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ABSTRACT

MODIFIED-HALF-NORMAL DISTRIBUTION AND DIFFERENT
METHODS TO ESTIMATE AVERAGE TREATMENT EFFECT

Jingchao Sun

August 28, 2020

This dissertation consists of three projects related to Modified-Half-Normal

distribution and causal inference.

In my first project, a new distribution called Modified-Half-Normal distribu-

tion was introduced. The Modified-Half-Normal distribution occurs in diverse areas

of research, such as sandwich MCMC algorithm in Bayesian binary regression, infer-

ence with the Projected Normal distribution, data augmentation algorithm for the

vonMises-Fisher distribution, and application in robust Bayesian graphical model. I

explored a few of its distributional properties, the procedures for generating random

samples based on Bayesian approaches, and the parameter estimation based on the

method of moments.

The second project deals with the problem of selection bias of average treat-

ment effect (ATE) if we use the observational data. I combined the propensity score

based inverse probability of treatment weighting (IPTW) method and the directed

acyclic graph (DAG) to solve this problem. In addition, I carried out simulations to

examine the performance of the propensity score based IPTW method in estimating

ATE when different sets of variables are included in the propensity score estimation.

Moreover, a case study was conducted based on the 2016 HCUP KID database.

v



The third project solves the problem of bias ATE using observational data

by combining the doubly robust methods with the super learner algorithm. Doubly

robust method estimate is unbiased if either propensity score model or outcome model

is correctly specified. I used super learner algorithm to replace the outcome model.

Super learner is a prediction method which aims to find the best combination of a

group of prediction algorithms, such as machine learning methods and generalized

additive model, by minimizing the cross validation error. Simulations were carried

out to examine the performance of different doubly robust methods and super learner

assisted doubly robust methods. Furthermore, a case study was implemented based

on the National Health and Nutrition Examination Survey Data I Epidemiologic

Follow-up Study (NHEFS).
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CHAPTER 1

INTRODUCTION

1.1 The Modified-Half-Normal distribution: properties and an effi-

cient sampling scheme

We introduced the Modified-Half-Normal (MHN) distribution, a novel family

of continuous probability distributions, supported on the positive part of the real line.

The probability density function of the distribution is proportional to the function

x 7→ xα−1 exp(−βx2 +γx)I(x > 0). The parameters α and β are positive real numbers

while γ can be any real number. We studied a few of its distributional properties

including the normalizing constant and moments of distribution in terms of the Fox-

Wright function. We demonstrated its relevance by exhibiting its connection to a

number of Bayesian statistical methods appearing from diverse areas of research. An

efficient sampling algorithm is contributive to the Bayesian procedures, which require

sampling from Modified-Half-Normal distribution. Therefore, a major focus of this

article is the procedures of generating random samples from the Modified-Half-Normal

distribution. To ensure efficiency, we have proved that the proposed Accept-Reject

sampling algorithms are uniformly efficient irrespective of the choice of the parameter

specifications.
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1.2 Directed acyclic graph assisted methods for estimating average

treatment effect

Observational data, such as electronic clinical records and claims data, can be

very useful to examine average treatment effect (ATE) and help decision making, if

used appropriately. Propensity score based inverse probability of treatment weight-

ing (IPTW) method has been very powerful to estimate ATE if the assumptions of

exchangeability, consistency, and positivity hold. Directed acyclic graph (DAG) pro-

vides a feasible approach to examine the exchangeability assumption, that is, the

treatment assignment variable and the potential outcome are independent given a

set of confounding variables which block all backdoor paths from treatment assign-

ment variable to the potential outcome. Therefore, we do not need to adjust all

confounding variables. It is common that there are several sets of such confound-

ing variables. In the propensity score model, we consider to adjust a minimal set

of confounding variables which block all backdoor paths from treatment assignment

variable to the potential outcome. Recent literature also shows that including predic-

tors (variables related to outcomes but not treatment) in the propensity score model

also improves the accuracy in estimating ATE. We proposed to include a minimal set

of confounding variables and predictors in the propensity score model. We carried

out extensive simulations to examine the performance of the propensity score based

IPTW method in estimating ATE when different sets of variables were included in

the propensity score model. The simulation results indicated that the performance

of ATE estimation based on the minimal set of confounding variables plus predictors

was comparable with the maximal set of confounding variables plus predictors. We

applied the proposed method to examine if tracheostomy (i.e., a medical procedure

involving creating an opening in the neck in order to place a tube into a person’s

windpipe) was a cause of in-hospital death for infants based on the 2016 Healthcare

2



Cost and Utilization Project (HCUP) Kids’ Inpatient Database (KID).

1.3 Different doubly robust methods for estimating ATE and their

improvement using super learner

Average treatment effect (ATE) is an important parameter to measure the

benefit of a treatment in medical research. Propensity score based methods, in-

cluding stratification, matching, inverse probability of treatment weighting (IPTW),

regression with propensity score as covariates, and doubly robust (DR) method are

often used to estimate ATE. Among them, DR method has gained much attention

due to the property that ATE estimate based on DR method is asymptotically con-

sistent if either propensity score model or outcome model is correctly specified. We

investigated different forms of doubly robust estimators and compared their perfor-

mances via simulations. In addition, we investigated the super learner algorithm for

outcome model, and applied the super learner algorithm in DR method. The result-

ing super learner assisted DR method provides less biased estimates for ATE even

when both propensity score model and outcome model are falsely specified. Exten-

sive simulations were carried out to examine the performance of super learner assisted

doubly robust methods. Moreover, a case study based on the National Health and

Nutrition Examination Survey Data I Epidemiologic Follow-up Study (NHEFS) was

implemented to examine the weight gain due to quitting smoking.

3



CHAPTER 2

THE MODIFIED-HALF-NORMAL DISTRIBUTION: PROPERTIES

AND AN EFFICIENT SAMPLING SCHEME

2.1 Introduction

The objective of this manuscript is to introduce the Modified-Half-Normal

(MHN) distribution, a novel family of continuous probability distributions, supported

on the positive part of the real line. The corresponding probability density function

is specified as

f
MHN

(x | α, β, γ) =
2β

α
2 xα−1 exp(−βx2 + γx)

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


I(x > 0),

(2.1)

for α > 0, β > 0, γ ∈ R where I(x > 0) denotes the indicator function and 1Ψ1

(α
2
, 1

2
)

(1, 0)
;x


refers to a specific case of the Fox-Wright function (Wright, 1935; Fox, 1928) that we

review in the Section 2.2.

The introduction of the Modified-Half-Normal distribution is primarily moti-

vated by its connection to a number of MCMC based Bayesian procedures. Although

in Bayesian analysis new distributions frequently crop up in the form of conditional

posterior distributions, usage for many such probability distributions is too specific

and they may not be relevant for a broader context. Additionally, most such dis-

4



tributions often lack a tractable form of their distributional attributes (such as the

normalizing constant), resulting in difficulties to utilize them in other contexts. On

the contrary, the Modified-Half-Normal distribution occurs in diverse areas of research

signifying its relevance to contemporary statistical modeling and computation. In or-

der to demonstrate its usefulness, in Section 2.1.1 we include a few examples that

involve the MHN (α, β, γ) distribution as one of their posterior conditionals to sam-

ple from. In particular, the distribution will play an important role in the develop-

ment of data augmentation algorithms for the directional data (see Section 2.1.1), a

budding technique to analyze directional data. Apart from the examples provided

in Section 2.1.1, the MHN (α, β, γ) is likely to transpire in many other statistical

models due to the similarity of the Normal distribution. Moreover, the Modified-

Half-Normal distribution has interesting properties including the availability of its

normalizing constant.

From the perspective of its applicability towards MCMC algorithms, it is

important to develop methods to generate random samples from the distribution.

Therefore, we devote considerable efforts to develop algorithms for generating ran-

dom samples from the Modified-Half-Normal distribution. Specifically, we employed

the Accept-Reject sampling technique (Devroye, 2006; Casella, 1985; Ahrens and Di-

eter, 1982; Philippe, 1997) for the purpose. An Accept-Reject sampling algorithm

may suffer from high rate of rejection; especially when the rejection rate is not con-

trolled uniformly for all cases of the parameter values. Keeping this in mind, we

devise “uniformly efficient” Accept-Reject algorithms that ensure high performance

for all possible choices of its parameter values. Thus, we provide a reliable sampling

algorithm that would guarantee a sample irrespective of the parameter specifications

that may occur during a real data analysis. Establishing uniformly efficient Accept-

Reject sampling algorithms has been a nontrivial challenge and is a major theoret-

ical component of the article, we contrive a unique approach for proving the result.

5



On this occasion, we would like to point out that the algorithms developed by De-

vroye (2014), Hörmann and Leydold (2014) are examples of the “uniformly efficient”

Accept-Reject algorithms. On a related note, the MHN (α, β, γ) is a log-concave dis-

tribution when α ≥ 1. Therefore, the generic sampling techniques applicable for

a log-concave density (Devroye, 2006; Gilks and Wild, 1992; Martino and Mı́guez,

2011) are also relevant for the case. On the other hand, the sampling algorithms

developed in this article, though conceptually generalizable for other distributions,

are optimally designed to achieve high efficiency for sampling from MHN (α, β, γ).

Additionally, unlike many generic sampling procedure for the log-concave densities,

the algorithm we have designed does not require the computation of its normalizing

constant. About a particular case, note that the class of Truncated Normal distribu-

tions whose support is restricted to the positive part of the real line is contained in

the Modified-Half-Normal family of distributions. If we focus our attention on that

specific class of distributions, the performance of our algorithms to sampling from

Truncated Normal distributions is comparable to the ones that are found by Robert

(1995), Damien and Walker (2001).

In addition to the sampling algorithm, we explored a number of properties of

the Modified-Half-Normal distribution in Section 2.3. We recognize its normalizing

constant to be a Fox-wright function (Fox, 1928; Wright, 1935; Mehrez and Sitnik,

2019). The moments and the moment based statistics such as variance, skewness for

the distribution can be represented in terms of the Fox-Wright functions. Besides, we

identify a recursive relation between three consecutive moments of the distribution

which is not only helpful in establishing a few key characteristics of the distribution

but also plays an important role in estimating the parameters of MHN (α, β, γ) that

we discuss in Section 2.5. Note that the family of Modified-Half-Normal distributions

can be viewed as a generalization of multiple families including Half Normal, Trun-

cated Normal, Square root of a Gamma and Gamma distributions (see Section 2.3).

6



Therefore, the family of distributions possess decent flexibility that can capture at-

tributes of a real-valued positive data. Although it is not the primary objective, for

the sake of completeness we briefly discussed the inferential techniques for analyzing

data using the Modified-Half-Normal distribution.

As an additional component of this manuscript, we develop a few properties

of the Fox-wright function that are required for studying the Modified-Half-Normal

distribution. Depending on different parameter choices, we designed appropriate com-

putation strategies for the Fox-Wright function that pertains to the current context.

Reliable computation of the function is not only important to evaluate the basic statis-

tics such as mean, variance, skewness, etc. of the Modified-Half-Normal distribution

but also useful for computing the efficiency measures of the sampling algorithms in

Sections 2.4. However, the implementation of the sampling algorithms do not require

for its computation. A few nontrivial inequalities for the Fox-Wright function are

also designed as they are required to establish the uniform efficiency of the developed

Accept-Reject sampling algorithms.

2.1.1 A few applications of the Modified-Half-Normal distribution

In this section we consider a few examples to demonstrate the usefulness of

the Modified-Half-Normal distribution in various statistical models. For the following

Bayesian procedures, the MHN (α, β, γ) distribution appears as one of the posterior

conditional distributions that constitute the associated Markov Chain Monte Carlo

algorithms. The examples aggregated here are inspired by diverse statistical problems,

thus showing the spontaneity of its occurrence in literature.

Sandwich MCMC algorithm in Bayesian binary regression

Let y
R,1 , yR,2 , . . . , yR,n be independent Bernoulli random variables such that

P (y
R,i = 1 | β

R
) = Hν

R
(xT

R,i
β
R

) where x
R,i ∈ Rp denotes the corresponding covari-

7



ates for i = 1, . . . n. β
R
∈ Rp is a vector of unknown regression coefficients and Hν

R
(·)

is the cumulative distribution function of the t-random variable with ν
R

degrees of

freedom. To develop an MCMC based posterior inference, it is required to sample

from the conditional posterior density of β
R

, which is propositional to

n∏
i=1

[
Hν

R
(xT

R,i
β
R

)
]y
R,i
[
1−Hν

R
(xT

R,i
β
R

)
]1−y

R,i , (2.2)

where an improper flat prior is used for β
R

. In Equation 2.2, we use the notation

y
R

= (y
R,1 , yR,2 , . . . , yR,n). A sufficient condition for the property of the posterior in

Equation 2.2 can be found in (Pal et al., 2015).

Albert and Chib (1993) developed a Data Augmentation (DA) algorithm for

exploring the above posterior (Equation 2.2). The technique is based on introducing

a set of latent variables Λ
R

:=
(
λ
R,1
, . . . , λ

R,n

)T ∈ Rn+ and Z
R

:= (z
R,1 , . . . zR,n)T ∈ Rn

with appropriate probability distributions, so that the full conditional posteriors of

β
R
, Z

R
and Λ

R
reduced to be Normal, Truncated Normal and Gamma distributions

respectively (Albert and Chib, 1993; Pal et al., 2015).

It is well known that the DA algorithm in (Albert and Chib, 1993) can be

slow to converge and often leads to MCMC samples with high auto correlation (Pal

et al., 2015; Roy et al., 2012; Van Dyk and Meng, 2001). To improve the performance

of data augmentation algorithms, sandwich data augmentation algorithms can be

useful (Meng and Van Dyk, 1999; Liu and Wu, 1999; Marchev and Hobert, 2004).

The idea is to expedite the MCMC convergence by introducing an additional draw

from a scalar random variable so that the stationary distribution of the Markov chain

remains same. We here denote it by G. Pal et al. (2015) proposed a suitable version

of the sandwich algorithm that is applicable for the case where the probability density

function of G

π
G

(g | β
R
, Z

R
,Λ

R
,y

R
) ∝ gn−1e

−
∑n
i=1

1
2
λ
R,i

(g z
R,i
−xT

R,i
β
R

)2

I(g > 0). (2.3)

8



Based on the Equation 2.1, it follows that the distribution corresponding to Equa-

tion 2.3 is

MHN

(
·;n,

(
1

2

n∑
i=1

λ
R,i

z2
R,i

)
,

(
n∑
i=1

λ
R,i

z
R,i
xT
R,i
β
R

))
.

Hence, an efficient sampler for the Modified-Half-Normal is also contributive to the

performance of the above sandwich algorithm.

Inference with the Projected Normal distribution

Projected Normal distribution is a popular choice to model the directional

observations, y
PN,i ∈ Sp−1 for i = 1 . . . n where Sp−1 =

{
y ∈ Rp : yTy = 1

}
denotes

the unit sphere. It is assumed that there are variables x
PN,i ∈ Rp such that x

PN,i =

r
PN,i yPN,i where r

PN,i > 0, ‖y
PN,i‖ = 1. The latent variables r

PN,i represents the

norm of the vector x
PN,i. The random vectors x

PN,i are assumed to be independent

and Normally distributed with mean µ
PN
∈ Rp and variance Σ

PN
, a p × p positive

definite matrix. For the identifiability of the model parameters, it is customary to fix

the last diagonal element of Σ
PN

at the unity. In the context of the MCMC based

posterior inference for the model, as discussed in Hernandez-Stumpfhauser et al.

(2017); Chakraborty et al. (2017), the probability density for the full conditional

posterior of r
PN,i is

π
PN,i(r) ∝ rp−1e−r

2( 1
2
yTi Σ−1

PN
y
PN,i)+r(yT

PN,i
Σ−1

PN
µ
PN)I(r > 0). (2.4)

It can be seen that the distribution in (2.4) corresponds to the MHN (p, 1
2
yT

PN,i
Σ−1

PN
y

PN,i,

yT
PN,i

Σ−1
PN
µ

PN
) distribution. We refer to Hernandez-Stumpfhauser et al. (2017) for

more details on the model, parameter specifications, and the posterior sampling dis-

tributions. Therefore, the study of the Modified-Half-Normal distribution including

an efficient sampler is relevant for this area of research as well.

9



Data augmentation algorithm for the vonMises-Fisher distribution

Let y
VF,1 , . . .yVF,n ∈ Sp−1, be the observed directional data on the p dimen-

sional Euclidean space. VonMises-Fisher distribution with the probability density

function (with respect to the appropriate Haar measure on Sp−1),

f
VF

(y) =

(
κν

VF
exp

(
κ

VF
µT

VF
y

VF

)
(2π)p/2 Iν(κVF

)

)
I(y

VF
∈ Sp),

is one of the most popular distributions to model such data. In the above equation

ν = p/2 − 1 and Iν(·) denotes the Modified Bessel function of the first kind. The

parameter µ
VF

represent the modal direction while κ
VF

controls the concentration of

probability around the mode of the distribution. For a full Bayesian analysis for the

model, a data augmentation algorithm can be designed where the independent random

variables T
VF,1, . . . TVF,n distributed according to the probability density function,

fT,ν(t;κVF
) =

Iν(κVF
)

(2κ
VF

)ν

∞∑
k=1

2
2+ν

2 jν+1
ν,k

Jν+1(jν,k)
e−(j2ν,k+κ2

VF
)t I(t > 0),

is augmented to deal with the intractable normalizing constant involving the Bessel

function of the first kind. If a Gamma(α
VF
, β

VF
) prior is used for the parameter κ

VF

then the the conditional posterior distribution for κ
VF

results in the following density

πκ
VF

(κ) ∝ καVF
−1e−(nTVF)κ2+κ(nµT

VF
Y

VF
−β

VF)I(κ > 0), (2.5)

where T
VF

=
∑n

i=1 TVF,i/n and Y
VF

=
∑n

i=1 yVF,i/n. The full conditional

distribution of κ
VF

given the other variables follow a

MHN
(
α

VF
, nT

VF
, nµT

VF
Y

VF
− β

VF

)
10



(see Equation 2.5 and 2.1). Note that the Modified-Half-Normal distribution appears

even if the conjugate prior is used for the pair (µ
VF
, κ

VF
). For the efficiency of the

above data augmentation algorithm, it is imperative to have an efficient sampling

scheme for the Modified-Half-Normal distribution. Note that the described data

augmentation technique is a newly developed procedure and the sampling from the

MHN (α, β, γ) distribution plays a crucial role in the related Bayesian procedures.

Application in robust bayesian graphical model

Consider the robust Bayesian graphical model as it is outlined in Finegold et al.

(2014). The objective of this model is to learn the covariance structure ΨG of a set

of multivariate observations assuming that the corresponding concentration matrix is

likely to be a sparse positive definite matrix. To describe the model, let y
G,1 , y

G,2 , . . . ,

y
G,n ∈ Rp denotes the random sample from the alternative-t distribution (Finegold

et al., 2014). To facilitate the parameter estimation in a tractable manner, Finegold

et al. (2014) introduce a set of latent vectors that we denote by τ
G,1 , . . . , τG,n ∈ Rp+

where τ
G,i =

(
τ
G,i,1 , . . . , τG,i,p

)T
for i = 1, . . . , n. The model can be represented as

y
G,i | µG,i , τG,i ,ΨG

∼ Normal
(
µ

G,i , D
−1
G,τ ,i

Ψ
G
D−1

G,τ ,i

)
for i = 1, . . . n,

τ 2
G,i,j

iid∼ Gamma(
ν
G

2
,
ν
G

2
),

for i = 1, . . . n and j = 1, . . . p where D
G,τ ,i denotes the diagonal matrix with the

diagonal elements τ
G,i. The sparsity pattern governed by the concentration matrix

Θ
G

:= Ψ−1
G

corresponds to a graph which represents the conditional independence

structure between the different coordinates of the observations. For Bayesian formu-

lation of the model, the prior distribution for the parameter Ψ
G

is assumed to be

Hyper Inverse Wishart distribution (Finegold et al., 2014; Roverato, 2002) where µ
G

is considered to be Normally distributed. A Gibbs sampling algorithm is employed for

11



posterior inference where the sampling density of the parameters τ
G,i,j is proportional

to

τ νG−1e−βGτ
2+γ

G
τ , (2.6)

for appropriate values of β
G

and γ
G

(see Finegold et al. (2014) for details). Thus, the

probability density in Equation 2.6 corresponds to a Modified-Half-Normal distribu-

tion.

So far in this section, we have discussed a few examples related to the topics of co-

variance estimation, analysis of directional data and the Bayesian Binary regression.

They shows the diversity of the applications where the Modified-Half-Normal distri-

bution is utilized. The authors believe that the spontaneity for the occurrence of the

MHN (, , ) is due to the similarity of its probability density with that of the Normal

distribution and it will be useful for many other occasions apart from the examples

described above.

2.2 The Fox-Wright function and a few of its properties

In this section, we present the general form of the Fox-Wright function (Fox,

1928; Wright, 1935) and identify a specific case that is required for studying the

Modified-Half-Normal distribution. We include a brief discourse to familiarize the

related notions and to investigate certain aspects of the function. If not interested,

the reader may only consider the statements of the Lemmas and move to the next

Section of the article. The general class of the Fox-Wright function, introduced by

Fox (1928) and Wright (1935), is defined as

pΨq

(a1, A1) (a2, A2) . . . (ap, Ap)

(b1, B1) (b2, B2) . . . (bq, Bq)
; z

 =
∞∑
n=0

Γ(a1 + A1n) · · ·Γ(ap + Apn)

Γ(b1 +B1n) · · ·Γ(bq +Bqn)

zn

n!
,
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where p, q are non-negative integers, Al ≥ 0 for l = 1 . . . p and Bm ≥ 0 for m = 1, . . . q.

The constants al for l = 1, . . . , p and bm for m = 1, . . . , q are allowed to be any nonzero

complex numbers (Craven and Csordas, 2006; Mainardi and Pagnini, 2007), but for

this manuscript we only need the case when they are positive real numbers. The

above series converges absolutely for z ∈ C if
∑q

l=1Bl −
∑p

m=1 Am + 1. The usage of

the function is seen in different branches of science including Mathematics (Mainardi

and Pagnini, 2007), Physics, and Finance. Many of its properties are documented for

years while the related scientific investigation is still an active area of research (Wang

(2019); Wei (2019)). In the backdrop of the principal objectives of the current article,

we streamline our focus on the

1Ψ1

(α
2
, 1

2
)

(1, 0)
;x

 =
∞∑
n=0

Γ(α
2

+ 1
2
n)

n!
xn, (2.7)

a specific case of the Fox-Wright function which is required not only to represent the

normalizing constant of the MHN (α, β, γ) distribution (see Section 2.3) but also to

apprise the efficiency of the rejection sampling algorithms developed in Section 2.3.

Additionally, the availability of computational algorithms for 1Ψ1

(α
2
, 1

2
)

(1, 0)
;x

 and/or

the ratio of the appropriate Fox-wright functions are crucial for computing mean,

variance, skewness and other moment based statistics (see Section 2.3 for details).

We would like to mention that the Fox-Wright Functions are closely connected

with pFq, the hypergeometric functions (Srivastava, 2007; Mehrez and Sitnik, 2019).

Specifically, if A1, ..., Ap = 1 and B1, ..., Bp = 1 then

pΨq

(a1, 1) . . . (ap, 1)

(b1, 1) . . . (bq, 1)
; z

 =
Γ(a1) · · ·Γ(ap)

Γ(b1) · · ·Γ(bq)
pFq

a1 . . . ap

b1 . . . bq

; z

 . (2.8)

As a result, many of the attributes including computation of the Fox-Wright function
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follows directly from that of the pFq whenever the functional equality in Equation 2.8

is applicable. Unfortunately, it is not applicable to the specific case of the Fox-Wright

function (as in Equation 2.7) that corresponds to the MHN (α, β, γ) distribution.

Therefore, we invested a nontrivial effort to design strategies for its computation

which is required for the subsequent developments. Additionally, we develop a few

generic properties of Fox-Wright Functions that we utilize in the later sections.

Lemma 1. Let 1Ψ1

(α+n
2
, 1

2
)

(1, 0)
;x

 denotes the Fox-Wright Function. The following

functional properties holds for all x ∈ R.

(a) If α + n > 2 then

1Ψ1

(α+n
2
, 1

2
)

(1, 0)
;x

 =
α + n− 2

2
1Ψ1

(α+n−2
2

, 1
2
)

(1, 0)
;x

+
x

2
1Ψ1

(α+n−1
2

, 1
2
)

(1, 0)
;x

 .

(b) If α > 1 then

1Ψ1

(α+1
2
, 1

2
)

(1, 0)
;x


1Ψ1

(α
2
, 1

2
)

(1, 0)
;x


=
x

2
+
α− 1

2

1

x
2

+ . . .
...

x
2

+ 1+δα
2

1

1Ψ1


(1+δα

2
, 1

2
)

(1, 0)

;x



1Ψ1


( δα

2
, 1

2
)

(1, 0)

;x



,

δα = 1 if α is an integer otherwise δα = α − bαc where bαc denotes the largest

integer less than equal to α.
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(c) If we denote the cumulative distribution function of the standard normal dis-

tribution as Φ(·) then,

1Ψ1


(2

2
, 1

2
)

(1, 0)
;x



1Ψ1


(1

2
, 1

2
)

(1, 0)
;x


= x

2
+ 1

2
√
π

exp(−x
2

4
)

1−Φ(− x√
2

)
, and 1Ψ1

(1
2
, 1

2
)

(1, 0)
;x

 =

2
√
πe

x2

4

(
1− Φ(− x√

2
)
)
.

The proof of part(a) of the Lemma 1 relies on the recurrence relation of the

Gamma function while part(b) is a consequence of the part(a). The proof of part (c)

utilizes the properties of the truncated normal distribution.

Lemma 2. Let α > 0, x ∈ R then for arbitrary ε > 0, let A(k) =
Γ(α

2
+k)x2k

(2k)!
and

B(k) =
Γ(α+1

2
+k)x2k+1

(2k+1)!
. Let dxe denotes the smallest integer larger than x. For a given

constant 0 < q < 1

(a) A(k+1)
A(k)

< q if k > C1, where s1 = (6q − x2)

C1 = max

{⌈
−s1 +

√
s2

1 − 8q(4q − αx2)

8q

⌉
, 1

}
,

(b) B(k+1)
B(k)

< q if k > C2, where s2 = (10q − x2),

C2 = max

{⌈
−s2 +

√
s2

2 − 8q(12q − (α + 1)x2)

8q

⌉
, 1

}
.

(c) A(k) is strictly decreasing function when k ≥ C1 and B(k) is strictly decreasing

function when k ≥ C2. Moreover lim
k→∞

A(k) = 0 and lim
k→∞

B(k) = 0.

(d) For a given ε > 0, if K = max{K1, K2}, K1 = max{min{k : A(K) ≤
ε
4

for all K ≥ k}, C1}, K2 = max{min{k : |B(K)| ≤ ε
4

for all K ≥ k}, C2}

then
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∣∣∣∣∣∣∣1Ψ1

(α
2
, 1

2
)

(1, 0)
;x

 −( K∑
k=0

A(k) +
K∑
k=0

B(k)

)∣∣∣∣∣∣∣ ≤ ε.

The Lemma 2 provides a way to compute 1Ψ1

(α
2
, 1

2
)

(1, 0)
;x

 by truncation of a

infinite series in a systematic manner. Specifically the part(d) of the Lemma identifies

a truncation point K so that the finite summation
∑K

k=0A(k) +
∑K

k=0B(k) can be

used to approximate the intended function with a maximum predetermined error

bound ε > 0.

In the case when γ < 0, the series approximation procedure appears to be

inefficient. From empirical experiments, we observed that the accumulated errors

contributed by the computation of the each terms of the A(k) and B(k) (computation

error that involves ‘lgamma’ function that is implemented ‘R’) appears to be signif-

icant compared to the functional value of Fox-Wright function. Hence, we consider

an alternative procedure premised on numerical integration. The strategy appears to

perform efficiently for computing the function when γ < 0. In the following lemma,

we truncate the infinite integral to that over a finite region in a systematic manner

so that the error of the approximation can be controlled.

Lemma 3. Let α > 0, β > 0 and γ < 0. For any m > 0,

∣∣∣∣∣∣∣1Ψ1

(α
2
, 1

2
)

(1, 0)
;
γ√
β

− 2β
α
2

∫ Mε

0

xα−1e−βx
2−|γ|xdx

∣∣∣∣∣∣∣ < ε.

when Mε >
1
b
γ−1

(
a, [Γ(a)]2

ba
− εΓ(a)(2βm+|γ|)

2β
α
2 mα(βm+|γ|)

)
.The constants a = α(βm+|γ|)

2βm+|γ| , b =

βm2 + |γ|m, and the function γ(a, bMε) is a lower incomplete gamma function.

An implementation for the inverse of the lower incomplete gamma function is

available in the R package ‘zipfR’ (Evert and Baroni, 2007). So far, we have developed
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properties of the Fox-Wright function primarily aiming at its numerical computation

for different cases. The following result provides functional approximation to the

Fox-Wright function.

Lemma 4. Let α > 1, β > 0.

(a) If γ ≤ 0 then for any m > 0

1Ψ1

(α
2
, 1

2
)

(1, 0)
;
−|γ|√
β

 ≥ β
α
2 exp (−m|γ|

2
)Γ(α

2
)(

β + |γ|
2m

)α
2

.

(b) If γ > 0 then for any positive α0 > 0 and p, q > 1 such that 1
p

+ 1
q

= 1,

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ

 ≥ 2p
α+(2−α0 )p−1

2
− p
q

[
Γ
(
α+pα0−1

2p

)
2

]p
(qγ)p(α0−1)+ p

q

[Γ (qα0 − q + 1)]
p
q

.

In particular if p = α
α−1

, q = α, α0 = α+1
p

then

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ

 ≥ [Γ(α− 1)]
α
α−1 (αγ)α

[2Γ(α(α− 1))]
1

α−1

. (2.9)

The Lemma is utilized for establishing uniform efficiency of the Accept-Reject

sampling algorithms that are designed later in this article.

2.3 Properties of the Modified-Half-Normal distribution

In this section, we survey a few properties of the Modified-Half-Normal dis-

tribution. We begin with the observation that the MHN (α, β, γ) is an exponential

family of distributions (Casella and Berger, 2002). Therefore, the generic proper-

ties of the exponential family of distributions are automatically applicable to the
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MHN (α, β, γ) distribution as well. Apart from those, we include a few specific

characteristics of distribution in the next few Lemmas. By definition, the den-

sity function of the MHN (α, β, γ) distribution is proportional to the function x 7→

xα−1 exp(−βx2 + γx)I(x > 0), while we identify the corresponding normalizing con-

stant and a form of its cumulative distribution function in the result below.

Lemma 5. Let f
MHN

(x | α, β, γ) and F
MHN

(· | α, β, γ) denotes the probability density

and the cumulative distribution function of the MHN (α, β, γ) distribution for α >

0, β > 0, γ ∈ R .

(a) The corresponding normalizing constant is given as 1

2β
α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β

, and

f
MHN

(x | α, β, γ) =
2β

α
2 xα−1 exp(−βx2 + γx)

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


I(x > 0).

(b) The cumulative distribution function

F
MHN

(x | α, β, γ)

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


∞∑
i=0

γi

2i!
β−

α+i
2 γ(

α + i

2
, βx2),

where γ(s, y) =
∫ y

0
ts−1e−tdt, denotes the lower incomplete gamma function, and

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β

 denotes the Fox-Wright function of the appropriate order (see

Section 2.2).

The Figure 2.1 displays a few densities of the MHN (α, β, γ) distribution for

different choices of α ≥ 1. The density become more similar to that of a Normal
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probability density in appearance when the parameter γ is large. In Figure 2.1, we

Figure 2.1: Density plot of the MHN (α, β, γ) distribution when α > 1.

used a fixed positive β when similar plots can be seen if other values of β > 0 and

α > 1 are chosen. For the case when α < 1, γ > 0, the distribution appears not to be

unimodal. Before we study the modal characteristics of the distribution in Lemma 7,

we include the following properties related to its moments.

Lemma 6. Let X ∼ MHN (α, β, γ) then for k ≥ 0, then

(a) Assuming α+k to be a positive real number, the kth moment of the distribution

E(Xk) =

1Ψ1

(α+k
2
, 1

2
)

(1, 0)
; γ√

β


β
k
2 1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


.

(b) If α + k > 0, then E(Xk+2) = α+k
2β
E(Xk) + γ

2β
E(Xk+1).

(c) The variance of the distribution

Var(X) =
α

2β
+ E(X)

(
γ

2β
− E(X)

)
.
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(d) The moment generating function of the distribution is given as

MX(t) =

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ+t√

β


1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


.

It is evident from Lemma 6 that all finite positive moments of the distribu-

tion are finite and can be represented using the ratio of the Fox-Wright functions.

Regarding its computation, we refer to the procedures developed in Section 2.2. The

moments have uncomplicated representation (see part(b) of Lemma 1) when the pa-

rameter α is a positive integer. The part(b) of the Lemma 6 provides a nontrivial

recursive relation between the different moments of the distribution. The property

played a key role in estimating the parameters of the Modified-Half-Normal distribu-

tion that we discuss in Section 2.5. The variance of the distribution can be represented

in terms of the Fox-Wright functions using the part(a) whereas an implication of the

part(c) is that the variance of the distribution is bounded above by α/(2β) if γ < 0.

Though it is an attribute inherited from the exponential family of distribu-

tions, we would like to point out a resemblance between the form of its moments

and that of the Generalized Inverse Gaussian (GIG) distribution (Balakrishnan and

Johnson, 1994). The moments of the GIG distribution can be represented as the

ratio of Modified Bessel functions of the second kind (Abramowitz et al., 1988), that

also appears in the normalizing constant of the GIG distribution. Likewise, for the

MHN (α, β, γ) distribution, the moments are the ratios of Fox-Wright functions which

corresponds to its normalizing constant. In the next lemma, we characterize the mode

of the distribution.

Lemma 7. Consider the MHN (α, β, γ) with α > 0, β > 0 and γ ∈ R.
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(a) The probability density function of the distribution is log-concave if α ≥ 1.

(b) The mode of the distribution is
γ+
√
γ2+8β(α−1)

4β
if α > 1.

(c) If γ > 0 and 1− γ2

8β
≤ α < 1 then the density has a local maxima at

γ+
√
γ2+8β(α−1)

4β

and a local minima at
γ−
√
γ2+8β(α−1)

4β
.

(d) The density function is gradually decresing on R+ and mode of the distribution

doesn’t exist, if either γ > 0, 0 < α < 1− γ2

8β
or γ < 0, α ≤ 1.

From the part(c) as wells as Figure 2.2, it can be seen that, the density function

is not unimodal when α < 1 and γ > 0. In terms of the shape of the density, it lacks

the parity compared to the other cases of the parameters α, γ. Although, for the sake

of completeness, we keep the distribution in the family, the specific case does not

occur in the applications that we have included in Section 2.1.1.

Figure 2.2: Density plot of the MHN (α, β, γ) distribution when α < 1 and γ > 0.

Lemma 8. Let X ∼ MHN (α, β, γ) for α ≥ 1. Xmode =
γ+
√
γ2+8β(α−1)

4β
denotes the

mode of the distribution.
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(a) For all γ ∈ R if α > 1 then,

Xmode ≤ E(X) ≤ γ +
√
γ2 + 8αβ

4β
.

(b) If γ > 0 and α ≥ 4,

log(Xmode) ≤ E(log(X)) ≤ log

(
γ +

√
γ2 + 8αβ

4β

)
.

The difference between the upper and lower bound provided in part(a) ap-

proaches to zero as α gets larger. Therefore, part(a) of the lemma also provides high

precision approximation of E(X) when α is large. Regarding part(b), the lower bound

does not follow from the lower bound in the part(a). Also, the condition α ≥ 4 is a

sufficient condition for its validity. On the contrary, the upper bounds in part(a) as

well as in part(b) are true for all α > 0. An implication of the fact E(X) ≥ Xmode

is that the distribution is positively skewed. Both the parts of the lemma plays a

crucial role for apprising efficiency of the Accept-Reject sampling algorithms that we

develop in the Section 2.4.

Lemma 9. Let X ∼ MHN (α, β, γ).

(a) If γ > 0 then there exists a random variable V such that

V | X ∼ Poission(γX), and

X2 | V ∼ Gamma(
α + V

2
, β).

(b) If γ < 0 then there exists a random variable U such that

U | X ∼ GIG(
1

2
, 1, γ2X2), and
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X2 | U ∼ Gamma(
α

2
, (β +

γ2

U
)).

The above result can be utilized to design hierarchical models by introducing

additional variables U, V that can bypass the need for sampling from the MHN (α, β, γ)

distribution. But the strategy of introducing additional latent variables may delay the

mixing of the corresponding Markov chains. We conclude this section by identifying a

few known families of distributions to be the special case of the Modified-Half-Normal

family of distributions.

Lemma 10. Let X ∼ MHN (α, β, γ).

(a) If γ = 0 then X is distributed as a square root of a gamma distribution, i.e.

X2 ∼ Gamma(α
2
, β).

(b) If α = 1 then X ∼ Truncated-Normal( γ
2β
, 1√

2β
, 0,∞) where the support of the

distribution is restricted to (0,∞).

(c) If α = 1 and γ = 0 then X ∼ Half-Normal( 1√
2β

).

Furthermore, if we allow the parameter β to take the value zero, then the

case γ < 0 corresponds to the Gamma distribution with shape parameter α and rate

parameter −γ.

2.4 Algorithms for generating random samples from the Modified-

Half-Normal distribution

We devote this section for developing algorithms to sample from the Modified-

Half-Normal distribution. The ability to sample efficiently from the distribution

is crucial for the success of the Bayesian statistical models that bring about the

MHN (α, β, γ) distribution as one of the posterior conditionals. In terms of the tech-

nique, we employ the rejection sampling strategy (Devroye (2006); Casella (1985);
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Ahrens and Dieter (1982); Philippe (1997)) for the purpose. The technique is widely

used while the associated notations are general. Therefore, we include a brief overview

of the generic procedure along with the specifications for the particular terminologies

that we use in the subsequent sections.

The rejection sampling algorithm is a technique to generate a random sample

from a distribution that may not be sampled using a more direct approach. It is also

commonly referred to as the “Accept-Reject Algorithm” (Casella et al., 2004). Let

us assume that we need to sample from a distribution with the probability density

function (or the probability mass function) f(x). In order to do so, it is required to

find a density g(x) such that f(x) ≤ Mg(x) for all x in the support of the target

density f(x) and it is easy to sample from the distribution with probability density

function g(x) (Casella and Berger, 2002; Casella et al., 2004). The notation M is

a suitable positive constant. Often, the above notion is implemented by finding a

density kernel (or probability mass kernel) g
kernel

(x) so that f(x) ≤ g
kernel

(x) for all x

and
∫
g

kernel
(x)µ(dx) < ∞, where µ(·) denotes the Lebesgue measure or appropriate

counting measure depending on the context. Consequently we can get a proposal

density g(x) (or p.m.f) that is proportional to gkernel(x). Later in this article, we

will refer to the function g
kernel

(x) by the proposal kernel and the associated density

function as the proposal density.

Once an appropriate proposal density g(x) is found, the steps involved to sam-

ple from the distribution corresponding to f(x) is as follows; Sample X ∼ g(x) and

U ∼ Uniform(0, 1); If f(X)
g(X)
≤ U then accept X as a valid random sample from f(x)

otherwise reject it and repeat the procure from the beginning until a valid sample

is obtained. The efficiency of the rejection sampling algorithm can be measured

by the acceptance probability that transpires to be the reciprocal of the constant

M (Casella and Berger, 2002). The acceptance probability, M−1, can also be ex-

pressed as
(∫

g
kernel

(x)µ(dx)
)−1

. A major component to design an efficient Accept-
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Reject sampling algorithm is to find an appropriate g
kernel

(x) so that the corresponding

acceptance probability remains large for all possible choices of the parameters of f(x).

In the specific case of MHN (α, β, γ) distribution, we had to use different strate-

gies for constructing the proposal kernels depending on the sign of the parameter γ.

The description of the particularities associated with the algorithms are elaborated

in the remaining parts of this section.

2.4.1 Sampling from the MHN (α, β, γ) when γ > 0.

From Lemma 7, we know that the MHN (α, β, γ) distribution is unimodal if

α ≥ 1 and γ > 0 while its density appears to be idiosyncratic when α < 1 and γ > 0.

We first focus on the former case and develop the Accept-Reject sampling algorithm

in Section 2.4.1 whereas we construct an alternative procedure in the Section 2.4.1

that is applicable for α > 0, γ > 0 and works effectively for the case γ > 0 and

0 < α < 1 in particular.

Sampling from the MHN (α, β, γ) when γ > 0, α > 1.

In this section, we discuss the Accept-Reject sampling algorithms to generate

random samples from MHN (α, β, γ) which works best when α > 1, β > 0 and γ >

0. We utilize either the square root of the Gamma or the Normal distribution as

the candidates for the proposal distribution. The following Lemma provides the

foundation for the algorithm.

Theorem 1. Let f
MHN

(x | α, β, γ) be the probability density function of MHN (α, β, γ)

while f
Normal

, f√
Gam

are probability density functions of the Normal and the square root

of a Gamma distribution specified as

f
Normal

(x | µ, 1

2β
) =

√
β√
π

exp{−β(x− µ)2},
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f√
Gam

(x | α, δ) =
xα−1δ

α
2 e−δx

2

Γ(α
2
)

.

If γ ≥ 0 then ,

(a) for any constants µ ∈ ( γ
2β
,∞) and δ ∈ (0, β)

f
MHN

(x | α, β, γ) ≤ IK1(µ, α, β, γ)

{
f
Normal

(x | µ, 1

2β
)

}
+ (1− I)K2(δ, α, β, γ)

{
f√

Gam
(x | α, δ)

}

where

K1(µ, α, β, γ) =
2
√
π
(√

β(α−1)
2βµ−γ

)α−1

e−(α−1)+βµ2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


,

K2(δ, α, β, γ) =

(√
β
)α

Γ(α
2
) exp

(
γ2

4(β−δ)

)
1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β

(√δ)α
,

and I = I(K1(δ, α, β, γ) ≤ K2(µ, α, β, γ)).

(b) The optimum choices for the constants µ and δ are

µopt =
γ +

√
γ2 + 8(α− 1)β

4β
, and

δopt = β +
γ2 − γ

√
γ2 + 8αβ

4α
.

(c) The constants K1(µopt, α, β, γ), K2(δopt, α, β, γ) depends only on α and ∆ :=

γ√
β

, Therefore we will denote K1(α,∆) := K1(µopt, α, β, γ) and K2(α,∆) :=

K1(δopt, α, β, γ).

Part(a) of the lemma provides the explicit form of the proposal kernels where

the variable I identifies the more efficient strategy between the Normal or the square
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Algorithm 1 Sampling strategy for α > 1, β > 0 and γ > 0.
Input: α > 1, β > 0, γ > 0.
Output: X, a sample from MHN (α, β, γ).

1: if K2 > K1 then

2: µ =
γ+
√
γ2+8β(α−1)

4β
.

3: goto loop
4: Generate X ∼ Normal(µ, 1

2β
)

5: Generate U ∼ Uniform(0, 1)

6: if X > 0 and U < X
µ

α−1
exp[(2βµ− γ)(µ−X)] then

7: accept X
8: end if
9: end loop until accepting a sample.

10: else if K2 ≤ K1 then

11: δ = β +
γ2−γ
√
γ2+8αβ

4α

12: goto loop
13: Generate T ∼ Gamma(shape = α

2
, rate = δ)

14: X =
√
T

15: Generate U ∼ Uniform(0, 1)

16: if U < exp[−(β − δ)X2 + γX − γ2

4(β−δ) ] then
17: accept X
18: end if
19: end loop until accepting a sample.
20: end if

root of Gamma proposals. Although the constants K1, K2 involve the Fox-Wright

function in its expression, the evaluation of the variable I does not require its com-

putation. One of the implications of Part(c) is that, the scale change of the random

variable does not alter its efficiency. Therefore, without the loss of generality, we may

consider β = 1 when assessing the performance of the algorithm. The details of the

sampling method is included in Algorithm 1 while the following theorem apprises its

performance.

Theorem 2. The Acceptance probability of the Algorithm 1 to generate a random

sample from MHN (α, β, γ), α ≥ 1, β > 0, γ > 0 is given as

(a) Apos(α,∆) = max{ 1
K1(α,∆)

, 1
K2(α,∆)

} where ∆ = γ√
β

.

(b) For a fixed α > 1 the function ∆ 7→ K1(α,∆) is an decreasing function while
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∆ 7→ K2(α,∆) is an increasing function.

(c) K1(α,
√
α) ≥ K2(α,

√
α) for α ≥ 1

(d) α 7→ K1(α,
√
α) is a decreasing function for α ≥ 4.

(e) Apos(α,
γ√
β
) ≥ 1

K1(α,
√
α)

for all α ≥ 4, γ > 0, β > 0 and Apos(α,
γ√
β
) ≥ 1

K1(4,2)
≥

0.8 for all α ≥ 4, β > 0 and γ > 0.

Note that, the part(e) of the Theorem 2 implies the uniform efficiency of the

Algorithm 1. The proof of Theorem 2 is quite involved and necessities Lemma 8 as a

key component. A major difficulty appears due to the unavailability of the analytic

expression of the point ∆crit such that K1(α,∆crit) = K2(α,∆crit) for a given α. We

contrive a unique approach where the following attribute played a crucial role. For a

fixed α ≥ 1, there is a unique ∆crit ≥
√
α such that K1(α,∆crit) = K2(α,∆crit) and

∆crit√
α
→ 1 as α→∞. In consonance with Theorem 2 the Figure 2.3 also displays that

specific attribute of ∆crit. Note that, in Figure 2.3, we plot A(α, γ√
β
), the acceptance

probability of the Algorithm 1 verses C = γ√
βα

. The curves with different colors

correspond to different values of α ≥ 1. As C increases, the acceptance rate of

the Normal proposal kernel increases, while it decreases for the other case. The

Algorithm uses the square root of the Gamma proposal when the value of C is closer

to zero. For its larger magnitudes, the Normal proposal kernel is selected by the

indicator I. Therefore, in Figure 2.3, we see that each blue curve, representing the

function A(α, γ√
β
), decreases reach to an optima and increases when the Normal kernel

outperforms the square root of the Gamma kernel. Part(d) of the Lemma 11 ensures

that the acceptance probability of Algorithm 1 is always greater than 0.8, which we

can notice from Figure 2.3 as well.
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Figure 2.3: Acceptance rate of the Algorithm 1 for different values of α and C = γ√
βα

,
where α ≥ 1, β, γ > 0.

A general sampling algorithm for MHN (α, β, γ) distribution when α > 0

and γ > 0

We develop an alternative procedure for generating random samples from the

MHN (α, β, γ) distribution when γ > 0 and α > 0. This algorithm is applicable for

the case when 0 ≤ α < 1 and γ > 0. To discuss the different components of the

algorithm, let us start with the following lemma.

Lemma 11. Let f
MHN

(x | α, β, γ) denotes the probability density function of the

MHN (α, β, γ) distribution where α > 0, β > 0. If γ > 0 then

f
MHN

(x | α, β, γ) =
∞∑
i=0

pifi(x | α, β)
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where the positive constants pi = 1

2β
α
2

Γ(α
2

+ 1
2
i)( γ√

β
)i

i! 1Ψ1


(α

2
, 1

2
)

(1, 0)
; γ√
β


for i ≥ 0 and

fi(x | α, β) =
2β

α+i
2

Γ(α+i
2

)
xα+i−1e−βx

2

I(x > 0)

denotes the probability density function of the square root of Gamma distribution.

Let W be a discrete random variable, supported on the non-negative integers

with probability mass function P (W = i) = pi for i = 0, 1, . . . ,∞ where pi’s are

given in Lemma 11. Then a straightforward approach to design a sampling scheme

for MHN (α, β, γ) using Lemma 11 is to first sample W , thereafter sample from the

square root of a Gamma distribution with shape α+W
2

and rate β. Note that the

numerical evaluations of pi’s require the computation of the Fox-Wright functions

that we already discussed in Section 2.2. However, we design the following procedure

that can circumvent the need for computing the Fox-Wright function as it can be

time consuming.

Lemma 12. Let qi =
Γ(α+i

2
)
(
γ√
β

)i
i!

for i ≥ 0 where α > 0, γ > 0, β > 0. For an

be arbitrary positive number ε1 > 0, suppose M † = max
{

[α] ,
[
γ2

ε21β

]}
where [α] and[

γ2

ε21β

]
denotes the largest integer less than equal to α and γ2

ε21β
respectively. Then

(a)
q
M+1

q
M
≤ ε1 when M ≥M †,

(b) qi+2qi
q2
i+1

< 1 for i ≥ 0,

(c)
∞∑

j=M+1

qj ≤ q
M

ε1
1−ε1 when M ≥M † and

(d) lim
i→∞

qi = 0.

We now construct a discrete probability distribution with support {0, 1, . . . ,∞}

and the corresponding unnormalized probabilities {qi}i≥0 are defined as
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qi =


qi, if i ≤M

q
M
εi−M1 , if i > M.

Note that
∑∞

i=1 qi = q
M

ε1
1−ε1 +

∑M
j=1 qj . The part(a) and the part(b) of the Lemma 12

imply that

qi ≤ q
M

{
i−1∏
j=M

qj+1

qj

}
≤ q

M
εi−M1 = qi for i > M. (2.10)

Therefore qi ≤ qi for all i ≥ 0. In order to generate sample from the a discrete distri-

bution with probabilities {pi}i≥0, a rejection sampling algorithm can be developed by

constructing the discrete proposal distribution supported on the nonnegative integers

with the probabilities {pi}i≥0 where

pi =


qi

q
M

ε1
1−ε1

+
∑M
j=1 qj

, if i ≤M

q
M
εi−M1

q
M

ε1
1−ε1

+
∑M
j=1 qj

, if i > M.

Accept a random sample from the proposal distribution as a valid sample with the

probability qi
qi

. Note that the sampling algorithm can be made efficient with appro-

priate choice for M . For example, given any ε > 0 we can choose M such that q
M
≤ ε

and
q
M+1

q
M

< ε1 := 1
2
. Part(a) and Part (d) of Lemma 12 ensures the existance of such

M . In that case probability of rejection would be

∞∑
j=M+1

q
M
εj−M1 =

ε1qM
1− ε1

≤ ε
1
2

1− 1
2

= ε.

Based on the above discussion, we now assume that we can sample from the dis-

crete probability distribution having the support {0, 1, 2, . . . ,∞} with corresponding

probabilities {pi}i≥0 that are defined in Lemma 11. The following algorithm provides

31



the details of the steps required to sampling from the MHN (α, β, γ), α > 0, γ > 0

distribution.

Algorithm 2 Sampling Strategy for γ > 0.
Input: α > 0, β > 0, γ > 0.
Output: Y , a sample from MHN (α, β, γ).

1: Generate W ∼ Discrete({0, 1, 2, . . . , }, {pi}i≥0)
2: Generate Y ? | W ∼ Gamma

(
shape = α+W

2
, rate = β

)
3: Set Y = +

√
Y ?

If either of α or γ2

β
is large then the computational time of the algorithm

is significant. On the other hand, for small or moderate values of max{α, γ2

β
}, the

algorithm is efficient. Unfortunately, the techniques of the above algorithm is inap-

plicable when γ < 0 because the odd order terms in the sequence {pi}i≥0 (defined in

Lemma 11) would then be negative invalidating the discrete mixture representation

provided in Lemma 11. An entirely different approach is considered to tackle the case

γ < 0 that we discuss next.

2.4.2 Sampling from the MHN (α, β, γ) when γ ≤ 0.

If γ ≤ 0 then the MHN (α, β, γ) density is proportional to xα−1 exp(−βx2 −

|γ|x)I(x > 0). Using the generalized version of the AM-GM inequality (Steele, 2004)

in the exponent part of the target density, we can construct a proposal kernel

xα−1 exp(−βx2 − |γ|x) ≤ xα−1 exp(−(β + |γ|)x
2β+|γ|
β+|γ| ) (2.11)

(see Theorem 3 with the choice m = 1), which can be normalized to make a proper

proposal density. The functional value of the above proposal kernel matches with

that of the target density (i.e. equality in the Equation 2.11) at the point x = 1

irrespective of the values of the parameters α, β, γ. It follows from the characteristics

of the AM-GM inequality (Steele, 2004) that the proposal kernel approximates the

target density better around the point x = 1 compared to that for the other points.
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Figure 2.4: The target density and the proposal kernel (upto the proportionality con-
stant, see Equation (2.11)) is plotted for four different cases of (α, β, γ). The marked
point is the ‘matching point’, which transpires to be located at x = 1 irrespective of
the values of the parameters α > 0, β > 0, γ < 0.

In a quest for developing a more general class of proposal kernels, we introduce the

notion of ‘matching point’, the point where the functional value of the proposal kernel

becomes equal to that of the target density. For example, in Figure 2.4, the matching

point for the target and the proposal kernel is located at the point x = 1 irrespective

of the choices of the parameters α, β, γ. Furthermore, the Figure 2.4 depicts the

functional inequality specified in Equation 2.11 while it indicates that the inequality

may not be optimal when the matching point is always at x = 1.

Therefore we design a class of proposal kernels where the flexibility is intro-

duced by allowing the matching point to vary while the crucial functional inequality

between the target density and the proposal kernel remains unaffected. The following

Theorem provides a way to construct such a class of proposal kernels.

Theorem 3. Let f
MHN

(x | α, β, γ) be the probability density function of the MHN (α, β, γ)
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distribution where γ ≤ 0. Let m > 0 be any positive number then,

f
MHN

(x | α, β, γ) ≤ K0(m,α, β, γ)xα−1 exp

[
−m(βm+ |γ|)

(
x
m

) 2βm+|γ|
βm+|γ|

]

where K0(m,α, β, γ) = 2β
α
2

1Ψ1


(α

2
, 1

2
)

(1, 0)
;
−|γ|√
β


.

The proof of the Theorem 3 is reinforced on the generalized version of the

AM-GM inequality (Steele, 2004). The parameter m which apparently appears as an

abstract algebraic trick in the proof, actually have a tangible interpretation signifying

the matching point that we have discussed earlier. The proposal kernel in the Theo-

rem 3 can be normalized to a probability density that corresponds to the ( βm+|γ|
2βm+|γ|)

th

power of a Gamma distribution. In particular, if we consider

T ∼ Gamma

(
α(βm+ |γ|)
2βm+ |γ|

,m(βm+ |γ|)
)

and set Y = T
βm+|γ|
2βm+|γ| then the probability density function of the random variable Y

fY (y) ∝ yα−1 exp
(
−m(βm+ |γ|)y

2βm+|γ|
βm+|γ|

)
,

which is identical (ignoring the constants) to the proposal kernel in Theorem 3. As a

consequence, a random sample from the corresponding proposal density turns out to

be an appropriately transformed random number generated from a suitable Gamma

random variable. The specific details of the corresponding Accept-Reject sampling

algorithm is provided in Algorithm 3. We would like to point out that the standard

implementation of the ‘rgamma’ function in ‘R’ for generating Gamma random vari-

able may not execute with a desired accuracy when the shape parameter is small (Liu

et al., 2017). We use a procedure discussed in Liu et al. (2017) to tackle that specific
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challenge.

Algorithm 3 Sampling Strategy for γ < 0.
Input: α > 0, β > 0, γ < 0, m > 0.
Output: X, a sample from MHN (α, β, γ).

1: goto loop

2: Generate T ∼ Gamma
(
βm+|γ|α
2βm+|γ| , rate = m(βm+ |γ|)

)
3: X = mT

βm+|γ|
2βm+|γ|

4: Generate U ∼ Uniform(0, 1)

5: if U < exp

(
m(βm+ |γ|)

(
X
m

) 2βm+|γ|
βm+|γ| − βX2 − |γ|X

)
then

6: accept X
7: end if
8: end loop until an acceptance.

The Algorithm 3 is valid for all positive values of the parameter m while an

apposite choice for m can result in significant efficiency gain. In order to illustrate the

role of the parameter m in Theorem 3, we refer to the Figure 2.5 where we considered

MHN (5, 1,−1) density as an example. We took four different choices of matching

points 0.8, 1.4, 2.15 and the mode of the distribution and plot the corresponding ker-

nels that are obtained using Theorem 3.

It is seen that the difference between the areas under the MHN (5, 1,−1) den-

sity and the proposal kernels alters as we change the matching point m. Specifically,

the difference of the areas gradually decreases, reaches an optima and further in-

creases when the magnitude of m gradually increases from zero. Thus, by selecting

the optimal value for m, we can gain in efficiency. From an intuitive standpoint,

matching the proposal kernel at the mode of the target density seem to be a prudent

strategy. But in actuality, the optimal value for m transpires to be larger than mode,

seemingly due to the fact that the target density, as well as the proposal kernel is

rightly skewed. We reach to a congruous conclusion from the Figure 2.5 as well. Con-

solidating the heuristics that we have discussed so far in this paragraph, we contrive

the following theorem where, along other results, we establish the uniqueness of the
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Figure 2.5: The MHN (5, 1,−1) density and the proposal kernel in Theorem 3 is
plotted for four different choices of the ‘matching point’ (m). The difference between
the areas under the target density and the proposal kernel gradually decreases, reaches
an optima and further increases when the value of m gradually increases from zero.
The optimal value for m appears to be larger than the mode of the target density.
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optimal matching point.

Theorem 4. Let Aneg(m,α, β, γ) denotes the acceptance probability of the Algo-

rithm 3 when α > 1, β > 0, γ ≤ 0. If m is any positive constant

(a)

Aneg(m,α, β, γ) =

(2βm+ |γ|)(βm+ |γ|)
α(βm+|γ|)
2βm+|γ| −1

1Ψ1

(α
2
, 1

2
)

(1, 0)
; −|γ|√

β


2β

α
2 m

αβm
2βm+|γ| Γ(α(βm+|γ|)

2βm+|γ| )
.

(b) For any α > 1, β > 0 and γ < 0, the function m 7→ Aneg(m,α, β, γ) has a unique

maxima at a point mopt where mopt > Xmode, the mode of the distribution.

(c) For all α > 1, β > 0 and γ ≤ 0,

Aneg(mopt, α, β, γ) ≥ Aneg(m?, α, β, γ) ≥ 1√
2

where m? =
γ+
√
γ2+8αβ

4β
.

The part(c) of the theorem implies uniform efficiency of the Algorithm 3.

The proof of part(c) is highly nontrivial and requires several properties of Gamma

and Digamma functions including the Ramanujan’s double inequality for the Gamma

function (Alzer, 1997, 2003; Batir, 2005, 2008). The acceptance probabilityAneg(m,α, β, γ)

becomes unity when the parameter γ is set to zero irrespective of the choice for

m > 0. The part(b) of the theorem ensures the existence of the optimal matching

point whereas the optimization of m 7→ Aneg(m,α, β, γ) for finding mopt is nontrivial.

As it is seen in the part(a) of Theorem 4, the parameter m does not involve the

Fox-Wright function in the expression of Aneg(mopt, α, β, γ). Therefore, the optimiza-

tion does not involve Fox-Wright function. In the Appendix 5.0.17, we provide an
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iterative procedure to find mopt. We anticipate that the strategy to use an iterative

procedure for finding mopt and thereafter use it for sampling from the corresponding

Modified-Half-Normal may be time consuming. Therefore, we utilize the properties of

the Modified-Half-Normal density and the intuitive understanding about the location

of mopt to design minit in a non iterative way to approximate mopt. In the following

paragraph we discuss the formulation to compute minit.

Let Xmode and Xinflex denote the mode and the rightmost inflection point of

the Modified-Half-Normal distribution. We refer to the Lemma 7 for the exact form

of the Xmode while Xinflex can be obtained by finding the largest real root of a quartic

polynomial (Jenkins and Traub, 1972; Venables et al., 2019). Thereafter, we define

minit =


α2

1+α
if α ≤ 1.1,

3λ
2
Xmode + (1− 3λ

2
)Xinflex if α > 1.1,

where λ =
f

MHN(2Xmode−Xinflex)

f
MHN(2Xmode−Xinflex) + f

MHN(Xinflex)

.

The candidate minit is designed to be in between the mode and the rightmost inflection

point of the distribution. Depending on the skewness of the distribution, the fraction

λ carefully manages its proximity to the point Xmode. For the numerical evaluation

of λ, there is no need to compute the Fox-Wright functions as its expression involves

f
MHN

(·) in the numerator and the denominator as well. Although the development of

minit is based on heuristics, it serves the need of the Algorithm 3.

In the Figure 2.6a, we plot the acceptance probabilities for different values

of α, γ when β is set to 1. The values of γ are used in the X axis. The different

colors represent different choices of α. It appears from the figure as wells as from

Table 2.1, that the value of Aneg(minit, α, β, γ) is larger than 0.9. In Figure 2.6c

we plot the acceptance probabilities when mopt is used to implement the Accept

Reject algorithm. Comparing the Figure 2.6a and 2.6c, it appears that there is an
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increment in the acceptance probabilities whereas the improvement after employing

the iterative procedure is not quite significant. From the 6th and the 8th columns

of the Table 2.1, we see that improvement is less than 0.2% when comparing the

acceptance probabilities corresponding to minit and mopt. In the fifth of column of

the Table 2.1, we listed the number of steps required to get mopt starting the iterative

algorithm from minit. We can see that the number of steps required for convergence

is small if the iterative algorithm is started from minit. Therefore, minit appears to

be in the vicinity of mopt. We recommend to execute a single step of the iterative

algorithm after starting it from the minit and get mreco to be used as the suggested

value for m. Although, the current context is completely different, the strategy is

motivated from of the one-step estimators (Jurečková and Sen, 1990). It is seen from

the Table 2.1 (compare 7th and 8th columns) that the acceptance probability of the

corresponding Accept-Reject sampling algorithms are not much different even if the

computationally inexpensive recommended value, mreco is used instead of the mopt.

Also, there is barely any visible differences between Figures 2.6b and 2.6c, which plots

Aneg(minit, α, β, γ) and Aneg(mreco, α, β, γ).

The remaining of the section we discuss the efficiency of the Algorithm 3 when

the optimal value of the parameter m is used. In the Figure 2.6 we plot the Acceptance

Probability where in the X axis we plot the quantity C = γ√
α

. The different colored

curves pertains to the different specification of the parameter α ≥ 1. The efficiency

of the algorithm increases with the increment of the magnitude of α. It is clear from

the plot that the worst possible acceptance probability is larger than 0.90.
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(a) Acceptance probability when using m := minit.

(b) Acceptance probability when using m := mreco.

(c) Acceptance probability when using m := mopt.

Figure 2.6: Acceptance rate of the Algorithm 3 for different value of α and C = γ√
β

when α > 0, β > 0, γ ≤ 0. The figures (a), (b), (c) pertains to different choices for
the parameter m.
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Number Aneg Aneg Aneg

of at at at
α β γ C Steps minit mreco mopt

2 1 -20 -14.14 2 0.997 0.998 0.998
2 1 -16 -11.31 2 0.996 0.996 0.996
2 1 -12 -8.49 3 0.993 0.994 0.994
2 1 -8 -5.66 3 0.987 0.988 0.988
2 1 -4 -2.83 3 0.969 0.972 0.972
2 1 -1 0.71 5 0.95 0.96 0.962
2 1 -0.1 0.07 4 0.989 0.992 0.993
5 1 -20 -8.94 3 0.994 0.994 0.994
5 1 -16 -7.16 3 0.991 0.992 0.992
5 1 -12 -5.37 3 0.985 0.986 0.987
5 1 -8 -3.58 4 0.974 0.976 0.976
5 1 -4 -1.79 6 0.952 0.955 0.956
5 1 -1 0.45 8 0.957 0.96 0.961
5 1 -0.1 0.05 6 0.993 0.994 0.994
15 1 -20 -5.16 3 0.985 0.985 0.985
15 1 -16 -4.13 3 0.979 0.979 0.979
15 1 -12 -3.10 4 0.97 0.97 0.97
15 1 -8 -2.07 5 0.957 0.957 0.957
15 1 -4 -1.03 7 0.945 0.945 0.945
15 1 -1 0.26 7 0.969 0.969 0.969
15 1 -0.1 0.01 1 0.996 0.996 0.996

Table 2.1: Acceptance probabilities of the Algorithm 3 for different values of α, β, γ.
The 6,7 and 8th column shows the acceptence probability when the minit, mreco and
mopt is utilized as a specification of the matching point. The 5th column provides the
number of iterative steps required to obtain mopt when starting the algorithm from
minit.

2.5 Statistical inference for analyzing data using Modified-Half-Normal

distribution as a probability model

Although it is not the primary objective of this article, we consider estimation

for the parameters of MHN (α, β, γ) distribution. We see from Lemma 10 that the

Truncated Normal, square root of Gamma and Half normal and Gamma distributions

are specific cases of the MHN (α, β, γ) distribution. Therefore, the Modified-Half-

Normal family of distributions is a reasonably flexible class of distributions which can
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model continuous data on the positive part of the real line. As a part of the very basic

inference procedure, we discuss the method of moments and the maximum likelihood

estimation procedures, which has certain non-triviality in the current context.

2.5.1 Parameter estimation

Let x1, . . . xn be independent and identically distributed observations from

MHN (α, β, γ) distribution. For denoting the kth sample moment of the data, we

introduce the notation

mk =
1

n

n∑
i=1

xki , for k > 0.

According to the standard practice, the method of moment estimators for the parame-

ters are obtained by equating the sample moments with the corresponding population

moments that are expressed as a function of the unknown parameters (Casella and

Berger, 2002). In the current context, the implementation of the standard method of

moment estimation would reduce to solving for α, β, γ using the equations

mk =

1Ψ1

(α+k
2
, 1

2
)

(1, 0)
; γ√

β


β
k
2 1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


for k = 1, 2, 3 (see part(a) of the Lemma 6). Finding solutions to the above set of

equations are complicated as it involves the Fox-Wright functions. In order to mitigate

the difficulties, we utilize the recursion relation in the part(b) of the Lemma 6 instead

of using the formula in part(a). In particular, we solve α, β, γ from the following set

of equations

mk+2 =
α + k

2β
mk +

γ

2β
mk+1 for k = 0, 1, 2,
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where m0 = 1. Note that the above set of equations refers to a set of linear equa-

tions that can be solved easily. The estimators obtained by the above procedure are

statistically consistent and also asymptotically Normal.

Now we discuss the maximum likelihood estimation for the current context.

The log likelihood function (see Equation 2.1) for α, β, γ based on the independent

samples x1, . . . xn is given by

l(α, β, γ) = n log(2) +
nα

2
log(β)− n log

1Ψ1

(α
2
, 1

2
)

(1, 0)
;
γ√
β




+(α− 1)
n∑
j=1

log(xj)− β
n∑
j=1

xj
2 + γ

n∑
j=1

xj.

To utilize the Newton-Raphson procedure we require computation of the first and

second-order derivatives of the Fox-Wright function. The computation is nontrivial

especially to numerically evaluate the derivatives involving the parameter α. An

implementation of the Newton-Raphson procedure, in this case, appears not to be very

stable. Therefore, as a workable solution, we utilize the ‘Nonsmooth Optimization

by Mesh Adaptive Direct Search’(NOMAD) procedure (Audet and Dennis Jr, 2006;

Abramson et al., 2011; Le Digabel, 2010; Audet and Hare, 2017) to minimize the

negative of the log-likelihood function. Specifically, we use the ‘R’ interface via the

function ‘snomadr’ implemented in the ‘R’ package ‘crs’ (Nie and Racine, 2012). The

optimization procedure requires a set of initial values. We provide the estimates that

we get from the method of moment procedure. The performance of the estimation

procedures is assessed via simulations that we discuss next.

2.5.2 Simulation results

The objective of this section is to assess the performance of the proposed

estimation procedures via simulation. We fix a set of true parameter αtrue, βtrue,
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and γtrue to generate 1000 different data sets, each containing i.i.d samples from

MHN (αtrue, βtrue, γtrue). We perform the method of moment as well as the maximum

likelihood procedure to get the corresponding estimated values. We calculate the

average squared error difference between the estimated values and the true value of

each of the parameters. We repeat the procedure thrice keeping everything same

except for the sample sizes. In the three different sets up the sample sizes for each of

the data set were chosen to be n = 5000, 20000 and 40000 correspondingly.

The average squared difference between the estimated and the true value of the

parameters when using the method of moment estimation. The estimated values of

the MSE are given as 0.471 0.1173 and 0.0525 respectively for the case n = 5000, 20000

and 40, 000 respectively. On the other hand for the case of the maximum likelihood es-

timation, the corresponding MSE estimates appear to be 0.168, 0.0403,0.0192 respec-

tively. Additionally, the performance of the maximum likelihood procedure appears

to be better than the method of moment procedures.
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CHAPTER 3

DIRECTED ACYCLIC GRAPH ASSISTED METHODS FOR

ESTIMATING AVERAGE TREATMENT EFFECT

3.1 Introduction

Randomized controlled trials (RCTs) are often considered as the gold standard

to estimate treatment effect. However, RCTs may not be always feasible because (i)

RCTs can be time-consuming and expensive, and (ii) RCTs can be unethical under

some circumstances. On the other hand, observational studies abound. Observational

studies can provide important information for treatment effect and personalized med-

ication, provided that confounding variables are properly controlled.

In the literature, propensity score based methods have become very popular

in estimating average treatment effect (ATE) since the seminal work was proposed

by Rosenbaum and Rubin (1983). ATE is defined as the mean difference between the

potential outcome under treatment and the potential outcome under control. That

is, ATE is defined as E(Y (1))− E(Y (0)). Y (1) denotes the potential outcome when a

subject is in the treatment group (say T = 1), and Y (0) denotes the potential outcome

when a subject is in the control group (say T=0). However, one can only observes one

potential outcome, which depends on the treatment that a subject receives (say, T ).

In other words, the observed outcome Y = Y (1) if T = 1, and Y = Y (0) if T = 0, which

is often referred as the consistency assumption (Abdia et al. (2017)). The additional

key assumptions for estimating ATE include the exchangeability assumption (i.e.,

T ⊥⊥ Y (t)|X, where X is a set of measured covariates) and positivity assumption. The

45



propensity score is defined as the probability of a subject receiving treatment given

the covariates X. Under the positivity, consistency, and exchangeability assumptions,

many propensity score based methods, such as matching, regression with propensity

score as covariate, stratification, inverse probability of treatment weighting (IPTW),

and doubly robust estimates have been used to estimate ATE (Rosenbaum and Rubin

(1983), Lunceford and Davidian (2004), Yan et al. (2019)).

In observational studies, other than the treatment assignment variable (say,

T ) and outcome variable (say, Y ), there are many other variables collected, which are

illustrated in Figure 3.1a and referred as different types of covariates X: (i) confound-

ing variables (say XC), which are related to treatment assignment variable as well as

outcome variable; (ii) instrument variables (say, XI), which are related to treatment

assignment variable but not outcome variable; (iii) predictor variables (say, XP ),

which are related to outcome variable but not treatment assignment variable; (iv)

mediator (say, XM), which are in the downstream of treatment assignment variable

but a cause of the outcome variable; (v) collider (say, XN), which are in the down-

stream of treatment assignment variable and the outcome variables (Craycroft et al.

(2020), Pearl (2000)); and (vi) spurious variables (say, XS), which are relevant neither

treatment assignment variable nor outcome variable. One question is what types of

covariates X need to be included in the propensity model so that the ATE estimates

are unbiased with high accuracy. Brookhart et al. (2006), Austin (2007), Franklin

et al. (2015), and Craycroft et al. (2020) have pointed out that including variables

related to confounding variables and predictor variables can improve the precision

of ATE estimates. On the other hand, Pearl (2000) proposed using directed acyclic

graph (DAG) to identify the variables, which block all backdoor paths from T to Y , to

be included in the propensity score model. DAG can be used to represent the causal

relationships between different variables in a complex system (Lauritzen (1996), Pearl

(2000)). DAGs are often obtained from close collaboration between data analysts and
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subject-matter experts. Once DAGs are properly constructed, Pearl (2000) proposed

to adjust (in the propensity score model) a set of variables which block all backdoor

paths from treatment assignment variable T to outcome variable Y . There could be

multiple sets of such variables, and each set of variables block all backdoor paths

from T to Y . To obtain a valid ATE estimate, one can use any set of such variables

in the propensity score model. That is, one does not need to include all covariates

in the propensity score model. Instead, one only needs to include a set of variables,

which block all backdoor paths from T to Y , to estimate the propensity score. Recent

literature has indicated that including both confounding variables and predictor vari-

ables in the propensity score model can improve the efficiency of the propensity score

based ATE estimates (Craycroft et al. (2020)). In this project, we investigated the

performance of the propensity score based IPTW method when a set of confounding

variables (which block all backdoor paths from T to Y ) and predictor variables are

included in the propensity score model.

Marginal structural models (MSMs) are a class of causal models which can

be used to estimate the causal effect (Robins et al. (2000)). In a MSM, only the

marginal mean and causal parameters are presented. Applying the inverse proba-

bility of treatment weighting (IPTW) to MSM has been proposed to estimate the

causal parameters (Robins et al. (2000)). In Section 3.2, we propose to include the

confounding variables which block all backdoor paths from T to Y and the predictor

variables in the propensity score model. In order to reduce the selection bias in the

observational data, we introduce the IPTW method, which is based on the propensity

score model. Then we apply the IPTW method to estimate the causal parameters in

the MSM to get the unbiased ATE estimate. This process is referred as DAG-assisted

method in this article. In Section 3.3, we apply this proposed method to study the

effect of tracheostomy on children with bronchopulmonary dysplasia (BPD) based on

the 2016 Healthcare Cost and Utilization Project (HCUP) Kids’ Inpatient Database
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(KID). In Section 3.4, we evaluate the performance of the proposed method via ex-

tensive simulations. The last section is devoted to conclusion and discussion.
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Figure 3.1: Basic relationships between different variables illustrated in DAGs and
SWIGs

3.2 DAG-assisted method to estimate ATE

Let us assume that a triplet {X,T, Y } is observed for each subject. T is the

observed treatment assignment group. T = 1 if a subject is assigned to treatment

group, and T = 0 if the subject is assigned to control group. X is the observed co-

variates which can be classified as confounding variables (say, XC), mediators (say,

XM), colliders (XN), instrumental variables (say, XI), predictor variables (say XP ),

and spurious variables (XS) (Figure 3.1a). Here we assume the data is from observa-

tional studies and the treatment for a patient is not randomly assigned, instead the

48



treatment received by a patient may depend on his/her own characteristics. We limit

our investigation on propensity score based approach. Including different types of

covariates X in the propensity score model may result in different estimates of ATE.

In this section, we first present the basic assumptions of obtaining unbiased ATE

estimates, and then we present the link between the DAG and the basic assumption

on exchangeability. Finally, we present our approach to estimate ATE.

3.2.1 Basic assumptions for causal inference

In this article, we focus on estimating ATE which measures the mean difference

of the potential outcomes between all treated subjects and all untreated subject. That

is,

ATE = E(Y (1))− E(Y (0)),

where Y (1) is the potential outcome when a subject is treated, and Y (0) is the po-

tential outcome when the subject is untreated. However, in observational studies, we

only observe the outcome (say, Y ) which corresponds to the treatment assigned. In

general, we assume Y = Y (0)1{T=0} + Y (1)1{T=1}. That is, Y = Y (1) when a subject

is treated, otherwise Y = Y (0). In RCTs, the subjects are randomly assigned to

treatment or control group. So, there is no confounding variable in the RCT, that is,

there is no arrow entering the treatment assignment variable (see Figure 3.1b). The

subjects in the treatment group can be considered as a random sample from the study

population, and the sample mean of the outcomes from treated subjects is an unbi-

ased estimator of E(Y (1)). Similarly, E(Y (0)) can be estimated by the sample mean

from the subjects assigned to control group. There is no selection bias because pa-

tients in treatment and control groups are similar in all aspects except the exposures

(treatment or control) received. However, in observational studies, the treatment as-

signment variable is more likely related to patient’s health condition, and patient’s

health condition may also related to the outcome variable. Therefore, there are con-
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founding variables between treatment assignment variable and outcome variable. To

obtain an unbiased ATE estimate, the confounding variables must be controlled. The

commonly used propensity score based ATE estimates are valid under the following

assumptions.

(1) Exchangeability (i.e. conditional independence):

T ⊥⊥ Y (t)|X for t ∈ {0, 1}.

(2) Positivity:

Pr(T = t|X = x) > 0

for t ∈ {0, 1} and all values x with Pr(X = x) 6= 0. That is, given X = x, the subject

has chance to receive treatment as well as control.

(3) Consistency:

Y = Y (0)1{T=0} + Y (1)1{T=1}.

The propensity score is defined as the probability of a subject receiving treat-

ment given the covariates X, i.e., Pr(T = 1|X). The inverse probability of treatment

weighting (IPTW) is built on the propensity score model: the weight w = 1
Pr(T=1|X)

if the subject with covariate X is in treatment group and w = 1
1−Pr(T=1|X)

if the

subject with covariate X is in control group. That is, w = 1{T=1}
1

Pr(T=1|X)
+

1{T=0}
1

1−Pr(T=1|X)
. Under the assumptions of positivity, consistency, and exchange-

ability, it has been proved that the IPTW weighted mean of observed outcome is

equal to the counterfactual mean E[Y (t)] (Hernán and Robins (2019)):
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E[Y (t)] = E[
1{T=t}

Pr(T = t|X)
Y ]. (3.1)

This equality implies that the IPTW weighted mean of observed outcome can

be used to estimate the mean of the potential outcomes, further to estimate ATE.

This equality (3.1) can be obtained from the following derivation:

E

{
1{T=t}

Pr(T = t|X)
Y

}
(by positivity assumption)

= E

{
1{T=t}

Pr(T = t|X)
[Y (1)T + Y (0)(1− T )]

}
(by consistency assumption )

= E

{
1{T=t}

Pr(T = t|X)
Y (t)

}
= EX

{
E(Y (t),T )|X

[
1{T=t}

Pr(T = t|X)
Y (t)

∣∣∣∣∣X
]}

= EX

{
ET |X

[
1{T=t}

Pr(T = t|X)

∣∣∣∣∣X
]
EY (t)|X

[
Y (t)

∣∣∣∣∣X
]}

(by exchangeability assumption)

= EX

{
1 · EY (t)|X

[
Y (t)

∣∣∣∣∣X
]}

= E[Y (t)].

3.2.2 DAG and the exchangeability assumption

A DAG is both directed and acyclic, which displays the hypothetical relation-

ships between different variables that are causally related (Pearl (2000)). DAGs have

been developed to facilitate communication between data analysts and subject matter

experts to make causal inference and estimate ATE (Pearl (2000)). In this subsection,

we first introduce the d-separation and backdoor criteria under the scheme of DAG,

which are closely related to the exchangeability assumption. This assumption is fur-

ther illustrated by using the single world intervention graph (SWIG) (Richardson and
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Robins (2013)) which unifies the DAG and potential outcomes (see Figure 3.1c).

In a DAG, d-separation (Pearl (2014)) plays an important role in assessing the

independence and conditional independence between different variables or different

sets of variables. Two variables being d-separated (blocked) by a set of nodes (say

S) in a DAG indicates that these two variables are conditionally independent given

the set of variables S (Pearl (2000)). The basic building blocks of a DAG are fork

(Figure 3.1d), chain (Figure 3.1e) and collider (Figure 3.1f). A fork (Figure 3.1d)

shows the relationship that two nodes (e.g., variables T and Y ) have the same cause

(or same parent) XC . XC is often referred as a confounding variable. T and Y are

dependent even if T doesn’t have direct causal effect on Y . However, if we condition

on XC (Figure 3.1d), T and Y are d-separated. That is, T ⊥⊥ Y |XC (i.e., T and Y

are conditional independent). A chain (Figure 3.1e) is that a variable (say T ) has a

causal effect on the middle variable XM which further has a causal effect on the third

variable (say Y ). XM is termed as mediator. T and Y are d-separated given XM

(i.e., T ⊥⊥ Y |XM). A collider (Figure 3.1f) is a descendant (say XN) of two nodes

(e.g., T and Y ). That is, T and Y are the causes of XN . In Figure 3.1f, T and Y are

marginally independent, however, T and Y become dependent when we condition on

XN (Pearl et al. (2016)). A path from T to Y is said to be d-separated (or blocked)

by a set of nodes in S if (i) the path contains a fork (Figure 3.1d) and the middle

node of the fork (e.g., the confounding variable XC) is in S; (ii) the path contains a

chain (Figure 3.1e) and the middle node of the chain (e.g., the mediator XM) is in

S; (iii) the path contains a collider (Figure 3.1f) and the middle node of the collider

(e.g., XN) and its descendant are not in S (Pearl et al. (2016)).

Although d-separation can be used to assess dependence or conditional inde-

pendence between two variables (or two sets of variables), if we would like to estimate

the ATE (total causal effect), the set of the variables to be adjusted in the propensity

score model should meet the backdoor criteria. A backdoor path from T to Y is a
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path between T and Y with an arrow into T . If there is a backdoor path from T to

Y , T and Y become dependent even if T does not have causal relationship with Y

(Pearl (2000)). A set of nodes (say, S) satisfy the backdoor criteria for the ordered

pair {T, Y } if and only if (i) no node in S is a descendant of T ; and (ii) nodes in S

d-separate (block) every backdoor path between T and Y (Pearl et al. (2016)). If a

set of nodes S satisfy the backdoor criteria from T to Y , the causal effect of T on Y

can be obtained by propensity score based method, where the nodes in S are included

in the propensity score model. Among all of the basic causal relationships in DAGs

(Figures 3.1d- 3.1f), only Figure 3.1d shows a backdoor path from T to Y . There are

no backdoor path from T to Y in Figures 3.1e and 3.1f. According to the backdoor

criteria, we should only include the confounding variable XC rather than mediator

XM and collider XN in the set of nodes S.

The backdoor criteria provides a way to achieve the conditional independence

that T ⊥⊥ Y |S. However, the notion of the conditional independence between T

and observed outcome Y given S lack direct connection with the exchangeability

assumption which uses potential outcome Y (t)(t = 0, 1). The SWIG is a unification

of DAG and potential outcome via node-splitting (Richardson and Robins (2013)). In

a SWIG, the node T is split into two nodes: the random variable T and the potential

intervention t. Any arrow entering into T still remains entering T , and any arrow

emanating from node T in the DAG becomes an arrow emanating from the node t

in the SWIG. Furthermore, the child of the node t becomes potential outcome Y (t).

For example, the SWIG of Figure 3.1a is shown in Figure 3.1c, and the SWIGs of

Figures 3.1d, 3.1e, and 3.1f are shown in Figures 3.1g, 3.1h, and 3.1i, respectively.

SWIG reveals the link between DAG and the exchangeability assumption explicitly.

Under the scheme of SWIG, we can use backdoor criteria to identify a set of

nodes S which block the backdoor path from T to Y (t). For example, in Figures 3.1h

and 3.1i, there is no backdoor path between T and Y (t). Therefore, a mediator or
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collider should not be adjusted (or controlled) in the propensity score model when

we examine the causal treatment effect of T on outcome variable. In Figures 3.1g,

the confounding variable XC is on the backdoor path between T and Y (t), and the

treatment assignment variable T and potential outcome Y (t) are marginally depen-

dent. However, T and Y (t) become independent (i.e., blocked or d-separated) once

we condition on the confounding variable XC , i.e.,

T ⊥⊥ Y (t)|XC .

In a SWIG, given a set of variables (say, S) which meet the backdoor criteria for

the pair (T, Y (t)), we have T ⊥⊥ Y (t)|S. S is considered as a suitable adjustment set

for propensity score model. It can be either a subset of confounding variables or all

confounding variables, as long as variables in S block all backdoor paths from T to

Y (t).

Besides including the variables in S in the propensity score model, including

the predictor variables XP (see Figures 3.1a-3.1c, variables related to outcome only)

can improve the efficiency of the ATE estimates (Craycroft et al. (2020)). Based

on the d-separation, we have T ⊥⊥ Y (t)|{XC , XI} and T ⊥⊥ Y (t)|{XC , XP} (see Figure

3.1c) (Richardson and Robins (2013), Craycroft et al. (2020)). It has been shown that

ATE estimates based on IPTW using those three adjustment sets {XC}, {XC , XI},

and {XC , XP} are all unbiased. The variations of the ATE estimates with differ-

ent adjustment sets have the relationship V ar(ÂTE{XC ,XP }) ≤ V ar(ÂTE{XC}) ≤

V ar(ÂTE{XC ,XI}) (Craycroft et al. (2020)). We propose to estimate the propensity

score using the confounding variable in S along with XP . Then we apply the IPTW

to marginal structure model to estimate ATE.
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3.2.3 Proposed ATE estimator

Given a set of variables X such that T ⊥⊥ Y (t)|X, the exchangeability assump-

tion holds. In this article, we propose to include the confounding variables in S and

the predictor variables XP in the propensity score model. Once the propensity score

models (say Pr(T = 1|S,XP )) are obtained, we can use the marginal structural model

(MSM) and the IPTW technique to estimate the ATE (Robins et al. (2000)). The

MSM can be written as

g(E(Y (t))) = γ0 + γ1t, (3.2)

where g is a known link function. When Y is a continuous outcome, we may take

the link function g as the identity link function, and model (3.2) has the form of

E(Y (t)) = γ0 +γ1t. When Y is a binary outcome, we can take the link function as the

logit link function, and model (3.2) has the form of logit(Pr(Y (t) = 1)) = γ0 + γ1t.

The MSM model (3.2) implies that the mean of the potential outcome under control

is captured by parameter γ0, namely, g(E(Y (0))) = γ0. The mean of the potential

outcome under treatment is captured by γ0 and γ1, that is, g(E(Y (1))) = γ0 + γ1.

In RCTs, treatment assignment is unconfounded with outcome and the association

parameters in the association model (3.3) are often unbiased estimates of the causal

parameters in MSM (3.2).

g(E(Y |T )) = β0 + β1T. (3.3)

However, in observational studies, the treatment assignment and outcome variables

are often confounded by the confounding variables XC . The estimated parameters

(β̂0, β̂1) in model (3.3) based on observational data are often biased estimates for

(γ0, γ1) in the MSM (3.2). Robins et al. (2000) proposed to use a weighted sample to

obtain the estimated parameters (β̂0, β̂1) in model (3.3). The estimated association
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parameters (β̂0, β̂1) based on the weighted sample are unbiased estimators of the

causal parameters (γ0, γ1) in model (3.2). The weighted sample is obtained by creating

wi copies of ith subject (i = 1, · · · , n), where wi is the IPTW. Specifically, if the ith

subject is in the treatment group, wi = 1
Pr(Ti=1|Xi) ; and if the ith subject is in the

control group, wi = 1
Pr(Ti=0|Xi) . We can prove that the sample size of the treatment

group in the weighted sample (say N∗1 ) is asymptotically same as the sample size of

the control group in the weighted sample (say N∗0 ), which is asymptotically same as

the sample size in the original sample (say N). This can be shown from the following

equations:

N∗1 = E

(
N∑
i=1

wiTi

)
= E

(
N∑
i=1

1{Ti=1}

Pr(Ti = 1|Xi)

)
= E

(
N∑
i=1

E(1{Ti=1}|Xi)

Pr(Ti = 1|Xi)

)
= N

and similarly,

N∗0 = E

(
N∑
i=1

wi(1− Ti)

)
= N.

We can also prove that the marginal distributions of X in the original sample is same

as the marginal distribution of X in the treatment group of the weighted sample, as

well as the marginal distribution of X in the control group of the weighted sample.

That is,

fw(x|T = 1) ∝ f(x|T = 1)

Pr(T = 1|x)
(by definition for the weighted sample)

∝ f(x, T = 1)

f(T = 1|x)f(T = 1)

∝ f(T = 1|x)f(x)

f(T = 1|x)f(T = 1)

∝ f(x). (3.4)

Similarly, fw(x|T = 0) ∝ f(x|T=0)
Pr(T=0|x)

∝ f(x). Thus, there is no selection bias in

the weighted sample. The estimated association parameters (β̂0, β̂1) based on the
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weighted sample are unbiased estimates for the causal parameters (γ0, γ1). To carry

out the estimation, we consider a weighted likelihood function with weight wi for each

subject i (i = 1, · · · , N). When Y is a binary variable, the likelihood function based

on the weighted sample can be written as

L(β|
¯
y) =

n∏
i=1

f(yi)
wi =

n∏
i=1

[pyii (1− pi)1−yi ]wi ,

where pi = Pr(Yi = 1|Ti) and logit(pi) = β0 +β1Ti (i = 1, · · · , n). The corresponding

weighted log-likelihood function can be written as:

l(β|
¯
y) =

n∑
i=1

{wiyi(β0 + β1Ti)− wilog[1 + exp(β0 + β1Ti)]}.

Using the Newton−Raphson method (Ypma (1995)), we can get the estimated pa-

rameters β̂ = (β̂0, β̂1)T . The ATE estimate can be obtained as

ÂTE =
exp(β̂0 + β̂1)

1 + exp(β̂0 + β̂1)
− exp(β̂0)

1 + exp(β̂0)
. (3.5)

A robust (sandwich) variance estimator for β̂ can be written as

V̂ ar(β̂) = V̂EHB̂sV̂
−1
EH ,

where V̂EH = EY

[
− ∂l2

∂β∂βT

∣∣∣∣
β=β̂

]
and B̂s =

∑N
i=1

∂li
∂β0

∂li
∂β0

∑N
i=1

∂li
∂β0

∂li
∂β1∑N

i=1
∂li
∂β0

∂li
∂β1

∑N
i=1

∂li
∂β1

∂li
∂β1

∣∣∣∣
β=β̂

. The

variance for ÂTE can be estimated as

V ar(ÂTE) = V ar(β̂0)

[
∂g

∂β0

∣∣∣∣
β=β̂

]2

+V ar(β̂1)

[
∂g

∂β1

∣∣∣∣
β=β̂

]2

+2Cov(β̂0, β̂1)

[
∂g

∂β0

∂g

∂β1

∣∣∣∣
β=β̂

]
,
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where

g(β0, β1) =
exp(β0 + β1)

1 + exp(β0 + β1)
− exp(β0)

1 + exp(β0)
,

∂g

∂β0

=
exp(β0 + β1)

(1 + exp(β0 + β1))2
− exp(β0)

(1 + exp(β0))2
,

and

∂g

∂β1

=
exp(β0 + β1)

(1 + exp(β0 + β1))2
.

It is worth mentioning that the sandwich variance estimate may not take the

variation of estimating the propensity scores into account. As an alternative, the

variance estimate of ÂTE can be obtained by bootstrap method. That is, B (say,

100) bootstrap samples are obtained from the original sample. For the bth bootstrap

sample (b = 1, · · · , B), the ÂTE
∗(b)

is estimated using the same procedure as outlined

in equation (3.5). The variance of the ÂTE is obtained by the variance of ÂTE
∗(b)

(b = 1, · · · , B) based on B bootstrap samples.

Note that a simple ATE estimate of the following form has been used in the

literature:

ÂTE =

∑n
i=1 1{Ti=1}Yiwi∑n
i=1 1{Ti=1}wi

−
∑n

i=1 1{Ti=0}Yiwi∑n
i=1 1{Ti=0}wi

.

The ATE estimate in equation (3.5) is equivalent to this simple ATE estimate when

there are only treatment and control groups. However, the MSM approach can be

extended to multiple groups, even to treatments in continuous scale such as different

dose levels. Another advantage to use MSM is that we can easily obtain the robust

sandwich variance estimate based on MSM, otherwise one has to use the bootstrap

method to estimate the variance if the simple ATE estimate is used.

3.3 Case study

Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease and a

common sequelae in premature infants who require oxygen and assisted ventilation

58



for respiratory distress syndrome (Northway et al. (1967)). Oxygen delivery often

requires assisted ventilation, which may cause damage to the developing respiratory

system, in particular lung injury. The human respiratory system is composed of

upper and lower airways. The upper airway includes the nose, nasal passages, sinuses,

pharynx and a portion of the larynx. The lower airway includes the distal portion of

the larynx, trachea, bronchi, and bronchioles leading to the alveoli. The trachea is a

tubular structure that carries air from the larynx to the lungs. When a child requires

a ventilator for a long time, a tracheostomy may be needed for airway management.

Tracheostomy is a surgical procedure that creates an opening through the neck into

the windpipe. For infants requiring prolonged assisted ventilation, placement of a

tracheostomy tube is safer and more comfortable, and it also allows easier movement

of the baby than using a standard endotracheal tube. However, some studies suggest

that children with a tracheostomy may have higher mortality than those who do not

(Watters (2017)).

In this section, we investigated the in-hospital mortality related to tracheostomy

surgery and explored if tracheostomy may cause a higher mortality. We used the

2016 HCUP KID database and constructed a cohort of children with BPD based

on the International Classification of Disease, Tenth Revision, Clinical Modification

(ICD-10-CM) diagnoses codes. We excluded children who had tracheostomy prior to

the hospital stays. We defined tracheostomy procedure based on the International

Classification of Disease, Tenth Revision, Procedure Coding System (ICD-10-PCS)

procedure codes and used the in-hospital death as outcome. The flow chart of gen-

erating the study cohort is shown in Figure 5.3 in Appendix and there were 12806

subjects in the study cohort.

Based on th expert knowledge, the causal paths of the variables are constructed

as shown in Figure 3.2. We first examined the variables which may be causally related

to tracheostomy surgery. Mechanical ventilation is a major treatment option for in-
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fants with chronic respiratory failure (CRF) (Fedor (2017)). For patients with severe

CRF, tracheostomy may be needed. Extreme low-birth-weight preterm infants requir-

ing prolongs assisted ventilation may require a tracheostomy (Pereira et al. (2003)).

Further, premature infants with BPD often have cardiovascular sequelae, such as pul-

monary hypertension and CRF, which may result in the need for prolonged assisted

ventilation (Kim (2010)). In adults, tracheostomy may reverse the associated cardio-

vascular comorbid conditions, such as pulmonary hypertension (Thatcher and Maisel

(2003)). In addition, preterm delivery is intuitively associated with low birth weight.

The long-term use of ventilation, low birth weight, preterm, CRF, and neonatal pul-

monary hypertension (NPH) are important factors for doctors to consider in choosing

tracheostomy as a treatment for patients with BPD.

Next, we came to examine the variables which are related to the outcome

variable (i.e., in-hospital death). Tracheostomy might induce the tracheostomy com-

plications. Preterm birth, CRF, NPH, tracheostomy complications, and sepsis may

increase the mortality rate. The associations of different covariates with treatment

(tracheostomy) and outcome (i.e. in-hospital death) are presented in Table 3.1.

These associations clearly support our understanding of the relationships among these

variables, which are depicted in a DAG (Figure 3.2). In the DAG, the five vari-

ables above the horizontal line from “tracheostomy” to “death” are all confounding

variables. Specifically, “ventilation” is both a confounding variable (on the back-

door path tracheostomy ← ventilation → death) and a collider (on the backdoor

path tracheostomy ← CRF → ventilation ← NPH → death). To block the back-

door path tracheostomy ← ventilation → death, we have to condition on “ventila-

tion” in the propensity score model. To block the backdoor path tracheostomy ←

CRF → ventilation ← NPH → death, we can condition on either CRF or NPH

along with “ventilation”. Thus, to block both backdoor paths we need to condi-

tion on either {CRF, ventilation} or {NPH,ventilation}. To block the backdoor path
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tracheostomy← ventilation← NPH→ death, either “ventilation” or NPH should be

included in the propensity score model. To block the backdoor path tracheostomy←

ventilation ← CRF → death, either “ventilation” or CRF should be included in the

propensity score model. To block the backdoor path tracheostomy← CRF→ death,

the node CRF must be included in the propensity score model. To block the other

backdoor paths, either the node extreme low birth weight or the node extreme preterm

needs to be included in the propensity score model. Therefore, the minimal set of con-

founding variables which block all the backdoor paths from the node “tracheostomy”

to the node “death” is either the set S1={ventilation, CRF, NPH, extreme low birth

weight} or the set S2={ventilation, CRF, NPH, extreme preterm}. We only need

to include the variables in set S1 or S2 in the propensity score model to obtain un-

biased estimates for ATE. The variable “sepsis” is a predictor, and including the

predictor “sepsis” in the propensity score model may improve the accuracy of ATE

estimates. We used eight different sets of covariates in the propensity score models:

(1) minimal set of confounding variables S1={ventilation, CRF, NPH, extreme low

birth weight}, (2) minimal set of confounding variables S2={ventilation, CRF, NPH,

extreme preterm}, (3) all confounding variables SAllXC={ventilation, CRF, NPH, ex-

treme low birth weight, extreme preterm}, (4) S1 +XP , (5) S2 +XP , (6) SAllXC +XP ,

(7) all covariates, and (8) no covariates. The results based on different sets of ad-

justed covariates in the propensity score models are presented in Table 3.2. Based

on Table 3.2, we may conclude that (1) the ATE estimates were quite similar when

the first six sets of variables were included in the propensity score model, and the

ATE estimates due to tracheostomy were between 1.5% to 1.6%, with zero in the

95% confidence intervals, indicating that tracheostomy surgery may not cause higher

in-hospital mortality; (2) the ATE estimate with all covariates {XC , XP , XM} in the

propensity score model resulted in a larger ATE estimate at 2.6%; and (3) the ATE

estimate without adjusting any covariates was 2.7%. Based on the theoretical consid-
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eration and the simulation results in the next section, the ATE estimate in the latter

two cases were more likely to be biased estimates for ATE.

Tracheostomy Death

Ventilation

Chronic
Respiratory

Failure
(CRF)

Neonatal
Pulmonary

Hypertension
(NPH)

Extreme
Preterm

Extreme
Low Birth

Weight

Tracheostomy
Complications

Sepsis

Figure 3.2: Directed acyclic graph (DAG) for children with BPD

Table 3.1: The associations of different covariates with the treatment assignment
variable (i.e. tracheostomy) as well as the outcome variable (i.e. in-hospital death)
based on 2016 HCUP KID database

Covariates
N

(%)
Tracheostomy

(%)
Mortality

(%)

Tracheostomy Yes 227(1.8%) 100.0% 5.7%
No 12566(98.2%) 0.0% 3.0%

Tracheostomy Complications Yes 74(0.6%) 100.0% 2.7%
No 12719(99.4%) 1.2% 3.0%

Ventilation Yes 487(3.8%) 21.8% 12.7%
No 12306(96.2%) 1.0% 2.6%

Extreme Preterm ≤ 27 weeks Yes 4841(37.8%) 1.5% 3.7%
No 7952(62.2%) 1.9% 2.6%

Birth Weight < 1000g Yes 4348(34%) 1.4% 4.2%
No 8445(66%) 1.9% 2.4%

Chronic Respiratory Failure Yes 363(2.8%) 16.8% 7.4%
(CRF) No 12430(97.2%) 1.3% 2.9%

Neonatal Pulmonary Hypertention Yes 1236(9.7%) 6.3% 6.5%
(NPH) No 11557(90.3%) 1.3% 2.7%
Sepsis Yes 1565(12.2%) 0.9% 6.7%

No 11228(87.8%) 1.9% 2.5%

62



Table 3.2: The estimated average treatment effect (ATE) on in-hospital death due to
tracheostomy based on 2016 HCUP KID database using different sets of variables in
the propensity score models

Variables in propensity score
ATE

Estimates
Bootstrap

SE
Bootstrap 95%

CI
Model based

SE
Model based

95% CI

Minimal set S1: 1.5% 2.0% (-2.3%, 5.4%) 1.9% (-2.2%, 5.3%)
Ventilation, CRF, NPH, Low Birth Weight
Minimal set S2: 1.6% 1.9% (-2.2%, 5.4%) 1.9% (-2.2%, 5.4%)
Ventilation, CRF, NPH, Extreme Preterm
Set SAllXC

: Ventilation, CRF, NPH, 1.6% 2.1% (-2.5%, 5.7%) 1.9% (-2.2%, 5.4%)

Low Birth Weight, Extreme Preterm
Minimal set S1 + XP: Ventilation, CRF, NPH, 1.6% 1.9% (-2.1%, 5.2%) 1.9% (-2.1%, 5.2%)
Low Birth Weight, Sepsis
Minimal set S2 + XP: Ventilation, CRF, NPH, 1.6% 1.8% (-1.9%, 5.1%) 1.9% (-2.1%, 5.3%)
Extreme Preterm, Sepsis
Set SAllXC

+ XP: Ventilation, CRF, NPH, 1.6% 1.8% (-1.9%, 5.2%) 1.9% (-2.1%, 5.3%)

Low Birth Weight, Extreme Preterm, Sepsis
All covariates: Ventilation, CRF, NPH, 2.6% 2.6% (-2.5%, 7.8%) 2.6% (-2.6%, 7.8%)
Low Birth Weight, Extreme Preterm, Sepsis
Tracheostomy Complications
No covariates 2.7% 1.7% (-0.5%, 6%) 1.5% (-0.3%, 5.8%)

Note: Low Birth Weight indicates birth weight <1000g; Extreme Preterm indicates gestation age ≤ 27weeks.

3.4 Simulation

In this section, we carried out simulation studies to examine the consistency

and accuracy of ATE estimates when different types of covariates were included in

the propensity score models. We used a simplified model (see Figure 3.1a) in Section

3.4.1 and a more complex model in Section 3.4.2 to illustrate the impact on ATE

estimates due to different types of covariates in the propensity score models.

3.4.1 Simulation studies for different types of covariates in a simplified DAG

In this simulation study, we generated data based on the causal structure

presented in Figure 3.1a and examined the performance in estimating ATE when

different types of covariates were included in the propensity score models. In this

simulation, we ignored the spurious variables XS and generated one variable for each

type of covariates. We performed the simulation studies for different sample sizes

(say, n=200, 1000, and 10000). For each sample size, we carried out the simulation

study using the following steps.

Step 1: Generated n observations of the confounding variable XC from the uniform
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distribution U(0, 5); generated n observations for the instrument variable XI as

well as the predictor XP from the standard normal distribution.

Step 2: Generated n observations of the treatment T as a binary variable with proba-

bility obtained from

logit(Pr(T = 1|XC , XI)) = 0.01 + 0.7 XC − 2.5 XI .

Step 3: Generated n observations of the mediator XM as a binary variable with proba-

bility obtained from

logit(Pr(XM = 1|T )) = 0.01 + 0.8 T.

Step 4: Generated n observations of the outcome Y which was causally related to con-

founding variable XC , treatment T , mediator XM , and predictor XP . Here we

assumed that Y followed the Bernoulli distribution with probability determined

by the following model:

logit(Pr(Y = 1|XC , XM , XP , T )) = 0.01− 2.7 XC + 1.5 XM + 5 XP + τ T.

Step 5: Generated n observations of the colliderXN as a binary variable with probability

obtained from

logit(Pr(XN = 1|T, Y )) = 0.01 + 0.7 T + 0.8 Y.

Step 6: Generated potential outcomes by using the outcome model in Step 4 but fix-

ing the treatment as t (t=0 or 1) and taking XM as X
(t)
M . X

(0)
M and X

(1)
M were

obtained from Step 3. The potential outcome was a binary variable with prob-
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ability obtained from

logit(Pr(Y (t) = 1|XC , X
(t)
M , XP , T = t)) = 0.01− 2.7XC + 1.5X

(t)
M + 5XP + τt.

Step 7: Obtained the true sample ATE as the mean difference between potential out-

comes Y (1) and Y (0) in Step 7, depending on the sample data generated from

Steps 1-6.

Step 8: Estimated the propensity scores using each one of the seven different sets of

covariates (see Table 3.3) based on the n observations generated from Steps

1-5. Depending on each set of covariates, we obtained their corresponding ATE

estimates by using MSM. We also obtained the standard errors by using the

sandwich estimate and the bootstrap method, respectively.

Step 9: Repeated Steps 1-8 for 1000 times. Here we set τ = 0.5.

Step 10: Obtained the true ATE by the mean of the 1000 sample ATEs in Step 8.

Step 11: Presented the mean of the estimated ATEs, the bias, the empirical standard

error, the standard error obtained from the bootstrap method, the standard

error based on sandwich estimate, and the coverage rate (Table 3.3). The

coverage rate was obtained as the percentage of true ATE falling in the 1000

95% confidence intervals of the estimated ATEs. The bias was obtained as the

absolute difference between the true ATE and mean of the estimated ATEs. The

empirical standard error was the standard error of the 1000 estimated ATEs.

The standard error from bootstrap method and sandwich estimate is the mean

of 1000 corresponding standard errors obtained from Step 8.
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Table 3.3: Simulation results for including different types of covariates in the propen-
sity score models (see the DAG in Figure 3.1a). Here τ=0.5 and true ATE = 3.3%.

Covariates in
propensity
score model

Estimated
ATE

Bias
Empirical
Std.Error

Bootstrap
Std.Error

Bootstrap
Coverage

Rate

Model
based

Std.Error

Model
based

Coverage
Rate

sample size=200

XN -7.7% 11.0% 6.8% 6.8% 64.5% 6.8% 65.6%
XM -7.0% 10.3% 6.9% 6.9% 71.7% 6.8% 71.5%
XN , XC 1.6% 1.7% 5.8% 5.7% 92.7% 6.4% 96.3%
XM , XC 2.1% 1.2% 5.8% 5.8% 94.0% 6.4% 96.3%
XC 3.2% 0.1% 5.5% 5.5% 93.9% 6.1% 96.5%
XC , XP 3.3% 0.0% 4.3% 4.4% 95.9% 6.1% 99.4%
XC , XI 1.5% 1.8% 11.9% 9.6% 90.8% 9.5% 91.9%

sample size=1000

XN -7.4% 10.7% 3.0% 3.0% 5.1% 3.1% 5.7%
XM -6.7% 10.0% 3.0% 3.0% 7.7% 3.1% 7.6%
XN XC 1.8% 1.5% 2.6% 2.5% 91.1% 2.8% 94.9%
XM XC 2.2% 1.1% 2.6% 2.5% 93.5% 2.8% 96.3%
XC 3.4% 0.1% 2.5% 2.4% 94.9% 2.7% 97.4%
XC XP 3.3% 0.0% 2.0% 1.9% 93.7% 2.7% 99.4%
XC XI 2.9% 0.4% 7.4% 5.5% 92.0% 5.7% 92.8%

sample size=10000

XN -7.6% 10.9% 1.0% 1.0% 0.0% 1.0% 0.0%
XM -6.9% 10.2% 1.0% 1.0% 0.0% 1.0% 0.0%
XN XC 1.7% 1.6% 0.8% 0.8% 46.9% 0.9% 55.9%
XM XC 2.1% 1.2% 0.8% 0.8% 67.0% 0.9% 75.3%
XC 3.3% 0.0% 0.8% 0.8% 94.9% 0.9% 98.0%
XC XP 3.3% 0.0% 0.6% 0.6% 95.0% 0.9% 99.7%
XC XI 3.1% 0.2% 3.4% 2.5% 94.5% 2.6% 95.1%

XC : confounding variable; XI : instrumental variable; XP : predictor variable; XM : media-
tor; XN : collider.

Based on the simulation results shown in Table 3.3, we concluded that (1) the

true ATE under this setting was 3.3%; (2) the ATE estimates corresponding to the

sets {XC}, {XC , XP}, {XC , XI} were close to the true ATE; their bias decreased and

the accuracy improved as the sample size went large; (3) when only XC was included

in the propensity score model, ATE estimate was unbiased with coverage rate close

to 95%; (4) when either mediator XM or collider XN was included in the propensity

score model, the ATE estimate was biased, regardless the sample sizes; (5) when
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both XC and XP were included in the propensity score model, the ATE estimate

was unbiased and the accuracy was improved (i.e., smallest standard error); (6) when

XC and the instrument variable XI were included in the propensity score model, the

variance increased, though the ATE estimate was unbiased. In summary, including

XC and XP in the propensity score model provided unbiased estimate for ATE and

improved the accuracy of ATE estimate.

3.4.2 Simulation study for a complex model based on the DAG of BPD

In this simulation study, we generated data based on the DAG presented in

the case study in Figure 3.2, where the treatment choice was determined by patients

characteristics. For children with BPD, extreme low birth weight, CRF, NPH, and

long-term ventilation often were causally related to a higher chance to receive the

tracheostomy surgery, which were also causally related to the outcome (say, in-hospital

death). In addition, the tracheostomy surgery was causally related to tracheostomy

complications which might increase the mortality. Sepsis was only related to outcome

and also might increase the mortality. We generated simulated datasets and examined

the performance of the proposed method using the following simulation settings.

Step 1: Generated confounding variables: extreme preterm (EP) (i.e., gestational age

≤ 27 weeks), extreme low birth weight (ELBW) (i.e., birth weight < 1000g),

CRF, NPH, and ventilation based on Bernoulli distribution with probabilities

obtained from

Pr(EP=1) = 0.3,

logit(Pr(ELBW=1|EP)) = 0.02 + 0.4 EP,

logit(Pr(CRF = 1|EP)) = 0.05 + 0.5 EP,

logit(Pr(NPH = 1|EP)) = 0.05 + 0.45 EP,
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and logit(Pr(ventilation = 1|CRF, NPH)) = 0.01 + 0.7 CRF + 0.7 NPH.

Step 2: Generated the treatment assignment variable T (say, tracheostomy surgery)

based on the Bernoulli distribution with probability obtained from

logit(Pr(T = 1|ELBW, CRF, NPH, ventilation))

= 0.3 ELBW + 0.4 CRF + 0.5 NPH + 0.6 ventilation.

Step 3: Generated the mediator variable postT (say, tracheostomy complications) from

the Bernoulli distribution with probability obtained from

logit(Pr(postT = 1|T)) = 0.2 + 0.5 T.

Step 4: Generated predictor variable sepsis from the Bernoulli distribution with proba-

bility obtained from

Pr(sepsis = 1) = 0.2.

Step 5: Generated outcome variable Y from Bernoulli distribution with probability ob-

tained from

logit(Pr(Y = 1|EP, CRF, NPH, ventilation, postT, sepsis, T))

= −1 + 1.5 EP + 2 CRF + 2 NPH + 2.5 ventilation + 3 postT + 4 sepsis + τ T.

Step 6: Generated the potential outcomes Y (t) with the treatment fixed at t (0 or 1) by

using the Bernoulli distribution with probability obtained from

logit(Pr(Y (t) = 1|EP, CRF, NPH, ventilation, postT(t), sepsis, T = t))

= −1 + 1.5 EP + 2 CRF + 2 NPH + 2.5 ventilation + 3 postT(t) + 4 sepsis+ τ t.
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The potential mediator postT(t) is generated based on the model in Step 3 with

treatment fixed at t (0 or 1).

Step 7: Obtained the true sample ATE estimate based on potential outcomes in Step 6

for the sample data generated in Steps 1-5.

Step 8: Estimated ATE by using the MSM and the sample data generated in Steps

1-5. Calculated the standard error based on sandwich variance estimate as well

as the bootstrap method. In this step, we included different sets of covariates

shown in Table 3.4.

Step 9: Repeated Steps 1-8 1000 times. Here we took three different values of τ to

examine the model performance on estimating ATEs.

Step 10: Calculated the true ATE as the mean of the 1000 true sample ATEs generated

in Step 7.

Step 11: For each fixed τ ∈ {0, -1, 1}, we summarized the simulation results by the mean

of the estimated ATE, the bias, the empirical standard error, the standard error

by using bootstrap method, the standard error by using sandwich estimates,

and the coverage rate (See Table 3.4). The coverage rate was obtained as

the percentage of true ATE falling in the 1000 95% confidence intervals of the

estimated ATEs. The bias was obtained as the absolute difference between

the true ATE and mean of the estimated ATEs. The empirical standard error

was the standard error of the 1000 estimated ATEs. The standard error from

bootstrap method and sandwich estimate is the mean of 1000 corresponding

standard errors obtained from Step 8.

The results for this simulation study are presented in Table 3.4, where eight

different sets of covariates were included in the propensity score models. They were

minimal set of confounding variables S1, minimal set of confounding variables S2, all
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confounding variables SAllXC , S1 +XP , S2 +XP , SAllXC +XP , all covariates, and no

covariates adjusted. From the results in Table 3.4, we concluded that (1) all ATE

estimates based on the first six sets of adjusted covariates which included confounding

variables blocking all backdoor paths from treatment assignment variable to outcome

variable, with/without predictor variable, provided unbiased estimates for ATE; (2)

the ATE estimates using all covariates (which included the mediator “tracheostomy

complications”) in the propensity score models provided biased estimates; (3) the

ATE estimates using no covariates in the propensity score models provided biased

ATE estimates; (4) when XP along with the set of confounding variables (which

block all backdoor paths from treatment assignment variable to outcome variable)

were included in the propensity score model, the empirical standard error was smaller

than its counterpart without Xp, indicating that including XP in the propensity score

model could improve the accuracy of ATE estimates; (5) the coverage rates for the

first six sets of covariates were close to 95%, the nominal coverage rate; (6) the

standard error based on bootstrap method was more close to the empirical standard

error than sandwich variance estimate, thus bootstrap method is recommended to

estimate standard error.

3.5 Conclusion and discussion

In this article, we have investigated the performance of the propensity score

models using different sets of covariates. We have demonstrated that not all covari-

ates should be included in the propensity score model, instead one should only include

confounding variables (or a minimal set of confounding variables meeting backdoor

criteria) and predictor variables. This approach is suitable for observational studies,

when both the treatment assignment variable and outcome variable are impacted by

the patient’s characteristics. From the case study and simulation studies, when all

covariates are included in the propensity score model, the ATE estimates are often
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Table 3.4: Simulation results based on the DAG in Figure 3.2

Variables included in propensity score
Estimated

ATE
Bias

Empirical
Std.Error

Bootstrap
Std.Error

Bootstrap
Coverage Rate

Model based
Std.Error

Model based
Coverage Rate

sample size=5000, τ = 0, true ATE=3.8%

Minimal set S1: 3.8% 0.0% 1.3% 1.3% 93.9% 1.4% 96.0%
Ventilation, CRF, NPH, Low Birth Weight
Minimal set S2: 3.8% 0.0% 1.3% 1.3% 93.8% 1.4% 95.9%
Ventilation, CRF, NPH, Extreme Preterm
Set SAllXC

: Ventilation, CRF, NPH, 3.8% 0.0% 1.3% 1.3% 94.1% 1.4% 95.8%

Low Birth Weight, Extreme Preterm
Minimal set S1 + XP: Ventilation, CRF, NPH, 3.8% 0.0% 1.3% 1.2% 94.3% 1.4% 96.5%
Low Birth Weight, Sepsis
Minimal set S2 + XP: Ventilation, CRF, NPH, 3.8% 0.0% 1.2% 1.2% 93.9% 1.4% 96.6%
Extreme Preterm, Sepsis
Set SAllXC

+ XP: Ventilation, CRF, NPH, 3.8% 0.0% 1.3% 1.2% 93.8% 1.4% 96.8%

Low Birth Weight, Extreme Preterm, Sepsis
All covariates: Ventilation, CRF, NPH, 0.0% 3.8% 1.1% 1.1% 8.0% 1.3% 15.6%
Low Birth Weight, Extreme Preterm, Sepsis
Tracheostomy Complications
No covariates 5.5% 1.8% 1.4% 1.4% 72.5% 1.4% 72.9%

sample size=5000, τ = 1, true ATE= 11.5%

Minimal set S1: 11.5% 0.0% 1.3% 1.3% 93.3% 1.3% 95.5%
Ventilation, CRF, NPH, Low Birth Weight
Minimal set S2: 11.5% 0.0% 1.3% 1.2% 93.5% 1.3% 96.0%
Ventilation, CRF, NPH, Extreme Preterm
Set SAllXC

: Ventilation, CRF, NPH, 11.5% 0.0% 1.3% 1.2% 93.5% 1.3% 95.7%

Low Birth Weight, Extreme Preterm
Minimal set S1 + XP: Ventilation, CRF, NPH, 11.5% 0.0% 1.2% 1.2% 93.2% 1.3% 96.3%
Low Birth Weight, Sepsis
Minimal set S2 + XP: Ventilation, CRF, NPH, 11.5% 0.0% 1.2% 1.2% 93.7% 1.3% 96.7%
Extreme Preterm, Sepsis
Set SAllXC

+ XP: Ventilation, CRF, NPH, 11.5% 0.0% 1.2% 1.2% 93.3% 1.3% 96.6%

Low Birth Weight, Extreme Preterm, Sepsis
All covariates: Ventilation, CRF, NPH, 8.0% 3.5% 1.1% 1.1% 10.0% 1.3% 17.6%
Low Birth Weight, Extreme Preterm, Sepsis
Tracheostomy Complications
No covariates 13.1% 1.7% 1.4% 1.3% 74.6% 1.3% 74.7%

sample size=5000, τ = −1, true ATE=-6.0%

Minimal set S1: -6.0% 0.0% 1.4% 1.3% 94.2% 1.4% 96.2%
Ventilation, CRF, NPH, Low Birth Weight
Minimal set S2: -6.0% 0.0% 1.3% 1.3% 94.3% 1.4% 96.5%
Ventilation, CRF, NPH, Extreme Preterm
Set SAllXC

: Ventilation, CRF, NPH, -6.0% 0.0% 1.3% 1.3% 94.3% 1.4% 96.2%

Low Birth Weight, Extreme Preterm
Minimal set S1 + XP: Ventilation, CRF, NPH, -6.0% 0.0% 1.3% 1.3% 94.2% 1.4% 96.8%
Low Birth Weight, Sepsis
Minimal set S2 + XP: Ventilation, CRF, NPH, -6.0% 0.0% 1.3% 1.3% 94.3% 1.4% 96.9%
Extreme Preterm, Sepsis
Set SAllXC

+ XP: Ventilation, CRF, NPH, -6.0% 0.0% 1.3% 1.3% 94.3% 1.4% 97.4%

Low Birth Weight, Extreme Preterm, Sepsis
All covariates: Ventilation, CRF, NPH, -9.9% 3.9% 1.1% 1.1% 7.4% 1.4% 16.2%
Low Birth Weight, Extreme Preterm, Sepsis
Tracheostomy Complications
No covariates -4.2% 1.8% 1.5% 1.4% 73.0% 1.4% 73.2%

Note: Low Birth Weight indicates birth weight <1000g; Extreme Preterm indicates gestation age ≤ 27weeks.
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biased. When a set of confounding variables which block all backdoor paths from

T to Y are included in the propensity score model, the ATE estimates are unbi-

ased. Furthermore, including predictors along with confounding variables (meeting

the backdoor criteria) in the propensity score model improves the accuracy of the

ATE estimates.

In the case study and simulations, we only present the result of ATE estimates

based on MSM, which is same as the result based on the simple ATE estimate.

The MSM can be easily extended to multiple treatment groups and even continuous

treatments, while the simple ATE can not be easily extended to these cases. In

addition, the ATE in this paper is referred as the total causal effect which include

the effect of treatment through mediator. If one were interested in the direct causal

effect, different set of variables need to be adjusted (VanderWeele (2009)), which is

beyond the investigation of this article.

There are various propensity score based methods to estimate ATE in obser-

vational studies, such as matching, stratification, IPTW, and using propensity score

as covariates. Though each propensity score based method has its strengths and

weaknesses, we did not compared them in this paper. Instead, we focus on the im-

pact of including different types of covariates in the propensity score model. The

investigation of these methods with reference to DAG would be our future research

interests.
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CHAPTER 4

DIFFERENT DOUBLY ROBUST METHODS FOR ESTIMATING

ATE AND THEIR IMPROVEMENT USING SUPER LEARNER

4.1 Introduction

In this project, we investigate different doubly robust methods for estimating

average treatment effect (ATE) based on observational data. ATE measures the mean

difference of the potential outcomes when all subjects are treated versus all subjects

are untreated. Conceptually, we could assume that each patient has two potential

outcomes: Y (1) and Y (0), where Y (1) is the potential outcome when the subject is

treated and Y (0) is the potential outcome when the subject is untreated. ATE is

defined as:

ATE = E(Y (1))− E(Y (0)).

In practice, we can only observe one potential outcome for a subject, i.e., the potential

outcome corresponding to the treatment the subject receives. The other potential

outcome is unobserved. That is, the observed outcome Y equals Y (0) when the subject

is untreated (say T = 0), and the observed outcome Y equals Y (1) when the subject is

treated (say T = 1). In a randomized experiment, each subject is randomly assigned

to either treatment group or control group, and the sample in the treatment group

can be considered as a random sample from the population. Thus, the sample mean of

the outcomes for the treated subjects is a consistent estimate of the population mean

when all subjects are treated, say E(Y (1)). Similarly, the sample mean of the outcomes
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for the untreated subjects is a consistent estimate for the population mean when all

subjects are untreated, say E(Y (0)). In an observational study, the treatment (say T )

is not randomly assigned, instead the treatment choice for a subject often depends

on the patient’s health conditions. Subsequently, the outcome depends on not only

the treatment received but also the patient’s health condition. That is, the treatment

assignment and the outcome are confounded. Thus, the sample mean for treated

subjects is not a consistent estimate for the population mean. Under the assumption

that there are not unmeasured confounding variables, propensity score based methods,

such as matching, stratification, inverse probability of treatment weighting (IPTW),

regression model with propensity score as covariate, and DR methods, have been

developed to estimate ATE (Rosenbaum and Rubin (1983), Lunceford and Davidian

(2004), Kang et al. (2007), Abdia et al. (2017), and Yan et al. (2019),). Among them,

the doubly robust methods use both propensity score model and outcome model, and

their ATE estimates are asymptotically consistent if either propensity score model or

outcome model is correctly specified. The doubly robust methods gained popularity

due to this underlying property. There are different forms of doubly robust estimators,

including bias-corrected methods, weighted least squares method, and an augmented

doubly robust method (Lunceford and Davidian (2004), Kang et al. (2007), and Bang

and Robins (2005)). The bias-corrected method has been widely used (Funk et al.

(2011), Yan et al. (2019)), and its comparison with other forms of doubly robust

estimators has not yet been made.

Doubly robust methods may provide biased estimates when both propensity

score model and outcome model are mis-specified. Recently, the super learner al-

gorithm (Van der Laan et al. (2007), Polley and Van Der Laan (2010)) has been

developed to predict outcome with high accuracy. The super learner algorithm finds

the best combination of a group of prediction algorithms by minimizing the cross

validation error. These prediction algorithms could be different machine learning
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methods and generalized additive model (Breiman et al. (1984), Quinlan (1986), Loh

(2014), Breiman (1998), Breiman (2001), Breiman (1997), Friedman (2001), Mason

et al. (2000), Hastie and Tibshirani (1990)). The super learner algorithm has been

implemented in R-package “SuperLearner” (Polley and Van Der Laan (2010)). It

is anticipated that doubly robust estimators, when outcome is obtained from super

learner, are robust in estimating ATE even when both propensity score model and

outcome model are mis-specified. In this project, we first review these doubly robust

methods in their original forms in Section 4.2.1 and compare their performances via

simulations in Section 4.3.1. It is known that doubly robust methods may fail when

both the outcome model and propensity score model are mis-specified. We inves-

tigate whether the performance of the doubly robust methods improve when super

learner algorithm is applied to obtain the outcome model in Section 4.2.2. Extensive

simulation studies are carried out to examine their performances in Section 4.3.2. In

Section 4.4, we examine whether quitting smoking could cause weight gain based on

the NHEFS dataset. The last section is devoted to discussion and conclusions.

4.2 Doubly robust methods and super learner doubly robust methods

Let X, T , and Y denote, respectively, a vector of confounding variables, a

treatment assignment variable, and an outcome variable. Let us assume that there

are not unmeasured confounding variables. Propensity score based methods are often

used to estimate ATE. The propensity score model is defined as the probability of

receiving treatment given the confounding variables, that is,

π(X) = Pr(T = 1|X). (4.6)
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Doubly robust methods use both the propensity score (PS) model and outcome model.

Let us assume the outcome variable Y is a continuous variable, the outcome model

for an untreated subject with confounding variable X is m0(X|β) = E(Y (0)|X) , and

the outcome model for a treated subject with confounding variable X is m1(X|β) =

E(Y (1)|X). For example, a model of the form E(Y |T,X) = β0 + βTT +XTβX could

be fit to the observational data, then m0(X|β̂) = β̂0 + XT β̂X and m1(X|β̂) = β̂0 +

β̂1 +XT β̂X . In the following section, we first present different forms of doubly robust

estimators, and then we present the super learner doubly robust method to estimate

ATE. We use the triplet (Xi, Ti, Yi) (i = 1, · · · , N) to denote the N observations in

an observational study.

4.2.1 Doubly robust methods

The Lunceford’s doubly robust method (Lunceford and Davidian (2004)) based

on N observations has the following form:

ATE
(Lunceford)
(DR) =

1

N

N∑
i=1

{
TiYi
π(Xi)

− Ti − π(Xi)

π(Xi)
m1(Xi|β)

}

− 1

N

N∑
i=1

{
(1− Ti)Yi
1− π(Xi)

+
Ti − π(Xi)

1− π(Xi)
m0(Xi|β)

}
.

(4.7)

One can prove that the expectation of the first term equals to E(Y (1)) and the ex-

pectation of the second term equals E(Y (0)) when either the propensity score model

or outcome model is correctly specified. In practice, the ATE estimate is obtained by

replacing the propensity scores and the outcome models by their estimated values:

ÂTE
(Lunceford)

(DR) =
1

N

N∑
i=1

{
TiYi
π̂(Xi)

− Ti − π̂(Xi)

π̂(Xi)
m1(Xi|β̂)

}

− 1

N

N∑
i=1

{
(1− Ti)Yi
1− π̂(Xi)

+
Ti − π̂(Xi)

1− π̂(Xi)
m0(Xi|β̂)

}
.

(4.8)
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The doubly robust estimator in Equation (4.8) is often used in the literature. Kang

et al. (2007) proposed two doubly robust methods to estimate ATE. One is based on

the residuals (say, ε̂i = yi − [Tim1(Xi|β̂) + (1− Ti)m0(Xi|β̂)] (i = 1, · · · , N)):

ÂTE
(Kang.Res)

(DR) =

{∑N
i=1m1(Xi|β̂)

N
+

∑N
i=1 Tiπ̂(Xi)

−1ε̂i∑N
i=1 Tiπ̂(Xi)−1

}

−

{∑N
i=1 m0(Xi|β̂)

N
+

∑N
i=1(1− Ti)(1− π̂(Xi))

−1ε̂i∑N
i=1(1− Ti)(1− π̂(Xi))−1

}
.

(4.9)

The Kang’s doubly robust estimator (4.9) is asymptotic equivalent to Lunceford’s

doubly robust estimator (4.8).

The other doubly robust approach proposed by Kang (Kang et al. (2007)) is

based on the weighted least squares (WLS) estimates of the outcome models:

ÂTE
(Kang,WLS)

(DR) =
1

N

N∑
i=1

{
m1(Xi|β̂WLS)−m0(Xi|β̂WLS)

}
. (4.10)

In the case that the outcome model is a linear regression model, the model coefficients

are estimated as β̂WLS = (HTWH)−1HTWY , where H = {T,X} and the weight

matrix W is a diagonal matrix with IPTWs assigned as the diagonal elements.

Bang and Robins (2005) proposed the doubly robust estimator by considering

the IPTW as a covariate in the outcome model. The doubly robust method can be

written as

ÂTE
(Bang)

(DR) =
1

N

N∑
i=1

{
e(T = 1, Xi|β̂, φ̂)− e(T = 0, Xi|β̂, φ̂)

}
. (4.11)

Here the outcome model has the form e(T,Xi|β̂, φ̂) = g
[
s(T,X|β) + φ( T

π(X)
+ (1−T )

1−π(X)
)
]
,

where g is a canonical link function, and s(X|β) is a known regression function with

unknown parameter β. e(T = 1, Xi|β̂, φ̂) is the predicted potential outcomes when
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the ith subjects is treated; while e(T = 0, Xi|β̂, φ̂) is the predicted potential out-

come when the ith subjects is untreated. β̂ and φ̂ are the solutions of the estimating

equation 0 =
∑N

i=1
∂e(Ti,Xi|β,φ)
∂(βT ,φ)

{Yi − e(Ti, Xi|β, φ)}.

4.2.2 Super learner doubly robust methods

Super learner algorithm ensembles various algorithms, such as machine learn-

ing methods and generalized additive model, to predict outcomes more accurately

(Van der Laan et al. (2007), Polley and Van Der Laan (2010)). In the super learner

algorithm, we consider regression tree (Breiman et al. (1984), Quinlan (1986), Loh

(2014)), bagging tree (Breiman (1998)), random forest (Breiman (2001)), gradient

boosting model (GBM) (Breiman (1997), Friedman (2001), Mason et al. (2000)), and

generalized additive model (GAM) (Hastie and Tibshirani (1990)). The basic idea is

that we first obtain the predictive values based on each single algorithm, and then we

obtain the super learner predicted values as a linear combination of the predicted val-

ues from different single algorithms. The predicted outcome values from super learner

are plugged into different doubly robust methods to obtain the ATE estimates, which

are referred as the super learner doubly robust estimates. In this subsection, we

provide details for the proposed super learner doubly robust estimates.

We first introduce the single algorithms in the super learner algorithm. Regres-

sion tree constructs a large tree on the full data using the rpart function in the rpart

package in R, then the large tree is trimmed down to a smaller tree by minimizing

the cost-complexity score which is equals to sum of squared residual plus αT (Terry

et al. (2015)). In the rpart function, we can get the complexity parameter table.

Under each tree size (T ), the table shows the best complexity parameter (α) , the

corresponding cross validated error (xerror) and the standard deviation of the error

(xstd). As the complexity parameter increases, the tree size decreases. We prefer to

choose a smaller tree but keep the the xerror small, that is, we choose the maximum
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complexity parameter such that xerror is smaller than the sum of the minimized xer-

ror and the corresponding xstd. We prune the tree based on this optimal complexity

parameter value.

The bagging tree and random forest can be implemented using the random-

Forest function in the randomForest package in R (Leo et al. (2018)). We consider

the mtry (i.e., the optimal number of variables randomly sampled as the candidates

at each split) as a tuning parameter. Mtry is chosen such that the mean square errors

(MSE) is minimized. When we set mtry as the number of all covariates, we implement

the bagging algorithm to obtain predicted values.

The gradient boosting model (GBM) is constructed using the gbm package in R

(Brandon et al. (2013)). First, we set several candidate values for those parameters:

(1) shrinkage (i.e., learning rate), (2) interaction.depth (i.e., maximum number of

splits in each tree), (3) n.minobsinnode (i.e., minimum number of observations in

the terminal nodes of trees), and (4) bag.fraction (i.e., the training set observations

randomly selected to generate next tree in the expansion). We set n.trees=6000, that

is, we grow 6000 trees (maximum number of iterations) to fit the model. Under each

parameter setting, we get a minimum RMSE with corresponding optimal n.trees.

Finally, we choose the set of parameters such that the RMSE is minimized.

GAM uses smoothing splines and additive model to obtain the outcome model

by minimizing the (weighted) penalized sum of square (Hastie and Tibshirani (1990)):

N∑
i=1

wi(yi − Tim1(xi)− (1− Ti)m0(xi))
2 + λ

∫ (
(m′′0(x))2 + (m′′1(x))2

)
dx.

GAM can be implemented using the gam function in the mgcv R-package (Wood

(2015)).

We propose a revised super learner algorithm once we get all the predicted

outcomes from different algorithms mentioned above. Let us denote the predicted

79



potential outcomes as {m̂0,k, m̂1,k} (k = 1, . . . , K) from K different algorithms, e.g.,

K=5 for regression tree, bagging tree, random forest, GBM, and GAM. Here m̂1,k

and m̂0,k denote the predicted potential outcomes for the subject being treated and

being untreated, respectively, based on the kth single algorithm. For each algorithm,

we can obtain the predicted outcome m̂k = Tim̂1,k + (1 − Ti)m̂0,k for k = 1, . . . , K.

The super learner estimated outcome is obtained as the linear combination of the

predicted outcomes from the K algorithms, say, m̂SL =
∑K

k=1 αkm̂k subject to the

constrains that all weights αk ≥ 0 (k = 1, . . . , K), and
∑K

k=1 αk = 1. The optimal

weights α̂k (k = 1, ..., K) are estimated by minimizing the loss function:

min
N∑
i=1

(Yi − m̂SL,i)
2.

The super learner doubly robust methods for Lunceford’s and Kang’s resid-

ual version are simply obtained from replacing the predicted potential outcome m0

and m1 by the super learner predicted outcomes. As to the Kang’s WLS doubly

robust method, the outcome model for each single algorithm is obtained by using

the weighted machine learning methods and weighted GAM. The potential outcomes

of the super learner is also obtained by the optimization strategy based on the sin-

gle algorithm’s predicted values. Here the weights are the IPTW of each subject

in the sample. As to Bang’s version of super learner doubly robust method, each

single algorithm (machine learning methods and GAM) takes the covariate X and T

along with the IPTW as input to get the predicted potential outcomes. Then the

two predicted potential outcomes e0 and e1 obtained by super learner algorithm are

plugged into equation (4.11) to get the ATE estimates based on Bang’s method. In

the following section, we carried out simulation studies to examine the performances

of these proposed methods.
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4.3 Simulation studies

In this section, simulation studies were carried out to compare the perfor-

mance of different doubly robust methods. We generated data (X,T, Y ) from a

complex propensity score model and an outcome regression model using the following

simulation settings.

Step 1: Generated the covariates Xc1, Xc2, and Xp from the normal distribution N(0,1),

N(0,1), and N(3,3), respectively.

Step 2: Generated the treatment T from the Bernoulli distribution with probability

obtained from

logit[P (T = 1|X)] = 0.5 + 0.5Xc1 − 0.3Xc2 + 0.5X2
c1 − 0.3X2

c2 + 0.2Xc1Xc2.(4.12)

Step 3: Generated outcome Y from the normal distribution:

Y = 0.06 + T + 0.1Xc1 + 0.2Xc2 + 0.15Xp − 0.3X2
c1 + 0.3X2

c2

− 0.2X2
p + 0.08Xc1Xc2 + 0.24Xc1Xp − 0.1Xc2Xp +N(0, 1). (4.13)

4.3.1 Simulation studies for doubly robust methods

To examine the performance of the four doubly robust methods presented in

Section 4.2.1, we compared the correctly specified model with the mis-specified model.

Under the data generating mechanism, the correctly specified propensity score model

was defined by equation (4.12):

logit[P (T = 1|X)] = γ0 + γ1Xc1 + γ2Xc2 + γ3X
2
c1 + γ4X

2
c2 + γ5Xc1Xc2.
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The mis-specified propensity score model was defined as

logit[P (T = 1|X)] = γ∗0 + γ∗1Xc1 + γ∗2Xc2. (4.14)

Similarly, the correctly specified outcome regression model was defined by equation

(4.13):

Y = Xβ +N(0, 1), (4.15)

where X = {1, T,Xc1, Xc2, Xp, X
2
c1, X

2
c2, X

2
p , Xc1Xc2, Xc1Xp, Xc2Xp} and β is the vec-

tor of parameters. The mis-specified outcome regression model was defined as

E(Y |T,X) = β∗0 + β∗1T + β∗2Xc1 + β∗3Xc2 + β∗4Xp. (4.16)

For each doubly robust method, we generated data from the underlying propen-

sity score model (4.12) and outcome regression model (4.13), then estimated the

propensity score with the true propensity score model (4.12) as well as the mis-

specified propensity score model (4.14). We also used the underlying outcome model

(4.13) and mis-specified outcome model (4.16), respectively. Thus, we obtained four

doubly robust estimators based on four combinations of the the propensity score

model and outcome model used: (i) both propensity score and outcome models were

correctly specified (True OR, True PS); (ii) outcome model was correctly specified,

but propensity score model was mis-specified (True OR, False PS); (iii) outcome

model was not correctly specified while propensity score model was correctly spec-

ified (False OR, True PS); (iv) neither outcome model nor propensity score model

were correctly specified (False OR, False PS).

1000 simulated data sets were generated from Steps 1-3. In each simulation,

we obtained an estimated ATE and a bootstrap standard error which was the stan-
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dard deviation of the estimated ATEs from 100 re-sampling bootstrap samples. The

simulation results are presented in Table 4.1. The estimated ATE and empirical stan-

dard error (Std.error) were the mean and standard deviation of the 1000 estimated

ATEs. The Bootstrap Std.Error was the mean of the 1000 Bootstrap standard errors.

The coverage rate was the percentage of true ATE falling in the 1000 95% confidence

intervals of the estimated ATEs. The bias was the absolute difference between the

true ATE and the mean of the estimated ATEs.

Table 4.1: The simulation results of the four different doubly robust methods under
four different model specifications, where the sample size=1000 and the true ATE is
zero.

Model Specifications
Estimated

ATE
Bias

Empirial
Std.Error

Bootstrap
Std.Error

Coverage
Rate

Lunceford’s method
True OR, True PS 0.000 0.000 0.000 0.000 99.2%
True OR, False PS 0.000 0.000 0.000 0.000 98.8%
False OR, True PS -0.005 0.005 0.277 0.225 95.1%
False OR, False PS -0.351 0.351 0.180 0.185 50.8%

Kang’s residual method
True OR, True PS 0.000 0.000 0.000 0.000 98.8%
True OR, False PS 0.000 0.000 0.000 0.000 99.1%
False OR, True PS -0.008 0.008 0.250 0.215 94.9%
False OR, False PS -0.351 0.351 0.180 0.184 50.8%

Kang’s WLS method
True OR, True PS 0.000 0.000 0.000 0.000 97.4%
True OR, False PS 0.000 0.000 0.000 0.000 97.0%
False OR, True PS -0.021 0.021 0.217 0.202 94.5%
False OR, False PS -0.352 0.352 0.179 0.183 50.2%

Bang’s method
True OR, True PS 0.000 0.000 0.000 0.000 99.0%
True OR, False PS 0.000 0.000 0.000 0.000 97.8%
False OR, True PS 1.653 1.653 35.699 39.610 97.1%
False OR, False PS -0.323 0.323 0.178 0.183 56.7%

Note: OR indicates outcome model, and PS indicates propensity score model.

Based on Table 4.1, all doubly robust methods except Bang’s method per-

formed well when either outcome model or propensity score model was correctly

specified, that is, the estimated ATE were unbiased with coverage rate close to 95%.
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However, if both the outcome model and propensity score model were mis-specified,

all doubly robust methods resulted in biased ATE estimates with large variances and

low coverage rates. The Bang’s DR method worked well when the outcome model was

correctly specified. However, when outcome model was mis-specified, the estimated

ATEs were biased regardless of the propensity score model used. This is probably

because Bang’s method assumes an structural outcome model. In the following sub-

section, we examined whether the super learner doubly robust methods can alleviate

the situations when neither propensity score model nor outcome model are specified

correctly.

4.3.2 Super learner doubly robust methods

In this subsection, we obtained the predicted potential outcomes by using

machine learning methods, GAM, and super learner algorithm. We ran 1000 simula-

tions and the simulation results are presented in Table 4.2 under two scenarios: (i)

propensity score models was correctly specified; and (ii) propensity score model was

mis-specified.

Based on the simulation result in Table 4.2, the best ATE estimates for Lunce-

ford method and Kang’s residual method were from the GBM, with the coverage rate

close to 95%, no matter the propensity score model was correctly specified or not.

The second best ATE estimates were from the super learner algorithm, which usually

performed near the best. For Kang’s WLS method, the top 2 best single outcome

prediction models were the regression tree model and GBM with the coverage rate

larger than 95%, no matter the propensity score model was correctly specified or not.

The performances of the super learner doubly robust method performed between the

regression tree model and GBM. For Bang’s DR method, only the regression tree

assisted Bang’s DR method worked well (Table 4.2). The super learner algorithm,

GAM, and most of the machine learning did not contribute to the accuracy of es-
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Table 4.2: The simulation results when super learner doubly robust methods were
used. The true ATE was zero.

Outcome Models DR Method PS Models
Estimated

ATE
Bias

Empirical
Std.Error

Boostrap
Std.Error

Coverage
Rate

Regression Tree Lunceford method True PS 0.026 0.026 0.233 0.195 95.6%
False PS 0.220 0.220 0.098 0.101 39.6%

Kang’s residual method True PS 0.037 0.037 0.189 0.158 95.1%
False PS 0.220 0.220 0.098 0.101 39.6%

Kang’s WLS method True PS 0.000 0.000 0.000 0.001 100.0%
False PS 0.000 0.000 0.000 0.001 100.0%

Bang’s method True PS 0.000 0.000 0.004 0.006 99.9%
False PS 0.000 0.000 0.009 0.019 99.3%

Bagging Tree Lunceford method True PS 0.013 0.013 0.051 0.034 82.7%
False PS 0.053 0.053 0.021 0.016 12.1%

Kang’s residual method True PS 0.015 0.015 0.045 0.027 82.5%
False PS 0.053 0.053 0.021 0.016 12.1%

Kang’s WLS method True PS 0.013 0.013 0.006 0.009 82.9%
False PS 0.013 0.013 0.006 0.009 82.9%

Bang’s method True PS 0.116 0.116 0.031 0.023 3.4%
False PS 0.030 0.030 0.041 0.038 84.1%

Random Forest Lunceford method True PS 0.017 0.017 0.052 0.033 79.8%
False PS 0.055 0.055 0.023 0.017 12.3%

Kang’s residual method True PS 0.019 0.019 0.046 0.026 79.4%
False PS 0.055 0.055 0.023 0.017 12.3%

Kang’s WLS method True PS 0.020 0.020 0.008 0.010 48.3%
False PS 0.020 0.020 0.008 0.010 50.5%

Bang’s method True PS 0.132 0.132 0.038 0.030 5.4%
False PS 0.045 0.045 0.045 0.041 76.1%

GBM Lunceford method True PS 0.001 0.001 0.018 0.018 97.5%
False PS 0.001 0.001 0.018 0.018 97.4%

Kang’s residual method True PS 0.001 0.001 0.018 0.018 97.5%
False PS 0.001 0.001 0.018 0.018 97.4%

Kang’s WLS method True PS 0.004 0.004 0.017 0.016 96.1%
False PS 0.000 0.000 0.017 0.016 95.8%

Bang’s method True PS 0.057 0.057 0.036 0.032 54.1%
False PS 0.003 0.003 0.030 0.029 97.3%

GAM Lunceford method True PS 0.000 0.000 0.115 0.095 95.7%
False PS 0.001 0.001 0.056 0.055 95.2%

Kang’s residual method True PS 0.001 0.001 0.101 0.080 95.1%
False PS 0.001 0.001 0.056 0.055 95.2%

Kang’s WLS method True PS 0.000 0.000 0.071 0.061 91.9%
False PS 0.002 0.002 0.057 0.056 93.5%

Bang’s method True PS 9.4E+09 9.4E+09 2.9E+11 4.3E+19 100.0%
False PS 0.002 0.002 0.076 0.104 98.3%

SuperLearner Lunceford method True PS 0.001 0.001 0.024 0.019 96.6%
False PS 0.003 0.003 0.019 0.018 95.3%

Kang’s residual method True PS 0.001 0.001 0.021 0.018 96.5%
False PS 0.003 0.003 0.019 0.018 95.3%

Kang’s WLS method True PS 0.005 0.005 0.017 0.016 96.3%
False PS 0.001 0.001 0.017 0.016 96.2%

Bang’s method True PS 9.9E+06 9.9E+06 3.2E+08 1.4E+16 89.2%
False PS 0.004 0.004 0.031 0.029 96.6%

Note: PS represents propensity score model.
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timated ATEs. Including the IPTW as covariate in a model, we cannot take full

advantages of the propensity score’s feature. That is, we cannot balance the distri-

bution of the covariates in treatment group and control group to reduce the selection

bias in observational data.

4.4 Case study

NHEFS is a dataset containing data from the National Health and Nutrition

Examination Survey Data I Epidemiologic Follow-up Study (NHEFS). The NHEFS

was jointly initiated by the National Center for Health Statistics and the National

Institute on Aging in collaboration with other agencies of the United States Public

Health Service. A detailed description of the NHEFS, together with publicly available

data sets and documentation, can be found at wwwn.cdc.gov/nchs/nhanes/nhefs/.

Our case study is a subset of NHEFS data, which is composed of 1629 cigarette

smokers aged from 25 to 74 years old who had a baseline visit in 1971 and a follow-up

visit in 1982.

The outcome is the weight change in kilograms from 1971 to 1982, where 1566

individuals had their weight measured at the follow-up visit. The treatment is a

binary variable which indicates if a subject quitted smoking between 1971 and 1982.

The baseline covariates includes age, sex, education, physical activity, total family

income, amount of alcohol drink, and serum cholesterol (mg/100ml). We included all

subjects who had reading values for all these covariates, quitting smoking or not, and

the weight changes, which resulted in 1110 subjects in our study cohort.

We applied the super learner doubly robust methods to estimate the weight

gain due to quitting smoking, and the results are presented in Table 4.3. From Table

4.3, quitting smoking was more likely to cause weight gain. The super learner doubly

robust methods showed that the weight gains due to quitting smoking ranged from

2.80kg to 2.95kg from 1971 to 1982, which were significantly different from zero.
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Table 4.3: The estimated average weight gained due to quit smoking based on super
learner doubly robust methods and the NHEFS dataset.

Outcome Models Estimated ATE 95% CI

Lunceford method

Regression Tree 2.568 (1.524, 3.612)
Bagging Tree 3.137 (2.080, 4.194)
Random Forest 2.704 (1.763, 3.644)
GBM 2.985 (1.899, 4.072)
GAM 3.007 (1.891, 4.123)
SuperLearner 2.850 (1.804, 3.896)

Kang’s residual method

Regression Tree 2.918 (1.783, 4.053)
Bagging Tree 3.128 (2.074, 4.183)
Random Forest 2.866 (1.882, 3.850)
GBM 2.970 (1.871, 4.069)
GAM 2.970 (1.844, 4.096)
SuperLearner 2.954 (1.909, 3.998)

Kang’s WLS method

Regression Tree 0.000 (-2.206, 2.206)
Bagging Tree 3.126 (1.943, 4.31)
Random Forest 2.687 (1.732, 3.642)
GBM 2.868 (1.799, 3.938)
GAM 2.979 (1.895, 4.064)
SuperLearner 2.803 (1.609, 3.996)
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4.5 Discussion

In the project, we compared different doubly robust methods, and proposed

super learner doubly robust methods. The simulation studies showed that super

learner doubly robust methods could provide unbiased ATE estimates regardless the

propensity score models are correctly specified or not. The super learner algorithm,

which combines various machine learning methods and GAM, performs nearly as well

as the individual best model. In addition, the weights in super learner algorithm can

provide information on the best outcome prediction model, which is often the single

algorithm with the largest weight.
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APPENDIX

APPENDIX A: SUPPLEMENTS OF THE MODIFIED-HALF-NORMAL

DISTRIBUTION

5.0.1 Proof of Lemma 1

Proof of Lemma 1 (a)

In the case when α > 1, from the standard recurrence formula of the Gamma

function we obtain that Γ(α+1+i
2

) =
(
α−1+i

2

)
Γ(α−1+i

2
) for all i ≥ 0. As a result

1Ψ1

(α+1
2
, 1

2
)

(1, 0)
;x

 =
∞∑
i=0

xiΓ(α+1+i
2

)

i!

=
∞∑
i=0

xi
(
α−1+i

2

)
Γ(α−1+i

2
)

i!

=

(
α− 1

2

) ∞∑
i=0

xiΓ(α−1+i
2

)

i!
+
x

2

∞∑
i=1

xi−1Γ(α+i−1
2

)

(i− 1)!

=

(
α− 1

2

) ∞∑
i=0

xiΓ(α−1+i
2

)

i!
+
x

2

∞∑
i=0

xiΓ(α+i
2

)

i!

=

(
α− 1

2

)
1Ψ1

(α−1
2
, 1

2
)

(1, 0)
;x

+
x

2
1Ψ1

(α
2
, 1

2
)

(1, 0)
;x

.

Proof of Lemma 1 (b)

The continued fraction representation can be obtained via repeated use of the

recursive relation established in part(a) the Lemma.
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Proof of Lemma 1 (c)

From Lemma 5, we get that 1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β

 = 2β
α
2

∫∞
0
yα−1 exp (−βy2 + γy) dy.

Therefore,

1Ψ1

(1
2
, 1

2
)

(1, 0)
;x

 = 2e
x2

4

∫ ∞
0

e−(y−x
2

)2

dy = 2
√
πe

x2

4

∫ ∞
− x√

2

1√
2π
e−

t2

2 dt = 2
√
πe

x2

4 [1− Φ(− x√
2

)]

and 1Ψ1

(2
2
, 1

2
)

(1, 0)
;x

 = 2e
x2

4

∫ ∞
0

ye−(y−x
2

)2

dy = 2
√
πe

x2

4

∫ ∞
− x√

2

(
t

2
+

x

2
√

2
)e−

t2

2 dt

= 2
√
πe

x2

4

[
−1

2
e−

t2

2

∣∣∣∣∞
− x√

2

+
x

2

√
π(1− Φ(− x√

2
))

]
= 1 +

√
πxe

x2

4 [1− Φ(− x√
2

)].

5.0.2 Proof of Lemma 2

Let α > 0,∈ R then for arbitrary ε > 0, let A(k) =
Γ(α

2
+k)x2k

(2k)!
and B(k) =

Γ(α+1
2

+k)x2k+1

(2k+1)!
. Let dxe denotes the smallest integer larger than x.

Proof of part(a) of Lemma 2

If 0 < q < 1 then

A(k + 1)

A(k)
≤ q =⇒

(α
2

+ k)x2

(2k + 2)(2k + 1)
≤ q =⇒ 4qk2 + (6q − x2)k + (2q − α

2
x2) ≥ 0 =⇒ k ≥ C1,

where k ≥ C1, where C1 = max

{⌈
−(6q−x2)+

√
(6q−x2)2−8q(4q−αx2)

8q

⌉
, 1

}
.
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Proof of part(b) of Lemma 2

If 0 < q < 1 then

B(k + 1)

B(k)
≤ q =⇒

(α+1
2

+ k)x2

(2k + 3)(2k + 2)
≤ q =⇒ 4qk2 + (10q − x2)k + (6q − α + 1

2
x2 ≥ 0

=⇒ k ≥ C2,

where C2 = max

{⌈
−(10q−x2)+

√
(10q−x2)2−8q(12q−(α+1)x2)

8q

⌉
, 1

}
.

Proof of part(c) of Lemma 2

By Lemma 2 (a) and Lemma 2 (b), we get that the sequences {A(k)}k≥C1 and

{B(k)}k≥C2 are strictly decreasing. Also, if k > C1 then A(k) ≤ qk−C1A(C1). Hence

lim
k→∞

A(k) ≤ A(C1) lim
k→∞

qk−C1 = 0

as 0 < q < 1 and |A(C1)| <∞. In a similar fashion we can show that limk→∞|B(k)| =

0.

Proof of part(d) of Lemma 2

Given any ε > 0, let K1 = min{k : A(k) ≤ (1− q) ε
2

for all k ≥ C1} where

0 < q < 1 is a fraction of our choice and C1 is the constant as it is define in the

previosu part. A possible value for q is 1
2
. The integer K1 is well defined because

limk→∞A(k) = 0.

As K1 ≥ C1, we get from the previous part of the Lemma that A(n) ≤

A(K1)qn−K1 ≤ (1− q) ε
2
qn−K1 for all n ≥ K1. As a result,

∣∣∣∣∣
∞∑
k=0

A(k)−
K1∑
k=0

A(k)

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

k=K1

A(k)

∣∣∣∣∣ ≤
∞∑

k=K1

(
(1− q) ε

2

)
qk−K1 =

ε

2
.
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In a similar fashion, it can be shown that
∣∣∣∑∞k=0B(k)−

∑K2

k=0B(k)
∣∣∣ ≤ ε

2
, when

K2 = min{k : |B(k)| ≤ (1− q) ε
2

for all k ≥ C2}. Define K = max{K1, K2}.

∣∣∣∣∣∣∣1Ψ1

(α
2
, 1

2
)

(1, 0)
;x

 −( K∑
k=0

A(k) +
K∑
k=0

B(k)

)∣∣∣∣∣∣∣ =

∣∣∣∣∣
∞∑
k=0

A(k)−
K∑
k=0

A(k) +

[
∞∑
k=0

B(k)−
K∑
k=0

B(k)

]∣∣∣∣∣
≤

∣∣∣∣∣
∞∑
k=0

A(k)−
K∑
k=0

A(k)

∣∣∣∣∣+

∣∣∣∣∣
∞∑
k=0

B(k)−
K∑
k=0

B(k)

∣∣∣∣∣
≤ ε

(5.17)

for a given value for the error of the approximation ε and K = max{K1, K2} is a

truncated point for the infinite series for even as well as odd order terms.

5.0.3 Proof of Lemma 3

From Lemma 5, we get that

1Ψ1

(α
2
, 1

2
)

(1, 0)
;
γ√
β

 = 2β
α
2

∫ ∞
0

xα−1 exp
(
−βx2 + γx

)
dx

If we would like to find a positive constant T, depending on α, β, γ such that

∣∣∣∣∣∣∣1Ψ1

(α
2
, 1

2
)

(1, 0)
;
γ√
β

− 2β
α
2

∫ T

0

xα−1 exp
(
−βx2 + γx

)
dx

∣∣∣∣∣∣∣ = 2β
α
2

∫ ∞
T

xα−1 exp
(
−βx2 + γx

)
dx ≤ ε.
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Using the inequality in part(a) of Theorem 3, we get

∫ ∞
T

xα−1 exp
(
−βx2 + γx

)
dx ≤

∫ ∞
T

xα−1 exp
(
−(βm2 + |γ|m)(

x

m
)

2βm+|γ|
βm+|γ|

)
dx,

It follows from the change of variable t = ( x
m

)
2βm+|γ|
βm+|γ| that

∫ ∞
T

xα−1 exp
(
−βx2 + γx

)
dx ≤ mα βm+ |γ|

2βm+ |γ|

∫ ∞
T

tα−1e−btdt

= mα βm+ |γ|
2βm+ |γ|

[∫ ∞
0

tα−1e−bt −
∫ T

0

tα−1e−bt
]

= mα βm+ |γ|
2βm+ |γ|

[
Γ(a)

ba
− γ(a, bT )

Γ(a)

]

Let 2β
α
2mα βm+|γ|

2βm+|γ|

[
Γ(a)
ba
− γ(a,bN)

Γ(a)

]
= ε, the truncated point of the numerical integral

is

T =
1

b
γ−1

(
a,

[Γ(a)]2

ba
− εΓ(a)

2β
α
2mα βm+|γ|

2βm+|γ|

)
,

where a = α(βm+|γ|)
2βm+|γ| , b = βm2 + |γ|m), and γ(a, bT ) is a lower incomplete gamma

function. The inverse of the lower incomplete gamma function can be calculated by

the Igamma.inv() in the ”zipfR” package in R.

5.0.4 Proof of Lemma 4

Proof of part(a) of Lemma 4

Consider the fact that

x =
x√
m

√
m ≤ 1

2
[(

x√
m

)2 + (
√
m)2] =

x2

2m
+
m

2
.
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Therefore,

1Ψ1

(α
2
, 1

2
)

(1, 0)
;
−|γ|√
β

 = 2β
α
2

∫ ∞
0

xα−1 exp
(
−βx2 − |γ|x

)
dx

≥ 2β
α
2

∫ ∞
0

xα−1 exp

(
−βx2 − |γ|x

2

2m
− |γ|m

2

)
dx

= β
α
2 exp

(
−|γ|m

2

)∫ ∞
0

y
α
2
−1 exp

(
−(β +

|γ|
2m

)y

)
dy

Let α > 1, β > 0 and γ < 0, then for any m > 0,

1Ψ1

(α
2
, 1

2
)

(1, 0)
;
−|γ|√
β

 ≥ β
α
2 exp (−m|γ|

2
)Γ(α

2
)(

β + |γ|
2m

)α
2

. (5.18)

The developed lower bound closely approximates the Fox-Wright function, especially

for large values of α when the parameter m in Equation 5.18 chosen appropriately.

In Figure 5.1, we plot the the log of the functional value and log of the lower bound

choosing m = m? where m? satisfy the equation 2βm2
? + |γ|m? = α. The red colored

curve represent the log FoxWright function while the blue colored curve represents the

log of lower bound in the Equation 5.18. In the plot we vary α in x axis while keeping

the keeping the parameters γ and β to be fixed at the point −1, 1 respectively.
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Figure 5.1: The red colored curve represent the log transformed Fox-Wright function
while the blue colored curve depict the log of the lower bound that is shown in
Equation 5.18 where γ = −1 and β = 1.

Proof of part(b) of Lemma 4

Let p, q > 1 be such that 1
p

+ 1
q

= 1 then, using Holder’s inequality we get that

∫ ∞
0

x
α+pα0−1

p
−1e−

x2

p dx

=

∫ ∞
0

[
x
α−1
p e−

x2

p
+ γx

p

] [
xα0−1e−

γx
p

]
dx

≤
[∫ ∞

0

xα−1e−x
2+γxdx

] 1
p
[∫ ∞

0

xq(α0−1)e−
qγx
p dx

] 1
q

.
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Therefore, it follows that

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ

 = 2

∫ ∞
0

xα−1e−x
2+γxdx

≥
2

[∫∞
0
x
α+pα0−1

p
−1e−

x2

p dx

]p
[∫∞

0
x(qα0−q+1)−1e−

qγx
p dx

] p
q

=

2

[
Γ
(
α+pα0−1

2p

)
2

p
α+pα0−1

2p

]p
[
Γ (qα0 − q + 1)

(
p
qγ

)qα0−q+1
] p
q

=

2p
α+pα0−1

2
− p(qα0−q+1)

q

[
Γ
(
α+pα0−1

2p

)
2

]p
[Γ (qα0 − q + 1)]

p
q (qγ)−

p(qα0−q+1)

q

=

2p
α+(2−α0 )p−1

2
− p
q

[
Γ
(
α+pα0−1

2p

)
2

]p
(qγ)p(α0−1)+ p

q

[Γ (qα0 − q + 1)]
p
q

. (5.19)

Our recommended values are p = α
α−1

, q = α, α0 = α+1
p

. Then the bound takes the

following form

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ

 ≥ [Γ(α− 1)]
α
α−1 (αγ)α

[2Γ(α(α− 1))]
1

α−1

.

In particular when γ =
√
α then

1Ψ1

(α
2
, 1

2
)

(1, 0)
;
√
α

 ≥ [Γ(α− 1)]
α
α−1 α

3α
2

[2Γ(α(α− 1))]
1

α−1

. (5.20)

The developed lower bound closely approximates the Fox-Wright function, especially

for large values of α. We can get a sense of the approximation from the Plot 5.2,

where the red colored curve represent the FoxWright function while the blue colored

curve represents the lower bound in the Equation 5.20.
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Figure 5.2: The red colored curve represent the log transformed FoxWright function
while the blue colored curve depict the log of lower bound that is shown in Equation
5.20.

5.0.5 Proof of Lemma 5

Proof of Lemma 5 (a)

The density function of the MHN (α, β, γ), f
MHN

(x | α, β, γ) ∝ ·xα−1 exp(−βx2+

γx)I(x > 0). The corresponding normalizing constant is

∫ ∞
0

xα−1 exp(−βx2 + γx)dx =

∫ ∞
0

xα−1 exp(−βx2)
∞∑
i=0

γixi

i!
dx.

Using a change of variable t = x2, the above integral turns out to be

∞∑
i=0

γiΓ(α+i
2

)

2i!β
α+i

2

∫ ∞
0

β
α+i

2

Γ(α+i
2

)
t
α+i

2
−1 exp(−βt)dt =

∞∑
i=0

γiΓ(α+i
2

)

2i!β
α+i

2

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


,
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where 1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β

 =
∑∞

i=0

Γ(α
2

+ i
2

)( γ√
β

)i

Γ(1)i!
, which denotes the Fox-Wright function

of the appropriate order. Consequently the corresponding density function is given

as

f
MHN

(x | α, β, γ) =
2β

α
2 xα−1 exp(−βx2 + γx)

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


I(x > 0).

Proof of Lemma 5 (b)

The cumulative distribution function F (t) is given as

F
MHN

(t | α, β, γ) =

∫ t

0

2β
α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


xα−1 exp(−βx2 + γx)dx

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


∫ t

0

xα−1 exp(−βx2)
∞∑
i=0

γixi

i!
dx

by considering th change of variable y = βx2

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


∞∑
i=0

γi

2i!
β−

α+i
2

∫ βt2

0

y
α+i

2
−1e−ydy

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


∞∑
i=0

γi

2i!
β−

α+i
2 γ(

α + i

2
, βt2),

where γ(s, t) =
∫ x

0
ts−1e−tdt denotes the lower incomplete gamma function.
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5.0.6 Proof of Lemma 6

Proof of Lemma 6 (a)

A moment is a specific quantitative measure of the shape of a function. The

kth moment of the random variable following a MHN (α, β, γ) distribution can be

expressed as:

E(Xk) =

∫ ∞
0

xkf(x)dx

=

∫ ∞
0

xk
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


xα−1 exp(−βx2 + γx)dx

=

1Ψ1

(α+k
2
, 1

2
)

(1, 0)
; γ√

β


β
k
2 1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


.

Proof of Lemma 6 (b)

Based on the property of Fox-Wright function

1Ψ1

(α+k
2
, 1

2
)

(1, 0)
;x

 =
α + k − 2

2
1Ψ1

(α+k−2
2

, 1
2
)

(1, 0)
;x

+
x

2
1Ψ1

(α+k−1
2

, 1
2
)

(1, 0)
;x

 ,
From part(a) we get that

E(Xk) =
α + k − 2

2β
E(Xk−2) +

γ

2β
E(Xk−1).
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Proof of Lemma 6 (c)

The variance of a random variable X, which follows a ModHalfNormal(α, β, γ)

distribution is

Var(X) = E(X2)− [E(X)]2

=

∑∞
i=0

γiΓ(α+i+2
2

)

i!β
i
2

β
∑∞

i=0

γiΓ(α+i
2

)

i!β
i
2

−


∑∞

i=0

γiΓ(α+i+1
2

)

i!β
i
2

β
1
2

∑∞
i=0

γiΓ(α+i
2

)

i!β
i
2


2

=

1Ψ1

(α+2
2
, 1

2
)

(1, 0)
; γ√

β


β1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


−


1Ψ1

(α+1
2
, 1

2
)

(1, 0)
; γ√

β


√
β1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β





2

. (5.21)

Using the property of Fox-Wright function

1Ψ1

(α+k
2
, 1

2
)

(1, 0)
;x

 =
α + k − 2

2
1Ψ1

(α+k−2
2

, 1
2
)

(1, 0)
;x

+
x

2
1Ψ1

(α+k−1
2

, 1
2
)

(1, 0)
;x

 ,

Var(X) =
α

2β
+ E(X)

(
γ

2β
− E(X)

)
. (5.22)

Proof of Lemma 6 (d)

The moment-generating function of the random variable X from MHN (α, β, γ)

distribution is

111



Mx(t) = E[etX ]

=

∫ ∞
0

etx
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


xα−1 exp(−βx2 + γx)dx

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ+t√

β


2β

α
2

∫ ∞
0

2β
α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ+t√

β


xα−1 exp(−βx2 + (γ + t)x)dx

=

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ+t√

β


1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


.

5.0.7 Proof of Lemma 7

(a) The density function for the MHN (α, β, γ) distribution is

f
MHN

(x | α, β, γ) =
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


xα−1 exp(−βx2 + γx).

Therefore d
dx

log (f
MHN

(x | α, β, γ)) = α−1
x
−2βx+γ. If Xmode denotes the mode

of the distribution then

α− 1

Xmode

− 2βXmode + γ = 0 =⇒ Xmode =
γ +

√
γ2 + 8(α− 1)β

4β
,
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while we ignore the other solution
γ−
√
γ2+8(α−1)β

4β
as it does not belong to the

support of the distribution. Additionally,

d2

dx2
log (f

MHN
(x | α, β, γ))

∣∣∣∣
x=Xmode

= − α− 1

X2
mode

− 2β < 0 for α ≥ 1.

(b) If 1 − γ2

8β
≤ α < 1 and γ > 0 the equation α−1

x
− 2βx + γ = 0 has two real

positive solutions for x, corresponding to the local minima and the point of local

maxima. As a consequence, the density has a local maxima at
γ+
√
γ2+8β(α−1)

4β

and a local minima at
γ−
√
γ2+8β(α−1)

4β
because

d2

dx2
log (f

MHN
(x | α, β, γ))

∣∣∣∣
x=

γ+
√
γ2+8β(α−1)

4β

< 0, and

d2

dx2
log (f

MHN
(x | α, β, γ))

∣∣∣∣
x=

γ−
√
γ2+8β(α−1)

4β

> 0.

(c) If 0 < α < 1− γ2

8β
and γ > 0 then d

dx
log (f

MHN
(x | α, β, γ)) = − 1

x

[
(
√

2βx− γ√
2βx

)2+(
1− γ2

8β
− α

)
< 0 for all x > 0. Therefore, in this case, the density function

is gradually decreasing on R+ and mode of the distribution doesn’t exist. The

same is true for the case γ ≤ 0 and α ≤ 1.

5.0.8 Proof of Lemma 8

Proof of part(a) of Lemma 8

If α > 1, then from Lemma 6, we have that E(X) = α−1
2β
E( 1

X
) + γ

2β
. As

the function x 7→ 1
x

is convex on R+, using Jensen’s inequality E( 1
X

) > 1
E(X)

when

X ∼ MHN (α, β, γ). Hence,E(X) ≥ α−1
2β

1
E(X)

+ γ
2β

. Consequently,

E(X) ≥
γ +

√
γ2 + 8β(α− 1)

4β
. (5.23)
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On the other hand, using lemma 6 we get the recursive relation E(X2) = α
2β
E(X0) +

γ
2β
E(X) = α

2β
+ γ

2β
E(X). As E(X2) ≥ E(X)2,E(X)2 ≤ α

2β
+ γ

2β
E(X). Therefore,

E(X) ≤ γ +
√
γ2 + 8βα

4β
. (5.24)

From Lemma 7, we know that the mode of the distribution is Xmode =
γ+
√
γ2+8β(α−1)

4β

when α > 1. An implication of the inequality in 5.23 is that E(X) > Xmode. Thus

MHN (α, β, γ) is a positively skewed distribution when α > 1.

Proof of part(b) of Lemma 8

Let X ∼ MHN (α, β, γ) for α ≥ 4, and γ > 0, then E(log(X)) ≥ log(Xmode)

where Xmode =
γ+
√
γ2+8β(α−1)

4β
. Without loss of generality we assume β to be 1 for

this proof. Define the function

h(γ) = E(log(X))− log(Xmode) =

∫
R+

log(x)f
MHN

(x | α, β, γ)dx− log(Xmode).

Consider that

∂Xmode

∂γ
=

1

4
+

γ

4
√
γ2 + 8(α− 1)

=
Xmode√

γ2 + 8(α− 1)
.

Therefor, we get

∂h

∂γ
=

∫
R+

x log(x)f
MHN

(x | α, β, γ)dx− 1

Xmode

∂Xmode

∂γ

= E(X log(X))− 1

Xmode

∂Xmode

∂γ

≥ E(X) log(E(X))− 1√
γ2 + 8(α− 1)

, (5.25)

where the step us due to the Jensen’s inequality because x 7→ x log(x) is a convex

function ( ∂2

∂x2 (x log(x)) = 1
x
> 0 for x > 0). Also, it follows from Lemma 6 that
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E(X) ≥ Xmode =
γ+
√
γ2+8(α−1)

4
. Therefore, from Equation 5.25 we get that

∂h

∂γ
≥

γ +
√
γ2 + 8(α− 1)

4
log

(
γ +

√
γ2 + 8(α− 1)

4

)
− 1√

γ2 + 8(α− 1)

(††)
≥ log

(√
8(α− 1)

4

)√
8(α− 1)

4
− 1√

8(α− 1)

≥ 0. (5.26)

for α ≥ 4. The inequality in (††) is an implication of the fact that
γ+
√
γ2+8(α−1)

4
log(

γ+
√
γ2+8(α−1)

4

)
− 1√

γ2+8(α−1)
is an increasing function in γ > 0. Altogether, form

Equation 5.26, it follows that the function γ 7→ h(γ) is an increasing function in γ.

As a result, for α ≥ 4 and γ ≥ 0,

h(γ) ≥ h(0)

=

∫ ∞
0

log(x)
2xα−1e−x

2

Γ(α
2
)

dx− log(

√
8(α− 1)

4
)

=
∂
∂α

∫∞
0

2xα−1e−x
2
dx

Γ(α
2
)

− log(

√
8(α− 1)

4
)

=
1

2

∂Γ(α
2

)

∂α

Γ(α
2
)
− log(

√
(α− 1)

2
)

(†?)
>

1

2
log(

α

α− 1
)− 1

2α
− 1

6α2

≥ 0. (5.27)

The inequality in (†?) is due to the fact that
d
dα

(Γ(α
2

)

Γ(α
2

)
≥ log(α

2
)− 1

α
− 1

3α2 (Batir, 2005).

On the other hand,

d

dα

[
1

2
log(

α

α− 1
)− 1

2α
− 1

6α2

]
= − 1

2α(α− 1)
+

1

2α2
+

1

3α3
= − α + 2

6α3(α− 1)
< 0 for α > 1.
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Therefore the function α 7→ 1
2

log( α
α−1

)− 1
2α
− 1

6α2 is decreasing in α > 1 and

1

2
log(

α

α− 1
)− 1

2α
− 1

6α2
≥ lim

α→∞

1

2
log(

α

α− 1
)− 1

2α
− 1

6α2
= 0.

Finally, if follows from the the definition of the function γ 7→ h(γ) and the Equa-

tion 5.27 that

E(log(X)) ≥ log(Xmode),

for all γ ≥ 0 when X ∼ MHN (α, 1, γ), α ≥ 4. On the other hand, using Jensen’s

inequality the previous part of the lemma we get that

E(log(X)) ≤ log(E(X)) ≤ log

(
γ +

√
γ2 + 8αβ

4β

)
. (5.28)

5.0.9 Proof of Lemma 9

Proof of Lemma 9 case(a):

Let γ > 0 when X ∼ MHN (α, β, γ). Consider a random variable V such that

the conditional probability distribution of V given X is a Poisson distribution with

parameter γX which has the probability mass function

fPoi(V = v | X) =
e−γX(γX)v

v!
. (5.29)
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Consequently the conditional probability density of the random variable X given V

fX|V (x | v) =
fX,V (x, v)

fV (v)

=

2β
α
2 xα−1e−βx

2+γx

1Ψ1


(α

2
, 1

2
)

(1, 0)
; γ√
β



{
e−γx(γx)v

v!

}
I(x > 0)

γvΓ(α+v
2

)

1Ψ1


(α

2
, 1

2
)

(1, 0)
; γ√
β

v!β
v
2

=
2β

α+v
2

Γ(α+v
2

)
xα+v−1e−βx

2

I(x > 0). (5.30)

As a result, the conditional distribution of the random variableX given V is the square

root of a Gamma random variable with shape parameter α+v
2

and rate parameter β.

Obviously the conditional distribution of V given X is a Poisson random variable

with parameter γX.

Proof of Lemma 9 case(b):

Let γ < 0 when X ∼ MHN (α, β, γ). Consider a random variable U such

that the conditional probability distribution of U given X is a Generalized Inverse

Gaussian distribution, i.e.

U | X ∼ GIG(
1

2
, 1, γ2X2)

with the probability density function

fU |X(u | x) =
1√
2π
e|γ|xu

1
2
−1e
− 1

2

(
u+ γ2x2

u

)
. (5.31)
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Hence the conditional probability density of the random variable X given U

fX|U(x | u) =
fX,U(x, u)

fU(u)

=

2β
α
2 xα−1e−βx

2−|γ|x

1Ψ1


(α

2
, 1

2
)

(1, 0)
; γ√
β



{
1√
2π
e|γ|xu

1
2
−1e
− 1

2

(
u+ γ2x2

u

)}
I(x > 0)

Γ(α
2

)

2(β+ γ2

u
)
α
2

2β
α
2

√
2π1Ψ1


(α

2
, 1

2
)

(1, 0)
; γ√
β


e−

1
2
uu

1
2
−1

=
2(β + γ2

2
)
α
2

Γ(α
u
)

xα−1e
−
(
β+ γ2

u

)
x2

I(x > 0). (5.32)

As a result, the conditional distribution of the random variable X given U is actu-

ally the square root of a Gamma random variable with shape parameter α
2

and rate

parameter β + γ2

u
. The above result can be utilized to design hierarchical models

by introducing additional variables U, V that can bypass the sampling step that in-

volves sampling from the MHN (α, β, γ) distribution directly. But, this strategy of

introducing additional variables is expected to lead to slower mixing Markov chains.

5.0.10 Proof of Lemma 10

The proof of the lemma follows from the definition of the square root of

Gamma, truncated Normal and the Half normal distribution.
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5.0.11 Proof of Theorem 1

Proof of Theorem 1 (a)

Let γ > 0.

f
MHN

(x | α, β, γ) =
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


xα−1 exp{−βx2 + γx}

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


xα−1 exp{−βx2 + γx} exp{β(x− µ)2} exp{−β(x− µ)2}

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


xα−1 exp{−(2βµ− γ)x+ βµ2} exp{−β(x− µ)2}

(5.33)

Assuming µ > γ
2β

, it can be shown that xα−1 exp{−(2βµ−γ)x} ≤
(

α−1
2βµ−γ

)α−1

exp{−(α−

1)} for all x > 0. Therefore,

f
MHN

(x | α, β, γ) ≤ 2β
α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


(

α− 1

2βµ− γ

)α−1

exp{−(α− 1) + βµ2} exp{−β(x− µ)2}

= K1fNormal
(x | µ, 1

2β
), (5.34)

where K1 =
2
√
π
(√

β(α−1)
2βµ−γ

)α−1

1Ψ1


(α

2
, 1

2
)

(1, 0)
; γ√
β


e{−(α−1)+βµ2}. On the other hand, if 0 < δ < β be any

constant then
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f
MHN

(x | α, β, γ) =
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


xα−1 exp

(
−βx2 + γx

)

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


exp

(
−(β − δ)x2 + γx

)
xα−1e−δx

2

(5.35)

As γx− (β − δ)x2 = γ2

4(β−δ) −
{

γ

2
√

(β−δ)
−
√

(β − δ)x
}2

≤ γ2

4(β−δ) , from Equation 5.35

we get that

f
MHN

(x | α, β, γ) ≤ 2β
α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


e

γ2

4(β−δ)xα−1e−δx
2

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


e

γ2

4(β−δ)
Γ(α/2)

2δ
α
2

f√
Gam

(x|α, δ)

= K2f√Gam
(x|α, δ), (5.36)

where K2 =
Γ(α

2
)β
α
2 exp

(
γ2

4(β−δ)

)

1Ψ1


(α

2
, 1

2
)

(1, 0)
; γ√
β

 δ α2
.

Proof of part(b), Theorem 1

The inequalities in part(a) is efficient when the constant K1(µ, α, β, γ) and

K2(δ, α, β, γ) are small. Therefore, we find the optimum values for µ and δ by mini-

mizing K1(µ, α, β, γ) and K2(δ, α, β, γ) correspondingly. The function µ 7→ exp(βµ2)
(2βµ−γ)α−1
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from ( γ
2β
,∞) to R+ is minimized when µ =

γ+
√
γ2+8(α−1)β

4β
. Thus, the best possi-

ble choice for µ is µopt =
γ+
√
γ2+8(α−1)β

4β
and K1(µopt) = 2

√
πβ

α−1
2 µα−1 exp{−(α−1)+βµ2}

1Ψ1


(α

2
, 1

2
)

(1, 0)
; γ√
β


.

On the other, the function δ 7→
exp ( γ2

4(β−δ) )

δ
α
2

from (0, β) to R+ is minimized when

δ = β +
γ2−γ
√
γ2+8αβ

4α
. Therefore, the optimum choice for δ is given as δopt =

β +
γ2−γ
√
γ2+8αβ

4α
.

Proof of part(c), Theorem 1

Let ∆ = γ√
β
. As

√
βµopt =

∆+
√

∆2+8(α−1)

4
,

K1(µopt, α, β, γ) =
2
√
π
( √

β(α−1)
2βµopt−γ

)α−1

exp
(
−(α− 1) + βµ2

opt

)
1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


=

2
√
π
(√

βµopt

)α−1
exp

(
−(α− 1) + βµ2

opt

)
1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β



=

2
√
π

(
∆+
√

∆2+8(α−1)

4

)α−1

exp

(
− (α−1)

2
+

∆2+∆
√

∆2+8(α−1)

8

)

1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆


.(5.37)
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K1(δopt, α, β, γ) =

(√
β
)α

Γ(α
2
) exp

(
γ2

4(β−δopt)

)
1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β

(√δopt

)α

=

(
β
δopt

)α
2

Γ(α
2
) exp

(
4αγ2

4(γ
√
γ2+8αβ−γ2)

)

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β



=

Γ(α
2
) exp

(
α

(
√

1+8 α
∆2−1)

)
(

1 + ∆2−∆
√

∆2+8α
4α

)α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆


. (5.38)

Consequently, we will denoteK1(α,∆) := K1(µopt, α, β, γ) andK2(α,∆) := K1(δopt, α, β, γ)

where ∆ = γ√
β
.

Result 1. Let α > 0 and ∆ ∈ R.

(a) Then ∂
∂∆

1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆


 = 1Ψ1

(α+1
2
, 1

2
)

(1, 0)
; ∆



(b)
∆+
√

∆2+8(α−1)

4
≤

1Ψ1


(α+1

2
, 1

2
)

(1, 0)
;∆



1Ψ1


(α

2
, 1

2
)

(1, 0)
;∆


≤ ∆+

√
∆2+8(α)

4
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Proof of the part(a) of Result 1

∂

∂∆

1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆


 =

∂

∂∆

{
2

∫ ∞
0

yα−1 exp
(
−y2 + ∆y

)
dy

}

= 2

∫ ∞
0

yα+1−1 exp
(
−y2 + ∆y

)
dy

= 1Ψ1

(α+1
2
, 1

2
)

(1, 0)
; ∆

 . (5.39)

Proof of the part(b) of Result 1

LetX ∼ MHN (α, 1,∆) then from Lemma 6, we get that E(X) =

1Ψ1


(α+1

2
, 1

2
)

(1, 0)
;∆



1Ψ1


(α

2
, 1

2
)

(1, 0)
;∆


.

From Lemma 8 we get that

∆ +
√

∆2 + 8(α− 1)

4
≤

1Ψ1

(α+1
2
, 1

2
)

(1, 0)
; ∆


1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆


≤

∆ +
√

∆2 + 8(α)

4
.
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5.0.12 Proof of Theorem 2

Proof of part(a), Theorem 2

From Theorem 1, we get that

f
MHN

(x | α, β, γ) ≤ IK1(α,∆)

{
f

Normal
(x | µ, 1

2β
)

}
+(1−I)K2(α,∆)

{
f√

Gam
(x | α, δ)

}
,

where ∆ = γ√
β

and I = I(K1(α,∆) ≤ K2(α,∆)). Therefore

Apos(α,∆) =
1∫∞

0

{
IK1(α,∆)f

Normal
(x | µ, 1

2β
) + (1− I)K2(α,∆)f√

Gam
(x | α, δ)

}
dx

=
1

IK1(α,∆) + (1− I)K2(α,∆)

=
I

K1(α,∆)
+

1− I
K2(α,∆)

= max

{
1

K1(α,∆)
,

1

K2(α,∆)

}
. (5.40)

Proof of part(b), Theorem 2

To prove that ∆ 7→ K1(α,∆) is decreasing in ∆.

K1(α,∆) =
2
√
π (B

∆
)α−1 exp

(
−(α− 1) +B2

∆

)
1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆



=⇒ log(K1(α,∆)) = (α− 1) log(B
∆

) +B2
∆
− log

1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆




+ log(2
√
π exp(−(α− 1))). (5.41)
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where B
∆

=
∆+
√

∆2+8(α−1)

4
. Note that

∂B
∆

∂∆
=

∂

∂∆

(
∆ +

√
∆2 + 8(α− 1)

4

)

=
1

4

(
1 +

∆√
∆2 + 8(α− 1)

)

=

(
∆ +

√
∆2 + 8(α− 1)

4

)(
1√

∆2 + 8(α− 1)

)

=

(
B

∆√
∆2 + 8(α− 1)

)
. (5.42)

Therefore, Result 1 and Equation 5.41, it follows that

∂ log(K1(α,∆))

∂∆
=

{
(α− 1)

B
∆

+ 2B
∆

}
∂B

∆

∂∆
−

∂
∂∆

1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆




1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆



=

{
(α− 1)

B
∆

+ 2B
∆

}
∂B

∆

∂∆
−

1Ψ1

(α+1
2
, 1

2
)

(1, 0)
; ∆


1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆


<

(α− 1) + 2B2
∆√

∆2 + 8(α− 1)
−

∆ +
√

∆2 + 8(α− 1)

4

<
(α− 1) + 2B2

∆√
∆2 + 8(α− 1)

−B
∆

=
2(α− 1) + ∆B

∆√
∆2 + 8(α− 1)

−B
∆
, (5.43)
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because B
∆

satisfy the condition 2B2
∆
−∆B

∆
− (α− 1) = 0. Consider the fact that

(2(α− 1) + ∆B
∆

)2 = 4(α− 1)2 + 4(α− 1)∆B
∆

+ ∆2B2
∆

= 4(α− 1) [(α− 1) + ∆B
∆

] + ∆2B2
∆

= 4(α− 1)
[
2B2

∆

]
+ ∆2B2

∆

= B2
∆

(
∆2 + 8(α− 1)

)
. (5.44)

Therefore it follows from Equation 5.44 and Equation 5.43 it follows that,

∂ log(K1(α,∆))

∂∆
<

2(α− 1) + ∆B
∆√

∆2 + 8(α− 1)
−B

∆

=

√
B2

∆
(∆2 + 8(α− 1))√

∆2 + 8(α− 1)
−B

∆

= 0.

To Prove that ∆ 7→ K2(α,∆) is increasing in ∆. Consider that

K2(α,∆) =

(√
∆2+8α+∆

2

)α
Γ(α

2
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(
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√
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8
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α
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2
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∆
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2
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∆

2

)
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α
2 1Ψ1
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2
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2
)
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β


,

where D
∆

=
∆+
√

∆2+8(α)

4
. Hence

log(K2(α,∆))

= α log(D
∆

) +
∆D

∆

2
− log(1Ψ1

(α
2
, 1

2
)

(1, 0)
;
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β

) + log

(
(2)α Γ(α

2
)

(2α)
α
2

)

= α log(D
∆

) +D2
∆
− α

2
− log(1Ψ1

(α
2
, 1

2
)

(1, 0)
;
γ√
β

) + log

(
(2)α Γ(α

2
)

(2α)
α
2

)
,(5.45)
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because D
∆

satisfy the condition 2D2
∆
−∆D

∆
− α = 0. Note that

∂D
∆

∂∆
=

∂

∂∆

(
∆ +

√
∆2 + 8α

4

)

=
1

4

(
1 +

∆√
∆2 + 8α

)
=

(
∆ +

√
∆2 + 8α

4

)(
1√

∆2 + 8α

)
=

(
D

∆√
∆2 + 8α

)
. (5.46)

Therefore, from Result 1 and Equation 5.45, we infer that

∂ log(K2(α,∆))

∂∆
=

{
α

D
∆

+ 2D
∆

}
∂D

∆

∂∆
−

∂
∂∆

1Ψ1
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2
, 1

2
)
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; ∆




1Ψ1
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2
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2
)
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; ∆



=

{
α

D
∆

+ 2D
∆

}
∂D

∆

∂∆
−

1Ψ1

(α+1
2
, 1

2
)

(1, 0)
; ∆


1Ψ1

(α
2
, 1

2
)

(1, 0)
; ∆


>

α + 2D2
∆√

∆2 + 8α
− ∆ +

√
∆2 + 8α

4

>
α + 2D2

∆√
∆2 + 8α

−D
∆

=
2α + ∆D

∆√
∆2 + 8α

−D
∆
, (5.47)
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where the last equality follows as the constant D
∆

satisfy the condition 2D2
∆
−∆D

∆
=

α. Consider the fact that

(2α + ∆D
∆

)2 = 4α2 + 4α∆D
∆

+ ∆2D2
∆

= 4α [α + ∆D
∆

] + ∆2D2
∆

= 4α
[
2D2

∆

]
+ ∆2D2

∆

= D2
∆

(
∆2 + 8α

)
. (5.48)

Consequently, it follows from Equation 5.47 and Equation 5.48 that

∂ log(K2(α,∆))

∂∆
>

2α + ∆D
∆√

∆2 + 8α
−D

∆
=

√
D2

∆
(∆2 + 8α)

√
∆2 + 8α

−D
∆

= 0. (5.49)

Proof of part(c), Theorem 2

Let Bα =
√
α+
√
α+8(α−1)

4
=
√
α+
√

9α−8
4

for α ≥ 1.

lim
α→∞

K1(α,
√
α)
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√
α)
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α→∞

2
√
π (Bα)α−1 exp (−(α− 1) +B2

α)

2
α
2 Γ(α

2
) exp(α

2
)
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α→∞

2
√
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α)

2
α
2

[
2
√
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2
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α
2

]
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2
)
×

{
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α→∞

2
√

π
α

(
α
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2
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2
)

}
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α→∞

2
√
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2
α
2

[
2
√
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α−1
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2
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α
2

]
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2
)
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(5.50)
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because limα→∞
2
√

π
α( α2e)

α
2

Γ(α
2

)
= 1 using the Starling’s approximation for the Gamma

function. Consequently,

lim
α→∞

K1(α,
√
α)

K2(α,
√
α)

= lim
α→∞

(Bα)α−1 exp (−(α− 1) +B2
α)

α
α−1

2

× {1}
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α→∞

(
Bα√
α

)α−1
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(
−(α− 1) +B2

α

)
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α→∞

(
Bα√
α

)α−1
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(
−(α− 1)

2
+

√
αBα

2

)
, (5.51)

because Bα satisfies 2B2
α −
√
αBα = (α− 1). Now consider that

(
Bα√
α

)α−1

=

(√
α +
√

9α− 8

4
√
α

)α−1

=

(
1−
√

9α−
√

9α− 8

4
√
α

)α−1

=

(
1− 2
√
α(
√

9α +
√

9α− 8)

)α−1

=

(
1− 2

(3α +
√
α(9α− 8))
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.(5.52)

Therefore

lim
α→∞

(
Bα√
α

)α−1

= exp

(
− lim

α→∞

2(α− 1)

(3α +
√
α(9α− 8))

)
= exp(−1

3
). (5.53)

On the other hand

lim
α→∞

−(α− 1)

2
+

√
αBα

2
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α→∞

1

2
− α

2
+
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√
α(9α− 8)

8
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α→∞

1

2
−
√
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(
3
√
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√
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8
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1

2
−

( √
α

(3
√
α +

√
α(9α− 8))

)
=

1

2
− 1

6

=
1

3
. (5.54)

129



Hence, it follows from Equations 5.51, 5.53, 5.54 that

lim
α→∞

K1(α,
√
α)

K2(α,
√
α)

= 1. (5.55)

From Equation 5.41, we get that
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√
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On the other hand,
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.

Therefore,
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√
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1
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2

d
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2
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+
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2
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α
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because log(α
2
) − 1

α
− 1

3α2 ≤
d
dα

(Γ(α
2

)

Γ(α
2

)
≤ log(α

2
) − 1

α
that follows from an inequality in

(Batir, 2005). Therefore,

d

dα
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(
K1(α,

√
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√
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1
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2

≤ 0. (5.57)

In order to establish the last inequality, we define p(α) = log
(
Bα√
α

)
+ Bα

2
√
α

+ 1
2α

+ 1
6α2− 1

2
.

Note that p(α) is an increasing function as its derivative dp(α)
α

= 1

Bαα
√
α(9α−8)

+

1

2α
√
α(9α−8)

− 1
2α2 − 1

3α3 > 0 and limα→∞ p(α) = 0. An implication of Equation 5.57 is

that the function α 7→ K1(α,
√
α)

K2(α,
√
α)

is decreasing in α > 1. As a result, it follows from

Equation 5.57 and Equation 5.55

K1(α,
√
α)

K2(α,
√
α)
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α→∞

K1(α,
√
α)

K2(α,
√
α)

= 1 for all α > 1.

Consequently, K1(α,
√
α) ≥ K2(α,

√
α) for all α > 1.

Proof of part(d), Theorem 2

To prove K1(α,
√
α) is decreasing. From the definition of K1(α,∆), we get

that
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√
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2
√
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(5.58)
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where Bα =
√
α+
√

9α−8
4

. As

(α− 1) + 2B2
α

= (α− 1) +

(
5α− 4 +

√
α(9α− 8)
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it turns out that
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Observe that
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√
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where the equality in (†) is due to Equation 5.59. On the other hand,

∂
∂α

1Ψ1
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2
, 1

2
)
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;
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2
√
α

(5.60)

where X ∼ MHN (α, 1,
√
α). Therefore, it follows from Equation 5.59 that

∂ log(K1(α,∆))

∂α
= log(Bα) +
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2
√
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2
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2
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(
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X
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2
√
α

< 0, (5.61)

when α ≥ 4. The last inequality in Equation 5.61 follows from part(a) and part(b)

of the Lemma 8 as Bα is also the mode of the MHN (α, 1,
√
α) distribution.

Proof of part(e), Theorem 2

Result 2. For arbitrary α > 1, inf
∆>0

max
{

1
K1(α,∆)

, 1
K2(α,∆)

}
≥ sup

∆>0
min

{
1
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, 1
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}
.

Proof of Result 2: According to the part(b) of the Theorem 2, the functions

∆ 7→ K1(α,∆) is non-increasing and ∆ 7→ K2(α,∆) is non-decreasing for all α > 1.

Therefore,

(
1

K1(α,∆1)
− 1
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)(
1
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− 1

K2(α,∆2)

)
≤ 0
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for arbitrary ∆1,∆2 > 0 and α > 1. If the statement of the result were not true then
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)
> 0, (5.62)

which would contradict the fact in Equation 5.62. Therefore the statement of the

result holds true.

Proof of part(e), Theorem 2:

From part(a) of the Theorem 2, we have Apos(α,∆) = max
{

1
K1(α,∆)

, 1
K2(α,∆)

}
.

An implication of the Part(b) of the Theorem 2 is that, for any α > 1 the functions

∆ 7→ 1
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and ∆ 7→ 1
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are increasing and decreasing in ∆ > 0 correspondingly.

On the other hand, Result 2 implicates that
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(5.63)

for arbitrary ∆ > 0 and ∆? > 0.
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In particular, if we choose ∆? to be
√
α then for any ∆ > 0,
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{
1
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where the last equality is due to the Part(c) of the Theorem 2 which conveys that

1
K1(α,

√
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√
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for all α ≥ 4. Additionally, from the part(d) of Theorem 2 we

infer that 1
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√
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≤ 1
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√
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for all α ≥ 4. Altogether, we conclude that
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for all ∆ > 0 and α ≥ 4. As the point ∆ > 0 is arbitrary, we can write
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γ√
β

) ≥ 1
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√
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≥ 1
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≥ 0.8 for all α ≥ 4, β > 0, γ > 0.

5.0.13 Proof of Lemma 11
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where pi =
Γ(α+i

2
)( γ√

β
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1Ψ1
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2
. Here fi(x|α, β) de-

notes the density of the square root of the Gamma distribution.

5.0.14 Proof of Lemma 12

Proof of Lemma 12 (a)

qi =
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2
)
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β
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for i ≥ 0 where α ≥ 1, γ > 0, β > 0. For an arbitrary positive

number ε1 > 0, suppose M † = max
{

[α] ,
[
γ2

ε21β

]}
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Using the fact that Γ(x+1)
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√
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4
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(see (Kazarinoff, 1956;

Watson, 1959; Qi et al., 2012)) we get that,
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where the inequality in (ix) follows from the assumption that M ≥ [α]. From equa-

tion 5.67 and the assumption M ≥
[
γ2

ε21β

]
, it follows that

M + 1 ≥ γ2
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=⇒ qM+1
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≤ ε1.

Proof of Lemma 12 (b)
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)[
Γ(α+i+1

2
)
]2

=
(i+ 1)

(i+ 2)

Γ(α+i+2
2

)Γ(α+i
2

)[
Γ(α+i+1

2
)
]2

=
(i+ 1)

(i+ 2)

Γ(α+i
2

+ 1)

Γ(α+i
2

+ 1
2
)

Γ(α+i−1
2

+ 1
2
)

Γ(α+i−1
2

+ 1)
. (5.68)

From Watson’s monotonicity properties (Kazarinoff, 1956; Watson, 1959; Qi et al.,

2012) of the ratio of Gamma functions, we have the double inequality

√
x+

1

4
≤ Γ(x+ 1)

Γ(x+ 1
2
)
≤

√
x+

1

4
+

[
Γ(3

4
)

Γ(1
4
)

]2

for x ≥ −1

2
. (5.69)

Using equation 5.69 in Equation 5.68 we get that
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qi+2qi
q2
i+1

≤ i+ 1

i+ 2

√
α+i

2
+ 1

4
+
[

Γ( 3
4

)

Γ( 1
4

)

]2

√
α+i−1

2
+ 1

4

≤ i+ 1

i+ 2

√
1+i

2
+ 1

4
+
[

Γ( 3
4

)

Γ( 1
4

)

]2

√
i
2

+ 1
4

≤ i+ 1

i+ 2

√
1 + i+ 1

2
+ 2

[
Γ( 3

4
)

Γ( 1
4

)

]2

√
i+ 1

2

≤ i+ 1

i+ 2

√
i+ 3

2
+ 2

[
Γ( 3

4
)

Γ( 1
4

)

]2

√
i+ 1

2

. (5.70)

As
[

Γ( 3
4

)

Γ( 1
4

)

]2

< 1
4

we get that

qi+2qi
q2
i+1

<
i+ 1

i+ 2

√
i+ 2√
i+ 1

2

=
i+ 1√

(i+ 2)(i+ 1
2
)

=
i+ 1√

(i+ 1)2 + i
2

≤ 1

for all i ≥ 0.

Proof of Lemma 12 (c)

Let M ≥M †, then using part (a) we get that

qM+1

qM
≤ ε1, (5.71)

while from part (b) it follows that

qM+1

qM
>
qM+2

qM+1

> . . .
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Consequently, qM+1 < qMε1, . . . , qj+1 ≤ qMε
j−M
1 for j > M . As a result

∞∑
j=M

qj =
∞∑
j=M

εj−M1 qM = qM

∞∑
j=0

εj1 =
qM

1− ε1
.

part(d): From the definition of the the Fox-Wright function we have

∞∑
i=1

qi =
∞∑
i=0

Γ(α+i
2

)
(

γ√
β

)i
i!

1Ψ1

(α
2
, 1

2
)

(1, 0)
;
γ√
β

 <∞,
which is a (absolutely) convergent series. Hence lim

i→∞
qi = 0.

5.0.15 Proof of Theorem 3

We start by stating the following theorem that we need in the subsequent

proof.

Theorem: (AM-GM inequality with non-uniform weights (Steele, 2004))

Let p1, p2, · · · , pn be positive real numbers such that
∑n

i=1 pi = 1. If a1, a2 · · · , an

be arbitrary positive real numbers then

n∑
i=1

piai ≥
n∏
i=1

apii .
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Now consider that

f
MHN

(x|α,β,γ) = 2β
α
2

1Ψ1


(α

2
, 1

2
)

(1, 0)

;
γ√
β



xα−1eγxe−βx
2

= 2β
α
2

1Ψ1


(α

2
, 1

2
)

(1, 0)

;
γ√
β



xα−1 exp(−βm2(x/m)2−|γ|m(x/m))

= 2β
α
2

1Ψ1


(α

2
, 1

2
)

(1, 0)

;
γ√
β



xα−1 exp

(
−(βm2+|γ|m)( βm2

βm2+|γ|m
(x/m)2+

|γ|m
βm2+|γ|m

(x/m))

)
(5.72)

Applying the AM-GM Inequality with non uniform Weights( that we stated above)

we get that

f
MHN

(x | α, β, γ) ≤ gkernel(x;α, β, γ) (5.73)

where gkernel(x|α, β, γ) = K0(m,α, β, γ)xα−1 exp
(
−(βm2 + |γ|m)( x

m
)

2βm+|γ|
βm+|γ|

)
,

K0(m,α, β, γ) =
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


.
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5.0.16 Proof of Theorem 4

Proof of part(a), Theorem 4:

The proposal kernel for the Accept-Reject algorithm is (see Theorem 3)

gkernel(x | α, β, γ) =
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


xα−1 exp

(
−(βm2 + |γ|m)(

x

m
)

2βm+|γ|
βm+|γ|

)
.

Therefore,

∫ ∞
0

gkernel(x|α, β, γ)dx =
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


∫ ∞

0

xα−1 exp
(
−(βm2 + |γ|m)(

x

m
)

2βm+|γ|
βm+|γ|

)
dx.

Applying the change of variable y = ( x
m

)
2βm+|γ|
βm+|γ| , we get that

∫ ∞
0

g(x|α, β, γ)dx =
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


mα βm+ |γ|

2βm+ |γ|

∫ ∞
0

y
α(βm+|γ|)
2βm+|γ| −1 exp[−(βm2 + |γ|m)y]dy

=
2β

α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; γ√

β


mα βm+ |γ|

2βm+ |γ|
Γ(α(βm+|γ|)

2βm+|γ| )

[m(βm+ |γ|)]
α(βm+|γ|)
2βm+|γ|

.
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Then the acceptance rate

Aneg(m,α, β, γ) =
1∫∞

0
gkernel(x|α, β, γ)dx

=

1

2(βm2)
α
2

1Ψ1

(α
2
, 1

2
)

(1, 0)
; −|γ|√

β


βm+|γ|
2βm+|γ|

Γ(
α(βm+|γ|)
2βm+|γ| )

[m(βm+|γ|)]
α(βm+|γ|)
2βm+|γ|

.

Proof of part(b), Theorem 4:

∂

∂m
log(Aneg(m,α, β, γ))

=
αβ|γ|

(2βm+ |γ|)2

[
ψ

(
α(βm+ |γ|)
2βm+ |γ|

)
− log(βm2 +m|γ|)

]
+

2β

2βm+ |γ|
− β

βm+ |γ|

=
αβ|γ|

(2βm+ |γ|)2

[
ψ

(
α(βm+ |γ|)
2βm+ |γ|

)
− log(βm2 +m|γ|)

]
+

αβ|γ|
(βm+ |γ|)(2βm+ |γ|)

=
αβ|γ|

(2βm+ |γ|)2

[
ψ

(
α(βm+ |γ|)
2βm+ |γ|

)
+

2βm+ |γ|
α(βm+ |γ|)

− log(βm2 +m|γ|)
]
, (5.74)

where ψ(·) denotes the digamma function. The function x 7→ ψ(x) + 1
x

is a strictly

increasing function because

d

dx

(
ψ(x) +

1

x

)
=

(
dψ(x)

dx
− 1

x2

)
(??)
>

e
1
x+1 − e− 1

x

2
> 0,

where the inequality in (??) is due to Equation 1.12 in Qi and Mortici (2015). ((Yang

et al., 2014))

The function m 7→ α(βm+|γ|)
2βm+|γ| is strictly decreasing. Therefore their composition,

m 7→ ψ(α(βm+|γ|)
2βm+|γ| ) + 2βm+|γ|

α(βm+|γ|) is a strictly decreasing function. As the functions

m 7→ αβ|γ|
(2βm+|γ|)2 and m 7→ − log(βm2 + |γ|m) are strictly decreasing as well, it follows

from Equation 5.74 that ∂
∂m

log(Aneg(m,α, β, γ)) is strictly decreasing in m for m > 0.
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Moreover,

lim
m→0

∂

∂m
log(Aneg(m,α, β, γ)) =∞, lim

m→∞

∂

∂m
log(Aneg(m,α, β, γ)) = −∞,

and m 7→ ∂
∂m

log(Aneg(m,α, β, γ)) is a continuous function. Consequently, we con-

clude that that a unique mopt > 0 such that ∂
∂m

log(Aneg(m,α, β, γ))
∣∣
m=mopt

= 0.

Now we will prove that mopt > Xmode the mode of the MHN (α, β, γ) distribu-

tion. Xmode satisfies the equation

α− 1

Xmode

− 2βXmode − |γ| = 0 =⇒ 2βX2
mode + |γ|Xmode = α− 1. (5.75)

As a result, it follows that

[
ψ

(
α(βXmode + |γ|)
2βXmode + |γ|

)
− log(βX2

mode +Xmode|γ|)
]

=

[
ψ

(
α(βX2

mode + |γ|Xmode)

α− 1

)
− log(βX2

mode +Xmode|γ|)
]
. (5.76)

Consider the inequality log(x)−ψ(x) < 1
x

for all x > 0 (Alzer, 1997; Anderson et al.,

1995). Thus it follows from Equation 5.76 that

αβ|γ|
(2βXmode+|γ|)2

[
ψ
(
α(βXmode+|γ|)
2βXmode+|γ|

)
−log(βX2

mode+Xmode|γ|)
]

> αβ|γ|
(2βXmode+|γ|)2

{
log

(
α(βX2

mode+|γ|Xmode)

α−1

)
− α−1

α(βX2
mode

+|γ|Xmode)
−log(βX2

mode+Xmode|γ|)
}

= αβ|γ|
(2βXmode+|γ|)2

log( α
α−1)− αβ|γ|

(2βXmode+|γ|)2
α−1

α(βX2
mode

+|γ|Xmode)

= αβ|γ|
(2βXmode+|γ|)2

log( α
α−1)− β|γ|

(2βXmode+|γ|)(2βX2
mode

+|γ|Xmode)

α−1
(βXmode+|γ|)

(∗)
= αβ|γ|

(2βXmode+|γ|)2
log( α

α−1)− β|γ|
(2βXmode+|γ|)(α−1)

α−1
(βXmode+|γ|)

= αβ|γ|
(2βXmode+|γ|)2

log( α
α−1)− β|γ|

(2βXmode+|γ|)(βXmode+|γ|) ,
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where the equality in (∗) is a consequence of the Equation 5.75. Therefore,

∂
∂m

log(Aneg(m,α,β,γ))|
m=Xmode

= αβ|γ|
(2βXmode+|γ|)2

[
ψ
(
α(βXmode+|γ|)
2βXmode+|γ|

)
−log(βX2

mode+Xmode|γ|)
]
+ 2β

2βXmode+|γ|−
β

βXmode+|γ|

> αβ|γ|
(2βXmode+|γ|)2

log( α
α−1)− β|γ|

(2βXmode+|γ|)(βXmode+|γ|) +
β|γ|

(2βXmode+|γ|)(βXmode+|γ|)

= αβ|γ|
(2βXmode+|γ|)2

log( α
α−1)

> 0. (5.77)

The function log(Aneg(m,α, β, γ))) is increasing in the region (0,mopt) whereas it

decreases on (mopt,∞). As the slope of the function at Xmode is positive (see Equa-

tion 5.77) we conclude that Xmode ∈ (0,mopt) and mopt > Xmode.

Proof of part(c), Theorem 4:

The arguments used to prove this part of the Themorem utilizes the following

Theorem on the Gamma function (Ramanujan’s Double Inequality(Alzer, 2003)). For

z > 0,

√
π
(z
e

)z (
8z3 + 4z2 + z +

1

100

) 1
6

< Γ(1 + z) <
√
π
(z
e

)z (
8z3 + 4z2 + z +

1

30

) 1
6

.
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From Theorem 3 and the Lemma 4 we get that,

Aneg(m,α, β, γ) =

(2βm+ |γ|)(βm+ |γ|)
α(βm+|γ|)
2βm+|γ| −1

1Ψ1

(α
2
, 1

2
)

(1, 0)
; −|γ|√

β
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α
2 m

αβm
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(2βm+ |γ|)(βm+ |γ|)

α(βm+|γ|)
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β
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2 exp (−m|γ|

2
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2
)

(β+
|γ|
2m)

α
2
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2β

α
2 m
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2
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≥ (2βm+ |γ|)(βm+ |γ|)
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2 m
αβm
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[(
β + |γ|

2m

)α
2

] ×

[
exp (−m|γ|

2
)Γ(α

2
)
]

Γ(α(βm+|γ|)
2βm+|γ| )

≥ (2βm+ |γ|)(βm+ |γ|)
α(βm+|γ|)
2βm+|γ| −1

2−
α
2

+1 m
αβm

2βm+|γ|−
α
2

[
(2βm+ |γ|)

α
2

] ×
[
exp (−m|γ|

2
)Γ(α

2
)
]

Γ(α(βm+|γ|)
2βm+|γ| )

≥ 2
α
2
−1(βm+ |γ|)

α(βm+|γ|)
2βm+|γ| −1

m
αβm

2βm+|γ|−
α
2 (2βm+ |γ|)

α
2
−1
×

[
exp (−m|γ|

2
)Γ(α

2
)
]

Γ(α(βm+|γ|)
2βm+|γ| )

. (5.78)

Consider a point m? > 0 such that 2βm2
? + |γ|m? = α. Note that, Xmode, the mode of

the MHN (α, β, γ), α > 1, γ < 0 satisfies the equation 2βX2
mode + |γ|Xmode = α − 1.

Therefore m? is greater than Xmode. It follows from Equation 5.78 that

Aneg(m?, α, β, γ) ≥ 2
α
2
−1(βm? + |γ|)

α(βm?+|γ|)
2βm?+|γ| −1

m
αβm?

2βm?+|γ|−
α
2

? (2βm? + |γ|)
α
2
−1
×

[
exp (−m?|γ|

2
)Γ(α

2
)
]

Γ(α(βm?+|γ|)
2βm?+|γ| )

=
2
α
2
−1(βm2

? + |γ|m?)
α(βm?+|γ|)
2βm?+|γ| −1

(2βm2
? + |γ|m?)

α
2
−1

×

[
exp (−m?|γ|

2
)Γ(α

2
)
]

Γ(α(βm?+|γ|)
2βm?+|γ| )

.

146



Applying Ramanujan’s Double Inequality for the Gamma function (stated above), we

get that

Γ(α
2
)

Γ(α(βm?+|γ|)
2βm?+|γ| )

>

(
α− 2

2e

)α
2
−1(

1

e

{
α(βm? + |γ|)
(2βm? + |γ|)

− 1

})−α(βm?+|γ|)
2βm?+|γ| +1

Υ(α, β, γ,m?),

(5.79)

where

Υ(α, β, γ,m?) =

(
(α− 2)3 + (α− 2)2 + α−2

2
+ 1

100

) 1
6[

(α− 2)3(1 + c
β,γ,m?

)3 + (α− 2)2(1 + c
β,γ,m?

)2 + α−2
2

(1 + c
β,γ,m?

) + 1
30

] 1
6

,

and

c
β,γ,m?

=
αγ

(α− 2)(2βm? + γ)
.

In the case when α ≥ 3

c
β,γ,m?

=
αγ

(α− 2)(2βm? + γ)
=

αγm?

(α− 2)(2βm2
? + γm?)

=
αγm?

(α− 2)(α)

=
2

(α− 2)
(√

(1 + 8αβ
γ2 ) + 1

)
≤ 1. (5.80)

Moreover, Υ(α, β, γ,m?) ≥
((α−2)3+(α−2)2+α−2

2
+ 1

100)
1
6

[(α−2)3(2)3+(α−2)2(2)2+α−2
2

(2)+ 1
30 ]

1
6
≥ 1√

2
because α 7→ (α3+α2+α

2
+ 1

100)
(8α3+4α2+α+ 1

30)

is strictly decreasing in α and limα→∞
(α3+α2+α

2
+ 1

100)
(8α3+4α2+α+ 1

30)
= 1

8
. Therefore,

Γ(α
2
)
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2βm?+|γ| )

>

(
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2e

)α
2
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1

e
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2
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Consider the fact that, for any c > 0, x > 0,

(1 +
1

x+ c
)x+c > (1 +

1

x
)x

=⇒ xx(x+ c+ 1)x+c > (x+ 1)x(x+ c)x+c

=⇒ xx(x+ c)−(x+c) > (x+ 1)x(x+ c+ 1)−(x+c).

Utilizing the inequality with x = α
2
− 1 and x + c = α(βm?+|γ|)

(2βm?+|γ|) − 1, it follows from

Equation 5.81 that

Γ(α
2
)

Γ(α(βm?+|γ|)
2βm?+|γ| )

>
( α

2e

)α
2
−1
(

1

e

{
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( e
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α
2

(
1

2
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2
−1(

(βm? + |γ|)
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2
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(
(βm? + |γ|)
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)−α(βm?+|γ|)
2βm?+|γ| +1

. (5.81)

It follows from Equations 5.79 and 5.81 that

Aneg(m?, α, β, γ)

≥ 2
α
2
−1(βm2

? + |γ|m?)
α(βm?+|γ|)
2βm?+|γ| −1

(2βm2
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[
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2
)Γ(α

2
)
]
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.

≥
2
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2βm?+|γ| −1 exp (−m?|γ|

2
)
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α
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×

[
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≥
2
α
2
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2
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×

[
2−

α−1
2

( e
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]

=
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1
2 exp (−m?|γ|

2
)
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? + |γ|m?)

− α|γ|
2(2βm?+|γ|)

×

[( e
α

) α|γ|
2(2βm?+|γ|)

]
. (5.82)
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As the point m? is such that, 2βm2
? + |γ|m? = α. It appears that

Aneg(m?, α, β, γ) ≥
2−

1
2 exp (−m?|γ|

2
)

(2βm2
? + |γ|m?)

− α|γ|
2(2βm?+|γ|)

×

[( e
α

) α|γ|
2(2βm?+|γ|)

]
.

=
2−

1
2 exp (−m?|γ|

2
)

(α)−
α|γ|

2(2βm?+|γ|)

×

[( e
α

) α|γ|
2(2βm?+|γ|)

]
.

= 2−
1
2 exp (−m?|γ|

2
)×

[
(e)

α|γ|m?
2(α)

]
.

=
1√
2
. (5.83)

The point mopt maximizes the function m 7→ Aneg(m,α, β, γ). Therefore, we conclude

that

Aneg(mopt, α, β, γ) ≥ Aneg(m?, α, β, γ) ≥ 1√
2
.

5.0.17 Iterative algorithm to find the optimal matching point.

In order to findmopt, we utilize Newton-Raphson Method to maximize log(Aneg(

mopt, α, β, γ)) with respect to m. We start the algorithm at minit Note that, we dis-

cussed the construction of minit in the Section 2.4.2. Apart from the initial value, we

require the following quantities for describing the specific steps of the algorithm.

l(m,α, β, γ)

= log(Aneg(mopt, α, β, γ))

= log(1Ψ1

(α
2
, 1

2
)

(1, 0)
;
−|γ|√
β

) +
α(βm+ |γ|)
2βm+ |γ|

log(βm2 +m|γ|) + log(2βm+ |γ|)− log 2

− α

2
log(βm2)− log Γ(

α(βm+ |γ|)
2βm+ |γ|

)− log(βm+ |γ|).
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If we denote l′(m,α, β, γ) and l′′(m,α, β, γ) to be the first and the second derivative

of the function l(m,α, β, γ) then

l′(m,α, β, γ) =
αβ|γ|

(2βm+ |γ|)2

[
ψ

(
α(βm+ |γ|)
2βm+ |γ|

)
− log(βm2 +m|γ|)

]
+

2β

2βm+ |γ|
− β

βm+ |γ|
,

l′′(m,α, β, γ) =

4αβ2|γ|
(2βm+ |γ|)3

[
ψ

(
α(βm+ |γ|)
2βm+ |γ|

)
− log(βm2 +m|γ|)

]
+

αβ|γ|
(2βm+ |γ|)2

[
−αβ|γ|

(2βm+ |γ|)2
ψ′
(
α(βm+ |γ|)
2βm+ |γ|

)
− 2βm+ |γ|
βm2 +m|γ|

]
− 1

(m+ |γ|
2β

)2
+

1

(m+ |γ|
β

)2
.

The notation ψ and ψ′ used in the above expressions to refer to the digamma and

trigamma functions respectively. The steps of the iterative procedure to find mopt is

given as follows

• If we denote the starting value of the parameter m to be m(0) then set m(0) = minit.

• At the (t+ 1)th step of the iteration, compute mt+1 = mt − l′(mt,α,β,γ)
l′′(mt,α,β,γ)

for t ≥ 0.

• Repeat the previous step until |Aneg(mt+1, α, β, γ) − Aneg(mt, α, β, γ)| < ε, where

ε > 0 is a predetermined small positive number to identify the convergence of

the algorithm. In our implementation we used ε to be 0.001.
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2016 HCUP KID
data (n=3117413)

Included
patients with
BPD based
on diagnosis
code (P271)
(n=14102)

Removed patients if they
have tracheostomy diagnosis

records (Z930) (n=1126)

Removed patients who had
tracheostomy complications
(J9500, J9501, J9502, J9503,

J9504, J9509) but did not
have tracheostomy procedure
records (0B113F4, 0B21XFZ,

0BW14FZ) (n=170)

Study cohort
(n=12806)

Figure 5.3: Flow chart of generating case study cohort
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                                    APPENDIX B: COHORT BASED ON THE 2016 HCUP KID DATA

Figure 5.3 shows how we generated the cohort based on the 2016 HCUP KID
data for the case study.
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