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Abstract

It is shown that there exists a dihedral acute triangulation of the cube. The method of con-
structing the acute triangulation is described, and symmetries of the triangulation are discussed.

1 Introduction

Interest in acute triangulation of polyhedra dates back to the 1960’s at least; when geometers
were working on proving that abstract polyhedra could be realized geometrically, acute triangu-
lations of polyhedra played a role in the solution [2]. The specific problem of obtaining dihedral
acute triangulations of domains in high-dimensional spaces appears in some lecture notes of
Pak [6]. He mentions that in R5 and in higher-dimensional spaces, there is no acute triangu-
lation of space, leaving the proof to the reader. The problem is a combinatorial one, and a
proof is given in the literature by Kř́ıžek [5]. The acute triangulation of R3 and of infinite slabs
in R3 was solved by Eppstein, Sullivan, and Üngör [4], but they were unable to find an acute
triangulation of the cube. Saraf, who recently made some contributions to the problem of acute
triangulation of polyhedra, also mentions that finding an acute triangulation of the cube is an
open problem [8].

This paper shows that the cube does have an acute triangulation. In fact, it has at least
two acute triangulations. The primary acute triangulation, with 1370 tetrahedra, is described
in Sec. 2, and some statistics are given that show the superior quality of the triangulation. The
maximum dihedral angle is around 84.65°, well within the range of acute, and the minimum
dihedral angle is a nice 35.89°. Section 3 describes the computer-assisted construction of the
acute triangulation of the cube; a hand construction was combined with mesh optimization to
build the mesh. The triangulation has some very symmetries, which are discussed in Sec 4. The
symmetries greatly reduce the number of distinct tetrahedra from 1370 to 82, and can be used
to generate the full set of 277 vertices from just 26 of them.

2 The Acute Triangulation

We present the first-known acute triangulation of the cube as a triangulation of a cube centered
at the origin with corner vertices at (±1,±1,±1). For lack of a more elegant means of precisely
describing the triangulation, we list its vertices in Table 1 in Appendix A. The coordinates given
are the exact coordinates used for the statistics in this paper. The mesh connectivity is given by
the Delaunay triangulation of the set of vertices. It has been shown that an acute triangulation
in three dimensions is not necessarily a Delaunay triangulation [4]. This acute triangulation of
the cube, however, is not only Delaunay, but also is one for which each tetrahedron properly
contains its circumcenter1, i.e., the triangulation is 3-well-centered [12].

1This property does not hold in general for acute triangulations. In fact, for a tetrahedral mesh in R3, if each
tetrahedron contains its circumcenter, the mesh must be Delaunay [7] [9] [12], so any nonDelaunay acute triangulation,
such as the one in [4], does not have this property.
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Figure 1: Two views of a cutaway section of the first-known acute triangulation of the cube. The view at
right is a 90° rotation about the z-axis from the view at left. On the left four of the triangles on the surface
of the cube are visible. These triangles appear on the back face of the cube in the view on the right. This
cutaway is a collection of one of each of the distinct 82 tetrahedra that are used in the acute triangulation.
The tetrahedra fit together to cover a symmetry region as discussed in Sec. 4, and through rotations and
reflections can generate the full acute triangulation of the cube.
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Figure 2: A histogram of the
dihedral angles of the acute tri-
angulation of the cube.

Figure 3: A histogram of the
face angles of the acute triangu-
lation of the cube.

Figure 4: A histogram of the
tetrahedron h/R values of the
acute triangulation of the cube.
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Figure 1, a cutaway view of the acute triangulation of the cube, visually shows the nice
quality of the triangulation. Figures 2 through 4 give a quantitative measures of the quality
of the triangulation. Each is a histogram of some quantitative measurement of the quality of
tetrahedra. In each case, the histogram summarizes all of the values of the quantity in the
mesh. For instance, the histogram of dihedral angles shows all of the dihedral angles, not just
the maximum dihedral angle of each tetrahedron. The h/R values of Fig. 4, which may be less
familiar to readers than the other measurements, is related to 3-well-centeredness. The range of
the quantity over all tetrahedra is (−1, 1), with 3-well-centered tetrahedra having all values in
the range (0, 1). The h/R values in a regular tetrahedron are all 1/3. See [12] or [10] for more
details.

Combinatorics plays an important role in acute triangulation, so we briefly mention some
of the combinatorial statistics of the acute triangulation of the cube. There are 277 vertices,
1688 edges, and 1370 tetrahedra. Of the edges, 126 are boundary edges. Of the interior edges,
1506 have the minimum possible number of incident tetrahedra for an acute triangulation, i.e.,
5 tetrahedra, and the remaining 56 each have 6 incident tetrahedra. For the vertices, 44 are on
the boundary, and 233 are interior. The large majority of the interior vertices (200 of them)
have icosahedral neighborhoods, thus they have 12 incident edges. There are 10 vertices with
14 incident edges, 18 vertices with 15 incident edges, 4 vertices with 16 incident edges, and 1
vertex—the central vertex located at (0, 0, 0)—with 22 incident edges.

The high degree central vertex can be replaced with a regular tetrahedron to give a combi-
natorially different acute and completely well-centered triangulation of the cube, one with 1387
tetrahedra. To obtain this triangulation, replace the vertex at the origin with the four vertices
at (−0.05,−0.05, 0.05), (−0.05, 0.05,−0.05), (0.05,−0.05,−0.05), and (0.05, 0.05, 0.05). We see
that there are at least two combinatorially distinct acute triangulations of the cube with the
same surface triangulation.

3 Method of Construction

The basic methodology for the construction was one of an advancing front. It is absolutely
necessary to have an acute surface triangulation, since an acute tetrahedron has acute facets [4],
and more generally, all facets of an acute simplex are acute [1]. We began with a very nice acute
surface triangulation of the cube; the midpoint of each edge of the cube was added, and each
face was triangulated with a 14-triangle acute triangulation that conforms to this boundary and
has a maximum face angle around 73.3°.

Starting from the acute surface triangulation, we built inward, carefully adding vertices and
tetrahedra to satisfy the combinatorial constraints. That is, each tetrahedron edge coinciding
with an edge of the cube must have at least two incident tetrahedra, each tetrahedron edge
lying in a facet of the cube must have at least three incident tetrahedra, and each interior
edge must have at least five incident tetrahedra. The addition of vertices and tetrahedra was
performed by hand with the frequent use of the Delaunay triangulation to help get the proper
mesh connectivity.

After each layer or partial layer was constructed by hand, the mesh was optimized to obtain
a set of acute tetrahedra conforming to the boundary of the cube. The optimization did not
explicitly seek a dihedral acute triangulation, but instead tried to make the meshes completely
well-centered. This type of optimization was introduced for two dimensions in [11] and later
generalized to higher dimensions in [12]. At each layer, a moderately aggressive version of the
optimization yielded a mesh that was both completely well-centered and dihedral acute. In most
cases, more aggressive optimization produced a mesh that was well-centered but not acute, and
less aggressive optimization produced a mesh that was neither well-centered nor acute. When
a dihedral acute and completely well-centered mesh was obtained from the optimization, a new
layer consisting of more tetrahedra and vertices was added by hand.

Eventually this process reached a stage in which all of the edges on the internal boundary
already had three incident tetrahedra. This and the rest of the combinatorics and geometry
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worked out so that adding a vertex at the center of the cube completed an acute, completely
well-centered triangulation of the cube.

When the acute triangulation was obtained and optimized with the optimization based
on well-centeredness, it had a maximum dihedral angle around 87.8°. Later some additional
optimization was applied that directly optimized the dihedral angle as well as optimizing for
well-centeredness, and the symmetry discussed in the next section was enforced exactly. The
additional optimization allowed boundary vertices to move constrained to the surfaces of the
cube. This optimization produced the final mesh presented in this paper, except that the vertices
were rounded to the nearest .001 for ease of presentation.

4 Symmetries of the Triangulation

A quick examination of the list of vertex coordinates reveals that the same numbers keep reap-
pearing, and in many cases two of the coordinates of a vertex are the same with perhaps a
difference in sign. This is not accidental. The acute triangulation of the cube presented in this
paper has an S4 symmetry group. More precisely, it has all of the symmetries of a regular tetra-
hedron whose vertices are four pairwise nonadjacent corners of the cube. Consider, for instance,
the regular tetrahedron with vertices (−1,−1, 1), (−1, 1,−1), (1,−1,−1), and (1, 1, 1). Each
of the 24 symmetries of this regular tetrahedron—rotations or reflections in R3 that map the
tetrahedron to itself—is a symmetry that maps this acute triangulation of the cube to itself.

In fact, it is possible to use these symmetries to construct the full set of 277 vertices from
just 26 of them. There are multiple ways to do this, one of which is the following. Take the first
26 vertices in the vertex list (reading down the first column, across page breaks if necessary).
The last vertex is the vertex at the origin. These 26 vertices are the vertices that lie in the
1/24th of the cube specified by the inequalities x ≥ y, x ≤ z, and x ≤ −z.

We will transform this initial set of vertices using the orthogonal matrices

A1 =

0 1 0
0 0 1
1 0 0

 A2 =

 0 −1 0
−1 0 0
0 0 1

 A3 =

0 1 0
1 0 0
0 0 1

 A4 =

−1 0 0
0 1 0
0 0 −1

 .

Each of these matrices is a symmetry of the aforementioned regular tetrahedron and a symmetry
of the cube. Matrix A1 is a 120° rotation about the main diagonal of the cube through (−1,−1, 1)
and (1, 1,−1). Matrix A2 is a reflection through the plane x = −y. Matrix A3 is a 180° rotation
about the z-axis. Finally, matrix A4 is a 180° rotation about the y-axis combined with a
reflection through the plane x = z. It could also be thought of as reflection through the y-axis.

Applying both A1 and A2
1 (rotation by 240°) to the initial vertex set yields a set of vertices

for 1/8th of the cube. Applying A2 to this new vertex set covers 1/4th of the cube. Applying
A3 to this vertex set and A4 to the subsequent vertex set, we obtain a set of vertices that covers
the full cube. A large number of vertices in this vertex set are duplicates of each other, but
when all of the duplicates are removed, there are 277 vertices that remain.

Because of these symmetries of the cube, there are only 82 distinct tetrahedra used in the
1370-tetrahedron acute triangulation of the cube. The views of the acute triangulation of the
cube from Fig. 1 actually show just one of each of these 82 tetrahedra as they fit together to cover
the generating 1/24th section of the cube. It is clear from Fig. 1 that many of the tetrahedra
do not align with the boundaries of the generating 1/24th section of the cube, which is bounded
by the planes y = −1, x = y, x = z, and x = −z. Tetrahedra that intersect the boundaries of
the generating region are mapped onto themselves by one or more of the symmetries. In fact,
there are only 38 tetrahedra that are interior to the generating section of the cube. There are, of
course, 24 copies of each of these tetrahedra in the final result. As far as the other tetrahedra in
the generateing set are concerned, 35 of them intersect one of the planes bounding the region, 8
of them intersect one of the main diagonals of the cube, and 1 intersects the y-axis. With some
thought about the symmetries involved, one can see that in the full acute triangulation of the
cube there are 12 copies of each tetrahedron that intersect a plane, 4 copies of each tetrahedron
that intersect a main diagonal, and 6 copies of the tetrahedron that intersects the y-axis.
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5 Conclusions

We have demonstrated that there exists an acute triangulation of the cube. The fact that the
cube has an acute triangulation directly implies that many other regions of R3 also have acute
triangulations. In particular, one can reflect the acute triangulation of the cube through one of
its faces to get an acute triangulation of a square prism twice as long as a cube with vertices
that match on the two square faces. One can identifying the matching vertices with each other
to get an acute triangulation of a periodic domain. Alternatively, one can stack infinitely many
of these objects together to obtain an acute triangulation of an infinitely long square prism.
Using reflections and translations of this acute triangulation, one can easily obtain an acute
triangulation of an infinite slab in R3, or of all of R3, as alternatives to the constructions in [4].
In fact, one can use translations and reflections of an initial acute triangulation of the cube to
acutely triangulate any object in R3 that can be tiled with cubes.

But does every polyhedron have a dihedral acute triangulation? This remains an open
question. Does every tetrahedron have a dihedral acute triangulation? This question, too,
remains open, and so far there is still no nontrivial acute triangulation of the regular tetrahedron
that is known to the authors. It is likely that a computer-assisted construction like the one
discussed in this paper could be used to obtain such an acute triangulation, but there may be
more direct methods. Even a directly constructive, perhaps simpler, acute triangulation of the
cube would be nice.

Another interesting problem is that of finding the smallest possible acute triangulation of the
cube, where size is measured in terms of the number of tetrahedra. It may be that the 1370 tetra-
hedra acute triangulation presented here is the smallest acute triangulation of the cube possible,
but the authors suspect this is not the case. The analogous question in two dimensions—the
smallest acute triangulation of the square—has been answered; an acute triangulation of the
square requires at least eight triangles [3].
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A Vertex Coordinates

Table 1: List of coordinates of the vertices of an acute triangulation of the cube.

x y z x y z x y z
−1 −1 −1 0.214 0 0 1 0 1
−0.24 −1 −0.24 0.15 0.15 0.061 0.517 −0.23 0.517
−1 −1 0 0.24 1 −0.24 0.559 0.357 0.559
−0.347 −1 0.347 0 1 −1 0.598 0.052 0.399
−1 −1 1 −0.347 1 −0.347 0.472 −0.152 0.152
−0.517 −0.517 −0.23 0.23 0.517 −0.517 0.325 −0.02 0.325
−0.559 −0.559 0.357 −0.357 0.559 −0.559 0.376 0.18 0.376
−0.122 −0.624 0.122 −0.122 0.624 −0.122 0.398 0.099 0.21
−0.399 −0.598 0.052 −0.052 0.598 −0.399 0.263 −0.027 0.158
−0.152 −0.472 −0.152 0.152 0.472 −0.152 0.258 0.115 0.258
−0.27 −0.523 0.27 −0.27 0.523 −0.27 0.15 0.061 0.15
−0.254 −0.254 −0.254 0.02 0.325 −0.325 0.24 −0.24 1
−0.336 −0.336 0.336 −0.18 0.376 −0.376 0 −1 1
−0.325 −0.325 −0.02 0 0.388 0 −0.347 −0.347 1
−0.376 −0.376 0.18 −0.099 0.398 −0.21 0.23 −0.517 0.517

0 −0.388 0 −0.224 0.316 −0.224 −0.357 −0.559 0.559
−0.21 −0.398 0.099 −0.127 0.269 −0.127 −0.122 −0.122 0.624
−0.224 −0.316 0.224 0.027 0.263 −0.158 −0.052 −0.399 0.598
−0.127 −0.269 0.127 −0.115 0.258 −0.258 0.152 −0.152 0.472
−0.158 −0.263 −0.027 0 0.214 0 −0.27 −0.27 0.523
−0.2 −0.2 0.2 −0.061 0.15 −0.15 0.02 −0.325 0.325
−0.258 −0.258 0.115 0.24 0.24 −1 −0.18 −0.376 0.376
−0.115 −0.115 −0.115 1 0 −1 0 0 0.388

0 −0.214 0 0.517 0.23 −0.517 −0.099 −0.21 0.398
−0.15 −0.15 0.061 0.559 −0.357 −0.559 −0.224 −0.224 0.316

0 0 0 0.399 −0.052 −0.598 −0.127 −0.127 0.269
−1 −0.24 −0.24 0.152 0.152 −0.472 0.027 −0.158 0.263
−1 0 −1 0.325 0.02 −0.325 −0.115 −0.258 0.258
−1 0.347 −0.347 0.376 −0.18 −0.376 0 0 0.214
−1 1 −1 0.21 −0.099 −0.398 −0.061 −0.15 0.15
−0.517 −0.23 −0.517 0.158 0.027 −0.263 −1 1 1
−0.559 0.357 −0.559 0.258 −0.115 −0.258 −1 0.24 0.24
−0.624 0.122 −0.122 0.15 −0.061 −0.15 −1 1 0
−0.598 0.052 −0.399 −1 −0.347 0.347 −0.517 0.517 0.23
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Table 1: (continued)

x y z x y z x y z
−0.472 −0.152 −0.152 −0.624 −0.122 0.122 −0.559 0.559 −0.357
−0.523 0.27 −0.27 −0.598 −0.399 0.052 −0.598 0.399 −0.052
−0.336 0.336 −0.336 −0.523 −0.27 0.27 −0.472 0.152 0.152
−0.325 −0.02 −0.325 −0.398 −0.21 0.099 −0.254 0.254 0.254
−0.376 0.18 −0.376 −0.316 −0.224 0.224 −0.325 0.325 0.02
−0.388 0 0 −0.269 −0.127 0.127 −0.376 0.376 −0.18
−0.398 0.099 −0.21 −0.263 −0.158 −0.027 −0.398 0.21 −0.099
−0.316 0.224 −0.224 0.347 −1 −0.347 −0.263 0.158 0.027
−0.269 0.127 −0.127 0.122 −0.624 −0.122 −0.258 0.258 −0.115
−0.263 −0.027 −0.158 0.052 −0.598 −0.399 −0.115 0.115 0.115
−0.2 0.2 −0.2 0.27 −0.523 −0.27 −0.15 0.15 −0.061
−0.258 0.115 −0.258 0.099 −0.398 −0.21 −0.24 1 0.24
−0.214 0 0 0.224 −0.316 −0.224 0 1 1
−0.15 0.061 −0.15 0.127 −0.269 −0.127 −0.23 0.517 0.517
−0.24 −0.24 −1 −0.027 −0.263 −0.158 0.357 0.559 0.559

0 −1 −1 −0.347 0.347 −1 0.052 0.598 0.399
0.347 −0.347 −1 −0.122 0.122 −0.624 −0.152 0.472 0.152
1 −1 −1 −0.399 0.052 −0.598 −0.02 0.325 0.325

−0.23 −0.517 −0.517 −0.27 0.27 −0.523 0.18 0.376 0.376
0.357 −0.559 −0.559 −0.21 0.099 −0.398 0.099 0.398 0.21
0.122 −0.122 −0.624 −0.224 0.224 −0.316 −0.027 0.263 0.158
0.052 −0.399 −0.598 −0.127 0.127 −0.269 0.115 0.258 0.258

−0.152 −0.152 −0.472 −0.158 −0.027 −0.263 0.061 0.15 0.15
0.27 −0.27 −0.523 0.347 1 0.347 −0.24 0.24 1
0.336 −0.336 −0.336 0.122 0.624 0.122 −1 0 1

−0.02 −0.325 −0.325 0.399 0.598 0.052 −0.517 0.23 0.517
0.18 −0.376 −0.376 0.27 0.523 0.27 −0.559 −0.357 0.559
0 0 −0.388 0.21 0.398 0.099 −0.399 −0.052 0.598

0.099 −0.21 −0.398 0.224 0.316 0.224 −0.152 0.152 0.472
0.224 −0.224 −0.316 0.127 0.269 0.127 −0.325 0.02 0.325
0.127 −0.127 −0.269 0.158 0.263 −0.027 −0.376 −0.18 0.376

−0.027 −0.158 −0.263 1 −0.347 −0.347 −0.21 −0.099 0.398
0.2 −0.2 −0.2 0.624 −0.122 −0.122 −0.158 0.027 0.263
0.115 −0.258 −0.258 0.598 −0.052 −0.399 −0.258 −0.115 0.258
0 0 −0.214 0.523 −0.27 −0.27 −0.15 −0.061 0.15

0.061 −0.15 −0.15 0.398 −0.099 −0.21 0.598 −0.399 −0.052
1 1 −1 0.316 −0.224 −0.224 0.398 −0.21 −0.099
1 0.24 −0.24 0.269 −0.127 −0.127 0.263 −0.158 0.027
1 1 0 0.263 0.027 −0.158 −0.052 −0.598 0.399
1 0.347 0.347 −0.052 0.399 −0.598 −0.099 −0.398 0.21
1 1 1 −0.099 0.21 −0.398 0.027 −0.263 0.158

0.517 0.517 −0.23 0.027 0.158 −0.263 0.347 0.347 1
0.559 0.559 0.357 1 −1 1 0.122 0.122 0.624
0.624 0.122 0.122 0.24 −1 0.24 0.399 0.052 0.598
0.598 0.399 0.052 1 −1 0 0.27 0.27 0.523
0.472 0.152 −0.152 0.517 −0.517 0.23 0.21 0.099 0.398
0.523 0.27 0.27 0.559 −0.559 −0.357 0.224 0.224 0.316
0.254 0.254 −0.254 0.399 −0.598 −0.052 0.127 0.127 0.269
0.336 0.336 0.336 0.152 −0.472 0.152 0.158 −0.027 0.263
0.325 0.325 −0.02 0.254 −0.254 0.254 −0.399 0.598 −0.052
0.376 0.376 0.18 0.325 −0.325 0.02 −0.21 0.398 −0.099
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Table 1: (continued)

x y z x y z x y z
0.388 0 0 0.376 −0.376 −0.18 −0.158 0.263 0.027
0.398 0.21 0.099 0.21 −0.398 −0.099 −0.598 −0.052 0.399
0.316 0.224 0.224 0.158 −0.263 0.027 −0.398 −0.099 0.21
0.269 0.127 0.127 0.258 −0.258 −0.115 −0.263 0.027 0.158
0.263 0.158 −0.027 0.115 −0.115 0.115 0.052 0.399 0.598
0.2 0.2 0.2 0.15 −0.15 −0.061 0.099 0.21 0.398
0.258 0.258 0.115 1 −0.24 0.24 −0.027 0.158 0.263
0.115 0.115 −0.115
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