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ABSTRACT 

 

STRUCTURAL CHARACTERIZATION AND SELECTIVE DRUG 

TARGETING OF HIGHER-ORDER DNA G-QUADRUPLEX 

SYSTEMS 

 

Robert Chandos Monsen 

November 20, 2020 

 

  

There is now substantial evidence that guanine-rich regions of DNA form non-B DNA 

structures known as G-quadruplexes in cells. G-quadruplexes (G4s) are tetraplex DNA structures 

that form amid four runs of guanines which are stabilized via Hoogsteen hydrogen bonding to form 

stacked tetrads. DNA G4s have roles in key genomic functions such as regulating gene expression, 

replication, and telomere homeostasis. Because of their apparent role in disease, G4s are now 

viewed as important molecular targets for anticancer therapeutics. To date, the structures of many 

important G4 systems have been solved by NMR or X-ray crystallographic techniques. Small 

molecules developed to target these structures have shown promising results in treating cancer in 

vitro and in vivo, however, these compounds commonly lack the selectivity required for clinical 

success. There is now evidence that long single-stranded G-rich regions can stack or otherwise 

interact intramolecularly to form G4-multimers, opening a new avenue for rational drug design. For 

a variety of reasons, G4 multimers are not amenable to NMR or X-ray crystallography. In the current 

dissertation, I apply a variety of biophysical techniques in an integrative structural biology (ISB) 

approach to determine the primary conformation of two disputed higher-order G4 systems: (1) the 

extended human telomere G-quadruplex and (2) the G4-multimer formed within the human 

telomerase reverse transcriptase (hTERT) gene core promoter. Using the higher-order human 
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telomere structure in virtual drug discovery approaches I demonstrate that novel small molecule 

scaffolds can be identified which bind to this sequence in vitro. I subsequently summarize the 

current state of G-quadruplex focused virtual drug discovery in a review that highlights successes 

and pitfalls of in silico drug screens. I then present the results of a massive virtual drug discovery 

campaign targeting the hTERT core promoter G4 multimer and show that discovering selective 

small molecules that target its loops and grooves is feasible. Lastly, I demonstrate that one of these 

small molecules is effective in down-regulating hTERT transcription in breast cancer cells. Taken 

together, I present here a rigorous ISB platform that allows for the characterization of higher-order 

DNA G-quadruplex structures as unique targets for anticancer therapeutic discovery.  
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CHAPTER I 

 

INTRODUCTION 

 

 

 In 1953, James Watson and Francis Crick provided a model of the B-form of DNA (1). This 

seminal work suggested, for the first time, the structural basis of genetic inheritance inferred from 

purine-pyrimidine base pairing in the double helix. The structure itself is arguably just as important. 

It is now known that the structure of DNA is critical for coherent interactions with proteins, without 

which would result in chaos within the cell. Since its discovery, a variety of non-B DNA structures 

have been revealed, each of which with their own sequence requirements for formation (2). In 

particular, DNA G-quadruplexes (G4s) have garnered serious attention over the past few decades 

as their role in disease has become increasingly evident. 

 Just as the DNA duplex is made up of constitutive base pairs (or “dyads”), the G-quadruplex 

is made up of guanine tetrads (G-tetrads) (Figure 1A-B) (3,4). G-tetrads are stabilized by hydrogen 

bonding across the O6 oxygen and N7 nitrogen of the first guanine with the N1 and N2 nitrogen of 

the adjacent guanine. This Hoogsteen bonding pattern repeats to form a square planar 

arrangement, allowing tetrads to stack atop one another as shown in Figure 1C. The “canonical” 

unimolecular G-quadruplex has between 2 and 4 contiguous stacks of G-tetrads. A variety of 

topologies exist for a single-stranded intra-molecular G-quadruplex, and these various forms are 

dictated primarily by phosphodiester backbone directionality and nucleoside conformations (syn or 

anti) with respect to the glycosidic bond. This implies that a unimolecular two-tetrad G-quadruplex 

has 26 possible loop configurations and 24 possible combinations of G-tetrad glycosidic bond 

orientations (5). The same number of loop combinations exist for a three-tetrad system, however, 

the number of possible G-tetrad glycosidic bond combinations increases, making the maximum 

total configurations 32 (5). Further, loop sizes, orientations, and interactions can vary considerably. 
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Thus, the conformational diversity of these structures has led to significant interest recently for their 

potential to be selectively targeted with small molecules.
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Figure 1. Chemical structures of the duplex “dyads”, G-quadruplex tetrad, and a simplified 

schematic of a G-quadruplex. (A) Traditional base pairs, A:T and G:C, of the DNA duplex. (B) G-

quadruplex tetrad, showing the coordination of a potassium ion in the central cavity. Broken bond 

symbols represent the disconnect from the deoxyribose (i.e. the glycosidic bond). (C) schematic 

representation of a basic three tetrad G-quadruplex. Gray squares represent the G-tetrads, black 

lines represent the phosphate backbone, and pink circles represent potassium ions.  
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Since the discovery that G-quadruplex structures form spontaneously in biologically 

relevant ionic conditions, the field has exploded with reports of their wide array of biological roles. 

Early investigations of eukaryotic telomere sequences determined that G-quadruplex formation 

critically regulates the activity of human telomerase reverse transcriptase (hTERT), the enzyme 

that extends the telomere (6-8). This has obvious implications in cancer, as more than 85% of all 

cancers have reactivated hTERT, and its activity at the telomeres is essential in cellular immortality 

(9,10). Moreover, bioinformatic studies reveal that ~300,000 putative G-quadruplex forming 

sequences (PQSs) are scattered throughout the human genome non-randomly (11,12). PQSs are 

highly concentrated in regions such as immunoglobulin switch regions, mRNA 5’ and 3’ 

untranslated regions (UTRs), and regulatory regions in gene promoters (13,14), all of which are 

unique points for therapeutic intervention. Some promoter G-quadruplexes with relevance in 

disease have since been successfully targeted by small molecules (14,15). A notable example is 

the nuclease hypersensitivity element III1 (NHE III1) G-quadruplex of the c-MYC promoter. 

Stabilizing this G-quadruplex with the G4 ligand TMPyP4 resulted in marked repression of c-MYC 

expression—cementing the case for G-quadruplex-mediated transcriptional regulation (16). 

Currently there are about a thousand or more G-quadruplex interacting ligands which have been 

reported that bind to the telomeres, various promoters, and mRNA G-quadruplexes (17). However, 

just as selectivity is an issue with many protein targeting small molecules, the same issue now 

pertains to G-quadruplexes (18). G-quadruplex “monomers” (i.e. a single intra-molecular G-

quadruplex unit consisting 2-4 G-tetrad stacks) are often amenable to high-resolution structural 

biology techniques, such as NMR and X-ray crystallography (although typically requiring stabilizing 

mutations), allowing for their unambiguous structural characterization. This has positioned them as 

prime targets in the pursuit of G-quadruplex selective drugs. Unfortunately, efforts are hampered 

by the common feature among all monomeric G-quadruplexes: their 3’ and 5’ G-tetrad faces. 

Binding, or “end-pasting”, to these sites is the primary reason for ligand promiscuity (18). 

Long single-stranded regions of G-rich DNA containing multiple G-quadruplex motifs have 

the potential to form G-quadruplex “multimers”, that is, monomeric G-quadruplexes which can stack 

atop or otherwise interact with one another to form a tertiary arrangement (19,20). It is apparent 
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that such structures offer a more specific target for rational drug discovery whereby loop, groove, 

and G-quadruplex stacking junctions form specific pockets useful for rational drug discovery 

techniques (18,20). Unfortunately, these multimeric forms are difficult to characterize, which stems 

from their size, inherent heterogeneity in solution, guanine imino spectral overlap in NMR, and 

propensity to favor (often not relevant) conformations in X-ray diffraction. Therefore, a critical 

limitation in understanding the role these structures play in the cell, as well as in developing new 

selective anticancer therapeutics, resides in their structural characterization.  

This dissertation provides an integrative structural biology (ISB) platform that allows for 

detailed characterization of multimeric G-quadruplexes in their wild type (WT) state and under 

physiologically relevant conditions. Using a suite of robust biophysical tools, such as size-exclusion 

chromatography (SEC), small-angle X-ray scattering (SAXS), analytical ultracentrifugation (AUC), 

circular dichroism (CD), nuclear magnetic resonance (NMR), and molecular dynamics (MD), I show 

that it is possible to determine the tertiary structure of higher-order G-quadruplexes at 20-40 Å 

resolution. I begin with an example of this approach, whereby a rigorous investigation of the higher-

order human telomere reveals that it is composed of alternating hybrid-2 and hybrid-1 G4 

topologies, and that it maximizes its usage of G-tracts in solution. The derived telomere G4 multimer 

structures are subsequently targeted at their inter-quadruplex junctional regions; whereby novel 

ligand scaffolds are identified. I next apply this characterization approach to the hTERT core 

promoter G-quadruplex and show that it preferentially adopts an all-parallel stacked G-quadruplex 

arrangement with multiple unique loop sites useful in drug discovery efforts. Following this, I 

describe and summarize the current state of G-quadruplex virtual screening in a review, pointing 

out where improvements could be made to increase selectivity and novelty of virtually screened 

small molecules. Last, using the derived model of the hTERT core promoter G-quadruplex, I show 

that unique, drug-like small molecules can be discovered which preferably bind to it over duplex, 

triplex, and monomeric G-quadruplex topologies. Additionally, I provide biological evidence that 

one of these small molecules can repress hTERT transcription in breast cancer cells, and so is a 

suitable lead for development as an anticancer therapeutic.  
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A Brief History of G-quadruplex DNA 

 

When one thinks about deoxyribonucleic acid (DNA) in the cell, we traditionally think of the 

classical double helix (1), discovered more than 60 years ago by Watson, Crick, Franklin, and 

Wilkins. The double helix structure provided a platform by which we could relate structure to 

function, where base-pairing provided a mechanistic basis for the transfer of genetic information, 

and codons provided the blueprints for making proteins. Of course, we know now that DNA is more 

than just a medium for information transfer, it is dynamic and structurally diverse. For instance, the 

majority of DNA in the cell is negatively supercoiled, which favors the formation of non-B DNA 

structures (21). Less than 10 years after the duplex was elucidated, four-stranded guanylic acid 

structures were observed by fiber diffraction which indicated that guanines could form stable, planar 

tetrads via hydrogen bonding of their Hoogsteen faces (Figure 1B) (3,4). At the time, guanine 

tetrads were viewed as mere test tube oddities [and even “nuisances” (22)]. It wasn’t until the late 

80’s when it was discovered that under physiological cation conditions, in vitro, guanine-rich 

telomere sequences spontaneously formed discrete four-stranded structures, now known as G-

quadruplexes (G4s) (6,23,24). Although speculation of their in vivo relevance was widespread at 

the time, the discovery of these spontaneously formed G4s prompted Nobel Laurette Aaron Klug 

to remark “If G-quadruplexes form so readily in vitro, Nature will have found a way of using them in 

vivo” (25).  

The 2000’s hailed a new era for G-quadruplex biology. It was the advent of G4-targeting 

antibodies that visualized, for the first time, the formation of G4 DNA structures in cells (26-30). 

Their visualization across the genome was simultaneously verified by advances in G-quadruplex 

sequencing techniques (31) and bioinformatic inquiries (11,12). These technological advances 

paved the way for studies demonstrating that G-quadruplexes can be targeted and stabilized by 

small molecules in cells (27,30). A variety of quadruplex-interacting proteins have since been 

verified to interact with biological G-quadruplexes, such as telomerase (32), helicases (27,30,33), 

transcription factors (34), and chromatin remodeling complexes (35). For an excellent review of the 

newfound diversity of G-quadruplex functions in biology see that of Spiegel, Santosh, and 
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Balasabrumanian (36). Clearly, G-quadruplexes are important structures in vivo, and their roles in 

biology and disease are of great interest to the biomedical community. 

 

Monomeric G-quadruplex Structure 

 

The discovery that guanylic acids could form higher order structure dates back to 1910 

when Ivar Bang reported that, upon heating and cooling, guanylic acid formed an extremely 

viscous, clear gel (37). It wasn’t until 1962 when this phenomenon was further investigated. Ralph 

and colleagues showed that guanylic acid, but not other nucleotide derivatives, formed aggregates 

or other higher-order species in the presence of physiological buffers using analytical 

ultracentrifugation experiments (38). This same year, Gellert et al. reported the unique optical 

properties and arrangement of the G-quartet using X-ray diffraction, showing unambiguously the 

formation of a guanine helix (G-quadruplex) (3). A decade later the geometry of the G-quadruplex 

tetrad stack was elucidated using X-ray diffraction (4,39).  

The basic structural motif of the G-quadruplex is the G-tetrad (or G-quartet), which consists 

of four cyclically Hoogsteen hydrogen-bonded guanines situated in a planar square shape (Figure 

1). Bonding is through the protons of the nitrogen N7 and oxygen O6 atoms with that of the adjacent 

base nitrogen N1 and N2. The O6 atoms project towards the interior of the central G-tetrad helical 

axis and, when stacked onto an adjacent tetrad, the cavity formed among the eight central O6 

atoms is large enough to house a variety of monovalent cations. Stabilization of the stacked G-

tetrads is primarily through overlap of π-orbitals of stacked guanines and cation coordination (40). 

Monovalent cation coordination within the central cavity imparts a major stabilizing effect by 

neutralization of the partial negative charges from the inward projecting O6 oxygens (40). 

Commonly, the coordination ions are either K+ or Na +
 but other ions of appropriate size can also 

fulfil this stabilizing role (41).  

Two or more contiguous G-tetrad stacks constitute a G-quadruplex. The features of G-

quadruplexes, which are used in describing their overall topology, are glycosidic conformations of 

guanines, strand orientations, groove widths, and loop arrangements (42,43). It is the arrangement 
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of nucleobases within a G-quadruplex that give rise to their diagnostic circular dichroism signatures 

(44). The glycosidic bond angle (GBA) is the orientation of the guanosine about the N-glycosidic 

bond of the deoxyribose, and this can be syn or anti (with anti being most prevalent in B-DNA). The 

specific GBAs of guanines within G-tetrads define the G-quadruplex’s groove (43). The three types 

of grooves are narrow (n), medium (m), and wide (w) (Figure 2), and only G-tetrads with the same 

groove combinations may stack to form a G-quadruplex (43). The three loop types (diagonal, 

propeller, and lateral) are entwined with GBA. The lateral loop (a.k.a. edgewise loop) links guanines 

within the same tetrad that share hydrogen bonds. Conversely, diagonal loops link guanines within 

the same tetrad but do not share hydrogen bonds. In both cases the loops link guanines of different 

GBA. G-quadruplexes with these types of loops are said to be “hybrid” or “antiparallel” (Figure 3). 

The third loop type, now commonly known as propeller (but earlier called “double chain reversal”), 

links guanines which are not in the same tetrad, but within the same groove, and this groove is 

always medium since the bases of propeller loops always have the same glycosidic bond angle 

(43). G-quadruplexes which have all propeller type loops (and thus all bases with the same anti 

GBA) are said to be “parallel”, as all the runs of guanines in the G-tetrads point in the same 5’ to 3’ 

direction (Figure 3A). There are primarily three types of loop “directionalities” observed in G-

quadruplexes. These are known as parallel (↑↑↑↑), hybrid 3+1 (↑↑↓↑ or ↑↓↑↑), and anti-parallel or 

basket (↑↓↑↓) (depending on looping), where the arrows are from 5’ (left) to 3’ (right) and indicate 

the phosphodiester backbone direction (Figure 3) (42).  

The G-quadruplex topological descriptors above (parallel, hybrid, and antiparallel) are the 

informal classes of G4s, and these descriptions are not sufficient to fully describe G4 conformation. 

For instance, the human telomere G4-forming sequence(s), depending on flanking nucleotides and 

solution conditions (45,46) can adopt six variations of these topologies (e.g. parallel, basket, two 

different hybrid forms, and two different antiparallel forms) (45-48). To this end, the Webba da Silva 

lab has created a formalism for describing quadruplex folding based on the loop orientation and 

GBA relative to the starting nucleotide closest to the 5’ end of the G4 strand (49). The authors 

propose that, starting with the 5’-most guanine (which is typically anti in conformation), the looping 

type and direction can be described as ‘-‘ or ‘+’ for anti-clockwise and clockwise progression, 
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respectively. The anti-clockwise ‘-‘ looping is most commonly observed in G4s and is akin to the 

right-handed B-DNA double helical turn [although clockwise ‘+’ progressions have recently been 

observed, which are akin to Z-DNA and are deemed “Z-G4” (50,51)]. Further, the type of loop, 

parallel ‘p’, lateral ‘l’, and diagonal ‘d’, can be assigned as such. Thus, these formal assignments 

are more adequate at describing looping type and directionality (although diagonal loops do not 

have ‘-‘ or ‘+’ because they do not connect in an anti-clockwise or clockwise fashion). For instance, 

a parallel G-quadruplex with loops that run anti-clockwise is -p-p-p for three anti-clockwise propeller 

loops, and +p+p+p for three clockwise propeller loops (Figure 3). An antiparallel G4 with a diagonal 

loop (such as the human telomere in sodium, PDB ID: 143D) would be +ld-l (Figure 3D). For lateral 

loops, an additional descriptor can be added for even more specificity. The designation of a 

subscript ‘m’, ‘n’, or ‘w’ for medium, narrow, or wide grooves can be appended after ‘l’ (52). For the 

antiparallel (143D) example above, its descriptor would become +lwd-ln. Clearly, this naming 

convention is powerful compared with the traditional parlance. 

Altogether, the structural diversity of two- and three-tetrad G-quadruplexes is immense, 

whereby each can theoretically adopt 26 different looping configurations and 32 different 

combinations of anti and syn guanines (43). This diversity is further compounded when considering 

that many biologically relevant sequences contain more than four runs of G-tracts which are often 

longer than two consecutive guanines, and can be variable in number (53). While this greatly 

complicates G-quadruplex structure determination, it is also the reason why these structures are 

so enticing from a drug discovery perspective. 
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Figure 2. Guanine glycosidic bonds and G-tetrad groove definitions. The two possible 

conformations, syn and anti, of guanines about their glycosidic bonds (A), and the G-tetrad with 

groove designations based on guanine glycosidic bonds and spatial arrangements (B). Pink ovals 

indicate guanines with a syn-conformation and cyan ovals indicate guanines with anti-

conformations. The grooves are marked as medium, wide, or narrow, as determined by the 

arrangement of guanines and their respective glycosidic bond orientations. 
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Figure 3. G-quadruplex conformations. In each diagram grey squares represent G-tetrads, black 

lines indicate the phosphate backbone, blue and red arrows highlight backbone directionality, 

yellow text and arrows indicate the three main loop types, and green represents any non-tetrad 

participating nucleotide. (A) Parallel fold with three propeller loops -p-p-p. (B & C) two different 

hybrid 3 + 1 folds, each with two lateral (or edgewise) loops, and a single propeller loop (-l-l-p and 

-p-l-l, respectively). (D) Antiparallel fold with two lateral loops and one diagonal loop -ld+l. (E) A 

two-tetrad antiparallel fold with the same loop types as in D but showing how additional nucleotides 

can potentially stack on the 5’ and 3’ G-tetrad faces -ld+l. (F) A “chair” formation, with three 

consecutive lateral loops +l+l+l. 
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Multimeric G-quadruplex Structure 

 

The diversity of G-quadruplex structures extends well past that of single “monomeric” intra-

stranded structures. Multimeric G-quadruplexes also exist, and these can be inter-stranded G-

quadruplexes such as “dimers”, “trimers”, and “tetramers”, as well as oligomer and polymer type 

“G-wires”. In this dissertation the emphasis will remain primarily on intra-strand (unimolecular) G-

quadruplexes and, for clarity, the term “monomer” will hence forth refer only to a single intra-strand 

G-quadruplex. In the context of long single-stranded DNA (ssDNA), such as would be found in a 

cell during replication or transcription, it could be envisioned that multiple monomer G-quadruplexes 

could form on the same strand. These G4s could either act independently (known as “beads-on-a-

string”) (Figure 4A) or interact with each other by direct contact. In the latter case, the G-quadruplex 

(i.e. the entire G-rich strand of DNA) will be referred to as a G-quadruplex “multimer” (Figure 4B) 

(20).  

Just as duplex dyads and G-quadruplex tetrads are stabilized through nucleotide stacking, 

monomeric G-quadruplexes can stack atop on another under physiologically relevant DNA 

concentrations (as low as a few micromolar strand concentration) (20). G-quadruplex multimers 

form in primarily two ways: direct G-tetrad stacking of terminal (5’ or 3’) tetrad faces, or via 

“sandwiching” of non-tetrad-participating loop residues between tandem monomeric G-quadruplex 

units (54), although other inter-domain interactions have been proposed (55). Direct G-tetrad face 

interactions of monomer quadruplexes of 3’ to 5’ and 5’ to 5’ occur most readily, as the 3’ to 3’ 

stacking interface is thought to be energetically unfavorable without facilitation by small molecule 

ligands or sandwiched adenine residues (54). A variety of monomeric G-quadruplex stacking 

interfaces have been reported using both NMR and X-ray crystallographic techniques (hundreds of 

structures of unimolecular and stacked dimer DNA G-quadruplexes in the Protein Data Bank: 

https://www.rcsb.org/). There are only a few multimers with high-resolution structures available: a 

dimer of the c-MYB promoter (56), a synthetic aptamer two-stacked two-tetrad G4 (57), and two, 

two-stacked two-tetrad multimers containing left-handed “Z-G4s” (50,51). 
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Figure 4. Schematic showing the “beads-on-a-string” and “multimer” higher-order G-quadruplex 

structures. Schematics are represented as in Figure 3, with labeling of the 5’ and 3’ tetrad faces. 

(A) G-quadruplex monomers can spontaneously fold adjacent to one another on the same DNA 

strand but not necessarily interact, forming the beads-on-a-string structure. These quadruplexes 

could also contain 2-, 4-, or more tetrads. (B) Two monomers on the same strand of DNA interacting 

to form a G-quadruplex multimer. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

17 

 

 

 

 



 

18 

 

G-quadruplex Functions 

 

 

Telomere G-quadruplexes 

 At the end of eukaryotic chromosomes is a specialized, non-coding sequence of 

nucleotides known as the telomere which consists of tandem repeats of the sequence 5’-TTAGGG-

3’ (58). The telomeres have long been associated with human disease, such as cancer (59), 

telomeropathies (60), the aging process (61), and genome (in)stability (62). The common etiology 

among these conditions is dysregulated telomere length control. In normal human somatic cells 

telomeres are approximately 5-25 kb in length and have an extended single-stranded 3’ overhang 

of ~35-600 bases (63). The entire region is coated in telomere associated proteins known as the 

shelterin complex, which protect the exposed ends from nucleolytic cleavage, end-to-end fusion 

events, and unintentional activation of the DNA damage response pathway (64,65).  

In most normal somatic (non-germ) cells, progressive shortening of the telomeres occurs 

with each round of cell division due to the end replication problem (66). This replicative “clock” has 

long been thought to be a protective mechanism against tumorigenesis (65). Once a critical number 

of replications have occurred the telomeres become sufficiently small and trigger a DNA damage 

response by “uncapping” of the telomere shelterin proteins, leading to cellular senescence (65,66). 

Cancer cells have found mechanisms which circumvent natural telomere attrition. The two main 

mechanisms used in cancer to restore telomere length are DNA recombination (known as the 

alternative lengthening of telomeres [ALT] pathway), and re-activation of human telomerase 

reverse transcriptase (hTERT). hTERT is the catalytic protein component of the telomerase 

ribonucleoprotein which extends the telomere using its reverse transcriptase activity (67). The ALT 

pathway is only observed in a small fraction of cancers (~10-15%), with the majority (85-90%) of 

cancer cells exhibiting aberrant telomerase activity (10,68,69). Thus, by extending the telomere, 

cancer cells can divide indefinitely, and so telomeres and their associated proteins are promising 

targets for anticancer therapeutics (59).  
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In 1987, while studying the telomere sequences in Tetrahymena, Henderson and 

Blackburn discovered that the G-rich single-stranded telomeres spontaneously form non-Watson-

Crick type intramolecular structures (6). Two years later the telomere G-quadruplex was confirmed 

by DNA foot-printing experiments, which showed protection of the G-tetrad guanine N7 groups 

exclusively when folded in the presence of Na+ and K+ salts (24,70). These discoveries suggested 

an in vivo role for G-quadruplexes, and along with advances in oligonucleotide synthesis schemes 

(71), renewed interest in their study. In 1992 the first atomic resolution crystal structure of a 

telomere DNA G-quadruplex was reported using sequences from Oxytricha (72), followed soon 

after by the NMR solution structure of the same sequence (73). One year later, the first atomic 

structure of the human telomere G-quadruplex was reported by Wang and Patel, which showed 

that it adopted an antiparallel “basket” type fold (like Figure 3D) in a sodium buffer (74). A variety 

of monomer telomeric G-quadruplexes have since been solved by X-ray crystallography or NMR 

techniques: parallel (75), hybrid 3+1 (76,77), antiparallel (74), and a two-tetrad antiparallel (47). 

Not all telomere topologies are biologically relevant, as some appear to be the result of either non-

physiological cation conditions or unnatural physical forces, such as those in crystal packing (78). 

Extensive investigations have led to the conclusion that the two prominent forms of the human 

telomere G-quadruplex, under physiologically relevant ion concentrations in vitro, are the hybrid 

3+1 topologies, called “hybrid-1” (↓↓↑↓) (76) and “hybrid-2” (↓↑↓↓) (77). In 2019, Bao et al. found 

that the hybrid-1 and -2 type conformations exist within HeLa cells by monitoring the folding of an 

injected 22-nt long telomere sequence, AGGG(TTAGGG)3, using a state-of-the-art in-cell 19F-NMR 

technique (79). 

Initial investigations of telomeric G-quadruplexes demonstrated that they act as a steric 

inhibitor of telomerase (7,32), and therefore are a transient protection mechanism in cells with 

exposed 3’ single-stranded ends. Indeed, when shelterin proteins are absent (or “uncapped”), the 

exposed ssDNA folds into a G-quadruplex and elicits a specific DNA damage response (80). There 

may also be a role for G-quadruplexes in mediating the so-called “T-loop” protective structure. The 

T-loop is formed when the telomere end forms a protective circle which requires a strand-invasion 

by the free 3’ overhang (65). Thus, the T-loop requires a free 3’ overhang for interaction with the 
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shelterin proteins TRF1 and TRF2 (TTAGGG Repeat binding Factors 1 and 2) (81,82). Indeed, 

when telomere G-quadruplexes are stabilized by small molecules a DNA damage response is 

observed in cells (83), which is a result of sequestering the free 3’ (TTAGGG)n overhang from both 

telomerase and TRF1/2 (82). Another shelterin protein, human protection of telomeres 1 (hPOT1), 

binds directly to the free 3’ terminus and acts as a critical regulator of its length by both unfolding 

telomere G4s for hTERT to gain access and preventing aberrant extension by blocking access to 

the free 3’ end (84,85). Direct inhibition of hPOT1 results in reduced cellular proliferation of cells 

requiring telomerase activity (86). Thus, targeting the telomeric G-quadruplex is a promising route 

for anti-cancer therapeutic development (87).  

 

Non-telomere G-quadruplexes 

 The first glimpse of non-telomeric G-quadruplex functionality came from a report in 1988 

in which evidence of an inter-stranded tetramer G-quadruplex was described in immunoglobulin 

switch regions based on mobility shift assays (23). This discovery was essential in explaining the 

peculiar rearrangements observed within the human insulin gene promoter reported six years prior 

(88). It was subsequently discovered that the Bloom’s syndrome helicase is able to unwind DNA 

G-quadruplexes in vitro (89), prompting sequencing studies of G4 helicase knock out cells which 

ultimately confirmed that G-quadruplexes play a direct role in recombination events (90). In 1994, 

Woodford and colleagues observed the first biologically relevant intra-strand G-quadruplex in the 

promoter of the chicken β-globin gene (91). Using a standard linear polymerase reaction, and clever 

mutational analyses, the authors showed that this tetraplex formation stalled DNA polymerase in a 

potassium-dependent manner and, further, demonstrated that the effect was not observed when 

Hoogsteen hydrogen bonding was disrupted through mutation with 7-deaza-dGTP. These 

discoveries were paramount for understanding, in part, the “obscure” mechanism by which c-MYC 

transcription is regulated. 

 The c-MYC gene is a part of the MYC family of oncogenes which are best known for their 

central role in cell growth and proliferation (92). MYC is overexpressed in as much as half of all 

human cancers, and its ability to initiate and maintain tumorigenesis has long made it an attractive 
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anticancer target (93). However, it has thus far been “undruggable” using traditional protein-centric 

techniques due to the nature of its protein structure, and so alternative strategies for its inhibition 

have been in the works for decades (94). One of the major regulatory control elements of c-MYC 

transcription, located from -115 to -142 bp upstream of the promoter, known as the nuclease-

hypersensitive element III1 (NHE-III1), accounts for as much as 85% of total transcription (95,96). 

The NHE-III1 is interesting because of its strand asymmetry, meaning that one strand is nearly 

exclusively homopurine. Further, in vitro this sequence is able to adopt a non-helical, atypical DNA 

structure (97). In their 1998 seminal work, Simonsson et al. showed that the c-MYC NHE-III1 

sequence forms a unique intra-strand antiparallel G-quadruplex, indicating for the first time the 

possibility of a G-quadruplex-mediated transcriptional control mechanism (98). Four years later, 

transcriptional repression of c-MYC via G-quadruplex stabilizing small molecules was confirmed, 

sparking a much wider interest in the G-quadruplex as a potential new class of receptor (99). 

To date, In vitro studies conducted with G4-specific antibodies and fluorescent probes (26-

30), G-quadruplex sequencing (31), and targeted bioinformatic inquiries (11,12) have unearthed 

hundreds of thousands of places in the human genome where G-quadruplexes putatively form 

(putative quadruplex forming sequences, PQSs). PQSs are non-randomly distributed, conserved 

between species, and primarily reside in functionally important regions (100). Further, these motifs 

are significantly associated with oncogene promoters and somatic copy number alterations related 

to cancer development (31). To date, a variety of monomeric oncogenic promoter G-quadruplexes 

have been validated both in vitro and in functional cell-based assays: c-MYC (16), KRAS (101), 

HRAS (102), HIF-1α (103), VEGF (104), and hTERT (105,106).  

Genome-wide mapping studies have now identified what appears to be a universal 

epigenetic mechanism of genomic G-quadruplexes. PQSs are highly susceptible to the formation 

of 8-oxoguanine (8-oxoG) as the result of oxidative insult (107). These lesions are recognized by 

8-oxoG DNA glycosylase (OGG1) an initiator of the base excision-repair (BER) pathway (108). 

Excision by OGG1 of the oxidized base results in an apurinic (AP) site, which in turn, leads to the 

recruitment of AP endonuclease 1 (APE1) (108,109). Using an innovative “AP-seq” technique, 

along with traditional ChIP- and G4-sequencing, Roychoudhury and colleagues have now shown 
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that APE1, in response to 8-oxoG induced AP site generation, is essential in facilitating the 

formation of G-quadruplexes throughout the genome (109). Further, they show that the recruitment 

of APE1 to 8-oxoG G4 sites directly increases transcription factor loading onto the promoter, 

providing essential insight into the role of G-quadruplexes in transcriptional control. 

 Aside from telomere protection, recombination events, and transcriptional regulation, G-

quadruplexes serve a variety of other biological roles. For instance, in mammals, the telomere is 

transcribed into a long non-coding G-rich stretch of RNA (UUAGGGn) known as “TERRA” 

(Telomeric Repeat-containing RNA) (110). TERRA forms parallel stacked RNA multimeric G-

quadruplexes (111), and is currently under investigation as an essential component in telomere 

maintenance, genome stability, and heterochromatin formation (110). Other “structural” RNA G-

quadruplexes have been identified in ribosomal RNA (112), recruitment sites for histone modifiers 

(113), and transiently in other RNA transcripts across the cell (114). RNA G-quadruplexes play 

important roles in mRNA translation, processing, and targeting (25). One early example is the 

identification of a G-quadruplex motif within the insulin-like growth factor II mRNA that flanks the 

major cleavage site within its 3’ untranslated region (3’ UTR) and appears essential in its processing 

(115). In fact, many such examples exist of mRNA with G-quadruplex formation within their 5’ and 

3’ UTRs, and this mode of regulation appears to be a common mechanism [see ref (116) for a 

recent review]. For instance, the NRAS proto-oncogene mRNA transcript contains a G-quadruplex 

motif in its 5’ UTR 222 nucleotides upstream of the translation start site that acts as a repressor of 

its translation (117). Altogether, G-quadruplexes are diverse and important nucleic acid secondary 

structures involved in a wide array of essential biological processes, making them exciting new 

targets in drug discovery (Figure 5). 

 

G-quadruplexes in nanotechnology and therapeutics  

G-quadruplex based systems have applications outside of their biological functionality, 

such as in nanotechnology (118) and as therapeutics (119). When Ivar Bang made the discovery 

that concentrated guanosine monophosphate solutions would spontaneously form “gels”, he 

suggested that the gel was the result of polymerization of the nucleotides (37). This polymerization 
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results in long stacking interactions of hundreds of G-tetrad units, now known as G4-wires (120). 

Due to their extensive π overlap, structural rigidity, and guanine having the lowest ionization 

potential of all nucleotides, G4-wires are now being assessed for their use in nanoelectronics 

applications (121,122). Further, the formation of G-quadruplexes can be rapid and reversible, 

making them well suited as components or “building blocks” of nanodevices (118). For instance, 

G4s are now being used as biosensor logic gates, where the formation of a G4 in response to a 

given analyte results in the complexation of hemin with the G4, which in turn, leads to an amplified 

redox reaction that can be monitored spectroscopically (123). 

G-quadruplexes have also made their way into the clinic as macromolecular drugs called 

aptamers (119). DNA aptamers are short oligonucleotides that bind specifically to biological targets 

to exert their functions. Currently, DNA G-quadruplex aptamers are being developed for the 

purposes of anticoagulation, anti-cancer, antiviral, antibacterial, antifungal, and as treatments for a 

variety of human maladies such as inflammatory diseases, prion diseases, and thyroid disorders 

(119,124). A notable example is the G-quadruplex aptamer AS1411 discovered by Bates et al. 

(125,126). Originally, AS1411 was shown to exert its anti-cancer activity by selectively binding to 

nucleolin expressed on the cell surfaces of cancer cells (as nucleolin is absent from normal cell 

surfaces) (126). At the time it was believed that nucleolin acted as a cancer-specific receptor for 

AS1411. Once internalized, the aptamer could interfere with nucleolin’s pro-survival functions, 

resulting in cancer cell death (126). However, recent work has called this mechanism into question 

(127). AS1411 entered clinical trials but did not progress past phase 2 (127). Overall, it was well 

tolerated by patients and exhibited an excellent safety profile. The response rate in patients was 

low, although 3 patients with renal cell carcinoma and 4 with acute myeloid leukemia had favorable 

and lasting responses (127). Since its clinical assessment AS1411 has spurred great interest in 

anti-cancer G-quadruplex aptamer development. 
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Figure 5. Locations and functions of G-quadruplexes in cells. G4s are non-randomly distributed in 

the genome, and specifically occupy telomeres (A), gene promoters or replication forks (B), and 5’ 

UTRs of mRNAs (C). Red T-bars indicate their putative functions (e.g. prevention of telomere 

extension by telomerase [A] or blockage of transcription [B], replication [B], or translation [C]). 
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Targeting G-quadruplexes 

 

 Due to the wealth of conformational diversity, the various monomeric G-quadruplex 

conformations have been targeted extensively for over two decades with hopes of finding selective 

small molecules with in vivo efficacy. The first report of a telomere-interacting small molecule was 

in 1997 when Sun et al. demonstrated that a di-substituted anthraquinone derivative was able to 

stabilize the telomere G-quadruplex and effectively inhibit telomerase’s ability to extend in vitro 

(101). Soon after, the cationic porphyrin molecule TMPyP4 was identified which had a 2-fold 

preference for binding G-quadruplex over duplex DNA (128). Since then, a variety of other G4 

selective molecules have been developed with drug-like affinities in the low nanomolar range, 

notably: BRACO-19 (129), Telomestatin (130), Pyridostatin (131), Phen-DC3 (132), CX-5461 

(133), and CX-3543 (a.k.a. “Quarfloxin”) (134) (Figure 6). TMPyP4, BRACO-19, Telomestatin, and 

Pyridostatin all interact with the telomeres, and induce a variety of biological responses, such as: 

telomerase inhibition, induction of DNA damage responses, telomere shortening, selective 

induction of apoptosis in cancer cells, uncapping of shelterin proteins, induction of double-stranded 

breaks, and inhibition of oncogene transcription (via promoter G-quadruplex stabilization) (135). 

CX-5461 was initially shown to block the initiation of ribosomal RNA (rRNA) synthesis, and this was 

believed to be its anticancer mechanism (136). However, it was recently revealed that CX-5461 

interacts strongly with G-quadruplexes, and in doing so induces double-stranded DNA breaks 

which effectively kill DNA repair-deficient cancer cells (133). Currently, CX-5461 is in phase I 

clinical trials as a general cancer treatment (Trial NCT02719977, opened May 2016), although the 

trial is not currently recruiting patients. Conversely, Quarfloxin has completed Phase II clinical trials 

and was shown effective against neuroendocrine tumors, carcinoid tumors, and lymphoma (134). 

Interestingly, the mechanism of Quarfloxin appears to be the disruption of nucleolin binding to 

ribosomal DNA, causing nucleolin to reroute to the c-MYC promoter G-quadruplex to repress it. 

However, Phase III clinical trials have stopped due to its high serum albumin binding (18). A variety 

of other G4 ligands can be found in the G-quadruplex ligands database, or “G4LDB” (17), which 

was created in 2012 and contains nearly 1,000 confirmed G4 ligands.  
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Figure 6. Structures of some common high affinity G4 ligands. (A) 2,6-diamidoanthraquinone, (B) 

TMPyP4, (C) Phen-DC3, (D) BRACO-19, (E) Telomestatin, (F) CX-3543, and (G) CX-5461 

(Quarfloxin).  
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 G-quadruplex stabilizing ligands are clearly viable anti-tumor agents. Why then have the 

majority of identified G4 ligands not succeeded clinically? The answer, in part, is two-fold: (1) 

monomeric G4s share too similar a structural landscape [selective targeting of the G-tetrad face is 

akin to the protein kinase promiscuity problem (15)] and, (2) attempts at improving the selectivity 

of small molecules towards these monomeric G4s, which is typically achieved by adding loop 

interacting chemical moieties, tend to render them less “drug-like” or impact their bioavailability 

(18,137). For instance, BRACO-19, which inhibits telomerase with an IC50 (half maximal inhibitory 

concentration) of 115 nM, was developed from a core disubstituted acridine scaffold (129). In vitro, 

BRACO-19 binds tightly to the telomere and leads to uncapping of the shelterin protein complex, 

ultimately eliciting a severe telomere DNA damage response (83). A crystal structure of BRACO-

19 in complex with the human telomere sequence d(TAGGGTTAGGGT)2 was reported, showing 

that BRACO-19 preferentially end-pastes onto the terminal G-tetrad face (Figure 7) (138). BRACO-

19 has demonstrable anti-tumor activity in cells derived from epidermoid carcinoma, colorectal 

cancer, uterus carcinoma, and prostate cancer (although also cardiotoxic) (135). The acridine 

scaffold is well known to end-paste on the terminal tetrads of the telomere G-quadruplexes (139). 

The addition of the pyrrolidine rings to the core acridine scaffold in BRACO-19 increases its 

selectivity via interaction with the G4 loops. However, the increase in both molecular weight (MW) 

and charge from the protonated tertiary amines reduces its ability to cross membranes (140), 

rendering it less bioavailable and drug-like. While this is not the rule (See Quarfloxin above), it 

emphasizes the problem of selectivity faced by the G4 drug discovery community (18).   
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Figure 7. Top and side views of BRACO-19 bound to the human telomere sequence 

d(TAGGGTTAGGGT)2 via an end-pasting mechanism. BRACO-19 is shown in green and the 

telomere G-quadruplex is shown as a ribbon model with semi-transparent space-fill.  
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 Most rational drug discovery studies targeting G4s to date have focused on targeting the 

monomeric forms of G-quadruplexes—owing to the wealth of atomic structures available (>250 in 

the Protein Data Bank). It has been evident since the 1980’s [but observed well before then (37)] 

that guanine-rich DNAs can multimerize under physiologically relevant buffer conditions and 

oligonucleotide concentrations (19,20). There is now evidence for the occurrence of G4 multimers 

in the telomeres (141,142) and in oncogene promoters [hTERT (143-145), c-MYB (146), kRAS 

(147), c-MYC (148), and c-KIT (149)]. The few multimers with high-resolution structures available 

are the putative T:H:H:T dimer of the c-MYB promoter (56), a synthetic aptamer two-stacked two-

tetrad G4 (57), and two, two-stacked two-tetrad multimers containing left-handed “Z-G4s” (50,51). 

Importantly, G4 multimers offer unique binding sites among their loop and groove interface that 

may allow circumvention of the non-specificity problem encountered with monomers (141). Indeed, 

this potential for selective-targeting of a multimer over monomer G4 has already been 

demonstrated using a non-drug-like chiral metallo-supramolecular complex targeting the higher-

order telomere sequence (150). Altogether, these findings highlight the dire need for a better 

understanding of multimeric G-quadruplexes as specific targets for rational drug discovery 

campaigns.  

 

Summary of Dissertation Works 

 

 The ISB approach to solve the structure and spatial organization of higher order protein, 

RNA, protein-RNA, and protein-DNA systems has been a paradigm for over 20 years (151), yet no 

such approach has been applied to higher-order G-quadruplex DNA structures. Here I have 

outlined a clear need for tools which will enable a detailed description of these multimeric systems 

which putatively reside in both telomeres and oncogene promoters. To this end, the major goal of 

this work is to apply the ISB approach to G-quadruplex multimers for their use in rational drug 

discovery.  

 In Chapter II I have characterized the major structure of the higher-order telomere G-

quadruplex. I first applied size-exclusion chromatography coupled with small-angle X-ray scattering 
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(SEC-SAXS) to the telomere sequences Tel48 (d[TTAGGG]8), Tel72 (d[TTAGGG]12), and Tel96 

(d[TTAGGG]16) which allowed for their qualitative and quantitative structural descriptions. I 

subsequently showed that the higher-order telomere sequences preferentially maximize their G4 

formation. I then rigorously dissected the major structural components of the intramolecular “dimer”, 

Tel48, and a variety of mutant sequences by circular dichroism (CD) spectroscopy. This mutational 

study revealed that the higher-order human telomere favors the hybrid-1 and hybrid-2 topologies, 

adopting a ~25:75 ratio of hybrid-1 and hybrid-2. Next, by combining monomeric atomic coordinate 

files from previous NMR studies with MD simulations, I constructed and refined the first ever all-

atom molecular models of the extend human telomere at the highest resolution to date. From these 

models, multiple unique sites among junctions and grooves were revealed that could be used as 

receptors in future rational drug discovery campaigns. This work has been submitted to Nucleic 

Acids Research and is in review as of the drafting of this dissertation.  

 Chapter III uses the telomere G-quadruplex multimer models described above as targets 

in a massive virtual drug discovery campaign. In this chapter I applied the program Surflex-Dock 

v2.11 to screen millions of compounds virtually against G4-junctional sites formed between the 

hybrid-1 and hybrid-2 moieties. From this screen I purchased 37 compounds and, using CD melting 

and analytical ultracentrifugation (AUC) binding studies, found that one compound, C37, binds in a 

1:1 stoichiometry with the G4-juntions (e.g. 1:1 with the telomere dimer, tel48, 2:1 with the telomere 

trimer, tel72. This binding is specific for the higher-order telomere G4s over monomer telomere G-

quadruplexes. C37 is currently being investigated for its binding mode and potential anticancer 

effects in cells.  

 In Chapter IV I applied a similar ISB approach to the hTERT core promoter G-quadruplex. 

In this study I used circular dichroism to characterize the full-length and truncated hTERT core 

promoter sequences. 1H-NMR spectroscopy was employed to investigate the extent of G-tetrad 

formation as well as investigate the possibility of hairpin formation. I then utilized a novel circular 

dichroism-monitored DNase I reaction to confirm that no hairpin forms within the hTERT WT 

sequence, but does in the artificial hairpin control. Hydrodynamic investigations were then 

conducted in combination with hydrodynamic bead model calculations from MD-derived atomistic 



 

34 

 

models to investigate the size and organization of G4 domains. I then used SEC-SAXS to probe 

the overall higher-order assemblies which confirmed that the WT promoter is an all-parallel stacked 

G4 system. This work is published in Nucleic Acids Research and is reproduced in Chapter IV.  

 G4 DNA virtual drug discovery is still in its infancy, and so in light of this Chapter V is a 

review of the contemporary G-quadruplex virtual screening (VS) techniques. In this chapter I have 

presented the various methods used in pharmacophore and docking-based screens, library size 

and preparation, scoring functions, and the future of computational VS approaches. I also discuss 

past successes and failures in the field and point out pitfalls that can be avoided in future 

campaigns. Lastly, I provide recommendations on how to properly report on virtual screening 

campaigns by describing guidelines for future investigators. This work is published in the journal 

Biochimie and is reproduced in Chapter V.  

 In my final experimental section, I applied our recommendations outlined in Chapter V to 

targeting the hTERT core promoter G-quadruplex multimer characterized in Chapter IV. I began 

with a massive virtual screening campaign using the docking program Surflex-Dock v2.11, whereby 

I targeted 12 different loop and groove pockets of the hTERT G4 in silico. I then clustered the 

resulting top hits using a hierarchical clustering algorithm and identified 69 unique molecular 

scaffolds which were available for purchase. Multiple rounds of a high-throughput thermal 

denaturation screens and orthogonal biophysical assays were then used to assess drug selectivity 

for the hTERT multimer over duplex, triplex, and monomer G-quadruplex DNA topologies. I 

subsequently utilized an in-house automated docking to MD simulation pipeline to investigate the 

potential binding modes of the top hits, revealing multiple preferential loop and groove binding 

modes. Lastly, I employed quantitative real-time polymerase chain reaction (qRT-PCR) and 

proliferation assays to assess compound efficacy in human breast cancer cells, confirming that one 

compound, 3B1, reduces hTERT transcription. Compound 3B1 is currently being investigated 

extensively in breast cancer cells as a lead molecule. 
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CHAPTER II 

 

THE SOLUTION STRUCTURES OF HIGHER-ORDER HUMAN 

TELOMERE G-QUADRUPLEX MULTIMERS 

 

Human telomeres contain the repeat DNA sequence 5’(TTAGGG), with duplex regions that 

are several kilobases long terminating in a 3’ single-stranded overhang. The structure of the single-

stranded overhang is not known with certainty, with disparate modes proposed in the literature. We 

report here the results of an integrated structural biology approach that combines small-angle X-

ray scattering, circular dichroism (CD), analytical ultracentrifugation, size-exclusion column 

chromatography and molecular dynamics simulations that provide the most detailed 

characterization to date of the structure of the telomeric overhang. We find that the single-stranded 

sequences 5’(TTAGGG)n, with n=8, 12, and 16, fold into multimeric structures containing the 

maximal number (2, 3, and 4, respectively) of contiguous G4 units with no long gaps between units. 

The G4 units are a mixture of hybrid-1 and hybrid-2 conformers. In the multimeric structures, G4 

units interact, at least transiently, at the interfaces between units to produce distinctive CD 

signatures. Global fitting of our hydrodynamic and scattering data to a worm-like chain (WLC) 

model indicates that these multimeric G4 structures are semi-flexible, with a persistence length of 

about 34 Å. Investigations of its flexibility using MD simulations reveal stacking, unstacking, and 

coiling movements, which yield unique sites for drug targeting.
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Introduction 

 

 

Telomeres are structures found at the end of eukaryotic chromosomes which protect 

genomic DNA from degradation, end-to-end fusion, and homologous recombination (64,65). The 

human telomere consists of the repeat d(TTAGGG)n, and ranges from 5-25 kb in length with an 

extended single-stranded 3’ overhang of a few hundred bases in non-germ cells (63). This locus 

has long been associated with human diseases, such as cancer (59) and telomeropathies (60), as 

well as aging (61) and general genome homeostasis (62). In normal somatic cells, each round of 

cellular division results in a shortening of the telomere due to the so-called end replication 

problem—a mechanism believed to be protective against uncontrolled replication (66). Once the 

telomere has become critically short in normal (non-stem) cells, a DNA damage response is 

triggered, resulting in uncapping of the telomere-bound shelterin proteins and, eventually, 

apoptosis (65,66). Cancer cells avoid this fate by utilizing mechanisms that restore telomere length. 

In more than 85% of cancers, this is accomplished by reactivating human telomerase reverse 

transcriptase (hTERT), a ribonucleoprotein that extends the telomere 3’ overhang (10,68,69). G-

quadruplex (G4) formation in the telomere overhang can inhibit hTERT binding and extension 

function (7). Treating cells with telomere G4-specific small molecules leads to uncapping of the 

shelterin proteins and a sequestering of the free single-stranded telomere overhang, ultimately 

resulting in a telomere-specific DNA damage response (82,83,87). These findings have made 

telomere G4 an attractive cancer target (87). 

G-quadruplexes form in guanine-rich sequences, in which guanine tracts interact to form 

square planar tetrads (G-tetrads) that stack atop one another and are stabilized by coordinating 

cations, pi-stacking interactions, and a Hoogsteen hydrogen bonding network (40). Many telomere 

G4 topologies have been characterized at the atomic level by X-ray crystallography and NMR 

studies. These studies have demonstrated that the monomeric form of the human telomere can 

exist as parallel (75), hybrid 3+1 (76,77), antiparallel (74), and two-tetrad antiparallel (47) structures 

under various ionic and crowding conditions. The Yang lab (76,77,152), Patel lab (153,154), and 
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we (78) have since shown that the wild-type telomere adopts primarily the hybrid-1 and hybrid-2 

topologies in physiologically relevant solution conditions. The Yang lab has shown by NMR that in 

vitro the wild-type monomeric telomere sequence of the form (TTAGGG)4T exists in a dynamic 

equilibrium of hybrid-2 (~75%) and hybrid-1 (~25%) (46).  

Telomere G-quadruplexes have also been observed directly in cells. In vivo, G4-specific 

antibodies and fluorescent ligands have confirmed the formation of telomere G4s (26-28). Using 

the sequence AGGG(TTAGGG)3, Hong-Liang and colleagues used 19F-NMR cell studies to show 

that the hybrid-1, -2, and a two-tetrad anti-parallel type (hybrid-3), but not the parallel or antiparallel 

“basket” topologies, spontaneously form when injected into live HeLa cells (79). Altogether, these 

studies demonstrate that the most physiologically and thermodynamically relevant monomeric 

telomere conformations are of the hybrid type. 

Although the monomeric telomere G-quadruplex has been extensively studied, there is 

little structural information on longer telomere sequences forming higher-order telomere structures. 

Conservative estimates of the length of the single-stranded overhang of the human telomere in 

fibroblasts indicate that the sequence exceeds the ~30 nucleotides necessary for formation of a 

single telomere G-quadruplex. Estimates of “normal” single-stranded overhangs range from ~50 to 

>600 nucleotides (58,63), supporting the possibility of multiple G4s forming in tandem. There have 

been few attempts to characterize these systems at the atomic level because of the difficulties 

involving guanine imino overlap and structural polymorphism which hamper NMR studies (46), and 

the difficulty of obtaining quality crystals for X-ray diffraction (78). Elucidating this higher-order 

structure is important, as its role in mediating interactions with shelterin proteins, single-stranded 

binding proteins, and telomerase is critical in maintaining genomic integrity (64,155,156).  

To date, only a few low-resolution molecular models and characterizations were reported 

for the long telomere sequences. In 2006, using a combination of gel electrophoresis, CD, and UV-

melting, Yu et al. proposed that the telomere multimer of the form (TTAGGG)n, where n is 4, 8, or 

12, maximizes its usage of G-tracts by forming a “beads-on-a-string” assembly of a variety of 

telomere topologies (parallel, antiparallel, and hybrid) (55). In 2009 Renčiuk and colleagues, using 

CD and PAGE experiments, came to the same general conclusion that the higher-order telomere 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Ren%26%23x0010d%3Biuk%20D%5BAuthor%5D&cauthor=true&cauthor_uid=19717545
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is capable of folding into multiple conformations in K+ buffers (parallel, antiparallel, or hybrid) but 

also that they have the potential to stack, depending on the amount of macromolecular crowding 

(157). The same year Xu et al. demonstrated the formation of higher-order G-quadruplex formation 

in 96 nucleotide (nt) long telomere sequences by atomic force microscopy (AFM) (158). While the 

authors arrived at a similar conclusion about the overall higher order assembly (e.g. maximized G4 

formation and potential for G4-G4 interactions), they did not report on the topologies of the G4 

subunits. A later AFM investigation of a 96 nt long telomere sequence, (TTAGGG)16, by Wang and 

colleagues reported the presence of gaps between G4 units, and suggested that the extended 

sequences “rarely” maximize G-tract usage (159). A similar conclusion was drawn from low-

resolution studies using electron microscopy (EM), single-molecule magnetic tweezers, and single-

molecule force ramp assays (160,161). Although, these studies may suffer from insufficient sample 

annealing protocols or equilibration times. Our prior biophysical studies investigating the secondary 

and tertiary structure of the higher-order telomere sequences (TTAGGG)n and (TTAGGG)nTT, 

where n = 4, 8, 12, 16 and 32, gave evidence that these sequences preferentially maximize G-tract 

usage, and preferentially form a mixture of the hybrid-1 and hybrid-2 conformations (141,162,163). 

Subsequent investigations by molecular dynamics (MD) simulations, analytical ultracentrifugation 

(AUC) (163), and differential scanning calorimetry (DSC) (162) studies indicated that, overall, the 

extended telomere G4s adopt compact, somewhat rod-like structures via stacking interactions 

between G4 subunits and intervening TTA linkers (162). The best-fit models from these analyses 

were alternating (5’) hybrid-1 (3’) hybrid-2, referred to as hybrid-12 and hybrid-121, for n = 8 and n 

= 12 runs, respectively. Interestingly, thermodynamic studies of these two higher-order systems 

revealed that “each quadruplex in the higher-order structures is not independent and identical but 

is thermodynamically unique and is influenced by its neighbors” (162). Clearly, there is no 

consensus on the higher-order telomere’s behavior in solution. Low-resolution imaging and single-

molecule studies would suggest a very flexible beads-on-a-string arrangement with large gaps 

occurring between G-quadruplexes, whereas the latter investigations suggest a more rigid 

structure, with maximal G-quadruplex formation.  
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Using an integrative structural biology approach (164,165), which combines CD, 

hydrodynamics, molecular dynamics, and small-angle X-ray scattering (SAXS), we show that the 

telomeric sequences form the maximal number of G4 units without any long gaps. Modeling the 

hydrodynamic and scattering-derived properties of sequences from 24 nt to 96 nt to a worm-like 

chain (WLC) model reveals a persistence length of ~34 Å, which is in between that of single-

stranded DNA (ssDNA) (~22 Å) (166) and double-stranded DNA (dsDNA) (~550 Å) (167), indicating 

that the extended telomere G4 is semi-flexible. This flexibility is consistent with MD simulations, 

which show transient stacking interfaces that create potentially unique binding grooves useful in 

drug targeting. We follow this with an extensive sequence analysis of the sequence d(TTAGGG)8 

to determine the major constituent G4 topologies. Using CD and mutational analyses we show that 

the higher-order human telomere is composed of a ratio of hybrid-1 (~25%) and hybrid-2 (~75%) 

topologies. Our results are in excellent agreement with prior hydrodynamic and NMR analyses of 

the human telomere sequences (77,154,163). The resulting structural ensembles provide the first 

“medium-resolution” look at the conformational heterogeneity and dynamics of the higher-order 

telomere G-quadruplex. 

 

Materials and Methods 

 

Oligonucleotides 

Oligonucleotide sequences were purchased from IDT (Integrated DNA Technologies, 

Coralville, IA) with standard desalting. Upon receipt, stock oligos were dissolved in MilliQ ultrapure 

water (18.2 MΩ x cm at 25°C) at 1 mM and stored at -20.0°C until use. All experiments were carried 

out in a potassium phosphate buffer (6 mM Na2HPO4, 2 mM NaH2PO4, 185 mM KCl, 1 mM 

Na2EDTA, pH 7.2). Folding was achieved by diluting stock oligos into buffer and boiling in a water 

bath for 20 minutes, followed by slow cooling overnight. Purification was achieved using size 

exclusion chromatography (SEC) as detailed previously (168). Briefly, oligos were annealed at 

concentrations of 40-60 μM, filtered through 0.2 μm filters, and injected onto an equilibrated 

Superdex 75 16/600 SEC column (GE Healthcare 28-9893-33) using a Waters 600 HPLC system. 
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The flow rate was maintained at 0.5 mL/min and sample fractions were collected every 2 minutes 

from 100 to 180 minutes run time. The molecular weights of fractionated species were estimated 

based on a regression analysis of elution time vs. log(MW) of protein standards (Sigma #69385), 

the major folded species were visually evident as symmetric peaks when monitored at 260 nm (or 

280 nm for protein standards). Fractionated samples were pooled and stored at 4°C prior to 

concentration. Where applicable, pooled fractions were concentrated using Pierce protein 

concentration devices with 3k MWCO (Thermo #88512, #88515, and #88525) which were rinsed 

free of glycerol. For AUC and SEC-SAXS experiments, samples were dialyzed after concentration 

using Spectra/Por Float-A-Lyzers G2 3.5 kDa (Sigma #Z726060) in order to buffer match. 

Concentrations were determined using molar extinction coefficient given in Table 1.  
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Table 1. Names, properties, and sequences of oligonucleotides used in this study. 
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Name Sequence Length 

(nt) 

MW (kDa) E260 (M-1cm-1) 

2JSL TAGGGTTAGGGTTAGGGTTAGGGTT 25 7.9 253100 

Tel48 (TTAGGGTTAGGGTTAGGGTTAGGG)2 48 15.2 489100 

Tel72 (TTAGGGTTAGGGTTAGGGTTAGGG)3 72 22.8 733400 

Tel96 (TTAGGGTTAGGGTTAGGGTTAGGG)4 96 30.5 977800 

Tel49 TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT 49 15.5 497500 

Tel50 TTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT 50 15.8 505600 

M1 TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGG 47 14.9 480900 

M2 TAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT 49 15.5 497500 

hybrid-12* TT_GGGTTAGGGTTAGGGTTAGGGATAGGGTTAGGGTTAGGGTTAGGGT 48 15.2 488000 

hybrid-11* TT_GGGTTAGGGTTAGGGTTAGGGAT_GGGTTAGGGTTAGGGTTAGGGA 47 14.9 479200 

hybrid-21* TTAGGGTTAGGGTTAGGGTTAGGGTT_GGGTTAGGGTTAGGGTTAGGGA 48 15.2 488700 

M3 AGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT 48 15.2 489500 

hybrid-32* AGGGTTAGGGTTAIGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT 48 15.2 489850 

M4 GGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTT 47 14.9 476000 

M5 AGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGT 47 14.9 481100 

hybrid-33* AGGGTTAGGGTTAIGGTTAGGGTTAGGGTTAGGGTTAIGGTTAGGGT 47 14.9 482100 

_ = removed base, I = Inosine sub, * = sequence has internal stabilizing modification 
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Size exclusion chromatography (SEC) determination of Stokes radii 

Elution times from re-injections of SEC purified fractions were used in the method of Irvine 

(169) to determine Stokes radii, which were converted to translational diffusion (Dt) coefficients for 

use in Multi-HYDFIT hydrodynamic modeling (see below). Stokes radii were determined from a 

regression analysis of elution time vs. log(MW) of protein standards (Sigma #69385). 

 

Analytical ultracentrifugation (AUC) 

Sedimentation velocity (SV) experiments were performed in a Beckman Coulter 

ProteomeLab XL-A analytical ultracentrifuge (Beckman Coulter Inc., Brea, CA) at 20.0°C and 

40,000 rpm in standard 2-sector cells using either an An60Ti or An50Ti rotor. Samples were 

equilibrated in the rotor at 20.0°C for at least 1 hour prior to the collection of 100 scans over an 8-

hour period. Initial analyses were performed in SEDFIT (170) using the continuous C(s) model with 

resolution 100 and S range from 0 to 10. A partial specific volume of 0.55 mL/g for DNA G-

quadruplexes was used as previously determined (163). The Tel72 and Tel96 sequence 

sedimentation coefficients were additionally corrected for any concentration-dependence using 

three separate concentrations. 

 

Circular dichroism 

CD spectra were collected on a Jasco-710 spectropolarimeter (Jasco Inc. Eason, MD) 

equipped with a Peltier thermostat regulated cell holder equilibrated to 20.0°C. Spectra were 

collected using the following instrument parameters: 1 cm path length quartz cuvettes, 1.0 nm step 

size, 200 nm/min scan rate, 1.0 nm bandwidth, 2 second integration time, and 4 scan accumulation. 

Spectra were corrected by subtracting a buffer blank and normalized to molar circular dichroism 

(Δε, M-1cm-1) based on DNA strand concentration using the following equation:  

∆𝜀 = 𝜃/(32982𝑐𝑙) 

where θ is ellipticity in millidegrees, c is molar DNA concentration in mol/L, and l is the path length 

of the cell in cm. Comparison or fitting of CD spectra with their monomer theoretical spectra was 

done manually in Microsoft Excel using spectra from a previously reported database (171). 
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Residual sum of squares (RSS) analysis of the CD ΔΔε “residuals” was carried out and plotted in 

Origin 2020. 

 

Size exclusion chromatography resolved small angle X-ray scattering (SEC-SAXS) 

SAXS was performed at BioCAT (beamline 18ID at the Advanced Photon Source, Chicago) 

with in-line size exclusion chromatography. Samples in BPEK buffer (6 mM Na2HPO4, 2 mM 

NaH2PO4, 185 mM KCl, 1 mM Na2EDTA, pH 7.2) were loaded onto an equilibrated Superdex 75 

10/300 GL column, which was maintained at a constant flow rate of 0.7 mL/min using an AKTA 

Pure FPLC (GE Healthcare Life Sciences) and the eluate after it passed through the UV monitor 

was directed through the SAXS flow cell, which consists of a 1 mm ID quartz capillary with 50 μm 

walls. A co-flowing buffer sheath was used to separate the sample from the capillary walls, helping 

to prevent radiation damage (172). Scattering intensity was recorded using a Pilatus3 1M (Dectris) 

detector which was placed 3.5 m from the sample giving access to a q-range of 0.004 Å-1 to 0.4 Å-

1. A series of 0.5 second exposures was acquired every 2 seconds during elution and data was 

reduced using BioXTAS RAW 1.6.3 (173). Buffer blanks were created by averaging regions flanking 

the elution peak and subtracted from exposures selected from the elution peak to create the I(q) 

vs. q curves used for subsequent analyses. More information on SAXS data collection, reduction 

and interpretation can be found in Table 2. SAXS sample preparation, analysis, data reduction, 

and data presentation has been done in close accordance with recent guidelines (174). 
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Table 2. Tabulated collection parameters, data reduction methods, and data analyses for small-

angle X-ray scattering data. 
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(a) Sample Details.         

  2JSL Tel48 Tel72 Tel96 

Organism synthetic synthetic synthetic synthetic 

Source IDT IDT IDT IDT 

Extinction coefficient (nearest 

neighbor approximation) (M-1 cm-1) 253100 489000 733400 974870 

vbar (cm3/g) (estimate) 0.55 0.55 0.55 0.55 

M from chemical composition (Da) 7879 15212 22849 30486 

SEC-SAXS column, 10 x 300 

Superdex 75 
    

    Loading concentration (mg/mL) 7.0 13.0 10.0 6.0 

    Injection volume (μL) 300 300 250 440 

    Flow rate (mL/min) 0.7 0.7 0.7 0.7 

Solvent (solvent blanks taken from 

SEC flow through prior to elution of 

protein) 

6 mM Na2HPO4, 

2 mM NaH2PO4, 

185 mM KCl, 1 

mM Na2EDTA, 

pH 7.2 

6 mM Na2HPO4, 

2 mM NaH2PO4, 

185 mM KCl, 1 

mM Na2EDTA, 

pH 7.2 

6 mM Na2HPO4, 

2 mM NaH2PO4, 

185 mM KCl, 1 

mM Na2EDTA, 

pH 7.2 

6 mM Na2HPO4, 

2 mM NaH2PO4, 

185 mM KCl, 1 

mM Na2EDTA, 

pH 7.2 

          

(b) SAXS data-collection parameters. 
    

Instrument/data processing 

BioCAT facility at the Advanced Photon Source beamline 18ID with Pilatus3 1M 

(Dectris) detector 

Wavelength (Å) 1.033 
   

Beam size (μm) 150 (h) x 25 (ν) 
   

Camera length (m) 3.5 
   

q measurement range (Å-1) 0.004-0.4 
   

Absolute scaling method N/A 
   

Normalization 

To incident intensity, by ion chamber 

counter 
  

Monitoring for radiation damage 

Automated frame-by-frame 

comparison of relevant regions 
  

Exposure time, number of exposures 

0.5 s exposure time with a 2s total exposure period (0.5 s 

on, 1.5 s off) of entire SEC elution 
 

Sample configuration 

SEC-SAXS. Size separation by an AKTA Pure with a Superdex 75 Increase 

10/300 GL column. SAXS data measured in a 1.5 mm ID quartz capillary 

Sample temperature (°C) 20 
   

     
(c) Software employed for SAXS data 

reduction, analysis, and interpretation.         

SAXS data reduction 

Radial averaging; frame comparison, averaging, and subtraction done using 

BioXTAS RAW 1.6.3 (Hopkins et al. 2017 (172)) 

Extinction coefficient estimate Nearest neighbor approximation 
  

Basic analyses: Guinier, P(r), Vp 

Guinier fit, Kratky analysis, and molecular weight using BioXTAS RAW 1.6.3, 

P(r) function using PRIMUSqt (ATSAS v2.8.4 (173))  
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Shape/bead modelling  

DAMMIF (Franke & Svergun, 2009) via ATSAS online (https://www.embl-

hamburg.de/biosaxs/atsas-online/) 

   

Atomic structure modelling 

CRYSOL from PRIMUSqt in ATSAS v2.8.4(Svergun et al., 

1995 (175)) 
 

Three-dimensional graphic model 

representations  

UCSF Chimera 

v1.11  
   

     
(d) Structural parameters.         

Guinier analysis 2JSL Tel48 Tel72 Tel96 

    I(0) (cm-1) 

0.00957 ± 

0.00002 

0.0318 ± 

0.00002 

0.003742 ± 

0.000005 

0.0202 ± 

0.0000406 

    Rg (Å) 12.41 ± 0.05  19.23 ± 0.03 25.37 ± 0.06 31.68 ± 0.13 

    qmin (Å-1) 0.014 0.009 0.007 0.007 

    qRg max 1.27 1.33 1.32 1.17 

    Coefficient of correlation, R2 0.972 0.998 0.996 0.996 

    M from volume of correlation, Vc 

(ratio to predicted) 6600 (0.84) 16100 (1.06) 23500 (1.03) 30900 (1.01) 

P(r) analysis (GNOM) 
    

    I(0) (cm-1) 

0.00954 ± 

0.00002 0.032 ± 0.00002 

0.00376 ± 

0.000005 

0.0203 ± 

0.00004 

    Rg (Å) 12.33 ± 0.03 19.69 ± 0.03 26.01 ± 0.06 32.65 ± 0.10 

    Dmax (Å) 38 65 87 109 

    ꭕ2 0.95 1.76 0.84 1.1 

    Porod volume (Å-3) (ratio 

Vp/calculated M) 9040 ( 1.15) 16100 (1.06) 26300 (1.15) 32700 (1.07) 

     
(e) Shape model-fitting results         

  2JSL Tel48 Tel72 Tel96 

Ambimeter (default parameters) 
    

    Number of compatible shape 

categories, ambiguity score 19, 1.279 634, 2.802 712, 2.852 644, 2.809 

    3D reconstruction 

potentially 

unique 

highly 

ambiguous 

highly 

ambiguous 

highly 

ambiguous 

DAMMIF (default parameters, 20 

calculations) 
    

    q range for fitting (Å-1) - - 0.0088-0.3146 0.0054-0.2539 

    Symmetry, anisotropy assumptions - - P1, prolate P1, prolate 

    NSD (standard deviation), No. of 

clusters - - 1.204 (0.082), 4 1.126 (0.095), 11 

    ꭕ2 - - 1.166 1.167 

    Resolution (from SASRES) (Å)   31 ± 3 38 ± 3 

DAMMIN (default, slow) 
    

    q range for fitting (Å-1) 0.014-0.3488 0.0115-0.3488 - - 
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    Symmetry, anisotropy assumptions P1, none P1, prolate - - 

    ꭕ2, CORMAP P-values 1.508, 0.1322 1.713, 0.249 - - 

    Constant adjustment to intensities  8.46E-05 0.00E+00 - - 

     
(f) Atomistic modelling.         

Crystal structures/atomic coordinate 

files PDB ID: 2JSL  Modeled  Modeled Modeled 

q range for modelling 0.01-0.3 0.006-0.3 0.007-0.3 0.0054-0.2500 

EOM GAJOE 2.1 (min ensembles = 1, 

max = 20, default parameters) 
 

  

 
    ꭕ2 - 1.81 1.09 1.154 

    Rflex (random) / Rsigma - 

79.26 (88.83) / 

0.62 

79.96 (85.17) / 

0.97 

79.80 (86.06) / 

1.39 

    Constant subtraction - 0 0 0 

    No. of representative structures - 6 4 4 

    Final ensemble Rg (Å), Dmax (Å) - 19.58, 65.62 25.78, 82.65 32.11, 103.18 

CRYSOL (single model, default 

parameters) 
    

    ꭕ2 1.20 1.82 1.81 2.08 

    Predicted Rg (Å) 12.3 19.82 25.74 32.63 

    Dro (optimal hydration shell 

contrast), Ra (optimal atomic group 

radius (Å) 0.060, 1.760 0.065, 1.800 0.045, 1.400 0.075,1.400 

     
(g) SASBDB IDs for data and models.         

ID  SASDKF3 SASDKG3 SASDKH3 SASDKJ3 
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Molecular dynamics simulations and hydrodynamic calculations 

Molecular dynamics simulations were carried out on Tel48, Tel72, and Tel96 constructs 

created previously (141), or modeled based on their solution NMR structures from the Protein Data 

Bank using the following IDs: 2GKU (hybrid-1), 2JSL (hybrid-2). Base modifications and 

optimization of starting configurations were performed in UCSF Chimera v1.12 (176) or Maestro 

v11.8 (177). The partial negative charges of carbonyls at the center of tetrads were neutralized with 

coordinated potassium counter-ions added manually in Maestro with subsequent minimization prior 

to simulation. The PDB structures created were then imported into the xleap module of AMBER 

2018 (178), neutralized with K+ ions, and solvated in a rectangular box of TIP3P water molecules 

with a 12 Å buffer distance. All simulations were equilibrated using sander at 300 K and 1 atm using 

the following steps: (1) minimization of water and ions with weak restraints of 10.0 kcal/mol/Å on 

all nucleic acid residues (2000 cycles of minimization, 500 steepest decent before switching to 

conjugate gradient) and 10.0 Å cutoff, (2) heating from 0 K to 100 K over 20 ps with 50 kcal/mol/Å 

restraints on all nucleic acid residues, (3) minimization of the entire system without restraints (2500 

cycles, 1000 steepest decent before switching to conjugate gradient) with 10 Å cutoff, (4) heating 

from 100 K to 300 K over 20 ps with weak restraints of 10.0 kcal/mol/Å on all nucleic acid residues, 

and (5) equilibration at 1 atm for 100 ps with weak restraints of 10.0 kcal/mol/Å on nucleic acids. 

The resulting coordinate files from equilibration were then used as input for 100 ns of unrestrained, 

solvated MD simulations using pmemd with GPU acceleration in the isothermal isobaric ensemble 

(P = 1 atm, T = 300 K) with DNA OL15 and TIP3P water force fields. Periodic boundary conditions 

and PME were used. 2.0 fs time steps were used with bonds involving hydrogen frozen using 

SHAKE (ntc = 2). For the Tel48 constructs, an additional 100 ns of accelerated MD (aMD) 

simulation were carried out using the average torsional and potential energies from the end of the 

standard 100 ns simulations as input for calculating the “boosting” of both whole potential and 

torsional terms (iamd=3). Trajectories were analyzed using the CPPTRAJ module in the 

AmberTools18 package. Hydrodynamic properties were calculated as average and standard 

deviation of equally spaced trajectory snapshots (i.e. every 100 ps) using the program 

HYDROPRO10 (179) with the recommended parameters for G-quadruplexes (180). Clustering of 
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the trajectories was performed using the DBSCAN method in the CPPTRAJ module of Amber 

(minpoints = 5, epsilon = 1.7, sieve 10, rms residues 1-48 over atoms P, O3’, and O5’). Electrostatic 

calculations for visualization were performed using PDB2PQR software on the APBS web server 

(http://server.poissonboltzmann.org/) (181,182) with AMBER force field and pH set to 7.2. All 

molecular visualizations were performed in UCSF Chimera v1.12 (176).  

 

Ensemble optimization method (EOM) 

Telomere ensembles were derived using the Ensemble Optimization Method 2.1 (183) 

program from the ATSAS suite of tools. For the Tel48 constructs, which included the four 

combinations of hybrid-1 and hybrid-2 topologies (i.e. hybrid-11, hybrid-12, hybrid-21, and hybrid-

22), a total of 2,000 PDB snapshots were derived from the 100 ns of MD and aMD trajectories 

stripped of water and K+ and pooled, totaling 8,000 coordinate files. GAJOE was used in pool “-p” 

mode, with maximum curves per ensemble set to 30, minimum curves per ensemble set to 1, 

constant subtraction allowed, curve repetition allowed, and the genetic algorithm (GA) repeated 

200 times. Where noted, the minimum curves were increased to higher numbers, and the curve 

repetition was disallowed. The same process was repeated for the Tel72 (hybrid-122, -121, -212, 

and -221) and Tel96 (hybrid-1222, -2122, -2212, -2221) constructs with a total of 4,000 pooled 

structures. In brief, EOM takes a large pool of macromolecules covering as much conformational 

space as possible (and reasonable) and selects from this pool a sub-ensemble of conformers that 

best recapitulate the experimental scattering. The best fitting ensemble is the subset of weighted 

theoretical curves from conformations that minimizes the discrepancy χ2: 

𝜒2 =  
1

𝐾 − 1
 ∑ [

𝜇𝐼(𝑠𝑗) − 𝐼𝑒𝑥𝑝(𝑠𝑗)

𝜎(𝑠𝑗)
]

2𝐾

𝑗=1

 

where Iexp(sj) is the experimental scattering, I(sj) is the calculated scattering, K is the number of 

experimental points, σ(sj) are standard deviations, and μ is a scaling factor (184).  

 

 

 

http://server.poissonboltzmann.org/
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Ab initio model generation and single model validation 

P(r) distributions obtained from GNOM (185) using scattering data from 2JSL, Tel48, Tel72, 

and Tel96 were submitted using the ATSAS online servers (https://www.embl-

hamburg.de/biosaxs/atsas-online/) for either DAMMIN or DAMMIF bead model generation. 

Relevant parameters, anisotropy assumptions, normalized spatial discrepancy values (NSDs), χ2 

values, and resolutions are given in Table 2. Single best fit models for each telomere construct 

were determined using the initial pool of conformers derived from MD simulations (or NMR 

structures for 2JSL) and calculated using CRYSOL (186). The best fit structure was determined by 

minimization of a χ2 function: 

𝜒2(𝑟𝑜 , 𝛿𝜌) =  
1

𝑁𝑝

∑ (
𝐼𝑒𝑥𝑝(𝑞𝑖) − 𝑐𝐼(𝑞𝑖 , 𝑟𝑜 , 𝛿𝜌)

𝜎(𝑞𝑖)
)

2𝑁𝑝

𝑖=1
 

where 𝐼𝑒𝑥𝑝(𝑞𝑖) and 𝐼(𝑞𝑖) are the experimental and computed profiles, respectively, σ(qi) is the 

experimental error of the measured profile, 𝑁𝑝 is the number of points in the profile, and c is the 

scaling factor. Two other parameters, 𝑟𝑜 and 𝛿𝜌, are fitted and represent the effective atomic radius 

and the hydration layer density, respectively.  

 

Flexibility analyses by swollen Gaussian chain and WLC models 

Fitting of the radii of gyration, as measured by SEC-SAXS for 2JSL, Tel48, Tel72, and 

Tel96 was performed as outlined recently by Capp at al. (187) using the following relationship 

describing the stiffness and conformational space of a swollen Gaussian coil: 

𝑅𝑔 = 𝑙𝑝√
𝑁2𝑣

(2𝑣 + 1)(2𝑣 + 2)
 

Where 𝑙𝑝 is the persistence length and 𝑣 is the Flory coefficient. The Rg values with their respective 

errors were plotted against their G4 number and fit using a non-linear least squares fitting 

procedure in Origin 2020 (OriginLab Corporation, Northampton, MA, USA).  

For the worm-like chain (WLC) modeling, a global analysis of three properties was used in 

the program Multi-HYDFIT (188,189). Measurements of two other properties, diffusion coefficient, 

Dt (calculated from measured Stokes radii, Rs, via the Stokes-Einstein equation), and corrected 

https://www.embl-hamburg.de/biosaxs/atsas-online/
https://www.embl-hamburg.de/biosaxs/atsas-online/
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sedimentation coefficient, S20,w, were obtained for each sequence using SEC (average ± S.D. of 4 

measurements each) or AUC (concentration series extrapolated to infinite dilution ± standard error 

from regression analysis), respectively. Each value, with respective weighting, and molecular 

weight (MW) was used as the input for the Multi-HYDFIT program. Multi-HYDFIT uses comparisons 

of the so-called equivalent radii and ratios of radii to calculate theoretical values of Rg, Dt, and S20,w, 

which are then compared to that of the measured values. The ratios of radii are directly related to 

the ratios of length to diameter (L/d) and length to persistence length (L/𝑙𝑝). With starting estimates 

of 𝑙𝑝, d, and mass per unit length (ML), the Multi-HYDFIT procedure seeks to minimize a target 

function (189): 

Δ2(𝑙𝑝 , 𝑀𝐿 , 𝑑) =  
1

𝑁𝑠

∑ [(∑ 𝑤𝑌

𝑌

)

−1

∑ 𝑤𝑌

𝑌

(
𝑎𝑌(𝑐𝑎𝑙) − 𝑎𝑌(𝑒𝑥𝑝)

𝑎𝑌(𝑒𝑥𝑝)

)

2

]

𝑁𝑠

𝑖=1

 

where 𝑁𝑠 is the number of samples of different MW, 𝑤𝑌 is the weighting, and 𝑎𝑌 is the ratio of radii 

for each property. In this equation, the outermost sum runs over the 𝑁𝑠 samples and the inner most 

sum runs over the available properties of each sample. The Δ2 is a mean-square relative deviation 

for the data, and 100Δ is the percent difference between experimental and theoretical values over 

the entire set. Additional information is required for the calculation, such as temperature (here 

20.0°C was used), solvent viscosity (0.00995 poise), starting guesses for diameter, d (10 to 100 

angstrom), mass per unit length, ML (10 to 300 Da/angstrom), and persistence length, 𝑙𝑝 (20 to 100 

angstrom). Intrinsic viscosities calculated from best-fit models using HYDROPRO10 were also 

included with modest weighting, as they were not empirically determined but rather derived from 

SAXS best-fit models. The goal of the procedure is to determine the best-fit values of the latter 

properties, which are given in Table 3.  
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Table 3. Table of properties derived from Multi-HYDFIT fitting of the higher-order telomere 

experimental properties to a worm-like chain model.  
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HYDFIT Worm-like Chain results  

Diameter (Å) 40 (±5) 

Persistence length (Å) 33 (±3) 

Mass per unit length (Da/Å) 163 (±15) 

Deviation from exp. equiv. radii (%) 3.7 
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 Force of bending curves were calculated using the literature persistence length values for 

single- and double-stranded DNA at cationic conditions similar to used here, based on the 

relationship (190): 

𝐹𝑏𝑒𝑛𝑑 =
1

2
𝑘𝐵𝑇𝐿𝑝𝑅−2 

where Fbend is the bending force in piconewtons, 𝑘𝐵 is the Boltzmann constant, T is temperature in 

Kelvin, Lp is the persistence length in meters, and R is the radius of the arc of a curve. The data 

was plotted such that the values on the X-axis correspond to the end-to-end length of the polymer 

curved 180° around the arc of a semi-circle.  

 

Molecular visualizations 

All molecular visualizations of MD trajectories and models and RMSD calculations were performed 

in UCSF Chimera v1.11 (176).  
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Results 

 

Small-angle X-ray scattering reveals G4 maximization and indicates that the higher-order 

telomere G4s are semi-flexible 

To verify that the extended telomere sequences are in fact maximizing their G-tract usage 

we employed size-resolved small-angle X-ray scattering (SEC-SAXS) to assess each sequence 

for size, shape, and compactness (191,192). The results of the SEC-SAXS analysis for sequences 

2JSL (hybrid-2), Tel48, Tel72, and Tel96 (Table 1) are shown in Figures 8, 9, and Table 2. Figure 

8A shows the scattering intensity as a function of momentum transfer (q) on a log-log scale for 

each sequence. Each scattering profile proceeds horizontally to the Y-axis at low values of q, 

indicating the absence of inter-particle interactions or repulsions (191). Scattering from 2JSL shows 

a distinct smooth curvature at higher q values which is indicative of a globular particle, whereas the 

extended telomere sequences deviate from this curvature between about 0.05 and 0.2 q, 

suggesting a non-globular structure (192). 
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Figure 8. SEC-SAXS analysis of 2JSL (gray), Tel48 (red), Tel72 (blue), and Tel96 (green). (A) Log-

log plot of the scattering intensity vs. scattering vector, q. (B) Dimensionless Kratky plots of data in 

A. (C) Pair distribution function plots of data in A normalized to I(0). (D) Scatter plot of the radii of 

gyration from each sequence as a function of G-quadruplex motif fit to a swollen Gaussian chain 

polymer model (see methods) with (inset) derived persistence length (Lp) and Flory coefficient (v). 

(E) DAMMIN and DAMMIF ab initio space-filling models from the data in C. 
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Figure 9. Guinier analyses of 2JSL, Tel48, Tel72, and Tel96 (left) with fit overlaid in yellow for each 

sequence and (right) residuals of fits. Guinier fit results are tabulated in Table 2. 
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Two useful transformations of the scattering data are the Kratky plot and distance 

distribution, P(r), plots (Figures 8B and 8C), which allow for qualitative appraisal of compactness 

and overall structure, respectively (192). In Figure 8B the dimensionless Kratky plot shows that 

2JSL (gray) exhibits a nearly perfect Gaussian distribution that returns to baseline at high qRg, 

confirming that it is globular and folded (192). The Tel48 and Tel72 sequences also approach 

baseline at high qRg, indicating that they are folded and do not contain significant amounts of 

flexibility (192). The higher-order sequences also exhibit distinct plateau regions above 2 qRg, 

indicating that they have non-globular shapes and are likely multi-domain, consistent with tandem 

G4 domains. However, Tel96 (green) exhibits a slight rise in its plateau towards higher qRg, 

indicating that it is flexible relative to 2JSL, Tel48, and Tel72. Figure 8C shows the corresponding 

P(r) distributions (normalized to scattering intensity, I[0]), which are probability distributions of the 

inner-atomic distances within each macromolecule (191). 2JSL (gray) again exhibits a symmetric 

distribution, indicative of a globular molecule (192). Conversely, the extended sequences are all 

multi-modal. Tel48 exhibits a biphasic distribution (red) indicating a characteristic dumbbell-like 

tertiary arrangement (192), consistent with two G4 domains separated by a small linker region. 

Tel72 and Tel96 have tri- and tetra-phasic curves, respectively, which we take as indicating three 

and four contiguous globular domains in tandem, respectively. 

P(r) distributions also allow for quantitative characterization of macromolecules. The point 

on the X-axis at which each sequence converges to zero is the maximum diameter, Dmax, which is 

the diameter of the particle’s longest axis (192). The Dmax of each sequence increases 

approximately linearly with a ~24 Å increase with each additional G4 motif. Any substantial amount 

of telomere species with gaps, or non-maximization of G4s, would likely result in a non-linearity (as 

well as large upticks in the Kratky curves at high qRg). The radius of gyration, Rg, is the root mean 

square distance of the macromolecule’s parts from its center of mass and reflects the particle’s size 

(191). The Rg can be calculated by either the Guinier approximation (from plots shown in Figure 9) 

or directly from its P(r) distribution, the latter of which is thought to be more representative in cases 

where flexibility is assumed (although both values should be in general agreement)(192). Dmax and 

Rg values for each sequence are reported in Table 2. Shown in Figure 8D is a plot of each 
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sequence’s radii of gyration plotted against G4 number. Each additional G4 motif leads to an 

approximate Rg increase of 6.7 Å. 

The extended tails of the P(r) distributions and upward trend in plateau regions of the Kratky 

plots (Figure 8B) signify flexibility. Although plotting the radii of gyration versus the putative number 

of G4 subunits appears entirely linear (R2 = 0.9985), a better fit is obtained when fitting to a swollen 

Gaussian polymer model (R2 = 0.9999, Figure 8D). The non-linear least-squares fit to this model 

allows for the estimation of two parameters: persistence length, Lp, and the Flory exponent, v. The 

persistence length represents the distance along the telomere G4 polymer which behaves as a 

rigid rod. At lengths much greater than this, the polymer behaves as a flexible Gaussian chain. The 

Flory coefficient (also known as the excluded volume parameter) varies between 0.5 and 1.0 and 

describes the degree of flexibility of the system. A Flory coefficient for a theoretical freely jointed 

flexible chain is 0.5 (maximum flexibility), whereas that of a rigid rod is 1.0. For reference, the 

empirical value of chemically denatured proteins is v = ~0.588 (193). Fitting to this model we find 

that the telomere G4 has a persistence length of 34.8 ± 0.2 Å and Flory coefficient of 0.69 ± 0.01. 

The persistence length is approximately the size of a single telomere G4 (~32 Å, calculated from 

PDB 2JSL less the flanking nucleotides), which indicates that the TTA linkers may provide a point 

of flexibility. This persistence length is about 50% greater than ssDNA (Lp = ~22 Å under similar 

ionic conditions (194)). As an independent method of estimating the persistence length, we used 

the hydrodynamic modeling program Multi-HYDFIT (188). This program integrates multiple 

independently measured properties, such as sedimentation coefficients (S20,w) from AUC (Figure 

10) (163), translational diffusion coefficients (Dt) from SEC, and radii of gyration (Rg) from SEC-

SAXS, for a series of macromolecules of given molecular weight (MW), and uses these values to 

find the optimum values of the model parameters for a worm-like chain (WLC) model (189). In total, 

we fit 12 independent properties from three independent techniques with their respective weights 

(estimated from standard deviations of multiple measurements), yielding a persistence length of 33 

± 3 Å (Table 3), in excellent agreement with the Lp estimated from the swollen Gaussian chain 

model. Altogether, these results, along with the qualitative information from Kratky and P(r) 

distributions, suggest that the extended telomere maximizes G4 formation, is closely packed, and 
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is moderately flexible. The flexibility is consistent with rigid G4 units linked by flexible, hinged, 

interfaces. 
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Figure 10. Sedimentation velocity analysis of higher-order telomere sequences. (Top) Analysis of 

Tel72 and Tel96 concentration dependence on sedimentation. Extrapolation to the Y-axis gives the 

infinite dilution S20,w values. (Bottom) representative C(s) vs. S20,w distributions for 2JSL, Tel48, 

Tel72, and Tel96. 
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Ab initio and atomistic modeling reveals an ensemble of conformations ranging from 

entirely stacked and condensed to a coiled “beads-on-a-string” configuration 

The above analyses suggest a flexible system which would render the higher-order SAXS 

data unsuitable for use in ab initio bead reconstruction methods. However, upon seeing the 

resulting space-filling models we were compelled to include them. Figure 8E shows the resulting 

DAMMIN and DAMMIF space-filling models of 2JSL, Tel48, Tel72, and Tel96 created based on the 

P(r) data in Figure 8C (with corresponding fit results tabulated in Table 2). Consistent with 

predictions from the Kratky and P(r) distribution plots Tel48 looks like a dumbbell with two domains 

roughly the size of the 2JSL reconstruction with a small linker region in the middle. Similarly, Tel72 

and Tel96 have what appear to be three and four G-quadruplex domains (indicated by their distinct 

“bends”), although their resolution is not quite as high as the Tel48 reconstruction (Table 2). The 

similar overall shape and curvature coupled with the flexibility assessment above indicates a non-

rod-like structure for telomere sequences with more than two G4 motif repeats. These shapes are 

generally in accord with previous hydrodynamic investigations based on rigid structures (163), but 

offer a more detailed and nuanced characterization because the flexibility of the structures can be 

taken into account. 

We next employed an ensemble modeling approach that combined explicit solvent MD-

derived models with the ensemble optimization tool GAJOE (of the EOM 2.0 suite) (184). A CD 

analysis that will follow indicated that the telomere sequences are best represented by a 

combination of hybrid-1 and hybrid-2 topologies. However, the order in which they occur is not 

evident, and it may be that the extended sequences are dynamic and interconvert on timescales 

much longer than is accessible by standard MD simulations (>1 ms). Therefore, we modeled every 

combination of the simplest multimer system, Tel48. Using the PDB atomic structures for hybrid-1 

(PDB ID: 2GKU) and hybrid-2 (PDB ID: 2JSL) we generated each of the four possible combinations: 

hybrid-11, hybrid-12, hybrid-21, and hybrid-22. Each structure was subjected to 100 ns of both 

standard MD and accelerated MD (aMD) simulations to produce a pool of 8,000 conformations for 

use in minimal ensemble and single structure modeling efforts. In the GAJOE ensemble 
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optimization method, a pool of PDB atomic coordinate files are generated that cover as much 

conformational space as possible and utilized in calculating theoretical scattering profiles. Next, a 

genetic algorithm acts on these scattering profiles to minimize a fitness function by weighting each 

scattering profile and comparing combined profiles to the experimental (see methods). The output 

is an ensemble of conformers which best recapitulate the experimental scattering profile based the 

minimized χ2 value. An ensemble is considered a better fit than a single conformer when its χ2 

value is reduced relative to the single best-fit conformation. 

Figures 11 and 12 shows the results of modeling efforts with the Tel48 constructs. Figures 

11A and 11B are scatter plots which show the calculated radii of gyration (Y-axis) and corrected 

sedimentation coefficients (X-axis) (Figure 10), for each of 2,000 frames across both MD (light 

gray) and aMD (dark gray) trajectories for the hybrid-12, -21, -11, and -22 constructs. These plots 

indicate that both hybrid-12 and -21 sample conformations which agree with either the experimental 

Rg, S20,w, or intersect both values. The hybrid-11 and hybrid-22 constructs rarely sampled 

conformations that corresponded with the experimental values (see Figure 12). Interestingly, 

although hybrid-12 extensively samples conformations which agree with both hydrodynamic and 

scattering-derived measurements, the best fit model by CRYSOL analysis was found to be a highly 

extended hybrid-21 conformation (cyan dot and curve in Figures 11B & 11C). Because this 

conformation appeared unnatural (e.g. maximally extended) and did not agree very well with the 

P(r)-derived Rg and Dmax values, we speculated that this configuration may be biased simply by our 

initial start configurations. The hybrid-21 clearly tended towards an overall more compact structure 

as indicated by the histograms. Therefore, we next asked what the maximum number of curves 

could be which could reconstruct the experimental scattering without worsening the ꭕ2 value. We 

found that an ensemble of six conformations gave approximately the same ꭕ2 value (magenta dots 

in Figures 11A and 11B, magenta curve Figure 11C) and agreed much better with the 

experimental Rg and Dmax values from the P(r) analysis (Rg,cal = 19.58 Å vs. Rg,exp = 19.69 Å and 

Dmax,calc = 66 Å vs. Dmax,exp = 65 Å, Table 2). The resulting topologies were a 50/50 mix of hybrid-12 

and -21 (Figure 11D), which sampled conformations ranging from extended to fully stacked. The 
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flexibility of the ensemble was only marginally lower than the pool, as judged by EOM’s Rflex 

flexibility analysis, supporting semi-flexibility. Interestingly, we found that one of the hybrid-12 

conformers (bottom right of Figure 11D) was nearly identical in conformation to our previously 

reported hybrid-12 model (141), with an RMSD of just 1.6 Å over all residue pairs (Figure 13). 
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Figure 11. Results of Tel48 SAXS atomistic modeling efforts. (A-B) scatter plots of calculated radii 

of gyration and sedimentation coefficients for hybrid-12 (A) and hybrid-21 (B) with MD-derived 

values shown in light gray and aMD-derived values in dark gray. The inset dashed red and blue 

lines represent the experimentally measured values for sedimentation coefficient and radius of 

gyration, respectively. The outer histograms represent the distributions of values from both MD and 

aMD snapshots combined. The cyan dot represents the single best-fit model (hybrid-21) as 

determined by CRYSOL (top left model in D). Magenta dots represent the six conformers in the 

best fit ensemble (all six models in D). (C) Experimental SAXS scattering data with fits from single 

(cyan) or ensemble (magenta) calculated scattering overlaid with χ2 values inset. (D) Single best 

fit model (hybrid-21, top left model) and best fit ensemble of six conformers (top row hybrid-21, 

bottom row hybrid-12). Models are oriented with their 5’ ends at the top. 
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Figure 12. Additional results of Tel48 SAXS atomistic modeling efforts shown in Figure 11. (A-B) 

scatter plots of calculated radii of gyration and sedimentation coefficients for hybrid-11 (A) and 

hybrid-22 (B) with MD-derived values shown in light gray and aMD-derived values in dark gray. 

The inset dashed red and blue lines represent the experimentally measured values for 

sedimentation coefficient and radius of gyration, respectively. The outer histograms represent the 

distributions of values from both MD and aMD snapshots combined. The histograms indicate that 

the major sampled conformations in both cases are much more compact than would be expected 

from either SAXS or AUC analyses. 
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Figure 13. Comparison of the Tel48 (cyan) and Tel50 (tan) hybrid-12 conformers. The tan hybrid-

12 conformer was taken from an earlier report by Petraccone et al.(141) and the cyan hybrid-12 is 

the model derived here from EOM (bottom right-most conformer in Figure 11). The pair-wise 

residue RSMD is 1.6 Å as determined by the matchmaker module of UCSF Chimera v1.12. 

Potassium is shown as purple spheres and is derived from the Petraccone model (EOM hybrid-12 

potassium is hidden). 
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Next, we investigated the Tel72 and Tel96 constructs in the same manner as above but 

only using standard MD. Models were created to reflect the ratio of hybrid-1/-2 (25/72) as 

determined by our later CD analyses of telomere mutants (e.g. hybrid-121, -122, -212, and -221 for 

Tel72 and hybrid-1222, -2122, -2212, and -2221 for Tel96). The hybrid-121 was included because 

it was proposed previously (141). Each model was then subjected to explicit solvent MD and 

simulated for a total of 100 ns. From these trajectories, 1,000 equally spaced frames were used as 

the pool for EOM’s GAJOE program. For the Tel72 the best fit was obtained with an ensemble of 

four conformers (ꭕ2
ensemble = 1.09 vs. ꭕ2

single-model = 1.81) which was composed of the hybrid-212 

(89.7%) and hybrid-221 (10.3%) (Figure 14). Surprisingly, this configuration agrees well with Tel48 

having a 5’ preference for hybrid-2 followed by hybrid-1. The Rg and Dmax values of the Tel72 

ensemble (Figure 14C) agree with the experimental values (Rg,calc = 25.8 Å vs. Rg,exp = 26.0 Å and 

Dmax,calc = 83 Å vs. Dmax,exp = 87 Å), indicating that the ensemble is an excellent solution. Similarly, 

Tel96 scattering was best recapitulated by an ensemble of four conformers (ꭕ2
ensemble = 1.15 vs. 

ꭕ2
single-model = 2.08) but was composed entirely of different conformations of the hybrid-2122 (Figure 

15). Again, there is an agreement with a 5’ hybrid-2 followed by hybrid-1. The Rg and Dmax values 

of this conformer ensemble are also in agreement with the experimental values (Rg,calc = 32.1 Å vs. 

Rg,exp = 32.7 Å and Dmax,calc = 103 Å vs. Dmax,exp = 109 Å), indicating that this ensemble is reasonable. 

In both cases, the EOM Rflex quantification of flexibility indicates that the ensembles are only 

marginally less flexible than the pool (Table 2), consistent with the system semi-flexibility. This 

flexibility is also illustrated by the conformer ensembles themselves (Figures 14C and 15). Further, 

docking of each ensemble into their respective ab initio space-filling models from Figure 8E reveals 

excellent fits for the models of topological sequence 5’-hybrid-2,-1,-2,-2 (Figure 16). Collectively, 

these analyses indicate that in physiological buffer conditions the extended telomeres maximize 

their formation of G4 subunits, prioritize hybrid-2 at the 5’ end, and are semi-flexible. 
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Figure 14. Results of Tel72 SAXS atomistic modeling efforts. (A) scatter plot of calculated radii of 

gyration and sedimentation coefficients for the hybrid-212 model from 100 ns of standard MD 

simulation. The inset dashed red and blue lines represent the experimentally measured values for 

sedimentation coefficient and radius of gyration, respectively. The outer histograms represent the 

distributions of values. The cyan dot represents the single best-fit model as determined by 

CRYSOL. Magenta dots represent the four conformers in the best fit ensemble. (B) Experimental 

SAXS scattering data with fits from single (cyan) or ensemble (magenta) calculated scattering 

overlaid with χ2 values inset. (C) Conformations of the three hybrid-212 configurations (not showing 

the hybrid-221) from the best fit ensemble as determined by EOM. Models are oriented with their 

5’ ends at the top. 
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Figure 15. Results of Tel96 atomistic modeling efforts. Depicted are the four hybrid-2122 

conformers derived from EOM analysis of the 100 ns MD simulations with their respective weights 

(as % of the reconstructed scattering curve). All conformers are arranged with their 5’ ends at the 

top of the figure. 
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Figure 16. Telomere G4 ensembles from EOM GAJOE analysis docked into ab initio space-filling 

reconstructions from DAMMIN/DAMMIF. (A) Tel48 hybrid-21 conformers, (B) 2JSL with single best-

fit NMR-derived model, (C) Tel72 hybrid-212 conformers (the same as in Figure 14C), (D) Tel96 

hybrid-2122 models (the same as in Figure 15). 
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The Tel72 hybrid-212 preferentially samples a stacked conformation, forming unique 

electronegative binding pockets useful for drug targeting 

 The Tel72 ensembles reflect well the SAXS-derived properties, Rg and Dmax. However, they 

do not agree as well with their measured sedimentation coefficients. SAXS scattering is exquisitely 

sensitive to changes in particle volume (conformation in this case). Systems which exist in an 

equilibrium of stacked and unstacked, or coiled and beads-on-a-string, will have a scattering profile 

which is composed of a continuous distribution of conformations (as the scattering intensity, I[0], is 

directly related to the volume of the scattering particle) (195). Therefore, we next endeavored to 

find the most frequently sampled conformation from the MD trajectory of the Tel72 hybrid-212 

construct. Figure 17A shows the top three most frequently sampled conformations across the 100 

ns simulations with their respective weighting (% of MD frames). This analysis suggests that 

approximately 47% of the frames from simulation sampled a configuration which was partially 

(middle) or entirely stacked (left and right models). The major stacked conformation sampled by 

hybrid-212 has a calculated sedimentation coefficient which is in excellent agreement with the 

experimental (S20,w(calc) = 3.45 versus S20,w(exp) = 3.46, Figure 10) although the calculated radius of 

gyration is slightly lower (Rg(calc) = 2.45 nm versus Rg(exp) = 2.60). Electrostatic calculations of the 

most prominent form reveal highly electronegative grooves, which are appropriately sized for small 

molecules (Figure 17B). Overall, these analyses show that the hybrid-212 model of the Tel72 is 

consistent with all available spectroscopic, hydrodynamic, X-ray scattering, and MD-based 

analyses, and forms unique junctional grooves for selective small molecule targeting. 
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Figure 17. Results of MD clustering analysis of the Tel72 hybrid-212. (A) Top three representative 

centroids of DBSCAN clusters accounting for ~47% of frames across the entire 100 ns trajectory. 

(B) space-fill electrostatic APBS map of the first model from A with dashed lines indicating the 

approximate sizes of each groove created at the two stacking interfaces. 
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The major topologies of the extended telomere G4 are hybrid-1 and hybrid-2 

Simultaneous with our structural investigations above, we investigated the conformations 

of G4 units within higher-order structures by using systematic sequence variations of the wild type 

(WT) Tel48 sequence and observing changes in circular dichroism spectra. These sequence 

”mutants” were created with variation in terminal nucleotides or by changes in internal sequences 

that favor the various hybrid topologies (e.g. hybrid-1 and hybrid-3) (Table 1). The Tel48 spectrum 

(black line in Figure 18A) has a main peak at ~290 nm, pronounced shoulder from 265-275 nm, 

and a trough at 235 nm, indicating that it is primarily composed of hybrid type folds (46). Comparing 

sequence variants of the form TnAGGG(TTAGGG)7Tm, where n = 1 or 2, and m = 0, 1, or 2, we 

found no major spectral differences (Figure 19A), indicating that changes in these flanking 

nucleotides have no effect on the overall topology. Removal of the 5’-end thymine residues led to 

a modest reduction in the shoulder at ~270 nm and peak at 290 nm when compared to the WT 

sequences of similar length (Figure 19B, red and blue lines). We speculated that this could be due 

to the formation of hybrid-3 in the 5’-most G4 unit, which has been reported in shorter sequences 

lacking the 5’ thymine residues (47,79). Indeed, when an inosine is introduced to favor the hybrid-

3 topology in the 5’-most putative G4 the CD changes observed at 270 and 290 nm become more 

pronounced (Figure 19C, blue solid line). Importantly, this suggests that the hybrid-3 topology is 

not a major topology, as the extended telomere (in the cell) will always include 5’ thymine residues. 

The spectral change due to hybrid-3 incorporation is made more evident when stabilized in both 5’ 

and 3’ G4 units (Figure 19C, purple), which is of the same shape but approximately 2x the 

magnitude of hybrid-3. Thus, the hybrid-3 is not likely to exist in the context of the extended 

telomere, aside from as a potential folding intermediate (47). 
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Figure 18. Normalized circular dichroism spectra of Tel48 mutants and theoretical monomer G4 

spectra. (A) CD spectra comparison of the WT Tel48 G-quadruplex (black) with constructs created 

to favor the hybrid-1 form in the second (red), first and second (blue), or first position (green). (B) 

Comparison of the Tel48 CD spectrum with theoretical monomer CD combinations of hybrid-22 

(red dashed), hybrid-12 with a 30/70 weighting (blue dashed), and a hybrid-11 (purple dashed). 
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Figure 19. Normalized CD spectra of Tel48 compared to various flanking residue and internal 

mutant sequences. 
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Comparison of the hybrid-21, -11, and -12 sequences to Tel48 revealed subtle differences 

in each case (where hybrid-2 is assumed as the major conformation in unadulterated telomere 

sequence flanked by thymine at both ends) (Figure 18A). Overall, each spectrum was consistent 

in shape, but varied in magnitude at various wavelengths. We suspected that this may indicate a 

preference for the hybrid-22 form. A theoretical hybrid-22 spectrum overlaid nicely with Tel48 

(Figure 18B, red dashed line). In contrast, a theoretical hybrid-11 (Figure 18B, purple dashed line) 

had a greatly increased 290 nm peak and slight reduction at ~250 nm and looked similar to the 

mutant hybrid-11 spectrum from Figure 18A. Based on the reported 25/75 ratio of hybrid-1 and 

hybrid-2 for the monomer telomere sequence flanked at both ends by thymine (45), we next tested 

a variety of computed weighted combinations of hybrid-1 and -2 spectra and found that a 30/70 

ratio best reflects the Tel48 spectrum (compare blue dashed line with black in Figure 18B). 

Collectively, these results indicate a preference for both hybrid-1 and -2 topologies in the extended 

telomere sequence, consistent with our EOM analysis of Tel48.  

CD indicates that the higher-order telomere sequences converge on a 25/75 ratio of hybrid-

1 and hybrid-2 with maximization of G4 formation 

Strand-normalized circular dichroism spectra are the sum of constituent secondary and 

tertiary structure (196). Thus, just as above we expect that the spectra of higher-order telomere 

G4s could be recreated by addition of their measured “monomer” spectra. However, comparisons 

of the various monomer spectra (hybrid-1,-2,-3, and basket forms) to our higher-order telomere 

spectra resulted in non-negligible “difference” spectra of roughly the magnitude expected for di- or 

tri-nucleotides. As prior studies suggest, and we have shown here, the extended telomere 

sequences maximize their G4 potential by leaving no G-tract gaps. The resulting stacking junctions, 

or other inter-G4 interactions that constrain the loop regions, could potentially give rise to a 

“junctional” CD signal (196). Thus, to generate the theoretical “junctional” spectrum, we utilized the 

Tel48 mutant spectra from above and subtracted from them theoretical constituent monomer 

spectra as appropriate. The resulting spectrum is shown in Figure 20B. The junction spectrum has 

a peak at 240 nm and troughs at ~260 and ~285 nm, which is consistent with the known CD spectra 
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of adenine and thymine polynucleotides (197). This spectrum was then used as a correction factor, 

and was subtracted from the Tel48, Tel72, and Tel96 spectra (Figure 20A). A plot of Δε290 versus 

the putative number of G4s yields a linear regression with a near zero Y-intercept, which is more 

physically relevant than the regression without the correction (Figure 20C). The slope of the 

corrected regression data indicates that each additional putative G4 increases Δε290 by ~128 M-

1cm-1, in excellent agreement with the average Δε290 obtained from hybrid (3+1) monomers. These 

corrected spectra should now be a composite spectrum of monomer G-quadruplex components. A 

novel finding here is that the CD spectra of higher-order G4 structures contain discernable 

contributions from G4-G4 interactions. 
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Figure 20. Circular dichroism analysis of the higher-order telomere G-quadruplexes. (A) Pre- and 

Post-corrected (“Corr”) CD spectra of the Tel48, Tel72, and Tel96 sequences by subtraction of the 

“junctional” spectrum in B. (B) The average (dark blue line) and range (light blue space fill) of 

“junctional” CD spectra derived from deconstruction of the Tel48 sequences in Figures 18 and 19 

using constituent monomer spectra. (C) Regression analysis of the uncorrected and corrected 

Δε290nm values as a function of the number of G4 motifs. (D-F) Corrected CD spectra of the Tel48, 

Tel72, and Tel96 sequences with overlaid theoretical spectra derived from the linear addition of 

monomer spectra. The red spectrum in each plot is the best fit as judged by RSS analysis. 

Residuals are shown below each figure.  
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The hybrid-1, -2, and -3, as well as the antiparallel basket monomer spectra were 

systematically compared with the Tel48, Tel72, and Tel96 corrected spectra. Figures 20D-F show 

the corrected spectra in black with “_Corr” indicating the corrected spectrum. Shown below are 

residuals from the best fit combinations of monomer spectra. In each plot the red spectrum is the 

best fit, followed by blue, etc. based on residual sum of squares (RSS) analysis (Figure 21). The 

optimal fit to Tel48_Corr is hybrid-22 (in agreement with Figure 18A), followed by various hybrid-

1/-2 combinations; Tel72_Corr is best fit by a combination of hybrid-1, -2, and -2; Tel96 is best fit 

by a hybrid-1, -2, -2, -2 (not necessarily in that order as shown above). See Figure 21 for the 

exhaustive residual sum of squares (RSS) ordering, PDB IDs, and distributions of CD residuals for 

each fit. These results suggest an overwhelming preference for hybrid-2 in the longer sequences, 

although some other hybrid-1/-2 combinations also yield comparable fits. Altogether, the above 

analyses confirm that the primary two topologies making up the WT telomere higher-order G4s are 

hybrid-1 and hybrid-2, with proportions approaching a 25% hybrid-1, 75% hybrid-2. Further, the 

linearity and slope of the regression analysis and excellent agreement with theoretical fits indicates 

that no long gaps exist in the higher-order human telomere.  
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Figure 21. Violin plots of residuals obtained as the difference between experimental and theoretical 

CD reconstruction curves for Tel48, Tel72, and Tel96. The residuals are plotted from best (left) to 

worst (right) based on residual sum of squares analysis in Origin 2020. 
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Discussion 

 

 These results provide the most detailed characterization of extended human telomere G-

quadruplex structures in solution to date. We combine circular dichroism, hydrodynamics, and 

small-angle X-ray scattering experiments integrated with available high-resolution NMR studies on 

monomeric G4 structures (46) to build medium resolution higher-order structures. For dimeric 

structures containing two contiguous G4 units (Tel48), the best model is one featuring a 5’ hybrid-

2, followed by hybrid-1. For longer sequences with three and four G4 units, a mixture of hybrid-2 

and hybrid-1 conformations seems to be present in an approximate 3:1 ratio. Our results show 

unequivocally that for all sequences up to 96 nt in length, the human telomere sequence maximizes 

its G4 formation, leaving no gaps—in direct contrast to prior EM, AFM, and single-molecule force 

ramping investigations (159-161). Our results provide the first quantitative estimates of the rigidity 

of folded telomeric DNA  through determination of its persistence length (Lp = ~34 Å). We find that 

the semi-flexibility of the telomere G-quadruplex is best modeled by an ensemble of configurations 

which fluctuate between an entirely stacked multimer and unstacked monomeric G4s, as observed 

by MD simulations, providing potentially unique sites for small molecule targeting in the junctional 

regions. This model suggests that rigid G4 units are connected by a short, dynamic, interfacial 

hinge. That interface constitutes a unique structural element to target in drug design efforts. 

The WT human telomere monomer sequences exhibit a high degree of polymorphism in 

vitro (46). Under physiologically relevant K+ solution conditions the WT telomere G4 adopts a hybrid 

type conformation, favoring hybrid-2 over hybrid-1 (77,152). This conformational bias is seemingly 

dictated by the presence of 5’ or 3’ flanking nucleotides. Addition of 5’-TTA to the core sequence, 

GGG(TTAGGG)3, leads to the favoring of hybrid-1 by a 5’-end capping adenine triplet, whereas 

addition of one or two thymine to the 3’-end results in a favoring of the hybrid-2 form via a T:A:T 

triplet stack on the 3’-end (46). The extended, end-flanked sequence, (TTAGGG)4T, forms a major 

configuration of hybrid-2 (~75%), with minor amounts of hybrid-1 (~25%) (45). This implies that the 
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energy barrier between the two forms may be small. Consistent with this, our mutational analysis 

by CD and modeling studies agree with a 75/25 ratio of hybrid-2/-1 for the higher-order WT species. 

A significant result from our higher-order CD analyses is the unique junctional spectrum (Figure 

20B). This spectrum was useful in providing a rationale for why the higher-order species exhibited 

CD signatures that were lower than expected for maximized G4 formation. Moreover, both SAXS 

and MD modeling studies revealed favorable, but dynamic, stacking interfaces between G4 

moieties, in agreement with thermodynamic analyses (162). 

Prior NMR investigations of the WT telomere sequence, (TTAGGG)4T, indicate a dynamic 

equilibrium of conformations (46). If a similar equilibrium exists in the higher-order telomere, then 

an ensemble of both tertiary conformation and secondary structure would be required to explain 

both CD and SAXS results. Consistent with this, the Tel48 scattering is modeled well by an 

ensemble with a 50/50 ratio of hybrid-12 and hybrid-21 conformers. The single model hybrid-21 fit 

is comparable to the ensemble, and so this solution is, overall, somewhat ambiguous; although, 

the lack of thymine residues at the 3’-end would, in theory, favor hybrid-1 in the second position, 

giving us confidence in a preferential hybrid-21 model. Our previous investigation of the WT Tel50 

sequence (141) (which differs in sequence by two additional thymine residues at the 3’ end) 

proposed that the major form is hybrid-12. We used steady-state fluorescence measurements of 

2-aminopurine-substitutions to assess the solvent accessibility for each adenine site. From this it 

was found that residue A15 is the least solvent exposed, which agreed with SASA calculations of 

the hybrid-12 model (in this conformation A15 is buried in the stacking junction between the two G-

quadruplex units). Coincidentally, by having the EOM algorithm increase the number of conformers 

in the Tel48 ensemble, we find that part of the new solution is a hybrid-12 conformer that is almost 

identical to the previously proposed Tel50 hybrid-12 model (Figure 13). Thus, the collective 

experimental observables support an equilibrium of hybrid-1 and hybrid-2 in either position.  

We have also investigated the possibility of a hybrid-3 form, which is a two-tetrad 

antiparallel G-quadruplex that has been characterized in vitro in potassium containing solution (47), 

and confirmed as existing in a cellular environment by Bao et al. (79). In both instances the telomere 



 

99 

 

sequences used were lacking 5’ thymine residues. The 5’ thymine residue destabilizes the hybrid-

3 structure and, ultimately, favors the hybrid-1 (47). In the cell the 5’-flanking thymine is always 

present. We have confirmed that the extended WT telomere sequences do not favor the hybrid-3 

in solution by mutational analysis, showing that it may only occur in the 5’-most position when 

thymine is removed (Figure 19). Thus, the hybrid-3 topology may only function as a folding 

intermediate (47), rather than as a major constituent topology of the higher-order telomere G4.   

The single-stranded telomere overhang is a critical regulator of genomic integrity. Spanning 

the junction of the duplex and single-stranded telomere region is a protective protein complex 

known as shelterin (64,198). Shelterin is composed of the proteins TRF1, TRF2, RAP1, TIN2, 

TPP1, and POT1. POT1 (protection of telomeres 1) is essential in sequestering the free 3’ 

overhang, shielding it from eliciting aberrant single-stranded DNA damage responses, preventing 

homologous recombination, and regulating the activity of telomerase (156). POT1 binds directly to 

the 3’ single-stranded overhang with high affinity and in a highly sequence specific manner 

(64,155,199). EM micrographs have revealed that POT1-TPP1 complexes coat the entirety of the 

extended telomere 3’ overhang, forming compact, ordered complexes of ssDNA-POT1-TPP1 

without gaps (200). Importantly, disruption of POT1’s shielding of the single-stranded overhang 

elicits an ATR-dependent DNA damage response through the promiscuous ssDNA binding protein 

RPA (156,201). A recent AFM investigation of the Tel96 sequence with POT1 by the Opresko lab 

(159) found that maximization of G4 formation “rarely” occurs, and that POT1 associates by simply 

recognizing the resulting gaps. We, and others (55,85,157,163), find this conclusion at odds with 

solution-based results. Accessible ssDNA gaps between G4s would allow RPA to compete 

unimpeded with POT1 binding. Indeed, RPA outcompetes POT1-TPP1 binding to single-stranded 

telomere DNA in vitro (202). Further, G-quadruplex secondary structure enhances POT1-TPP1’s 

protection against RPA in physiologically relevant levels of K+ (150 mM) (203). We recently showed 

that POT1 unfolds and binds to telomere G4s using a conformational selection mechanism (85) 

and demonstrated that the kinetics of unfolding the Tel48 sequence is essentially the same as the 

Tel24 monomeric G4. Importantly, this suggests that a maximization of G4 formation does not 

impede POT1 binding. Taken together, the physiological significance of telomeric G4 maximization 
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is two-fold: (1) G-quadruplex secondary structure prevents promiscuous RPA binding and, (2) the 

G4 secondary structure promotes exclusive interaction with shelterin through specific POT1 

unfolding and binding, tilting the scale in favor of POT1 over RPA. 

 The mechanistic details of how the shelterin complex orchestrates the sequestration of the 

single-stranded 3’ end are still not entirely understood, but are of great importance in drug discovery 

(198,204). Recently, the Cech laboratory conducted a thorough investigation of co-expressed and 

isolated complexes of the shelterin proteins in vitro (198). Based on their results a shelterin “load 

& search” model was proposed, whereby TRF2 and POT1 localize the shelterin complex to the 

telomere by specifically recognizing and binding to the single-stranded/double-stranded (ss/ds) 

telomere junction. The authors propose that POT1 searches for its optimal binding sequence, 

TTAG, at the 3’ end by a scanning search mechanism, eventually looping the 3’ end back forming 

a loop bridged by shelterin proteins that is “unlike a T-loop”. An earlier report from the Cech 

laboratory found that POT1 and POT1-TPP1 completely coat the long ssDNA telomere repeats in 

vitro (200). Thus, the “normal” sequestration mechanism of the human telomere 3’ overhang is 

seemingly a POT1-coated loop structure anchored to the ss/ds telomere junction.  

DNA looping is a common theme in the cell (190). From a physical stand-point, DNA 

looping has been extensively studied for its relationship with genetic packaging into nucleosomes 

and effects on transcription (190,205). A commonly reported measure of the structural rigidity of a 

biological polymer is the persistence length, Lp¸ that defines the length over which a polymer 

remains unbent in solution. In this work, we have applied both SAXS and hydrodynamic modeling 

methods to derive an estimate of the telomere G4 persistence length. Using our telomere G4 Lp 

estimate, along with values reported for single- and double-stranded DNA, we can compare the 

relative forces required to bend each 180° around the arc of a semi-circle of a given radius (Figure 

22) (190). From this plot we find that, in the case of single-stranded telomere DNA of length >200 

angstroms (~63 nt) the force required to bend the polymer 180° (in the shape of a semi-circle) is 

negligible—energy requirements on the order of thermal fluctuations. However, if that same stretch 

of 63 nucleotides were to form maximal G-quadruplexes (decreasing polymer length to <100 
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angstrom), the increase in energy to bend increases by an order of magnitude—now requiring 

energy input equivalent to ATP hydrolysis. Although somewhat intuitive, this implies that in the 

absence of significant energy input, short telomere G4s must be made single-stranded in order to 

bridge the terminal 3’ TTAG repeat (capped by POT1) with the shelterin complex. More importantly, 

this figure indicates that small molecules which bind the inter-G4 grooves, thereby increasing its 

effective persistence length, could shift the force curve to the right (towards the dsDNA curve, solid 

red in Figure 22) and subsequently drive up the energy cost for associating the POT1-bound 3’ 

end with the shelterin loop. Indeed, during the drafting of this manuscript Gao et al. have 

demonstrated that a small molecule targeting the wild-type Tel48 can shift the distribution of 

conformations to favor a more compact, likely stacked, conformation (206)—a transition that would 

directly affect persistence length. It is well established that telomere G-quadruplex interacting small 

molecules are able to displace shelterin components, uncap the telomeres, and ultimately, inhibit 

telomerase in vitro and in vivo (83,207). Thus, there is abundant rationale for future work targeting 

these unique G4 junctional sites with stabilizing small molecules. 
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Figure 22. DNA force of bending plot for single-stranded (green), double-stranded (red), and G4 

telomere DNA (black). Force curve calculations were performed similar to reference (190) using 

literature values of persistence length for ssDNA (Lp = 22 Å), dsDNA (Lp = 550 Å), and Telomere 

G4 (Lp = 34.8 Å) as measured here. The Y-axis is the estimated force (in pN) to bend a length of 

DNA (X-axis) 180° about the arc of a semi-circle (i.e. if you have a 330 angstrom long single-

stranded DNA it will require a force of ~0.05 pN to bend it into a semi-circle). Dashed horizontal 

lines are visual references to common biological forces found in the cell (orange indicates the 

approximate range of force from thermal fluctuations). The light blue region highlights the range in 

which short telomere G4s would be found, indicating that a large force would be required to bend 

short telomeres (≤96 nt). The dashed red arrow illustrates that if a ~200 Å long ssDNA telomere 

(approximately 63 nt) were to spontaneously fold into a contiguous G4 structure, the resulting 

bending force required for a 180° turn increases by an order of magnitude. The increase in bending 

force is comparable to the same length of DNA in duplex form (330 Å long duplex requires external 

forces equivalent to ATP hydrolysis to bend 180°). In the case of duplex DNA, the energy 

requirement of “tight” bending is usually compensated for by the highly positive charge on histones. 
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 Utilizing a robust integrative approach, we have presented here the highest-resolution view 

of the higher-order telomere G4 to date. SAXS refinement of MD-derived models constructed from 

high-resolution techniques is now a mainstay in structural biology. However, SAXS refinement of 

MD generated atomistic models, while excellent for discarding unrealistic topologies and 

conformations, is not necessarily definitive when conformational and topological polymorphism 

presents itself. Thus, we await higher-resolution techniques that can inform on the distributions of 

topologies in the higher-order telomere G-quadruplex.  
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CHAPTER III 

 

STRUCTURE-BASED TARGETING OF THE HIGHER-ORDER 

HUMAN TELOMERE G-QUADRUPLEX 

 

 Disrupting telomere maintenance and homeostasis has emerged as a new avenue of anti-

cancer therapy. Telomere shrinkage appears essential as a natural mechanism of cellular aging, 

as once a critical limit is reached the cells undergo senescence. In cancer, the primary mechanism 

used to avoid this fate is the re-activation of telomerase. In concert with the shelterin complex, 

telomerase uses its reverse transcriptase functionality to restore telomere length leading to 

unrestricted cell proliferation. Recently, the human telomeres have been shown to fold into non-B 

DNA structures known as G-quadruplexes (G4s). Small molecules that bind to monomeric telomere 

G4s with high affinity have been identified and show clear inhibition of telomerase in cells by 

sequestering of the free 3’ telomere overhang. We have recently revealed that the telomere G4 

multimer contains potentially novel inter-G4 junctional regions which could be targeted with 

structure-based drug discovery approaches. Herein we present the results of a massive virtual 

screening campaign targeting the telomere G4 multimer inter-quadruplex junctions with small 

molecules. Using circular dichroism melting studies as a screen we have identified a small molecule 

scaffold that interacts with the higher-order telomere G4. Further, using orthogonal biophysical 

methods, we determine a binding stoichiometry of 1:1 with the number of G4 junctions in higher 

order telomere G4s, and no binding to monomeric G4s, making it a promising lead molecule for 

selectively targeting the telomere. 
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Materials and Methods 

 

Virtual drug screening 

Virtual screening was performed using Surflex-Dock 2.11 on the Kentucky Dataseam Grid 

utilizing over 53 million virtual ligands from the ZINC 2014 (24,877,119 molecules), 2016 

(17,244,856 molecules), and 2018 (11,154,739 molecules) drug-like libraries. Docking was 

performed on 27 unique sites across three different telomeric G-quadruplex models created 

previously (163) with Surflex-Dock’s ‘-pgeom’ parameter set. Surflex-Dock protomols were 

generated at residues within the G4-G4 junctions, loops, and grooves using standard Surflex-Dock 

procedures with ‘bloat’ and ‘thresh’ set to default values. In total, >53 million virtual small molecules 

were docked at each site. The top 1% scoring molecules across all sites, models, and small 

molecule libraries were pooled and analyzed in Schrödinger’s (Schrödinger, Inc., New York, NY) 

Canvas application using a hierarchical clustering algorithm to cluster molecules based on binary 

fingerprints and Tanimoto similarity criteria. From this analysis, the top 100 centroid molecules 

(most representative scaffolds of each clade) were then chosen for purchasing. This process was 

also repeated using the top 5% of small molecules from the 2014 ZINC library alone. Duplicates 

were removed from the final list of molecules considered for purchase. In total, 32 visually assessed 

molecules were purchased from Molport.com for initial testing and given the designation “C#”. After 

initial screening, 5 addition small molecules were also purchased using a structural similarity search 

on compound C21.  

 

Buffers and Compounds 

All experiments were conducted in a potassium phosphate buffer with varying levels of KCl 

(6 mM Na2HPO4, 2 mM NaH2PO4, 0-185 mM KCl, 1 mM Na2EDTA, pH 7.2). Compounds were 

purchased from Molport.com and were dissolved to 10 mM in DMSO upon receiving. Compound 

stocks were stored at -20°C until use. 

 

Preparative Size Exclusion Chromatography (SEC) 
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Oligonucleotides were purified using SEC as detailed previously (168). Briefly, 

oligonucleotides were annealed at concentrations of 40-100 μM in their respective buffers, filtered 

through 0.2 μm filters, and injected onto an equilibrated Superdex 75 16/600 SEC column (GE 

Healthcare 28-9893-33) using a Waters 600 HPLC system. The flow rate was maintained at 0.5 

mL/min and sample fractions were collected every 2 minutes from 100 to 180 minutes run time. 

The molecular weights of fractionated species were estimated based on a regression analysis of 

elution time vs. log(MW) of protein standards (Sigma #69385), with elution profiles monitored at 

260 nm and 280 nm. Purifications were carried out at room temperature and fractionated samples 

were stored at -20°C or 4°C prior to downstream analysis.  

 

Circular Dichroism Spectroscopy (CD) 

CD melting studies and spectra were collected on a Jasco-710 spectropolarimeter (Jasco 

Inc. Eason, MD) equipped with a Peltier thermostat regulated cell holder and magnetic stirrer. CD 

and melting spectra were collected using the following instrument parameters: 1 cm path length 

quartz cuvette, 240 to 340 nm wavelength range, 1.0 nm step size, 200 nm/min scan rate, 1.0 nm 

bandwidth, 2 second integration time, and 3 scan accumulation. Spectra were recorded at 20.0°C 

and melting spectra were collected over a range of 20°C to 98°C with 2°C step intervals, 4°C/min 

ramp speed, and a 2-minute equilibration time at each temperature before acquisition. Spectra 

were corrected by subtracting a buffer blank. Spectra were normalized to molar circular dichroism 

(Δε) based on DNA strand concentration using the following equation:  

∆𝜀 =  𝜃/(32982 × 𝑐 × 𝑙) 

where θ is ellipticity in millidegrees, c is molar DNA strand concentration in mol/L, and l is the path 

length of the cell in cm. Fitting of melting curves was performed using least-squares fitting of a 

Boltzmann function in Origin 2020.  

 

Fluorescence thermal shift assays (FTSA) 

Small molecule screening by FTSA was performed on an Applied Biosystems 

StepOnePlus Real-Time polymerase chain reaction (PCR) instrument in 96-well plates as an 
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adaption of previous work (208). Briefly, 10 mM compound stock solutions in DMSO were used to 

create 96-well stock solution plates by diluting each compound to 2x final concentration in 

potassium phosphate buffer. The same volume of DMSO was used as a control. The 5’ 6-FAM 

(Fluoroscein) and 3’ TAMRA (Carboxytetramethylrhodamine) FRET-labeled DNA, post-annealing, 

were quantified by UV-Vis and diluted to 2x final concentration. FTSA reaction mixes were made 

up in 96-well Applied Biosystems MicroAmp PCR plates by mixing 10 μL of 2x compound solution 

(or buffer/DMSO control) with 2x FRET-labeled DNA to yield 20 μL of 1x reaction mix. Plates were 

then spun down at 1250 rpm for 2-3 minutes in a benchtop centrifuge to remove bubbles. Samples 

were denatured by ramping the temperature from 20.0°C to 99.8°C in 0.2°C increments at a rate 

of approximately 0.7°C/min. Fluorescence quenching of 6-FAM was monitored at each 0.2°C step 

using the instrument’s onboard FAM filter over the entire reaction yielding a melt curve. Melting 

temperatures (Tm) were determined from the 1st derivative of the normalized melting curves (209), 

and differences in melting temperatures (ΔTm) were determined by taking the difference of control 

and sample wells: 

𝛥𝑇𝑚 =  𝑇𝑚,𝑠𝑎𝑚𝑝𝑙𝑒 −  𝑇𝑚,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

Where Tm,sample and Tm,control are the melting temperatures of the sample and control, respectively. 

Measurements are averages of triplicate experiments repeated on 3 separate days unless 

otherwise specified.  

 

 

 

Analytical ultracentrifugation (AUC) 

Sedimentation velocity (SV) experiments were performed in a Beckman Coulter 

ProteomeLab XL-A analytical ultracentrifuge (Beckman Coulter Inc., Brea, CA) at 20.0°C and 

40,000 rpm in standard 2-sector cells using An50Ti or An60Ti rotors. 100 scans were collected 

over an 8-hour period and analyzed in Sedfit (170) using the continuous C(s) model with a partial 

specific volume of 0.55 mL/g for DNA. AUC drug binding experiments were carried out as detailed 

previously (210), with a final compound concentration of 100 μM and 10 μM DNA (10:1 
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[compound]:[DNA]). All compounds with reported stoichiometry from AUC experiments were 

monitored at a wavelength well above 300 nm to ensure DNA had no contribution to estimated drug 

concentrations.  

 

Results and Discussion 

 

We began in vitro screening of the initial 32 compounds against the Tel72 sequence (Table 

4) using circular dichroism melting experiments with ratios of 1:50, 1:100, or 1:200 

[Tel72]:[compound]. This screen resulted in only one compound, C20, which increased the Tm 

(Figure 23A). C20 contains a known G4 interacting scaffold (17) and so was not pursued further. 

Instead, we investigated compound C21, which caused a substantial decrease in the Tm and had 

a unique molecular scaffold (not shown). We confirmed that C21 could bind and stabilize the 

monomeric telomere-derived G-quadruplexes 143D, 2GKU, and 2JSL, as well as the parallel c-

MYC promoter-derived 1XAV by FTSA assays (Figure 24). Surprisingly, treatment with C21 led to 

Tm increases of 5-12°C with monomeric G4s. Thus, C21 stabilizes monomer G4s but destabilizes 

the telomere G4 multimers. Binding of C21 was subsequently verified by AUC studies which 

showed an approximate 2:1 binding ratio with Tel72 (Figure 23C).  
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Table 4. Oligonucleotide sequences used in this study. 
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Name Sequence Length MW (kDa) E260 (M-1cm-1) 

2JSL TAGGGTTAGGGTTAGGGTTAGGGTT 25 7.9 253100 

2GKU TTGGGTTAGGGTTAGGGTTAGGGA 24 7.6 244300 

143D AGGGTTAGGGTTAGGGTTAGGG 22 7.0 228500 

Tel48 (TTAGGGTTAGGGTTAGGGTTAGGG)2 48 15.2 489100 

Tel72 (TTAGGGTTAGGGTTAGGGTTAGGG)3 72 22.8 733400 

1XAV TGAGGGTGGGTAGGGTGGGTAA 22 7.0 190394 
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Figure 23. Screening results for compounds C20 and C21. (A) CD melting plots showing the 

fractional change in ellipticity at 290 nm of Tel72 versus temperature in the presence or absence 

of compounds. Tel72 was at a concentration of 1 μM and the given compounds were at 100 μM. 

BRACO-19 served as a positive control. (B) Representative AUC C(s) versus S distributions of 

Tel72 alone (black, S20,w = 3.45), C21 alone (red), and Tel72 in the presence of C21 (green).  
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Figure 24. FTSA assay results for compounds C20 and C21 with various G4s. (A) derivative curves 

of 143D (black) or 1XAV (red) in the absence (solid lines) or presence (dashed lines) of C20 and 

C21. (B) derivative curves of 2GKU (blue) or 2JSL (green) in the absence (solid lines) or presence 

(dashed lines) of C20 and C21. 
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Based on C21’s confirmed interaction with Tel72 and monomer G4s, we next used 

Molport.com’s similarity search tool to identify 5 compounds with similar scaffolds to test for 

improved selectivity. These compounds were screened by CD melting analysis as above, with no 

clear differences in CD spectra or Tm. However, by FTSA assay, we observed interaction of C37 

with the Tel48 sequence, but not with monomeric telomere sequences (Figure 25). This finding 

was subsequently confirmed by AUC binding studies that showed no binding to the monomeric 

telomere sequences 143D, 2JSL, or 2GKU, and ratios of binding to the higher-order telomere G-

quadruplexes of 1.3:1 [compound]:[Tel48] and 2.3:1 [compound]:[Tel72] (Figure 26B).  

Due to the lack of interaction with the hybrid-1 (2GKU) or hybrid-2 (2JSL) monomeric 

telomere sequences, the above binding stoichiometries indicate that C37 prefers binding between 

the constituent G4s at the junctions, which are absent from the monomer forms. Thus, C37 exhibits 

a unique interaction mechanism that could be beneficial in inhibiting telomere homeostasis. Further, 

C37 is a unique molecular scaffold, making it an excellent lead as a selective telomere binding 

small molecule. Cell-based and selectivity investigations with C37 are ongoing. 
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Figure 25. FTSA melting analysis of various monomer G4s and Tel48 (black) in the presence of 

C36 (red) and C37 (blue). (A) Duplicate results of 143D. (B) Duplicate results of 2GKU. (C) 

Duplicate results of 2JSL. (D) Duplicate results of 1XAV. (E and F) Results of Tel48 melting with 

two different fluorescence emission filters. 
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119 

 

Figure 26. AUC C(s) versus S distributions of Tel48 and Tel72 with compound C37. Compound 

C37 alone is shown in black and exhibits a small peak around 2.1 S, potentially due to molecule 

aggregation. C37 in the presence of Tel48 (red) or Tel72 (green) are shown with dashed lines 

indicating the measured sedimentation coefficient for each species without compounds. C37 was 

measured at a wavelength of 350 nm to avoid any overlap with DNA’s intrinsic absorption. 
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Altogether, in this study we have demonstrated the validity of using atomistic models 

derived from integrated structural biology techniques in structure-based drug discovery campaigns. 

We have identified a novel molecular scaffold, C37, which exhibits a stoichiometric ratio of binding 

to the higher-order telomere G4s suggestive of inter-G4 junctional binding. Further, we demonstrate 

that it does not bind monomeric G4s, making it a unique and compelling lead molecule for future 

investigations. 
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CHAPTER IV 

 

THE HTERT CORE PROMOTER FORMS THREE PARALLEL G-

QUADRUPLEXES 

 

The structure of the 68 nt sequence with G-quadruplex forming potential within the hTERT 

promoter has been disputed. One model featured a structure with three stacked parallel G-

quadruplex units, while another featured an unusual duplex hairpin structure adjoined to two 

stacked parallel and antiparallel quadruplexes. We report here the results of an integrated structural 

biology study designed to distinguish between these possibilities. As part of our study, we designed 

a sequence with an optimized hairpin structure and show that its biophysical and biochemical 

properties are inconsistent with the structure formed by the hTERT wild-type sequence. By using 

circular dichroism, thermal denaturation, nuclear magnetic resonance spectroscopy, analytical 

ultracentrifugation, small-angle X-ray scattering, molecular dynamics simulations and a DNase I 

cleavage assay we found that the wild type hTERT core promoter folds into a stacked, three-parallel 

G-quadruplex structure. The hairpin structure is inconsistent with all of our experimental data 

obtained with the wild-type sequence. All-atom models for both structures were constructed using 

molecular dynamics simulations. These models accurately predicted the experimental 

hydrodynamic properties measured for each structure. We found with certainty that the wild-type 

hTERT promoter sequence does not form a hairpin structure in solution, but rather folds into a 

compact stacked three-G-quadruplex conformation. 
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Introduction 

 

 

G-quadruplexes (G4s) are four-stranded non-B DNA structures formed from Hoogsteen 

hydrogen bonding of guanines to form stacked quartets. G-quadruplexes are known to form in the 

telomeres of a variety of eukaryotic organisms where their role is primarily in telomere homeostasis 

(25,211). Bioinformatic analyses have shown that G-quadruplex sequence motifs are concentrated 

in oncogene promoters (11,12,15), and these promoter G-quadruplexes have been under 

investigation for their ability to modulate gene expression (15). Many promoter G-quadruplexes are 

currently being investigated for their potential in modulating their respective gene products: c-MYC 

(16), KRAS (101), HRAS (102), HIF (103), and VEGF (104).  

 Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase, 

the enzyme primarily responsible for the immortality of cancer cells. hTERT is an important 

oncogene with G4 motifs within its promoter (105,106,144). The hTERT gene encodes the reverse-

transcriptase component of the human telomerase ribonucleoprotein complex (67). Telomerase 

(TERT) is responsible for maintenance of telomeres, and this activity is thought to be vital in cellular 

immortalization (212,213). TERT is normally undetectable in somatic cells (except for stem cells), 

and its aberrant expression is associated with 85-90% of cancers investigated (10,68,69). The 

nearly exclusive expression of TERT in cancer cells has been acknowledged for more than two 

decades as a target for anti-cancer therapies. Many contemporary techniques which target 

telomerase, such as small molecule inhibitors, gene therapy, anti-sense oligonucleotides, and 

immunotherapies, have demonstrated TERT inhibition as a viable mechanism in cancer treatment 

(214). Unfortunately, no direct inhibitors of telomerase have been clinically successful (215). Some 

of the more promising direct inhibitors exhibit severe toxicity in hematopoietic stem cells (216). This 

provides a strong rationale for investigating alternative mechanisms to prevent telomerase activity 

in cancer. 

 The wild type (WT) hTERT core promoter region (approximately -180 to +1 of transcription 

start site) (217) contains twelve tracts of three or more guanines which enable formation of G-
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quadruplexes (105,106,144,145). Functional genetic studies have identified point mutations within 

these G-tracts that are directly linked to increased expression of TERT (218). Two mutations, 

G124A or G146A, are found in 60-80% of urothelial carcinomas (219), 71% of melanomas (220), 

83% of glioblastomas (221), as well as a variety of other cancers. These mutations result in de 

novo formation of E-twenty-six (ETS) transcription factor binding sites and confer a selective 

advantage to cancer cells by allelic recruitment of the transcription factor GABP (219,222). These 

mutations occur within G-tracts 5 and 8, the terminal G-tracts of the second putative quadruplex 

sequence (PQS2) (Figure 27) and have been suggested to impact G-quadruplex transcriptional 

silencing (106,145). This has been supported by a G-quadruplex-stabilizing small molecule 

targeting the hTERT promoter in MCF-7 breast cancer cells (223). Thus, further investigation of the 

secondary structure formed by the promoter DNA sequence is warranted. 
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Figure 27. Comparison of WT and AH sequences and contemporary models. (A) (Top) The wild-

type hTERT core promoter sequence and (bottom) the modified antiparallel hairpin (AH) sequence 

with PQS-1, -2, and -3 indicating the “putative quadruplex forming sequences”, and the artificially 

strengthened hairpin region shown with a dashed line. The purple and gold colors correspond to 

the purple and gold regions in B. Red nucleotides indicate residues that were modified from WT to 

force the formation of the parallel-antiparallel stacked hairpin model as in B. (B) The two current 

models proposed for the secondary structure formed in the hTERT core promoter, three parallel 

stacked (left) and a parallel stacked onto an antiparallel with 8 bp hairpin. The sugar phosphate 

backbone is shown in ribbon, guanines in G-tetrads in blue, and nucleotides involved in the hairpin 

shown in orange. Extraneous loop bases were removed for clarity. The purple “PQS1” region 

reportedly adopts the same parallel conformation in both models, and this sequence has been 

solved (105). The gold region highlights the major difference in the two models, herein referred to 

as the “PQS23” region. 
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The original three studies (105,106,144) of G-quadruplex forming capability of the hTERT 

core promoter utilized a sliding frame approach to identify G-quadruplex formation and stability. 

From left to right (5’ to 3’) in Figure 27A we have designated these putative quadruplex forming 

segments (PQS) as PQS1, PQS2, and PQS3. Isolated PQS1 has been shown to exist as a mixture 

of both parallel and anti-parallel (3+1) structures by nuclear magnetic resonance (NMR) 

spectroscopy (105). Isolated PQS3 was shown to adopt a parallel conformation (105,144), albeit 

with slightly lower stability than PQS1. Further support for the formation of both PQS1 and PQS3 

quadruplexes in the context of the full-length sequence was observed by Taq polymerase stop 

assays (106,144). The PQS2 segment alone does not appear to readily form a G-quadruplex. 

However, using an inverted Taq polymerase stop assay, Micheli et al. (144) observed that the 

PQS2-PQS3 (“PQS23”) region could potentially form stacked parallel G-quadruplexes, implying 

that the inter-quadruplex stacking interface provided a stabilizing effect. This observation is 

substantiated by the large circular dichroism (CD) signal at 260 nm for the WT PQS2-3 sequence 

(223). Micheli et al. (144) proposed a model of “self-organization” that featured three contiguous 

stacked parallel quadruplexes, which stems from stabilization of the PQS2 through terminal G-

quadruplex stacking interactions. That model was supported by subsequent biophysical studies 

combined with molecular dynamics simulations (145) (Figure 27B, left model). Alternatively, 

Palumbo et al. (106) proposed a model based on dimethylsulphate (DMS) foot-printing techniques 

that featured a parallel PQS1 stacked onto an antiparallel/hybrid G-quadruplex with 8-bp hairpin 

loop (Figure 27B, right model). A later study on the same sequence proposed a different structure 

(again based on DMS foot-printing) with a longer hairpin joining two parallel G-quadruplexes (224). 

In both cases (106,224), the CD spectra shown for the folded hTERT sequence lack the signature 

features expected for structures containing a significant amount of hairpin duplex component. In 

addition, both proposed hairpin structures contain several thermodynamically destabilizing features 

including mismatches and bulges. 

The structure of the wild-type hTERT promoter sequence thus remains ambiguous. It is 

important to characterize its structure since it is now considered a target for potential cancer drugs. 
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For any rational structure-based design of drug candidates, it is essential to know the structure 

being targeted with certainty. The goal of our study is to clarify the hTERT promoter structure. 

A challenge in the determination of the structures of long multimeric quadruplex-forming 

sequences is that conventional high-resolution NMR or crystallographic methods have yet to be 

successful, necessitating the use of lower-resolution methods. Herein we report the results of an 

integrated structural biology (225) investigation of the full-length hTERT promoter sequence using 

a battery of biophysical and biochemical approaches. In addition, we implemented what can be 

called a falsum figura (“false shape”) strategy in which we designed and optimized a non-biological 

sequence that is forced into the unusual hairpin structure proposed by Palumbo et al. (106). We 

show that the biophysical and biochemical properties of that structure are unambiguously distinct 

from the structure formed by the wild-type hTERT sequence, indicating that such a structure is not 

the predominate folded form of the native sequence. We used classical spectroscopic techniques, 

hydrodynamic studies, small-angle X-ray scattering, and DNase I digestion as a biochemical probe 

for duplex DNA to characterize the structures, and we built all-atom models using molecular 

dynamics simulations to predict testable experimental properties to distinguish structural models. 

We conclude that the wild-type hTERT promoter sequence forms a compact structure containing 

three stacked parallel G-quadruplex units and that such a structure is the most appropriate target 

for any rational drug design effort. 

 

Materials and Methods 

 

Oligonucleotides 

Oligonucleotides are given in Table 1. Oligos were purchased from either IDT (Integrated 

DNA Technologies, Coralville, IA) or Eurofins Genomics (Louisville, KY) with standard desalting 

unless otherwise specified. Upon receipt, stock oligos were dissolved in MilliQ ultrapure water (18.2 

MΩ x cm at 25°C) at concentrations between 0.1 and 1 mM and stored at -20.0°C until use. Folding 

was achieved by diluting stock oligos into their respective buffer and heating to 99.9°C in a water 

bath for 20 minutes, followed by slow cooling overnight and subsequent storage at 4°C. 
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Table 5. Oligonucleotide sequences used in this study. 
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NAME OLIGONUCLEOTIDE SEQUENCE 5' TO 3' LENGTH MW Ε260 (M-

1CM-1) 

WT GGGGAGGGGCTGGGAGGGCCCGGAGGGGGCTGGGCC
GGGGACCCGGGAGGGGTCGGGACGGGGCGGGG 

68 21633 672671 

WT PQS1 AGGGGAGGGGCTGGGAGGGC 20 6369 202900 

WT PQS12 AGGGGAGGGGCTGGGAGGGCCCGGAGGGGGCTGGGC
CGGGGACCCGGGA 

49 15523 478700 

WT PQS23 AGGGGGCTGGGCCGGGGACCCGGGAGGGGTCGGGAC
GGGGCGGGG 

45 14278 436500 

OP ATGGGTGGGTGGGTGGGCCCTTAGGGTGGGTGGGTCG
GGATGGGTGGGTGGGTGGGT 

57 18145 553100 

AH TGGGAGGGTCTGGGAGGGCCCTTATGGGTCTGGGCCC
GCGACGCGCGAGGCGTCGCGGCTGGGCGGGT 

68 21289 628400 

AH PQS23 TGGGTCTGGGCCCGCGACGCGCGAGGCGTCGCGGCTG
GGCGGGT 

44 13721 398100 

AH Hairpin CCCGCGACGCGCGAGGCGTCGCGGCT 26 7975 230296 

1XAV TGAGGGTGGGTAGGGTGGGTAA 22 6992 228700 

Hairpin 
Duplex 

GCATATATAGGACCCGCGAGCGGTCCTATATATGC 35 10756 339998 
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Buffers 

All buffer reagents, unless otherwise specified, were purchased from Sigma-Aldrich. TBAP 

folding buffer (10 mM tetrabutylammonium dihydrogen phosphate, 200 mM KCl, 1 mM EDTA, pH 

7.0) was prepared by dissolving 3.4 g of tetrabutylammonium phosphate monobasic, 14.9 g KCl, 

and 292 mg of acid EDTA in 10 mL of tetrabutylammonium hydroxide 40% solution in 900 mL of 

MilliQ ultrapure water and adjusted to pH 7.0 before bringing to 1 L (density = 1.0081 g/cm3, 

viscosity = 0.01038 poise). Phosphate (PO4) buffer (8 mM phosphate, 200 mM KCl, pH 7.2) was 

prepared by dissolving 1.0 g K2HPO4, 272 mg KH2PO4, and 13.9 g KCl in 900 mL of MilliQ ultrapure 

water and adjusting pH to 7.2 before bringing to 1 L (calculated density = 1.0081 g/cm3, calculated 

viscosity = 0.00996 poise). DNase I reaction buffer (4x) (80 mM Tris, 8 mM MgCl2, 40 mM KCl, pH 

7.2) was prepared by dissolving 967 mg Tris base, 76 mg MgCl2, and 298 mg KCl in 90 mL of MilliQ 

ultrapure water and adjusted to pH 7.2 before bringing to 100 mL. All buffers were filtering through 

0.2 μm filters before use. 

 

Preparative Size Exclusion Chromatography (SEC) 

Oligonucleotide purification was achieved using SEC as detailed previously (168). Briefly, 

oligonucleotides were annealed at concentrations of 40-100 μM in their respective buffers, filtered 

through 0.2 μm filters, and injected onto an equilibrated Superdex 75 16/600 SEC column (GE 

Healthcare 28-9893-33) using a Waters 600 HPLC system. The flow rate was maintained at 0.5 

mL/min and sample fractions were collected every 2 minutes from 100 to 180 minutes run time. 

The molecular weights of fractionated species were estimated based on a regression analysis of 

elution time vs. log(MW) of protein standards (Sigma #69385), with elution profiles monitored at 

260 nm and 280 nm. Purifications were carried out at room temperature and fractionated samples 

were stored at 4°C prior to concentration and downstream analysis.  

 

DNase I Degradation Assay 

Amplification Grade DNase I was purchased from ThermoFisher and used without further 

modification (ThermoFisher, #18068015). PAGE purified oligonucleotides for the hTERT WT and 
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AH sequences were annealed in TBAP folding buffer (without EDTA) before being concentrated to 

~50 μM in Pierce protein concentrators (ThermoFisher, #88515). The oligonucleotides were 

subsequently diluted to 160 ng/μL in TBAP buffer and mixed in a 2:1:1 with DNase I reaction buffer 

and nuclease free H2O (DNA:RXN-buffer:H2O) to give a final concentration of 80 ng/μL DNA in 10 

μL of reaction mix. The reactions were initiated by the addition of 1 μL DNase I (at 1 unit/μL DNase 

I), incubated at room temperature, and stopped at the indicated time points by the addition of 1 μL 

of 50 mM EDTA solution. The DNase I cleavage products were then resolved on a 5% agarose gel 

(~2.5 hours at ~7 V/cm) with visualization by ethidium bromide or SYBR green stain. Gels were 

imaged using a PharosFX Plus imaging system (BioRad). 

 

Circular Dichroism Spectroscopy (CD) 

CD melting studies and spectra were collected on a Jasco-710 spectropolarimeter (Jasco 

Inc. Eason, MD) equipped with a Peltier thermostat regulated cell holder and magnetic stirrer. CD 

and melting spectra were collected using the following instrument parameters: 1 cm path length 

quartz cuvette, 210 or 240 to 340 nm wavelength range, 1.0 nm step size, 200 nm/min scan rate, 

1.0 nm bandwidth, 2 second integration time, and 4 scan accumulation. Spectra were recorded at 

20.0°C and melting spectra were collected over a range of 4°C to 98°C with 2°C step intervals, 

4°C/min ramp speed, and a 2-minute equilibration time at each temperature before acquisition. 

Spectra were corrected by subtracting a buffer blank. In the case of DNase I degradation assays, 

the blank included DNase I. Spectra were normalized to molar circular dichroism (Δε) based on 

DNA strand concentration using the following equation:  

∆𝜀 =  𝜃/(32982 × 𝑐 × 𝑙) 

where θ is ellipticity in millidegrees, c is molar DNA concentration in mol/L, and l is the path length 

of the cell in cm.  

For CD monitored DNase I reactions, oligonucleotides were prepared as in the standard 

DNase I reactions and diluted to a final strand concentration of 3 μM in 500 μL by mixing in the 

same v/v ratio of DNA, dH2O, and 4x DNase I RXN buffer. Reactions were initiated by adding 50 

μL of DNase I (at 1 unit/μL DNase I) and mixing by pipetting 15 times. Reactions were monitored 
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over a total of 4 hours in a 0.5 cm path length quartz cuvette. Four hours after DNase I addition, 20 

μL of a 100 μM CaCl2 solution was added (for a final concentration of ~3.5 μM Ca2+), and the 

measurements were resumed to ensure that the DNase I was active. 

 

1H Nuclear Magnetic Resonance (1H-NMR) Spectroscopy 

1D 1H-NMR spectroscopy was performed on a Bruker Avance Neo 600-MHz instrument 

equipped with a nitrogen-cooled Prodigy TCI cryoprobe. Experiments were performed at 25.0 or 

40.0ºC using standard 3- or 5-mm NMR tubes. Minimization of water signal was achieved using a 

water flip-back pulse sequence. For each measurement, 1024 complex points were collected with 

an acquisition time of 86 ms. Total scans for each spectrum are as follows: WT (4,096), AH (128), 

OP (128), WT PQS2-3 (128), AH PQS2-3 (4). Samples were prepared by annealing in PO4 folding 

buffer and purified by preparative SEC. Fractions were pooled and concentrated using pre-rinsed 

Pall 3K MWCO concentrators, followed by addition of 5% v/v D2O. Final concentrations at time of 

analysis were: WT (150 μM), WT-XL (200 μM), AH (225 μM), optimized parallel (140 μM), WT 

PQS2-3 (285 μM), and AH PQS2-3 (285 μM). After concentration an aliquot was removed from 

each sample and analyzed by CD and AUC to ensure that there were no conformational changes 

due to concentration.   

 

Analytical Ultracentrifugation (AUC) 

Sedimentation velocity (SV) experiments were performed in a Beckman Coulter 

ProteomeLab XL-A analytical ultracentrifuge (Beckman Coulter Inc., Brea, CA) at 20.0°C and 

40,000 rpm in standard 2-sector cells using An50Ti or An60Ti rotors. 100 to 150 scans over an 8-

hour period were collected and analyzed in Sedfit using the continuous C(s) model. For the hTERT 

oligonucleotides (“WT” and “WT PQS23”) a concentration series of purified oligonucleotide was 

used to correct for any non-ideal concentration-dependency in sedimentation. This was done using 

the following concentrations and respective wavelengths: 2.5 mg/mL (306 nm), 1.25 mg/mL (302 

nm), 0.5 mg/mL (298 nm), 0.125 mg/mL (290 nm), 0.05 mg/mL (272 nm), and 0.01 mg/mL (260 

nm) at 20.0°C and 40k rpm. Buffer densities and viscosities used in the SV analyses are provided 
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in the buffers section, and the partial specific volume was held constant at 0.55 mL/g. All large oligo 

sequences (>~45 nt) regardless of purity at time of purchase had a propensity to aggregate under 

normal annealing conditions. Thus, all SV experiments were conducted directly after SEC 

purification, except when correcting for concentration effects. Estimation of weight averaged 

frictional ratios (f/fo) of the monomeric WT sequences were carried using Sedfit’s C(s,ffo) model, 

with a frictional ratio resolution set to 10 and sedimentation coefficient resolution of 100.   

 

SEC Resolved Small-angle X-ray Scattering (SEC-SAXS) 

SAXS was performed at BioCAT (beamline 18ID at the Advanced Photon Source, Chicago) 

with in-line size exclusion chromatography. Samples in a modified PO4 buffer (8 mM PO4, 185 mM 

KCl, 15 mM NaCl, 1 mM EDTA, pH 7.2) were loaded onto a Superdex 75 10/300 GL column, which 

was run at 0.7 ml/min using an AKTA Pure FPLC (GE Healthcare Life Sciences) and the eluate 

after it passed through the UV monitor was directed through the SAXS flow cell, which consists of 

a 1 mm ID quartz capillary with 50 μm walls. A co-flowing buffer sheath was used to separate the 

sample from the capillary walls, helping prevent radiation damage (172). Scattering intensity was 

recorded using a Pilatus3 1M (Dectris) detector which was placed 3.5 m from the sample giving 

access to a q-range of 0.004 Å-1 to 0.4 Å-1. A series of 0.5 second exposures were acquired every 

2 seconds during elution and data was reduced using BioXTAS RAW 1.6.3 (173). Buffer blanks 

were created by averaging regions flanking the elution peak and subtracted from exposures 

selected from the elution peak to create the I(q) vs. q curves used for subsequent analyses. More 

information on SAXS data collection, reduction and interpretation can be found in Table 6. 
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Table 6. Tabulated collection parameters, data reduction methods, and data analyses for small-

angle X-ray scattering data. 
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(a) Sample Details.           

 Sequence name WT OP AH WT PQS23 AH PQS23 

Organism synthetic synthetic synthetic synthetic synthetic 

Source IDT IDT IDT IDT IDT 

Extinction coefficient (nearest 
neighbor approximation) (M-1cm-1) 672671 553100 628400 436500 398100 

vbar (cm3/g) 0.55 0.55 0.55 0.55 0.55 

M from chemical composition (Da) 21633 18145 21289 14278 13721 

SEC-SAXS column, 10 x 300 
Superdex 75      

    Loading concentration (mg/ml) 4.0 3.7 13.3 5.2 6.5 

    Injection volume (μL) 300 300 240 250 260 

    Flow rate (ml/min) 0.75 0.75 0.75 0.75 0.75 
Solvent (solvent blanks taken 
from SEC flow-through prior to 
elution of protein) 

8 mM PO4, 185 
mM KCl, 1 mM 
EDTA, pH 7.2 

8 mM PO4, 185 
mM KCl, 1 mM 
EDTA, pH 7.2 

8 mM PO4, 185 
mM KCl, 1 mM 
EDTA, pH 7.2 

8 mM PO4, 185 
mM KCl, 1 mM 
EDTA, pH 7.2 

8 mM PO4, 185 
mM KCl, 1 mM 
EDTA, pH 7.2 

            

(b) SAXS data-collection 
parameters.      

Instrument/data processing BioCAT facility at the Advanced Photon Source beamline 18ID with Pilatus3 1M (Dectris) detector 

Wavelength (Å) 1.033 

Beam size (μm) 150 (h) x 25 (ν) 

Camera length (m) 3.5 

q measurement range (Å-1) 0.004-0.4 

Absolute scaling method N/A 

Normalization To transmitted intensity by beam-stop counter 

Monitoring for radiation damage Automated frame-by-frame comparison of relevant regions 

Exposure time, number of 
exposures 0.5 s exposure time with a 2 s total exposure period (0.5 s on, 1.5 s off) of entire SEC elution 

Sample configuration 
SEC-SAXS with sheath-flow cell(172), effective path length 0.542 mm. Size based separation by 
an AKTA Pure with a superdex 75 10/300 GL column 

Sample temperature (°C) 23 

      

(c) Software employed for SAXS data reduction, analysis, and interpretation. 

SAXS data reduction 
Radial averaging; frame comparison, averaging, and subtraction done using BioXTAS RAW 
1.6.3(173) 

Extinction coefficient estimate Nearest neighbor approximation 

Basic analyses: Guinier, P(r), Vp 
Guinier fit, Kratky analysis, and molecular weight using BioXTAS RAW 1.6.3, P(r) function using 
PRIMUSqt(175)   

Shape/bead modelling  DAMMIF(226) via ATSAS online (https://www.embl-hamburg.de/biosaxs/atsas-online/) 

Atomic structure modelling CRYSOL from PRIMUSqt in ATSAS v2.8.4(186) 

Three-dimensional graphic model 
representations  UCSF Chimera v1.11(176)  

(d) Structural parameters. 
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Guinier analysis           

    I(0) (cm-1) 
0.000359 ± 
0.0000011 

0.000989 ± 
0.0000035 

0.00395 ± 
0.0000045 

0.00131 ± 
0.0000032 

0.00322 ± 
0.0000034 

    Rg (Å) 21.93 ± 0.12 16.46 ± 0.12 24.78 ± 0.052 17.05 ± 0.08 20.38 

    qmin (Å-1) 0.0092 0.0068 0.0043 0.0111 0.0074 

    qRg max (qmin = 0.0066 Å-1) 1.33 1.3 1.27 1.3 1.27 

    Coefficient of correlation, R2 0.981 0.956 0.992 0.983 0.996 

    M from Vc (ratio to predicted) 23100 (1.07) 15200 (0.84) 23300 (1.09) 16400 (1.15) 16400 (1.20) 

P(r) analysis       

    I(0) (cm-1) 
0.00036 ± 
0.000001 

0.00099 ± 
0.0000028 

0.004 ± 
0.0000041 

0.0013 ± 
0.0000024 

0.0032 ± 
0.0000032 

    Rg (Å) 21.97 ± 0.47 16.51 ± 0.24 24.77 ± 0.09 17.03 ± 0.21 20.36 ± 0.09 

    Dmax (Å) 79 53 79 47 66 

    ꭕ2 (total estimate from GNOM) 0.79 0.75 0.98 0.85 0.94 

    Porod volume (Å-3) (ratio 
Vp/calculated M) 27900 (1.29) 17100 (0.94) 28100 (1.32) 17700 (1.24) 16800 (1.22) 

      

(e) Shape model-fitting results           

DAMMIF (default parameters, 15 
calculations)      

    q range for fitting (Å-1) 0.01-0.35 0.006-0.35 0.007-0.32 0.006-0.35 0.006-0.35 

    Symmetry, anisotropy 
assumptions P1, none P1, none P1, none P1, none P1, none 

    NSD (standard deviation), No. 
of clusters 0.88 (0.07), 4 0.51 (0.02), 5 1.18 (0.12), 3 0.82 (0.8), 2 1.00 (0.08), 3 

    ꭕ2 range 0.964-0.965 1.153-1.157 1.089-1.091 1.043-1.045 1.509-1.520 

    Constant adjustment to 
intensities  

Unable to 
determine 

Unable to 
determine 

Unable to 
determine 

Unable to 
determine 

Unable to 
determine 

    Resolution (from SASRES) (Å) 26 ± 2 17 ± 2 30 ± 2 23 ± 2 27 ± 2 

    M estimate as 0.5 x volume of 
models (Da) (ratio to expected) 18338 (0.85) 11156 (0.61) 18770 (0.88) 11988 (0.84) 12256 (0.89) 

    

(f) SASBDB IDs for data and 
models.           

ID SASDHM3 SASDHP3 SASDHN3 SASDHQ3 SASDHR3 
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Molecular Dynamics simulations 

Molecular dynamics simulations were carried out on the hTERT models created previously 

(145) with modifications of bases where necessary using the “swapna” command in UCSF Chimera 

1.12 (176) and manual alterations in starting atomic configurations using Schrӧdinger’s Maestro 

11.8 (https://www.schrodinger.com/). Coordinating counter ions (K+) were manually added between 

G-quartet stacks and minimized prior to simulations. The PDB structures were imported into the 

xleap module of AMBER16 (https://ambermd.org/), neutralized with K+ ions, and solvated in a 

rectangular box of TIP3P water molecules with a 15 Å buffer distance. All simulations were 

equilibrated using sander at 300 K and 1 atm using the following steps: (1) minimization of water 

and ions with weak restraints of 10.0 kcal/mol/Å on all nucleic acid residues (2000 cycles of 

minimization, 500 steepest decent before switching to conjugate gradient) and 10.0 Å cutoff, (2) 

heating from 0 K to 100 K over 20 ps with 50 kcal/mol/Å restraints on all nucleic acid residues, (3) 

minimization of entire system without restraints (2500 cycles, 1000 steepest decent before 

switching to conjugate gradient) with 10 Å cutoff, (4) heating from 100 K to 300 K over 20 ps with 

weak restraints of 10.0 kcal/mol/Å on all nucleic acid residues, and (5) equilibration at 1 atm for 100 

ps with weak restraints of 10.0 kcal/mol/Å on nucleic acids. The output from equilibration was then 

used as the initial.rst input file for 100 ns of unrestrained MD simulations using pmemd with GPU 

acceleration in the isothermal isobaric ensemble (P = 1 atm, T = 300 K). Periodic boundary 

conditions and PME were used. 2.0 fs time steps were used with bonds involving hydrogen frozen 

using SHAKE (ntc = 2). The hairpin structure was manually placed in three different starting 

configurations and simulated three separate times until convergence was obtained. Trajectories 

were analyzed using the CPPTRAJ module in the AmberTools16 package (https://ambermd.org/). 

Hydrodynamic properties were calculated as average and standard deviation over 100 equally 

spaced trajectory snapshots, unless otherwise specified, using the program HYDROPRO10 (179) 

with the recommended parameters (180). G-quartet associated potassium ions were included (and 

added to the molecular weight) in the hydrodynamic calculations. Values are reported as average 

and standard deviations across 100 evenly spaced snapshots of the trajectories. Clustering of the 
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hTERT trajectory was performed as described (http://www.amber.utah.edu/AMBER-

workshop/London-2015/Cluster/) using the CCPTRAJ module of Amber.  

 

Molecular Visualizations 

All molecular visualizations of MD trajectories and models were performed in UCSF Chimera v1.12 

(176). 

 

Results 

 

Sequence design and logic 

In the 2014 report from Chaires et al. (145) the authors noted that a parallel-antiparallel-

hairpin structure, such as proposed by Palumbo et al. (106), should have a CD spectrum distinctly 

different from that observed for the WT sequence. To validate this assertion, we modified the WT 

hTERT sequence to generate an optimal sequence that would fold into the hairpin structure 

proposed by Palumbo et al. (106) to contrast its properties with that of the WT sequence (Table 5, 

AH). The AH sequence was designed to include base substitutions (G>T) to restrict G-quadruplex 

formation to runs of only 3 guanines and modified residues in the putative hairpin region to 

maximize hairpin formation and concomitantly disfavor G-quadruplex formation. It is worth noting 

that a significant number of modifications (15 out of 68 WT bases) were required to stabilize the 

hairpin structure, as fewer mutations resulted in mixtures of two or more species. We also created 

an optimized all-parallel structure (Table 5, OP) using three runs of a canonical parallel G-

quadruplex motif which retains a 6-nucleotide modified non-guanine-containing loop sequence 

similar to the WT (Figure 27A, segment between PQS1 and PQS2).  OP was designed to minimize 

possible G-register exchange (227) and thereby minimize heterogeneity while retaining the three-

stack G4 structure. In addition, several truncated sequences were designed to contain isolated 

structural elements of the longer wild-type form. These represent the first (PQS1), first and second 

(PQS12), and second and third (PQS23) G4 forming regions of hTERT WT. A high-resolution 

structure of PQS1 has been reported that can be integrated into our structural models (105). For 
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the AH sequence analogs, a hairpin-G4 structure (AH-PQS2-3) and an isolated duplex hairpin (AH-

hairpin) were designed. Table 5 contains the complete list of sequences used in this study. 

 

Circular dichroism and DNase I cleavage assays reveal only G-quadruplex moieties 

within the wild type hTERT core promoter sequence.   

We began our structural investigations using CD spectroscopy in potassium buffer. The 

differences in the spectra of folded WT and AH are unambiguous (Figure 28A). Consistent with 

earlier reports (106,144,145), the strand-normalized hTERT WT spectrum exhibited strong positive 

molar ellipticity at 260 nm, a trough at 240 nm, and a small trailing shoulder at 290 nm. This large 

260 nm amplitude is consistent with a high degree of anti-anti guanine base steps (44,196), typical 

of parallel quadruplexes, and could only arise from stacking of a large number of G-quartets. 

Indeed, the CD amplitude at 260 nm is linearly correlated with the number of stacked, parallel, G-

quartets (228), so we can estimate from these data that the folded WT sequence contains 9 stacked 

quartets. In contrast, the AH spectrum has only a modest peak at 260 nm, a trough at 245 nm, and 

a relatively larger shoulder at 290 nm when compared with the WT. We found that the WT CD 

spectrum could be reconstructed by addition of spectra obtained with the truncated sequences, 

PQS1 and PQS23 that are known to form only parallel quadruplex structures (Figure 28B, Table 

5). In contrast, the AH spectrum can only be reconstructed using a combination of parallel G4 [PDB 

ID: 1XAV (229)], antiparallel-hybrid G4 (196), and duplex hairpin CD spectra (Figure 28C). The 

low amplitude at 260 nm for AH is consistent with the contribution of three stacked G-quartets in 

the parallel conformation, while the pronounced shoulder near 290 nm arises from a three-quartet 

antiparallel contribution. The assumed B-form duplex contributes comparatively little to the CD 

spectra (230). 
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Figure 28. CD spectra for WT, AH, and their putative component spectra. (A) Strand-normalized 

CD spectra of the WT and AH sequences annealed in the presence of 200 mM K+, showing distinct 

differences in the troughs (~240 nm vs. 245 nm), peak height at 260 nm, and shoulder at 290 nm. 

(B) The WT sequence can be faithfully reconstructed (dashed line “sum”) from the addition of the 

PQS1 (red) and PQS23 (green) fragment spectra which adopt parallel topologies in 200 mM K+ 

buffer (as shown below). (C) The AH spectrum can be reconstructed (dashed line “sum”) from the 

addition of the parallel 1XAV (red), a hairpin (green), and an antiparallel G-quadruplex spectrum 

(blue). 
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The Hurley group recently re-investigated using DMS foot-printing the WT hTERT 

sequence (224) and suggested formation of a different, larger hairpin which putatively forms within 

the internal PQS2 region, sandwiched between two outer parallel G4s (PQS1 and PQS3). Other 

DNA conformational forms might contribute to CD spectra.  We reasoned that it may be possible 

for the hairpin to adopt an A-form duplex (44), and that perhaps this might contribute to the CD 

magnitude at 260 nm, compensating for the magnitude expected for a parallel quadruplex forming 

within PQS2, complicating interpretation of the CD spectra. As an independent, selective, test for 

the presence of duplex regions we used an enzymatic assay to probe the structures. Any proposed 

hairpin structure, whether in B- or A-form, should be susceptible to cleavage by deoxyribonuclease 

I (DNase I), while parallel G4 structures should remain undigested due to the occluded phosphate 

backbone (231,232). Upon treatment with DNase I (Figure 29) we found that the WT sequence is 

entirely protected from DNase I cleavage while AH is degraded into discrete components (Figure 

29A & B). Further, the AH cleavage bands observed after 10 minutes at ~14 and ~8 base pairs are 

approximately the sizes expected for cleavage of the antiparallel hairpin (Figure 30) (233). A 

scaled-up DNase I cleavage reaction was also monitored using CD spectroscopy, revealing that 

there was no discernable change in the WT CD spectrum but a significant alteration of the AH CD 

(Figure 29C & D). The shapes of the difference spectra observed in Figure 29D for the digestion 

of AH over the course of the DNase I digestion are consistent with the degradation of a B-form 

duplex domain within the structure. Overall, these results clearly demonstrate that a DNase I-

susceptible hairpin is not detectable in the WT hTERT core promoter sequence. 



 

144 

 

Figure 29. DNase I cleavage susceptibility assay. (A) Representative agarose gel showing DNase 

I treatment times (NT = no treatment) in minutes for WT or AH sequences after annealing in TBAP 

(without EDTA). The gel shows that the WT sequence is not sensitive to nuclease cleavage, 

whereas the AH sequence is cleaved into discrete bands by 10 minutes treatment time. (B) 

Densitometry of the AH lanes from A with dashed lines showing the appearance of discrete bands 

at ~14 bp (or ~28 nt) and ~8 bp (or ~16 nt). (C & D) CD difference plots showing the change in CD 

signal over the DNase I treatment time course. In both windows the left Y-axis corresponds to the 

black curves, which is the strand-normalized ellipticity of the WT or AH sequence pre-DNase I 

treatment. The right Y-axis corresponds to the colored spectra which (from blue to red) indicate the 

change in CD (difference spectra) from the original spectrum due to DNase I treatment. (C - Inset) 

Color scale representing time interval from addition of DNaseI (Blue, time = 0) to end of experiment 

(Red, time = 4 hours). The right Y-axis is scaled such as to emphasize where changes are 

occurring. 
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Figure 30. Proposed mechanism of hairpin cleavage by DNase I. (A) Schematic representation of 

the optimized hairpin region of the antiparallel hairpin (AH) sequence, with putative cleavage sites 

and fragment sizes indicated by red lightning bolts. (B) (Left) Structure of the antiparallel hairpin 

derived from MD simulations with GAC/CTG cleavage site colored as in A. (B, right) X-Ray 

crystallography-derived structure of DNase I (orchid ribbon) bound to the d(GGTATACC)2 duplex 

(PDB ID: 1DNK (234)) with phosphate backbone cleavage site represented as atoms and catalytic 

histidine residues displayed in green (some ribbon and residues have been omitted for clarity). 
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Treatment of the optimized, G4-stacked, OP structure, or the truncated WT sequence (“WT 

PQS23”) with DNase I had no cleavage effect, consistent with the absence of any duplex structure. 

A slight degradation over time was observed in the WT PQS12. In contrast, the AH truncated 

sequence (“AH PQS23”) and the control AH hairpin sequence alone (“HP”) were completely 

degraded by 15 minutes (Figure 31). 
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Figure 31. DNase I protection assays of truncated sequences. Agarose gel separation of DNase I 

treated nucleotide sequences with oligo name and time (in minutes) of DNase I treatment indicated 

above each lane. The ladder is an ultra-low range DNA ladder that spans from 300 to 10 bp.
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1H-NMR confirms that the WT hTERT sequence forms only parallel quadruplexes. 

We next analyzed the WT and modified sequences at the atomic level using 1H-NMR to 

gain a better understanding of the secondary structures giving rise to the observed CD spectra 

(Figure 28).  Figure 32A shows the Hoogsteen and Watson-Crick imino proton region of the 1H-

NMR spectra (~10-14.6 ppm) for the WT, AH, OP, and truncated PQS23 sequences (Figure 32A 

& C), along with their respective CD spectra (Figure 32B & D). In the WT spectrum (Figure 32A, 

black) we observed a very broad envelope encompassing the guanine Hoogsteen imino protons 

between ~10 and 12 ppm, indicative of G-quadruplex formation, along with a slight, almost 

negligible, signal at ~12.9 ppm.  In contrast, we find that the spectrum of AH exhibits the expected 

Watson Crick-like (W.C.) base-pairing interactions for a hairpin in the region from 12.6-13.6 ppm, 

along with a broad envelope in the Hoogsteen G-quadruplex region from 10.8-12 ppm, confirming 

the presence of both duplex and G-quadruplex structures. The contrasting behavior of WT and AH 

show that there is no appreciable duplex base pairing in the unmodified hTERT sequence. 

Additional sequences were also studied by NMR. The OP sequence displays only G-quadruplex 

imino proton shifts in the range of 10-12 ppm, with no signals within the W.C. range. The OP 

sequence was created as a reference “idealized” three-parallel G-quadruplex system with minimal 

loops connecting the stacked G4 units. Figure 32B shows that the WT and OP sequences exhibit 

nearly identical magnitude and shape from 220 to 270 nm by CD, the only difference being the 

shoulder at ~290 nm in the WT spectrum. Importantly, we find that the strand-normalized integrated 

intensity in the Hoogsteen imino proton signals for the OP and WT sequences is 1.1:1 (Figure 33). 

The truncated WT PQS2-3 and AH PQS23 sequences also show a clear difference by 

NMR and CD (Figure 32C & D). With the removal of PQS1 (and ~6 nt connecting loop region), we 

find that the AH PQS23 imino proton spectra resolves ~12 G-quadruplex peaks, the number 

expected for a single three-tetrad G-quadruplex, with the same number W.C. imino peaks as the 

full-length AH construct. This is in clear contrast to the WT PQS23 segment, which displays almost 

twice as many G-quadruplex imino peaks by integration (1.8:1). Taken with their respective CD 

spectra, this clearly demonstrates that the full-length and truncated WT sequences preferentially 

form only parallel G-quadruplexes. 
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Figure 32. 1H-NMR spectra and corresponding CD spectra of WT, AH, OP, and truncated 

sequences. (A & C) Proton imino spectra from 10 to 14.6 ppm showing Watson-Crick and 

Hoogsteen type imino proton shifts for the OP, AH, WT, and truncated sequences WT PQS23 and 

AH PQS23. Intensities in A are only approximate, whereas concentrations and intensities in C are 

the same. (B & D) Strand-normalized CD spectra corresponding to spectra in A and C, respectively. 
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Figure 33. Full 1H-NMR spectra comparing the WT, AH, and OP and regions for scaling. Scaling 

of the Hoogsteen imino region peak intensities are approximate. The blue and black dashed regions 

represent the areas used for normalizing W.C. or Hoogsteen imino proton peaks to strand 

concentration. 
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Hydrodynamic size and shape of the WT sequence indicates a very compact and 

globular structure. 

Hydrodynamic experimentation and modeling methods (235) have gone hand-in-hand in 

structural biology for over 75 years (236). It is now routine in our laboratory to use experimental 

hydrodynamic properties of nucleic acids to infer, and iteratively refine, their structural models using 

molecular dynamics modeling simulations (78,163,237). These techniques have allowed for the 

study of a wide array of DNA conformations in their native state and under biologically-relevant 

conditions (238). We used this powerful approach to examine the annealed and SEC-purified WT, 

AH and truncated hTERT promoter sequences by hydrodynamic, X-ray scattering, molecular 

dynamics and bead modeling methods. 

To discern differences in the overall hydrodynamic shapes formed by the sequences listed 

in Table 5 we employed analytical ultracentrifugation sedimentation velocity (AUC-SV) 

experiments to determine sedimentation coefficients from which molecular weights and frictional 

coefficients may be easily calculated. The results are tabulated in Table 7. Figure 34 shows the 

significant difference in sedimentation coefficient distributions for the folded WT and AH sequences 

by C(s) species analysis (170). There is very little overlap between the WT and AH c(s) 

distributions, indicating different hydrodynamic shapes. The corrected S20,w values for WT and AH 

sequences were 3.86 ± 0.01 and 3.25 ± 0.09, respectively (Table 7)—the former WT value being 

consistent with our earlier report (145). (We note that the C(s) distribution of the WT shows a very 

slight heterogeneity with a few percent of the sample sedimenting between 2-3 S.) 
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Figure 34. Experimental and calculated sedimentation coefficient distributions. The red and black 

curves are representative SEDFIT C(s) distributions of the WT (black) and AH (red) sequences 

corrected to density and viscosity of water at 20.0°C (S20,w). The overlaid histograms are of 

sedimentation coefficient values (S20,w) obtained from hydrodynamic calculations of PDB frames 

extracted from 100 ns of explicit solvent MD trajectories for the stacked parallel model (black) or 

the hairpin model (red). 
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Table 7. Comparison of hydrodynamic properties measured by AUC-SV experiments with values 

calculated from molecular dynamics trajectories of given models. The table is organized such that 

the models with the best agreement from calculations are nearest their respective experimental 

values. 
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WT WT PQS2-3 AH AH PQS2-3 

Property Exp. 
Parallel 
Stacked 
(calc.) 

Exp. 
Parallel 
Stacked 
(calc.) 

Exp. 
Hairpin 
(calc.) 

Exp. 
Hairpin 
(calc.) 

Sedimentation 
Coefficient, 
S20,W (x10-13 S) 

3.86 
(±0.01) 

3.89 
(±0.03) 

2.95 
(±0.03) 

2.96 
(±0.05) 

3.25 
(±0.09) 

3.30 
(±0.05) 

2.70 
(±0.01) 

2.64 
(±0.03) 

Molecular 
Weight (kDa) 

24.0 
(±0.13) 

22.0 16.5 
(±0.15) 

14.5 24.4 
(±1.44) 

21.5 16.8 
(±0.68) 

14.0 

Stokes 
Radius, Rs 
(nm) 

2.46 
(±0.01) 

2.22 
(±0.02) 

2.22 
(±0.04) 

1.96 
(±0.03) 

2.56 
(±0.07) 

2.58 
(±0.03) 

2.49 
(±0.07) 

2.14 
(±0.02) 

Frictional 
Ratio, f/fo 

1.42 1.26 1.45 1.26 1.7 1.54 1.6 1.45 
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A similar trend was also observed for the truncated sequences WT PQS2-3 and AH PQS2-

3 (S20,w values of 3.0 and 2.7, respectively) (Figure 35). Since the molecular weights of the pairs 

of sequences in question are approximately the same (given the limit in experimental accuracy), 

the measured sedimentation coefficients directly report the particle frictional coefficients that reflect 

differences in shape. These data indicate that all WT sequences are much more compact than their 

AH counterparts. 

To rationalize these differences in size and shape, as well as the secondary structure 

derived from CD and NMR studies, we used molecular dynamics simulations and hydrodynamic 

calculations to refine the most plausible structural models (237). These models were constructed 

based on the proposed secondary structures (Figure 27) in conjunction with coordinates from the 

protein databank (PDB). The WT all-parallel stacked and hairpin models were used from previous 

work (145), with the latter modified to reflect the AH sequence with optimized duplex base pairing 

given in Table 5. Truncated models were created simply by removal of the PQS1 and 6 nt loop 

region. Each model was subjected to 100 ns of unrestrained, fully solvated molecular dynamics 

simulation. The resulting MD trajectories were then used to calculate the hydrodynamic properties 

of each system (Table 7) using HYDROPRO10 (179), which calculated the sedimentation and 

diffusion coefficients. These experimentally accessible measures were extracted from PDB 

coordinates of structures in evenly spaced frames throughout the trajectories to obtain statistically 

meaningful ensemble values (visualized as the histogram in Figure 34 and averages in Table 7). 

We found that the sedimentation coefficient for the all-parallel stacked molecular dynamics-

derived model agreed extremely well with the WT experimental value (calculated S20,w = 3.89 ± 

0.01 vs. experimental S20,w = 3.86 ± 0.03). The AH hairpin model also agreed well with the AH 

experimental sedimentation coefficient (calculated S20,w = 3.30 ± 0.05 vs. experimental S20,w = 3.25 

± 0.09) (Figure 34, Table 7). The agreement between WT PQS23 with a two-parallel stacked model 

was even closer (calculated: 2.96 ± 0.05 vs. experimental: 2.95 ± 0.03). The AH-PQS23 model was 

also consistent with experimental data (calculated S20,w = 2.64 ± 0.03 vs. experimental S20,w = 2.70 

± 0.01) (Table 7, Figure 35). The calculated and experimental S20,w values were effectively within 

experimental error in all cases. These hydrodynamic studies show that the folded hTERT WT 
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promoter is too compact to contain an extended 8 bp hairpin. In addition, it must contain fully 

stacked G4 units, since the more extended models with a displaced terminal G4 unit predict a 

sedimentation coefficient distinctly different from the observed experimental value. 
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Figure 35. AUC-SV analysis and models of the WT and AH truncated oligonucleotides. (A) SEDFIT 

C(s) distributions for the WT (black) and AH (red) PQS23 oligonucleotides in potassium buffer 

showing a distinct difference in sedimentation coefficients. (B) Molecular dynamics-derived models 

of the hairpin (left) and parallel stacked (right) PQS23 oligonucleotide with extraneous loop bases 

removed for clarity. Yellow represents the sugar phosphate backbone, blue represents guanines 

involved in G-tetrad formation, and orange indicates nucleotides involved in hairpin formation. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

164 

 

 

 



 

165 

 

Small-angle X-ray scattering (SAXS) 

Figure 36 shows the results of SEC-SAXS experiments obtained with folded hTERT 

constructs. Table 6 provides complete details of SAXS experiments, with all information suggested 

by recent publication guidelines (174). Several general qualitative conclusions can be drawn by 

inspection of these plots (192,195). Figure 36A-B show the primary SAXS data. The double 

logarithmic plots of the scattering intensity for the WT, OP and AH structures (Figure 36B), 

revealing distinct differences between the structures. It is clear that scattering of WT is different 

from AH. The use of in-line size exclusion chromatography ensured the absence of contaminating 

species and sample monodispersity, which was also demonstrated by the Guinier plots shown in 

Figure 36C, which are linear for all samples (residuals plot for linear fits for all samples are shown 

to the right of panel C). Parameter estimates for the radii of gyration (Rg) obtained by analysis of 

Guinier plots are given in Table 6. 

The differences between the WT, AH and OP are further illustrated by the pair-distance 

distribution (Figure 36D). The hairpin structure is inconsistent with the observed scattering of the 

folded wild-type hTERT sequence. For a homogeneous structure, the exact character of the P(r) 

plot depends on particle shape (e.g. globular, prolate, oblate) and the domain structure of the 

particle (239). The shape of the AH P(r) curve (Figure 36D, red), with a pronounced multimodal 

character, suggests the presence of multiple domains within the structure, consistent with the 

presence of an extend hairpin coupled to G4 units. In contrast, the WT P(r) curve (Figure 36D, 

black) is more symmetrical, indicative of a more compact structure. OP was designed to optimize 

the stacked G4 structure. Accordingly, the P(r) curve for OP (Figure 36D, green) is more symmetric 

(but still with a trailing edge at larger distances), consistent with a compact three-stacked G4 

structure with an elongated shape. All P(r) plots yielded radii of gyration which were within 0.1 of 

those derived from Guinier approximation (Table 6). 

 Kratky plots (Figure 36E) for WT, AH and OP provide a qualitative appraisal of the degree 

of unfolding and the flexibility of samples (240). Compact, fully folded particles are expected to 

exhibit a Gaussian shaped curve, while unfolded or flexible particles would show nonzero plateau 

regions at high q. The major observation from the data in Figure 36E is that WT and OP (Figure 
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36E black and green, respectively) are  clearly distinguishable from AH (Figure 36E, red line). A 

hairpin structure is inconsistent with their scattering data. WT and OP curves reach zero at high q, 

with nearly Gaussian shapes, indicating that they are fully folded and globular. In contrast, AH 

shows a more complex curve. While it seems to be nearly fully folded as judged by its intercept on 

the x-axis, the data for AH show a distinct plateau in the q range spanning 0.05-0.15 that indicates 

particle flexibility. We attribute this flexibility to the region linking the hairpin to the G-quadruplex 

domain, which was observed in our MD simulations (not shown). These data demonstrate that the 

WT sequence folds into a distinctly different compact globular structure. Figure 37 shows the 

scattering behavior of the partial hTERT constructs WT-PQS23 and AH-PQS23. The general 

behavior and trends are similar to what was seen for the full-length constructs. Importantly, the 

more asymmetric hairpin-G4 structures can be clearly distinguished from compact, globular G4 

structures. 
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Figure 36. SEC-SAXS results for the WT (black), AH (red), and OP (green) oligonucleotides. (A) 

I(q) versus q as log-linear and (B) log-log plots. (C) Guinier plots (with fits shown in blue) for qRg < 

1.3, along with corresponding residual plots (right). (D) P(r) versus r profiles from the data in (a and 

b) normalized to equal areas. (E) Normalized Kratky plots for the data in (a and b). Collection 

parameters, I(0), Rg, Dmax, and other values can be found in Table 6.  
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Figure 37. SEC-SAXS results for the WT (black) and AH (red) PQS23 truncated oligonucleotides. 

(A) I(q) versus q as log-linear and (B) log-log plots. (C) Guinier plots (with fits shown in blue) for 

qRg < 1.3 along with corresponding residual plots (right). (D) P(r) versus r profiles from the data in 

(a and b) normalized to equal areas. (E) Normalized Kratky plots for the data in A and B. 
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Ab initio bead models for WT, OP and AH were obtained using the DAMMIF program (226), 

with the results shown in Figure 38. The key point from inspection of these shapes is that both 

hairpin structures, AH and AH PQS23 (Figures 38C & 38E), feature clear protuberances that are 

absent from all other structures. These protuberances are most likely the hairpin duplex domain. 

We are aware of the utility of SAXS data in more detailed atomistic structural modeling of 

macromolecules with conformational heterogeneity (164,183,184). Efforts in that direction are 

currently underway in our laboratory. 
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Figure 38. Ab initio bead model results for the WT, OP, AH, and truncated oligonucleotides. 

Averaged and filtered DAMMIF bead models for the OP (A), WT (B), AH (C), WT PQS23 (D), and 

AH PQS23 (E) oligonucleotides. All models are displayed at the same scale. 
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Thermal denaturation of hTERT structures 

Figure 39 shows thermal denaturation studies, monitored by CD, for WT and AH 

structures. There are clear differences between the two structures, with hairpin-containing AH 

noticeably less stable. In 200 mM KCl (Figure 39A, right  most panel), melting of WT is incomplete 

even at 98°C, while AH is clearly less thermally stable with a Tm near 79°C. By lowering the KCl 

concentration to 10 mM, complete thermal denaturation curves for both structures were obtained 

(Figure 39B). The right most panel shows that AH is thermodynamically less stable than WT. The 

apparent Tm values for WT and AH are 82.5 and 65.2°C, respectively, in 10 mM KCl. The 17.3 °C 

difference in Tm shows unambiguously that the hairpin-containing structure is thermodynamically 

less stable. A more detailed thermodynamic analysis of the thermal stabilities of WT and AH using 

CD and differential scanning calorimetry will be the subject of a manuscript that is in preparation. 
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Figure 39.  CD thermal denaturation profiles of the hTERT WT and antiparallel hairpin sequences. 

(A) Strand-normalized CD spectra from 220 to 320 nm over 4 to 98 °C for the WT and AH 

sequences annealed in potassium phosphate buffer with 200 mM KCl (left) with normalized melting 

curves (right). (B) Strand-normalized CD spectra (left) and melting curves (right) for WT and AH 

sequences annealed in phosphate buffer with 10 mM KCl. 
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Discussion 

 

The results of our integrated structural biology approach show conclusively that the 68-nt 

wild-type hTERT promoter DNA sequence folds into a compact G-quadruplex structure that lacks 

any hairpin duplex domain. A structure with three stacked G4 units in the parallel conformation is 

both qualitatively and quantitatively consistent with our biophysical and biochemical data (circular 

dichroism, thermal denaturation, analytical ultracentrifugation, SEC-small angle X-ray scattering, 

nuclear magnetic resonance, DNase I cleavage assays, and molecular dynamics). An optimized 

hairpin-containing structure based on the model proposed by Palumbo et al. (106) shows 

unambiguously different biophysical and biochemical properties from the wild-type sequence. 

Figure 40 shows a detailed model of the hTERT promoter structure obtained by our 

molecular dynamics simulations. This model integrates the high-resolution structure of the PQS1 

region that was obtained by NMR by Phan and coworkers (105). The model features nine stacked 

G-quartets (arising from three stacked parallel G4 units), consistent with the large experimental CD 

amplitude observed in Figure 28. This model accurately predicts the experimentally observed WT 

hTERT sedimentation coefficient (Figure 34) and is qualitatively consistent with the SAXS data in 

Figure 36. Several features of the structure are of interest. Apart from the G4 stacking interactions, 

the structure shows several stabilizing loop-loop interactions, which are consistent with slight 

contributions to the WT 1H-NMR of base-base interactions (small peak at ~12.9 ppm) and the lack 

of these in the designed OP 1H-NMR (Figure 32). In addition to the K+ ion coordination sites within 

G-quartets, the loop topology presents additional specific K+ binding sites. This structure presents 

unique groove and interfacial geometries for small molecule binding interactions. Overall, the model 

in Figure 40 represents an excellent target structure for rational drug discovery and development. 
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Figure 40. MD-derived model of the three-stacked parallel hTERT G-quadruplex. All-atom model 

of the stacked hTERT system (5’ top, 3’ bottom) showing phosphate backbone in tan, nucleotides 

in blue and potassium atoms in purple. This structure was derived from clustering over 100 ns of 

explicit solvent MD. The potassium ions observed in the central tetrad cavity, loops and grooves 

were observed in 66% of all frames used in clustering. 
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One of the major difficulties encountered in studying G-rich DNA sequences in their 

biological context is in dealing with G-tracts with greater than three guanines or with numbers of G-

tract greater than four. These sequences are known for forming multiple isoforms through G-

register exchange and changes in loop directionality, and often require base modifications such as 

inosine or thymine substitutions to select for only one structure (42). This phenomenon was 

observed in the hTERT PQS1 sequence (105,241). The physical consequence of G-register 

exchange, as shown by the Mittermaier lab (227), is an entropic stabilization of the folded state 

(albeit an ensemble of folded states). In addition to the five runs of three guanines, the full-length 

hTERT core promoter sequence has six runs of four guanines (G4) and one run of five guanines 

(G5) (Figure 27). This equates to a theoretical 192 isomers ([6 x G4] x [1 x G5] which is 26  x 31) 

when in the all-parallel stacked conformation, whereas this number decreases substantially to only 

~48 if in the hairpin conformation proposed by Palumbo et al. (106,227). This implies that the all-

parallel stacked WT sequence would have an inherent entropic advantage over the hairpin 

structure, as well as increased thermodynamic stability, which is reflected in Figure 39.  

Such conformational heterogeneity is also evident in structural characterizations. While the 

heterogeneity complicates interpretation of biophysical data, it in fact represents the reality of wild-

type sequences whose complexities must be considered instead of being expeditiously simplified 

by arbitrary sequence modifications. In Figures 32 and 33 we observed a clear broadening of all 

peaks in 1H-NMR measurements of the WT sequence, suggesting the presence of parallel G-

register isomers. This broadening was not exhibited by OP, which is by design a single, all-parallel 

stacked conformer. Moreover, we observed minor amounts of hTERT species with differing 

sedimentation coefficients (Figure 34, shoulder at ~2.4 S). A possible explanation for this 

discrepancy is that there is a dynamic equilibrium between parallel stacked and unstacked 

structures. Alternatively, this could be attributed to a mixture of slow and fast rearrangements (such 

as G-register sliding or folding), which depending on the timescales, could easily complicate 

analyses (240,242). Overall, however, the major form appears consistent with the stacked 

conformation as in Figure 40. 
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G4 stacking and multimerization is now a well-known phenomenon (20). Various G-

quadruplex stacking interfaces have been characterized (243-245), and the physical forces 

involved investigated (54). All of these studies support a 5’-3’ (head to tail) stacking mode, 

consistent with our model. However, our understanding of the biological relevance of G4 stacking 

is lacking. In promoters, stacked G4 structures are now speculated to be involved in a variety of 

roles, primarily as unique recognition sites for proteins, enhanced sensing of ligands through 

cooperativity, or as concentration-dependent G4 biological switches (20). In line with this is the 

unique opportunity of selective gene expression modulation via small molecules which stabilize or 

disrupt these stacking interfaces.  

We have shown that these higher-order structures can be successfully examined using an 

integrated structural biology approach, coupled with judicious sequence design to create additional 

test structures with contrasting or confirmatory features. There are thousands of sequences in 

promoter regions in the human genome that have greater than four runs of multi-guanine tracks, 

yet almost all remain uncharacterized. An in-depth examination and understanding of these 

potential multimeric quadruplex structures will lead to the identification of unique binding sites and 

a potentially more selective way to target these G4 regions in the genome for transcription 

regulation.
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CHAPTER V 

 

G-QUADRUPLEX VIRTUAL DRUG SCREENING: A REVIEW 

 

Over the past two decades biologists and bioinformaticians have unearthed substantial 

evidence supporting a role for G-quadruplexes as important mediators of biological processes. This 

includes telomere damage signaling, transcriptional activity, and splicing. Both their structural 

heterogeneity and their abundance in oncogene promoters makes them ideal targets for drug 

discovery. Currently, there are hundreds of deposited DNA and RNA quadruplex atomic structures 

which have allowed researchers to begin using in silico drug screening approaches to develop 

novel stabilizing ligands. Here we provide a review of the past decade of G-quadruplex virtual drug 

discovery approaches and campaigns. With this, we introduce relevant virtual screening platforms 

followed by a discussion of best practices to assist future G4 VS campaigns. 
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Introduction 

 

 

G-quadruplexes (G4s) are secondary structures which occur in both DNA and RNA under 

physiologically relevant conditions (25). G4s contain 2 or more stacks of 4 coplanar guanine 

residues stabilized via Hoogsteen hydrogen bonding. The stacking interaction is also facilitated by 

monovalent cations, such as sodium and potassium, as well as π-stacking of the purine bases 

(Figure 41) (40). Although it is unclear what promotes G4 formation in vivo, they are increasingly 

implicated in important biological events such as telomere maintenance, transcription regulation, 

mRNA translation, and replication (25,116,246-250). More recently, chromatin immunoprecipitation 

and high through-put sequencing analyses have provided in vivo evidence for the presence of 

~9,000 non-telomeric G-quadruplexes that reside in nucleosome-depleted promoter regions, 

confirming many of the previously proposed regulatory G4s (31,251). Thus, G-quadruplexes 

appear to be excellent targets for anti-cancer therapeutics (248). 
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Figure 41. G-quadruplex structure. (A) Orientation of guanines in a G-quadruplex quartet. (B) 

Monovalent cations often occupy the middle of two quartets, helping to stabilize the partial negative 

charge shared among the O6 oxygen of adjacent quartets. Phosphate backbone is shown as 

vertical black lines. 
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Currently there are greater than 1,000 characterized G-quadruplex stabilizing ligands that 

have been discovered through virtual screening (VS), traditional high-throughput screening (HTS), 

and plenty of serendipity (see: http://g4ldb.org/ for a listing of many verified G4 ligands). Although 

many of these compounds (TMPyP4, pyridostatin, telomestatin, BRACO-19, etc.) bind with high 

affinity to G4s, it is often by an end-pasting mechanism and, therefore, non-specific. Furthermore, 

these compounds commonly do not possess drug-like properties, e.g. they do not pass Lipinski’s 

rule of five (252), nor do they have documented ADMET (absorption, distribution, metabolism, 

excretion, and toxicity) profiles (87). Extensive work has gone into modifying general end-pasting 

drug scaffolds such as porphyrins (253-256), phenanthrolines (257-260), anthracenes (261,262), 

naphthalenes (263), and quinolones (264,265) (Figure 42A-E). Only Quarfloxin (CX-3543) (Figure 

43A), an end-paster, has progressed to clinical trials (15). Alternative G4 drug discovery strategies 

have focused on developing ligands that target the loops and grooves. An example groove-binding 

ligand is distamycin A (Figure 43B) which was shown by Randazzo et al. to interact with the 

grooves of the parallel tetramolecular quadruplex [d(TGGGGT)]4 by 1H-NMR (proton nuclear 

magnetic resonance spectroscopy) studies (266,267). Unfortunately, most G4 groove-binding 

ligands have poor selectivity over double-stranded DNA (dsDNA), which was the case for 

distamycin A and netropsin (268) (Figure 43C). To address this selectivity problem, many 

researchers have turned to VS drug discovery methods. 
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Figure 42. Common G-quadruplex “end-pasting” molecular scaffolds found in the literature. (A) 

porphyrin, (B) phenanthroline, (C) anthracene, (D) naphthalene, (E) quinoline. 
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Figure 43. Structures of (A) Quarfloxin, (B) Distamycin A, and (C) Netropsin. 
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VS strategies have been building momentum in G4 drug discovery both as a low-cost 

enrichment step and as a lead development step in the discovery pipeline, which our laboratory 

has previously discussed (269). Whereas traditional HTS methods rely on obtaining and screening 

hundreds or thousands of compounds from curated libraries, VS simply requires knowledge of 

known ligand structures (for similarity and pharmacophore searches) or a receptor structure to 

which a library of virtual compounds can be docked. These methods are known as ligand-based or 

receptor-based drug discovery, respectively. Ligand-based methods use an identified set of known 

active ligands to search a database for compounds that have similar properties. These techniques 

operate under the assumption that ligands with a similar 2D or 3D structure will offer similar 

interactions with their targets. Conversely, receptor-based methods screen virtual libraries against 

a target structure, and so require an X-ray crystallographic, NMR, or homology-derived 3D atomistic 

model of the target. These coordinate files can be downloaded from databases such as the Protein 

Data Bank (PDB) (>133,000) or the Nucleic Acid Database (NAD) (>900), which are continuously 

being updated with new structures. 

VS platforms have been extensively used in ligand discovery (270,271), however, until 

now, there has not been an assessment of strategies specifically targeting G4s. Here we briefly 

discuss some of the common screening strategies, such as docking and pharmacophore screening, 

as well as relevant aspects including: library preparation, scoring, and analysis. This is followed 

with a commentary on suggested best practices for in silico G4 drug discovery based on the 

authors’ own experience and knowledge gleaned from successful campaigns. 

 

Pharmacophore & Similarity Based Screening 

Ligand-based methods such as pharmacophore and similarity search platforms are widely 

used and often integrated into a VS docking campaign pre- and/or post-docking (see section on 

docking below). The term ‘pharmacophore’ as we use it refers to an abstract, 3D physio-chemical 

representation of the chemical moieties necessary for ligand-receptor interaction. Pharmacophore 

screens use multiple ligands of the same binding site to derive an ensemble of chemical features 

necessary for an ideal interaction (i.e. hydrogen bond donor/acceptor, aromatic ring elements, 
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cations, anions, etc.). The resulting model is known as a hypothesis. These hypotheses, which are 

3D chemical descriptors, are then used to screen a virtual library to find “pharmacophore-similars” 

that satisfy the hypothesis (272). The result is a list of compounds that are ranked for their 

probability of favorable interactions based on their physical and chemical similarity to the initial 

query structure. Various pharmacophore search platforms are available such as Pharmer (ZINC) 

(273), Discovery Studio’s 3D-QSAR module (Accelrys: http://accelrys.com/products/discovery-

studio), LigandScout (Inteligand) (274), MOE (Chemical Computing Group) (275), Phase 

(Schrӧdinger) (276), SYBYL-X2.1.1 (Certera) (http://tripos.com), and Pharao (Silicos) (277).  

An example of a successful G4 pharmacophore screening campaign comes from Chen et 

al. (278) in which the authors used Discovery Studio’s 3D-QSAR pharmacophore generation 

module to construct a model based on acridine derivatives. By weighting hydrophobic interactions 

higher than aromatic interactions in the hypothesis the authors enriched for compounds with 

scaffolds unlike the acridines. This was achieved by screening their own in-house library. The 

resulting compound was a triaryl-substituted imidazole derivative (Figure 44A) that has a KD of 0.5 

μM against a human telomere G4 and displayed selectivity over dsDNA based on circular dichroism 

(CD) and fluorescence melting experiments. Interestingly, this compound is very similar to the 

triaryl-pyridines discovered previously (279) (Figure 44B). 
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Figure 44. Structures of (A) a triaryl imidazole and (B) a triaryl pyridine. 
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The second and most rapid ligand-based strategy is known as a structural similarity search. 

These platforms require only knowledge of active ligand’s chemical composition (i.e. a chemical 

structure). In the past, this method utilized a rigid-body alignment approach using 2D (2-

dimensional) and 3D chemical fingerprints to align and rank each molecule. This method was 

enhanced with the advent of semi-flexible and flexible superposition algorithms that allow for a 

more comprehensive search in 3D space by ranking each molecule based on the volume overlap 

within the query structure. See (280) for a more in-depth discussion.  

The structural similarity software vROCS (OpenEye) (https://docs.eyesopen.com/rocs/) 

has been utilized by Musumeci et al. (281) to screen the Maybridge (http://www.maybrdige.com) 

HitFinder database (~14,400 compounds) using Distamycin A (Figure 43B) as a query. Using the 

Tanimoto coefficient (Section 6.4) and vROCS’s colour scoring (atom/feature similarity) criteria the 

authors discovered a set of novel G-quadruplex groove-binding ligands (Figure 45A-C). These 

ligands bound with higher affinity to the grooves of human telomeric quadruplexes over dsDNA 

[detected by UV-Vis, fluorescence, and oligo affinity support analysis (281)] but had no observable 

melting temperature (Tm) shift. It was also shown that 3 of the 7 compounds induced a DNA 

damage response at the telomeres, further confirming their G4 binding activity. While this isn’t the 

first reported campaign using vROCS in G4 drug discovery (282) it is a proof-of-concept that this 

relatively straight forward lead-discovery approach can enrich for novel scaffolds which interact in 

a favorable manner. 
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Figure 45. Structures of the human telomere groove-binding ligands discovered by Musumeci et 

al. 
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Libraries 

Arguably the most important consideration in virtual screening methodologies is the 

selection of compound library. VS libraries contain hundreds to millions of virtual compounds that 

will inevitably dictate the scaffold diversity of resultant hits. The benefit of using large, diverse 

libraries is the expanded chemical search space. Fortunately, there are many large libraries 

available: MayBridge (http://www.maybrdige.com), AnalytiCon (https://ac-

discovery.com/screening-libraries/), ZINC (http://zinc.docking.org/), ChemDiv 

(http://www.chemdiv.com/services-menu/screening-libraries/), SPECS (http://www.specs.net), 

Mcule (https://mcule.com/database/), eMolecules (https://www.emolecules.com), PubChem 

(https://pubchem.ncbi.nlm.nih.gov/), Life Chemicals (http://www.lifechemicals.com), ChemBridge 

(http://www.chembridge.com/screening_libraries/). Some databases, such as the ZINC database, 

offer sub-libraries for a more tailored search (e.g. lead-like, fragment-like, drug-like, and natural 

products), which often contain readily purchasable or synthesized compounds. Conversely, some 

researchers choose to develop their own curated libraries (278,283) that can be beneficial when 

the user has limited computing resources available. 

The biggest challenge is finding the optimal balance among speed, accuracy, and library 

composition. A library of ~1 million compounds docked to a single receptor will take as little as 

weeks to as much as a year of computing time with a single workstation using a rigorous algorithm. 

Many researchers have circumvented this by reducing libraries to smaller, more manageable 

subsets that only contain, compounds that conform to a predefined criterion. Specifically, using a 

shape-based or pharmacophore search on a library, one can significantly reduce the size and 

enrich for chemical moieties that are well suited to the system of interest [see (278,281,282,284-

286)]. However, limiting searches to a pre-defined chemical search space introduces significant 

bias and is bound to limit compound diversity.  

Alternatively, increased computing power by use of a research cluster or computing grid 

can greatly reduce the computational time required for a screening campaign of >1 million 

compounds (287). The authors have had success using grid computing which can dock as many 

as ~25 million compounds in just a few days to a single receptor site (269). While grid computing 
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is becoming more commonplace in research institutes, not everyone has access to large-scale 

grids. Therefore, care must be taken if curating a library to be docked at a smaller scale. Hand 

picking small subsets of compounds can lead to significant bias (see discussion section below), or 

worse, no enrichment of meaningful hits (288). 

 

Docking 

Docking has been in use since the early 80’s and has gained traction commensurate to the 

number of published protein and nucleic acid structures since (289). In general, docking seeks to 

use the physical and chemical information provided by an atomistic receptor to dock whole or 

fragmented molecules from a library and rank them using a scoring function. Each docking platform 

has its own algorithm as well as flavor of scoring function, which has made cross-platform 

comparisons difficult (290-292). The lack of convergence onto any one platform is likely due to the 

unique features inherent to each, such as: cost, speed, scoring terms, ease-of-use, scalability, 

receptor flexibility, ligand flexibility, and the option of implementing molecular dynamics (MD) force 

fields. 

There are multiple docking platforms suitable for use with nucleic acid receptors. These 

include: DOCK v4-6 (UCSF) (293), AutoDock (Scripps) (294), AutoDock Vina (Scripps) (295), 

GOLD (Cambridge Crystallographic Data Centre) (296), Surflex-DOCK (BioPharmics) (297), Glide 

(Schrӧdinger) (298), and ICM (Molsoft) (299). Many of these programs have been compared 

elsewhere in the context of protein docking (300). The authors have also compared two of these 

platforms, Surflex-DOCK and AutoDock, in the context of nucleic acids (301). Both platforms 

performed equally well with Surflex being slightly faster and more easily scalable. DOCK, 

AutoDock, AutoDock Vina, and GOLD are all freely available to academic institutions. Each docking 

platform varies with respect to sampling algorithms and scoring functions.  

A sampling algorithm is a systematic way to sample from a population of possible molecular 

conformations and binding modes without exhausting all possibilities. The primary hurdle in docking 

is the vast number of potential docked positions for a given set of molecules. Minimizing the 

computational time necessary for each docking run is of prime importance for high-throughput 
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screening. Strategies to minimize computational time include: library optimization (reduced size, 

generation of tautomers, protonation, filtering), robust computational infrastructure (computing 

grids), and selection of the appropriate sampling algorithm(s). Such sampling algorithms include: 

geometric matching algorithms (GM), incremental construction methods (IC), Monte Carlo (MC) 

searches, genetic algorithms (GA), and molecular dynamics (MD) [see ref. (302) for an overview]. 

Table 8 lists the various algorithms employed by the docking platforms discussed here. 
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Table 8. Docking platforms and algorithms presented and discussed in this review. 
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Docking Platform Algorithm 

Glide  OPLS-AA force field optimization with Monte-Carlo refinement 
(FFMC/MD) 

ICM Flexible Monte-Carlo (MC) 

AutoDock Vina Flexible Monte-Carlo (MC) 

DOCK V4-V6 Geometric matching and Incremental (GM/IC/MD) 

AutoDock  Flexible Genetic Algorithm (GA) 

GOLD Flexible Genetic Algorithm (GA) 

Surflex-DOCK  Hammerhead fragment-based algorithm and Genetic algorithm 
(IC/GA) 
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Docking: Geometric Matching (GM) 

The first sampling algorithm, which is used in versions 4-6 of DOCK (303), shares 

characteristics with similarity or pharmacophore search algorithms. DOCK (v4-6) uses a geometric 

matching (GM) algorithm to place fragments into the receptor. In this algorithm the receptor is 

treated as a rigid object in which flexible ligands are docked. The receptor is defined by a set of 

overlapping spheres, while each ligand is defined by rigid segments whose conformation can be 

optimized within the user-defined binding site. The ligand ‘flexibility’ comes from an anchor-and-

grow algorithm that uses the molecule’s rotatable bonds to partition it into rigid segments. Initial 

docked segments are deemed ‘anchors’, and from these anchors the remainder of the molecule is 

appended, followed by optimization and scoring (293). By mapping each molecule into the active 

site of a receptor, GMs have the advantage of being very rapid techniques and well suited for large 

database screening (293,300). The recent release of DOCK v6 has added features that allow much 

more versatility to both the docking and scoring functions. Most importantly it has incorporated MD 

simulation capabilities (304), validated using a set of RNA-ligand complexes.  

Park and Kang used DOCK (v5.4) in conjunction with the UNITY-3D pharmacophore 

platform to identify three compounds (Figure 46A-C) that stabilize the c-MYC G-quadruplex (284). 

The authors filtered 560,000 compounds from publicly accessible databases, ChemDiv and 

SPECS, based on a query generated in UNITY-3D. The resulting set of compounds were energy 

minimized and then docked into an NMR-derived c-myc quadruplex (PDB ID: 2A5R). The authors 

optimized this receptor by changing inosine bases back to their original wild type bases followed 

by short energy minimization. After docking and scoring, each compound was re-scored using a 

Generalized Born solvent accessible surface area (GBSA) scoring function to account for solvation. 

Interestingly, the top three compounds showed little or no thermal stabilization based on Fӧrster 

resonance energy transfer (FRET) screening, but were diverse in structure, and had polymerase 

stalling ability as well as in vivo activity in Ramos, CA46, and HeLa cell lines. 
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Figure 46. Structures of the reported c-myc quadruplex stabilizing compounds from Kang et al.  

 

 



 

205 

 

 

 

 

 

 



 

206 

 

Docking: Incremental Construction (IC) 

The incremental construction (IC) docking approach fragments the ligand where it has 

rotatable bonds and systematically docks each fragment. This allows for very rapid flexible ligand 

docking and is employed by DOCK (v4+) and Surflex-Dock. The Surflex-Dock approach, which is 

an adaptation of the Hammerhead docking procedure (305), places head fragments from each 

ligand into the receptor site and aligns them to ‘probe’ atoms. These probes are predefined 

idealized representations of favorable interactions. After placement, each head fragment is scored, 

and the top scoring fragments are retained. The algorithm next aligns the tail fragments to the head 

fragments and adjacent probes and scores them. In this way there is a drastic reduction in 

computation time by only following up with a small portion of possible conformations (301).  

As an example of successful IC docking, Hou et al. identified a novel c-myc stabilizing 

ligand with the Surflex-Dock platform (306). Using the NMR derived quadruplex (PDB ID: 1XAV) 

the authors docked 28,530 compounds from the ChemBridge database, which was filtered for 

compounds containing ≥3 aromatic rings. These compounds were subsequently re-docked to a 

duplex DNA structure (PDB ID: 1Z3F) and scored based on intercalation. A third round of docking 

and scoring was performed on each compound, this time in the groove(s) of a duplex DNA (PDB 

ID: 1K2Z). Compounds with a score ratio of >1.0 (G4 score/ dsDNA score) and >1.1 (G4 score/ 

Groove score) were chosen. Although the resultant top hit, a pyrollopyrazine derivative (Figure 

47A) was less effective than the control compound SYUIQ-5 (Figure 47B) in luciferase assays, it 

was much more selective for the G-quadruplex over dsDNA as determined by surface plasmon 

resonance assays. Furthermore, there are no similar reported scaffolds in the G4 ligand database, 

indicating that this is a novel quadruplex stabilizing ligand. 
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Figure 47. Structures of (A) a pyrollopyrazine compound which stabilizes the c-myc quadruplex 

discovered by Hou et al. and (B) SYUIQ-5. 
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Docking: Stochastic Sampling 

ICM, AutoDock Vina, AutoDock, Glide, Surflex-Dock, and GOLD are platforms that 

incorporate the stochastic algorithms: Monte Carlo (MC) and genetic algorithms (GA). Stochastic 

sampling algorithms iteratively generate new molecular conformations to be placed and scored 

using random movements (MC) or ‘mutations’ and ‘selection’ (GA). Although stochastic algorithms 

can be computationally more expensive than GM or IC methods alone (301), they have traditionally 

out-performed in reproducing poses of ligands co-crystallized with their receptors (300). 

 

Docking: Stochastic Sampling (MC) 

In MC algorithms, each ligand’s initial conformation is altered through random steps of 

bond rotation, rigid-body translation, or rotation, and subsequently scored until a pre-defined 

number of steps have been reached. At each step, the score is assessed based on steric conflict 

that is followed by an empirical potential calculation (see Scoring section below). If this new step 

has improved the score sufficiently, then the molecule’s configuration will be saved and used in 

another iteration of random conformational sampling (307). MC sampling is used in ICM, Glide, 

AutoDock Vina, and earlier versions of AutoDock. 

ICM has previously been shown to perform exceedingly well at reproducing the correctly 

docked conformation of ligands to protein receptors over DOCK, AutoDock 3.0, and GOLD (308). 

In 2010, Lee et al. (309) used ICM-Pro to screen a natural products database (AnalytiCon) of 

20,000 compounds against the c-myc nuclear hypersensitivity element III1 (NHE III1) G4, which 

was modified from a human telomeric quadruplex structure (PDB ID: 1KF1). Testing the top 5 

scoring compounds in polymerase stop assays resulted in the discovery of fonsecin B (Figure 

48A), a naphthopyrone pigment, which at the time of discovery was a novel scaffold. Later, Chan 

et al. (310), using the same modified receptor (PDB ID: 1KF1) and docking platform (ICM-Pro), 

screened 3,000 compounds from a library of FDA approved drugs. This screening campaign led to 

the identification of methylene blue (Figure 48B), a phenothiazinium derivative. Methylene blue is 

already known to be a dsDNA intercalator and is likely a G4 end-paster. Thus, the authors modified 

this scaffold with side chains to improve selectivity. Interestingly, one derivative (Figure 48C) had 
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higher affinity for the c-myc quadruplex both in vivo (luciferase assays, MTT proliferation assays), 

as well as in vitro (fluorescent intercalator displacement assay, PCR stop assay, mass spec, UV-

vis). The Ma group later applied the same approach (ICM-Pro targeting c-myc PDB ID: 1KF1) (311) 

to screen a natural product-like database of 20,000 compounds to identify potential groove-binding 

scaffolds by limiting their search space to the grooves. This screen resulted in a compound 

containing carbamide, diphenyl ether, and tetracyclic moieties (Figure 48D), which is a unique G4 

scaffold. NMR titration and re-docking were then used to show that the ligand is a de facto groove-

binder. Whether this ligand is specific for G-quadruplexes over dsDNA has yet to be determined.  
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Figure 48. Structures of (A) fonsecin B, (B) methylene blue, and the c-myc quadruplex stabilizing 

compounds (C) a methylene blue derivative discovered by Chan et al., and (D) a carbamide 

containing compound discovered by Ma et al.  
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Another MC software which offers speed, a user-friendly interface, and great reproducibility 

of co-crystallized conformations (312) is AutoDock Vina. Vina was used by Alcaro et al. (285) in 

2013 as a final step in their screening pipeline where they discovered a psoralen derivative (Figure 

49). Psoralens have long been known as DNA intercalators; however, this is the first reported 

instance of psoralens as G-quadruplex stabilizers. Their initial screening began with the ZINC 

library of >2.7 million compounds, which were filtered down to ~4,000 compounds using 7 query 

structures in shape-based ROCS [Rapid Overlay of Chemical Structures (313)] and 2D fingerprint 

filter MACCS (Molecular ACCess System – MDL Information Systems inc.). This screen was 

followed by the removal of inorganic components, adjusting pH to 7.4, energy minimizing the 

structures, and finally, removing compounds that have a similarity of less than 0.7 Tanimoto 

coefficient (see Screening Analysis section below). Altogether, ~7,000 compounds were docked in 

AutoDock Vina using ensemble docking against the human telomere quadruplexes (PDB ID: 143D, 

1KF1, 2HY9, and 2JPZ). This integrated VS approach resulted in 904 compounds that were 

clustering to obtain 28 compounds for testing, resulting in the psoralen. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

214 

 

Figure 49. The psoralen derivative discovered by Alcaro et al., which stabilized the human telomere 

quadruplexes.   
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Docking: Stochastic Sampling (GA) 

GA sampling uses a molecule’s location, orientation, and conformation to specify the state 

of a random population of individuals. These individuals have a genotype (the ligand’s states) and 

a phenotype (atomic coordinates) and the ligand’s overall fitness is equivalent to its interaction 

energy with the receptor. Individuals from the initial top scoring population are iteratively “mated” 

and have offspring that gain random mutations (state changes) as well as inherit genes (states) 

from both parents, known as “crossover”. Selection of each offspring for subsequent mating occurs 

based on the individual’s fitness score (314). Algorithms such as these can be computationally 

expensive, but have traditionally performed well at reproducing known ligand orientations in active 

sites (300). GOLD and AutoDock (v3.0+) use this type of sampling method.  

Kaserer and colleagues used GOLD (282) in parallel with the structural similarity search 

ROCS(313) and the pharmacophore search LigandScout (274) to find consensus hits between the 

three techniques. The pharmacophore models were generated based on the human telomere 

quadruplexes in complex with naphthalene diimide derivative BMSG-SH-3 (PDB ID: 3SC8), 

naphthalene diimide derivative MM41 (PDB ID: 3UYH), and berberine (PDB ID: 3R6R). Overall, 

they found 252 unique hits from the Specs.net database. Next, using vROCS, they selected the 9 

best-performing shape-based models, which were based on queries derived from co-crystallized 

ligands (PDB IDs: 3UYH, 3SC8, 3R6R) or from the energy-minimized ligand. Using an Implicit Mills-

Dean force field, with additional weighting for aromatic interactions, they found 2620 hits. Last, the 

authors selected the human telomere quadruplex (PDB ID: 3CE5) to directly dock the Specs library. 

From this screen, the top 10 ranked molecules were selected. In total from the three techniques, 5 

consensus compounds and 30 other top scoring compounds were tested, plus some derivatives. 

Overall, they found 14 ligands (Figure 50) that were active and had affinities that compared well 

with other contemporary VS screening approaches (278,285,315,316). This tour de force campaign 

demonstrated that a combined approach with cross validation can significantly enrich for real hits, 

although it did not produce much scaffold diversity.  
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Figure 50. Structures of the 14 compounds discovered by Kaserer et al. using a multi-platform 

consensus approach to target the human telomere quadruplexes. 
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Autodock (v4.2) remains a powerful tool in identifying G4 groove-binding ligands. In 2009, 

Cosconati et al. (317) used Autodock to screen the Life Chemicals database of ~6,000 compounds 

against the tetramolecular, parallel G4 sequence [d(TGGGGT)]4 (PDB ID: 1S45) using a grid 

enveloping just one of the identical grooves. The compounds were scored and selected based on 

visual inspection. Specifically, compounds unable to form H-bonds with guanine bases or establish 

electrostatic interactions with the backbone phosphates were removed. Thirty top-scoring 

compounds were selected and used in NMR titrations, which resulted in an impressive 6 out of 30 

interacting as groove-binders. This study was followed up with a more in-depth investigation by 

Trotta et al. (318) showing that 3 of these compounds (Figure 51A-C) bind with higher affinity to 

the grooves of [d(TGGGGT)]4 than distamycin A using isothermal titration calorimetry (ITC) and 

NMR. Similarly, Di Leva (319) used Autodock to screen ~19,000 compounds from the ChemDiv 

database against the 24 nt human telomere quadruplex (PDB ID: 2GKU). Out of the 18 compounds 

tested, one (Figure 51D) showed significant thermal stabilization and appeared to interact as a 

groove-binder based on NMR and re-docking experiments. The identified benzylpiperidine-

containing compound was also shown to cause telomere damage in three cancer lines (HeLa, 

U2OS, HT29), but not a normal fibroblast line (BJ-hTERT). Subsequently, Amato et al. (320) used 

Autodock to screen ~59,000 compounds from the Mcule database against a G-triplex structure 

(PDB ID: 2MKM), an apparent intermediate state in the G-quadruplex folding pathway (321). 15 

compounds were selected for purchase, but only one (Figure 51E) had significant stabilizing ability. 

Although this compound did not distinguish G-quadruplex from G-triplex, it did have selectivity for 

the higher order structures over dsDNA. Thus, these studies are undeniably a testament to 

Autodock’s ability to successfully enrich for compounds which target the grooves of G-

quadruplexes. 
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Figure 51. Structures of (A-C) the parallel groove-binders discovered by Trotta et al. and (D) the 

human telomere interacting groove-binder discovered by Di Leva. (E) The dual G-quadruplex/G-

triplex stabilizing compound discovered by Amato et al. 
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Docking: Stochastic Sampling and MD 

MD is primarily associated with simulations of molecular and macromolecular systems but 

is also applied to other modeling techniques such as docking. MD has long been used as a method 

to simulate structural changes and molecular interactions at the resolution of atoms using force 

fields (322). Force fields are the equations that are solved to determine the potential of a given 

system and are necessary to determine the force acting on each atom. Once a force is determined, 

Newton’s laws of motion can dictate the new atomic position (323). The forces, therefore, must 

consider each atom’s charge, bond length, and angle relative to all other atoms in each system. 

Thus, docking that utilizes MD allows for the ultimate amount of flexibility of ligand and receptor, 

resulting in efficient local optimization of docked ligands (300,302). Unfortunately, this level of 

flexible sampling comes with a high computational cost (324), and so is typically only used as a 

post-docking refinement step or in estimations of binding free energy (325). 

Glide incorporates both MC and MD in its algorithm and performs well relative to other 

flexible algorithms (GOLD, ICM) in protein docking (300). Glide (grid-based ligand docking with 

energetics) docks in essentially two stages: (1) each ligand is passed through hierarchical filters 

that evaluate spatial fit and complementarity of ligand-receptor interactions and, (2) poses that pass 

the initial screen are subjected to MD minimization based on the OPLS-AA force field (optimized 

potentials for liquid simulations – all atom force field) (324). Kar and colleagues (286) applied Glide 

(v5.7) SP (standard precision) mode to dock 14,400 molecules from the Maybridge  database, 

followed by re-docking with the more extensive XP (extra precision) mode to the human telomere 

quadruplex (PDB ID: 2ld8). A docking site was not selected, rather, the authors constructed a grid 

encompassing the entire quadruplex. Two G4 ligands (Figure 52A, B) were selected from this 

screen and were shown to have moderately low affinities (KD of 31 and 137 μM), as measured by 

fluorescence titrations, but had selectivity over GC-rich dsDNA.  
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Figure 52. Structures of the two telomere interacting compounds discovered by Kar et al. with 

moderate selectivity for G4s over dsDNA. 
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In a mixed pharmacophore/docking approach, Rocca et al. (326) used the pharmacophore 

screen LigandScout (274) to generate hypotheses based on 9 ligands known to bind DNA and RNA 

G4s. The ligand conformations for hypothesis derivation were extracted from top-ranked docked 

positions in the human telomere or TERRA (TElomeric Repeat-containing RNA) quadruplexes 

(PDB IDs: 3CE5, 2KBP). 257,000 natural product compounds from the ZINC database were 

minimized and ionized to pH 7.4 in Maestro’s Ligprep module (Schrӧdinger) before being subjected 

to pharmacophore screening. The compounds were subsequently filtered based on Lipinski’s rule 

of five. The resulting compounds (~12,000) were clustered and then subjected to Glide’s ensemble 

docking and scoring. Testing of the top 20 scored compounds resulted in one ligand (Figure 53) 

that showed interaction in vitro as determined by CD, FRET melting, and mass spectrometry. 

However, the compound reported is a naphthyridine derivative, a class which has previously been 

reported to interact with telomeric G4s and inhibit telomerase (327).  
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Figure 53. Structure of the naphthyridine compound discovered by Rocca et al. and shown to 

stabilize both RNA and DNA G-quadruplexes. 
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Bhat and colleagues (328) have put forward a robust VS workflow to derive novel ligands 

targeting the c-myc NHEIII1 quadruplex (PDB ID: 2A5P). The steps are as follows: (1) the 

Maybridge database (~55,000 compounds) was imported into Maestro’s Ligprep program, which 

generates all protonation states, conformations, and tautomeric structures for a given pH (~1.5 

million compounds); (2) multiple stages of refinement for conformational restraints, conformational 

groups, and Lipinski’s rule of five (~88,000 compounds); (3) Glide docking and re-docking to the 5’ 

end of the quadruplex using all three modes: HTVS (high-throughput virtual screening), SP, and 

XP. This campaign resulted in three compounds which were chosen for testing, and one, a 

carbamoylpiperidinium-containing compound (Figure 54), stabilized the c-myc G4 by an end-

pasting mechanism. A biological response was also observed in cells by luciferase expression 

assays as well as the induction of apoptosis selectively in T47D cancer cells, but not normal NKE 

cells.  
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Figure 54. Structure of the carbamoylpiperidinium containing compound discovered by Bhat et al. 

and shown to stabilize the c-myc G4 by an end-pasting mechanism. 
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Stand-alone MD simulations have also been used to study the interactions of known 

ligands with their receptors. These simulations have inherent advantage over traditional docking in 

that they can explicitly model solvent contributions. Not only does MD allow for calculation of 

relative binding free energies, but it can also estimate the kon and koff rate constants. The latter has 

been difficult to assess due to the long timescale simulations needed for the ligand to come back 

‘on’ to the receptor. This has been addressed with biased force fields in what is known as funnel-

metadynamics (329). This technique has been applied by Moraca et al. (325) to accurately 

calculate the free energy of binding of the ligand berberine to the human telomere sequence (PDB 

ID: 3R6R). Steady state fluorescence measurements were made to determine the actual free 

energy of ΔG = -9.8 kcal/mol, which compares well with the calculated ΔG = -10.3 kcal/mol. 

Techniques such as this will likely play a major role in virtual lead development in the future. 

 

Scoring Functions 

Docking algorithms attempt to find solutions to the orientation and ranking of ligand-

receptor interactions. In doing so, the algorithms must have a way to order the thousands or millions 

of complexes. Ranking is achieved by scoring, which approximates the binding affinity (ΔGbind). 

Relative binding free energies can be approximated by free energy perturbation methods using 

molecular dynamics simulations (324); however, these methods are far too computationally 

expensive for routine docking, and so more approximate solutions have been devised.  

The first type of free energy approximation is the “empirical” (330) scoring function, which 

is an additive equation derived from each of the different modes of interaction of the system 

(324,331). As implied by the name, empirical score values are derived from a set of known ligand-

receptor complexes. As an example (as adapted from (324)): 

ΔG𝑏𝑖𝑛𝑑 =  ΔGℎ𝑏 + ΔG𝑖𝑜𝑛𝑖𝑐 + ΔG𝑟𝑜𝑡 + ΔG𝑣𝑑𝑤    (1) 

where ΔGbind would be the total docking score based on the additive scores from H-bonds (hb), 

ionic interactions (ionic), rotational constraints of constituent groups (rot), and Van der Waals (vdw) 

interactions. These terms can also be modified by the user with weighting to favor or disfavor 

interactions depending on the system in question. Similarly, there are modifier (or “penalty”) terms 
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which can be applied to disfavor improper H-bond angles, distance restraints, hydrophobic 

interactions, and torsions. Autodock 4, DOCK v4-6, GOLD, Surflex-Dock, and Autodock Vina use 

empirical scoring terms. 

Another scoring method relies on force-field (FF) based scoring functions. These functions 

implement current molecular mechanics (MM) force fields (e.g. AMBER, CHARMM) to estimate 

enthalpy of binding from VDW and electrostatic interactions, strain energies, and solvation effects. 

The latter is typically estimated by calculating the desolvation energy using MM/PBSA (Poisson-

Boltzmann surface area) or MM/GBSA (generalized Born surface area) methods. However, 

MM/PBSA and MM/GBSA are too computationally expensive to be used in high throughput 

screening (332). FF scoring is achieved by pair-wise evaluation of each non-bonded interaction, 

with the following general format (example taken from Autodock v4 manual(294)): 

ΔG = (𝑉𝑏𝑜𝑢𝑛𝑑
𝐿−𝐿 − 𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝐿−𝐿 ) + (𝑉𝑏𝑜𝑢𝑛𝑑
𝑃−𝑃 − 𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝑃−𝑃 ) + (𝑉𝑏𝑜𝑢𝑛𝑑
𝑃−𝐿 − 𝑉𝑢𝑛𝑏𝑜𝑢𝑛𝑑

𝑃−𝐿 + 𝛥𝑆𝑐𝑜𝑛𝑓) (2) 

where L is the ligand, P is the receptor, and V is the calculated potential term from MD force fields. 

Eq. (2) shows the 6 pair-wise evaluations and entropy term to account for any changes in 

conformational entropy. The force field potentials used here are comparable to that used in the 

Amber, CHARMM, or GROMACS force fields but can be modified by the user if desired. Glide, 

ICM, and early versions of DOCK and Autodock use FF based scoring functions with empirical 

weighting. 

 

Discussion 

 

Virtual screening approaches in the discovery of new G-quadruplex ligands have clearly 

shown promise. Higher throughput computational screens are allowing for more comprehensive 

searches of chemical space. As workstation computing power increases and more researchers 

gain access to resources such as computing clusters, we expect to see the number of successful 

VS screening campaigns increase. While some campaigns described here have proven the utility 

of virtual drug discovery methods, the methodologies and pitfalls are worth discussing. 
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Receptors 

G-quadruplex receptors can be downloaded from one of the various databases (Protein 

Data Bank, Nucleic Acid Data Bank, etc.) or modeled. NMR solution structures should be used if 

available or the quadruplex modeled based on similar NMR coordinates. X-ray crystallography 

derived structures are prone to conformational bias and may be artificial due to the packing 

environment (78). Thus, X-ray structures require pre-treatment with modeling techniques, such as 

short MD simulations with energy-minimizations (78). Often, modified bases such as inosine are 

used to select for a single conformation in NMR or X-ray crystallographic techniques. These should 

be modified, as described above (284), by swapping the inosine with their natural residue and 

carefully energy-minimizing the structure prior to docking. A second major concern is loop flexibility. 

Loops have inherently high mobility, and this is rarely accounted for in traditional rigid receptor 

docking. This can be addressed with short MD simulations to allow the loops to search 

conformational space. Multiple conformations from MD or NMR PDB files can then be used in 

ensemble docking (285,326), which is an excellent tactic for highly flexible receptors. These 

approaches are sufficient for most single G4 systems, such as the c-myc or 22-24 nucleotide long 

telomere G-quadruplexes. However, targeting non-canonical G4s (245), or large, multi-G4 

complexes (145,162) with unknown structure can be challenging.  

Multi-G4 systems have the interesting characteristic of large loop domains that span G4-

G4 junctions. In theory, these loop-G4 pockets (Figure 55) can potentially serve as highly specific 

binding sites, much like that of enzyme substrate pockets. Unfortunately, determination of large 

nucleic acid secondary structures with traditional techniques is difficult. Nucleic acids rarely exist 

as a homogenous population in solution, making them difficult to characterize. Base substitution of 

non-tetrad guanine with inosine has often been used in NMR experiments to elucidate small G4 

structures, but larger systems are not amenable due to spectral overlap and low proton density. 

Large DNA and RNA complexes are also difficult to crystallize. Even when crystallization is 

achieved, the packing environment can promote the formation of unrepresentative structures or 

features that are absent or only present in a small minority of the molecules in solution (78). Thus, 

low resolution techniques (small angle X-ray/neutron scattering, analytical ultracentrifugation, 
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dynamic light scattering, and CD spectroscopy) paired with MD simulations are now commonly 

used to develop structures currently unobtainable with traditional techniques (145,171,245,333). 
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Figure 55. (Left) hTERT core promoter G-quadruplex model created by Chaires and Trent et 

al.(145). Phosphate backbone is shown in tan, nucleotides in blue, and potassium in purple. (Right) 

Surface representation showing a large binding pocket (dark area inside of yellow dashed oval) at 

the junction between the first and second G4s of the hTERT G-quadruplex. Images were rendered 

in Chimera v1.12 (176). 
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Libraries 

When docking any library, no matter the size, there will always be top scoring compounds. 

Thus, many campaigns often use theoretical validation, such as re-docking, complementary 

screening, or receiver operating characteristic (334) analyses for assessing the ability of their 

screen to detect real hits (282,284,286,310,335). This is particularly important when working with 

small databases and can help to minimize false positives. Conversely, docking known ligands as 

positive controls or simply increasing the library size can help to identify real high scoring 

compounds. Keep in mind that the use of in-house curated libraries, small drug libraries, or filtered 

libraries can impose serious limitations on the potential for identifying unique scaffolds. In fact, this 

appears to be the case for some of the campaigns mentioned here (278,285,306,310,317,326). 

Three of these reports limited their chemical search space by filtering larger databases and one 

searched a database with only 3,000 compounds. In every instance, the resulting hits were already 

known to bind nucleic acids. Conversely, focused libraries can be useful when searching for lead 

compounds based on validated hits, which was the case for Musumeci et al. (281) who used a 

similarity search to enrich for groove-binders based on a well characterized groove-binding ligand.  

Before using a library, the compounds typically require optimization. Fortunately, many of 

the virtual screening databases have pre-optimized ligands for screening. Optimization ensures 

that each ligand has been desalted, neutralized, energy-minimized, and correctly protonated before 

docking (252,270,336). This can be achieved using programs such as Maestro’s Ligprep module 

(177). Similarly, when ligands are optimized for a screen this should be reported, along with other 

relevant information such as the version of the database, the type of database, total number of 

compounds docked, purchased, tested, and validated as hits. Optimizations such as these will 

allow for a more comprehensive comparison of G4 docking techniques. 

 

Screening 

The choice of screening approach(s) used is highly dependent on the user’s intentions. 

Lead optimization strategies should include pharmacophore or similarity screens of large 

databases (281,282), potentially followed with docking and/or MD minimizations and GBSA 
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scoring. This approach will minimize time by selecting for ligands that closely resemble the 

validated scaffolds while also allowing for solvated and flexible receptor-ligand interactions to 

determine improvement of binding scores (325). However, this approach may not be so useful in 

de novo drug discovery campaigns, where it is more advantageous to screen a large diverse library. 

As mentioned above, filtering and reducing your library places an inherent bias on the size of the 

chemical space that will be evaluated, leading to redundancy in scaffolds (see Figures 44 & 50). 

Ideally one should select as large a database as possible and screen with a rapid, flexible ligand 

screening platform, such as Surflex-dock or Autodock (which has now been surpassed in speed 

and user friendliness with the release of Autodock Vina), followed with extensive re-docking, 

consensus docking, or MD simulations with MM/PBSA or MM/GBSA calculations.  

A second consideration is the definition of the site to be docked. Most docking platforms 

have features to allow for ligand-based docking site generation. Conversely, in de novo discovery 

(which is often the case of groove-binders), there is usually no defined site, and therefore a site 

must be chosen by the user. This is done by defining a 3D grid about the putative ligand binding 

site (Glide, Autodock, Autodock Vina, DOCK, and ICM), by generation of a space filling protomol 

[which is a pre-computed representation of an ideal ligand (337)] (Surflex-Dock), or simply by 

defining a bound ligand or set of residues (Surflex-dock, GOLD). Drawing on the authors’ own 

experience, the docking site should be as small and focused as possible. Unfortunately, most 

ligands bound to G4s in crystal structures are cationic, polycyclic, and highly conjugated end-

pasters bound to the 5’ or 3’ tetrad faces. Using complexes such as these as the basis for docking 

will undoubtedly result in top ranked compounds with similar features (282,284,309,310) and, thus, 

not useful in the discovery of groove-binders or loop-interacting ligands. 

 

Screening Analysis 

Regardless of screening strategy, the user will likely generate more compounds than can 

feasibly be tested. If only the highest-ranking molecules are to be purchased, then visual inspection 

is recommended. Although tedious, this process appears to increase enrichment in real groove-

binders (317,320) by removing erroneous ‘false-positives’, high steric clashing compounds, and 
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molecules with poor hydrogen bonding interactions. This can also help rule out compounds docked 

into unintentional sites because of poorly defined docking sites or grids. Additionally, post-docking 

clustering based on molecular similarity criterion can reduce the redundancy in large screens and 

help inform purchasing decisions for diverse scaffolds (285,317,320,326). This is commonly done 

using similarity coefficients. Tanimoto, Dice, and Cosine similarity coefficients are numerical values 

computed from molecular attributes that are commonly used in clustering analyses (324). 

Selectivity can also be enriched for by re-docking the top-ranking compounds to potential off-

targets, such as dsDNA (306), and others have reported enrichment from cross-platform consensus 

scoring (282). 

 

Conclusion 

 

We present here a comprehensive overview of G4 virtual screening methodologies, along 

with suggestions to help guide future campaigns. These reports have shown that proper receptor 

optimization, large screening libraries, and appropriate downstream analyses of hits can result in 

great enrichment for novel G4 ligands. Conversely, we find that filtered libraries impose a major 

limitation on ligand diversity. Furthermore, there is a fundamental deficiency in reporting relevant 

information regarding VS campaigns, such as: library sizes, library preparation (optimizing, filtering, 

tautomer generation), and contents (fragment-like, drug-like, natural products), total purchased vs. 

tested compounds, receptor preparation (protonation, modified bases, energy minimizations, MD), 

and downstream analysis (clustering, visual inspections, re-docking). This information is critical for 

evaluating G4 virtual drug discovery strategies. 

There are potentially hundreds or thousands of G-quadruplexes that form within promoters, 

telomeres, RNA transcripts, and even LINEs and SINES (250,251,338,339). As articulated 

previously (15), G-quadruplexes are easily targetable with heterocyclic aromatic compounds 

because of the common tetrad face. Selectivity, then, must come from groove-interacting ligands 

or by end-pasting molecules with “built-in” selectivity for loops around the 5’ or 3’ interface. This 

selectivity is best achieved using massive, un-filtered libraries targeted at small pockets in and 
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around the loops and grooves (Figure 55). The authors have recently used Surflex-Dock version 

2.1 to screen the ZINC drug-like libraries (versions 2014 and 2016) for a total of ~45 million 

compounds docked to multiple residue-defined loop/groove pockets of a modeled hTERT G-

quadruplex (modeled using guanine stacks from the parallel c-myc G4, PDB ID: 1XAV) (145). The 

quadruplex was subjected to MD simulations and stripped of waters and ions before docking. 

Docking was carried out using a computing grid known as the DataseamGrid 

(www.kydataseam.com), which utilizes computers across schools in Kentucky. Ligands were used 

as-is from the ZINC drug-like database. Purchased compounds were chosen by hierarchical 

clustering of the top 6,000 molecules using Tanimoto similarity coefficients. From this analysis, 69 

compounds were selected and screened using FRET, CD, ITC, fluorescent intercalator 

displacement assays, and analytical ultracentrifugation. The initial FRET screen resulted in ~33/69 

G4 interacting compounds. The top 3 were further characterized, resulting in 2 potent groove or 

loop interacting ligands (unpublished, see Chapter VI), which are currently undergoing optimization 

and lead development.   

Virtual screening of G-quadruplexes and other higher order nucleic acid structures is still 

in its infancy. As noted here, few VS platforms have been used in G4 drug discovery and even 

fewer have been used extensively enough with nucleic acids as to permit cross-platform 

comparisons. Furthermore, like protein systems, nucleic acids remain sensitive (if not more so) to 

the limitations of VS technologies. As mentioned previously (271,340), receptor flexibility remains 

difficult to address in a high-throughput manner, and so G4 loops remain a challenge to target. 

Similarly, while docking algorithms can be very reproducible and rapid, there remains a dire need 

for accurate, robust scoring approximations (340). Fortunately, the predictions (341) of hit 

enrichment from high performance computing and big libraries were correct. So while the world 

awaits breakthroughs in scoring, receptor flexibility, and machine learning (271,342), it might be 

wise to seek out your nearest computing cluster to carry out your G4 screening. 
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CHAPTER VI 

 

TARGETING THE HIGHER-ORDER HTERT G-QUADRUPLEX: 

VIRTUAL DRUG DISCOVERY OF SELECTIVE HTERT 

REPRESSING SMALL MOLECULES 

 

 

Non-canonical DNA structures known as G-quadruplexes are now widely accepted as 

viable targets in the pursuit of anticancer therapeutics. Unfortunately, few virtual or actual drug 

screening campaigns against monomolecular G-quadruplexes have resulted in selective and drug-

like small molecules. This dearth of selectivity is likely due to an inadequacy of chemical space 

searched, as well as shortcomings in defining receptors. Herein, we show that by increasing the 

chemical search space to tens of millions of virtual compounds that it is possible to discover novel, 

small molecule scaffolds that are selective for G-quadruplexes over duplex DNA. Using in vitro 

screening techniques (fluorescent thermal shift assays and competition dialysis) and fundamental 

biophysical interaction techniques (isothermal titration calorimetry, analytical ultracentrifugation, 

CD melting), we demonstrate that we can enrich for selective small molecules which are specific 

for the loops and grooves of a multimer G-quadruplex formed in the core promoter of the human 

telomerase reverse transcriptase (hTERT) gene. Further, using exhaustive virtual docking and 

molecular dynamics simulations, we show that the lead molecule, a disubstituted 2-aminoethyl-

quinazoline, binds in loop pockets and grooves, stabilizing G-quadruplex stacking junctions. Lastly, 

we provide evidence that this molecule downregulates hTERT transcription in breast cancer cells, 

making it a promising lead molecule for treatment of hTERT-reliant cancers.
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Introduction 

 

 

Nucleic acids have the capacity to form multiple types of secondary structure, such as 

duplex (B-, A-, and Z-DNA), triplex, and quadruplex. Genetic regions with high guanine content, 

specifically with multiple runs of consecutive guanines, can form highly stable structures known as 

G-quadruplexes (G4s) (40). G4s are composed of a stack of planar layers of guanine nucleotide 

tetrads held together through Hoogsteen hydrogen bonding. Analyses of the human genome have 

revealed between 376,000 and 716,310 potential G4 forming regions (11,31), and as much as 40% 

of these PQSs reside in gene promoters (12). With the advent of fluorescent G4-specific small 

molecules and antibodies there is now direct evidence of non-telomeric G4 formation in cells 

(27,28,343). Importantly, these promoter G4s are abundant in oncogenes (31) and impose proximal 

regulatory effects on transcription of adjacent genes (15,344). While this has energized research 

targeting promoter G4s of proteins that have previously been thought of as “undruggable” (345), or 

in general difficult to inhibit, there remains an outstanding issue of quadruplex drug specificity 

(15,346,347). 

 To date, most of the drug discovery and biological investigations of G4s have been limited 

to the small (<12 kDa) monomeric forms—likely owing to the ease at which they can be studied by 

NMR or X-ray crystallography. A variety of monomeric promoter G4s have been reported: c-MYC 

(16), KRAS (101), HRAS (102), HIF (103), and VEGF (104), which have been utilized in structure-

based drug discovery (347). Numerous small molecules have now been unearthed that target 

monomeric G4s over duplex and triplex DNA, but few have demonstrated selectivity for a single 

G4 target (346). In some cases, small molecules can even convert certain monomeric G-

quadruplex topologies to their “preferred” topology (348). A commonality shared among all G-

quadruplexes are their planar 5’- and 3’- G-tetrad faces. These faces allow small molecules to end-

paste, which is thought to maximize π-π stacking interactions between the ligand and the guanine 

bases. It follows that this type of interaction results in mostly indiscriminate binding (346). This non-

specificity can be improved upon by adding or altering constitutive groups or sidechains of the core 
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scaffold to increase favorable interactions with distinctive loop or groove regions (349-351); 

although, this often comes at a price, as the molecules tend to deviate from “drug-likeness” the 

more they are modified (137). 

An emerging alternative method of selective G-quadruplex drug discovery is through 

targeting higher-order G4 assemblies. G-quadruplexes can stack on top of one another through 

sandwiching of flanking nucleotides or direct stacking of terminal G-tetrads (54,243). While this 

phenomenon is well known and has important biological implications (20,352), few multimeric G4s 

have been structurally characterized. The allure of targeting multimer G4s is that they offer larger, 

potentially unique binding pockets for small molecules at G4 stacking junctions and loops, which 

could allow for the circumvention of non-specificity due to end-pasting that is commonly observed 

in monomeric G4 drug discovery (20,141,347).  

One such G4 multimer has been identified in the core promoter region the human 

telomerase reverse transcriptase (hTERT) gene (105,106,144). hTERT, and its cognate RNA 

(human telomerase RNA component, hTR), form the ribonucleoprotein complex that is responsible 

for maintenance of the telomeres. In normal somatic cells, hTERT activity is tightly regulated or 

entirely absent (353). Under these “normal” circumstances, dividing hTERT-negative cells will 

eventually experience telomere shortening, which elicits a DNA damage response that ultimately 

results in senescence or cell death (354). Interestingly, the forced re-expression of hTERT in 

hTERT-negative cell lines is all that’s necessary to extend cellular replication (355,356). 

Knockdown of hTERT in a variety of cancer cell lines and tumor models results in reduced telomere 

maintenance, sensitization of cancer cells to chemotherapeutics, and in some cases, the direct 

induction of apoptosis or senescence (357-359). It follows that hTERT’s nearly exclusive 

overexpression in malignant cell types has made it an ideal target for anti-cancer therapeutics. The 

majority of contemporary techniques targeted at telomerase inhibition, such as small molecules 

inhibitors, gene therapy, anti-sense oligonucleotides, and immunotherapies, have all shown that 

hTERT inhibition is a viable mechanism to treat cancer (214). Clinically, however, none have been 

successful (215). Of note, Imetelstat, a 13-nt antisense oligonucleotide, which appears to directly 

inhibit telomerase through base-pairing with hTR, has shown preclinical promise in a variety of 
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cancer models for its ability to block telomere extension (360,361). Unfortunately, like many other 

telomerase inhibitors, clinical trials have halted due to hematopoietic toxicity, potentially because 

of non-specific telomerase inhibition in stem cells (216,362). Currently, there are no FDA approved 

small molecule telomerase inhibitors. Hence, alternative hTERT inhibition strategies are warranted. 

Overexpression of hTERT largely occurs through alterations in transcription and/or through 

increases in gene copy number (222,363-366). The hTERT core promoter region (-180 to +1 of 

TSS) has a low nucleosome occupancy, sensitivity to bovine pancreatic deoxyribonuclease (DNase 

I) treatment, and a high GC content (12,367,368). The open chromatin and multiple PQSs within 

the 12 G-tracts support the formation of DNA G-quadruplexes in the context of the nucleus. Further, 

functional genetic studies have found links between elevated hTERT promoter activity in cancers 

which contain G>A point mutations within these G-tracts, supporting a G4 regulatory mechanism 

(218,219). In fact, a recent investigation of urothelial carcinomas of the bladder found that 60-80% 

contain the hTERT mutations “G124A” or “G146A” (located within the core promoter region -124 

and -146 from the TSS, respectively), and these mutations confer a selective advantage over non-

mutated cells (369). These mutations lead to allele specific deposition of H3K4me3 marks, which 

promote transcriptional activity through a mechanism involving the swapping of specificity protein 

1 (SP1) to E-twenty-six (ETS) transcription factors (222). However, this switch to transcription 

activating transcription factor binding only partly explains the changes in hTERT expression (223).  

The secondary structure of the G-rich region spanning -168 to -100 has been extensively 

investigated by our lab and others (105,106,143-145,223,224,370). While all investigations are in 

agreement that non-B DNA secondary structure is formed by this sequence, there was some 

previous contention as to the exact nature of the major form (106,144,145). We have recently 

established that the best model for this region of DNA is a stack of three parallel G-quadruplexes 

(143,145), which is endowed with multiple unique loop and groove pockets that can be targeted in 

a rational drug discovery approach (Figure 56).  
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Figure 56. Overview of Surflex-dock virtual screening. (A) Structure of the all-parallel stacked 

hTERT G-quadruplex used here for in silico screening. (B) Twelve Surflex-dock protomols (colored 

space-filling blobs) superimposed on the hTERT G-quadruplex structure as in A. The hTERT 

structure has been made slightly transparent to emphasize the protomols within loop pockets. (C) 

Graphical representation of the overall docking procedure, where a pool of more than 40 million 

virtual small molecules are docked into each of the twelve protomol sites indicated in B, and 

subsequently scored based on interactions made, such as hydrogen bonding, physical clashes, 

and van der Waals interactions. 
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The initial investigations of the hTERT core promoter G4 have also involved efforts towards 

the development of hTERT G4-targeting small molecules. In the first report, Palumbo and 

colleagues demonstrated that both TMPyP4 and Telomestatin, two rather promiscuous G4 binding 

small molecules, could stabilize the hTERT quadruplex (106). In a second report, Micheli et al. 

used modified perylene diimide compounds to investigate Taq polymerase inhibition and 

stabilization of both monomeric and multimeric forms. While perylene diimide based small 

molecules are well known for their ability to bind G-quadruplexes of various topologies, this study 

provides evidence that targeting the multimeric selectively over the monomeric units is viable. 

Subsequently, Kang et al. identified an hTERT G4-stabilizing small molecule with an acridine 

scaffold that significantly reduced hTERT mRNA and protein levels in breast cancer cells (223). 

Although this study is rigorous in demonstrating the ability of this small molecule to reduce hTERT 

levels in cells, the authors do not provide significant evidence of selectivity for the hTERT G4 over 

other quadruplex topologies or duplex DNA. Moreover, this molecule [designated as GTC365 (223)] 

is an acridine derivative, and as such would be expected to show moderate to high affinity for 

duplex DNA via intercalation (371), and non-specific interactions with various G-quadruplex 

topologies through end-pasting (138,139), making it unlikely to be a truly selective small molecule. 

Altogether, the above investigations reveal a cancer specific epigenetic mechanism that exists for 

repressing hTERT through targeting its G-quadruplex secondary structure. 

There are a variety of obstacles when attempting structure-based drug discovery of novel 

small molecules for a particular G-quadruplex target, which we have discussed previously (347). 

The biggest shortcoming is the dearth of small molecules in libraries and limited search of chemical 

space. Often for time’s sake, one of these two elements will be neglected, resulting in the 

rediscovery of molecular scaffolds that are not unique or a general lack of “hits”. Further, the lack 

of high-resolution information on G4 groove- and loop-interacting small molecules exacerbates this 

problem. Herein, we show that with large enough chemical diversity, search space, and 

rigorousness of sampling, we can successfully discover unique small molecules that selectively 

target the loop and groove pockets of a higher order G-quadruplex. Using an unparalleled G-

quadruplex virtual drug discovery approach, we present here the discovery of novel, drug-like, and 
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selective small molecules targeting the hTERT core promoter G-quadruplex multimer. Further, we 

demonstrate that modifications of our lead molecule, a disubstituted 2-aminoethyl-quinazoline, 

result in differential stabilizing effects in vitro and in cells, demonstrating the potential for rational 

improvements as a lead candidate molecule in human telomerase repression. 

 

Materials and Methods 

 

Oligonucleotides 

Oligos were purchased from IDT (Integrated DNA Technologies, Coralville, IA) and Sigma-

Aldrich (St. Louis, MO) with standard desalting. FRET-labeled oligos used in FTSA experiments 

had 6-FAM (6-carboxyfluorescein) attached to their 3’ end and TAMRA (5-

carboxytetramethylrhodamine) attached to their 5’ end. Upon receipt, stock oligos were dissolved 

in MilliQ ultrapure water (18.2 MΩ x cm at 25°C) at concentrations between 0.1 and 1 mM and 

stored at -20.0°C until use. Folding was achieved by diluting stock oligos into their respective buffer 

and heating to 99.9°C in a water bath for 20 minutes, followed by slow cooling overnight and 

subsequent storage at 4°C. Unlabeled oligonucleotide concentrations were determined from their 

extinction coefficients (ε260) using the nearest-neighbor method. FRET-labeled oligo concentrations 

were determined using the extinction coefficient of 6-FAM (ε495 = 75,000 cm-1 M-1). 

 

Small Molecules 

In the first round of screening, 69 small molecules were purchased as 1 or 5 mg quantities 

from the distributer Molport.com, diluted to 10 mM in DMSO, and stored at -80°C until use. Three 

of the compounds which were studied more extensively, 2R, 3B, 3B1, and 3B5 were either re-

purchased (3B from ChemBridge.com and 3B1 from Molport.com) or synthesized (2R, 3B5) in-

house. Compound concentrations were determined using molar extinction coefficients derived from 

UV-Visible spectroscopy measurements of stock compounds diluted into potassium phosphate 

buffer at pH 7.2. 
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Buffers 

All buffer reagents, unless otherwise specified, were purchased from Sigma-Aldrich. 

Phosphate buffer (8 mM phosphate, 1 mM sodium EDTA, pH 7.2) was used throughout with 

supplementation of KCl as indicated. Buffers were filtering through 0.2 μm filter paper prior to use. 

 

Preparative size-exclusion chromatography (SEC) 

Oligonucleotide purification of the unlabeled TERT-FL, Tel48, and Tel72 sequences was 

achieved using SEC as detailed previously (168). Briefly, oligonucleotides were annealed at 

concentrations of 40-100 μM in their respective buffers, filtered through 0.2 μm filters, and injected 

onto an equilibrated Superdex 75 16/600 SEC column (GE Healthcare 28-9893-33) using a Waters 

600 HPLC system. The flow rate was maintained at 0.5 mL/min. and sample fractions were 

collected every 2 minutes from 100 to 180 minutes run time. The molecular weights of fractionated 

species were estimated based on a regression analysis of elution time vs. log(MW) of protein 

standards (Sigma #69385), with elution profiles monitored at 260 nm and 280 nm. Purifications 

were carried out at room temperature and fractionated samples were stored at 4°C prior to 

concentration and downstream analysis.  

 

In silico drug screening 

Virtual screening was performed using Surflex-Dock 2.11 (372) on the KY Dataseam 

computing grid (http://www.kydataseam.com/) using over 40 million virtual ligands from the ZINC 

2014 and 2016 drug-like libraries (373). The all-parallel G-quadruplex hTERT model created 

previously (143,145) was used as the receptor. Twelve docking sites were chosen by targeting the 

G4-G4 junctions, loops, and grooves, but not the terminal G-tetrad faces (Figure 56). Docking in 

Surflex-dock was carried out as previously described(301). Briefly, the command used in Surflex-

Dock for each run was “surflexdock -pgeom +self_score +pflex dock_list <library> <protomol> 

<receptor> <output>”. Protomols were generated using residue selection, which allows for the 

manual selection of residues in or around putative binding pockets. The options “proto_thresh” and 

“proto_bloat” were left at their default settings. Protomols were visualized in UCSF Chimera v1.11 
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(176) to ensure adequate coverage of docking area (Figure 56). Scoring was based on the 

empirical -Log(KD) term reported for each docked molecule (clash, polar, and strain values were 

not considered in scoring). From each docking site (24 in total, 12 for 2014 library and repeated for 

the 2016 library), the top scoring 500 poses were analyzed in Schrodinger’s Canvas (374) 

application using a hierarchical clustering algorithm to cluster molecules based on binary 

fingerprints and Tanimoto similarity criteria. The highest ranked 100 centroid molecules (most 

representative scaffolds of the clade) were then chosen for purchasing. From this selection only 69 

were available from Molport.com. 

 

Fluorescence thermal shift assay (FTSA) 

Small molecule screening by FTSA was performed on an Applied Biosystems 

StepOnePlus Real-Time PCR instrument in 96-well plates, adapted from previous work (208). 

Briefly, 10 mM compound stock solutions in DMSO were used to create 96-well stock solution 

plates by diluting each compound to 2x final concentration in potassium phosphate buffer. The 

same volume of DMSO was used as a control. FRET-labeled DNA, post-annealing, were quantified 

by UV-Vis and diluted to 2x final concentration. FTSA reaction mixes were made up in 96-well 

Applied Biosystems MicroAmp PCR plates by mixing 10 μL of 2x compound solution (or 

buffer/DMSO control) with 2x FRET-labeled DNA to yield 20 μL of 1x reaction mix. Final 

concentration of DNA was 0.25 μM in all experiments unless otherwise specified. Compound 

concentrations are as specified in each figure legend. After mixing, plates were then spun down at 

1250 rpm for 2-3 minutes in a benchtop centrifuge to remove bubbles. Samples were denatured by 

ramping the temperature from 20.0°C to 99.8°C in 0.2°C increments at a rate of approximately 

0.7°C/min. Fluorescence quenching of 6-FAM was monitored at each 0.2°C step using the 

instrument’s onboard FAM filter over the entire reaction, providing a melting curve. Melting 

temperatures (Tm) were determined from the 1st derivative of the normalized melting curves (209), 

and differences in melting temperatures (ΔTm) were determined by taking the difference of control 

and sample wells: 

𝛥𝑇𝑚 =  𝑇𝑚,𝑠𝑎𝑚𝑝𝑙𝑒 −  𝑇𝑚,𝑐𝑜𝑛𝑡𝑟𝑜𝑙 
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Where Tm,sample and Tm,control are the melting temperatures of the sample and control, respectively. 

Measurements are averages of triplicate experiments repeated on 3 separate days unless 

otherwise specified.  

 

Competition Dialysis 

Competition dialysis assays were conducted as described (375) in either 96-well plate 

format or scaled up to beakers. Nucleic acids were annealed in a 185 mM K+ phosphate buffer, 

SEC purified, and concentrated to create stock solutions of 20-100 μM (strand concentration). From 

these stocks, nucleic acids were diluted to 75 μM working concentration based on monomeric unit, 

where each nucleotide, base pair, triplex, or tetrad is considered a single monomeric unit (e.g. the 

full-length hTERT is three G-quadruplexes and has 9 G-tetrads, whereas c-MYC only has 3 G-

tetrads, so c-MYC is 3x the strand concentration as hTERT). Each dialysis membrane had 200 μL 

(96 well) or 500 μL (scale up) of nucleic acid sample or buffer only (control). The dialysis 

membranes were then submerged in at least 2 mL (96 well) or 200 mL (scale up) of a 4 or 5 μM 

solution of compound and allowed to incubate on a rocker (96 well) or with stir bar (scale up) 

overnight at room temperature. Approximately 24 hours later, the sample was removed and mixed 

with Triton X-100  to a final concentration of 1% v/v to disrupt ligand interactions with receptors. 

Ligand concentrations were determined from their extinction coefficients by measuring absorbance 

using a Tecan Safire II plate reader (Tecan, Männedorf, Switzerland). Total concentration of bound 

compound (Cb) was determined as follows:  

𝐶𝑏 =  𝐶𝑡 −  𝐶𝑓 

Where Ct is the total concentration of ligand in sample membrane and Cf is the concentration of 

compound in the buffer membrane (which did not deviate from the 4 or 5 μM compound in dialysis 

buffer). Calculation of apparent binding affinities (Kapp) was achieved using the following equation:  

𝐾𝑎𝑝𝑝 =  𝐶𝑏/{𝐶𝑓 × ([𝑁𝐴]𝑡𝑜𝑡𝑎𝑙 − 𝐶𝑏)} 

Where [NA]total is the total DNA concentration in the well (75 μM). 

 

Thiazole orange (TO) displacement assay 
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The TO displacement assay, which is functionally similar to standard fluorescence 

intercalator displacement assays, was performed exactly as described previously (196). Briefly, 

annealed nucleic acids, in their respective annealing buffers, were mixed with Thiazole Orange 

(TO) and test compound at final concentrations of 2 μM DNA, 1 μM TO, and 5 μM compound in a 

total volume of 150 μL in a 96 well black flat-bottom polystyrene plate. Control wells with DNA and 

TO, and TO alone were also prepared in the respective buffers. After a brief incubation, TO 

fluorescence emission was measured at 1 nm intervals from 510 to 750 nm with an excitation 

wavelength of 500 nm. The percentage of TO displacement (%FID) was calculated from the 

intensity at 527 nm using the following equations: 

%FID = 100 − (100 × 
F

Fo

) 

F = F(ligand+DNA+TO) − F(buffer+TO) − F(DNA+ligand) 

Fo =  F(DNA+TO) −  F(buffer+TO) 

where F is the fluorescence intensity reading from each well at 527 nm (λex = 500 nm). 

 

Circular dichroism spectroscopy (CD) 

CD melting studies and spectra were collected on a Jasco-710 spectropolarimeter (Jasco 

Inc. Eason, MD) equipped with a Peltier thermostat regulated cell holder and magnetic stirrer. CD 

and melting spectra were collected using the following instrument parameters: 0.5 or 1cm path 

length quartz cuvette, 210 or 240 to 340 nm wavelength range, 1.0 nm step size, 200 nm/min scan 

rate, 1.0 nm bandwidth, 2 s integration time, and 4 scan accumulation. Spectra were recorded at 

20.0°C and melting spectra were collected over a range of 4°C to 98°C with 4°C steps, 4°C/min 

ramp speed, and a 1-minute equilibration time at each temperature before acquisition. Spectra 

were corrected by subtracting a buffer blank. Spectra were normalized to molar circular dichroism 

(Δε) based on DNA strand concentration using the following equation:  

∆𝜀 = 𝜃/(32982𝑐𝑙) 

where θ is ellipticity in millidegrees, c is molar DNA concentration in mol/L, and l is the path length 

of the cell in cm. In Tm shift experiments, the concentration of DNA was 1.1 μM, and compounds 
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25 μM (except for the control, BRACO-19, which was 2.5 μM). The same v/v DMSO was used as 

the control.  

 

Analytical ultracentrifugation (AUC) 

Sedimentation velocity (SV) experiments were performed in a Beckman Coulter 

ProteomeLab XL-A analytical ultracentrifuge (Beckman Coulter Inc., Brea, CA) at 20.0°C and 

40,000 rpm in standard 2-sector cells using An50Ti or An60Ti rotors. 100 to 150 scans over an 8-

hour period were collected and analyzed in Sedfit (170) using the continuous C(s) model with a 

partial specific volume of 0.55 mL/g for DNA. AUC drug binding experiments were carried out as 

detailed previously (210), with a final compound concentration of 100 μM and 10 μM DNA (10:1 

[compound]:[DNA]). All compounds with reported stoichiometry from AUC experiments were 

monitored at a wavelength of 318 nm.   

 

Molecular dynamics simulations 

Starting coordinates for small molecule-G4 complexes were based on the output of flexible 

docking performed using Glide XP (376) with the Maestro (177) suite using the hTERT G4 model 

created previously as the receptor (143,145). Briefly, Sitemap (377) was used to generate multiple 

docking sites among the loops, grooves, and G-tetrad faces of the hTERT receptor (see Figure 56 

Surflex-Dock protomols), followed by flexible docking and scoring at each site. Molecular dynamics 

simulations were subsequently carried out on the highest scoring ligand-hTERT complexes for a  

total of 5 ns. The PDB structures were imported into the xleap module of AMBER18 (178), 

neutralized with K+ ions, and solvated in a rectangular box of TIP3P water molecules with a 12 Å 

buffer distance. All simulations were equilibrated using sander at 300 K and 1 atm using the 

following steps: (1) minimization of water and ions with weak restraints of 10.0 kcal/mol/Å on all 

nucleic acid and ligand residues (2000 cycles of minimization, 500 steepest decent before switching 

to conjugate gradient) and 10.0 Å cutoff, (2) heating from 0 K to 100 K over 20 ps with 50 kcal/mol/Å 

restraints on all nucleic acid and ligand residues, (3) minimization of entire system without restraints 

(2500 cycles, 1000 steepest decent before switching to conjugate gradient) with 10 Å cutoff, (4) 
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heating from 100 K to 300 K over 20 ps with weak restraints of 10.0 kcal/mol/Å on all nucleic acid 

and ligand residues, and (5) equilibration at 1 atm for 100 ps with weak restraints of 10.0 kcal/mol/Å 

on nucleic acid and ligand residues. The output from equilibration was then used as the input (.rst) 

file for 100 ns of unrestrained MD simulations using pmemd with GPU acceleration in the isothermal 

isobaric ensemble (P = 1 atm, T = 300 K). Periodic boundary conditions and PME were used. 2.0 

fs time steps were used with bonds involving hydrogen frozen using SHAKE (ntc = 2). Trajectories 

were analyzed using the CPPTRAJ module in the AmberTools18 package. Small molecules were 

parameterized using the Antechamber (378) package with general AMBER force field (GAFF) (379) 

and AM1-BCC atomic charges (380). Calculations of theoretical relative Gibb’s free energy (ΔG) of 

ligand-receptor complexes was achieved using the single-trajectory MMPBSA method (381). 

Trajectory residue interaction network analysis was performed on each trajectory using the 

structureViz (382) and RINalyzer (383) modules of the program Cytoscape (384) and UCSF 

Chimera v1.11 (176). 

 

Molecular visualizations 

All molecular visualizations of MD trajectories and models were performed in UCSF 

Chimera v1.11 (176).  

 

Cell culturing 

All cell lines were maintained in 5% CO2 at 37°C and 95% humidity in media supplemented 

with 10% heat inactivated FBS, penicillin (100 U final concentration), and streptomycin (100 ug final 

concentration). HEK293 (ATCC CRL-1573) cells were grown in DMEM media while MCF7 (ATCC 

HTB-22)  and MDA-MB-231 (ATCC HTB-26) cells were grown in EMEM supplemented with 0.01 

mg/mL human recombinant insulin. AlamarBlue assays were conducted as outlined in the manual 

(Thermofisher #DAL1100) in 96-well clear bottom plates. Cells were treated with compounds for 

the indicated time and concentration and results are presented relative to the control (DMSO) 

treated.  
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Quantitative real-time polymerase chain reaction (qRT-PCR) 

MCF7 cells were seeded at 2 x 105 cells/well in 6-well plates. After overnight attachment, 

media was replaced and treated with compounds in DMSO (as indicated in text), or DMSO alone 

(control), followed with 2 minutes of gentle mixing before placing back in the incubator. Media 

replacement and compound treatment were repeated twice more in 24-hour intervals such that the 

end time point was 72 hours of total treatment time. After 72 hours, cells were aspirated and washed 

before harvesting of total RNA with PureLink RNA mini kit (Invitrogen, #12183018A), followed by 

reverse transcription into cDNA using a high-capacity reverse transcription kit (Applied Biosystems 

#4368813). Quantitative PCR was performed using a standard SYBR Green Master Mix (Applied 

Biosystems #4309155) in 96-well plates on an Applied Biosystems StepOnePlus RT-PCR system 

using the standard ΔΔCt method. Primers were from PrimerBank 

(https://pga.mgh.harvard.edu/primerbank/) and verified as specific based on monophasic 

transitions during thermal denaturation. Primers (5’ to 3’): hTERT F-

TCCACTCCCCACATAGGAATAGTC, R- TCCTTCTCAGGGTCTCCACCT, c-MYC F-

CGTCTCCACACATCAGCACAA, R-CACTGTCCAACTTGACCCTCTTG, GAPDH F- 

TGCACCACCAACTGCTTAGC, R- GGCATGGACTGTGGTCATGAG. 

 

Western blotting 

 Total protein extracts prepared from MDA-MB-231 cells treated with either DMSO or 

compound treatment were subjected to SDS-PAGE followed by wet transfer to nitrocellulose 

membranes. Blots were rinsed 3x with TBST supplemented with milk and subsequently incubated 

with primary anti-telomerase reverse transcriptase antibody (Abcam, ab230527) or GAPDH 

(Abcam, ab9485) at 4°C overnight. Visualization was achieved by incubation and visualization of 

an anti-rabbit Alexa Fluor 488 conjugated secondary antibody using a PharosFX imaging system.  

 

Data analysis 

All data fitting, statistical analysis, and graphing were performed using Origin (version 

2020) (OriginLab Corporation, Northampton, MA, USA). 
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Results 

 

Virtual screening of the ZINC 2014 and 2016 drug-like small molecule databases 

To begin our drug discovery campaign, we docked over 40 million virtual small molecules 

into sites located in the loops and grooves of the all-parallel stacked hTERT G-quadruplex model 

(Figure 56) using Surflex-Dock 2.11. Due to the size of the Kentucky DataseamGrid 

(http://www.kydataseam.com/), the entire docking and scoring procedure was accomplished in just 

under a month. From this screen, the top 500 scoring small molecules from each protomol site and 

library (2 libraries * 12 docking sites * 500 molecules = 12,000 top scoring molecules) were pooled 

and clustered by a similarity criterion to group core scaffolds. The centroid molecules, which are 

the most representative of each clade, were visually inspected within their docked sites to ensure 

reasonable contacts were made. A final list of centroid molecules was then compiled and used as 

input for a search at Molport.com. In total, 69 out of 100 searched compounds were available and 

purchased for testing. 

 

Experimental screening of first-generation compounds 

Screening of the 69 first generation small molecules was achieved using a high-throughput 

fluorescent thermal shift assay (FTSA) which was described previously (269). Unfortunately, due 

to the thigh GC content of the full-length hTERT sequence (TERT-FL), we were not able to obtain 

a FRET labeled full-length oligonucleotides for screening purposes. Instead, we used truncated 

versions of the TERT-FL which have previously been characterized (143).  

The first (and 5’ most) putative quadruplex sequence, PQS1, which was solved previously 

(105), and two other sequences that lack either the 3’ PQS (PQS12) or the 5’ PQS (PQS23) G4 

motif were used in place of the hTERT-FL for screening (Table 9). We also included an array of 

promoter and telomere PQSs with the intention of quickly vetting for hTERT selective molecules 

(Table 10). Initial screening of the first-generation compounds was carried out in a phosphate buffer 

with physiological (185 mM) K+ concentration. Subtle shifts in melting temperature (ΔTm) were 
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observed for the hTERT sequences with only 3/69 compounds, ranging from ~0.5-2.5 °C (Figure 

57). The hTERT G-quadruplex is extremely stable in physiological K+ concentrations [likely owing 

to the added stability through stacking (54,143,144)] and so we decided to re-screen at slightly 

lower (100 mM) K+ concentrations. Reducing the potassium confirmed that compounds 1-3 bound 

to at least one of the larger hTERT constructs (PQS12 or PQS23), but not a control hairpin 

sequence (HP) (Figure 57A, compounds 1, 2, and 3). This assay allowed for both high-throughput 

assessment of binding as well as an indication of selectivity over an array of hairpin and G4 

topologies. 
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Table 9. hTERT oligonucleotides used throughout this study. 
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NAME OLIGONUCLEOTIDE SEQUENCE 5' TO 3' LENGTH 
(NT) 

MW Ε260 (M-

1CM-1) 

TERT-FL GGGGAGGGGCTGGGAGGGCCCGGAGGGGGCTGG
GCCGGGGACCCGGGAGGGGTCGGGACGGGGCGG
GG 

68 21633 672671 

PQS1 AGGGGAGGGGCTGGGAGGGC 20 6369 202900 

PQS12 AGGGGAGGGGCTGGGAGGGCCCGGAGGGGGCTG
GGCCGGGGACCCGGGA 

49 15523 478700 

PQS23 AGGGGGCTGGGCCGGGGACCCGGGAGGGGTCGG
GACGGGGCGGGG 

45 14278 436500 
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Table 10. Additional DNA oligonucleotides used in this study. 
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Name Sequence (5' to 3') 
Length 

(nt) 
MW 

(g/mol) 

143D AGGGTTAGGGTTAGGGTTAGGG 22 6967 

2GKU TTGGGTTAGGGTTAGGGTTAGGGA 24 7575 

2HY9 AAAGGGTTAGGGTTAGGGTTAGGGAA 26 8219 

2JSM TAGGGTTAGGGTTAGGGTTAGGG 23 7271 

2JPZ TTAGGGTTAGGGTTAGGGTTAGGGTT 26 8183 

2JSL TAGGGTTAGGGTTAGGGTTAGGGTT 25 7879 

2KF8 GGGTTAGGGTTAGGGTTAGGGT 22 6958 

2KKA AGGGTTAGGGTTAGGGTTAGGGT 23 7271 

Tel48 
TTAGGGTAAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTAGGGTTA
GGGTT 50 15829 

2O3M AGGGAGGGCGCTGGGAGGAGGG 22 7012 

Rb CGGGGGGTTTTGGGCGGC 18 5644 

Her2 AGGAGAAGGAGGAGGTGGAGGAGGAGGGC 29 9276 

Bcl-2 AGGGGCGGGCGCGGGAGGAAGGGGGCGGGAGCGGGGC 37 11799 

VEGF GGGCGGGCCGGGGGCGGGGTCCCGGCGGGGCGGGAG 36 11388 

KRAS GGGAAGAGGGAAGAGGGGGAGG 22 7069 

Zeb1 GGGGTGGGGGGGAAGGGGGAGGGAGGGGG 29 9396 

Hif1a GCGCGGGGAGGGGAGAGGGGGCGGGAGCGCG 31 9879 

c-myc TGGGGAGGGTGGGGAGGGTGGGGAAGG 27 8688 

1XAV TGAGGGTGGGTAGGGTGGGTAA 22 6992 

I-motif 
telo 

CCCTAACCCTAACCCTAACCCT 
22 6504 

I-motif 
c-myc 

TTCCCCACCCTCCCCACCCTCCCCTAA 
27 7917 

AT 
Hairpin 

ATATATATATCCCCATATATATAT 
24 7269 

GC 
Hairpin 

GCGCGCGCGCTTTTGCGCGCGCGC 
24 7339 
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Figure 57. Generation 1 FTSA screen. (A) Heatmap of Tm shifts for the first generation compounds 

in 185 mM K+ potassium buffer vs. a DNA panel. HP is a FRET labeled hairpin control. (B) 

Structures of compounds 1-3. 
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Figure 58. First and second generation FTSA screening. (A) FTSA results for screening 

compounds 1, 2, and 3, along with their derivatives (buffer consisted of 20 mM K+). HP is a FRET 

labeled hairpin control. (B) Representative CD melting profiles and ΔTm measurements for each of 

the indicated small molecules. (C) Results of FTSA DNA panel screening with indicated 

compounds. A few small (~3°C or less) negative shifts in melting temperature was observed in 

some cases but have been omitted here for the sake of clarity. 
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We next sought to confirm the interaction of compounds 1-3 with both the truncated and 

full-length hTERT constructs by orthogonal methods. As a “medium-throughput” method for 

assessment of binding, as well as estimation of stoichiometry, we turned to analytical 

ultracentrifugation (AUC) (210). This technique allowed us to confirm binding of both compounds 2 

and 3 to the truncated and full-length hTERT G4s (Figure 59), but not compound 1 as it had an 

inconvenient absorption spectrum. Instead, using isothermal titration calorimetry (ITC), compound 

1 was confirmed as binding to PQS23, but not PQS12 (Figure 59C), consistent with FTSA results 

(Figure 58), and showed comparable binding affinity to that of compounds 2 and 3 (dissociation 

constants, KD, ranged from 10-80 μM).  
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Figure 59. Isothermal titration calorimetry and AUC binding of compounds 1-3. (A) Representative 

AUC C(s) curves showing enrichment of compounds 2 and 3 at ~3.8 S, approximately where TERT-

FL sediments (3.9-4.0 S dashed line). (B) Table of binding stoichiometries for various compounds 

determined from area under the curve in A. (C) ITC binding energetics profiles of compounds 1-3 

when titrated into PSQ12 or PQS23 sequences. 
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Selectivity assessment of second-generation compounds  

The initial hits, compounds 1-3, had only moderate affinity, and so we proceeded to a 

structure activity relationship (SAR) type of approach. To this end we searched Molport.com for 

readily purchasable molecules with similar core scaffolds. In total, 25 molecules (arbitrarily 

designated with a letter, A-Y, preceded by the number of the compound they were derived from) 

were selected for purchasing and testing. Figure 58A shows the results of FTSA screening of 

compounds 1-3, along with their derivatives. Immediately it is evident that there is differential 

binding due to R-group modifications (which are shown in Figure 60). Compound 1 resulted in a 

single molecule with a comparable Tm shift (1N), whereas there were multiple derivatives of 

compounds 2 and 3 that exhibited enhanced stabilizing ability (2G, 2R, 2S, 2T and 3A, 3B, 3Y). 

These derivatives also exhibited differential binding to the hTERT truncated sequences PQS12 and 

PQS23. Only one molecule, 3A, had noticeable binding to the control hairpin duplex in FTSA 

screening experiments (Figure 58A). The compounds 2S, 3A, and 3B were subsequently 

confirmed to bind the full-length hTERT G4 (TERT-FL) by AUC binding experiments (Figure 59B) 

and compounds 1N, 2R, 2S, 3A, and 3B by CD melting studies (Figure 58B). 
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Figure 60. Structural variations of first-generation compounds (1-3) with their “SAR by catalogue” 

derivatives. Red is used to help visualize structural changes between parent molecules and 

derivatives. 

 



 

271 

 

 

 

 



 

272 

 

As selectivity is of primary interest, we next wanted to investigate the DNA interaction 

profiles of the most stabilizing derivatives (3A, 3B, 2R, 1N, 2S, and 2T) against as many types of 

DNA topologies as possible (Figure 58C). Based on Tm shifts, we found that there was less 

discrimination among various G-quadruplex topologies than expected [it should be emphasized 

that Tm shifts are a function of affinity, stoichiometry, enthalpies of binding, and enthalpies of 

denaturation so direct comparisons are not necessarily reflective of differences in affinity (385)]. 

We did, however, observe differential interactions among the molecules, suggestive of distinct 

binding modes. For instance, although 2R, 2S, and 2T were all derived from compound 2, their 

binding profiles vary markedly. 2R has a profound thermal stabilizing effect (ΔTm = +30 °C in some 

cases) and is indiscriminate among G-quadruplex DNA, whereas 2S and 2T exhibit some 

selectivity. Another differential interaction was observed with 3A and 3B. Although they have very 

similar profiles, only 3B stabilizes both the c-MYC derived G-quadruplexes (c-MYC, 1XAV) as well 

as the c-MYC I-motif. Further, 3A, 3B, 2R, and 1N all bind to the HER2 G-quadruplex, while 2S and 

2T show no interaction. Last, we find that none of the derivatives tested bind the two duplexes (AT 

and GC duplex), which indicates their selectivity over duplex DNA.  

Many of the small molecules discovered through our FTSA screen had poor spectroscopic 

properties, with absorption spectra overlapping with DNA’s intrinsic absorption. The poor 

spectroscopic properties being a limitation, we proceeded to a fluorescent indicator displacement 

assay (FID) (196,386), which can provide information on binding affinity as well as topological DNA 

preferences without relying on intrinsic spectroscopic properties of the test molecules. The results 

were somewhat ambiguous (Figure 61). First, compounds 2S and 2T appeared to be either too 

low in affinity to out compete the fluorescent indicator (TO) or were not cognate ligands for the DNA 

topologies tested. 3A, 3B, and 2R all showed only week preference for the parallel c-MYC G-

quadruplex over other topologies, demonstrating that they have moderate affinities (KD in the range 

of ~10-100 μM) for the parallel c-Myc structure. We also observed a large negative FIDs for all five 

compounds with respect to the GC duplex, A/T duplex, and H-Tel duplex. This phenomenon has 

been observed elsewhere (196) and is not readily explainable. Overall, this assay points to modest 

selection for the parallel type G4 structure with 3A, 3B, and 2R.  
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Figure 61. Results of FID and luciferase assays using second generation molecules. (A) FID assay 

showing % TO displaced based on measured fluorescence relative to controls for each indicated 

molecule against each given topology. (B) Relative reduction in luciferase expression based on a 

dual-reporter assay. In each case, samples are displayed as relative to DMSO control. Two 

different DMSO controls are used, as we found that DMSO had a small but significant dose-

dependent effect in the ranges used in these assays.
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Compounds 3A, 3B, and 2S have absorption spectra above 300 nm allowing for their use 

in absorption-based selectivity assays. One of the most powerful selectivity assays is the 

competition dialysis assay. In this assay, direct comparisons can be made between affinities of 

small molecules for any DNA structure based on the local enrichment of molecules inside the 

membrane due to strength of interaction (375). Figure 62 displays the results of a competition 

dialysis experiment using 3A, 3B, and 2S. Compound 3A displays promiscuity with duplex, triplex, 

and G-quadruplex DNA (Figure 58). Conversely, compounds 3B and 2S exhibited a high selectivity 

for the larger, multimeric G-quadruplexes (TERT-FL, Tel48, and Tel72) over monomeric G4s, 

duplex or triplex DNAs. It is important to point out that the concentration of DNA used in the 

competition assays is the same in terms of monomeric unit (i.e. base pairs for duplex forms, triplets 

for triplex, and tetrads for quadruplexes). This allows for the direct comparisons in affinity across 

all receptor sizes and helps to account for multiple binding sites (375). Using the bound 

concentrations (Cbound), we are also able to calculate apparent dissociation constants (387), which 

are 24 μM for 3B and 22 μM for 2S with respect to TERT-FL, 45 μM or greater for Tel48 and Tel72, 

and ≥140 μM for all others. These affinity values are consistent with the prediction from the FID 

assay (Figure 61) and ITC data for their respective first-generation scaffolds (Figure 59). Overall, 

these data show that 3B and 2S have a strong preference for G-quadruplex DNA over duplex and 

triplex conformations and show preference for TERT-FL over the telomere G-quadruplex multimers 

(Tel48 and Tel72). 
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Figure 62. Results of competition dialysis. Cbound is the amount of compound in micromolar that 

was locally increased inside the dialysis membrane after background subtractions, directly 

reflecting the differential affinity of ligands with receptors. All DNA structures are at the same 

monomeric concentration, and so the higher local concentration of compound is interpreted directly 

as higher affinity.   
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During the above in vitro discovery and screening processes we also worked toward 

generating an in-cell reporter method for screening. Others have previously demonstrated that 

luciferase-based G-quadruplex promoter assays allow for direct detection of transcriptional 

changes based on G4 formation and stabilization (223,388,389). Here, we used a previously 

validated (222) luciferase vector containing the full-length hTERT core promoter to screen for 

transcriptional down-regulation (Figure 61B). To our surprise, all derivatives of compound 2 (2R, 

2S, and 2T) that were tested exhibited dose-dependent increases in luciferase expression. No 

changes were observed in cells treated with 3A. Only 3B and the positive control BRACO-19 (223) 

exhibited the anticipated dose-dependent reduction in luciferase expression. Thus, only compound 

3B, a di-substituted quinazoline (Figure 60), was further pursued. Importantly, as of the time of 

writing, the core scaffold of 3B is unique and has not been reported as a DNA binding molecule.  

 

SAR of compound 3B derivatives 

One of the drawbacks of virtual drug discovery approaches is the potential for unavailability 

of small molecules, whether that be by purchasing or synthesis. The most selective compound, 3B, 

was not able to be synthesized. Therefore, we proceeded to another round of “SAR by catalogue”, 

with the intention of discovering a more selective and readily synthesizable small molecule. We 

purchased 5 derivatives of molecule 3B based on a structural similarity search (>80% similarity via 

Molport.com) and designated them as 3B1 through 3B5 (Figure 63A). Figure 63B shows the 

results of the FTSA thermal shift analysis, comparing compound 3B to each of its derivatives. We 

find that modifications made to the 2-phenylethyl moiety (such as in 3B1 and 3B2) resulted in 

minimal perturbations to Tm shifts with respect to PQS12, but large increases in Tm with respect to 

PQS23. 3B3, with the addition of the N-(propan-2-yl)acetamide side chain to the tertiary amine and 

removal of the terminal 2-aminoethyl group, had a major reduction in thermal stabilizing effect on 

PQS12 compared to the former. 3B3 also exhibited destabilization of the control hairpin (HP), which 

is undesirable as this indicates interaction with duplex DNA. The most substantial change in thermal 

stabilizing effect was observed with the swapping of the 2-aminoethyl group for a fluorophenyl 

moiety, which prevented binding entirely (3B4). The last compound, 3B5, showed a reduction in 
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thermal stabilization of PQS12 with a concomitant increase in stabilization of PQS23, likely 

indicating that the methyl group on the tertiary amine reduces interaction with PQS23.  

Apparent binding affinities for 3B1, 3B2, and 3B5 were able to be estimated from FTSA 

titration experiments (Figure 64) (assuming similar binding stoichiometries). Their apparent KD 

values are given in Figure 63A (3B3 and 3B4 Tm could not be fit to any binding models). These 

affinity estimations, while much higher than expected (which is reasonable when considering the 

dependency of KD on temperature), indicate that compounds 3B1 and 3B5 bind most tightly to the 

truncated hTERT G-quadruplex sequences. These analyses also highlight the fact that Tm shift 

data from a single drug concentration may not necessarily approximate affinities (e.g. at saturation, 

3B1 increases PQS23 melting temperature by 18.5 °C, with KD = 69.7 μM, while 3B5 only increases 

the melting temperature by 6.8°C, yet yields a similar KD = 69.9 μM). Subsequent ITC titration 

analysis of 3B1 to hTERT-FL showed a KD1 = ~3-4 uM, and that the binding is best fit by a three-

site model (Figure 63C). Altogether, this data indicates that the 2-aminoethyl group plays a role in 

the interaction with PQS12, and that by removing the methyl group from the tertiary amine the 

affinity for PQS23 increases.  
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Figure 63. “Catalogue SAR” analysis of compound 3B derivatives. (A) Structures of 3B and 

derivatives 3B1-5. Red is intended to help visually emphasize the areas where molecular additions 

were made. The inset descriptions are (in order): compound ID, ZINC ID, FTSA Tm shifts in degrees 

Celsius, and dissociation constants, KD as measured in FTSA titration experiments. (B) Plot of 

FTSA Tm shifts of 3B and its derivatives. (C) Representative ITC data of 3B1 titrated into hTERT-

FL fit to a three-site model with fit and KD values inset and residuals on bottom.  
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Figure 64. FTSA dose-response curves for indicated compounds against both truncated TERT 

constructs: PQS12 and PQS23. Data were fit to a standard, single-site binding model. All fits had 

R2 ≥ 0.97. 
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To gain some understanding of the differential binding of compound 3B and its derivatives, 

we conducted extensive virtual docking with post-docking MD simulations (Figure 65). Docking 

sites around loops, grooves, and terminal tetrad faces (3’ and 5’ ends) of the hTERT model from 

Figure 56 were generated, followed by Glide XP (376) flexible docking of 3B and its derivatives, 

3B1-5. Overall, seven sites had deep enough grooves identified for docking. Due to the high binding 

stoichiometry observed for compound 3B via AUC measurements (Figure 58A-B) and the ITC 

analysis indicating three sites bound by 3B1 (Figure 61C), multiple binding sites were investigated 

for each derivative. Using the top scoring docked positions for each molecule (as well as 

conformers and tautomers) we conducted 5 ns explicit solvent MD simulations (totaling 615 

nanoseconds of simulation time). Figure 65A depicts the sites targeted in Glide docking. Figure 

65B shows the post-MD theoretical Gibbs free energy values for the highest energy interaction 

poses calculated from evenly spaced frames of the trajectory. Surprisingly, the free energy values 

trend with the FTSA data in Figure 64 (i.e. 3B, 3B1, and 3B2 trend toward higher affinity than 3B3, 

3B4, and 3B5). Further, neither 3B1 or 3B2 were able to dock at the 5’ end, and only 3B2 could 

bind to the site “DG4”, indicating that the major stabilizing binding site for 3B1 and 3B2 resides in 

the loop pocket designated as “DG22”. This pocket is formed by the connecting loop between the 

5’-most and middle G4 units (Figure 65D), indicating that these molecules prefer loop/G4-junctions. 

Similarly, 3B1 and 3B2 interact strongly at site “DG38” and stabilize the phosphate backbone 

across the junction of the middle and 3’-most G4 units. 3B1 is predicted to have the highest affinity 

in a groove nearest the 3’ tetrad face, with partial stacking on the terminal tetrad. Overall, this 

suggests that 3B1 has only three preferred sites, all of which involve groove and loop interactions, 

which is consistent with ITC results. 
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Figure 65. Glide XP docking and MD trajectory analysis of compound 3B and derivatives. (A) 

Schrodinger Sitemap docking sites (only the main 4 sites) shown as colored surfaces mapped onto 

the hTERT G-quadruplex structure. (B) Calculated theoretical Gibb’s free energy of interaction for 

each compound-receptor combination from 5 nanoseconds of fully solvated MD. Scores are 

representative of only the largest free energy values for each ligand at each site. Missing values 

indicate that no docking solution was found. (C-E) Representative interactions of 3B1 docked in 

each of its three predicted binding sites (C – DG38, D – DG22, and E – 3’ end). Ligand colors 

correspond to sites in A. Labeled residues in C-E indicate the residues essential to interaction. 
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Biological assessment of compound 3B1 

The above investigations demonstrate that a variety of these small molecules bind and 

stabilize the hTERT core promoter G-quadruplex multimer in vitro and have plausible binding 

modes in loop regions. We next wanted to see if a biological response would occur in cells known 

to have elevated hTERT expression with a wild-type core promoter (366). We began with 

quantitative PCR studies in MCF7 breast cancer cells (Figure 66). At 10 μM and 72 hours of 

treatment with compounds 3B1 and 3B5, we observed a statistically significant reduction in hTERT 

mRNA. Since c-MYC is the most thoroughly studied of all oncogene promoter G4s and its protein 

product can act directly on the hTERT promoter to modulate expression, we included it as a test 

for selectivity. We find that compound 3B5, but not 3B1 or GTC365, increases c-MYC levels 

significantly, indicating that 3B5 is not selective. The ability of 3B1 to reduce hTERT protein was 

subsequently confirmed by western blotting using the triple negative breast cancer cell line MDA-

MB-231, which has a naturally higher level of hTERT protein expression (Figure 66B). Note, this 

seemingly subtle reduction in hTERT protein by western blotting is consistent with GTC365 (223), 

and studies using siRNA to directly knockdown hTERT (390,391). 
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Figure 66. Biological assessment of compounds 3B1 and 3B5. (A) Changes in hTERT and c-MYC 

mRNA levels as determined by RT-qPCR analysis with 10 μM treatment of compounds 3B1 and 

3B5 for 72 hr. in MCF7 breast cancer cells. Measurements are normalized to GAPDH and displayed 

as relative to DMSO control. Statistical analysis was by two-way ANOVA and Tukey post-hoc test 

(alpha level of 0.05, n=4, each data point is from an independent experiment conducted on different 

days). (B) Immunoblot analysis and densitometry for hTERT protein after 10 and 30 μM treatment 

with compound 3B1 of MDA-MB-231 breast cancer cells for 72 hours. (C) IC50 measurements 

verses time for compounds 3B, 3B1, and GTC365 in MCF7 cells. 
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We next investigated cell proliferation in the presence of 3B and 3B1 compared to GTC365 

in breast cancer cells. Overall, IC50 values were approximately the same in both MCF7 and MDA-

MB-231 cells (Figure 67). The values of IC50 measured between the two cells lines are consistent 

with an earlier report for GTC365, but differ slightly in magnitude (223). Because telomerase 

reduction can lead cells to a state of metabolically active senescence, rather than apoptosis (392), 

the IC50 values measured might not necessarily correlate with the effects of hTERT repression. 

Interestingly, by plotting the measured IC50 values in MCF7 cells versus time, we find that 

compound 3B1’s IC50 has a much stronger dependency on time than GTC365. The dependency of 

IC50 on time is expected for agents that selectively repress hTERT expression (390,391). 

Altogether, these biological data support that 3B1 can repress human telomerase in breast cancer 

cells.  
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Figure 67. IC50 curves for compounds 3B, 3B1, and GTC365 in MCF7 and MDA-MB-231 breast 

cancer cells. Cells were treated for 72 hr. with compounds as indicated and analyzed by 

AlamarBlue assay. Data are reported relative to DMSO treated control cells. Data were fit to a 

standard dose-response model in Origin, from which IC20, IC50, and IC80 were obtained. 
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Discussion 

 

G-quadruplexes are now widely accepted as important drug targets for anticancer 

therapeutics. To date, most attempts at targeting promoter G4s with small molecules have been 

limited to their monomeric forms, and in some cases this has proven successful (16,103). However, 

this approach is limited in the following ways: (1) monomeric G-quadruplex units are small and 

often have shared characteristics, such as open G-tetrad faces, which encourage promiscuity of 

small molecules(18); (2) adding to, or expanding upon, core scaffolds to increase selection for 

monomeric G4s, leading to a decrease in drug-likeness (18) and potential bioavailability problems; 

(3) targeting a monomeric G4 fails to take into consideration its physiological context, as it may 

function in a larger, multimeric structure (20,144,352). Therefore, efforts towards revealing binding 

pockets among larger G4 multimers, by use of integrative structural biology approaches (143,165), 

are now needed to address this issue. Here, we have provided substantial evidence that this 

approach works by successfully discovering novel small molecules targeting the hTERT core 

promoter G-quadruplex multimer. 

Discovery of novel small molecules for an intended target requires an adequate search of 

chemical space (271,347), which is achieved only through use of cheminformatics approaches [the 

only method that can approach the ~1033 possible drug-like small molecules (393)]. Here, we have 

utilized a G4 virtual screening approach of unprecedented in size (347) to targeting the loops and 

grooves of the all-parallel stacked model of the hTERT core promoter. From this, we have 

unearthed multiple new molecular scaffolds that show specificity towards G-quadruplex structures 

over duplex and other forms (Figures 58, 62, and 63). Although the focus of this work is selective 

targeting of the hTERT G4, we note that one such molecule, 2R (and to a lesser extent 2S and 2T), 

exhibited a substantial thermal stabilizing effect across nearly all G-quadruplexes tested in our 

FTSA panel, and no indications of interactions with other DNA topologies (Figure 61). 2R appeared 

to interact most favorably with the c-MYC G4s based on FTSA and FID (Figures 58C and 61A). 

Surprisingly, 2R caused a significant increase in c-MYC mRNA in MCF7 cells (10 μM treatment for 

72 hr.) (Figure 68A). Molecular docking studies using the modified c-MYC NHEIII G-quadruplex 
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(PDB ID: 1XAV) reveal that 2R has a preferred interaction across the phosphate backbone of the 

first propeller loop (Figure 68B). This interaction seems to be facilitated by an ideal geometry of 

hydrogen bonding that spans three consecutive backbone residues. Thus, 2R’s apparent exclusive 

interaction with G4s can be rationalized by its preference for the bent phosphate network found in 

parallel, single-nucleotide G4 loops. To the best of our knowledge, 2R has never been reported in 

any type of biological or biochemical investigation. The same holds true for compounds 2, 2S, and 

2T. Thus, this somewhat serendipitous discovery is a testament to using massive virtual drug 

screening for enriching for new G4-interacting molecular scaffolds.  
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Figure 68. RT-qPCR and docking results of compound 2R. (A) RT-qPCR results of 2R 10 μM 

treatment of MCF7 breast cancer cells after 72 hours showing a significant increase in c-MYC 

mRNA relative to DMSO control. (B) Glide XP docking results of 2R with the modified all-parallel c-

MYC G-quadruplex (PDB ID: 1XAV) showing an ideal hydrogen bonding network between H-bond 

donating amine groups of 2R with the first propeller loop’s phosphate backbone. All four images 

are of the same docked position from different orientations.
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As for the primary goal of this work, we have discovered a unique disubstituted quinazoline-

based small molecule, 3B1, that selectively targets the hTERT core promoter G-quadruplex. This 

discovery was accomplished using a SAR-by-catalogue approach combined with our G-quadruplex 

drug discovery funnel approach (269). In this process, we have taken top hits from over 40 million 

virtual docked small molecules and refined them using a robust high-throughput FTSA assay 

(Figures 58, 59, 64). At each generation, orthogonal assays have been employed that allowed us 

to define the regions of the scaffolds that contribute to potential selectivity (Figures 58-60, 62, 63). 

Scaffold 3B shows selectivity for the hTERT G4 over both duplex DNA and monomeric G4s, with 

a moderate selectivity over the higher-order telomere G4s. Further, we provide biological evidence 

that the modified scaffold 3B1 is able to reduce hTERT levels in breast cancer cells, similar to 

GTC365 (Figures 65 and 67) (223). However, in contrast to GTC365, 3B1 is a more drug-like small 

molecule [based on Lipinski’s Rule of Five: MW = 336.4 g/mol, LogP = 3.184, < 5 H-bond donors, 

< 10 H-bond acceptors(137)]. Most importantly, 3B1 is more selective for G-quadruplex DNA over 

duplex DNA, whereas GTC365 shows a high degree of non-specificity based on competition 

dialysis (Figure 69). 3B1 is also unique, with no previous reports of disubstituted quinazolines with 

an aminoethyl group at the 2 position of the quinazoline ring system.   
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Figure 69. Competition dialysis results of 3B1 and GTC365 showing high selectivity of 3B1 for G4s 

over duplex DNA and the low selectivity of GTC365 for G4s over AT rich duplex DNA.  
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Based on extensive molecular docking and modeling studies, we find that 3B1 has three 

putative primary binding sites, the first of which is a pocket within an inter-G4 loop between PQS1 

and PQS2, whereas the second is a shallow loop pocket spanning the PQS2 and PQS3 junction. 

A third site is found inside of a strand reversal loop pocket of the third (PQS3) G4 with partial 

stacking on the 3’ tetrad face. Because there are 3 identified binding sites for 3B and 3B1, we can 

attempt to rationalize the unexpectedly large stoichiometry of ~8:1 observed for 3B (Figure 59). In 

each MD simulation of the molecules 3B, 3B1, and 3B2, there is a preferential stabilization of the 

phosphate backbone groups via the aminoethyl group. This interaction is slightly more favorable 

for 3B1, since there is also the secondary amine group at position 4 of the quinazoline ring. Since 

the AUC experiments are done in conditions of saturation (10:1 [Drug]:[DNA]), we reason that there 

are additional sites in which 3B is weakly associated through ionic interactions, leading to 

overestimations in stoichiometry from transport during sedimentation. However, we do not expect 

that this would impact competition dialysis experiments, as the ratio in these experiments is inverted 

(1:15 [Drug]:[DNA]). Consistently, three sites appear preferential based on ITC, MD, and AUC 

studies. This information will be beneficial moving forward as 3B1 is used in lead development, as 

we have shown that modifications to either the aminoethyl group or the 2-phenylethyl moiety reduce 

or improve its interactions with various hTERT sequence fragments (Figure 63). 

Collectively, this study demonstrates that the discovery of novel, selective drug-like small 

molecules targeting multimeric G-quadruplexes can be achieved with an adequate search of 

chemical space. We show that a SAR approach, coupled with a robust, rapid FTSA assay, can 

yield novel small molecule scaffolds with moderate to high affinity. Further, we provide detailed 

insight into the binding mode of 3B1 in the binding pockets of the hTERT core promoter G-

quadruplex that will benefit future campaigns and lead development strategies aimed at inhibiting 

the expression of human telomerase. 
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CHAPTER VII 

 

CONCLUSION 

 

 

In this dissertation, I provide an overview of an integrative structural biology approach for 

the medium- to high-resolution characterization of multimeric DNA G-quadruplexes. Importantly, 

this approach circumvents the need for perturbing the native sequences and allows for their study 

under biologically relevant conditions. Current approaches used to investigate the higher-order 

structure of DNA G-quadruplex multimers are limited. NMR techniques are hampered by the fact 

that proton resonances overlap significantly, making interpretation of higher-order G-quadruplexes 

difficult, if not impossible. X-ray crystallography, AFM, and EM-based methods require unnatural 

environments that can select out irrelevant structures or deform native structures through 

interactions with grids. Thus, my approach using a combination of robust solution-based 

biophysical techniques provides an excellent solution to this problem, as I have demonstrated with 

the higher-order telomere G4s and hTERT core promoter G-quadruplex. Further, this dissertation 

provides evidence that G-quadruplex multimers offer unique binding sites, allowing for 

development of selective ligands using in silico approaches.
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The structure formed in the higher-order human telomere sequence has been debated for 

almost a decade. Both in vitro and in-cell experimentation have shown that the two major 

topological forms of the monomeric telomere sequences are hybrid-1 and hybrid-2. However, in 

the context of longer sequences, information about the structure and assembly has yet to be firmly 

established. Low-resolution structural studies of long telomere repeats ([TTAGGG]n, where n >> 

16) by EM, AFM, and molecular tweezer studies conducted under harsh, non-physiological 

conditions have suggested that gaps exist between G-quadruplex monomers (i.e. that G-

quadruplex formation is not maximized) (159,160). Studying the smaller sequences ([TTAGGG]n, 

where n is ≤ 16) others have proposed that the maximum number of G-quadruplexes form, and 

that the most likely configuration is a compact, stacked combination of hybrid-1 and hybrid-2 

topologies (141,162,394). Consistent with the latter, I’ve shown by SEC-SAXS and circular 

dichroism studies that the annealed telomere sequence, in a physiologically relevant buffer, 

maximizes its formation of G-quadruplex units, yet remains semi-flexible. The hybrid-1 and hybrid-

2 topologies are most consistent with my analyses and prior intra-cellular studies (79). Further, MD 

simulations, SAXS modeling, and hydrodynamic studies suggest that the flexibility of the telomeres 

is due to stacking and unstacking transitions, with a significant proportion existing in the stacked 

state. G4 maximization and inter-G4 stacking offers an explanation to biological function, that is, 

the lack of gaps between G4s prevents access of proteins that recognize exposed single-stranded 

DNA, such as replication protein A (RPA), preventing aberrant DNA damage repair pathway 

activation. Altogether, this study adds significantly to our understanding of telomere biology insofar 

that it provides a detailed look at the structure and dynamics of the higher-order telomere at the 

highest resolution to date.  

The atomistic models obtained from MD simulations of the higher-order telomer G4s reveal 

unique G4-junctions and loop sites which I have targeting using a high-throughput virtual screen. 

Using these models as receptors, I have identified a unique small molecule which binds with a 

stoichiometric ratio to the inter-G4 junctional regions. This molecule is an exciting lead for future 

development, as it shows selectivity for the higher-order G4 multimers over monomeric telomere 

G4s. 
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I next sought to determine the primary structure formed in the G-rich strand of the 68-nt 

long hTERT core promoter. This region of the hTERT core promoter is important as it is frequently 

mutated in a variety of cancers, leading to allele-specific increases in hTERT expression (222). 

These mutations appear to impinge upon secondary structure formation, such as G-quadruplexes 

(223). There has been an ongoing debate over the major structure formed within this sequence for 

over a decade, beginning with near simultaneous reports of a single parallel G-quadruplex in the 

first ~25 nucleotides (105), a novel parallel-antiparallel-hairpin structure (106), and an all-parallel 

stacked multimer (144,145). Determining the major structure formed is important from the 

perspective of both rational drug discovery and biological points of view (20), since targeting this 

structure with G-quadruplex ligands has been shown as a novel method of reducing hTERT 

expression in cancer cells (223). To this end, I have created two representative artificial DNA 

constructs that favor either an optimized all-parallel (“OP”) or parallel-antiparallel-hairpin (“AH”) for 

biophysical characterization and comparison to the wild-type (“WT”). Like my human telomere 

study, I have combined a suite of biophysical tools in an integrative fashion to compare the three 

oligonucleotide sequences. Spectroscopic studies with circular dichroism and DNase I cleavage 

assays indicated an absence of a hairpin moiety in both OP and WT and confirmed that both OP 

and WT had consistent CD spectra shape and magnitude—consistent with stacked parallel 

structures. Maximal parallel G-quadruplex formation in OP and WT (i.e. three parallel G-

quadruplexes) was confirmed via 1H-NMR studies. Lastly, I combined hydrodynamic techniques 

with SEC-SAXS and MD simulations to show, unequivocally, that the WT sequence is much more 

compact than the AH. Importantly, SEC-SAXS revealed that the AH structures contained multiple 

domains, whereas the WT sequence was very globular and is qualitatively akin to the all-parallel 

OP. From these results, we conclude that the major form of the hTERT promoter G-quadruplex is 

an all-parallel stacked G4 multimer. The immediate biological implications of this structure are 

uncertain. However, going forward there is now a model in which to test hypotheses, which is often 

accomplished in part by targeting with small molecules. Altogether, my combined results highlight 

the broad applicability of this integrative structural biology platform.  
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Nucleic acids have long remained in the shadow of proteins as biological targets in virtual 

screening approaches (269). As more in vivo evidence for the existence of novel non-B DNA 

structures is unearthed, more in vitro DNA structures will become in silico molecular targets. 

Indeed, G-quadruplexes, which are now widely accepted as important biological targets, are rapidly 

being used in virtual drug discovery approaches (Figure 70). Thus, it is prudent now to evaluate 

these initial virtual discovery campaigns and attempt to identify the aspects that make them 

successful. Therefore, I have created a compendium of the past decade of G-quadruplex virtual 

screening. In this comprehensive review, I have introduced the relevant screening methodologies, 

libraries, and scoring functions used in G4 virtual drug discovery, which provides a useful starting 

point for future investigators. Further, in comparing the contemporary methods, I have identified 

the two major limiting factors in successfully enriching for novel hits: library size and chemical 

search space. Overcoming these issues largely hinges on both advances in search and scoring 

algorithms, as well as increased accessibility to higher throughput computing infrastructure. I also 

show that most monomer G-quadruplexes that are targeted at their terminal tetrad faces enrich for 

heterocyclic molecules, known as “end-pasters”. End-pasters commonly lack selectivity due to their 

similar interactions with the common tetrad faces (like the specificity problem of tyrosine kinase 

inhibitors). Docking campaigns that focus on loops and grooves increase the likelihood of 

identifying selective hits. Thus, based on prior studies, we propose that virtual drug discovery 

should focus on the loop and groove regions of the higher-order G-quadruplex multimers. Lastly, 

we provide an overview of best practices that were gleaned from previous studies, which will 

undoubtably benefit G-quadruplex virtual campaigns moving forward.  
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Figure 70. Plot of publications per year in the Scifinder database based on the search term “G-

quadruplex virtual screening” (left Y-axis, black), and the cumulative number of deposited atomic 

coordinate files for DNA G-quadruplexes in the Protein Databank (right Y-axis, red). 
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I next utilized a massive virtual and actual screening campaign targeting the hTERT core 

promoter G-quadruplex multimer. hTERT, and its cognate RNA hTR, form the ribonucleoprotein 

complex telomerase that is responsible for maintenance of the telomeres. hTERT’s expression 

levels often correlate with its activity in cancer (395). Knockdown of hTERT is sufficient to cause 

telomere atrophy and, in some instances, direct induction of senescence (357-359). Due to its 

absence in most “normal” cells, hTERT has been a target of anti-cancer drug discovery for 

decades. To date, no small molecules inhibitors have been clinically successful (215), which has 

led many investigators to seek alternative strategies of inhibition. Recently, a new mechanism of 

hTERT repression was reported that involves targeting its core promoter with G-quadruplex 

interacting small molecules (223). Thus, I have used the all parallel hTERT G-quadruplex multimer 

receptor for in silico drug discovery. I docked over 40 million virtual small molecules to 12 different 

loop and groove locations across the hTERT G-quadruplex using Surflex-Dock v2.11. Based on 

docking scores, the top 500 molecules from each site were combined and clustered for scaffold 

similarity and to reduce the total top molecules. From the final group of unique scaffolds, 69 were 

purchased for screening. Using an iterative process of screening with thermal shift assays coupled 

with a catalogue-SAR approach, multiple small molecule scaffolds were identified that selectively 

stabilized G-quadruplexes over duplex and triplex DNA. Using competition dialysis and cell assays, 

I discovered that a single, di-substituted quinazoline molecule showed selectivity for hTERT over 

other G-quadruplex topologies. Additional catalogue-SAR investigations resulted in a disubstituted 

2-aminoethyl-quinazoline molecule that significantly reduced hTERT mRNA levels in breast cancer 

cells and had no effect on c-MYC mRNA. Rigorous docking and molecular dynamics coupled with 

free energy calculations confirmed that this molecule preferentially stabilized loops and grooves. 

Importantly, the identified compounds are unique, and have not been reported in the literature to 

date. Thus, the resulting molecule represents an ideal candidate for future optimization as a novel, 

selective hTERT-repressing small molecule.  

In conclusion, the integrative structural biology platform outlined in this work represents a 

robust means to answering questions about higher-order DNA G-quadruplex structures that 

previously could not be answered. It also emphasizes that selectivity can be achieved by targeting 
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the unique pockets created when G-quadruplex multimers form. However, I note that there is room 

for improvement. Refinement of G-quadruplex multimers against small-angle X-ray scattering is 

complex. While the interpretation of SAXS scattering is somewhat straight forward from a 

qualitative standpoint, the same cannot be said for the structural refinement, especially when 

heterogeneity, dynamics, and flexibility are taken into account (396). Therefore, while this approach 

allows us to integrate complexes of monomer subunits that have been solved by NMR or X-ray 

crystallography techniques previously, it does not allow us to identify G-quadruplex structures ab 

initio. To this end, future work will need to focus on the creation and implementation of G-

quadruplex conformational search algorithms by which all plausible G-tetrad stacking and loop 

conformations can be generated for selection against SAXS scattering and prior experimental 

information. Similar algorithms are currently in use to some extent in the RNA community, although 

they are not applicable to G-quadruplex folds (397). Limitations aside, this dissertation is the first 

application of this robust integrative approach to characterizing DNA G-quadruplex multimers. This 

work represents the first steps towards characterizing, targeting, and understanding multimeric G-

quadruplex structures as targets in human disease. 
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