖p1,1;w1 ∀1 ≤ r ≤ ∞ (45)

We then obtain (43) by taking r =∞ in (45) and similarly interpolating between two

inequalities obtained by considering the operator Tf (g) = f ∗ g and the point
(

1
p1
, 1
p

)
on the line:

65



1 +
1

p′t

(
1 +

c

n

)
=

1

p0

+
α

n
+

1

pt

(
1 +

k

n

)
+K

with c = γp and k = βp1.

Case 2: Under the hypotheses of B4 we select K0, K1 ≥ 0 so that 1
p

= 1
p0

+ K0

and 1
p

= 1
p1

+ K1. We proceed similarly to the previous two cases but instead with

the following two lines:

1

p′t
=

1

pt
+K0

1

p′t
=

1

pt
+K1

Note that again ( 1
p0
, 1
p
) and ( 1

p1
, 1
p
) lie on these lines but for certain boundary cases (in

particular when either K0 = 0 or K1 = 0) we might lose p0 ≤ p or p1 ≤ p for points

near ( 1
p0
, 1
p
) and ( 1

p1
, 1
p
). However this is okay since at least one of them will always

be true. This will preserve our ability to use Holder’s inequality and the convolution

inequality derived in Chapter 3 for the close points as was done at the beginning of

this proof. Thus we have established (43) and (44) for all cases in the hypotheses.

Take r = 1 in (43) and (44). For any choice of 1 < r <∞ select t = 1
r

and interpolate

using Theorem 7.9 to obtain:

‖f ∗ g‖p,1;w ≤ C‖f‖p0,r;w0‖g‖p1,r′;w1 ∀1 ≤ r ≤ ∞ (46)

where r′ denotes the Holder conjugate of r. The cases where r = 1 and r = ∞ in

(46) are given to us by (44). Now take r = q0 in (44) and (46) and interpolate by

applying the same theorem with t = q0
q1(q0−1)

to get:

‖f ∗ g‖p,q;w ≤ C‖f‖p0,q0;w0‖g‖p1,q1;w1
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whenever 1
q

= 1
q0

+ 1
q1

. We then get (41) from Theorem 7.2.
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CHAPTER 8

OPPORTUNITIES FOR FURTHER RESEARCH

The work done in this dissertation provides many opportunities for further research.

The purpose of developing convolution inequalities in weighted Lorentz spaces was to

pave the way for obtaining solutions to partial differential equations with initial data

in weighted Lorentz spaces. Achieving this result will require sophisticated estimates

in Lorentz spaces analogous to those made in chapter 6 with weighted Lp spaces.

In addition the possible inclusion of Gevrey norms in Lorentz spaces analogous to

those used in chapter 6 will require making some decisions on where to include the

exponential factor in the Lorentz norms.

In addition further research could entail investigating weights more general than

(1 + |x|)αp enabling the techniques presented in this dissertation to be applied to

far more use cases.
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