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A B S T R A C T

Introduction: Heart disease remains a leading cause of global mortality. While acute myocardial infarction
(colloquially: heart attack), has multiple proximate causes, proximate etiology cannot be determined by a blood-
based diagnostic test. We enrolled a suitable patient cohort and conducted a non-targeted quantification of
plasma metabolites by mass spectrometry for developing a test that can differentiate between thrombotic MI,
non-thrombotic MI, and stable disease. A significant challenge in developing such a diagnostic test is solving the
NP-hard problem of feature selection for constructing an optimal statistical classifier.
Objective: We employed a Wisdom of Artificial Crowds (WoAC) strategy for solving the feature selection problem
and evaluated the accuracy and parsimony of downstream classifiers in comparison with traditional feature
selection techniques including the Lasso and selection using Random Forest variable importance criteria.
Materials and methods: Artificial Crowd Wisdom was generated via aggregation of the best solutions from in-
dependent and diverse genetic algorithm populations that were initialized with bootstrapping and a random
subspaces constraint.
Results/Conclusions: Strong evidence was observed that a statistical classifier utilizing WoAC feature selection
can discriminate between human subjects presenting with thrombotic MI, non-thrombotic MI, and stable
Coronary Artery Disease given abundances of selected plasma metabolites. Utilizing the abundances of twenty
selected metabolites, a leave-one-out cross-validation estimated misclassification rate of 2.6% was observed.
However, the WoAC feature selection strategy did not perform better than the Lasso over the current study.

1. Introduction

Heart disease remains the most prevalent cause of death worldwide
despite dramatic reductions in the incidence of heart disease associated
mortality in developed countries [1]. Acute Myocardial Infarction
(AMI), an acute manifestation of heart disease, is characterized by
myocardial ischemia (oxygen starvation in heart muscle) and necrosis
(a form of cell death) secondary to atherosclerotic plaque disruption or
other cause. While ischemia and necrosis are the common pathological
characteristics of AMI there are multiple underlying causes that can
lead to ischemia and necrosis [2]. An important etiological distinction
can be made between thrombotic and non-thrombotic MI. Thrombotic
MI results from spontaneous atherosclerotic plaque disruption (e.g.
rupture or erosion) that results in the formation of an occluding cor-
onary thrombus [2]. In contrast, MI secondary to oxygen supply/

demand mismatch resulting from conditions not associated with plaque
rupture such as vasospasm or stress cardiomyopathy are categorized as
non-thrombotic MI. These etiological distinctions are of critical im-
portance as the course of treatment depends on the underlying cause
and diagnostic misclassification may result in negative outcomes such
as iatrogenic bleeding [3].

Blood-based tests that measure the release of troponin from the
myocardium can provide evidence of myocardial necrosis which may
be used to substantiate a diagnosis of AMI [4]. However, a non-invasive
test that enables the discrimination of thrombotic from non-thrombotic
MI has yet to be developed. In response, we set out to develop a blood-
based test that could differentiate thrombotic MI from non-thrombotic
MI and stable coronary artery disease (CAD). In developing a blood-
based diagnostic test we chose a plasma medium—plasma contains
enzymes, lipoproteins, hormones, metabolic intermediates, and other
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small molecules dissolved in suspension. Plasma provides a suitable
medium as plasma is a repository of biochemicals that reflects the state
of the entire organism at the time of sampling [5]. We focused on
metabolites—or more precisely small molecules—as metabolite con-
centrations are dynamic and reflect the “end result” of genetic factors,
environmental exposures, and gene-environment interactions at the
time of sampling [6]. A patient cohort was recruited that allowed for
the discrimination of thrombotic MI from multiple control populations
[7–9]. This cohort consisted of three study groups: thrombotic MI, non-
thrombotic MI, and stable coronary artery disease subjects. The non-
thrombotic MI group controlled for metabolic changes associated with
myocardial ischemia and necrosis, while the stable coronary artery
disease group was used to control for the underlying disease process of
atherosclerosis. Both control groups served as procedural controls as all
three study groups underwent a cardiac catheterization procedure fol-
lowing study enrollment.

Whole blood was collected immediately prior to cardiac catheter-
ization from subjects in each of the study groups and plasma metabolite
relative abundances were determined by a non-targeted mass spectro-
metry approach. While non-targeted mass spectrometry is well suited
for determining a metabolic signature or biomarkers of a disease state
or phenotype, a diagnostic test requires a targeted strategy such as mass
spectrometry based multiple reaction monitoring with stable iso-
topically labeled standards (MRM) [10] or an enzyme-linked im-
munosorbent assay (ELISA) [11]. In both cases, a small set of dis-
criminatory biochemicals is highly desirable, as the marginal effort
requirement of quantifying additional biochemicals is significant. Two
challenges arise in developing a practical diagnostic classifier from non-
targeted mass spectrometry data given the constraint that the final
classifier should use only a small number of metabolites. The first is that
the dimension of the feature space (1032 detected metabolites) may be
significantly larger than the number of samples (11 thrombotic MI, 12
non-thrombotic MI, and 15 stable CAD in the case of the current co-
hort). To determine the best subset of metabolites to be included in a
classifier is thus a search problem for which a brute-force approach is
not advisable. For example, to determine the optimal classifier with five
metabolites, ×9.7 1012 combinations are possible. Second, the para-
meter estimates of a classification model may be highly unstable given
the small sample size. Consequently, an algorithm that searches for the
best possible subset of metabolites for inclusion in a classifier should
converge in reasonable time and should minimize a measure of ex-
pected prediction error subject to the constraint of few metabolites
included. In the current study, we evaluated the use of a Wisdom of
Artificial Crowds (WoAC) [12] approach to feature selection for de-
veloping a blood-based diagnostic test for thrombotic myocardial in-
farction. A WoAC approach to problem solving is predicated on the
Wisdom of Crowds concept that holds that under certain conditions the
aggregation of independent “expert” solutions will outperform in-
dividual solutions. Improved performance using Wisdom of Crowds
over individual solutions has been shown for classical search problems
such as the traveling salesman problem given both human crowds [13]
and artificial crowds [12] and in problems in the domain of molecular
biology such as inferring gene networks by combining the solutions of
multiple experiments and models [14]. Wisdom of Crowds aggregation
is fundamentally related to bootstrap aggregation or “bagging” [15],
however we use the term Wisdom of Crowds to emphasize that con-
sensus wisdom is applied to feature selection as a search problem as
opposed to the aggregation of predictions. We loosely follow the pro-
cess utilized by Yampolskiy and Barkouky [12] in that we first generate
individual solutions using a genetic algorithm and then aggregate a
proportion of the solutions as “experts” to determine a consensus so-
lution to feature selection. In the current work we evaluated the per-
formance of this strategy for feature selection against the Least absolute
shrinkage and selection operator (Lasso) [16] and selection using the
measure variable importance determined by the permutation of ob-
served values in the generation of Random Forest ensembles [17].

Following the selection of fixed numbers (3, 5, 7, 10, 15, 20 and 25) of
metabolites by each method, multinomial logit generalized linear
model (GLM) and Random Forest classifiers were constructed. In the
case of multinomial logit GLM, Elastic Net regularization [18] was also
applied to yield a separate set of classifiers for evaluation.

2. Materials and methods

2.1. Study cohort

Patients presenting to two hospitals in Louisville, Kentucky with
suspected acute myocardial infarction were enrolled in the study upon
providing written informed consent. Additionally, patients presenting
for an elective outpatient procedure for the treatment of stable coronary
artery disease were enrolled as stable disease controls upon providing
written informed consent. Novel criteria was developed by our group
for differentiating thrombotic MI and non-thrombotic MI and has been
previously discussed [7–9] and is presented in Supplementary Table 1.
Briefly, this criteria required clinical presentation consistent with the
universal definition of AMI and a finding of positive Troponin for in-
clusion in either AMI study group. For the thrombotic MI group, re-
covery of a histologically confirmed coronary thrombus as well as
⩾ 50% stenosis in the same vessel was an inclusion criteria. For inclu-
sion in the non-thrombotic MI group, subjects must not have had sig-
nificant stenosis or evidence of flow-limiting stenotic lesions evaluated
by angiography and must not have had a thrombus recovered. The strict
inclusion criteria was designed to limit misclassification of thrombotic
MI and non-thrombotic MI subjects, and many borderline cases were
eliminated (Supplemental Fig. 2). The cohort described in this study
included 11 thrombotic MI, 12 non-thrombotic MI, and 15 stable CAD
subjects.

2.2. Plasma samples and analytical measurement

Whole blood was collected from study subjects immediately prior to
cardiac catheterization and plasma was extracted via centrifugation.
The detection and quantification of metabolite relative abundances was
conducted by Metabolon, Inc. Samples were analyzed by UPLC-MS/MS
with positive ion mode electrospray ionization, negative ion mode
electrospray ionization, and a negative ionization optimized for polar
molecule detection and GC–MS. The identity of biochemicals detected
was based on retention index matching, mass to charge ratio matching,
and spectral data from libraries of known standards. All metabolites
were identified at MSI level 1 unless denoted “unknown”. After iden-
tification, relative abundances were quantified by determining the area-
under-the curve. After quantification, minimum values were imputed
for missing abundances predicated on the assumption that these com-
pounds were either not present or below the limit of detection. The
resulting data was then median scaled and log-transformed (base 2).

2.3. Genetic algorithm

We begin our description of the approach used to develop a classi-
fier by introducing our notation. The phenotype (thrombotic MI, non-
thrombotic MI, or stable CAD) of the ith plasma sample for = …i N1,2, , ,
is represented as:

= ⎧
⎨⎩

=Y c Y j1 if ( )
0 elsei j

i
,

where c Y( )i returns a phenotype index and ∈ …j J{1,2, , } is the index of
phenotypes. The vector xi represents the metabolite abundances from
the i th sample but the notation Xm is used to emphasize that the
abundance of the m th metabolite is a random variable. The probability
the ith sample has phenotype index is then:

= =π P Y j( ).ij i
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A multinomial logit model was assumed for determining the phenotype
probabilities of each sample. This model is a generalized linear model
with the following form [19]:

= = +η
π
π

α x βlog .ij
ij

iJ
j i

T
j

The estimated phenotype probabilities are then:

̂ ̂
̂=

∑ =

π
η

η

exp

exp
.ij

ij

k
J

ik1

The subset of metabolites included as predictors in the multinomial
model was denoted M , with the complement subset (metabolites not
included) denoted M C.

To employ a Wisdom of Crowds approach for metabolite selection, a
synthetic crowd was generated. A crowd was generated by first de-
termining optimal metabolite subsets using a non-standard genetic al-
gorithm. This algorithm emulated four biologically-inspired processes
(birth/external immigration, recombination, mutation, and death) mi-
micking the evolution of chromosomes as the material of trait in-
heritance [20]. Each iteration of the algorithm represented one tem-
poral generation for the population of genetic material. The algorithm
was initialized by generating an initial list of Boolean vectors
B = ∈ …l Lb{ | 1,2, , }l

(1) (1) with entries bml
(1) defined as:

M
= ⎧

⎨⎩

∈
∈

b
X
X M

0 if
1 if

.ml
m

c

m

(1)

The initial Boolean vectors were generated by simulating Bernoulli
random variables to generate a population with limiting distribution

M M= ( )ϕ ϕ ϕ, T0 c .
After initialization, the cost of each vector was estimated prediction

error using repeated k-fold cross-validation. Each multinomial logit
model was used to generate phenotype probability estimates ̂πij. From
these estimates the cross-entropy loss [21] was determined as:

̂ ̂∑=
=

L Y Y ππ( , ) log ,ii
j

J

i ij
1

with corresponding cross-entropy error of prediction:

̂∑ ∑∊ =
= =

Y πlog
i

N

j

J

i ij
1 1

Cross-validation was used to estimate the expected error of prediction
[15]. The observed data = …Y i Nx{( , ): 1,2, , }i i was randomly partitioned
into k folds (we choose =k 10). Representing this partition as a map-
ping of samples to folds … ↦ …κ N k: {1,2, , } {1,2, , }, the cross-validation
estimated error of prediction was then:

̂ ̂∑ ∑∊ =
= =

−Y πlog ,
i

N

j

J

i ij
κ i

1 1

( )

where ̂−Yi
κ i( )

denotes the predicted phenotype of the ith sample with the
κ i( ) fold removed in the estimation of the multinomial logit model.
Given the potential variability of cross-validation estimates of expected
prediction error over small samples [22], repeated cross-validation was
employed in which the random partitioning and estimation were con-
ducted repeatedly (10 times) and the mean of the estimates was taken
as the cost of the vector bl. The fitness of bl was inversely proportional
to the cost.

After determining the fitness of each inclusion vector, a two-point
crossover recombination operator was used to generate child chromo-
somes [23]. This operator selected two chiasmata (location of cross-
over) to mimic a double crossover of homologous chromosomes [20].
As a concrete example consider =b (0,1,0,1,0,1,0)1 and

=b (1,0,1,0,1,0,1)2 for crossover with chiasmata at positions 2 and 5.
Possible progeny vectors are then: =b (0,1|1,0,1|1,0)3 and

=b (1,0|0,1,0|0,1)4 . If a single endpoint was selected as chiasma, then a

single-point crossover could be produced. The fitness of each bl de-
termined the probability that that vector would be a parent in re-
combination. The probability of recombination participation was de-
termined by mapping the empirical cumulative distribution function
(ECDF) of the fitness of each B∈bl

(1) (1) to the cumulative distribution
function of a Beta distribution, Beta (1,3), to generate Bernoulli priors,
pl, where pl was the probability of recombination participation. In
addition to generating new genetic material via a recombination op-
erator, new genetic material was generated by an “immigration” which
created a small proportion of new inclusion vectors using the same
generation function that generated the initial population. A death op-
erator was defined for maintaining a stable population size and to retire
inclusion vectors of low fitness. The death operator proceeded as fol-
lows: a cost function was defined as a weighted average of inclusion
vector fitness (the inverse of repeated cross-validation estimated mis-
classification error) and age (the number of generations over which the
vector had existed). As the recombination operator generated new ge-
netic material, low fitness inclusion vectors were removed from the
population by the death operator. A mutation operator was defined by
generating a transition matrix A for each vector B∈bl

(1) (1) to maintain
the steady state distribution M M= ( )π ππ , T0 c , that is =Aπ πt( ) 0 (al-
though the mutation operator was applied only once per generation).
The entries of the transition matrix were determined by varying the
proportion of metabolites switching state inversely with fitness, that is
the mutation rate M M M M= +φ a al , ,c c varied linearly with inverse fit-
ness. Each binary metabolite indicator random variable bml

t( ) thus was a
discrete nonhomogeneous Markov chain [24].

2.4. Artificial crowds aggregation

Following the method introduced in Yampolskiy and Barkouky
[12], we generate artificial crowd wisdom by aggregating intermediate
genetic algorithm solutions. For crowd wisdom to generate “wise” so-
lutions a crowd must be diverse (solutions determined from private
information) and independent [25]. Similarly the aggregation of clas-
sifiers benefits from the introduction of diversity, such as with Random
Forest ensembles [26]. As with Random Forest ensembles, we introduce
diversity via bootstrapping and a random subspaces constraint. Speci-
fically, 1000 bootstrapped samples, ∗ ∗X Y( , )k, were drawn with re-
placement from the original data. The columns of ∗Xk were then sampled
without replacement to generate a new matrix ∗′Xk such that

= ×∗′ n pXdim( ) floor( /3)k . Each sample ∗′ ∗X Y( , )k was then used to in-
itialize a genetic algorithm population. A single iteration of the algo-
rithm consisted of the application of the following operators to the
population: recombination, immigration, death, and mutation. Each
initial population of inclusion vectorsB (1) had a population size of 250
and underwent 200 iterations, representing 200 generations of evolu-
tion. From each population of 250 inclusion vectors, the best solution of
the inclusion vectors was retained as an “expert”. The proportion of
times a metabolite was included in a multinomial model was then
computed over the independent populations as: = ∑ =p bm L l

L
ml

T1
1

( ) where
= …l L1,2, , indexed the independent GA populations.

2.5. Feature selection

Over the expert solutions from the genetic algorithm populations,
the proportion pm that each metabolite was included was then used as a
measure of relative variable importance. As references for performance
evaluation, both the Lasso [16] and variable importance determined
from a Random Forest ensemble [17,26] were used.

In this context, the Lasso corresponded to maximizing the multi-
nomial logit likelihood with added L1 norm penalization, that is opti-
mization of the following log-likelihood [27]:
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0
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0
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In this notation, K represents the number of phenotypes and p re-
presents the number of metabolites in the model. The value of λ was
selected that minimized cross-entropy error estimated by 10-fold cross-
validation. A measure of feature importance was determined using a
Random Forest ensemble [17,26] of size 10,000 trees by determining
the increase in misclassification error over the ensemble as the observed
abundance values of each metabolite are permuted within “out-of-bag”
samples.

2.6. Classifier construction

Multinomial logit GLMs and Random Forest ensembles were con-
structed following feature selection using the best 3, 5, 7, 10, 15, 20,
and 25 metabolites. Given the number of parameters to be estimated in
the multinomial logit GLMs relative to sample size, a separate set of
multinomial logit classifiers was fit using a regularized likelihood. The
elastic-net penalty was used for regularization of the likelihood which
includes L1 and L2 norm penalties [18]. The regularized log- likelihood
then has the following form [27]:

∑ ∑ ∑

∑

= − ⎡

⎣
⎢ + − ⎛

⎝
⎜ + ⎞

⎠
⎟

⎤

⎦
⎥

+ ⎡
⎣

− + ⎤
⎦

= = =

=

β β
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1
2
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K

i

N

k

K
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T

k
k

K

k i
T

k

j

p

j j

0 1
1 1

0
1

0

1

2

Fig. 1. Flow chart diagram of the process used to
determine a diagnostic classifier for Acute
Myocardial Infarction (AMI) from the abundance of
circulating metabolites in plasma. Blood samples
were drawn from human subjects presenting with
Thrombotic MI, Non-thrombotic MI, and Stable
Coronary Artery Disease (CAD). Abundances of
plasma metabolites were quantified via a non-tar-
geted approach using ultra performance liquid
chromatography-tandem mass spectrometry (UPLC-
MS/MS) and gas chromatography mass spectro-
metry (GC–MS). Feature selection was conducted by
Wisdom of Artificial Crowds with other approaches
(the Lasso and Random Forest Variable Importance)
employed for comparison. A small fixed number of
metabolites was selected, and classifiers were
trained and evaluated.

Fig. 2. Cost-paths of the GA solution with the minimum final cost (cross-en-
tropy loss) from 10 randomly selected populations. The average cost over all
populations is also shown (blue line). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this
article.)
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The parameter α controls the tradeoff between the Lasso penalty and
the ridge regression penalty (see Fig. 1).

2.7. Performance evaluation

The performance of the WoAC approach to feature selection towards
the development of a classifier for the discrimination of acute myo-
cardial infarction in comparison to selection via the Lasso and Random
Forest variable importance was estimated via leave-one-out cross-vali-
dation.

The WoAC feature selection methods were developed in the R
software environment [28] and are available at the repository https://
github.com/trainorp/WoAC. Functions were utilized from the fol-
lowing R packages: randomForest [29], nnet [30], cvTools [31], doPar-
allel [32], and glmnet [27].

3. Results

The cost paths of the genetic algorithm (GA) solution exhibiting
minimal final cost (cross-entropy error) for 10 randomly selected po-
pulations are shown in Fig. 2. These solutions are representative
members of the Artificial Crowds. Diminishing returns in cross-entropy
loss reduction are observed with increasing evolutionary time. The
empirical distribution of pm for the metabolites with a non-zero pm
value is shown in Fig. 3. Similarly, the course of the Lasso over varying
values of λ is shown in Fig. 4. In this figure, the estimated cross-entropy
error is shown as a function of λ [sub-figure (A)], the number of me-
tabolites selected (non-zero coefficients) as a function of error is shown
in sub-figure (B), and the L1 norm of the coefficients and the number of
metabolites selected is shown as a function of λ [sub-figure (C)]. The
distribution of pm was extremely skewed. Of the 1032 metabolites, only
29 had >p 0.025m . These metabolites included: 5 lysophospholipids
(LysoPE and LysoPC species), 5 steroid metabolites (pregnenolone and
corticosteroid metabolites), 4 monoacylglycerols, 3 amino acids (His,
Lys, Ser), 3-aminoisobutyrate, 3-hydroxypyridine sulfate, 3-methyl ca-
techol sulfate, 4-allylphenol sulfate, methyl-4-hydroxybenzoate, nico-
tinamide, phosphate, and 5 unknowns. The pairwise correlations be-
tween these metabolites are presented in Fig. 5 and the abundance
distributions of the selected metabolites are shown in Supplemental
Fig. 2. Significant correlations were observed in the steroid hormone
abundances and in the monoacylglycerols abundances. The abundance
of steroid hormones was negatively correlated with the abundance of
Ser, Lys, His, nicotinamide, and phosphate.

The results of the evaluation of WoAC feature selection performance
are presented in Table 1. The best misclassification rate observed was
for WoAC selection with 25 metabolites and Lasso selection with 20 or
25 metabolites with a 2.6% misclassification rate estimated by LOO-CV.
Each of these classifiers achieving this 2.6% misclassification rate was a
regularized multinomial logit classifier. With respect to cross-entropy
error, the lowest observed error was for the Lasso solution, with an

Fig. 4. Lasso path over varying values of λ. (A) Estimated cross-entropy error as a function of λ. (B) Number of metabolites selected (with non-zero coefficients) as a
function of error. (C) The L1 norm of the coefficients and the number of metabolites as a function of λ.

Fig. 3. Empirical distribution of inclusion proportion for metabolites with in-
clusion proportion greater than zero.
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error of 0.057. A trend was observed of lower cross-entropy error using
the Lasso relative to WoAC selection or Random Forest variable im-
portance selection. Over the entire evaluation, substantial performance
improvements were observed by increasing the number of metabolites
included in the classifier from 3 to at least 20. For example, the esti-
mated misclassification error rate dropped from 18.4% to 2.6% using
WoAC selection and a regularized multinomial logit classifier.

4. Discussion

In this paper we detailed an evaluation of Wisdom of Artificial
Crowds using intermediate genetic algorithm solutions for feature se-
lection. The successful application of genetic algorithms to feature se-
lection in metabolomics is well established with early papers pairing GA
feature selection with partial least squares regression (PLSR) for de-
termining important spectral features from mass spectrometry [33] and
nuclear magnetic resonance [34] data. However, unlike these works,
we do not directly incorporate a genetic algorithm solution or set of
solutions directly via embedding. Instead, our application first gen-
erates independently evolved and diverse (via bootstrapping and the
random subspaces constraint) populations of genetic algorithm solu-
tions as a crowd and extracts the consensus wisdom of that crowd. This

wisdom was then applied to the feature selection problem, to enable
classifier construction.

While we hypothesized that a WoAC feature selection strategy
would perform better for the task of selecting sets of metabolites for
classifier construction (given constraints on the number of metabolites)
than traditional feature selection methods such as the Lasso, we did not
observe evidence to support this hypothesis. Whether this is a general
rule deserves further study. One specific aspect that may lead to a
different performance is the choice of cost function utilized to de-
termine each genetic algorithm solution. In this work we utilized the
cross-entropy error from multinomial logit classifiers, however this
general methodology would be amenable to the choice of other cost
functions based on a different classifier model or different loss function.

A significant finding of this work is that using the abundances of
specific metabolites in plasma, discrimination of thrombotic MI, non-
thrombotic MI, and stable CAD subjects is possible with minimal error.
Based on the current work, it does appear to be possible to accurately
discriminate between these three phenotypes given the concentrations
of a very small number metabolites in plasma, such as 3. To advance
any of the classifiers constructed in the current work, further steps are
required including measuring the selected metabolites utilizing a tar-
geted and quantitative approach such as mass spectrometry based

Fig. 5. Correlation plot of plasma metabolites with inclusion proportion greater than 0.025 using the WoAC approach.
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multiple reaction monitoring with stable isotopically labeled standards,
refitting classifiers, and validation in an independent cohort, however
given the findings we feel that this effort would be well justified.

In addition to exhibiting low estimated misclassification rates when
utilized for the construction of statistical classifiers, the metabolites
selected by WoAC report some of the metabolic consequences of acute
thrombotic MI. Specifically, an increased abundance of selected preg-
nenolone and corticosteroid metabolites was observed in the throm-
botic MI group relative to the non-thrombotic and stable CAD groups.
This may be indicative of stimulation of the hypothalamic-pituitarya-
drenal axis following thrombotic MI. Evidence of activation of this axis
following MI has been demonstrated in other studies that have shown
increased levels of circulating adrenocorticotropic hormone [35] and
copeptin [36] in the hours following acute MI. As this signal was
stronger in the thrombotic MI group than the non-thrombotic MI group
(especially for cortisol), an increase in these hormones in circulation
may be associated with thrombosis directly in addition to acute stress.
Others have demonstrated a mechanistic relationship between platelet
activating factor, an important factor in stimulating platelet activation
and aggregation, and glucocorticoids [37,38]. Increased abundance of
selected monoacylglycerols was observed in both acute MI groups re-
lative to the stable CAD group and these abundance distributions ex-
hibited significant pairwise correlations. An increased abundance of
monoacylglycerols may be indicative of increased hydrolysis of tria-
cylglycerol molecules or impaired uptake of these molecules from
plasma. Decreased plasma concentrations of selected amino acids in the
thrombotic MI group relative to the non-thrombotic and stable CAD
groups is an interesting finding and may indicate increased catabolism
of amino acids to furnish ATP for the ischemic heart. All of the amino
acids identified can be catabolized to produce ATP either via gluco-
neogenesis or ketogenesis [39]. Under ischemic conditions, the heart
must utilize metabolic substrates that do not require oxygen [40];
hence, the inability to oxidize fatty acids may lead to increased utili-
zation of amino acids. Alternatively, a decrease in plasma amino acid
concentrations may be due to increased protein synthesis in activated
platelets. Platelet activation results in signal dependent translation of
factors involved in thrombosis such as tissue factor (TF) [41] and
plasminogen activator inhibitor-1 (PAI-1) [42], which could result in

diminished concentrations of amino acids following MI in thrombotic
MI subjects.
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