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ABSTRACT 

CHARACTERIZATION OF ADIPOSITY AND INFLAMMATION GENETIC 

PLEIOTROPY UNDERLYING CARDIOVASCULAR RISK FACTORS IN 

HISPANICS 

Mohammad Yaser (Anwar) 

11/30/2020 

The observed overlap between genetic variants associated with both adiposity and 

inflammatory markers suggests that changes in both adiposity and inflammation could be 

partially mediated by common pathways. The pervasive but sparsely characterized 

“pleiotropic” genetic variants associated with both adiposity and inflammation have been 

hypothesized to provide insight into the shared biology. This study explored and 

characterized the genetic pleiotropy underpinning adiposity and inflammation using 

genetic and phenotypic observations from the Cameron County Hispanic Cohort (CCHC).  

A total of 3,313 samples and >9 million single nucleotide polymorphisms (SNPs) were 

examined in this study. Mixed model genome-wide association studies (GWAS) were 

performed for 9 phenotypes including C-reactive protein (CRP), Interleukin (IL)-6, IL-8, 

fibrinogen, body mass index (BMI), waist circumference (WC) in males and females, and 

waist to hip ratio (WHR) in males and females (separately). GWAS for WHR and WC 

were meta-analyzed to obtain sex-combined results. Pleiotropy assessment was completed 

using adaptive Sum of Powered Score (aSPU) test. Three genetic loci with evidence of 

pleiotropy on chromosome 3, 12 and 18 were fine-mapped to distinguish the set of likely 
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causal variants. Causal mediation analysis was used to assess whether likely causal variants 

were independently associated with both inflammation and adiposity.  

At least 3 signals, on chromosomes 3, 12, and 12, were identified that suggested the 

presence of SNPs with strong pleiotropic p-values (< 5 × 10−6). The fine-mapping of these 

three suspected pleiotropic regions distinguished 22 variants with posterior causality 

probabilities greater than 50%. The mediation analysis indicated that rs60505812, on 

chromosome 3, was independently associated with both an inflammatory marker (IL-6) 

and an adiposity measure (BMI). For the variant rs73093474, on chromosome 12, results 

indicated both a direct association with CRP and an indirect association (via WHR).  

The identification of likely pleiotropic variants indicated that 1) a considerable degree of 

overlapping genetic pleiotropy exists between adiposity and inflammation, and 2) evidence 

exists to support both the direct and indirect pleiotropy. The results showed the potential 

of these genetic variants to provide biological insight, intended to improve the 

cardiovascular health of the Hispanics, and by extension all populations. 
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INTRODUCTION AND BACKGROUND 

This chapter presents background information on the epidemiologic, pathophysiologic 

and genetic aspects of obesity and associated cardiovascular risk factors, particularly in the 

context of Hispanic/Latino populations. Biologic discussions focus on  associations and 

functional overlaps between adiposity and inflammation that promote adverse 

cardiovascular outcomes. The review emphasizes gaps in the current literature on genetic 

factors underpinning biologic pathways affecting adiposity and inflammation in 

Hispanic/Latinos, and concludes with the scientific aims of the dissertation work.  

1. Epidemiology 

1.1. Obesity trends 

Although a struggle with undernutrition has been a defining feature for most of human 

history, the industrial revolution resulted in the explosive growth of agricultural 

productivity over the last two and half centuries, resulting in a relative abundance of food 

that has significantly contributed to the well-being of societies. Records from industrialized 

countries show that the average height1 and weight2 of individuals has progressively 

increased throughout the 19th and the first half of the 20th century.  

However, continued uptake of high calorie foods coupled with changes in lifestyles and 

environmental settings, especially during the latter half of the 20th century, have gradually 

tipped the balance toward obesity. The populations in more wealthy parts of the world have 
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begun to gain weight at levels that are disproportionate to the gains made in height3. At the 

dawn of the new millennium, humans passed a landmark point when adults with excess 

weight outnumbered those who were underweight4. Today, obesity is a major public health 

challenge5.  

Even though obesity figures vary between countries, due to differences in socioeconomic 

characteristics and the speed of epidemic transition [away from infections’ dominated 

landscape toward the rise in metabolic diseases]6, recent decades have seen linear upward 

trend in the prevalence of overweight and obesity almost everywhere7. Between 1980 and 

2013, the average proportion of overweight increased by one-third, in both men and 

women, globally8. A review of over 2,000 population-based studies published between 

1985 and 2017 showed that body mass index (BMI) values, defined as weight (in 

kilograms) over height squared (in meters), increased from 22.6 to 24.7 in women and from 

22.2 to 24.4 in men9.  

This rising trajectory in obesity appears to include all age groups. Based on a pooled 

analysis of approximately 2,500 population-based studies, including 128 million 

individuals aged 5 years and older, the average estimated global prevalence of obesity 

among children has increased 8-fold, from just under 1% in 1975 to approximately 8% in 

201610. In the United States, estimates have shown that approximately 69% of adults are 

classified as overweight (BMI ≥ 25), 35% are obese (BMI ≥ 30), and 14.5% are moderately 

to extremely obese (BMI ≥ 35) 11. 

However, average numbers do not reflect the underlying complexities associated with 

obesity prevalence. At the subnational level, significant disparities in the distribution of 

overweight and obesity exist among various ethnic and socioeconomic12,13. A higher 
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proportion of Hispanic Americans appear to suffer from overweight and obesity, with a 

greater than 12% increase in the prevalence of overweight and a greater than 21% increase 

in the prevalence of all-type obesity compared with the overall mean for the adult 

population (>20 years age)11. A review of the National Health and Nutrition Examination 

Survey (NHANEs) biannual reports between 1999-2018 revealed larger annual percentage 

point increases in obesity among Hispanics compared with non-Hispanics, with severe 

obesity now occurring in over 10% for this ethnic group14. It should be noted that increase 

in obesity is not limited in Hispanic Americans but similarly noted in other countries with 

majority Latino populations15, with unequal distribution that disproportionately affects 

those at lower levels of socioeconomic status16.  

1.2. Public health significance 

Increased obesity is an important public health issue due to the associations between 

obesity and various adverse health outcomes17,18. Central obesity, in which the excessive 

accumulation of weight occurs in the abdominal region, is a known risk factor for serious 

diseases19, and has been associated with insulin resistance20, high blood pressure21, 

dyslipidemia22, and metabolic hormones disorders18. These metabolic disorders, in turn, 

increase susceptibility to cardiovascular diseases23, often with fatal consequences.  

Unsurprisingly, given the elevated trends in obesity, the prevalence of cardiovascular risk 

factors is also higher among ethnic minorities, including Hispanics24. For example, the age-

adjusted prevalence ratio of diabetes was >2.5 times higher in Hispanics than in non-

Hispanic whites, in one recent survey25; another study suggested that as many as two in 

three Hispanic adults present with abnormal levels of lipids26.  
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Yet, despite the elevated prevalence of various metabolic risk factors, Hispanics also 

appear to have longer life spans and suffer from lower rates of cardiovascular disease-

associated mortality27,28. Statistics from NHANES from 1988 to 2006 vividly illustrate the 

reduced mortality rate in this group compared with other groups (e.g. Hazard ratio 0.42 vs 

Non-Hispanic Whites among ≥ 50 years old)29. Various factors, including immigration of 

healthy individuals27, a legume- and fruit-based dietary pattern, supportive social and 

family structures, the unreliability of the data, and the Salmon bias, which describes the 

tendency for older, unhealthy individuals to return to their original countries30, have been 

suggested as possible explanations for this “Hispanic paradox”31.  

Whether this paradox exists32 and what factors may explain it is an active area of 

research, rife with arguments and counterarguments. However, the persistence of a lower 

mortality rate among Hispanics, even in studies that have attempted to control for 

socioeconomic factors33, has resulted in a focus on the important but sparsely explored 

contributions of genetic ancestry to this paradox34.  

2. Pathophysiology  

Increasing body weight steadily taxes the body’s physiological capacities35, eventually 

causing major disorders36. Altered pulmonary parameters37, the expansion of cardiac 

output, increased sympathetic nervous system activities38, increased systolic and diastolic 

blood pressure39, elevated sodium retention40, and the attenuation of immunity41 are some 

of the notable consequences of increased body weight. The pathophysiological changes 

that are triggered by excess weight can affect multiple organs and systems, leading to 

adverse outcomes in brain42, reproductive43, liver44, and kidney functions45, among others.  
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The deleterious effects on the heart and vascular system are particularly concerning46 

because the obese population features a significantly higher mortality rates associated with 

cardiovascular diseases, with one studying reporting a hazard ratio as high as 2.21 among 

those with body mass index (BMI)≥40, compared to normal weight (20≤BMI<25) 

individuals47, even as the BMI is not an ideal predictor of the cardiovascular diseases48. 

The United States National Vital Statistics report in 2017 showed that 23% of all deaths 

could be attributed to heart diseases, making heart disease the top-ranked cause of 

mortality, ahead of all types of malignant neoplasia49.  

2.1. Obesity-cardiovascular system association mechanisms 

The precise mechanisms that link obesity with cardiovascular risk factors remain 

unknown, although many hypotheses have been generated50-52, all of which could partially 

or substantially contribute to this association. For instance, one proposition is that the 

obesity-induced decrease in insulin sensitivity promotes increased arterial stiffness53. 

Insulin-resistance reduces endothelium-dependent vasodilation53, possibly through nitric 

oxide-dependent processes that act as physiological regulators of vascular tone54 and 

induce smooth muscle proliferation and migration54. 

Abnormal kidney function and the resulting impacts on elevated blood pressure and 

hemodynamic imbalance is another area of research focus55. Obesity increases tubular 

reabsorption, shifting pressure natriuresis (sodium excretion) toward higher blood pressure 

to maintain the water-sodium balance56. Elevated reabsorption appears to be mediated 

through the activation of the renin-angiotensin system, and the buildup of adipose tissue 

around the kidney and increased extracellular matrix levels within the kidney can cause 

medullary compression, altering the intrarenal mechanical forces57 (Figure 1.1). Obesity is 
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also associated with tangible renal vasodilation and higher glomerular filtration rates58, 

which can increase sodium reabsorption.  

Nonetheless, the focus of the majority of research  on obesity and cardiovascular risk 

factors has been on adipose tissue. Changes in the local distribution59 and metabolic 

characteristics of adipose tissue60,61 play decisive roles in the association between obesity 

and adverse cardiovascular outcomes. The regulation of adipose tissue is a delicate process, 

and disruptions in adipose regulation can result in detrimental health effects, particularly 

in visceral and ectopic adipose tissue, which are particularly sensitive to overnutrition62. In 

response to sedentary lifestyle conditions63, genetic predispositions64 or exposure to 

malignant environmental factors65, the rapid or sustained accumulation of lipids can disrupt 

the differentiation of preadipocytes and accelerating the formation of larger, dysfunctional 

adipocytes66,67 (Figure 1.2). 

2.2. Adiposity and inflammation 

The associations between obesity and metabolic irregularities are often attributed to 

inflammatory responses induced by adipose tissue68,69. In humans, similar to other 

mammals, adipose tissues exist in two forms: white adipose tissue and brown adipose 

tissue. Brown adipose tissue is found primarily in (human) neonates and plays a significant 

role in the regulation of body temperature through non-shivering thermogenesis during the 

earlier years of life. White adipose tissue, on the other hand, is thought to be the site of 

energy storage when a positive imbalance exists between energy intake and expenditure. 

Adipose tissue also contains preadipocytes, endothelial cells, fibroblasts, leukocytes, and 

macrophages. Energy, primarily in the form of glucose and fatty acids, is converted to 

lipids through a well-characterized lipogenesis process70.  
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Adipocytes can expand in size (hypertrophy) and numbers (hyperplasia) to accommodate 

increased fat storage needs in cases of positive energy imbalance71 to maintain energy 

homeostasis. Adipose tissue expansion creates the need for insulin, which is an essential 

peptide secreted from beta-cells in the pancreas that regulates the absorption of glucose 

from the bloodstream into the liver, skeletal muscles, and adipocytes.  

Sustained anabolic activities, such as growth and differentiation, necessitate a steadier 

supply of insulin as an adaptive response to excess energy or in response to underlying 

disease. This intensely pushes the closed-loop of the adipocyte-brain axis, which controls 

the feedback process72, and adipocytes respond with increased hyperplasia and 

hypertrophic changes.  

Enlarged adipocytes feature altered lipolytic profiles, which can be attributed to the 

enrichment of regulatory proteins, including lipase and perilipin, which are distal in the 

lipolytic cascade73. These cells have also been shown to be resistant to the lipopenic (blood 

lipid decreasing) actions of leptin74, a hormone that is made in adipose cells (beside 

enterocytes) and contributes to the regulation of energy balance by inhibiting the hunger 

sensation75.  

Ability of enlarged adipocytes to synthesize adiponectin is decreased compared with 

normal adipocytes, which impairs fat oxidation and glucose regulation and amelioration of 

inflammatory activities76. Simultaneously, highly active hypertrophied adipocytes exhibit 

distorted cytokine secretion characteristics77. They also promote noticeable increase  in the 

circulating levels of several cytokines, including interleukin (IL)-6 and IL-8, noticeably 

increase78,79.  
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Adding to the complexity of inflammatory reactions, the physical expansion of cells 

triggers increased blood flow, resulting in the attraction of macrophages through several 

signals, including monocyte chemoattractant protein 1 (MCP1)80 and increased apoptotic 

adipocytes66. In experimental studies, CD8+ T-cells are attracted to and infiltrate obese 

adipose tissue, which, in turn, facilitates the recruitment and activation of macrophages to 

this tissue81. increased macrophage presence in adipose tissue is associated with increased 

obesity82. 

Within pro-inflammatory milieu of expanded adipose tissue, in which increased 

concentrations of macrophages are admixed with lipolytic and apoptotic adipocytes, cross-

talk between these two cell types can promote positive feedback loops, resulting in the 

amplification of adverse metabolic and inflammatory actions, mediated by an increase in 

the levels of circulating inflammation markers83,50 (Figure 1.3). Moreover, adipocyte-

secreted cytokines, including IL-6, are key drivers of C-reactive protein (CRP) production 

in the liver (through direct liver access via the portal system84). As a result, CRP is often 

used as a significant predictor of cardiovascular diseases85.  

Enhanced cytokine levels result in the increased production of free fatty acids, which are 

potent activators of the Toll-like receptor family86. Toll-like receptors are pattern 

recognition receptors that activate a variety of intracellular signaling pathways, including 

the activation of nuclear factor-kappa B (NF-kB) and inflammatory cytokine production, 

which are responsible for activating innate immunity87 and triggering the inception of 

atheromatic processes.  
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2.3. Inflammation as a possible adiposity precursor  

Although most biological research presupposes adiposity to be the trigger for the 

inflammatory process, some indications have suggested that the adiposity–inflammation 

relationship could also move in the other direction. For example, compelling evidence 

suggests that inflammation-induced insulin resistance may dysregulate glucose uptake by 

adipocytes and promote or exacerbate the accumulation and inflammation of adipose 

tissue88. Insulin resistance-induced hyperinsulinemia can create anabolic pressure89, 

triggering hyperplastic and hypertrophic changes in adipose tissues to alleviate glucose 

accumulation90. If sustained, these cells ultimately reach a tipping point, when further 

anabolic pressures cannot be accommodated due to constraints on the physical expansion 

of cells and tissues. 

Beside insulin resistance induced adiposity, analysis of inflammatory markers in over 

2,000 non-diabetic, middle-aged men found that the highest levels of inflammatory 

markers at baseline were predictive of weight gain over the 6 years of the study follow-up, 

regardless of body weight at the start of the study91.  

Specific dietary patterns, particularly those high in sugar and saturated fats, have been 

reported to cause inflammation in the hypothalamus, resulting in leptin resistance, a 

precursor event to appetite dysregulation and the altered metabolism of fat and glucose92. 

A similar pattern of leptin resistance was also observed in experimental studies with rats93. 

Microbiota and bacteria-induced inflammation that precedes obesity is an active area of 

research, in which structural changes in the permeability of the gut may promote the 

selective uptake of nutritional components94-96.  
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2.4. A case for overlap in the underlying functional mechanism  

Some of the relationships described above have been suggested to form a circular loop, 

in which weight gain causes inflammation, resulting in metabolic/structural alterations that, 

in turn, cause further fat accumulation. Such self-sustained feedback mechanisms have 

previously been suggested97 and merit attention in adiposity–inflammation association 

studies (Figure 1.4).  

Although most of the studies included in this review implicitly assume that these 

feedback mechanisms move towards a pathophysiological direction, the origin of the 

trigger remains unclear. The sophisticated and complex natures of both inflammation and 

adiposity suggest a nuanced underlying mechanism, one that may be induced by certain 

changes in either adiposity or inflammation and may be mediated by common molecular 

pathways that result in variations in both domains, indicating a level of interrelatedness 

between these two domains, linked by some shared biological underpinning. A 

comprehensive investigative approach remains necessary to discern these relationships by 

incorporating traditional laboratory-based assessments with genetic insights at both the 

population and molecular level.  

3. Genetics of obesity and inflammation 

Although the role played by genetics in the expression of biological traits has long been 

accepted, scientists have only recently begun to contemplate the exact mechanisms that 

link heritable elements with the expression of physiological98 and other phenotypes99. The 

widespread availability of DNA sequencing and genotyping techniques and the 
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development of statistical tools that take advantage of ever-increasing computational 

power has resulted in the advent of GWAS.  

In contrast with approaches that test pre-specified regions, the hypothesis-independent 

GWAS approach scans millions of variants throughout the genome, examining their 

associations with phenotypic variations. First adopted in early 2000, GWAS-based studies 

have experienced exponential growth, providing significant insights into our understanding 

of the genetic underpinnings of diseases100,101.  

To date, GWAS Studies have provided strong evidence for associations between genetic 

variants and adiposity102-104 as well as inflammatory markers105-109, indicating the potential 

complexity and variability of the underlying biological networks that mediate phenotypic 

expression, either directly or in tandem with other factors.  

3.1. Genetic overlaps between adiposity and inflammation 

With the increased availability of GWAS summary results, a number of genomic regions 

that were originally reported in association with obesity were later found to be similarly 

associated with inflammatory traits. Evidence for such intersections has also been reported 

for asthma and obesity110. In an experimental study, high levels of inflammatory markers 

were observed in mice carrying genes that harbored alleles associated with increased 

obesity risk111. Concurrent inflammatory effects were also reported in studies where the 

expression levels of adipose tissue genes were regulated112,113. More specifically, single 

nucleotide variants (SNPs) located in LRRF1P1106, FTO114,115, AdipoQ116, CSN1S1117, 

FDFT1, and PCCB107 were suggested to be associated with both inflammatory markers 

and obesity traits. The reverse was also observed, with genes including IL6, which encodes 



12 
 

an inflammatory cytokine, found to affect energy balance118 and TNF interacting with 

adiposity119.  

In addition, the phenotypic synergy between adiposity and inflammatory traits, including 

the expression of CRP120, interleukins120, and other cytokines121, has been consistently 

observed. This phenotypic synergy provides ample evidence for the existence of 

overlapping functional pathways that underly both domains and are likely to be affected 

by genetic variants. Termed pleiotropic variants in the scientific literature122, these multi-

effect variants could help explain the underlying mechanisms that result in correlated 

phenotypic expression. The finding that seemingly distinct but co-expressed phenotypes 

may share genetic pathways highlights the relevance of pleiotropy in understanding these 

complex traits123.  

3.2. Study of pleiotropic variants offers novel biologic insight 

Pleiotropic variants are known to be pervasive124 and have the potential to do the 

following. (1) Clarify the molecular functions of phenotype-associated loci and identify 

common functional pathways between multiple phenotypes124. (2) Inform the classification 

and treatment of patients. Although current treatment strategies combine therapies directed 

at distinct cardiovascular disease risk factors, an alternative approach, which may 

potentially be informed by the investigation of pleiotropy, is the identification and targeting 

of mechanistic “common denominators.” Similarly, drugs that are developed to treat a 

specific disease phenotype could be repurposed if a common therapeutic target was 

identified. (3) Prioritize variants for functional follow-up. The vast majority of GWAS-

identified variants are not causal but, instead, are correlated with true causals variant 

through linkage disequilibrium (LD)125,126. However, distinguishing associations that 
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represent shared effects for a single variant from among multiple independent variants that 

co-localize is crucial for interpretations of mechanistic models127. (4) Increase the 

statistical power of novel locus discovery128. Inconsistencies between estimated and 

explained heritability129 and substantial proportions of variance can be explained when 

considering all GWAS SNPs130,131. The number of GWAS-identified novel loci continues 

to increase as sample sizes increase128, which suggests that multiple loci remain 

unidentified. Previous studies by several research groups132,133 have demonstrated how 

harnessing pleiotropy can increase the statistical power of novel locus discovery.  

4. Gaps in adiposity–inflammation pleiotropy research 

4.1. Inadequate number of studies 

Despite their potential for illuminating the origin of complex traits, including 

inflammation and adiposity, the exploration of pleiotropic variants has been limited, and 

the underlying mechanisms associated with these SNPs remain largely uncharacterized. 

The studies referenced in the previous section constitute a substantial proportion of the 

existing literature on adiposity–inflammation pleiotropy, which highlights the need to 

perform additional research and in combination with functional studies.  

4.2. Methodological challenges 

In most instances, whether overlaps in the GWAS-identified loci reflects mediated 

pleiotropy (i.e., an SNP influences adiposity, which, in turn, affects inflammation)127 or 

represents biological pleiotropy, with distinct SNP effects on each phenotype remain 

unresolved. Restricting attention to genome-wide significant or even suggestive SNPs will 
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typically underestimate the extent of pleiotropy, as SNPs with more modest effects will be 

excluded134.  

Interrogating pleiotropy by comparing phenotype-specific SNP lists can often fail to 

distinguish between SNPs that represent biological pleiotropy from SNPs that co-localize 

due to (1) spurious associations, which may reflect ascertainment bias where SNP 

associates with co-occuring trait135, phenotypic misclassification136, allelic structure, or 

shared controls137; or (2) reflect ambiguity in mapping the true underlying causal variant, 

particularly with non-coding variants that have tissue specific effects138.  

4.3. Limited inference 

Methodological issues and the inadequacy of current pleiotropy research are not the only 

factors hindering further exploration and functional characterization of multi-trait 

associated variants. Most existing GWAS and pleiotropic studies have been performed on 

largely European ancestry populations. The confinement of investigations to specific 

groups139,140 can create a biased view of human variation and hinders the translation of 

genetic associations into clinical and public health applications that are relevant for all 

populations141. In addition, these studies fail to leverage the genetic architecture of 

racial/ethnic minority populations and miss opportunities to pinpoint unique variant-gene 

combinations. 

The conclusions formed from existing studies may warrant limited generalization given 

the differential distribution of inflammatory markers associated with comparative adiposity 

configurations142, patterns of fat accumulation143,144, and the prevalence of cardiometabolic 

abnormalities in minority groups, such as Hispanics/Latinos145. These differences have 
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been persistently observed in various settings; for instance, in the multiethnic Insulin 

Resistance Atherosclerosis Study (IRAS) cohort, Hispanic participants were found to 

present significantly higher concentrations of circulatory CRP and plasminogen activator 

inhibitor-1 (PAI-1) in adiposity adjusted analyses146. Ethnic disparities were also identified 

for adipokine levels between participants in the Study of Women’s Health Across the 

Nation (SWAN), even after accounting for adiposity measures142.  

Given the cross-phenotypic effects of genetic loci associated with adiposity147, the 

ancestry-specific genetic architecture may underpin the disparities observed in adiposity-

associated cardiometabolic risk factors and associations between ethnic groups148.  

Therefore, the investigation of genetic underpinnings is critical for an understanding of 

the mechanisms that result in disparities in cardiovascular risk factors between 

Hispanic/Latino populations and other populations. The handful of existing assessments 

involving minorities have limited inferential utility, largely due to smaller sample sizes, 

which have unsurprisingly resulted in contrasting conclusions149,150.  

Uncovering the genetic underpinnings of ancestry-specific inflammatory pathways that 

link central adiposity with the metabolic abnormalities that are considered precursors to 

deleterious cardiovascular outcomes is essential in this population. A genome-wide, 

systematic, and comprehensive evaluation of pleiotropic genes that overlap between 

adiposity and inflammation phenotypes in Hispanic/Latino populations is necessary to 

identify these genetic effects. 
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4.4. Adiposity–inflammation pleiotropy study in Hispanics/Latinos 

The tri-admixed nature of Hispanic/Latinos captures genetic variations from Amerindian, 

African, and EU populations151, and facilitates the detection of variants that are 

infrequent/monomorphic in more homogeneous populations, as demonstrated 

previously152,153.  

Hispanics/Latinos also present opportunities for estimating causal probabilities for 

GWAS inferenced variants (fine-mapping)154, due to shorter shared haplotypes compared 

with EU populations155. Fine-mapping is even more powerful in the context of data from 

non-European ancestry populations156, greatly reducing the number of SNPs identified for 

functional evaluations157,158.  

The provision of new genetic and molecular insights into such complex traits in this era 

of precision medicine is intended for clinical utility and the development of effective 

preventive strategies designed to improve the cardiovascular health of Hispanics and, by 

extension, all ethnic groups through the reduction of associated metabolic risk factors.  

5. Study Rational 

Assuming that adiposity and inflammation are interrelated manifestations of biological 

mechanisms, the identification and study of the genetic variants that underpin such 

mechanisms can enable the examination of phenotypic classifications, the repurposing of 

pharmaceutical interventions, and ultimately, cardiovascular disease prevention. The 

conceptual framework for the study is graphically illustrated in Figure 1.5. 

The selection of a Hispanic population with unique, tri-admixed genetics will highlight 

functional variants and their associated pathways at the molecular level.  
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6. Aim of the Study Project 

We aim to characterize the adiposity- and inflammation-associated genetic pleiotropy 

underpinning cardiovascular risk factors in Hispanic Americans by using observations 

from the Cameron County Hispanic Cohort (CCHC). By utilizing phenotypic and 

genotypic data, combined with advanced statistical approaches, SNPs that are significantly 

associated with adiposity and inflammatory traits will be explored, fine-mapped to identify 

functional variants, and sorted to distinguish biological and pleiotropic variants.  

The specific aims of this dissertation are:  

1) Identify loci with potential evidence for pleiotropy across inflammation, overall 

obesity, and central adiposity domains in a Hispanic/Latino population. 

By employing measures of overall obesity (BMI), central obesity (waist to hip ratio, waist 

circumference), and inflammatory traits (CRP, Fibrinogen, IL-6, and IL-8 levels) obtained 

from blood samples159, the study intends to perform the following:  

a. Estimate genome-wide univariate associations between approximately 10 million 

SNPs and Aim 1a phenotypes.  

b. Apply the adaptive sum of powered score (aSPU) test160 to the Aim 1a summary 

statistics to identify potentially pleiotropic loci across phenotypic domains. 

2) Leverage allelic associations and variants’ functionalities to prioritize SNPs for 

in-depth statistical and experimental interrogation. 

a. Using PAINTOR161 and FINEMAP162 to conduct fine-mapping on the loci identified 

in Aim 1b, prioritize SNP candidates for additional statistical and functional evaluation.  
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3) Distinguish SNPs with evidence for biological pleiotropy. 

a. Application of pathway analysis to differentiate Aim-2 prioritized SNPs with evidence 

of biological pleiotropy (e.g., variants that influence several independent phenotypes) from 

mediated pleiotropy.  

The specific hypotheses are that: (1) genome-wide assessment will highlight loci that 

potentially affect multiple inflammatory- and adiposity-associated phenotypes (Aim 1). (2) 

At these possibly pleiotropic loci, fine-mapping informed by population structure and 

functionality will pinpoint functional SNP candidates (Aim 2). (3) Some of these 

candidates will illustrate evidence of biological pleiotropy (Aim 3).  

By considering obesity and inflammation to be interrelated manifestations of biological 

mechanisms, rather than in isolation, this proposal will pave the way towards gene and 

functional variant identification, enabling research examining etiology-based phenotype 

classification, drug repurposing, and, ultimately, cardiovascular disease prevention.  

A Hispanic-Latino population was intentionally selected as a population with a high 

burden of disease, and that is often underrepresented in genomic studies, which ensures 

that our proposed study is innovative, particularly as next-generation sequencing, precision 

medicine, and direct-to-consumer genetic testing become more commonplace, in the 

context of an increasingly diverse population163. 
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7. Tables and Figures 

Figure 1.1.  Obesity increases extracellular matrix levels within the kidney and may cause 

medullary compression, altering the intrarenal mechanical forces. This structural change 

increases reabsorption of sodium in the Henle Loop and conversely reduce sodium levels 

in Macula denasa. The latter event would trigger renin-angiotensin system and increases 

glomerular fiteration rate and renal blood flood, resulting in elevated extracellular fluid 

volume, increased hemodynamic load and ultimately hypertension which is a precursor to 

major cardiovascular adversities (Hall, J.E., 1997) . 
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Figure 1.2. Adipocytes expand and replicate to store positive energy balance in the shape 

of lipids. The rapid or sustained accumulation of lipids  can disrupt the differentiation of 

preadipocytes and accelerating the formation of larger, dysfunctional adipocytes that have 

altered hormonal and inflammatory profile (Van Gaal et al., 2006). 

 

 

Figure 1.3. Hypertrophied adipocytes upregulate production of proinfommatory cytokines, 

including IL-6, that are key drivers of C-reactive protein (CRP) production in the liver 

(through direct liver access via the portal system. Within this inflammatory milieu, 

increased concentrations of macrophages admixed with lipolytic and apoptotic adipocytes 

promote positive feedback loops, resulting in the amplification of adverse metabolic and 

inflammatory actions (Van Gaal et al., 2006). 
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Figure 1.4. Functional ovrelapp and feedback loop has been suggested where weight gain 

causes inflammation, resulting in metabolic/structural alterations that induce further fat 

accumulation 
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Figure 1.5. The conceptual framework for the adiposity-inflammation pleiotropy study.  
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METHODS 

This chapters present information on study population, quality control procedures, and 

statistical approaches proposed for the data analysis. The review highlights the study 

setting and the recruitment process. Discussions entail descriptive analysis of genetic and 

phenotypic observations, variable selection, genetic data quality assessment and 

imputation, exclusion/inclusion criteria and outlier examinations. Mathematical summaries 

of the proposed statistical methods are provided in the latter part of the chapter.  

1. Study Setting 

Cameron County, in the state of Texas, is the southernmost county in the US. According 

to a recent Population and Housing Units Estimates report, provided by the US Census 

Bureau (in 2020) , the total population of the county is 423,163 individuals (census.gov), 

with the large majority (approximately 88%) self-identifying as Hispanic or Latino.  

The county harbors a high percentage of residents who were born in Mexico164, are 

economically classified as low-income, and have lower educational attainment than the 

national average164. Based on data from 2004-2015 period, only one-third of the individuals 

in this county were covered by any type of health insurance program165. The prevalence of 

obesity (57%), prediabetes (32%), diabetes (28.7%), hypertension (31.0%), and 

hypercholesterolemia (50.1%) among this population suggests high susceptibility to 

cardiovascular diseases and chronic inflammatory diseases166,167.  

https://en.wikipedia.org/wiki/County_(United_States)
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1.1. Conception 

The CCHC study started in 2004 and continually developed and expanded ever since. 

This study is intended to be a “Framingham-like” open enrollment observational cohort 

consisting of a Hispanic population, providing a setting for the exploration of a variety of 

health-related topics.  

This initiative is primarily funded by the National Institute for Minority Health 

Disparities (NIMHD). Current research involving this cohort includes the study of diabetes 

risk, cardiovascular disease, peripheral artery disease, liver disease, cancers (liver/breast), 

mental health, intervention studies, genomics, immunology, imaging/elastography, clinical 

trials, and economics.  

1.2. Recruitment process 

Recruitment is ongoing, and the number of participants is now approximately 5,000 

individuals; Medical examinations and interviews are performed at Clinical Research Units 

(CRUs) in both Brownsville and Laredo, Texas. The first round of recruitment included 

2,000 participants and was performed between 2004–2007.   

Although most participants have been adults, a small pediatric group (8-17 years old) 

was also enrolled in the study. Regular follow-up visits, performed every 5–10 years, are 

planned for participants recruited at baseline to allow for longitudinal data collection, using 

nested study designs, and the implementation of clinical trials.   

Using a 2-stage, stratified sampling design, census tracts were classified into 4 strata 

according to income level. Targeted sampling was performed on the first (lowest) and third 

socioeconomic strata. From 42 clusters in the lower socioeconomic stratum, 11 tracts were 
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selected for random sampling; similarly, 11 tracts were selected from among the 39 clusters 

in the higher socioeconomic stratum164. The highest stratum was omitted because it 

contained predominantly “winter Texans,” who were primarily retired visitors from the 

northern United States and Canada and were less likely to be Hispanic.  

All households within a selected census block were invited to participate in the study. 

Overall, 71% of approached households elected to participate, with more participants from 

the lower SES stratum than from the upper stratum (78% vs. 63%); then, one person from 

each household was randomly recruited for the study. The recruitment process is currently 

in the second stage and is ongoing. Recruiters are from the local population and are 

bilingual and bicultural. Each randomly selected household was visited at least 5 times.  

The institutional review boards at the University of Texas Health Science Center and the 

University of Texas at Brownsville reviewed and approved the protocol. They also 

approved the informed consent forms, which included permission to collect and store de-

identified data and specimens for this and other studies. 

2. Data Collection 

Those who agreed to participate were then invited to visit a CRU for examinations. All 

questionnaires and explanations were scripted in both English and Spanish, and 

participants were not asked to fill out any forms. Questionnaires and examinations were 

conducted by nurses and field workers, who were trained in good clinical practices, in 

accordance with the National Institutes of Health requirements.  

2.1. Anthropometric measures  
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The weights of the participants were measured with their shoes removed and recorded to 

the nearest 0.2 kg using a Seca digital scale (Birmingham, UK). Standing height (cm) was 

measured measured and recorded to the nearest 0.2 cm using a Perspective Enterprises 

stadiometer (Portage, MI, USA) and weight (kg). BMI was measured by dividing the body 

weight over the square of the height in meters (m2); waist circumference (visceral 

adiposity) was measured to the nearest 0.2 cm at the level of the umbilicus, with 

participants in a standing position and breathing normally164. All measurements were 

performed twice, and the mean value was recorded in the dataset.  

2.2. Inflammation biomarkers  

Participants were asked to fast for at least 10 hours overnight before their visit to the 

CRU, which was located centrally at Valley Baptist Medical Center. After confirming the 

duration of their fast, blood samples were obtained for subsequent laboratory 

measurements and DNA sequencing; participants who had not fasted were rescheduled164. 

Specimens were aliquoted and frozen at −80°C. CRP levels were analyzed at a Clinical 

Laboratory Improvement Amendment (CLIA)-certified laboratory. IL-6 and IL-8 which 

are markers of chronic, low-grade inflammation, were measured using a multiplex enzyme-

linked immunosorbent assay (ELISA, Milliplex Map, Millipore, CA, USA) and read in a 

Luminex 200 system (Luminex Corp., Austin TX).  

2.3. Genetic measurements 

Genetic measurements were completed at the Vanderbilt University Medical Center 

genotyping core facility, VANTAGE. Genotyping was performed using a MEGA-Ex 

panel, which included >2 M variants. MEGA also incorporates 400K low-frequency and 
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rare disruptive variants that were originally derived from a pan-ethnic panel of 40K whole-

exome sequenced (WES) individuals and a heavily curated catalog of > 40K clinical 

variants. Measurements were recorded in binary PLINK format 168. 

3. Exploratory Analysis of Genetic Measurements and Quality Control 

Out of 2,038,233 total genotyped variants, 1,842,794 single-nucleotide polymorphisms 

(SNPs) passed initial lab control, whereas the remainder did not perform consistently and 

were, therefore, dropped from the initial data set. 

3.1. Pattern of missingness  

Allelic frequency distribution showed that out of 1,842,794 total variants, slightly greater 

than 50% were classified as rare variants, which are defined as SNPs with minor allele 

frequencies (MAFs) of < 1% (Figure 2.1).  Next, the per variant missingness was assessed 

(Figure 2.2). Although a sizeable proportion of variants (approximately 24%) had a 

maximum of 1% missingness, the proportion of variants with missingness equal to or 

exceeding 5% were negligible (approximately 5%).  

Next, per  sample missingness were examined. The initial exploration of samples from 

the first batch (available at the time of assessment) illustrated that approximately 3% of 

samples were missing 10% of genotyped variants or less, and nearly 4% of samples had a 

5% missingness or less.  

Finally, the pattern of per sample missingness  compared to the distribution of autosomal 

heterozygosity was examined (Figure 2.3). Using a threshold equal to the median ± 3 × the 

interquartile range, pattern missingness vs. autosomal heterozygosity was assessed, and no 
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sample was found to be outside of the threshold range. Larger than expected heterozygosity 

can indicate the possible contamination of DNA samples.   

3.2. Sex mismatch 

To determine genetic sex, we assessed the inbreeding coefficient for the X-chromosome 

or the F coefficient ratio169, which represents the probability that a person receives genetic 

markers on the X-chromosome from a single ancestor.  

Because males have only one X-chromosome (received from the mother), the coefficient 

is defined to be 1, regardless of inbreeding. For females, the X-chromosome kinship 

coefficient is either 0 (completely outbred) or close to 0, if any degree of kinship is 

identified between the parents.  

Generally, an F coefficient value < 0.2 is considered to be genetically female, whereas a 

value > 0.8 is considered to be male. The distribution coefficients generally correlated with 

the pedigree sex (Figure 2.4), with some mismatches. autosomal allelic heterozygosity 

compared with X-chromosome (sex) heterozygosity was also assessed (Figure 2.5); results 

were similar to the F coefficient distribution and similarly included some mismatches 

between genetic vs. pedigree sex. 

3.3. Genetic outliers 

CCHC genetic observations were merged with 925 samples from the 1000 Genomes 

(1000G) project population to assess the alignment of the study participants against 

reference ancestries using the smartpca tool from the Eigensoft package. A plot of the first 

2 principal components (PCs, Figure 2.6a) suggested a few outliers with different 

ancestries compared with the rest of the samples; however, these samples did not 
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consistently separate from the rest of the samples when the third PC was considered (Figure 

2.6b and c).  

3.4. Hardy-Weinberg Equilibrium 

Determining whether genotypic frequencies are in Hardy-Weinberg Equilibrium (HWE) 

is an important step that must be performed during the quality analysis of genotyped 

variants. The HWE states that the allelic frequencies of autosomal genes in a population 

remain unchanged throughout generations in the absence of disruptive forces, such as 

assortative mating, mutation, and migration. However,  a departure from HWE is most 

likely indicative of potential genotyping errors or population stratification. Yet, given that 

the cohort under study is a recently admixed population, only extreme deviation from HWE 

was considered. A negligible number of variants were found outside of the significant 

thresholds for HWE  (< 10−6, < 10-20, <10−50, Figure 2.7). 

3.5. Duplicated samples and variants  

After analysis with Kinship-based Inference for Gwas (KING)170, 76 pairs of samples 

were found to have > 80% genetic concordance with each other. A similar number of pairs 

were also found during the pedigree reconstruction process using PRIMUS171 (Figure 2.8). 

Additionally, approximately 50K variants were also found to be duplicated.    

3.6. Quality control process 

Based on empirical observations from prior steps and the template proposed for 

performing genome-wide association studies (GWAS)172, the following quality control 

steps were performed:  
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a) removing duplicated variants and indels (insertions/deletions).  

b) removing variants with low MAF (< 1%).  

c) excluding samples with more than 5% missingness and variants with greater than 

5% missingness (among all samples).  

d) excluding samples with genetic vs. pedigree mismatch (F > 0.3 for females).  

e) removing samples that fall outside of the heterozygosity threshold or or HWE 

significance level (p-value < 1−10), and  

f) removing variants with either allelic or stand mismatch compared against the 

reference 1000G panel (this step was only completed for dataset used for imputation 

with 1000G).  

In Table 2.1, the rows represent the temporal sequence for the process. All the steps were 

completed using the PLINK package.  

4. Principal Component Analyses  

In recent years principal component analysis (PCA) has been the most widely adopted 

approach for both ancestry inference and the correction of population stratification in 

genomic studies that utilize high-density SNP genotyping data173. To calculate PCA, 

filtered data were used that were previously assessed for quality control standards (as 

discussed above) and further subseted these data  to include only common variants, with 

MAF > 5% (approximately 117,000 SNPs)The selection of common variants can improve 

ancestry inferencing because these variants are more likely to be observed in reference 

populations outside of the study.  
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Using this common variant subset, PCs were calculated using the packages GENESIS174 

(for PCAir) and PRIMUS171 (PCA). The primary difference between PCAir and PCA is 

that PCAir adjusts for pairwise kinship. The GENESIS method utilizes genomic 

observations and an efficient algorithm175 to identify a diverse subset of unrelated samples, 

which are representative of all ancestries in the data. GENESIS uses pairwise relatedness 

and ancestry divergence measurements on genotyped variants from the autosomal 

chromosomes and separates the dataset into an ancestry representative subset, u, of 

unrelated individuals from the total sample, N.  PC estimates obtained from the analysis of 

a subset u would then be used to predict PCs in the set of related individuals, R, based on 

genetic similarities175. Samples from 1000G were used as the ancestry references (N = 

2,504). 

Procedurally, PCs were first calculated using a combined set of unrelated CCHC 

individuals and reference samples. The threshold for relatedness was set to a 3rd-degree 

relatives, which equates to a first cousin or more distant relative. A slight difference in the 

number of unrelated individuals was calculated by PRIMUS vs. GENESIS (2,282 vs. 2,253) 

due to differences in their respective computational algorithms. Subsequently, PCs were 

calculated during the first phase and were then projected over the subset of related samples 

(Figure 2.9).  

A sizable majority of CCHC individuals clustered with predominantly Mexican 

populations, and smaller sets clustered with other ancestry groups (Figures 2.9). The 

parallel plot of the first 10 PCs also suggested the primacy of Mexican ancestry among the 

study participants (AMR group in Figure 2.10).  
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The analysis of explained variance by PC (Figure 2.11) suggested that a negligible 

proportion of variations in the data is captured by PCs beyond the 3rd PC.  No practical 

difference was observed between the PRIMUS-calculated PCA and PCAir (Figure 2.12); 

therefore, PRIMUS-derived PCs were selected to ensure consistency with other research 

studies using the same cohort.  

5. Imputation 

5.1. Pre-imputation quality control 

Using McCarthy group tools (well.ox.ac.uk/~wrayner/tools), genotyped variants 

underwent further quality control assessments. Steps included strand update (top strand), 

position check, and the assignment of reference/alternative allele assignments for 

genotyped PLINK files. The following categories of variants were excluded from the set:  

i) A/T and G/C SNPs if MAF > 0.4.  

ii) SNPs with differing alleles (relative to the reference genome), and  

iii) SNPs with > 0.2 allele frequency difference (compared to the reference genome). 

5.2. Imputation panels 

A cleaned dataset was loaded into the Michigan Imputation Server176 for imputation 

using a 1000G Phase 3 panel and a Trans-Omics for Precision Medicine (TOPMed) freeze 

8 panel (imputation.biodatacatalyst.nhlbi.nih.gov). The advantages of the 1000G panel 

include well-characterized reference ancestry groups, along 26 clusters and from all 

continents and wider adoption in genetic studies, which would facilitate the replication and 

meta-analysis of different studies using the same set of variants.  
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TOPMed (nhlbiwgs.org), in contrast, is a consortium of over 30 different study cohorts. 

Compared with 1000G, the latest freeze 8 reference panel was inferenced from the deep 

sequencing of 186K individuals, which represents a substantial improvement in the 

number of available variants for imputations and increased diversity of ancestry groups. 

Currently, this freeze includes 811M SNPs and 66M short indel variants. The availability 

of larger numbers of SNPs would greatly facilitate genetic studies that involve rare or 

ancestry specific variants. However, TOPMed is a work in progress and is not yet as 

widely adopted as 1000G. 

5.3. Imputation procedure 

With both 1000G and TOPMed servers, imputations were completed with the 

Minimac4177 imputation platform. The mean imputation accuracy was set to 10%. For 

genotype phasing, where each allele is assigned to its proper pair of (paternal or maternal) 

chromosomes (for haplotypic referencing), the Eagle phasing algorithm178 was utilized. 

During the TOPMed imputation run, all populations were selected as the parameters for 

ancestry reference.  

The results and the number of variants imputed with TOPMed for each chromosome are 

presented in Table 2.2. An average of approximately 92% alignment between the reference 

panel and the genotyped set was achieved. Additionally, the results from the TOPMed 

panel were converted to a newer genome reference consortium human build 38 

(GRChr38)179. 

https://www.nhlbiwgs.org/
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5.4. Post-imputation quality control 

Variants with rare MAF (< 1%) and poor imputation quality (< 40%) or monomorphic 

(i.e., all individuals having the same genotype at a given site) within the study population 

were excluded from this analysis. After the completion of the recommended quality control 

steps, approximately 9 million SNPs remained, which were used for subsequent analyses.  

6. Phenotypes 

BMI was selected as the measure for overall adiposity, and WHR and WC were selected 

as reliable indicators of central obesity and visceral adiposity, respectively; all three 

measures are significantly correlated with inflammatory markers and have been widely 

adopted in GWAS research on adiposity traits. For inflammation, phenotypes, including 

CRP, IL6, IL8, and fibrinogen, were included in the assessment (Table 2.3). Exploratory 

analyses of the target traits showed skewness in the distributions of inflammatory markers, 

which was suggestive of extreme values at the left tails, although a few high values were 

also observed for BMI and WHR (Figure 2.13). The data included measurements taken at 

both visits 1 and 2.  

6.1. Covariates 

For GWAS analysis, covariates including age (year), sex and BMI were considered. For 

pathway analysis, age, sex, physical exercise (binary, 150 min of moderate to viborous 

activity/week), alcohol consumption (Ounce/week), current smoking status (binary) and 

homeostatic insulin resistance (HOMA-IR, uIU/mL) were used. Covariates used for 

pathway analysis were similarly taken from the exams where the primary phenotypes were 

selected.  
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6.2. Inclusion/exclusion criteria 

The study population was restricted to individuals whose genetic data were available 

(3,313 out of 4,933). All participants under the age of 15 were excluded from the study 

because notable differences exist between genes that affect childhood vs. adulthood 

obesity180. Prior assessments in larger settings also suggested sexually dimorphic 

anthropometric variants in regard to central obesity181; therefore, both WHR and WC traits 

were stratified by sex. Finally, the log-transformed distributions of traits were assessed.  

For the IL-6 and IL8 phenotype, the empirical distribution suggested a proportion of 

observations with the same value (0.64 pg/dL), and this pattern was often observed with 

measurements taken before January 2010. This value is unlikely to have been the detection 

threshold for the assay because values smaller than 0.64 were identified. Whether some 

portion of the values were rounded as a standard reporting practice could not be 

determined. To minimize bias in the results, the last non-missing observation for each trait 

in each sample was selected for GWSA analysis (Table 2.4).  

6.3. Examination of phenotypic outliers 

A considerable number of extreme observations were identified at both tails (Figure 2.13, 

empirical distributions; Figure 2.14, log-transformed distributions). Although outliers 

could introduce noise or induce false-positive associations in genetic tests, aggressive 

filtration can reduce sample sizes and inversely affect power; therefore, a delicate balance 

is necessary. To address this issue, two comparative methods were utilized: 
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6.4. The minimalistic approach 

Using the minimalistic approach, both biological plausibility and empirical distributions 

(both raw and log-transformed) were used as criteria for setting outlier cut points. For 

anthropometric traits, almost all of the observations were in ranges that were biologically 

plausible, even if clinically abnormal. Therefore, only a few extreme cases that were 

considerably detached from the rest of the distributions at each tail were excluded.  

For CRP, clinical studies have shown that concentration levels above 350 (mg/L) are 

indicative of underlying severe acute inflammation182, whereas levels ranging from 10–

100 (mg/L) could either indicate active inflammation or be a high normal. Given the 

empirical distribution and clinical criteria, a few observations above 200 (mg/L) were 

excluded.  

For IL6, the upper range of measurement can be as high as 1000 (pg/dL), especially in 

individuals with underlying conditions (e.g., infection, cancer, chronic diseases). However, 

we used both empirical distribution and the reported literature to determine a cut-off point 

of 100 (pg/dL) as the threshold for outliers, as observations above this level are generally 

considered to be abnormal and are less likely to be observed in individuals without acute 

inflammation183,184.  

For IL8, levels as extreme as 10,000 (pg/dL) have been reported in severely ill patients185. 

Based on the empirical distribution and the highest ranges known for non-acute cases, the 

threshold was set to 80 (pg/dL)186,187. For all traits, extremely low measurements (observed 

in the log-transformed distributions, Figure 15) were also excluded. After the filtration of 

outliers, the remaining measurements were log-transformed and rank-normalized. 
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6.5. Hybrid approach  

Although the minimalistic approach excluded extremes, the dataset continued to include 

values that were otherwise abnormally high or low; therefore, the possibility of severe or 

acute underlying diseases being present at the time of measurement could not be excluded. 

In such scenarios, data is customarily rank-normalized to minimize the likelihood of bias 

in the results; however, this process can induce additional problems, such as the loss of 

statistical power188. Therefore, a more conservative outlier examination was deemed 

necessary, particularly for inflammatory traits.  

First, the distribution of inflammatory markers in similar Hispanic ancestry populations 

was reviewed in the literature (Table 2.5), which provided inferences for setting standard 

deviation-based cut-off points for each trait. Subsequently, the data were log-transformed, 

and the values outside of the proposed cut-off points were then set to missing. Descriptive 

distributions of the study phenotypes used during the hybrid filtration approach are 

presented in Table 2.6.  

Lastly, outliers were examined to ensure that no specific pattern could be observed. 

6.6. Selection of the phenotype set 

No discernible difference was observed for either phenotype set after the conclusion of 

the GWAS tests. Therefore, the results from the hybrid assessment process were selected 

for subsequent analyses.  
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7. Statistical Approach 

7.1. Genome-wide association test 

Generalized linear models are now the primary statistical tools used during association 

analyses in various scientific fields189, including biology. Assuming that the subjects are 

independent, the linear association between the outcome (phenotype) and predictor (SNP 

variant) can be written as 𝑀1: 𝑔(𝐸(𝑌)) = 𝑋𝛼 + 𝐺𝛽, where 𝑌 is a vector for continuous or 

binary phenotype data, 𝑔 is a link function, 𝑋 denotes confounders, and 𝐺 is the SNP 

dosage.  

However, given the study setting, in which a sizeable proportion of the individuals have 

kinship relationships with each other, a generalized linear mixed model (GLMM) would 

be more appropriate to allow for family structure adjustments, beyond the ancestry PCs 

that account for most distant relatedness and ethnic variations. Hence, a mixed model was 

implemented in the GENESIS package190 for use during GWAS tests.  

GENESIS fits linear mixed models for quantitative phenotypes and penalized-quasi 

likelihood for binary (or count) traits. In comparison with other packages that use the 

Likelihood Ratio or Wald tests 191-193, GENESIS uses the Lagrange-Multiplier (score)194 

test. A distinguishing feature of score-based tests is that only the null model must be 

specified to make statistical inference; thus, this type of model is computationally faster 

than the other two types, for which more complicated models must be fitted. 

The package uses a reduced maximum likelihood (REML) algorithm195, a special form 

of maximum likelihood estimation, in which the degrees of freedom are used to estimate 

fixed effects while calculating variance components. Compared with the general maximum 
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likelihood method, REML operates on linear combinations of observations, chosen such 

that those combinations are invariant to the values of fixed-effect parameters.  

Relatedness due to familial relationships is accounted for by including a random effect 

term with a covariance matrix proportional to the genetic relationship matrix (GRM) or 

kinship matrix 𝐾. Specifically, the GLMM assumes that the variance matrix for the 

phenotype 𝑌 has the form 𝑉1: 𝑉𝑎𝑟(𝑌) = 𝜎2𝐼 + 𝛾2𝐾, where 𝐼 is the identity matrix. In a 

single SNP analysis, the computing time was greatly reduced by estimating 𝜎2 and 𝛾2 from 

the null model 𝑀0: 𝑔(𝐸(𝑌)) = 𝑋𝛼 and then using these estimates in a score test of 𝛽 = 0 

in 𝑀1.  

For the family structure effect, the GENESIS package uses PC-Relate196. Briefly, PC-

Relate is a PC-based approach for the estimation of commonly used measures of recent 

genetic relatedness, such as kinship coefficients and identity by descent (IBD), which share 

probabilities in samples with population structures, admixture, and HWE departures.  

PC-Relate is essentially a hypothesis (model)-free approach for inferring recent kinship 

because it does not require prior estimates of individual ancestry and population-specific 

allele frequencies, IBD-sharing likelihood models, or the specification of a population 

genetic model. It uses PCs calculated from genomic data to partition genetic correlations 

among individuals into two separate groups based on the sharing of recent or more distant 

common ancestry196. 

7.2. Pleiotropy assessment  

Various pleiotropy methods have recently been proposed197 that take advantage of the 

increased availability of summary statistics from trait-specific GWAS. Most of these 
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methods offer superior statistical power compared with multivariate analysis198. Because 

the GWAS results in this study were based on score tests, the adaptive Sum of Powered 

Scores test (aSPU), which itself is essentially a score-based test, refined for multi-trait 

association testing199, was used for pleiotropy assessments.  

Briefly, suppose 𝑈 = (𝑈1 … 𝑈𝑘)𝑇 to be the score vector for a set of k trait-SNPs to be 

tested with the H0: β = 0. The score test is: 𝑇𝑆𝑐𝑜 = 𝑈𝑇𝑉−1𝑈, which is equivalent to an 

asymptomatic Wald test with k degrees of freedom. The popular single-variant test for 

correlated traits is the univariate minimum P  (UminP) method, which tests every single 

variant, one-by-one, and selects the minimum of their p-values200.  

Pan et al. showed that the corresponding multi-trait UminP for score-based tests is 

𝑇𝑈𝑚𝑖𝑛𝑃 = max
𝑗=1,…,𝑘

𝑈𝑗
2/𝑉𝑗𝑗

201, where Uj is the element of U, and V is the (j,j) diagonal element 

of the 𝑉 = 𝐶𝑜�̂�(𝑈). However, when the number of traits increases, the test loses power. 

To address this issue, the sum of score tests was proposed202: 𝑇𝑆𝑢𝑚 = ∑ 𝑈𝑗
𝑘
𝑗=1 .  

This test may also be ineffective when the direction of effects across traits differs. One 

solution was the sum of squared score (SSU) test202:  𝑇𝑆𝑆𝑈 = 𝑈𝑇𝑈 = ∑ 𝑈𝑗
2𝑘

𝑗=1 , which was 

later scaled to a more generalized test that can be adapted for different scenarios203:  

𝑇𝑆𝑃𝑈(𝛾) = ∑ 𝑈𝑗
𝛾𝑝

𝑗=1 , where gamma is the power parameter. Note that when the gamma 

parameter approaches infinity203, 𝑇𝑆𝑃𝑈(𝛾) ∝ (∑ |𝑈𝑗|
𝛾

)𝑝
𝑗=1  1/𝛾 → max

𝑗
|𝑈𝑗| = 𝑇𝑆𝑃𝑈(∞), 

which is similar to the UminP test. Each gamma value may yield a higher power under 

certain scenarios. 
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 However, because these scenarios cannot be known in advance, an adaptive (aSPU) 

approach is necessary to maximize the power of a given set of gamma values; hence204: 

𝑇𝑎𝑆𝑃𝑈 = min
𝛾∈Г

𝑃𝑆𝑃𝑈(𝛾), where 𝑃𝑆𝑃∞𝑈(𝛾) is the pleiotropic p-value of the test and Γ contains 

a set of suggested gamma (i.e. 1,2,3…∞) values, of which at least one value may maximize 

the detection power. 

7.3. Fine-mapping 

Although GWAS or pleiotropy analysis can provide crucial insights into the genetic 

underpinnings of phenotypes, these analyses do not necessarily indicate causality. Due to 

linkage disequilibrium (LD) between SNPs or coverage quality of genotyping panels (SNP 

tagging)205, variants with the lowest p-values may not be phenotype-affecting SNPs.  

Fine-mapping is a statistical analysis approach that can be used to assign a causal 

probability to GWAS-inferenced variants. In this study, two complementary methods were 

utilized for fine-mapping loci with suggestive evidence for multi-trait associations after 

pleiotropic analysis.  

7.3.1. PAINTOR 

The PAINTOR (Probabilistic Annotation INTegratOR) approach takes advantage of both 

the LD structure and functional annotation. In association analysis for continuous traits, 

values are marginally regressed on each variant, and the corresponding Z-score (�̂�/𝑠𝑒(�̂�)) 

is obtained.  

Assuming that 𝑍𝑗 is the vector of the [pleiotropic] Z-score in the 𝑗𝑡ℎ locus (1 ≤ 𝑗 ≤ 𝐿) 

of the size 𝑁𝑗 (i.e., total number of SNPs in the locus); Σ𝑗 is the corresponding SNP pairwise 
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pearson correlation coefficient for the locus 𝑗 (i.e., LD matrix), derived from a set of 

unrelated individuals with 𝐾 annotations (1 ≤ 𝑘 ≤ 𝐾) for each SNP 𝑖; 𝐴𝑖,𝑗 is a binary 

vector where 𝐴𝑖,𝑗,𝑘 = 1 if the 𝑖𝑡ℎ variant at the 𝑗𝑡ℎ locus is part of the annotation 𝑘; 𝛾𝑘 is 

the effect size of the 𝑘𝑡ℎ annotation on the probability that a SNP is causal; 𝜆𝑖 is the vector 

of non-centrality parameter ; 𝐶𝑗is the vector of causality, where 𝐶𝑖,𝑗 = 1 if SNP 𝑖 at the 

locus 𝑗 is causal; then the prior probability of the Bayes formulation is206: 

𝑃(𝑍𝑗|𝐶𝑗; 𝜆𝑗) = 𝑁(𝑍𝑗; Σ𝑗(𝐶𝑗 ∘ 𝜆𝑗), Σ𝑗) 

𝑃(𝐶𝑗; 𝛾𝑘) =  ∏ 𝑃(𝐶𝑖𝑗; 𝛾𝑘)
𝑖

… (1) 

𝑃(𝐶𝑖𝑗; 𝛾𝑘) =  (
1

1 + exp (𝛾𝑘𝐴𝑖𝑗𝑘)
)𝐶𝑖𝑗(

1

1 + exp (−𝛾𝑘𝐴𝑖𝑗𝑘)
)1−𝐶𝑖𝑗 … (2) 

PAINTOR computes posterior probabilities of each causal configuration 𝐶𝑗 over all 

possible causal configurations 206: 𝑄𝑗(|𝑄𝑗|) =  ∑ (
𝑁𝑗 

𝑖
)𝑠

𝑖=0 , where S is the potential causal 

numbers considered for each locus 𝑗. With equaitons above, the posterior probability for 

each 𝐶𝑗 is206: 

𝑃(𝐶𝑗|𝑍𝑗; 𝛾𝑘, 𝜆) =  
𝑃(𝑍𝑗|𝐶𝑗; 𝜆𝑗)𝑃(𝐶𝑗; 𝛾𝑘)

∑ 𝑃(𝑍𝑗|𝐶𝑗; 𝜆𝑗)𝐶𝑗∈𝑄𝑗
 𝑃(𝐶𝑗; 𝛾𝑘)

… (3) 

And the posterior probability for each SNPi,j
206:  

𝑃(𝐶𝑖𝑗 = 1|𝑍𝑗; 𝛾𝑘, 𝜆) =  ∑ 𝑃(𝐶|𝑍𝑗; 𝛾𝑘, 𝜆) … (4)

𝐶𝑗∈𝑄𝑗;𝐶𝑖𝑗=1

 

Because posterior probabilities are calculated independently for each locus, the package 

undertakes further mathematical steps that aggregate results across loci and use these 
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results to update likelihood parameters, particularly 𝛾𝑘 and 𝜆, which improve posterior 

probability estimates. The incorporation of functional annotation has been illustrated to 

significantly improve causal estimates in prior analyses158. 

7.3.2. FINEMAP 

Essentially, FINEMAP is a Bayesian approach that incorporates likelihood function, 

priors, likelihood estimation, and stochastic search algorithm162. Assuming a linear model 

𝑦 = 𝑋𝜆 + 𝜖, where 𝑦 is vector of mean-standardized values for a quantitative trait in n 

individuals and 𝑋 is a column-standardized SNP genotype matrix of dimension 𝑛 × 𝑚, the 

maximum likelihood estimate of the causal variants’ effects 𝜆 depends on 𝑋 and 𝑦 though 

the SNP correlation matrix. Priors for causal variants’ effect 𝜆 is calculated via 𝑝(𝜆|𝛾) =

𝑁(𝜆|0, 𝑠𝜆
2𝜎2∆𝛾), where 𝛾 is a binary vector, for which 𝛾𝑙 = 1 if 𝑙 is causal and 0 otherwise; 

𝑠𝜆
2 is assigned prior variance for causal effects in units of 𝜎2 = 1; and ∆𝛾 is a diagonal 

matrix.  

The probability of each causal configuration 𝛾 is assumed as 𝑝(𝛾) = 𝑝𝑘/(𝑚
𝑘 ) when 

∑ 𝑙𝑚
𝑙=1 = 𝑘. The marginal likelihood of 𝛾 is obtained by integrating the causal effects of 𝜆. 

The posterior probability of any causal configuration is estimated via 𝑝(𝛾|𝑦, 𝑋) =

(𝑚
𝑘 )

−1
𝑝𝑘 × 𝐵𝐹(𝛾: 𝑁𝑈𝐿𝐿), where 𝐵𝐹 is the Bayesian factor and 𝑘 is the number of causal 

variant in that specific configuration.  

Finally, this approach uses the shotgun stochastic search207 to compare various causal 

configurations, with each obtained through the process discussed above, to identify those 

with the highest posterior probability. FINEMAP conducts a pre-defined round of 

iterations within the space of causal configuration. Each iteration is defined by deleting, 
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changing, or adding a causal SNP from the prior configuration, which is referred to as 

manipulative sampling from the preceding iteration.  

All evaluated configurations and their posterior probabilities are saved in a list, Г∗. The 

posterior probability that SNPs in configuration 𝛾 are causal is estimated by normalizing 

over the Г∗ list: 𝑝(𝛾|𝑦, 𝑋) = 𝑝∗(𝛾|𝑦, 𝑋)/ ∑ 𝑝∗(𝛾|𝑦, 𝑋)𝛾∈Г∗ , and for the particular SNP 𝑙𝑡ℎ 

to be causal: 𝑝(𝛾𝑙|𝑦, 𝑋) = ∑ 1(𝛾𝑙 = 1)𝛾∈Г∗  𝑝(𝛾|𝑦, 𝑋)162. The advantages of this method 

are the minimal input requirements (i.e., Z-scores, minor allele frequencies, and SNP 

correlations) and the possibility of probing causal configurations with higher numbers of 

causal SNPs in each locus without incurring a substantial computation penalty.  

7.4. Causal pathway analysis approach 

Pleiotropy does not distinguish whether an observed association between a genetic 

variant and a phenotype involves direct (i.e., biologic) or indirect effects due to phenotypic 

correlations with the primary trait. Mediation refers to a type of conditional analysis, in 

which the total effect between the predictor and the outcome is appropriated between 

several factors that contribute to the association and relies on counterfactual principles208. 

Using this framework, the causal effects can be viewed as the difference between two 

potential phenotypic outcomes, depending on whether an individual carries the risk alleles 

or not (at the same time).  

Suppose 𝑇𝑖 denotes the presence of an effective allele, which would be equal to 1 if 

present and 0 otherwise;  𝑌𝑖(𝑡) would denote the potential phenotypic outcome under allelic 

presence status; then, the causal effect of the variant on the phenotype would be 𝑌𝑖(1) −

𝑌𝑖(0) for all values of 𝑖. However, because only one state (either 1 or 0) is observable at 
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any time for each 𝑖, the focus is typically shifted toward the estimation of the average causal 

effect by comparing two groups based on the randomized distribution of the effect allele, 

defined as 𝐸(𝑌𝑖(1) − 𝑌𝑖(0))209.  

Assume that the causal association between a given allele and a phenotypic outcome is 

totally or partially mediated by another [correlated] factor. Let 𝑀𝑖(𝑡) denote the potential 

value of a mediator of interest for subject 𝑖 for a given allele status 𝑇𝑖 = 𝑡. Let 𝑌𝑖(𝑡, 𝑚) 

denote the potential outcome that would be observed if the allele and mediating variables 

equal 𝑡 and 𝑚, respectively.  

In practice, only one potential outcome is observable, and that outcome, 𝑌𝑖, is equal to 

𝑌𝑖(𝑇𝑖, 𝑀𝑖(𝑇𝑖)), where 𝑀𝑖(𝑇𝑖)) represents the observed value of the mediator 𝑀𝑖 . The total 

effect of the allele on the outcome can be written as 𝜏𝑖 = 𝑌𝑖(1, 𝑀𝑖(1)) − 𝑌𝑖(0, 𝑀𝑖(0)). The 

total effect can then be decomposed into the two components: the causal mediation effect210 

𝛿𝑖 = 𝑌𝑖(𝑡, 𝑀𝑖(1)) − 𝑌𝑖(𝑡, 𝑀𝑖(0)), for the effect allele status (0,1), and direct effect 𝜁𝑖 = 

𝑌𝑖(0, 𝑀𝑖(𝑡)) − 𝑌𝑖(0, 𝑀𝑖(𝑡)), for subject 𝑖 and each allele status (0,1).  

For both decomposed elements, including 𝛿𝑖 and 𝜁𝑖, because only one effect allele status 

is observable, the average causal mediation effect (ACME) and the average direct (ADE) 

could be estimated, as 𝐸𝛿𝑖 and 𝐸𝜁𝑖 , respectively. Now the total effect can be re-written as: 

𝜏 = 𝐸(𝑌𝑖(1, 𝑀𝑖(1)) − 𝑌𝑖(0, 𝑀𝑖(0)) =
1

2
∑ {𝛿(𝑡) +  𝜁𝑡=0 (𝑡)}𝑣, and under the assumption 

of no interaction, ACME and ADE sum up to the average total effect211.  
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7.4.1. Sensitivity analysis 

Causal pathway sensitivity analysis proposed for this study relies on the sequential 

ignorability212 assumption. The test implies that after adjustment for covariates, no 

unmeasured variable confounds any of: 1) variant-mediator association (i.e. ignorability of 

effect allele state)212:  𝑌𝑖(𝑡, 𝑚), 𝑀𝑖(𝑡))  ⊥⊥ 𝑇𝑖|𝑋𝑖 for all 𝑡, 𝑚 = 0,1, where 𝑋𝑖is covariate(s), 

2) allele-phenotype outcome association: 𝑌𝑖(𝑡, 𝑚)  ⊥⊥ 𝑀𝑖(𝑡))|(𝑇𝑖 = 𝑡, 𝑋𝑖) for all 𝑡, 𝑚 =

0,1, and 3) mediator-outcome relationships. The validity of the this mediation method 

largely rely on assumption 1, regardless of whether hierarchical models are fitted to the 

data or not, which is an important consideration. 
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8. Tables and Figures 

Table 2.1 Quality control steps completed with genotyped variants prior to principal 

component analysis. 

Filter Samples Variants 
Baseline dataset 3,739 1,849,381 
Remove duplicate variants & indels  1,796,564 
Remove variants with >10% missingness  1,771,718 
Remove samples >3% missingness 3,584  
Remove one pair of duplicate samples (the pair with higher 
missingness) 

3,508  

Remove variants maf<1%  921,083 
Remove variants with >5% missingness  917,256 
Remove samples with >5% missingness 3,506  
Remove samples outside heterozygosity filter (f coefficient >0.3) 3,505  
Remove samples with pedigree vs genetic sex mismatch 3,387  
Remove variants violating hwe (p-value<1e-10)  914,301 
Remove variants with allele/strand mismatch (vs. 1000 genome panel 
variants) 

 843,850 

Remove control samples 3,313  
Pre principal component analysis sample 3,313 843,850 
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Table 2.2 The number of variants imputed for each chromosome using TOPMed panel. 

The total number of variants were 60,941,072. 

Chromosome Imputed 

Variants 

Chromosome Imputed 

Variants 

1 4,889,931 7 3,575,429 

2 5,277,930 8 3,426,745 

3 4,370,489 9 2,690,807 

4 4,310,328 10 3,008,743 

5 3,980,182 11 454,157 

6 3,782,515 12 2,931,624 

13 2,183,250 19 1,393,198 

14 1,948,976 20 1,379,845 

15 1,781,331 21 810,711 

16 1,984,703 22 865,521 

17 1,774,596 X 2,388,886 

18 1,731,175 Total 60,941,072 

 

Table 2.3 List of the phenotypes selected for the study. 

 

Selected phenotype Reason for inclusion 
Body Mass index  Associated genes also linked to inflammation 114 
WAIST Circumference  A reliable indicator of visceral adiposity, and 

significantly correlated inflammation and 

cardiovascular risk factors 213 
WAIST to HiP Ratio  A reliable indicator of visceral adiposity, and 

significantly correlated inflammation and 

cardiovascular risk factors 214 
C-reactive Protein Plays a leading role between adiposity-CVD 215,216 
Interleukin-6 Associated genes significantly linked to variation 

in adiposity in Europeans 217 
Interleukin-8  Inflammatory marker significantly raised in 

hyperlipidemia and cardiovascular diseases 

context 218 
Fibrinogen Significant correlation with adiposity markers 219 
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Table 2.4 Descriptive Distribution of anthropometry and inflammatory phenotypes. 

 

Table 2.5 Proposed cut-points for exclusion of phenotypic outliers under hybrid approach.  

Marker Unit Median(IQR) Mean(SD) Populations 

Proposed 

Cut-

points 

CRP g/dl 2.7 (1.2–6.0)  Hispanics 220 ± 2.4 SD 

IL6 pg/dl 1.6 (0.8–2.8)  Hispanics 220 

± 2.8 SD IL6 pg/dl 0.5(0.5-10)  Hispanics 221 

IL6 pg/dl  0.9(0.8) Hispanics 221 

IL8 pg/dl  3.7(2.3) Hispanics 222 
± 2.6 SD 

IL8 pg/dl 4.4(3.2–5.9)  Hispanics 223 

Fibrinogen g/L  2.8(0.75) Mixed 224 
± 2.8 SD 

Fibrinogen g/L  3.6(3.4) Mixed 225 

WHR-F WC/H 

 

± 3.0 SD 

WHR-M WC/H ± 3.0 SD 

WC-M cm ± 3.0 SD 

WC-F cm ± 3.0 SD 

 

 Phenotype (unit) Min. 1st Qu. Median Mean SD 3rd Qu. Max. N 

BMI (kg/m
2

) 
13.29 26.31 29.88 30.91 6.96 34.31 70.48 3180 

WHR-Female(wc/hip*100) 36.39 86.5 91.3 91.19 7.93 96.03 184.79 2087 

WHR-Male(wc/hip*100) 66.31 91.6 95.98 95.93 7.59 100.21 215.79 1093 

Waist-female (cm) 37 90 99.5 101.03 16.56 110 186 2088 

Waist-male (cm) 68 94 102.5 104.16 15.2 112 168 1096 

CRP (mg/L) 0.08 2 3.99 7.97 14.3 8.1 242.5 1937 

IL-6 (pg/dl) 0.01 1.4 2.68 5.6 20.97 4.91 521.38 1362 

IL-8 (pg/dl) 0.0 3.42 4.69 6.53 7.13 6.81 100.01 1499 

Fibrinogen (mg/L) 0.05 0.51 0.8 0.95 0.74 1.18 11.89 2544 

AGE(Year) 15.00 33.00 45.00 49.92 17.22 59.00 94.00 3180 
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Table 2.6 Descriptive distributions of study phenotypes after exclusion of outliers under 

hybrid method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Phenotype (unit) Min. 1st Qu. Median Mean SD 3rd Qu. Max. N 

BMI (kg/m
2

) 
16.16 26.30 29.86 30.76 6.53  34.25 57.21 3159 

WHR-Female(wc/hip*100) 69.89 86.54 91.30 91.17 7.08  96.00 116.39 2077 

WHR-Male(wc/hip*100) 77.87 91.70 96.01 95.94 6.40  100.22 113.58 1084 

Waist-female (cm) 62.00 90.00 99.50 100.77 15.52  109.50 158.00 2072 

Waist-male (cm) 68.30 94.00 102.50 103.95 14.62  112.00 157.00 1089 

CRP (mg/L) 0.35 2.00 3.90 6.23 6.93  7.73 50.03 1880 

IL-6 (pg/dl) 0.16 1.44 2.68 4.32 5.74  4.87 47.38 1336 

IL-8 (pg/dl) 1.10 3.42 4.67 5.67 3.58  6.65 25.56 1448 

Fibrinogen (mg/L) 0.15 0.51 0.80 0.92 0.56 1.17 4.06 2506 

AGE(Year) 15.00 33.00 45.00 49.92 17.22 59.00 94.00 3159 
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Figure 2.1 Minor Allele Frequency (MAF) distribution of genotyped variants. 

 

 

 

Figure 2.2 Proportion of missingness per variant. 
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Figure 2.3 Per sample missingness vs autosomal heterozygosity. No sample was observed 

outside proposed threshold (median ± 3 × interquartile range for autosomal heterozygosity) 

which would have been indicated with black colored data points. 

 

Figure 2.4 Distribution of F ratio coefficient. Each data point is an individual. Green color 

represents female pedigree sex, and shape indicates genetic sex where round shape suggests 

ambiguous genetic sex, trigon is male and square is genetic female sex. A number of 

mismatches between genetic vs pedigree sex observed. 
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Figure 2.5 Sex vs autosomal heterozygosity. Each data point is an individual; color 

represents genetic sex where blue is pedigree recorde female and red is male. Results are 

consistant with F ratio coefficient distribution (Figure 2.4).  
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Figure 2.6 Eigensoft calculated ancestry outliers. Note that the pattern of ancestry outliers 

is not consistant when different PCs are compared.  
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Figure 2.7 Hardy-Wienberg Equilibrium. A negligible number of variants were found 

outside of the significant thresholds for HWE  (< 10-6, < 10-20, <10-50). 

 

Figure 2.8 Kinship structure comparing identity by descent (IBD) parameters; IBD1 of 1 

or close indicates child-parent kinship because they share 50% of their DNA markers. 

IBD0 is defined ~1 for pair of unrelated individuals if no recent shared ancestry. IBD2 of 

1 suggest ~100% ancestry genetic concordance which can only be observed in 

monozygotic twins or duplicated samples. Approximately 76 pairs had >80% genetic 

concordance which suggest either duplicity or monozygotic twins (left down corner).  
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Figure 2.9 Projection of the first three PCAir for CCHC over 1000G individuals for 

ancestry inference. Nearly all individuals cluster with American ancestry population, 

which entail Mexican and Native ancestry groups. (Note: CCHC (study group),American 

(AMR), East Asian (EAS), African (AFR), European (EUR), Southeast Asian (SAS)). 

 

Figure 2.10 Parallel plot of the first 10 PCs. Nearly all individuals cluster with American 

ancestry population, which entail Mexican and Native ancestry groups. Y-axis values were 

scaled with “uniminimax’ method with 0 set for minimum observed measure and 1 for 

maximum. Colors represent ancestry. 
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Figure 2.11 Screeplot for PCs. Note that PCs beyond the 3rd do not capture significant 

variation in the data.  

 

 

Figure 2.12 Scatter plot of PCAir1 vs PCA1. No practical difference could be observed.  
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Figure 2.13 Distribution of phenotypic markers using observations from visit 1 & 2. 

Skewed distributions of inflammatory traits suggest presence of some extreme measures.  

 

Figure 2.14 Log-transformed distributions of age, anthropometry and inflammation 

phenotypes.  
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GWAS AND PLEIOTROPY 

A GWAS primary assessment tool used to identify thousands of genetic loci associated 

with one or multiple biologic and disease traits. In this chapter, mixed models GWAS were 

used to investigate association of SNPs with 9 anthropometric and inflammatory 

phenotypes. In the second part, the GWAS summary statistics were utilized to investigate 

pleiotropy across anthropometry and inflammatory domains. Cross-trait look-ups 

identified SNPs associated with metabolic, inflammatory and brain disease traits within or 

in close proximity to 3 genetic regions on chromosome 3, 12 and 18 with suggestions for 

pleiotropy. 

1. Background  

Since the early 2000s, GWAS have been extensively used to locate single-nucleotide 

variants associated with complex phenotypes, including body mass index (BMI)226, 

measures of central obesity227-229, and inflammation105,230. A portion of genetic variants 

that have been primarily identified in association with anthropometric traits and 

inflammation have also been noted to display functional relationships with other 

domains159,231. For instance, obesity-associated variants in the LEPR, APOC1232, GCKR, 

MC4R159, CSN1S117, FDFT1 and PCCB genes107 have also been associated with 

inflammation. Conversely, genetic loci associated with inflammatory markers233 also 

appear to be associated with variations in body weight and adiposity levels118,119.  
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Besides genetics, other clinical234, pharmacological234 and observational235 studies have 

also demonstrated synergistic associations between adiposity and inflammation. These 

overlaps may indicate that anthropometric traits, which are often used as surrogates for 

adiposity, may share certain biological pathways with the inflammatory processes that 

underpin cardiovascular diseases. Termed pleiotropic variants127, these multi-effect 

variants have been associated with multiple phenotypes107.  

Despite strong evidence for pleiotropy, existing studies have limited inferential utility 

because the majority of genetic research has been conducted in populations with European 

ancestry. This well-attested lack of diversity in genetic studies139 not only hinders the 

discovery of more variants associated with underlying functional pathways, a phenomenon 

referred to as missing heritability236, but also poses considerable problems for the 

functional characterization of known variants due to differences in allelic frequency237, 

linkage disequilibrium (LD)238, and genetic architecture among populations with divergent 

genetic ancestries from Europeans239,240.  

These genetic dissimilarities extend to phenotypic traits including inflammatory markers 

and adiposity indices. Significant discrepancies have been identified in the distributions of 

inflammatory markers across various ancestry groups, even after adjusting for differences 

in adiposity configurations142. Additionally, BMI-adjusted distributions of adipose tissues 

suggest distinct ancestry patterns241, as Hispanics, in comparison to European ancestry 

populations, tend to exhibit higher levels of visceral fat242. These observations have 

suggested that various functional pathways are likely to be affected by ancestry-specific 

pleiotropic variants. Thus, a genome-wide, systematic, and comprehensive evaluation of 

pleiotropy in the Hispanic/Latino population is needed. 
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In this study, using genetic observations obtained from CCHC, GWAS tests were 

performed to assess the associations between 3 anthropometric traits including BMI, WHR, 

and WC measurements and 4 inflammatory markers including IL-6, IL-8, fibrinogen, and 

CRP.  

During the second step, using summary statistics from the GWAS analysis, the aSPU 

method243 was employed to examine pleiotropy among the phenotypes of interest. Finally, 

bioinformatic annotation of top signals was conducted. 

2. Methods 

2.1. Study population 

CCHC is a cohort of Mexican Americans residents of Cameron county in the state of 

Texas. Elevated prevalence of cardiovascular risk factors including type 2 diabetes, 

dyslipidemia and overweight in this group indicate a population highly susceptible to 

adverse metabolic events 166.  

Out of 5,000 individuals recruited for the cohort, a sub sample of 3313 genotyped 

individuals are included in this study. Genetic measurements were completed at the 

Vanderbilt University Medical Center genotyping core facility, VANTAGE, using MEGA-

EX Array panel.  The median proportion of European ancestry in the cohort is 45.8%, 

African 11.0%, and Amerindian 42.9%.   

2.2. Covariate selection 

GWAS studies involving WHR, WC244,245, and inflammatory traits246 often incorporate 

BMI as a covariate to identify genetic effects that are independent of overall obesity. 
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Univariate regression was used to examine the associations between the phenotypes 

included in the present study. Significantly associated variables identified by univariate 

analysis were incorporated as covariates in the GWAS analysis.  

Linear regression models, both with and without adjustments for sex and age, were 

employed to determine how many ancestry principal components (PCs) were significantly 

associated with variations in phenotypic measurements and should, therefore, be used as 

covariates. Age and sex were universally employed as covariates with association tests. 

Phenotypes were log-transformed and fit into linear regression models, adjusted for age, 

sex, BMI, and the first three PCs; BMI was not used during fibrinogen and IL-8 analyses 

because no association was observed between these variables during the univariate 

analyses. These residuals were subsequently used as the outcome variables in GWAS tests 

(supplementary Figure 3.1).  

2.3. GWAS test 

Covariate-adjusted GWAS typically focuses on associations between single-nucleotide 

variants and phenotypic measures. In contrast to methods that test a small number of 

candidate regions, GWAS studies investigate a larger number of genotyped/imputed 

variants that are spread across the entire genome. Therefore, GWAS is principally a 

hypothesis free approach247. 

Residuals were used to perform GWAS testing (see chapter 2). A score-based, mixed 

linear regression model was adopted, and a pairwise kinship coefficient was incorporated 

as a random effect parameter. The kinship threshold was set to a third-degree relationship, 
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which equates to first-degree cousins. All phenotypes were treated as continuously 

measured variables.  

The tests assumed additive model of association where the SNP effect is proportional to 

the presence of risk allele. For those samples harboring two risk alleles receive higher 

scores than those who were heterozygous for the locus, and zero score is assigned if both 

non-risk increasing alleles are identified248. Because imputed SNPs constituted the 

dominant share of the variants, the two most common methods of assigning SNP score 

were the best guess genotype (posteriori) which assigns a discrete count of risk alleles 

(0,1,2), and allele dosage which is the estimated (expected) fractional counts of effect allele 

at each SNP for each individual, ranging continuously from 0 to 2. The first method is 

sensitive to imputation quality while the second approach appears to be effective and 

efficient to account for the uncertainty in the imputed genotypes249, particularly when 

expected effect sizes are small. Indeed, regression analysis of a sample ~20K SNPs with 

BMI phenotype showed a median of 8% [IQR: 3%, 21%] difference in standardized effect 

sizes using the best guess vs dosage method. Therefore, SNP dosages were used for GWAS 

tests. 

 For WC and WHR, GWAS were conducted for both sexes, separately, to account for the 

inherent sexual dimorphism of these traits181. A total of 9 GWAS were completed including 

GWAS for BMI, WHRBMI-adj in females, WHRBMI-adj in males, WCBMI-adj in females, 

WCBMI-adj in males, CRPBMI-adj, IL-6BMI-adj, IL-8 and fibrinogen. Additionally, sex-specific 

GWAS for WHR and WC were meta-analyzed, using the inverse-variance weighted 

method, to create sets of sex-combined GWAS results for both traits. 
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Statistical significance was set at a Bonferroni-corrected level [5 × 10−8] to adjust for 

multiple testing. Manhattan plots were used to visualize the GWAS results, in which the 

negative log of the p-value for each variant-phenotype association test was plotted against 

each genomic region. Established genetic loci for traits of interest were marked in the 

Manhattan plots. This step also served as a quality control step to determine whether the 

GWAS tests successfully replicated known SNPs and could, therefore, be 

methodologically validated.  

GWAS tests were performed using R package GENESIS174, while visualizations were 

completed with R package EasyStrata250. WHR and WC GWAS meta-analyses were 

performed with the METAL package251. Computations were completed on the Longleaf 

server for the University of North Carolina, Chapel Hill.  

2.4. Post-GWAS sensitivity analysis 

To assess whether the observed signals were driven by less frequent or poorly imputed 

variants, which can pose a challenge for the replicability of results, a series of filtration 

criteria were utilized including: 

• MAF<5%  

• Minor allele count <30 (MAF × N (sample size)) 

• Imputation quality <80%  

• Effective sample size (EffN) (2×MAF× (1-MAF) ×Imputation quality 

(%)×N) <30 
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The threshold for each quality control (QC) criterion was inferenced from empirical 

distributions, as well as a review of the literature252,253. After obtaining different subsets of 

GWAS results with each filter (or combination of filters) for each trait, QQ-plots and 

genomic inflation factors (λ)250 were used to assess the type 1 (false-positive) error. An 

inflation factor (λ) value of >1.05 would be indicative of mild inflation, whereas a value 

>1.1 would indicate serious inflation based on the observed p-values, which would 

necessitate the adoption of stricter genomic-control measures.  

2.5. Pleiotropy test 

To perform an exploratory analysis of genetic correlations between phenotypes, a 

pairwise genetic distance matrix was constructed based on genetic similarities. The aSPU 

199 test was utilized to perform the multivariate assessment of genetic pleiotropy. A major 

strength of the aSPU test over other methods is that the loss in power is negligible when 

the number or portion of non-associated variants increases203, which is a distinguishing 

feature in the context of this study, in which univariate GWAS results were inferred from 

smaller sample sizes.  

Briefly, the method aggregates information across n phenotypes for a given SNP by 

taking the sum of its univariate GWAS Z-scores each raised to some power  γ, so that a 

higher γ increases the influence of strongly associated phenotypes on the score.  By 

allowing γ to take one of many competing values (1,2,…,∞), aSPU selects a maximally 

efficient scheme to detect combined phenotype effects on the entire group of phenotypes. 

A set containing trait-specific GWAS-inferred Z-scores (from all contributing 

phenotypes) was constructed. Pleiotropy analysis was performed using the JaSPU 
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(github.com/kaskarn/JaSPU) package, with the number of iterations set to 1011. This 

program relies on a Markov Chain Monte-Carlo (MCMC) 254 iterative process, which is 

applied to univariate Z-scores, estimated by inverse-variance-weighted meta-analysis to 

generate pleiotropic p-values.  

Finally, the covariance matrices for pleiotropy results were examined to ensure that no 

dimension (i.e., phenotype) exhibited considerably small or large eigenvalues; excessively-

large eigenvalues are indicative of the disproportionate contribution of a phenotype to a 

pleiotropic signal, whereas very small values indicate the opposite, and either result would 

suggest that the underlying hypothesis for pleiotropy would not hold, at least for some 

phenotypes.  

Exploratory genetic correlation analyses [prior to pleiotropy] were completed using 

GCTA package 255.  

2.6. In-depth probe of suggestive pleiotropic signals 

All variants with a pleiotropic p-value of paspu< 5 × 10−5 were extracted from the output. 

From this output, a subset of variants with a more stringent significance level (paspu < 5 × 

10−6), which were robust to post-GWAS quality assessments and harbored clusters of 

variants with low SNP-specific (γ < 4) scores were selected. The final criterion provides a 

mechanism for grouping loci from the most to least likely to be pleiotropic.  

Among these select variants, the univariate negative log p-values from the GWAS results 

were extracted and incorporated into heatmap plots to elucidate which phenotype(s) were 

the likely drivers or contributors to the pleiotropic signals. Heatmap plots were constructed 

using gplots R package 256. 
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2.7. Functional evaluation of pleiotropic signals 

For selected loci with evidence of pleiotropy, the GWAS catalog was probed to identify 

whether any variant within the selected 1 Mbp distance on both sides of each genomic 

region and in LD with variants within the region (D`>0.5) had previously been reported in 

association with the phenotypes under study or with any other traits/diseases and how 

commonly theses variants were identified. The findings were tallied by phenotypic 

domains from all suggestive loci. GWAS catalogue (ebi.ac.uk) and NCBI 

(ldlink.nci.nih.gov/?tab=ldtrait) were used for this assessment. 

3. Results 

3.1. Descriptive statistics 

Descriptive distributions of the study population are shown in Table 3.1. The ages of the 

participants ranged from 15–94 years, with a median of 45 years. The BMI (weight (kg)/ 

height (m2)) distribution indicates that this cohort is three-quarters overweight (BMI ≥ 25), 

one-half obese (BMI ≥ 30), and at least one-quarter moderately-to-severely obese (BMI ≥ 

35).  

The median values for WHR (WC/hip (cm) × 100) and WC (cm) in women were 91.3 

and 99.5, respectively, whereas, in men, these values were 96.0 and 102.5. The difference 

between the mean and median values of inflammatory markers indicated skewed 

distributions, with the exception of fibrinogen, with a mean value of 0.92 g/L, which is 

lower than the average ranges (1.5-4.5) reported in other studies for mixed populations 

224,225. 
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3.2. GWAS results 

Phenotypic residuals extracted from linear regression analyses were used as dependent 

variables in mixed model GWAS tests. A total of 9,262,347 variants, covering 

chromosomes 1-22, passed imputation quality control and were, therefore, included in the 

GWAS tests. Manhattan plots of the GWAS results for BMI, WCBMI-adj in women, WCBMI-

adj in men, sex combined WCBMI-adj, WHRBMI-adj in women, WHRBMI-adj in men, CRPBMI-adj, 

IL6BMI-adj, IL8, and fibrinogen are shown in supplementary Figures (3.2a–j) respectively, 

where dots represent variants, x-axes demonstrate genomic region [by chromosome 

number and base pair position] and y-axes demonstrate negative log of GWAS p-value of 

each SNP.  

In the sex-combined meta-analyses for the WHRBMI-adj GWAS (Figure 3.1), two GWAS-

significant signals (P<5.0 x 10-8) were observed for WHRBMI-adj, on chromosomes 6 and 8. 

The signal on chromosome 8 corresponds to a locus previously associated with WHR, 

whereas the signal on chromosome 6 has not been previously reported in the literature 

(Table 3.2, Figure 3.1). No GWAS-significant variants were observed in either known loci 

(denoted by the blue color) or other regions for any other trait. 

3.3. Sensitivity analyses 

Variants beyond the significance threshold set for the study (i.e., p-value < 5 × 10−6) for 

each trait (supplementary Table 3.1) were examined to assess whether the top signals were 

driven by less frequent or poorly imputed SNPs, which may affect the replicability (i.e., 

generalizability of observed signals). Supplementary Table 3.1 shows the counts of 

significant variants remaining after the application of each (or the combination of) QC 
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criteria for MAF, MAC, imputation score, and effective sample size. Few signals were 

likely driven by less common variants (i.e., MAF < 5%), no poorly imputed SNPs were 

identified in the results. Application of MAC & MAF resulted in near maximal removal of 

less common variants compared to baseline GWAS results (i.e., non-filtered GWAS) and 

therefore adopted as the post-GWAS filtration criteria. 

Comparisons of inflation factors for each subset illustrated that no substantial inflation 

affected the association tests, as all λ values ranged from 0.99–1.03, well below the 1.05 

threshold level (supplementary Table 3.2). Therefore, no genomic control application was 

deemed necessary. However, few Q-Q plots suggested deflation, particularly at the left tail, 

where fewer highly significant variants were observed than expected, particularly for those 

GWAS subsets that excluded less common variants (i.e., MAC>30 and MAF>%5 filtered 

GWAS subsets) (Figure 3.3a–d).  

3.4. Pleiotropy results 

The preliminary examination of genetic correlations between phenotypes, inferred from 

GWAS summary results, illustrated that both inflammation and anthropometry-associated 

variants clustered with their respective phenotypic domains (supplementary Figure 3.4). 

However, fibrinogen was a notable exception, which correlated more closely with WCBMI-

adj in men than with inflammatory markers.  

A Manhattan plot of the pleiotropy results included no significant GWAS variants, either 

in regions known for associations with any of the study traits (denoted by a blue color) or 

novel loci (Figure 3.2). However, suggestive signals were identified in several 

chromosomes, including 1, 3, 12, 18, and 19, which merited further evaluation. The 
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absence of very small or large eigenvalues in the covariation matrix made it unlikely that 

the observed pleiotropic outcomes were driven by any solitary trait (supplementary Table 

3.3).  

The in-depth interrogation of the locus on chromosome 3 revealed that IL-6, BMI, and 

WC in men were the primary drivers of the pleiotropic signal (Figure 3.3a). For the locus 

on chromosome 12, GWAS results from CRP, BMI, fibrinogen, WHR, and WC in women 

were contributors to the signal (Figure 3.3b). However, for the locus on chromosome 18, 

the pleiotropic association appeared to be disproportionately driven by WHR in women, 

with fibrinogen playing a minor part (Figure 3.3c). Of the three loci, the region on 

chromosome 12 appeared to be the most promising for pleiotropic potentiality. The signals 

on chromosome 1 and 19 only contained solitary variants for each and did not include 

clusters of associated SNPs. 

Finally, the online library of GWAS catalog was probed to explore whether any of the 

variants in the selected regions had previously been reported for any phenotype or are in 

LD (D`>0.5) with variants identified for those phenotypes. In two of three regions, on 

chromosomes 12 and 18, several variants were reported in association with energy intake 

or WHR, although they were not identified often (Table 3.3).  

In the target region on chromosome 3 (bp chr3:4120729-4262732, ±1Mbp on either 

directions), a significant number of variants were observed in association with brain 

function and diseases, lipid levels, inflammation, and metabolite levels; few were identified 

for body weight and type 2 diabetes. For the locus on chromosome 12 (bp chr12:44476332-

44621041, ±1Mbp on either directions), SNPs linked to variations in anthropometric traits 

(WHR), inflammatory diseases, and gut microbiome were more frequently reported. For 
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the locus on chromosome 18 (bp chr18:61577041-61588083, ±1Mbp on either directions), 

variants associated with blood pressure, energy intake, allergies, autoimmune conditions, 

and cancer were identified (Table 3.3).  

4. Discussion  

The study results provided suggestive evidence for at least 3 pleiotropic signals 

associated with both adiposity and inflammation which indicated a considerable degree of 

genetic overlap.  

Two regions on chromosomes 6 and 8 exceeded the GWAS significance level for sex-

combined meta-analyzed WHR results (Table 3.2, Figure 3.1). Although the signal on 

chromosome 8 has previously been reported, the signal on chromosome 6 has not been 

previously recorded in the GWAS libraries. GWAS-significant SNPs in the novel locus 

occur in the region between LRFN2 and LOC101929555. Variants in LRFN2 have been 

reported in association with BMI 257,258, type 2 diabetes 259, lipid profiles 260, cognitive 

abilities 261, and WHR 262. LOC101929555 has not yet been functionally characterized.  

A number of loci that have been widely reported and mapped for associations with 

anthropometric and inflammatory traits, including the SNPs in IL6 on chromosome 7 (for 

IL-6) 263 or FTO on chromosome 16 (for BMI) 264, did not exceed the GWAS threshold 

level. Although larger studies have ascertained the transferability of a sizeable proportion 

of phenotype-associated common variants across various ancestries 265, including 

anthropometric 266,267 and inflammation-associated variants 267, important ethnic 

differences were also noted 268-270, even in known genomic regions 271.  
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Although these observed patterns could suggest an ancestry-specific association pattern, 

caution must be exercised because differences in the LD structure 239, study sample sizes 

238, and dissimilarities in variant coverage (SNP tagging 272) can all induce differences in 

the GWAS signals across various study settings or ethnicities 271.  

Although no variants exceeded the GWAS significance level in the pleiotropy analysis, 

suggestive signals were identified on chromosomes 3, 12, and 18 (Figure 3.2 & Figure 

3.3a-c). Multiple phenotypes appeared to contribute to the loci on chromosomes 3 and 12, 

whereas the signal on chromosome 18 was primarily driven by WHR in women.  

Additional variants were also identified: one on chromosome 1 (rs952499) overlapping 

gene ABCA4, and another on chromosome 19 (rs669560) overlapping ZNF708, with strong 

pleiotropy p-values (< 5 × 10−7). However, in both instances, the signals were driven by 

solitary SNPs that were not in tight [or loose] LD with any other variants that exhibited 

significant pleiotropy p-values. 

A review of the GWAS library to identify suggestive pleiotropic loci showed that an 

extensive number of variants were already reported for associations with a range of 

metabolic and inflammatory functions. For the probed region on chromosome 3, a sizeable 

number of SNPs were shown to be associated with brain function and diseases, liver 

function, triglyceride, inflammation, type 2 diabetes and body weight(Table 3.3).  

Similarly, for the suggestive region on chromosome 12, many variants were associated 

with anthropometric indices, and inflammatory diseases. The third probed locus on 

chromosome 18 also contained variants associated with inflammation, WHR and blood 

pressure indices.  
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There few methodological considerations. The Q-Q plots for the IL-6 and IL-8 GWAS 

results suggested deflation at the left tails (supplementary Figure 3.3a-d). Factors including 

the overcorrection of GWAS test statistics in polygenic phenotypes (such as cytokines) 273 

and adjustments for pairwise kinship in mixed-model GWAS tests 274 could potentially 

induce deflation. However, the severity of deflation increased when less common variants 

(MAF < 5% and MAC < 30) were excluded, which indicated that deflations were likely 

induced by reduced power (supplementary Figure 3.3c and 3.3d).  

The age distribution of the participants suggested a middle-aged cohort that was slightly 

older than the general Hispanic population (Table 3.1). The prevalence of obesity was 

higher than the national average level for the Hispanic population, as reported by the 

Centers for Disease Control and Prevention (CDC) for the 2017–2018 period 275 (45% vs. 

>75% in this study). However, the distributions of WHR and WC suggested that central 

obesity, likely caused by an accumulation of visceral fat, represents the prevailing form of 

adiposity, as over three-quarters of both men and women had measures above their 

respective threshold levels [WHR > 85 in women and WHR > 90 in men 276] for obesity. 

These results, together with the presence of higher levels of inflammatory markers, 

presented an opportunity for pleiotropy assessment due to the increased statistical power 

despite a modest study sample size.  

Fibrinogen was the only inflammation marker with lower distribution (mean = 0.92 g/L) 

compared with the average range reported by other studies (1.5–2.5 g/L) 277,278. However, 

this marker is known to exhibit considerable within-sample variability, even in healthy 

individuals 279. Additionally, fibrinogen measures were significantly correlated with WHR, 

WC, and interleukin levels, which suggested that the observed values may be a function of 
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the caliber of the assay rather than the reduced distribution of this marker in this study 

group. 

In conclusion, the overlap in SNP associations with similar phenotypic domains for all 

three regions underscores the complexity and interrelatedness of traits that are otherwise 

viewed as independent and highlights the need for a greater focus on pleiotropic SNPs that 

can provide novel insights into the underlying mechanisms that drive these traits. The high 

prevalence of adiposity and inflammation in this cohort highlithed the need for pleiotropy 

study in this cohort with high susceptibility to adverse cardiovascular events 
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5. Tables and Figures  

 

Table 3.1. Distributions of inflammatory and anthropometric phenotypes and age among 

Cameron County Hispanic Cohort (CCHC) subjects. 

*reporting unit: Waist/Hip(cm)×100 

 

 

Table 3.2. GWAS significant variants in sex-combined meta-analyzed WHRBMI-adj 

GWAS analysis. 

 

Chr.* Bp 

Position** 

Rsid Nearest Genes Z-score P-value 

6 40810472 rs12524956 LRFN2,LOC101929555 -5.61543 1.96E-08 

6 40810278 rs12524922 LRFN2,LOC101929555 -5.49004 4.02E-08 

8 72499840 rs202053146 EYA1, MSC 5.54286 2.98E-08 

8 72524159 rs1424869 EYA1, MSC 5.52103 3.37E-08 

8 72488774 rs972738 EYA1, MSC 5.53007 3.20E-08 

8 72484519 rs59354633 EYA1, MSC 5.52962 3.21E-08 

8 72492249 rs35727416 EYA1, MSC 5.46058 4.75E-08 

8 72473729 rs10504510 EYA1, MSC 5.4889 4.04E-08 

*Chr=Chromosome, **Bp= base pair 

 

 

 

 

 

Phenotype (Unit) Min. 1st Qu. Median Mean SD 3rd Qu. Max. N 

BMI (kg/m
2

) 16.16 26.30 29.86 30.76 6.53 34.25 57.21 3159 

Waist-female (cm) 62.00 90.00 99.50 100.77 15.52 109.50 158.00 2072 

Waist-male (cm) 68.30 94.00 102.50 103.95 14.62 112.00 157.00 1089 

WHR-Female* 69.89 86.54 91.30 91.17 7.08 96.00 116.39 2077 

WHR-Male* 77.87 91.70 96.01 95.94 6.40 100.22 113.58 1084 

CRP (mg/L) 0.35 2.00 3.90 6.23 6.93 7.73 50.03 1880 

IL-6 (pg/dL) 0.16 1.44 2.68 4.32 5.74 4.87 47.38 1336 

IL-8 (pg/dL) 1.10 3.42 4.67 5.67 3.58 6.65 25.56 1448 

Fibrinogen (g/L) 0.15 0.51 0.80 0.92 0.56 1.17 4.06 2506 

Age(year) 15.00 33.00 45.00 49.92 17.22 59.00 94.00 3161 
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Table 3.3. Functional probe of three loci on chromosome 3, 12 and 18 with suggestion 

for adiposity-inflammation pleiotropy.  

 

chr3:4120729-4262732 chr12:44476332-44621041 
chr18:61577041-

61588083 

Within ± 1 Mbp of the region and 

in LD (D`>0.5) with variants 

Within ± 1 Mbp of the 

region and in LD (D`>0.5) 

with variants 

Within ± 1 Mbp of the 

region and in LD (D`>0.5) 

with variants 

Brain function or diseases WHR Allergy, inflammatory, 

autoimmune diseases 

Blood proteins/metabolites Height Anthropometric traits 

(WHR) 

Inflammatory diseases/markers Idiopathic scoliosis Energy intake 

Weight  Immune response cancer 

Type 2 diabetes Gut microbiome Blood pressure 

Metabolite levels  
 

 

Lipid levels (triglyceride)    

Liver function (AST)    

Eye function/diseases    
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Figure 3.1. Sex-combined meta-analyzed GWAS for WHRBMI-adj. Blue color denotes 

known loci. 

 

 

 

 

 

Figure 3.2. Pleiotropy Manhattan plot. Dots represent genomic variants; x-axis indicates  

chromosome number and base pair position for single nucleotide polymorphisms (SNPs) 

and y-axis demonstrate pleiotropy p-value for each variant. Blue color denotes known loci 

associated with phenotypes contributing to pleiotropy. 
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Figure 3.3a-c Heatplots of variants with trait-specific GWAS pvalues of <5 × 10−5  

located within the three loci with suggestive evidence for pleiotropy; rows show variants 

and columns display traits. Row clusters represent euclidean distances between variants, 

and column clusters are based on similarity of trait-specific pvalues. Color transition (red 

to yellow) demonstrates change in trait-specific negative log GWAS pvalue for each 

variant where brighter colors indicate higher significance level.  
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6. Appendices  

 

Supplementary Figure 3.1. Distributions of phenotypic residuals used as depedent 

variables for GWAS tests; residuals were extracted from linear regression of log-

transformed phenotypes, regressed over age, sex, first 3 PCs and BMI (except for IL8 and 

fibrinogen). 
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Supplementary Figures 3.2a-i: 

a) BMI Manhattan plot 

 

b) WC-Female Manhattan plot (Adjusted for BMI) 

 

 

c) WC-Male Manhattan plot (Adjusted for BMI) 
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d) WHR-Female Manhattan plot (Adjusted for BMI) 

 

 

e) WHR-Male Manhattan plot (Adjusted for BMI) 

 

 

f) C-Reactive Protein Manhattan plot (Adjusted for BMI) 
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g) Interleukin 6 Manhattan plot (Adjusted for BMI) 

 

h) Interleukin 8 Manhattan plot 

 

i) Fibrinogen Manhattan plot 
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Supplementary Figures 3.3a-d. Q-Q plots for IL6 and IL8 GWAS. Note the deflation 

with the left tails  which suggest fewer highly significant variants were observed than 

expected, particularly for GWAS sets with reduced number of variants after exclusion 

of less common variants (i.e.,  minor allele frequency (MAF<%5) & minor allele count 

(MAC<30)). (Figures b & d for IL6 and IL8 respectively). 
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Supplementary Figures 3.4. Genetic correlation between anthropometry and 

inflammatory phenotypes. All phenotypes except IL8, fibrinogen (FIB) and BMI were 

adjusted for BMI, age and sex. Blue color in the heatplot represents negative and red a 

positive pairwise correlation, while color intensity demonstrates degree of pairwise 

correlation. Clusters are based on genetic distance (i.e., overlap of associated genetic 

markers).  
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FINE-MAPPING PLEIOTROPIC SIGNALS 

In this chapter, the results of fine-mapping analysis to distinguish the set of variants with 

high posterior causal probability is presented. Three genomic loci on chromosome 3, 12 

and 18 with suggestion for genetic pleiotropy between adiposity and inflammation traits 

were probed. The locus on chromosome 12 likely harbors two independent signals. The 

functional evaluation showed the majority of fine-mapped variants were  SNPs with 

regulatory features associated with several tissues including inflammation-related cells; 

several variants also exhibited regulatory features associated with dipocytes. Results 

underscored potential contribution of regulatory variants in pleiotropy. 

1. Background 

Both  GWAS and pleiotropy studies have provided essential, initial evidence linking 

genetic variants with biologic traits or diseases. However, GWAS and, by extension, 

pleiotropy assessments, which primarily rely on summary statistics obtained from GWAS 

studies, cannot reveal the functional consequence of significant variations.  

GWAS-identified signals are typically represented by a ‘lead’ SNP, which has the 

strongest (i.e., lowest) p-value in the suspected region. This lead variant may not directly 

affect phenotypic expression but, rather, may be a proxy for a ‘true’ causal variant due to 

LD, which induces strong correlations between SNPs. Overlap or proximity with a coding 

region does not necessarily imply causality280. Further complicating the picture, multiple 
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causal and apparently independent variants within a single region can act through joint 

allelic effects on the same haplotype125.  

The biological interpretations of associations between likely causal variants are highly 

dependent on the genomic region in which the variants are located. Over 90% of the GWAS 

variants are in non-coding locus and do not directly affect messenger RNAs (mRNA)281 

transcription. The functional characteristics of these variants can vary greatly when 

operating under different cell-tissue environments282.  

Such genetic architecture complexities create challenges when attempting to functionally 

interpret GWAS and pleiotropy results. Localized analyses of risk-inducing loci must be 

performed with considerations for both allelic structures and functional annotations.  

The fine-mapping approach assigns a statistical causality probability to candidate 

variants located within the GWAS-identified regions283. In other words, this technique is 

used to filter GWAS-identified variants and distinguish SNPs that are most likely to be 

causal in each genomic region.  

Recently, a number of fine-mapping tools have been developed that utilize iterative 

algorithms to perform causal variation identification, including Markov Chain Monte Carlo 

(MCMC)284, exhaustive125 and stochastic searches285. Most of these tools assume the 

presence of a single causal variant for a given region286. However, this assumption may not 

reflect true biological reality, particularly when examining complex traits, such as adiposity 

and inflammation. Additionally, many fine-mapping packages lack rigorous statistical 

framework to incorporate tissue or cell-specific functionality286,287, which could impact 

predictive accuracy.  
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Thus, two complementary methods, PAINTOR206 and FINEMAP162, were used to 

perform the fine-mapping of adiposity–inflammation pleiotropy-identified regions from 

CCHC. Although FINEMAP is unable to account for functionality, this program uses an 

efficient algorithm that accommodates the identification of multiple causal variants, with 

no substantial computational cost162. After they were identified, the fine-mapped 

prioritized variants were subjected to functional assessments to determine biologic effect 

potentials. 

2. Methods  

2.1. Genome-wide pleiotropy summary statistics 

The dataset consisted of pleiotropy summary statistics for approximately 6 million SNPs. 

Pleiotropy statistics reflect the outcomes of univariate GWAS and pleiotropy assessments 

performed during a prior round.  

In brief, using genomic measurements from N = 3,313 participants from the CCHC study, 

a mixed-model, univariate GWAS were conducted, including anthropometric traits  (BMI, 

WHRBMI-adj, and WCBMI-adj) and inflammation markers (CRPBMI-adj, fibrinogen, IL-6BMI-adj 

and IL8; WHRBMI-adj and WCBMI-adj-GWAS were completed in males and females 

separately.  

Pleiotropy test was subsequently performed using the trait-specific GWAS summary 

statistics. Pleitropy results were converted from newer genome build GRCh38 to older 

GRCh37 for compatibility with fine-mapping packages. 
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2.2. Statistical framework 

A traditional approach used to refine association signals is conditional analysis, a 

stepwise process that conditions on the variants with the lowest p-values in association 

tests until no additional SNPs are identified that achieve the pre-determined p-value 

threshold. Although this approach can be informative regarding the potential number of 

signal sources for a specific locus, it does not deliver probabilistic measures of causality 

for variants.  

Bayesian framework has been increasing being adopted as a way to overcome this 

problem288.  However, a Bayesian approach requires both genotypic and phenotypic inputs, 

which become impractical when the sample size or number of variants increases. 

Therefore, fine-mapping methods have been extended to use only the summary statistics 

from genetic tests, together with SNP correlations obtained from reference panels125.  

PAINTOR represents a fine-mapping method that uses the LD structure and Z-scores 

from either univariate GWAS or pleiotropy results289. A distinguishing feature of this 

approach is that it leverages functional annotations of individual variants to estimate causal 

posterior probabilities. This approach is also robust when multiple, distinct causal variants 

appear to underlie functionality and in the context of heterogeneous effect sizes.  

In addition to PAINTOR, the FINEMAP package162 was utilized. Pleiotropy suggests 

functional overlap, interrelatedness, and complexity in the underlying mechanisms, which 

can all increase the possibility that multiple causal variants can be found in a given region. 

Given the high density of tested variants, the incorporation of functional annotations with 

a fine-mapping probe will exponentially increase the computational costs.  
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PAINTOR is only efficient for the probing of a maximum of 3 causal variants for variant-

dense regions. In contrast, FINEMAP package uses a Shotgun Stochastic Search (SSS) 

algorithm207 to explore various causal configurations by concentrating its efforts on 

configurations with non-negligible probabilities162. FINEMAP computes probabilities 

using summary statistics obtained from GWAS (or pleiotropy Z-scores) and pairwise LD 

estimates to facilitate the probing of an increased number of causal variants without 

computational penalty. Both packages were used complementarily to maximize the set of 

variants identified with high posterior causality probabilities.  

2.3. Defining fine-mapping loci 

From the pleiotropy summary statistics, a subset of variants with a pleiotropic 

significance level of Paspu< 5  10−6 was subtracted. Next, the variants were further 

subdivided into independent groups based on their chromosome and base pair numbers. In 

each locus, variants were ranked by significance level, and the top SNP with the lowest 

Paspu value was selected to serve as the index for the region.  

All variants within 500 Kbps in both directions of the index were extracted from the 

pleiotropy summary statistics. For each SNP, the reference SNP cluster ID (rsid) number, 

chromosome, base pair (bp) number, pleiotropy Z-score, Paspu-value, and effective and 

alternative alleles were extracted. For the estimation of SNP pleiotropic effect sizes and 

standard errors, the following formulas were utilized:  

𝛽 =
𝑧

√2𝑝(1 − 𝑝)(𝑛 + 𝑧2)
… (1) 

𝑆𝑒 =
1

√2𝑝(1 − 𝑝)(𝑛 + 𝑧2)
… (2) 
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where 𝛽 is the effect size, 𝑧 is the Z-score, 𝑝 is the allele frequency, and 𝑛 is the sample 

size for the variants.  

2.4. Linkage disequilibrium estimation 

Pairwise Spearman’s rank correlation coefficients were estimated using the subset of 

unrelated individuals in the CCHC, in which each calculated value could vary between 

[1,−1] for any given pair. For LD calculations, LDStore2 package290 was utilized, which 

uses the binary BGEN file format291, rather than the variant call format (VCF)292, and is 

computationally more efficient than similar platforms.  

2.5. Functional annotation  

Annotation libraries included:  

a) enhancer elements from Functional Annotation of the Mammalian Genome project 

(FANTOM5)293,  

b) various functional annotations from ENCylopedia of Dna Elements (ENCODE) 

project294 including transcription factors295, enhancers296 and promoters297,  

c) protein coding elements from gene-ENCODE (GENCODE)298,  

d) super enhancers299,  

e) DNase I hypersensitive sites (DHSs)281 regulatory elements.  

The functional annotation of selected regions was performed with the PAINTOR package 

in two steps.  
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During the first step, all annotations associated with the functionality of the liver, brain, 

blood, muscle, adipose tissues, and exon variants were used to annotate variants in the 

target loci. 

Because a proportion of annotations could overlap and induce multicollinearity, 

correlation matrices were created using annotation scores from the annotated loci, such that 

each value in the matrices represented a pairwise correlation between a pair of annotations. 

One pair of annotations, with correlation values > 0.2, was set to missing.  

The removal process was repeated several times until the remaining set of annotations 

was roughly uncorrelated (i.e., all pairwise correlations were below the established 

threshold). The remaining annotation set was then utilized for the target regions annotation. 

2.6. Fine-mapping process 

Fine-mapping analysis was completed using PAINTOR at each locus, separately, 

incorporating LD scores and annotations files and assuming up to 3 causal variants per 

locus. With FINEMAP, analyses were performed by assuming up to 10 causal variants per 

region. All variants with posterior causality probabilities > 0.5 were extracted from the 

outcomes of both packages to maximize the number of likely causal variants identified at 

each locus. These subsets were used for the downstream functional assessments.  

2.7. Functional evaluation  

Several bioinformatic platforms were utilized  

i) Ensemble Variant Effect Predictor (VEP), from Ensemble300 (grch37.ensembl.org/), 

was used to determine the effect of each likely causal variant on genes, transcripts, protein 



92 
 

sequences, and regulatory regions. VEP was also used to perform the Combined 

Annotation-Dependent Depletion (CADD) coding score estimation301; this score is widely 

used to measure variant deleteriousness. A negative log-transformed CADD score > 10 

suggests a high probability of an effect on protein coding. 

ii) Enhanced Accuracy in Predicting the Functional Consequences of Non-coding and 

Coding SNV (FATHMM-XF)302 is a method for predicting point mutations within the 

human genome the probable effect of the predicted point mutation on protein coding: a 

score > 0.5 (of a maximum of 1) indicates a likely coding effect, whereas a score > 0.9 

indicates a highly pathogenic or protein-altering mutation. 

iii) Haploreg is a tool for evaluating the annotation of a noncoding genome at variants on 

haplotype blocks, such as candidate regulatory SNPs at disease-associated loci303. This 

annotation tools is use to assess the effects of SNPs on regulatory motifs and expression 

Quantitative Trait Loci (eQTL), which are genomic regions associated with expression 

levels of messenger RNA (mRNA). 

iv) ClinVar is a PubMed-supported and publicly available tool for assessing links 

between variants and human phenotypes. 

2.8. Independence of signals 

Lastly, pairwise Spearman’s rank correlation coefficients were calculated between likely 

causal variants in each region. A cut-off value of R2 < 0.1 was used to determine 

independence, as correlation values below this threshold suggest that the pair of variants 

likely represent different functional signals.  
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2.9. Visualization of pleiotropic signals. 

To perform a more localized visualization of those loci with evidence for pleiotropy, 

locuszoom plots304 were employed. For each locus, the variant with the lowest paspu was 

selected as the index, and all variants within a distance of 1 megabase pairs (Mbp) were 

plotted on either side of the index SNP.  

LD between the index SNP and all other variants within the probed region were 

calculated using the set of unrelated individuals from the CCHC (i.e., individuals with a 

third-degree kinship relationship or more distantly related). The populations used for the 

genotyping reference were Hispanics from the Population Architecture using Genomics 

and Epidemiology (PAGE II) cohort (pagestudy.org). The fine-mapped variants with high 

causal posterior probabilities were marked with distinguishing shape. 

3. Results 

The analysis of pleiotropy results indicated three regions on chromosomes 3, 12, and 18 

with potential for pleiotropic associations. Out of 7,236 variants assessed, a total of 22 

variants showed a posterior probability of > 0.5 for all three regions combined. In addition 

to 9 variants suggest by PAINTOR, 13 SNPs were distinguished by FINEMAP. The results 

in Tables 4.1a–c show the variants with the highest posterior probability of causality in 

each locus.  

For the locus on chromosome 3 (bp range: 3,653,147–4,650,039), a total of 9 SNPs were 

identified with posterior probability values > 0.5 (out of 3,234 SNPs assessed, Figure 4.1). 

As noted, all variants are intronic, nonsense-mediated mRNA decay (NMD) SNPs. Both 
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the FATHMM-FX and negative-log CADD scores were considerably below their 

respective threshold values of 0.5 and 10, which suggested low probabilities that these 

SNPs were protein-altering variants.  

However, several variants showed either extensive regulatory annotations with 

immunity, skin, pancreas, spleen, gastrointestinal, and lung tissues or were in tight LD (i.e., 

R2 > 0.8) with SNPs featuring regulatory annotations associated with those tissues (Table 

4.1a). One SNP, rs60505812, featured a regulatory annotation associated with adiposity 

tissue, although it was not in high LD with any other regulatory variant.  

All variants overlapped with the gene encoding sulfatase-modifying factor 1 (SUMF1)-

NMD transcript on the reserve strand (Ensemble ID: ENSG00000144455). Estimates from 

pairwise LD analysis (Supplementary Table 4.1, Figure 4.1) indicated that likely one causal 

SNP exists in this region because the pairwise correlation estimates were generally above 

the threshold level of R2 > 0.1.  

For the locus on chromosome 12 (bp range: 43,981,459–44,980,751), 8 variants had 

posterior probabilities > 0.5 (out of 1,501 SNPs examined, Table 4.1b, Figure 4.2). Similar 

to results for chromosome 3, most SNPs featured low coding scores and were intronic and 

NMD, except rs440389 and rs277221, which are intergenic with no significant regulatory 

features associated with any tissue. The remaining 6 SNPs have variable regulatory 

annotations associated with immunity, skeletal muscle, adipose, blood, vessels, lung, and 

pancreas tissues.  

The most notable variant from this list is rs73093474, which features multiple regulatory 

annotations with adipose, immunity, brain, and pancreas tissues, and is also located in a 
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region replete with regulatory SNPs. The two variants at the top of the list overlapped with 

the gene encoding interleukin 1 receptor-associated kinase 4 (IRAK4) 

(ENSG00000198001); these two variants may represent a second, independent signal 

within the region given their negligible pairwise LD with the other likely causal variants 

in the region (Supplementary Table 4.2, Figure 4.2). The remaining fine-mapped SNPs 

overlapped with the gene encoding transmembrane 117 (TMEM117) 

(ENSG00000139173).  

Finally, for the locus on chromosome 18 (bp range: 61,079,369–62,075,853), 5 variants 

exhibited posterior probability values > 0.5 (out of 1,301 SNPs evaluated). The second and 

third variants on this list are intergenic, whereas the remaining variants are intronic and 

downstream/upstream to regulatory SNPs. The last two variants (rs28483202 and 

rs631815) did not exhibit any regulatory annotations with the bioinformatic tools that were 

used.  

The first and fourth variants overlapped with the genes encoding serpin family B 

members 10 (SERPINB10) and 2 (SERPINB2). The last variant on the list, rs631815, 

overlapped with both the genes encoding histocompatibility minor serpin domain-

containing (HMSD) and the AC009802.1 region, which has not yet been functionally 

characterized.  

All variants appeared to point to the same signal, as the pairwise LDs were above the 

threshold levels (Supplementary Table 4.3, Figure 4.3).  
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4. Discussion 

In this study, summary statistics from pleiotropy analysis, information on pairwise 

correlations between SNPs inferenced from a set of unrelated individuals in the study, and 

functional annotations for regulatory and coding variants from highly referenced libraries, 

including ENCODE294 and FANTOM5293, were incorporated to determine the genomic 

loci with the highest probability of exerting a causal role on genetic pleiotropy between 

adiposity and inflammation.  

Functional assessments were intended to expand upon the statistical findings to narrow 

the results to those SNPs that may have the most biological relevance. Because adiposity 

and inflammation are complex traits305,306 that are highly polygenic307-310, a higher 

probability exists for the identification of multiple, independent causal signals, even within 

relatively small regions311. Therefore, the fine-mapping analysis using PAINTOR, which 

allows the incorporation of functionality, was complemented with FINEMAP outcomes, 

both to expand on the credible set of causal variants for each signal and to increase the 

probability of identifying additional signals in each fine-mapped region, assuming that 

such signals exist.  

Based on summary statistics from the pleiotropy analysis, three loci on chromosomes 3, 

12, and 18 were identified based on suggestive evidence for contributions to pleiotropy 

between adiposity and inflammatory traits in a Hispanic population. After the application 

of the statistical approach, 22 variants showed posterior causality probabilities greater than 

50% from the 7,236 variants assessed across all 3 regions.  
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The index SNPs identified in each region were associated with the most significant p-

values for pleiotropy, including rs200671707 on chromosome 3, rs60939199 on 

chromosome 12, and rs4609952 on chromosome 18; however, these three SNPs did not 

have high posterior causality probability values. The fine-mapping algorithm may not have 

been able to differentiate causal variants when the underlying structure is correlated, and 

several significant variants exist.  

Highly significant variants from the pleiotropy analysis results may also represent 

proxies of ‘true’ causal SNPs that are not presented in the dataset and, therefore, the 

observed associations are biased toward the tagged (observed) SNPs312. Evidence exists to 

support a role played by topologically associated domains (TADS), which refer to distant 

loci that interact with each other313 and are believed to have significant impacts on the 

functional genome314. Therefore the GWAS and pleiotropy signals used for this analysis 

may have resided in different genomic regions that interacted with the observed locus.  

Finally, this lack of causality associated with highly significant SNPs may indicate the 

presence of multiple, independent signals; however, the pairwise LD estimates 

(Supplementary Table 4.1-3) suggest that only the fine-mapped region on chromosome 12 

may harbor an additional independent signal if any such signal exists.  

In the fine-mapped region on chromosome 3, a total of 9 variants had high causal 

probability values. Two SNPs, including rs60505812 and rs10514654, are notable. The 

first variant has regulatory features associated with adipose tissue, whereas the second 

variant exhibited regulatory annotations associated with immunity, skin, and intestinal 

tissues. A relatively elevated coding score (CADD = 6.8) suggested that the mutation in 

rs60505812 may potentially affect mRNA transcription, although the score remains below 
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the cut-off value of 10 that denotes mutational significance315. Therefore, in the context of 

the protein-coding process, it is less likely to be a high-impact SNP.  

All suggestive causal variants in this region overlapped with SUMF1, which encodes 

sulfatase-modifying factor 1 enzyme, a protein that catalyzes glycosaminoglycans, 

sulfolipids, and steroid sulfates316. Defects in this gene are known to cause multiple 

sulfatase deficiency316, a lysosomal storage disease that contributes to the deterioration of 

tissues in the nervous system, resulting in motor dysfunction, seizures, and developmental 

delays317. However, variants in this gene have also been linked to inflammation in chronic 

obstructive pulmonary disease (COPD)318. Furthermore, steroid sulfates play functional 

roles in energy homeostasis and inflammation319.  

The analysis of the target region on chromosome 12 showed that 8 variants had high 

causality probability values. Pairwise LD estimates (Table 4.2b) indicated two different 

signals. The two variants at the top of the list overlapped with IRAK4, whereas the 

remaining variants were associated with TMEM117. Although the first variant is intergenic, 

its only regulatory feature was associated with trophoblast tissue, whereas the second 

variant (rs4251527) was linked with regulatory activities in blood and immune cells.  

IRAK4 encodes a protein kinase, which is essential during the innate immune response 

to Toll-like receptors (TLRs), and its deficiency increases the susceptibility to infections320. 

Studies of obese mice showed that the overexpression of TLRs in enlarged adipose tissue 

might play an important role in obesity-induced inflammation321.  

Two variants in the same region (on chromosome 12) that overlap with TMEM117, 

including rs73093474 and rs10506239, merit further interrogation. The first variant has 
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regulatory features associated with an extensive number of tissues, including adipose, lung, 

brain, lung, and pancreas. The second variant shows regulatory annotation with brain tissue 

(Table 4.1b). TMEM117 encodes transmembrane protein 117 and has been associated with 

endoplasmic reticulum-stress (ER-stress) and mitochondria-mediated cell death322.  

Lastly, after probing the locus of interest on chromosome 18, a total of 5 variants showed 

high causality probability values. The first variant (rs6567401) overlaps with SERPINB10, 

which encodes a protein that controls the regulation of protease functions during 

hematopoiesis (blood production) and has been associated with allergic 

inflammation323,324. The second variant (rs28483202) is intronic for SERPINB2, which 

encodes plasminogen activator inhibitor 2 (PAI2), a protein known to play a role in the 

manipulation of immunity325 and is upregulated during allergic responses326. The third 

variant (rs631815) is upstream of HMSD, which is primarily expressed in cells of myeloid 

lineage327. The remaining two variants are intergenic, although the closest functional gene 

is SERPINB2.  

Generally, all but a few of the identified variants with high causality probability values 

across all three regions were intronic and NMD SNPs. NMD variants are considered to be 

regulatory, quality control variants that reduce gene expression errors by eliminating 

mRNA transcripts that contain premature termination codons (PTCs)328.  

Growing evidence suggests that variations and tissue-specific differences in NMDs can 

alter the underlying pathologies of genetic diseases329-331. Notably, interactions between 

NMDs and protein-coding variants have been linked to an increased risk of developing 

obesity and type 2 diabetes, as reported in one recent trans-ancestry cohort332. The clinical 

study of a patient with the early onset of severe obesity was associated with an NMD 
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alteration affecting proopiomelanocortin333, which is involved in a wide range of activities, 

including body weight regulation.  

Overwhelming (>90%) portion of the GWAS variants were discovered in noncoding 

genomic regions281. The results from this study underscore the significance of these 

regulatory variants and their effects on pathophysiologic processes upstream of physiologic 

phenotypes and clinical traits. 
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5. Tables and Figures 

Table 4.1a Characteristics of variants with high posterior causal probability in the target 

region on chromosome 3 (base pair range: 3,653,147–4,650,039). 
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Table 4.1b Characteristics of variants with high posterior causal probability in the target 

region on chromosome 12 (base pair range: 43,981,459–44,980,751). 
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Table 4.1c Characteristics of variants with high posterior causal probability in the target 

region on chromosome 18 (base pair range: 61,079,369–62,075,853). 

*PP= posterior probability, **PC= protein coding, $PF= promoter flanker. 
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Figure 4.1 Regional zoomplot of the suspect pleiotropic locus on chromosome 3. The blue 

colored rotated square in the middle represents index variant while strait squares show fine-

mapped prioritized variant with high posterior causal probabilities (>50%). The Rsid label 

shows the variant with regulatory feature associated with adipose tissue. Colors show 

degree of linkage diequilibrium (LD) with lead (i.e., index) variant in the region. Blue lines 

demonstrate recombination rate inferences from Population Architecture using Genomics 

and Epidemiology (PAGE II) Hispanic population. The horizontal bar under x-axis show 

genes overlapping or close to target region. The variant highlighted here is Non-sense 

mediated decay (NMD) variant for sulfatase modifying factor 1 (SUMF1) gene on the 

reverse strand (range of the SUMF1 gene transcript Chromosome 3: 3,742,498-4,508,965). 
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Figure 4.2. Regional zoomplot of the suspect pleiotropic locus on chromosome 12. The 

blue colored rotated square in the middle represents index variant while strait squares show 

fine-mapped prioritized variant with high posterior causal probabilities (>50%). The Rsid 

label shows the variant with regulatory feature associated with adipose tissue. The 

horizontal bar under x-axis show genes overlapping or close to target region. The variant 

highlighted here is Non-sense mediated decay (NMD) variant for transmembrane 117 

(TMEM117) gene. 
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Figure 4.3. Regional zoomplot of the suspect pleiotropic locus on chromosome 18. The 

blue colored rotated square in the middle represents index variant while strait squares show 

fine-mapped prioritized variant with high posterior causal probabilities (>50%). The Rsid 

label shows the variant with regulatory feature associated with adipose tissue. The 

horizontal bar under x-axis show genes overlapping or close to target region. Fine-mapping 

prioritized variants mostly overlap with serpin family B members 10 (SERPINB10), 

SERPINB7 and SERPINB2 genes. 
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6. Appendices  

Supplementary Table 4.1. Pairwise linkage disequilbrium (LD) among variants with high 

posterior causal probability in the target region on chromosome 3. LD can range from R2≈0 

[no LD] to >0.99 [very tight LD]. Values indicate variants belong to the same signal [using 

the R2>0.1 cutpoint]. 
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Supplementary Table 4.2. Pairwise linkage disequilbrium (LD) among variants with high 

posterior causal probability in the target region on chromosome 12. This locus may harbor 

two independent signals [using the R2>0.1 cutpoint].  
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Supplementary Table 4.3. Pairwise linkage disequilbrium (LD) among variants with high 

posterior causal probability in the target region on chromosome 18. Values indicate 

variants belong to the same signal [using the R2>0.1 cutpoint]. 
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CAUSAL MEDIATION PATHWAY ANALYSIS 

In this chapter, the results from causal mediation analysis are presented. Based on 

univariate regression analysis, tighter LD, more significant pleiotropic association and 

functional annotation of likely causal variants in 3 loci with evidence for pleiotropic 

associations with adiposity and inflammation, two variants including rs60505812 on 

chromosome 3 and rs73093474 on chromosome 12were selected for in-depth causal 

mediation analysis to distinguish variants with direct (biologic) from indirect (mediated) 

pleiotropic effects. Results suggested rs60505812 may have direct and biologic association 

with both adiposity and inflammation traits. The other variant, rs73093474, exhibit both 

biologic and mediated pleiotropic effect on inflammation (via adiposity).  

1. Background  

Although GWAS have identified thousands of genetic variants associated with 

phenotypic traits126, a variety of methodological issues281,334-338 have made understanding 

the impacts of these findings in a biological context somewhat challenging339-341. The 

difficulty identifying causal variants288 and pathways that mediate genetic effects342 have 

been the two key barriers to the meaningful interpretation of genetic studies because only 

a very small fraction of identified variants are causal311.  

Despite the increased availability of fine-mapping tools for performing the localized 

probing of genomic regions206,285,286, which has greatly contributed to pinpointing likely 

causal variants, the functional follow-up necessary to determine the underpinning 
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mechanisms that connect these causal variants with phenotypic expression lags 

considerably behind343.  

This gap between genetic association studies and the identification of the related 

biological effects is an important issue, particularly when characterizing multi-potent 

variants339. The added complexity of studying these prevalent344 but less well-characterized 

‘pleiotropic’ variants127 is due to the existence of several models of associations345 that 

each implies different types of functional effects.  

As mentioned previously, based on the concept of “biologic” pleiotropy, a genomic locus 

that is independently associated with several phenotypes would suggest that the genetic 

effect is transmitted through a common pathway that is upstream of all associated 

phenotypes127; however, pleiotropic effects can also be transmitted indirectly due to 

relationships between the outcome phenotype and a “mediating” phenotype127. Elucidating 

these complexities could provide novel biological insights to better understand the 

biological pathways that underpin genotype-phenotype associations346, as well as disease 

traits127, creating opportunities for improved clinical classification and drug repurposing.  

In this study, a causal mediation pathway analysis211 of likely causal pleiotropic variants 

was performed based on evidence of an association between adiposity and inflammation. 

Mediation analysis provides a framework for distinguishing biologic from mediated 

pleiotropy and for quantifying the proportion of total genetic effects on outcome 

phenotypes347. This method was previously utilized to dissect the direct and indirect genetic 

associations between SNPs and chronic obstructive disease (COPD)348, metabolic 

syndromes349, mineral density350, and bladder cancer351.  
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The aims of these analyses were to describe the associations between fine-mapped 

variants identified on chromosomes 3, 12, and 18 with anthropometry and inflammation-

related phenotypes and distinguish whether the likely causal variants act directly (i.e., 

irrespective of any hypothesized mediator) or whether the association is predominately due 

to correlations, with particular attention paid to the prevailing understanding of causal 

inflammation and adiposity pathways352,353. To achieve these aims, a set of phenotyped and 

genotyped subjects from the CCHC were examined.  

2. Methods 

2.1. Candidate variant set 

A set of variants with posterior causal probability values > 0.5, located at three separate 

loci on chromosomes 3, 12, and 18, were considered for the causal mediation analysis. 

Variants were identified through a fine-mapping analysis performed on loci associated with 

suggestive evidence for pleiotropy between anthropometry traits, including BMI, WHR, 

and WC, and inflammation-related phenotypes CRP, fibrinogen, IL-6 and IL-8.  

Pleiotropy assessments were completed using GWAS summary statistics during prior 

steps, based on genomic measurements obtained from the participants in the CCHC study. 

Additionally, the index variants for each locus, which exhibited the lowest pleiotropic p-

values and were used to configure the fine-mapping target regions, were also included in 

the set.  

There was a total of  25 variants likely causal variants across all 3 regions. SNP allelic 

dosage for these selected variants were extracted from variant calling format (VCF)292 files. 

Allele dosage is the estimated (expected) fractional and continuous counts of effect allele 
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at each SNP for each individual, ranging continuously from 0 to 2, where a value of 2 for 

a given variant indicated that the subject harbors both phenotype-increasing alleles, 

whereas a value of 0 implies the complete absence of the risk allele.  

2.2. Phenotypes  

The last non-missing phenotypic recorded observations for BMI, WHR, WC, CRP, IL-

6, and IL-8 were extracted for all CCHC individuals whose genetic measurements were 

used in the univariate GWAS and pleiotropy assessments analyzing the association 

between anthropometry and inflammation. GWAS analyses similarly incorporated last 

non-missing phenotypic recorded observation for each trait, as well as corresponding 

covariates’ values for age and sex. Details on phenotype data collection methods were 

presented in prior steps.    

2.3. Covariate selection 

A review of prior studies showed that several factors are likely to play significant roles 

in obesity/adiposity and inflammation. In addition to age and sex354-356, variables such as 

alcohol consumption and smoking357,358, physical activity359,360, hypertension361, lipid 

profile362,363, and insulin sensitivity364 have been reported.  

It is arguable that few of the enlisted factors, including lipid levels and blood pressure, 

could act as the mediators of the association between adiposity and inflammatory 

outcomes365,366 and not as the confounders. In the case of insulin resistance, although 

studies have indicated causal associations, with adiposity serving as an outcome 

predictor367,368, other assessments have indicated that the accumulation of visceral adipose 

tissue could be a consequence of increased insulin resistance rather than a cause20,369.  
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Therefore, in this study, the following covariates were incorporated into the mediation 

models: homeostatic model assessment of insulin resistance (HOMA-IR), age (years), sex 

(binary), alcohol consumption (oz/week), moderate to vigorous level of physical activity 

(binary), current smoking status (binary), and ancestry principal components (to adjust for 

population stratification). The alcohol level was obtained by tallying the average number 

of alcoholic beverages consumed within a week, which was multiplied by 0.6 (or 0.48 for 

wine, based on the National Institute of Alcohol Abuse and Alcoholism (niaaa.nih.gov) 

formulation for the level of alcohol content in different beverages). A moderate to vigorous 

level of physical activity was defined as 150 minutes of sweat-inducing activities in a week. 

The values for covariates were taken from the same exam where primary phenotypes 

were taken. 

2.4. Statistical analysis 

The list of fine-mapped-prioritized SNPs and index variants in the 3 target regions with 

evidence for pleiotropy and their SNP dosage values were tested for univariate associations 

with the study phenotypes (BMI, WC, WHR, CRP, IL-6, and IL-8) using linear regression 

assuming an additive genetic effect.  

Pairwise correlations were calculated between the index SNPs and variants with high 

posterior causality probability values (with PLINK package370) to assess whether the fine-

mapped variants are in LD with their respective index SNPs. Variants with the strongest 

significant associations with phenotypes, in the tightest LD with the index SNPs, and 

sharing functional features associated with adiposity- and inflammation-related tissues 

were subsequently selected for causal mediation analysis.  
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Analyses were limited to samples with non-missing observations for outcome 

phenotypes. An exploratory analysis of the phenotypes showed the skewed distributions of 

inflammatory markers; therefore, inflammation phenotypes were log-transformed 

(supplementary Figure 6.1) because mediation analysis assumes the normal distribution of 

outcomes. Some covariates, including physical activity, alcohol consumption, and smoking 

status, were characterized by considerable missingness. Because mediation analysis only 

uses complete cases, missing covariates were imputed using the predictive mean matching 

(PMM)371 method. Subsequent mediation analyses were conducted with both an imputed 

dataset (assuming missingness at random) and a reduced set that only included empirically 

complete cases.  

Directed acyclic graphs (DAGs) were used to conceptualize the biologic pathways of 

associations (Supplementary Figure 6.2). Causal mediation analysis requires that the causal 

model (i.e., the likely temporal sequence of phenotypes) be pre-specified. Causal models 

were based on the prevailing knowledge of adiposity and inflammation associations (causal 

directions) to determine the mediator and outcome phenotypes from each mediation 

analysis.  

2.5. Causal mediation pathway analysis 

Under the biologic pleiotropy model, a likely causal variant is associated with multiple 

phenotypes through distinct pathways (Supplementary Figure 5.3a). Therefore, the 

directional association between the SNP and the outcome phenotype should be significant 

(outside of the 95% error levels), once the association has been adjusted for the mediator 

(phenotype) and the covariate effects; a lack of significant associations may suggest 

mediated pleiotropy (Supplementary Figure 5.3b).  
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For this study, analyses were performed using the causal inference approach to mediation 

analysis209, which allows for the assessment of whether an SNP has a direct effect on the 

phenotype of interest or whether the SNP only acts through a secondary (correlated) 

phenotype, in a sequential manner. Distinguishing the pleiotropic operational mode assists 

in the identification of the biological pathways through which a genomic variant affects 

multiple phenotypes.  

The R package Mediation372 was used for analysis, which conducts a three-step process. 

The total effect between an SNP and an outcome phenotype is assumed to be the sum of 

the average causal mediation effects (ACMEs) and the average causal direct effect (ADE). 

The first step includes estimating the distribution of the mediator phenotype as a function 

of the SNP, adjusted for ancestry genetics (e.g., anthropometry ~ genotype + PCs). The 

next step involves estimating the distribution of the outcome phenotype as a function of 

the mediator phenotype, genotype, and covariates (e.g., inflammation marker ~ mediator + 

genotype + PCs + covariates). The final step combines the fitted models in the mediation 

equation, providing estimates and p-values for the direct (e.g., inflammation ~ SNP) and 

indirect (via adiposity) associations.  

Mediation analysis involved the stepwise selection of covariates during the second step. 

The initial formulation (Model 1) included no covariates except ancestry PCs (e.g., 

inflammation marker ~ genotype + mediator + PCs). In subsequent models, age and sex 

(Model 2), alcohol and physical activity (Model 3), smoking status (Model 4), and insulin 

resistance (Model 5) were progressively added to assess the confounding effects of 

covariates on the observed associations. Because no significant differences were observed 

between the different adjusted models, only the final adjusted model was included in this 
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report. No meaningful difference was observed between the results inferenced from the 

imputed dataset and those based on the empirical observations. Therefore, models using 

the multiple-imputation set were presented in the results section, and the results from the 

empirical set can be found in the supplementary materials.  

The number of simulations was set to 1,000, and models were calculated with robust 

standard errors. 

2.6. Sensitivity analysis  

The empirical distributions of the covariates showed the presence of extreme 

observations. Comparative analyses were conducted both with and without outliers to 

assess whether the outcomes would differ.  

For causal mediation analysis, the proposed sensitivity test in the Mediation R package 

was used. This test relies on sequential ignorability212, which implies that after accounting 

for an observed confounder, no unmeasured variable may confound any of the following: 

1) genotype-mediator association, 2) genotype-outcome phenotype association, and 3) 

mediator-outcome association.  

The package passes the results from mediation analysis to medsens function. The 

functions choses as the sensitivity parameter the correlation ρ between the residuals of the 

mediator and outcome regressions. If there exist unmeasured confounder which affect 

either the mediator or the outcome, it is expected that the sequential ignorability 

assumption is violated and ρ is no longer zero. The sensitivity analysis is conducted by 

varying the value of ρ and examining how the estimated ADE and/or ACME changes. 



117 
 

The number of simulations used for the sensitivity test was set at 100, and correlation 

parameter ρ increment was set at 0.1. 

3. Results 

The exploratory analysis of covariates (Table 5.1) showed elevated distribution of insulin 

resistance [median =2.9 µIU/mL, interquartile range (IQR): 1.7, 4.8], a low proportion of 

individuals reporting moderate to vigorous physical activity (approximately 24% of 

participants), and current smokers being the majority of the cohort (55%). The empirical 

distribution of insulin resistance values showed the presence of a few extreme measures 

(Figure 5.1). The distributions of anthropometric measures indicated a high level of obesity 

(>75% with BMI > 30 and WHR > 88) and high levels of inflammation markers (IL-6 

median =2.7pg/dL, IQR:1.4, 4.8).  

The set of variants with a high posterior probability of causality, including their 

respective index variants, were fit into a linear regression with phenotypes as the outcome. 

The results of the univariate analysis and pairwise LD-score with the lead pleiotropic 

(index) variant for each region (Table 5.2) showed inconsistent patterns of associations 

across phenotypes. In the target region on chromosome 3, only 5 out 10 variants were 

associated with BMI, WC and WHR, 4 with CRP, 3 with IL-6, 2 with IL-8, and none with 

fibrinogen, including the results from index SNP. Only 2 variants in the locus, rs605058102 

and rs10514654, were significantly associated with 5 out of 6 phenotypes.  

For the target region on chromosome 12, 5 of 9 variants were significantly associated 

with BMI, WC and CRP, 6 with WHR, 1 with IL-6, 2 with fibrinogen, and none with IL-

8, including the results from the index SNP. However, 5 of 9 variants (rs60939199, 
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rs60995491, rs73093474, rs10506239, and rs73094803) appeared to be associated with 

multiple phenotypes, including BMI, WC, WHR, and CRP. For the target region on 

chromosome 18, the results did not show any significant associations between phenotypes 

and likely causal pleiotropic variants, except for the index SNP (rs4609952), which was 

significantly associated with WHR (Table 5.2). 

Based on the significant associations with multiple phenotypes identified in the 

univariate regressions (Table 5.2), two variants were selected for in-depth causal mediation 

pathway analysis due to tighter LD with their respective index SNPs, lower pleiotropic p-

values (Paspu), and adipose tissue regulatory features (Table 5.1a-b, prior chapter): 

rs60505812, on chromosome 3 and rs73093474 on chromosome 12.  

To distinguish biological pleiotropy from mediated pleiotropy, causal mediation analyses 

were performed. Using DAGs, the regression results, and existing biological knowledge, 

separate but methodologically identical models were used to assess the total effects 

between the likely causal variants and the phenotypes of interest (Supplementary Figure 

5.4).  

For rs60505812 on chromosome 3, BMI was assumed to be the mediating phenotype, 

and IL-6 was chosen as the outcome. The selection of associated phenotypes was guided 

by univariate GWAS p-values. For this variant, no meaningful mediated effect was 

observed [estimate = 0.01 (pg/dL) per risk allele, 95% confidence interval (95% CI): −0.01, 

0.04; Table 5.3], but the direct effect was significant (estimate = 0.13 (pg/dL) per risk 

allele, 95% CI: 0.05, 0.22) after adjusting for age, sex, the first 2 PCs, alcohol consumption, 

physical activity, current smoking status, and insulin resistance level.  
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For the variant rs73093474 on chromosome 12, WHR was the mediator, and CRP was 

chosen as the outcome phenotype. Evidence supported both a mediated effect (estimate = 

−0.02 (mg/L) per risk allele, 95% CI: −0.04, −0.00) and a direct effect between the SNP 

and CRP (estimate = −0.16 (mg/L) per risk allele, 95% CI: −0.25, −0.06). This result 

implies that the variant exhibits both biologic and mediated (via WHR) pleiotropy. These 

results suggested that these two variants contributed to inflammation, independently of 

adiposity.  

The sensitivity analysis for unmeasured confounders (Figure 6.3) showed that 

unmeasured cofounders were unlikely to unduly confound direct SNP-outcome-phenotype 

associations for both variants, as the estimates were outside of the 95% CI for sensitivity 

parameters. Finally, mediation analyses were performed, excluding samples that had 

extremely high insulin resistance values. No tangible difference was observed; therefore, 

no data points were excluded from this report.  

4. Discussion  

Pleiotropy assessments performed during prior steps identified loci with suggestive 

evidence for multi-phenotype associations among CCHC participants. The functional 

evaluation of likely causal variants, identified through fine-mapping in the prior steps, 

revealed that the majority were nonsense-mediated (NMD) regulatory SNPs, underscoring 

their potential for pleiotropic effects, particularly in the context of adiposity and 

inflammation.  

However, fine-mapping analysis is restricted to the assignment of causal probability 

based on observed associations and functional annotations. Mediation analysis is an 
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approach that can be utilized to model causal associations between variants with a high 

probability of causality and phenotypic outcomes373. The characterization of pleiotropy 

associations facilitates biological interpretations. 

A total of 25 SNPs of likely causal variants, residing in three different regions, with 

evidence of inflammation-adiposity pleiotropy effects, were considered for mediation 

analysis. This set included three 3 index SNPs (i.e., the variants with the most significant 

pleiotropic p-values in each target locus) and 22 variants that demonstrated high probability 

of causality values during the fine-mapping analysis. LD analyses suggested that the 

examined variants consisted of 4 distinct signals, two of which were located on 

chromosome 12.  

Based on the consistency of associations across multiple phenotypes, adiposity tissue 

regulatory features, and tight LD with respective index SNPs, two variants, including 

rs60505812 on chromosome 3 and rs73093474 on chromosome 12, merited in-depth 

examination. None of the SNPs in the third region on chromosome 18 were associated with 

any of the traits under the study.  

Mediation analysis indicated that rs60505812 was independently associated with both 

IL-6 and BMI, which are surrogates of inflammation and adiposity, respectively, even after 

adjusting for age, sex, physical activity level, alcohol consumption, and current smoking 

status (Table 6.3), which is consistent with biologic pleiotropy. However, no indirect 

association was identified between the SNP and IL-6 [via BMI]; therefore, the model failed 

to provide evidence for mediated pleiotropy.  



121 
 

As indicated by functional analyses using bioinformatic tools in prior steps, rs60505812 

is an NMD variant. NMDs, in general, play important roles in the reduction of gene 

expression error by eliminating mRNAs that contain premature stop codons328. This variant 

is located in an intronic region of the sulfatase modifying factor 1 (SUMF1) gene, which 

is known to encode a similarly named enzyme that catalyzes steroid sulfates316. Although 

no direct association between SUMF1 and metabolic traits has previously been reported, 

variants in this gene have been suggested to be associated with inflammation318. 

Additionally, steroid sulfates play a functional role in energy homeostasis and 

inflammation319.  

The functional assessment of rs60505812 with Haploreg demonstrated an annotation 

with  histone H3 lysine 4 trimethylated (H3K4me3)374 in fetal adipose cell nuclei. 

H3K4me3 promotes gene expression by altering the accessibility of genes to initiate 

mRNA transcription 375. Whether this regulatory association and concurrent synergistic 

phenotypic variation [with fat uptake and increased pro-inflammatory activities] is 

promoted by common pathways at molecular, cellular or tissue levels require further 

assessments. However, regulatory annotation with fetal nuclei would suggest functional 

association with a wider range of metabolic processes, and therefore involving sub-cellular 

‘foundational’ pathways. 

For the variant rs73093474, on chromosome 12, mediation analysis indicated both a 

direct association with CRP (Table 6.3) and an indirect association (via WHR) in the 

covariate-adjusted models, which demonstrated concurrent biologic and mediated 

pleiotropy. In contrast to rs60505812, this variant has a regulatory annotation with the 
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mono-methylated H3K4me1-Enhancer in adipose cell nucleus, in addition to skeletal 

muscle and brain tissues.  

H3K4me1 is the primary modification used to predict whether an SNP is a potential 

enhancer (booster) of the gene expression376. Therefore, the associated regulatory effect of 

rs73093474 [or the signal it represents] may be biologically more specific than rs60505812, 

and less likely to involve multipotent pathways that underpin a greater range of phenotypic 

traits. Caution must be exercised because a concrete biological inference necessitates both 

the replication of genetic associations in larger samples and  experimental assessment.  

This SNP is also an NMD variant, intronic to transmembrane 117 (TMEM117), which 

encodes a similarly named protein. This gene has been associated with endoplasmic 

reticulum stress (ER stress) and mitochondria-mediated apoptotic cell death322. Obesity-

induced ER stress has been shown to induce inflammation in adipose tissue377.  

In conclusion, mediation analysis showed that the observed pleiotropic associations in 

two of three target regions are potentially biologic associations, in which the SNP affects 

a common pathway upstream of both inflammation- and adiposity-related phenotypes. 

However, evidence for mediated pleiotropy was also identified for rs73093474, which 

suggested that this variant also affects inflammatory phenotypes via the promotion of 

adiposity.  
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5. Tables and Figures 

Table 5.1. Distributions of the phenotypes and covariates in Cameron County Hispanic 

Cohort (CCHC) among participants with non-missing values for either C-reactive Protein 

(CRP) or interleukin (IL)-6.  

 

Variable (unit) Median [IQR] Sample Size 

Age (year) 47.0[34.0, 60.0] 2247 

Female, N(%) 1492(66) 2247 

IL6 (pg/dL) 2.7[1.4, 4.8] 1316 

CRP (mg/L) 3.9 [2.0, 7.7] 1860 

BMI (kg/height^2) 30.1[26.6, 34.3] 2237 

Waist Circumference (cm) 100.7 [92.5, 110.5] 2247 

WHR (Waist/Height x 100) 92.9[88.0, 97.9] 2245 

Alcohol (Oz/week) 0.0 [0.0, 0.6] 1196 

Moderate to vigorous physical activity, N(%) 252(23.9) 1054 

Current smoker, N(%) 578(55.0) 1050 

Homa-IR* (uIU/mL) 2.9[1.7, 4.8] 2123 

* homeostatic insulin resistance 
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Table 5.2. Univariate regression results with genetic variants as the outcomes and 

phenotypes as predictors.   

Locus Variant P
aspu

 R
2*

 d` BMI CRP IL6 IL8 FIB WHR WC 
ch

r3
:4

1
5
0

8
9

7
 

rs200671707 1.02E-06   2.25 2.86 2.82 1.70 0.28 3.07 2.45 

rs35441937 3.28E-01 0.10 0.96 0.52 0.52 -1.15 0.37 -0.57 0.26 0.68 

rs10510288 6.61E-03 0.24 0.99 2.14 1.98 1.15 1.64 -0.30 2.57 2.48 

rs6808934 9.34E-02 0.23 0.99 1.14 1.18 1.59 1.24 -0.79 1.86 1.36 

rs2874822 1.35E-01 0.10 0.96 -0.62 -0.75 -0.57 -0.44 -0.62 -0.62 -0.57 

rs60505812 1.28E-06 0.86 0.98 2.73 2.42 2.65 2.34 0.59 3.02 2.59 

rs952644 9.20E-03 0.19 0.92 2.10 1.68 1.39 1.75 -0.19 2.46 2.49 

rs2600116 9.48E-02 0.21 0.95 0.33 0.25 1.67 0.19 0.17 0.80 0.02 

rs10514654 1.89E-06 0.86 0.95 2.75 2.60 2.96 2.20 0.11 2.83 2.73 

rs6777465 7.47E-01 0.13 0.98 0.56 0.38 -0.91 -0.27 -0.19 0.19 0.91 

ch
r1

2
:4

4
4

8
1

3
8

0
 

rs60939199 1.56E-06   -2.50 -2.79 -1.25 -0.60 -0.87 -2.62 -3.28 

rs277221 1.33E-03 0.00 0.08 0.33 0.16 -0.48 0.56 -1.58 2.89 0.20 

rs440389 1.63E-01 0.02 0.49 -0.53 0.60 -1.95 0.04 -1.28 1.54 0.26 

rs4251527 3.87E-03 0.00 0.07 -0.68 -0.93 0.99 -0.68 2.01 -1.53 -0.16 

rs60995491 2.81E-06 0.87 0.94 -2.49 -2.85 -0.33 -0.79 -0.56 -3.32 -3.53 

rs11182419 6.56E-01 0.00 1.00 -0.60 0.26 -0.71 1.83 2.34 -0.67 -0.83 

rs73093474 2.81E-06 0.87 0.94 -2.50 -2.86 -0.33 -0.78 -0.56 -3.32 -3.53 

rs10506239 3.35E-06 0.93 0.99 -2.42 -2.84 -1.16 -0.42 -0.57 -2.87 -3.36 

rs73094803 6.26E-06 0.77 0.93 -2.51 -2.65 0.19 -1.06 -0.12 -3.19 -3.51 

ch
r1

8
:6

1
5

7
8

7
5

0
 

rs4609952 2.67E-05   0.73 0.02 -0.20 -1.14 0.31 2.35 -0.13 

rs1243064 1.03E-02 0.21 0.97 -0.21 0.63 -0.50 0.54 -0.99 -0.81 -0.39 

rs2689416 6.65E-03 0.30 0.99 0.25 0.18 0.05 -0.77 -0.12 1.31 0.03 

rs28483202 4.48E-04 0.88 0.99 1.06 0.34 0.18 -1.40 0.38 1.87 0.01 

rs6567401 4.40E-02 0.27 0.99 0.60 0.78 -0.26 -1.15 -0.32 1.53 0.41 

rs631815 9.91E-03 0.32 1.00 0.75 0.23 0.45 -0.29 -0.47 1.06 0.21 

 

*R-squared and d` are measures of pairwise linkage disequilibrium (LD) with index SNP in locus 

[highlighted with light gray]. Variants in tighter LD with their respective index single nucleotide variants 

(SNV), having significant pleiotropy p-value (Paspu), significant association with multiple phenotypes and 

regulatory annotation features associated with adipose tissue were selected for in-depth causal mediation 

analysis [denoted by light blue color]. 
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Table 5.3. Causal mediation analysis for rs60505812 and rs73093474.  

Estimate/variant  rs60505812 rs73093474 

Adjusted Model Adjusted Model 

Estimate 95% CI Estimate 95% CI 

Mediated Effect (ACME)* 0.01 (-0.01, 0.04) -0.02 (-0.04, -0.00) 

Direct Effect (ADE)** 0.13 (0.05, 0.22) -0.16 (-0.25, -0.06) 

Total Effect (TE) 0.14 (0.06, 0.23) -0.18 (-0.27, -0.08) 

Proportion Mediated 0.07 (-0.11, 0.29) 0.12 (0.01, 0.32) 

*ACME=average causal mediated effect. For the variant rs60505812, this pertains to the statistical 

association between the SNP and the outcome phenotype (IL6), mediated through BMI. For the variant 

rs73093474, the ACME indicates the association between the SNP and the outcome phenotype (CRP), 

mediated through WHR.  

**ADE=average direct effect. For the variant rs60505812, this pertains to direct association between the 

SNP and the outcome phenotype (IL6), after adjusting for the mediator (BMI). For the variant rs73093474, 

this indicates the direct association between the SNP and CRP after accounting for the mediator effect 

(WHR). ADE is a measure for biologic pleiotropy. 
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Figure 5.1. Sensitivity analysis of observed average mediation effect and average direct 

effect for variants rs60505812 (lower row) and rs73093474 (top row). The 95% 

confidence interval for average mediation effect with rs60505812 includes 0 value for 

sensitivity parameter ρ but the confidence interval for average direct effect does not. For 

rs73093474, both direct and mediated effects’ confidence intervals do not contain 0 

value, suggesting robustness of associations to unmeasured confounders.  
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6. Appendices 

Supplementary Figure 5.1. Empirical and log-transformed distributions of inflammation 

markers. 

 

 

Supplementary Figure 5.2. Conceptual directed acyclic graph (DAG) used as the 

framework for causal mediation analysis. This approach is based on general mediation 

model (VanderWeele, T.J. & Vansteelandt)209.  
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Supplementary Figure 5.3. Biologic pleiotropy indicates direct association with 

multiple phenotypes (Figure a), while biologic pleiotropy is induced by phenotypic 

correlation (Figure b); multi-mode pleiotropy is also plausible (Figure c). DE: direct 

effect, ME: mediated effect, SNV: single nucleotide variant. 

 

 

Supplementary Figure 5.4. Directed acyclic graphs (DAGs) used to formulate causal 

mediation analysis for variants rs60505812 and rs73093474. For variant rs60505812, 

BMI is proposed as the mediating phenotype and interleukin(IL)-6 as the outcome. For 

the remaining variant, rs60505812, waist to hip ratio (WHR) was proposed as the 

mediating phenotype and C-reactive protein (CRP) as the outcome.  
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DISCUSSION 

Obesity is one of the major public health crises of our time378,379 and has steadily 

increased worldwide6, affecting urban and rural dwellers9, children and adults10, and men 

and women  alike9. Many factors have been associated with the increased incidence of 

obesity, including increased access to cheap, high-calorie processed foods380, reduced 

physical activity381, changes in the environment382, and increased exposure to chemicals383, 

among other potential contributors. Increased obesity, particularly abdominal obesity19, has 

been associated with the increased incidence of various adverse metabolic disorders17,18,384 

including insulin resistance20, hypertensive blood pressure21, elevated lipid levels22, and 

hormonal dysregulation18. These metabolic disorders, in turn, have been associated with 

the increased susceptibility to cardiovascular diseases23. 

1. Inflammation-adiposity association 

The underlying mechanisms that link obesity to cardiovascular diseases remain subject 

to debate50-52, and certain hypotheses, including insulin resistance-induced arterial 

stiffness53 and kidney-promoted hemodynamic imbalances55, have received wider attention 

than others. However, changes in the local distribution of nutrition-sensitive62 adipose 

tissue (due to the increased accumulation of visceral fat)59 have been associated with 

altered morphologic and hormonal profiles60,61, and the resulting upregulation in 

inflammation68,69 is thought to be a root cause of a large proportion of metabolic disorders. 

An increased number (hyperplasic) of enlarged (hypertrophic) adipocytes promotes the 
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increased production of cytokines, including IL-6 and IL-878,79. Cytokines attract 

macrophages81,82, which, in turn, can activate the intracellular signals responsible for 

upregulating the innate immune response87 and trigger the inception of atheromatic 

processes that seed arterial lipid plaque formation. 

In contrast, compelling evidence has also suggested that insulin resistance88,89and 

increased circulatory91 and hypothalamic inflammatory responses92,93 might precede the 

development of obesity. An increase in inflammatory mediators has been shown to predict 

future obesity outcomes385. These seemingly contradictory observations necessitate a more 

nuanced exploration of the relationships between obesity and immunity. 

2. Rule of genetics and ancestry in inflammation-adiposity association  

Although some of these findings might merely reflect circular feedback mechanisms, the 

complex natures of both phenotypic domains might also indicate the involvement of other 

mechanisms. Changes in both adiposity and inflammation may be mediated by common 

pathways, a proposition that is supported by the observed overlap between genetic variants 

associated with both adiposity and inflammatory markers110,111,114-116. The observations of 

increased inflammatory responses following the upregulation of adiposity gene 

expression112,113 and weight-gain associated inflammatory gene activation118,119 further 

support the idea that these pathways may share common mediators. The existence of 

pervasive124 and multi-potent ‘pleiotropic genetic variants’122 have been hypothesized, 

which could provide insight into the shared biology and pathophysiological processes that 

underpin adverse cardiovascular events107 and inform phenotypical and clinical 

classifications.  
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However, potential pleiotropic variants have not yet been sufficiently explored. 

Methodological issues, including difficulties distinguishing biologic pleiotropy (in which 

a genetic locus is independently associated with multiple phenotypes) from mediated 

pleiotropy (in which a genetic locus is correlated with a phenotype but may not be 

causal)127, ascertainment bias due to co-occurring traits135, phenotypic 

misclassifications136, variations in allelic structures, or difficulty to identify shared 

controls137, and ambiguity when a causal variant is identified as a regulatory, non-coding 

SNP138, can all pose significant barriers to identifying share pleiotropic regulators. The 

most important challenge has been the limited inferential utility of variants identified 

through GWAS for pleiotropy testing. A disproportionately large proportion of existing 

GWAS have been performed on largely European ancestry populations139,140.  

The significance of genetic architecture can be further highlighted by the differential 

distributions of adiposity and inflammation among distinct genetic ancestry groups that are 

otherwise comparable142-144. Hispanics/Latino (HLA) populations, in particular, have been 

noted to present an increased incidence of cardiometabolic abnormalities145, with a diabetes 

prevalence that is 2.5-fold the level reported among non-Hispanic Whites (NHW)25, and 2 

in 3 HLA adults present with abnormal lipid levels26.  

Although some of this discrepancy could be explained by an increased prevalence of the 

obesity11,14, differences in inflammation levels have persisted, even in adiposity-adjusted 

analyses142,146. These disparities extend to the “Hispanic paradox”, in which the 

cardiovascular mortality rate among this population is lower than other populations, despite 

elevated metabolic risk factors27,28 and have not yet been sufficiently explained by other 
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contributing factors30,33. These findings underscore the need to re-focus on the important 

but sparsely explored contribution of genetics to obesity and inflammation interaction34.  

3. Study object 

The aims of this study were: to identify genetic loci with potential evidence of pleiotropic 

effects across inflammatory factors, including CRP, IL-6, IL8, and fibrinogen, overall 

obesity (BMI), and central adiposity (WC & WHR) domains, in an HLA population (Aim 

1); to fine-map potential pleiotropic loci and distinguish likely causal variants (Aim 2); and 

to evaluate whether observed signals demonstrate independent associations with both 

phenotypic domains (i.e., biologic pleiotropy) or whether the association is induced via 

phenotypic correlations (i.e., mediated pleiotropy, Aim 3). 

4. Cameron County Hispanic Cohort 

The population examined in this study was the CCHC. Most of these participants self-

identify as Mexican Americans. This cohort is characterized by a high prevalence of 

obesity and cardiometabolic abnormalities166,167, with increased susceptibility to adverse 

health events. The prevalence of obesity in this population was higher than the national 

HLA average, as reported by the CDC for the 2017–2018 period275 (45% nationally vs. 

>75% in this study). 

A total of 3,313 samples were examined in this study. The number of SNPs identified for 

genetic testing was >9 million. Analyses of ancestry PCs showed that the majority of PCs 

clustered predominantly with Mexican populations, with fewer individuals aligning with 

other ethnic groups.  
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5. Genetic signals 

The GWAS analyses showed that two regions on chromosomes 6 and 8 exceeded the 

GWAS significance level (p-value < 5 × 10−8) for sex-combined meta-analyzed WHR 

results; the GWAS-identified significant SNPs in the novel locus are located in regions 

near LRFN2 and LOC101929555, and have not been previously recorded in GWAS 

libraries. Variants in LRFN2 have been positively associated with BMI257,258, type 2 

diabetes259, lipid profiles260, cognitive abilities261, and WHR262.  

The absence of GWAS-identified significant associations in regions that have been 

widely reported to be associated with anthropometric and inflammatory traits263,264 may be 

the result of ancestry-specific patterns, similar to findings from other studies that have 

reported ethnic differences in genetic associations268-271. However, caution must be 

exercised when making any inferences because differences in the LD structure239, 

statistical power238, and SNP coverage272 among studies can all induce variations in the 

GWAS signal.  

6. Evidence for pleiotropy 

Pleiotropy assessments were performed using the aSPU199 testing method. Although no 

pleiotropic signals were observed at the GWAS significance level, at least five signals, on 

chromosomes 1, 3, 12, 18 and 19, were identified that suggested the presence of SNPs with 

strong pleiotropic p-values (< 5 × 10−6). Although the signals on chromosomes 1 and 19 

were driven by solitary variants in each instance, the suggestive loci in the remaining three 

chromosomes were robust to sensitivity analyses and contained clusters of SNPs with 

strong pleiotropy p-values.  
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A review of the GWAS catalogue revealed an extensive number of variants with varying 

degree of LD with SNPs within the three suspected pleiotropic regions that were previously 

reported in association with a range of metabolic traits. All three regions contained variants 

associated with inflammatory diseases, anthropometric measures, and energy intake. 

Additionally, for the loci identified on chromosome 3, a considerable number of variants 

were in LD with variant in the region that were previously identified for brain functions 

and neurological diseases.  

The fine-mapping of these three suspected pleiotropic regions (on chromosomes 3, 12, 

and 18) was performed, incorporating the summary statistics from pleiotropy analyses, LD 

structures, and functional annotations with regulatory and coding features293,294, which 

distinguished 22 variants with posterior causality probabilities greater than 50% among the 

7,326 total variants assessed across all 3 regions.  

None of the index SNPs, which had the most significant pleiotropy p-values, were 

identified among the credible causal variant sets in each region, which could be due to 

several possibilities, including the high correlation with several significant variants, the 

index SNP serving as a proxy for the true ‘causal variant’312, interactions with distant 

topologically associated domain (TAD)313 variants, or the presence of multiple signals. 

However, a potential second (independent) signal was only observed for the suspected 

pleiotropic locus identified on chromosome 18.  

7. Characteristics of likely pleiotropic signals 

The clear majority of likely causal variants identified in each of the three regions were 

intronic, nonsense-mediated decay (NMD) variants, which overlapped with six different 
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genes, including sulfatase-modifying factor 1 (SUMF1) on chromosome 3, interleukin 1-

associated receptor kinase (IRAK4) and transmembrane 117 (TMEM117) on chromosome 

12, and serpin family B 10 (SERPINB10), SERPINB2, and histocompatibility minor serpin 

domain-containing (HMSD) on chromosome 18.  

NMD variants play regulatory roles, quality-checking gene expression errors by 

eliminating messenger ribonucleotide (mRNA) molecules that contain premature 

termination codons328. Growing evidence has suggested that variations and tissue-specific 

differences in NMDs can alter the underlying pathologies of genetic diseases329-331. 

Notably, interactions between NMDs and protein-coding variants have been linked with 

an increased risk of developing obesity and type 2 diabetes, as reported in one recent trans-

ancestry cohort332. For instance, in a clinical study, a patient with early-onset obesity was 

characterized with a mutation-induced malfunction of the NMD surveillance pathway, 

which affected Pro-opiomelanocortin (POMC) gene regulation; this gene is involved in a 

wide range of activities, including body-weight regulation333. The results from this study 

further underscored the importance of NMD variants in the context of pleiotropy.  

Pleiotropy association studies cannot distinguish whether an observed association 

between a genetic variant and a phenotype occurs due to direct (i.e., biologic pleiotropy) 

or indirect effects (i.e., mediated pleiotropy) due to phenotypic correlations with the 

primary trait. Mediation analysis refers to a type of conditional analysis, in which the total 

effect between a predictor and an outcome is divided among several factors that contribute 

to the association and relies on counterfactual principles208. Using this framework, the 

causal effects can be viewed as the difference between two potential phenotypic outcomes, 

depending on whether an individual harbors the risk alleles (at the same time).  
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In addition to the 3 identified index SNPs, which featured the lowest pleiotropic p-values 

for each locus with evidence for pleiotropy, all 22 fine-mapped variants with high posterior 

causality probabilities were fit into univariate regression models using the phenotypes as 

predictors. Those variants in tighter LD with their respective index SNPs exhibited 

consistent and significant associations with multiple phenotypes in these univariate 

regressions, and those with the lowest pleiotropic p-values and regulatory features 

associated with adipose tissue were selected for in-depth causal mediation analysis.  

The mediation analysis indicated that rs60505812 was independently associated with 

both an inflammatory marker (IL-6) and an adiposity measure (BMI), even after adjusting 

for potential confounders like age, sex, physical activity level, alcohol consumption, and 

current smoking status, which is consistent with the biologic pleiotropy model.  

Although no direct association between SUMF1 and metabolic traits has previously been 

reported, variants in this gene have been suggested to be associated with inflammatory 

diseases, including chronic obstructive pulmonary disease (COPD)318. Additionally, 

steroid sulfates play functional roles in energy homeostasis and inflammation319. The 

overexpression of human steroid sulfatase in the adipose tissue of transgenic male mice 

and female mice that underwent ovariectomy exacerbated metabolic phenotypes, resulting 

in weight gain and the accumulation of fat mass, worsened insulin sensitivity, and altered 

energy expenditures386.  

8. The functional evaluation of likely pleiotropic variants 

The functional assessment of rs60505812 with Haploreg demonstrated an annotation 

associated with histone 3 lysine 4 trimethylated (H3K4me3)374 in fetal adipose cell nuclei. 



137 
 

H3K4me3 regulates gene expression by altering the accessibility of genes to promote 

mRNA transcription375 and has generally been associated with actively transcribed genes 

in animal models387. H3K4me3 is also known to play a significant role in the genetic 

regulation of stem cell potency387. H3K4me3 has been extensively observed on 

nucleosomes at the 5’ end of eukaryotic genes undergoing active transcription by RNA 

polymerase II388. A regulatory annotation in fetal nuclei would suggest functional 

associations with pathway(s) upstream to a wide range of metabolic traits, resulting in 

pleiotropic properties at protein or variant levels. However, further assessments remain 

necessary to establish the precise level at which the suggestive signal operates.  

For the variant rs73093474, on chromosome 12, mediation analysis indicated both a 

direct association with CRP (Table 6.3) and an indirect association (via WHR) in the 

covariate-adjusted models, which demonstrated concurrent biologic and mediated 

pleiotropy. In contrast with rs60505812, rs73094374 has a regulatory annotation with the 

mono-methylated H3K4me1-enhancer in adipose cell nuclei, in addition to skeletal muscle 

and brain tissues. H3K4me1 is the primary modification used to predict whether an 

identified SNP is a potential enhancer (booster) of gene expression376.  

This SNP was also an NMD variant, intronic to transmembrane 117 (TMEM117), which 

encodes a similarly named protein. This gene has been associated with endoplasmic 

reticulum stress (ER-stress) and mitochondria-mediated apoptotic cell death322. Obesity-

induced ER-stress has been shown to induce inflammation in adipose tissue377. In 

experimental studies examining mice, sustained fat accumulation interrupted ER 

homeostasis and induced the unfolded protein response (UPR)389. Unfolded proteins within 

the ER lumen activate the ER stress pathway390, and lipid-sensitive transmembrane 
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proteins act as sensors for unfolded proteins391,392. Elevated levels of UPR activation have 

been observed in adipose tissue from obese individuals393 and has been suggested to serve 

as a potential mechanism that might link obesity with inflammation and insulin 

resistance394,395.  

The regulatory annotation associated with H3K4me1 combined with the suggested 

association with UPR-induced ER-stress activity in adipocytes suggest that the biological 

effects of rs73093474 (or the signals it represents) may be relatively tissue-specific, 

compared with those for rs60505812, and less likely to act upon multipotent pathways. 

Further genetic and functional studies in larger settings and varied populations are 

warranted before concrete biological inferences are made.  

9. Study strengths and limitations 

The present study had notable limitations. The sample size used for this study was small. 

Adiposity and inflammation traits are highly polygenic and, therefore, the effect of any 

given genetic variant on the overall phenotype is small, and adequate statistical power is 

necessary to isolate signals. GWAS performed in larger samples present considerably 

improved detection power compared with smaller samples396. The general absence of 

significant GWAS results in this study can largely be attributed to insufficient detection 

power. However, the study incorporated a pleiotropy test that served the dual aims of 

evaluating pleiotropy among correlated phenotypes and increasing the statistical power for 

locus discovery. Previous studies have illustrated133,397-399 that harnessing pleiotropy could 

successfully increase statistical power. 
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Although this study only included a discovery cohort, the analysis did account for 

multiple factors that could affect the generalizability of observed signals400, including each 

variant’s effective sample size and ancestry architecture401. Furthermore, low frequency 

and rare variants with MAF  <5% ,  were excluded from the analysis to improve the 

likelihood of replicability.  

The study could not distinguish whether suggestive pleiotropic signals acted at specific 

levels or were associated with multi-potent pathways that affected a wider range of 

phenotypic traits. Generally, trans-regulatory SNPs act at the variant level, whereas cis-

regulatory and coding SNPs act at the protein (i.e., gene) and tissue levels402. The precise 

characterization of pleiotropic signals requires insight from expression quantitative trait 

(eQTL) analysis which seeks to examine SNPs that affect the mRNA expression levels, or 

more relevently candidate SNP-mRNA study. However, functional annotation evaluation 

was able to provide suggestive evidence for possible functional roles associated with likely 

causal variants. For instance, the fetal nuclei H3K4me3 annotation for rs60505812 was 

suggestive of potential pleiotropic effects at either variant or protein levels. 

The present study also had major strengths. This study is the first comprehensive 

assessment of pleiotropy relationships between adiposity and inflammation traits in an 

HLA or any population. The results provided suggestive evidence for the regulatory effects 

of identified genetic variants on metabolic pathways and highlighted the complexity and 

interrelatedness of seemingly independent phenotypic traits.  

The intentional selection of a genetically tri-admixed HLA population151 with shorter 

haplotypes compared with European ancestry (EA) populations155 presented opportunities 
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for precise fine-mapping154, which greatly reduced the number of SNPs identified for 

causal evaluations157,158.  

Rigorous association tests, which incorporated pairwise kinship structures, improved 

genetic associations’ estimates. The integrative analytical framework that was used for this 

study is innovative; and the combination of various steps, including GWAS, pleiotropy 

assessments, fine-mapping, functional evaluations, and causal mediation analysis 

collectively improved the biological interpretation of the results. 

10. Study summary and conclusion 

The characterization of overlapping genetic pleiotropy between inflammatory and 

adiposity pathways is essential for improving our understanding of the etiology of the 

various metabolic pathways that regulate cardiovascular disease development. This 

research provided a systematic assessment of potential variants that exert pleiotropic 

effects on inflammatory and adiposity traits. The analysis distinguished a novel locus on 

chromosome 6 associated with WHR outcomes in sex-combined results.  

The examination of 3 loci with suggested pleiotropy resulted in the isolation of 22 

variants with high posterior causal probabilities, including 2 SNPs on chromosomes 3 

(rs60505812) and 12 (rs73093474) that exhibited regulatory features associated with 

adipose tissue. The identification of likely pleiotropic variants indicated that 1) a 

considerable degree of overlapping genetic pleiotropy exists between adiposity and 

inflammation, and 2) evidence exists to support both the direct and independent pleiotropic 

effects of likely causal variants on both phenotypic domains, in addition to the potential 

mediated pleiotropy.  
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The results showed the potential of these genetic variants to provide biological insight, 

which might inform the development of preventive and clinical strategies intended to 

improve the cardiovascular outcomes of HLA populations, and by extension, improve 

targeted  healthcare for all ethnic group in this era of precision medicine. 
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