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ABSTRACT 

PHOTOELECTRICAL AND PHOTOELECTROCHEMICAL 

CHARACTERIZATION OF THE MATERIALS USED IN DYE-

SENSITIZED AND PEROVSKITE SOLAR CELLS 

Pom Lal Kharel 

July 30, 2020 

Solar energy is one of the most important alternative renewable energy sources to 

fulfill the increasing demand of energy in the world. Third-generation solar cells like dye-

sensitized solar cells, perovskite solar cells, quantum dot solar cells, and organic solar cells 

are extensively studied to increase their photoconversion efficiency, and ultimately for 

their large-scale implementation. A dye-sensitized solar cell consists of a photoanode of a 

mesoporous film of titania sensitized with dye sandwiched with a counter electrode, which 

is usually a platinum-coated transparent conducting oxide, and a redox couple injected 

between the photoanode and counter electrode. Doping titania with rare-earth metal oxides 

(REOs) has been an interesting approach to improve the conversion efficiency of dye-

sensitized solar cells. REOs have been doped into titania paste to show an improvement in 

the photovoltaic performance of dye-sensitized solar cells, however, most of the reported 

cells are not efficient enough to conclude whether the enhancement is due to doping or it 

is because of the cell quality. We incorporated nanoparticles (NPs) of REOs in titania paste 

and built highly reproducible dye-sensitized solar cells using amphiphilic C101 dye and 

iodide/triiodide redox couple in nitrile-based solvent (Z960 electrolyte). The doping level 

for optimized cells was 2.0 % for neodymium oxide and 1.0 % for erbium oxide. We did 
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the measurements of photocurrent, impedance, incident photon-to-electron conversion 

efficiency (IPCE), and dye loading to investigate the mechanism of enhancement of the 

photovoltaic performance by REO NPs. Electrochemical impedance spectroscopy 

measurements showed that doping with REO decreased the total impedance of the cell and 

IPCE measurements revealed enhanced photon absorption by the dye in REO-doped cells. 

In the same fashion, the REO-doped anodes showed larger dye loading compared to 

undoped anodes, which was maximum for 1.0 % doping of erbium oxide and 2.0 % doping 

of neodymium oxide. REOs not only enhance dye adsorption but also facilitate electron 

transport through the mesoporous layer, thereby increasing the collection efficiency of the 

photoexcited electrons. 

 To further explore the mechanism for the interaction between REO NPs and titania, 

an electrical and electrochemical study of REO-doped nanostructured titania films was 

performed.  Doped films were found to be 40-50 times more conductive than undoped 

films, with linear current-voltage characteristics.  Cyclic voltammograms of doped samples 

showed an enhanced scan rate dependence in the deep trap regime due to a slower charge 

trapping rate.  Finally, electrochemical impedance measurements revealed a decrease in 

space charge density and a shift in the flat-band potential.  Taken together, these results 

suggest that charge transfer from the REO neutralizes the deep trap states in the 

nanostructured titanium dioxide (NTD) film, decreasing charge scattering, and improving 

the NTD performance as an electron acceptor and electron transport material.  

Perovskite solar cells (PSCs) were first made when the dye-loaded semiconductor of 

dye-sensitized solar cell was replaced by perovskite layer and liquid electrolyte by a hole 

transport layer. The light harvesting perovskite layer is sandwiched between electron-

transport and hole transport layers. Organic-inorganic perovskites, also known as hybrid 

perovskites have fascinating optoelectronic properties for their applications in highly 

efficient solar cells. The stability in ambient conditions and hysteresis in current-potential 

curves are two main challenges. The ease with which the separation of photogenerated 

charge carriers, electron-hole pairs (excitons), takes place is very critical for the 

performance of PSCs. In addition to the work function difference of electron-transport and 

hole transport layers, the intrinsic built-in potential in the perovskite films can play a 
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significant role in the separation of these excitons.  The internal electric originates from the 

local polarization of the film due to non-centrosymmetric lattice and ionic polarization and 

can be measured through an AC photocurrent technique.  The polarization of a pristine 

sample is strongly dependent on the size of grains and can be used to determine the quality 

of the film.  After poling the film by applying a potential through interdigitated Au 

electrodes, the devices with different grain sizes behaved differently upon relaxation. 

We observed that the polarization of a mixed halide hybrid perovskite film strongly 

depends on the background environment. The Quartz Crystal Microbalance measurements 

reveal that the perovskite film adsorbs Ar gas in the presence of solar light. The 

combination of Ar gas and solar illumination results in the enhancement of the electric 

polarization of the mixed halide hybrid perovskite film. Consequently, the photocurrent is 

increased due to the stronger driving force for the separation of excitons. This observation 

is illustrated in an actual PSC where the photovoltaic enhancement is observed with Ar gas. 

Our results suggest that the contribution from the background environment should be taken 

into consideration when describing the photovoltaic performance of a PSC. 
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CHAPTER I 

INTRODUCTION 

1.1. Demand of Renewable Sources of Energy 

The total population on earth has reached over 7.8 billion and is projected to exceed 

9.7 billion by 2050 and 10.9 billion by 2100.1-2 The global energy consumption is also 

increasing in the same proportion. Considering the present status of population growth and 

energy consumption, the global demand is expected to double by 2050 and quadruple by 

the end of the century.3 A high percentage (~93 %) of this energy demand is fulfilled by 

non-renewable sources of energy, and the storage of these sources is limited. The current 

estimation of global reserves for fossil fuels, natural gas, and coal suggests that the fossil 

fuels have the potential to provide continuous energy for up to 54 years, natural gas up to 

63 years, and coal up to 107 years.4-5 Renewable and clean energy is expected to replace 

non-renewable sources of energy for satisfying the energy demand of humankind.6 The 

available renewable sources of energy are solar, wind, bio-fuels, hydropower, geothermal, 

and ocean. Nevertheless, carbon-free energy resources are crucial for the sustainable 

development of global society without degradation of the environment. The sun delivers 

1.2 x 105 TW energy per year to the earth. Only 0.5 % (~600 TW) of this energy can be 

practically converted to electrical energy. Reports reveal that even 10 % of this energy is 

enough to compensate the global energy demand of future generations.7-8 Thus, the 

development and use of devices which convert solar energy to a usable form of energy are 

crucial for the conservation of the non-renewable sources of energy.  
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1.2. Solar Cells 

A solar cell is a device that directly converts the energy from sunlight into electrical 

energy through the photovoltaic effect. It is also known as a photovoltaic cell. 

1.2.1. Architecture and Working Principle of Solar Cells 

A solar cell consists of an assembly of a layer of p-type semiconductor placed next 

to a layer of n-type semiconductor. There are excess of electrons in the n-type layer and 

excess of positively charged holes in the p-type layer, which resembles a p-n diode.  When 

these layers are not in contact, the fermi level of the n-type semiconductor is close to the 

conduction band, and that of p-type semiconductor is close to the valence band as shown 

in Figure 1.1a. On bringing these layers into contact, some of the electrons diffuse from the 

n-type region to the p-type region while holes diffuse from the p-type region to the n-type 

region. As a result, the fermi level of the n-type semiconductor decreases while the fermi level 

of the p-type semiconductor increases, until finally they have the same fermi level at 

equilibrium as shown in Figure 1.1b. Near the junction of the two layers, the electrons on 

one side of the junction (n-type layer) combine with the holes on the other side of the 

junction (p-type layer). This creates an area around the junction where the carriers are 

depleted. This is called the depletion zone. When all the holes are filled with electrons in 

the depletion zone, the p-type side of the depletion zone (where holes were initially present) 

now contains uncompensated negatively charged ions, and the n-type side of the depletion 

zone (where electrons were present) now contains uncompensated positively charged ions. 

The presence of these oppositely charged ions creates an internal electric field. This 

internal field is called the built-in potential (Vbi). The Vbi acts an an energy barrier that 

prevents free movement of charge carriers, or electrons in the n-type layer from filling 

holes in the p-type layer. 
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Figure 1.1. (a) p- and n-type of semiconductors brought together, and (b) p-n diode in 

equilibrium which is equivalent to a typical solar cell. 

When sunlight is allowed to fall on a solar cell, the electrons in the semiconductor 

are excited to the conduction band, and it results in the formation of “holes”, the vacancies 

left behind by the escaping electrons. The internal electric field helps in the separation of 

these electron-hole pairs. If this happens in the electric field, the field will move electrons 

to the n-type layer and holes to the p-type layer. If we connect the n-type and p-type layers 

with a metallic wire, the electrons will travel from the n-type layer to the p-type layer 

through the external wire, creating a flow of electricity as shown in Figure 1.2. 

Figure 1.2. Illustration of working principle of a typical solar cell. 
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1.2.2. Photoelectrochemical Parameters of Solar Cells 

The photoelectrochemical parameters are the terms used to explain the performance 

of a solar cell. Basically, the following five photoelectrochemical (PEC) parameters are 

used to explain the performance of a solar cell: 

(a) Open-circuit voltage. When the cell is operated at open circuit (no current 

flowing through the cell), the potential difference across the output terminals is defined as 

the open-circuit voltage. It is denoted by VOC. It is marked by VOC in a typical current 

density-potential curve in Figure 1.3. 

(b) Short-circuit current density. When a cell is operated at short circuit 

condition, the current density through the terminals of the cell, when the light at one sun is 

shone on the cell, is defined as the short-circuit current density. It is denoted by JSC (Figure 

1.3). 

(c) Fill factor. Fill factor (FF) is the ratio of the maximum electrical power (Pmax) 

dissipated by a cell to the product of JSC and VOC. In Figure 1.3., FF is the ratio of the area 

of blue rectangle to the area of yellow rectangle. Mathematically, FF can be expressed as 

FF =
Pmax

Jsc ∙ Voc
=

Jmax ∙ Vmax

Jsc ∙ Voc

where Jmax and Vmax are the values of current density and potential corresponding to Pmax 

as shown in Figure 1.3. 

(d) Efficiency. The efficiency () of a solar cell is the ratio of the maximum power 

(Pout) dissipated by a cell to the power of incident light (Pin) on it. Mathematically,  can 

be expressed as: 

η =
Pout

Pin
× 100 % =

JSC × VOC × FF

Pin
× 100 %. 
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Figure 1.3. A typical current density vs potential curve for a solar cell. 

(e) Incident photon-to-electron conversion efficiency. The number of photo 

electrons generated per unit photon absorbed by a solar cell is known as its incident photon-

to-electron conversion efficiency (IPCE). IPCE is also known as external quantum 

efficiency (EQE). The photocurrent density observed from a solar cell at different 

wavelengths of solar light incident on the cell can be used to get EQE by 

EQE % =
JSC (A cm−2)

P (W cm−2)
×

1240

λ (nm)
× 100. 

EQE directly affects the photoconversion efficiency of a solar cell. 

1.2.3. Semiconductors Used in Different Generation Solar Cells 

A solar cell uses a semiconductor as a light-harvesting material to convert solar 

energy into electrical energy. The material undergoes photovoltaic effect for the energy 

conversion. It does so by generating electron-hole pairs upon the absorption of photons of 

suitable energy. Different types of semiconductors are used in different types of solar cells.  

Silicon-based photovoltaics, the first-generation solar cells are the commercially available 

solar cells.9-11 In these solar cells p-doped and n-doped silicon semiconductors are used. 

The scheme of a typical industrial silicon solar cell is depicted in Figure 1.4a. Second 

generation solar cells are usually called thin-film solar cells because they are made up of 
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layers of semiconductors only a few microns thick. Basically, there are three types of solar 

cells that are considered in this category, amorphous silicon and two that are made from 

non-silicon materials namely copper indium gallium diselenide (CIGS), which uses CIGS, 

CuIn(1-x)GaxSe2 of band gap 1 to 1.7 eV for x=0-1 and ZnO of band gap 3.37 eV (Figure 

1.4b), and cadmium telluride (CdTe) solar cell (Figure 1.4c) which uses two 

semiconductors CdS of bandgap 2.42 eV and CdTe of bandgap 1.5 eV. Third-generation 

solar cells are the solar cells that are potentially able to overcome the Shockley–Queisser 

limit of 31–41% power efficiency for single bandgap solar cells. Emerging third 

generation photovoltaics include: Copper zinc tin sulfide solar cell (CZTS),12 organic solar 

cells (OSCs),13 quantum dot solar cells (QDSCs),14 dye-sensitized solar cells (DSSCs),15 

and perovskite solar cells (PSCs).16 CZST solar cell (Figure 1.4d) uses copper zinc tin 

sulfide with bandgap of 1.4-1.5 eV as a light absorber.12 OSCs use conjugated, 

semiconducting polymers and small organic molecules as shown in Figure 1.5.13 A typical 

OSC is shown in Figure 1.4e. Quantum dots are used as the light-harvesting material in 

QDSCs (Figure 1.4f). DSSCs, also known as "Grätzel cells", are explained in section 1.3 

while perovskite solar cells in section 1.4. 

Figure 1.4. Configurations of different generation solar cells: (a) industrial silicon solar 

cell, (b) copper indium gallium diselenide (CIGS) solar cell, (c) cadmium telluride 

(CdTe) solar cell, (d) Copper zinc tin sulfide solar cell, (e) organic solar cell, and (f) 

quantum dot solar cell. 
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Figure 1.5. Different types of semiconductors used in organic photovoltaics. 

1.3. Dye-Sensitized Solar Cells 

A dye-sensitized solar cell uses the principle of photosynthesis to convert solar 

energy to electrical energy, and was first developed in 1991 by O’Regan and Grätzel.17 It 

is a simple photovoltaic cell that has the potential to harvest solar energy at a low 

manufacturing cost with low environmental impact. It is considered to be a very promising 

photovoltaic technology since it offers many exclusive features such as semi-transparency, 

flexibility and lightweight applications, and also good performance under low light 

conditions and different solar incident angles.18-20 

1.3.1. Components of Dye-Sensitized Solar Cells 

A DSSC is composed of mainly five components: a transparent conducting substrate, 

a thin film of wide-band gap semiconductor, a photosensitizer adsorbed on the film of 
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semiconductor, a redox electrolyte and a counter electrode. Each of these components are 

explained below: 

(a) Transparent conducting substrate. A transparent conducting oxide (TCO) 

coated substrate is commonly used as a substrate for DSSC fabrication because of its 

relatively low cost, abundance, and high optical transparency in the visible and infrared 

region of the solar spectrum. The commonly used TCO substrates are fluorine-doped tin 

oxide (FTO) coated glass, and indium tin oxide (ITO) coated glass.  FTO glass is preferred 

over ITO glass in DSSCs because of its better thermal stability at high temperature. 

(b) Suitable semiconductor. One of the most investigated components in DSSCs is  

the  mesoporous semiconducting layer which provides the surface for the adsorption of 

photo-absorber molecules (dyes) and plays a significant role for efficient charge separation 

leading to the photo-injection of charge carriers.21 Titanium dioxide,22-23 zinc oxide,24-26 

ferric oxide,27 niobium pentoxide,28 cerium (IV) oxide,29 tin (IV) oxide,30 strontium 

titanate,31 barium stannate,32 and zinc stannate33 are commonly used semiconductors in 

DSSCs.  Titanium dioxide (titania) is a widely investigated semiconductor in DSSCs. Of 

the two modifications: anatase and rutile of titania, the anatase modification is preferred 

for the use in photovoltaic applications as it has been shown to have better adsorption of 

dye and electron transport properties.34 Other advantages using this semiconductor are 

large bandgap (∼3.2 eV), high conduction band edge energy, chemical and mechanical 

stability, efficient electron-accepting capability, and high redox activity in the illuminated 

condition.22 An efficiency over 14 % has been reported with this semiconductor.35 The 

molecular orbital picture of titania is shown in Figure 1.6. 
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Figure 1.6. Molecular orbital diagram of TiO2. 

(c) Photosensitizer. A photosensitizer, also known as dye, is a chief part of a DSSC 

that absorbs and converts solar energy into electrical energy. A good dye for DSSCs is one 

which has (i) a wide panchromatic capacity to harvest light to produce a large current, (ii) 

high molar extinction coefficient to excite as many electrons as possible, molecular orbitals 

that match well with the host material conduction band for efficient charge injection, (iii) 

good chemical properties to make a stable monolayer on the host material, (iv) a low 

HOMO energy level that can be regenerated with electrolyte, and (v) an anchoring group 

which can bind itself with the nanostructured film. Ruthenium-based metal complexes have 

shown the best photovoltaic properties including a high panchromatic capacity, suitable 

excited and ground state energy levels, relatively long excited-state life-time, and good 

electrochemical stability.36 Among Ru based dyes, N3, N719 and C101 are considered as 

reference dyes for DSSCs. Figure 1.7 shows some of the current dyes used in DSSC 

technology.37 In this work C101 dye was used as the photosensitizer. 
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Figure 1.7. Commonly used dyes used in DSSCs. 

(d) Electrolyte. An electrolyte that is used in a DSSC has a redox couple to transport 

holes and plays an important role to regenerate the dye. The redox couples used in the 
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-, 3Br-/Br3
-, Co2+/Co3+, 

and Fc/Fc+.38 The most commonly used  electrolyte contains the redox couple 3I¯/I3¯ in 

an organic solvent. The electrolyte Z960 containing 3I¯/I3¯ redox couple in nitrile-based 

solvent has been found to be a stable electrolyte.39  The composition of Z960 electrolyte is 

1.0 M 1,3-dimethylimidazolium iodide, 50 mM LiI, 30 mM I2, 0.5 M tert-butylpyridine 
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and 0.1 M guanidinium thiocyanate in a 17:3 mixture of acetonitrile and valeronitrile by 

volume. Z960 electrolyte was used for the work described in this dissertation. 

(e) Counter electrode. The counter electrode works as a contact for the cathode and 

also acts as a catalyst for the reduction of the redox couple in the electrolyte. TCO glass 

coated with a suitable material for catalytic reduction of the electrolyte is used as a counter 

electrode.40 Carbon (powder and nanotubes), cobalt sulfide and conductive polymers and 

Pt are commonly coated on the counter electrode.40-41 We have used Pt-coated FTO glass 

as a counter electrode in our work. 

1.3.2. Working Principle of Dye-Sensitized Solar Cell 

A typical TiO2 based DSSC showing a photoanode (PA) made up of a TiO2 film 

sensitized with dye, a redox electrolyte (3Iˉ/I3ˉ) and a Pt counter electrode (CE) is shown 

in Figure 1.8. When the sunlight is allowed to fall on the cell, the photons are absorbed by 

the dye, which is adsorbed on the TiO2 nanoparticle film. The photons cause the excitation 

of electrons from the highest occupied molecular orbital (HOMO) level to the lowest 

unoccupied molecular orbital (LUMO) energy level of the dye. Since the conduction band 

(CB) of TiO2 is in close proximity to the LUMO of the dye, ultrafast electron transfer (<30 

fs) occurs from the dye LUMO to the CB of TiO2. These injected electrons diffuse through 

the mesoporous TiO2 nanoparticles and flow through the external circuit to the CE. The 

reduction of I3
- to 3I- takes place at the CE. The reduced form of the electrolyte (3I-) then 

regenerates the dye by oxidation back to I3
-. This cycle continues and the cell keeps 

generating electricity. 
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Figure 1.8. A typical dye-sensitized solar cell showing the path of electrons. 

The electron-transfer process during the working of a DSSC can be explained as 

follows: 

(a) Photoexcitation of dye. When light falls on the dye molecules, the electrons get 

excited from VB to CB of the dye. This process is known as photoexcitation and is depicted 

in Eq. 1.  

S + hν ⟶ S∗ … (1)

(b) Injection of electrons. After photoexcitation, the molecules in the excited state 

decay back to the ground state by emission or undergo oxidative quenching, and the photo-

generated electrons are injected to CB of TiO2. The process of photo injection is shown in 

Eq. 2. This process is ultrafast and occurs in less than 30 fs. 

2S∗ + TiO2 (CB) ⟶ 2S+ + TiO2 (2e CB) … (2)
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(d) Reduction of electrolyte. The electrons reach the CE through the external circuit 

and reduce triiodide (I3ˉ) in the solution to iodide (I-). The electrochemical reduction of the 

electrolyte is shown in Eq. 3. 

I3
− + 2e ⟶ 3I− … (3)

(e) Regeneration of dye. I- ions then reduce the oxidized dye, which is the 

regeneration of dye. This is shown in Eq. 4. 

2S+ + 3I− ⟶ 2S + I3
− … (4)

These processes repeat to convert sunlight into electrical energy. Notably, there are 

several competing undesirable pathways where the photogenerated electrons are lost 

during the working of the cell. The pathways for the recombination of electrons are 

detrimental for the photovoltaic performance. The recombination processes are influenced 

by the time taken for each of the five processes which occur during the working of a DSSC. 

These are shown in Figure 1.9. After photoexcitation, there is a possibility that the electrons 

combine with the oxidized dye and go to the ground state with radiation emission as shown 

in Eq. 5. This process reduces the electric current directly. The recombination is also 

possible with the electrons injected into mesoporous TiO2 film. The injected electrons can 

recombine with the dye or directly reduce I3¯ ions in the electrolyte instead of going 

through the external circuit (Eq. 6 and 7). The electrons on the back contact of TCO may 

also recombine with the electrolyte (Eq. 8), which also degrades the performance of the 

device. 

S∗ ⟶ S + hν … (5)

2S+ + 2e (TiO2 CB) ⟶ 2S … (6)

I3
− + 2e (TiO2 CB) ⟶ 3I− … (7)

I3
− + 2e (FTO) ⟶ 3I−  … (8)
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Figure 1.9. Molecular orbital diagram of different components of a DSSC with average 

time for various electron transfer processes. 

1.3.3. Photovoltaic Performance of Dye-Sensitized Solar Cells and Challenges 

The photovoltaic performance and stability of a DSSC depends on the semiconductor 

used in mesoporous layer, the dopant in the semiconductor, the type of dye, and the 

electrolyte. Five parameters namely JSC, VOC, IPCE,  and FF are used to compare the 

performance of different DSSCs. The photocurrent density is the total current produced by 

a solar cell per unit area of photoanode exposed to solar energy at one sun. It is the sum of 

the photocurrent density arising due to the total charge injection (Jinj) from dye to TiO2 and 

dark current density (Jdark). Jdark is the opposite current density developed in the device by 

the recombination of electrons by electrolyte and dye.42 The reduction of dark current is 

very important for minimizing the recombination. The photocurrent density can be 

increased by using a dye with a broader adsorption spectrum, or by increasing the amount 

of dye adsorbed onto the mesoporous TiO2, and using suitable dopants for titania. The FF 

can be increased by careful device design for decreasing the total series resistance of the 

cell. VOC can be increased by increasing the rate of electron injection or decreasing the 
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recombination,43 or by making the electrolyte potential more positive using different redox 

couples or using additives.39 The improvements in the electrical and physical properties of 

the TiO2 nanoparticle acceptor, and also the stability of the cells should be taken into 

consideration for large scale implementation. Studies have been made by the modification 

of titania with a molecular linker for greater stability, forming core/shell structures by 

coating with another metal oxide for improvement of all the parameters, doping titania with 

different metals oxides and metal ions for increasing JSC and VOC, metal nanoparticles, 

redox inactive ionic species for enhancing the charge mobility, and other dopants for 

improvement in JSC.44-50 

Although the maximum efficiency obtainable for DSSCs is greater than 20%, a 

maximum efficiency of 12.3% has been certified by NREL till date.51 It can be said that 

the efficiency of a DSSC can still be improved. 

1.3.4. Motivation for the Study of Dye-Sensitized Solar Cells 

The current status of energy consumption shows that energy demand requires the 

consumption of easily available energy resources such as fossil fuels, hydroelectricity, and 

chemical energy from batteries. Most of these are non-renewable sources, and there are 

severe environmental issues, such as global warming, and chemical pollutions resulting 

from the byproducts of fossil fuels. As a result, eco-friendly renewable energy resources 

are needed as a practical solution to resolve the issues related to environmental concerns 

and to preserve the existing non-renewable energy sources to push the possible energy 

crisis into the future. Solar energy is the most practical solution. Due to the high fabrication 

cost for robust silicon solar technology, there is a need of low-cost solar cells. Dye-

sensitized solar cell technology has emerged as an alternative to replace silicon technology 

as it involves low fabrication cost, ability to work in diffuse light, and its ability to produce 

flexible devices that can be applicable everywhere. However, it has several challenges that 

have still not been addressed completely. The main challenges are the optimization of 

efficiency to beyond 20% for commercialization, the production of chemically stable 

photoanodes for up to 20 years, and the more complete understanding of charge transfer 

dynamics within DSSCs, especially at the dye/semiconductor interfaces. It has been shown 
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that doping titania with rare-earth metal oxide (REO) microparticles led to the photovoltaic 

enhancement of DSSCs drastically.52 The nanoparticles have very high surface to volume 

ratios and are highly effective in catalytic activities because of larger active surface area.53-

61 The active layer of titania is also nanostructured and the use of nanoparticles of rare-

earth metal oxide nanoparticles to dope, as opposed to microparticles, could be more 

effective in improving the photovoltaic performance of  DSSCs. The mechanism by which 

the REO nanoparticles interact with titania nanoparticles can be a powerful means for 

further steps in the development of more stable and more efficient DSSCs. 

1.4. Perovskites 

Originally, perovskite is a mineral ‘calcium titanate (CaTiO3)’ named after a Russian 

mineralogist Lev Perovski. Now perovskites are defined as a class of compounds, 

represented as ABX3, having a structure similar to that of CaTiO3, where A and B are 

cations and X is an anion. The lattice arrangement of A, B and X in a unit cell of an ideal 

perovskite is shown in Figure 1.10a. An ideal perovskite has a simple cubic crystal 

structure consisting of a corner-sharing [BX6] octahedral network with a B–X–B bond 

angle of 180° and A ions in the interstices (Figure 1.10b). During crystallization, these 

units add up in all three directions, resulting in a 3D structure, so that it is referred to as a 

3D perovskite. 

Figure 1.10. (a) Unit cell and (b) spatial distribution of A, B and X in a crystal lattice. 
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To maintain an ideal perovskite structure, the selection of A, B and X should be made 

to meet the Goldschmidt’s tolerance factor 

𝑡 =
𝑟𝐴 + 𝑟𝑋

√2( 𝑟𝐵 + 𝑟𝑋)

where r is the radius of the ion mentioned in the subscript position.  For most 3D 

perovskites 0.8 ≤ 𝑡 ≤ 1. 

1.4.1. Hybrid Perovskites 

In a perovskite if A is an organic cation such as methylammonium (MA), 

formamidinium (FA), or guanidinium (GA), and B is an inorganic cation such as Pb2+or 

Sn2+, the perovskite is called an organic/inorganic perovskite or simply a hybrid perovskite 

(HP). The anions in HPs are usually halides. HPs have attracted intensive attention for 

optoelectronic applications for their various advantageous properties as described below:  

(a) Long diffusion length. When solar light is incident on a semiconductor, electron-

hole pairs are generated. Diffusion length is the average length a photogenerated carrier 

(electron/hole) moves between the time of generation to the time of recombination. Long 

diffusion length is beneficial for the application in optoelectronic devices where 

recombination needs to be minimized. The diffusion length of a trihalide HP (MAPbI3) is 

in the range of 100-200 nm while the diffusion length of mixed halide HP (MAPbClxI3-x) 

is longer than 1 m.62 

(b) High absorption coefficient. The absorption coefficient is a measure of how far 

into a material light of a particular wavelength can penetrate before it is absorbed. HPs 

have high absorption coefficient due to which they are good light-harvesting material for 

their application in optoelectronic devices.63 The absorption coefficient of these 

perovskites are on the order of 105 cm-1,64-67 which allows efficient light absorption in a 

film of thickness 300~500 nm. The high absorption coefficient of HPs leads to increase in 

the quantum efficiency, and photocurrent in perovskites. 
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(c) Low excitonic binding energy. An exciton is the bound state of an electron-hole 

pair, which are attracted to each other by an electrostatic interaction. Excitons are formed 

when photons with energy equal to or larger than the band gap energy are absorbed by a 

semiconductor. The minimum amount of energy required for the separation of these 

excitons is the excitonic binding energy. The materials used in optoelectronic devices 

should have low excitonic binding energy for their effective applications.  HPs have low 

binding energy (37-75 meV) due to which the photogenerated electron-hole pairs are easily 

separated.68 The built-in potential can play a significant role in the separation of excitons. 

For the effective separation of excitons in a perovskite solar cell (discussed in a later 

section), electron transport and hole transport layers are used. The work function difference 

of these materials helps in the separation of excitons. 

(d) Tunable bandgap. The bandgap is the energy difference between the conduction 

band and the valence band. It is the minimum amount of energy required by an electron to 

get excited from the valence band to the conduction band. For effective absorption of solar 

energy in the visible region (3.1 eV - 1.7 eV)), the bandgap energy should be 1.7 eV or 

less. The bandgap of a HP depends on its composition. Usually halides and metal ions 

determine the bandgap. The commonly used MAPbI3 HP has a bandgap of 1.6 eV while 

the mixed halide HPs have a tunable bandgap.69 The bandgap of MAPbBrxI3−x can be 

continuously tuned over the range of 1.6-2.3 eV for x = 0 to 3.70 Similarly, the bandgap of 

MAPbClxI3-x has been found between 1.6-2.9 eV for x = 0 to 3.71 This property of HPs 

makes them suitable for their applications in the various optoelectronic devices.68, 72-76   

(e)  Photo/electroluminescence. Photoluminescence is a process in which the 

absorption of a photon by a molecule causes the excitation of one its electrons to a higher 

electronic state, and the electron returns to a lower energy level with the emission of 

radiation. HPs are found to possess photo/electroluminescence due to which they are 

popularly used in making multicolored light-emitting diodes.68 

(f) Resistive switching. Resistive switching refers to tunable resistance states 

induced by an external electric field. HPs possess a resistive switching mechanism, due to 

which hysteretic behavior is observed in current-potential curves of perovskite solar cells 
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(PSCs). Although the hysteresis is detrimental for PSCs, it is potentially useful for non-

volatile memory applications such as HP memristors.77-79 

1.4.2. Electric Polarization in Hybrid Perovskites 

Electric polarization is the process of development of an electrical double layer in 

a material. It can be understood with a parallel plate capacitor as shown in Figure 1.11. 

There is a dielectric material between the plates which gets polarized when an electrical 

field is applied. The polarized dipoles cause an induction of opposite charge on the plate. 

The polarization is then calculated using the induced electric field (Ein) by 

P = ε0εrEin 

where ε0 is the permittivity of the vacuum and 𝜀𝑟 is the relative dielectric constant of the 

medium. The polarization can be ionic (displacement of oppositely charged ions by an 

electric field mostly found in ionic solids), electronic (displacement of electron clouds of 

an atom or valence electrons in covalent solids with respect to the positive ionic cores) or 

dipolar orientation of molecules with a permanent dipole moment. When the polarization 

is spontaneous and can be switched by applying a suitable electric field, it is called 

ferroelectric polarization. 

Figure 1.11. Parallel plate capacitor. When an electric field is applied, the dielectric gets 

polarized, which induces opposite charge on the plates. 
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HPs have only methylammonium ions as the species with a permanent dipole of 2.3 

D. The solution processed films of HPs have point defects which cause structural 

distortions.80-82 Also, there is vacancy mediated migration of ions in the crystal lattice.83 

All these factors can cause the spontaneous and electrical field-induced polarization of the 

films of HPs. There is an ongoing debate on the question of whether hybrid perovskites are 

ferroelectric or not and how this might impact the optoelectronic devices. Hybrid 

perovskites show ferroelectric behavior at certain compositions and range of temperatures, 

which together govern the lattice structure. The ferroelectric polarization of hybrid 

perovskites is studied by a piezoresponse force microscopy (PFM) investigation and double 

wave method.84-87 

1.4.3. Perovskite Solar Cells 

A perovskite solar cell (PSC) uses a perovskite structured compound as the light-

harvesting active layer. A hybrid organic-inorganic lead or tin-based material is commonly 

used in a PSC. Perovskite materials such as methylammonium lead halide and all inorganic 

cesium lead halide are cheap to produce and simple to manufacture. 

1.4.4. Working Principle of Perovskite Solar Cell 

One of the most important factors for evaluating the overall photovoltaic performance 

of a perovskite solar cell (PSC) is its architecture. Electron transport material (ETM) and 

hole transport material (HTM) are used along with the perovskite material. Depending on 

which transport material (ETM or HTM) is present on the exterior portion of the cell or 

where the incident light falls, the structures are classified as mesoscopic and planar. The 

mesoscopic layer consists of a mesoporous layer whereas the planar structure has all planar 

layers. These structures can be n-i-p, where the incident light passes to the perovskite layer 

through ETM, or p-i-n, where the incident light reaches the perovskite layer though HTM. 

All these structures are depicted in Figure 1.12 a-d. The first perovskite solar cell, where 

the light-harvesting dye of a DSSC was replaced with lead halide perovskite and liquid 

electrolyte with a solid-state HTM, had mesoporous n-i-p structure. It had a configuration 
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of FTO anode/ETM/mesoporous oxide/perovskite/HTM/metal cathode. The planar 

structure is an evolution of the mesoscopic structure, where the perovskite-light harvesting 

layer is sandwiched between the ETM and HTM. We are using planar p-i-n structures for 

our solar cells discussed in Chapter VI.  

Figure 1.12. Architectures of different types of perovskite solar cells. 

The overall working of a PSC is depicted with the help of band diagrams of the 

various components (Figure 1.13). It can be described in three steps: (i) absorption of 

sunlight to generate charge carriers, (ii) separation of charge carriers, and (iii) extraction 

of charges to generate electric current. When the solar radiation is incident on a PSC, the 

perovskite absorbs photons to generate electron-hole pairs, excitons. Excitons have some 

kind of binding energy because they are oppositely charged. This energy is in fact excitonic 

binding energy. The work function difference of the electron transport layer (ETL) and 

hole transport layer (HTL) provides the energy necessary for the dissociation of the 

excitons. The electron gets separated from the hole, getting injected to the ETL and then to 

the anode, while the hole gets injected to the HTL and then to the cathode. The potential 

difference between the cathode and the anode pushes the electrons to the external circuit 

to produce electric current. 
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Figure 1.13. Working principle of a perovskite solar cell with band diagrams. These band 

diagrams represent a planar n-i-p perovskite solar cell. 

1.4.5. Issues with Perovskite Solar Cells 

The main issues with perovskite solar cells are the insufficient stability, the toxicity 

of lead, and the hysteresis often observed in the perovskite current-voltage (I-V) 

characteristics.88-89 Instead of Pb metal, other environmentally friendly metals such as Sn 

are used. Putting aside the toxic nature of lead, the structural, thermal, chemical and photo-

stability are the chief challenges in the large scale implementation of perovskite solar cells 

(PSCs).90-91 Progress has been made for improvement in the stability through the 

management of the organic cations, inorganic cations and halide ions used in the material.71, 

73, 90, 92 Reports reveal that the possible mechanisms for the hysteretic phenomenon 

observed in perovskite solar cells are trapping of positive and negative carriers, and ion 

migration.93-97 These explanations all involve a bias dependent change in the electric 

polarization of the perovskite that is thought to modify the transport properties. This also 

implies that an internal electric field exists in the film, even at zero bias, and additional 

bias can alter the field further.  Recent experiments have measured an internal potential 

drop in hybrid perovskites using Kelvin probe force microscopy98 and capacitance 

measurements,99 however, the measurements were specific to a particular sample and the 
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relationships between the built-in potential and the applied external field, material quality 

and photocurrent efficiency were not explored.  

1.4.6. Two-Dimensional Hybrid Perovskites 

One of the solutions proposed to improve the stability of hybrid perovskites is in the 

form of layered perovskites.100-101 These layered perovskites in fact are the two-

dimensional derivatives of three-dimensional perovskites and are formed when 3D 

frameworks are sliced into well-defined 2D slabs. The 2D perovskites have the general 

formula of (RNH3)2(A)n-1MnX3n+1 where RNH3 is a large aliphatic or aromatic 

alkylammonium cation acting as a spacer between the perovskite layers, A and M are 

cations and X anions which form the perovskite framework, and n represents the number 

of corner-sharing [MX6]
4- octahedral layers sandwiched between the interdigitating 

bilayers of spacer ions.102 Commonly used RNH3, A, B, and X ions are given in Table 1.1. 

As n tends to , the structure becomes a three-dimensionally bonded perovskite crystal. 

The spatial distribution of n-butylammonium, methylammonium, lead and iodide ions in 

the different types of 2D hybrid perovskites [(CH3(CH2)3NH3)2(CH3NH2)n-1PbnI3n+1] are 

shown in Figure 1.14. These perovskites normally have a tetrahedral or orthorhombic 

structure and are more flexible and deformable.103-104 2D hybrid perovskites have greater 

stability in ambient conditions, and are exciting potential candidates for the applications in 

optoelectronic devices.  

Table 1.1.  Different ions used in layered hybrid perovskites 

Spacer cation Organic cation Metal cation Inorganic anion 

n-Butylammonium 

n-Propylammonium 

n-Octylammonium  

n-Decaoctylammonium 

Phenyl ethylammonium 

Methylammonium 

Formamidinium 

Guanidinium 

Pb2+ 

Sn2+ 

Cl- 

Br- 

I- 
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1.4.7. Motivation for the Study of Perovskites 

The built-in potential developed in a hybrid perovskite film can help in the separation 

of photogenerated electron-hole pairs. The measurement of this intrinsic electric field is 

very important, and to the best of our knowledge, there is no technique that can directly 

measure this built-in potential in nano or micro domains. We developed a novel technique, 

the AC photocurrent measurement to measure the polarization of HP films. Using this 

technique, we did an intensive research on the grain size dependence of the polarization 

and its impact on the charge transport properties. 

The stability of perovskite solar cells under ambient conditions is a very challenging 

issue. These solar cells are often fabricated and sealed in an environment of inert gases like 

Ar and N2. It is reported that light-soaking causes enhancement in the photoconversion 

efficiency of perovskite solar cells without considering the effect of background 

environment. Reports show different performance of perovskite solar cells with identical 

configuration when the measurements were carried out in different environments. This 

Figure 1.14. The spatial distribution of different cations and anions in the crystals of 

2D hybrid perovskites. 
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encouraged us to think about the effect of Ar gas and other gases on the electric polarization 

and photovoltaic performance of hybrid perovskite solar cells. 

2D hybrid perovskites are emerging perovskites with improved stability and highly 

tunable bandgaps. The exploration of their optoelectronic properties can give a suitable 

direction for their applications in different optoelectronic devices.  

1.5. Outline of the Dissertation 

Chapter II of this dissertation presents the common experimental methods related to DSSCs 

and studies with 2D and 3D perovskites. It describes the fabrication of highly reproducible 

DSSCs, and the measurements done with the complete DSSCs, and titania (doped and 

undoped) films. In addition, this chapter discusses the synthesis of precursor materials for 

mixed halide hybrid perovskites, fabrication of good quality perovskite solar cells, and a 

novel technique, the AC photocurrent (ACP) method for photoelectrical characterization 

of hybrid perovskites. Chapter III describes the effect of rare-earth metal oxide (REO) 

nanoparticles on the photovoltaic performance of DSSCs. The various factors which 

contribute to the photovoltaic enhancement of DSSCs by the effect of REO nanoparticles 

doped into titania are well illustrated in this chapter. Chapter IV focuses on the studies of 

films made up of undoped titania and titania doped with REO nanoparticles by using 

electrical and electrochemical approaches. It also discusses the charge transport mechanism 

in nanostructured titanium dioxide (NTD) when doped with REO nanoparticles with the 

help of cyclic voltammetry, chronoamperometry, and electrochemical impedance 

spectroscopy.  Chapter V describes the application of the AC photocurrent method to 

characterize the electric polarization of mixed halide hybrid perovskite films. The 

measurement of band-edge, built-in potential resulting from the polarization of the film, 

grain size dependence of the electric polarization, and carrier relaxation after poling are 

thoroughly described in this chapter. Chapter VI is about the effect of background 

environment on the electric polarization of mixed halide HPs. This chapter describes that 

the film of mixed halide HP adsorbs Ar gas in the presence of sunlight and enhances the 
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electric polarization. The enhanced polarization leads to an increase in the photocurrent, 

which could be related to the improved photovoltaic performance. The test of this 

observation in an actual perovskite solar cell reveals that the combined effect of the Ar gas 

and sunlight in fact is responsible for the photovoltaic improvement. Chapter VII is related 

to the synthesis of crystals of layered hybrid perovskites and their characterizing with AC 

photocurrent and other techniques. Finally, the chief conclusions and directions for future 

studies are presented in Chapter VIII.
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CHAPTER II 

EXPERIMENTAL SECTION 

2.1. Substrates 

Fluorine-doped tin oxide (FTO)-coated glass substrates were used for the fabrication 

of all DSSCs, electrochemical measurements with doped and undoped titania, and scanning 

electron microscopy (SEM) images. Indium tin oxide (ITO)-coated glass substrates were 

used for the fabrication of perovskite solar cells (PSCs). Glass substrates were used for all 

other experiments related to DSSCs, characterization of materials and experiments with 

perovskite materials. 

2.2. Chemicals and Materials 

Two types of Titania paste (18 NR-T and WER2-O), low temperature thermoplastic 

sealant (30 µm), and a 43T mesh screen printer optimized for DSSCs were purchased from 

Dyesol, Australia. Anhydrous ethanol, acetone and ACS grade acetonitrile were obtained 

from VWR Internationals, USA. FTO glass (TEC 7) sheets of 6-8 Ω/cm2 were purchased 

from MTI Corporation, USA. ITO coated glass sheets (ITO-P001) of <10 Ω/cm2 were 

bought from Zhuhai Kaivo Optoelectronic Technology Co., Ltd., China. 1,3-

dimethylimidazolium iodide, and TiCl4 were purchased from TCI Chemicals, USA. 

Cerasolzer was purchased from MBR electronics, Switzerland and T/SP platisol from 

Solaronix, Switzerland. Nd2O3 and Er2O3 nano powders each less than 100 nm in diameter, 

isopropanol, tert-butyl alcohol, C101 dye, iodine crystals, lithium iodide, lead  oxide, lead
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iodide, 57% w/w aqueous hydroiodic acid, 40% w/w aqueous methylamine, 32% w/w 

aqueous hydrochloric acid, zinc nano powder, n-butylamine, N,N-dimethylformamide, 

valeronitrile, guanidinium thiocyanate, magnetic stir bars, methylammonium chloride were 

purchased from Sigma Aldrich, USA. 10 MHz Au-coated quartz crystals were bought from 

Gamry Instruments, USA. Nanopure water of resistivity 18 MΩ-cm was used for all 

cleaning procedures and solution preparations.  

2.3. Preparation of Reagents 

2.3.1. Preparation of TiCl4 solution 

The aqueous solution of TiCl4 was prepared in nanopure water. First the water was 

cooled to a temperature below 5 0C and required volume of TiCl4 was added to it dropwise 

in a fume hood to make the final concentration of 40 mM. The solution appeared cloudy in 

the beginning, but it became clear after swirling the solution for some time. This solution 

was used for the deposition of hole blocking layer of titania nanoparticles (pre-treatment), 

and interconnecting titania particles of mesoporous film (post-treatment) as described in 

the section of fabrication of photoanodes of DSSCs.  

2.3.2. Preparation of Z960 Electrolyte 

The electrolyte containing redox couple iodide/triodide was prepared in a mixture of 

acetonitrile and valeronitrile. This electrolyte was used in all the DSSCs described later in 

this dissertation. The composition of the electrolyte was 1.0 M 1,3-dimethylimidazolium 

iodide, 50 mM LiI, 30 mM I2, 0.5 M tert-butylpyridine and 0.1 M guanidinium thiocyanate 

in a 17:3 mixture of acetonitrile and valeronitrile by volume. 

2.3.3. Preparation of C101 Dye Solution 

C101 dye was weighed and dissolved in a 1:1 mixture by volume of acetonitrile and 

tert-butyl alcohol to make the final concentration of 0.3 M. The dye solution was stirred 
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magnetically for 30 min and stored in dark. This dye solution was used for the 

photosensitization of photoanodes of all DSSCs and dye-loading experiment. 

2.4. Cleaning Substrates 

Each type of substrate was cleaned using the following steps: 

(i)  Sonication with Alconox detergent solution in nanopure water for 15 minutes and 

rinsing with nanopure water. 

(ii)  Sonication in acetone for 10 minutes and rinsing with acetone. 

(iii)  Sonication in ethanol for 10 minutes and rinsing with ethanol. 

(iv)  Sonication in isopropanol for 10 minutes, rinsing with isopropanol and drying in N2 

gas. 

(v)  Cleaning with UV/ozone treatment using a UVO-CLEANER Model No. 42 (Jelight 

Company, Inc.) for 15 minutes. This step destroys all organic impurities. 

2.5. Fabrication of Dye-Sensitized Solar Cells 

The fabrication method and components used in DSSCs, such as electrolyte, dye, 

titania nanoparticle diameter, titania film thickness, space between counter electrode and 

photoanode, and external contacts, can greatly influence the PEC parameters. This section 

describes the methods used to prepare DSSCs described later in this dissertation. It also 

describes the different measurements adopted to characterize the observed photovoltaic 

performance. 

2.5.1. Preparation of Titania Paste for Dye-Sensitized Solar Cell 

Dyesol 18 NR-T titania paste was used without any further modification for all 

undoped/traditional samples. The photoanodes made using this paste directly were named 

as 'Traditional' or 'Undoped'. Nd2O3 and Er2O3 oxide nanoparticles of less than 100 nm in 

diameter were doped into DSL 18 NR-T paste by mixing in the solid state. Briefly, about 

2 g of DSL 18 NR-T paste was placed in a wide mouth short jar and the required amount 

of REO NPs was then added to it. The mixture was stirred with a glass pipette tip for 20 
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minutes and left undisturbed for 2 hours with the cap closed, after which the paste was 

again stirred with a glass pipette tip for 20 minutes to make the distribution of REO NPs 

as homogeneous as possible. The photoanodes made from this paste were named as 

'NdNPs-Solid' and 'ErNPs-Solid' to indicate the Nd2O3-doped and Er2O3-doped titania 

films, respectively.  'Solid' indicates that the REO NPs were added to the titania paste in 

the solid state.  

2.5.2. Fabrication of Photoanodes 

(a) Pre-TiCl4 treatment: The pre-cleaned slides were dipped in a 40 mM aqueous 

solution of TiCl4 at 70 °C for 30 minutes followed by rinsing with nanopure water and then 

ethanol. The slides were then dried with a stream of nitrogen gas.  

(b) Deposition of active layer: An approximately 7 µm thick film of each undoped or 

doped titania paste was screen-printed onto the FTO using a Dyesol 43T Screen Printer. 

The film was placed together with a small piece of paper soaked in isopropanol and covered 

with a petri dish for 1 minute, where the isopropanol vapors aid in levelling the film. The 

film was then heated on a hot plate at 125 °C for 6 minutes to dry the film. Finally, a 4-5 

µm thick scattering layer of 150-250 nm titania particles (DSL WER2-O) was screen-

printed onto the film. For the best performing undoped/doped cells, undoped/doped paste 

was screen-printed twice. After each screen-printing, the film was placed together with a 

small piece of paper soaked in isopropanol and covered with a petri dish for 1 minute for 

levelling the film and was heated on a hot plate at 125 °C for 6 minutes to dry the film. 

This gave an average thickness of 11.3 ± 0.5 µm (n=8). Finally, a 4-5 µm thick scattering 

layer was screen-printed. The film was again heated at 125 °C for 15 minutes. The slides 

were then heated in a Barnstead Thermolyne 1300 furnace from room temperature to 

300 °C using a temperature ramp of 10 °C/min and held there for 15 minutes. They were 

then ramped from 300 °C up to 375 °C and held there for 5 minutes. Finally, they were 

ramped from 375 °C up to 500 °C and held there for 40 minutes. The temperature ramping 
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program is shown in Figure 2.1. The slides were then gradually cooled to room temperature 

after the heating program. They were again treated with a 40 mM aqueous solution of TiCl4 

at 70 0C for 30 minutes, rinsed with nanopure water, and then with ethanol. The next step 

was heating in the furnace by ramping the temperature 10 °C/min up to 500 °C and holding 

at 500 °C for 30 minutes. The slides were gradually cooled to 80 °C. These are the 

photoanodes used for making cells. Scheme 2.1 depicts the overall procedure for the 

fabrication of the photoanodes. For UV/VIS spectroscopic measurements and dye loading 

experiments, the photoanodes were made in the same way but without the scattering layer. 

Figure 2.1. Temperature ramping program while sintering the films. 
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Scheme 2.1. Preparation of photoanodes for DSSCs. 

Scheme 2.2. Fabrication of photoanodes for best performing DSSCs. 

1. Steps 1 - 5 from scheme 2.1

2. Exposure to isopropanol vapor for 1 min and heating

on a hot plate at 125 0C for 6 min

3. Screen-printing doped/undoped titania on top of the

film from step 2

4. Exposure to isopropanol vapor for 1 min and heating

on a hot plate at 125 0C for 6 min

5. Steps 7 - 14 from scheme 2.1
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2.5.3. Sensitization of Photoanodes with Dye 

The photoanodes at 80 0C in the oven were removed and immediately soaked in a 0.3 

mM C101 dye in a 1:1 mixture by volume of acetonitrile and tert-butyl alcohol for 14 hours 

in the dark. They were removed from the solution and soaked in dye solvent for 2 h to 

desorb multilayer dye attached to titania. Finally, they were rinsed with ethanol and dried 

in a stream of N2 gas. These photoanodes were used to fabricate sandwich DSSCs. Figure 

2.2a represents a photoanode sensitized with a dye. 

2.5.4. Fabrication of Counter Electrodes 

FTO slides were drilled with a 1 mm diamond drill bit (UKAM Industries, USA) at 

5000 rpm and cleaned using the procedure described above. Then, a 1 cm   1 cm area of 

T/SP platisol was screen-printed using a 43T Screen Printer in the center of the FTO near 

the hole. These slides were heated in a Barnstead Thermolyne 1300 furnace at 450 °C for 

30 minutes and allowed to cool gradually to room temperature. The overall procedure 

involved in the fabrication of the counter electrode is shown in Scheme 2.3. Figure 2.2.b 

depicts a counter electrode. 

Figure 2.2. (a) Photoanode sensitized with a dye and (b) counter electrode used in 

DSSCs. 

(a)

FTO glass

Dye loaded 
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Hole
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FTO glass
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Scheme 2.3. Fabrication of counter electrodes used in DSSCs. 

2.5.5. Fabrication of Sandwich Dye-Sensitized Solar Cell 

The sandwich cells were fabricated by combining the photoanode sensitized with 

C101 dye as the working electrode with the platinum-coated FTO glass as the counter 

electrode, following a standard procedure39, 105 with some modification. Briefly, 30 µm low 

temperature thermoplastic sealant was inserted between the working electrode and the 

counter electrode and the two were held tight in contact with each other. The assembly was 

heated at 100 0C for 45 seconds using a thermal press MPRESS912 (HeatPress, USA). This 

process is illustrated in Figure 2.3. The electrical contacts were made at the end of each of 

the working and the counter electrodes using Cerasolzer (MBR Electronics, Switzerland) 

and a soldering iron at 200 0C. Z960 electrolyte was injected into the internal space of the 

cell through the drilled hole by a vacuum backfilling system.106 A drop of the electrolyte 

was placed on the drilled hole of the counter electrode of the cell kept in a small vacuum 

chamber (Figure 2.4a). The repeated evacuation of the air followed by exposure to ambient 

pressure pushed the electrolyte into the internal space of the cell (Figure 2.4b-c). To seal 

the hole, a small piece of thermoplastic sealant was placed on the hole, and a coverslip (0.1 

mm thickness) was placed onto the sealant. The assembly was heated at 100 °C under 

Dicing FTO slides into 2 cm × 3 cm

Cleaning in detergent, acetone, ethanol, 

and isopropanol for 5 min each.

Cleaning with UV/ozone treatment

Deposition of platisol on the FTO glass

Heating in a furnace at 450 0C for 30 min 

followed by self-cooling to room 

temperature

Drilling a hole (0.5 mm diameter)
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pressure. Figure 2.4d shows a DSSC with after heating the assembly.  Finally, the cell was 

masked in order to expose a fixed area to light. The mask used for this purpose was made 

from a black tap by laser cutting. The complete device fabrication process is shown in 

Scheme 2.3. A complete DSSC is shown in Figure 2.4e. The masked area was measured to 

be 0.283±0.003 cm2 (n=5) with a measurement uncertainty for the XY axis of ±2.3  m. 

This area was used for all the calculations of PEC parameters. 

 

Figure 2.3. Assembling photoanode and counter electrode to make a sandwich DSSC. 
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Scheme 2.4. Fabrication of a sandwich DSSC 

Figure 2.4. (a)-(c) Vacuum backfilling of electrolyte in a DSSC, (d) a DSSC with sealed 

hole, and (e) a complete DSSC with a mask.  

Placing the sealant on the photoanode so that the window lies just 

above the film

Making a square window of sealant area a little larger than the area of 

photoanode

Placing the counter electrode above the sealant with the Pt layer facing 

towards the photoanode

Placing the assembly inside a thermal press and press the assembly at 

100 0C for 45 s

Soldering Cerasolzer  on the exposed part of photoanode and counter 

electrode to make good electrical contact

Filling Z960 electrolyte by back vacuum filling inside a vacuum 

chamber

Sealing the hole with sealant and coverslip

Vacuum on Vacuum off

Electrolyte

Vacuum 
chamber

Air bubbles

(a) (b) (c)

(d) (e)
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2.6. Characterization of Photoanodes Used for Dye-Sensitized Solar 

Cells  

 The optical images of the films were taken using a Zeiss Axio Imager version a2m 

Microscope. A Zeiss Supra 35 Scanning Electron Microscope was used to take SEM 

images. An Asylum MF3D atomic force microscope in AC mode was used to study the 

roughness of the surface of the films. Images each of 5 m  5 m size were taken at five 

different spots, and the average of five root-mean-square (RMS) roughness measurements 

was obtained. All the photoanodes used for the characterization had only an active layer of 

approximately 7 µm thickness with no second layer and no scattering layer. 

2.7. I-V Measurements of Dye-Sensitized Solar Cells 

For the photovoltaic measurements, a cell was exposed to the light from Newport's 

LCS-100 solar simulator maintained at one sun using a calibrated silicon solar cell. For the 

calibration of solar simulator, the standard silicon solar cell was exposed to the light from 

the solar simulator, and the photocurrent was measured as a function of external potential. 

The distance of the standard silicon solar cell from the light source was adjusted to get the 

photocurrent certified for one sun power. Then a DSSC was placed exactly at the same 

position as the standard silicon solar cell and the photocurrent was measured as a function 

of external potential from 0.5 V to -0.8 V using a Keithley 2401 Potentiostat. The 

experimental setup for the I-V measurement is shown in Figure 2.5. 

Figure 2.5. Illustration of I-V measurement of a DSSC. 

Potentiostat

Computer
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2.8. Electrochemical Impedance Spectroscopy (EIS) Measurements of 

Dye-Sensitized Solar Cells 

All EIS measurements were conducted in the dark at -680 mV using a CHI 660E 

instrument by applying an AC signal of 10 mV at frequencies ranging from 10 mHz to 100 

kHz. 

2.9. BET Analysis of Doped and Undoped Titania 

For the measurement of the specific area of doped and undoped titania, about 100-

200 mg of each of doped and undoped titania was made by screen-printing and sintering 

as mentioned above. Each sample was kept in a clean and dry BET tube and degassed at 

80 °C for 3 hours, and the weight of the dry sample was measured. It was then subjected 

to N2 gas adsorption and desorption using a Tristar III. 

2.10. Dye Loading in Doped and Undoped Titania 

For dye loading measurements, the photoanodes having a 7 m thick mesoporous 

film of titania doped with REO at different concentrations were immersed in a 0.3 mM 

C101 dye solution for 14 hours in the dark. The photoanodes were soaked in dye solvent 

for 2 h to desorb multilayer dye attached to titania. They were then rinsed with ethanol and 

dried with N2 gas.  The UV/VIS spectra of the dye loaded films were measured with a 

Perkin Elmer Lambda 950 UV/Vis Spectrometer. The optical absorbances at 550 nm were 

used to compare the amount of dye adsorbed on each type of film. 

2.11. Synthesis of Methylammonium Chloride 

Methylammonium chloride (MACl) was synthesized by following the procedure 

described elsewhere.16 Briefly, 40% w/w aqueous CH3NH2 was neutralized by an 

equimolar quantity of 32% w/w aqueous HCl in an ice bath with constant stirring for 2 h 
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as shown in Figure 2.6. After the reaction, white precipitate of MACl was recovered by 

rotary evaporation at 40 0C.  The precipitate was recrystallized in ethanol. The crystals 

were washed with cold diethyl ether three times and dried in vacuum at 40 0C for 2 hours. 

The details of the synthesis process are given in Scheme 2.5. 

Figure 2.6. Synthesis of methylammonium chloride. 
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Scheme 2.5. Synthesis of methylammonium chloride 

2.12. Preparation of CH3NH3PbClxI3-x Precursor Solution 

Unless otherwise mentioned, the precursor solution of lead-based methylammonium 

mixed halide containing chloride and iodide was prepared by mixing PbI2 and MACl (1.1:1 

molar ratio) in anhydrous DMF to make a 0.2 M solution with respect to MACl. The 

mixture was stirred at 70 0C for 12 hours. This solution was used to cast the perovskite 

films used for electronic and electrochemical studies. 

2.13. Fabrication of Highly Granular Film 

Highly granular films for the various experiments with mixed halide hybrid 

perovskite containing chloride and iodide were prepared by using a hot-casting technique.16  

Briefly, a pre-cleaned glass substrate was heated to 180 0C for 10 minutes and quickly 

transferred to the top of a spin-coater. 150 L of the precursor solution at 70 0C was then 

Cap the flask with a rubber stopper and place the flask 

in an ice bath for 20 min.

Measure 9.8 mL of 32% w/w aq HCl in a round bottom 

flask.

Using a syringe, add 8.7 mL of 40% w/w aq CH3NH2

dropwise to neutralize HCl while stirring magnetically.

Keep stirring the solution for 2 h in the ice bath. 

Remove the solvent by rotary evaporation at 40 0C.

Collect white precipitates of methylammonium chloride.

Recrystallize in ethanol and dry the crystals in vacuum 

at 40 0C for 2 h.
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dropped to the center of the substrate within 5 seconds and spun immediately at 3000 rpm 

for 30 s which gives large grain size films. Any delay in spin-coating results in smaller 

grain films and incomplete conversion of the precursors to the perovskite crystal structure. 

The hot-casting technique is illustrated in Figure 2.7. 

Figure 2.7. Hot casting method for making highly granular films. 

2.14. AC Photocurrent Measurement 

(a) Device fabrication.  The precursor solution of methylammonium chloride (MACl) 

and PbI2 at 70 0C was spin-coated onto a cleaned glass slide using the hot-casting technique 

as mentioned above.  The sample was quickly transferred to the electron beam evaporator 

to avoid any degradation due to air and moisture. 100 nm thick gold contacts were then 

evaporated onto the perovskite film. A shadow mask (Figure 2.8) was used to define an 

interdigitated contact pattern with 30-micron wide fingers separated by 40-micron gaps. 

Following the deposition of the Au contacts, the device was mounted in an optical cryostat 

and electrically connected with coppers wires using a conductive Ag paint. The cryostat 

was then pumped down to a vacuum of 10-7 torr before electrical measurements. The details 

of the device fabrication are given in Scheme 2.6. 

3000 rpm

Substrate at 180 0C

Precursor

solution at 70 0C

Granular film
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Scheme 2.6.  Device fabrication for AC photocurrent measurements. 

 

 

 

Figure 2.8. Shadow mask for the interdigitated contacts. 

Weigh out 14.6 mg of methylammonium 

chloride and 100 mg of lead iodide in a vial 

and add 1 mL of anhydrous DMF

Keep stirring the mixture at 70 0C for 12 h 

to get a clear yellow solution.

Clean microscopic glass slide in detergent, 

acetone, ethanol and isopropanol 5 min 

each.

Treat the slide with UV/ozone for 15 min.

Heat the slide at 180 0C for 10 min on a hot 

plate and transfer to the top of spin-coater.

Drop 150 µL of the precursor solution on 

the middle part of the slide and spin-coat at 

3000 rpm for 30 s.
Place a shadow mask on the top of the film 

and tape it.

Mount the assembly in the sample holder 

and transfer to electron beam evaporator

Pump the evaporator to the pressure to 10-7

torr before deposition.

Deposit 100 nm of Au on the top of the film

Take out the device from the electron beam 

evaporator and mount in a cryostat.

Make electrical connections with Cu wires 

using Ag paint.

Pump the cryostat to lower the pressure to 

10-7 torr.

100 µm
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(b) AC photocurrent spectrum measurement.  Figure 2.9a shows the experimental 

setup for the AC photocurrent measurements. Briefly, the sample was exposed to the light 

from a tungsten bulb spectrally filtered using a monochromator.  The light with an average 

power of 2.5 mW cm-2 was chopped at a frequency of 13 Hz using an optical chopper. The 

signal from the device was fed to a current amplifier, the output of which was fed to a lock-

in-amplifier.  The output data from the lock-in amplifier were passed to the multimeter and 

to the computer. For obtaining the AC photocurrent spectrum, the photocurrent was 

measured as a function of the wavelength of light, selected by the monochromator. 

(c) Built-in potential and phase measurements.  Figure 2.9b shows the 

experimental setup for built-in potential (Vbi) and phase measurements. Here, an external 

potential is applied to the device with a source meter. For the determination of built-in 

potential, the AC photocurrent was measured as a function of external potential applied 

while the monochromatic, 13 Hz-chopped light at maximum absorption wavelength (740 

nm) was constantly striking the device. The potential range for a scan was determined by 

observing the output signal decreasing as the potential was scanned from 0 V towards the 

negative direction. A lock-in amplifier was kept in phase mode for the measurement of 

phase associated with the AC photocurrent.  Vbi is the potential where the AC photocurrent 

is zero (or at a minimum). 
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Figure 2.9. Experimental setup for the measurement of (a) AC photocurrent spectrum, 

and (b) built-in potential and phase. 

(d) Electric polarization measurements.  The devices used for the polarization 

measurements were the same as the other measurements. Polarization (P) was calculated 

from the built-in potential by 

𝑃 = 𝜀0𝜀𝑟 (
𝑉𝑏𝑖

𝑙
) 

where 𝑙 is the separation between the fingerlike contacts (40 m), 𝜀0 is the permittivity of 

vacuum, 𝜀𝑟  is the relative dielectric constant of MAPbIxCl3-x. The relative dielectric 

constant for MHHP was taken from literature for the frequency very close to zero.107 The 

intrinsic electric polarization was calculated from the built-in potential of pristine sample. 
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For the electrical field induced polarization, a thin film of MHHP was poled at different 

potentials from 0 to 7.5 V to -7.5 V to 7.5 V and the corresponding Vbi was measured at 

every 0.5 V increment. The device was poled for 5 minutes at each potential, and Vbi was 

measured within 40 seconds. The device was then kept at 0 V for 2 minutes to let the system 

relax close to the initial condition before every measurement.  

For the built-in potential measurement of MHHP samples under different 

environments, the measurements were carried out as follows: 

(i) The device was kept in vacuum for 30 minutes at a pressure of 10-7 torr and the 

built-in potential was measured every 3 minutes for about 20 minutes. 

(ii) White light from a solar simulator was shone at the region of interdigitated finger 

contacts on the device and the built-in potential was measured every 3 minutes 

for about 20 minutes. 

(iii) The vacuum was discontinued, and the cryostat was then filled with a continuous 

flow of Ar gas. The built-in potential was measured every 3 minutes for about 1 

h. 

(iv) The flow of Ar gas was then stopped and the Ar was pumped out to create a 

vacuum in the chamber of the cryostat. As the Ar gas was pumped out, the built-

in potential was measured every 3 minutes for about 1 h. 

(v) The solar simulator was switched off. After 30 minutes, the vacuum was 

discontinued, and a constant flow of Ar was maintained. 

(vi) Finally, the built-in potential was measured every 3 minutes for 20 minutes. 

The details of built-in potential measurements in different background conditions are 

shown in Scheme 2.7. The scheme is the same for all of the AC photocurrent measurements. 
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Scheme 2.7. Built-in potential measurements in different environments. 

2.15. Calculation of Average Grain Size 

The average grain sizes of all the films used in Chapter 5 were calculated using a 

standard ASTM E112 intercept procedure.108 The procedure consists of drawing several 

lines of same length on the film and counting the number of grain boundaries intersected 

by the test lines. If L is the total length of test lines, which intersect Ni grain boundaries, 

the number of grain boundary intersections per unit length of test line, 𝑁̅𝐿, is given by 

𝑁̅𝐿 =
𝑁𝑖

𝐿/𝑀

where M is the magnification. The lineal size of the grain, 𝑙,̅ is the reciprocal of 𝑁̅𝐿. Special

care should be given when counting the number of grain boundaries intersected by the test 

lines. When counting intercepts, segments at the end of a test line which penetrate into a 

grain are scored as half intercepts. When counting intersections, the end points of a test 

line are not intersections and are not counted except when the end appears to exactly touch 

Pump the cryostat to a pressure of 10-7

torr.

Stop the stopper for Ar and keep the 

vacuum on.

Turn off the solar simulator. After 30 

minutes, turn off the vacuum and maintain 

a constant flow of Ar gas.

Measure the built-in potential in vacuum 

every 3 minutes for 20 min.

Focus the light from a solar simulator at 

the region of interdigitated finger 

contacts.

Measure the built-in potential in vacuum 

with solar light every 3 minutes for 20 

minutes.

Keep the vacuum off and fill the 

chamber of the cryostat with continuous 

flow of Ar gas.
Measure the built-in potential in Ar with 

solar light every 3 minutes for 1 hour.

Measure the built-in potential in light as 

Ar is continuously evacuated every 3 

minutes for 1 hour.

Measure the built-in potential in Ar 

without solar light at the interval of 3 

minutes for 20 minutes.
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a grain boundary, when 0.5 intersection should be scored. A tangential intersection with a 

grain boundary should be scored as one intersection. An intersection apparently coinciding 

with the junction of three grains should be scored as 1.5. With irregular grain shapes, the 

test line may generate two intersections with different parts of the same grain, together with 

a third intersection with the intruding grain. The two additional intersections are to be 

counted. For a particular granular film shown in Figure 2.10, there are 11 test lines each 

4.53'' long. 𝐿 = 49.83′′, 𝑀 = 109.2 𝑎𝑛𝑑 𝑁𝑖 = 136.  This yields the lineal grain size of 

85.22 m. 

Figure 2.10. ASTM procedure for determining the average size of grains. The average 

grain size for this sample was found to be 85.22 m.
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2.16. Quartz Crystal Microbalance (QCM) Measurements 

A mixture of MACl and PbI2 in a 1.1:1 molar ratio was stirred at 70 0C overnight 

using N,N-dimethylformamide as the solvent. The solution was then spin-coated onto a 

fresh quartz crystal using chlorobenzene as an anti-solvent at 4000 rpm for 30 seconds. 

Briefly, 80 L of the precursor solution was dropped to the center of the crystal and spun 

immediately at 4000 rpm. 200 L of chlorobenzene was then added to the center of the 

crystal after 5 seconds while it was spinning. Following spin-coating, the film was heated 

at 100 0C for 10 minutes. The quartz crystal coated with perovskite film (QCP) was 

mounted onto an optical cryostat and the cryostat was connected to a vacuum pump and a 

gas supply as shown in Figure 2.11. First the cryostat chamber was evacuated to a pressure 

of 10-7 torr. The resonant frequency (RF) of the QCP was measured first in the dark and 

then in the light until a steady RF was obtained in each case. The intensity of light was 

adjusted so that there was no continuous enhancement in the RF with time. This was done 

using a 400 nm long pass filter to cut off all UV radiations and adjusting the distance 

between the crystal and solar simulator. Vacuum was then kept off, and the cryostat 

chamber was filled with a continuous flow of He gas at 10 psi. The RF of QCP was 

measured in the dark and light alternatively three times until a steady RF was obtained in 

each case. This measurement was repeated with N2 and Ar gases. 

Figure 2.11. Experimental setup for QCM measurement with quartz crystal coated with 

perovskite film. 
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2.16. Fabrication of Perovskite Solar Cell 

ITO coated glass was used for the fabrication of mixed halide hybrid perovskite solar 

cell (MHHPSC). First, one end of the ITO glass was etched with zinc nano powder and 2 

M hydrochloric acid three times to make sure ITO was completely removed. This is 

illustrated in Figure 2.12. Briefly, the ITO glass was partially covered with a tape so as to 

expose the area to be etched. A thin layer of paste of zinc nano powder in ethanol was 

applied to the area with a brush, and it was allowed to dry. Then few drops of 2 M HCl 

were dropped to cover the zinc film. When the reaction was over (no bubbles of hydrogen 

gas evolved), the surface was wiped out with a tissue paper, and the process was repeated. 

This was done in a fume hood. The tape was removed and the ITO glass was then cleaned 

by sonicating with aqueous detergent solution, acetone, ethanol and isopropanol, followed 

by UV/ozone treatment as mentioned above. A thin layer of PEDOT.PSS was deposited 

by spin-coating at 5000 rpm for 30 seconds. The film was heated at 150 0C for 30 minutes. 

PEDOT.PSS coated ITO glass was heated at 180 0C for 5 minutes. On top of the 

PEDOT.PSS film was deposited a perovskite film by hot-casting16 the precursor solution 

at 4000 rpm for 30 s. Finally, a 60 nm thick film of C60 was then deposited on the perovskite 

film by electron beam evaporation. For this, C60 powder was pressed to a hard mass using 

a pestle and the deposition was done slowly using very low filament current less that 3 mA. 

The top contact of gold was made by electron beam evaporation using a mask of area 0.3 

mm2. The Scheme 2.8 shows the procedure for the fabrication of the perovskite solar cell. 

The configuration of the complete solar cell is given in Figure 2.13. 
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Figure 2.12. Etching of ITO using zinc paste and 2 M HCl. 

Figure 2.13. Configuration of perovskite solar cell. 
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Scheme 2.8. Fabrication of perovskite solar cell 

2.17. Photoelectrochemical Measurements of Perovskite Solar Cells 

The device was mounted in an optical cryostat. A small portion of 

PEDOT.PSS/Perovskite/C60 film was carefully scratched with a blade to expose the ITO 

surface for the bottom contact and gold contact was used as the top contact. The top and 

bottom contacts were connected with copper wires with silver paint (Figure 2.14a). Figure 

2.14b shows the overall setup for photoelectrochemical measurement. The current-voltage 

curves were collected using a Keithley 2400 source meter under solar illumination from a 

tungsten lamp with a power density 82 mW cm-2. The measurements were carried out in 

the following four sections:  

(i)   The device was kept in vacuum for 30 minutes and the dark photocurrent density was 

measured as a function of applied potential by cycling from -0.1 to 0.9 V at a scan 

rate of 10 mV/s. 

Apply a paste of Zn nano powder on one of the 

ends of the ITO slide and etch by adding 2 M 

HCl (3 times)

Dice the ITO slide to 2.5 cm × 2.5 cm.

Deposit 400-500 nm thick film of mixed halide 

hybrid perovskite at 4000 rpm for 30 s.

Mount the device in a sample holder and transfer to 

electron beam evaporator.

Sonicate the ITO slide with detergent solution, 

acetone, ethanol and isopropanol 5 min each.  

Sonicate PEDOT.PSS solution for 30 min.

Transfer the cleaned ITO slide to the top of a 

spin-coater.

Spin-coat PEDOT.PSS at 5000 rpm for 30 s. Heat the film of PEDOT.PSS at 150 0C for 30 min.

Cover the film with a shadow mask of area 0.3 mm2

and tape it.

Deposit 60 nm thick layer of C60 on the top of the 

perovskite layer

Pump the chamber of electron beam evaporator to a 

pressure of 10-7 torr.

Deposit 100 nm Au on the top of C60 layer.
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(ii)   The white light from a solar simulator was shone on the device (opposite to the side 

where the gold contacts were made) and the J-V characteristics were measured at 

different times for 30 minutes. 

(iii)  The vacuum was discontinued, and the cryostat was then filled with a continuous 

flow of Ar gas. The J-V characteristics were measured at different times for 2 h. 

(iv)   The flow of Ar gas was then stopped and the Ar was pumped out to create a vacuum 

in the chamber of the cryostat. As the Ar gas was pumped, the J-V characteristics 

were measured at different times for 1 h.  

(v)  Finally, the light was removed and a continuous flow of Ar was maintained into the 

cryostat for 1 h. The J-V characteristics were measurement in dark with Ar gas. 

Figure 2.14. Digital pictures of the (a) mounting of the solar cell on the optical cryostat 

and (b) experimental setup for the J-V measurements.
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2.18. Synthesis of Crystals of Layered and 3D Hybrid Perovskites 

2D layered hybrid perovskites with the general formula (BA)2(MA)n-1PbnI3n+1 and 

three dimensional MAPbI3 were synthesized using lead oxide, 57% w/w HI aqueous 

solution, and n-butylamine following the procedure described elsewhere102 with some 

modifications.  The details of the synthesis of the crystals of 2D and 3D hybrid perovskites 

are as follows. 

(a) (BA)2PbI4 (n=1).  A mixture of 2.232 g of PbO, 10 mL of 57% w/w aqueous HI 

solution, and 1.7 mL of 50% H3PO2 was combined and heated on a hot plate with magnetic 

stirring under a fume hood. The temperature was increased from 100 0C to 180 0C during 

until a clear yellow solution was observed.  In a separate beaker, 927 µL of n-butylamine 

was added to 5.0 mL of 57% w/w aqueous HI in an ice bath. This was the spacer solution 

containing the larger organic cation salt, n-butylammonium iodide.  This spacer solution 

was then added to the hot yellow solution of lead iodide as prepared above. The stirring 

was continued until the solution turned clear and yellow. It was allowed to cool on its own. 

Slowly, orange colored rectangular crystals started to appear. The crystals were left 

undisturbed for 2 h to allow complete crystallization. The crystals were vacuum filtered 

and then dried under a low-pressure environment at 40 0C for12 h.  

(b) (BA)2(MA)Pb2I7 (n=2). A mixture of 2.232 g of PbO, 10 mL of 57% w/w 

aqueous HI solution, and 1.7 mL of 50% H3PO2 was heated on a hot plate with magnetic 

stirring under a fume hood. The temperature was increased from 100 0C to 180 0C during 

heating until a clear yellow solution was observed. 338 mg of MACl was added to the clear 

solution and heating was continued with stirring. Initially, a black precipitate appeared 

which quickly dissolved upon heating and stirring rapidly to yield a clear yellow solution. 

In a separate beaker 624 µL of n-butylamine was added to 5.0 mL of 57% w/w aqueous HI 

in an ice bath. The spacer solution of n-butylammonium iodide was then added to the hot 

yellow solution already described. The stirring was continued until the solution turned clear 

and yellow. It was then allowed to cool on its own, where scarlet colored rectangular 

crystals started to appear slowly over time. The solution was left undisturbed for 2 h to 
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allow complete crystallization. The crystals were vacuum filtered and then dried under a 

low-pressure environment at 40 0C for at least 12 h.  

(c) (BA)2(MA)2Pb3I10 (n=3), (BA)2(MA)3Pb4I13 (n=4) and MAPbI3.  The process 

for the synthesis for the 2D hybrid perovskites for n=3 and n=4 is the same as for n=2 

except the amounts of methylammonium chloride and the volumes of n-butylamine taken 

for the spacer solution. The crystals of MAPbI3 were prepared using 675 mg of MACl 

without the spacer solution.  The masses MACl and the volumes of n-butylamine used for 

the different 2D crystals are given in Table 2.1. The overall procedure for the synthesis of 

2D and 3D crystals is summarized in Scheme 2.9. Figure 2.15 shows the digital pictures of 

these crystals. 

Table 2.1. MACl and n-butylamine for the synthesis of 2D hybrid perovskite crystals 

Value of n Formula Mass of MACl 

(mg) 

Volume of n-butylamine (𝜇𝐿) 

1 (BA)2PbI4 0 927 

2 (BA)2(MA)Pb2I7 338 624 

3 (BA)2(MA)2Pb3I10 450 327 

4 (BA)2(MA)2Pb4I13 507 248 

Figure 2.15. Digital picture of crystals of 2D and 3D hybrid perovskites. 
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Scheme 2.9. Synthesis of crystals of 2D and 3D hybrid perovskites 

1. Take 2.232 g of PbO in a round bottom flask.

2. Add 10 mL of 57% w/w HI and 1.7 mL of 50% w/w aqueous H3PO2.

3. Increase the temperature from 100 0C to 180 0C with stirring magnetically

until a clear yellow solution is observed. This gives PbI2 solution.

5. Add the spacer solution

from the step 4 to the hot

solution from the step 3.

6. Keep stirring the solution

to get a clear yellow solution.

7. Remove the round bottom

flask from the hot plate and

let it cool for 2 h for

complete crystallization

where orange rectangular

crystals were obtained

4. Prepare the spacer solution

by mixing 927 µL of n-

butylamine with 5 mL of

57% w/w HI in an ice bath.

8. Add the required amount of MACl to the

hot solution of PbI2 as shown in Table 2.1.

and keep stirring rapidly at 180 0C until the

solution is clear yellow.

13. Add 675 mg of MACl to the hot solution of PbI2 and keep stirring at 180 0C

until the solution is clear yellow.

9. Prepare the spacer solution by reqd.

volume of n-butylamine (Table 2.1) with 5

mL of 57% w/w HI in an ice bath.

10. Add the spacer solution to the hot

yellow solution from the step 8.

11. Keep stirring the solution to get a clear

yellow solution.

12. Remove the round bottom flask from the

hot plate and let it cool for 2 h for complete

crystallization where scarlet to black

rectangular crystals were obtained.

14. Remove the round bottom flask from the hot plate and let it cool for 2 h for

complete crystallization where polyhedral crystals were obtained.

MAPbI3

n=1 n=2 to 4
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CHAPTER III 

ENHANCING THE PHOTOVOLTAIC PERFORMANCE OF 

DYE-SENSITIZED SOLAR CELLS WITH RARE-EARTH 

METAL OXIDE NANOPARTICLES 

This was the first research project during my Ph.D. study. The research has been 

published in the Journal of the Electrochemical Society. The motivation behind this 

research was that the incorporation of REO microparticles increased the photovoltaic 

performance of DSSCs.52 In this context, we made highly reproducible and efficient 

DSSCs with and without incorporation of REO nanoparticles, and clearly showed that the 

photovoltaic performance was enhanced by the addition of REO nanoparticles. The 

enhancement mainly comes from the increased photocurrent. We explored the various 

factors responsible for the photovoltaic enhancement. 

3.1.  Introduction 

Worldwide demand for energy continues to increase, and it is expected to double by 

2050 and triple by the end of this century.109 Photovoltaic devices, which directly convert 

solar energy to electrical energy, are an increasingly important alternative to non-

renewable carbon-based energy sources.110 One recently developed photovoltaic is the 

DSSC, which has been promoted as a possible replacement for traditional silicon solar 

cells.111-113 As first reported by O'Regan and Gratzel,113 the DSSC device architecture  

consists  of a photoanode made from  dye-sensitized mesoporous titania, a counter 
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electrode which is usually made from a platinum-coated transparent conducting oxide 

(TCO), and redox couple injected between the photoanode and counter electrode. When 

the device is illuminated, the electrons are photoexcited within the dye and transferred into 

the conduction band of TiO2 where they then diffuse to the TCO. The circuit is completed 

as charge from the counter electrode is drawn in to reduce the redox molecule in the 

electrolyte, which also replenishes electrons to the dye as it becomes oxidized.112  

The percentage conversion efficiency () of a DSSC is the product of the short-circuit 

current density JSC, the open circuit potential VOC, and the fill factor (FF), divided by the 

total solar power incident on the cell Pin.
43, 112, 114 

η =
Jsc × Voc × FF

Pin

The efficiency can be improved by increasing FF, JSC, and VOC. The FF can be increased 

by decreasing the total series resistance of the cell,43 which requires careful device design. 

JSC can be increased by using a dye with a broader absorption spectrum, or by increasing 

the amount of dye adsorbed onto the mesoporous TiO2.
37 VOC can be increased by 

increasing the rate of electron injection or decreasing the recombination,43 or by making 

the electrolyte potential more positive using different redox couples or using additives.39 

Attempts have also been made to improve the electrical and physical properties of the TiO2 

nanoparticle acceptor, and also the stability of the cells. These include the modification of 

the titania with a molecular linker44-45 for greater stability, forming core/shell structures by 

coating with another metal oxide46-47 for improvement of all the parameters, doping titania 

with different metals oxides115 and metal ions48 for increasing JSC and VOC, metal 

nanoparticles, redox inactive ionic species49 for enhancing the charge mobility  and other 

dopants50 for improvement in JSC. 

One method known to improve the efficiency of DSSCs is to dope the titania with 

REOs. Various mechanisms have been proposed for the observed improvement, including 

increased surface area,116-117 enhanced dye coverage,118-119  deep and surface trap-filling,120-

122 band-gap narrowing,123 improvement in electron injection and transport properties,117, 

121, 124-125 reduced recombination,118-119, 126 and reduced electron diffusion resistance.119, 121, 
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126-127 Results vary with different lanthanide species, and also among different reports. In 

cerium-doped TiO2 nanocrystals, cerium ions may exist at the grain boundaries or on the 

surface of TiO2 particles and decrease the size of TiO2 nanocrystals, thereby increasing the 

surface area for dye uptake.42, 125 Eu3+ and Sm3+ ions are thought to act as down-converting 

lanthanides to improve the efficiency of DSSCs128 while Er3+ and Yb3+ as up-converting 

lanthanides.129-130 NdCl3 solution is thought to enhance electron transport efficiency by 

quick dye regeneration through electrolyte and reduced recombination.119 It has also been 

reported that doping of titania with Nd3+ ions decreases the band-gap energy and reduces 

the trap state density.121 Previously, it has been reported in our laboratory that  the addition 

of large microparticles of neodymium oxide to titania enhanced the photovoltaic 

performance of DSSCs drastically.127 The enhancement was attributed to greater dye 

uptake and reduced electron transfer resistance of the mesoporous layer.  

There is no doubt that doping titania with REOs is a promising approach to improve 

the photovoltaic performance of DSSCs, however, the amount of improvement varies 

among reports, and most reports lack a lucid explanation for the observed improvement. In 

this study, we incorporate nanoparticles of erbium (III) oxide and neodymium (III) oxide 

to titania simply by mechanically mixing these solid nanoparticles into the titania paste, 

referred to as ErNPs-Solid and NdNPs-Solid, respectively. As opposed to our previous 

work with microparticles, the use of nanoparticles results in DSSCs with highly 

reproducible characteristics. Improved efficiency in REO-doped cells is observed by our 

lab, and confirmed by certified measurements at a national test facility (NREL). We also 

perform photocurrent, impedance, IPCE, dye loading and BET analyses to identify the 

mechanism of the improvement. The doping of REOs increases the dye uptake by about 

25%, the specific surface area by about 43%, while the pore diameter decreases by about 

43% relative to the undoped titania. The increase in dye coverage combined with a decrease 

in anode impedance accounts for the improved efficiency. 

3.2.  Experimental Section 

The details of the process of DSSCs fabrication with and without incorporation of 

REO nanoparticles into the titania are given in Chapter 2.  
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3.3.  Results and Discussion 

3.3.1.  Current Density-Potential Characteristics 

The characteristic current density-potential (J-V) curves of the best doped and 

undoped cells are depicted in Figure 3.1a. The best ErNPs-Solid cell had an efficiency of 

8.0%, which is about 8% greater than the best traditional cell, and 4.7 % greater than the 

best NdNPs-Solid cell. In the best cells, the enhancement in the photocurrent was found to 

be the same for both ErNPs-Solid and NdNPs-Solid cells, however, the first had a 

significantly greater fill factor. The detailed photoelectrochemical (PEC) parameters, 

conversion efficiencies (), short-circuit current densities (JSC), open circuit potentials 

(VOC) and fill factors (FF), for each batch of three types of cells are presented in Table 3.1. 

The average conversion efficiencies (%) and current densities (mA cm-2) of all the batches 

for each type respectively are 7.01±0.16 % and 13.5±0.2 mA cm-2 for traditional cells, 

7.50±0.12 % and 14.6±0.2 mA cm-2 for NdNPs-Solid cells, and 7.73±0.13 % and 14.7±0.1 

mA cm-2 for ErNPs-Solid cells.  

Figure 3.1.  (a) JV curves of the best cells and (b) IPCE of cells measured by NREL.  All 

these cells had an approximately 11 µm thick mesoporous layer and 4-5 µm scattering 

layer. 
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Table 3.1. The cell parameters of different batches of traditional, Nd-doped and Er-doped 

cells. 

Cell Type Batch 

No. 

No. of 

Cells 

n (%) JSC/mA 

cm-2 

VOC/V FF 

Traditional 

1 5 7.00±0.08 13.3±0.3 0.707±0.004 0.742±0.006 

2 4 6.96±0.09 13.5±0.5 0.692±0.008 0.743±0.007 

3 5 7.16±0.07 13.4±0.4 0.732±0.004 0.731±0.005 

4 3 7.37±0.07 13.7±0.4 0.744±0.002 0.725±0.004 

NdNPs-

Solid 

1 5 7.52±0.09 14.5±0.4 0.703±0.004 0.734±0.009 

2 5 7.37±0.19 14.7±0.5 0.691±0.010 0.727±0.006 

3 3 7.66±0.08 14.4±0.3 0.746±0.005 0.716±0.003 

ErNPs-

Solid 

1 5 7.73±0.08 14.7±0.2 0.721±0.011 0.726±0.012 

2 5 7.58±0.08 14.6±0.3 0.738±0.007 0.704±0.006 

3 3 7.94±0.04 14.8±0.2 0.746±0.008 0.716±0.011 

Another batch of cells was prepared and sent to the National Renewable Energy 

Laboratory (NREL) in Colorado for certification. The PEC parameters were measured after 

48 hours. The details of all the cells are provided in Figure 3.2 and Table 3.2. The ErNPs-

Solid showed an efficiency of 7.3% with a current density of 13.5 mA cm-2, which is about 

14% more efficient than the traditional cell. The NdNPs-Solid cell was found to be about 

5% more efficient than the traditional cell. The cells might have degraded some during the 

48 hours before measurement. Our results are in very close agreement with the NREL 

results considering the PEC parameters were measured after 48 hours in the NREL lab but 

within 4 hours in our lab. The IPCE of the cells measured by the NREL lab are shown in 

Figure 3.1b. Relative to the Traditional cells, doped cells have higher photocurrents at 

longer wavelengths, which might be an indication of the up-converting characteristics of 

the Er2O3 and Nd2O3.  
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Figure 3.2. JV plots of cells measured by NREL after 48 hours. The corresponding 

quantum efficiency plot is given in Figure 3.1b. 

Table 3.2. The cell parameters of cells measured by NREL 

Device Name n (%) Jsc/mA cm-2 Voc/V FF 

Traditional (Trad) 6.40 12.5 0.715 0.717 

NdNPs-Solid (Nd1) 6.62 13.4 0.715 0.689 

ErNPs-Solid (Er2) 7.30 13.5 0.717 0.749 

The UV/VIS spectra of various doped and undoped titania films on FTO and of 0.3 

mM C101 dye are shown in Figure 3.3. We did not find any remarkable change in the 

absorption spectra of titania due to REO-doping (Figure 3.2a), however, the characteristic 

peaks for REO are present in the spectra. The C101 dye has strong absorption peaks (Figure 

3.3b) at about 550, 400 and 350 nm, consistent with Ru-based dyes. These features do not 

show up specifically in the IPCE measurements, consistent with other reports. 
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Figure 3.3. UV/Vis spectrum of (a) doped and undoped titania on FTO and (b) C101 dye. 

Figure 3.4a-d show efficiencies, short-circuit current densities, open circuit potentials 

(OCPs) and fill factors (FFs) of the individual cells. The OCPs and FFs of the cells are 

provided in Figure 3.4c-d. We did not get a clear difference between doped and undoped 

cells for OCPs and FFs.

Figure 3.4.  The parameters of individual cells (a) efficiency, (b) short-circuit current 

density, (c) open circuit potentials, and (d) fill factors.  • : ErNPs-Solid cells, • : NdNPs-

Solid cells, • : Traditional cells, and */*/*: corresponding to the best cells. 



63 

3.3.2.  Electrochemical Impedance Spectroscopy 

Next, Electrochemical Impedance Spectroscopy (EIS) was used to investigate the 

effect of REO nanoparticles on the charge transfer characteristics of the cells. In dark under 

the application of a forward bias, there is no involvement of dye, and the applied bias drives 

electrons through the mesoporous doped or undoped TiO2 network and reduces I3
− to 3I−

while at the same time there is oxidation of 3I− to  I3
− at the counter electrode.131 In this

case the impedance is mostly due to the mesoporous film of doped or undoped TiO2. The 

radius of the middle semicircle of the Nyquist plot represents the charge transfer resistance 

of the mesoporous film. Figure 3.5 shows a Nyquist plot of doped and undoped cells. The 

impedance of ErNPs-Solid cell is about 42 Ω which is about 27.6% lower than that of the 

traditional cell and about 14.3% lower than that of the NdNPs-Solid cell. Conductivity 

measurements were performed both in dark and light. REO nanoparticles increased the 

conductivity of the titania significantly, which is consistent with the EIS data. The full 

details of the solid-state conductivity of REO-doped titania films are described in Chapter 

IV.  

Figure 3.5.  Nyquist plot of the cells shown in Figure 3.1a. 
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3.3.3.  Optimization of Concentration of REO Nanoparticles and Dye Loading 

NdNPs and ErNPs  were doped at different concentrations into DSL 18 NR-T titania 

paste and 3-4 sandwich cells were fabricated for each type of cell. Figure 3.6a shows a 

maximum in the efficiency for 2% concentration for NdNPs-Solid cells and 1.0% 

concentration for ErNPs-Solid cells. Here, % concentration refers to % by weight of NPs 

relative to the weight of NPs plus the weight of paste.  The efficiency for each concentration 

is the average of all the cells made at that concentration. To explore the enhancement of 

the photovoltaic performance of REO doped cells, we studied the amount of dye adsorbed 

by the films having the different concentrations of REO nanoparticles. Figure 3.6b shows 

the dye adsorption as a function of REO concentration. The maximum adsorption of dye 

was obtained for doping levels of 1% Er2O3 and 2% Nd2O3 nanoparticles, which correlates 

well with the optimized concentration of REO for the best photovoltaic performance. 

Figure 3.6.  (a) Optimization of concentration of REO nanoparticles for the best 

photovoltaic performance of DSSCs. These cells had a 7 µm thick mesoporous layer and a 

4-5 µm thick scattering layer.   (b) Dye absorbance as a function of concentration of REO. 

These photoanodes had a 7 µm thick mesoporous film only. 
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3.3.4.  Morphology of Doped and Undoped Films 

The images of the films of doped titania in optimized concentration and undoped 

titania taken with different microscopes are provided in Figures 3.7 and 3.8. The optical 

images in Figure 3.7 (first row) showed that in doped photoanodes, there are aggregates of 

REO nanoparticles in some regions. The AFM images in Figure 3.7 (middle row) showed 

that relative to the undoped film, there is enhancement in the roughness of the film by 

REO-doping, which is about 30% higher for 1% Er-doped and about 45 % higher for 2% 

Nd-doped films. It is based on an RMS roughness measurement in the AFM software. The 

corresponding Scanning Electron Microscopy (SEM) images of doped films at the 

optimized concentration of REO nanoparticles and undoped film are presented in Figure 

3.8. The SEM images show the nanostructures of pristine titania and REO doped titania. 
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Figure 3.7. Optical images (first row) and AFM Image (second row) and 3D images (last 

row) of doped and undoped photoanodes at the optimized doping levels. 
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Figure 3.8. SEM images of undoped and doped films under optimized conditions. 
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3.3.5.  BET Analysis of Doped and Undoped Titania  

We then measured the BET surface area and porosity of both undoped and REO-

doped films using the optimized concentrations of REO. Figure 3.9a-b are the BET 

adsorption isotherms of doped and undoped films. Relative to undoped titania, REO-doped 

films are found to show higher adsorption of nitrogen gas. The specific surface area and 

porosity of undoped, Er2O3-doped and Nd2O3-doped titania for two runs are provided in 

Table 3.3. The BET analysis showed that the greater adsorption of dye for doped titania is 

attributed to the greater surface area available for dye adsorption. The table reveals that the 

pore diameter in the film is decreased while doping TiO2 with REO. We speculate that it 

might be due to the insertion of REO nanoparticles in the space between the titania grains. 

Figure 3.9.  (a) N2 gas adsorbed at STP, and (b) BET adsorption isotherms for undoped 

and doped titania. Here Va is the volume of gas adsorbed. 
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Table 3.3. BET analysis of doped and undoped titania 

Samples 
Specific area (m2/g) Porosity (nm) 

Run 1 Run 2 Run 1 Run 2 

Undoped titania 55.3 53.3 26.3 26.9 

Er2O3-doped titania 79.1 77.3 18.1 18.4 

Nd2O3-doped titania 78.3 76.7 19.4 19.6 

3.4.  Conclusions 

The doping of mesoporous TiO2 with both REO Er2O3 and Nd2O3 nanoparticles 

showed significant improvement in the photovoltaic performance of DSSCs. The 

contributing factors for the enhancement by REO-doping are the increased dye loading due 

to the increased surface area (as reported elsewhere),119, 132 and the enhanced electron 

transport efficiency (due to higher conductivity). Er2O3-doped TiO2 films exhibited the best 

photovoltaic performance, which might also be due to the increased rate of excited-state 

electron injection and decreased recombination of injected electrons.133 REO-doped in 

TiO2 might deactivate surface and deep TiO2 trap states (the details about trapping and 

detrapping will be described in a later report), improve electron transport rate and solar cell 

efficiency.121 With reference to the IPCE data measured by NREL, we observed a higher 

photocurrent at longer wavelengths, which might give some evidence for the up-converting 

characteristics of Er(III)- and Nd(III)-oxides. 
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CHAPTER IV 

EFFECT OF RARE-EARTH METAL OXIDE 

NANOPARTICLES ON THE CONDUCTIVITY OF 

NANOCRYSTALLINE TITANIUM DIOXODE: AN 

ELECTRICAL AND ELECTROCHEMICAL APPROACH 

This research work has been published in the Journal of Physical Chemistry C.134 

4.1.  Introduction 

The unique properties of nanocrystalline titanium dioxide (NTD) make it extremely 

useful for applications in photocatalysis, energy generation and energy storage.135-136  

Advantages include a large bandgap (3.2 eV), high conduction band edge energy,8 

chemical and mechanical stability, efficient electron-accepting capability,137 and high 

redox activity in the illuminated condition.138  NTD and NTD-based photocatalytic systems 

are widely used for the destruction of environmental pollutants, or for the killing of harmful 

bacteria and cancer cells.139-144  NTD materials have the ability to accumulate a large 

number of injected electron charges in the solid matrix145 and can function as 

supercapacitors for energy storage applications.146  They also find application as the 

electron-conducting phase in third generation photovoltaics like perovskite solar cells,147-

150 DSSCs,20, 113-114, 151-155 QDSCs,156-157 and inorganic solid-state solar cells.156 
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 Lattice defects, such as Ti interstitials, oxygen vacancies, and grain boundaries in 

nanostructured TiO2 produce a high density of electronic mid-band gap states that trap 

charges from the titania conduction band.8, 158-159  While the states near the conduction band 

edge, called shallow trap states, are in equilibrium with extended states and do not 

necessarily inhibit electron transport through mesoporous titania, the states deep in the 

band gap are slow to release trapped electrons, and thus limit electron mobility.160  In DSSC 

applications, these deep gap states act as recombination centers and limit solar cell 

efficiency.161  In photocatalysts, the trap states capture the electrons responsible for 

catalytic activity and degrade the catalytic performance.135, 162 

REOs have been used as dopants for titania to enhance photocatalytic activity163-166 

and photovoltaic performance of DSSCs.119, 125, 167-169  Various mechanisms have been 

proposed for the observed improvement in DSSCs, however, in most of the reports the 

effects are not quantitatively reproducible or thoroughly studied, resulting in a lack of clear 

understanding.  In our previous report,170 described in Chapter 3, we demonstrated a 

consistent efficiency improvement in DSSCs through REO doping and explained the 

improvement as being due in part to a decrease in impedance of the titania electrode caused 

by the filling of the deep trap states by the REO f-state electrons.  This paper explores the 

influence of REO-doping on the conductivity of mesoporous titania by using cyclic 

voltammetry (CV), chronoamperometry (CA), and electrochemical impedance 

spectroscopy (EIS) to characterize the energy distribution of electronic states and trapping 

kinetics.145, 160-161, 171-172  We find evidence that electrons from the REO’s valence band or 

photoexcited f-states are donated to fill the deepest gap states, reducing the trapping 

probability and improving both light and dark conductivity.  This in turn provides an 

explanation for the improved performance of REO-doped titania solar cells and 

photocatalysts.  
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4.2.  Experimental Section 

Dyesol 18 NR-T paste was used without any modification for all undoped samples.  

The photoanodes made using this paste directly were named as 'Undoped'.  The paste for 

doped titania was prepared as described in Chapter 2 by mechanically mixing Er2O3 and 

Nd2O3 nanoparticles into titania paste at 1% and 2% by weight of titania paste, respectively. 

These pastes were used to make films for electrical and electrochemical measurements by 

screen-printing.  

Gold electrodes were sputter-deposited on an oxidized silicon wafer and a 10 µm gap 

was etched into the gold to make electrical contacts for the electrical conductivity 

measurements.  A 7 µm thick film of doped/undoped TiO2 paste was screen-printed across 

the gap.  These films were sintered in a Barnstead Thermolyne 1300 furnace as described 

in Figure 2.1. Following sintering, the films were allowed to cool to room temperature 

gradually inside the furnace. The two-terminal devices were mounted in an optical cryostat 

with two-probe electrical connections made by copper wires silver painted to the gold pads 

on either side of the gap.  The current-voltage characteristics were measured in dark and 

light by applying a bias from 0 to 0.5 V at a scan rate of 10 mV/s and measuring the current.  

The light source was a 100 W tungsten lamp with an intensity of 85 mW cm-2 at the sample.  

Prior to each dark scan, the device was kept in the dark for 5 minutes.  Prior to each light 

scan, the device was exposed to the light for 1 minute at zero bias. 

The working electrodes used in the electrochemical measurements were fabricated 

by screen-printing doped and undoped TiO2 onto pre-cleaned FTO substrates.  These 

electrodes were then sintered in a Barnstead Thermolyne 1300 furnace and allowed to cool 

to room temperature gradually inside the furnace.  The open exposed areas of the FTO that 

weren’t screen printed on were painted with epoxy and cured with UV light for 30 minutes 

to block these regions of bare FTO so that the electrochemical measurement reflected the 

doped and undoped titania films only.  A three-electrode system was used for all 

measurements, including a platinum wire counter electrode, Ag/AgCl (3 M KCl) reference 

electrode, and the doped/undoped titania screen-printed FTO glass (epoxy blocked) as the 
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working electrode (Figure 4.1).  An aqueous solution of 0.1 M KOH was used as electrolyte.  

The electrochemical measurements were performed using a CH Instruments (Austin, TX) 

CHI 660A electrochemical workstation.  For cyclic voltammetry (CV), the potential was 

applied from 1.5 V to -0.5 V vs the reversible hydrogen electrode (RHE) (converted from 

Ag/AgCl) and the scan rates ranged from 5 mV/s to 600 mV/s.  For electrochemical 

impedance spectroscopy (EIS), an ac signal of 10 mV amplitude at 100 Hz was applied on 

top of a DC voltage ranging from 0.2 V to -0.4 V vs RHE.  For chronoamperometry (CA), 

the potential was stepped from 0.4 V to -0.2 V vs RHE and the current was measured as a 

function of time for the three different films. 

Figure 4.1.  Experimental setup for the electrochemical measurements of doped and 

undoped titania. 
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4.3.  Results and Discussion 

4.3.1.  Electrical Conductivity Measurements 

Figure 4.2a shows an SEM image of the nanocrystalline titanium dioxide (NTD) 

film deposited in the 11 m gap region between the two gold electrodes on the oxidized 

silicon wafer.  This two-terminal device mounted in an optical cryostat was used for solid-

state conductivity measurements of the films in the dark or light as illustrated in Figure 

4.2b. 

 

 

Figure 4.2.  (a) SEM image and (b) illustration of the device used for solid-state 

conductivity measurements. 

(b)
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Figure 4.3a-c shows the two-terminal current-voltage characteristics of the doped and 

undoped titania.  The currents were measured both in light and dark.  The current increases 

in the presence of light due to the photo excitation of charge carriers from lower energy 

band states and trap states.138  Doping is found to increase the conductance of the titania 

by a factor of 40-50.  In light, the current-voltage characteristics in both doped and undoped 

films are approximately linear.  However, in dark, as shown in Figure 4.3a, the undoped 

film shows non-linear behavior, with very poor conductance up to a bias of about 0.3 V 

and increasing conductance above that.  This can be attributed to deep trap states resulting 

from grain boundaries,172 oxygen vacancies, and un-coordinated Ti-atoms.158  The trap 

states increase scattering of mobile charge carriers and introduce a barrier for charge 

transport due to band-bending at the contact/titania interface.  Figure 4.3b-c shows that the 

conductance near zero bias increases and becomes more ohmic by doping the titania with 

the REO NPs.  Further measurements show that the conductivity of a film of REO NPs 

only is lower than that of an undoped titania film as shown in Figure 4.4. This shows that 

the conductance increase of titania with REO doping is not simply due to the introduction 

of a more highly conductive material into the mesoporous film. 
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Figure 4.3.  Solid-state conductivity measurements of (a) undoped titania, (b) Er2O3-

doped titania, and (c) Nd2O3-doped titania in dark and light as indicated. 
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Figure 4.4.  Conductivity measurements of films of pure (a) Er2O3 and (b) Nd2O3 

nanoparticles.  The films of REO NPs are less conductive than undoped titania.

4.3.2.  Electrochemical Measurements 

Further investigation of the enhancement in the conductivity of titania due to REO-

doping was carried out through a cyclic voltammetric (CV) study of the doped and undoped 

films using a three-electrode setup and 0.1 M KOH as the electrolyte.  The full CVs of 

doped and undoped electrodes at various scan rates ranging from 5 to 600 mV/s are given 

in Figure 4.5a-c. Figure 4.6a shows the cathodic current only for the undoped film for 

sweep rates ranging from 100 to 600 mV/s scanning in the negative direction.  A peak is 

observed at around 0.05 to 0.0 V, which is associated with electron transport to the titania 

conduction band (CB) and filling of localized surface states deep in the band gap145 caused 

by grain boundary defects160 and oxygen vacancies.33 The position of the defect peak 

moves to more negative voltage with increasing sweep rate due to the time it takes to fill 

the deep trap states.  Figure 4.6b-c shows the same CVs for the Er2O3-doped and Nd2O3-

doped titania samples, respectively.  In both cases, the initial peak potential is more 

negative than the undoped sample and has a larger negative shift in potential with 

increasing scan rate.  
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Figure 4.5.  Cyclic voltammograms of (a) undoped, (b) ErNPs-Solid and (c) NdNPs-

Solid at different scan rates as shown in the keys.  The scan rates are in mV/s. 
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Figure 4.6. Cathodic peak positions of (a) undoped, (b) Er2O3-doped, and (c) Nd2O3-

doped titania at different scan rates.
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4.3.3. Model for Charge Trapping and Detrapping Kinetics 

 We used a model of trapping and de-trapping in nanocrystalline titania developed 

by Bisquert and co-workers158 to better understand the influence of REOs on the trapping 

kinetics.   

The change in the probability f that a trap state is occupied as a function of time is given 

by: 

𝑑𝑓(𝑡)

𝑑𝑡
=

1

𝜏𝑡𝑟(𝑡)
[1 − 𝑓] −

1

𝜏𝑑𝑡𝑟
𝑓 … (4.1) 

where 1 𝜏𝑡𝑟⁄  is the trapping rate and 1 𝜏𝑑𝑡𝑟⁄  is the de-trapping rate.  For deep level traps, 

assuming that the rate of capture is proportional to the number of electrons in the 

conduction band, the de-trapping rate is assumed to be zero, while the trapping rate is given 

by: 

1

𝜏𝑡𝑟(𝑡)
= 𝛽𝑛𝑛𝑐 =

1

𝜏0
𝑒(𝐸𝐹𝑛(𝑡)−𝐸𝐹𝑂)/𝑘𝑇 … (4.2) 

where 𝑛𝑐 is the density of electrons in the conduction band and 𝛽𝑛 is the time constant 

per unit volume for electron capture.  

The time dependence comes about because the Fermi energy changes as a function of 

time with potential: 

− (𝐸𝐹𝑛(𝑡) − 𝐸𝐹0) 𝑞⁄ = 𝑉0 − 𝜈𝑡 … (4.3) 

Here, 𝑉0 is the starting bias, and 𝜈 is the bias scan rate.   

The trapping rate can then be re-written as: 

1

𝜏𝑡𝑟(𝑡)
= 1 𝜏0⁄ 𝑒−𝑞(𝑉0−𝜈𝑡) 𝑘𝑇⁄ = 𝑔(𝑡) … (4.4) 
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The function g(t) is introduced to make the mathematics easier to follow. Taking the 

derivative of Eq. (4.4) gives: 

𝑑𝑔(𝑡)

𝑑𝑡
=

𝑞𝜈

𝑘𝑇
𝑔(𝑡) =

1

𝜏𝜈
𝑔(𝑡) 

where 𝜏𝜈 =  𝑘𝑇 𝑞𝜈⁄  is introduced.  Solving the differential equation (4.1), the occupation

probability f(t) should be given as: 

𝑓(𝑡) = 1 − 𝑒(𝜏𝜈𝑔(0)−𝜏𝜈𝑔(𝑡)) … (4.5)

Taking the derivative of Eq. (4.5), 

𝑑𝑓(𝑡)

𝑑𝑡 
= 𝜏𝜈𝑒(𝜏𝜈𝑔(0)−𝜏𝜈𝑔(𝑡)) 𝑑𝑔(𝑡)

𝑑𝑡
= 𝑔(𝑡)𝑒(𝜏𝜈𝑔(0)−𝜏𝜈𝑔(𝑡))

Re-writing Eq. (4.1) using our definition for g(t) and taking 1 𝜏𝑑𝑡𝑟⁄ = 0 gives:

𝑑𝑓(𝑡)

𝑑𝑡
= 𝑔(𝑡)(1 − 𝑓(𝑡)) … (4.6) 

so clearly the function in (4.5) is a solution to the differential equation (4.6). 

Finally, the peak position occurs at the potential where there is maximum change in the 

trap occupation probability, or at the point where 𝑑2𝑓 𝑑𝑡2⁄ = 0.  Taking the second

derivative of the occupation probability gives: 

𝑑2𝑓

𝑑𝑡2
= 𝑒𝜏𝜈𝑔(0) [−𝑔2(𝑡)𝑒−𝜏𝜈𝑔(𝑡) +

𝑔(𝑡)

𝜏𝜈
𝑒−𝜏𝜈𝑔(𝑡)]

For this to equal zero, 𝑔(𝑡) = 1 𝜏𝜈⁄ , or 𝜏𝑡𝑟 = 𝑘𝑇 𝑞𝜈⁄ .   Plugging this into Eq. (5.4) then

gives: 

𝑞𝜈

𝑘𝑇
= 1 𝜏0⁄ 𝑒−𝑞𝑉𝑝𝑒𝑎𝑘 𝑘𝑇⁄ =>  𝑒−𝑞𝑉𝑝𝑒𝑎𝑘 𝑘𝑇⁄ = 𝜈 𝜈0⁄
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The peak potential (Vp) corresponding to defects (deep traps) relates to the scan rate (ν) by 

e−qVp/kT =
ν

ν0
… (4.7)

where q is electronic charge, k is the Boltzmann's constant, T is the absolute temperature, 

ν is scan rate, and ν0 is defined by 

ν0 = kT qτ0⁄ … (4.8)

where τ0  is the trapping lifetime of free electrons at equilibrium, which is inversely

proportional to the time constant per unit volume for electron capture. Using the trapping 

model described above, e−qVp/kT vs ν plots for doped and undoped titania are shown in

Figure 4.7a.  The slopes of the fit lines, proportional to τ0, are a factor of 6 and 85 times 

larger for Er2O3-doped and Nd2O3-doped samples, respectively, compared to undoped 

samples.  This shows that the rate of electron trapping is significantly slower for REO-

doped titania. 

Rearrangement of equation (4.7) gives: 

Vp =
kT

q
ln(ν0) −

kT

q
ln(ν) … (4.9) 

Equation (4.9) shows that the value of ν0 can be determined by taking the y-intercept of a 

plot of Vp vs ln(ν).  This can then be used to determine the value of τ0.  Figure 4.7b shows 

the variation of Vp as a function of ln(v) for doped and undoped samples.  Note that the 

slope is the same for each set of measurements and is given by kT/q = 0.026 V at 300K. 

Only the y-intercept changes, as predicted by equation (4.9).  The calculation of τ0 from 

Figure 4.7b is illustrated in Table 4.1 while the kinetic parameters extracted from the plots 

are given in Table 4.2.  Compared to undoped titania, the trapping lifetime τ0 increased by 

a factor of about 6 for Er2O3-doping and 70 for Nd2O3-doping.  An increase in trapping 

lifetime is indicative of a decrease in trap states per unit volume of material since fewer 
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trap states means that it takes longer on average for an electron in the conduction band to 

be trapped.  This suggests that the REO doping lowers the effective number of deep trap 

states.   

Figure 4.7.  (a) Boltzmann type exponential factor calculated at the voltage of the deep 

trap capacitance peak versus scan rate where dots are experimental values and solid lines 

are linear fits and (b) plot of 𝑉𝑝 vs natural logarithm of 𝑣 in mV/s, where dots are 

experimental values and solid lines are the linear fits.

Table 4.1. Calculation of 𝜏0 from Figure 4.7b

Samples 
𝑦 − 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 =

𝑘𝑇

𝑞
𝑙𝑛(𝜈0) 𝜈0 (mV/s) 𝜏0 (ms) 

Undoped 0.16756 629.3 42 

ErNPs-Solid 0.11946 98.95 263 

NdNPs-Solid 0.057258 9.045 2874 
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4.3.4.  Chronoamperometric Measurements 

Chronoamperometric measurements were carried out to determine the influence of 

the REO-doping on the transient current profile after a potential step.  Using the same 

experimental setup as for the CV measurements, the potential was stepped to a potential 

past the defect peak potential and the current was monitored as a function of time.  Since 

the electrolyte used here does not undergo any Faradaic processes during the potential step, 

the chronoamperometric curves show the charging of the semiconductor/electrolyte 

interface, revealing the time it takes for all trap states to be filled.  Figure 4.8 shows the 

current versus time plots that result after stepping the potential from +0.4 to -0.2 V vs RHE, 

similar to the procedure for undoped NTD described in the literature.173  The charging 

current drops to the base level in less than 100 ms for REO-doped titania, while taking 

about 500 ms for undoped titania.  As described above, there is a higher trap density in the 

undoped titania relative to the REO doped titania.  While individual electron capture is fast, 

complete charging of the interface takes a longer time, since all of the trap states must be 

equilibrated. 

Figure 4.8.  Chronoamperometric curves doped and undoped titania. 

2

4

6

1

2

4

6

C
u
rr

e
n

t 
D

e
n

s
it
y
 (

m
A

 c
m

-2
)

543210

Time  (s)

Undoped
 ErNPs-Solid
 NdNPs-SOlid

(a)



 85 

4.3.5.  Electrochemical Impedance Measurements  

Next, the influence of REO-doping on the flat-band potential and the carrier density 

was studied using an electrochemical impedance measurement.  As described 

elsewhere,174-175 the space charge capacitance (C) is related to the frequency of the applied 

ac signal f and the imaginary part of the impedance (Z") by 

C =
1

2πfZ"
… (4.10). 

The Mott-Schottky equation relating the change in the space charge capacitance with 

applied potential is given by175-176  

1

𝐶2
=

2

𝜀𝜀0𝐴2𝑒𝑁
(𝑉 − 𝑉𝑓𝑏 −

𝑘𝑇

𝑞
) … (4.11) 

where C is the space charge capacitance, A the electrode area,  the dielectric constant of 

the semiconductor (66 for titanium dioxide), 0 the permittivity of free space, q the electron 

charge, N the space charge density, 𝑉𝑓𝑏 the flat-band potential and 𝑉 the applied potential.  

A plot of 1/𝐶2 versus 𝑉, also known as a Mott-Schottky plot, is linear if 𝑁 is constant as 

a function of bias.  The slope and x-intercept of the line of fit can be used to calculate 𝑉𝑓𝑏 

and 𝑁.  Figure 4.9a shows the Mott-Schottky plot of doped and undoped titania.  The flat-

band potential is -0.208 V vs RHE for undoped titania, which is very close to the value 

mentioned elsewhere,173 -0.146 V for Er2O3-doped and -0.096 V for Nd2O3-doped titania.  

The space charge densities, 𝑁, calculated from the slopes of the Mott-Schottky plots are 

1.55 × 1022 , 7.47 ×  1021  and 4.67 ×  1021 𝑐𝑚−2  for undoped, Er2O3-doped and 

Nd2O3-doped titania respectively.  These values are summarized in Table 4.2. 
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Figure 4.9.  (a) Mott-Schottky plots of doped and undoped titania.  Illustration of band 

bending in (b) undoped and (c) REO-doped 

Table 4.2. Parameters extracted from Figure 4.7b and 4.9a for doped and undoped titania. 

Samples τ0 (ms) 𝑉𝑓𝑏 (mV) vs RHE 𝑁 (cm-2) 

Undoped 42 -208 1.55 × 1022

ErNPs-Solid 263 -146 7.47 ×  1021

NdNPs-Solid 2874 -96 4.67 ×  1021

The shift in 𝑉𝑓𝑏  and change in space charge density 𝑁  can be explained by the 

difference in trap state concentrations near the titania nanocrystalline surface.177  This is 

shown schematically in Figures 4.9b and 4.9c, assuming that the titania is n-type (i.e., the 
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Fermi energy lies closer to the conduction band than to the valence band).   At the surface, 

charge from the conduction band fills the lower energy trap states lying in the bandgap. 

This raises the conduction band as the Fermi energy is pinned in the trap states.  The amount 

of shift, and hence the flat-band voltage 𝑉𝑓𝑏, will depend on the density of surface traps.178  

A higher density of trap states will depopulate the conduction band more, so that a larger 

energy shift will occur, as shown in Figure 4.9a.179  Figure 4.9c shows that REO doping 

neutralizes the surface traps, resulting in a lower flat-band voltage shift relative to the 

undoped titania.  The difference in trap-state concentrations also explains the change in 

space-charge density.  A larger trap concentration means that a change in potential results 

in a larger change in charge stored at the titania/electrolyte interface in the undoped than 

in the doped titania.  In other words, the capacitance of the undoped titania/electrolyte 

junction is higher than the doped titania/electrolyte junction due to the high concentration 

of trap states.  This agrees with the results of Figure 4.8, where the total charge transferred 

to the titania is largest in the undoped sample.  

4.3.6.  Mechanism of Trap Neutralization  

The model band-diagram in Figure 4.10 shows a possible mechanism for the trap-

neutralization in the titania by the REO (Nd2O3).  The theoretical CB and VB positions of 

titania and REO (Nd2O3) were calculated using the procedure described elsewhere180-181 

from the first ionization potential and the electron affinities of the constituent elements and 

the band gap energies of TiO2 and Nd2O3.
182-183  The electron affinity for REOs is low184 

compared to titania,185 making it possible that the REO valence band lies higher in energy 

than the mid-gap states in the titania.  It would provide a source of charge to neutralize the 

trap states.  The REO also has a higher energy f-band that could contribute charge,186 

however, it is not clear whether these states are too tightly bound to the REO atoms to be 

transferred to the titania.  It is interesting that the Nd2O3 is more effective than the Er2O3 

at neutralizing trap states, although earlier experiments have shown that Er2O3 doping 

produces a larger increase in solar cell efficiency in DSSCs than Nd2O3.
170  This shows that 

the decrease in titania impedance shown here is not the only factor involved in the 

improvement in solar cell efficiency.  In fact we also showed that increased surface area 

accounts for the increase in solar cell efficiency.170 
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Figure 4.10.  Energy diagram of TiO2 and REO (Nd2O3).  The trap states close to the VB 

of TiO2, which are responsible for the degradation in the electrical properties are filled by 

the REO VB or f-electrons, thereby reducing the capture of CB electrons of titania.

4.4.  Conclusions 

NTD films have a high density of trap states in the band gap.  These traps can be 

closer to valence band (deep traps) or conduction band (shallower traps).  Doping NTD 

films with REO nanoparticles reduces the number of deep traps or converts the deep traps 

to shallower traps from where electrons can easily get de-trapped.  Consequently, REO-

doping slows the electron trapping rate for conduction electrons, since there are fewer traps 

available for electron capture.  The reduction in trap state density is also evident in the 

decrease in flat band potential, and reduction in capacitance of the NTD film.  The increase 

in lifetime of the transport carriers provided by the decreased trap density provides an 

explanation for the reduced electrical impedance of the REO doped film, and also partially 

explains the improved performance of REO-doped NTD in photocatalytic and solar cell 

applications. 
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CHAPTER V 

AN AC PHOTOCURRENT METHOD FOR 

CHARACTERIZATION OF THE ELECTRIC POLARIZATION 

IN HYBRID PEROVSKITES 

5.1. Introduction 

Organic-inorganic perovskites, also known as hybrid perovskites, have been widely 

used in many devices, including photovoltaics,72-73 photodetectors,74 lasers,75 and light 

emitting diodes.68  Their reported advantages include continuous bandgap tuning,70, 187-188 

long carrier diffusion lengths, high absorption coefficients,64 and low exciton binding 

energies.189  High photovoltaic conversion efficiencies have motivated numerous 

perovskite solar cell (PSC) development efforts.51, 73, 190-191  A serious hindrance to the 

large-scale development of PSCs is the hysteresis often observed in the perovskite current-

voltage (I-V) characteristics.  It is speculated that the photovoltaic performance and the 

stability of PSCs are anti-correlated to the amount of hysteresis, with better performance 

and stability observed in devices with lower hysteresis.192  Although the hysteresis is 

detrimental for PSCs, it is potentially useful for non-volatile memory applications, and a 

number of reports describe the creation of hybrid perovskite memristors.77-78 

Despite its importance, the exact mechanism for the I-V hysteresis is still unknown.  

Various possibilities have been explored, including trapping of positive and negative 

carriers, and ion migration.93-97  These explanations all involve a bias dependent change in 

the electric polarization of the perovskite that is thought to modify the transport properties.  
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This also could be related to the internal electric field that exists in perovskite films, even 

at zero bias, where an additional bias can alter the field further.  Recent experiments have 

measured an internal potential drop in hybrid perovskites using Kelvin probe force 

microscopy98 and capacitance measurements.99  However, the measurements were specific 

to a particular sample and the relationships between the built-in potential and the applied 

external field, material quality and photocurrent efficiency were not explored. 

Here, we present a unique AC photocurrent method for the electrical characterization 

of a mixed halide hybrid perovskite (MHHP), namely CH3NH3PbI3-xClx.  Our results reveal 

that electron-hole pairs generated by electromagnetic radiation interact with the internal 

electric field, which can be detected through an AC photocurrent measurement similar to 

the capacitive AC photocurrent measurement described in our previous reports.193-196  The 

AC technique allows charge separation to be measured, which does not appear in the DC 

photocurrent due to the overly high impedance of the contacts.  The technique involves 

illuminating the sample with a low frequency chopped light source and measuring the AC 

photocurrent across the sample.  The AC photocurrent is non-zero at zero applied bias, 

showing that there is a built-in force (polarization) driving charge separation.  We measure 

the magnitude of the electric polarization by measuring the magnitude of applied bias 

required to block the AC photocurrent. Using this technique, we show how the magnitude 

and direction of polarization can be modified by applying a poling field.  After poling, the 

electric polarization slowly returns to its initial value.  The initial polarization varies with 

the perovskite grain size and precursor concentrations used during the synthesis.  The 

dependence on grain size can be used to judge perovskite film quality. 

5.2. Experimental Section 

The details of all the experiments for this study are given in Chapter 2. 
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5.3. Results and Discussions 

5.3.1.  Highly Granular Film and its Characterization 

MHHP films of varying grain sizes were deposited on glass slides and characterized 

by a number of methods.  Figure 5.1a shows an optical image of sample HP3D1, where 

two interdigitated Au contacts can be seen. The average grain size of the film is 34575 

m.  Figure 5.1d-e shows the XRD spectra of the MHHP films of average grain sizes of 

17137 m and 295 m, respectively shown in Figure 5.2b-c. The XRD spectra contain 

peaks characteristic of CH3NH3PbI3-xClx perovskite films in agreement with results 

reported in the literature.16, 71, 148  High intensity peaks at 14.20 and 28.60 correspond to 

MHHP while peaks at 15.60, 31.90 and 40.50 are for CH3NH3PbCl3, indicating the 

segregation of ions during the film making procedure as described elsewhere.41 XRD 

spectra of small grain samples are very similar to the large grain sample except that 

additional peaks are observed at higher angles marked by *. 
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Figure 5.1.  (a) Large grain film of MHHP showing a pair of interdigitated Au contacts 

(device HP3D1, Table 5.1), (b) and (c) optical images of a highly granular and a small 

grain films with average grain size 17137 m and 295 m respectively. The scale bar 

in Figure a-c is 100 m. (d) and (e) XRD spectra of the films shown in Figure b-c.

5.3.2.  Variation of AC Photocurrent with External Electric Field  

Figure 5.2a shows the experimental setup for the ACP measurement (see Chapter 2 

for details).  Briefly, light from a Tungsten-Halogen source is spectrally resolved using a 

monochromator and mechanically chopped at a frequency of 13 Hz.  The chopped light is 

then focused on the sample surface in the region of the interdigitated Au contacts.  The 

resulting AC photocurrent at the chopping frequency is measured between the two Au 

contacts using a lock-in amplifier.  Figure 5.2b shows an AC photocurrent spectrum of the 

device HP3D1 measured with zero applied bias (black trace) and an applied bias (the built-

in potential, Vbi) of 162 mV (red trace).  The AC photocurrent spectrum measured with 

zero applied bias matches the photoabsorbance spectrum (blue trace) for mixed halide 

hybrid perovskites described in the literature, demonstrating that the signal is due to 

electron-hole generation in the perovskite film.  The beauty of the AC photocurrent 
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measurement is that it excludes the absorbance due to substrate.  The fact that the AC 

photocurrent is non-zero with zero applied bias shows that a built-in field must exist in the 

sample that leads to the separation of the photogenerated electron-hole pairs.  In a 

perovskite solar cell, electron-hole separation is aided by two different contact materials, 

one electron accepting and another hole accepting.  In our case, however, both contact 

materials are identical, and the contact potentials should cancel out.  This is supported by 

the observation that the open circuit voltage is zero in both light and dark and no DC 

photocurrent at zero external potential when continuous light is shone on the sample 

(Figure 5.3a-b). This proves that the AC photocurrent is not due to a potential drop at the 

contacts. The low AC photocurrent at bias of 162 mV is used to calculate the built-in 

potential, since the applied bias cancels out the built-in polarization at that potential. 

Figure 5.2.  (a) Experimental setup for AC photocurrent measurement, (b) AC 

photocurrent spectrum at no external field (V=0 mV) and at V=Vbi. Optical absorbance 

(blue trace) is shown for comparison. 
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Figure 5.3.  (a) Open circuit voltage of the device in the dark and light, and (b) DC 

photocurrent under various conditions.

5.3.3.  Built-in Potential and Electric Polarization 

Figure 5.4a shows the magnitude (red trace) and phase (blue trace) of the AC 

photocurrent as a function of applied bias for the device HP3D1. The wavelength of the 

light was kept fixed at 740 nm, where the photocurrent is maximum.  The magnitude of the 

AC photocurrent decreases as the external bias increases, until it reaches zero at a bias of 

162 mV.  Above this bias value, the magnitude (amplitude) of the AC photocurrent again 

increases, while the phase of the signal flips by 180 degrees.  As described above, the AC 

photocurrent plot indicates that the magnitude of the built-in potential of the pristine sample 

(Vbi) is -162 mV based on the zero current at this potential.  Further confirmation is given 

by the results of Figure 5.2b.  Here, the AC photocurrent spectrum is measured with an 
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applied bias of 162 mV (red trace).  The AC photocurrent is zero, independent of the 

wavelength of the light. Also, we observed that when the contacts are switched, the sign of 

Vbi is reversed, indicating that Vbi is directional.  

Figure 5.4.  (a) AC photocurrent as a function of the external potential, which passes 

through Vbi, and (b)-(d) band diagrams at external potential less than, equal to and more 

than Vbi, respectively.

Based on the data, the charge separation and the resulting AC photocurrent must be 

due to a built-in potential (polarization) with in the perovskite film. Consider the model 

band-diagram shown in Figure 5.4b.  A built-in potential in the perovskite film will 

separate photogenerated electron-hole pairs, however, if the contact impedance is high, 

these charges will not be transmitted to the contacts themselves, and hence no DC 

photocurrent appears. Over time, the charge will simply build-up on the electrode until it 

compensates for the built-in potential. On the other hand, repeated cycles of carrier 

generation, separation and recombination by the AC light source does produce a 

measurable AC photocurrent, provided a potential (built-in or applied) is available to 

spatially separate the charge carriers. 
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The magnitude of the built-in potential can be determined by measuring the impact 

that an externally applied potential has on the AC photocurrent. Figure 5.4c shows the 

band-diagram for the sample when an external potential has been applied that is equal in 

magnitude but opposite in sign to the internal built-in potential, Vbi. The built-in and 

external potentials balance out so that no charge separation occurs, and the AC 

photocurrent goes to zero. Figure 5.4d shows the band-diagram when the external potential 

is larger than the built-in potential (V > Vbi). Now the charge separation is driven in the 

opposite direction, so the AC photocurrent is again non-zero and equal in amplitude from 

when V < Vbi, but the phase of the photocurrent is flipped by 180 degrees.  

5.3.4.  Grain Size Dependence of Intrinsic Polarization 

The electron transport properties of hybrid perovskites are greatly influenced by the 

size of grains.197-198  We next considered more carefully the dependence of P0 on the film 

grain size.  We fabricated 4 additional devices using the hot casting procedure having 

average grain sizes varying between 50 m to 198 m, and 1 device fabricated using the 

drop-coating method, which leads to disordered, poorly-defined grains. Figure 5.5a-e are 

the optical images of the new films designated as HP3D(2-6). Following fabrication, we 

measured the Vbi for each film using the AC photocurrent technique described above and 

calculated P0. Figure 5.5f shows the P0 as a function of average grain size, where the error 

bars indicate the range of grain sizes in each sample. Values are also given in Table 5.1. 

Interestingly, we found that P0 does depend on the average grain size and increases from 0 

for the drop-cast sample (very small grain) up to 3.58 C cm-2 for the 345 m grain size 

sample.  The P0 appears to saturate as the grain size increases above 200 m.  A larger P0 

can be an indicator of a higher quality film.  
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Figure 5.5.  (a)-(e) Optical images of devices with varying grain size and (f) variation of 

zero-bias polarization with grain size.  The scale bar is 100 m in each image. 

Table 5. 1.  Average grain size, measured built-in potential (Vbi), and polarization for the 

different MHHP films used in this study. 

Name of film Grain size (m) Vbi (mV) Polarization (Po) / 

C cm-2 

HP3D1 345  75 162 3.58 

HP3D2 198  43 141 3.12 

HP3D3 119  21 86 1.90 

HP3D4 93  36 42 0.929 

HP3D5 54  12 24 0.531 

HP3D6 - 4 0.088 
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5.3.5.  Carrier Relaxation after Poling 

We studied the effect of poling on the polarization of various MHHP films. For this 

study, we poled each of the four devices, HP3D1, HP3D4, HP3D5 and HP3D6 at 5 V for 

1 hour, and carried out AC photocurrent measurements to determine the polarization while 

the system was relaxing. In all devices under study, there was enhancement in polarization 

after poling. Figure 5.6a shows the sequence of poling experiments. For the device HP3D1, 

with the largest grain size, we observed that the polarization increases from P0 = 3.58 C 

cm-2 to Pv = 19.2 C cm-2 after poling at 5 V for 1 h, and returned to 9.87 C cm-2 after 1 

h of relaxation. We believe that poling the device with positive potential caused slow 

diffusion of the negative ions within the perovskite film towards the positive electrode 

while the positive ions within the film diffuse towards the negative electrode.83, 199-200 This 

increased charge separation of ionic species increases the polarization and creates an extra 

built-in electric field in the film, which requires a larger external potential to 

counterbalance. As soon as the electric field is switched off, the polarized ionic species 

revert back to their original position, thereby decreasing the field developed in the film. 

This accounts for the decrease in polarization while the system was relaxing. Figures 5.6b-

d show the relaxation of polarization (Pv) as a function of logarithm of time in minutes. For 

the device HP3D1 with very large grain size, Pv decays linearly with log (time), while for 

the device with randomly oriented small grains (or small grain devices), there is a slower 

decay in Pv. The initial effect of poling persists for a longer time for smaller grain size than 

for larger grain size films. We speculate that slow initial decay of Pv can be caused by 

strong trapping of charge carriers at the defects of grain boundaries. It is very interesting 

to note that the device reverted back to the initial polarization (P0) under inert condition 

after a long enough time, indicating that the poling effect at 5 V is slow and reversible in 

nature and not detrimental to the device performance.  



99 

Figure 5.6. (a) Shift of polarization after poling the device HP3D1 at 5 V for 1 h and then 

relaxation after 1h. The unit of polarization is C cm-2. (b)-(e) time dependence of 

polarization of different devices after poling at 5 V for 1 h.  The dashed horizontal line is 

the initial polarization.
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5.3.6.  Polarization-Electric Field Loops in Perovskite Films 

The AC photocurrent technique is used to measure the polarization versus electric 

field of the MHHP films.  We characterized two different films having average grain sizes 

of 284 m and 10417 m (see Figure 5.7a-b).  Measurements were made by stepping 

the external potential in 0.5 V increments with a 5 minute wait time between steps.  Vbi 

was then quickly measured as described in Chapter 2.  Figure 5.7c-d shows the resulting 

polarization (Pv) vs applied electric field (E).  The polarization of the pristine sample (P0) 

is also shown for comparison.  Hysteresis loops are observed in the Pv-E curves for both 

large and small grain samples with a loop width of approximately 2 kV/cm.  There is a 

clear difference in the Pv-E loops for small grain and large grain samples.  The small grain 

sample has P0 = 0 and the Pv-E loop is symmetric around the origin. The large grain sample 

has P0 = 1.33 C/cm2 and the Pv-E loop is centered at about (0.25,1).  Also, the polarization 

is larger at positive electric fields than at negative electric fields because of the internal 

field of the pristine film, which is added to the field developed during poling. 
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Figure 5.7. Optical images of a small grain film (a) and a large grain film (b) of MHHP, 

and the corresponding polarization curves (c-d). The black square refers to the 

polarization of the pristine sample (P0) while the red square is an approximate point of 

symmetry.

5.3.7.  Origin of Intrinsic Polarization and Effect of Ionic Concentration 

 Reports66, 83, 201-204 reveal that mismatch between the ionic radii of the different 

species, vacancy mediated ionic displacements inside the octahedra of crystal and all of the 

structural distortions in MHHPs lower the centrosymmetry, leading to polar or anti-polar 

unit-cells.  Anti-polar units cancel the effect of one another while polar units add up, 

resulting in a local intrinsic polarization.  Grain boundaries with their structural defects 

screen the effect of intrinsic polarization, resulting in smaller P0 as shown in Figure 5.5f.  

In addition to the lattice distortions caused by photoexcitation, thermal energy, an 

external electric field, and the composition of the perovskite,205 ionic polarization should 

be considered as a factor that can contribute to the electric polarization.  To test the 
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hypothesis that ion polarization leads to the built-in potential, films with excess Pb2+ and 

I-
 ions relative to MA+ were compared to those made stoichiometrically.  We prepared films 

with PbI2:MACl molar ratios of  1:1, 1.1:1 and 1.2:1 and determined the resulting P0.  As 

shown in Figure 5.8, there is little effect of extra ions on the P0 of small grain size films.  

This can be attributed to grain boundaries screening the built-in potential, hindering the 

separation of charge carriers and promoting charge trapping at the defects.  For large grain 

size films (>100 µm), there is considerable P0, which can be attributed to the formation of 

polar domains and reduced screening effect of grain boundaries.  These ions/defects diffuse 

differently in response to an electric field, which can lead to hysteresis in the I-V curves.  

Reducing the number of grain boundaries can help to reduce the screening effect on P0 and 

minimize hysteresis in I-V curves for improved solar cell efficiency. 

Figure 5.8. Dependence of the electric polarization on the concentration of PbI2. 

5.4. Conclusions 

We used the AC photocurrent method for the electrical characterization of a mixed 

halide hybrid perovskite of chloride and iodide.  The magnitude of the AC photocurrent 

increases or decreases with external potential and is minimum at Vbi.  The phase of the AC 

current flips by 180 degrees when the external potential passes through Vbi, indicating that 

the direction of the current is reversed.  The P0 of pristine sample increases with increase 
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of the grain size and can be used to check the quality of the film, where a larger P0 means 

a higher quality film with larger grain sizes.  Poling the device above the built-in potential 

further polarizes the oppositely charged ions and vacancies, and these carriers revert back 

to their original state when the poling is removed.  When the device is relaxed, the de-

trapping of photogenerated charge carriers takes place.  In devices with larger grains, the 

Vbi helps in de-trapping the carriers, while in devices with smaller grains, the trapped 

carriers remain in defect states for longer time because of the screening affect.  

As this study was carried out purely with perovskite films only, the influence of 

interfacial properties206 should also be considered when describing the hysteresis in 

complete PSCs.
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CHAPTER VI 

EFFECT OF LIGHT SOAKING IN ARGON ON MIXED 

HALIDE HYBRID PEROVSKITE: ENHANCED ELECTRIC 

POLARIZATION AND IMPROVED PHOTOVOLTAIC 

PERFORMANCE 

6.1.  Introduction 

Hybrid perovskites have fascinating properties like continuous  tuning of the 

bandgap,70, 187-188 long carrier diffusion length for photogenerated charge carriers,207-208 

high absorption coefficient,64 nonexcitonic nature/small exciton binding energy,189 and 

switchable photovoltaic effects209 for their applications in photovoltaics,72-73 

photodetectors,74 lasing,75-76 light emitting diodes,68 and memristors.209 In just a few years, 

the photoconversion efficiency (PCE) of perovskite solar cells has surpassed 25%.73, 92, 210 

Putting aside the toxic nature of lead,88-89 the structural, thermal, chemical and photo-

stability are the chief challenges in the large scale implementation of perovskite solar cells 

(PSCs).90-91 Progress has been made for the improvement in stability through the 

management of the organic cations, inorganic cations and halide ions used in the material.71, 

73, 90, 92 Encapsulation of PSCs in an inert environment helps to prevent oxidation of the 

material even under heat and light. There are a number of reports on the effect of light on 

the crystals and thin films of halide hybrid perovskites.211-214 Prolonged illumination of 

mixed halide hybrid perovskite (MHHP) thin films results in phase segregation, which 
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positively affects the optoelectronic properties.215-217 In one of the reports by Zhao et al.,212 

it is shown that purposeful light soaking can decrease the surface accumulation of 

photogenerated charge carriers at the electrode interface, which can neutralize interfacial 

defects, consequently increasing VOC. The result of light soaking strongly depends upon 

the composition of the perovskite. The single halide cubic phase bromide and tetragonal 

iodide hybrid perovskites showed weak light soaking effects while mixed halide crystalline 

perovskites showed strong light soaking effects, which is attributed to the trapping of 

photogenerated charge carriers at surface defect sites, thereby making the defects 

nonactive.214 In a report,213 it is shown that long light soaking time helps in curing (reducing) 

interface trap-assisted recombination. The report shows that light soaking does not change 

the resistance and the capacitance of the bulk HP layer, however, the chemical capacitance 

(cμ) and energy barrier at the HP/contact interface are reduced, leading to interface trap-

assisted recombination.  Several reports describe photovoltaic improvement of perovskite 

solar cells (PSC) by light soaking as determined by increased photovoltaic conversion 

efficiency, reduced hysteresis, and long-term stability. This is the ultimate goal of the 

working PSC. 

The overall photovoltaic performance of a PSC depends on how efficiently the 

photogenerated charge carriers migrate towards the respective electrodes, electrons 

towards cathode and holes towards anode. The separation of these excitons is very crucial 

to reduce the recombination, which can help to get higher photocurrent and photovoltage 

leading to higher conversion efficiency. In addition to the hole transport and electron 

transport layers, the intrinsic electric polarization of the perovskite film can help in the 

separation of excitons, the role of the intrinsic electric polarization for the perovskite-based 

devices has not been explored. It has been reported that the photoconversion efficiency and 

stability of PSCs can be enhanced by encapsulating the device in argon gas.210, 218 The 

stability improvement is intuitive, but the reason for improved conversion efficiency is not 

clear. In this report, we describe systematic studies on the influence of gas environment on 

the electric polarization of MHHP thin films using a novel technique, the AC photocurrent 

measurement. We show that the background environment plays a significant role for the 

electric polarization of MHHP films.  We herein report that MHHP thin films adsorb Ar 
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gas in the presence of light. We measured the photocurrent of MHHP thin films from the 

visible to near IR region under different environments, including air, oxygen and different 

inert gases. Interestingly, only the combined effect of solar light and Ar enhanced the 

photocurrent significantly. Ar plays a significant role in polarizing the photogenerated 

charge carriers, which increases the electric polarization and deactivate the defect sites in 

the film to get higher photovoltage and photocurrent. We tested this observation with thin 

films in an actual PSC of planar p-i-n configuration using MHHP light absorber.  The 

photovoltaic improvement of MHHP solar cells is related not only to the light soaking 

effect, but also on the environment to which the cell is exposed. We found that the 

combined effect of light and Ar gas changed the photocurrent density, open circuit potential 

and conversion efficiency of MHHPSCs drastically. The photovoltaic improvements of Ar 

gas-encapsulated PSCs are due to the combined effect of both Ar and light soaking.   

6.2.  Experimental Section 

The details of the experiments performed for this study are given in Chapter 2. 

6.3.  Results 

6.3.1. Electric Polarization in Ar with Light 

Figure 6.1a shows the optical image of a granular film of MHHP with interdigitated 

gold contacts on the top. The film was spin-coated on a glass substrate by hot-casting 

method. Figure 6.1b depicts the experimental setup for the built-in potential measurement 

under the various conditions. The setup consists of an external potentiostat connected in 

the system and spectrally filtered light from a monochromator (740 nm with power 2.5 mW 

cm-2) constantly incident on the sample. The AC photocurrent was measured as a function 

of applied potential to find out the built-in potential, which was further used to calculate 

the polarization as described in Chapter 2. Figure 6.1c shows the polarization of the MHHP 

film under different conditions. The polarization of the MHHP film in the dark remained  
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Figure 6.1.  (a) Optical image of a granular film of MHHP with interdigitated gold 

contacts, (b) experimental setup for AC photocurrent measurements, (c) polarization of 

MHHP thin film. 
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almost same both in Ar gas and vacuum while it increased slowly in vacuum with solar 

light.  As soon as the film was exposed to Ar gas with solar light, the polarization kept 

increasing significantly with increase in the time of exposure with Ar gas. It can be 

attributed to the polarization of photogenerated carriers, deactivation of defect states, and 

increasing the polar units in the film. The enhanced polarization should definitely facilitate 

the photogenerated carrier separation and enhance the photocurrent. Interestingly, when 

the light was removed, the polarization gradually decreased to the initial value when the 

vacuum was reestablished. 

6.3.2. AC Photocurrent in Ar with Light 

It is clear that when a film of mixed halide hybrid perovskite is exposed to solar light 

in Ar gas, the electric polarization is enhanced significantly. We did another experiment to 

explore the effect of the electric polarization on photocurrent. For this experiment, the 

monochromatic light at 740 nm was constantly incident on the device, and the AC 

photocurrent was measured at zero external potential by changing the background 

environment as we did while measuring the built-in potential. Figure 6.2 shows the time 

dependence of the AC photocurrent. It is very interesting to note here that the trend of 

variation of the AC photocurrent is same as the variation of the electric polarization. This 

clearly proves that the enhancement in the AC photocurrent is due to the enhancement in 

the electric polarization induced by Ar gas in the presence of solar light. 
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Figure 6.2.  Time-dependence of the AC photocurrent in different background 

environments.

6.3.3. Effect of Background Gases on the Photocurrent Spectrum 

We carried out different experiments with thin films of MHHP to reveal the influence 

of different background gases on the photocurrent spectrum. We measured the AC 

photocurrent spectrum of thin films of MHHP under different background gases using 

fingerlike interdigitated contacts of gold on top of the perovskite film as before without 

any external potential. The setup is shown again in Figure 6.3a.  As shown in Figure 6.3b, 

there is a slight enhancement in the photocurrent while going from vacuum to Ar gas in the 

dark. Surprisingly, when the film was exposed to extra light from a solar simulator, the 

photocurrent became enhanced by more than one order of magnitude. The enhancement 

comes from the combined effect of Ar gas and light. The enhanced spatial separation of 

electron-hole pairs occurs with the introduction of extra energy from the solar light. This 

spatial separation of these charge carriers is very important to avoid recombination, which 

in turn directly affects the photocurrent and photovoltage of PSCs. As time increases, the 

photocurrent reaches a stable maximum, which decreases back close to the original 

photocurrent in Ar when the light is removed. 
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Figure 6.3. (a) Experimental setup for AC photocurrent spectrum measurements, and (c) 

AC photocurrent response in vacuum and Ar gas. 
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perovskite film in other inert gases too (Figure 6.4), however, the enhancement in 

photocurrent was best for Ar gas. It is interesting to note that He gas did not show any 

effect on the photocurrent. 
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Figure 6.4. AC photocurrent spectrum in different inert gases.

Surface trap states provide recombination pathways and greatly reduce the detected 

photocurrent.219 It has been reported that these surface traps can be cured by exposing the 

perovskite film to air or oxygen.220 The improvement is thought to be due to the reaction 

of recombination centers with O2 or OH- groups. The removal of recombination pathways 
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enhancement in the photocurrent at the band edge. It indicates that this is not a beneficial 

change for the solar cell application. After 5 minutes of exposure, the film started to show 

lower and lower photocurrent with increasing time of exposure. After about 100 minutes, 

the photocurrent spectrum showed completely different characteristics, which indicates 

complete degradation of the material due to the reaction of perovskite with air and oxygen 

in the presence of light. The degradation of the perovskite film when exposed to air/oxygen 

gas might be due to the generation of super oxide (O2
-), which could react with MA 

components to produce PbI2, I2 and CH3NH2.
221 These results are in agreement with the 

reports mentioned elsewhere.222 

 

Figure 6.5.  AC photocurrent spectrum of MHHP film device in air after different times 

of exposure. 
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increase in mass of the crystal due to the adsorption of gases. The amount of gas adsorbed 

by a thin film in terms of mass can be estimated by using the Sauerbrey equation:223 

∆𝑓 = −
2𝑓0

2

𝐴√𝜌𝑞𝜇𝑞

 ×  ∆𝑚. … (6.1) 

where ∆𝑓 is the change in the resonant frequency, 𝑓0 is the fundamental frequency of a 

bare QCM crystal, ∆𝑚 is the change in mass, 𝐴 is the area, 𝜌𝑞 and 𝜇𝑞 are the density and 

shear modulus of the quartz crystal, respectively.  

Equation 6.1 can also be written as 

∆𝑓 = −𝐶𝑚  ×  ∆𝑚 … (6.2) 

where Cm is the calibration constant for the crystal. It is 226 Hz cm2 g-1 for our 10 M 

quartz crystal (Gamry’s Instrument). Equation 6.2 shows that the resonant frequency of 

quartz crystal decreases in proportion to the added mass.  

Figure 6.6 shows the RF of QCP in the dark and light with Ar and Vacuum. The RF 

in vacuum is 29 Hz higher in the light than in the dark. We believe it is because of increase 

of temperature. We observed that the RF in dark with Ar is lower than with vacuum. It can 

be because of Ar pressure. Unlike in vacuum, when the QCP is exposed to Ar with solar 

light constantly shining on the film, we found the RF decreases by 9 Hz relative to the RF 

in the dark. This observation indicates that the mass of QCP increases when the film is 

exposed to solar light in the presence of Ar. It is because of the adsorption of Ar gas. We 

did the same experiment with He and N2 as the background gases and found that the RF 

increases by about 29 Hz in He while going from dark to light (Figure 6.7, blue trace), 

which is same as the changes observed in vacuum (Figure 6.6). This infers that there is no 

adsorption of He gas on the film. This can a reason why there was no enhancement in the 

AC photocurrent in He gas. There is increase in the RF by about 25 Hz while going from 
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dark to light in N2 gas (Figure 6.7, green trace). There is possibility of adsorption of N2 

gas molecules on the film. Values of the RF in various conditions are summarized in Table 

6.1. If we consider 29 Hz increase in the RF while going from the dark to the light, decrease 

in the RF comes to be 0 for He, 4 Hz for N2 and 38 Hz for Ar. Using equation 6.2, the 

amount of gas adsorbed on the film comes out to be 17.9 ng cm-2 for N2 and 168.1 ng cm-

2 for Ar. 

 

Figure 6.6. Changes in the resonant frequency of QCP in dark and light when the 

background is vacuum (red trace) and Ar (green trace). 
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Figure 6.7. Changes in the RF of QCP in dark and light when the background gas is He 

(blue trace) and N2 (green trace). The RF in vacuum (red trace) is shown for comparison. 

6.3.5. Effect on the Photovoltaic Performance 

Now, it is clear that MHHP film adsorbs Ar gas in the presence of solar light and 

enhances the polarization of the film thereby increasing the AC photocurrent.  We then 

tested this observation on a real PSC made up of MHHP as a photo-absorber.  Figure 6.8a 

is the optical image of a highly granular film of MHHP spin-coated by the hot casting 

technique.  The architecture of the PSC is shown in Figure 6.8b.  It has a planar p-i-n 

configuration ITO/PEDOT.PSS/perovskite/C60/Au. 
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Figure 6.8.  (a) Highly granular film of MHHP film spin-coated by hot-casting, and (b) 

architecture of perovskite solar cell. 

The bare ITO is used as the bottom contact and gold film deposited on top of the 

PEDOT.PSS/MHHP/C60 is the top contact. The J-V curves of the MHHPSC in the presence 

of light immediately after exposure to light and after 30 minutes of exposure are shown in 

Figure 6.9a. There is a small enhancement in the photocurrent, which might be due to light 

soaking as mentioned elsewhere.211-214  The J-V curves in the dark with and without Ar are 

shown in Figure 6.9b. The device did not show any photovoltaic improvement in the dark 

with Ar, other than a slightly higher open circuit potential (Voc). After applying a 

continuous flow of Ar to the cryostat chamber in the presence of solar light, both the 

photocurrent and photovoltage increased with an increase in Ar exposure time as shown in 

Figure 6.10a. The photocurrent increased from 12.9 to 13.6 mA cm-2 after 30 minutes of 

exposure to light in vacuum (Figure 6.9a) while the enhancement is from 13.6 to 16.1 mA 

cm-2 for exposure to Ar with light for the same time (Figure 6.10a). Interestingly, the 

photocurrent became saturated after one hour in light and Ar gas with a maximum 

photocurrent of 20.1 mA cm-2 and open circuit potential of 860 mV. It is clear that light 

soaking alone cannot explain this enhancement. The role of background gas must be 

considered to fully understand the reason. Upon removal of Ar gas and reestablishment of 

vacuum in the cryostat chamber, the photocurrent reversed back close to the original value 

in vacuum (Figure 6.10b). The variation in photocurrent and efficiencies in the various 

conditions of measurements are shown in Figure 6.11.  

 

(b)(a)
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Figure 6.9.  J-V curves of perovskite solar cell when the cell is exposed to (a) light in 

vacuum for different times, and (b) Ar gas and vacuum in the dark.

Figure 6.10.  J-V curves of perovskite solar cell when the cell is exposed to (a) light 

under Ar gas environment, and (b) light with evacuating Ar gas for different times.

15

10

5

0C
u

rr
e

n
t 
d

e
n
s
it
y
 /

 m
A

 c
m

-2

0.80.60.40.20.0

 Potential / V

Light soaking
 0 min
 30 min

0.2

0.1

0.0C
u

rr
e

n
t 

d
e

n
s
it
y
 /

 m
A

 c
m

-2

0.60.40.20.0

Potential / V

 Vacuum with dark
 Argon with dark

(a) (b)

20

15

10

5

0C
u

rr
e

n
t 

d
e

n
s
it
y
 /

 m
A

 c
m

-2

0.80.60.40.20.0

Potential / V

Exposure to Ar gas
 0 min
 10 min
 30 min
 1 h
 2 h

20

15

10

5

0C
u

rr
e
n

t 
d

e
n
s
it
y
 /

 m
A

 c
m

-2

0.80.60.40.20.0

Potential / V

Evacuation of Ar gas
 0 min
 10 min
 30 min
 1 h
 2 h

(a) (b)



118 

Figure 6.11. Variation of short-circuit current density and efficiency under the different 

conditions of measurements.

The increased photocurrent density and increased open circuit potential in the J-V 

plot upon exposure to light under Ar are exciting discoveries. These can be attributed to 

various factors, such as passivation of defect sites by photogenerated carriers,214, 224 

reduction in chemical resistance and capacitance at the MHHP/contact interfaces,213 and 

lattice expansion induced by light soaking.224 Lattice expansion may allow for Ar gas 

adsorption, where the adsorbed Ar atoms penetrate deep inside the film and passivate the 

defect sites which were not cured by light soaking. This is a speculation at this point, but 

it is clear that the effect of Ar are real. 

6.4.  Discussions 

The various factors which contribute to the origin of polarization in MHHP thin films 

are well explained in Chapter 5.  The polarization of a MHHP film strongly depends on the 

size of grains. It increases with increase of the grain size in the film. Our results reveal that 

this polarization is significantly enhanced when the film is exposed to Ar gas with solar 

light. Solar light causes the lattice expansion as mentioned elsewhere.224 The enhanced 

polarization then facilitates the separation of excitons to increase the photocurrent.  An 
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inert gas should not readily react with the perovskite surface; however, the surface field 

can generate a local dipole on inert gas molecules.225 This will attract the inert gas 

molecules and lead to physisorption of the gas molecules on the perovskite. Once adsorbed, 

the inert molecules remain attached with an activation energy that increases with the 

molecular weight and polarizability of the exposed molecule, as has been determined for 

noble gas adsorption on a variety of semiconductor surfaces.226 The combination of inert 

gas plus solar illumination appears to be effective at neutralizing surface recombination 

centers without damaging the perovskite film, with Ar being the best.  No light induced 

increase in the photocurrent is observed when helium is used as the inert gas.  This is most 

likely because the binding energy of the helium for physisorption on the perovskite is 

below the thermal energy.  

In fact, it is known from the literature that the solar cell efficiency can be improved 

temporally by exposure to high intensity light,227 which becomes incomplete without any 

explanation for the role of background environment. Explanations for this effect are that 

the light soaking neutralizes the surface traps228 or increases the open circuit voltage due 

to charge accumulation at the interfaces.211 High quality perovskite solar cells are typically 

fabricated in an Ar environment229 and then encapsulated, so it is possible that the effect 

we observe here is due to the same mechanism. 

6.5.  Conclusions 

In conclusion, it is shown that the MHHP film adsorbs Ar gas in the presence of solar 

light. Ar gas with the solar light results in the enhancement of the electric polarization of 

the MHHP film. Consequently, the photocurrent is increased due to the stronger driving 

force for the separation of excitons. This observation is illustrated in a real PSC where the 

photovoltaic enhancement is observed with Ar gas. Our results suggest that the contribution 

from the background environment should be taken into consideration when describing the 

photovoltaic performance of a PSC. The parameters of our cell are not great, but they are 

enough to explain the observations. How Ar atoms interact with the perovskite film in the 

presence of solar light, and theoretical explanation is a very interesting topic for future 

studies.
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CHAPTER VII 

SYNTHESIS AND CHARACTERIZATION OF LAYERED 

HYBRID PEROVSKITES  

7.1. Introduction 

Three-dimensional (3D) films of hybrid perovskites have been used for photovoltaic 

applications with a photoconversion efficiency surpassing 25%,51 however, they suffer 

from insufficient long-term stability and toxicity of the lead most commonly used as a 

component of the perovskite crystal.90, 230 The problem related to the toxicity of Pb can be 

resolved by using a more environmentally friendly metal, such as Sn.231-233  The issue with 

instability under ambient conditions, including heat and light, is still not resolved.  Smith 

et al.100 and Cao et al.101 showed that two-dimensional (2D) iodide-based layered 

perovskites are more stable than the corresponding 3D films. The 2D layered perovskites 

are formed when 3D frameworks are sliced into well-defined 2D single layer sections. The 

2D perovskites have the general formula of (RNH3)2(A)n-1MnX3n+1 where RNH3 is a large 

aliphatic or aromatic alkylammonium cation acting as a spacer between the 2D perovskite 

layers, A and M are cations and X anions which form the perovskite framework, and n 

represents the number of corner-sharing [MX6]
4- octahedral layers sandwiched between 

interdigitating bilayers of long-chain alkylammonium ions as described in Chapter 1.102 
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The  larger hydrophobic cations used in the synthesis are responsible for the new 

phases of perovskite being formed, leading to the 2D nature, but it also leads to significant 

improvement in the moisture stability of the films.234 The improved stability under ambient 

conditions is an excellent feature of the 2D perovskites that has led to them receiving 

increased attention over recent years. 

7.2. Experimental Section 

The synthesis of crystals of 2D and 3D hybrid perovskites is given in Chapter 2. 

7.2.1. Preparation of Precursor Solution 

The precursor solution of each type of layered perovskite for the film fabrication was 

prepared from the dry crystals prepared as described in Chapter 2. The crystals were 

dissolved in anhydrous DMF to make a 0.4 M solution with respect to lead content and 

heated at 70 0C with stirring for 30 minutes.   

7.2.2. Device Fabrication 

All the devices described in this chapter were made by spin-coating the precursor 

solution at 70 0C on a glass substrate pre-heated at 150 0C. Briefly, a pre-cleaned glass slide 

was heated at 150 0C for 5 min and quickly transferred to the top of a spin-coater. 150 µL 

of the precursor solution was dropped to the center of the slide and spin-coated at 3000 

rpm for 30 seconds. The device was heated at 100 0C for 10 min for the complete 

conversion of the perovskite and removal of the solvent if any. This device was used for 

UV/VIS and XRD measurements. For the device used for the AC photocurrent 

measurements, interdigitated Au contacts were deposited on top of the film as described in 

Chapter 2. Scheme 7.1 summarizes the device fabrication process. 



122 

Scheme 7.1. Fabrication of devices for AC photocurrent measurements. 

7.2.3. Characterization with AC Photocurrent Method 

As described in Chapters V and VI, the device with interdigitated Au contacts was 

loaded into an optical cryostat and the chamber of the cryostat was maintained at a pressure 

of 10-7 torr.  

7.3. Results 

As shown in Chapter 2, the crystals of (BA)2PbI4 (n=1) are orange. These crystals do 

not have methylammonium ions. (BA)2(MA)Pb2I7 (n=2) crystals are scarlet in color while 

the crystals for n=3 and n=4 are black. Figure 7.1a-d shows optical images of the films for 

n=1 through n=4. The films are very compact with rectangular-shaped crystals. Apparently, 

the crystals seem to be larger for n=1 in comparison to the films for higher value of n. We 

can see rectangular crystals in the optical images of the films of these materials made by 

hot casting the precursor solution on the glass substrates. The low angle XRD spectra of 

these films are depicted in Figure 7.1e. The XRD spectra show the phase purity of the 

crystals consistent with the literature and the successful synthesis of 2D perovskites with 

Clean the glass substrate sonicating in detergent, 

acetone, ethanol and isopropanol followed by 

UV/ozone treatment.

Spin-coat the precursor solution at 70 0C by hot 

casting at 3000 rpm for 30 s.

Heat at 100 0C for 10 min.

Deposit interdigitated Au contacts using a shadow 

mask .
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controlled n values between 1 and 4.  The number of reflections below 2q = 120 is equal to 

the n value, consistent with other reports.102, 234  

 

 

Figure 7.1. (a)-(d) Optical images of the films of different 2D hybrid perovskites, and (e) 

low angle XRD spectra of these perovskites spin-coated on the glass substrates. 

Figure 7.2. shows further evidence of the successful synthesis of the 2D perovskites 

in the optical absorbance spectra of the films on the glass substrate made by hot-casting 

method. The optical bandgap decreased from n=1 (2.43 eV) to n= 4 (1.92 eV), consistent 

with the literature.102  
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Figure 7.2. Optical absorbance spectra of different types of 2D hybrid perovskites.

The films of different 2D perovskites were then characterized with the AC 

photocurrent technique as was done with 3D MHHP films in Chapters 5 and 6. Figure 7.3.a 

shows an optical image of the 2D film for n=4 with interdigitated Au contacts on the top 

of the film. We did not get any AC photocurrent for n=1 in the absence of external potential. 

However, when the external potential was increased to 1 V, the AC photocurrent spectrum 

(Figure 7.4.b, black trace) was obtained with a clear peak at 2.43 eV. This indicates that 

there is not intrinsic polarization of the film for n=1. Figure 7.4.b (red trace) shows the AC 

photocurrent spectrum for n=2 for zero external potential. This film showed some internal 

polarization of the film. The peaks for n=1 and 2 are characteristic to the bandgap of these 

perovskites consistent with the optical absorbance data shown in Figure 7.2. Figure 7.3c-d 

are the AC photocurrent spectra for n=3 and 4 respectively. We observe that the optical 

absorption range keeps increasing with increase in the value of n. Further research about 

the polarization and optoelectronic properties of these emerging perovskites is going on. 
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Figure 7.3. (a) Optical image of the film for n=4 with interdigitated Au contacts used for 

the AC photocurrent measurement, (b)-(d) the AC photocurrent spectra of the device for 

n=1 to 4.
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CHAPTER VIII 

CONCLUSIONS AND FUTURE DIRECTIONS 

8.1. Conclusions 

(a) REO nanoparticles enhance the photovoltaic performance of dye-sensitized solar 

cells. 

Commonly used semiconductor titania was doped with REO (Er2O3 and Nd2O3) 

nanoparticles and highly reproducible DSSCs were fabricated and photoelectrical 

characterization was carried out to study their photovoltaic performance. It is shown in 

chapter 3 that the doping of mesoporous TiO2 with both REO Er2O3 and Nd2O3 

nanoparticles showed significant improvement in the photovoltaic performance of DSSCs 

through the increased dye loading due to the increased surface area, and the enhanced 

electron transport efficiency. Photoelectrical and electrochemical characterization of REO-

doped titania and undoped titania in Chapter 4 reveals that REO nanoparticles reduce the 

number of deep traps or converts the deep traps to shallower traps from where electrons 

can easily get de-trapped. Consequently, the reduction in trap state density is also evident 

in the decrease in flat band potential, and reduction in capacitance of the titania film when 

doped with REO nanoparticles.  The increase in lifetime of the transport carriers provided 

by the decreased trap density provides an explanation for the reduced electrical impedance 

of the REO doped film, and also partially explains the improved performance of REO-

doped titania in photocatalytic and solar cell applications. 
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(b) The electric polarization of mixed halide hybrid perovskite facilitates the 

excitonic separation, and this electric polarization can be measured by using an AC 

photocurrent measurement. 

Mixed halide hybrid perovskites are stacked as [PbClxI6-x] octahedral units, sharing 

the corners, which form cuboctahedral sites where MA cations are caged. The mismatch 

between the ionic radii of the different species forming a unit cell leads to structural 

distortions in perovskites such as tilting and axial rotation of the corner-sharing octahedra, 

and these lower the symmetry of the structure. The incorporation of Cl in iodide-based 

hybrid perovskites distorts the unit cell from the ideal cubic perovskite structure causing 

destruction of the centrosymmetric nature. It can lead to polar or anti-polar unit-cells. Anti-

polar units cancel the effect of one another while polar units add up, resulting in a local 

intrinsic polarization P0. Grain screen the effect of intrinsic polarization. As a result, the 

electric polarization of MHHP decreases with decreases in the grain size. In Chapter 5, the 

AC photocurrent measurement technique is used to measure Vbi. The AC photocurrent is 

zero at Vbi and the phase changes by 180 degrees. The intrinsic polarization (P0) of samples 

can be used to check the quality of the film, where a larger P0 means a higher quality film 

with larger grain sizes. Poling the device above the built-in potential further polarizes the 

film, which revert back to their original state when the poling is removed. When the device 

is relaxed, the detrapping of photogenerated charge carriers takes place.  In devices with 

larger grains, the Vbi helps in detrapping, while in devices with smaller grains, the trapped 

carriers remain in defect states for longer time because of the screening affect.  

(c) Ar gas enhances the electric polarization of mixed halide hybrid perovskite film 

and leads to the photovoltaic improvement in the perovskite solar cells.  

In chapter 6, it is found that the MHHP film adsorbs Ar gas in the presence of solar 

light. The solar energy causes lattice expansion, and Ar gas with the solar light results in 

the enhancement of the electric polarization of the MHHP film. Consequently, the AC 

photocurrent is increased due to the reduced recombination by the enhanced intrinsic 

polarization. This observation is illustrated in a real PSC where the photovoltaic 

enhancement is observed with Ar gas. Our results suggest that the contribution from the 
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background environment should be taken into consideration when describing the 

photovoltaic performance of a PSC.  

8.2. Directions for Future Studies 

(a) The electrical conductivity of nanostructured titania is enhanced by doping it with REO 

NPs. Interestingly, there is huge reduction of the trap state density of titania due to the 

injection of electrons from f-states of REOs to the deep traps of titania. There is no 

theoretical studies on the effect of REO NPs on titania. Use of titania doped with REO 

NPs in catalytic systems and as an electron-transport material in the photovoltaic cells 

can be very promising. 

(b)  Perovskite based devices are often encapsulated in inert gases, preferably argon and 

nitrogen for avoiding the degradation of the material due to the contact with air and 

moisture. It is very interesting that Ar gas can interact with hybrid perovskite and 

improves the photovoltaic performance. Prolonged exposure of perovskite film with 

solar light causes lattice expansion resulting in the structural stability and improved 

photovoltaic performance, but there is no explanation about the involvement of 

background gases. The study to explore the underlying mechanism for the effect of Ar 

and other inert gases on perovskite-based devices is very interesting and can give a 

direction for various applications.  Further studies through theoretical modelling with 

computational works, photoluminescence studies for physical and chemical 

transformation of hybrid perovskite crystals, c-AFM studies for surface conductivities, 

XRD in different inert gases for phase changes and the optoelectronic properties within 

a grain and across a grain boundary using probe stations can help in achieving the goal. 

(c) The experiments of hybrid perovskite with Quart Crystal Microbalance reveal that 

hybrid perovskite film adsorbs Ar gas in the presence of solar light only. Where is Ar 

adsorbed? There can be particular sites on the surface or interior of the film where Ar 

atoms are adsorbed. Energy-Dispersive X-ray Spectroscopy (EDAX) study of 

perovskite film in Ar with solar light  can give an evidence for the enhanced electric 

polarization, and improved photovoltaic performance. 
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(d) It is possible that the interaction of perovskite film with inert gases depends on the 

intensity of solar light. Larger inert gases can show the similar effect as Ar gas when 

the intensity of light is high enough to cause lattice expansion for the adsorption for 

these gases. Light intensity dependence of the electric polarization can be significant 

for further exploration of interaction of perovskite with inert gases. 

(e) 2D hybrid perovskites are promising new photoactive materials. Compared to 3D 

analogue they are more stable in the ambient conditions. Chemical engineering with 

more hydrophobic and less insulating spacers and suitable organic cation(s) can help 

in the development of better 2D materials for optoelectronic applications.  

(f) 2D perovskite crystals are weakly bound by the Van del Waals forces and can be 

cleaved to get individual layers by mechanical or chemical exfoliations. The study of 

electron transport properties of molecular layers of 2D materials can give further 

directions for their applications. 

(g) We observed that AC photocurrent of films having some intrinsic electric polarization 

is dependent on the external potential. When the external potential counterbalances the 

built-in potential, the AC photocurrent is negligible. At this moment, the interaction of 

phonon-perovskite becomes more significant. Exploration of the interaction of phonon-

perovskite can give a direction for the thermal stability of the perovskite-based devices. 

(h)  The study of films of other perovskites such as multi-cations perovskites for electric 

polarization is very important for their applications in the optoelectronic devices.
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APPENDIX 

A1.  List of Abbreviations 

AC alternating current 

ACP AC photocurrent 

AFM atomic force microscopy 

ASTM American Society of Testing and Materials 

BA n-butylammonium 

CB conduction band 

CE counter electrode 

CIGS copper indium gallium diselenide 

CN-PPV cyano-polyphenylene vinylene 

QDSC quantum dot solar cell 

CV cyclic voltammetry 

CZTS copper zinc tin sulfide 

DC direct current 

DMF N,N-dimethylformamide 

DSSC dye-sensitized solar cell 

PSC perovskite solar cell 

EA electron affinity 

EIS electrochemical impedance spectroscopy 

EQE external quantum efficiency 

ETL electron transport layer 

ETM electron transport material 

FA formamidinium 

FE fermi energy 

FF fill factor 

FTO fluorine-doped tin oxide 

GA guanidinium 

HOMO highest occupied molecular orbital 

https://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=19352847
https://www.sigmaaldrich.com/materials-science/material-science-products.html?TablePage=19352847
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HP hybrid perovskite 

HTL hole transport layer 

HTM hole transport material 

IPCE incident photon-to-electron conversion efficiency 

ITO indium tin oxide 

LPF long pass filter 

LUMO lowest unoccupied molecular orbital 

MA methylammonium 

MACl methylammonium chloride 

MHHHPSC mixed halide hybrid perovskite solar cell 

MHHP mixed halide hybrid perovskite 

NP nanoparticle 

NTD nanostructured titanium dioxide 

OCP open circuit potential 

OSC organic solar cell 

PA photoanode 

PC photocathode 

PCE photoconversion efficiency 

PEC photoelectrochemical 

PFM piezoresponse force microscopy 

PPV polyphenylene vinylene 

PSC perovskite solar cell 

QC quartz crystal 

QCM quartz crystal coated with perovskite 

RE reference electrode 

REO rare-earth oxide 

RF resonant frequency 

RHE reversible hydrogen electrode 

RMS root mean square 

rpm revolutions per minute 

SEM scanning electron microscopy 

TCO transparent conducting oxide 

UV ultraviolet 

VB valence band 

WE working electrode 
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A2.  List of Symbols 

 efficiency 

 frequency of radiation/scan rate 

N̅L number of grain boundaries intersections per unit length 

ECB energy of conduction band 

Ef fermi energy 

Ein induced electric field 

EVB energy of valence band 

Jdark dark current density 

Jinj photocurrent density arising due to the total charge 

injection 

Jmax photocurrent density corresponding to Pmax of solar cell 

JSC short-circuit current density 

l ̅ lineal size of the grain 

nC density of electrons in the conduction band 

Ni number of grain boundaries intersected 

P0 polarization of pristine device 

Pin power of incident light on solar cell 

Pmax maximum power dissipated by a solar cell 

Pout power obtained from solar cell 

Pv polarization of device by applying external potential 

rA radius of ion A 

rB radium of ion B 

rX radius of ion X 

Vbi built-in potential 

Vfb flat-band potential 

Vmax potential corresponding to Pmax of solar cell 

VOC open circuit potential 

Vp peak potential 

Z" imaginary part of impedance 

βn time constant per unit volume of electron capture 

ε0 permittivity of free space 

εr/ε relative dielectric constant 

τ0 trapping lifetime of free electron at equilibrium 
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τdtr time constant for electron detrapping 

τtr time constant of electron trapping 

C space charge capacitance 

e charge on electron 

f frequency of applied ac signal 

h Planck’s constant 

k Boltzmann's constant 

L length of test line 

M magnification 

N space charge density 

P polarization 

q elementary charge 

T absolute temperature 

t Goldschmidt’s tolerance factor 
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