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Abstract 

THE MODELING, DESIGN, AND TESTING OF A MICRO CHANNEL 
SPLIT -SYSTEM AIR CONDITIONER 

Allen Chad Kirkwood, MS 
Department of Mechanical and Industrial Engineering 

University of Illinois at Urbana-Champaign, 1999 
C.W. Bullard, Advisor 

A steady-state microchannel split-system simulation model has been developed based on 

previous research at the ACRC. This model was utilized as a design tool to optimize a 

microchannel split system with the goal of minimizing TEWI, or total equivalent warming 

impact. The system components were then selected and the optimized microchannel heat 

exchangers were fabricated. Next, the entire system was assembled and extensive tests were run 

at steady state conditions over a wide range of outdoor ambient conditions in a calorimeter test 

facility. The experimental results have been compared to the simulations for the purpose of 

model refinement and its eventual validation. The full system model overpredicts the total 

capacity of the system with a minimum error of 0.2%, a mean error of 5%, and a maximum error 

of 11 %. The evaporator submodel overpredicts the total capacity as well, with a minimum error 

of 0.7%, a mean error of 7%, and a maximum error of 11%. The condenser submodel also 

overpredicts with a minimum error of 0.5%, a mean error of 2%, and a maximum error of 6%. A 

major reason for the lower accuracy with the evaporator is because of the refrigerant 

maldisribution observed in the experiments. The model assumes perfect distribution, hence one 

reason for the overprediction of the system's capacity. 
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Chapter 1 
Introduction 

Because of environmental and efficiency concerns, the air-conditioning industry has been 

forced to look for alternatives to long-standing operating fluids such as CFC's and HCFC's and 

examine new technologies that will allow air conditioners, using the next generation of 

refrigerants, to be more efficient in their energy consumption than their predecessors. This new 

focus in the industry has driven the development of new tools that will aid in the rapid 

investigation of alternative refrigerants and new technology. The Air Conditioning and 

Refrigeration Center (ACRC) has spent the last several years in the development of the Room 

Air Conditioner Model (RACMOD). Considerable effort has been expended to validate this 

model, and this thesis outlines one of the first applications where a form of RACMOD has been 

used as a tool for designing a conceptually new system that employs microchannel heat 

exchangers and a near azeotropic mixture of HFC refrigerants. 

1.1 Background 

The first iteration of RACMOD was developed by Hahn and Bullard (1993) and had its 

foundations based on the Oak Ridge National Laboratory (ORNL) heat pump model (Fischer and 

Rice, 1983) with the appropriate modifications to the equations to account for the different 

configurations of room air conditioners (O'Neal and Penson, 1988). The ACRC equation solver 

was developed so that the more flexible Newton-Raphson method for solving equations could be 

implemented rather than the original ORNL method using successive substitution (Bridges and 

Bullard, 1995). Improved refrigerant-side two-phase heat transfer coefficients developed at the 

ACRC (Wattlet et al., 1994; Dobson and Chato, 1998) were also added to the almost 100 

governing equations developed by ORNL 

Mullen and Bullard (1994) developed the second version of RACMOD which consisted 

mainly of improving the governing equations, adding charge inventory calculations, and two

phase pressure drop correlations developed by Sousa and Pimenta (1995). Other modifications 
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include the implementation of a finite difference capillary tube submodel (Peixoto and Bullard, 

1994) and speed enhancements to the ACRC equation solver that allowed the model to be run on 

a desktop computer. 

Bridges and Bullard (1995) focused on validating the model by usmg air-side 

thermocouples and power measurements. This investigation was further refined when Jensen 

and Dunn (1996) added complete refrigerant-side instrumentation that has allowed for the further 

refinement and improvement of the system simulation model. During the refrigerant-side 

investigation, the refrigerant-side property calls where changed from the REFPROP routines 

over to interpolation lookup tables which provided quicker calculations and facilitated the rapid 

addition of alternative refrigerants (Woodall and Bullard, 1997). 

1.2 Microchannel heat exchangers 

Microchannel heat exchangers consist basically of extruded aluminum tubes with 

multiple (usually under 1 mm diameter) ports that have been sandwiched together between 

louvered fins and then brazed between two headers. The mobile air-conditioning industry has 

found significant benefits to using these heat exchangers because they are more compact for a 

given heat transfer capacity and pressure drop in comparison to conventional round-tube/plate

fin heat exchangers. This compactness provides savings in space, weight, and refrigerant charge. 

Because microchannel technology is relatively new, it has not yet been optimized. Little 

research has been conducted, however, to see what benefits could be gained from using the 

microchannel heat exchangers in residential split-system applications, which is the focus of this 

thesis. 

Huen and Dunn (1996a, 1996b) provided a model for performing sub-optimizations of a 

microchannel condenser, so this was used as the blueprint for modifying the already established 

and validated RACMOD evaporator and condenser subroutines to simulate the new heat 

exchanger technology. Once a workable model had been developed, many simulation runs were 

performed where various parameters where varied to find the optimal design for the 

microchannel heat exchangers (readily available tubes were used to speed up manufacture of the 

heat exchangers which eliminated some of the geometry parameter variations and saved time). 
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Finally, the system was constructed, instrumented, and tested to provide further validation for the 

new Air Conditioner with Microchannel Heat Exchanger (ACMCHX) model. 

1.3 Scope of this report 

Chapter 2 provides a short summary of the experimental instrumentation and facilities 

used to acquire the data used for the analysis in this report. 

Chapter 3 contains the analysis and discussion of the experimental results for the 

experimental rnicrochannel split-system air conditioner. Both wet and dry evaporator conditions 

are examined over a wide range of outdoor ambient conditions. Data tables comparing 

experimental results against the model simulations are also inserted at the beginning of chapter 3 

to facilitate ease of reference. 

Chapter 4 wraps up this report with the summary and recommendations section. 

Appendix A contains the methodology and the results of the simulations used for the 

design of the microchannel split system. It also outlines the selection of the components of the 

system such as the air-handler, compressor, fan motors, etc. 

Appendix B provides a much more detailed explanation of the experimental 

instrumentation and facilities used for the data contained in this report. 

Appendix C outlines the important modifications made to RACMOD and lists detailed 

geometric information for modeling microchannel heat exchangers as well as the correlations 

used in the ACMCHX model. 

Finally, Appendix D simply contains the full listing of data from the simulation runs 

described in Chapter 3. 
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2.1 Calorimeter test facility 

Chapter 2 

Experimental facilities 

The calorimeter test rooms used in this report conform to ASHRAE Standard 16-1983 

(1983). The test facility consists of two thermally isolated rooms - one for simulating indoor 

conditions and the other for simulating the outdoor ambient environment. T~e indoor room has 

independent control of humidity and temperature, whereas, the outdoor room has only 

temperature control. 

The facility can test air conditioners with capacities between 0.5 to 2 tons. The indoor 

room temperature range is between 50 to 120°F and the relative humidity range is between 5 to 

95%. The outdoor room can control temperatures from 70 to 120°F. The cooling (both latent 

and sensible) in the outdoor room is provided by an ethylene glycol chiller which has a 

maximum capacity of 7 tons. A custom built evaporative humidifier provides the latent load for 

the indoor room, and a commercially available 10 kW electric furnace supplies the sensible load. 

For the higher capacity microchannel split system, the furnace fan was set to the maximum speed 

setting. 

A Fluke 2280 Datalogger connected to a Macintosh computer provides the data 

acquisition for all of the instrumentation. The Fluke 2280 has the capacity to measure 100 

channels at 15 channels per second. Therefore, only a subset of thermocouples could be 

measured during a given test because the number of thermocouples, pressure transducers, and 

watt transducers exceeded the available 100 channels. 

A more detailed description of the indoor and outdoor rooms is provided by Fleming and 

Dunn (1993) and Feller and Dunn (1993), respectively. Further design information and 

validation of the test facilities are provided by Rugg and Dunn (1994). 
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2.2 Instrumentation 

In order to validate the ACMCHX model, the microchannel split system was heavily 

instrumented on both the surface and the refrigerant sides. Figure 2.1 shows the various state 

points of interest within the ACMCHX model. 

3 20 2i 1 

. Condenser 

4 

5 Compressor 
TXV 

6 10 

Evaporator 

7i 70 9 

Figure 2.1 ACMCHX system state points 

Table 2.1 shows the notation relating the model state points and the experimental data 

points shown in Chapter 3. 

Table 2.1 State point correlations 

Data ACMCHX 
Condin 1 
Cond sat 20 
Condout 3 
Evap sat 7i 
EvaRout 9 

Appendix B provides details about all of the following instrumentation issues. 

2.2.1 Mass flow meters 
Several methods were used in this report to measure mass flow: a Micromotion mass 

flow sensor and two venturi meters. The Micromotion (sensor model DS025S119, and 
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transmitter model RFf97121RRU) was originally installed to simply calibrate the venturi meters 

in situ, but was left in place for the initial validation data presented in this thesis. 

Two venturis were available from the previous RAe project (Jensen and Dunn, 1996). 

Because the presence of oil caused noisy readings in the suction-line, it was decided to install 

venturis only in the discharge and liquid lines. 

Table 2.2 Venturi dimensional parameters 

Size Model Inlet diam [in] Throatdiam f3 [DtlDij 
[in] 

Small V050095-BSW 0.266 0.097 0.364 

Large V100258-BSW 0.564 0.259 0.460 

From the available venturis, the small one was used in the liquid line of the microchannel 

split system and the large one was used in the system's discharge line. During the calibration of 

the two venturis, it was found that the one mounted in the discharge line was showing a 

significantly (0.780 as opposed to 0.937 that Jensen and Dunn measured (1996» lower discharge 

coefficient. This probably was due to the troubles involved with installing the large venturi into 

the system. Several re-solderings were necessary which may have caused solder to collect in the 

venturi's throat and thereby changing the discharge coefficient. This troublesome venturi will be 

removed and cleaned before the next series of tests. The small venturi's discharge coefficient 

was identical to the 0.960 that Jensen measured. Once the Micromotion mass flow sensor is 

removed from the system, the small, liquid-line venturi will provide the primary mass flow 

measurement. 

2.2.2 Pressure transducers 

Again, several pressure transducers were available from previous projects. Because 

R410A operates at higher pressures than R22 at normal operating conditions, a new absolute 

pressure transducer was required for the high-side pressure measurements: a Sensotec model 

TlEI0713-22TJA with a maximum pressure of 1000 psia. 
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Table 2.3 Pressure Transducer Infonnation (from Jensen and Dunn, 1996) 

Volume Manufacturer's Accuracy 

Measurement Model (in3) Range % Full Relative psi 

Scale 

High-Side Absolute TJE/0713- 0.17 0-1000 psi a ±0.1O ±1.0 

22TJA 

Low-Side Absolute TJEI713-18 0.17 0-500 psia ±0.1O ±0.5 

Condenser M> Z/5556-05 0.4 ±1O psid ±0.25 ±0.025 

Discharge-line Venturi M> Z/5556-01 0.4 ±5 psid ±0.25 ±O.O13 

Liquid-line Venturi ilP Z/5556-05 0.4 ±1O psid ±0.25 ±0.025 

Unfortunately, due to the difficulties in instrumenting microchannel heat exchangers,' the 

pressure taps were not located exactly at the condenser or evaporator inlets and outlets. Between 

the condenser exit and the liquid line there were eight header feeding tubes entering into a heat 

pump TXV, and between the exit of the discharge line and the entrance to the condenser was a 

four-way valve. The evaporator outlet measurements were taken downstream of the TXV bulb 

at the exit. The pressure drop observed across the condenser therefore includes the pressure 

drops across all of the hardware described above. This makes comparing the pressure drop 

across the condenser between the model and the system difficult because the model does not 

account for the pressure drop in the heat pump TXV, the four-way valve, or the microchannel 

heat exchanger's headers. The model also does not account for the pressure drop in the 

evaporator's headers or the TXV. Hopefully, in the next generation experimental heat exchanger 

this problem will be solved by brazing pressure taps directly into the aluminum inlet and outlet 

headers of both the condenser and evaporator. 

2.2.2 Thennocouples 

Four immersion, type-T, thermocouples were used for refrigerant-side temperature 

measurements. Each thennocouple had a stainless steel sheath that had an outer diameter of 1116 

in. with an overall length of 6 in. The type-T thennocouples had a maximum temperature of 

632°F and a manufacturer's accuracy of ±0.9°F. The immersion thennocouples were placed at 
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the inlets and outlets of each of the condenser and evaporator. Because the original unshielded 

immersion thermocouples were displaying a large amount of noise, they were replaced with 

immersion thermocouples with shielded sheaths. The sheath was directly connected to the 

internal ground within the Fluke Datalogger to further reduce the noise. 

Teflon coated 30 gauge Type-T thermocouple wires (from the same roll) were utilized for 

all of the external temperature measurement applications. The accuracy for the surface 

thermocouples was also ±0.9°F. Surface thermocouples were applied using an aluminum epoxy, 

or were attached to wire grids for air temperature measurements. Air grids were created for the 

entrance and exits for both the evaporator housing and the outdoor unit, and surface 

thermocouples were applied for critical measurements where the immersion thermocouples could 

not be implemented. A special section of the evaporator was left unfinned which facilitated the 

application and insulation of thermocouples to every other tube for some detailed distribution 

analysis. In all, around 96 total thermocouples (including immersion TC's) were used to 

characterize the performance of the microchannel split system. Appendix B has a table listing 

the location of all of the thermocouples as well as digital pictures of their exact installation. 
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3.1 Introduction 

Chapter 3 

Experimental results and discussion 

The focus of the preliminary experiments on the microchannel split-system air 

conditioner was to compare the performance data of the actual system to the updated model that 

contained the physical dimensions of the real system. This comparison w.as designed to: a) 

identify weaknesses in the model, to serve as the basis for future improvement and validation of 

the model as a system design tool, and b) formulate recommendations for future investigations 

into the optimization of microchannel heat exchangers in residential applications. As described 

in Chapter 2 and Appendix B, the system has been extensively instrumented to facilitate these 

investigations. 

3.2 Overall system performance 

System data was taken both at constant indoor wet-air conditions of SO °P dry bulb, 67 °P 

wet bulb and dry conditions at Soop while the outdoor temperature varied between 69°P to 

11S°F. The model was then run, matching the indoor and outdoor conditions exactly. To 

calculate the system charge, the model's subcooling was set to match the experimental data at 

9.3 °P at the SO/S2 wet condition, this was done because the internal volume of the prototype 

system was not known exactly. This calculated charge was then used to simulate system 

performance at every other outdoor condition. 
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Table 3.1 Dry-coil performance comparison for low ambient temperatures 

Point SO/6S/Dry* SO/6S/Dry SOnl/Dry 
Reference Data Model Data Model Data Model 
Date 10/03/98 10/10/98 10/28/98 10/31/98 10/01/98 10/31/98 
R TD indoor temp [F] 79.9 - 79.9 - 79.6 -
TC indoor temp [F] 80.1 80.1 80.1 80.1 79.8 79.8 
RTD outdoor temp [F] 67.4 - 67.7 - 70.8 -
TC outdoor temp [F] 67.7 67.7 67.9 67.9 70.9 70.9 
Indoor RH 21.1 21.1 19.7 19.7 20.8 20.8 
Blower power [W] 120.9 120.9 119.2 119.2 122.6 122.6 
RAC power (comp + 1583.0 1461.3 1579.4 1463.1 1651.0 1521.3 
blower) [W] 
Capacity from ref.side 25,985 27,164 24,764 27,148 25,130 26,774 
(Tot-fanpwr) [Btulhr] 
Total capacity (ref. side) 26,398 27,577 25,171 27,555 25,548 27,192 
[Btulhr] 
Cond Capacity (ref. Side) 31,522 31,953 30,359 31,949 31,066 31,870 
[Btulhr] 
Mass flow [lbmlhr] 322.9 331 310.7 331.0 317.4 330.0 
Water removal rate - - - - - -
[lbmlhr] 
Cond pressure out [psia] 269.0 255.2 264.0 255.9 282.8 268 

High-side ~p [psid] 19.2 - 22.6 - 19.0 -
Evap pressure out [psia] 128.7 138.0 124.2 138.1 127.1 138.5 
Evap temperature (sat) [F] 38.2 42.4 36.1 42.4 37.5 42.6 
Evap out (itc) [F] 51.9 52.2 47.6 52.2 48.6 52.4 
Cond in (itc) [F] 145.5 127.9 146.4 128.2 150.5 133.7 
Cond sat temp (out) [F] 85.0 81.3 83.7 81.6 88.5 84.7 
Cond out (itc) [F] 77.6 71.6 76.7 71.7 78.9 74.0 
Degrees of subcooling [F] 7.4 9.7 7.0 9.9 9.6 10.7 
Degrees of superheat [F] 13.7 9.8 11.5 9.8 11.1 9.8 

* indoor dry bulb temperature/outdoor dry bulb temperaturelindoor relative humidity 
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Table 3.2 Dry-coil performance comparison for low ambient temperatures 

Point SOn4IDry* SOnSIDry SO/SlIDry 
Reference Data Model Data Model Data Model 
Date 10/06/98 10/31/98 10/23/98 10/31/98 10/23/98 10/31/98 
RID indoor temp [F] 79.7 - 80.0 - 79.9 -
TC indoor temp [F] 79.9 79.9 79.5 79.5 80.3 80.3 
RTD outdoor temp [F] 74.3 - 75.4 - 81.7 -
TC outdoor temp [F] 74.0 74.0 74.9 74.9 81.4 81.4 
IndoorRH 20.7 20.7 24.2 24.2 26.6 26.6 
Blower power [W] 124.2 124.2 114.5 114.5 113.2 113.2 
RAC power (comp + 1711.0 1584.0 1741.1 1593.0 1892.5 1737 
blower) [W] 
Capacity from ref. side 24,250 26,500 26,721 26,333 26,626 25,918 
(Tot-fanpwr) [Btulhr] 
Total capacity (ref. side) 24,674 26,924 27,110 26,724 27,012 26,304 
[Btulhr] 
Cond Capacity (ref. Side) 30,624 31,905 32,974 31,795 33,506 32,058 
[Btulhr] 
Mass flow [lbmlhr] 313.0 330.6 342.6 329.2 351.3 333.1 
Water removal rate - - - - - -
[lbmlhr] 
Cond pressure out [psia] 295.3 281.2 305.0 285.0 336.2 314.8 

High-side ~p [psid] 19.3 - 19.9 - 20.6 -
Evap pressure out [psia] 125.7 139.5 136.5 139.3 140.4 142.5 
Evap temperature (sat) [F] 36.8 43.1 41.6 43.0 43.3 44.3 
Evap out (itc) [F] 45.4 52.8 52.2 52.8 52.5 54.1 
Cond in (itc) [F] 155.7 139.2 153.9 141.1 162.7 152.9 
Cond sat temp (out) [F] 91.5 88.1 93.8 89.0 100.9 96.1 
Cond out (itc) [F] 81.3 76.6 82.8 77.2 87.8 83.1 
Degrees of subcooling [F] 10.2 11.5 10.0 11.8 13.1 13 
Degrees of superheat [F] 8.6 9.7 10.6 9.8 9.2 9.8 

* indoor dry bulb temperature/outdoor dry bulb temperaturelindoor relative humidity 
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Table 3.3 Dry-coil perfonnance comparison for medium ambient temperatures 

Point SO/S2IDry* SO/S2IDry SO/901Dry 
Reference Data Model Data Model Data Model 
Date 10/08/98 10/31/98 10/23/98 10/31/98 10/24/98 10/31/98 
RTD indoor temp [F] 79.9 - 80.1 - 79.9 -
TC indoor temp [F] 80.1 80.1 80.5 80.5 80.1 80.1 
RID outdoor temp [F] 82.5 - 82.8 - 90.8 -
TC outdoor temp [F] 82.2 82.2 82.5 82.5 90.4 90.4 
IndoorRH 20.9 20.9 24.4 24.4 22.5 22.5 
Blower power [W] 124.5 124.5 115.0 115.0 116.7 116.7 
RAC power (comp + 1899.0 1768.3 1917.9 1765.5 2146.8 1984.7 
blower) [W] 
Capacity from ref.side 23,178 25,718 25,701 25,850 22,917 24,841 
(Tot-fanpwr) [Btulhr] 
Total capacity (ref. side) 23,602 26,143 26,094 26,242 23,315 25,239 
[Btulhr] 
Cond Capacity (ref. Side) 30,558 31,985 32,662 32,117 31,286 32,046 
[Btulhr] 
Mass flow [lbmlhr] 311.0 332.1 339.6 333.9 317.3 333.0 
Water removal rate - - - - - -
[lbmlhr] 
Condpressure out [psia] 332.0 318.7 340.5 320.1 385.0 361.5 

High-side ~p [psid] 21.1 - 19.7 - 19.2 -
Evap pressure out [psia] 126.8 142.4 136.8 143.1 131.4 145.2 
Evap temperature (sat) [F] 37.3 44.3 41.8 44.5 39.4 45.4 
Evap out (itc) [F] 42.1 54.1 51.5 54.3 42.4 55.2 
Cond in (itc) [F] 169.8 154.6 166.2 154.9 185.2 171.2 
Cond sat temp (out) [F] 100.0 97.0 101.8 97.3 111.0 106.3 
Cond out (itc) [F] 86.2 83.8 88.0 84.1 91.2 91.3 
Degrees of subcooling [F] 13.8 13.2 13.8 13.2 19.8 15.0 
Degrees of superheat [F] 4.8 9.8 9.7 9.8 3.0 9.8 

* indoor dry bulb temperature/outdoor dry bulb temperaturelindoor relative humidity 

12 



Table 3.4 Dry-coil performance comparison for medium ambient temperatures 

Point 80/94/Dry* 80/9S/Dry 80/9S/Dry 
Reference Data Model Data Model Data Model 
Date 10/26/98 10/31/98 10/02/98 10/10/98 10/24/98 10/31/98 
RID indoor temp [F] 79.9 - 79.8 - 79.9 -
TC indoor temp [F] 80.1 80.1 80.0 80.0 80.1 80.1 
RID outdoor temp [F] 94.1 - 94.7 - 95.6 -
TC outdoor temp [F] 93.8 93.8 94.8 94.8 95.2 95.2 
IndoorRH 22.5 22.5 23.9 23.9 23.1 23.1 
Blower power [W] 116.5 116.5 124.1 124.1 116.5 116.5 
RAC power (comp + 2249.1 2091.8 2297.5 2133.4 2306.7 2138.6 
blower) [W] 
Capacity from ref. side 22,343 24,444 23,437 24,273 22,308 24,279 
(Tot-fanpwr) [Btu/hr] 
Total capacity (ref. side) 22,741 24,841 23,860 24,696 22,706 24,676 
[Btu/hr] 
Cond Capacity (ref. Side) 31,071 32,084 31,817 32,072 31,229 32,105 
[BtU/hr] 
Mass flow [lbmlhr] 312.9 333.3 321.1 333.1 316.6 333.5 
Water removal rate - - - - - -
[lbmlhr] 
Cond pressure out [psia] 404.4 381.3 418.9 387.4 416.3 389.8 

High-side ~p [psid] 21.0 - 13.8 - 19.1 -
Evap pressure out [psi a] 131.5 146.5 135.3 146.7 132.8 147.0 
Evap temperature (sat) [F] 39.5 45.9 41.12 46.1 40.0 46.2 
Evap out (itc) [F] 44.4 55.7 52.7 55.8 43.6 56.0 
Cond in (itc) [F] 194.8 178.5 196.0 180.8 196.0 181.6 
Cond sat temp (out) [F] 115.0 110.3 117.4 111.5 117.0 111.9 
Cond out (itc) [F] 94.5 94.5 95.1 95.4 96.0 95.8 
Degrees of subcooling [F] 20.2 15.8 22.3 16.1 21.0 16.1 
Degrees of superheat [F] 5.0 9.8 11.6 9.7 3.6 9.8 

* indoor dry bulb temperature/outdoor dry bulb temperaturelindoor relative humidity 
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Table 3.5 Dry-coil performance comparison for high ambient temperatures 

Point 80/96IDry* 801l04IDry 801l06IDry 
Reference Data Model Data Model Data Model 
Date 10/26/98 10/31198 10103/98 10/10/98 10/24/98 10/31198 
RTD indoor temp [F] 80.0 - 79.8 - 79.8 -
TC indoor temp [F] 80.2 80.2 80.0 80.0 80.1 80.1 
RID outdoor temp [F] 96.6 - 104.0 - 106.5 -
TC outdoor temp [F] 96.4 96.4 104.2 104.2 106.0 106.0 
IndoorRH 22.8 22.8 26.3 26.3 25.6 25.6 
Blower power [W] 116.4 116.4 124.1 124.1 118.9 118.9 
RAC power (comp + 2336.6 2179.7 2628.7 2503.5 2724.9 2584.8 
blower) [W] 
Capacity from ref.side 21,982 24,165 22,444 23,102 21,338 22,907 
(Tot-fan~wr) [Btulhr] 
Total capacity (ref. side) 22,379 24,562 22,868 23,525 21,744 23,313 
[Btulhr] 
Cond Capacity (ref. Side) 31,061 32,154 31,993 32,292 31,411 32,382 
[Btulhr] 
Mass flow [lbmlhr] 313.0 334.0 324.0 333.9 316.6 334.3 
Water removal rate - - - - - -
[lbmlhr] 
Cond pressure out [psia] 421.5 397.2 480.3 452.9 493.3 467.7 

High-side ~p [psid] 20.2 - 15.0 - 19.5 -
Evap pressure out [psia] 132.4 147.6 139.8 150.5 137.8 151.4 
Evap temperature (sat) [F] 39.9 46.4 43.1 47.6 42.2 47.9 
Evap out (itc) [F] 44.3 56.2 54.8 57.4 50.9 57.7 
Cond in (itc) [F] 200.3 184.2 215.5 203.5 222.4 208.3 
Cond sat temp (out) [F] 118.0 113.4 128.2 123.5 130.0 126.1 
Cond out (itc) [F] 97.1 97.0 104.5 104.5 106.9 106.3 
Degrees of subcooling [F] 20.8 16.4 23.7 19 23.4 19.8 
Degrees of superheat [F] 4.5 9.8 11.7 9.8 8.7 9.8 

* indoor dry bulb temperature/outdoor dry bulb temperaturelindoor relative humidity 
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Table 3.6 Dry-coil performance comparison for high ambient temperatures 

Point 8011111Dry* 80/118IDry 80/118IDry 
Reference Data Model Data Model Data Model 
Date 10/25/98 10/31/98 10/04/98 10/31/98 10/26/98 10/31/98 
RID indoor temp [F] 79.9 - 79.7 - 80.3 -
TC indoor temp [F] 80.1 80.1 80.0 80.0 80.5 80.5 
RID outdoor temp [F] 111.4 - 117.4 - 118.0 -
TC outdoor temp [F] 110.9 110.9 117.6 117.6 117.8 117.8 
IndoorRH 26.9 26.9 30.3 30.3 29.1 29.1 
Blower power [W] 118.5 118.5 124.0 124.0 117.9 117.9 
RAC power (comp + 2960.6 2870.7 3292.0 3490.5 3327.3 3506.8 
blower) [W] 
Capacity from ref.side 20,740 22,222 20,561 21,083 19,930 21,214 
(Tot-fanpwr) [Btulhr] 
Total capacity (ref. side) 21,144 22,626 20,984 21,506 20,333 21,616 
[Btulhr] 
Cond Capacity (ref. Side) 31,517 32,643 32,395 33,351 31,944 33,538 
[Btulhr] 
Mass flow [lbmlhr] 314.8 334.3 323.3 332.6 316.4 334.7 
Water removal rate - - - - - -
[lbm/hr] 
Cond pressure out [psia] 532.5 516.2 589.2 617.6 590.3 621.3 

High-side dP [psid] 20.6 - 17.0 - 21.4 -

Evap pressure out [psia] 140.4 153.7 147.6 157.2 145.3 158.0 
Evap temperature (sat) [F] 43.3 48.8 46.3 50.2 45.4 50.5 
Evap out (itc) [F] 54.0 58.6 57.8 60.0 55.7 60.4 
Cond in (itc) [F] 236.8 223.6 251.3 252.9 255.2 253.4 
Cond sat temp (out) [F] 136.5 134.0 144.8 148.8 145.0 149.3 
Cond out (itc) [F] 111.8 111.1 117.8 117.7 118.4 117.9 
Degrees of subcooling [F] 24.7 22.9 27.0 31.1 26.6 31.4 
Degrees of superheat [F] 10.7 9.8 11.5 9.8 10.3 9.9 

* indoor dry bulb temperature/outdoor dry bulb temperaturelindoor relative humidity 
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Table 3.7 Wet-coil performance comparison for low ambient temperatures 

Point 80nO/SO * 80nS/SO 80/82/50 
Reference Data Model Data Model Data Model 
Date 10/06/98 10/11/98 10/07/98 10111198 10/07/98 10/11/98 
RID indoor temp [F] 79.4 - 80.0 - 80.0 -
TC indoor temp [F] 80.1 80.1 80.2 80.2 80.1 80.1 
RID outdoor temp [F] 70.5 - 76.2 - 82.5 -
TC outdoor temp [F] 70.5 70.5 75.8 75.8 82.4 82.4 
IndoorRH 52.1 52.1 52.1 52.1 52.0 52.0 
Blower power [W] 149.6 149.6 152.6 152.6 150.5 150.5 
RAC power (comp + 1676.0 1540.4 1794.0 1642.1 1949.0 1782.6 
blower) [W] 
Capacity from ref.side 29,485 30,695 29,056 30,156 28,411 29,305 
(Tot-fanpwr) [Btuthr] 
Total capacity (ref. side) 29,994 31,205 29,576 30,677 28,925 29,819 
[Btuthr] 
Cond Capacity (ref. Side) 35,503 35,770 35,540 35,777 35,598 35,638 
[Btuthr] 

, 

Mass flow [lbmlhr] 377.2 389.2 381.7 387.7 381.7 384.4 
Water removal rate 10.1 9.7 11.5 9.4 10.4 8.9 
[lbmlhr] 
Cond pressure out [psia] 282.5 269 304.3 291 333.4 320.5 

High-side M' [psid] 23.3** - 23.3** - 23.3** -

Evap pressure out [psia] 147.5 158.8 149.4 159.8 150.8 160.6 
Evap temperature (sat) [F] 46.3 50.9 47.0 51.3 47.6 51.6 
Evap out (itc) [F] 56.9 60.7 56.4 61.1 56.1 61.4 
Cond in (itc) [F] 143.4 127.5 149.5 136.5 159.7 148.3 
Cond sat temp (out) [F] 88.4 85.0 93.7 90.5 100.3 97.4 
Cond out (itc) [F] 82.9 81.5 87.3 84.2 91.0 88.1 
Degrees of subcooling [F] 5.5 3.5 6.4 6.3 9.3 9.3 
Degrees of superheat [F] 10.6 9.8 9.4 9.8 8.5 9.8 

* indoor dry bulb temperature/outdoor dry bulb temperaturelindoor relative humidity 

** pressure transducer was at maximum differential pressure 
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Table 3.8 Wet-coil performance comparison for high ambient temperatures 

Point 80/95/50* KO/I05/50 801118/50 
Reference Data Model Data Model Data Model 
Date 10/9/98 10/11/98 10/9/98 10/11/98 10/12/98 10/17/98 
RID indoor temp [F] 79.7 - 79.8 - 80.0 -
TC indoor temp [F] 79.9 79.9 80.0 80.0 80.1 80.1 
RID outdoor temp [F] 95.0 - 105.3 - 118.1 -
TC outdoor temp [F] 95.0 95.0 105.4 105.4 118.3 118.3 
IndoorRH 52.6 52.6 52.3 52.3 52.4 52.4 
Blower power [W] 148.9 148.9 145.2 145.2 134.2 134.2 
RAC power (comp + 2307.0 2122.1 2690.0 2492.1 3.303.5 3271.7 
blower) [W] 
Capacity from ref. side 27,471 27,537 25,724 25,834 23,118 23,435 
(Tot-fanpwr) [Btulhr] 
Total capacity (ref. side) 27,979 28,045 26,220 26,329 23,576 23,893 
[Btulhr] 
Cond Capacity (ref. Side) 36,124 35,407 35,733 35,196 35,175 35,421 
[Btulhr] 

, 

Mass flow [lbmlhr] 386.0 380.1 375.0 375.9 368.3 369.4 
Water removal rate 10.6 8.0 8.8 7.0 6.8 5.56 
[lbmlhr] 
Cond pressure out [psia] 401.2 385.2 472.1 451.0 585.8 582.3 

High-side ~p [psid] 23.3** - 23.3** - 23.3** -
Evap pressure out [psi a] 156.3 163.1 157.2 165.4 162.6 169.1 
Evap temperature (sat) [F] 49.8 52.5 50.1 53.4 52.2 54.7 
Evap out (itc) [F] 58.3 62.3 59.9 63.2 60.7 64.6 
Cond in (itc) [F] 182.0 172.7 206.2 195.7 237.8 236 
Cond sat temp (out) [F] 114.1 111.1 126.8 123.2 144.4 143.9 
Cond out (itc) [F] 99.3 97.5 106.1 106.5 118.9 118.6 
Degrees of subcooling [F] 14.8 13.6 20.7 16.7 25.5 25.3 
Degrees of superheat [F] 8.5 9.8 9.8 9.8 8.5 9.9 

* indoor dry bulb temperature/outdoor dry bulb temperature/indoor relative humidity 

** pressure transducer was at maximum differential pressure 

3.2.1 Total capacity 

Figure 3.1 shows the total system capacity, comparing the measured data with the system 

simulation results for the 18 dry points taken. 
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Figure 3.1 Dry-coil total capacity comparison for the system model 

As can be seen above, the model overpredicts the actual capacity by around 10.9% at its 

worst. A certain amount of scatter and repeatability problems were present in the experimental 

data. Upon observing this scatter in the dry data, the entire unfinned section (see Figure 3.2) 

thermocouples were attached for all data sets after the 20th of October in order to gather data on 

maldistribution. 

Figure 3.2 Evaporator unfinned section surface thermocouples 
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Some interesting observations can be made from this maldistribution data. As can be 

observed in Figure 3.1, most of the dry points follow a somewhat linear trend beneath the 

predicted total capacity curve. Figure 3.3 shows a common maldistribution pattern across the 

unfinned section for the points that follow that linear trend. 
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Figure 3.3 Evaporator unfinned section maldistribution (80/90 condition, 10-24-98) 

Significant amounts of maldistribution can be observed from Figure 3.3. The tubes 

towards either end of the evaporator see large amounts of highly superheated vapor, while the 

middle tubes exit from the evaporator close to the saturated evaporating temperature of around 

42°F. The reason for this distribution pattern can be observed by examining the refrigerant 

distributor in Figures 3.4 and 3.5. 

Figure 3.5 shows the orientation of the header feeder tubes as they come out of the 

distributor as well as the corresponding header feeder tube number. Header feeding tube 3 sits at 

the lowest point on the distributor, so it would receive the most liquid of the four feeding tubes 

and it feeds into the section between thermocouple #60 and #61 which corresponds to the two

phase section. Because the other three header feeding tubes are at higher elevations they will see 

correspondingly more vapor under maldistribution conditions and that is why the superheat 
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regions are higher at either end of the heat exchanger. Of course, assuming that there are no 

baffles in between the header inlet sections, some mixing will occur within the evaporator inlet 

header. 

Figure 3.4 Evaporator inlet distribution system 

Figure 3.5 Evaporator distributor orientation 

The three points that lie the closest to the predicted curve in Figure 3.1 also provide 

insight into the effects of maldstribution on the system. 

Figure 3.6 shows the general distribution pattern for one of the three points that were 

closest to the predicted curve. Generally, the distribution was much better than the other fifteen 

dry evaporator points. The resulting total capacity for the 80/82 dry point observed was 
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approximately 10% higher than the corresponding 80/82 point that suffered severe 

maldistribution similar to Figure 3.5. 
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Figure 3.6 Evaporator unfinned section maldistribution (80/82 condition, 10-23-98) 

A possible explanation for the repeatability problems in the system's capacity could be 

that, at the lower ambient temperatures, the evaporator distributor experiences a lower 

volumetric flow rate (hence a lower refrigerant velocity) which lowers the pressure drop through 

the header feeding tubes and thereby increases the maldisribution as gravity pulls the heavier 

liquid towards the lower tube (since the distributor was mounted horizontally) which causes the 

TXV to perform poorly (Sporlan, 1975), hence the steady but unpredictable superheat results 

observed. Because higher outdoor ambient temperatures would result in higher volumetric flow 

rates in the evaporator distributor causing improved distribution, the general improvement in the 

model's prediction at higher ambient conditions would also be explained. Many of these 

repeatability issues will be addressed in a forthcoming ACRC Technical Report (Stott, 1999). 

The difference between the measured and the calculated saturated evaporating 

temperature provided an accurate predictor of the errors between the actual and predicted system 

capacity. In general, the evaporating temperature was overpredicted, which caused the model to 

predict higher mass flow rates because the compressor mass flow rate was very sensitive to the 

21 



suction pressure. Having a higher saturated evaporating temperature would reduce the overall 

pressure ratio, which raises the mass flow rate. 
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Figure 3.7 Wet-coil total capacity comparison 

Again, due to time constraints, fewer wet points were taken for comparison to the overall 

system model predictions. Figure 3.7 shows that the predicted capacity exceeded the actual 

system's capacity by only about 4% at the low outdoor temperatures, and matched within less 

than 1 % for the high outdoor temperatures. Again, the improvement in the model's predicted 

total capacity at the higher outdoor ambient conditions would suggest that the distribution was 

improved due to the increased volumetric flow rate at the evaporator distributor. Since the actual 

evaporator surface was colder than the system model predicted, the water removal rate for the 

actual system was higher. This increased latent heat transfer may account for the improvement 

in the prediction of the total capacity relative to the dry-evaporator case. 

A possible factor in the general overestimation of the capacity was also the air-side heat 

transfer coefficient. An overestimation in the air-side heat transfer coefficient would result in the 

22 



predicted condensing pressure being lower than what would be observed experimentally and the 

predicted evaporating pressure would be higher than the actual system. This can be observed in 

the Tables 3.1 through 3.8 for the wet and dry indoor conditions. 

To investigate the air-side error, the evaporator and condenser were analyzed using 

component simulation models. The entering enthalpy, temperature, and mass flow rate from the 

measured data were input into the de-coupled evaporator model and then the exit conditions were 

obtained. The result should then be independent of modeling errors in the rest of the system and 

should reveal if the air-side heat transfer coefficient was overestimated. 

Figure 3.8 shows that the evaporator submodel overpredicts the total capacity by more 

than 5% throughout the outdoor ambient temperature range of 68 to 118°F. In microchannel heat 

exchangers, the refrigerant-side resistances only amount to about 11 % of the total because of the 

relatively large refrigerant-side area. Therefore, the modeling error is more likely attributable to 

the air-side correlations than the refrigerant-side heat transfer coefficients. Maldistribution 

would also be a significant penalty that would result in differences between the predicted and 

experimental data for Figure 3.8. This overestimation in the air-side heat transfer coefficient 

suggests the need for testing other correlations available in literature besides the Chang and 

Wang correlation (1996) used currently in the model. 

Other possible factors for the difference in the predicted and measured values for the total 

capacity could also be due to the model not accounting for the forty-five degree change in the 

air-flow path of the actual system (because of its "arrowhead" shape) or oil circulation effects. 

Tables 3.9 and 3.10 show that the evaporator submodel, when given the experimental 

inlet conditions, overpredicts evaporator superheat as well as capacity. Because the two-phase 

region should be identical for both model and the experimental system at the measured 

evaporating pressure and temperature, this overprediction of the evaporator superheat again 

strongly suggests that either: a) the air-side heat transfer coefficient is overestimated, or, b) 

significant maldsitribution resulted in capacity penalties. Future investigations will attempt to 

quantify the magnitude of these two effects. Note that the model also predicted the water 

removal rates within 7%, once the discrepancy in the evaporating temperature was eliminated. 
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Figure 3.8 Accuracy of total capacity submodel predictions 

Table 3.9 Evaporator submodel superheat predictions for dry indoor conditions 

Il T suFrheat 
[0 ] 

Dry evap I!oints Data Model 
80/68 14 32 
80/68 12 39 
80nl 11 35 
80n4 9 37 
80n5 11 15 
80/81 9 12 
80/82 5 38 
80/82 10 23 
80/90 3 34 
80/94 5 35 
80/95 12 31 
80/95 4 34 
80/96 5 35 

80/104 12 29 
80/106 9 32 
80/111 11 32 
80/118 12 26 
80/118 10 30 
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Table 3.10 Evaporator submodel superheat and water removal rate predictions for wet indoor 
condition 

11 T Surrheat Water removal rate 
[0 ] [lbm/hr] 

Wet evap points Data Model Data Model 
80170/50 11 29 10.1 10.9 
80175/50 9 28 11.5 10.7 
80/82/50 9 27 10.4 10.2 
80/95/50 9 23 10.6 9.4 

801105/50 10 24 8.8 8.5 
80/118/50 9 22 6.8 7.0 

As mentioned in Chapter 2, several difficulties in the instrumentation of the system have 

made certain comparisons to the model considerably more difficult. The pressure taps and 

immersion thermocouples were not located exactly at the condenser or evaporator inlets and 

outlets. Between the condenser exit and the liquid line there were eight header feeding tubes 

entering into a heat pump TXV, and between the exit of the discharge line and the entrance to the 

condenser was a four-way valve. The evaporator outlet measurements were taken downstream 

of the TXV bulb at the exit, and there was only a surface thermocouple at the entrance header 

feeding tubes. The pressure drop observed across the condenser then includes the pressure drops 

across all of the hardware described above. This makes comparing the pressure drop across the 

condenser between the model and the system difficult because the model does not account for 

the pressure drop in the heat pump TXV, the four-way valve, or the microchannel heat 

exchanger's headers. The model also does not account for the pressure drop in the evaporator's 

headers or the TXV. A pressure drop of around 23 psid amounted to only around 5°F error in the 

condensing temperature. It was not possible to determine how much of the additional pressure 

drop occurred immediately upstream or downstream of the condenser. Therefore the actual 

penalty on the saturated condensing temperature would be some fraction of the previously 

mentioned 5°F. 
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3.2.2 Condenser heat rejected 

The condenser submodel was also de-coupled to investigate possible overpredictions in 

the air-side heat transfer coefficient. The measured input conditions were used in the model and 

then the outlet conditions were solved for. 

Figure 3.9 shows that the condenser heat transfer over both the wet and dry tests was 

usually predicted within 5% by the condenser submodel. Because the condenser was being fed 

superheated vapor, it should not be affected by the two-phase distribution problems that plagued 

the evaporator. Since the predicted capacities were significantly better for the condenser, this 

could suggest that maldistribution, rather than the air-side heat transfer coefficient, may be the 

significant factor in the overprediction of the evaporator's capacity. 
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Figure 3.9 Accuracy of condenser submodel predictions 
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Table 3.11 Condenser submodel exit temperature predictions for dry indoor condtions 

Tcondout 
[OF] 

Dry evap points Data Model 
80/68 78 68 
80/68 77 68 
80171 79 71 
80174 81 74 
80175 83 75 
80/81 88 82 
80/82 86 82 
80/82 88 83 
80/90 91 91 
80/94 95 94 
80/95 95 95 
80/95 96 95 
80/96 97 97 

801104 105 104 
801106 107 106 
801111 112 111 
80/118 118 118 
80/118 118 118 

Table 3.12 Condenser submodel exit temperature predictions for wet indoor condtions 

Tcondout 
[OF] 

Wet evap points Data Model 
80170/50 83 71 
80175/50 87 77 
80/82/50 91 84 
80/95/50 99 96 

801105/50 106 106 
80/118/50 119 119 

Tables 3.11 and 3.12 show that the condenser submodel overpredicts the heat transfer 

from the condenser generally within less than 5%. An interesting trend with the subcooling was 

that the model's predictions generally improved with increasing outdoor temperatures, especially 

after around 95°F outdoor ambient temperatures. 

Currently the model predicts a pressure drop across the condenser that is less than 1 psid 

(header pressure drop is not included). The total high-side pressure drop from the experimental 

data is on the order of 20 psid so it is difficult to estimate a condenser inlet pressure for the 

model, so the exit pressure was used as the input pressure for the previous comparison because 
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there is considerably less pressure drop in the liquid phase and the pressure read at the outlet is 

probably closer to the actual two-phase pressure than the compressor exit pressure minus the 

pressure drop experienced by the superheated vapor. 

3.2.3 Charge 

Another major difference between the actual system and the model's predictions was the 

total charge of the system. In order to reach approximately lOoP subcooling at the 80/82 wet 

condition, it was necessary to charge with 7.2 Ibm of R4lOA, whereas the model predicted that a 

total charge of 5.9 Ibm would be required. This is an underestimation of 18%. 

Table 3.13 Predicted charge distribution throughout system (80/82 wet) 

Component Charge % Total Volume 
[Ibm] [fe] 

Condenser charge (total) 2.349 39.7 0.07458 
Inlet header 0.039 0.7 0.00779 
Superheat 0.052 0.9 0.00702 
Two-phase 1.422 24.1 0.04708 
Subcooling 0.337 5.7 0.00490 

Outlet header 0.498 8.4 0.00779 
Evaporator charge (total) 0.385 6.5 0.02540 

Inlet header 0.056 1.0 0.00395 
Two-phase 0.314 5.3 0.01614 
Superheat 0.004 0.1 0.00137 

Outlet header 0.011 0.2 0.00395 
Other charge (Total) 3.176 53.7 0.15854 
Cond exit header tubes 0.332 5.6 0.00524 

Liquid line 1.181 20.0 0.01867 
Evap inlet header feeding tubes 0.02 0.3 0.00014 

Suction line 0.096 1.6 0.03021 
Comp 0.159 2.7 0.07430 

Ref in oil 0.506 8.6 -
Discharge line 0.078 1.3 0.01728 
Filter/Dryer 0.800 13.5 0.01270 

Table 3.13 shows the largest contributors to the charge in the system to be the condenser, 

liquid line, and the filter/dryer as would be expected since they contain dense liquid refrigerant. 

The charge in the condenser would have to increase by around 50% in order to match the 7.2 

used in the actual experiments. It is also important to remember that the charge estimates in the 

model do not include either of the two TXVs (and their distributors), the four-way valve, or any 
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of the additional volumes required for the instrumentation of the system (pressure transducers, 

lines, mass flow meter, etc.). 

Table 3.14 shows rather convincingly that the high-side instrumentation, even if filled 

completely with liquid refrigerant, could not account for the almost 1.2 Ibm difference in the 

predicted and the experimentally measured charge. 

Table 3.14 Predicted charge for additional instrumentation 

Component Charge Volume" 
[Ibm] [ftl] 

Liquid line venturi entrance 0.010 0.0001575 
pressure tap line 

Liquid line venturi throat 0.010 0.0001613 
pressure tap line 

Liquid line venturi diff. press. 0.015 0.0002315 
transducer 

High-side abs press. transducer 0.006 0.00009838 
Micromotion mass flow sensor 0.033 0.005294 
Low-side abs press. transducer 0.002 0.000804 

tap line 
Low-side abs press. transducer 0.0002 0.00009838 
Discharge line venturi entrance 0.005 0.0009892 

pressure tap line 
Discharge line venturi throat 0.005 0.0009342 

pressure tap line 
Discharge line venturi diff. 0.001 0.00002315 

press. transducer 
High-side diff press. transducer 0.005 0.0007489 

tap line liquid side 
High-side diff press. transducer 0.0001 0.00002112 

tap line discharge side 
High-side diff press. transducer 0.008 0.00002315 

Total 0.1003 0.00958478 

A possible explanation for the increased charge required in the actual system could be 

that some of the ports in the condenser were clogged and filled with liquid. Both the evaporator 

and the condenser heat exchanger tubes were bent along their major axes, which could: a) be a 

cause for this blockage of certain tubes or b) result in maldistribution and pressure drop. As 

mentioned previously, a forthcoming technical report will address the significant differences 

between the model's predicted performance, and the experimental system's actual performance. 
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Chapter 4 
Summary and recommendations 

A steady-state microchannel split-system simulation model was developed from the firm 

foundations of previous research at the ACRC. This model was then used as a design tool to 

optimize a microchannel split system with the goal of minimizing TEWI, or total equivalent 

warming impact. The system components were then selected and the optimized microchannel 

heat exchangers were fabricated. The entire system was then assembled and extensive tests were 

run at steady state conditions over a wide range of outdoor ambient conditions in a calorimeter 

test facility. Experimental results were compared to the simulations for the purpose of model 

validation and refinement. The full system model overpredicted the total capacity of the system 

with a minimum error of 0.2%, a mean error of 5%, and a maximum error of 11 %. The 

evaporator submodel overpredicted the total capacity as well, with a minimum error of 0.7%, a 

mean error of 7%, and a maximum error of 11%. The condensing capacity was also 

overpredicted with a minimum error of 0.5%, a mean error of 2%, and a maximum error of 6%. 

A major reason for the lower accuracy with the evaporator was because of the refrigerant 

maldisribution observed in the experiments. Since the model simulates perfect distribution 

among the 40 parallel circuits, it overpredicts the cooling capacity. 

This report gives a general overview of the model's performance in comparison to the 

actual system. More experimental data must be obtained before the model can be fully validated. 

For example, the range of refrigerant-side mass flow rates can be extended by testing over a wide 

range of indoor temperatures and humidities to validate heat transfer and pressure drop 

correlations. Likewise, the variable speed fan and blower also allow for the validation of air-side 

correlations. The present version of the model does not account for pressure drop within the 

headers and the pressures drop measured for the condenser was considerably larger than what the 

model predicted. If this uncertainty cannot be resolved by more data, instrumentation 

improvements may be needed in the next generation microchannel heat exchangers: e.g. pressure 
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taps built into the headers. The charge inventory calculations are another major source of 

uncertainty that will require further investigation. 
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A.I Introduction 

Appendix A 

Microchannel system design 

An important factor in selecting the final design for the condenser and evaporator micro

channel heat exchangers was the effect of the design on TEWI, or total equivalent warming 

impact (Sand et aI., 1997). TEWI analyses were performed using a systems approach that 

considered the global warming impact over the unit's lifetime of both the release of the 

refrigerant into the atmosphere and the indirect component that resulted from the carbon dioxide 

emissions associated with the energy consumption of the system. The TEWI calculations were 

performed assuming a 20 year lifetime, 4% loss of charge per year, 900 hours per year running 

time (Illinois), and a 0% loss at end of lifetime. 

The optimizations were performed at the ARI standard test B condition (80,67 indoor and 

82,65 outdoor). Additional simulation runs were conducted at the ARI standard test A condition 

(80,67 indoor and 95,75 outdoor) to ensure that the constraint limiting the sensible heat ratio to 

0.75 on the evaporator was met at that condition. The split system air conditioner model utilized 

R410A refrigerant properties and a compressor map that simulated a two-ton capacity scroll 

compressor (Bridges and Bullard, 1995). 

The objective function to be minimized for this design investigation was TEWIIQload 

which has units of kgCO/ton-hr of cooling capacity. This objective function considers the 

amount of charge in the system, the overall efficiency of the unit, and finally the cooling capacity 

supplied by the system. Because the direct effect of refrigerant loss is only around 10% of the 

total, the objective function was relatively insensitive to assumptions about the unit's lifetime 

and its running time per year. However, it does not follow that the optimal tradeoff between 

direct and indirect TEWI contributions is insensitive to such assumptions. One thing not 

considered in this objective function and in the analysis that follows was the cost of both 

materials and manufacturing for the heat exchangers and other components that could contribute 
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to minimizing TEWIlQload. Care was taken to ensure that the sensible heat ratio never exceeded 

75% at the ARI A test condition. 

The triangular port tube with a hydraulic diameter of 0.67 nun and 19 ports was selected 

as being the best candidate for the final design of the minimum TEWI system because they 

offered a balance between compactness and internal surface area, and were also readily 

available. The effects of varying the length of the tubes and the number of tubes from the ultra

compact design (see Table A. I) were then examined on both the condenser and the evaporator to 

finalize their designs. The ultra-compact system was based on dimensions of an existing 

microchannel split-system that utilized R22 instead of R4IOA, except the modeled condenser 

had only one pass to allow for later heat pump applications, whereas the actual R22 heat 

exchanger had two passes. This ultra-compact split-system provided the baseline system for 

comparison to the minimum-TEWI system. The focus of this optimization was on the core 

length and core width that would minimize the objective function (TEWIlQload). The effects of 

fan power and compressor power were also investigated to provide recommendations for 

components to focus on for further improvements. The simulations, unless otherwise noted, 

were performed at the ARI standard test B (80/67 indoor and 82/65 outdoor) with the evaporator 

superheat set at 10°F and the condenser subcooling at 10°F. 

The optimization described in both the condenser and evaporator sections utilized a 

univariate search technique, which involved changing one parameter at a time in order to gain 

insights into the nature of the physical tradeoffs involved. 
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Table Al Ultra-compact design for condenser and evaporator 

Parameter Ultra-compact condenser Ultra-compact evaporator 

Port geometry Triangles Triangles 

Number of tubes 65 45 

Vertical tube thickness [in] 0.075 0.075 

Horizontal tube width [in] 0.74 0.74 

Core length [ft] 4.81 3.06 

Core width [ft] 2.10 1.49 

Face area [ft"] 10.08 4.52 

Fin density [fins/ft] 240 240 

Volumetric flow rate [cfm] 2755 993 

Housing height [ft] 2.13 1.58 

Housing width [ft] 1.81 1.33 

Housing depth [ft] 1.81 1.50 

System charge [Ibm] 3.7 

TEWIlQload [kgCO/ton;.hr] 

system (@80/82) 0.63 

A.2 Condenser design 

A2.1 Effects of face area variation 

The proposed design for the outdoor (alc condenser) bends the tubes along their major 

axis into a "V" shape (see Fig. AI), which would facilitate refrigerant distribution and defrost 

drainage from the outdoor coil in heat pump mode. The placing of various components in the 

outdoor condenser cabinet created additional constraints to the final design besides those of the 

actual housing dimensions themselves (see Table AI). The coil was pushed to the maximum 

height of 2.82 ft so that the compressor would have clearance beneath it (in case the coil is 

inverted from its "V" design to an "A" for alc applications). The bend radius for the "V" coil 

was set at 2 inches, which was similar to the base case design. For these design runs, the core 

width was varied with core length so that the resulting combination would have a "square 

footprint" (i.e. the core width = the front width) within the rectangular footprint of the housing. 

This "square" design was selected so that the largest condenser fan could be utilized for a given 
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condenser configuration. The compressor would then be placed in the space remaining in the 

rectangular housing in a configuration that would later facilitate the conversion of the. system to a 

heat pump. The outdoor housing dimensions provide a reasonable size and layout for the 

condenser coil and the compressor. More flexibility exists for the dimensions on the outdoor 

unit because a custom cabinet will be built for it; however, the indoor cabinet will most likely be 

selected from commercially available furnaces and air handlers so the interior housing 

constraints are more rigorously binding. 

Front View Side View 

Figure A.I "V" coil design 

This full utilization of cabinet dimensions yielded a face area almost twice that of the 

ultra-compact condenser. Initial simulations held the volumetric flow rate and subcooling 

constant at the base value of 2755 cfm and lOoF respectively, for these "square footprint" 

constraints. The evaporator parameters were held constant at the ultra-compact values while the 

outdoor optimization was performed. The fan power was calculated using Eq. A.I from the 

volumetric flow rate and the pressure drop through the outdoor unit, using a fanlmotor efficiency 

determined from the ultra-compact system's measured power. 
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l dP airCoil + dP airCabinet . (V dotaC ) 21 
PwrFanC = 3.2532 . VdotaC. _________ 2_75_5 __ 

llfanC (A.I) 

The factor of 3.2532 converts the power to watts. The pressure drop across the cabinet 

was calculated using data from the ultra-compact system and the fan laws were used to calculate 

this pressure drop for varying volumetric flow rates. The pressure drop across the coil was 

calculated from the friction factor from Eq. A.2 developed by Davenport (1983). 

Where: 

f = 0.494 . Relp -0.39. [~ ]-0.33. [~]1.1 . H 0.46 

RelP = Reynolds number based on louver pitch [-] 

lh = louver height [mm] 

H = fin height [mm] 

11 = louver length [mm] 

(A.2) 

This correlation is good over a range of 1000 < Re < 4000, where Re is the Reynolds 

number based on the hydraulic diameter (this is not the same Reynolds number as is used in the 

correlation, which is based on the louver pitch of the fins). Also note that the fin height 

dimension must be in mm in order for the correlation to give the correct friction factor. 

The results of these initial simulations are shown in Fig. A.2. 
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Figure A.2 TEWIIQload for square footprint (Vdotac = 2755) 

A general decreasing trend was observed with increasing face area because the free flow 

velocity was decreasing due to the constant volumetric flow rate and increasing face area. This 

decreasing face velocity lowered the air-side pressure drop and thereby decreased the fan power 

required for a constant volumetric flow rate. A face area of 16 ft2 (and its "square footprint" of 

6.5 ft) was selected as being the optimal face area because it balanced the effects of decreasing 

the condenser fan power with the negative effects of increasing the charge due to the increased 

internal volume of larger condensers without exceeding the housing constraints. The 60% 

increased area resulted in an objective function decrease of 3.5% over the ultra-compact design 

mainly due to a 28% decrease in the condenser fan power. The dimensions of the "square" 

condenser for the flattened out 16 ft 2 face area are shown in Fig. A.3 below. This coil would 

require a bend angle of 45 degrees once it was bent into the "V" configuration. 

38 



2.55' 

~~~-------------------------- 6.28' --------------------------~~ 

.740" =~~!):::I ========================::==xo 

Figure A.3 Dimensions of 2.55 ft square footprint condenser design 

The binding constraints were the housing width and height; however, there still was room 

to have a larger core width in the housing depth constraint, but increasing the number of tubes 

would have an adverse effect on the objective function because of the additional charge in both 

the headers and the tubes. 

This design, compared to the ultra-compact system, increased the core length from 4.81 ft 

to 6.28 ft and also increased the number of tubes from 65 to 79. This increased volume increased 

system charge about 19%, but this was offset in the objective function by both the reduced power 

consumption of the fan due to the lowered free flow velocities associated with increased face 

area and also the increased heat transfer surface area. For both the ultra-compact condenser coil 

and the 60% larger one, the refrigerant-side pressure drop was between 0.4 to 1.0 psi and 

therefore negligible. 

A.2.2 Effects of condenser volumetric flow rate variation 

Next, the volumetric air flow rate was varied between 2400 and 4200 cfm. Fig. A.4 

shows the results of the simulation runs. 
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Figure A.4 TEWIIQload vs. VdotaC for condenser (AfrontC = 16 fe) 

From around 2400 to 2600 cfm, the objective function was observed to level off because 

the increasing air-flow rates provided increased heat transfer that improved the system's 

efficiency and overcame the increased power consumption required by the fans due to the 

increasing air-side pressure drop across the condenser coil. Above 2600 cfm, the increasing 

power requirements for the fan exceeded the benefits of increased heat transfer acquired through 

the higher free-flow velocities in the coil. Running the condenser fan at 2600 cfm resulted in a 

3.7% improvement in TEWI/Qload over the ultra-compact system, which is only a 0.2% 

improvement over the 16 fe face area condenser running at the base volumetric flow rate of 2755 

cfm. 

A.2.3 Effects of subcooling 

The subcooling was then varied between 20 and 20 0 F and the effect of this variation on 

the objective function was investigated in Fig. A.5. 
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Figure A.5 TEWIlQload vs. ~Tsubcool for condenser 

(AfrontC=16 fe, VdotaC=2600 cfm) 

Fig. A.5 revealed a minimum TEWIIQload in the region around 10° F. The reason that 

the points to the left of this region show a generally decreasing trend was that the inlet quality to 

the evaporator was decreasing, and the resulting increase in evaporator capacity outweighed the 

effects of increasing charge and condensing temperature. Above 10° F subcooling, the inlet 

quality showed no real signs of decreasing with increasing subcooling because the condensing 

pressure was also rising simultaneously, so the benefits of increasing subcooling were lost and 

the system's refrigerant charge was also increasing. In order for the optimal subcooling to 

decrease, the volumetric flow rate would need to be increased to considerably larger values so 

that the heat could be rejected at a much lower temperature difference. This higher flow rate 

created more of penalty on the efficiency of the system due to its increased fan power 

consumption, and this effect was found to outweigh the benefits of decreasing the subcooling 

and the condensing pressure slightly for large increases in the fan volumetric flow rate. 
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Basically, 10° F subcooling was optimal because it balanced the benefits of lower 

evaporator inlet quality with lower compressor power consumption and charge. The objective 

function decreased by the same 3.7% relative to the ultra-compact system as in the previous 

design run because this was the same subcooling that was set initially in the design runs. 

A.2.4 Condenser design summary 

Table A.2 summarizes and compares the minimum-TEWI condenser design geometry to 

that of the ultra-compact condenser design 

Table A.2 Minimum-TEWI condenser design comparison 

Parameter Ultra-compact condenser Min.-TEWI condenser 

Port geometry Triangles Triangles 

Number of tubes 65 79 

Vertical tube thickness [in] 0.075 0.075 

Horizontal tube width [in] 0.74 0.74 

Core length [ft] 4.81 6.28 

Core width [ft] 2.10 2.55 

Face area [ft·] 10.08 16.00 

Fin density [fins/ft] 240 240 

Volumetric flow rate [cfm] 2755 2600 

Housing height [ft] 2.13 2.82* 

Housing width [ft] 1.81 2.6* 

Housing depth [ft] 1.81 2.91* 

System charge [Ibm] 3.7 4.4 

TEWIlQload [kgCO/ton-hr] 

system (@80/82) 0.63 0.61 

* (Carrier, 1996) 2-ton system components 
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A.3 Evaporator design 

A.3.1 Effects of face area variation 

For the evaporator geometry selection, the face area was varied by increasing the number 

of tubes and the length of the tubes while holding the volumetric flow rate constant. The 

condenser parameters were held constant for the minimum-TEWI condenser outlined above. 

The evaporator had an additional constraint over the condenser in that the sensible heat ratio also 

had to be monitored at the ARI A test condition (80/95). As a rule of thumb, . the upper limit for 

a comfortable sensible heat ratio is around 0.75 at this condition, so that became a binding 

constraint for the evaporator design simulations shown in Fig. A.6 . 
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Figure A.6 SHR vs. NtubesE at 80/95 condition (const. VdotaE = 993 cfm) 

Fig. A.6 shows that face areas above 4.5 ft2 exceeded the sensible heat ratio limitation of 

0.75 at the ultra-compact volumetric flow rate of 993 cfm. Although the 4.75 fe face area 

exceeded the sensible heat ratio by around 0.3%, it was selected as being the optimal design 
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because it was the largest heat exchanger design that would fit within the housing constraints. 

As would be expected, the sensible heat ratio for the larger heat exchangers was increasing 

because the corresponding increase in the heat transfer surface area increased the fin surface 

temperature and thus less water was removed. 

Next, the effect of the face area variation on the objective function was examined at the 

80/82 condition. 
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Figure A.7 TEWIlQload vs. NtubesE at 80/82 condition (const. VdotaE = 993 cfm) 

The larger face areas were included in Fig. A.7 to illustrate the small 1.9% savings 

obtainable by ignoring the sensible heat ratio and selecting a face area that was almost twice as 

large as the ultra-compact heat exchanger (and also exceeded the housing constraints). 

Achieving greater benefit from a larger evaporator would require substantial increases in 

air-flow rate, which itself would be costly due to the high pressure drops experienced in typical 

residential ductwork. The 4.75 fe face area evaporator was selected as being the best heat 
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exchanger because it was close to the 0.75 sensible heat ratio constraint and reduced 

TEWIIQload from the ultra-compact design by around 0.25% (for a 5.6% face area increase). 

The minimum objective function for this face area occurred with 40 tubes (a core width of 1.29 

ft) and a core length of 3.6 ft. This balanced the benefits of increasing heat transfer area against 

the negative effects of increasing charge in the headers and tubes. The major dimensions of the 

flattened evaporator are shown in Fig. A.8 below. To fit the cabinet constraint, a bend angle of 

49 degrees was used for the "V" configuration of this coil. 
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Figure A.8 Dimensions of flattened evaporator coil for 4.75 ft2 face area design 

The dimensions listed in Table A.I for the evaporator housing have had clearances for 

headers and other mounting hardware factored in so that the design will have a small degree of 

freedom for mounting position and other unforeseen fittings and hardware that may be necessary. 

The design for the evaporator was not limited to having a "square footprint" as the 

condenser coil was, however the simulations pushed the design in certain directions. The 

number of tubes that minimized the objective function over the range of reasonable face areas 

was around 40 tubes, so this set the core width at around 1.29 ft, within the interior housing 

constraint of 1.3 ft. The interior housing constraints of 1.66 ft on the width and 1.6 ft on the 

height were also binding for this coil design. Increasing the face area beyond 4.75 ft2 increased 
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the "V -coil" height beyond that of the interior housing, so this limited the investigation to face 

areas less than 4.75 fe. 

A.3.2 Effects of evaporator volumetric flow rate variation 

The effects of varying the evaporator fan volumetric flow rate between 200 and 2000 cfm 

are summarized in Fig. A.9. 
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Figure A.9 TEWIIQload vs. VdotaE at the 80/82 condition for 4.75 fe face area design 

A relatively flat region was observed between 800 and 1000 cfm which was due to the 

opposing effects of increasing the flow rate over the coil and the increased power consumption 

associated with the faster fan speeds. The fan power for the evaporator was calculated based on 

the ARI default value of 365 watts per 1000 cfm. This assumption was used because of 

uncertainties in the design and pressure drop of the duct work used for this new system. The 800 

cfm volumetric flow rate was selected as being the optimal point because it would provide a 

lower sensible heat ratio while still reducing the objective function. This 800 cfm volumetric 

flow rate for a face area of 4.75 fe resulted in a face velocity of 2.8 ftls which was 23% less than 
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the ultra-compact evaporator. The sensible heat ratio at the 80/95 condition was therefore 

reduced to around 70%, down from 75% for the 993 efm air flow rate. Simulations were also 

run at the 800 cfm volumetric flow rate for various face areas and the result was that the coils 

that were somewhat larger than the 4.75 ft 2 face area design did not exceed the sensible heat ratio 

at 80/95 as they did previously, however these larger designs also exceed the housing height 

constraint and therefore were not used. 

A.3.3 Evaporator desi~n summary 

Table A.3 compares the minimum-TEWI evaporator geometry to the ultra-compact. 

Table A.3 Minimum-TEWI evaporator design comparison 

Parameter Ultra-compact evaporator Min.-TEWI evaporator 

Port geometry Triangles Triangles 

Number of tubes 45 40 

Vertical tube thickness [in] 0.075 0.075 

Horizontal tube width [in] 0.74 0.74 

Core length eft] 3.06 3.68 

Core width eft] 1.49 1.29 

Face area eft'] 4.52 4.75 

Fin density [fins/ft] 240 240 

Volumetric flow rate [efm] 993 800 

Housing height eft] 1.58 1.60* 

Housing width eft] 1.33 1.66* 

Housing depth eft] 1.5 1.30* 

System charge [Ibm] 3.7 4.4 

TEWIlQload [kgCO/ton-hr] 

system (@80/82) 0.63 0.61 

* (Carrier, 1996) 2-ton system components 
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A.4 Minimum-TEWI system performance summary 

AA.1 System perfonnance at 80/82 

The overall system perfonnance comparisons for the ultra-compact and optimal system 

are summarized in Table AA. 

Table A.4 Perfonnance comparison of minimum-TEWI system at 80/82 

Ultra-compact System Min.-TEWI System 

EER [BtuIW-hr] 13.32 14.26 

Qevap [Btulhr] 31,371 30,534 

Charge [Ibm] 3.7 4A 

Indirect TEWI [kgCOz] 27,370 25,045 

Direct TEWI [kgCOz] 2307 2758 

TEWI [kgCOz] 29,677 27,803 

TEWIIQload [kgCO/ton-hr] 0.63 0.61 

TEWI = Indirect Effect + Direct Effect 

Indirect Effect = UnitPower-RunTime-Life-MassC02 

Where: 

UnitPower = AlC unit power consumed [kWe] 

RunTime = Amount of time unit runs per year [900 hr/yr, Illinois] 

Life = Life of the unit [20 yr] 

(A.3) 

(AA) 

MassC02 = Fraction of mass of CO2 produced per kWhe [kgCO/kWe] 

Where: 

Direct Effect = Charge-LossRate-Life-GWP 

Charge = Total charge of the AlC [kg] 

LossRate = Rate of loss of charge per year (4%/yr) 

Life = Life of the unit [20 yr] 

GWP = Global warming potential R410A [1730 kgCO/kg] 

48 

(A.5) 



Where: 

Qload = Capacity-RunTime-Life 

Capacity = Cooling capacity of AlC [tons] 

RunTime = Amount of time unit runs per year [900 hrlyr, Illinois] 

Life = Life of the unit [20 yr] 

(A6) 

The objective function decreased by a total of 3.8% for the minimum-TEWI condenser 

and evaporator due primarily to the 7% increase in EER (formulation for equations from Bivens, 

1996). For the optimal design, the direct contribution to TEWI (Eq. AS) from the refrigerant 

accounted for only around 10% of the total TEWI. Because the evaporator air-flow rate was 

reduced from 993 to 800 cfm there was also a 2.8% decrease in the optimal system capacity. All 

these results, of course, were calculated using the compressor performance maps for the 

ZP23K3E--PFV compressor (Copeland, 1996), which was not optimized for such a highly 

efficient system having such a low temperature lift. 

Surprisingly, little TEWI reduction was obtained through this optimization. Significant 

increases in energy efficiency were achieved, but at the expense of greater charge inventory. 

A4.2 Sensitivity analysis 

Since the efficiency of the system dominates the overall TEWI, another possibility for 

improving the system's performance would be to focus on the efficiency of the compressor at the 

design condition. The isentropic efficiency of the actual compressor at the 80/82 condition was 

around 0.58, probably because it was optimized for a more typical (higher) pressure ratio. 

Because the scroll compressor is a constant volume-ratio device, this particular unit would incur 

significant penalties for overcompression. After several discussions with the compressor 

manufacturer, it was suggested that a compressor operating around an isentropic efficiency of 0.7 

could be developed for the more efficient microchannel system. In the following analysis, the 

efficiency has been improved to reflect this "ideal" compressor. 

A sensitivity analysis was performed on the minimum-TEWI design to examine what the 

effects of the more efficient compressor would have on the design algorithm detailed previously. 

Since the 16 fe condenser face area was bound l?y the housing constraint, the condenser could 

not be increased beyond that, although the idealized compressor would allow more area if the 

49 



constraints were not binding. The reduced compressor power did not alter the choice for the 

optimal condenser fan air flow rate of 2600 cfm, or optimal subcooling of around 10°F, as was 

found in the previous simulations. Again the evaporator coil was bounded by the housing 

constraints so the face area was kept at 4.75 fe, and the optimal volumetric flow rate stayed the 

same as the compressor with an isentropic efficiency of 0.58. The additional savings for using 

this idealized compressor in the system was around 14.5% over the system with a compressor 

operating at the lower isentropic efficiency. 

The effects of using a fan that was 10% more efficient on the optimal design were 

examined in the next sensitivity analysis. The condenser optimal volumetric flow rate remained 

at 2600 cfm and the optimal subcooling was again 10°F. The savings in the objective function 

for the more efficient fan was around 0.6% over the minimum-TEWI system. 

AA.3 Robustness of the minimum-TEWI system 

Finally the robustness of the final design for the system using the actual compressor (not 

the hypothetical system outlined in the preceding sensitivity analysis) was examined between 

outdoor temperature extremes of 55°F and 115°F, while holding the indoor temperature constant 

at 80°F. The efficiency of the compressor was held at the original values because of 

uncertainties about how the optimized compressor would perform over the spectrum of outdoor 

temperatures. Fig. A.lO reveals the results of these simulation runs on the overall system 

efficiency for both the minimum-TEWI system and the ultra-compact design. 
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Figure A. 10 EER vs Toutdoor for the min.-TEWI system 

A very linear EER relationship was observed for both the minimum-TEWI and ultra-

compact systems. The condenser exit for the minimum-TEWI system became two-phase just at 

the very lowest outdoor temperature of 60°F, whereas the ultra-compact system became two-

phase at around 65°F. Over the whole range of outdoor temperatures, the minimum-TEWI 

system was more efficient than the ultra-compact design. 
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As would be expected, an overall decreasing capacity trend for was observed for both 

designs as the outdoor temperature increased. Because the minimum-TEWI and the ultra-

compact system's condenser exit becomes two-phase at an outdoor temperature of around 60°F 

and 65°F respectively, there is a visible kink in the curve for the transition and then the curve 

rises fairly linearly. The capacity was also higher for the ultra-compact design because of the 

higher air-side volumetric flow rate on the evaporator. 

A.S Component selection 

A.5.1 Evaporator housing 

The housing for a Bryant FK4CNF003 Direct Expansion Fan Coil was selected for the 

indoor unit because its dimensions contained enough clearance for the microchannel heat 

exchanger designed previously. It also had the added advantage of programmable integrated 
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controls and a blower motor (ICM2) that would allow evaporator air flow to be set at prescribed 

rates. The integrated controls allowed this motor to deliver a set cfm independent of the duct 

system's static load. 

Figure A.12 Evaporator housing in horizontal configuration 

Figure A.12 shows how the actual evaporator coil was mounted within the housing. 

Since the housing was mounted horizontally, the coil was mounted in an "arrowhead" 

configuration instead of the "V" configuration suggested in the preceding design exercise. 

Mounting the coil in this "arrowhead" configuration aided in water-shedding and refrigerant 

distribution for the microchannel evaporator. 
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Figure A. 13 Orientation of evaporator coil within housing 

The blower motor was controlled via the 'Easy Select™ Board' that was attached to the 

interior of the evaporator housing (see Fig. A. 14). For the experimental system, however, this 

board was removed from the housing and mounted in the outdoor chamber so that the motor 

control was easily accessible. Another attractive feature of the housing was that it could be 

configured in a horizontal position, which was necessary due to the limited ceiling height of .the 

indoor chamber. A 40 in. duct with an outlet orifice of 98.1 in2 was fitted to the outlet of the 

housing to provide a pressure drop load of around 0.15 in-H20 at an air-flow rate not to exceed 

37.5 SCFM per 1,000 Btulhr of rated capacity. Finally a Sporlan R410A TXV, model Y113-

CBBIZE-2-GA, with a screw adjustment for superheat levels was selected as the microchannel 

system's expansion device. 
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Figure A.14 Easy Select™ Board 

A.5.2 Blower motor 

The blower motor that came with the Bryant housing was the GE Model 

5SME39HL0140, rated at 112 hp at a maximum of 1400 rpm. The integrated controls discussed 

earlier were built into the motor and the control algorithm was based on feedback from the 

motor's torque. The motor was capable of a wide range of volumetric flow rates depending on 

the settings in the 'Easy Select™ Board' as seen in Table A.6. A logarithmic spiral blower 

housing was used in this particular indoor unit. 
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Table A.5 General Electric ECM Programmable motor 

Model 5SME39HL0140 
Phase single 
Volts 1201240 

Horsepower 112 
Speed 0-1400 rpm 

Frequency 60Hz 
Rotation CCW 

Type ECM 
Enclosure open 

Table A.6 'Easy Select™ Board' settings with corresponding volumetric flow rates from Modine 
Calibration 

Settings cfm 
G-Low 723 
G-Med 903 
G-Hi 1232 

YI-24 620 
YI-30 665 

YI-36-Lo 705 
YI-36 795 

YI-42-Lo 826 
YI-42 886 

YI-42-Hi 1005 

A.5.3 Indoor unit calibration 

The following curve details the pressure drop calibration of the final coil, fan, and 

housing combination. The calibration was performed by Modine with the objective of sizing an 

orifice plate and outlet duct combination that would provide approximately 0.15 iwc at the 

blower setting that supplied around 800 acfm to the evaporator coil. The tests were performed at 

an ambient temperature of 60°F. The orifice area was 98.1 in2 and the duct dimensions were 40 

in. long by 19 114 in. high by 11 in. wide. All of these tests were performed with the coil dry. 

Another orifice plate (124.2 in2) was also supplied. It was used to achieve around 0.15 

iwc for a volumetric flow rate around 1,000 acfm. Modine also tested the YI-36 setting with the 

larger orifice, which had a pressure drop that was approximately half that of the smaller orifice 

but the ICM motor was able to hold the volumetric flow rate within 0.5% of the air flow rate 
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observed with the smaller orifice plate, thus confidence in the blower motor's ability to maintain 

a fairly constant volumetric flow rate for different pressure drops was established. 
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Figure A.15 Orifice pressure drop for the FK4C air handler, microchannel evaporator, and outlet 

duct with 98.1 in2 orifice plate from Modine calibration 
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Figure A.16 Orifice pressure drop for the FK4C air handler, microchannel evaporator, and outlet 

duct with 124.2 in2 orifice plate Modine calibration 

A.5.4 Condenser housing 

A custom outdoor housing was designed and constructed by Modine Manufacturing 

Company for our the microchannel condenser coil. The housing has a separate chamber for the 

compressor and the condenser "V" -coil. The supporting structure was built entirely out of 

aluminum. A Sporlan Y113-CBBIZE-2-GA TXV and an ALCO RV4F46 four-way valve were 

also mounted in the outdoor housing to facilitate future heat pump investigations. 
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Figure A.17 Condenser housing framework 

A.5.5 Outdoor fan 

A custom 22 in. bell orifice was constructed by Memphis Metal out of 18 gauge 

galvanized steel for the outdoor housing. A three-phase motor was selected for use in the 

outdoor housing because it could be controlled by a variable speed drive which would be used to 

vary fan speeds in future air-flow optimization investigations. The three-phase motor selected 

for this application was a 113 hp Franklin (model 1331630101). This motor was selected because 

it had a nominal speed of around 1140 rpm, which was a speed high enough that it would allow 

for a significant range of air-flow rate variations (the lowest calibrated speed was 692 rpm, and 

the tests were run at 810 rpm). The three-phase motor was approximately two inches longer than 

stock single-phase motors so it was also necessary to raise the motor mountings on the grille the 

same distance so that the fan would line up with the bell orifice. The fan blade selected for the 

outdoor unit had a 22" diameter, a 15° pitch angle, and three blades. 
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Table A.7 Franklin three-phase motor 

Model 1331630101 
Phase three 
Volts 200-230/460 

Horsepower 1/3 
Speed 1140 rpm 

Frequency 60/3 Hz 
Rotation CCW 

Type three-phase 
Enclosure totally enclosed 

A.5.6 Compressor 

A Copeland scroll compressor, model ZP23K3E--PFV, was chosen because, at the time 

of the system design, it was the compressor that would yield the smallest capacity for our system. 

Compressor maps generated for this model from manufacturer's data were utilized in the design 

of the microchannel heat exchangers, and the compressor was donated by Copeland. 

A.5.7 Outdoor unit calibration 

The following curves detail the calibration of the final coil, fan, and housing combination 

that were performed by Modine Manufacturing Company. The tests were performed at an 

ambient temperature between 95.3 and 97.7°F and the flow rate was varied continuously 

between 2000 and 3600 cfm by using the variable speed drive described previously. 
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B.t Introduction 

Appendix B 
Instrumentation and experimental facility 

This appendix covers in detail the extensive instrumentation that has been utilized in the 

microchannel split system to aid in the acquisition of experimental data for both short and long 

term investigations. In total, 96 thermocouples (4 immersion) were utilized to characterize and 

observe various phenomena in the current and future test conditions. Because the data 

acquisition system was only capable of reading 64 channels at a time, care was given to decide 

which thermocouples were necessary for each test. Two venturis were installed in the liquid and 

discharge lines of the system and were calibrated using a micromotion mass flow meter that was 

later removed from the system. Five pressure transducers were also added to the system for 

accurate pressure measurements. 

Extensive modifications were also made to the room air-conditioner psychrometric room 

facilities (Rugg and Dunn, 1994) in order to accommodate the microchannel split system. An 

aluminum bracket was constructed to elevate the indoor air handler, and baffles were added both 

to the outdoor and indoor room facilities to reduce air stratification as much as possible. The 

indoor room furnace fan was also put on high speed to handle the increased evaporating capacity 

of the split system. 

B.2 Instrumentation 

B.2.1 Pressure transducers 

Several pressure transducers were available for use from previous projects. All of the 

pressure transducers from Table B.l, except the high-side absolute, were selected from those 

currently accessible to the current microchannel split-system project. Manufacturer's data 

confirmed that these transducers would be appropriate for the higher pressure (than the previous 

R22 system in which the transducers were used) R410A system. However, simulation analyses 

revealed that the condensing pressure at an outdoor temperature of around 115°F was around 567 
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psi a which would exceed the limits of both of the available absolute pressure transducers, so a 

new transducer would need to be purchased. The manufacturer was contacted and a Sensotec 

model TJE/0713-22TJA with a maximum pressure of 1000 psia was selected because it was a 

stock product and it easily exceeded the maximum condensing pressures that this system would 

be exposed to. 

Table B.1 Pressure Transducer Information (from Jensen and Dunn, 1996) 

Volume Manufacturer's Accuracy 

Measurement Model (in3) Range % Full Relative psi 

Scale 

High-Side Absolute TJE/0713- 0.17 0-1000 psia ±0.1O ±l.0 

22TJA 

Low-Side Absolute TJE/713-18 0.17 0-500J!Sia ±O.lO ±0.5 

Condenser LW Z/5556-05 0.4 ±10 psid ±0.25 ±O.025 

Discharge-line Venturi LW Z/5556-01 0.4 ±5 psid ±0.25 ±O.O13 

Liquid-line Venturi L\P Z/5556-05 0.4 ±10 psid ±0.25 ±0.025 

The positioning of the refrigerant-side instrumentation is illustrated in Fig. B.1. A ±10 

psid differential pressure transducer spanned between the high-side absolute measurement and 

the exit of the discharge-line venturi. An immersion thermocouple at the exit of the discharge

line venturi, along with the calculated condenser entrance pressure (absolute pressure at 

condenser exit plus ±10 psid differential across the condenser), defined the condenser entrance 

state point just before the condenser entrance (also including the heat transfer and pressure drop 

of the ALCO -ay valve). The high-side absolute pressure transducer was placed at the entrance 

of the liquid-line venturi (or at the exit of the condenser after the condenser header tubes and the 

heating mode TXV) to allow for the measurement of the subcooled pressure and a dedicated 

refrigerant-side thermocouple was also placed there to characterize the refrigerant state pint at 

that location. However, it should be noted that the previous two state points were not at the 

immediate entrance or exit of the heat exchanger so five heavily insulated surface thermocouples 

were attached to both the inlet and outlet headers to characterize those conditions. The pressure 

drop across the liquid line was calculated across a wide range of anticipated extreme operating 
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conditions using the system simulation model, and it was found to be, at most, around 1.3 psid, 

which was within the ±O.9 of error associated with the immersion thermocouple that would be at 

the end of the liquid line. Thus, it was decided that a calculated adjustment to the pressure 

measured at the exit of the liquid-line venturi would be adequate for setting down the evaporator 

entrance properties, and that a differential pressure transducer across the liquid line would not be 

necessary. However, a pressure tap was installed and capped at the end of the liquid line in case 

of future need. The immersion thermocouple was then mounted 1.5 in. (to avoid bending) in a 

3/8 in. "T" just 1 in. upstream from the pressure tap. Around 10 in. of liquid line after the 

immersion thermocouple and before the TXV was tightly wrapped in insulation to prevent any 

additional heat transfer and to guarantee that the immersion thermocouple accurately measured 

the refrigerant temperature just prior to the TXV. Because the inlet header feeding tubes'had 

ID's of 0.1275 inches, immersion thermocouples were not an option for measuring the 

evaporator inlet temperature so a surface thermocouple placed in the middle of 8.5 in. of 

insulated length was utilized, so this temperature, along with the inlet enthalpy, allowed for the 

calculation of the inlet quality. This thermocouple also defined the entrance evaporating 

pressure, which could be confirmed by the three insulated surface thermocouples mounted on the 

header. A 500 psia max. absolute pressure transducer and an immersion thermocouple were 

utilized at the entrance to the suction line, which facilitated an evaporator pressure drop 

calculation and defined the evaporator exit conditions. The pressure tap was installed with a 0.5 

in. section of undisturbed flow in the location where the suction line exits from the air handler. 

The immersion thermocouple was then mounted upstream in a 3/4 in. "T" and was extended 

about 1.5 in. into the suction line to a point downstream of the pressure tap. Finally, a heavily 

insulated surface thermocouple was installed prior to the compressor entrance. 
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B.2.2 Venturis 

Three different venturis were available from the RAC project: one each for the discharge, 

liquid, and suction lines. Because of oil clogging in the suction-line venturi and differential 

pressure transducer, it was decided to install venturis only on the discharge and liquid lines 

(Jensen and Dunn, 1996). The simulated condenser exit transitioned to two-phase under certain 

extreme indoor and outdoor conditions (range of 1151110 to 80170) which would cause the liquid 

line venturi to lose accuracy in mass flow measurement. However, it would provide a nice 

secondary mass flow measurement under normal operating conditions to compare to the 

discharge-line venturi, and to monitor charge migration under certain off-cycle conditions. 

Table B.2 Venturi dimensional parameters for available venturis 

Size Model Inlet diam [in] Throatdiam ~ [DtJDi] 
[in] 

Small V050095-BSW 0.266 0.097 0.364 

Medium V060175-BSW 0.316 0.175 0.555 

Large V100258-BSW 0.564 0.259 0.460 

From the three available venturis, the small one was used in the liquid line of the room air 

conditioner, the medium was used on the discharge line, and, finally, the largest was used on the 

suction line. Because the room air-conditioning system used R22 and had a smaller capacity, 

some analysis was required to decide whether these venturis could be applied to the current 2.5 

ton system running R41OA. 

The primary equation used for converting the pressure drop across the venturi to an actual 

mass flow rate (which was thoroughly discussed in Jensen and Dunn, 1996) was Eq. B.l. For 

ideal, inviscid flow, the parameters Cd' Faj , and Yj would all equal unity. 

Where: 

Cd = Discharge coefficient [-], calibrated in situ 

Faj = Thermal expansion coefficient [-] 
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Yi = Inlet adiabatic gas expo factor [-], ref. dependent 

{IT 
E = Velocity of approach factor [-] = ~1=7f" 
~ = Area reduction ratio [-] = DlDi 

Ai = Inlet area [in2] = nDi2 
4 

~p = venturi diff. pressure [psid] = Pi - Pt 

PI = inlet density [Ibm/in3] 

gc = gravitational const. [Ibm-inllbf-hI\2] 

= 32.174*12*36001\2 

The discharge coefficients were dependent on the inlet Reynolds number. In order to get 

an accurate measurement of mass flow to verify the discharge coefficients, a MicroMotion 

(sensor model DS025S119, and transmitter model RFT97121RRU) mass flow meter was 

temporarily added to the system and each venturi was calibrated. Figures B.3 and B.4 show the 

calibrated discharge coefficients for discharge-line and liquid-line venturis. 
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Figure B.2 Discharge-line venturi calibration 
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Fig. B.3 shows a calibrated Cd of 0.780, which falls significantly below the previously 

calibrated value of 0.937 (Jensen and Dunn, 1996). The reason for this discrepancy probably 

resulted from the difficulties involved with installing and mounting the discharge-line venturi. 

The pressure taps into the venturi were re-soldered numerous time due to leaks observed, which 

may have introduced solder into the venturi's throat thus changing its dimensions and giving an 

erroneous discharge coefficient. Fortunately, a liquid-line venturi was also installed and was 

used for the primary mass flow measurements. 
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Figure B.3 Liquid-line venturi calibration 

The liquid-line venturi calibration was identical to the 0.960 Jensen and Dunn observed 

in his calibration of the venturi in an R22 window room air-conditioner system, so confidence in 

this venturi was established. 

The thermal expansion coefficient is dependent on: the area reduction ratio, ~, the 

thermal expansion coefficients of the venturi materials, the inlet temperature, and a reference 

temperature as shown in Eq. B.2. For the simulations performed, Faj was always very close to 
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unity (see Table B.3 below). TO was the reference temperature for the diameter measurements of 

the venturis. 

Fai = 1 + [ ( 
(B.2) 

Finally, for converting venturi pressure drops to mass flow rates, the inlet adiabatic gas 

expansion factor must be determined. Yj is dependent on: the specific heat ratios (k) of the 

refrigerant at the inlet, the pressure ratio (Rp) of the venturi, and (3 (Eq. B.3). 

[(1_~4). (kik~l)] .RP[tl.(I-RP[¥.l) 

(1 - (3 4 . Rp [ :j ] ) . (1 - Rp) 
(B.3) 

After evaluating the refrigerant specific heat ratio data using the simulation temperatures 

and pressures for each venturi inlet, Yj was re-calculated for the R410A discharge line. Again, 

for the range of 115/110 to 80170 indoor and outdoor temperatures, Yj was insensitive to changes 

in kj so a linear curve fit was made as a function of the pressure ratio to facilitate rapid data 

reduction. Yj was, by definition, 1 for the liquid line (Jensen and Dunn, 1996). 

Yj,disc = Rp*0.41973432 + 0.58027256 (B.4) 

The mass flow rates, temperatures, and pressures from the extreme range of indoor and 

outdoor conditions was then fed into Eq. B.l to solve for the pressure drop across venturis and it 

was revealed that the original discharge venturi (the medium one) would be seeing a differential 

pressure as high as 15 psid inside the new 2.5 ton, R410A system. Since no suction-line venturi 

would be installed in this application, the largest venturi could be used in the discharge line. 

This reduced the pressure drop to well below 5 psid (see Table B.3 below). This allowed the use 

of an available differential pressure transducer. The liquid-line venturi (the smallest) observed 
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nearly a 9 psid differential pressure drop before transitioning to two-phase at the 115°F 

conditions, which required a pressure transducer with a higher differential range than what was 

used previously. Using the medium venturi in the liquid line resulted in a reduction of pressure 

drop to less than 1 psid which would require the purchase of a smaller differential pressure 

transducer. Fig. B.2 shows the locations of each pressure transducer and venturi. 

Table B.3 Venturi simulation analyses 

Dry Mass Redis Reliq F~.dis Fa. Ii Y di Y li . 
~Pdis ~Pliq conditions flow 

J, q J, S J, q 

[OF] [lbmlhr] [-] [-] [-] [-] [-] [-] [psid] [psid] 
115/110 520.1 275,081 - 1.002 - 0.9977 - 2.528 -

115/95 506.1 294,850 - 1.002 - 0.997 - 2.82 -

115/85 498.8 309,984 - 1.001 - 0.9962 - 3.081 . 
95/95 399.9 221,218 72,899 1.002 1 0.998 1 1.854 8.755 

95175 395.7 254,586 67,370 1.001 1 0.9966 1 2.329 8.188 

80/95 335.9 176,415 60,454 1.002 1 0.9985 1 1.35 6.124 

80/82 333.9 196,353 56,875 1.002 1 0.9979 1 1.571 5.837 

80170 332.1 215,068 53,677 1.001 0.9999 0.9971 1 1.816 5.612 

B.2.3 Immersion thermocouples 

Four immersion, type-T, thermocouples were used for refrigerant-side temperature 

measurements. Each thermocouple had a stainless steel sheath that had an outer diameter of 1116 

in. with an overall length of 6 in. The type-T thermocouples had a maximum temperature of 

632°F and a manufacturer's accuracy of ±0.9°F. Care was taken on installation to insert the 

stainless steel thermocouple sheath 1.5 inches into the tube, and to keep it away from the tube 

wall in order to avoid conduction errors. Fig. B.6 illustrates the installation method for the 

immersion thermocouples. 
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Figure B.4 Installation Method for Refrigerant-Side Thermocouples 

(from Jensen and Dunn, 1996) 

The same methodology used by Jensen and Dunn (1996) was followed for this 

microchannel split-system application. All of the immersion thermocouples were installed in the 

above manner in place of a pre-existing elbow near the desired temperature measurement 

location. Every connection was soldered, including the threaded connection between the 

Gyrolock fitting and the adapter, excepting the Gyrolock nut-to-thermocouple connection which 

facilitated the easy replacement of the immersion thermocouples. As can be seen in Fig. B.2 

previously, the thermocouples were placed at the inlets and outlets of each of the four main 

components. 

B.2.4 Surface thermocouples 

Teflon coated 30 gauge Type-T thermocouple wires (from the same roll) were utilized·for 

all of the external temperature measurement applications. The accuracy for the surface 

thermocouples was also ±0.9°F. 
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Table B.4 Thermocouple Descriptions 

T.C.# Location Length 
[ft] 

1 STC suction line 9 
2 STC evap. liquid header feeding tube 9 
3 STC evap. coil unfinned, middle MC, 3 series: closest to fins 9 
4 STC evap. coil unfinned, middle MC, 3 series: middle 9 
5 STC evap. coil unfinned, middle MC, 3 series: closest to header 8 
6 STC evap coil, entrance header, 3 series: left 8 
7 STC evap coil, entrance header, 3 series: middle 8 
8 STC evap coil, entrance header, 3 series: right 8 
9 ITC liquid line exit (indoor room) 5 
10 ITC suction line (indoor room) 5 
11 STC evap coil, exit header, middle (20th tube from left) 8 
12 ITC liquid line entrance (outdoor room) 14* 
13 ITC discharge line (outdoor room) 14* 
14 STC compressor, middle of shell 12 
15 STC suction line, beneith ALCO valve 12 
16 STC cond inlet header 5 series: closest to compressor 12 
17 STC cond inlet header 5 series: 2nd closest to compo 12 
18 STC cond inlet header 5 series: middle 12 
19 STC cond inlet header 5 series: 2nd closest to wall 12 
20 STC cond inlet header 5 series: closest to wall 12 
21 STC cond exit header 5 series: closest to compressor 14* 
22 STC cond exit header 5 series: 2nd closest to compo 14* 
23 STC cond exit header 5series: middle 14* 
24 STC cond exit header 5 series: 2nd closest to wall 14* 
25 STC cond exit header 5 series: closest to wall 12 
26 ASTC cond air in 1, (looking at coil, 3X3 grid) upper right comer 12 
27 ASTC cond air in 1, upper center 12 
28 ASTC cond air in 1, upper left comer 14* 
29 ASTC cond air.in 1, middle right 12 
30 ASTC cond air in 1, middle center 14* 
31 ASTC cond air in 1, middle left 15 
32 ASTC cond air in 1, lower right comer 15 
33 ASTC cond air in 1, lower center 15 
34 ASTC cond air in 1, lower left comer 15 
35 ASTC cond air in 2, (looking at coil, 3X3 grid) upper left comer 15 
36 ASTC cond air in 2, upper center 15 
37 ASTC cond air in 2, upper right comer 15 
38 ASTC cond air in 2, middle left 15 
39 ASTC cond air in 2, middle center 15 
40 ASTC cond air in 2, middle right 15 
41 ASTC cond air in 2, lower left comer 15 
42 ASTC cond air in 2, lower center 15 
43 ASTC cond air in 2, lower right comer 17* 
44 ASTC cond exit, west, outer circle (looking from top, SW = comp) 12 
45 ASTC cond exit, west, inner circle (closest to motor) 12 
46 ASTC cond exit, north, outer circle 13 
47 ASTC cond exit, north, inner circle 14* 
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48 ASTC cond exit, east, outer circle 14* 
49 ASTC cond exit, east, inner circle 14* 
50 STC evap, unfinned MC, 2nd tube from left (looking into coil) 8 
51 STC evap, unfinned MC, 4th tube from left 8 
52 STC evap, unfinned MC, 6th tube from left 8 
53 STC evap, unfinned MC, 8th tube from left 8 
54 STC evap, unfinned MC, 10th tube from left 8 
55 STC evap, unfinned MC, 12th tube from left 8 
56 STC evap, unfinned MC, 14th tube from left 8 
57 STC evap, unfinned MC, 16th tube from left 8 
58 STC evap, un finned MC, 18th tube from left 8 
59 STC evap, unfinned MC, 22nd tube from left 8 
60 STC evap, unfinned MC, 24th tube from left 8 
61 STC evap, unfinned MC, 26th tube from left 8 
62 STC evap, unfinned MC, 28th tube from left 8 
63 STC evap, unfinned MC, 30th tube from left 8 
64 STC evap, unfinned MC, 32nd tube from left 7.5 
65 STC evap, unfinned MC, 34th tube from left 7.5 
66 STC evap, unfinned MC, 36th tube from left 75 
67 STC evap, unfinned MC, 38th tube from left 7.5 
68 STC evap, un finned MC, 40th tube from left 7.5 
69 ASTC evap inlet, 1st row (top), left comer (looking at filter) 8 
70 ASTC evap inlet, 1 st row, 2nd from left 8 
71 ASTC evap inlet, 1 st row, 3rd from left 8 
72 ASTC evap inlet, 1st row, 4th from left 8 
73 ASTC evap inlet, 2nd row, leftmost 8 
74 ASTC evap inlet, 2nd row, 2nd from left 8 
75 ASTC evap inlet, 2nd row, 3rd from left 8 
76 ASTC evap inlet, 2nd row, 4th from left 8 
77 ASTC evap inlet, 3rd row, leftmost 8 
78 ASTC evap inlet, 3rd row, 2nd from left 8 
79 ASTC evap inlet, 3rd row, 3rd from left 8 
80 ASTC evap inlet, 3rd row, 4th from left 8 
81 ASTC evap inlet, 4th row (bottom), leftmost 8 
82 ASTC evap inlet, 4th row, 2nd from left 8 
83 ASTC evap inlet, 4th row, 3rd from left 8 
84 ASTC evap inlet, 4th row, 4th from left 8 
85 ASTC evap exit, (looking at duct, 3X3 grid) upper left comer 7.5 
86 ASTC evap exit, upper center 7.5 
87 ASTC evap exit, upper right comer 7.5 
88 ASTC evap exit, middle left 7.5 
89 ASTC evap exit, middle center 7.5 
90 ASTC evap exit, middle right 7.5 
91 ASTC evap exit, lower left 7.5 
92 ASTC evap exit, lower center 7.5 
93 ASTC evap exit, lower right 7.5 
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94 ASTC cond exit, south, outer circle 
95 ASTC cond exit, south, inner circle 
96 STC middle of evap exit header 

STC: surface thermocouple 
ITC: immersion thermocouple 
ASTC: air-side thermocouple 
cond air in 1: air grid below inlet header (closest to wall) 
cond air in 2: air grid below exit header (closest to door) 
*: 2 ft. extension included 

Figure B.5 Evaporator refrigerant inlet surface thermocouples 

Figure B.6 Evaporator unfinned section surface thermocouples 
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Figure B.7 Evaporator air-side outlet thermocouples 

Figure B.8 Evaporator air-side outlet thermocouples 
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Figure B.9 Condenser inlet header surface thermocouples 

Figure B.10 Condenser outlet header surface thermocouples 

Figure B .11 Condenser left air-side inlet thermocouples 
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Figure B.12 Condenser right air-side inlet thermocouples 

Figure B.13 Condenser air-side outlet thermocouples 
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B.3 Facility 

B.3.1 Indoor room furnace settings 

The indoor room was designed to accommodate room air conditioners ranging in sizes 

from 0.5 to 2.5 tons (Fleming and Dunn, 1993). The furnace selected for the facility had a 

maximum energy input of 10 kW and had low, medium, and high settings that could be adjusted 

as needed for each system tested (Rugg and Dunn, 1994). Because the microchannel split

system was at the high end of the indoor room's capabilities, the high furnace fan speed was 

selected which provided a volumetric flow rate of around 1860 cfm, to minimize the 

nonuniformities introduced by the approximately 800 cfm flow over the split-system's indoor 

coil. 

B.3.2 Indoor room layout and modifications 

Because of the space limitations in the indoor room facility, the evaporator housing was 

mounted horizontally. In order to reduce vibrations and mount the housing securely, an 

aluminum bracket was designed and built into the structure of the indoor room. Figure B.16 

shows the extreme limitations in floor space, which required the housing to be elevated in order 

for access to all portions of the indoor room. 
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Figure B .15 shows the basic dimensions of the mounting bracket and the 

clearances for major portions of the indoor room that may need to be accessed such as the 

thermocouple junction bozo Also having the housing mounted in this fashion allows for the easy 

opening of the housing's access panel through the plug opening in the test facility's outdoor 

room. 
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Figure B.15 Side view of air housing and unistrut mounting bracket 

80 

14" 



References 

Rugg, S.M. and W.E. Dunn, "Design, Testing, and Validation of a Room Air Conditioner Test 
Facility." University of Illinois at Urbana-Champaign, ACRC TR-59, 1994. 

Jensen, A.C. and W.E. Dunn, "Refrigerant-Side Instrumentation in Room Air Conditioners." 
University of Illinois at Urbana-Champaign, ACRC TR-101, 1996. 

Fleming, J.E. and W.E. Dunn, "Design of the Psychrometric Calorimeter Chamber of a Room 
Air Conditioner Test Facility." University of Illinois at Urbana-Champaign, ACRC TR-44, 
1993. 

81 



C.l Introduction 

Appendix C 

ACMCHX model documentation 

The air-conditioner with microchannel heat exchangers, or, ACMCHX model was the 

hybridization of two ACRC models: RACMOD, a room air-conditioner system model (Bridges 

and Bullard, 1995), and the microchannel condenser submodel developed ~y Heun and Dunn 

(1996a, 1996b). RACMOD provided the overall foundation for the ACMCHX system model, 

while Heun' s condenser submodel provided the key geometry equations and some references for 

the refrigerant-side correlations. This appendix will describe the fundamental equations and 

correlations that are used by ACMCHX and are different from those utilized in the RACMOD 

simulation model. The structure and solver of RACMOD outlined in appendices D, I, J, and K 

of Bridges' thesis remain intact and so will not be reiterated in this appendix. 

C.2 Overall conductances 

The evaporator conductance is split into two separate zones: the two-phase region and the 

superheated region. The subroutine used in ACMCHX for the evaporator overall conductance 

calculation was USEV APMCHX which is included (along with all of the other microchannel 

specific functions and subroutines) in the MCHX.f file. The equations used for these regions are 

outlined below: 

1 
U 2phE = -----

R air + R r2phE 
(C.l) 

1 
U supE = -----

R air + R rsupE 
(C.2) 

These equations are the same formulation that Heun used. The tube resistance does not 

appear in the conductance equations because it was accounted for in the refrigerant-side 

resistance equation as a web efficiency. 

The air-side resistance was calculated using the following equation: 

82 



1 
Rair = -----

CF . TJ air . hair 
(C.3) 

Where CF is the coil factor (ratio of the total air-side area to the total refrigerant-side 

area), TJair is the air-side surface efficiency, and hair is the air-side heat transfer coefficient. The 

details of calculating these values will be discussed in more detail later. 

Equation C.4 shows the general form of the equation used to calculate the refrigerant-side 

resistance. 

1 
Rref=----

TJref· href 
(C.4) 

TJref is simply the efficiency of the web between adjacent microchannel ports and href is the 

appropriate refrigerant-side heat transfer coefficient for the given region. 

Finally, the condenser conductances were calculated in the USCONDMCHX subroutine 

in the MCHX.f file of the ACMCHX model. The condenser was split into three separate zones: 

the superheat region, the two-phase region, and finally the subcooled exit region. The equations 

for these conductances follow: 

1 
U supC = -----

Rair + RrsupC 
(C.5) 

1 
U 2phC = -----

Rair + R r2phC 
(C.6) 

1 
U subC = -----

Rair + RrsubC 
(C.7) 

C.3 Heat exchanger geometry 

Because the microchannel heat exchangers have the capability of utilizing various port 

shapes, the ACMCHX model is capable of modeling four different port geometries: triangular 

ports, circular ports, rectangular ports, and finally trapezoidal ports. The majority of the 

geometry calculations were taken from Heun and Dunn (1995), with some added corrections and 
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refinements that enable greater flexibility in selecting the port shape (e.g. isosceles triangular 

ports versus equilateral ports or rectangular ports versus square ports). 

Because of the variety of port geometries, two to four parameters are necessary to 

characterize the geometry for other geometry calculations. These parameters are assigned 

different values depending on the port geometry selected. Table C.I lists these parameters and 

how they relate to the port geometries. 

Table C.l Port geometry parameters 

Port Short Program Description Units 
geometry form form 

Hydraulic diameter 
All Dh Dh_t [ft] 

A Dh=4. port 
P port 

Triangular 8 geodes 
Repeated ang~s triangle 

[deg.] 

~ 
Port height/port base 

b ~ Rectangular - geodes [ ] 
a 

I I b 

~a~T 
Circular nla geodes Not used [ ] 

Trapezoidal 8 = repeated angle in trapezoid 

8 geodes 
h = height of trapezoid 

[deg.] a = length of top of trapezoid 

h geodes2 8a~ [ft] 

~ a geodes3 [ft] 

1 ~ 
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These port geometry parameters are fed into both the USEV APMCHX and 

USCONDMCHX subroutines where they are then entered into the MCHXgeom subroutine 

where the remaining geometry psuedoconstants are calculated. 

The majority of calculations and correlations in the literature are provided for circular 

geometries only, which presents a problem with microchannel heat exchangers since they can be 

any number of shapes. This requires that the non-circular ports be converted into circular 

equivalent diameters. ACMCHX requires three separate (and different) diameters for use in 

geometry calculations and correlations (Heun and Dunn, 1995). The hydraulic diameter, Dh , 

defined as four times the area of the port divided by the perimeter of the port, is needed to define 

the port geometry and is used in the calculation of the subsequent geometries. The next 

diameter, is the equivalent diameter, Deq' and it is defined as the diameter of a circle that would 

give the identical free flow area as the non-circular geometry. The equivalent diameter is used in 

the geometry calculations for volume, mass flux, etc. The last diameter is the effective diameter, 

Deff, which is defined as the average of the inscribed and circumscribed circles for the given port 

geometry. The effective diameter is used in heat transfer and pressure drop correlations. 

The previous port parameters are used to calculate the equivalent and effective diameters 

which are different for each port geometry. The equations for calculating the equivalent 

diameter are listed below. 

Deq = kshape· Dh (C.8) 
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Table e.2 kshape equations 

Port Program Description Units 
geometry form 

Triangular kshape kshape = _1_. [ 1 + cos (e)] . [ sin (e)] 0.5 [ ] 

.fit sin (e) ros(e) 

b 
1+-

Rectangular kshape a 
kshape= R [ ] 

Circular kshape kshape =1 [ ] 

v/oo r a+ ~:(e) 1 Trapezoidal kshape [ ] 

kshape -
Dh 

Kshape is just the ratio of the equivalent diameter to the hydraulic diameter. The 

effective diameter is calculated using a similar ratio, DeffRat, which is simply the ratio of the 

effective diameter to the hydraulic diameter. Most manufacturers use the hydraulic diameter to 

characterize their microchannel ports, hence, the reason for formulating these equations as 

function of the hydraulic diameter. Equation e.13 shows the calculation for the effective 

diameter. 

D eff = DeffRat . Dh 

(e.9) 
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Port 
geometry 

Triangular 

Rectangular 

Circular 

Trapezoidal 

Program 
form 

DeffRat 

Dcircs 

Dinsc 

DeffRat 

DeffRat 

DeffRat 

Dcircs 

Dinsc 

phi 

Table C.3 DeffRat equations 

Description 

where: 
Dh 

sin (8) 
Dcircs = (1 + cos (8))· [ 1t] 

cos 2·8--
2 

D" = (1 + cos (8))· Dh . tan (0.5·8) 
lOse sin (8) 

Where: 

11 b [ b] DeffRat= 2/3 +_._. 2--
24 a a 

DeffRat =1 

DeffRat = 0.5 . [D eiresD+
h 

Dinse ] 

a+2· __ h_ 
tan (8) 

Deircs =-----
cos (8 - </» 

D" = [a + 2 . h ]. tan (0.5 . 8) 
lOse tan (8) 

( 
a h ). cos (e) - cos (1t- e) 

a + 2 .----,-,-
tan (e) 

q,=arctan 

sin(1t- e)- ( a h ). sin (e) 
a+2"--

tan (e) 
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[ ] 

[ft] 

[ft] 

[ ] 

[ ] 

[ ] 

[ft] 

[ft] 

[rad] 



The effective diameter is defined as the average of the inscribed and circumscribed 

circles about a certain port geometry. For the rectangular geometry, it is easy enough to reduce 

the equations for calculating DeffRat by canceling out similar terms, but for the triangular and 

trapezoidal geometries, the caclulations are considerably more complicated and contain a great 

deal of geometric manipulations. 

The geometry equation for Lweb calculates the length of the web exposed to the 

refrigerant and is used in the web efficiency calculation in the overall conductance equations. 

Table C.4 Lweb equations 

Port Program Description Units 
geometry form 

Triangular Lweb Lweb =0.5· (1 + cos (8)) . Dh [ft] 
sin (8) . cos(8) 

Rectangular Lweb 
Lweb=Dh· r 1: : ] [ft] 

Circular Lweb [ft] 
Lweb=Dh· 2 / 3 

Trapezoidal Lweb Lweb= 
h [ft] 

sin (8) 

The next two port geometry dependent equations calculate H, the horizontal tube width, 

and bl , the thickness of the tube. Figure C.l shows these and other important microchannel 

geometry parameters. 
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Figure C.l Important geometry parameters for rnicrochannel heat exchangers 

The horizontal tube distance, H, is calculated as follows: 
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Table C.5 Horizontal tube distance equations 

Port Program Description Units 
geometry form 

Triangular Htubedist 
H = 2 ° twall + [NPorts + 1 J ° Dh ° [ 1 + cos (~) J + (Nports _ 1) ° tweb 

2 sine!:)~ sine!:)~ [ft] 

[b j Rectangular Htubedist -+ 1 [ft] 
H = 2 ° twall + (Nports -1) ° tweb + Nports ° Dh ° a 

2 boa 

Circular Htubedist [ft] 
H = 2 ° twall + (Nports -1) ° tweb + Nports ° Dh 

Trapezoidal Htubedist H = 2 ° twall+ ° 2" a+ 2 "-- + (Nports- 1)"--[NPortS+ 1] [ H ] tWID 
2 tan (e) sin (e) 

[ft] 

The tube thickness, bt , is calculated as follows: 

Table C.6 Tube thickness equations 

Port Program Description Units 
geometry form 

Triangular b_t b t = 2 ° twall + Dh ° [1 + cos (8)] [ft] 
2 cos (8) 

Rectangular b_t 
b t = ~h ° [~ + 1] + 2 ° twall 

[ft] 

Circular b_t 
b t = D h + 2 ° twall 

[ft] 

Trapezoidal b_t b t = 2 ° twall + h [ft] 
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The last port geometry dependent equation calculates the ratio of the microchannel web 

surface area to the total refrigerant-side surface area. This calculation is used later in the web 

efficiency calculation for the refrigerant-side resistance. 

Table C.7 Web surface area to total refrigerant-side surface area equations 

Port Program Description Units 
geometry form 

Triangular SweboverSref Sweb _ 1 [ ] ---
Sref 1 + cos (8) 

b 
-

Rectangular SweboverSref Sweb _ a [ ] ---
Sref b 

1 +-
a 

Circular SweboverSref [ ] 
Sweb = 1 /2 
Sref 

2· 
h 

Trapezoidal SweboverSref Sweb _ sin (8) [ ] ---
Sref 2· a+ 2· 

h 
+ 2· 

h 

tan (8) sin (8) 

The following calculations are general equations that apply to all port geometries. V is 

the vertical tube distance and it defines a vertical height that an individual microchannel tube and 

its associated fin takes up. 

V = Hfin + b t 

(C.lO) 
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The remaining equations calculate the various air-side and refrigerant-side areas and 

there associated ratios. The microchannel heat exchanger frontal area is calculated using the 

vertical tube spacing, the number of microchannel tubes, Ntubes, and the header to header 

length, Tubelen. 

Afront = Ntubes . V . Tubelen 

(C.ll) 

The refrigerant-side area is calculated by the following equation: 

Aref= Nports . Ntubes' Tubelen . 1t. klilape 2 . Dh 
(C.12) 

CF, the ratio of the total air-side surface area to the total refrigerant-side area, is 

calculated as follows: 

CF = satp 
srtp 

(C. 13) 

Where Satp is the air-side surface density and SrtP is the refrigerant-side surface 

density, and they are calculated as follows: 

2 T b I [ (Ntubes + 1) . FinDns . Hfin . H + Ntubes . (bt + H)] 
s atp = . u e en . 

Vol ext 

FinDns is the fin density and it has units of fins per ft 

VolExt is the external heat exchanger volume and it has units of fe 

_ 1t . Nports . Ntubes . kshape 2 . Dh . Tubelen 
srtp - --=-----------=------

Volext 
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Volext = v . Ntubes . H . Tubelen 

(C.16) 

The total air-side surface area is then simply: 

Aair = CF . Aref 

(C.17) 

The ratio of Sfin' the total fin surface area, to Sair' the total air-side surface area including 

both the tube and fin surfaces, is: 

Sfin _ 1 
-- - ------;::------------~ 

1 + Ntubes. [ b t + H ] 
(Ntubes + 1) . FinDns . Hfin . H 

Sair 

(C.18) 

The air-side free flow area ratio, cr, is used in calculating the air-side free flow area as 

well as the air-side hydraulic diameter. 

cr= (Ntubes + 1). [ 1-FinDns· Finth j 
Ntubes· (1 +~) 

Hfin 

Where Finth is the fin thickness with units of ft 

The free flow air-side area is calculated by: 

Aairff = cr· Afront 

Finally, the air-side hydraulic diameter is calculated as follows: 
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0' 
Dhair =4 ._-

satp 

C.4 Air-side correlations 

C.4.1 Air-side heat transfer correlation 

(C.21) 

The air-side heat transfer coefficient was calculated internally within the RAIRMCHX 

function that was called from both the USCONDAIR and USEV APAIR overall conductance 

subroutines. The correlation selected for the model was proposed by Chang and Wang (1997). 

It was selected because it covered the widest array of geometries and was one of the most 

recently published louvered fin air-side heat transfer coefficient correlations. Future work ~ay 

investigate the effectiveness of other correlations. 

The Chang and Wang correlation was defined in terms of the dimensionless heat transfer 

coefficient, the j-factor: 

J - ReWl -0049. ouv • • . [81 ] 0.27 [ I ]-0.14 [ Hfin ]-0029 
- ouv --

90 FinDns . Wlouv Wlouv 

Where: 

. [ H ]-0023. [ HIOUV] 0068. [ V ]-0028. [ Finth ]-0005 

Wlouv Wlouv Wlouv Wlouv 

j = Colburn j-factor dimensionless air-side heat transfer coefficient 

(jH in ACMCHX) [ ] 

Wlouv = louver width (Hlouvdist in ACMCHX) [ft] 

ReWIOUV = Reynolds number based on the louver width 

(Ren in ACMCHX) [ ] 

810uv = louver angle (ThetaLo in ACMCHX) [deg.] 

FinDns = fin density (FinDns in ACMCHX) [fins per ft] 

Hfin = fin height (Hfin in ACMCHX) [ft] 

H = horizontal tube distance, hence horizontal fin distance 

94 

(C.22) 



Restrictions: 

(htubedist in ACMCHX) [ft] 

Hlouv = vertical height of the louver (Hlouv in ACMCHX) [ft] 

V = vertical tube distance (vtubedist in ACMCHX) [ft] 

Finth = fin thickness (Finth in ACMCHX) [ft] 

100 < ReWlouv < 3000 

C.4.2 Air-side pressure drop correlation 

The air-side pressure drop was calculated within the function dpairMCHX. The friction 

factor correlation used in this function was from Davenport (1983). Again there is a significant 

amount of work that can be done in investigating alternative correlations in the future. 

Davenport's correlation is outlined below: 

f = 0.494' ReWlouv -0.39. (0.5 . tan (8louv ))-0.33. . . (Hfm . 304.8)0.46 [ HIOUV]1.1 . 
Hfm 

Restrictions: 

(C.23) 

1000 < ReDhair < 4000, where Re is the Reynolds number based on the air

side hydraulic diameter (this is not the same Reynolds number as is used 

in the correlation, which is based on the louver pitch of the fins) 

Also note: the fin height dimension must be in mm in order for the 

correlation to give the correct friction factor, hence the reason for 304.8 

conversion factor 
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c.s Refrigerant-side correlations 

C.5.1 Single-phase heat transfer correlations 

The single-phase refrigerant-side heat transfer coefficient correlation was taken from 

Heun and Dunn's model (1995). The coefficient was correlated in the nondimensional Nu, or 

the Nusselt number: 

Where: 

Nutot = (NullO + term -5) 0.1 

ex [2200 - Re] 
p 365 1 

term = +----
Nul· Nul Nut· Nut 

0.079.~ . Re . PI 

Nut = 6.3 + -------
(1 + Pr(4/ 5»)(5/ 6) 

Nul is the laminar constant heat flux boundary condition 

= 3.00 for triangular ports 

= 3.61 for rectangular ports 

= 4.36 for circular ports 

= 3.00 for trapezoidal ports 

C.5.2 Two-phase heat transfer correlations 

(C.24) 

(C.25) 

(C.26) 

The same two-phase heat transfer correlations (with the appropriate microchannel port 

diameter correction) are used in ACMCHX as those that were utilized in RACMOD: Dobson's 

correlation for condensing heat transfer (1994) and Wattlet's correlation for evaporating heat 

transfer (1998). The implementation of these two correlations are outlined in Bridge's thesis and 

therefore will not be outlined here for the sake of brevity. 
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C.5.3 Pressure drop correlations 

Again, the same correlations as used in RACMOD were implemented in ACMCHX for 

both the single-phase and two-phase refrigerant-side pressure drop: the Souza correlation for 

two-phase flow (1995) and the Colebrook correlation for single-phase flow (1939). 

C.5.4 Charge inventory correlations 

ACMCHX uses the same void fraction correlation as RACMOD which was the 

Hughmark correlation (Rice, 1987). 

C.6 Surface efficiency 

C.6.1 Air-side surface efficiency 

The surface efficiency corrects the heat transfer for how efficiently the fin surface 

conducts the heat to or from the microchannel tube. The surface efficiency is simply an area-

weighted fin efficiency defined by: 

Sfin ( ) 11 air = 1 - -_. 1 -l1fin 
Sair 

(C.27) 

Where: 

tanh(mL) 
11 fin = mL 

(C.28) 

mL= 2. hair Hfin 
Kfin . Finth 2 

(C.29) 

hair = air-side heat transfer coefficent [Btulhr-ft2-F] 

Kfin = fin thermal conductivity [Btulhr-F-ft] 
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e.6.2 Refi~erant-side surface efficiency 

Similarly, the surface efficiency for the refrigerant-side is an area-weighted web 

efficiency defined by: 

Where: 
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AppendixD 
ACMCHX simulation data 

D.I Dry point comparison data 

Table D.l Dry indoor/low outdoor ambient temperature system simulation runs 

Corresp. Exp. 80/68 80/68 80nl 80n4 80n5 
Data set JIO-3-98) (10-28-9~ ilO-I-98J . (10-6-98) (10-23-98) 

COP [ ] 4.9542 4.9457 4.7075 4.4908 4.4394 
EER fBtulhr-Wl 16.9039 16.8749 16.0620 15.3225 15.1472 
qEvap [Btulhr] 27577 27555 27192 26924 26724 
degsubcool fFl 9.7 9.8 10.7 11.5 11.8 
degsup [F] 10 10 10 10 10 
tsatincomp [F] 39.8 39.8 40 40.5 40.4 
tsatoutcomp [F] 81.4 81.6 84.8 88.2 89.1 
w [Ibm/hr] 331 331 330 330.6 329.2 
PwrComp [W] 1340.4 1343.9 1398.7 1459.8 1478.5 
Acond IftA2] 107.793 107.793 107.793 107.793 107.793 
Aevap [ftA2] 32.001 32.001 32.001 32.001 32.001 
a2phEdry [ftA2] 30.483 30.482 30.461 30.439 30.431 
a2phEwet [ftA2l 0 0 0 0 0 
esupC [ ] 0.773 0.773 0.779 0.784 0.786 
e2phC f 1 0.865 0.865 0.866 0.867 0.867 
esubC [ ] 0.714 0.718 0.777 0.819 0.835 
e2phE f 1 0.845 0.845 0.845 0.846 0.845 
e2phEwet [ ] 0.75 0.75 0.75 0.75 0.75 
esupE [ ] 0.58 0.58 0.578 0.578 0.576 
fsupC [ ] 0.111 0.111 0.118 0.125 0.128 
f2phC [ ] 0.806 0.805 0.783 0.762 0.753 
fsubC [ ] 0.083 0.084 0.099 0.114 0.12 
f2phE [ ] 0.953 0.953 0.952 0.951 0.951 
fsupE f 1 0.047 0.047 0.048 0.049 0.049 
hO [Btullbm] 137.1 137.2 138.2 139.2 139.6 
hI [BtuIlbm] 135.7 135.8 136.7 137.6 137.9 
h2i fBtU/Ibml 121.2 121.2 121.3 121.3 121.3 
h20 [Btullbm] 42.8 42.9 44.1 45.4 45.8 
h3 fBtU/Ibm] 39.2 39.2 40.1 41.1 41.4 
h4 [Btullbm] 39.2 39.2 40.1 41.1 41.4 
h5 [Btu/Ibm] 39.2 39.2 40.1 41.1 41.4 
h7i [Btullbml 39.2 39.2 40.1 41.1 41.4 
h70 [Btullbm] 119.7 119.7 119.7 119.8 119.8 
h9 [Btullbml 122.5 122.5 122.5 122.5 122.5 
hlO [Btullbm] 124.4 124.4 124.8 125.1 125.3 
MtotC [lbml 2.121 2.124 2.162 2.197 2.212 
MtotE [Ibm] 0.354 0.354 0.349 0.344 0.342 
MsupC [Ibm] 0.026 0.026 0.029 0.032 0.033 
M2phC [lbml 1.222 1.221 1.202 1.184 1.176 
MsubC [Ibm] 0.325 0.329 0.386 0.438 0.461 
M2j)hE [lbmJ 0.281 0.281 0.279 0.277 0.276 
MsupE [Ibm] 0.002 0.002 0.002 0.002 0.002 
Maccum [Ibm] 0 0 0 0 0 

100 

80/81 
(10-23-98) 

4.0355 
13.7692 
26304 

13 
10 

41.7 
96.2 

333.1 
1623.8 

107.793 
32.001 
30.378 

0 
0.794 
0.87 

0.884 
0.846 
0.75 

0.576 
0.142 
0.71 

0.148 
0.949 
0.051 
141.6 
139.9 
121.2 
48.6 
43.6 
43.6 
43.6 
43.6 
119.8 
122.6 
125.9 
2.273 
0.334 
0.04 
1.138 
0.558 
0.273 
0.002 

0 



Mcaptube nbm] 0.021 0.021 0.021 0.02 0.02 0.02 
Mcomp [Ibm] 0.137 0.137 0.137 0.137 0.136 0.138 
MdisLine [Ibm] 0.062 0.062 0.065 0.068 0.068 0.074 
MliqLine [Ibm] 1.24 1.239 1.231 1.22 1.218 1.195 
MsuctLine [Ibm] 0.082 0.082 0.083 0.083 0.083 0.085 
Mrefoil [Ibm] 0.492 0.49 0.466 0.446 0.436 0.403 

~O fpsia] 255.6 256.4 268.5 281.6 285.4 315.2 
pI [psia] 255.5 256.3 268.4 281.5 285.3 315.1 
p2i rpsial 255.4 256.1 268.2 281.3 285.2 314.9 
p2avg [psia] 255.3 256.1 268.2 281.3 285.1 314.9 
p20 [psia] 255.2 256 268.1 281.2 285.1 314.8 
p3i fpsia] 255.2 255.9 268 281.2 285 314.8 
p4 [psia] 255.1 255.9 268 281.1 285 314.7 
p5 [psia] 253.7 254.5 266.6 279.7 '283.6 313.3 
p7ii [psia] 139.2 139.2 139.7 140.7 140.5 143.7 
p7avg [psial 138.7 138.8 139.2 140.2 140 143.2 
p70 [psia] 138.2 138.3 138.7 139.7 139.5 142.7 
p9 [psia] 138 138.1 138.5 139.5 139.3 142.5 
plO [psia] 132.7 132.7 133.2 134.2 134 137.1 
~Cond [Btulhr] 31953 31949 31870 31905 31795 32058 
qspray [Btulhr] 0 0 0 0 0 0 
qsupC [Btulhr] 4794 4812 5087 5395 5481 6211 
q2phC [Btulhr] 25965 25935 25459 25077 24849 24184 
qsubC [Btulhr] 1194 1203 1324 1432 1466 1663 
q2phE [Btulhr] 26661 26639 26278 26007 25811 25375 
q2phEdry [Btulhr] 26661 26639 26278 26007 25811 25375 
q2phEwet fBtulhrl 0 0 0 0 0 0 
q2phEwetlat [Btulhr] 0 0 0 0 0 0 
q2phEwetsns [Btulhrl 0 0 0 0 0 0 
qsupE [Btulhr] 916 916 914 917 913 929 
to [F] 133 133.4 139.1 144.8 146.8 158.9 
tIo [F] 127.9 128.2 133.7 139.2 141.1 152.9 
t2i fF] 81.4 81.6 84.8 88.1 89.1 96.1 
t2avg [F] 81.3 81.6 84.7 88.1 89 96.1 
t20 [F] 81.3 81.5 84.7 88.1 89 96.1 
t3i [F] 71.6 71.7 74 76.6 77.2 83.1 
t4 [F] 71.6 71.7 74 76.6 77.2 83.1 
t5 fFl 71.6 71.8 74 76.6 77.2 83.1 
t7i [F] 42.6 42.6 42.8 43.3 43.2 44.5 
t7avg fF] 42.4 42.4 42.6 43.1 43 44.3 
t70 [F] 42.2 42.2 42.4 42.8 42.8 44.1 
t9 fF] 52.2 52.2 52.4 52.8 52.8 54.1 
tlO [F] 57.8 57.9 59.4 61 61.4 65 
tafanoutC [F] 79.7 79.9 83 86.1 87 93.8 
tasupoutC fF] 83.6 83.8 86.8 90 90.9 97.9 
ta2phoutC [F] 79.5 79.7 82.9 86.2 87.2 94.2 
tasuboutC [F] 73 73.2 75.8 78.7 79.4 85.6 
taoutC [Fl 79.4 79.6 82.7 85.8 86.7 93.5 
TainE [F] 80.1 80.1 79.8 79.9 79.5 80.3 
TainEwet [F] 48.2 48.2 48.4 48.7 48.6 49.8 
ta2phoutE [F] 48.2 48.2 48.4 48.7 48.6 49.8 
tasupoutE [F] 58.1 58.1 58.2 58.5 58.3 59.4 
taoutE [F] 48.7 48.7 48.8 49.2 49.1 50.3 
tafanoutE [F] 49.3 49.3 49.4 49.8 49.7 50.9 
usupC [Btulhr-ftA2-F] 16.8 16.8 16.1 15.5 15.2 14.3 
u2phC [Btulhr-ftA2-Fl 50.7 50.7 50.6 50.5 50.5 50.2 
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usubC [Btulhr-ftJ\2-F 26 26 25.8 25.6 25.5 25 
u2phE [Btulhr-ftJ\2-F) 51.2 51.2 51.2 51.2 51.2 51.3 
u2phEwet [Btulhr-ftJ\2-F) 51.2 51.2 51.2 51.2 51.2 51.3 
usupE [Btulhr-ftJ\2-F) 30.2 30.2 30.1 30.1 30.1 30.2 
TubeLenC fft] 6.28 6.28 6.28 6.28 6.28 6.28 
TubeLenE [ft) 3.68 3.68 3.68 3.68 3.68 3.68 
Veond [ftJ\3) 0.059 0.059 0.059 0.059 0.059 0.059 
VolextC [ftJ\3) 0.9825 0.9825 0.9825 0.9825 0.9825 0.9825 
VolextE [ftJ\3) 0.2917 0.2917 0.2917 0.2917 0.2917 0.2917 
x20 [ ) 0 0 0 0 0 0 
x4 [ ) 0 0 0 0 0 0 
x5 [ ) 0 0 0 0 0 0 
x7i [ ) 0.117 0.118 0.126 0.l36 0.l39 0.16 
x70 [ ] 1 1 1 1 1 1 
MWR [Ibm] 0 0 0 0 0 0 
tfinEi [F] 44.5 44.5 44.7 45.2 45.1 46.5 
tfinEo [F] 44.1 44.1 44.3 44.8 44.7 46.1 
wairEi [Ibm H2O/Ibm 0.00472 0.0044 0.0046 0.0046 0.00531 0.006 

of air) 
wairEo [Ibm H2O/Ibm 0.005 0.004 0.005 0.005 0.005 0.006 

of air) 
wfinEi [Ibm H20llbm 0.00638 0.00639 0.00644 0.00655 0.00653 0.00689 

of air) 
wfinEo [Ibm H20llbm 0.00638 0.00639 0.00644 0.00655 0.00653 0.00689 

of airl 
Tindoor [F) 80.1 80.1 79.8 79.9 79.5 80.3 
Toutdoor fFl 67.7 67.9 70.9 74 74.9 81.4 
RhaiC [ ) 0.405 0.405 0.405 0.405 0.405 0.405 
RhaiE f 1 0.211 0.197 0.208 0.207 0.242 0.266 
vdotaCmeas [cfm) 2600 2600 2600 2600 2600 2600 
vdotaE fefml 800 800 800 800 800 800 
PwrFanE [W) 120.9 119.2 122.6 124.2 114.5 1l3.2 
PwrFanC fWl 145.7 145.7 145.6 145.5 145.5 145.3 
Mtotal [Ibm] 4.8583 4.8583 4.8583 4.8583 4.8583 4.8583 
NportsC [ports/tube] 19 19 19 19 19 19 
porgeoC [] 1 1 1 1 1 1 
NportsE [ports/tube) 19 19 19 19 19 19 
porgeoE fl 1 1 1 1 1 1 
geodesC [ ] 62.69 62.69 62.69 62.69 62.69 62.69 
geodesE f 1 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesC [ ] 79 79 79 79 79 79 
NtubesE LJ 40 40 40 40 40 40 
twebC [ftl 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallC [ft] 0.00l38 0.00l38 0.00l38 0.00l38 0.00l38 0.00l38 
HfinC 1ft] 0.026 0.026 0.026 0.026 0.026 0.026 
twebE [ftl 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallE [ft] 0.00l38 0.00l38 0.00l38 0.00l38 0.00l38 0.00l38 
HfinE fftl 0.026 0.026 0.026 0.026 0.026 0.026 
Leap [in] 19 19 19 19 19 19 
Deap fin 1 0.128 0.128 0.128 0.128 0.128 0.128 
Dh tC [ft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh tE 1ft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airC [ftl 0.00639 0.00639 0.00639 0.00639 0.00639 0.00639 
Dh airE [ft] 0.0064 0.0064 0.0064 0.0064 0.0064 0.0064 
AfrontC fftJ\2l 16 16 16 16 16 16 
AfrontE [ftJ\2] 4.75 4.75 4.75 4.75 4.75 4.75 
DeqinC [ft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
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DeqinE eft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistC eft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
HtubeDistE eft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistC eft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
VtubeDistE eft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThC eft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
FinThE eft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
taEwet [F] 0.8 -11.7 -4.8 -7.8 19 33 
AairE [ftI\2] 135.654 135.654 135.654 135.654 135.654 135.654 
hairE [Btulhr-ftI\2-F] 14.06 14.06 14.06 14.06 14.06 14.06 
hreftpE [Btulhr-ftI\2-F] 430.41 430.4 430.02 430.88 429.97 433.8 
seffEw [ ] 0.98 0.98 0.98 0.98 0.98 0,98 
Tshell [F} 90.3 90.5 93.3 96.1 97 102.9 
dpC [psi a] 0.4 0.4 0.3 0.3 . 0.3 0.3 
dpE fpsia] 1.2 1.2 1.2 1.2 1.2 1.2 
ThetaLoC [deg] 27 27 27 27 27 27 
HlouvC 1ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistC eft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
ThetaLoE [deg] 27 27 27 27 27 27 
HlouvE eft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistE eft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffC eft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
DeffE eft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadCin [ftI\3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadCout [ftI\3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadEin [ftI\3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
VheadEout [ftI\3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
MheadCin [Ibm] 0.03068 0.03078 0.03213 0.03369 0.03409 0.0375 
MheadCout [Ibm] 0.51749 0.51725 0.51364 0.50939 0.50819 0.49891 
MheadEin [Ibm] 0.06261 0.06239 0.0591 0.05619 0.05507 0.05014 
MheadEout [Ibm] 0.00889 0.00889 0.00892 0.00898 0.00897 0.00918 
DheadC eft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
DheadE [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
etaisenComp [ ] 0.542 0.543 0.555 0.564 0.565 0.574 
AairC [ftI\2] 452.245 452.245 452.245 452.245 452.245 452.245 
hairC [Btulhr-ftI\2-F] 13.85 13.85 13.84 13.84 13.83 13.82 
hreftpC [Btulhr-ftI\2-F] 481.5 481.02 473.71 466.52 464.03 449.46 
NIouvC [ ] 10 10 10 10 10 10 
NiouvE [ ] 10 10 10 10 10 10 
dPairC [psi a] 0.0011453 0.0011452 0.001143 0.0011408 0.0011402 0.0011356 
dPairE [psia] 0.0011316 0.0011316 0.0011324 0.0011328 0.0011334 0.0011336 
eta fanC U 0.18 0.18 0.18 0.18 0.18 0.18 
Le [ ] 0.821 0.821 0.821 0.821 0.822 0.822 
hD [ lIhr-ftI\2-Ibm 66.14 66.15 66.15 66.15 66.1 66.1 

of air] 
ttubeEi [F] 44.44 44.46 44.65 45.12 45.02 46.42 
ttubeEo [F] 44 44.02 44.22 44.68 44.58 45.97 
NCht [ ] 8 8 8 8 8 8 
DCht fftl 0.01583 0.01583 0.01583 0.01583 0.01583 0.01583 
LCht eft] 3.33 3.33 3.33 3.33 3.33 3.33 
UiossCht [Btulhr-ft2-F] 0 0 0 0 0 0 
pdCht fpsia] 0.04 0.04 0.04 0.04 0.04 0.04 
qIossCht [Btulhr] 0 0 0 0 0 0 
MCht [Ibm] 0.3481 0.34794 0.34551 0.34265 0.34185 0.3356 
VCht [ftl\3] 0.00524 0.00524 0.00524 0.00524 0.00524 0.00524 
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Table D.2 Dry indoor/medium outdoor ambient temperature system simulation runs 

Corresp. Exp. 80/82 80/82 80/90 80/94 80/95 80/95 
Data set (10-8-98) (10-23-98) (10-24-98) (10-26-98) JIO-2-98l _(10-24-98) 

COP [ ] 3.9392 3.9651 3.4185 3.2029 3.1226 3.1162 
EER . [Btulhr-W] 13.4404 13.5289 11.6640 10.9284 10.6543 10.6326 
qEvap [BtU/hr] 26143 26242 25239 24841 24696 24676 
degsubcool [Fl 13.2 13.2 15 15.8 16 16.1 
degsup [F] 10 10 10 10 10 10 
tsatincomp [Fl 41.7 42 42.9 43.5 43.6 43.7 
tsatoutcomp [F] 97.1 97.4 106.3 110.3 111.5 112 
w JIbmlhr] 332.1 333.9 333 333.3 333.1 333.5 
PwrComp [W] 1643.8 1650.5 1868 1975.3 2009.3 2022.1 
Acond [ftA2] 107.793 107.793 107.793 107.793 107.793 107.793 
Aevap [ftA2] 32.001 32.001 32.001 32.001 32.001 32.001 
a2phEdry [ftA2] 30.371 30.369 30.291 30.255 30.243 30.238 
a2phEwet [ftA2] 0 0 0 0 0 0 
esupC [ 1 0.795 0.795 0.803 0.805 0.806 0.806 
e2phC [ ] 0.87 0.87 0.872 0.873 0.873 0.873 
esubC [ 1 0.894 0.89 0.943 0.958 0.962 0.962 
e2phE [ ] 0.846 0.846 0.847 0.847 0.847 0.847 
e2phEwet n 0.75 0.75 0.75 0.75 0.75 0.75 
esupE [ 1 0.576 0.577 0.573 0.572 0.571 0.572 
fsupC [ ] 0.145 0.144 0.169 0.18 0.184 0.185 
f2phC [ 1 0.701 0.703 0.627 0.592 0.58 0.577 
fsubC [ ] 0.154 0.153 0.204 0.228 0.236 0.238 
f2phE [ 1 0.949 0.949 0.947 0.945 0.945 0.945 
fsupE [ ] 0.051 0.051 0.053 0.055 0.055 0.055 
hO [Btu/Ibm] 142 142 145.1 146.6 147 147.2 
hI [Btu/Ibm] 140.2 140.2 143.1 144.5 144.9 145 
h2i [Btu/Ibm] 121.2 121.2 121 120.9 120.9 120.8 
h20 [Btu/Ibm] 49 49.1 52.8 54.5 55 55.2 
h3 [Btu/Ibm] 43.9 44.1 46.9 48.2 48.6 48.8 
h4 [BtU/Ibml 43.9 44.1 46.9 48.2 48.6 48.8 
h5 [Btu/Ibm] 43.9 44.1 46.9 48.2 48.6 48.8 
h7i [Btu/Ibml 43.9 44.1 46.9 48.2 48.6 48.8 
h70 [Btullbm] 119.8 119.8 119.9 119.9 119.9 119.9 
h9 lBtU/Ibm] 122.6 122.6 122.7 122.7 122.7 122.8 
h10 [Btu/Ibm] 126 126.1 127 127.3 127.4 127.5 
MtotC lIbm] 2.284 2.282 2.371 2.406 2.418 2.421 
MtotE [Ibm] 0.333 0.333 0.322 0.319 0.317 0.317 
MsupC [Ibm] 0.042 0.042 0.055 0.061 0.063 0.064 
M2phC [ibml 1.127 1.13 1.04 0.995 0.979 0.976 
MsubC [Ibm] 0.58 0.575 0.749 0.827 0.854 0.859 
M2phE [Ibm] 0.272 0.272 0.267 0.265 0.265 0.264 
MsupE flbml 0.002 0.002 0.002 0.002 0.002 0.002 
Maccum [ibm] 0 0 0 0 0 0 
Mcaptube flbml 0.02 0.02 0.02 0.02 0.02 0.02 
Mcomp [ibm] 0.137 0.138 0.138 0.138 0.138 0.138 
MdisLine [Ibm] 0.075 0.076 0.084 0.087 0.088 0.089 
MIiqLine [ibm] 1.193 1.191 1.161 1.146 1.142 1.14 
MsuctLine [Ibm] 0.085 0.086 0.087 0.088 0.088 0.088 
Mrefoil rIbml 0.396 0.398 0.35 0.333 0.327 0.326 
pO [psia] 319 320.5 361.9 381.6 387.8 390.1 
pI [psia] 319 320.4 361.8 381.6 387.7 390.1 
p2i [psial 318.8 320.3 361.7 381.4 387.6 389.9 
p2avg [psi a] 318.8 320.2 361.6 381.4 387.5 389.9 
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p20 [psial 318.7 320.1 361.6 381.3 387.5 389.8 
p3i [psia] 318.7 320.1 361.5 381.3 387.4 389.8 
p4 [psi a] 318.6 320.1 361.5 381.2 387.4 389.7 
p5 [psia] 317.2 318.6 360 379.8 385.9 388.3 
p7ii [psial 143.6 144.3 146.4 147.7 147.9 148.2 
p7avg [psi a] 143.1 143.8 145.9 147.2 147.4 147.7 
p70 [psi a] 142.6 143.3 145.4 146.7 146.9 147.2 
p9 [psi a] 142.4 143.1 145.2 146.5 146.7 147 
plO .~sial 137.1 137.7 139.9 141.2 141.5 141.8 
qCond [Btulhr] 31985 32117 32046 32084 32072 32105 
qspray [Btulhrl 0 0 0 0 0 0 
qsupC [Btulhr] 6301 6345 7360 7853 8005 8068 
q2phC [Btulhr] 23994 24075 22716 22132 21926 21882 
qsubC [Btulhr] 1690 1697 1969 2099 ·2141 2156 
q2phE [Btulhr] 25216 25309 24305 23904 23759 23737 
q2phEdry [Btulhr] 25216 25309 24305 23904 23759 23737 
q2phEwet [Btulhr] 0 0 0 0 0 0 
q2phEwetiat [Btulhr] 0 0 0 0 0 0 
q2phEwetsns [Btulhr] 0 0 0 0 0 0 
qsupE [Btulhr] 927 933 934 938 937 939 
to [F] 160.7 161 178 185.7 188.1 188.9 
tIo [F] 154.6 154.9 171.2 178.5 180.8 181.6 
t2i [F] 97 97.4 106.3 110.3 111.5 112 
t2avg [F] 97 97.3 106.3 110.3 111.5 111.9 
t20 [F] 97 97.3 106.3 110.3 111.5 111.9 
t3i [F] 83.8 84.1 91.3 94.5 95.4 95.8 
t4 [F] 83.8 84.1 91.3 94.5 95.4 95.8 
t5 [F] 83.8 84.1 91.3 94.5 95.4 95.8 
t7i [F] 44.5 44.8 45.6 46.1 46.3 46.4 
t7avg [F] 44.3 44.5 45.4 45.9 46.1 46.2 
t70 [F] 44.1 44.3 45.2 45.7 45.8 46 
t9 [F) 54.1 54.3 55.2 55.7 55.8 56 
tlO [F] 65.4 65.6 69.6 71.4 72 72.2 
tafanoutC [F] 94.5 94.9 103 106.5 107.5 107.9 
tasupoutC [F] 98.6 99.1 107.1 110.6 111.6 112.1 
ta2phoutC [F] 95.1 95.4 104.2 108.2 109.4 109.8 
tasuboutC [F] 86.3 86.7 94.1 97.3 98.3 98.7 
taoutC [F] 94.2 94.6 102.6 106.1 107.2 107.6 
TainE [F] 80.1 80.5 80.1 80.1 80 80.1 
TainEwet [F) 49.8 50.1 50.7 51.2 51.2 51.4 
ta2phoutE [F] 49.8 50.1 50.7 51.2 51.2 51.4 
tasupoutE [F) 59.3 59.6 60.1 60.4 60.5 60.6 
taoutE [F] 50.3 50.6 51.2 51.7 51.8 51.9 
tafanoutE IF] 50.8 51.2 51.8 52.3 52.3 52.4 
usupC [Btulhr-ftA2-Fl 14.1 14.2 12.5 11.9 11.7 11.7 
u2phC [Btulhr-ftA2-F] 50.2 50.2 49.9 49.8 49.7 49.7 
usubC [Btulhr-ftA2-F] 24.9 24.9 24.3 24 23.9 23.8 
u2phE [Btulhr-ftA2-F] 51.3 51.3 51.3 51.3 51.3 51.3 
u2phEwet [Btulhr-ftA2-Fl 51.3 51.3 51.3 51.3 51.3 51.3 
usupE [Btulhr-ftA2-F] 30.2 30.2 30.2 30.2 30.2 30.2 
TubeLenC [ft] 6.28 6.28 6.28 6.28 6.28 6.28 
TubeLenE [ft] 3.68 3.68 3.68 3.68 3.68 3.68 
Vcond [ftA3] 0.059 0.059 0.059 0.059 0.059 0.059 
VolextC [ftA31 0.9825 0.9825 0.9825 0.9825 0.9825 0.9825 
VolextE [ftA3] 0.2917 0.2917 0.2917 0.2917 0.2917 0.2917 
x20 U 0 0 0 0 0 0 
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x4 [ ] 0 0 0 0 0 0 
x5 [ ] 0 0 0 0 0 0 
x7i U 0.163 0.163 0.192 0.205 0.209 0.21 
x70 [ ] 1 1 1 1 1 1 
MWR [Ibm] 0 0 0 0 0 0 
tfinEi [FJ 46.5 46.8 47.7 48.2 48.4 48.5 
tfinEo [F) 46 46.3 47.3 47.8 47.9 48 
wairEi [Ibm H20llbm 0.00467 0.00553 0.00503 0.00503 0.00533 0.00517 

of air] 
wairEo [Ibm H2O/Ibm 0.005 0.006 0.005 0.005 0.005 0.005 

of airl 
wfinEi [Ibm H2O/Ibm 0.00688 0.00696 0.00721 0.00736 0.00739 0.00742 

of air] 
wfinEo [Ibm H2O/Ibm 0.00688 0.00696 0.00721 0.00736 0.00739 0.00742 

of airl 
Tindoor [F) 80.1 80.5 80.1 80.1 80 80.1 
Toutdoor rFl 82.2 82.5 90.4 93.8 94.8 95.2 
RhaiC [ ] 0.405 0.405 0.405 0.405 0.405 0.405 
RhaiE [ 1 0.209 0.244 0.225 0.225 0.239 0.231 
vdotaCmeas [efm] 2600 2600 2600 2600 2600 2600 
vdotaE [efml 800 800 800 800 800 800 
PwrFanE [W] 124.5 115 116.7 116.5 124.1 116.5 
PwrFanC [Wl 145.2 145.2 145 144.9 144.8 144.8 
Mtotal [Ibm] 4.8583 4.8583 4.8583 4.8583 4.8583 4.8583 
NportsC [ports/tube] 19 19 19 19 19 19 
porgeoC [1 1 1 1 1 1 1 
NportsE [ports/tube] 19 19 19 19 19 19 
porgeoE [l 1 1 1 1 1 1 
geodesC [ ] 62.69 62.69 62.69 62.69 62.69 62.69 
geodesE f 1 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesC [ ] 79 79 79 79 79 79 
NtubesE f 1 40 40 40 40 40 40 
twebC [ft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallC lftl 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinC eft] 0.026 0.026 0.026 0.026 0.026 0.026 
twebE [ft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallE fftl 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinE [ft] 0.026 0.026 0.026 0.026 0.026 0.026 
Leap [in] 19 19 19 19 19 19 
Deap [in] 0.128 0.128 0.128 0.128 0.128 0.128 
Dh tC [ft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh tE fft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airC [ft] 0.00639 0.00639 0.00639 0.00639 0.00639 0.00639 
Dh airE [ftl 0.0064 0.0064 0.0064 0.0064 0.0064 0.0064 
AfrontC [ftl\2] 16 16 16 16 16 16 
AfrontE [ftI\2] 4.75 4.75 4.75 4.75 4.75 4.75 
DeqinC eft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
DeqinE [ft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistC fft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
HtubeDistE eft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistC [ft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
VtubeDistE fftl 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThC eft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
FinThE fftl 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
taEwet [F) -12.5 16.5 -6.4 -9.6 0.3 -6.1 
AairE [ftI\2] 135.654 135.654 135.654 135.654 135.654 135.654 
hairE [Btulhr-ftI\2-Fl 14.06 14.06 14.06 14.05 14.05 14.05 
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hreftpE [Btulhr-ft"2-F] 433.21 434.58 434.95 435.63 435.55 435.92 
seffEw [ ] 0.98 0.98 0.98 0.98 0.98 0.98 
Tshell .[F1 103.8 103.9 112.2 116 117.1 117.5 
dpC [psial 0.3 0.3 0.3 0.3 0.3 0.3 
dpE [psi a] 1.2 1.2 1.2 1.2 1.2 1.2 
ThetaLoC [deg] 27 27 27 27 27 27 
HlouvC [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HlouvdistC [ft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
ThetaLoE fdegl 27 27 27 27 27 27 
HlouvE [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HlouvdistE [ft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffC [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
DeffE [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadCin [ft"3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadCout [ft"3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadEin [ft"3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
VheadEout [ft"3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
MheadCin [Ibm] 0.03795 0.03814 0.04272 0.04492 0.04556 0.04582 
MheadCout [Ibm] 0.49774 0.49719 0.48449 0.47853 0.47671 0.47598 
MheadEin [Ibm] 0.04935 0.04942 0.04374 0.04172 0.04111 0.04095 
MheadEout [Ibm] 0.00917 0.00922 0.00935 0.00943 0.00945 0.00947 
DheadC [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
DheadE [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
etaisenComp [ ] 0.574 0.575 0.571 0.566 0.564 0.563 
AairC [ft"21 452.245 452.245 452.245 452.245 452.245 452.245 
hairC [Btulhr-ft"2-F] 13.82 13.82 13.8 13.79 13.79 13.79 
hreftpC [Btulhr-ft"2-F] 447.27 447.02 427.13 418.47 415.76 414.87 
NlouvC [ ] 10 10 10 10 10 10 
NlouvE [ ] 10 10 10 10 10 10 
dPairC [psia] 0.0011351 0.0011349 0.0011295 0.0011272 0.0011265 0.0011262 
dPairE [Qsia] 0.0011339 0.0011335 0.0011353 0.001136 0.0011363 0.0011362 
eta fanC [ ] 0.18 0.18 0.18 0.18 0.18 0.18 
Le U 0.821 0.821 0.821 0.821 0.821 0.821 
hD [l/hr-ft"2-lbm 66.17 66.17 66.17 66.17 66.14 66.17 

of air] 
ttubeEi [F) 46.39 46.69 47.63 48.17 48.28 48.4 
ttubeEo [F] 45.93 46.24 47.16 47.7 47.81 47.93 
NCht f ] 8 8 8 8 8 8 
DCht [ft] 0.01583 0.01583 0.01583 0.01583 0.01583 0.01583 
LCht fft] 3.33 3.33 3.33 3.33 3.33 3.33 
UlossCht [Btulhr-ft2-F1 0 0 0 0 0 0 
pdCht [psia] 0.04 0.04 0.04 0.04 0.04 0.04 
qlossCht [Btulhr] 0 0 0 0 0 0 
MCht Dbm] 0.33482 0.33445 0.3259 0.3219 0.32067 0.32018 
VCht fft"31 0.00524 0.00524 0.00524 0.00524 0.00524 0.00524 
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Table D.3 Dry indoorlhigh outdoor ambient temperature system simulation runs 

Corresp. Exp. 80/96 80/104 80/106 80/111 80/118 80/118 
Data set 00-26-98) (10-3-98) (10-24-98) (10-25-98) (l0-4-98) (10-25-98) 

COP [ 1 3.0468 2.5569 2.4599 2.1601 1.7001 1.7030 
EER [Btulhr-W] 10.3957 8.7243 8.3931 7.3704 5.8006 5.8105 
qEvap [Btulhrl 24562 23525 23313 22626 21506 21616 
degsubcool [F] 16.4 19 19.8 22.9 31.1 31.4 
del!:suP [F] 10 10 10 10 10 10 
tsatincomp JFJ 43.9 45.2 45.6 46.5 48 48.3 
tsatoutcomp [F] 113.4 123.6 126.1 134 148.8 149.3 
w flbmlhr] 334 333.9 334.3 334.3 332.6 334.7 
PwrComp [W] 2063.3 2379.5 2465.9 2752.2 3366.5 3388.9 
Acond JftA2] 107.793 107.793 107.793 107.793 107.793 107.793 
Aevap [ftA2] 32.001 32.001 32.001 32.001 32.001 32.001 
a2phEdry jftA21 30.225 30.12 30.092 30.013 29.89 29.89 
a2phEwet [ft~2] 0 0 0 0 0 0 
esupC [ 1 0.806 0.805 0.804 0.795 0.769 0.768 
e2phC [ ] 0.874 0.875 0.875 0.876 0.875 0.875 
esubC [ 1 0.965 0.984 0.987 0.993 0.997 0.996 
e2phE [ ] 0.847 0.847 0.848 0.848 0.848 0.848 
e2phEwet n 0.75 0.75 0.75 0.75 0.75 0.75 
esupE r ] 0.571 0.567 0.566 0.564 0.557 0.559 
fsupC [ ] 0.188 0.218 0.224 0.242 0.25 0.25 
f2phC I ] 0.565 0.463 0.438 0.355 0.219 0.216 
fsubC [ ] 0.247 0.319 0.338 0.402 0.531 0.534 
f2phE [ ] 0.944 0.941 0.94 0.938 0.934 0.934 
fsupE r 1 0.056 0.059 0.06 0.062 0.066 0.066 
hO [Btullbm] 147.7 151.6 152.6 155.8 162.2 162.2 
hI [BtU/Ibml 145.5 149.1 150 152.9 158.7 158.7 
h2i [Btu/Ibm] 120.8 120.2 120.1 119.5 118.2 118.2 
h20 [BtU/lbml 55.9 60.3 61.5 65.3 73.4 73.8 
h3 [Btullbm] 49.2 52.4 53.2 55.3 58.4 58.5 
h4 [Btullbml 49.2 52.4 53.2 55.3 58.4 58.5 
h5 [Btullbm] 49.2 52.4 53.2 55.3 58.4 58.5 
h7i IBtullbm] 49.2 52.4 53.2 55.3 58.4 58.5 
h70 [BtU/lbml 120 120 120 120.1 120.2 120.2 
h9 [Btullbm] 122.8 122.9 122.9 123 123 123.1 
h10 [BtU/lbml 127.6 128.5 128.7 129.2 129.9 129.9 
MtotC [Ibm] 2.432 2.516 2.535 2.594 2.698 2.698 
MtotE flbml 0.316 0.308 0.306 0.302 0.296 0.29:] 
MsupC [Ibm] 0.067 0.087 0.092 0.109 0.132 0.133 
M2phC [Ibm] 0.959 0.811 0.772 0.639 0.399 0.394 
MsubC [Ibm] 0.886 1.107 1.162 1.346 1.681 1.684 
M2phE [Ibm] 0.264 0.259 0.258 0.255 0.252 0.252 
MsupE [Ibm] 0.002 0.003 0.003 0.003 0.003 0.003 
Maccum [Ibm] 0 0 0 0 0 0 
Mcaptube [Ibm] 0.02 0.02 0.02 0.02 0.02 0.02 
Mcomp [lbml 0.138 0.138 0.138 0.138 0.136 0.137 
MdisLine [Ibm] 0.09 0.1 0.103 0.111 0.127 0.128 
MliqLine [Ibm] 1.135 1.098 1.088 1.059 1.001 0.999 
MsuctLine [Ibm] 0.088 0.09 0.091 0.092 0.094 0.095 
Mrefoil [Ibm] 0.32 0.281 0.272 0.247 0.205 0.206 
pO [psial 397.6 453.2 468 516.5 617.8 621.6 
pI [psia] 397.5 453.1 468 516.5 617.8 621.5 
p2i [psial 397.4 453 467.9 516.4 617.7 621.4 
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~2avg [psi a] 397.3 453 467.8 516.3 617.7 621.4 
p20 [psia] 397.3 452.9 467.8 516.3 617.7 621.4 
p3i [psia] 397.2 452.9 467.7 516.2 617.6 621.3 
p4 [psia] 397.2 452.8 467.7 516.2 617.5 621.2 
p5 [psia] 395.7 451.3 466.2 514.7 616 619.7 
p7ii [psia] 148.8 151.7 152.6 154.9 158.4 159.3 
p7av~ [psia] 148.3 151.2 152.1 154.4 157.9 158.8 
p70 [psia] 147.8 150.7 151.6 153.9 157.4 158.3 
p9 [psia] 147.6 150.5 151.4 153.7 157.2 158 
plO [psia] 142.3 145.3 146.2 148.5 152.2 153 
qCond [Btulhr] 32154 32290 32382 32643 33351 33538 
qspray [Btulhr] 0 0 0 0 0 0 
qsupC [Btulhr] 8258 9640 10011 11174 13442 13551 
q2phC [Btulhr] 21688 20000 19580 18127 '14906 14875 
qsubC [Btulhr] 2208 2650 2791 3342 5003 5112 
q2phE [Btulhr] 23620 22576 22359 21666 20547 20648 
q2phEdry [Btulhr] 23620 22576 22359 21666 20547 20648 
q2phEwet [Btulhr] 0 0 0 0 0 0 
q2phEwetlat [Btulhr] 0 0 0 0 0 0 
q2phEwetsns [Btulhr] 0 0 0 0 0 0 
qsupE [Btulhr] 942 949 953 960 960 967 
to [F] 191.7 212 217 233.2 264.5 264.9 
t10 [F] 184.2 203.5 208.3 223.6 252.9 253.4 
t2i fF] 113.4 123.5 126.1 134 148.8 149.3 
t2avg [F] 113.4 123.5 126.1 134 148.8 149.3 
t20 fF] 113.4 123.5 126.1 134 148.8 149.3 
t3i [F] 97 104.5 106.3 111.1 117.7 117.9 
t4 [Fl 97 104.5 106.3 111.1 117.7 117.9 
t5 [F] 97 104.5 106.3 111.1 117.7 117.9 
t7i [FI 46.6 47.8 48.1 49 50.4 50.7 
t7avg [F] 46.4 47.6 47.9 48.8 50.2 50.5 
t70 [F] 46.2 47.4 47.7 48.6 50 50.4 
t9 [F] 56.2 57.4 57.7 58.6 60 60.4 
tlO [F] 72.8 77 77.9 80.6 84.4 84.6 
tafanoutC [FI 109.1 117.2 119.1 124.2 131.5 131.8 
tasupoutC [F] 113.3 121.5 123.5 129.2 139.2 139.6 
ta2phoutC [F] 111.2 121.1 123.6 131.1 144.9 145.4 
tasuboutC [F] 99.9 107.5 109.2 114.2 121.4 121.6 
taoutC [F] 108.8 116.9 118.7 123.8 131 131.3 
TainE [F] 80.2 80 80.1 80.1 80 80.5 
TainEwet [F] 51.6 52.5 52.8 53.6 54.7 55.1 
ta2phoutE fF] 51.6 52.5 52.8 53.6 54.7 55.l 
tasupoutE [F] 60.8 61.5 61.8 62.4 63.3 63.6 
taoutE [F] 52.1 53.1 53.4 54.1 55.3 55.6 
tafanoutE [F] 52.7 53.6 54 54.7 55.9 56.2 
usupC [Btulhr-ftI\2-F] 11.5 10 9.7 8.9 8.2 8.2 
u2phC [Btulhr-ftI\2-F] 49.6 49.3 49.2 48.8 48.1 48.1 
usubC [Btulhr-ftI\2-Fl 23.7 22.9 22.8 22.2 21.1 21.1 
u2phE [Btulhr-ftI\2-F) 51.3 51.3 51.3 51.3 51.3 51.3 
u2phEwet [Btulhr-ftI\2-F] 51.3 51.3 51.3 51.3 51.3 51.3 
usupE [Btulhr-ftI\2-F) 30.2 30.2 30.2 30.2 30.2 30.3 
TubeLenC [ft) 6.28 6.28 6.28 6.28 6.28 6.28 
TubeLenE [ft) 3.68 3.68 3.68 3.68 3.68 3.68 
Vcond Iftl\3] 0.059 0.059 0.059 0.059 0.059 0.059 
VolextC [ftI\3] 0.9825 0.9825 0.9825 0.9825 0.9825 0.9825 
VolextE [ftI\3] 0.2917 0.2917 0.2917 0.2917 0.2917 0.2917 
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x20 [ ] 0 0 0 0 0 0 
x4 [ ] 0 0 0 0 0 0 
x5 [ ] 0 0 0 0 0 0 
x7i [ ] 0.215 0.246 0.253 0.274 0.305 0.305 
x70 J] 1 1 1 1 1 1 
MWR [Ibm] 0 0 0 0 0 0 
tfinEi [F] 48.7 50 50.3 51.3 52.7 53.1 
tfinEo [F] 48.3 49.5 49.9 50.8 52.2 52.6 
wairEi [Ibm H2O/Ibm 0.00512 0.00587 0.00573 0.00603 0.00677 0.00661 

of air] 
wairEo [Ibm H2O/Ibm 0.005 0.006 0.006 0.006 0.007 0.007 

of air] 
wfinEi [Ibm H2O/Ibm 0.00749 0.00785 0.00796 0.00825 0.00871 0.00882 

of air] 
wfinEo [Ibm H20llbm 0.00749 0.00785 0.00796 0.00825 0.00871 0.00882 

of air] 
Tindoor [F] 80.2 80 80.1 80.1 80 80.5 
Toutdoor [F] 96.4 104.2 106 110.9 117.6 117.8 
RhaiC r 1 0.405 0.405 0.405 0.405 0.405 0.405 
RhaiE [ ] 0.228 0.263 0.256 0.269 0.303 0.291 
vdotaCmeas refml 2600 2600 2600 2600 2600 2600 
vdotaE [efm] 800 800 800 800 800 800 
PwrFanE rWl 116.4 124 118.9 118.5 124 117.9 
PwrFanC [W] 144.8 144.5 144.5 144.3 144.1 144.1 
Mtotal rtbml 4.8583 4.8583 4.8583 4.8583 4.8583 4.8583 
NportsC [ports/tube] 19 19 19 19 19 19 
porgeoC [] 1 1 1 1 1 1 
NportsE r ports/tube 1 19 19 19 19 19 19 
porgeoE [] 1 1 1 1 1 1 
geodesC r 1 62.69 62.69 62.69 62.69 62.69 62.69 
geodesE [ ] 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesC 1J 79 79 79 79 79 79 
NtubesE [ ] 40 40 40 40 40 40 
twebC rftl 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallC eft] 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinC 1ft] 0.026 0.026 0.026 0.026 0.026 0.026 
twebE eft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallE eft] 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinE rttl 0.026 0.026 0.026 0.026 0.026 0.026 
Leap [in] 19 19 19 19 19 19 
Deap 1inJ 0.128 0.128 0.128 0.128 0.128 0.128 
Dh tC eft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh tE Lft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airC eft] 0.00639 0.00639 0.00639 0.00639 0.00639 0.00639 
Dh airE eft] 0.0064 0.0064 0.0064 0.0064 0.0064 0.0064 
AfrontC rftl\21 16 16 16 16 16 16 
AfrontE [ftI\2] 4.75 4.75 4.75 4.75 4.75 4.75 
DeqinC eft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
DeQinE [ttl 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistC eft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
HtubeDistE UtI 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistC [ft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
VtubeDistE eft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThC rftl 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
FinThE eft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
taEwet rFl -9.5 8.7 1.9 5.7 19.3 12.5 
AairE [ftI\2] 135.654 135.654 135.654 135.654 135.654 135.654 
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hairE [Btulhr-ft"2-F] 14.05 14.05 14.05 14.05 14.05 14.05 
hreftpE [Btulhr-ft"2-F] 436.44 437.05 437.49 437.54 435.7 437.27 
seffEw [ ] 0.98 0.98 0.98 0.98 0.98 0.98 
Tshell rF] 118.8 128.7 131.2 139.1 154.3 154.5 
dpC [psia] 0.3 0.3 0.3 0.2 0.2 0.2 
dpE [psia] 1.2 1.2 1.2 1.2 1.2 1.2 
ThetaLoC [deg] 27 27 27 27 27 27 
HlouvC [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HlouvdistC [ft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
ThetaLoE [deg] 27 27 27 27 27 27 
HlouvE [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HlouvdistE [ft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffC [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
DeffE [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadCin [ft"3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadCout [ft"3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadEin [ft"3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
VheadEout [ft"3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
MheadCin [Ibm] 0.04665 0.05266 0.05426 0.05919 0.06958 0.07004 
MheadCout [Ibm] 0.4738 0.4583 0.45432 0.44186 0.41772 0.41682 
MheadEin [Ibm] 0.04036 0.03651 0.03578 0.03386 0.03148 0.01164 
MheadEout [Ibm] 0.00951 0.0097 0.00975 0.00989 0.Q10l2 0.01021 
DheadC [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
DheadE [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
etaisenComp [ ] 0.561 0.539 0.533 0.511 0.468 0.468 
AairC [ft"2] 452.245 452.245 452.245 452.245 452.245 452.245 
hairC [Btulhr-ft"2-Fl 13.79 13.77 13.77 13.76 13.75 13.75 
hreftpC [Btulhr-ft"2-F] 411.85 389.75 384.31 366.97 331.41 330.56 
NlouvC [ ] 10 10 10 10 10 10 
NlouvE [ ] 10 10 10 10 10 10 
dPairC [psia] 0.0011255 0.0011203 0.0011192 0.001116 0.0011118 0.0011117 
dPairE [psia] 0.0011364 0.0011382 0.0011385 0.0011396 0.0011415 0.001141 
eta fanC [ ] 0.18 0.18 0.18 0.18 0.18 0.18 
Le [ ] 0.821 0.821 0.821 0.821 0.821 0.821 
hD [l/hr-ft"2-lbm 66.17 66.14 66.13 66.17 66.15 66.17 

of air] 
ttubeEi IF] 48.66 49.89 50.28 51.22 52.66 53.02 
ttubeEo [F) 48.18 49.41 49.79 50.72 52.15 52.5 
NCht [ ] 8 8 8 8 8 8 
DCht [ftl 0.01583 0.01583 0.01583 0.01583 0.01583 0.01583 
LCht [ft] 3.33 3.33 3.33 3.33 3.33 3.33 
UlossCht rB tulhr -ft2-F] 0 0 0 0 0 0 
pdCht [psi a] 0.04 0.04 0.04 0.04 0.04 0.04 
qlossCht [Btulhr] 0 0 0 0 0 0 
MCht rIbml 0.31872 0.30829 0.30561 0.29723 0.28099 0.28038 
VCht [ft"3] 0.00524 0.00524 0.00524 0.00524 0.00524 0.00524 
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Table D.4 Wet indoor system simulation runs 

Corresp. Exp. 80/70 80/75 80/82 80/95 801105 80/118 
Data set 00-6-982 00-7-98) 00-7-98) (10-9-98) (10-9-98) 00-12-98) 

COP [ ] 5.3357 4.9445 4.4553 3.5602 2.8716 2.0108 
EER IBtu/hr-W] 18.2056 16.8707 15.2015 12.1474 9.7981 6.8608 
QEvap [Btu/hr] 31205 30677 29819 28045 26329 23893 
degsubcool fFl 3.5 6.3 9.3 13.5 16.7 25.2 
degsup [F) 10 10 10 10 10 10 
tsatincomp fFl 48.1 48.5 48.9 49.9 50.8 52.3 
tsatoutcomp [F] 85.1 90.6 97.5 111.1 123.3 143.9 
w [Ibm/hrl 389.2 387.7 384.4 380.1 375.9 369.4 
PwrComp [W] 1390.8 1489.5 1632.1 1973.2 2346.9 3137.5 
Acond fft"21 107.793 107.793 107.793 107.793 107.793 107.793 
Aevap [ft"2] 32.001 32.001 32.001 32.001 32.001 32.001 
a2Q~clI}' fft"21 0 0 0 0 0 0 
a2phEwet [ft"2] 29.536 29.509 29.483 29.366 29.285 29.131 
esupC f 1 0.745 0.757 0.772 0.793 0.803 0.783 
e2phC [ ] 0.867 0.869 0.871 0.874 0.877 0.878 
esubC f] 0.56 0.489 0.62 0.844 0.937 0.988 
e2phE [ ] 0.1. 0.1 0.1 0.1 0.1 0:1 
e2phEwet [ ] 0.849 0.849 0.849 0.849 0.849 0.85 
esupE [ ] 0.57 0.568 0.565 0.559 0.554 0.546 
fsuJ)C f 1 0.098 0.107 0.119 0.151 0.185 0.238 
f2phC [] 0.879 0.846 0.798 0.689 0.568 0.319 
fsubC [ ] 0.023 0.048 0.083 0.16 0.247 0.443 
f2phE f 1 0.923 0.922 0.921 0.918 0.915 0.91 
fsupE [ ] 0.077 0.078 0.079 0.082 0.085 0.09 
hO fBtU/lbml 135.9 137.5 139.6 144.2 148.8 157.2 
hI [Btullbm] 134.8 136.3 138.3 142.6 146.8 154.5 
h2i fBtuIlbml 121.3 121.3 121.2 120.9 120.3 118.7 
h20 [Btullbm] 44.2 46.4 49.2 54.8 60.2 70.5 
h3 fBtullbml 42.9 44 45.6 49.4 53.2 58.7 
h4 [Btu/Ibm] 42.9 44 45.6 49.4 53.2 58.7 
h5 [BtuIlbm] 42.9 44 45.6 49.4 53.2 58.7 
h7i [Btullbml 42.9 44 45.6 49.4 53.2 58.7 
h70 [BtuIlbm] 120.2 120.2 120.2 120.3 120.3 120.4 
h9 fBtu/lbml 123.1 123.1 123.1 123.2 123.3 123.3 
hlO [Btu/Ibm] 124.2 124.8 125.5 126.8 127.9 129.3 
MtotC [Ibml 1.979 2.051 2.14 2.297 2.423 2.606 
MtotE [Ibm] 0.355 0.349 0.341 0.325 0.313 0.299 
MsupC [Ibml 0.024 0.029 0.035 0.053 0.075 0.121 
M2phC [Ibm] 1.326 1.303 1.264 1.146 0.982 0.576 
MsubC . [Ibm} 0.088 0.182 0.309 0.577 0.856 1.419 
M2phE flbml 0.276 0.273 0.27 0.263 0.257 0.249 
MsupE [Ibm] 0.004 0.004 0.004 0.004 0.004 0.004 
Maccum [Ibm] 0 0 0 0 0 0 
Mcaptube [Ibm] 0.02 0.02 0.02 0.02 0.02 0.02 
Mcomp [Ibm] 0.162 0.161 0.159 0.157 0.155 0.151 
MdisLine flbml 0.067 0.071 0.077 0.09 0.102 0.124 
MliQLine [Ibm] 1.217 1.203 1.183 1.139 1.094 1.013 
MsuctLine flbm] 0.095 0.096 0.096 0.098 0.099 0.101 
Mrefoil [Ibm] 0.621 0.569 0.508 0.413 0.345 0.259 
pO Jpsia] 269.5 291.5 320.9 385.6 451.4 582.6 
pI fpsial 269.4 291.4 320.8 385.6 451.4 582.5 
p2i [psia] 269.3 291.2 320.7 385.4 451.2 582.4 
p2avg fpsial 269.2 291.1 320.6 385.3 451.1 582.4 
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p20 [psia] 269 291 320.5 385.3 451.1 582.4 
p3i [psia] 269 291 320.5 385.2 451 582.3 
p4 [psia] 269 291 320.4 385.2 451 582.2 
p5 [psia] 267.1 289.1 318.5 383.3 449.1 580.3 
p7ii [psia] 160.3 161.3 162 164.5 166.8 170.5 
p7avg [Qsia] 159.8 160.8 161.5 164 166.3 170 
p70 [psia] 159.2 160.2 161 163.5 165.8 169.4 
p9 [psia] 158.8 159.8 160.6 163.1 165.4 169.1 

~1O [psia] 152.5 153.6 154.4 157.1 159.5 163.5 
qCond [Btulhr] 35770 35777 35638 35407 35196 35421 
qspray [Btulhr] 0 0 0 0 0 0 
gsupC [Btulhrl 5280 5815 6553 8245 9992 13.249 
q2phC [Btulhr] 29984 29041 27700 25095 22578 17813 
qsubC [Btulhr] 506 922 1384 2067 ·2625 4359 
q2phE [Btulhr] 30074 29548 28699 26934 25226 22803 
q2phEdry [Btulhr] 0 0 0 0 0 0 
q2phEwet [Btulhr] 30074 29548 28699 26934 25226 22803 
q2phEwetiat [Btulhr] 10163 9856 9302 8414 7287 5834 
q2phEwetsns [Btulhr] 19911 19692 19397 18521 17940 16969 
qsupE fBtulhr] 1131 1129 1120 1110 1102 1090 
to [F] 131.3 140.5 152.8 178.1 202.2 244-.7 
tl0 [F] 127.5 136.5 148.3 172.7 195.7 236 
t2i [F] 85 90.5 97.4 111.1 123.2 143.9 
t2avg [F] 85 90.5 97.4 111.1 123.2 143.9 
t20 [F] 85 90.5 97.4 111 123.2 143.9 
t3i [F] 81.5 84.2 88.1 97.5 106.5 118.6 
t4 [F] 81.5 84.2 88.1 97.5 106.5 118.6 
t5 [F] 81.5 84.2 88.1 97.5 106.5 118.6 
t7i [F] 51.1 51.5 51.8 52.7 53.6 54.9 
t7avg [F] 50.9 51.3 51.6 52.5 53.4 54.7 
t70 [F] 50.7 51.1 51.4 52.3 53.2 54.6 
t9 [F] 60.7 61.1 61.4 62.3 63.2 64.6 
tlO [F] 63 65.3 68.1 73.7 78.5 84.8 
tafanoutC [F] 83.9 89.4 96.1 108.9 119.5 132.9 
tasupoutC rF] 90.3 96.1 103.1 116.1 126.6 140.6 
ta2phoutC [F] 83.1 88.6 95.5 109 121 140.7 
tasuboutC [F] 78.6 83 88.7 100 109.6 122.3 
taoutC [F] 83.7 89.1 95.8 108.6 119.2 132.5 
TainE [F] 80.1 80.2 80.1 79.9 80 80.1 
TainEwet [F] 80.1 80.2 80.1 79.9 80 80.1 
ta2phoutE [F) 55.5 55.8 56.1 56.8 57.6 58.7 
tasupoutE [F) 63.4 63.7 63.9 64.5 65.1 66.2 
taoutE [F) 56.1 56.4 56.7 57.5 58.2 59.4 
tafanoutE [F) 56.7 57 57.3 58 58.8 60 
usuQC fBtulhr-ftA2-F] 23.2 22.3 20.7 17.4 14.4 10.3 
u2phC [Btulhr-ftA2-F] 50.8 50.6 50.4 49.9 49.4 48.5 
usubC [Btulhr-ftA2-F] 25.5 25.2 24.7 23.8 22.9 21.3 
u2phE [Btulhr-ftA2-Fl 51.8 51.8 51.7 51.7 51.7 51.6 
u2phEwet [Btulhr-ftA2-F] 51.8 51.8 51.7 51.7 51.7 51.6 
usupE [Btulhr-ftA2-F] 31.8 31.8 31.7 31.6 31.5 31.4 
TubeLenC [ft] 6.28 6.28 6.28 6.28 6.28 6.28 
TubeLenE 1ft] 3.68 3.68 3.68 3.68 3.68 3.68 
Vcond [ftA3] 0.059 0.059 0.059 0.059 0.059 0.059 
VolextC [ftA3] 0.9825 0.9825 0.9825 0.9825 0.9825 0.9825 
VolextE [ftA3] 0.2917 0.2917 0.2917 0.2917 0.2917 0.2917 
x20 [ ] 0 0 0 0 0 0 
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x4 [ ] 0 0 0 0 0 0 
x5 [J 0 0 0 0 0 0 
x7i [ ] 0.128 0.139 0.156 0.196 0.236 0.294 
x70 [ ] 1 1 1 1 1 1 
MWR [Ibm] 9.69 9.4 8.87 8.02 6.95 5.56 
tfinEi [F] 55.9 56.2 56.4 57.1 57.8 58.8 
tfinEo rF] 51.9 52.3 52.6 53.5 54.3 55.7 
wairEi [Ibm H20llbm 0.01178 0.01182 0.01176 0.01182 0.01179 0.01185 

of air] 
wairEo [Ibm H20llbm 0.009 0.009 0.009 0.009 0.01 0.01 

of airl 
wfinEi [Ibm H20llbm 0.00981 0.00992 0.00999 0.01025 0.01049 0.01089 

of air] 
wfinEo [Ibm H20llbm 0.00845 0.00857 0.00866 0.00896 0.00924 0.00971 

of air] 
Tindoor rFl 80.1 80.2 80.1 79.9 80 80.1 
Toutdoor [F] 70.5 75.8 82.4 95 105.4 118.3 
RhaiC [ ] 0.405 0.405 0.405 0.405 0.405 0.405 
RhaiE 11 0.521 0.521 0.52 0.526 0.523 0.524 
vdotaCmeas [cfml 2600 2600 2600 2600 2600 2600 
vdotaE [cfm] 800 800 800 800 800 800 
PwrFanE [Wl 149.6 152.6 150.5 148.9 145.2 134.2 
PwrFanC [W] 145.6 145.4 145.2 144.8 144.5 144.1 
MtotaI jIbm] 4.8583 4.8583 4.8583 4.8583 4.8583 4.8583 
NportsC [ports/tube 1 19 19 19 19 19 19 
porgeoC [] 1 1 1 1 1 1 
NportsE [ports/tube 1 19 19 19 19 19 19 
porgeoE [] 1 1 1 1 1 1 
geodesC [ 1 62.69 62.69 62.69 62.69 62.69 62.69 
geodesE [ ] 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesC [ ] 79 79 79 79 79 79 
NtubesE [ ] 40 40 40 40 40 40 
twebC [ft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallC [ftl 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinC [ft] 0.026 0.026 0.026 0.026 0.026 0.026 
twebE [ftl 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallE [ft] 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinE [ftl 0.026 0.026 0.026 0.026 0.026 0.026 
Leap [in] 19 19 19 19 19 19 
DeajJ_ [inl 0.128 0.128 0.128 0.128 0.128 0.128 
Dh tC [ft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh tE [ft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airC [ftl 0.00639 0.00639 0.00639 0.00639 0.00639 0.00639 
Dh airE [ft] 0.0064 0.0064 0.0064 0.0064 0.0064 0.0064 
AfrontC [ftA2] 16 16 16 16 16 16 
AfrontE [ftA2] 4.75 4.75 4.75 4.75 4.75 4.75 
DeqinC [ft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
DeqinE fftl 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistC [ft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
HtubeDistE [ftl 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistC [ft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
VtubeDistE [ft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThC [ftl 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
FinThE eft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
taEwet [F) 126.4 124.5 121.2 115.9 109.5 101.4 
AairE [ftA21 135.654 135.654 135.654 135.654 135.654 135.654 
hairE [Btulhr-ftA2-F] 14.04 14.04 14.04 14.04 14.04 14.04 
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hreftpE [Btulhr-ftI\2-F] 477.74 476.87 474.65 472.52 470.28 465.59 
seffEw [ ] 0.98 0.98 0.98 0.98 0.98 0.98 
Tshell [F] 89.5 94 100 112.3 124 144.6 
dpC [psia] 0.4 0.4 0.4 0.3 0.3 0.3 
dpE [psia] 1.5 1.5 1.4 1.4 1.4 1.4 
ThetaLoC [de~] 27 27 27 27 27 27 
HIouvC [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistC [ft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
ThetaLoE [deg] 27 27 27 27 27 27 
HiouvE [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistE [ft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffC [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
DeffE [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadCin [ftI\3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadCout [ftI\3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadEin [ftI\3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
VheadEout [ftI\3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
MheadCin [Ibm] 0.03274 0.03533 0.03878 0.04611 0.05337 0.06714 
MheadCout [Ibm] 0.50804 0.5021 0.49393 0.47533 0.45673 0.42289 
MheadEin [Ibm] 0.0654 0.06169 0.0567 0.04766 0.04122 0.03484 
MheadEout rIbml 0.01027 0.01034 0.01039 0.01056 0.01071 0.01095 
DheadC [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
DheadE [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
etaisenComp [ ] 0.528 0.554 0.574 0.578 0.558 0.502 
AairC [ftI\2] 452.245 452.245 452.245 452.245 452.245 452.245 
hairC [Btulhr-ftI\2-F] 13.84 13.83 13.82 13.79 13.77 13.74 
hreftpC [Btulhr-ftI\2-F] 488.84 476.19 459.94 428.62 400.88 352.83 
NlouvC [ ] 10 10 10 10 10 10 
NlouvE [ ] 10 10 10 10 10 10 
dPairC [psia] 0.0011433 0.0011395 0.0011349 0.0011264 0.0011196 0.0011113 
dPairE [psia] 0.0011425 0.0011428 0.0011434 0.0011449 0.0011458 0.0011474 
eta fanC [ 1 0.18 0.18 0.18 0.18 0.18 0.18 
Le [ ] 0.82 0.82 0.82 0.82 0.82 0.82 
hD [11hr-ftI\2-Ibm 65.38 65.38 65.38 65.37 65.36 65.34 

of air] 
ttubeEi fFl 55.34 55.65 55.84 56.57 57.2 58.26 
ttubeEo [F] 51.82 52.19 52.48 53.41 54.25 55.59 
NCht f 1 8 8 8 8 8 8 
DCht [ft] 0.01583 0.01583 0.01583 0.01583 0.01583 0.01583 
LCht [ft] 3.33 3.33 3.33 3.33 3.33 3.33 
UlossCht fBtulhr-ft2-Fl 0 0 0 0 0 0 
pdCht [psia] 0.05 0.05 0.05 0.05 0.05 0.05 
qIossCht LBtulhr] 0 0 0 0 0 0 
MCht [Ibm] 0.34174 0.33775 0.33226 0.31974 0.30723 0.28447 
VCht [ftI\3] 0.00524 0.00524 0.00524 0.00524 0.00524 0.00524 
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Table D.5 Dry indoor/low outdoor ambient temperature evaporator submodel simulation runs 

Corresp. Exp. 80/68 80/68 80171 80174 80175 80/81 
Data set 00-3-98) 00-28-98) 00-1-98) (10-6-98) 00-23-98) (10-23-98) 

qEvap LBtulhr] 27923 27398 27455 26975 27531 27206 
degsup [F) 32.2 38.5 34.6 37.4 15.4 11.5 
w [Ibm/hr] 322.9 310.7 317.4 313 342.6 351.3 
Aevap [ft/\21 32.001 32.001 32.001 32.001 32.001 32.001 
a2phEdry [ft/\2] 25.738 23.698 24.9 23.818 29.423 30.101 
a2phEwet [ft/\2] 0 0 0 0 0 0 
e2phE fl 0.846 0.846 0.846 0.846 0.846 0.847 
e2phEwet [ ] 0.75 0.75 0.75 0.75 0.75 0.75 
esupE f 1 0.768 0.876 0.82 0.869 ·0.53 0.571 
f2phE [ ] 0.804 0.741 0.778 0.744 0.919 0.941 
fsupE f 1 0.196 0.259 0.222 0.256 0.081 0.059 
h7i [Btu/Ibm] 41.4 41.1 42 42.9 43.5 45.5 
h70 [Btullbm] 119.5 119.3 119.4 119.4 119.7 119.8 
h9 [Btullbml 127.9 129.3 128.5 129.1 123.9 122.9 
MtotE [Ibm] 0.286 0.266 0.276 0.262 0.315 0.317 
M2phE flbml 0.225 0.206 0.216 0.205 0.258 0.262 
MsupE [Ibm] 0.007 0.009 0.008 0.009 0.003 0.002 
p7ii [psial 129.1 124.5 127.6 126 136.9 140.8 
p7avg [psia] 128.7 124.1 127.1 125.6 136.4 140.3 
p70 [psia1 128.2 123.7 126.7 125.2 135.9 139.7 
p9 [psia] 127.3 122.5 125.7 124.1 135.5 139.4 
q2phE fBtulhrl 25187 24302 24579 23930 26091 26089 
q2phEdry [Btulhr] 25187 24302 24579 23930 26091 26089 
g2QhEwet fBtulhrl 0 0 0 0 0 0 
q2phEwetlat [Btulhr] 0 0 0 0 0 0 
q2phEwetsns fBtulhrl 0 0 0 0 0 0 
qsupE [Btulhr] 2736 3097 2877 3044 1440 1117 
t7i [FJ 38.2 36.1 37.5 36.8 41.6 43.3 
t7avg [F] 38 35.9 37.3 36.6 41.4 43.1 
t70 [B 37.8 35.7 37.1 36.4 41.2 42.8 
t9 [F] 70 74.2 71.8 73.8 56.6 54.3 
TainE [F] 80.1 80.1 79.8 79.9 79.5 80.3 
TainEwet fFl 44.5 42.7 43.8 43.3 47.3 48.8 
ta2phoutE [F] 44.5 42.7 43.8 43.3 47.3 48.8 
tasupoutE [FJ 64.2 66.5 65 66.3 59.2 58.9 
taoutE fF] 48.3 48.9 48.6 49.2 48.2 49.4 
tafanoutE [F] 48.9 49.5 49.1 49.7 48.8 49.9 
u2phE fBtulhr-ft/\2-Fl 51.4 51.3 51.4 51.4 51.5 51.6 
u2phEwet [Btulhr-ft/\2-F] 51.4 51.3 51.4 51.4 51.5 51.6 
usupE [Btulhr-ft/\2-F] 30 29.7 29.9 29.7 30.5 30.8 
TubeLenE [ft] 3.68 3.68 3.68 3.68 3.68 3.68 
VoIextE [ft/\3] 0.2917 0.2917 0.2917 0.2917 0.2917 0.2917 
x7i f ] 0.157 0.16 0.165 0.177 0.168 0.184 
x70 [ ] 1 1 1 1 1 1 
MWR flbml 0 0 0 0 0 0 
tfinEi [F] 39.9 37.7 39.2 38.4 43.5 45.2 
tfinEo [f} 39.5 37.4 38.8 38.1 43.1 44.8 
wairEi [Ibm H2O/Ibm 0.00472 0.0044 0.0046 0.0046 0.00531 0.006 

of air] 
wairEo [Ibm H2O/Ibm 0.005 0.004 0.005 0.005 0.005 0.006 

of air] 
wfinEi flbm H2O/Ibm 0.00533 0.00489 0.00518 0.00503 0.00613 0.00655 
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of air] 
wfinEo [Ibm H20llbm 0.00533 0.00489 0.00518 0.00503 0.00613 0.00655 

of air] 
Tindoor I~l 80.1 80.1 79.8 79.9 79.5 80.3 
RhaiE [ ] 0.211 0.197 0.208 0.207 0.242 0.266 
vdotaE [cfm] 800 800 800 800 800 800 
PwrFanE [W] 120.9 119.2 122.6 124.2 114.5 113.2 
NportsE [ports/tube] 19 19 19 19 19 19 
porgeoE [] 1 1 1 1 1 1 
geodesE U 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesE [ ] 40 40 40 40 40 40 
twebE [ft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallE [ft] 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinE [ft] 0.026 0.026 0.026 0.026 '0.026 0.026 
Dh tE fttl 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airE [ft] 0.0064 0.0064 0.0064 0.0064 0.0064 0.0064 
AfrontE fftl\21 4.75 4.75 4.75 4.75 4.75 4.75 
DeqinE [ft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistE [ft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistE Iftl 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThE [ft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
taEwet [F] 27.6 28.1 27.6 31.6 27.8 40.3 
AairE [ft1\21 135.654 135.654 135.654 135.654 135.654 135.654 
hairE [Btulhr-ftI\2-F] 14.06 14.06 14.06 14.06 14.06 14.06 
hreftpE fBtulhr-ftI\2-F] 442.36 437.98 440.27 440.27 450.7 450.7 
seftEw [ ] 0.98 0.98 0.98 0.98 0.98 0.98 
dpE jpsia] 1.8 2 1.9 2 1.4 1.4 
ThetaLoE [degl 27 27 27 27 27 27 
HlouvE [tt] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistE [ftl 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeftE [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadEin [ft1\31 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
VheadEout [ftI\3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
MheadEin [lbml 0.04641 0.04422 0.04406 0.04099 0.04615 0.04615 
MheadEout [Ibm] 0.00785 0.00748 0.00772 0.00759 0.00863 0.00863 
DheadE [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
NIouvE [ 1 10 10 10 10 10 10 
dPairE [psi a] 0.001131 0.0011318 0.001132 0.0011327 0.0011321 0.0011321 
Le f 1 0.83 0.831 0.831 0.831 0.831 0.831 
hD [lIhr -ftl\2-Ibm 65.78 65.78 65.78 65.78 65.78 65.78 

of airl 
ttubeEi [F] 39.78 37.58 39.05 38.32 43.39 43.39 
ttubeEo fFl 39.4 37.22 38.67 37.95 42.96 42.96 
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qEvap 
degsup 
w 
Aevap 
a2phEdry 
a2phEwet 
e2phE 
e2phEwet 
esupE 
f2phE 
fsupE 
h7i 
h70 
h9 
MtotE 
M2phE 
MsupE 
p7ii 
p7avg 
p70 
p9 
q2phE 
q2phEdry 
q2phEwet 
q2phEwetlat 
q2phEwetsns 
qsupE 
t7i 
t7avg 
t70 
t9 
TainE 
TainEwet 
ta2phoutE 
tasupoutE 
taoutE 
tafanoutE 
u2phE 
u2phEwet 
usupE 
TubeLenE 
VoIextE 
x7i 
x70 
MWR 
tfinEi 
tfinEo 
wairEi 

wairEo 

Table D.6 Dry indoor/medium outdoor ambient temperature evaporator 
submodel simulation runs 

Corresp. Exp. 80/82 80/82 80/90 80/94 80/95 
Data set 00-8-98) (10-23-98) 00-24-98) (10-26-98) (10-2-98) 
[Btulhr] 26249 27240 25900 25208 25464 
rFl 37.9 22.6 34.2 35.3 30.8 
[Ibmlhr] 311 339.6 317.3 312.9 321.1 
mA2l 32.001 32.001 32.001 32.001 32.001 
[ftA2] 23.262 27.807 24.3 23.612 25.2 
rftA2l 0 0 0 0 0 
[ ] 0.847 0.847 0.847 0.847 0.847 
[ 1 0.75 0.75 0.75 0.75 . 0.75 
[ ] 0.888 0.583 0.843 0.872 0.793 
[ ] 0.727 0.869 0.759 0.738 0.787 
[ ] 0.273 0.131 0.241 0.262 0.213 
[Btullbml 44.9 45.6 46.9 48.3 48.6 
[Btu/Ibm] 119.4 119.7 119.5 119.5 119.6 
fBtullbmJ 129.3 125.8 128.6 128.9 127.9 
[Ibm] 0.253 0.295 0.259 0.251 0.265 
lIbm] 0.198 0.24 0.206 0.199 0.214 
[Ibm] 0.009 0.005 0.009 0.009 0.008 
[psia] 127.1 137.3 131.8 132 135.7 
[psia] 126.7 136.8 131.4 131.6 135.3 
[psia] 126.3 136.3 131 131.2 134.9 
[psia] 125.1 135.7 129.9 130.1 133.9 
[Btulhr] 23176 25161 23032 22293 22820 
fBtulhrl 23176 25161 23032 22293 22820 
[Btulhr] 0 0 0 0 0 
fBtulhrl 0 0 0 0 0 
[BtU/hr] 0 0 0 0 0 
IBtulhrJ 3072 2079 2868 2914 2644 
[F] 37.3 41.8 39.4 39.5 41.1 
[F) 37.1 41.6 39.2 39.3 40.9 
[F] 36.9 41.4 39 39.1 40.7 
[F] 74.9 64 73.3 74.5 71.6 
[F] 80.1 80.5 80.1 80.1 80 
[F] 43.7 47.5 45.5 45.6 46.9 

IF'1 43.7 47.5 45.5 45.6 46.9 
[F] 67.3 62.4 66.5 67.4 65.8 
[F] 50.1 49.5 50.5 51.3 50.9 
[F] 50.7 50.1 51.1 51.9 51.5 
[Btulhr-ftA2-F] 51.4 51.5 51.4 51.3 51.4 
[Btulhr-ftA2-F] 51.4 51.5 51.4 51.3 51.4 
[Btulhr-ftA2-Fl 29.7 30.4 29.8 29.6 29.9 
[ft] 3.68 3.68 3.68 3.68 3.68 
fftA3] 0.2917 0.2917 0.2917 0.2917 0.2917 
[ ] 0.197 0.19 0.212 0.227 0.225 
r 1 1 1 1 1 1 
[Ibm] 0 0 0 0 0 
[F] 39 43.7 41.2 41.3 43 
[Fl 38.6 43.2 40.8 40.9 42.6 
[Ibm H20llbm 0.00467 0.00553 0.00503 0.00503 0.00533 
of air] 
[Ibm H20llbm 0.005 0.006 0.005 0.005 0.005 
of airl 
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80/95 
(10-24-98) 

25235 
34.2 

316.6 
32.001 
23.985 

0 
0.847 
0.75 

0.854 
0.75 
0.25 
48.9 
119.6 
128.6 
0.253 
0.202 
0.009 
133.2 
132.8 
132.4 
131.3 
22370 
22370 

0 
0 
0 

2865 
40 

39.8 
39.7 
73.8 
80.1 
46 
46 
67 

51.3 
51.8 
51.4 
51.4 
29.7 
3.68 

0.2917 
0.232 

1 
0 

41.8 
41.4 

0.00517 

0.005 



wfinEi [Ibm H2O/Ibm 0.00514 0.00617 0.0056 0.00563 0.00601 0.00575 
of airl 

wfinEo [Ibm H2O/Ibm 0.00514 0.00617 0.0056 0.00563 0.00601 0.00575 
of air] 

Tindoor [Fl 80.1 80.5 80.1 80.1 80 80.1 
RhaiE [ ] 0.209 0.244 0.225 0.225 0.239 0.231 
vdotaE fcfml 800 800 800 800 800 800 
PwrFanE [W] 124.5 115 116.7 116.5 124.1 116.5 
NportsE f ports/tube 1 19 19 19 19 19 19 
porgeoE [] 1 1 1 1 1 1 
~eodesE f 1 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesE [ ] 40 40 40 40 40 40 
twebE [ftl 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallE [ftl 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinE [ft] 0.026 0.026 0.026 0.026 0.026 0.026 
Dh tE fftl 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airE [ft] 0.0064 0.0064 0.0064 0.0064 0.0064 0.0064 
AfrontE fftl\2l 4.75 4.75 4.75 4.75 4.75 4.75 
DeqinE [ft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistE [ft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistE [ftl 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThE [ft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
taEwet [f.] 31.5 34.5 32.1 31.5 32 33.1 
AairE [ft1\21 135.654 135.654 135.654 135.654 135.654 135.654 
hairE [Btulhr-ftI\2-F] 14.06 14.06 14.06 14.06 14.06 14.06 
hreftoE [Btu/hr-ftI\2-Fl 439.98 452.26 441.8 439.36 441.82 441.96 
seffEw U 0.98 0.98 0.98 0.98 0.98 0.98 
dpE [psia] 2 1.6 1.9 1.9 L8 1.9 
ThetaLoE fdeS!:l 27 27 27 27 27 27 
HiouvE [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistE fftl 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffE [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadEin [ftI\3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
VheadEout fftl\31 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
MheadEin [Ibm] 0.03774 0.04166 0.03647 0.03451 0.03567 0.03411 
MheadEout flbml 0.00765 0.00852 0.00799 0.00799 0.00828 0.00807 
DheadE [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
NiouvE U 10 10 10 10 10 10 
dPairE [psia] 0.0011337 0.0011319 0.0011343 0.0011354 0.0011351 0.0011354 
Le [ ] 0.83 0.83 0.83 0.83 0.83 0.83 
hD [ lIhr -ftl\2-Ibm 65.76 65.76 65.76 65.76 65.78 65.76 

of air] 
ttubeEi [FJ 38.86 43.57 41.07 41.18 42.88 41.73 
ttubeEo [F] 38.48 43.14 40.67 40.78 42.46 41.32 
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Table D.7 Dry indoor/high outdoor ambient temperature evaporator submodel simulation runs 

Corresp. Exp. 80/96 80/104 80/106 80/111 80/118 80/118 
Data set (10-26-98) (10-3-98) (10-24-98) (10-25-98) 00-4-981 (10-25-98) 

qEvap [Btulhr] 24887 24304 23710 22876 22216 21970 
degsup [F] 35.2 28.7 32.4 31.7 25.8 29.9 
w [Ibm/hr] 313 324 316.6 314.8 323.3 316.4 
Aevap rftJ\2l 32.001 32.001 32.001 32.001 32.001 32.001 
a2phEdry [ftJ\2] 23.457 25.377 23.805 23.644 25.449 23.813 
a2phEwet [ftJ\2] 0 0 0 0 0 0 
e2phE L1 0.847 0.848 0.848 0.848 0.848 0.848 
e2phEwet [ ] 0.75 0.75 0.75 0.75 0.75 0.75 
esupE r 1 0.876 0.777 0.857 0.862 ·0.766 0.851 
f2phE [ ] 0.733 0.793 0.744 0.739 0.795 0.744 
fsupE r 1 0.267 0.207 0.256 0.261 0.205 0.256 
h7i [Btullbm] 49.4 52.5 53.5 55.6 58.3 58.6 
h70 rBtU/Ibml 119.6 119.8 119.7 119.8 119.9 119.9 
h9 [Btu/Ibm] 128.9 127.5 128.4 128.3 127 128 
MtotE [Ibml 0.248 0.261 0.245 0.242 0.256 0.242 
M2phE [Ibm] 0.197 0.212 0.197 0.195 0.21 0.195 
MsupE JIbml 0.01 0.008 0.01 0.01 0.008 0.01 
p7ii [psi a] 132.9 140.3 138.2 140.8 148.1 145.8 
p7avg JQsia] 132.5 139.9 137.8 140.4 147.6 145.4 
p70 [psia] 132.1 139.5 137.4 140 147.2 145 
p9 [psia] 131 138.6 136.3 139 146.4 144 
q2phE [Btulhrl 21974 21794 20960 20191 19917 19395 
q2phEdry [Btulhr] 21974 21794 20960 20191 19917 19395 
q2phEwet rBtulhrl 0 0 0 0 0 0 
q2phEwetlat [Btulhr] 0 0 0 0 0 0 
q2phEwetsns .IBtulhr] 0 0 0 0 0 0 
qsupE [Btulhr] 2914 2510 2750 2686 2298 2575 
t7i [F] 39.9 43.1 42.2 43.3 46.3 45.4 
t7avg [Fl 39.7 42.9 42 43.1 46.1 45.2 
t70 [F] 39.5 42.7 41.9 43 46 45 
t9 [Fl 74.8 71.4 74.3 74.6 71.8 74.9 
TainE [F] 80.2 80 80.1 80.1 80 80.5 
TainEwet rFl 45.9 48.6 47.8 48.8 51.3 50.6 
ta2phoutE [F] 45.9 48.6 47.8 48.8 51.3 50.6 
tasupoutE [F] 67.7 66.1 67.8 68.3 67.1 68.9 
taoutE rFl 51.7 52.2 52.9 53.9 54.5 55.3 
tafanoutE [F] 52.3 52.8 53.5 54.4 55.1 55.~ 

u2phE IBtu/hr-ftJ\2-F] 51.3 51.4 51.3 51.3 51.3 51.3 
u2phEwet [BtU/hr-ftJ\2-Fl 51.3 51.4 51.3 51.3 51.3 51.3 
usupE [BtU/hr-ftJ\2-F] 29.6 29.9 29.7 29.6 29.9 29.7 
TubeLenE [ftl 3.68 3.68 3.68 3.68 3.68 3.68 
VoIextE [ftJ\3] 0.2917 0.2917 0.2917 0.2917 0.2917 0.2917 
x7i r 1 0.237 0.261 0.275 0.295 0.316 0.322 
x70 [ ] 1 1 1 1 1 1 
MWR [Ibm] 0 0 0 0 0 0 
tfinEi rFl 41.7 45.1 44.1 45.3 48.4 47.5 
tfinEo [F] 41.3 44.6 43.7 44.9 48 47 
wairEi [Ibm H2O/Ibm 0.00512 0.00587 0.00573 0.00603 0.00677 0.00661 

of air] 
wairEo [Ibm H2O/Ibm 0.005 0.006 0.006 0.006 0.007 0.007 

of airl 
wfinEi [Ibm H2O/Ibm 0.00572 0.00652 0.00629 0.00657 0.00741 0.00714 
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of air] 
wfinEo [Ibm H20llbm 0.00572 0.00652 0.00629 0.00657 0.00741 0.00714 

of airl 
Tindoor [F] 80.2 80 80.1 80.1 80 80.5 
RhaiE r 1 0.228 0.263 0.256 0.269 0.303 0.291 
vdotaE [efm] 800 800 800 800 800 800 
PwrFanE rWl 116.4 124 118.9 118.5 124 117.9 
NportsE [ports/tube] 19 19 19 19 19 19 
porgeoE Jl 1 1 1 1 1 1 
geodesE [ ) 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesE Jl 40 40 40 40 40 40 
twebE [ft) 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallE rftl 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinE [ft] 0.026 0.026 0.026 0.026 -0.026 0.026 
Dh tE rftl 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airE [ft] 0.0064 0.0064 0.0064 0.0064 0.0064 0.0064 
AfrontE r ftl\2l 4.75 4.75 4.75 4.75 4.75 4.75 
DeqinE [ft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistE rttl 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistE [ft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThE 1ft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
taEwet [F] 32 37.6 38.8 41.3 44.6 45.8 
AairE Jftl\2] 135.654 135.654 135.654 135.654 135.654 135.654 
hairE [Btulhr-ftI\2-F) 14.05 14.05 14.05 14.05 14.05 14.05 
hreftp_E rBtulhr-ftI\2-F] 439.77 443.55 441.09 438.56 440.14 437.56 
seffEw [ ] 0.98 0.98 0.98 0.98 0.98 0.98 
dpE Ipsia] 1.9 1.8 1.9 1.9 1.7 1.8 
ThetaLoE [deg] 27 27 27 27 27 27 
HiouvE eft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistE rttl 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffE [ft) 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadEin [ftI\3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
VheadEout [ftl\3l 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
MheadEin [Ibm] 0.03339 0.03219 0.03033 0.02898 0.02857 0.02771 
MheadEout [Ibml 0.00804 0.00861 0.00841 0.00859 0.00914 0.00893 
DheadE [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
NiouvE r 1 lO lO lO lO lO 10 
dPairE [psia] 0.0011358 0.001137 0.0011378 0.0011392 0.0011404 0.0011404 
Le r 1 0.83 0.83 0.83 0.83 0.83 0.83 
hD [lIhr-ftI\2-Ibm 65.76 65.78 65.76 65.76 65.78 65.76 

of air] 
ttubeEi fFl 41.61 44.97 44.04 45.2 48.36 47.38 
ttubeEo [F] 41.2 44.53 43.6 44.76 47.89 46.92 
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Table D.8 Wet indoor evaporator submodel simulation runs 

Corresp. Exp. 80170 80175 80/82 80/95 80/105 80/118 
Data set (10-6-98) (10-7-98) (10-7-98) (10-9-98) (10-9-98) (10-12-98) 

qEvap [Btulhrl 31856 31503 30848 29480 27715 24994 
degsup [F] 29 28.1 27.1 22.7 24.3 22.4 
w flbmlhrl 377.2 381.7 381.7 386 375 368.3 
Aevap [ftI\2] 32.001 32.001 32.001 32.001 32.001 32.001 
a2phEdry [ft1\21 0 0 0 0 0 0 
a2phEwet [ftI\2] 22.127 22.452 22.805 24.539 23.312 23.651 
e2phE [ ] 0.1 0.1 0.1 0.1 0.1 0.1 
e2phEwet [ ] 0.85 0.851 0.851 0.851 0.851 0.851 
esupE [ ] 0.866 0.851 0.838 0.756 ·0.819 0.805 
f2phE [J 0.691 0.702 0.713 0.767 0.728 0.739 
fsupE [ ] 0.309 0.298 0.287 0.233 0.272 0.261 
h7i [Btu/Ibm] 43.5 45.2 46.7 50.2 53.1 58.8 
h70 [Btu/Ibml 119.9 120 120 120.1 120.1 120.3 
h9 [Btu/Ibm] 127.9 127.7 127.5 126.5 127 126.6 
MtotE flbml 0.273 0.27 0.269 0.276 0.259 0.253 
M2phE [Ibm] 0.198 0.199 0.201 0.213 0.2 0.1'98 
MsupE flbml 0.012 0.012 0.012 0.01 0.012 0.012 
p7ii [psia] 148.1 149.8 151.3 156.9 157.6 163.1 
p7avg [psial 147.6 149.3 150.8 156.4 157.2 162.7 
p70 [psia] 147.2 148.9 150.4 155.9 156.7 162.2 
p9 [psial 145.6 147.3 148.9 154.7 155.4 161 
q2phE [Btulhr] 28838 28538 27977 27009 25139 22639 
q2phEdry [Btulhr] 0 0 0 0 0 0 
q2phEwet [Btulhrl 28838 28538 27977 27009 25139 22639 
q2phEwetiat [Btulhr] 11429 11187 10730 9831 8959 7358 
q2phEwetsns [Btulhrl 17410 17351 17247 17178 16179 15281 
qsupE [Btulhr] 3017 2965 2871 2472 2577 2355 
t7i [Fl 46.3 47 47.6 49.8 50.1 52.2 
t7avg [F] 46.1 46.8 47.4 49.6 49.9 52 
t70 [Fl 46 46.6 47.2 49.4 49.7 51.9 
t9 [F] 75 74.7 74.3 72.1 74.1 74.2 
TainE [Fl 80.1 80.2 80.1 79.9 80 80.1 
TainEwet [F] 80.1 80.2 80.1 79.9 80 80.1 
ta2phoutE [F] 51.4 52 52.5 54.3 54.6 56.4 
tasupoutE [Fl 68.9 68.9 68.7 67.8 69.1 69.7 
taoutE [F] 56.8 57 57.1 57.4 58.5 59.9 
tafanoutE IFJ 57.4 57.6 57.7 58 59.1 60.4 
u2phE [Btulhr-ftI\2-Fl 52 52 52 52 51.9 51.8 
u2phEwet [Btulhr-ftI\2-F] 52 52 52 52 51.9 51.8 
usupE [Btulhr-ftI\2-FJ 31.5 31.6 31.6 31.7 31.4 31.3 
TubeLenE eft] 3.68 3.68 3.68 3.68 3.68 3.68 
VoIextE [ft1\31 0.2917 0.2917 0.2917 0.2917 0.2917 0.2917 
x7i [ ] 0.152 0.168 0.183 0.214 0.246 0.304 
x70 LJ 1 1 1 1 1 1 
MWR flbml 10.9 10.67 10.23 9.37 8.54 7.02 
tfinEi [F] 52.2 52.8 53.2 54.8 55.1 56.7 
tfinEo if] 47.1 47.8 48.4 50.6 50.9 52.9 
wairEi [Ibm H20/Ibm 0.01178 0.01182 0.01176 0.01182 0.01179 0.01185 

of air] 
wairEo [Ibm H20llbm 0.007 0.008 0.008 0.008 0.008 0.009 

of air] 
wfinEi [Ibm H20/Ibm 0.00855 0.00872 0.00886 0.00942 0.00951 0.0101 
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of air] 
wfinEo [Ibm H2O/Ibm 0.00705 0.00723 0.0074 0.00803 0.00812 0.00878 

of airl 
Tindoor [F) 80.1 80.2 80.1 79.9 80 80.1 
RhaiE [J 0.521 0.521 0.52 0.526 0.523 0.524 
vdotaE [cfm] 800 800 800 800 800 800 
PwrFanE [W] 149.6 152.6 150.5 148.9 145.2 134.2 
NportsE f ports/tube 1 19 19 19 19 19 19 
porgeoE [] 1 1 1 1 1 1 
geodesE f 1 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesE [ ] 40 40 40 40 40 40 
twebE fft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallE [ft] 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinE eft] 0.026 0.026 0.026 0.026 '0.026 0.026 
Dh tE [ftl 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airE f ft] 0.0064 0.0064 0.0064 0.0064 0.0064 0.0064 
AfrontE [ftA2] 4.75 4.75 4.75 4.75 4.75 4.75 
DeqinE eft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistE eft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistE fftl 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThE eft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
taEwet fFl 161.9 158.3 152.8 138.3 134.9 120.8 
AairE [ftA2] 135.654 135.654 135.654 135.654 135.654 135.654 
hairE fBtulhr-ftA2-FJ 14.04 14.04 14.04 14.04 14.04 14.04 
hreftpE [Btulhr-ftA2-F] 496.48 499.57 498.13 495.33 488.97 480.16 
seftEw f 1 0.98 0.98 0.98 0.98 0.98 0.98 
dpE [psi a] 2.5 2.5 2.4 2.2 2.2 2.1 
ThetaLoE IdegJ 27 27 27 27 27 27 
HiouvE eft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistE eft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeftE fft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadEin [ftA3] 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
VheadEout fftA31 0.00395 0.00395 0.00395 0.00395 0.00395 0.00395 
MheadEin [Ibm] 0.05367 0.04976 0.04683 0.04237 0.03776 0.03247 
MheadEout [Ibml 0.00905 0.00918 0.0093 0.00973 0.00975 0.01015 
DheadE eft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
NlouvE f 1 10 10 10 10 10 10 
dPairE [psia] 0.0011435 0.0011436 0.001144 0.0011449 0.0011463 0.001148 
Le [ ] 0.82 0.82 0.82 0.82 0.82 0.82 
hD [lIhr-ftA2-Ibm 65.38 65.37 65.37 65.37 65.36 65.34 

of air] 
ttubeEi iF] 51.53 52.07 52.51 54.22 54.48 56.15 
ttubeEo [Fl 47 47.69 48.28 50.46 50.77 52.86 
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Table D.9 Dry indoor/low outdoor ambient temperature condenser submodel simulation runs 

Corresp. Exp. 80/68 80/68 80171 80174 80175 80/81 
Data set (10-3-98) (10-28-98) (10-1-98) (10-6-98) (10-23-98) (10-23-98) 

degsubcool IFl 17 15.3 17.4 17.3 18.7 19.2 
w [Ibmlhr] 322.9 310.7 317.4 313 342.6 351.3 
PwrComp rWl 1384 1361.9 1443.1 1498.9 1549.2 1705.5 
Acond [ftJ\2] 107.793 107.793 107.793 107.793 107.793 107.793 
esupC [ ] 0.779 0.8 0.78 0.786 0.761 0.761 
e2phC [ ] 0.865 0.865 0.865 0.866 0.867 0.869 
esubC r 1 0.988 0.976 0.992 0.992 0.991 0.99 
fsupC [ ] 0.123 0.135 0.132 0.142 0.122 0.13 
f2phC r 1 0.613 0.651 0.585 0.571 ·0.572 0.552 
fsubC [ ] 0.264 0.214 0.284 0.287 0.306 0.318 
hO JBtulIbm] 137.3 137.6 138.5 139.7 139.2 141.1 
hI [BtulIbm] 140 140.4 140.7 141.6 140.7 141.8 
h2i JBtulIbm] 121.3 121.3 121.3 121.3 121.3 121.2 
h20 [BtulIbm] 44.2 43.7 45.6 46.8 47.7 50.6 
h3 rBtulIbm] 37.9 38 39.1 40.2 40.6 43.1 
h4 [BtulIbm] 37.9 38 39.1 40.2 40.6 43.1 
MtotC [lbml 2.558 2.424 2.597 2.59 2.653 2.664 
MsupC [Ibm] 0.029 0.031 0.033 0.037 0.033 0.039 
M2phC [Ibm] 0.945 1.002 0.915 0.906 0.905 0.893 
MsubC [lbml 1.035 0.841 1.103 1.104 1.173 1.195 
pO [psi a] 269.1 264.1 282.9 295.4 305.1 336.3 
pI rpsial 269 264 282.8 295.3 305 336.2 
p2i [psia] 268.9 263.9 282.7 295.2 304.9 336.1 
p2avg rpsiaJ 268.8 263.8 282.6 295.1 304.8 336 
p20 [psia] 268.7 263.7 282.6 295.1 304.7 336 
p3i rpsial 268.7 263.7 282.5 295 304.7 335.9 
p4 [psia] 268.6 263.6 282.4 295 304.6 335.8 
qCond rBtulhrl 32966 31831 32269 31728 34275 34654 
qsupC [Btulhr] 6037 5962 6170 6361 6641 7239 
q2phC [Btulhr] 24889 24103 24034 23320 25206 24804 
qsubC rBtulhrl 2040 1766 2065 2047 2428 2611 
to [F] 136 136 142.7 148.9 148.7 160.5 
tIo JF] 145.5 146.4 150.5 155.7 153.9 162.7 
t2i rF] 84.9 83.6 88.4 91.5 93.8 100.9 
t2avg [F] 84.9 83.6 88.4 91.5 93.8 100.8 
t20 rFl 84.9 83.6 88.4 91.5 93.8 100.8 
t3i [F] 67.9 68.3 71 74.1 75.1 81.6 
t4 rFl 67.9 68.3 71 74.1 75.1 81.6 
tafanoutC [F) 80.1 79.9 83.1 86.1 87.9 94.7 
tasupoutC [F] 85.7 84.1 88.2 90.6 95.1 102.3 
ta2phoutC rFl 82.6 81.5 86.1 89.1 91.3 98.3 
tasuboutC [F] 70.5 70.9 73.6 76.6 77.8 84.5 
taoutC rFl 79.8 79.6 82.8 85.8 87.6 94.4 
usupC [Btulhr-ftJ\2-Fl 14.4 13 13.2 12.2 15.6 15.5 
u2phC [Btulhr-ftJ\2-F] 50.6 50.6 50.5 50.4 50.4 50.2 
usubC rBtulhr-ftJ\2-Fl 26 26 25.7 25.5 25.4 24.9 
TubeLenC [ft] 6.28 6.28 6.28 6.28 6.28 6.28 
Vcond rftJ\31 0.059 0.059 0.059 0.059 0.059 0.059 
VoIextC [ftJ\3] 0.9825 0.9825 0.9825 0.9825 0.9825 0.9825 
x20 L1 0 0 0 0 0 0 
x4 [ 1 0 0 0 0 0 0 
Toutdoor [F] 67.7 67.9 70.9 74 74.9 81.4 
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RhaiC [ ] 0.405 0.405 0.405 0.405 0.405 0.405 
vdotaCmeas [efml 2600 2600 2600 2600 2600 2600 
PwrFanC [W] 145.7 145.7 145.6 145.5 145.5 145.3 
NportsC [ports/tube] 19 19 19 19 19 19 
porgeoC [] 1 1 1 1 1 1 
geodesC [ ] 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesC [ ] 79 79 79 79 79 79 
twebC [ft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallC [ft] 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinC [ft] 0.026 0.026 0.026 0.026 0.026 0.026 
Dh tC . [ft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airC [ft] 0.00639 0.00639 0.00639 0.00639 0.00639 0.00639 
AfrontC [ftI\2] 16 16 16 16 16 16 
DeqinC [ft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistC [ft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistC [ft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThC [ft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
dpC [psia] 0.3 0.3 0.3 0.3 0.3 0.3 
ThetaLoC [deg] 27 27 27 27 27 27 
HIouvC [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistC [ft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffC [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
DeftE [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadCin [ftI\3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadCout [ftI\3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
MheadCin rIbm] 0.03144 0.03071 0.03306 0.03444 0.03595 0.03974 
MheadCout [Ibm] 0.51757 0.5182 0.51316 0.50866 0.50631 0.49639 
DheadC [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
AairC [ftI\2] 452.245 452.245 452.245 452.245 452.245 452.245 
hairC rBtulhr-ftI\2-F] 13.85 13.85 13.84 13.84 13.83 13.82 
hreftpC [Btulhr-ftI\2-F] 471.37 470.79 462.13 454.19 457.18 443.86 
NIouvC [ ] 10 10 10 10 10 10 
dPairC [psia] 0.0011453 0.0011452 0.001143 0.0011408 0.0011402 0.0011356 
eta fanC [ ] 0.18 0.18 0.18 0.18 0.18 0.18 
NCht [ ] 8 8 8 8 8 8 
DCht [ft] 0.01583 0.01583 0.01583 0.01583 0.01583 0.01583 
LCht [ft] 3.33 3.33 3.33 3.33 3.33 3.33 
UlossCht [Btulhr-ft2-F] 0 0 0 0 0 0 
pdCht [gsia] 0.03 0.03 0.03 0.03 0.04 0.04 
qIossCht [Btulhr] 0 0 0 0 0 0 
MCht [Ibm] 0.34816 0.34858 0.34519 0.34217 0.34058 0.33391 
VCht [ftI\3] 0.00524 0.00524 0.00524 0.00524 0.00524 0.00524 
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degsubcool 
w 
PwrComp 
Acond 
esupC 
e2phC 
esubC 
fsupC 
f2phC 
fsubC 
hO 
hI 
h2i 
h20 
h3 
h4 
MtotC 
MsupC 
M2phC 
MsubC 
pO 
pI 
p2i 
p2avg 
p20 
p3i 
p4 
qCond 
qsupC 
q2phC 
qsubC 
to 
t10 
t2i 
t2avg 
t20 
t3i 
t4 
tafanoutC 
tasupoutC 
ta2phoutC 
tasuboutC 
taoutC 
usupC 
u2phC 
usubC 
TubeLenC 
Vcond 
VolextC 
x20 
x4 

Table D.1O Dry indoor/medium outdoor ambient temperature condenser 
submodel simulation runs 

Corresp. Exp. 80/82 80/82 80/90 80/94 80/95 
Data set (10-8-98) (10-23-98) (10-24-98) (10-26-98) (10-2-98) 
rFl 17.6 19.1 20.5 20.8 22.6 
[lbm/hr] 311 339.6 317.3 312.9 321.1 
rWl 1676 1725.2 1957.7 2064.4 2148.7 
[ft"2] 107.793 107.793 107.793 107.793 107.793 
r 1 0.797 0.769 0.783 0.793 0.776 
[ ] 0.869 0.869 0.871 0.872 0.872 
[ ] 0.992 0.992 0.996 0.996 0.998 

J1 0.168 0.141 0.182 0.202 ·0.193 
[ ] 0.54 0.536 0.447 0.425 0.395 

Ll 0.293 0.323 0.37 0.373 0.412 
[Btu/Ibm] 142.8 141.9 146.3 148.1 148.5 

JBtu/lbm] 144 142.6 146.3 148.3 148.1 
[Btu/Ibm] 121.2 121.2 l20.9 l20.7 l20.6 
[Btu/Ibm] 50.2 51 54.8 56.4 57.6 
rBtu/Ibml 43.4 43.6 46.7 48 48.5 
[Btu/Ibm] 43.4 43.6 46.7 48 48.5 
rIbml 2.568 2.663 2.696 2.666 2.747 
[Ibm] 0.049 0.043 0.062 0.071 0.071 
rIbm] 0.883 0.874 0.758 0.729 0.683 
[Ibm] 1.101 1.212 1.35 1.344 1.473 
[psia] 332.1 340.6 385.1 404.4 419 
rpsial 332 340.5 385 404.4 418.9 
[psia] 331.9 340.4 384.9 404.3 418.8 
rpsial 331.8 340.3 384.9 404.3 418.8 
[psia] 331.8 340.3 384.8 404.2 418.7 
rpsial 331.7 340.2 384.7 404.1 418.6 
[psia] 331.7 340.1 384.7 404.1 418.6 
rBtuihrl 31286 33640 31613 31382 32006 
[Btuihr] 7095 7285 8061 8641 8849 
rBtuihrl 22081 23841 20965 20118 20223 
[Btuihr] 2110 2514 2587 2623 2935 
[F] 165.4 163.9 185.2 193.9 197.1 
rFl 169.8 166.2 185.2 194.8 196 
[F] 99.9 101.8 111 114.7 117.4 
[F] 99.9 101.8 111 114.7 117.4 
[F] 99.9 101.8 III 114.7 117.4 
[F] 82.4 82.7 90.5 93.9 94.9 
rFl 82.4 82.7 90.5 93.9 94.9 
[F] 94.3 95.5 102.8 106.2 107.5 
rFl 98.1 102 107.3 110.2 112.5 
[F) 97.6 99.3 108.3 112 114.5 
[F] 84.9 85.4 93.1 96.5 97.5 
rFl 94 95.2 102.5 105.9 107.1 
[Btuihr-ft"2-Fl 10.8 13.8 10.1 9.2 9.6 
[Btuihr-ft"2-F] 50.1 50.1 49.7 49.5 49.5 
[Btuihr-ft"2-Fl 24.9 24.8 24.1 23.8 23.6 
[ft] 6.28 6.28 6.28 6.28 6.28 
rft"31 0.059 0.059 0.059 0.059 0.059 
[ft"3] 0.9825 0.9825 0.9825 0.9825 0.9825 
r 1 0 0 0 0 0 
[ ] 0 0 0 0 0 
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80/95 
. (10-24-98) 

21.7 
316.6 

2132.6 
107.793 
0.784 
0.872 
0.997 
0.2 

0.407 
0.393 
148.7 
148.2 
l20.6 
57.4 
48.6 
48.6 

2.703 
0.073 
0.703 
1.406 
416.3 
416.3 
416.2 
416.2 
416.1 
416 
416 

31540 
8748 

20014 
2778 
197.5 
196 

116.9 
116.9 
116.9 
95.3 
95.3 
107.7 
112.1 
114.2 
97.9 
107.4 
9.3 
49.5 
23.6 
6.28 

0.059 
0.9825 

0 
0 



Toutdoor [F] 82.2 82.5 90.4 93.8 94.8 95.2 
RhaiC [ ] 0.405 0.405 0.405 0.405 0.405 0.405 
vdotaCmeas [cfm] 2600 2600 2600 2600 2600 2600 
PwrFanC [W] 145.2 145.2 145 144.9 144.8 144.8 
NportsC [~orts/tube ] 19 19 19 19 19 19 
porgeoC [] 1 1 1 1 1 1 
geodesC [ ] 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesC [ ] 79 79 79 79 79 79 
twebC [ft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallC [ft] 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinC [ft] 0.026 0.026 0.026 0.026 0.026 0.026 
Dh tC [ft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airC [ft] 0.00639 0.00639 0.00639 0.00639 0.00639 0.00639 
AfrontC [ftI\2] 16 16 16 16 16 16 
DeqinC [ftl 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistC [ft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistC [ft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThC [ft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
dpC [psia] 0.3 0.3 0.3 0.3 0.3 0.3 
ThetaLoC [deg] 27 27 27 27 27 27 
HlouvC [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HlouvdistC [ftl 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffC [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
DeftE [ftl 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadCin [ftI\3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadCout [ft1\31 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
MheadCin [Ibm] 0.03852 0.04009 0.04472 0.04653 0.04845 0.04807 
MheadCout [Ibm] 0.49652 0.49479 0.48139 0.4753 0.47222 0.47228 
DheadC [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
AairC [ftI\2] 452.245 452.245 452.245 452.245 452.245 452.245 
hairC [Btulhr-ftI\2-Fl 13.82 13.82 13.8 13.79 13.79 13.79 
hreftpC [Btulhr-ftI\2-F] 435.14 438.73 412.78 403.5 399.76 399.63 
NlouvC [ 1 10 10 10 10 10 10 
dPairC [psia] 0.0011351 0.0011349 0.0011295 0.0011272 0.0011265 0.0011262 
eta fanC r ] 0.18 0.18 0.18 0.18 0.18 0.18 
NCht [ ] 8 8 8 8 8 8 
DCht [ft] 0.01583 0.01583 0.01583 0.01583 0.01583 0.01583 
LCht [ft] 3.33 3.33 3.33 3.33 3.33 3.33 
UlossCht [BtU/hr-ft2-F] 0 0 0 0 0 0 
pdCht [psia] 0.03 0.04 0.03 0.03 0.03 0.03 
qlossCht [BtU/hr] 0 0 0 0 0 0 
MCht [lbml 0.334 0.33283 0.32382 0.31972 0.31765 0.31769 
VCht [ftI\3] 0.00524 0.00524 0.00524 0.00524 0.00524 0.00524 
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Table D.ll Dry indoorlhigh outdoor ambient temperature condenser submodel simulation runs 

Corresp. Exp. 80/96 80/104 80/106 801111 80/118 80/118 
Data set (10-26-98) (10-3-98) (10-24-98) (10-25-98) (10-4-98) (10-25-98) 

degsubcool rF] 21.4 23.9 24.2 25.5 27.1 27.1 
w [Ibm/hr] 313 324 316.6 314.8 323.3 316.4 
PwrComp rWl 2161.3 2507.5 2583.6 2820.6 3171.7 3177.4 
Acond [ft"2] 107.793 107.793 107.793 107.793 107.793 107.793 
esupC r ] 0.793 0.785 0.791 0.797 0.796 0.802 
e2phC [ ] 0.872 0.874 0.874 0.875 0.876 0.876 
esubC r ] 0.997 0.997 0.997 0.997 0.996 0.997 
fsupC [ ] 0.211 0.225 0.237 0.248 0.259 0.257 
i1phC r ] 0.405 0.348 0.33 0.294 -0.259 0.253 
fsubC [ ] 0.385 0.426 0.433 0.457 0.482 0.49 
hO rBtU/lbml 149.4 153 154.5 157.6 161.1 161.9 
hI [Btu/Ibm] 149.3 151.7 153.3 156.4 159 160.1 
h2i rBtU/lbml 120.6 119.9 119.8 119.3 118.6 118.6 
h20 [Btu/Ibm] 57.8 62.5 63.5 66.5 71 71.1 
h3 JBtu/lbm] 49.1 52.4 53.2 55.3 58.3 58.4 
h4 [BtU/lbml 49.1 52.4 53.2 55.3 58.3 58.4 
MtotC [Ibm] 2.668 2.688 2.675 2.666 2.633 2.644 
MsupC [Ibm] 0.077 0.094 0.101 0.112 0.129 0.127 
M2phC [Ibm] 0.702 0.619 0.591 0.534 0.473 0.463 
MsubC [Ibm] 1.37 1.466 1.477 1.521 1.543 1.566 
pO [psia] 421.5 480.3 493.3 532.5 589.2 590.3 
pI [psia] 421.5 480.3 493.3 532.5 589.2 590.3 
p2i Ipsia] 421.4 480.2 493.2 532.4 589.1 590.2 
p2avg [psia] 421.4 480.2 493.2 532.4 589.1 590.2 
p20 [psi a] 421.3 480.2 493.2 532.4 589.1 590.2 
p3i rpsial 421.3 480.1 493.1 532.3 589 590.1 
p4 [psia] 421.2 480 493 532.2 588.9 590 
qCond IBtulhrl 31364 32180 31715 31818 32559 32197 
qsupC [Btulhr] 9000 10299 10624 11665 13064 13147 
q2phC [Btulhr] 19639 18616 17823 16618 15386 15025 
qsubC [Btulhr] 2726 3265 3268 3536 4109 4025 
to [F] 200.5 219.8 226.4 241.1 258.5 261.1 
tlo rF] 200.3 215.5 222.4 236.8 251.3 255.2 
t2i [F] 117.9 128.2 130.3 136.5 144.8 145 
t2avg IF] 117.9 128.1 130.3 136.5 144.8 145 
t20 [F] 117.9 128.1 130.3 136.5 144.8 145 
t3i [F] 96.5 104.3 106.1 111 117.7 117.9 
t4 rF] 96.5 104.3 106.1 111 117.7 117.9 
tafanoutC [F] 108.9 117.2 118.9 124 131.1 131.2 
tasupoutC [F] 112.9 122.1 123.6 129.5 137.8 138.3 
ta2phoutC [F] 115.2 125.1 127.2 133.3 141.4 141.6 
tasuboutC [F] 99.1 107.2 109 114 121 121.1 
taoutC rF] 108.5 116.8 118.5 123.5 130.7 130.7 
usupC [Btulhr-ft"2-F] 8.9 8.7 8.2 8 8.1 8.1 
u2phC rBtulhr-ft"2-Fl 49.4 49.1 48.9 48.6 48.3 48.2 
usubC [Btulhr-ft"2-F] 23.6 22.8 22.6 22.1 21.3 21.3 
TubeLenC lin 6.28 6.28 6.28 6.28 6.28 6.28 
Vcond [ft"3] 0.059 0.059 0.059 0.059 0.059 0.059 
VolextC [ft"3] 0.9825 0.9825 0.9825 0.9825 0.9825 0.9825 
x20 r 1 0 0 0 0 0 0 
x4 [ ] 0 0 0 0 0 0 
Toutdoor IF] 96.4 104.2 106 110.9 117.6 117.8 
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RhaiC [ ] 0.405 0.405 0.405 0.405 0.405 0.405 
vdotaCmeas [cfm] 2600 2600 2600 2600 2600 2600 
PwrFanC [W] 144.8 144.5 144.5 144.3 144.1 144.1 
NportsC [ports/tube] 19 19 19 19 19 19 
porgeoC [] 1 1 1 1 1 1 
geodesC [ ] 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesC [ ] 79 79 79 79 79 79 
twebC [ft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallC [ft] 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinC [ft] 0.026 0.026 0.026 0.026 0.026 0.026 
Dh tC [ft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airC [ft] 0.00639 0.00639 0.00639 0.00639 0.00639 0.00639 
AfrontC [ftI\2] 16 16 16 16 16 16 
DeqinC [ft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistC [ft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistC [ft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThC [ft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
dpC [psia] 0.2 0.2 0.2 0.2 0.2 0.2 
ThetaLoC [deg] 27 27 27 27 27 27 
HlouvC [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HlouvdistC [ft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffC [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
DeftE [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadCin [ftI\3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadCout [ftI\3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
MheadCin rIbm] 0.04836 0.05508 0.0561 0.0597 0.06574 0.06531 
MheadCout [Ibm] 0.47049 0.45425 0.45069 0.43928 0.42283 0.4224 
DheadC rft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
AairC [ftI\2] 452.245 452.245 452.245 452.245 452.245 452.245 
hairC [Btulhr-ftI\2-F] 13.79 13.77 13.77 13.76 13.75 13.75 
hreftpC rBtU/hr-ftI\2-F] 396.62 377.21 370.68 356.56 339.25 337.15 
NlouvC [ ] 10 10 10 10 10 10 
dPairC [psia] 0.0011255 0.0011203 0.0011192 0.001116 0.0011118 0.0011117 
eta fanC [ ] 0.18 0.18 0.18 0.18 0.18 0.18 
NCht [1 8 8 8 8 8 8 
DCht [ft] 0.01583 0.01583 0.01583 0.01583 0.01583 0.01583 
LCht [ftJ 3.33 3.33 3.33 3.33 3.33 3.33 
UlossCht [BtU/hr-ft2-F] 0 0 0 0 0 0 
pdCht [psia] 0.03 0.04 0.03 0.03 0.04 0.03 
qlossCht [Btulhr] 0 0 0 0 0 0 
MCht [Ibm] 0.31649 0.30556 0.30317 0.29549 0.28443 0.28414 
VCht [ftI\3] 0.00524 0.00524 0.00524 0.00524 0.00524 0.00524 
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Table D.12 Wet indoor condenser submodel simulation runs 

Corresp. Exp. 80170 80175 80/82 80/95 80/105 801118 
Data set (10-6-98) (10-7-98) (10-7-98) (10-9-98) (10-9-98) 00-12-98) 

degsubcooI fFl 16.9 16.7 16.7 18.3 21 25.7 
w [Ibm/hr] 377.2 381.7 381.7 386 375 368.3 
PwrComp lWl 1449.2 1551.9 1696.5 2062.5 2469.3 3157.6 
Acond [ftA2] 107.793 107.793 107.793 107.793 107.793 107.793 
esupC [J 0.755 0.758 0.769 0.781 0.788 0.782 
e2phC [ ] 0.866 0.868 0.87 0.874 0.876 0.878 
esubC r 1 0.948 0.94 0.94 0.961 0.982 0.988 
fsupC [ ] 0.105 0.111 0.123 0.149 0.187 0.24 
f2phC [ ] 0.682 0.677 0.657 0.576 ·0.458 0.31 
fsubC [ ] 0.213 0.213 0.22 0.274 0.355 0.449 
hO [Btu/Ibml 136.7 138.1 140.2 144.6 149.7 157.4 
hI [Btu/Ibm] 138.7 139.4 141 144.7 149.2 155 
h2i [Btu/Ibml 121.3 121.3 121.2 120.7 120 118.6 
h20 [Btu/Ibm] 45.5 47.6 50.3 56.2 61.8 70.7 
h3 [Btu/Ibm] 39.2 41.3 43.8 48.8 53 58.7 
h4 [Btu/Ibm] 39.2 41.3 43.8 48.8 53 58.7 
MtotC [Ibml 2.447 2.441 2.449 2.528 2.608 2.611 
MsupC [Ibm] 0.027 0.03 0.037 0.054 0.078 0.123 
M2phC [Ibml 1.045 1.056 1.052 0.967 0.8 0.561 
MsubC [Ibm] 0.829 0.813 0.825 0.986 1.22 1.437 
pO [psia] 282.6 304.4 333.5 401.3 472.2 585.9 
pI [psial 282.5 304.3 333.4 401.2 472.1 585.8 
p2i [psia] 282.3 304.1 333.2 401 471.9 585.7 
p2avg [psial 282.3 304.1 333.2 401 471.9 585.7 
p20 [psi a] 282.2 304 333.1 400.9 471.9 585.6 
p3i [psia] 282.1 303.9 333 400.9 471.8 585.5 
p4 [psia] 282.1 303.9 333 400.8 471.7 585.5 
qCond [Btulhr] 37544 37468 37102 37029 36092 35485 
qsupC [Btulhr] 6582 6933 7577 9244 10949 13395 
q2phC [Btulhr] 28576 28110 27054 24935 21824 17647 
qsubC fBtulhr] 2386 2425 2471 2850 3319 4443 
to [F) 136.3 145 156.8 181.6 207.9 245.8 
tIo [Fl 143.4 149.5 159.7 182 206.2 237.8 
t2i [F) 88.3 93.6 100.2 114.1 126.8 144.3 
t2avg [Fl 88.3 93.6 100.2 114.1 126.8 144.3 
t20 [F] 88.3 93.6 100.2 114.1 126.8 144.3 
t3i [F) 71.4 76.9 83.5 95.7 105.8 118.6 
t4 [Fl 71.4 76.9 83.5 95.7 105.8 118.6 
tafanoutC [F) 84.6 90 96.6 109.5 119.9 132.9 
tasupoutC lFl 93.6 99.1 105.6 118.9 128.3 140.7 
ta2phoutC [F] 85.9 91.3 97.9 111.7 124.1 141.1 
tasuboutC [F) 74.6 80 86.6 99 109.1 122.3 
taoutC [Fl 84.3 89.7 96.4 109.3 119.6 132.6 
usupC [Btulhr-ftA2-Fl 20.8 20.6 19.4 17.2 13.4 10.2 
u2phC IBtulhr-ftA2-F] 50.7 50.5 50.3 49.8 49.3 48.5 
usubC [Btulhr-ftA2-Fl 25.7 25.3 24.8 23.7 22.7 21.3 
TubeLenC [ft] 6.28 6.28 6.28 6.28 6.28 6.28 
Vcond lftA3] 0.059 0.059 0.059 0.059 0.059 0.059 
VoIextC [ftA31 0.9825 0.9825 0.9825 0.9825 0.9825 0.9825 
x20 [] 0 0 0 0 0 0 
x4 [ 1 0 0 0 0 0 0 
Toutdoor [F) 70.5 75.8 82.4 95 105.4 118.3 
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RhaiC [ ] 0.405 0.405 0.405 0.405 0.405 0.405 
vdotaCmeas [efm] 2600 2600 2600 2600 2600 2600 
PwrFanC [W] 145.6 145.4 145.2 144.8 144.5 144.1 
NportsC [ports/tube] 19 19 19 19 19 19 
porgeoC [] 1 1 1 1 1 1 
geodesC [ ] 62.69 62.69 62.69 62.69 62.69 62.69 
NtubesC [ ] 79 79 79 79 79 79 
twebC [ft] 0.00112 0.00112 0.00112 0.00112 0.00112 0.00112 
twallC [ft] 0.00138 0.00138 0.00138 0.00138 0.00138 0.00138 
HfinC [ft] 0.026 0.026 0.026 0.026 0.026 0.026 
Dh tC [ft] 0.00219 0.00219 0.00219 0.00219 0.00219 0.00219 
Dh airC [ft] 0.00639 0.00639 0.00639 0.00639 0.00639 0.00639 
AfrontC [ftA2] 16 16 16 16 16 16 
DeqinC [ft] 0.00282 0.00282 0.00282 0.00282 0.00282 0.00282 
HtubeDistC [ft] 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 
VtubeDistC fft] 0.03224 0.03224 0.03224 0.03224 0.03224 0.03224 
FinThC [ft] 0.000417 0.000417 0.000417 0.000417 0.000417 0.000417 
dpC [psia] 0.4 0.4 0.4 0.3 0.3 0.3 
ThetaLoC [deg] 27 27 27 27 27 27 
HIouvC [ft] 0.02167 0.02167 0.02167 0.02167 0.02167 0.02167 
HIouvdistC [ft] 0.004583 0.004583 0.004583 0.004583 0.004583 0.004583 
DeffC [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
DeftE [ft] 0.0033 0.0033 0.0033 0.0033 0.0033 0.0033 
VheadCin [ftA3] 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
VheadCout ritA31 0.00779 0.00779 0.00779 0.00779 0.00779 0.00779 
MheadCin [Ibm] 0.03352 0.0362 0.03958 0.04745 0.05513 0.06735 
MheadCout [Ibm] 0.51296 0.50515 0.49539 0.47426 0.45414 0.42231 
DheadC [ft] 0.06242 0.06242 0.06242 0.06242 0.06242 0.06242 
AairC [ftA2] 452.245 452.245 452.245 452.245 452.245 452.245 
hairC [Btulhr-ftA2-F] 13.84 13.83 13.82 13.79 13.77 13.74 
hreftpC [Btulhr-ftA2-F] 478.37 467.76 453.03 423.41 392.87 351.43 
NlouvC [ ] 10 10 10 10 10 10 
dPairC [psi a] 0.0011433 0.0011395 0.0011349 0.0011264 0.0011196 0.0011113 
eta fanC [ ] 0.18 0.18 0.18 0.18 0.18 0.18 
NCht [ ] 8 8 8 8 8 8 
DCht fftl 0.01583 0.01583 0.01583 0.01583 0.01583 0.01583 
LCht [ft] 3.33 3.33 3.33 3.33 3.33 3.33 
UlossCht [Btulhr-ft2-F] 0 0 0 0 0 0 
pdCht [psia] 0.04 0.05 0.05 0.05 0.05 0.05 
qlossCht [Btulhr] 0 0 0 0 0 0 
MCht [Ibm] 0.34506 0.3398 0.33324 0.31902 0.30549 0.28407 
VCht [ftA3] 0.00524 0.00524 0.00524 0.00524 0.00524 0.00524 
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Table D.13 Final charge estimation simulation 

Corresp. Exp. 80/82 (10-
Data set 7-98) 

Aeond rftJ\2l 109.603 
Aevap [ftJ\2] 32.539 
MtotC [IbmJ 2.349 
MtotE [Ibm] 0.385 
MsupC [Ibm] 0.052 
M2phC [Ibm] 1.422 
MsubC Llbml 0.337 
M2phE [Ibm] 0.314 
MsupE nbml 0.004 
Maeeum [Ibm] 0 
Meaptube nbml 0.02 
Meomp [Ibm] 0.159 
MdisLine llbmJ 0.078 
MliQLine [Ibm] 1.181 
MsuetLine [Ibm] 0.096 
Mrefoil [Ibm] 0.506 
TubeLenC [ft] 6.22 
TubeLenE rft] 3.65 
Tindoor [F] 80.1 
Toutdoor rFl 82.4 
RhaiC [ ] 0.405 
RhaiE r 1 0.52 
vdotaCmeas [efm] 2600 
vdotaE [cfml 800 
Mtotal [Ibm] 5.9096 
NportsC [ports/tube] 19 
porgeoC n 4 
NportsE [ports/tube] 19 
porgeoE n 4 
geodesC [ ] 75 
geodesE r 1 75 
NtubesC [ ] 79 
NtubesE [J 40 
twebC rftl 0.00112 
twallC [ft] 0.00138 
HfinC lft] 0.026 
twebE [ft] 0.00112 
twallE [ft] 0.00138 
HfinE rftl 0.026 
Leap [in] 19 
Deap [inl 0.128 
Dh tC [ft] 0.00248 
Dh tE [ft] 0.00248 
Dh airC [ft] 0.00638 
Dh airE [ft] 0.00639 
AfrontC IftJ\21 16 
AfrontE rftJ\2] 4.75 
DeqinC [ft] 0.00304 
DeQinE rftl 0.00304 
HtubeDistC [ft] 0.06185 
HtubeDistE rftl 0.06185 
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VtubeDistC [ft] 0.03257 
VtubeDistE [ft] 0.03257 
FinThC [ft] 0.000417 
FinThE [ft] 0.000417 
AairE [ftA2] l35.341 
ThetaLoC rdeg] 27 
HIouvC [ft] 0.02167 
HIouvdistC [ftl 0.004583 
ThetaLoE [deg] 27 
HlouvE [ft] 0.02167 
HIouvdistE [ft] 0.004583 
DeffC [ft] 0.00333 
DeftE [ft] 0.00333 
VheadCin [ftA3l 0.00787 
VheadCout [ftA3] 0.00787 
VheadEin rftA3] 0.00399 
VheadEout [ftA3] 0.00399 
MheadCin [Ibm] 0.03946 
MheadCout [Ibm] 0.49809 
MheadEin [Ibm] 0.05636 
MheadEout [Ibm] 0.0105 
DheadC [ft] 0.06242 
DheadE [ft] 0.06242 
AairC [ftA21 451.204 
NIouvC [ ] 10 
NiouvE U 10 
NCht [ ] 8 
DCht [ft] 0.01583 
LCht rftl 3.33 
MCht [Ibm] 0.33168 
VCht lftA31 0.00524 
geodes2C [ft] 0.00381 
geodes3C eft] 0.00089 
geodes2E eft] 0.00381 
geodes3E [ft] 0.00089 
Vfilter [ftA3] 0.0127 
Mfilter [Ibm] 0.8 
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