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ABSTRACT 

ASPECTS OF CAUSAL INFERENCE 

John A. Craycroft 

December 12, 2020 

Observational studies differ from experimental studies in that assignment of 

subjects to treatments is not randomized but rather occurs due to natural mechanisms, 

which are usually hidden from researchers. Yet objectives of the two studies are frequently 

the same: identify the causal – rather than merely associational – relationship between some 

treatment or exposure and an outcome. The statistical issues that arise in properly analyzing 

observational data for this goal are numerous and fascinating, and these issues are 

encompassed in the domain of causal inference. The research presented in this dissertation 

explores several distinct aspects of causal inference. 

 This dissertation is divided into four chapters. Chapter One gives an introduction 

to major concepts, underlying assumptions, and analytical frameworks encountered in the 

domain of causal inference. The next three chapters describe extensive research projects 

that are linked together by those threads. 

Chapter Two deals with propensity score techniques and, more specifically, how to 

specify the propensity score model to achieve the best treatment effect estimates. This 

chapter not only provides a theoretical proof showing that one particular type of 

specification is best, but also demonstrates an original method for applying that result. The 
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method presented in Chapter Three has a similar purpose – obtaining precise and accurate 

estimates of causal effects – but views the challenge through a Bayesian, rather than a 

frequentist, lens. Here, a hierarchical Bayesian model is developed that is grounded in the 

framework of causal inference. 

 While Chapters Two and Three focus on scenarios involving causal inference from 

observational data, Chapter Four presents a method that has been designed to apply equally 

well to experimental data. The intent of the research here is to provide a method for 

identifying subgroups of the population in which the treatment effect differs from the 

overall population average treatment effect. Maintaining a central theme of causal 

inference, the research focuses on avoiding confounding bias while identifying effect 

modifiers that characterize the subgroups. 

In all, this dissertation is intended to provide views of causal inference concepts 

from several distinct angles, demonstrating the complexity and richness of this domain. 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Potential outcomes and causal inference 

 Causal inference in statistics is the process of reasoning from specific samples of 

data to general population-level conclusions regarding causal relationships between some 

treatment or exposure and some outcome or result (Hernán & Robins, 2020). For any given 

study, “treatment/exposure” and “outcome/result” must be precisely defined, but 

conceptually, these terms can carry a broad variety of meanings. The former could refer to 

receiving an experimental drug; carrying a particular gene; participating in a nutritional 

diet; engaging in an educational program; or implementing a tax policy change. The latter 

could refer to some measurement of disease status (cured or not, degree of improvement); 

a specific phenotype; a particular health outcome; a future standardized test score, or future 

earnings; or future tax receipts, employment levels, business closings, or share of votes 

received in the next election. Any pair of concepts, or phenomena, or events that can be 

reasonably precisely defined could, in theory, be studied for their causal relationship with 

each other. 

But what is meant by a “causal” relationship? To elucidate this idea from a 

statistical perspective, we introduce some notation. We will use the symbol T to refer to 



2 
 

the treatment/exposure concept, and the symbol Y to refer to the outcome/result concept. 

(Later, these symbols will be used to represent random variables.) What does it mean, then, 

for T to be a cause of Y, or equivalently, for Y to be an effect of T? A helpful framework 

for precisely defining what is meant by a “causal” relationship is the potential outcomes 

framework (Rubin, 1974). In this system, each study unit is hypothesized to have a number 

of possible outcome values equal to the number of possible treatments that could be 

received. For example, with a binary treatment, say an experimental drug and a placebo 

(and so we might code a random variable as 𝑇 ∈ {0,1}), each study unit would have two 

potential outcomes. We denote these two parts of Y as 𝑌(଴) and 𝑌(ଵ). Necessarily, only one 

of the potential outcomes is actually observed, specifically that one corresponding to the 

treatment level the study unit actually received. The other potential outcomes are 

unobserved, counterfactual (Lewis, 1973) values. While this example as well as the three 

methods described in this dissertation all focus on scenarios with binary treatments, the 

potential outcomes concept extends generally to non-binary treatment scenarios as well. 

To say that there is a causal relationship between T and Y means that the individual 

potential outcome values of Y differ in some way. The causal effect of T on Y refers to the 

magnitude and nature of the variations among the potential outcomes. Subject-level causal 

effects are computed by comparing the potential outcomes for that subject under each 

treatment level. Since only one potential outcome is observed (the “fundamental problem 

of causal inference” (Holland, 1986)), subject-level causal effects are never known. 

However, population-level causal effects may be estimated if the treatment groups are, on 

average, comparable. For the groups to be comparable requires a variety of assumptions, 

and those assumptions are met in different ways in the context of randomized controlled 
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experiments and observational studies; these assumptions are described in more detail in 

Section 1.3. In the next section, we discuss measures of causal effect. 

 

1.2 Measures of causal effect 

 There are two dimensions to consider when thinking about measuring causal effect. 

The first dimension is the level at which subject-level causal effects are aggregated. As 

mentioned above, we can never know subject-level causal effects, because we can’t 

observe more than one potential outcome per subject. Hence, we are always considering 

average effects over some group. But what group? One intuitive answer is that we want to 

compare the average response under treatment to the average response under control for 

the entire target population; we term this the average treatment effect (ATE). A second 

answer, at times more appropriate than the ATE, is that we want to know the average 

response for those in the treatment group only compared to those same subjects. For this 

objective we use the average treatment effect among the treated (ATT). As an example, 

suppose we want to know the effect of a blood pressure medication in terms of magnitude 

of blood pressure reduction. Let us assume what is likely the case, that the medication has 

a higher effect on individuals who already have high blood pressure. Then if we average 

the treatment effect over all individuals, the apparent average effect will be lower than if 

we had averaged the treatment effect only over those individuals who already had high 

blood pressure. In this case, it would be important to focus on the ATT, rather than the 

ATE. 
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The second dimension to consider when measuring causal effect is which type of 

measurement of association is most meaningful. The risk difference, risk ratio, and odds 

ratio are three different measures that, depending on circumstances, may be more or less 

appropriate for one’s intended research purpose. In the work presented in this dissertation, 

the focus is always on the risk difference. Hence we define the average treatment effect as: 

𝐴𝑇𝐸 = 𝐸ൣ𝑌(ଵ)൧ − 𝐸[𝑌(଴)]. 

 

1.3 Assumptions required for valid causal inference 

Several assumptions must hold true for causal inference to be valid (Hernán & 

Robins, 2020). First, exchangeability of the treated and untreated subjects means that the 

potential outcomes are independent of the treatment group, conditional on the covariates. 

That is, 𝑌(௧) ⊥ 𝑇|𝑿. The second assumption that must hold is positivity, which means that 

every subject must have some chance of appearing in both the treatment group and the 

control group, i.e., 0 < 𝑝௜(𝑿௜) < 1, for all 𝑖, where 𝑝௜(𝑿௜) = Pr(𝑇௜ = 1|𝑿௜). The third 

assumption is consistency; this simply means that the observed outcome matches the 

potential outcome for each subject: (𝑌௜|𝑇௜ = 𝑡) = 𝑌௜
(௧), for all 𝑖. 

 

1.4 Structure of this dissertation 

 After this introductory chapter, we present three distinct methods relating to various 

aspects of causal inference. Chapter Two deals with propensity score techniques and, more 

specifically, how to specify the propensity score model to achieve the best treatment effect 
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estimates. This chapter not only provides a theoretical proof showing that one particular 

type of specification is best, but also demonstrates an original method for applying that 

result. The method presented in Chapter Three has a similar purpose – obtaining precise 

and accurate estimates of causal effects – but views the challenge through a Bayesian, 

rather than a frequentist, lens. Here, a hierarchical Bayesian model is developed that is 

grounded in the framework of causal inference. Chapter Four presents a method for 

identifying subgroups of the population in which the treatment effect differs from the 

overall population average treatment effect. Maintaining a central theme of causal 

inference, the research focuses on avoiding confounding bias while identifying effect 

modifiers that characterize the subgroups.   
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CHAPTER 2 

PROPENSITY SCORE SPECIFICATION FOR OPTIMAL ESTIMATION 

OF AVERAGE TREATMENT EFFECT WITH BINARY RESPONSE1 

 

2.1 Introduction 

Observational studies are critical for scientific advancement. While randomized 

controlled trials (RCTs) may be considered the gold standard for establishing evidence 

supporting some causal relationship, there are many circumstances in which conducting an 

RCT is impractical, unfeasible, unethical, or impossible. Meanwhile, observational data 

abound, and it is quite natural to look to it for scientific insights. Yet countless examples 

demonstrate that a real danger lurks in the careless use of observational data, the fallacy of 

conflating association with causation. 

One class of methods for the causal analysis of observational data is propensity 

score-based methods. Formalized in a landmark paper by Rosenbaum and Rubin (1983), 

these techniques begin with estimating for each subject a propensity score. The propensity 

score serves two roles simultaneously: it is the conditional probability of treatment group 

 
 

1 The material in this chapter has been published in Statistical Methods in Medical Research. The full 
citation is: “Craycroft, J. A., Huang, J., & Kong, M. (2020). Propensity score specification for optimal 
estimation of average treatment effect with binary response. Statistical Methods in Medical Research, 
29(12), 3623-3640.” 
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given covariates, and it is also a balancing score, the adjustment for which results in similar 

distributions of covariates for treatment and control groups (Rosenbaum & Rubin, 1983). 

Given the propensity scores, any of a variety of methods may be used to estimate 

the average treatment effect (ATE). Stratification, matching, weighting, and covariate 

adjustment are commonly used methods. Many accessible descriptions and illustrations of 

propensity score methods are available in the literature (Abdia, Kulasekera, Datta, Boakye, 

& Kong, 2017; Austin, 2011; Lunceford & Davidian, 2004; Yan et al., 2019). However, 

regardless of the ATE estimation method, and before the ATE estimates may be computed, 

the propensity scores themselves must be estimated. Typically, logistic regression or some 

nonparametric method, such as gradient boosting (McCaffrey et al., 2013), is used. An 

important question receiving much attention in past research is which of the available 

covariates should be included in the propensity score model to most effectively remove 

confounding bias from, and reduce the variance of, the ATE estimates. There are examples 

in the propensity score literature (Austin, 2011; McCaffrey et al., 2013) suggesting that all 

available covariates are used in estimating the propensity scores, an approach that treats all 

covariates as potential confounding variables to be adjusted for (Figure 2.1a). In reality, 

covariates may be of several types (Figure 2.1b): true confounders (𝑿𝑪), affecting both 

treatment and outcome; instrumental variables (𝑿𝑰), affecting the treatment but not the 

outcome; predictor variables (𝑿𝑷), affecting the outcome but not the treatment; and 

spurious, or noise, variables (𝑿𝑺), affecting neither the treatment nor the outcome. (We use 

bold font for the covariate type labels throughout this paper to indicate that they typically 

refer to vectors of covariates, rather than single covariates.) The identification of individual 

covariates with their particular type is sometimes informed by existing subject matter 
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knowledge, or by prior research. Other times, there is little a priori guidance, and it is the 

analyst’s job to accurately categorize the available covariates. 

 

Figure 2.1. Overly simplistic (a) and more realistic (b) causal diagrams. 

 

For a propensity score estimation method to yield unbiased estimates of ATE, all 

true confounders must be included in the propensity score model (Pearl, 2009) (unless the 

doubly robust ATE estimation method is used, which requires either the propensity score 

model or the outcome model be correctly specified) (Lunceford & Davidian, 2004). Also, 

multiple authors (Austin, 2007; Brookhart et al., 2006; Franklin, Eddings, Glynn, & 

Schneeweiss, 2015; Garrido et al., 2014; Patrick et al., 2011) have demonstrated that 1) 

including predictor variables in the propensity score model, while not needed for unbiased 

estimation of treatment effects, is in general beneficial for improving the precision of 

treatment effect estimates; and 2) including instrumental variables in the propensity score 

model increases the variance of the estimated treatment effect. Finally, including noise 

variables in the propensity score model should not affect bias, but will likely increase 

variability of treatment effect estimates; thus, the noise variables should be disregarded. 

X
(Covariates)

T
(Treatment)

Y
(Outcome)

XC
(True 

confounders)

T
(Treatment)

Y
(Outcome)

XP
(Predictor 
variables)
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(Instrumental 

variables)
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(Spurious 
variables)

(a) (b)
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Consequently, in employing propensity score methods to estimate treatment 

effects, we are faced with a variable selection problem in which, given a potentially large 

set of covariates, we wish to identify only a particular subset to include in our propensity 

score model – specifically, the true confounders and the predictor variables. The analytical 

benefit of the propensity score derives from its role as a balancing score. When deciding 

which variables belong in the propensity score model, the question to answer is not how 

best to predict treatment group membership, but rather which covariates should be balanced 

in order to obtain the least biased and most precise estimates of treatment effect. 

Two methods have been proposed recently for efficiently estimating propensity 

scores, but each method has its own drawback. Shortreed and Ertefaie (2017) introduced 

the outcome-adaptive lasso (OAL), which is a modification of the adaptive lasso (Zou, 

2006). OAL aims to select true confounders and predictor variables into the propensity 

score estimation model via an adaptive lasso method where the weights in the lasso penalty 

term are the inverse of the estimated coefficients in the outcome regression model. In so 

doing, the OAL method assigns higher penalties to terms that are not related to the outcome 

(i.e., instrumental and spurious covariates) and lower penalties to terms that are related to 

the outcome (i.e., predictors and true confounders). Consequently, the minimization of the 

loss function results in forcing coefficients of instrumental and spurious covariates to zero, 

keeping only the predictors and confounders in the propensity score estimation model, as 

desired. As OAL is a variation of penalized regression, a tuning parameter, 𝜆, controls the 

overall strength of the penalty term. In OAL, 𝜆 is selected so as to minimize the weighted 

absolute mean difference (wAMD) between the two treatment groups. The wAMD is a 

measure of covariate balance. Thus OAL cleverly incorporates both variable selection and 
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covariate balancing. After the propensity scores are thus estimated, any propensity score 

application method may be used to estimate ATE; the authors demonstrate their approach 

using the inverse probability weighting (IPW) method. The drawback to OAL is that, 

because of the initial outcome regression, the model breaks down when 𝑝 > 𝑛. 

Imai and Ratkovic (2014) recently introduced the covariate balancing propensity 

score (CBPS) with the recognition that the most important role of the propensity score is 

to balance the covariates between the treatment groups. The “just-identified” CBPS is 

obtained by using the covariate balance score only, while the “overidentified” CBPS is 

obtained by using both the covariate balance score and the score function. The drawback 

to CBPS is that it balances all covariates, rather than attempting to select only the 𝑿஼ and 

𝑿௉ types. 

The objective of the current study is two-fold: first, we provide a theoretical proof 

that the most efficient treatment effect estimates are obtained by specifying the propensity 

score as a function of all covariates related to outcome and excluding covariates related 

only to treatment. Second, we present an approach for estimating propensity scores that 

should mitigate the shortcomings of the OAL and CBPS methods mentioned above. The 

structure of the remainder of the paper is as follows: in Section 2.2, we first provide 

background on the potential outcomes framework, ATE, and causal inference from 

observational data, including assumptions that must hold for valid causal inference. We 

then present a theoretical proof showing why the subset of 𝑿 consisting only of 𝑿஼ and 𝑿௉ 

in the propensity score model results in the most efficient estimates of ATE. We also 

describe our proposed method for obtaining propensity score estimates. In Section 2.3, we 

describe the extensive simulation studies we conducted to compare several propensity 
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score specification methods. In Section 2.4, we describe the application of the methods to 

a case study dataset with the objective of determining if patients’ preoperative blood 

clotting factor is causally related to 30-day mortality following cardiac surgery. Finally, in 

Section 2.5 we provide discussion of the results and general conclusions. 

 

2.2 Methods 

2.2.1 Potential outcomes and ATE 

A great deal of the causal inference literature works from the potential outcomes 

framework (Little & Rubin, 2000). In this framework, we suppose that every subject in the 

data set has a number of potential outcomes equal to the number of distinct treatment 

groups. Only one of these potential outcomes for each subject is ever actually observed; 

the other is a “counterfactual” outcome. However, we assume that subjects who are very 

similar in as many aspects as possible will have very similar potential outcomes. Hence, 

the ATE may be computed by comparing subjects who are very similar in all aspects except 

their treatment group membership (Holland, 1986). 

This paper focuses on the binary treatment and binary outcome scenario. We use T 

to indicate treatment group and Y to indicate outcome, with 𝑇, 𝑌 ∈ {0,1}. We denote the 

two potential outcomes for subject i, i=1,…,n, as 𝑌௜
(଴) and 𝑌௜

(ଵ), corresponding respectively 

to the outcomes for control and treatment. As only one of these is actually observed, the 

observed outcome is 𝑌௜ = 𝑇௜𝑌௜
(ଵ)

+ (1 − 𝑇௜)𝑌௜
(଴). The objective is to estimate the ATE, 

which is denoted by 𝜏 and defined as 

𝜏 = 𝐸ൣ𝑌(ଵ) − 𝑌(଴)൧ = 𝐸ൣ𝑌(ଵ)൧ − 𝐸ൣ𝑌(଴)൧. 
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The propensity score is defined as the conditional probability of treatment group 

membership, given the subject’s covariates. In notation, 𝑝௜(𝑿) = 𝑃(𝑇௜ = 1|𝑿௜), where 𝑝 

(or 𝑝(𝑿)) represents the propensity score, and 𝑿 represents the set of covariates. In this 

chapter, we use the IPW method to estimate ATE, whereby each unit is weighted by the 

inverse of the probability of the treatment status which that unit actually received. The IPW 

estimator of ATE based on 𝑛 observations is  

𝜏̂ =
1

𝑛
෍

𝑇௜𝑌௜

𝑝௜

௡

௜ୀଵ

−
1

𝑛
෍

(1 − 𝑇௜)𝑌௜

1 − 𝑝௜

௡

௜ୀଵ

                                            (1) 

with 𝑇௜ , 𝑌௜ ∈ {0,1}. Under the assumptions of exchangeability and positivity, described 

below, this estimator has been shown to be unbiased (Lunceford & Davidian, 2004). 

 

2.2.2 Assumptions required for causal inference 

Several assumptions must hold true for causal inference, whether stemming from 

observational or experimental data, to be justified. First, exchangeability of the treated and 

untreated subjects means that the potential outcomes are independent of the treatment 

group, conditional on the covariates. That is, 𝑌(௧) ⊥ 𝑇|𝑿. Pearl (2009) proved that if the 

set 𝑿 includes all true confounders, 𝑿஼, then exchangeability holds: 𝑌(௧) ⊥ 𝑇|𝑿஼. 

Rosenbaum and Rubin (1983) showed that if exchangeability holds given 𝑿, then it also 

holds given the propensity score: 𝑌(௧) ⊥ 𝑇|𝑝(𝑿). The second assumption that must hold is 

positivity, which means that every subject must have some chance of appearing in both the 

treatment group and the control group, i.e., 0 < 𝑝௜(𝑿௜) < 1, for all 𝑖. The third assumption 

is consistency; this simply means that the observed outcome matches the potential outcome 

for each subject: (𝑌௜|𝑇௜ = 𝑡) = 𝑌௜
(௧), for all 𝑖. 
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2.2.3 Theoretical study for variance reduction of ATE estimator by including 𝑿஼ and 𝑿௉ 

in propensity score estimation 

Hahn (1998) showed that under exchangeability, the asymptotic variance bound for 

an estimator of 𝜏 is   

𝐸 ቈ
𝜎ଵ

ଶ(𝑿)

𝑝(𝑿)
+

𝜎଴
ଶ(𝑿)

1 − 𝑝(𝑿)
+ (𝜏(𝑿) − 𝜏)ଶ቉ ,                                      (2) 

where 𝜎଴
ଶ(𝑿) = 𝑣𝑎𝑟(𝑌(଴)|𝑿), 𝜎ଵ

ଶ(𝑿) = 𝑣𝑎𝑟(𝑌(ଵ)|𝑿), and 𝜏(𝑿) = 𝐸൫𝑌(ଵ)ห𝑿൯ −

𝐸൫𝑌(଴)ห𝑿൯. Hirano et al.(2003), showed that the ATE estimator (1) achieves the lower 

bound (2) under some regularity conditions. In the following, we show that ATE estimates 

with different adjustment sets of pre-treatment covariates are all unbiased; however, the 

ATE estimate with the adjustment set {𝑿஼ , 𝑿௉} is the most efficient, i.e., it has the smallest 

variance. 

 

Proposition 1 (conditional independence) (Hernán & Robins, 2020; Pearl, Glymour, & 

Jewell, 2016): Assume that the variables all follow the directed acyclic graph shown in 

Figure 1b. The set of variables 𝑿஼ blocks the backdoor path from T to Y, 𝑇 ← 𝑿஼ → 𝑌. 

This means that if we ignore the direct path from 𝑇 → 𝑌, then the following conditional 

independences given 𝑿஼ all hold: (i) 𝑇 ⊥ (𝑌(଴), 𝑌(ଵ))|𝑿஼; (ii) (𝑿ூ , 𝑇) ⊥ (𝑌(଴), 𝑌(ଵ))|𝑿஼; 

(iii) 𝑇 ⊥ (𝑿௉ , 𝑌(଴), 𝑌(ଵ))|𝑿஼; and (iv) (𝑿ூ , 𝑇) ⊥ (𝑿௉ , 𝑌(଴), 𝑌(ଵ))|𝑿஼. 
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Theorem 1: Under Proposition 1, exchangeability holds given any of the following sets of 

covariates: (i) 𝑿஼; (ii) 𝑿஼ , 𝑿ூ; (iii) 𝑿஼ , 𝑿௉; or (iv) 𝑿஼ , 𝑿ூ , 𝑿௉. That is, 𝑇 ⊥ (𝑌(଴), 𝑌(ଵ))|𝑿(∗), 

where 𝑿(∗) is any set of covariates (henceforth referred to as “adjustment sets”) specified 

in (i), (ii), (iii), or (iv). Furthermore, assuming positivity holds under each adjustment set, 

the four IPW estimators resulting from applying formula (1) with each adjustment set are 

all unbiased. That is, 

𝐸൫𝜏̂(∗)൯ = 𝜏                                                                    (3) 

where * indicates one of the four adjustment sets, and 𝜏̂(∗) has the same expression as (1) 

except that in the denominator, 𝑝௜ is defined as 𝑃𝑟(𝑇௜ = 1|𝑿(∗)). It should be highlighted 

that 𝜏൫𝑿(∗)൯ = 𝐸൫𝑌(ଵ)ห𝑿(∗)൯ − 𝐸൫𝑌(଴)ห𝑿(∗)൯, the conditional treatment effect given one of 

the adjustment sets. Meanwhile, 𝜏̂(∗) indicates the IPW estimator of ATE in (1) where the 

propensity score model for 𝑝 includes only 𝑿(∗). 

The proof of the exchangeability assumptions and the unbiasedness of (3) stated in 

Theorem 1 is provided in Appendix 1, as is the proof for Theorem 2, below. 

 

Theorem 2: The IPW estimator for the ATE is most efficient when the propensity score 

model includes true confounders 𝑿஼ and predictors 𝑿௉ only.  

i.   𝐸 ቈ
𝜎ଵ

ଶ(𝑋஼ , 𝑋௉)

𝑝(𝑋஼ , 𝑋௉)
+

𝜎଴
ଶ(𝑋஼ , 𝑋௉)

1 − 𝑝(𝑋஼ , 𝑋௉)
+ (𝜏(𝑋஼ , 𝑋௉) − 𝜏)ଶ቉ 

≤  𝐸 ቈ
𝜎ଵ

ଶ(𝑋ூ, 𝑋஼ , 𝑋௉)

𝑝(𝑋ூ , 𝑋஼ , 𝑋௉)
+

𝜎଴
ଶ(𝑋ூ, 𝑋஼ , 𝑋௉)

1 − 𝑝(𝑋ூ, 𝑋஼ , 𝑋௉)
+ (𝜏(𝑋ூ , 𝑋஼ , 𝑋௉) − 𝜏)ଶ቉                     (4) 
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≤ 𝐸 ቈ
𝜎ଵ

ଶ(𝑋ூ, 𝑋஼)

𝑝(𝑋ூ , 𝑋஼)
+

𝜎଴
ଶ(𝑋ூ , 𝑋஼)

1 − 𝑝(𝑋ூ , 𝑋஼)
+ (𝜏(𝑋ூ , 𝑋஼) − 𝜏)ଶ቉ 

Because the ATE estimate 𝜏̂ in Equation (1) achieves the asymptotic variance bound 

specified in Equation (2), the inequalities in (4) imply that 𝑉𝑎𝑟൫𝜏̂(஼௉)൯ ≤

𝑉𝑎𝑟൫𝜏̂(ூ஼௉)൯ ≤ 𝑉𝑎𝑟൫𝜏̂(ூ஼)൯.  

ii.   𝐸 ቈ
𝜎ଵ

ଶ(𝑋஼ , 𝑋௉)

𝑝(𝑋஼ , 𝑋௉)
+

𝜎଴
ଶ(𝑋஼ , 𝑋௉)

1 − 𝑝(𝑋஼ , 𝑋௉)
+ (𝜏(𝑋஼ , 𝑋௉) − 𝜏)ଶ቉ 

≤   𝐸 ቈ
𝜎ଵ

ଶ(𝑋஼)

𝑝(𝑋஼)
+

𝜎଴
ଶ(𝑋஼)

1 − 𝑝(𝑋஼)
+ (𝜏(𝑋஼) − 𝜏)ଶ቉                                                    (5) 

≤   𝐸 ቈ
𝜎ଵ

ଶ(𝑋ூ, 𝑋஼)

𝑝(𝑋ூ , 𝑋஼)
+

𝜎଴
ଶ(𝑋ூ , 𝑋஼)

1 − 𝑝(𝑋ூ , 𝑋஼)
+ (𝜏(𝑋ூ , 𝑋஼) − 𝜏)ଶ቉ 

Again, the ATE estimate 𝜏̂ in Equation (1) achieves the asymptotic variance bound 

specified in Equation (2), so the inequalities in (5) imply that 𝑉𝑎𝑟൫𝜏̂(஼௉)൯ ≤ 𝑉𝑎𝑟൫𝜏̂(஼)൯ ≤

𝑉𝑎𝑟൫𝜏̂(ூ஼)൯. 

 

2.2.4 Proposed method: variable selection via elastic net 

Theorem 2, along with the literature cited in Section 2.1, demonstrates that the 

propensity score IPW estimator of the ATE is most efficient if the propensity score model 

includes true confounders and predictors only. The proposed method selects these 

covariates by leveraging the elastic net penalized regression procedure. The elastic net, a 

hybrid between ridge regression and lasso regression, was developed to help in situations 

with large p, and for situations in which groups of covariates are correlated with each other 

(Zou & Hastie, 2005). The proposed propensity score estimation method includes two 
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steps: we first build an elastic net regression model using all available covariates and the 

treatment group indicator as the regressors and the outcome Y as the dependent variable. 

All covariates in this elastic net model that receive a non-zero coefficient are indicated as 

relating to the outcome; hence, all of these variables are considered to be either the true 

confounder or the predictor type, and they are therefore the variables to be included in our 

propensity score model. Next, only those variables selected by the elastic net method in the 

outcome model are sent to either a regular logistic regression (with treatment, 𝑇, as the 

dependent variable) or to the CBPS estimating procedure to estimate propensity scores. 

The resulting estimated propensity scores are then used in whichever propensity score-

based method is desired. (In this chapter we use the IPW method, where the propensity 

scores in (1) are replaced by their estimates; common alternative methods include 

matching, doubly robust regression, and stratification.) Because it leverages the advantage 

of the elastic net, this approach is expected to work effectively even when p > n, thus 

addressing a shortcoming of OAL; this approach should also yield the most precise ATE 

estimates, because covariates related only to treatment and spurious covariates are 

excluded from the propensity score specification. 

The objective function solved in elastic net is:  

𝑚𝑖𝑛

𝛽଴, 𝜷
 
1

𝑁
෍ 𝑙(𝑦௜ , 𝛽଴ + 𝜷𝑻𝒙௜)

ே

௜ୀଵ

+ 𝜆 ቈ(1 − 𝛼ாே)
‖𝜷‖ ଶ

ଶ

2
+ 𝛼ாே‖𝜷‖ଵ቉, 

where 𝑙(𝑦௜ , 𝛽଴ + 𝜷𝑻𝒙௜) is the negative log-likelihood contribution for observation i (Hastie 

& Qian, 2014). The overall strength of the penalty is controlled by the tuning parameter 𝜆, 

which is selected via cross-validation. The elastic net penalty is a convex combination of 

the L2-norm ridge penalty (‖𝜷‖ ଶ
ଶ
) and the L1-norm lasso penalty (‖𝜷‖ଵ), with the relative 
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weighting between the two controlled by the parameter 𝛼ாே. When 𝛼ாே = 0, elastic net 

reduces to ridge regression; when 𝛼ாே = 1, elastic net reduces to lasso. To effectively use 

the elastic net method, we consider both 𝛼ாே and 𝜆 as tuning parameters. In our proposed 

method, the best value for 𝛼ாே for a particular dataset is determined by performing the 

elastic net outcome regression under a variety of 𝛼ாே settings (𝛼ாே ∈ [0, 1]), and then 

selecting that value that results in the model with the lowest cross-validation error. It is the 

covariates selected by this particular elastic net model, then, that are sent to a logistic 

regression or to the CBPS algorithm for estimation of the propensity scores. We refer to 

this approach as the “EN-optimal” method in our simulation study and case study. 

Note that the drawback of OAL is that it will break down in situations with large p 

relative to n, because the regression step for the outcome model will not converge. CBPS 

makes no variable selection, but rather balances all the available covariates. The proposed 

method addresses both of these drawbacks. 

 

2.3 Simulation 

We conducted simulation studies to explore the properties of the proposed method 

and to compare operating characteristics among alternative methods. Our simulations 

examined the effects of sample size, number of measured covariates, correlation between 

covariates of the same type, strengths of associations between covariates and treatment, 

and strengths of associations between covariates and outcome, following the general 

principles provided by Morris, White, and Crowther (2019). 
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2.3.1 Simulation procedure 

The data generating process consisted of the following steps:   

1. Generate an 𝑛 × 𝑝 design matrix of Gaussian-distributed covariates, with two 

columns each of confounders, instrumental variables, and predictor variables, and 

𝑝 − 6 columns of spurious covariates. We represent a vector of covariates for one 

observation as 𝑿 = ൫𝑋஼ଵ, 𝑋஼ଶ, 𝑋ூଵ, 𝑋ூଶ, 𝑋௉ଵ, 𝑋௉ଶ, 𝑋ௌଵ, 𝑋ௌଶ, … , 𝑋ௌ(௣ି଺) ൯. The spurious 

covariates were always mutually independent. For the other three covariate types, we 

tested different correlation coefficients, and the correlations were imposed within 

each type. Simulation settings at this step included sample size (𝑛 ∈ {500, 1000}), 

correlation coefficients ((𝜌஼ , 𝜌ூ , 𝜌௉) ∈ {(0, 0, 0); (0.2, 0.2, 0.2); (0.5, 0.5, 0.5)}), and 

number of covariates (𝑝 ∈ {20, 100, 600}). 

2. Generate n observations of the treatment, 𝑇 ∈ {0,1}, as a binomial random variable 

with 𝑃(𝑇 = 1|𝑿) obtained from the underlying model 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑇 = 1|𝑿)] = 𝛽଴ +

𝛽ଵ𝑋஼ଵ + 𝛽ଵ𝑋஼ଶ + 𝛽ଶ𝑋ூଵ + 𝛽ଶ𝑋ூଶ. Simulation settings at this step included the vector 

of 𝛽 values, controlling the strength of the associations between confounders and 

treatment (𝛽ଵ), and between instrumental variables and treatment (𝛽ଶ), where 𝛽ଵ, 𝛽ଶ ∈

{0.6, 1.0, 1.6} for low, medium, or high association strengths. 

3. Generate n observations of the outcome, 𝑌 ∈ {0,1}, as a binomial random variable 

with 𝑃(𝑌 = 1|𝑿, 𝑇) obtained from the underlying model 𝑙𝑜𝑔𝑖𝑡[𝑃(𝑌 = 1|𝑿, 𝑇)] =

𝛼଴ + 𝛼ଵ𝑋஼ଵ + 𝛼ଵ𝑋஼ଶ + 𝛼ଶ𝑋௉ଵ + 𝛼ଶ𝑋௉ଶ + 𝜏𝑇. Simulation settings at this step 

included the vector of 𝛼 values, controlling the strength of the associations between 

confounders and outcome (𝛼ଵ), and between predictor variables and outcome (𝛼ଶ), 

where 𝛼ଵ, 𝛼ଶ ∈ {0.6, 1.0, 1.6} for low, medium, or high association strengths. 𝜏, the 
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coefficient for T in the underlying model, controls the true ATE (risk difference) and 

is set to 0 for comparing operating characteristics of the methodologies. 

The intercept for each model (𝛼଴ 𝑎𝑛𝑑 𝛽଴) was set to log(0.25) to obtain a prevalence of 

treatment and outcome of approximately 𝑒𝑥𝑝𝑖𝑡(log(0.25)) = 0.2. This represents a 

situation where both treatment and outcome are not rare in the population. The strengths 

of associations between the various covariates and the outcome and the treatment comprise 

four individual factors (𝛼ଵ, 𝛼ଶ, 𝛽ଵ, 𝛽ଶ, corresponding to the 4 solid arrows in Figure 2.1b), 

each with three possible settings (low, medium, or high), yielding 3ସ = 81 distinct settings 

for covariate association strengths. In our results presented below, we focus on four of 

these, which are defined in Table 2.1 and labeled as Models A through D. The first column 

of Table 2.1 shows the causal structure for each of the four models, and the arrow weights 

indicate the strengths of associations among covariates. 

Table 2.1: Parameter values for simulation models varying covariate-treatment & 
covariate-outcome associations. 

 

Relationship with Treatment (T) Relationship with Outcome (Y)

MODEL Instrumental variables True confounders True confounders Predictors
A:

Medium Medium Medium Medium

B:
Medium Medium High Low

C:
High Medium Low Low

D:
Low Low Medium High

Key: Arrow weights indicate strength of association Low: Medium: High:

Note: Low/Medium/High settings correspond to parameter values 0.6/1.0/1.6, respectively.

𝑙𝑜𝑔𝑖𝑡 𝑇 = 1 𝑿𝑰, 𝑿𝑪 = 𝑿𝑪𝛽஼ + 𝑿𝑰𝛽ூ 𝑙𝑜𝑔𝑖𝑡 𝑌 = 1 𝑿𝑪, 𝑿𝑷 = 𝑿𝑪𝛼஼ + 𝑿𝑷𝛼௉

𝛽ூ = 1

𝛽ூ = 1

𝛽ூ = 1.6

𝛽ூ = 0.6

𝛽஼ = 1 𝛼஼ = 1 𝛼௉ = 1

𝛽஼ = 1 𝛼஼ = 1.6 𝛼௉ = 0.6

𝛽஼ = 1 𝛼஼ = 0.6 𝛼௉ = 0.6

𝛽஼ = 0.6 𝛼஼ = 1 𝛼௉ = 1.6

XC

T Y

XI XP

XC

T Y

XI XP

XC

T Y

XI XP

XC

T Y

XI XP
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Combining all four sets of simulation settings (sample size, number of covariates, 

correlation among covariates, and association strengths) yields 2x3x3x81=1458 possible 

combinations of settings. We chose a selection of settings to explore the general patterns 

for how the methodologies behaved. For each set of parameter settings, we generated 1000 

Monte Carlo datasets, each with 100 bootstrap repetitions for estimating the standard error 

of the ATE estimators. For each dataset, we estimated the ATE using the IPW method. 

These estimations were made under 20 propensity score specification methods, as follows: 

i. The first 10 methods employed elastic net to select covariates related to the 

outcome. We tested nine different settings for 𝛼ாே: 0.0, 0.1, 0.3, 0.5, 0.6, 0.7, 0.8, 

0.9, and 1.0. Four of these are shown in Table 2.2 and are labeled as EN0, EN0.5, 

EN0.7, and EN1. We also included an “EN-optimal” method (EN.opt in Table 2.2), 

which, for each Monte Carlo dataset, chose the 𝛼ாே setting (out of the nine just 

listed) yielding the model with the lowest cross-validation error. For each of these 

ten methods, then, the covariates receiving non-zero coefficients were sent to a 

logistic regression model with treatment status as the dependent variable, and the 

estimated propensity scores were the predicted values obtained from the logistic 

regression models. 

ii. The outcome-adaptive lasso method (OAL). 

iii. “Overidentified” and “just-identified” CBPS using all available covariates (Table 

2.2, columns CB.over and CB.just); and “overidentified” and “just-identified” 

CBPS using only covariates selected by the EN.optimal method (Table 2.2, 

columns EN.CB.o and EN.CB.j). 
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iv. Five reference models using the known sets of covariates:  true confounders only 

(Table 2.2, column 𝑿𝑪); confounders and predictors, i.e., the target set (column 

𝑿𝑪𝑿𝑷); confounders and instrumental variables (column 𝑿𝑪𝑿𝑰); confounders, 

predictors, and instrumental variables (column 𝑿𝑪𝑿𝑷𝑿𝑰); and all available 

covariates (column 𝑿𝑪𝑿𝑷𝑿𝑰𝑿𝑺). 

Note that EN0 (ridge regression) is exactly the same as the 𝑿𝑪𝑿𝑷𝑿𝑰𝑿𝑺 reference group. 

The elastic net method is being used here solely for choosing covariates to include in the 

propensity score model, not directly for predicted values; since ridge regression (EN0) does 

no subset selection, all available covariates are always included in the propensity score 

logistic regression model. Table 2.2 presents the bias, standard error, and root mean 

squared error (RMSE) of the ATE estimates for the different scenarios and the various 

propensity score specification methods. 

In this simulation study we were interested in examining how the methods would 

perform in cases with high and low ratios of sample size to total number of parameters. 

Also, for parameter values in the treatment and outcome models, we roughly followed 

settings used in some similar prior simulation studies (Shortreed & Ertefaie, 2017), mainly 

focusing on having enough difference between “high,” “medium,” and “low” strength 

settings such that any performance differences between the tested methods due to this 

factor would be apparent. All simulations and analyses were performed in R 3.2.1 (OAL) 

or R 3.5.2 (all others) (R Core Team, 2018). The CBPS package (Ratkovic, Imai, & Fong, 

2012) was used for all CBPS estimates, and the glmnet package (Hastie & Qian, 2014) was 

used for all elastic net estimates. For OAL, the authors’ provided R code was used 
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(supplementary materials included with the online version of (Shortreed & Ertefaie, 2017)), 

with adaptation for the binary response scenario considered here. 

 

2.3.2 Simulation results 

We highlight below a selection of results to illustrate the major takeaways from the 

study. Table 2.2 summarizes seven different simulation scenarios, with each scenario being 

defined according to the strengths of the associations between the covariates and the 

treatment, the strengths of the associations between the covariates and outcome, the 

correlations among the simulated covariates, and the n/p ratio. For each scenario, Table 2.2 

shows the bias, standard error, and RMSE for the estimated ATE (𝜏̂) under 15 different 

specifications of the propensity score. Five of those propensity score specifications are 

reference models using known sets of covariates, while the other eleven are tested models. 

The results in Table 2.2 are for the fully independent set of covariates (i.e., 𝜌ூ = 𝜌஼ = 𝜌௉ =

0), and the boxplots of the corresponding ATE estimates are presented in Figure A2.1 in 

Appendix 2. Results for scenarios with correlated covariates with 𝜌ூ = 𝜌஼ = 𝜌௉ = 0.2 and 

0.5 are presented, respectively, in Tables A2.1 and A2.2, as well as in Figures A2.2 and 

A2.3 in Appendix 2; in those scenarios, the relative performances of the various methods 

are consistent with the results shown below. 

Examining only the five reference models (last five columns in Table 2.2), the 

𝑿஼𝑿௉ specification has the lowest RMSE for each scenario. This demonstrates the 

statements made in Section 2.1, and for which we showed a proof in Section 2.2.3. In some 

scenarios, the improvement over the 𝑿஼ model from including 𝑿௉ is substantial, while in 

other scenarios it is only slight. Moreover, in every scenario, by comparing columns 𝑿஼ 
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and 𝑿஼𝑿ூ, or columns 𝑿஼𝑿௣ and 𝑿஼𝑿௉𝑿ூ in Table 2.2, it is clear that including 𝑿ூ 

increases the variance of the ATE estimates. In general, we conclude the following: (i) all 

ATE estimates are unbiased when all true confounders (𝑿𝑪) are included in the propensity 

score model; (ii) the standard error and RMSE of ATE estimates are lowest when the 

propensity score model uses confounders and predictors (𝑿஼𝑿௉) only; (iii) the standard 

error and RMSE of ATE estimates increase when the propensity score model includes the 

instrumental variables (𝑿ூ); and (iv) including noise variables in the propensity score 

model further increases the standard error and RMSE of the ATE estimates (column 

𝑿஼𝑿௉𝑿ூ𝑿ௌ). The results in column 𝑿஼𝑿௉ provide benchmarks for comparison with the 

tested models. 

We pointed out that CBPS balances all available covariates. An examination of 

columns CB.over and CB.just relative to other columns in Table 2.2 demonstrates that, 

although they are improvements over the logistic regression model with all covariates 

(columns EN.0 and 𝑿஼𝑿௉𝑿ூ𝑿ௌ, which are equivalent), CB.over and CB.just are the worst, 

or very nearly worst, of all the tested specifications. However, when the CBPS approach 

uses only the variables selected via the EN.optimal method (columns EN.CB.o and 

EN.CB.j), the CBPS performance is improved, and the just-identified CBPS is competitive 

with OAL and elastic net specifications (columns EN0.5, EN0.7, EN1, EN.opt and OAL). 

The first five columns in Table 2.2 show that, as the tuning parameter 𝛼ாே grows 

larger, bias typically stays unchanged, but the variance of the ATE estimates decreases 

(though not necessarily monotonically). This demonstrates that the regularized regression 

penalty is resulting in regression coefficients for covariates unrelated to Y being shrunk to 

zero as the weighting between the lasso penalty and the ridge penalty increasingly favors 
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lasso. The performance under lasso (EN1) and EN.optimal (EN.opt) is competitive with 

the target model (𝑿஼𝑿௉). 

Comparing Scenario 3 (n/p = 5) to Scenario 1 (n/p = 50), or Scenario 5 (n/p = 10) 

to Scenario 4 (n/p = 50), we see that the ratio 
ோெௌா(𝑿𝑪𝑿𝑷𝑿𝑰𝑿𝑺)

ோெௌா(𝑿𝑪𝑿𝑷)
 is higher for the cases with 

the lower n/p ratio (scenarios 3 and 5). In other words, the detriment to the ATE estimates 

of failing to do variable selection is higher in models with higher proportions of spurious 

and instrumental variables. Moreover, as seen in Scenario 2, where n/p < 1 (i.e., p > n), we 

cannot obtain results for OAL or for CB.over or CB.just. In this scenario, performing 

variable selection ahead of time via elastic net successfully excludes spurious and 

instrumental variables and results in ATE estimates with bias, standard error, and RMSE 

very close to those of the target (𝑿஼𝑿௉) specification. 

 



 

Table 2.2: Bias, Standard Error, and Root MSE for selected simulation scenarios. 

 

 
  

REFERENCE MODELS
# SCENARIO EN0 EN0.5 EN0.7 EN1 EN.opt OAL CB.over CB.just EN.CB.o EN.CB.j XC X C X P XCXI XCXPXI XCXPXIXS

Model A: Bias 0.001 0.002 0.002 0.002 0.002 0.004 0.027 -0.007 0.015 -0.004 0.002 0.001 0.002 0.002 0.001
1 SE 0.060 0.032 0.031 0.030 0.035 0.033 0.042 0.048 0.032 0.034 0.032 0.029 0.059 0.057 0.060

n/p=50 RMSE 0.060 0.032 0.031 0.030 0.035 0.033 0.050 0.049 0.036 0.034 0.032 0.029 0.059 0.057 0.060
Model A: Bias * 0.006 0.004 0.003 0.005 * * * 0.035 -0.003 0.006 0.004 0.012 0.010 *

2 SE * 0.045 0.044 0.045 0.044 * * * 0.043 0.042 0.051 0.044 0.082 0.079 *
n/p=0.833 RMSE * 0.045 0.044 0.045 0.045 * * * 0.055 0.042 0.051 0.044 0.083 0.079 *
Model A: Bias -0.007 0.005 0.004 0.004 0.004 -0.005 0.075 0.042 0.026 -0.004 0.003 0.002 0.010 0.011 -0.007

3 SE 0.179 0.045 0.042 0.041 0.043 0.039 0.060 0.063 0.041 0.043 0.045 0.041 0.081 0.079 0.179
n/p=5 RMSE 0.179 0.045 0.043 0.042 0.043 0.040 0.095 0.076 0.049 0.043 0.045 0.041 0.082 0.080 0.179
Model B: Bias 0.004 0.006 0.004 0.003 0.004 0.006 0.043 -0.010 0.026 -0.006 0.003 0.003 0.004 0.004 0.004

4 SE 0.059 0.032 0.029 0.026 0.031 0.030 0.040 0.045 0.029 0.032 0.026 0.025 0.055 0.054 0.059
n/p=50 RMSE 0.059 0.032 0.029 0.026 0.031 0.031 0.059 0.046 0.039 0.032 0.026 0.025 0.055 0.055 0.059
Model B: Bias -0.008 0.005 0.003 0.003 0.003 0.007 0.087 -0.009 0.026 -0.008 0.003 0.003 0.006 0.006 -0.008

5 SE 0.083 0.030 0.028 0.027 0.028 0.031 0.038 0.046 0.030 0.031 0.028 0.027 0.055 0.054 0.083
n/p=10 RMSE 0.084 0.030 0.028 0.027 0.028 0.031 0.095 0.047 0.040 0.032 0.028 0.027 0.055 0.055 0.084
Model C: Bias 0.013 0.003 0.003 0.002 0.004 0.008 0.026 -0.002 0.015 0.001 0.001 0.001 0.013 0.013 0.013

6 SE 0.123 0.041 0.040 0.041 0.046 0.051 0.078 0.090 0.043 0.045 0.042 0.040 0.114 0.112 0.123
n/p=25 RMSE 0.124 0.041 0.040 0.041 0.046 0.052 0.082 0.090 0.046 0.045 0.042 0.040 0.114 0.113 0.124
Model D: Bias 0.004 0.001 0.000 0.000 0.001 0.003 0.024 -0.001 0.015 -0.002 -0.001 0.000 0.002 0.004 0.004

7 SE 0.064 0.043 0.042 0.041 0.044 0.044 0.047 0.051 0.041 0.041 0.048 0.041 0.062 0.056 0.064
n/p=25 RMSE 0.064 0.043 0.042 0.041 0.044 0.045 0.053 0.051 0.044 0.041 0.048 0.041 0.062 0.056 0.064

Notes:  EN=Elastic Net (displayed settings include       =0, 0.5, 0.7, 1, and EN.optimal); OAL=Outcome-adaptive Lasso; CB=Covariate Balancing Propensity Score;
 EN.CB=CBPS after Elastic Net (either over- or just-identified).

SE=Standard Error; RMSE=Root Mean Squared Error.
* indicates estimates not available, unable to use propensity score specification since p > n.
Models are defined by strengths of associations between covariates and treatment/outcome. See Figure 1b and Table 1.
Scenarios are defined by Model and n/p ratio.
EN0 is equivalent to X C X P X I X S ; these both use all available covariates in estimating the propensity scores.
X C X P  is “Target” propensity score specification and is emphasized in italics.
Bold font is used to emphasize tested propensity score estimation method with the lowest RMSE of each scenario.

TESTED MODELS

𝛼ாே

25 
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The importance of conducting variable selection for the propensity score 

specification also varies according to the  strength of the associations between covariates 

and treatment, and between covariates and outcome. When the associations between 

covariates and the outcome are weak, as in Scenario 6, including all covariates in the 

propensity score specification results in ATE estimates with relatively high bias. This is 

consistent with Brookhart et al. (2006); Austin, Grootendorst, and Anderson (2007); 

Patrick et al. (2011); and Zhu, Schonbach, Coffman, and Williams (2015), among others. 

Meanwhile, when the associations between covariates and treatment are weak, as in 

Scenario 7, there is not much cost in terms of bias for using all covariates in the propensity 

score specification. Nevertheless, there remains a cost in terms of precision; the standard 

error of the estimated ATE in Scenario 7 decreases by about one-third for the target 𝑿஼𝑿௉ 

model relative to the 𝑿஼𝑿௉𝑿ூ𝑿ௌ model. The lasso (EN1) and the just-identified CBPS after 

elastic net (EN.CB.just) are the most effective here in attaining minimum RMSE. Note that 

the results for Scenarios 6 and 7 are very similar as long as variable selection is done via 

some method. Indeed, elastic net shows huge improvement over no variable selection even 

with 𝛼ாே set as low as 0.1 (not shown). 

 

2.4 Case Study 

2.4.1 Case study background 

We demonstrate the proposed process on an interesting data set involving the 

association of preoperative conditions with 30-day mortality following cardiac surgery. A 

major challenge of perioperative management for cardiac surgery arises from 

intraoperative and postoperative bleeding. Bleeding can occur due to the trauma of surgery, 
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physiologic changes associated with cardiopulmonary bypass, thrombocytopenia, platelet 

defects, fibrinolysis or coagulation factor deficiency. In these surgeries, blood count, 

coagulation studies and blood group determination are regarded as routine preoperative 

investigations in virtually all patients (Cornelissen & Arrowsmith, 2006). Preoperative 

coagulation studies, including baseline international normalized ratio (INR), platelet 

counts, and platelet function tests, are performed in order to identify risk factors and 

optimize hemostasis. Coagulation studies are of special interest because excessive bleeding 

occurs in between 7% and 53% of patients after cardiac surgery, and bleeding related re-

exploration is associated with high in-hospital mortality and morbidity (Biancari, Mikkola, 

Heikkinen, & al., 2012). Studies on whether these preoperative coagulation tests can 

predict clinical outcomes, or whether correcting any negative conditions found would 

improve outcomes, are sparse and controversial.  

The primary objective of the study was to determine if the level of the preoperative 

international normalized ratio (INR), which is a measure of how long it takes blood to clot, 

is causally associated with post-surgery outcomes, particularly 30-day mortality. The 

dataset was obtained from a retrospective review of 1390 patient medical records at Jewish 

Hospital, Louisville, KY. The patients all had cardiac surgeries performed from January 

2008 to December 2013. The hospital data were linked with the Society of Thoracic 

Surgeons database for additional covariate data. Baseline covariates included age, gender, 

diabetes status, creatinine level,  functional platelet number (i.e., the product of platelet 

count and platelet aggregation percentage), patients’ other health conditions such as 

chronic lung disease, and operative characteristics such as use of an intra-aortic balloon 

pump. This was observational data, as the preoperative level of INR was considered the 
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treatment and was not randomly assigned to units but rather observed as a preoperative 

characteristic of each subject. The data indicated each subject as being in a high INR group 

or a low INR group. It was expected that high INR should be causally associated with a 

higher 30-day mortality, as a higher INR value indicates thinner blood that clots less easily. 

 

2.4.2 Case study results 

Table 2.3 presents the baseline distributions of all covariates in the case study data, 

stratified by treatment and outcome. The 1390 observations were divided nearly equally 

(51% to 49%)  between low INR and high INR groups. 31 (2.2%) of the patients died 

within 30 days post-surgery; of these, 26 (84%) were in the high INR group. Therefore, the 

crude (unadjusted) estimate of the risk difference for 30-day mortality between the high 

and low INR groups was 

𝑃𝑟(𝐷𝑖𝑒𝑑 |𝐻𝑖𝑔ℎ 𝐼𝑁𝑅 𝑔𝑟𝑝) − 𝑃𝑟(𝐷𝑖𝑒𝑑 |𝐿𝑜𝑤 𝐼𝑁𝑅 𝑔𝑟𝑝) = 

ଶ଺

଺଼ସ
−

ହ

଻଴଺
= 0.038 − 0.007 = 0.031, 

with a 95% confidence interval for the estimated risk difference of (0.015, 0.047). A chi-

square test of independence between treatment and outcome was statistically significant 

(Χଶ=15.2, p-value < 0.001). 

However, this was observational data, and consequently, there was risk of the high 

and low INR groups differing in systematic ways, resulting in confounding bias in the 

estimated risk difference. Indeed, as may be seen in Table 2.3, several covariates appeared 

unequally distributed in the two INR groups (chronic lung disease, diabetes, incidence, 

intra-aortic balloon pump, hypertension, congestive heart failure, and type of surgery). Of 

these, chronic lung disease, incidence, intra-aortic balloon pump, hypertension, congestive 
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heart failure, and type of surgery also appeared to be related to outcome, making these six 

variables candidates for true confounders (XC). Three other variables (gender, peripheral 

vascular disease, and myocardial infarction) also appeared related to 30-day mortality 

(outcome), but not to INR group (treatment), making these three variables potential 

predictors (XP). 

We used the proposed method to estimate the 30-day mortality ATE between high 

INR and low INR groups. Applying the elastic net method on the outcome model (i.e., 

regressing mortality on all baseline covariates) identified three covariates that were 

associated with the outcome (gender, intra-aortic balloon pump, and type of surgery); 

hence, these three variables were used in a logistic regression with the INR group as the 

dependent variable to compute the estimated propensity score for each patient. The 

propensity score IPW estimator was then used to compute an adjusted ATE estimate, which 

was 0.021 (0.004, 0.039). While still positive, the magnitude of the estimated ATE was 

about one-third lower than the unadjusted estimate. From the prior discussion and analysis 

in this paper, we believe that the unadjusted estimate is biased. 
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Table 2.3: Baseline distributions of variables by treatment and outcome. 

 

FPN: Functional Platelet Number; CABG: Coronary Artery Bypass Grafting; INR: Int’l Normalized Ratio 
 

Stratified by Treatment Stratified by 30-Day Mortality
Low INR High INR Survived Died % Mortality

Mean/No. (SD/%) Mean/No. (SD/%) Mean/No. (SD/%) Mean/No. (SD/%)
N 706 (50.8)      684 (49.2)      1359 (97.8)      31 (2.2)        2.2
Age 62.31 (11.62)    64.29 (12.47)    63.14 (12.01)    69.29 (13.69)    
Creatinine Level 1.11 (0.83)      1.23 (0.96)      1.16 (0.89)      1.45 (1.21)      
FPN 181.59 (72.41)    185.36 (87.44)    183.97 (80.28)    160.47 (71.69)    
Ejection Fraction 50.29 (15.22)    44.15 (17.50)    47.28 (16.64)    46.81 (17.69)    
Gender

Female 246 (34.8)      216 (31.6)      442 (32.5)      20 (64.5)      4.3
Male 460 (65.2)      468 (68.4)      917 (67.5)      11 (35.5)      1.2

Chronic Lung Disease
No 494 (70.0)      449 (65.6)      928 (68.3)      15 (48.4)      1.6
Mild 118 (16.7)      122 (17.8)      231 (17.0)      9 (29.0)      3.8
Moderate 63 (8.9)        69 (10.1)      128 (9.4)        4 (12.9)      3.0
Severe 31 (4.4)        44 (6.4)        72 (5.3)        3 (9.7)        4.0

Diabetes
No 449 (63.6)      390 (57.0)      820 (60.3)      19 (61.3)      2.3
Yes 257 (36.4)      294 (43.0)      539 (39.7)      12 (38.7)      2.2

Status
Elective 311 (44.1)      300 (43.9)      598 (44.0)      13 (41.9)      2.1
Urgent 392 (55.5)      376 (55.0)      751 (55.3)      17 (54.8)      2.2
Emergent 3 (0.4)        8 (1.2)        10 (0.7)        1 (3.2)        9.1

Incidence
No 650 (92.1)      580 (84.8)      1206 (88.7)      24 (77.4)      2.0
Yes 56 (7.9)        104 (15.2)      153 (11.3)      7 (22.6)      4.4

Intra-Aortic Balloon Pump
No 670 (94.9)      588 (86.0)      1239 (91.2)      19 (61.3)      1.5
Yes 36 (5.1)        96 (14.0)      120 (8.8)        12 (38.7)      9.1

Peripheral Vascular Disease
No 604 (85.6)      583 (85.2)      1163 (85.6)      24 (77.4)      2.0
Yes 102 (14.4)      101 (14.8)      196 (14.4)      7 (22.6)      3.4

Hypertension
No 76 (10.8)      103 (15.1)      174 (12.8)      5 (16.1)      2.8
Yes 630 (89.2)      581 (84.9)      1185 (87.2)      26 (83.9)      2.1

Myocardial Infarction
No 360 (51.0)      375 (54.8)      716 (52.7)      19 (61.3)      2.6
Yes 346 (49.0)      309 (45.2)      643 (47.3)      12 (38.7)      1.8

Congestive Heart Failure
No 337 (47.7)      237 (34.6)      569 (41.9)      5 (16.1)      0.9
Yes 369 (52.3)      447 (65.4)      790 (58.1)      26 (83.9)      3.2

Type of Surgery
CABG 552 (78.2)      383 (56.0)      927 (68.2)      8 (25.8)      0.9
Others 19 (2.7)        50 (7.3)        65 (4.8)        4 (12.9)      5.8
Valve 64 (9.1)        136 (19.9)      191 (14.1)      9 (29.0)      4.5
Both 71 (10.1)      115 (16.8)      176 (13.0)      10 (32.3)      5.4

High INR
No 706 (100.0)    0 (0.0)        701 (51.6)      5 (16.1)      0.7
Yes 0 (0.0)        684 (100.0)    658 (48.4)      26 (83.9)      3.8
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For further comparison, the other methods explored in the simulation study above 

were also used for estimating the propensity scores, with the estimated ATEs subsequently 

computed in each case using IPW. The results of these various approaches at specifying 

the propensity score model are summarized in Figure 2.2. 

 

Figure 2.2: ATE estimates with 95% CIs for different methods for the case study on 30-
day mortality. 95% CI is the bootstrap percentile CI, except for the unadjusted estimate. 

 

From Figure 2.2 it is evident that, after adjusting for important covariates, the ATE 

for being in the high INR group was about 2%, indicating that there was about a 2 

percentage point higher risk of 30-day mortality purely due to higher preoperative INR, as 

compared to lower preoperative INR. We also see in Figure 2.2 that the ATE estimate from 

the propensity score model using all covariates (no variable selection) is less precise than 

the other adjusted estimates, although the difference is not very pronounced for this 

particular data set. The similar performance is most likely due to the fact that the variables 

related to treatment are also related to outcomes, that is, there was no instrumental variables 

in this data set. 
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2.5 Discussion and conclusion 

We have demonstrated from theory as well as via simulation studies that 

eliminating instrumental variables and including true confounders and predictor variables 

in the propensity score specification is beneficial for reducing variance of the ATE 

estimates. We propose using elastic net regression to select the covariates related to the 

outcome variable Y and then using only the selected variables to estimate propensity 

scores. The simulation study endorses the theoretical results developed in this paper, 

although the simulation study serves more as a proof of concept for the elastic net approach 

rather than a definitive evaluation. Based on this study, even a modest effort at removing 

unassociated covariates from the propensity score model can pay large dividends in terms 

of reducing the variance of the ATE estimates. Using lasso (EN1) to select variables for 

the propensity score model is consistently the best, or among the best, approaches. This is 

due to the lasso’s shrinkage of many/most of the extraneous covariates (XIs and XSs).  

The OAL method is usually very good, but OAL is not an option when 𝑝 >  𝑛. The 

same problem holds with CBPS, whether overidentified or just-identified. The proposed 

method is expected to work when 𝑝 > 𝑛 unless the number of true confounding variables 

and predictors is larger than 𝑛 (i.e., (𝑝஼ + 𝑝௉) > 𝑛). Usually in an observational study, the 

number of observations is in thousands, and we expect the number of confounding 

variables and predictor variables to be smaller than 𝑛, even while the total number of 

variables could be large (say, (𝑝஼ + 𝑝௉ + 𝑝ூ + 𝑝ௌ) > 𝑛). In this latter scenario, the 

outcome regression in OAL at stage 1 would suffer, while the proposed method may not. 

When the number of true confounding variables and predictors is larger than 𝑛, the 
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convergence problems that hamper OAL at stage 1 will also pose a problem for this method 

at stage 2, and CBPS would also fail. We also found that for both the overidentified and 

just-identified CBPS methods, the variance of the ATE estimator is relatively high. 

However, in some circumstances, the just-identified CBPS after variable selection via 

elastic net is a very competitive method. 

 

Figure 2.3: Radar chart of RMSE for tested methods, 7 scenarios. Vertex numbers indicate 
simulation scenarios (see Table 2.2). *ATE unestimable in Scenario 2 for OAL, CB.over, 
and CB.just. 
 

The radar chart in Figure 2.3 plots the RMSE for six of the tested propensity score 

specification methods for each of the seven simulation scenarios summarized in Table 2.2. 

From the chart, we can see that CB.over and CB.just always have a RMSE greater than the 

other four methods (except for Scenario 2, for which these two methods and OAL produced 

no estimates, and hence have no RMSE); sometimes, as in scenarios 3, 5, and 6, the excess 

RMSE of these two methods compared to the other methods is substantial. Scenarios 3 and 

5 are scenarios with n/p ratios that, while greater than one, are yet fairly low. The 
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importance of the variable selection step here is even higher than cases in which the n/p 

ratio is high. In Scenario 6, we have strong covariate associations with the treatment, so 

again, the importance of doing variable selection to exclude the instrumental variables is 

very high. In Scenario 7, there is strong covariate associations with the outcome, but not 

the treatment; in this case, there is not such a high cost in terms of RMSE (driven mostly 

by the variance of the ATE estimates) for not doing variable selection. Meanwhile, there is 

not a large difference in RMSE among OAL, EN.CB.over, EN.CB.just, and EN1; however, 

EN1 (lasso) does have, in most cases, the minimum RMSE, albeit sometimes by a very 

slight margin. 

One issue occasionally mentioned with respect to propensity score methods is the 

ability to compute the propensity score without any reference to outcome data. For 

example, Rubin (2007) emphasizes that in planning an observational study, the choices for 

variables to be measured should be made without looking at the impact of those variables 

on the outcome. Rubin is concerned with what is sometimes termed “p-value fishing”: 

“rather than the outcome data 𝑌௢௕௦ being ‘not in sight,’ they are used over and over again 

to fit various models, try different transformations, look at results discarding influential 

outliers, etc.” (p. 25). Rubin recommends that the decisions on propensity score variables 

“…should be done without ever looking at any outcome data, and thus without looking at 

any answers about causal effects” (p. 33). We totally agree that “p-value fishing” must be 

avoided. In our proposed approach, we are not looking at all at the impact on the estimated 

causal effect when determining which variables are included in the propensity score model. 

We are simply recognizing that an observational data set is likely to contain variables that 

are unrelated to the outcome and therefore irrelevant for propensity score methods. In 
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addition, the prognostic score, the score summarizing the covariates’ association with 

outcomes, has been used to estimate ATE (Hansen, 2008); (Leacy & Stuart, 2014). Even 

in RCTs, variables known unrelated to outcome are likely to be – and should be –  ignored; 

stratification preceding randomization is usually done based on covariates associated with 

outcome34. Thus, we maintain that the procedure emphasized throughout this article, i.e., 

to specify the propensity score model by using only covariates associated with the outcome 

and excluding covariates only associated with the treatment, is not only acceptable, but 

highly recommended. Empirical results (such as those from the simulation study described 

in Section 2.3, and those in the literature referenced in Section 2.1) and the theoretical 

results (Section 2.2) clearly demonstrate the increased precision available with this 

approach. 

Our study, although involving extensive simulations and a high number of 

parameter settings, does have some limitations. These limitations consequently speak to 

areas where further investigation is warranted. First, both the treatment variable and the 

outcome variable in the simulation had a fairly high prevalence, particularly compared to, 

say, the prevalence of most diseases. A future study should examine the performance of 

the various propensity score specification methods under rare prevalence of outcome, and 

perhaps under rare prevalence of treatment. Second, our simulation setup included 

relatively few XC, XI, and XP covariates (exactly two of each). Perhaps more of these 

covariate types would affect the relative performance of the methods. Nevertheless, this 

study did take into account a large number of parameters and settings, and it could be fairly 

easily extended to include some of these additional factors. 
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CHAPTER 3 

BAYESIAN CAUSAL INFERENCE USING MCMC 

 

3.1 Introduction 

The application of Bayesian methods in the field of causal inference has a long 

history, as exemplified by Donald Rubin’s 1978 article in The Annals of Statistics, 

“Bayesian Inference for Causal Effects: The Role of Randomization.”  Rubin has a career-

long involvement in the field of causal inference, including on the frequentist side, being 

(along with Paul Rosenbaum) one of the two authors of the seminal 1983 Biometrika article 

“The Central Role of the Propensity Score in Observational Studies for Causal Effects.” A 

great contribution made by Rubin to the field of causal inference was his extension of the 

potential outcomes framework, which was originated in 1923 by Jerzy Neyman, from 

randomized experiments to observational studies. The potential outcomes framework is 

today a common structure in which to study causal inference. In this framework, each study 

unit is hypothesized to have a number of possible outcome values corresponding to the 

number of possible treatments that could be received. For example, with a binary treatment, 

say an experimental drug and a placebo, each study unit would have two potential 

outcomes. Necessarily, only one of the potential outcomes is actually observed, specifically 

that one corresponding to the treatment level received. The other potential outcomes are 

unobserved, counterfactual values. Causal inference proceeds in this potential outcomes 
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framework by viewing these unobserved potential outcomes as missing data. Subject-level 

causal effects would be computed by comparing the outcomes under each treatment level. 

Since only one potential outcome is observed (the “fundamental problem of causal 

inference” (Holland, 1986)), subject-level causal effects are never known. However, 

population-level causal effects may be estimated if the treatment groups are, on average, 

comparable. For the groups to be comparable requires a variety of assumptions, and those 

assumptions are met in different ways in the context of randomized controlled experiments 

and observational studies. 

Bayesian strategies enter the analysis typically in two different ways. First, as in 

the articles by Rubin and Keil, et al. (Keil, Daza, Engel, Buckley, & Edwards, 2018), due 

to the formulation of the problem in a way that implies missing data, Bayesian methods 

may be used for calculating the predictive distributions of the unobserved data (the non-

realized potential outcomes) given the observed covariates and observed outcomes. Then, 

the estimation of causal effects takes place by directly comparing the individual level 

causal effects computed via the predictive distributions. A second common application of 

Bayesian methodologies in causal inference is in conducting sensitivity analysis on certain 

underlying assumptions. For example, an important assumption in the analysis of 

observational data for causal effects is that there are no unmeasured confounders. Viewing 

any unmeasured confounders as missing data, McCandless, Gustafson, and Levy (2007) 

use Bayesian inference on a hypothesized latent bias term representing all unmeasured 

confounders and assesses how large such a bias term need be to affect one’s directional 

conclusion regarding the causal estimand. In a separate paper, McCandless, Gustafson, and 

Austin (2009) use Bayesian methods to investigate how much accounting for uncertainty 
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in the estimation of propensity scores can affect the precision of estimated treatment effects 

derived from the use of those scores. 

In the work presented in this chapter, we take a somewhat different tack. Indeed, 

this approach is aimed very directly at the underlying research question: what is the average 

causal effect of a treatment on an outcome. We do not model the posterior predictive 

distributions of unobserved outcomes, as per Rubin, nor do we conduct sensitivity analysis. 

Rather, we directly model the posterior conditional distribution of the causal effect itself. 

In the process, we incorporate uncertainties inherent in propensity score modeling, in order 

to achieve causal effect estimates with accurate precision. 

To achieve these goals, we use a hierarchical Bayesian structure to describe the 

entire information set, which is understood as the full complement of data, including 

treatment, outcome, and covariates. We build the structure in a way that carries intuitive 

causal interpretation and that links with the common frequentist causal constructs such as 

the propensity score and the average treatment effect. We then parameterize the model with 

compellingly reasonable prior distributions; “reasonable” here is applied with respect to 

choices about the distribution families and structures, while the level of informativeness of 

those priors is then controlled by choices about hyperparameters. Bayesian Markov chain 

Monte Carlo sampling is then conducted directly on the posterior distribution of the causal 

estimand. The method shows promise in comparing admirably with the nonparametric 

inverse probability weighting (IPW) estimator that is commonly used in causal inference. 

The structure of the remainder of this chapter is as follows: in Section 3.2, we 

provide background on causal inference for observational data and specify the causal risk 

difference estimand for the IPW method. We also describe a Bayesian hierarchical 
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structure for conceptualizing an observational data set, and we explain the intuition 

underlying our parameterization of the structure. In Section 3.3, we describe the simulation 

study we executed to test the proposed Bayesian methodology and evaluate it against the 

typical frequentist IPW approach. In Section 3.4, we illustrate application of the method to 

a case study data set. Finally, in Section 3.5, we provide further discussion of the results 

and general conclusions. 

 

3.2 Methods 

We are concerned with the inverse probability weighting (IPW) estimator of 

average treatment effect (ATE). The basic estimator, developed on techniques elucidated 

by Horvitz and Thompson (1952), is an unbiased estimate of ATE and is specified as 

𝜏̂ூ௉ௐ =
1

𝑛
෍

𝑦௜𝑇௜

𝑝௜

௡

௜ୀଵ

−
1

𝑛
෍

𝑦௜(1 − 𝑇௜)
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where 𝑦ଵ, 𝑦ଶ, … , 𝑦௡ are observed outcome values, 𝑇ଵ, 𝑇ଶ, … , 𝑇௡ are observed treatment 

indicators, and 𝑝௜ = Pr (𝑇௜ = 1|𝑿௜) is the propensity score for each subject. Each 𝑿௜ is a 

vector of pre-treatment covariates. However, this estimator lacks robustness, a situation 

that can be improved upon by using “stabilized weights”: 

𝜏̂ூ௉ௐ.ௌ௪ =
∑

𝑦௜𝑇௜

𝑝௜

௡
௜ୀଵ

∑
𝑇௜

𝑝௜

௡
௜ୀଵ

−

∑
𝑦௜(1 − 𝑇௜)
(1 − 𝑝௜)

௡
௜ୀଵ

∑
(1 − 𝑇௜)
(1 − 𝑝௜)

௡
௜ୀଵ

 

as described by Lunceford and Davidian (2004). 
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In this article, we deal with the setting with continuous outcome and binary 

treatment, i.e., 𝑌௜ ∈ ℝ and 𝑇௜ ∈ [0,1}. The covariates 𝑿௜ are considered fixed, but may be 

binary, nominal or continuous. We assume the following conditional distributions for the 

data 𝑌௜ and 𝑇௜: 

𝑌௜|𝑇௜~ ൜
𝑁𝑜𝑟𝑚𝑎𝑙(𝜃 + 𝜏, 𝑝௜𝜎

ଶ), 𝑖𝑓 𝑇௜ = 1

𝑁𝑜𝑟𝑚𝑎𝑙(𝜃, (1 − 𝑝௜)𝜎ଶ), 𝑖𝑓 𝑇௜ = 0
 

and 

𝑇௜|𝑝௜~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝௜). 

In the above, then, 𝜃 is the expected response for a subject in the control group, and 𝜃 + 𝜏 

is the expected response for a subject in the treatment group. 𝜏 captures the treatment effect 

(it is clear that 𝐸[𝑌௜|𝑇௜ = 1] − 𝐸[𝑌௜|𝑇௜ = 0] = (𝜃 + 𝜏) − 𝜃 = 𝜏). Next, 𝑝௜ = Pr (𝑇௜ =

1|𝑿௜) is the propensity score. The scale factor in the variance (𝑝௜ if 𝑇௜ = 1 and (1 − 𝑝௜) if 

𝑇௜ = 0) is closely related to inverse probability weighting, where the weight is 
ଵ

௣೔
 if 𝑇௜ = 1 

and 
ଵ

(ଵି௣೔)
 if 𝑇௜ = 0. Unlike in the frequentist approach, the weights here are considered to 

have variability and are updated over the posterior sampling. 

Next, we need to specify priors for the parameters. We hypothesize the following 

hierarchical scheme that appears fairly complex at first, yet contains logical motivations 

for each element:  

𝜏~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎ఛ
ଶ), 

𝜃~𝑁𝑜𝑟𝑚𝑎𝑙൫0, 𝜎ఏ
ଶ൯, 

and 
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𝜎ଶ~𝐼𝑛𝑣. 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏). 

These three elements of the prior structure are quite straightforward in Bayesian analysis 

of normally distributed data (Gelman et al., 2013). The hyperparameters 𝜎ఛ
ଶ and 𝜎ఏ

ଶ would 

usually be provided large values, resulting in flat, non-informative priors, thus giving 

majority of influence to the data rather than the priors. 

Next, 

𝑝௜|𝛼௜ , 𝜆~𝐵𝑒𝑡𝑎(𝜆𝛼௜ , 𝜆). 

Because 𝑝௜ is a probability it must be between 0 and 1, and thus the Beta distribution is a 

natural choice for its prior. The parameterization here results in an expected value of 

𝐸[𝑝௜|𝛼௜ , 𝜆] =
ఒఈ೔

ఒఈ೔ାఒ
=

ఈ೔

ఈ೔ାଵ
. The expected value is independent of 𝜆. 

Next, 

𝛼௜|𝜷, 𝜈ଶ~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝒙௜
்𝜷, 𝜈ଶ), 

𝜷~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟. 𝑁𝑜𝑟𝑚𝑎𝑙൫𝟎, Σఉ൯, 

𝜈ଶ~𝐼𝑛𝑣. 𝐺𝑎𝑚𝑚𝑎(𝑐, 𝑑), 

and 

𝜆~𝐺𝑎𝑚𝑚𝑎(𝑓, 𝑔). 

Thus, 𝛼௜ provides the connection between the covariates 𝒙௜ and the probability of treatment 

𝑝௜, while 𝜆 (along with 𝛼௜) controls the variance of the Beta distribution: if 𝜆 gets very 

large, 𝑉𝑎𝑟(𝑝௜) gets very small, indicating strong knowledge about the Pr(𝑇௜ = 1|𝑿𝒊). The 

hyperparameters for 𝜈ଶ and 𝜆 are typically given values to result in non-informative priors. 
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The likelihood function that results from the data 𝑦௜ , 𝑇௜ , 𝑖 = 1, … , 𝑛 may be 

expressed as: 

𝐿(𝜏, 𝜃) =
exp ൜− ∑ ൤

𝑇௜(𝑦௜ − 𝜏 − 𝜃)ଶ

2𝑝௜𝜎
ଶ +

(1 − 𝑇௜)(𝑦௜ − 𝜃)ଶ

2(1 − 𝑝௜)𝜎ଶ ൨௡
௜ୀଵ ൠ

𝜎௡൫√2𝜋൯
௡

∏ (1 − 𝑝௜)
ଵି்೔

ଶ 𝑝
௜

்೔
ଶ௡

௜ୀଵ

 

It may be shown that the value of 𝜏̂ that optimizes this likelihood function is the same as 

the equation for 𝜏̂ூ௉ௐ.ௌ௪ given above. This demonstrates that we have formulated our 

Bayesian hierarchical model such that the parameter 𝜏 has a very natural interpretation as 

the average treatment effect, with that estimand understood to be the difference in expected 

values of the outcome under the two treatment levels. 

The benefit achieved from the complexity of this hierarchical structure is, first, that 

we incorporate into the posterior estimation of the treatment effect all of the variability that 

exists in estimating the propensity scores for each subject; and second, that we have an 

extremely flexible model that is capable of providing posterior estimates of the treatment 

effect even under a variety of true underlying data structures and which captures the 

variation inherent in the process of estimating the propensity scores by employing a subset 

of the available measured covariates. 

The hierarchical model described above is by no means the only approach at a 

Bayesian strategy for directly sampling the causal estimand, but an additional advantage it 

carries is flexibility in allowing for the inclusion of constraints on the parameter space that 

be required to analyze real data sets arising from various applications. Such constraints 

may be incorporated by an appropriate prior specification, or modification of the particular 
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parameters affected. An example of this flexibility is provided in Section 3.4 in the analysis 

of the case study data. 

We would like to demonstrate that this is a viable construction for estimating 

average treatment effects in observational data. We follow typical Bayesian methods and 

compute the full joint posterior distribution, as well as the conditional posterior 

distributions for all of the parameters (see Appendix 3 for full details on the derivations of 

the posterior conditional distributions). We note that the parameters 𝜏, 𝜃, 𝜎ଶ, 𝜈ଶ, 𝑎𝑛𝑑 𝜷 all 

have conjugate constructions and hence have specifiable conditional posterior 

distributions. These five parameters may be sampled using a Gibbs sampling approach. 

The remaining three parameters, 𝒑, 𝜶, and 𝜆, have conditional posterior distributions that 

are unknown; for these, we will need to employ some Markov chain Monte Carlo (MCMC) 

approach for the posterior sampling (Gelman et al., 2013). 

 

3.3 Simulation 

Although we have a number of parameters for which we plan to take posterior 

samples, our focus is primarily on 𝜏, the average treatment effect. In order to test and 

demonstrate that the proposed model may be used to gain accurate information about 𝜏, we 

have designed a simulation study to test various aspects of the approach. 
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3.3.1 Simulation procedure 

To describe the simulation study, we use the ADEMP framework advised by Morris 

et al. (2019). ADEMP stands for Aims, Data generating mechanisms, Estimands, Methods, 

and Performance metrics. 

 

Aims: What specifically do we want to learn from the simulation study? 

This study is more to demonstrate proof-of-concept, rather than to delineate 

conditions under which the proposed method is superior to other methods (see Morris, p. 

2077). We wish to evaluate the Bayesian sampler created to implement the Bayesian causal 

inference method devised. In particular, we intend to evaluate the small-sample bias of the 

proposed method; evaluate the variance of the estimator; and evaluate the method’s 

robustness under varying magnitudes and sources of uncertainty in the data being studied. 

 

Data-generating mechanisms: How will simulated data sets be generated? 

We begin by generating a design matrix of dimension n x 5 (𝑛 ∈ {100, 500, 1000}), 

with one column for the intercept and 4 columns for mutually independent and normally 

distributed covariates. We use this design matrix to generate n observations of the binary 

treatment, 𝑇௜ ∈ {0,1}, 𝑖 = 1,2, … , 𝑛, each distributed as 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝௜) where 𝑝௜ =

Pr(𝑇௜ = 1|𝑿௜). The 𝑝௜s are obtained from the underlying model 𝑙𝑜𝑔𝑖𝑡[Pr(𝑇 = 1|𝑿)] =

𝑿𝜷 + 𝜖௣. We use 𝜷 = {0, 4, −2, 0, 0}, and 𝜖௣~𝑁൫0, 𝜎௣
ଶ൯. 𝜎௣

ଶ is a parameter varied in 

different simulation settings; we refer to this parameter as “treatment-level noise,” and it 

reflects the fact that the treatment probabilities are viewed as random variables, not fixed 

probabilities. Finally, having generated the design matrix 𝑿 and the treatment status 𝑇, we 
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generate an outcome value 𝑌~𝑁൫𝜃 + 𝑇𝜏, 𝜎௬
ଶ൯. 𝜎௬

ଶ is another parameter varied in different 

simulation settings. It controls the random noise associated with the outcome. 

It is worth emphasizing that we are not generating the simulated data according to 

the Bayesian hierarchical structure described in Section 3.2. That structure is used to 

facilitate a Bayesian approach at estimating the treatment effect, but it would be far-fetched 

to imagine that any particular data set would have exactly that structure as its underlying 

data generating mechanism. Furthermore, we want an analysis method that is robust and 

broadly applicable, in other words, that is effective under a variety of underlying data 

generating mechanisms. Our construction of the simulated data sets provides us the 

flexibility of testing many different potential data generating mechanisms, all sharing a 

general structure. 

 

Estimands: What is the target of the study? 

The proposed method is intended to produce estimates for 𝜏, the ATE. 

Consequently, the simulation study targets that estimand. We compare to the 

nonparametric IPW estimate, 𝜏̂ூ௉ௐ.ௌ௪. Note that the proposed method involves several 

additional parameters. These weakly identified parameters are not part of the target of the 

study. We monitor them to understand aspects of how the method is working, but we do 

not require them to converge to “actual” values. 

 

Methods: What methods are to be tested or compared? 

Here, “method” refers to an approach for estimating causal treatment effects, as 

understood within the causal inference framework. We are primarily comparing the 
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proposed method described in Section 3.2 with the nonparametric IPW method using 

stabilized weights (Lunceford & Davidian, 2004). 

Specific details about the implementation of the Bayesian method are partially 

general to the model, and partially specific to the simulation setup. For example, regardless 

of the simulation setup, certain parameters have specifiable posterior conditional 

distributions, and hence we use a Gibbs sampling approach for them. Other parameters 

have posterior conditional distributions of unknown form. For those, in this simulation, we 

use a Metropolis-Hastings approach with a random walk technique for drawing new values, 

i.e., we start with the previous value, add a small random perturbation to it, and then assess 

the acceptance probability of the new value. Other approaches could be used, such as 

drawing new values (rather than just incremental change magnitudes from existing value) 

from an actual known probability distribution. Details of the derivations of the conditional 

posterior distributions are provided in Appendix 3. 

 

Performance measures: By what criteria will the methods be measured and compared? 

Evaluation of the proposed method is conducted first by assessing convergence of 

the posterior samples for the measures of primary interest. For comparison of the proposed 

method against the IPW method, we use 𝐵𝑖𝑎𝑠(𝜏̂ூ௉ௐ), 𝑉𝑎𝑟(𝜏̂ூ௉ௐ), 𝑀𝑆𝐸(𝜏̂ூ௉ௐ); 

𝐵𝑖𝑎𝑠(𝜏̂஻௒ௌே), 𝑉𝑎𝑟(𝜏̂஻௒ௌே), 𝑀𝑆𝐸(𝜏̂஻௒ௌே); and the coverage rates of the different estimators. 

Note that Bayesian sampling diagnostics, such as convergence and absence of 

autocorrelation, are not performance measures; rather, these are prerequisites for 

establishing that the proposed Bayesian approach behaves acceptably in producing output 

appropriate for analysis. 
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3.3.2 Simulation results 

The results from the simulation study are summarized in Figure 3.1 and Table 3.1. 

The simulation modified settings for outcome-level noise (“oln”), treatment-level noise 

(“lln”), and sample size (“n”). For each combination of settings, Figure 3.1 displays box 

plots of ATE estimates for 100 simulated data sets. For each simulated data set, 𝜏̂ was 

computed by means of the Bayesian hierarchical approach described in the previous 

section, as well as via the IPW approach. Meanwhile, Table 3.1 summarizes the 200 

different estimates for each scenario in terms of average bias, 95% CI (credible interval for 

Bayesian method, bootstrap percentile confidence interval for frequentist method) 

coverage rate, and average 95% CI width for both of the two approaches. 
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Figure 3.1: Boxplots of simulation study estimates of 𝜏 in 18 scenarios. Comparison of Bayesian 
(BYSN) and Inverse Probability Weighting (IPW) methods for estimating ATE. Simulation 
scenarios vary by treatment-level noise (“lln,” columns), outcome-level noise (“oln,” top three rows 
vs. bottom three rows), and sample size (“n”). The tighter, more precise spread of estimates is 
apparent for the Bayesian method as opposed to IPW, and for the lower setting of outcome-level 
noise. Treatment-level noise does not noticeably affect the distributions of the estimates. 

 

Several patterns are evident in Figure 3.1. First, the MCMC posterior estimates for 

𝜏 have much smaller variations (much higher precision) than the corresponding IPW 

estimates. This is true for every combination of parameter settings. Second, looking across 

the three columns of the figure, changes in treatment-level noise do not have a noticeable 

impact on the spread of effect estimates, for either method. Third, in contrast to the previous 

point, an increase in outcome-level noise does have an impact on the spread of effect 

estimates, specifically by widening the distributions of estimates. This holds consistent for 
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all settings of treatment-level noise and sample size, as well as for both methods. Fourth, 

bias is low, indicating unbiasedness or near unbiasedness of the procedures. 

Table 3.1: Comparison of Bayesian and IPW simulation study results by 𝜎௬
ଶ, 𝑛, and 𝜎௣

ଶ. 

lln=0.0 lln=0.6 lln=2.2
BYSN IPW BYSN IPW BYSN IPW

oln=1.5 n=100 Bias -0.049 -0.214 -0.044 -0.236 -0.013 -0.123
CI cvrg rt. 0.940 0.920 0.950 0.910 0.940 0.910
Avg. CI width 1.132 2.876 1.130 2.881 1.124 2.511

n=500 Bias 0.015 -0.052 0.005 -0.119 0.016 -0.017
CI cvrg rt. 0.870 0.900 0.850 0.860 0.910 0.920
Avg. CI width 0.492 2.261 0.489 2.220 0.504 1.556

n=1000 Bias 0.002 0.036 0.011 0.061 -0.017 0.075
CI cvrg rt. 0.810 0.890 0.850 0.870 0.900 0.940
Avg. CI width 0.352 1.910 0.359 1.842 0.359 1.309

oln=3.0 n=100 Bias -0.127 -0.028 -0.086 -0.471 0.076 0.130
CI cvrg rt. 0.910 0.940 0.950 0.890 0.920 0.940
Avg. CI width 2.282 5.904 2.252 5.673 2.264 5.018

n=500 Bias -0.004 -0.073 0.023 -0.267 -0.001 -0.230
CI cvrg rt. 0.870 0.840 0.870 0.860 0.930 0.880
Avg. CI width 0.988 4.231 0.974 4.485 0.994 2.951

n=1000 Bias 0.005 -0.239 0.011 0.122 0.012 -0.027
CI cvrg rt. 0.880 0.910 0.850 0.910 0.900 0.900
Avg. CI width 0.731 3.943 0.714 3.678 0.755 2.608  

Notes: oln = outcome-level noise (𝜎௬
ଶ); n = sample size; lln = treatment-level noise (𝜎௣

ଶ). 
CI: for the Bayesian method, the 95% credible interval for the second 50% of 10,000 MCMC 
repetitions (the first 50% of posterior samples deleted for burn-in); for the IPW method, 95% 
confidence interval (table shows average coverages and widths of the empirical 95% bootstrap 
confidence intervals resulting from 100 bootstrap samples for each repetition within each 
simulation setting). 
 

The aim for this simulation study as described in the previous sub-section was to 

evaluate whether the proposed Bayesian hierarchical scheme is a viable approach for 

sampling and estimating the causal estimand. The results shown in Figure 3.1 and Table 

3.1 indicate that the method is indeed successfully estimating the average causal effect, and 

it is doing so with greater precision than that which is obtained via the IPW approach. 
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3.4 Case study 

To demonstrate how the proposed method may be put into practical use, we apply 

it to the Lindner dataset contained within the PSAgraphics R package (Helmreich & 

Pruzek, 2009): 

The lindner data contain data on 996 patients treated at the Lindner Center, Christ 
Hospital, Cincinnati in 1997. Patients received a Percutaneous Coronary 
Intervention (PCI). The data consists of 10 variables. Two are outcome: lifepres 
ranges over two values, 11.4 or 0 depending on whether patients survived to six 
months. Secondly, [cost] contains the costs in 1998 dollars for the first six 
months… after treatment with the drug abciximab…. The treatment variable is 
abcix, where 0 indicates standard PCI treatment and 1 indicates standard PCI 
treatment and additional treatment in some form with abciximab. Covariates 
include acutemi, 1 indicating a recent acute myocardial infarction and 0 not; 
ejecfrac for the left ventricle ejection fraction, a percentage from 0 to 90; ves1proc 
giving the number of vessels (0 to 5) involved in the initial PCI; stent with 1 
indicating coronary stent inserted, 0 not; diabetic where 1 indicates that the patient 
has been diagnosed with diabetes, 0 not; height in centimeters; and female coding 
the sex of the patient, 1 for female, 0 male. 

 

In this analysis, we focus on the cost outcome variable. The primary research 

question is whether there is a causal association between use of the drug abciximab and 6-

month hospital costs. Higher 6-month hospital costs for those using the drug may well be 

justified if the drug is effective at extending life spans. However, to understand the cost 

effectiveness of the drug, it is necessary to quantify the causal difference in hospital costs. 

As this is observational data, care must be taken to control for possible confounding 

variables, i.e., other variables that may affect both the outcome (6-month hospital costs) 

and the probability of treatment. To alleviate issues with skewness and extreme positive 

outliers, we work with the natural logarithm of cost. We also remove 26 observations for 

patients who died within 6 months of the procedure, so that we are comparing only patients 

with full 6-month costs. 
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Table 3.2 presents the baseline distributions of all covariates, stratified by the 

treatment. The table also shows the absolute standardized mean difference (ASMD) for 

each covariate, both before and after adjustment based on the estimated propensity scores. 

The ASMD is a metric commonly used in propensity score analysis for evaluating covariate 

balance before and after adjustment on the propensity scores (Austin & Stuart, 2015). The 

propensity score serves two roles; it is, by definition, the probability of the subject being 

in the treatment group, conditional on that subject’s covariates. It is also a balancing score, 

by which is meant that conditional on the propensity score, the distribution of covariates is 

balanced between the treatment and control groups (Rosenbaum & Rubin, 1983). It is this 

latter role, the balancing role, that is most important for controlling for confounding bias 

in observational studies (Shortreed & Ertefaie, 2017). The table demonstrates that the 

baseline propensity score successfully balances all covariates; the maximum adjusted 

ASMD is 0.102, which is sufficiently low. 

Table 3.2: Baseline characteristics stratified by treatment group, 
and covariate balance, Lindner dataset 

 
* Treatment is use of the drug abciximab. 
ASMD: absolute standardized mean difference; MI: myocardial infarction 
 

Stratified by Treatment* Covariate Balance
Control Treatment Unadjusted Adjusted

283 687 ASMD ASMD
Mean (sd) Mean (sd)

Cost (1998 $s) 14,253 (14,488) 16,008 (8,910)
ln(Cost)     9.38 (0.53)     9.58 (0.42)

Mean (sd) Mean (sd)
Height (cm)   171.63 (10.50)   171.50 (10.68) 0.012 0.035
Ejection fraction (%)    52.93 (9.62)    50.46 (10.38) 0.247 0.046
# Vessels in procedure     1.20 (0.47)     1.46 (0.70) 0.433 0.014

# (%) # (%)
Stent used (yes)      165 (58.3)      484 (70.5) 0.256 0.102
Gender (female)      109 (38.5)      226 (32.9) 0.117 0.097
Diabetic (yes)       73 (25.8)      139 (20.2) 0.132 0.024
Acute MI within 1 wk (yes)       16 ( 5.7)      121 (17.6) 0.380 0.090

* Treatment is use of the drug abciximab

CATEGORICAL 
COVARIATES

CONTINUOUS 
COVARIATES

OUTCOME
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In the Bayesian approach, after initial estimation via logistic regression of the 

treatment on the covariates, the vector of treatment probabilities changes with each MCMC 

step. Consequently, the balance of the covariates between the treatment and control groups 

changes. Because the central role of the propensity score is to balance the covariates, we 

impose a constraint to ensure that adequate covariate balance is maintained as we progress 

through the Markov chain posterior sampling. As mentioned in Section 3.2, the proposed 

method is flexible in allowing constraints to be incorporated into the prior specification. 

Here, we impose the constraint by requiring that 𝑀𝑎𝑥(𝐴𝑆𝑀𝐷) < 0.2. If the new sample 

of the vector of propensity scores results in any covariate having ASMD > 0.2, then we 

reject that sample. As the ASMD metric is a function of the 𝑝௜s (that is, a function of the 

subject-level Bernoulli treatment group probabilities), this constraint is imposed on the 

prior distribution of the 𝑝௜s. Whereas in the statement of the model in Section 3.2, we had: 

𝑝௜|𝛼௜ , 𝜆~𝐵𝑒𝑡𝑎(𝜆𝛼௜ , 𝜆) 

we now modify this prior to incorporate the constraint needed for this case study, as: 

𝒑|𝜶, 𝜆~ ෑ 𝐵𝑒𝑡𝑎(𝜆𝛼௜ , 𝜆)
௡

௜ୀଵ
⋅ 𝐼{𝑀𝑎𝑥(𝐴𝑆𝑀𝐷) < 0.2} 

As shown above in Table 3.2, of the 970 patients who survived to six months, 687 

(70.8%) received the treatment drug, and the remaining received only standard care. The 

average 6-month costs for the treatment group was $16,008, while for the control group it 

was $14,253. This leads to a naïve (unadjusted) estimate for the cost difference of $1755, 

with a 95% confidence interval of (-$62, $3572). We used the proposed method to estimate 

the average treatment effect of the use of the drug abciximab on 6-month hospital costs. 

We ran 10,000 Bayesian MCMC iterations, dropping the first 50% for burn-in. The MCMC 
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chains showed good convergence even before the 5000th iteration. From this method, we 

estimated a covariate-adjusted treatment effect (cost difference) of $2078, with a 95% 

credible interval of ($1287, $2860). This point estimate is nearly 20% higher than the 

unadjusted/naïve estimate of $1755, and the credible interval is only 43% as wide as the 

unadjusted confidence interval. 

For further comparison, we also used the frequentist IPW propensity score method 

(using stabilized weights), with 200 bootstrap samples to estimate the standard error of the 

estimated treatment effect. The point estimate from this approach was $1970, with a 95% 

empirical bootstrap confidence interval of ($911, $2916). Figure 3.2, below, illustrates the 

distributions of the Bayesian posterior estimates and of the IPW bootstrap estimates, as 

well as the point estimate and confidence interval of the unadjusted approach. We observe 

that the unadjusted estimate is simply inappropriate in this case: basic assumptions of 

normally distributed data and independent observations that are involved in estimating the 

difference in means of two populations are clearly violated. The IPW point estimate is 

similar to that of the Bayesian method, but the confidence interval is about 30% wider. We 

believe that the Bayesian credible interval represents a reliable estimate of the true causal 

difference in 6-month costs between the two treatment groups. 
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Figure 3.2: Densities of posterior and bootstrap samples, case study. For Bayesian (BYSN) 
method, density of 5000 posterior values (10K posterior samples, 50% removed for burn-
in). For Inverse Probability Weighting (IPW), density of 200 bootstrap samples. Vertical 
reference lines indicate boundaries for the 95% credible interval (BYSN) and 95% 
empirical bootstrap confidence interval (IPW). Naïve/unadjusted point estimate and 95% 
confidence interval also depicted. 

 

3.5 Discussion and conclusions 

There are many statistical considerations involved in the analysis of observational 

data for causal inference. Likewise, there are many potential approaches one may consider 

in such scenarios. On the frequentist side, a variety of propensity score (and other) methods 

have been developed over the past several decades. On the Bayesian side, typically 

Bayesian methods are used for estimating posterior predictive distributions for “missing” 

counterfactual outcomes or for testing sensitivity to various assumptions. In the approach 

described in this paper, we attempt to focus directly on the core research question, 

specifically, what is the average treatment effect of the treatment on the outcome? 
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The simulation study described above provides a proof-of-concept for the proposed 

Bayesian approach. It demonstrates that the approach can work, and that it compares 

favorably against the frequentist IPW method. Further enhancements to the simulation 

study could test a variety of underlying data structures, as well as scenarios with binary 

outcomes, or multilevel treatments. As is common in Bayesian analysis, computational 

time is a consideration. With small to moderate sized datasets, this method performs quite 

well. With large datasets (say n > 10,000 and/or p > 50), the computational demands from 

this method may become onerous. 

In this project, we wish to estimate the average causal effect, but we approach the 

problem from a Bayesian perspective. We use a Bayesian hierarchical structure to 

conceptualize the data, and then attempt to use posterior sampling to estimate the causal 

effect parameter directly. The hierarchical model described above is by no means the only 

way to formulate the problem. In Appendix 4, we provide an alternative formulation and 

apply a weighted likelihood approach for summarizing the data, which will be investigated 

in future work. 
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CHAPTER 4 

INNOVATIVE APPROACH FOR SUBGROUP ANALYSIS 

 

4.1 Introduction 

Observational studies differ from experimental studies in that assignment of 

subjects to treatments is not randomized but rather occurs due to natural mechanisms, 

which are usually hidden from the researchers. Yet objectives of the two studies are 

frequently the same: identify the treatment effect of some exposure on a population. 

Furthermore, in both types of studies it is frequently of interest to learn whether treatment 

effects differ across particular subgroups of subjects, a situation sometimes termed 

treatment heterogeneity. While these objectives can be achieved directly in an experimental 

context due to the design imposed on the study, in an observational study special care must 

be taken to avoid confounding bias in treatment effect estimates, particularly when the 

number of covariates is large. This research focuses on avoiding confounding bias in 

estimation of treatment effect, with special focus on identifying effect modifiers. We 

present a method which efficiently selects effect modifiers from the set of covariates and 

computes unbiased estimates for subgroups of interest. The goal is to deliver more targeted 

advice describing circumstances where a treatment may be more beneficial for one or some 

groups versus others. 
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There are several motivations for being concerned with subgroup analysis 

(Lipkovich, Dmitrienko, & B D'Agostino Sr, 2017). First, in the context of a Phase III 

clinical trial, it may be that the trial fails overall, but the experimental treatment may still 

offer benefit to some subset(s) of the population. Or, perhaps the Phase III trial is 

successful, but the sponsor wants to target the experimental treatment to the subset of the 

population likely to benefit the most. Similarly, but on the negative side, it may be that due 

to differing safety profiles across the population, regulators deem certain labeling 

restrictions are needed for a drug on the market. Finally, with ever-increasing attention 

being given to “personalized medicine,” the goal of identifying optimal treatment regimes 

from a variety of available treatments often leads to methods involving subgroup analysis 

(Foster, Taylor, Kaciroti, & Nan, 2015). Any of these motivations, or variations of them, 

could occur in situations in which observational data, rather than experimental data, is the 

only – or the most feasible – data available for informing the research question. 

A helpful framework for classifying statistical methods related to subgroup analysis 

is provided by Lipkovich et al. (2017). The authors distinguish four types of methods that 

fall along a spectrum from purely confirmatory to focused on subgroup discovery. First is 

confirmatory subgroup analysis, which is concerned with evaluating a small number of 

pre-defined subgroups. Second is exploratory subgroup evaluation, in which analysis 

focuses on a relatively small number of subgroups that are pre-specified, and where the 

focus is mostly on interactions between treatments and covariates, as well as evaluating 

consistency. Third is post-hoc subgroup evaluation, in which post-hoc assessments are 

made of the differing treatment effects within a relatively small number of subgroups. This 

group is more ad hoc than the previous group and would apply to situations dealing with 
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regulatory inquiries, post-marketing activities, and safety monitoring. Fourth is subgroup 

discovery, in which the goal is selecting the most promising subgroups out of a potentially 

large number of candidates. Data mining or machine learning algorithms are likely to be 

employed here, and the objective is frequently to define subgroups for future analysis in 

confirmatory studies, such as done by Wang, Schoenfeld, Hoeppner, and Evins (2015). 

One extremely common theme in the subgroup analysis literature is that of 

multiplicity control, i.e., controlling Type I error rate. Lipkovich et al. (2017) reviewed a 

large amount of literature that provided guidelines that should be followed in conducting 

subgroup analysis. The authors summarized the “general theme” of the guidelines in six 

ideas; five of these, arguably, relate to multiple comparison issues. In arguing for 

“principled data-driven strategies” for conducting subgroup analysis, as opposed to the 

“guideline-driven approach,” the authors expand on the idea of necessary multiplicity 

control in an interesting way; for confirmatory subgroup analysis, multiplicity control must 

be used but must encompass the entire subgroup identification strategy. Furthermore, the 

multiplicity control should be used in conjunction with “complexity control.” While the 

former is concerned with controlling Type I error rates, either via strong family-wise error 

rate control or via limited false discovery rate, the latter is concerned with avoiding data 

overfitting. As the authors put it, “[a]pplying multiplicity adjustments following subgroup 

selection is an important but insufficient step, as it would not help find the right covariates 

‘after the fact’” (p. 139). The complexity control should be built into the full process of 

model selection, e.g., via penalized likelihood methods; this lessens the multiplicity 

burden, making these two ideas complementary concepts that “should be used in 

combination” (p. 139). 
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Another common theme in the subgroup analysis literature is the distinction 

between “black box” methods and those with readily interpretable decision rules. Laber 

and Zhao (2015) explain that methods based on decision trees (Breiman, 2001) are popular 

because they fit this latter description, and as such, they are easily implemented in the field. 

In contrast, regression-based approaches (e.g., Qian and Murphy (2011) and Brinkley, 

Tsiatis, and Anstrom (2010)) typically face the choice between constructing parsimonious 

models leading to more interpretable decision rules but subject to model misspecification, 

or more complex models that may avoid misspecification but result in “unintelligible” 

treatment rules. Tian, Alizadeh, Gentles, and Tibshirani (2014) propose such a regression-

based model; in their approach, they use modified covariates in a regression of the outcome 

on treatment and treatment-covariate interaction terms and stratify subjects based upon 

their resulting predicted treatment response profile; while this approach serves to divide up 

an existing data set into, say, a low score and a high score group (with one or the other of 

those indicated as benefiting more from the treatment), no particular rules are provided for 

guiding decisions about future subjects. 

In this project, we propose a flexible outcome model, where the control group 

response profile is captured by a non-parametric function, and treatment heterogeneity is 

captured by the interaction term between treatment and a linear combination of covariates. 

Penalized regression and inverse probability weighting (IPW) are applied to select the 

important variables in the interaction, thus the effect modifiers and subgroups  can be 

identified. The approach is quite flexible, and it can be applied to data from either 

randomized trials or observational studies. 
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The structure of the remainder of this chapter is as follows: in Section 4.2, we 

describe the context and a proposed method for conducting subgroup analysis. This method 

fits within the fourth category of subgroup analysis described above; it is concerned with 

identifying the right treatment for a given patient, rather than identifying the right patient 

for a given treatment. In Section 4.3, we describe the simulation study we executed to test 

the proposed methodology. In Section 4.4, we illustrate application of the method to a case 

study data set. Finally, in Section 4.5, we provide further discussion of the results and 

general conclusions. 

 

4.2 Methods 
Let (𝑿, 𝑇, 𝑌) indicate the triplet for the baseline covariates, treatment group and 

outcome variable, with 𝑇 ∈ {0,1}. Let (𝑿௜ , 𝑇௜ , 𝑌௜) (𝑖 = 1, … , 𝑛) indicate a random sample 

from a population of interest. The sample could result from either a randomized 

experimental design or an observational study. The following model (1) has often been 

used (Fu, Zhou, & Faries, 2016) to examine treatment heterogeneity, identify the subgroup 

which may benefit from the treatment, and select the optimal treatment regime:  

𝐸(𝑌|𝑿, 𝑇) = ℎ(𝑿) + 𝑔(𝑿)𝑇.                                        (1) 

In particular, the interaction term 𝑔(𝑿)𝑇 plays an important role in identifying the 

optimal treatment or identifying the subgroup which receives more benefit from the 

treatment. We use the concept of potential outcomes (Rubin, 1974) to look at the role of 

𝑔(𝑿). We denote with 𝑌(଴) and 𝑌(ଵ), respectively, the potential outcomes for control and 

treatment for a given subject with covariates 𝑿. Here we assume that exchangeability and 

consistency hold (Hernán & Robins, 2020):  (i)  exchangeability means that  𝑌(௔)⟂T|𝐗, 

and (ii) consistency means that the observed outcome equals the potential outcome 
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corresponding to the treatment the subject receives, that is, 𝑌 = 𝑇𝑌(ଵ) + (1 − 𝑇)𝑌(଴). If 

we assume model (1) is correctly specified, then the treatment effect for a subject with 

covariate 𝑿 would be  

𝐸ൣ𝑌(ଵ) − 𝑌(଴)|𝑿൧ = 𝐸ൣ𝑌(ଵ)|𝑿൧ − 𝐸ൣ𝑌(଴)|𝑿൧ 

= 𝐸ൣ𝑌(ଵ)|𝑿, 𝑇 = 1൧ − 𝐸ൣ𝑌(଴)|𝑿, 𝑇 = 0൧      (by exchangeability) 

= 𝐸[𝑌|𝑿, 𝑇 = 1] − 𝐸[𝑌|𝑿, 𝑇 = 0]              (by consistency) 

= [ℎ(𝑿) + 𝑔(𝑿)] − [ℎ(𝑿)]                         (by (1)) 

= 𝑔(𝑿). 

We want to identify the group in which subjects have a beneficial treatment effect, 

that is 𝒮 = {𝐗: EൣY(ଵ) − Y(଴)|𝐗൧ > 0}. In other words, 𝒮 = {𝑿: 𝑔(𝑿) > 0}. Here, the 

primary interest is to estimate the contrast 𝑔(𝑿) to identify the subgroup which benefits 

more from treatment. To facilitate a clinical decision, we would like the 𝑔(𝑿)  function to 

be simple and to capture the main variables for decision making. The ℎ(𝑿) function 

captures the response profile under control, which is not of direct interest when the research 

question is to examine whether any subgroup has a differing response to treatment. Thus, 

we can consider ℎ(𝑿) to be a nuisance function, which is used to facilitate accurate 

estimation of the 𝑔(𝑿) function. The structural nested mean model (SNMM) (Hernán & 

Robins, 2020) uses a parametric function for 𝑔(𝑿) (for example, 𝑔(𝑿;  𝜷) = 𝑿𝜷) to 

estimate the parameter 𝜷. The first step is to link the SNMM with the observed data; using 

the assumption of consistency, we have (Hernán & Robins, 2020): 

𝑌(଴) = 𝑌 − 𝑇𝑔(𝑿;  𝜷).                                               (2) 
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When only one parameter 𝛽 is involved, 𝛽 has been estimated by minimizing the 

association between 𝑌(଴) and 𝑇. Specifically, 𝛽 is obtained by solving the following 

estimating equations: 

∑ ൫𝑌௜ − 𝑇௜𝑔(𝑋௜;  𝛽)൯(𝑇௜ − 𝐸(𝑇௜|𝑋)) = 0௡
௜ୀଵ .                                  (3) 

Here, 𝐸(𝑇|𝑋) = Pr(𝑇 = 1|𝑋), the probability, conditional on covariates, of being in the 

treatment group. In a randomized experiment, this probability is a constant, while in an 

observational study, it is the propensity score and must be estimated. 

When 𝜷 is a vector, in what is termed the A-learning method (Schulte, Tsiatis, 

Laber, & Davidian, 2014) the following estimating equations have been proposed 

(Vansteelandt & Joffe, 2014): 

∑ ቄ
డ௚(௑೔;ఉ)

డఉ
ቅ {𝑌௜ − 𝐸(𝑌௜|𝑋௜) − 𝑔(𝑋௜; 𝛽)(𝑇௜ − 𝐸(𝑇௜|𝑋))}{𝑇௜ − 𝐸(𝑇௜|𝑋)} = 0௡

௜ୀଵ .         (4) 

Note that 𝐸(𝑌|𝑋) ≠ ℎ(𝑋), instead  

𝐸(𝑌|𝑋) = න 𝑦𝑓(𝑦|𝑥)𝑑𝑦 = ඵ 𝑦𝑓(𝑦, 𝑡|𝑥)𝑑𝑡𝑑𝑦 = ඵ 𝑦𝑓(𝑦|𝑥, 𝑡)𝑓(𝑡|𝑥)𝑑𝑡𝑑𝑦 

= න 𝑦𝑓(𝑦|𝑥, 𝑡 = 0)𝑓(𝑡 = 0|𝑥)𝑑𝑦 + න 𝑦𝑓(𝑦|𝑥, 𝑡 = 1)𝑓(𝑡 = 1|𝑥)𝑑𝑦 

= න 𝑦(଴)𝑓൫𝑦(଴)ห𝑥, 𝑡 = 0൯𝑓(𝑡 = 0|𝑥)𝑑𝑦(଴)

+ න 𝑦(ଵ)𝑓൫𝑦(ଵ)ห𝑥, 𝑡 = 1൯𝑓(𝑡 = 1|𝑥)𝑑𝑦(ଵ) 

= 𝐸൫𝑌(଴)ห𝑋൯𝑃𝑟(𝑇 = 0|𝑋) + 𝐸൫𝑌(ଵ)ห𝑋൯𝑃𝑟(𝑇 = 1|𝑋) 

= ℎ(𝑋)൫1 − 𝐸(𝑇|𝑋)൯ + ൫ℎ(𝑋) + 𝑔(𝑋)൯𝐸(𝑇|𝑋) 

= ℎ(𝑋) + 𝑔(𝑋)𝐸(𝑇|𝑋) = ℎ଴(𝑋). 
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We define ℎ଴(𝑿) = 𝐸(𝑌|𝑿) = ℎ(𝑿) + 𝑔(𝑿)𝐸(𝑇|𝑿). It has been shown (Schulte 

et al., 2014) that Equation (4) provides consistent estimates for the contrast function if the 

model for 𝑔(𝑿) and the propensity score model are correctly specified. Also, Lu, Zhang, 

and Zeng (2013) assume ℎ(𝑋) to be a parametric function, for example ℎ(𝑋;  𝛾) = 𝑋𝛾. 

However, our objective is not to estimate ℎ(𝑋), nor to estimate ℎ଴(𝑋). Instead, we are 

interested in estimating the interaction funtion 𝑔(𝑋), which captures the treatment 

heterogeneity. Let us assume that 𝑔(𝑋) has a functional form as 𝑔(𝑋௜; 𝛽). The loss function 

(i.e., the sum of squares for errors) 𝐿ଵ(𝛽) =
ଵ

௡
∑ [𝑌௜ − ℎ(𝑋௜) − 𝑇௜𝑔(𝑋௜;  𝛽)]ଶ௡

௜ୀଵ  can be 

written equivalently as  

𝐿(𝛽) =
1

𝑛
෍[𝑌௜ − ℎ଴(𝑋௜) − 𝑔(𝑋௜;  𝛽)(𝑇௜ − 𝐸(𝑇௜|𝑋௜))]ଶ.

௡

௜ୀଵ

                        (5) 

Estimating equation (4) can be linked with the loss function in equation (5) (Lu et al., 

2013). The parameter 𝛽 can be estimated by  

෍ ቊ
𝜕𝑔(𝑋௜; 𝛽)

𝜕𝛽
ቋ {𝑌௜ − ℎ(𝑋௜; 𝛾) − 𝑇௜𝑔(𝑋௜; 𝛽)}{𝑇௜ − 𝐸(𝑇௜|𝑋)} = 0

௡

௜ୀଵ
.            (6) 

The derivative of 𝐿ଵ(𝛽) with respect to 𝛽 will not result in equation (6), which is the 

equation related to A-learning. Thus, we use the objective function in equation (5). We 

propose using a more flexible and nonparametric model for ℎ଴(𝑋) (for example, the 

generalized boosted model (McCaffrey, Ridgeway, & Morral, 2004), or the random forest 

method (Breiman, 2001)), while we use a relatively simple model for 𝑔(𝑋;  𝛽). For 

example, we take 
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𝑔(𝑋௜;  𝛽) = 𝛽଴ + ෍ 𝑋௜௝𝛽௝

௣

௝ୀଵ

+ ෍ ෍ 𝑋௜௝

௣

௝ᇲୀ௝ାଵ
𝑋௜௝ᇲ𝛽௝௝ᇲ

௣ିଵ

௝ୀଵ

= 𝑋௘௫௧𝛽, 

in other words, a simple linear combination of the variables we are interested in. 

We incorporate complexity control into the process by using lasso (Tibshirani, 1996) 

or the elastic net (Zou & Hastie, 2005) method to select the few important variables to 

identify the subgroup that receives more benefit from the treatment. We propose to estimate 

ℎ(𝑿) non-parametrically and estimate 𝑔(𝑿;  𝛽) using penalized regression, as detailed in 

the following steps: 

(i) Obtain 𝐸(𝑇|𝑋) = 𝑃𝑟 (𝑇 = 1|𝑋): For an observational study, we estimate the 

probability, perhaps via logistic regression; for a randomized study, 𝐸(𝑇|𝑋) is 

assumed to be a known constant. For example, 𝐸(𝑇|𝑋) might equal 0.5 for a 

randomized trial with equal probability of control or treatment assignment. 

(ii) Estimate 𝐸(𝑌|𝑋) = ℎ଴(𝑋) nonparametrically: We fit the model 𝐸(𝑌|𝑋) =

ℎ଴(𝑋) using a nonparametric approach (e.g., random forest or generalized 

boosted model) to obtain an estimate of  ℎ଴(𝑋), which we denote as ℎ෠଴(𝑋). For 

this step, we ignore the treatment variable and fit the outcome model using all 

observed data, including observations from both control and treatment subjects.  

(iii) Estimate the contrast function 𝑔(𝑋; 𝛽): We set 𝑌∗ = 𝑌 − ℎ෠଴(𝑋), and set 𝑋∗ =

𝐷𝑖𝑎𝑔(𝑇 −  𝐸(𝑇|𝑋))𝑋௘௫௧. We then use lasso or the elastic net method to 

estimate 𝑔(𝑋;  𝛽) by minimizing 𝐿(𝛽) = (𝑌∗ − 𝑋∗𝛽)்(𝑌∗ − 𝑋∗𝛽). The 

minimization of the loss function in this step using penalized regression 

methods results in the selection of variables that interact with the treatment to 

modify the treatment effect. 
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(iv) Identify subgroup(s) benefiting from treatment: We define the estimated 

subgroup as 𝒮መ = {X: 𝑔൫𝑋; 𝛽መ൯ > 0}, or, depending on the specific application, 

we may use 𝒮መఋ = {𝑋: 𝑔൫𝑋; 𝛽መ൯ > 𝛿} for some clinically meaningful value 𝛿. 

 

4.3 Simulation 

4.3.1 Simulation procedure 

As a proof-of-concept we designed a simulation study to implement the proposed 

method. In this section we use the ADEMP framework described by Morris et al. (2019) 

as a methodical approach for planning and describing our simulation study. Our decisions 

for the various aspects of the study were to a large extent influenced by the simulation 

study conducted by Lu et al. (2013), which is for randomized controlled trials (RCTs). Our 

approach is applicable to both RCTs and observational studies. 

 

Aims: What specifically do we want to learn from the simulation study? 

Our aims for the simulation study were to demonstrate that our proposed method is 

effective at identifying subgroups under a variety of underlying data conditions. The 

outcome was designed such that a higher value indicated a more desirable response.  

 

Data-generating mechanisms: How will simulated data sets be generated? 

Our data generating mechanism varied those dimensions that were of greatest 

importance in determining the conditions under which the proposed method is effective. 

As in Lu et al. (2013), we used 10 covariates, but whereas those authors solely used a 

correlated structure, we compared performance under both correlated and independent 
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covariates. We do advise our method for both experimental and observational data, and so 

while Lu et al. (2013) treated only experimental data, we also included several different 

types of observational data scenarios, varying in the degree and type of confounding that 

was present. Other simulation parameters that were varied included sample size, underlying 

probability of treatment, signal-to-noise ratio, and treatment effect size. 

To describe our data generating mechanism in detail, we use the outcome model 

𝑌 = ℎ(𝑿; 𝜸) + 𝑇𝑔(𝑿; 𝜷) + 𝜖, while the probability of treatment is computed via the model 

𝑙𝑜𝑔𝑖𝑡(Pr[𝑇 = 1|𝑿]) = 𝑘(𝑿; 𝝓), where 𝑘(𝑿; 𝝓) = 𝝓்𝑿෩. We thus have three functions,  

ℎ(⋅), 𝑔(⋅), and 𝑘(⋅), that govern the relationships among covariates, treatment, and 

outcome. The h-function controls the complexity and linearity of the relationship between 

the outcome Y and the covariates, under no treatment. The g-function controls the nature 

of the interaction effects between the treatment and covariates; as described in Section 4.2, 

this is the key function for identifying subgroups. Finally, the k-function specifies the 

relationship between the covariates and the treatment.  

The simulation evaluated the proposed method under scenarios that differed first 

with respect to the complexity of the response profile under control (i.e., the h-function), 

and second with respect to the nature and degree of confounding (i.e., the k-function). Table 

4.1 shows the exact settings used for the h-, g-, and k-functions. 
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Table 4.1: Settings for h-, g-, and k-functions in simulation scenarios. 

𝑌 = ℎ(𝑿; 𝜸) + 𝑇𝑔(𝑿; 𝜷) + 𝜖 
𝑋 = (𝑋ଵ, 𝑋ଶ, … , 𝑋ଵ଴)~𝑀𝑉𝑁(0, 𝚺), 𝜖~𝑁(0, 0.5ଶ) 

𝑔(𝑿; 𝜷) = 𝜷்𝑿෩, where 𝑿෩ ≡ (1, 𝑿்)் 
𝜷 = (1, 1, 𝟎଻, −0.9, 0.8)் 

𝟎ௗ indicates a vector of zeroes of length 𝑑. 

Models for ℎ(𝑿; 𝜸):   Y1:   ℎ(𝑿; 𝜸) = 1 + 𝜸ଵ
்𝑿 

  Y2:  ℎ(𝑿; 𝜸) = 1 + 0.5(𝜸ଵ
்𝑿)(𝜸ଶ

்𝑿) 

  Y3:  ℎ(𝑿; 𝜸) = 1 + 0.5 sin(𝜋𝜸ଵ
்𝑿) + 0.25(1 + 𝜸ଶ

்𝑿)ଶ 
           𝜸ଵ = (1, −1, 𝟎଼)் and 𝜸ଶ = (1, 𝟎ଶ, −1, 𝟎ହ, 1)் 

Propensity score models: 
 
𝑙𝑜𝑔𝑖𝑡(Pr[𝑇 = 1|𝑿]) =

𝑘(𝑿; 𝝓) = 𝝓்𝑿෩. 

 𝝓஺ = (1, 𝟎ହ, 1, 1, 𝟎ଷ)்;  

𝝓஻ = (1, 𝟎଺, 1, 1, 1, 0)் 

𝝓஼ = (1, 𝟎ଶ, 1, 0, 1, 1, 1, 1, 𝟎ଶ)் 

𝝓஽ = (1, 0, 1, 0, 1, 𝟎଺)் 

 𝝓ோ = 𝟎ଵଵ, 𝑘(𝑿; 𝝓𝑹) = 0  (Randomized experiments) 
 

 In every case, 𝑔(𝑿; 𝜷) = 𝜷்𝑿෩, where 𝑿෩ ≡ (1, 𝑿்)் and 𝜷 = (1, 1, 𝟎଻, −0.9, 0.8)்; 𝟎ௗ 

indicates the zero vector of length d. The three different formulations for the outcome, 𝑌, 

were obtained by varying the h-function. For Y1, ℎ(𝑿; 𝜸) = 1 + 𝜸ଵ
்𝑿, an ordinary linear 

combination of the covariates; for Y2, ℎ(𝑿; 𝜸) = 1 + 0.5(𝜸ଵ
்𝑿)(𝜸ଶ

்𝑿); and for Y3, 

ℎ(𝑿; 𝜸) = 1 + 0.5 sin(𝜋𝜸ଵ
்𝑿) + 0.25(1 + 𝜸ଶ

்𝑿)ଶ, where 𝜸ଵ = (1, −1, 𝟎଼)் and 𝜸ଶ =

(1, 𝟎ଶ, −1, 𝟎ହ, 1)். These specifications were motivated by the intention of mimicing the 

simulation approach used in Lu (2013). However, whereas that study considered only 

experimental data, we also considered observational data where Pr(𝑇 = 1|𝑿) was assumed 

unknown. We experimented with four different approaches at constructing the Pr(𝑇 =

1|𝑿). In each case, the relationship could be expressed generally as 𝑙𝑜𝑔𝑖𝑡(Pr[𝑇 = 1|𝑿]) =

𝑘(𝑿; 𝝓) = 𝝓்𝑿෩. For specifications A, B, C, and D, we used 𝝓஺ = (1, 𝟎ହ, 1, 1, 𝟎ଷ)்; 𝝓஻ =

(1, 𝟎଺, 1, 1, 1, 0)்; 𝝓஼ = (1, 𝟎ଶ, 1, 0, 1, 1, 1, 1, 𝟎ଶ)்; and 𝝓஽ = (1, 0, 1, 0, 1, 𝟎଺)், 

respectively. These choices were made based upon considerations of how the covariates 



68 
 

were used in the h- and g-functions and the structure of confounding that resulted; the 

variance-covariance matrix for the correlated covariates scenarios, detailed in the next 

paragraph, also factored into making these decisions. The causal diagrams in Figure 4.1 

illustrate these relationships as resulting from the first h-function specification (Y1) and 

four different propensity score models. 

 

Figure 4.1: Structure of confounding in various simulation scenarios. These causal 
diagrams show the structure of confounding for the four observational data scenarios for 
the first specification of the outcome, Y. Small circles with numbers represent individual 
covariates, of which there are 10. The h-function and the g-function remain the same for 
these four scenarios; only the k-function, which specifies the relationship between the 
covariates and the probability of treatment, changes. 
 

Consequently, in our simulation, for each of the three constructions of Y, we tested 

five constructions of the treatment-covariate relationships: the four observational scenarios 
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just described, in which during the estimation process we treated the propensity score as 

unknown, and the one experimental data scenario in which the propensity score was 

known. This gave 15 versions of the generated outcome values. The process for generating 

the data was as follows: we first generated values for 10 covariates and one error term, with 

sample size n. The covariates had a multivariate normal distribution, 

𝑿~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝚺), and the error term had the distribution 𝜖~𝑁(0, 0.5ଶ). 

For the independent covariates scenarios, 𝚺 = 𝑰ଵ଴, while for the correlated covariates 

scenarios, we used 𝐶𝑜𝑟𝑟൫𝑋௝, 𝑋௞൯ = 0.5|௝ି௞|, in keeping with Lu 2013.(Lu et al., 2013) We 

then used the values of the covariates 𝑿 to compute Pr(𝑇 = 1|𝑿) for the observational data 

scenarios, or we set Pr(𝑇 = 1|𝑿) = 0.5 for the experimental data scenarios. We then 

generated the vector of binary treatment indicators according to 

𝑇௜~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(Pr(𝑇௜ = 1|𝑿௜)). Finally, we computed Y using the known values of 𝑿 and 

𝑇 and the appropriate h- and g-functions for each specific scenario. 

 

Estimands: What is the target of the study? 

The target of this simulation study was accurate prediction. Hence we focused on 

the more general term “target” rather than “estimand” as described in Morris et al. (2019), 

Section 3.3.  

 

Methods: What methods are to be tested or compared? 

The proposed method, which is the subject of this paper, was the primary method 

used in this simulation, as we wished to demonstrate that the method works. 
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Performance measures: By what criteria will the various methods be measured and 

compared? 

Following Lu et al. (2013), we employed several different performance measures. 

The most important of these was termed Percent Correct Decision (PCD). This could be 

expressed simply as 𝑃𝐶𝐷 =
ଵ

௡
∑ 𝐼 ቂ𝑠𝑖𝑔𝑛 ቀ𝑔൫𝑋௜; 𝛽መ൯ቁ = 𝑠𝑖𝑔𝑛൫𝑔(𝑋௜; 𝛽)൯ቃ௡

௜ୀଵ . We 

constructed 𝑌 such that larger values were more desirable; thus, 𝑔൫𝑋௜; 𝛽መ൯ > 0 implied that 

subject i should be prescribed the treatment, while 𝑔൫𝑋௜; 𝛽መ൯ < 0 implied that subject i 

should not be prescribed the treatment. PCD, then, measured how well the predicted 

decision matched the known best decision. Other performance measures (see Table 4.2) 

included mean squared error (MSE), measuring the accuracy of coefficient estimates in the 

g-function; the number of correctly dropped covariates (Corr0); the number of incorrectly 

dropped covariates (Incorr0); and the average proportion of times that the method selected 

the exactly correct set of covariates (Exact). 

 

4.3.2 Simulation results 

The simulation scenarios varied in terms of sample size, independence versus 

correlation of covariates, structure of confounding, and nature of the h-function. Table 4.2 

presents results for the largest sample size (n=1000); similarly structured tables of results 

for other sample sizes (n=400, 200 and 100) are presented in Appendix 5. 

From Table 4.2 we observe that the absolute levels of the PCD are typically in the 

high 90 percents for independent covariates, and in the mid-90 percents for correlated 

covariates, demonstrating that the proposed method leads, a great majority of the time, to 

the correct decision regarding whether a particular subject should receive treatment or not. 
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It is also apparent that the method performs better for independent than for 

correlated covariates; the ratio of the PCD of the correlated covariates scenarios to that of 

the independent covariates scenarios is always in the range of 0.95-0.99, i.e., the PCD is 

about 1% to 5% lower when covariates are correlated. Moreover, the number of correctly 

dropped covariates is close to seven, the true number in all scenarios, but the independent 

covariates scenarios performed slightly better than the scenarios with correlated covariates. 

Correlation engrained in the covariate structure will make it more difficult to accurately 

de-select those which are not involved in the g-function (see the ratio for the Corr0 metric 

in Table 4.2). 

Comparing the outcome models Y1, Y2, and Y3, the method does best for the least 

complicated h-function (Y1), then next best for the Y3 h-function, and third best for the 

Y2 h-function. Performance does not vary markedly under different approaches at 

specifying the covariate-treatment relationship in the observational data scenarios 

(specifications A, B, C, and D). For those scenarios, elastic net typically achieves a 

fractionally higher PCD than lasso, but a fractionally lower Corr0 and Exact; this can 

probably be explained by the fact that lasso is shrinking the estimated regression 

parameters more aggressively than is elastic net. These differences seem insubstantial, 

suggesting that either of these penalized regression approaches should achieve satisfactory 

results in the observational data scenarios. 

The number of incorrectly dropped covariates is 0 in almost all scenarios (Incorr0 

in Table 4.2), indicating that our proposed method selects the important variables very well. 

Although, the proposed method performs slightly better for experimental data (the last two 

rows of each of the three main vertical table sections) as compared to observational data 
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(rows 1 through 8 of each of the three main vertical table sections), the proposed method 

performs well for both experimental data and observational data. 

Table 4.2: Simulation results from 1000 Monte Carlo repetitions for each of the 15 
scenarios (3 outcome models × 5 PS models) under independent covariates and 

correlated covariates (N=1000) 

 
Notes: PCD=Percent Correct Decision; MSE=Mean Squared Error; Corr0=avg. # of 

covariates correctly estimated as 0 (in g-function); Incorr0=avg. # of covariates 
incorrectly estimated as 0 (in g-function); Exact=proportion of times the exactly correct 
set of covariates is selected 

Y1/Y2/Y3=different specifications of h-function; A/B/C/D=different specifications of k-
function; EN=elastic net; L=lasso 

 

4.4 Case study 

4.4.1 Case study background 

To demonstrate our proposed method, we applied it to a case study data set to 

identify the subgroup of patients with heavy alcohol use who may benefit from varenicline 

treatment (Litten et al., 2013). Alcohol use has been identified as the third-leading risk 

factor for the global burden of disease and injury. Excessive alcohol consumption is 

estimated to drive costs of over $200 billion annually in the USA. Varenicline, which goes 

N=1000 Independent covariates Correlated covariates Ratios: Corr::Indpndt Diff: Corr-Indpndt
PCD MSE Corr0 Incorr0 Exact PCD MSE Corr0 Incorr0 Exact PCD MSE Corr0 Incorr0 Exact

Y1.A.EN 97.7 0.046 6.90 0 0.91 95.8 0.053 6.39 0 0.61 0.98 1.16 0.93 0.00 (0.30)
Y1.A.L 97.5 0.045 6.97 0 0.97 95.6 0.051 6.77 0 0.82 0.98 1.12 0.97 0.00 (0.15)
Y1.B.EN 97.6 0.054 6.97 0 0.98 94.5 0.070 6.38 0 0.55 0.97 1.30 0.92 0.00 (0.43)
Y1.B.L 97.4 0.054 7.00 0 1.00 94.0 0.072 6.75 0 0.79 0.97 1.34 0.96 0.00 (0.21)
Y1.C.EN 97.5 0.045 6.99 0 0.99 94.9 0.057 6.73 0 0.74 0.97 1.27 0.96 0.00 (0.25)
Y1.C.L 97.3 0.045 7.00 0 1.00 94.5 0.056 6.96 0 0.97 0.97 1.26 0.99 0.00 (0.03)
Y1.D.EN 97.9 0.041 6.93 0 0.94 96.3 0.047 6.58 0 0.63 0.98 1.16 0.95 0.00 (0.31)
Y1.D.L 97.7 0.041 6.99 0 0.99 95.9 0.048 6.92 0 0.92 0.98 1.17 0.99 0.00 (0.07)
Y1.EN 98.4 0.036 6.92 0 0.93 97.2 0.039 6.33 0 0.55 0.99 1.09 0.91 0.00 (0.38)
Y1.L 98.3 0.035 6.99 0 0.99 97.0 0.038 6.84 0 0.86 0.99 1.10 0.98 0.00 (0.13)
Y2.A.EN 95.7 0.085 6.94 0 0.94 92.6 0.090 6.60 0 0.64 0.97 1.06 0.95 0.00 (0.30)
Y2.A.L 95.4 0.082 7.00 0 1.00 92.3 0.086 6.83 0 0.84 0.97 1.05 0.98 0.00 (0.16)
Y2.B.EN 94.9 0.099 6.98 0 0.98 91.1 0.112 6.59 0.02 0.65 0.96 1.13 0.94 0.02 (0.33)
Y2.B.L 94.5 0.098 7.00 0 1.00 90.3 0.113 6.78 0.1 0.75 0.96 1.16 0.97 0.10 (0.25)
Y2.C.EN 94.8 0.084 6.99 0 0.99 92.2 0.092 6.64 0 0.68 0.97 1.09 0.95 0.00 (0.31)
Y2.C.L 94.2 0.085 6.99 0 0.99 91.2 0.093 6.88 0.02 0.87 0.97 1.10 0.98 0.02 (0.12)
Y2.D.EN 96.4 0.066 6.96 0 0.96 94.8 0.069 6.59 0 0.67 0.98 1.05 0.95 0.00 (0.29)
Y2.D.L 96.0 0.067 7.00 0 1.00 94.5 0.069 6.83 0 0.85 0.98 1.02 0.98 0.00 (0.15)
Y2.EN 96.7 0.064 6.98 0 0.98 95.3 0.064 6.54 0 0.67 0.99 1.00 0.94 0.00 (0.31)
Y2.L 96.4 0.063 6.99 0 0.99 95.2 0.061 6.83 0 0.90 0.99 0.97 0.98 0.00 (0.09)
Y3.A.EN 96.4 0.070 6.91 0 0.91 93.0 0.085 6.57 0 0.66 0.96 1.22 0.95 0.00 (0.25)
Y3.A.L 96.1 0.070 6.99 0 0.99 92.6 0.084 6.80 0.01 0.81 0.96 1.21 0.97 0.01 (0.18)
Y3.B.EN 96.1 0.082 7.00 0 1.00 91.3 0.110 6.58 0.08 0.62 0.95 1.34 0.94 0.08 (0.38)
Y3.B.L 95.8 0.081 7.00 0 1.00 90.8 0.108 6.77 0.13 0.70 0.95 1.33 0.97 0.13 (0.30)
Y3.C.EN 95.9 0.074 6.98 0 0.98 91.8 0.095 6.67 0 0.76 0.96 1.30 0.96 0.00 (0.22)
Y3.C.L 95.7 0.070 6.98 0 0.98 91.0 0.096 6.83 0 0.87 0.95 1.39 0.98 0.00 (0.11)
Y3.D.EN 96.9 0.062 6.96 0 0.96 94.5 0.076 6.68 0 0.73 0.98 1.22 0.96 0.00 (0.23)
Y3.D.L 96.6 0.062 6.99 0 0.99 94.1 0.076 6.93 0 0.93 0.97 1.22 0.99 0.00 (0.06)
Y3.EN 97.4 0.054 6.93 0 0.94 95.6 0.061 6.49 0 0.62 0.98 1.13 0.94 0.00 (0.32)
Y3.L 97.2 0.053 6.98 0 0.98 95.2 0.062 6.88 0 0.88 0.98 1.16 0.99 0.00 (0.10)
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by the trade name Chantix, was approved by the US Food and Drug Administration in 2006 

as an aid for smoking cessation. Varenicline is an 𝛼4𝛽2 nicotinic acetylcholine agonist. 

Converging lines of research suggest that both alcohol and nicotine affect nicotinic 

acetylcholine receptors, which control rewarding effects in the brain. Since varenicline has 

proven effective at aiding smoking cessation, and since alcohol appears to affect the brain 

in a similar fashion as nicotine, it seems reasonable that this same drug may show benefit 

in aiding drinking cessation, or at least drinking reduction. 

The target population consisted of adults at least 18 years old who were consistent 

heavy drinkers (defined as at least 28 drinks per week for females, or at least 35 drinks per 

week for males). Exclusion criteria included being pregnant, being addicted to any drugs 

other than alcohol or nicotine, having any psychiatric disorders, and certain other 

comorbidities. The study design was a Phase II randomized, double-blind, placebo-

controlled multisite trial, and the duration of the study period was 13 weeks. Ultimately 99 

subjects were enrolled in the treatment arm, and 101 subjects were enrolled in the control 

arm. Three subjects in the treatment group had insufficient outcome data for analysis. Table 

4.3 summarizes the baseline characteristics of subjects, stratified by treatment group. 
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Table 4.3: Baseline characteristics of patients, varenicline case study 
 

 

 

Stratified by Treatment
Placebo Varenicline

N (%) 101 (51.3) 96 (48.7)
Mean (s.d.) Mean (s.d.)

Age 45.0 (12.3) 46.0 (11.0)
Years education 14.8 (2.7) 14.4 (3.1)
FTND 3.1 (2.6) 3.0 (2.4)
Baseline CIWA 1.3 (1.7) 1.3 (1.5)
Baseline Avg. SDUs 12.5 (8.9) 14.3 (9.3)
Baseline DPDD 13.6 (9.0) 15.4 (9.6)
Baseline % Days Abstained 0.1 (0.1) 0.1 (0.1)
Baseline % HDD 0.9 (0.2) 0.9 (0.2)
Baseline % VHDD 0.6 (0.4) 0.7 (0.4)
Baseline PACS 16.7 (6.8) 17.7 (6.2)
LTDH 25.7 (12.6) 27.3 (11.8)

N (%) N (%)
Gender

Female 32 (31.7) 25 (26.0)
Male 69 (68.3) 71 (74.0)

Employment status    
Unemp./Ret. 20 (19.8) 24 (25.0)
Part-time 23 (22.8) 17 (17.7)
Full-time 58 (57.4) 55 (57.3)

Marital status    
With partner* 43 (42.6) 46 (47.9)
Without partner** 58 (57.4) 50 (52.1)

Race    
Asian or Other 1 (1.0) 7 (7.3)
Black 27 (26.7) 30 (31.3)
White 73 (72.3) 59 (61.5)

Ethnicity    
Hispanic/Latino 2 (2.0) 2 (2.1)
Not Hispanic/Latino 99 (98.0) 94 (97.9)

Current smoker
No 60 (59.4) 59 (61.5)
Yes 41 (40.6) 37 (38.5)

Goal: Abstinence#

No 73 (72.3) 69 (71.9)
Yes 28 (27.7) 27 (28.1)

Family hist.##

No 34 (33.7) 27 (28.1)
Yes 67 (66.3) 69 (71.9)

**Without partner includes divorced, never married, separated, and widowed.
#Goal:Abstinence: subject's indicated alcohol-related goal from the study was abstinence
##Family hist.: subject indicated history of alcohol problems with parent, sibling, or child

CO
N

TI
N

U
O

U
S 

VA
RI

AB
LE

S
CA

TE
G

O
RI

CA
L 

VA
RI

AB
LE

S

FTND: Fagerstrom Test for Nicotine Dependence score; CIWA: Clinical Institute 
Withdrawal Assessment of Alcohol score; SDU: Standard Drink Unit; DPDD: Drinks Per 
Drinking Day; HDD: Heavy Drinking Day; VHDD: Very Heavy Drinking Day; PACS: Penn 
Alcohol Craving Scale score; LTDH: Lifetime Drinking History (years)
*With partner includes legally married and living with partner/cohabiting
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4.4.2 Case study results 

Figure 4.2 displays, for each study arm, the 7-day moving average of standard drink 

units (SDUs2) reported by study subjects for the time period ranging from 90 days pre-

study through the full 91-day (13 week) study period. It is evident that, on average across 

all subjects in the respective groups, substantial reductions in drinking occurred during the 

study period. The fact that the decrease is apparent for the placebo arm as well as the 

treatment arm is of primary interest and highlights the question of how much of the change 

is actual treatment effect from varenicline versus placebo effect driven by, for example, 

heightened attention to consumption quantities or enhanced commitment to drinking 

reduction goals, both consequences merely of being in the study. 

 

Figure 4.2: Case study outcome data, pre-study and 13-week study period 

 

In the current analysis of the case study data, the outcome measure was the change 

in average SDUs per day, comparing between the 28-day pre-study period and the three-

month post-titration study period. Figure 4.2 suggests a somewhat greater magnitude drop 

 
 

2 The SDU metric standardizes the measurement of alcohol serving across various types of drinks, such as 
beer, wine, and liquor. 
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in average SDUs for the treatment group. Indeed, a simple comparison of the difference in 

the before-after change in average SDUs between the placebo arm and the treatment arm 

shows a statistically significant difference (estimated group difference = -2.31 SDUs, t-

statistic = -2.01, p-value [one-sided test with 95 d.f.] = 0.024). 

While this result is of interest, it remains that the magnitude of the treatment effect 

is fairly modest. An additional research question is whether there exists any subgroup of 

the study population for which the treatment effect is substantially different from the 

overall ATE. Thus we applied the method described in Section 4.2 to the case study data 

in order to identify any such subgroups. For the probability of treatment group membership 

(step (i) in Section 4.2), we used 0.5, since the data were from a randomized controlled 

trial and the balance of sample size and covariates across treatment arms was generally 

quite good. For step (ii), we again used generalized boosted modeling, as in the simulation 

study. In estimating the g-function (i.e., those covariates that interact with treatment in 

affecting the outcome, step (iii)), we employed a design matrix that included covariate 

main effects and 2-way covariate interactions and used elastic net for selecting predictor 

variables. Two subgroups were identified via the method, one involving the interaction of 

two binary covariates, the other a single categorical covariate. After the covariates were 

selected into the g-function, we estimated the treatment effects for the defined subgroups 

using an ordinary linear regression model with only the treatment arm indicator and the 

selected covariates. 

Table 4.4 summarizes the two groups and the estimated ATE for the groups and 

their complements, illustrating the differing treatment effects of the group membership. 

The first identified subgroup was defined based on two binary covariates. In pre-study 
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screening, patients were interviewed as to their personal goals with respect to alcohol 

consumption from participation in the study. The first covariate was a binary indicator 

coding whether the subject stated their goal was to “achieve total abstinence” (N=56, 

28.4%) or something else (N=141, 71.6%). The second covariate was a binary indicator 

coding whether the subject indicated in the pre-study questionnaire that they had had any 

family member who had a history of alcohol problems (N=136, 69%). This first subgroup, 

then, was defined as those subjects who both had a goal of total abstinence and had a family 

member with a history of alcohol problems (N=48, 24.4%). The estimated treatment effect 

for members of this subgroup was a before-after drop in SDUs that was 5.8 SDUs greater 

than subjects not in the group (see Table 4.4; avg. SDU difference of -15.3 vs. -8.6 for 

treatment and control arms, respectively, for members of the subgroup; avg. SDU 

difference of -7.0 vs. -6.1 for treatment and control arms, respectively, for subjects not in 

the subgroup). 

Table 4.4: Subgroups identified in varenicline case study 

 

 

The second identified subgroup was defined as those whose household income was 

less than or equal to $15,000 per year. In this case, members of the subgroup realized less 

ARM=Placebo ARM=Varenicline
GROUP # (%) obs in grp Mean (s.d.) Mean (s.d.) ATE

A 48 (24%) -8.6 (4.7) -15.3 (12.3) -6.7
Ac 149 (76%) -6.1 (8.5) -7.0 (5.3) -0.9
B 25 (13%) -16.3 (15.0) -9.7 (5.4) 6.6
Bc 172 (87%) -5.7 (5.7) -8.9 (8.7) -3.2

Notes: Superscript c indicates the complement of the group.
Group definitions:

A: Goal_abstain=1 and Fam_alc_hist=1
B: Household income <= $15,000



78 
 

benefit from the study drug: the estimated treatment effect in the subgroup was +6.6 SDUs, 

while for those not in the subgroup it was -3.2 SDUs. 

 
4.5 Conclusions 

This chapter presents a method for identifying covariates that interact with a binary 

treatment to affect the outcome, hence characterizing subgroups of a study population that 

have differing average treatment effects. The method is capable of handling a large number 

of covariates, due to the complexity control exerted by way of penalized regression. Also, 

the method is capable of handling both experimental data and observational data; a simple 

change from using an assumed known probability of treatment group membership to using 

a modeled probability is all that is required. In a simulation study, it performed strongly in 

correctly deciding whether to assign particular subjects to treatment or control, based on 

their covariates.  

This work does have some limitations. So far, it applies only to point-in-time 

treatments. Extending this work to dynamic treatment regimens would be beneficial, 

particularly given that individualized treatment regimes are receiving heightened attention 

in today’s push toward personalized medicine. Also, the method should be studied for its 

effectiveness with binary or categorical outcomes, as the work to date has focused on 

continuous outcome measures. The characterization of the subgroups resulting from the 

selected covariates is not automatic, but a separate step following the method. 

Nevertheless, this approach appears flexible and powerful for selecting predictor variables 

in order to define subgroups in preparation for a future confirmatory study. 

 



 

79 
 

 

 

REFERENCES 

 

Abdia, Y., Kulasekera, K. B., Datta, S., Boakye, M., & Kong, M. (2017). Propensity 

scores based methods for estimating average treatment effect and average treatment 

effect among treated: A comparative study. Biometrical Journal, 59(5), 967-985. 

doi:10.1002/bimj.201600094 

Austin, P. C. (2007). The performance of different propensity score methods for 

estimating marginal odds ratios. Stat Med, 26(16), 3078-3094. doi:10.1002/sim.2781 

Austin, P. C. (2011). An introduction to propensity score methods for reducing the effects 

of confounding in observational studies. Multivariate Behav Res, 46(3), 399-424. 

doi:10.1080/00273171.2011.568786 

Austin, P. C., Grootendorst, P., & Anderson, G. M. (2007). A comparison of the ability of 

different propensity score models to balance measured variables between treated and 

untreated subjects: a Monte Carlo study. Stat Med, 26(4), 734-753.  

Austin, P. C., & Stuart, E. A. (2015). Moving towards best practice when using inverse 

probability of treatment weighting (IPTW) using the propensity score to estimate 

causal treatment effects in observational studies. Stat Med, 34(28), 3661-3679. 

doi:10.1002/sim.6607 



 

80 
 

Biancari, F., Mikkola, R., Heikkinen, J., & al., e. (2012). Estimating the risk of 

complications related to re-exploration for bleeding after adult cardiac surgery: A 

systematic review and meta-analysis. European Journal of Cardio-Thoracic Surgery 

(Amsterdam), 41, 50-55.  

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.  

Brinkley, J., Tsiatis, A., & Anstrom, K. J. (2010). A generalized estimator of the 

attributable benefit of an optimal treatment regime. Biometrics, 66(2), 512-522.  

Brookhart, M. A., Schneeweiss, S., Rothman, K. J., Glynn, R. J., Avorn, J., & Sturmer, T. 

(2006). Variable selection for propensity score models. Am J Epidemiol, 163(12), 

1149-1156. doi:10.1093/aje/kwj149 

Cornelissen, H., & Arrowsmith, J. (2006). Preoperative assessment for cardiac surgery. 

Continuing Education in Anaesthesia, Critical Care & Pain, 3, 109-113.  

Craycroft, J. A., Huang, J., & Kong, M. (2020). Propensity score specification for 

optimal estimation of average treatment effect with binary response. Stat Methods Med 

Res, 29(12), 3623-3640.  

Foster, J. C., Taylor, J. M., Kaciroti, N., & Nan, B. (2015). Simple subgroup 

approximations to optimal treatment regimes from randomized clinical trial data. 

Biostatistics, 16(2), 368-382.  



 

81 
 

Franklin, J. M., Eddings, W., Glynn, R. J., & Schneeweiss, S. (2015). Regularized 

regression versus the high-dimensional propensity score for confounding adjustment 

in secondary database analyses. Am J Epidemiol, 182(7), 651-659.  

Fu, H., Zhou, J., & Faries, D. E. (2016). Estimating optimal treatment regimes via 

subgroup identification in randomized control trials and observational studies. Stat 

Med, 35(19), 3285-3302.  

Garrido, M. M., Kelley, A. S., Paris, J., Roza, K., Meier, D. E., Morrison, R. S., & 

Aldridge, M. D. (2014). Methods for constructing and assessing propensity scores. 

Health services research, 49(5), 1701-1720.  

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. 

(2013). Bayesian data analysis (3rd ed.): CRC press. 

Hahn, J. (1998). On the role of the propensity score in efficient semiparametric 

estimation of average treatment effects. Econometrica, 315-331.  

Hansen, B. B. (2008). The prognostic analogue of the propensity score. Biometrika, 

95(2), 481-488.  

Hastie, T., & Qian, J. (2014). Glmnet vignette, 1-30. Retrieved from 

http://www.web.stanford.edu/~hastie/Papers/Glmnet_Vignette.pdf 

Helmreich, J. E., & Pruzek, R. M. (2009). PSAgraphics: An R package to support 

propensity score analysis. Journal of Statistical Software, 29(6), 1-23.  



 

82 
 

Hernán, M., & Robins, J. (2020). Causal inference: what if. Boca Raton: Chapman & 

Hill/CRC. 

Hirano, K., Imbens, G. W., & Ridder, G. (2003). Efficient estimation of average 

treatment effects using the estimated propensity score. Econometrica, 71(4), 1161-

1189.  

Holland, P. W. (1986). Statistics and Causal Inference. Journal of the American 

Statistical Association, 81(396), 945-960. doi:10.2307/2289064 

Horvitz, D. G., & Thompson, D. J. (1952). A generalization of sampling without 

replacement from a finite universe. Journal of the American Statistical Association, 

47(260), 663-685.  

Imai, K., & Ratkovic, M. (2014). Covariate balancing propensity score. Journal of the 

Royal Statistical Society: Series B (Statistical Methodology), 76(1), 243-263. 

doi:10.1111/rssb.12027 

Keil, A. P., Daza, E. J., Engel, S. M., Buckley, J. P., & Edwards, J. K. (2018). A 

Bayesian approach to the g-formula. Stat Methods Med Res, 27(10), 3183-3204.  

Laber, E. B., & Zhao, Y.-Q. (2015). Tree-based methods for individualized treatment 

regimes. Biometrika, 102(3), 501-514.  

Leacy, F. P., & Stuart, E. A. (2014). On the joint use of propensity and prognostic scores 

in estimation of the average treatment effect on the treated: a simulation study. Stat 

Med, 33(20), 3488-3508. doi:10.1002/sim.6030 



 

83 
 

Lewis, D. (1973). Causation. The Journal of Philosophy, 70(17), 556-567. 

doi:10.2307/2025310 

Lipkovich, I., Dmitrienko, A., & B D'Agostino Sr, R. (2017). Tutorial in biostatistics: 

data‐driven subgroup identification and analysis in clinical trials. Stat Med, 36(1), 136-

196.  

Litten, R. Z., Ryan, M. L., Fertig, J. B., Falk, D. E., Johnson, B., Dunn, K. E., . . . Sarid-

Segal, O. (2013). A double-blind, placebo-controlled trial assessing the efficacy of 

varenicline tartrate for alcohol dependence. Journal of addiction medicine, 7(4), 277.  

Little, R. J., & Rubin, D. B. (2000). Causal effects in clinical and epidemiological studies 

via potential outcomes: concepts and analytical approaches. Annual Review of Public 

Health, 21, 121-145.  

Lu, W., Zhang, H. H., & Zeng, D. (2013). Variable selection for optimal treatment 

decision. Stat Methods Med Res, 22(5), 493-504.  

Lunceford, J. K., & Davidian, M. (2004). Stratification and weighting via the propensity 

score in estimation of causal treatment effects: a comparative study. Stat Med, 23(19), 

2937-2960. doi:10.1002/sim.1903 

McCaffrey, D. F., Griffin, B. A., Almirall, D., Slaughter, M. E., Ramchand, R., & 

Burgette, L. F. (2013). A tutorial on propensity score estimation for multiple 

treatments using generalized boosted models. Stat Med, 32(19), 3388-3414. 

doi:10.1002/sim.5753 



 

84 
 

McCaffrey, D. F., Ridgeway, G., & Morral, A. R. (2004). Propensity Score Estimation 

With Boosted Regression for Evaluating Causal Effects in Observational Studies. 

Psychol Methods, 9(4), 403-425.  

McCandless, L. C., Gustafson, P., & Austin, P. C. (2009). Bayesian propensity score 

analysis for observational data. Stat Med, 28(1), 94-112.  

McCandless, L. C., Gustafson, P., & Levy, A. (2007). Bayesian sensitivity analysis for 

unmeasured confounding in observational studies. Stat Med, 26(11), 2331-2347.  

Morris, T. P., White, I. R., & Crowther, M. J. (2019). Using simulation studies to 

evaluate statistical methods. Stat Med, 38(11), 2074-2102.  

Patrick, A. R., Schneeweiss, S., Brookhart, M. A., Glynn, R. J., Rothman, K. J., Avorn, 

J., & Stürmer, T. (2011). The implications of propensity score variable selection 

strategies in pharmacoepidemiology: an empirical illustration. Pharmacoepidemiol 

Drug Saf, 20(6), 551-559.  

Pearl, J. (2009). Causality: Cambridge university press. 

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal Inference in Statistics: A Primer: 

John Wiley & Sons. 

Qian, M., & Murphy, S. A. (2011). Performance guarantees for individualized treatment 

rules. Annals of statistics, 39(2), 1180.  



 

85 
 

R Core Team. (2018). R: A language and environment for statistical computing. Vienna, 

Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-

project.org 

Ratkovic, M., Imai, K., & Fong, C. (2012). CBPS: R package for covariate balancing 

propensity score. Retrieved from http://CRAN.R-project.org/package=CBPS. 

Rosenbaum, P. R., & Rubin, D. B. (1983). The central role of the propensity score in 

observational studies for causal effects. Biometrika, 70(1), 41-55. 

doi:10.1093/biomet/70.1.41 

Rubin, D. B. (1974). Estimating causal effects of treatments in randomized and 

nonrandomized studies. Journal of Educational Psychology, 66(5), 688-701.  

Rubin, D. B. (1978). Bayesian Inference for Causal Effects: The Role of Randomization. 

The Annals of Statistics, 34-58.  

Rubin, D. B. (2007). The design versus the analysis of observational studies for causal 

effects: parallels with the design of randomized trials. Stat Med, 26(1), 20-36.  

Schulte, P. J., Tsiatis, A. A., Laber, E. B., & Davidian, M. (2014). Q-and A-learning 

methods for estimating optimal dynamic treatment regimes. Statistical science: a 

review journal of the Institute of Mathematical Statistics, 29(4), 640.  

Shortreed, S. M., & Ertefaie, A. (2017). Outcome‐adaptive lasso: Variable selection for 

causal inference. Biometrics, 73(4), 1111-1122.  



 

86 
 

Tian, L., Alizadeh, A. A., Gentles, A. J., & Tibshirani, R. (2014). A simple method for 

estimating interactions between a treatment and a large number of covariates. Journal 

of the American Statistical Association, 109(508), 1517-1532.  

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the 

Royal Statistical Society: Series B (Statistical Methodology), 58(1), 267-288.  

Vansteelandt, S., & Joffe, M. (2014). Structural nested models and G-estimation: the 

partially realized promise. Statistical science, 29(4), 707-731.  

Wang, R., Schoenfeld, D. A., Hoeppner, B., & Evins, A. E. (2015). Detecting treatment‐

covariate interactions using permutation methods. Stat Med, 34(12), 2035-2047.  

Yan, X., Abdia, Y., Datta, S., Kulasekera, K. B., Ugiliweneza, B., Boakye, M., & Kong, 

M. (2019). Estimation of average treatment effects among multiple treatment groups 

by using an ensemble approach. Stat Med, 38(15), 2828-2846. doi:10.1002/sim.8146 

Zhu, Y., Schonbach, M., Coffman, D. L., & Williams, J. S. (2015). Variable selection for 

propensity score estimation via balancing covariates. Epidemiology, 26(2), e14-e15.  

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American 

Statistical Association, 101, 1418-1429.  

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. 

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 

301-320. doi:10.1111/j.1467-9868.2005.00503.x 

 



 

87 
 

 

 

APPENDICES 

 

A1 Appendix 1: Proofs of theorems in Chapter 2 

Proof of Theorem 1 for exchangeability 

i. 𝑇 ⊥ (𝑌(଴), 𝑌(ଵ))|𝑋஼, since 𝑋஼ blocks the backdoor path from 𝑇 to 𝑌.  

ii. 𝑇 ⊥ (𝑌(଴), 𝑌(ଵ))|(𝑋ூ, 𝑋஼) can be obtained from the following: 

𝑓൫𝑌(଴), 𝑌(ଵ), 𝑇|𝑋ூ , 𝑋஼൯ =
𝑓൫𝑌(଴), 𝑌(ଵ), 𝑇, 𝑋ூ, 𝑋஼  ൯

𝑓(𝑋ூ , 𝑋஼)
 

=
𝑓൫𝑌(଴), 𝑌(ଵ)|𝑋஼  ൯𝑓(𝑇, 𝑋ூ|𝑋஼  )𝑓(𝑋஼)

𝑓(𝑋ூ, 𝑋஼)
                            𝑏𝑦 (𝑋ூ , 𝑇)⟘(𝑌(଴), 𝑌(ଵ))|𝑋஼ 

=
𝑓൫𝑌(଴), 𝑌(ଵ)|𝑋ூ,  𝑋஼   ൯𝑓(𝑇| 𝑋ூ , 𝑋஼  )𝑓(𝑋ூ|𝑋஼)𝑓(𝑋஼)

𝑓(𝑋ூ, 𝑋஼)
          𝑏𝑦 𝑋ூ⟘(𝑌(଴), 𝑌(ଵ))|𝑋஼ 

= 𝑓൫𝑌(଴), 𝑌(ଵ)|𝑋ூ, 𝑋஼  ൯𝑓(𝑇| 𝑋ூ , 𝑋஼  ) 

iii. 𝑇 ⊥ (𝑌(଴), 𝑌(ଵ))|(𝑋஼ , 𝑋௉) can be obtained from the following: 

𝑓൫𝑌(଴), 𝑌(ଵ), 𝑇|𝑋஼ , 𝑋௉൯ 

=
𝑓൫𝑌(଴), 𝑌(ଵ),   𝑇,   𝑋஼ ,   𝑋௉ ൯

𝑓(𝑋஼ , 𝑋௉)
 

=
𝑓൫𝑋௉, 𝑌(଴), 𝑌(ଵ)|𝑋஼  ൯𝑓(𝑇|𝑋஼  )𝑓(𝑋஼)

𝑓(𝑋஼ , 𝑋௉)
                 𝑏𝑦 𝑇 ⊥ (𝑋௉, 𝑌(଴), 𝑌(ଵ))|𝑋஼ 
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=
𝑓൫𝑌(଴), 𝑌(ଵ)|𝑋஼ ,   𝑋௉ ൯𝑓(𝑋௉|𝑋஼)𝑓(𝑇| 𝑋஼ , 𝑋௉ )𝑓(𝑋஼)

𝑓(𝑋஼ , 𝑋௉)
            𝑏𝑦 𝑇 ⊥ 𝑋௉|𝑋஼ 

= 𝑓൫𝑌(଴), 𝑌(ଵ)|𝑋஼ , 𝑋௉ ൯𝑓(𝑇| 𝑋஼ , 𝑋௉ ) 

iv. 𝑇 ⊥ (𝑌(଴), 𝑌(ଵ))|(𝑋ூ, 𝑋஼ , 𝑋௉) can be obtained from the following: 

𝑓൫𝑌(଴), 𝑌(ଵ), 𝑇|𝑋ூ , 𝑋஼ , 𝑋௉൯ 

=
𝑓൫𝑌(଴), 𝑌(ଵ), 𝑇, 𝑋ூ , 𝑋஼ , 𝑋௉ ൯

𝑓(𝑋ூ, 𝑋஼ , 𝑋௉)
 

=
𝑓൫𝑋௉ , 𝑌(଴), 𝑌(ଵ)|𝑋஼  ൯𝑓(𝑋ூ , 𝑇|𝑋஼  )𝑓(𝑋஼)

𝑓(𝑋ூ , 𝑋஼ , 𝑋௉)
                     𝑏𝑦 (𝑋ூ, 𝑇) ⊥ (𝑋௉ , 𝑌(଴), 𝑌(ଵ))|𝑋஼ 

=
𝑓൫𝑌(଴), 𝑌(ଵ)|𝑋஼ , 𝑋௉ ൯𝑓(𝑋௉|𝑋஼)𝑓(𝑇| 𝑋஼ , 𝑋ூ )𝑓(𝑋ூ|𝑋஼)𝑓(𝑋஼)

𝑓(𝑋ூ , 𝑋஼ , 𝑋௉)
 

=
𝑓൫𝑌(଴), 𝑌(ଵ)|𝑋ூ , 𝑋஼ , 𝑋௉ ൯𝑓(𝑋௉|𝑋஼)𝑓(𝑇| 𝑋ூ, 𝑋஼ , 𝑋௉ )𝑓(𝑋ூ|𝑋஼)𝑓(𝑋஼)

𝑓(𝑋ூ , 𝑋஼ , 𝑋௉)
 

= 𝑓൫𝑌(଴), 𝑌(ଵ)|𝑋ூ , 𝑋஼ , 𝑋௉ ൯𝑓(𝑇| 𝑋ூ , 𝑋஼ , 𝑋௉ ) 

The second-to-last equation is due to 𝑋ூ ⊥ (𝑌(଴), 𝑌(ଵ))|𝑋஼ , 𝑋௉ =

𝑓൫𝑌(଴), 𝑌(ଵ)ห𝑋ூ , 𝑋஼ , 𝑋௉൯𝑓(𝑇|𝑋ூ, 𝑋஼ , 𝑋௉). 

 

Proof of Theorem 1 for unbiasedness of ATE estimators:  

Let 𝑋(∗) represent any one of the adjustment sets (i) 𝑋஼; (ii) 𝑋஼ , 𝑋ூ; (iii) 𝑋஼ , 𝑋௉; or (iv) 

𝑋஼ , 𝑋ூ, 𝑋௉. Under the assumptions of exchangeability (i.e., T⟘(𝑌(଴), 𝑌(ଵ))|𝑋(∗)) and 

positivity (i.e., 0 < 𝑃൫𝑌 = 1ห𝑋(∗)൯ = 𝑝൫𝑿(∗)൯ < 1), we claim that the IPW estimator for 

the ATE is unbiased. To prove it, let us denote the IPW estimator for the ATE as 
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𝜏̂(∗) =
1

𝑛
෍

𝑇௜𝑌௜

𝑝(𝑿௜
(∗)

)

௡

௜ୀଵ

−
1

𝑛
෍

(1 − 𝑇௜)𝑌௜

1 − 𝑝(𝑿௜
(∗)

)

௡

௜ୀଵ

.                                 

If exchangeability and positivity hold for a set of adjustment variables 𝑿(∗), then we have 

𝐸 ൬
𝑇𝑌

𝑝(𝑿(∗))
൰ = 𝐸 ቈ𝐸 ቆ

𝐼{்ୀଵ}𝑌(ଵ)

𝑝(𝑿(∗))
|𝑿(∗)ቇ቉ = 𝐸 ൤

1

𝑝(𝑿(∗))
𝐸൫𝐼{்ୀଵ}𝑌(ଵ)|𝑿(∗)൯൨ 

= 𝐸 ൤
1

𝑝(𝑿(∗))
𝐸൫𝐼{்ୀଵ}|𝑿(∗)൯𝐸൫𝑌(ଵ)|𝑿(∗)൯൨          𝑏𝑦 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

                         = 𝐸 ൤
1

𝑝(𝑿(∗))
𝑝(𝑿(∗))𝐸൫𝑌(ଵ)|𝑿(∗)൯൨ = 𝐸ൣ𝐸൫𝑌(ଵ)|𝑿(∗)൯൧ = 𝐸൫𝑌(ଵ)൯ 

Similarly, under exchangeability, we have 𝐸 ൬
(ଵି்)௒

ଵି௣൫𝑿(∗)൯
൰ = 𝐸൫𝑌(଴)൯.  

Thus 𝐸ൣ𝜏̂(∗)൧ = 𝐸൫𝑌(ଵ)൯ − 𝐸൫𝑌(଴)൯ = 𝜏. 

 

Proof of Theorem 2(i): Note that under Proposition 1, 𝑋ூ ⊥ ( 𝑌(଴), 𝑌(ଵ))|(𝑋஼ , 𝑋௉), so we 

have 𝐸൛𝑌(଴)|𝑋ூ , 𝑋஼ , 𝑋௉ ൟ = 𝐸൛𝑌(଴)|𝑋஼ , 𝑋௉ ൟ, 𝐸൛𝑌(ଵ)|𝑋ூ, 𝑋஼ , 𝑋௉ ൟ = 𝐸൛𝑌(ଵ)|𝑋஼ , 𝑋௉ ൟ, 

𝜎ଵ
ଶ(𝑋ூ , 𝑋஼ , 𝑋௉) = 𝜎ଵ

ଶ(𝑋஼ , 𝑋௉),  and 𝜎଴
ଶ(𝑋ூ , 𝑋஼ , 𝑋௉) = 𝜎଴

ଶ(𝑋஼ , 𝑋௉). The first two equations 

imply that 𝜏(𝑋஼ , 𝑋௉) = 𝜏(𝑋ூ , 𝑋஼ , 𝑋௉).  Thus, 

𝐸 ቈ
𝜎ଵ

ଶ(𝑋ூ , 𝑋஼ , 𝑋௉)

𝑝(𝑋ூ, 𝑋஼ , 𝑋௉)
቉ = 𝐸 ቊ𝐸 ቈ

𝜎ଵ
ଶ(𝑋ூ, 𝑋஼ , 𝑋௉)

𝑝(𝑋ூ, 𝑋஼ , 𝑋௉)
|𝑋஼ , 𝑋௉቉ቋ

= 𝐸 ൜𝜎ଵ
ଶ(𝑋஼ , 𝑋௉)𝐸 ൤

1

𝑝(𝑋ூ , 𝑋஼ , 𝑋௉)
|𝑋஼ , 𝑋௉൨ൠ

≥ 𝐸 ቊ𝜎ଵ
ଶ(𝑋஼ , 𝑋௉) ቈ

1

𝐸൫𝑝(𝑋ூ, 𝑋஼ , 𝑋௉)ห(𝑋஼ , 𝑋௉)൯
቉ቋ (by using Jensenᇱs Inequality) 
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= 𝐸 ቈ
𝜎ଵ

ଶ(𝑋஼ , 𝑋௉)

𝑝(𝑋஼ , 𝑋௉)
቉. 

Similarly, we have  

𝐸 ቈ
𝜎଴

ଶ(𝑋ூ , 𝑋஼ , 𝑋௉)

1 − 𝑝(𝑋ூ , 𝑋஼ , 𝑋௉)
቉ ≥ 𝐸 ቈ

𝜎଴
ଶ(𝑋஼ , 𝑋௉)

1 − 𝑝(𝑋஼ , 𝑋௉)
቉. 

In addition, we have 

𝐸[(𝜏(𝑋஼, 𝑋௉) − 𝜏)ଶ] = 𝐸[(𝜏(𝑋ூ, 𝑋஼ , 𝑋௉) − 𝜏)ଶ]. 

Thus, we have proved the first inequality in (i). For the second inequality in (i), note that 

𝑝(𝑋ூ, 𝑋஼ , 𝑋௉) = 𝑝(𝑋ூ , 𝑋஼). Thus, 

𝐸 ቈ
𝜎ଵ

ଶ(𝑋ூ, 𝑋஼ , 𝑋௉)

𝑝(𝑋ூ , 𝑋஼ , 𝑋௉)
቉ = 𝐸 ቐ𝐸 ቎

𝐸൫(𝑌(ଵ))ଶ|𝑋ூ , 𝑋஼ , 𝑋௉൯ − ቀ𝐸൫𝑌(ଵ)|𝑋ூ , 𝑋஼ , 𝑋௉൯ቁ
ଶ

𝑝(𝑋ூ , 𝑋஼ , 𝑋௉)
|𝑋ூ , 𝑋஼቏ቑ

= 𝐸 ൞
𝐸 ቄ൫𝑌(ଵ)൯

ଶ
ቚ𝑋ூ , 𝑋஼ቅ − 𝐸 ൜ቀ𝐸൫𝑌(ଵ)|𝑋ூ , 𝑋஼ , 𝑋௉൯ቁ

ଶ

|𝑋ூ , 𝑋஼ൠ

𝑝(𝑋ூ , 𝑋஼)
ൢ

≤ 𝐸 ቐ
𝐸 ቄ൫𝑌(ଵ)൯

ଶ
ቚ𝑋ூ , 𝑋஼ቅ − ൛𝐸ൣ𝑌(ଵ)|𝑋ூ , 𝑋஼൧ൟ

ଶ

𝑝(𝑋ூ , 𝑋஼)
ቑ = 𝐸 ቈ

𝜎ଵ
ଶ(𝑋ூ , 𝑋஼)

𝑝(𝑋ூ , 𝑋஼)
቉. 

The last inequality is from using Jensen’s Inequality: 𝐸 ൜ቀ𝐸൫𝑌(ଵ)|𝑋ூ , 𝑋஼ , 𝑋௉൯ቁ
ଶ

|𝑋ூ , 𝑋஼ൠ ≥

൛𝐸ൣ𝐸൫𝑌(ଵ)|𝑋ூ , 𝑋஼ , 𝑋௉൯|𝑋ூ , 𝑋஼൧ൟ
ଶ

= ൛𝐸ൣ𝑌(ଵ)|𝑋ூ , 𝑋஼൧ൟ
ଶ
. 

Similarly, we can prove that  𝐸 ቂ
ఙబ

మ(௑಺,௑಴,௑ು)

ଵି௣(௑಺,௑಴,௑ು)
ቃ ≤ 𝐸 ቂ

ఙబ
మ(௑಺,௑಴)

ଵି௣(௑಺,௑಴)
ቃ. In addition, due to omitting 

the variable  𝑋௉ in the expectation of outcome, we have 
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𝐸[(𝜏(𝑋ூ , 𝑋஼ , 𝑋௉) − 𝜏)ଶ] ≤ 𝐸[(𝜏(𝑋ூ , 𝑋஼) − 𝜏)ଶ]. 

Thus, the second inequality holds. 

 

Proof of Theorem 2(ii):  The first inequality is straightforward, since  𝑝(𝑋஼ , 𝑋௉) =

P(𝑇 = 1|𝑋஼ , 𝑋௉) = P(𝑇 = 1|𝑋஼) = 𝑝(𝑋஼). We also expect 𝐸𝜎ଵ
ଶ(𝑋஼ , 𝑋௉) ≤ 𝐸𝜎ଵ

ଶ(𝑋஼), 

𝜎଴
ଶ(𝑋஼ , 𝑋௉) ≤ 𝐸𝜎଴

ଶ(𝑋஼), and  

𝐸[(𝜏(𝑋஼ , 𝑋௉) − 𝜏)ଶ] ≤ 𝐸[(𝜏(𝑋஼) − 𝜏)ଶ]. 

The second inequality in (ii) holds due to the following argument: 

𝐸 ቈ
𝜎ଵ

ଶ(𝑋ூ , 𝑋஼)

𝑝(𝑋ூ , 𝑋஼)
቉ = 𝐸 ቐ𝐸 ቎

𝐸൫(𝑌(ଵ))ଶ|𝑋ூ , 𝑋஼൯ − ቀ𝐸൫𝑌(ଵ)|𝑋ூ , 𝑋஼൯ቁ
ଶ

𝑝(𝑋ூ , 𝑋஼)
|𝑋஼቏ቑ

= 𝐸 ቐ𝐸 ቎
𝐸൫(𝑌(ଵ))ଶ|𝑋஼൯ − ቀ𝐸൫𝑌(ଵ)|𝑋஼൯ቁ

ଶ

𝑝(𝑋ூ , 𝑋஼)
|𝑋஼቏ቑ

= 𝐸 ൜൬𝐸൫(𝑌(ଵ))ଶ|𝑋஼൯ − ቀ𝐸൫𝑌(ଵ)|𝑋஼൯ቁ
ଶ

൰ 𝐸 ൬
1

𝑝(𝑋ூ , 𝑋஼)
|𝑋஼൰ൠ

≥ 𝐸 ൜൬𝐸 ቀ൫𝑌(ଵ)൯
ଶ

|𝑋஼ቁ − ቀ𝐸൫𝑌(ଵ)|𝑋஼൯ቁ
ଶ

൰
1

𝐸{𝑝(𝑋ூ, 𝑋஼)|𝑋஼}
ൠ

= 𝐸 ቈ
𝜎ଵ

ଶ(𝑋஼)

𝑝(𝑋஼)
቉. 

Similarly, one can show that 𝐸 ቂ
ఙబ

మ(௑಺,௑಴)

ଵି௣(௑಺,௑಴)
ቃ ≥ 𝐸 ቂ

ఙబ
మ(௑಴)

ଵି௣(௑಴)
ቃ, and 𝐸(𝜏(𝑋ூ, 𝑋஼) − 𝜏)ଶ =

𝐸(𝜏(𝑋஼) − 𝜏)ଶ. Thus, we complete the proof of Theorem 2. 
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A2 Appendix 2: Boxplots (all scenarios) and tables (correlated scenarios) of simulation study results 

 
Figure A2.1. Box plots of ATE estimates in simulation study 

All covariates independent (cf. Table 2.2 in Chapter 2) 
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Table A2.1. Bias, Standard Error, and Root MSE for Correlated Simulation Scenario 
𝜌஼ = 𝜌ூ = 𝜌௉ = 0.2 

 

Figure A2.2. Box plots of ATE estimates in simulation study 
Moderate correlation: 𝜌஼ = 𝜌ூ = 𝜌௉ = 0.2 

REFERENCE MODELS
# SCENARIO EN0 EN0.5 EN0.7 EN1 EN.opt OAL CB.over CB.just EN.CB.o EN.CB.j XC X CX P XCXI XCXPXI XCXPXIXS

Model A: Bias 0.001 0.003 0.002 0.001 0.003 0.003 0.029 -0.007 0.016 -0.006 0.002 0.001 0.004 0.003 0.001
8 SE 0.065 0.032 0.030 0.029 0.034 0.034 0.044 0.048 0.031 0.033 0.032 0.029 0.065 0.063 0.065

n/p=50 RMSE 0.065 0.033 0.030 0.029 0.034 0.034 0.052 0.049 0.035 0.034 0.032 0.029 0.065 0.063 0.065
Model A: Bias * 0.005 0.005 0.005 0.004 * * * 0.029 -0.006 0.004 0.004 0.010 0.010 *

9 SE * 0.043 0.042 0.041 0.042 * * * 0.040 0.042 0.047 0.042 0.089 0.086 *
n/p=0.833 RMSE * 0.043 0.042 0.042 0.043 * * * 0.049 0.042 0.047 0.042 0.090 0.087 *
Model A: Bias -0.009 0.004 0.004 0.003 0.004 0.016 0.085 0.054 0.025 -0.006 0.003 0.003 0.004 0.005 -0.009

10 SE 0.206 0.044 0.043 0.043 0.043 0.049 0.064 0.064 0.041 0.044 0.047 0.042 0.084 0.082 0.206
n/p=5 RMSE 0.206 0.045 0.043 0.043 0.043 0.052 0.106 0.083 0.049 0.044 0.047 0.042 0.084 0.082 0.206

TESTED MODELS
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Table A2.2. Bias, Standard Error, and Root MSE for Correlated Simulation Scenario 
𝜌஼ = 𝜌ூ = 𝜌௉ = 0.5 

 
 

 
Figure A2.3. Box plots of ATE estimates in simulation study 

Strong correlation: 𝜌ூ = 𝜌஼ = 𝜌௉ = 0.5

REFERENCE MODELS
# SCENARIO EN0 EN0.5 EN0.7 EN1 EN.opt OAL CB.over CB.just EN.CB.o EN.CB.j XC X C X P XCXI XCXPXI XCXPXIXS

Model A: Bias 0.009 0.007 0.006 0.006 0.007 0.009 0.036 -0.006 0.022 -0.002 0.007 0.006 0.011 0.010 0.009
11 SE 0.077 0.035 0.032 0.030 0.038 0.035 0.049 0.052 0.033 0.033 0.034 0.029 0.075 0.073 0.077

n/p=50 RMSE 0.078 0.035 0.033 0.031 0.039 0.036 0.061 0.052 0.039 0.033 0.034 0.030 0.076 0.074 0.078
Model A: Bias * 0.005 0.006 0.005 0.005 * * * 0.031 -0.006 0.006 0.005 0.016 0.015 *

12 SE * 0.045 0.044 0.043 0.044 * * * 0.043 0.044 0.049 0.043 0.098 0.095 *
n/p=0.833 RMSE * 0.046 0.045 0.044 0.045 * * * 0.053 0.045 0.049 0.043 0.099 0.097 *
Model A: Bias -0.008 0.005 0.005 0.004 0.005 0.017 0.102 0.069 0.028 -0.007 0.002 0.003 0.015 0.016 -0.008

13 SE 0.217 0.045 0.044 0.041 0.045 0.049 0.065 0.062 0.041 0.044 0.046 0.041 0.094 0.093 0.217
n/p=5 RMSE 0.217 0.045 0.045 0.042 0.046 0.052 0.121 0.093 0.050 0.044 0.046 0.041 0.095 0.095 0.217

TESTED MODELS
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A3 Appendix 3: Derivation of posterior conditional distributions, Chapter 3 

This portion specifies the model, all prior distributions, the full joint posterior distribution, 

and the conditional posterior distribution for each parameter. 

Model:  

𝑌௜|𝑇௜~ ൜
𝑁𝑜𝑟𝑚𝑎𝑙(𝜃 + 𝜏, 𝑝௜𝜎

ଶ), 𝑖𝑓 𝑇௜ = 1

𝑁𝑜𝑟𝑚𝑎𝑙(𝜃, (1 − 𝑝௜)𝜎ଶ), 𝑖𝑓 𝑇௜ = 0
 

𝑇௜|𝑝௜~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝௜) 

𝜏~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎ఛ
ଶ) 

𝜃~𝑁𝑜𝑟𝑚𝑎𝑙൫0, 𝜎ఏ
ଶ൯ 

𝜎ଶ~𝐼𝑛𝑣. 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) 

𝑝௜|𝛼௜ , 𝜆~𝐵𝑒𝑡𝑎(𝜆𝛼௜ , 𝜆) 

𝛼௜|𝛽, 𝜈ଶ~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝑥௜
்𝛽, 𝜈ଶ) 

𝛽~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟. 𝑁𝑜𝑟𝑚𝑎𝑙൫0, Σఉ൯ 

𝜈ଶ~ 𝐼𝑛𝑣. 𝐺𝑎𝑚𝑚𝑎(𝑐, 𝑑) 

𝜆~𝐺𝑎𝑚𝑚𝑎(𝑓, 𝑔) 
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Now we detail the full joint posterior distribution for the data and all of the parameters: 

 

Data = 𝒟 = {𝑦, 𝑥, 𝑡} 

Parameters = 𝛩 = {𝜏, 𝜃, 𝜎ଶ, 𝑝, 𝛼, 𝛽, 𝜈ଶ, 𝜆} 

Fixed settings/hyperparameters = 𝒫 = ൛𝜎ఛ
ଶ, 𝜎ఏ

ଶ, 𝛴ఉ , 𝑎, 𝑏, 𝑐, 𝑑, 𝑓, 𝑔ൟ 

Full joint posterior: 𝑓(𝑦 ∣ 𝑡, 𝛩, 𝒟)𝑓(𝑡 ∣ 𝛩, 𝒟)𝜋(𝛩) 

𝑓(𝑦 ∣ 𝑇, 𝛩, 𝒟) =
exp ൜− ∑ ൤

𝑇௜(𝑦௜ − 𝜏 − 𝜃)ଶ

2𝑝௜𝜎
ଶ +

(1 − 𝑇௜)(𝑦௜ − 𝜃)ଶ

2(1 − 𝑝௜)𝜎ଶ ൨௡
௜ୀଵ ൠ

𝜎௡(√2𝜋)௡ ∏ (1 − 𝑝௜)
ଵି்೔

ଶ௡
௜ୀଵ 𝑝௜

்೔
ଶ

 

𝑓(𝑇 ∣ 𝑝) = ෑ 𝑝௜
்೔

௡

௜ୀଵ

(1 − 𝑝௜)
(ଵି்೔) 

𝜋(𝜏) =
1

ඥ2𝜋𝜎ఛ
ଶ

exp ቊ−
𝜏ଶ

2𝜎ఛ
ଶ

ቋ 

𝜋(𝜃) =
1

ට2𝜋𝜎ఏ
ଶ

exp ቊ−
𝜃ଶ

2𝜎ఏ
ଶቋ

 

𝜋(𝜎ଶ) =
𝑏௔

𝛤(𝑎)
(𝜎ଶ)ି௔ିଵexp ൜−

𝑏

𝜎ଶ
ൠ 

𝜋(𝑝 ∣ 𝛼, 𝜆) = ෑ ቈ
𝛤(𝜆𝛼௜ + 𝜆)

𝛤(𝜆𝛼௜)𝛤(𝜆)
቉

௡

௜ୀଵ

𝑝௜

(ఒఈ೔ିଵ)
(1 − 𝑝௜)

(ఒିଵ) 

𝜋(𝛼 ∣ 𝛽, 𝜈ଶ) = ෑ ൤
1

√2𝜋𝜈ଶ
(𝛼௜)

ିଵ൨

௡

௜ୀଵ

exp ቊ−
(log𝛼௜ − 𝑥௜

்𝛽)ଶ

2𝜈ଶ
ቋ 
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𝜋(𝛽) = ൬
1

√2𝜋
൰

(௞ାଵ)

𝛴
ఉ

ି
ଵ
ଶexp ൜−

1

2
𝛽்𝛴ఉ

ିଵ𝛽ൠ 

𝜋(𝜈ଶ) =
𝑑௖

𝛤(𝑐)
(𝜈ଶ)ି௖ିଵexp ൜−

𝑑

𝜈ଶ
ൠ 

𝜋(𝜆) =
1

𝛤(𝑓)𝑔௙
𝜆௙ିଵexp ൜−

𝜆

𝑔
ൠ 
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Now we detail the conditional posterior distributions for each of the parameters: 

 

𝜋(𝜏 ∣. ) ∝ Normal൫𝑀ఛ.௣௢௦௧, 𝑉ఛ.௣௢௦௧൯, where 

𝑉ఛ.௣௢௦௧ = ൬
1

𝜎ఛ
ଶ

+ ∑
𝑇௜

𝑝௜𝜎
ଶ

൰
ିଵ

 and 

𝑀ఛ.௣௢௦௧ = 𝑉ఛ.௣௢௦௧ ൬∑
𝑦௜ − 𝜃

𝑝௜𝜎
ଶ

𝑇௜൰ .

 

 

𝜋(𝜃 ∣. ) ∝ Normal൫𝑀ఏ.௣௢௦௧, 𝑉ఏ.௣௢௦௧൯, where 

𝑉ఏ.௣௢௦௧ = ቆ
1

𝜎ఏ
ଶ + ∑

𝑇௜

𝑝௜𝜎
ଶ

+
(1 − 𝑇௜)

(1 − 𝑝௜)𝜎ଶ
ቇ

ିଵ

 and 

𝑀ఏ.௣௢௦௧ = 𝑉ఏ.௣௢௦௧ ቆ∑
𝑇௜(𝑦௜ − 𝜏)

𝑝௜𝜎
ଶ

+
(1 − 𝑇௜)𝑦௜

(1 − 𝑝௜)𝜎ଶ
ቇ .

 

 

𝜋(𝜎ଶ ∣. ) ∝ Inv. Gamma ൭
𝑛

2
+ 𝑎, 𝑏 + ෍ ቈ

𝑇௜(𝑦௜ − 𝜏 − 𝜃)ଶ

2𝑝௜
+

(1 − 𝑇௜)(𝑦௜ − 𝜃)ଶ

2(1 − 𝑝௜)
቉

௡

௜ୀଵ

൱ . 

 

𝜋(𝑝௜ ∣. ) ∝ 𝑝
௜

ቀ
்೔
ଶ

ାఒఈ೔ିଵቁ
(1 − 𝑝௜)

൬
(ଵି்೔)

ଶ
ାఒିଵ൰

exp ቊ− ቈ
𝑇௜(𝑦௜ − 𝜏 − 𝜃)ଶ

2𝜎ଶ𝑝௜
+

(1 − 𝑇௜)(𝑦௜ − 𝜃)ଶ

2𝜎ଶ(1 − 𝑝௜)
቉ቋ. 

 

𝜋(𝛼௜ ∣. ) ∝
𝛤(𝜆𝛼௜ + 𝜆)

𝛤(𝜆𝛼௜)𝛤(𝜆)
𝑝௜

(ఒఈ೔ିଵ)
𝛼௜

ିଵexp ቊ−
(log𝛼௜ − 𝑥௜

்𝛽)ଶ

2𝜈ଶ
ቋ . 
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𝜋(𝛽 ∣. ) ∝ MVN൫𝛽መ, 𝑉ఉ.௣௢௦௧൯, where 

𝑉ఉ.௣௢௦௧ = ൣ𝑋்𝑉ఈ
ିଵ𝑋 + 𝛴ఉ

ିଵ൧
ିଵ

,

𝑉ఈ = 𝜈ଶ𝐼௡, and

𝛽መ = 𝑉ఉ.௣௢௦௧(𝑋்𝑉ఈ
ିଵ𝛼).

 

 

𝜋(𝜈ଶ ∣. ) ∝ Inv. Gamma ൭
𝑛

2
+ 𝑐, 𝑑 + ෍ ቈ

(log𝛼௜ − 𝑥௜
்𝛽)ଶ

2
቉

௡

௜ୀଵ

൱. 

 

𝜋(𝜆 ∣. ) ∝ ෑ ቈ
𝛤(𝜆𝛼௜ + 𝜆)

𝛤(𝜆𝛼௜)𝛤(𝜆)
𝑝௜

(ఒఈ೔ିଵ)
(1 − 𝑝௜)

(ఒିଵ)቉

௡

௜ୀଵ

𝜆௙ିଵexp ൜−
𝜆

𝑔
ൠ . 

 

The posterior conditional distributions for five of these parameters (𝜏, 𝜃, 𝜎ଶ, 𝛽, and 𝜈ଶ) are 

known distributions, and hence we may obtain posterior samples via Gibbs sampling. The 

other three parameters (𝑝, 𝛼, and 𝜆) are complex, unknown distributions. Hence we will 

use the Metropolis-Hastings (MH) algorithm to obtain posterior condition samples for 

these. For computational purposes, we will use the log-posteriors, shown on the next page. 
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For 𝜋(𝑝௜ ∣. ), we have 

log[𝜋(𝑝௜ ∣. )] ∝ ൬
𝑇௜

2
+ 𝜆𝛼௜ − 1൰ log𝑝௜ + ቈ

(1 − 𝑇௜)

2
+ 𝜆 − 1቉ log(1 − 𝑝௜) −

𝑇௜(𝑦௜ − 𝜏 − 𝜃)ଶ

2𝜎ଶ𝑝௜
−

(1 − 𝑇௜)(𝑦௜ − 𝜃)ଶ

2𝜎ଶ(1 − 𝑝௜)
.

 

For 𝜋(𝛼௜ ∣. ), we have 

log[𝜋(𝛼௜ ∣. )] ∝ log[𝛤(𝜆𝛼௜ + 𝜆)] − log[𝛤(𝜆𝛼௜)] − log[𝛤(𝜆)] +

(𝜆𝛼௜ − 1)log𝑝௜ − log𝛼௜ −
(log𝛼௜ − 𝑥௜

்𝛽)ଶ

2𝜈ଶ
.
 

Finally for 𝜋(𝜆 ∣. ), we have 

log[𝜋(𝜆 ∣. )] ∝ ෍{log[𝛤(𝜆𝛼௜ + 𝜆)] − log[𝛤(𝜆𝛼௜)] − log[𝛤(𝜆)] +

௡

௜ୀଵ

(𝜆𝛼௜ − 1)log𝑝௜ + (𝜆 − 1)log(1 − 𝑝௜)} +

(𝑓 − 1)log𝜆 −
𝜆

𝑔
.
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A4 Appendix 4: Alternative Bayesian model formulation using weighted likelihood 

Here we present an alternative formulation of the Bayesian model. This approach has the 

appeal that it is somewhat less complex than the approach described in the main body of 

the article, with less parameterizations involved. This approach uses a weighted likelihood. 

We assume the following distributions for the data 𝑌௜ and 𝑇௜: 

𝑌௜|𝑇௜~ ൜
𝑁𝑜𝑟𝑚𝑎𝑙(𝜃 + 𝜏, 𝜎ଶ), 𝑖𝑓 𝑇௜ = 1

𝑁𝑜𝑟𝑚𝑎𝑙(𝜃, 𝜎ଶ), 𝑖𝑓 𝑇௜ = 0
 

𝑇௜|𝑝௜~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 ቀ𝑒𝑥𝑝𝑖𝑡(𝑥௜
்𝛽)ቁ, 

where 𝑒𝑥𝑝𝑖𝑡(∙) is the inverse logit function, i.e., 𝑒𝑥𝑝𝑖𝑡(𝑎) =
ୣ୶୮(௔)

ୣ୶୮(௔)ାଵ
.  

𝜏~𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎ఛ
ଶ), 

𝜃~𝑁𝑜𝑟𝑚𝑎𝑙൫0, 𝜎ఏ
ଶ൯, 

𝜎ଶ~𝐼𝑛𝑣. 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏), 

and 

𝛽|𝜈ଶ~𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟. 𝑁𝑜𝑟𝑚𝑎𝑙൫0, 𝜈ଶ ∗ 𝐼௣൯. 

Then we express a weighted likelihood for the data as 

𝐿(𝜏, 𝜃) =
ୣ୶୮ቊି ∑

భ
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A5 Appendix 5: Tables of additional simulation results, Chapter 4 

Table A5.1 Subgroup analysis simulation study results (N=400) 

 

 

Table A5.2 Subgroup analysis simulation study results (N=200) 

 

  

N=400 Independent covariates Correlated covariates Ratios: Corr::Indpndt Diff: Corr-Indpndt
PCD MSE Corr0 Incorr0 Exact PCD MSE Corr0 Incorr0 Exact PCD MSE Corr0 Incorr0 Exact

Y1.A.EN 95.76 0.102 6.89 0 0.90 92.7 0.118 6.29 0 0.48 0.97 1.16 0.91 0.00 (0.42)
Y1.A.L 95.36 0.102 6.99 0 0.99 92.4 0.115 6.64 0.02 0.70 0.97 1.13 0.95 0.02 (0.29)
Y1.B.EN 94.68 0.121 6.90 0 0.91 90.5 0.149 6.40 0.14 0.51 0.96 1.23 0.93 0.14 (0.40)
Y1.B.L 94.35 0.117 6.94 0 0.96 90.2 0.144 6.68 0.19 0.61 0.96 1.23 0.96 0.19 (0.35)
Y1.C.EN 95.64 0.102 6.89 0 0.92 91.6 0.124 6.46 0.04 0.57 0.96 1.22 0.94 0.04 (0.35)
Y1.C.L 95.19 0.100 6.99 0 0.99 91.0 0.123 6.72 0.06 0.70 0.96 1.22 0.96 0.06 (0.29)
Y1.D.EN 95.72 0.097 6.82 0 0.85 93.7 0.110 6.38 0 0.51 0.98 1.13 0.94 0.00 (0.34)
Y1.D.L 95.43 0.096 6.92 0 0.93 93.5 0.107 6.63 0 0.67 0.98 1.12 0.96 0.00 (0.26)
Y1.EN 96.74 0.090 6.79 0 0.83 95.1 0.093 6.09 0 0.41 0.98 1.04 0.90 0.00 (0.42)
Y1.L 96.48 0.088 6.91 0 0.93 94.7 0.094 6.69 0 0.74 0.98 1.06 0.97 0.00 (0.19)
Y2.A.EN 89.42 0.169 6.93 0.08 0.89 87.9 0.175 6.34 0.34 0.39 0.98 1.03 0.91 0.26 (0.50)
Y2.A.L 89.34 0.165 6.96 0.08 0.90 87.5 0.171 6.55 0.43 0.39 0.98 1.03 0.94 0.35 (0.51)
Y2.B.EN 85.52 0.194 6.84 0.45 0.63 82.6 0.215 6.52 0.99 0.17 0.97 1.11 0.95 0.54 (0.46)
Y2.B.L 84.9 0.192 6.90 0.43 0.65 84.6 0.208 6.69 1.02 0.19 1.00 1.08 0.97 0.59 (0.46)
Y2.C.EN 87.89 0.175 6.90 0.18 0.81 86.3 0.187 6.56 0.64 0.25 0.98 1.07 0.95 0.46 (0.56)
Y2.C.L 87.04 0.173 6.93 0.22 0.80 85.6 0.190 6.80 0.76 0.37 0.98 1.10 0.98 0.54 (0.43)
Y2.D.EN 92.52 0.142 6.82 0.01 0.83 90.5 0.152 6.47 0.12 0.50 0.98 1.07 0.95 0.11 (0.33)
Y2.D.L 91.9 0.138 6.92 0.03 0.89 90.0 0.150 6.73 0.14 0.63 0.98 1.08 0.97 0.11 (0.26)
Y2.EN 93.17 0.140 6.88 0 0.88 92.0 0.134 6.23 0.06 0.42 0.99 0.96 0.91 0.06 (0.46)
Y2.L 92.61 0.137 6.98 0.01 0.97 91.4 0.134 6.57 0.08 0.65 0.99 0.98 0.94 0.07 (0.32)
Y3.A.EN 92.39 0.144 6.85 0.02 0.85 87.9 0.173 6.36 0.41 0.30 0.95 1.20 0.93 0.39 (0.55)
Y3.A.L 91.53 0.143 6.90 0.01 0.91 87.4 0.172 6.67 0.51 0.37 0.95 1.20 0.97 0.50 (0.54)
Y3.B.EN 89.78 0.168 6.90 0.06 0.86 83.1 0.217 6.65 0.96 0.24 0.93 1.29 0.96 0.90 (0.62)
Y3.B.L 88.68 0.168 6.96 0.14 0.86 84.5 0.212 6.82 1.03 0.23 0.95 1.26 0.98 0.89 (0.63)
Y3.C.EN 89.9 0.157 6.92 0.11 0.86 85.9 0.190 6.76 0.58 0.38 0.96 1.21 0.98 0.47 (0.48)
Y3.C.L 88.62 0.155 6.95 0.18 0.84 84.9 0.189 6.81 0.73 0.35 0.96 1.22 0.98 0.55 (0.49)
Y3.D.EN 92.94 0.134 6.78 0 0.82 88.9 0.169 6.42 0.32 0.40 0.96 1.26 0.95 0.32 (0.42)
Y3.D.L 92.47 0.130 6.91 0.01 0.92 88.7 0.161 6.70 0.28 0.59 0.96 1.24 0.97 0.27 (0.33)
Y3.EN 94.25 0.127 6.86 0.01 0.87 91.6 0.137 6.21 0.06 0.43 0.97 1.08 0.91 0.05 (0.44)
Y3.L 93.85 0.125 6.91 0 0.92 91.2 0.134 6.55 0.08 0.65 0.97 1.07 0.95 0.08 (0.27)

N=200 Independent covariates Correlated covariates Ratios: Corr::Indpndt Diff: Corr-Indpndt
PCD MSE Corr0 Incorr0 Exact PCD MSE Corr0 Incorr0 Exact PCD MSE Corr0 Incorr0 Exact

Y1.A.EN 88.88 0.183 6.68 0.14 0.65 87.7 0.198 5.94 0.38 0.18 0.99 1.08 0.89 0.24 (0.47)
Y1.A.L 88.73 0.181 6.82 0.17 0.74 86.7 0.199 6.27 0.55 0.26 0.98 1.10 0.92 0.38 (0.48)
Y1.B.EN 87.92 0.202 6.72 0.23 0.62 81.0 0.243 6.47 1.25 0.12 0.92 1.20 0.96 1.02 (0.50)
Y1.B.L 87.7 0.196 6.81 0.22 0.70 78.9 0.242 6.55 1.43 0.09 0.90 1.24 0.96 1.21 (0.61)
Y1.C.EN 89.42 0.185 6.84 0.09 0.79 84.8 0.216 6.53 0.77 0.25 0.95 1.17 0.95 0.68 (0.54)
Y1.C.L 88.58 0.180 6.85 0.15 0.76 84.2 0.215 6.71 0.89 0.27 0.95 1.19 0.98 0.74 (0.49)
Y1.D.EN 91.54 0.180 6.68 0.07 0.70 88.2 0.198 6.19 0.42 0.25 0.96 1.10 0.93 0.35 (0.45)
Y1.D.L 90.78 0.179 6.78 0.11 0.73 88.1 0.192 6.43 0.43 0.38 0.97 1.07 0.95 0.32 (0.35)
Y1.EN 93.48 0.155 6.67 0 0.74 91.5 0.166 5.76 0.07 0.31 0.98 1.07 0.86 0.07 (0.43)
Y1.L 93.02 0.153 6.78 0.01 0.81 90.9 0.167 6.27 0.14 0.44 0.98 1.09 0.92 0.13 (0.37)
Y2.A.EN 62.72 0.286 6.83 1.9 0.24 74.6 0.263 6.44 1.6 0.10 1.19 0.92 0.94 (0.30) (0.14)
Y2.A.L 60.88 0.285 6.93 2.07 0.27 73.6 0.262 6.61 1.71 0.08 1.21 0.92 0.95 (0.36) (0.19)
Y2.B.EN 55.54 0.295 6.83 2.41 0.09 58.2 0.299 6.79 2.53 0.04 1.05 1.01 0.99 0.12 (0.05)
Y2.B.L 54.55 0.294 6.91 2.5 0.16 58.0 0.296 6.79 2.58 0.02 1.06 1.01 0.98 0.08 (0.14)
Y2.C.EN 63.41 0.286 6.92 1.93 0.21 64.7 0.288 6.74 2.21 0.07 1.02 1.01 0.97 0.28 (0.14)
Y2.C.L 59.82 0.288 6.96 2.33 0.16 62.7 0.287 6.78 2.37 0.07 1.05 0.99 0.97 0.04 (0.09)
Y2.D.EN 72.22 0.261 6.74 1.29 0.29 78.7 0.245 6.39 1.14 0.17 1.09 0.94 0.95 (0.15) (0.12)
Y2.D.L 71.7 0.254 6.80 1.33 0.29 80.1 0.241 6.57 1.17 0.16 1.12 0.95 0.97 (0.16) (0.13)
Y2.EN 81.91 0.235 6.86 0.68 0.52 85.7 0.221 6.05 0.6 0.18 1.05 0.94 0.88 (0.08) (0.34)
Y2.L 81.47 0.226 6.90 0.65 0.56 85.4 0.217 6.34 0.74 0.18 1.05 0.96 0.92 0.09 (0.38)
Y3.A.EN 70.91 0.265 6.85 1.54 0.26 64.5 0.285 6.69 2.16 0.05 0.91 1.07 0.98 0.62 (0.21)
Y3.A.L 72.22 0.259 6.91 1.59 0.26 59.9 0.288 6.86 2.42 0.04 0.83 1.11 0.99 0.83 (0.22)
Y3.B.EN 62.03 0.281 6.86 2.01 0.23 51.1 0.306 6.85 2.79 0.06 0.82 1.09 1.00 0.78 (0.17)
Y3.B.L 61.08 0.282 6.88 2.08 0.22 50.1 0.307 6.90 2.91 0.05 0.82 1.09 1.00 0.83 (0.17)
Y3.C.EN 70.4 0.268 6.89 1.54 0.26 56.7 0.299 6.80 2.6 0.02 0.81 1.12 0.99 1.06 (0.24)
Y3.C.L 67.95 0.262 6.94 1.7 0.26 56.6 0.299 6.86 2.67 0.02 0.83 1.14 0.99 0.97 (0.24)
Y3.D.EN 78.36 0.238 6.65 0.9 0.33 61.7 0.281 6.64 2.02 0.04 0.79 1.18 1.00 1.12 (0.29)
Y3.D.L 77.82 0.233 6.76 0.86 0.38 62.1 0.282 6.76 2.14 0.06 0.80 1.21 1.00 1.28 (0.32)
Y3.EN 85.7 0.216 6.75 0.41 0.59 78.8 0.242 6.24 1.2 0.13 0.92 1.12 0.92 0.79 (0.46)
Y3.L 84.52 0.211 6.82 0.52 0.59 77.5 0.240 6.52 1.36 0.13 0.92 1.14 0.96 0.84 (0.46)
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Table A5.3 Subgroup analysis simulation study results (N=100) 

 

  

N=100 Independent covariates Correlated covariates Ratios: Corr::Indpndt Diff: Corr-Indpndt
PCD MSE Corr0 Incorr0 Exact PCD MSE Corr0 Incorr0 Exact PCD MSE Corr0 Incorr0 Exact

Y1.A.EN 61.69 0.293 6.70 2.22 0.11 54.0 0.303 6.53 2.51 0.01 0.88 1.03 0.97 0.29 (0.10)
Y1.A.L 61.53 0.288 6.73 2.25 0.12 55.0 0.300 6.70 2.59 0.03 0.89 1.04 1.00 0.34 (0.09)
Y1.B.EN 52.75 0.308 6.76 2.73 0.10 41.2 0.324 6.78 3.2 0.02 0.78 1.05 1.00 0.47 (0.08)
Y1.B.L 52.08 0.305 6.80 2.73 0.08 39.1 0.326 6.81 3.35 0.01 0.75 1.07 1.00 0.62 (0.07)
Y1.C.EN 57.51 0.293 6.85 2.29 0.13 48.4 0.312 6.70 2.84 0.02 0.84 1.06 0.98 0.55 (0.11)
Y1.C.L 58.8 0.292 6.86 2.34 0.09 46.2 0.309 6.78 2.91 0.02 0.79 1.06 0.99 0.57 (0.07)
Y1.D.EN 65.07 0.281 6.62 1.9 0.11 48.5 0.310 6.78 2.83 0.04 0.75 1.10 1.02 0.93 (0.07)
Y1.D.L 64.77 0.276 6.60 1.87 0.15 49.6 0.304 6.81 2.75 0.05 0.77 1.10 1.03 0.88 (0.10)
Y1.EN 81.74 0.241 6.37 0.61 0.33 79.0 0.258 6.15 1.12 0.13 0.97 1.07 0.97 0.51 (0.20)
Y1.L 81.9 0.235 6.52 0.62 0.41 78.0 0.255 6.36 1.34 0.09 0.95 1.08 0.98 0.72 (0.32)
Y2.A.EN 36.72 0.330 6.89 3.51 0.02 40.3 0.319 6.71 3.18 0.01 1.10 0.96 0.97 (0.33) (0.01)
Y2.A.L 36.34 0.332 6.95 3.56 0.02 40.0 0.318 6.73 3.22 0.00 1.10 0.96 0.97 (0.34) (0.02)
Y2.B.EN 32.39 0.335 6.93 3.65 0.03 30.2 0.336 6.88 3.68 0.00 0.93 1.00 0.99 0.03 (0.03)
Y2.B.L 31.14 0.335 6.92 3.73 0.00 30.2 0.336 6.91 3.74 0.00 0.97 1.00 1.00 0.01 0.00
Y2.C.EN 34.17 0.333 6.96 3.59 0.02 35.5 0.329 6.83 3.48 0.01 1.04 0.99 0.98 (0.11) (0.01)
Y2.C.L 34.99 0.330 6.96 3.54 0.03 35.2 0.327 6.86 3.47 0.00 1.01 0.99 0.99 (0.07) (0.03)
Y2.D.EN 41.98 0.320 6.82 3.27 0.01 43.8 0.319 6.67 3.06 0.03 1.04 1.00 0.98 (0.21) 0.02
Y2.D.L 40.9 0.321 6.87 3.33 0.02 40.7 0.322 6.71 3.24 0.01 1.00 1.00 0.98 (0.09) (0.01)
Y2.EN 48.62 0.313 6.79 2.78 0.06 63.7 0.293 6.44 2.19 0.02 1.31 0.94 0.95 (0.59) (0.04)
Y2.L 49.55 0.310 6.79 2.79 0.06 60.1 0.293 6.54 2.32 0.02 1.21 0.94 0.96 (0.47) (0.04)
Y3.A.EN 37.21 0.329 6.87 3.39 0.05 38.2 0.320 6.64 3.33 0.00 1.03 0.97 0.97 (0.06) (0.05)
Y3.A.L 37.22 0.326 6.92 3.4 0.05 37.2 0.319 6.73 3.41 0.01 1.00 0.98 0.97 0.01 (0.04)
Y3.B.EN 34.66 0.327 6.80 3.46 0.04 28.1 0.340 6.92 3.77 0.00 0.81 1.04 1.02 0.31 (0.04)
Y3.B.L 33.36 0.328 6.91 3.54 0.03 26.7 0.339 6.90 3.83 0.00 0.80 1.03 1.00 0.29 (0.03)
Y3.C.EN 34.98 0.332 6.95 3.56 0.04 30.6 0.338 6.92 3.72 0.00 0.87 1.02 1.00 0.16 (0.04)
Y3.C.L 35.24 0.330 6.95 3.52 0.06 30.7 0.339 6.96 3.73 0.00 0.87 1.03 1.00 0.21 (0.06)
Y3.D.EN 41.81 0.323 6.86 3.2 0.02 31.1 0.331 6.79 3.51 0.01 0.74 1.02 0.99 0.31 (0.01)
Y3.D.L 39.51 0.323 6.86 3.29 0.03 33.4 0.326 6.79 3.44 0.00 0.85 1.01 0.99 0.15 (0.03)
Y3.EN 51.59 0.303 6.73 2.56 0.09 50.2 0.314 6.85 2.75 0.04 0.97 1.04 1.02 0.19 (0.05)
Y3.L 52.7 0.299 6.77 2.57 0.08 50.9 0.308 6.86 2.7 0.06 0.97 1.03 1.01 0.13 (0.02)
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