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ABSTRACT 

A transient model was developed to predict the behavior of the vapor compression 

cycle of a mobile air-conditioning system. Mobile air-conditioning systems operate in a 

transient mode due to variations in compressor speed, variations in condenser air flow rate, and 

the controls strategy such as clutch-cycling. We developed a model to simulate start-up 

transients, clutch cycling transients, city-driving transients, and shut-down transients including 

the following charge redistribution. 

Our transient model treats the components in a vapor compression refrigeration system 

including the compressor, condenser, orifice tube, evaporator, and accumulator. The heat 

exchangers are divided into a series of constant-volume cells. The conservation of mass, 

conservation of energy, and conservation of momentum equations are applied to each cell. The 

number of cells and/or the volume of the cells can be changed between simulations in order to 

change the resolution of the model. The accumulator model is a modification of the heat 

exchanger model which constrains the outlet to always be vapor. The orifice tube model and 

the compressor model are semi-empirical. 

The model is validated with steady-state and transient data obtained from a test facility 

specifically designed to simulate mobile air-conditioners. The steady-state model predicts most 

of the system parameters to within ±15%. The transient model predicted the behavior of the 

city driving cycle, compressor shut-down, compressor start-up, and clutch-cycling simulations 

well. 

An important part of the system model is calculating the refrigerant properties correctly. 

We developed refrigerant property routines to the calculate equilibrium thermodynamic 

properties in the liquid, vapor, two-phase liquid-vapor, and supercritical region using the 

Modified-Benedict-Webb-Rubin equation of state. Our property routines accurately solve for a 

given output property for applicable combinations of input properties. They also accurately 

predict whether the refrigerant is in the single-phase or two-phase region. The property 

routines agree extremely well with the experimental data found in the literature. 
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Chapter 1 

Introduction 

Mobile air conditioners are designed to cool the cabins of automobiles and heavy 

machinery. These systems are vapor compression refrigeration systems similar to room air

conditioners, refrigerators, and heat pumps. However, mobile systems differ from other air 

conditioning and refrigeration systems because their operation is always transient. The 

compressor is driven by a belt from the vehicle engine crankshaft; and as a result the 

compressor speed varies with engine speed independently of vehicle load. The condenser air

flow is provided by a combination of fans and the ram-effect flow; consequently, it varies with 

vehicle speed. 

The primary design criterion for a mobile air-conditioner is too cool the cabin as 

quickly as possible after vehicle start-up. A cabin can reach 130 of or more when the vehicle 

has been parked in direct sunlight. The system is overdesigned for less extreme operating 

conditions which occur after the cabin temperature has been pulled down to a comfortable 

level. A control strategy must be employed to regulate the excess capacity. A common control 

strategy is to cycle the compressor on and off using a clutch. Clutch cycling adds to the 

transient behavior of the system. 

Because the system is inherently transient, a transient system model should be used to 

design a mobile air conditioner. The first part of this thesis is concerned with developing a 

transient model design tool for mobile air conditioning systems. This transient model must 

accurately simulate start-up transients, shut-down transients, and the following charge 

redistribution after shutdown. Also, the model must be able to simulate changes in the input 

conditions such as the compressor speed, heat exchanger air flow rates, and inlet heat 

exchanger air temperatures. 

This model is intended to be a design tool in which different components and control 

strategies can be tested under actual operating conditions. Our mobile air-conditioning model 

provides a complete description of the thennodynamic state, refrigerant mass flow rates, and 

refrigerant mass distribution in a vapor compression system. 

In Chapter 2 we shall provide a background of mobile air-conditioning system, air

conditioning models, and review the current state of the art in transient air-conditioning 

modeling. The structure of the transient model and the transient component models will be 

developed and validated with experimental data in Chapter 3. The component models will be 
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combined to create a system model that will also be validated with steady-state experimental 

data in Chapter 4. In Chapter 5 we shall validate the models with transient driving cycle, shut

down, start-up, and clutch cycling data. 

An important part of the system model is calculating the refrigerant properties correctly. 

The second portion of this thesis discusses thermodynamic properties and the development of 

refrigerant property routines. Property routines determine one thermodynamic property from 

two other independent properties. A transient system model can call the property routines 

thousands of times per problem. The property routines must 

1) Accurately determine the phase of the refrigerant and solve for the refrigerant 

properties, 

2) Provide versatility with respect to the input properties, 

3) Have a convenient user interface, 

4) Quickly solve for the refrigerant properties, and 

5) Provide results for different refrigerants. 

In Chapter 6 we discuss single component refrigerant properties, the general algorithm 

for calculating refrigerant properties, and currently available property routines. In Chapter 7 

we summarize our property routines and specifically discuss the user interface, equation of 

state, and search routines. We then determine the robustness of the property routines and 

validate the property routines with experimental data. 

This work results in a robust model which can accurately model all transients in a 

mobile air-conditioning system between system start-up and shutdown and the subsequent 

charge distribution. The model uses our refrigerant property routines which consistently 

converge on the correct properties. This model is directly useful for studying clutch-cycling 

mobile air-conditioners but it could be easily extended to model other control strategies or 

vapor compression systems. 
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Chapter 2 

Overview of Mobile Air-Conditioning System Models 

This chapter provides background on mobile air-conditioning systems and transient 

system models. First, we shall summarize some of the key features that make mobile air

conditioning systems unique from other vapor compression systems. Next, an overview of 

transient system and transient component models is provided. Finally, we shall discuss some 

important transient vapor-compression models in the literature. 

2.1 Description of Mobile Air-Conditioning Systems 
Mobile air-conditioning systems are vapor-compression refrigeration systems designed 

for automotive and heavy-machinery applications. This description of mobile air-conditioning 

systems will focus on how they differ from stationary vapor-compression systems (e.g. 

refrigerators, heat pumps, room air-conditioners, etc.). It is important to note these differences 

because much of the literature on transient vapor-compression models is for stationary systems. 

We shall describe these differences in terms of the (a) specific components, (b) design criteria, 

(c) controls strategy, and (d) controls methods. 

2.1.1 Specific Components 
First, we shall discuss how the compressor, heat exchangers, and expansion device 

differ between mobile and stationary systems. 

Stationary systems use a hermetic compressor powered by an internal electric motor 

whereas mobile systems use an external-drive compressor powered by a shaft connected to the 

vehicle engine. In mobile systems, the compressor speed changes with the engine speed 

independently of the air-conditioning load, and the compressor is turned on and off with a 

clutch. In most stationary systems the compressor speed remains constant. Some prototype 

stationary systems have variable-speed compressors wherein the compressor speed changes to 

match the cooling load. Several mobile systems use a variable displacement compressor which 

is discussed in Section 2.1.4.3. 

An important design criterion in mobile systems is to reduce the size and weight of the 

components (discussed in Section 2.1.2). As a result, the automotive industry has adopted 

many compact and efficient heat exchanger designs such as plate-fin evaporators and micro-
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channel condensers which are not commonly seen in stationary systems at present. Another 

difference relates to the airflow over the condenser. In refrigerators and heat pumps, the 

airflow is provided exclusively by a fan. In automotive systems, the flow is a combination of 

fan-induced and ram-effect flow. The fan provides most of the flow at low vehicle speeds 

whereas the ram-effect provides most of the air flow at high vehicle speeds. 

The standard constant-area expansion device is an orifice tube in mobile systems and a 

capillary tube in stationary systems. In stationary systems, capillary tubes are sometimes run 

parallel to the suction line creating a counterflow heat exchanger. Some stationary and mobile 

systems also use thermal expansion valves (TXVs) as an expansion device .. 

2.1.2 Design Criteria 
The design criteria are a very important difference between stationary and mobile 

systems. Mobile air-conditioning systems are required to provide a comfortable vehicle cabin 

temperature and humidity level under a variety of conditions. These systems must be designed 

to keep the cabin coolon an extremely hot day in Arizona and to dehumidify a cabin on a cool 

rainy day in Maine. Mobile systems are traditionally designed for the most extreme operating 

condition which is rapid cabin temperature pulldown. After a vehicle has been sitting in the 

sun on a summer day, the cabin temperature can be upwards of 130 of. Consumers want the 

air-conditioning system to pull this temperature down to comfortable levels quickly. As a 

result of this design criterion, the system is typically oversized for most normal operating 

conditions. 

Other important design criteria include minimizing the size and weight of the 

component and minimizing both initial manufacturing costs and future warranty costs. With 

automotive manufacturers pushing towards longer warranties, reliability has become a greater 

concern. 

The most important design criterion in a stationary system is energy efficiency because 

it is regulated by the federal government. Stationary systems generally pulldown the indoor 

environment temperature on the order of hours rather than minutes, and they are usually 

working against a cooler initial temperature. Minimizing manufacturing and warranty costs are 

also an important design criterion. 

2.1.3 Control Objectives 

Mobile air-conditioning systems have two basic controls objectives. The first is to 

maintain the cabin at the correct temperature. The second is to prevent frost from forming on 

the evaporator. If the outlet evaporator air temperature falls below the freezing point of water, 

then frost forms on the evaporator coils reducing airflow to the cabin and evaporator efficiency. 
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The standard method of operating mobile systems is to employ a controls strategy 

(summarized in Section 2.1.4) to maintain the evaporator refrigerant temperature at 

approximately 35 OF. This strategy results in maximum cooling and maximum 

dehumidification at all times. Since the system is sized for pulldown conditions, the passenger 

compartment will become too cold during less extreme operating conditions unless the system 

capacity is modulated. This can be accomplished using a blend door to divert a portion of the 

cool air from the air conditioning system through the heating core. 

Stationary systems must also be controlled to maintain the indoor environment at the 

correct temperature. Compressor cycling (Section 2.1.4.1) and variable-area expansion valves 

(Section 2.1.4.2) are the most common control methods used to achieve this objective. In a 

room air conditioner, the system is designed for the evaporator to operate around 40-50 OF and 

thus frost formation is automatically avoided. 

2.1.4 Control Methods 

In the following sections we shall discuss control methods for mobile air conditioners. 

Clutch cycling and variable-area expansion valves are the two most common methods whereas 

variable-displacement compressors and suction throttling are less common. All of these control 

methods are also applicable to stationary systems but compressor cycling is the most common 

strategy followed by variable-area expansion valves. Another control strategy used in some 

prototype stationary systems is a variable-speed compressor. This strategy is not practical for 

mobile systems and is not discussed here. 

2.1.4.1 On-off Control 

On-off control typically use a constant-area expansion valve such as an orifice tube. A 

pressure sensor at the exit of the evaporator controls whether the compressor clutch is engaged 

or disengaged. The clutch disengages when the pressure falls below the low-pressure set point 

and engages when the pressure reaches a high-pressure set point. During highway operation, 

the clutch can cycle on and off several times per minute. Clutch cycling systems have an 

accumulator between the evaporator and compressor to prevent liquid refrigerant from flowing 

into the compressor. A transient model is most important for this type of system because of the 

extreme transient nature caused by the compressor constantly turning on and off. 

The main advantages of clutch cycling systems are that the control algorithm is simple 

to implement and the expansion valve has no moving parts which can fail. For these reasons, 

this is the most common control strategy in American-made automobiles. 

A disadvantage of clutch cycling systems is that the compressor cycling causes swings 

in the discharge temperature. Also, the horsepower required to drive a compressor can 
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represent a significant portion of the engine output. The driver can sometimes feel the drop in 

power when the compressor is engaged. Also, there is excessive wear on the compressor 

because it is constantly stopping and restarting. 

2.1.4.2 Variable-Area Expansion Valve Systems 

Variable-area expansion valves control the refrigerant temperature at the outlet of the 

evaporator by changing the expansion valve opening. Two types of variable-area expansion 

valves are thermal expansion valves (TXV) and electronic expansion valves (EEV). 

A TXV maintains a constant superheat at the evaporator exit. The outlet temperature is 

measured using a thermal bulb filled with refrigerant. The refrigerant can either be the same 

refrigerant as in the system or a combination of refrigerants _ depending on the desired 

characteristics. The bulb is connected to the outlet of the evaporator. The refrigerant in the 

bulb expands or contracts depending on the temperature at the outlet of the evaporator. The 

orifice opening is determined by the difference between the refrigerant pressure in the bulb and 

the sum of the refrigerant pressure at the outlet of the expansion valve and a spring force which 

tends to close the valve. If the heat load increases, the evaporator superheat increases. The 

refrigerant in the bulb expands and increases the expansion valve opening. As a result, the 

refrigerant flow increases and decreases the refrigerant outlet temperature. A more detailed 

explanation ofTXVs is provided by Eaton Automotive Controls (1993). TXVs are common in 

Japanese-made automobiles. 

Another type of expansion valve is the electronic expansion valve (EEV). EEV s are 

currently experimental in mobile and stationary air-conditioning system. The throat opening is 

controlled by an electric signal provided by a microprocessor. The microprocessor can use a 

variety of inputs such as the outlet refrigerant pressure or the compressor speed and a more 

sophisticated control algorithm to determine the optimal valve opening. 

Since variable-area expansion systems are designed to maintain superheated refrigerant 

at the evaporator exit, an accumulator is not needed before the compressor. Typically, a 

receiver-dryer is placed between the condenser and the TXV. A receiver-dryer is a reservoir 

for refrigerant which is designed to only allow liquid to flow out. 

The advantage of TXV control is that the system is operated at a high level of 

efficiency. Maximum heat exchanger efficiency occurs when all of the refrigerant in the 

evaporator is two-phase. Since a TXV controls outlet temperature, a small amount of superheat 

is typically maintained. 

One disadvantage of TXV systems is that the expansion valve has moving parts which 

can fail. Another problem is that the system can become unstable or "hunt." Hunting occurs 

when the valve alternates between opening too wide and opening too small without coming to a 
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steady-state value. Hunting is caused by a wrongly sized valve or the system operating in an 

unusual way. 

2.1.4.3 Variable-Displacement Compressor Systems 

A variable-capacity compressor changes its displacement volume to maintain the 

evaporator pressure at a constant value which is slightly above the freezing point of water. If 

the evaporator load is reduced, then the evaporator temperature and pressure decrease. The 

suction pressure decreases which causes the compressor displacement and capacity to also 

decrease. More information on the details of the behavior of variable-displacement 

compressors can be found in Skinner and Swadner (1985) and Tojo et aI. (1990). These 

systems usually have an orifice tube but can also use a TXV (Inoue et aI., 1988). 

Variable-displacement compressor sy stems have the advantage of running continuously 

so there is no cycling load on the engine or swing in outlet air temperature. However, these 

compressors are more complex than constant-displacement compressors and can be less 

reliable. These factors can lead to higher warranty costs and dissatisfied customers. 

2.1.4.4 Suction Throttling Systems 

Suction throttling uses a valve at the outlet of the evaporator to control the evaporator 

pressure. The valve maintains the outlet evaporator pressure at a constant value independent of 

the compressor inlet pressure and the cooling demand. This maintains the evaporator above the 

freezing temperature of water. 

This strategy has the advantage that the compressor runs continuously. However, 

suction throttling is extremely inefficient and results in an unacceptable fuel economy penalty. 

Suction throttling is rarely used in current production vehicles. 

2.2 Transient System Models 
A dynamic model is needed to simulate mobile air conditioning systems because they 

are inherently transient. Steady-state models are useful for designing a system for one specific 

operating point or determining an average energy efficiency. Transient models are useful for 

studying system behavior during more realistic operating conditions such as start-up, shut

down, clutch-cycling, or city driving cycles. 

Transient models capture different phenomena than do steady-state models such as 

refrigerant charge migration throughout the system, thermal capacitance of the components, 

and energy storage in the refrigerant. Some possible output from transient models include 

energy efficiency, changes in evaporator air outlet temperature, and changes in drivability (i.e., 

compressor torque). Transient models are also important in determining possible problems in 
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system operation such as liquid slugging of the compressor, evaporator charge starvation, TXV 

hunting, or refrigerant pressure spikes. 

The inputs of both steady-state and transient models are compressor speed, evaporator 

and condenser air temperatures, condenser and evaporator air mass flow rates, and the 

refrigerant charge. The model outputs include the refrigerant state (pressure, temperature, 

enthalpy, etc.) throughout the system, refrigerant flow rate, outlet air temperatures, compressor 

torque, and refrigerant flow rate. 

Transient system models are composed of separate component models discussed in 

Section 2.3. Section 2.3 also describes the types of equations needed to model each 

component. The solution technique for the equations is discussed in Section 2.4. Section 2.5 

describes how to predict the refrigerant charge in a system. 

The remainder of this section provides an overall perspective of transient models. 

Transient system models are developed to capture different transient phenomena. The next 

section specifically describes the transient conditions that occur during system operation and 

how they affect the input conditions to the modeL The following two sections describe the 

objectives of transient models and the classification of the model equations. 

2.2.1 Transients in Mobile Air-Conditioning System Operation 

Different transients affect mobile vapor-compression systems such as load transients, 

vehicle transients, on/off transients, and controls transients. All of these transients except 

vehicle transients also affect stationary systems. 

Load transients (from the viewpoint of the air conditioning systems) occur when the 

evaporator inlet temperature changes. The most extreme load transient occurs during 

pulldown. Load transients also result from temporal variations in the net heat flux to the 

passenger compartment. Such variations arise from changes in the solar input, the convective 

heating or cooling of the vehicle exterior, and air exchange through an open door or window. 

Also, load transients can occur by the vehicle occupant varying the set point of the conditioned 

air. Since the thermal capacitance of the vehicle interior is fairly large, these transients are 

relatively slow. The cabin generally takes many minutes to reach a new steady-state after a 

load transient occurs. 

Vehicle transients are changes which the moving vehicle imposes on the air

conditioning system and correlate directly with the acceleration and deceleration of the vehicle. 

These transients include changes in the compressor speed and condenser airflow. Vehicle 

transients do not occur when the vehicle is operating at a constant speed. 

On/off transients occur when the clutch turns on and off. These transients occur during 

system start-up, system shut-down, or clutch cycling. In a clutch-cycling system, on/off 
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transients occur frequently except when the system is turned off (and the clutch is disengaged) 

or when there is an extremely high steady-state load and the clutch does not cycle. High 

steady-state loads occur on hot days when the fresh air enters with evaporator core rather than 

recirculated air. When the clutch engages (disengages), the compressor speed accelerates 

(decelerates) to the speed of the engine (zero) quickly. The on/off transient itself occurs on the 

order of tenths of seconds to seconds. On/off transients affect the vapor-compression system 

by causing the refrigerant mass flow rate to go zero when the clutch is turned off or to go to a 

steady-state nonzero value when the clutch is turned on. After an on/off transient, the vapor 

compression system takes minutes to reach a new steady-state value. 

On/off transients are much more difficult to model than the other transients. Most other 

transients can be modeled as small deviations from a steady-state model. On/off transients 

represent large deviations from steady-state. When the compressor is turned off, situations 

completely different from steady-state conditions occur. For example, the refrigerant mass 

flow rates go to zero or can become negative. Also, subcooled liquid refrigerant can exist in 

the evaporator or the condenser can become entirely superheated vapor. 

Other transients relate to other controls strategies besides clutch cycling such as 

changing the area of an expansion valve, changing the area of a suction throttling valve, or 

changing the displacement of a variable-displacement compressor. The time constant for 

thermal expansion valves is dependent on the thermal capacity of the thermal bulb and it can be 

on the order of seconds or tens of seconds. The suction throttling valve and variable

displacement compressor react to changes in the system pressure and have faster time 

constants. 

2.2.2 Objectives of System Models 

The objective of a transient system model dictates the types of equations and the type of 

solution techniques. Four different objectives are (a) system design, (b) controls 

implementation, (c) energy efficiency studies, and (d) qualitative studies. 

Transient design models are used to optimize system performance in transient operation 

by varying components, refrigerant (for studying alternative refrigerants), or controls strategy. 

The most useful design models can simulate all of the above types of transients although most 

design models do not attempt that. Transient design models can also be used to test a system in 

failure modes (such as charge loss) or extreme operating conditions (such as extremely high 

ambient temperatures). These models must be validated with experimental data and must be 

accurate enough to provide confidence in the conclusions. Design models are also important in 

understanding transient phenomena observed in real data. Simplified transient design models 

can be used as a starting point for controls and energy efficiency models. 
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Models developed for real-time controls applications must be simple enough to run on a 

microprocessor in real-time during system operation. Controls models take inputs measured in 

real time such as system pressures or temperatures. The model then calculates actuator outputs 

such as fan speeds, electronic expansion valve opening, or the compressor speed or 

displacement. Some possible controls objectives include preventing evaporator frosting, 

increasing system efficiency, maintaining constant outlet air temperatures, reducing system 

noise, or preventing liquid from flowing into the compressor. Control models must be able to 

model all transients to correctly control the system at all times. However, it is very difficult to 

develop a simple model that captures all operating conditions. Often simple heuristic models 

are used for extreme transients such as start-up or shut-down. Controls models must also agree 

with transient data. . 

The standard method of calculating the energy efficiency of refrigerators and heat 

pumps is to use a steady-state model. Transient models take into account the loss in efficiency 

during start-up and shut-down. Usually energy efficiency models are a simple modification of 

steady-state models or simplifications of transient models. 

Qualitative system models have not been compared to laboratory data and can only be 

used as the first step in the design process. These models are used to qualitatively understand 

refrigerant migration, thermal capacitance, and other transient phenomena. Also, qualitative 

models can help obtain a general understanding of the differences between different control 

strategies and design parameters on system performance. However, further analysis is needed 

before making a definitive conclusion because the models have not been compared with 

laboratory data. 

2.2.3 Classification of System Model Equations 

The objective of the model dictates which type of transient model is utilized. We shall 

define the different classifications of system models as fundamental, quasi-steady-state, time 

constant, and empirical models. 

A fundamental mathematical model uses the transient conservation equations to 

represent the system. These models are used for design and detailed systems analysis. A 

simplified fundamental model can be used in conjunction with system control algorithms. 

Fundamental models can be simplified to quasi-steady-state models by setting the derivatives 

equal to zero. 

In a quasi-steady-state model, the input parameters change with time, but the governing 

equations are steady-state. This type of model is accurate only for very slow transients such as 

load transients. Quasi-steady-state models can be used for any of the above purposes as long as 

the transient are slow enough. 
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Time-constant models represent the transient response of the heat transfer and 

refrigerant migration with a time lag of the steady-state response. Time constants are useful for 

simulating repeatable transients such as heat pump or refrigerator cycling. This type of model 

is typically used for energy efficiency calculations. 

Empirical models are based on experimental data and use a mathematical equation to 

correlate the inputs and the outputs. The form of the equation relates only loosely to any 

physical phenomenon and is chosen because it correlates well with the experimental data. 

Empirical transient models are often based on quasi-steady-state or time-constant models. 

2.3 Transient Component Models 
A transient system model is a combination of transient component models. A complete 

system model includes models for the evaporator, condenser, expansion valve, compressor, and 

other components such as the accumulator, refrigerant lines, and control valves. Each 

component model can be classified as belonging to one of the above groups, and more than one 

classification can be used in a system model. 

The following sections provide an overview of the component models and categorize 

the models in order to better understand the literature review (Section 2.6). We shall 

concentrate on fundamental models for each component. If the fundamental model is too 

complex for systems models, alternative modeling approaches are discussed. 

2.3.1 Heat Exchanger Models 

A heat exchanger model is developed by applying the conservation of mass, 

conservation of energy, and conservation of momentum to the refrigerant, heat sink fluid, and 

heat exchanger wall. Each of these sections is dealt with separately. 

2.3.1.1 Refrigerant Model 

When the conservation equations are applied to the refrigerant, a standard simplification 

is to m<:><iel the refrigerant flowing in the tube as one-dimensional. Therefore, the scalar 

velocity in the x direction is defined as V. Other refrigerant variables are the density (p), 

pressure (P), internal energy (u), enthalpy (h), and temperature (T). Geometry variables include 

the volume (Vol), the area (A), internal diameter (D), and the angle between the refrigerant line 

and the vertical (9). The differential forms of the conservation of mass, conservation of 

momentum, and conservation of energy are 
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The friction loss per unit volume is defined as 

Ffric 

f is the Darcy friction factor. The heat transfer between the wall and refrigerant is 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where href is the heat transfer coefficient between the refrigerant and the wall. One method of 

solving the above equations is to discretize the partial derivatives and solve the resulting 

implicit equations (Chen and Lin, 1991; Nyers and Stoyan, 1994; MacArthur and Grald, 1989; 

Murphy and Goldschmidt, 1986; and Gruhle and Isermann, 1985). 

An alternative method of developing a heat exchanger model is to integrate the 

conservation equations or equivalently use a control volume approach. The integral or control 

volume equations for the conservation of mass, conservation of momentum, and conservation 

of energy are 

and 

dm (2.6) 
= min - m out ' 

dt 
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These ordinary differential equations can be solved using standard techniques such as Euler's 

method (Mitsui, 1987; Chi and Didion, 1982; and Dhar and Soedel, 1979b) or Runge-Kutta 

(Vargas and Parise, 1995). Other methods used to solve the equations are differentiaValgebraic 

equation solvers (Colding et al., 1991). Ploug-Sorensen et al. (1997) and Ginsberg (1994) 

developed their codes for specific software packages, EASY5 and Sinda/Fluint, respectively. 

Frequent approximations used to simplify the equations include neglecting gravity 

(mgcos6 and gz), neglecting kinetic energy (y2/2) , and neglecting the viscous dissipation, 

V(Ffric Vol). 

He et al. (1997) linearized the differential equations around an operating point and used 

a standard linear equation solver. The resulting equations are only valid for small perturbations 

around the operating point and result in a model useful for control purposes. 

Another way of writing the governing equations is to apply the conservation equations 

separately to the liquid and vapor phases (Sami et al., 1987). An extra term is needed in the 

conservation equations which corresponds to the mass transfer between the vapor and liquid 

phases. 

An important part of the heat exchanger equations is determining the heat transfer 

coefficients and the pressure drop parameters. A lumped-parameter model uses a single 

parameter to describe these complicated phenomena over the entire control volume. This 

simplification is generally used in system models since the details of each component are not as 

important as the interaction of the components. Alternatively, the parameters are integrated 

over the entire length of the control volumes. 

Two types of heat exchanger models are cell models and zone models. The difference 

between these models lies in the definition of the control volumes. 

Cell Models 

A cell model divides the heat exchanger into a series of constant volume sections. The 

resolution of the model can be changed by increasing or decreasing the number of cells in 

different model runs. Simplified transient models often use a single cell model to describe the 

condenser and evaporator (Vargas and Parise, 1995; Darrow et al., 1991; Cherng and Wu, 
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1989; and Chi and Didion, 1982}. More accurate models use multiple cells and solve an 

increased number of equations (Ploug-Sorensen et aI., 1997; Sami and Zhou, 1995; Sami and 

Comeau, 1992; Chen and Lin, 1991; MacArthur and Grald, 1989; Mitsui, 1987; Gruhle and 

Isermann, 1985; and Yasuda et al., 1983). 

One advantage of cell models is that the number of cells is constant for a given run and 

consequently the number of equations remain constant during the run. Using a large number of 

cells increases accuracy at the expense of computation time. 

Zone Models 

The control volumes in a zone model are the liquid, two-phase, and vapor regions. 

Because the boundaries between the control volumes change with time, this model is also 

called a moving boundary model. During transient operation, the zones can appear or 

disappear. Zone models have been used in transient models by He et al. (1997), Nyers and 

Stoyan (1994), Ginsberg (1994), Colding et al. (1991), and Dhar and Soedel (1979a). 

An advantage of zone models is that they provide good accuracy with only a few 

equations to be solved numerically. Also, the state variables of each zone can be different. For 

example, pressure and temperature can be the state variables of the single-phase regions, and 

temperature and quality can be the state variables of the two-phase regions. 

A disadvantage is that a new transient variable, the length of the zone, is introduced. 

Another disadvantage is that the number of zones in a heat exchanger can vary during transient ., 
operation. For example, at start-up the entire condenser might be two-phase. After some time 

a superheated region occurs and later a subcooled region occurs. The number of equations 

required in the condenser model changes as the number of zones change. These discontinuities 

create a programming challenge for the modeler. 

2.3.1.2 Heat Sink Fluid Model 

The heat sink fluid of a heat exchanger can be either air (or theoretically any other gas) 

or water (or any other liquid). The heat sink fluid affects the vapor compression system by 

changing the inlet air or water temperature to the evaporator and condenser. Models of the heat 

sink fluid vary greatly in complexity. The simplest models only provide an inlet air or inlet 

water temperature to the refrigeration model. More detailed models couple the vapor 

corppression model to a heat transfer simulation of the cooled environment. 

The same conselVation equations which apply to the refrigerant (Equations 2.6, 2.7, and 

2.8) apply to the air. The transients on the airside of the heat exchanger are commonly modeled 

as steady-state. The most important airside property, the outlet air temperature, is determined 

from the conselVation of energy equation. 

14 



(2.9) 

This type of model is used by Mitsui (1987) and MacArthur and Grald (1989). More complex 

~odels include all three differential equations across the heat exchanger (Chi and Didion, 1982 

and Ginsberg, 1994). The next step in complexity is to model the room or cabin with a lumped 

capacitance model (Ploug-Sorensen et al., 1997 and Vargas and Parise, 1995). Bajpai (1994) 

calculates the solar heat load on an automobile which is an input to their design model, and 

Cherng and Wu (1989) include a 3-D model for an automotive passenger compartment. 

If the ambient air is humid, then water will condense on the evaporator. Both the latent 

and sensible heat load must be taken into account in the transient models. Humidity is included 

in the following models: Ginsberg (1994), Kyle et al. (1993), Sami et al. (1987), Mitsui (1987), 

and Cherng and Wu (1989). 

2.3.1.3 Heat Exchanger Wall Model 

The model for the heat exchanger wall couples the air model with the refrigerant model. 

This model incorporates the heat capacitance of the wall and is used to calculate the 

temperature of the wall. 

(2.10) 

Heat exchanger wall models are not necessary when the thermal capacitance of the wall is very 

small. In that case the inlet air temperature is used instead of the wall temperature in Equation 

2.5; the refrigerant temperature is used instead of the wall temperature in Equation 2.9. He et 

al. (1997), Nyers and Stoyan (1994), Chen and Lin (1991), Mitsui (1987), Gmhle and Isermann 

(1985), Yasuda et al. (1983), Chi and Didion (1982), and Dhar and Soedel (1979a) include 

transient models for the heat exchanger walls. 

2.3.2 Compressor Models 

Mobile air-conditioning systems use external drive compressors which are powered by 

the vehicle engine. Heat pumps and refrigerators generally use hermetic compressors where an 

electric motor is encased in the compressor housing. The main difference between modeling 

external drive and hermetic compressors is modeling the heat transfer. We shall discuss 

modeling the heat transfer in compressors in the next section and the compression process in 

the following section. 
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2.3.2.1 Conservation of Energy 

The conservation of energy principle is applied to the refrigerant in the compressor to 

determine the outlet enthalpy. The control volume formulation of the conservation of energy of 

the refrigerant is as follows. 

at . ( Vin2 ) • ( Vout2 ) = min hin + -2- - mout hout + -2- (2.11) 

. . 
- Qcamp + W camp 

A common simplification is to neglect the transient term. Two parameters, work and heat, can 

either be simulated analytically or determined experimentally. 

The work is generally modeled as a quasi-steady-state process. It can be specified 

empirically as a function of inlet conditions, outlet conditions, and compressor speed (Murphy 

and Goldschmidt, 1985). Alternatively, work can determined from an overall compressor 

efficiency given input power (Ginsberg, 1994 and Chi and Didion, 1982). 

Heat transfer models vary greatly in complexity. Simple models lump the entire heat 

transfer coefficient between the refrigerant and the air into one or two parameters (Chi and 

Didion, 1982 and Ginsberg, 1994): This type of model is valid for external drive compressors. 

More complex hermetic compressor models can include heat transfer coefficients between the 

suction line, discharge line, electric motor, shell, oil sump, and compressor. Since mobile .air 

conditioners have external drive compressors we shall not go into the details of these complex 

models. Models that treat hermetic compressors are Chen and Lin (1991), Dhar and Soedel 

(1979a), MacArthur and Grald (1989), and Murphy and Goldschmidt (1985). 

The outlet enthalpy can also be determined from the isentropic efficiency (Ploug

Sorensen et al., 1997; Darrow et aI., 1991; Colding et aI., 1991; and Mitsui, 1987). It is defined 

as 

Wmin 11s = -.-
W 

(2.12) 

This equation does not discriminate between heat and work. The heat transfer and other 

irreversibilities are lumped into a single efficiency which can be constant or a function of the 

compressor parameters. 

16 



2.3.2.2 Compression Process 

The goal of modeling the compression process is to determine the mass flow rate, the 

output pressure, or the input pressure given two of these properties. Three types of 

compression models are fundamental, theoretical, and empirical. 

Precisely modeling the compression phenomena is quite complicated. Fundamental 

models describe the events in the compressor cylinder as a function of crankcase angle, mass 

flow rate through the valves, valve dynamics, compressor kinematics, and heat transfer within 

the valves and through the cylinders. The most accurate models are three dimensional and have 

more detail than is necessary for a system model. Simpler fundamental models simulate each 

compressor stroke with a conservation of energy equation and a conservation of mass equation 

(Chen and Lin, 1991; Sami et aI., 1987; and Yasuda et aI., 1983). The mass flow rates in and 

out of the compressor are determined using the valve characteristics. 

Theoretical (or first principles) models use certain assumptions and simplifications such 

as modeling the compression as a polytropic process or using a volumetric efficiency. The 

most common theoretical models use volumetric efficiency (Ginsberg, 1994; Gruhle and 

Isermann, 1985; Mitsui, 1987; Vargas and Parise, 1995). The volumetric efficiency is defined 

as the actual mass of fluid per cycle divided by the theoretical mass of fluid per cycle. 

m 
(2.13) 'llv = 

Pin VOID N 

VOID is the piston displacement. Colding et al. (1991), Darrow et al. (1991), and Ploug

Sorensen et al. (1997) determined the volumetric efficiency empirically. Chi and Didion 

(1982) use the polytropic expansion coefficient to determine the volumetric efficiency. Other 

models such as He et al. (1997) use an empirical equation with the polytropic coefficient. 

Theoretical models are useful to study the effect of compressor parameters (such as piston 

displacement) on system behavior. 

Purely empirical models do not provide any insight to the physical processes in the 

compressor. However, they are accurate and computationally efficient. Empirical models are 

simple to implement because they do not require any knowledge of the geometry or materials 

of the compressor. Murphy and Goldschmidt (1985) and Kyle et al. (1993) use purely 

empirical models. 
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2.3.3 Expansion Valve Models 

The purpose of an expansion valve is to control the refrigerant mass flow rate through 

the system by throttling the refrigerant from the condenser to the evaporator. In automotive 

and heavy machinery systems, the expansion valve is typically either an orifice tube or a 

thermal expansion valve (TXV). An orifice tube is a constant area device. The area of a TXV 

is mechanically controlled by the evaporator outlet temperature. A third type of expansion 

device is a capillary tube which is used in refrigerators. A capillary tube is a small diameter 

tube which acts as a constant throttle. 

A new type of expansion valve is an electronic expansion valve (EEV). The opening of 

the valve is actuated by an electric signal. Several system models use EEV as a control output. 

EEV s models are similar to orifice tube models except that the orifice opening is a function of 

the control input. 

The expansion valve model determines the inlet pressure, outlet pressure, or mass flow 

rate given the other two properties and other information. Orifice tubes and TXV s are modeled 

as having no heat input or work input so the inlet enthalpy is equal to the outlet enthalpy. 

Capillary tubes are much longer and are sometimes run parallel to the suction line creating a 

counterflow heat exchanger. Modeling heat transfer is important when a suction-line heat 

exchanger is present. 

2.3.3.1 Orifice Tubes 

During steady-state operation, the orifice tube has either two-phase or subcooled 

refrigerant at the inlet and always has two-phase refrigerant at the outlet. The mass flow rate 

through the orifice tube is generally thought of as "choked" although it is weakly dependent on 

the outlet pressure. During start-up conditions, the mass flow rate is too small for the flow to 

be choked. A transient model must take into account all of these conditions. 

A simple and rather inaccurate orifice tube model is based on Bernoulli's equations 

applied to an orifice. This model assumes steady, adiabatic, frictionless, incompressible flow 

with a uniform velocity profile and no external work. 

(2.14) 

Bernoulli's equation does not take into account that the flow is choked. He et al. (1997) and 

Nyers and Stoyan (1994) use this type of model. 

More accurate models replace the outlet pressure in Equation 2.11 with a pseudo-outlet 

pressure which accounts for the choked flow (Kyle et aI., 1993 and MacArthur and Grald, 
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1989). The form of the pseudo-outlet pressure has been determined experimentally. This type 

of model can be fairly accurate; however, it only works when the flow is choked. 

2.3.3.2 Thermal Expansion Valves 

A TXV has a bulb filled with refrigerant attached to the refrigerant tube at the outlet of 

the evaporator. The bulb can either contain the same fluid as the rest of the system or a 

different refrigerant. The temperature and therefore the pressure in the bulb are a function of 

the outlet temperature of the evaporator. The valve" area is controlled by the pressure difference 

between the pressure at the exit of the evaporator and the pressure in the thermal bulb. A TXV 

is typically tuned to maintain several degrees of superheat at the evaporator exit. 

Models for the flow through the expansion valve are similar to models for an orifice 

tube except the area is variable. Colding et al. (1991) and Mitsui (1987) apply Bernoulli's 

equations; Gruhle and Isermann (1985) utilize a modified Bernoulli's equations. Sami and 

Zhou (1995) and Sami and Comeau (1992) use an empirical equation for the mass flow rate. 

The area of the expansion device is simulated as a linear function of the pressure 

difference between the minimum valve opening and the maximum valve opening (Kyle et al., 

1993 and Yasuda et al., 1983). Ginsberg (1994) takes the derivative of this formula to provide 

the transient response. A quasi-steady-state model assumes that the bulb temperature is equal 

to the temperature of the refrigerant at the evaporator outlet. A more accurate model uses 

transient differential conservation equations to model the heat transfer between the evaporator 

tube and the refrigerant in the feeler bulb (Mitsui 1987 and Yasuda et al. 1983). 

2.3.3.3 Capillary Tubes 

Since mobile air-conditioning systems are not designed to use capillary tubes, we shall 

only discuss them briefly for the sake of completeness. Capillary tubes are long, small

diameter tubes used in refrigerators and room air conditioners. They are often placed next to or 

inside the suction line which forms an efficient counterflow heat exchanger. The sub-cooling 

and consequently the mass flow rate from the condenser are increased and the superheat into 

the compressor is increased. 

Capillary tubes models are similar to heat exchanger models. The conservation 

equations are applied to a series of control volumes. The major difference is that the flow 

becomes choked in the capillary tube. An iterative process is usually employed to determined 

whether the tube is choked or not. Ploug-Sorensen etal. (1997), Chen and Lin (1991), Sami 

and Comeau (1992), and Murphy and Goldschmidt (1986) model capillary tubes. 
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2.3.4 Other Component Models 
Other refrigeration components in a vapor-compression system include the accumulator, 

refrigerant lines, and receiver. The accumulator is a tank between the evaporator and the 

compressor which is designed to prevent liquid refrigerant from flowing into the compressor. 

Modeling the accumulator is very important in transient operation because the amount of liquid 

refrigerant it contains varies significantly during transient operation. Accumulators are 

included the following models: MacArthur and Grald (1989), Chi and Didion (1982), and Dhar 

and Soedel (1979a). 

Refrigerant pipes between components usually have a small amount of heat transfer and 

pressure drop compared to the other components. If desired, these can be modeled in a manner 

similar to one cell of a heat exchanger. Refrigerant lines between the condenser and orifice 

tube contain liquid or two-phase refrigerant and are important for a proper mass inventory. 

Ginsberg (1994) includes a model for refrigerant pipe. 

Receiver-dryers are used in TXV systems between the condenser and the valve. Either 

two-phase or liquid refrigerant flows into the receiver and only liquid refrigerant-exits to the 

expansion valve. Colding et al. (1991) and Mitsui (1987) simulate a receiver. 

2.4 Solution of System Models 
After combining the component models to create a system model, the next step is to 

solve ·the equations. The resulting equations are generally a set of differential and algebraic 

equations. If the conservation equations are formulated as PDE's as in Equations 2.1, 2.2, and 

2.3 then the partial derivatives are approximated with a difference formula and the equations 

are solyed. If the conservation equations are formulated as ODE's (Equations 2.6,2.7, and 2.8) 

then a standard integration technique such as Runge-Kutta can be employed. One more 

obstacle to be overcome is that the conservation equations are stiff. 

A system of initial-value, stiff, ordinary differential equations has widely varying time 

constants. Some components of the solution decay very quickly while other components decay 

very slowly. It is generally thought that the conservation of momentum makes the equations 

stiff because it has a much shorter time constant than either the conservation of mass or .the 

conservation of energy. If the steady-state conservation of momentum equation is used instead 

of the transient equation, then the equations are no longer stiff. If the transient conservation of 

momentum equation is used, a special algorithm such as Gear's method (Gear, 1968) must be 

used. 
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2.5 Void fraction, Quality, and Refrigerant Charge Prediction 
The final aspect of system modeling we shall discuss is refrigerant charge prediction 

which is one of the most important and challenging parts of developing a refrigeration model. 

In the system, refrigerant exists in three different phases, subcooled liquid, superheated vapor, 

and a saturated mixture of liquid and vapor. Determining the amount of charge in the liquid 

and vapor sections is trivial; the average density of the single-phase refrigerant is multiplied by 

the volume of that section. In the two-phase section, the void fraction must be used to 

determine the correct amount of charge. 

Quality is an important variable in determining refrigerant charge in the two-phase 

region. The mass quality of refrigerant in a two-phase region is defined as the ratio of the 

vapor mass to the total mass. 

mvapor 
x = (2.15) 

The mass flux quality is defined as the ratio of the vapor mass flow rate to the total mass flow 

rate. 

cp = 
m vapor 

mtotal 
(2.16) 

Typically the mass flux quality is also represented by the variable x. The mass quality 

and the mass flux quality are not necessarily equal and to avoid confusion we shall give them 

different symbols. 

area. 

The void fraction is defined as the vapor-flow cross sectional area divided by the total 

A vapor 
<X= 

A total 
(2.17) 

Using basic algebra, we can determine that the mass quality is related to the void fraction in the 

following way. 

1 
<X= 

(2.18) 
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In order to find the void fraction at an interface, the mass flux quality must be used. 

The void fraction must be used to calculate the charge in the two-phase region because the 

liquid and vapor refrigerant move at different velocities. The slip ratio is defined as the vapor 

velocity divided by the liquid velocity. 

S = Vvapor 

Vliquid 

Using algebra, one can derive the following equation for void fraction. 

1 
<X. = 

(2.19) 

(2.20) 

The simplest way to calculate the void fraction is to assume that the slip ratio is unity 

and the liquid and vapor refrigerant move at the same velocity. This assumption is called the 

homogeneous model. 

1 
(2.21) <X. = 

Comparing Equation 2.18 to Equation 2.21, we note that the mass quality and the mass flux 

quality are equal when the homogeneous assumption is employed. It follows that the mass can 

be calculated from 

Vol 
(2.22) m= 

(x~ + (I-X)~J· 
Pg Pf 

The homogeneous model is common in transient models because it greatly simplifies the 

calculation of mass (Ploug-Sorensen et aI., 1997 and Nyers and Stoyan, 1994). The 

homogeneous model is inaccurate because the vapor refrigerant moves at a faster velocity than 

22 



the liquid refrigerant. As a result, the homogeneous model overpredicts the void fraction and 

underpredicts refrigerant mass. 

Many different correlations for the void fraction exist. It is typically a function of 

refrigerant mass flux quality, saturation densities, and liquid and vapor viscosity. Rice (1987), 

Bridges and Bullard (1995), and Farzad and O'Neal (1994) summarize and compare the 

accuracy of various void-fraction correlations. 

Several different void-fraction correlations are employed in published transient models. 

Mitsui (1987) uses Equation 2.20 although the specific slip ratio correlation is not specified. 

MacArthur and Grald (1989) utilizes the Zivi void fraction model. Yasuda et al. (1983) uses 

Hughmark mass flow rate dependent model and Sami et al. (1987) employs a drift flux model. 

" To calculate the refrigerant mass from the void fraction an average quality, (Xcv' is 

determined by integrating the mass flux quality from the inlet to the outlet of the control 

volume. Rice (1987) provides a detailed explanation of the different assumptions which can be 

employed to perform this integration. Then the mass of the refrigerant in the two-phase region 

is then determined by " 

(2.23) 

An assumption used in the model by He et al. (1997) is a time-invariant mean void 

fraction assumption based on Wedekind et al. (1978). With experimental verification, 

Wedekind showed that the mean void fraction remains relatively constant in the two-phase 

region during most operation. He et al. 's model is written for controls purposes and does not 

capture start-up or shut-down transients where this assumption would be quite poor. 

2.6" Current State of the Art 
The following sections summarize the transient models available in the literature today. 

These sections are divided into mobile system models and other vapor compression models. 

Mobile system models are placed in their separate section because most transient models were 

designed to study the cycling losses, start-up, or shut-down of heat pumps or refrigerators. 

Heat pump and refrigerator systems models do not necessarily include variable compressor 

speed and variable air flow rates. The cycling times of these systems are longer than for mobile 

air-conditioners, so they operate at steady state for an extended period of time. 
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2.6.1 Mobile System Models 

2.6.1.1 Steady-state Models 

Steady-state automotive air-conditioning models were developed by Bajpai (1994) and 

Kyle (1993). Bajpai's model is an expert system steady-state design tool for automotive air

conditioning systems developed for General Motors Corporation. The design tool includes 

three components: 1) a database of vehicles and air-conditioning components, 2) a conventional 

numerical and thermodynamic analysis program, and 3) an air-conditioning knowledge base. 

The knowledge base contains several heuristic "rules of thumb" for air-conditioning design 

which were acquired from HV AC design engineer experts. Bajpai does not discuss the details 

of the. model and only presents an expert systems method of determining steady-state operating 

conditions. This model is not compared to experimental data. 

Kyle (1993) developed the Automotive Heat Pump Model (AHPM). This model is 

based on the Oak Ridge National Lab residential heat pump model (Fisher, 1983). The 

automotive model incorporates several different submodels which are unique to automotive 

systems such as a variable-speed, belt-driven open compressor and plate-fin evaporator. The 

documentation for the automotive and heat pump models provides detailed explanations of the 

equations and correlations used. These models provide a good starting point for the 

development of a transient model. The AHPM is not compared with experimental results. 

2.6.1.2 Transient Models 

. Transient automotive models were developed by Cherng and Wu (1989) and Mitsui 

(1987). The Cherng and Wu refrigeration system model is fairly simple and quasi-steady-state. 

The main thrust of this model lies in the fact that a 3-D, finite-difference model is used to 

predict the vehicle cabin temperature. 

Mitsui (1987) documented a transient design model for automotive air-conditioners to 

compare TXV control with EEV control. The heat exchanger models have multiple cells and 

the evaporator model includes both sensible and latent heat transfer. The compressor model is 

steady-state and utilizes the volumetric efficiency and the isentropic efficiency. The TXV 

model includes the conservation of energy between the evaporator refrigerant and feeler bulb 

refrigerant and uses 'Bernoulli's orifice equation to determine the mass flow. The compressor 

speed and the evaporator superheat are inputs to the EEV controller. When the compressor 

shuts off the expansion valve is fully closed to prevent refrigerant charge from migrating from 

the condenser to the evaporator. For a short period of time after the compressor turns on, the 

valve is opened fairly large to provide adequate mass flow into the evaporator. After that 

period of time, PID control is used to regulate the superheat. This control method showed 
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increased evaporator cooling capacity compared with TXV control immediately after start-up in 

both the model and experiments. This model is adequate for comparing controls algorithms; 

however, it cannot perform a start-up simulation from zero pressure difference in the 

evaporator and condenser. 

2.6.2 Transient Refrigeration and Heat Pump Models 

The majority of transient models available in the literature today are for refrigerators, 

heat pumps, and room air conditioners. These models are classified depending on their 

purpose: a) design, b) controls, c) energy efficiency, and d) qualitative. 

2.6.2.1 Design Models 

Ploug-Sorensen et al. (1997) developed a domestic refrigerator system model using a 

general dynamic system modeling package Sinda/Fluint. Sinda/Fluint was developed at NASA 

and is capable of simulating steady-state and dynamic behavior of fluid pipe networks. This 

simulation code contains empirical equations for single-phase and two-phase pressure drops, 

single-phase and two-phase heat transfer coefficients, and properties of common fluids 

including several refrigerants. The model developed by Ploug-Sorensen et al. (1997) consists 

of a multi-cell heat exchanger model and an efficiency-based compressor model. The capillary 

tube is modeled similarly to the heat exchangers. A clutch-cycling simulation model was 

compared to data, and the simulated cabinet temperature and condenser pressure agree well 

with data. The simulated evaporator pressure decreases much faster than the empirical 

evaporator pressure. This error makes it difficult to simulate clutch-cycling systems controlled 

by evaporator pressure. 

MacArthur and Grald (1989) developed a general transient model which simulates the 

start-up and shut-down of a heat pump. The model simulates both open and hermetic 

compressors as well as the engine and the engine-speed controller. The limiting assumptions of 

the model are that pressure is constant in the evaporator and condenser. The model is 

compared to data from a 3-ton hermetic heat pump and a 2-ton open compressor heat pump 

during start-up. The compressor mass flow rate, condenser pressure, and evaporator pressure 

from the model compare well with the start-up data. The model predicts shutdown well 

although the reported time scale is on the order of minutes. 

A dynamic model of a refrigeration system was developed by Colding et al. (1991) to 

compare different strategies for the condenser fan to control the condenser pressure. The speed 

of the condenser fan is controlled to maintain the condenser pressure at a preset value. When 

the fan is turned on, the heat transfer between the refrigerant and the air increases so the 

condenser temperature and pressure decrease. This preset pressure is optimized to minimize 
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overall energy consumption of the system. The model is validated with an experimental set-up 

using on/off control of the condenser fan. This simple model does not capture all of the 

transients in the refrigerant temperatures but it does capture the general trends. Colding et ai. 

concluded that the system consumes 4% less energy using proportional control rather than 

on/off control of the condenser fan. 

Yasuda et al. (1983) developed a dynamic model to study the hunting phenomenon of 

TXV systems. The models includes a complete vapor-compression system. Transient 

conservation equations model the refrigerant in the feeler-bulb. The model is compared yo 

transient data in which a step change is imposed on the static superheat. The static superheat is 

the temperature which causes the expansion valve to open. The model successfully simulated 

an increase in the static superheat. Under these conditions, the system exhibits an 

underdamped response and comes to a new steady-state value. When the static superheat was 

decreased, the exp~rimental system began oscillating or hunting. The initial model did not 

capture this phenomenon. Yasuda et ai. theorized that hunting is caused by liquid droplets 

entrained in the slightly superheated flow cause a temperature decrease in the pipe wall where 

the feeler bulb is located. This effect could significantly alter the control loop and cause 

hunting. They mo~eled this phenomenon by adjusting the refrigerant side heat transfer 

coefficient when the outlet evaporator superheat is less than 5 K. This adjusted model 

successfully predicted the hunting. The model only captures small perturbations from steady

state values, and it is not clear if it accurately captures the reasons for hunting. 

Another dynamic model (DAHP) was developed to predict the performance of heat 

pumps using alternative pure refrigerants (Sami and Duong, 1991 and Sami et aI., 1987). First, 

Sami et al. (1987) used a phase model to describe the heat exchanger which Sami and Duong 

(1991) changed to a multi-cell model. Sami et al. (1987) compared a quasi-steady-state model 

with start-up experimental data, and the general trends agreed well after the initial 10 seconds. 

Sami and Duong (1991) discretized the transient equations and solved them iteratively. This 

transient model was not compared to experimental data. Sami and Comeau (1992) and Sami 

and Zhou (1995) modified the above model to use nonazeotropic refrigerant mixtures. The 

Carnahan-Starling-DeSantis (CSD) equation of state was used to determine the properties of 

the mixture. The steady-state values from the model compare well with the experimental data; 

however, the initial transients have some differences in .overshoot and time response. 

Darrow et ai. (1991) developed a simple model to predict the transient behavior of a 

water chiller. This model is appropriate for modeling systems in which the transients are 

controlled by the thermal mass of the components rather than the refrigerant migration. 

Therefore, this model only takes into account heat transfer and neglects hydrodynamic effects. 

The evaporator, condenser, and chiller are each treated as a single perfectly mixed zone, and 
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the refrigerant distribution in the system is assumed to be constant with respect to time. The 

three transient equations in the model are the conservation of energy for the condenser 

temperature, evaporator temperature, and chiller temperature. This model accurately predicts 

the transient temperatures of a water chiller plant after start-up. This type of model is not 

appropriate for modeling automotive systems because the transients associated with refrigerant 

migration are at least of the same magnitude (if not longer) than the transients associated with 

the thermal capacitance. 

Several models were developed as a general transient design tool. Chen and Lin (1991) 

developed a dynamic simulation of a refrigerator which optimizes the combination of system 

components to reduce energy consumption. The model consists of transient models for the heat 

exchangers, compressor, and capillary tube and the general temperature trends compare well 

with experimental start-up data. Their start-up data begins with a large pressure differential 

between the condenser and the evaporator. The pressures agree well except for the initial 

derivative of the evaporator pressure. The goal of the optimization is to vary some parameters, 

such as capillary tube diameter and length, in order to reduce overall compressor power. No 

results from the optimal matching technique are reported. 

Chi and Didion (1982) also developed transient model for heat pumps (TRPUMP) for 

general design purposes. The heat exchanger model is a single-cell, lumped-parameter model 

which uses constant coefficients for the heat transfer and pressure drop parameters. The 

components included in this model are the electric motor, compressor, shafts, electric fans, heat 

exchangers, accumulator, and thermal expansion valve. The compressor is modeled using 

volumetric and compression efficiencies and a heat transfer analysis. The pressure and 

temperature results compare well with experimental data on system start-up; however, the first 

start-up data point is not until 30 seconds after start-up. 

2.6.2.2 Controls Models 

Controls models are dynamic models used during real-time system operation for 

controls purposes. The models take inputs from the system (e.g., temperatures, pressures, or 

compressor speed) and use a model and control algorithms to compute outputs (e.g., expansion 

valve opening, fan speeds, or compressor speeds). These models must be computationally 

simple enough to provide real-time results. The following models use different methods to 

achieve this goal. 

He et al. (1997) developed a lumped-parameter model for a heat pump or refrigeration 

system for multivarlable control. This model was developed to control the evaporator 

refrigerant pressure and outlet superheat during quasi-steady-state operation. The model is not 

designed to capture the dynamics of start-up or shut down. The heat exchanger models use 
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zones or moving interfaces which accurately predicts the superheat at the exit of the evaporator. 

The transient model is linearized around a steady-state operating condition, and it is only valid 

for small deviations from this point. The condenser pressure, evaporator pressure, and 

evaporator superheat are predicted fairly well for step changes in the compressor speed and the 

expansion valve opening. The original linearized model based on conservation principles was 

eleventh-order; however, it was found that the system dynamics can be described by a fourth

order model. He et al. proposed to use this model with a multi-input, multi-output (MIMO) 

control technique using to extend the performance limits of the system. 

Nyers and Stoyan (1994) document a model to control the evaporator in a heat pump. 

The evaporator is divided into multiple cells, and the transient conservation of mass, energy, 

and momentum equations are discretized over each cell. Also, the conservation of energy 

equation is applied to the evaporator wall and the secondary fluid which in this case is water. 

The models of the expansion valve, compressor, and condenser all consist of single lumped

parameter equations. The difference equations are solved for a sinusoidal c~mdenser 

temperature input. The results show how the refrigerant pressure, quality, and velocity oscillate 

through the length of the evaporator. Improvements to the condenser, compressor, and 

expansion valve models are necessary before this model can be used for real-time control 

purposes. It is not clear if a multiple-cell heat exchanger model can be solved quickly enough 

to be practical for real-time controls applications. 

Crawford and Shirey (1987) and Crawford and Woods (1985) developed a method for 

developing a purely empirical model from performance data for a heat pump system. The 

empirical equations correlate each model output to the model inputs. For example, the indoor 

air temperature is a function of outdoor air temperature, solar heat load, wind speed, and- heat 

pump energy consumption. The coefficients for the empirical equations are obtained by 

gathering large amounts of data from the heat pump system during normal operation and then 

using a linear least-squares technique to determine the coefficients. As a result, the coefficients 

for the empirical model are only accurate for the specific heat pump system from which the 

performance data were acquired. The model requires fairly simple calculations which can be 

incorporated into an on-line optimal control application. The model predicts the indoor air 

temperature well; however, a large amount of data is needed to ensure that the e~pirical model 

is valid in all operating extremes. 

Z.6.2.3 Energy Efficiency Models 

The main purpo se of energy efficiency models is to calculate power consumption and 

cooling capacity of a system. Generally, these models are simpler than design models. 

28 



O'Neal and Katipaluma (1993) developed a time-constant model to determine the 

performance of air conditioners during cycling. A single time constant is used to correlate the 

capacity at start-up to the steady-state capacity. This time constant is determined for a single 

specific system. The time constant equation is then integrated to determine the cooling load 

factor (the ratio of the capacity during a given on-time divided by the capacity produced by the 

unit operating at steady-state) for the entire cycle. An important nondimensional time variable 

appears in these equations which is the fraction on time divided by the product of the time 

constant and the cycling rate. In comparison with experimental data, the single time constant 

method is shown to predict the cooling load factor fairly well. 

2.6.2.4 Qualitative System Models 

Qualitative system models are intended to understand the dynamics of the vapor

compression system and the effects of system parameters on these dynamics. These models are 

defined as qualitative because they have not been verified with experimental data. 

Boeing Computer Services (BCS) developed a vapor compression library (Ginsberg, 

1993) for use with its program, EASY5. EASY5 (Tollefson, 1992) is a family of software 

prograins used to model and analyze dynamic systems. EASY5 is graphically based and allows 

the user to create a system by connecting icons for each of the components. One advantage of 

the EASY5 system is a feature called switch states. It allows the user to indicate when a 

discontinuity in the model occurs. For example, a discontinuity occurs when the flow switches 

from laminar to· turbulent. Switch states allow for the code to efficiently recognize and 

integrate through discontinuities. BCS's vapor compression library includes zone models for 

the condenser and evaporator, an efficiency based compressor model, thermal expansion valve, 

and refrigerant pipe. It is not known how well the model performs as a design tool, but it is 

useful for studying the effects of the system parameters on transient behavior. 

Vargas and Parise (1995) developed a simplified transient model to compare the energy 

consumption and room temperature variation between two heat pump control strategies. A 

clutch-cycling control strategy is compared to a closed loop feedback control of the compressor 

speed. The input to the controller is the room temperature and a power-law controller regulates 

the voltage to the compressor. Mass migration between the evaporator and the condenser is 

prevented by modeling a theoretical expansion valve which always exactly matches the 

compressor mass flow rate. The result of the model shows that the feedback controller 

conserves energy and maintains a more stable temperature. 

Murphy and Goldschmidt (1984, 1985, and 1986) wrote a series of papers analyzing the 

transients associated with residential air-conditioner cycling. The first paper (1984) 

qualitatively discusses transient pressure and temperature data during cycling. They attribute 
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most of the cycling efficiency losses to charge migration rather than thermal capacitance. A 

simple model which simulates start-up transients (1985) consists of a compressor, condenser, 

and capillary tube. Experimental pressure and temperature data are used instead of a 

mathematical evaporator model. They concluded that lighter condensers and shorter capillary 

tubes decrease the time it takes for the capillary tube to flood and for the system to reach steady 

state. During shutdown (1986), the heat exchangers are modeled as tanks with inflows and 

outflows. The capillary tube and the pressure equalization valve in the compressor connect the 

condenser and evaporator tank. From this model it is concluded that if the pressure must be 

equalized between the condenser and evaporator after shutdown then the cycling losses are 

minimized when the thermal capacitance of the heat exchangers is minimized. 

Gruhle and Isermann (1985) developed a model to study the hunting phenomenon of 

TXV systems. This model includes a fairly detailed multiple cell evaporator model but it does 

not include a condenser model. The opening of the TXV is a direct function of superheat. 

Gruhle and Isermann model captures oscillations of the liquid-dry out point for steady input 

conditions. They believe the fluctuations are caused by the strong nonlinear course of the heat 

transfer coefficient. Hunting was simulated by modeling the TXV as a proportional controller. 

Gruhle and Isermann concluded that replacing the TXV with an electronic expansion valve 

(EEV) and applying a suitable control algorithm with a lower gain can reduce hunting. 

Dhar and Soedel (1979a,b) developed a general transient model for vapor compression 

heat pumps. A unique aspect of this model is that it includes oil migration. Most of the oil 

remains in the hermetic compressor. Oil exits the compressor by leaking past the piston ring 

and by being carried into the compressor cylinders by the suction gas. All of this oil then 

migrates to the accumulator. The mass flow rate of oil back to the compressor is dependent on 

the mass flow rate of refrigerant out of the accumulator. The heat exchangers are simulated 

using zone models. Each control volume is considered to behave as a stirred tank; the outlet 

conditions are equal to the bulk conditions within the control volume. The heat transfer is 

modeled using an electrical circuit analogy with thermal resistances and thermal capacitances. 

The model results show the trends of pressure, oil migration, and mass flow rates after start-up 

but it was not compared to experimental data. 

2.7 Conclusions 
In this chapter, we have provided an overview of mobile air-conditioners and transient 

system models of vapor-compression systems. Mobile air-conditioners are unique from other 

vapor-compression systems in their components, design criteria, objectives, and control 

methods. Most transient vapor compression models documented in the literature are for heat 
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pumps and refrigerators. Currently, no transient models exists which are capable of simulating 

all of the transients in a mobile air-conditioning system. 
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Chapter 3 

Transient System Model 

This chapter provides a description of the transient system model for a mobile air

conditioning system. The requirements of the model are that it must be fully transient and 

accurately model all phases of operation from start-up to shut-down including the subsequent 

charge redistribution. The model must allow for a variable-speed compressor and variable air 

flow rates over the heat exchangers. 

Section 3.1 describes the overall organization for the model. Section 3.2 provides a 

brief overview of the experimental data used to verify the model. Sections 3.3-3.8 summarize 

the component models and Section 3.9 summarizes the steady-state and transient solution 

technique. 

3.1 System Model Organization 
Our transient model consists of the refrigerant circuit in a vapor compression 

refrigeration system. The system contains a compressor, condenser, orifice tube, evaporator, 

and accumulator (Figure 3.1). At this stage of development, only pure refrigerant is modeled 

but at a later date the model can be modified to include a refrigerant-oil mixture. 

The system model consists of three different types of component models: (1) the heat 

exchanger model (Sections 3.3-3.5), (2) the compressor model (Section 3.6), and (3) the orifice 

tube model (Section 3.7). The accumulator model (Section 3.8) is an extension of the heat 

exchanger model. Each component model is designed to use enthalpy (h), pressure (P), and 

mass flow rate (m) as inlet and outlet properties. All other refrigerant properties employed in 

the component models such as density (p), temperature (T), and velocity (V) are calculated 

from these three basic properties. 

The thermodynamic refrigerant properties are computed from property routines 

summarized in Chapters 6 and 7. The transport properties for R134a are summarized in 

Appendix A and the dry air properties are summarized in Appendix B. 

The heat exchanger model divides the refrigerant circuit into a series of constant volume 

cells. The conservation of mass, conservation of energy, and conservation of momentum 

equations are applied to each cell. During a given simulation, the number of cells and the 

volume of each cell remain constant. As a result, the number of equations also remains 
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constant. The number of cells and/or the volume of the cells can be changed between 

simulations in order to change the resolution of the model. For example, in a low-resolution 

model the evaporator can be divided into a few cells while in a high-resolution model it can be 

divided into ten, twenty, or more cells. The cell model does not need to be modified for start

up or shutdown and it allows for any refrigerant mass distribution in the system. 

orifice 
tube 

T cond,air 

rilcond,air 

condenser 

evaporator 

Tevap,air 

mevap,air 

Tambient 

1..-_ ..... accumulator 

Figure 3.1 Mobile air-conditioning orifice tube system schematic. 

In the system model, the refrigerant loop is divided into two series of cells as shown in 

Figure 3.2. The first series of cells is designated condenser cells and covers the components 

between the compressor and the orifice tube. The second series is designated evaporator cells 

and covers the portion of the loop between the orifice tube and the compressor. The 

compressor model and orifice tube model (which are inherently algebraic in nature) link these 

two groups of cells together. In Figure 3.2 the subscripts "c" and "e" refer to the condenser and 

evaporator cells, respectively. The additional subscript "n" designates nodal properties which 

are at the inlets and outlets of cells as opposed to the cell-centered properties. 
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Figure 3.2 System model organization. 
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In our model, the evaporator is divided into six cells, and the condenser is divided 

into seven cells. Also, the refrigerant line between the condenser and evaporator is modeled as 

a single cell. This refrigerant line is included in the model because it contains subcooled 

refrigerant during steady-state operation and thus a large amount of the refrigerant mass. 

Our model operates in three different modes: (a) as a steady-state model, (b) as a 

compressor-on transient model, and (c) as a compressor-off transient model. Table 3.1 lists the 

inputs for each of these models. 

Inputs Steady-state Transient 
Compressor-on Compressor-off 

compressor speed single time time 

TevaD.air single time time 

Tcond air single time time 

meVaD.air single time time 

mcond air single time time 

Tambient single time time 

mref or T sub cond single 

Initial conditions single single 
(refrigerant state points) 

Compressor inlet/outlet time 
conditions 

Table 3.1 Inputs to system models. "single" indicates that the input is needed 

at a single time. "time" indicates that this input is time dependent. 

In Table 3.1, Tevap,air and mevap,air are the average air temperature and air mass flow 

rate through the evaporator. Likewise T cond,air and mcond,air are the average air temperature 

and air mass flow rate through the condenser. The heat exchanger model allows for each cell to 

have different inputs in order to study the effects of air temperature and air mass flow rate 

gradients. Because all of our experimental data is well mixed, we used a single average air 

temperature and average mass flow rate. The ambient air temperature, T ambient' enters the 

analysis through its effect on the compressor, accumulator, and refrigerant lines. In an actual 

automotive system, all of these components are in the engine compartment and the ambient 

temperature can be computed from an underhood heat transfer analysis. In our experimental 
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setup (Section 3.2), all of these components are surrounded by room temperature air, thus we 

always used a single ambient temperature in our modeVdata comparisons. 

The outputs from the model are the refrigerant state points (enthalpy, pressure, and mass 

flow rate) throughout the system and the compressor power. The following sections summarize 

when the steady-state and transient models are used. 

3.1.1 Steady-state Model 

The steady-state model is a convenient alternative to the fully transient model. The 

equations for the steady-state model are the same as those for the transient model except that all 

of the time derivatives are set equal to zero. The steady-state model can be used to verify the 

steady-state heat transfer, pressure drop, and mass flow rate correlations for each of the 

components. The steady-state model can also serve as an expedient means to obtain a starting 

point for the transient model once the system is fully in operation. One input to the model is 

the refrigerant mass. It is difficult to accurately predict the refrigerant mass, and small errors in 

the refrigerant mass prediction can lead to large deviations in the system operating conditions. 

As a result, it is often more convenient to use one other state parameter as an input. We use the 

condenser subcooling because we can compute it very accurately. 

3.1.2 Compressor-on Transient Model 

This model is transient and determines the time dependent output of the system when 

the compressor is operating. The time dependent inputs to this model are (a) compressor speed, 

(b) evaporator inlet air temperature, (c) condenser inlet air temperature, (d) evaporator air mass 

flow rate, (e) condenser air mass flow rate, and (f) ambient temperature. The model also 

requires a set of refrigerant state points as initial conditions. The model can start from a cold 

start condition where all of the pressures are equal and all of the mass flow rates are zero. 

Alternatively, the steady-state model can be used to obtain initial conditions for the transient 

model to bypass the start-up condition. The model equations form a closed loop around the 

system. 

3.1.3 Compressor-off Transient Model 

During shutdown, the clutch is disengaged and the compressor ramps down to zero. 

The compressor-off model is used once the compressor speed equals zero. As a result, this 

model is primarily used to study the pressure equalization and refrigerant mass migration after 

compressor shutdown. It can be used during both clutch-cycling and final compressor 

shutdown. When the compressor is off, it acts as a closed valve so the refrigerant no longer 

flows in a complete loop. Rather it redistributes itself through the orifice tube and eventually 
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come to a steady-state condition where all of the refrigerant pressures in the system are equal 

and the mass flow rates are zero. 

This model is different than the compressor-on model because the system equations no 

longer form a closed loop. Because the temperatures and pressure at either side of the 

compressor become decoupled, additional inputs are required. The outlet compressor 

temperature is specified to simulate the cooling of the refrigerant between the compressor and 

condenser. Also the inlet and outlet compressor mass flow rates are set to zero. These inputs 

are summarized with the compressor model in Section 3.6. The heat exchanger, orifice tube, 

and accumulator equations are the same for the compressor-on model and the compressor-off 

model. 

3.2 Experimental Data for Model Validation 
The experimental data used for the model validation were obtained from a test facility 

specifically designed to test mobile air-conditioners developed in the Air Conditioning and 

Refrigeration Center (ACRC) at the University of Illinois at Urbana-Champaign. The 

compressor speed and the air flow through the heat exchangers are controlled by variable-speed 

motors. The inlet air temperatures to the evaporator and condenser and the humidity addition 

to the evaporator are also controlled. The test facility was developed by Weston (1996) and 

Rubio-Quero (1995). Collins (1996), Wandell (1997), and Whitchurch (1997) made further 

modifications to the test facility. 

All of the tests were performed on a Ford Crown Victoria air conditioning system with 

R134a refrigerant. Figure 3.3 provides a schematic of the measurements taken in the test 

facility. The refrigerant temperature and pressure are measured at every state point in the 

facility. The refrigerant mass flow rate is measured with a Micro Motion™ flow meter at the 

exit of the condenser. This flow meter only gives accurate measurements for single-phase 

liquid or vapor refrigerant. The air flow rates are measured with venturi flow meters. The air 

temperatures are measured at the inlet and outlet of the heat exchangers with a grid of 

thermocouples. Inlet and outlet humidity levels are measured in the evaporator and a single 

humidity measurement is in the condenser air loop. The experimental data from the test facility 

were validated by Rubio-Quero. The air and refrigerant capacity agree within 10% for the 

condenser and 10% for the evaporator for dry-evaporator data. 

Oil is circulating with the refrigerant and provides lubrication to the compressor. A 

real-time oil concentration sensor is installed in the liquid line between the condenser and the 

orifice tube. Wandell (1997) reported that between 2% and 10% oil is circulating in the 

refrigerant loop. 
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In the remainder of this chapter, the components models are validated with steady

state data. Different steady-state data sets were obtained by Rubio-Quero, Collins, and myself, 

Hemami (Table 3.2). Minor modifications were made to the test facility between each data set. 

The most obvious differences between the data sets were that different sized orifice tubes and 

different amount of refrigerant were used in the system. 

Data set Date Orifice tube Refrigerant mass 

Rubio-Quero Spring 1995 brown 1.02 kg (2.25 lb.) 

Collins Winter 1996 green 1.34 kg (2.95 lb.) 

Hemami Summer 1997 orange 1.34 kg (2.95 lb.) 

Table 3.2 Steady-state data used to validate the model. 

3.3 Heat Exchanger Models 

The following heat exchanger model is used for the evaporator, condenser, and all 

modeled refrigerant lines. This section summarizes equations in .the heat exchanger model 

while Section 3.4 and Section 3.5 summarize the correlations for the evaporator and condenser, 

respectively. 

3.3.1 Heat Exchanger Equations 

A control volume approach is used to model the heat exchangers (Section 2.3.1.1). The 

primary assumptions in this model are (a) the volume of each cell is constant, (b) the refrigerant 

flow is one-dimensional along the tube axis, (c) energy and mass transfer only occur by 

convection, and (d) pure refrigerant is flowing in the tubes. 

Recall from Equation 2.6, the conservation of mass principle is written as 

dm 

dt 

where m is the refrigerant mass and m is the refrigerant mass flow rate. 

Recall from Equation 2.7 the conservation of momentum is expressed as 

d(mV) 
= 

dt 
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Y is the average scalar velocity in the x direction which is down the length of the refrigerant 

tube. P is the pressure, and the friction loss per unit volume is Ffric' In writing the momentum 

equation, Ffric Yol is replaced by 

Ffric Yol = (LWfric + .1P min or )Acs (3.3) 

where 

LWfric = Lf.!.Py2 (3.4) 
D 2 

and 

LWminor = K.!.py2 (3.5) 
2 

We neglect the effects of gravity in Equation 3.2 because elevation differences are small. We 

also neglect the transient terms in the conservation of momentum equation because the time 

constant associated with the changes in the redistribution of momentum is much smaller than 

for mass or energy. Including the full transient form of the conservation of momentum 

equation makes the resulting system of equations stiff. 

Combining the above assumptions and definitions results in the final form of the 

conservation of momentum equation. 

(3.6) 

The conservation of energy equation for the heat exchanger is 

dt 
. ( Yin 2 ). ( Yout 2 ) = min hin + -2-+ gZin - mout hout + -2-+ gZout . (3.7) 
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Because changes in kinetic (V2/2) and potential energy (gz) are small we may neglect these 

terms and use the simplified form 

(3.8) 

The heat transfer between the heat exchanger wall and the refrigerant is 

.. 
Qref = hrefAinside(Twall - Tree}· (3.9) 

The conservation of energy equation for the heat exchanger wall is 

dTwall Q Q 
cp,wallmwall dt = air - ref (3.10) 

where 

(3.11) 

Aoutside is the effective external surface area accounting for fin effects. 

Equation 3.10 is necessary when the thermal capacitance of the heat exchanger wall is 

important. This occurs primarily during start-up and shutdown. When the compressor has 

been operating continuously, the heat exchanger remains at a relatively constant temperature, 

and Equation 3.10 is not required. Under quasi-steady conditions, all of the heat transfer 

coefficients between the refrigerant and the air can be lumped into one overall parameter 

governing heat transfer between the refrigerant and the air. 

UA = 1 
(3.12) = 

Equation 3.8 becomes 

(3.13) 
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where 

Q = UA(Tair - Tref)· (3.14) 

In the steady-state model, the time derivatives are set to zero. 

(3.15) 

(3.16) 

(3.17) 

3.3.2 Determining the State Variables 

Equation 3.1, 3.6, and 3.8 model the refrigerant flow in the heat exchanger. From these 

equations, we can solve for three variables which describe the state of the refrigerant. Two of 

the variables define the thermodynamic state of the refrigerant, and the third variable defines 

the velocity of the refrigerant. 

The conservation equations are applied to constant volume cells. As a result we can 

bring the cell volume out of the time derivative. 

dm = Vol dp 
dt dt 

d(mu) = Vol d(pu) 
dt dt 

(3.18) 

(3.19) 

From the above equations, it appears that the obvious choice for the state variable is 

density (p) and internal energy (u). When density is used as a state variable, a problem occurs 

in the liquid region. The liquid refrigerant is basically incompressible. A small error in the 

density can result in a very large error in the pressure. This effect can cause large problems in 

the transient solution when a cell switches from the two-phase to the liquid region. 

Because of the above problems, we use pressure and enthalpy as the state variables. We 

chose to use mass flow rate instead of velocity as the third state variable. The mass flow rate is 

constant through the system during steady-state operation. Because of the variations of density 
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and cross sectional area throughout the system, the refrigerant velocity will vary over several 

orders of magnitude. 

The transient solver predicts enthalpy and pressure as a function of time. We must be 

able to relate the time derivatives of enthalpy and pressure to the derivatives listed in Equations 

3.18 and 3.19. We use the chain rule to calculate the time derivative of density. 

(3.20) 

In Equation 3.19, we replace internal energy, u, with the definition for enthalpy (h = u + Pip) 

and then simplify the derivative to obtain the final form for the time derivative in the 

conservation of energy. 

d{mu) 

dt 
[ dh dp dPJ Vol p-+h---

dt dt dt 

The conservation of mass equation and the conservation of energy equation become 

VOI[ap dh + ap dPJ 
ah dt ap dt = min - maut 

and 

3.3.3 Relating Cell Properties to the Inlet and Outlet Properties 

(3.21) 

(3.22) 

(3.23) 

The state variables, enthalpy, pressure, and mass flow rate, are the average properties in 

the refrigerant cell. We can directly compute other average cell properties such as Tref in 

Equation 3.9 and p and V in Equations 3.4 and 3.5. We also need the inlet and outlet properties 

for each cell, so we must be able to relate these average cell properties to the inlet and outlet 

properties also used in the equations. 

We use the upwind scheme to determine the enthalpy at the outlet of the cell. 
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hout = heell (3.24) 

A similar scheme is used by Vargas and Parise (1995), Ginsberg (1993), MacArthur and Grald 

(1989), and Chi and Didion (1982). 

3.4 Condenser Model 
The equations for the steady-state (Equations 3.15-3.17) and transient (Equations 3.1, 

3.6, 3.8, and 3.10) condenser model are summarized in Section 3.3. This section documents 

and validates the correlations for heat transfer and pressure drop due to friction and minor 

losses. 

We modeled a Ford Crown Victoria condenser. It is a fin-tube heat exchanger and is 

made of an aluminum alloy. Figure 3.4 illustrates the general circuiting of the condenser 

refrigerant tubes. Here, the air flow is into the page. For the sake of discussion, we call the 

side where the air flow enters the heat exchanger the front, and the side where the air flow 

leaves the heat exchanger the rear. Two manifolds run down the left edge of the condenser, one 

manifold on the front side and one manifold on the rear side. Refrigerant enters the top of the 

manifold on the backside. The manifold feeds several round tubes in the first pass of the heat 

exchanger. Refrigerant flows across the back of the heat exchanger and then across the front as 

shown in Figure 3.4. The manifold on the front of the heat exchanger feeds the second pass. 

The refrigerant flows through the second pass and enters the back manifold. This manifold 

then feeds the third pass. From the third pass, the refrigerant enters the front manifold and then 

exists the condenser. At the entrance of the heat exchanger, the refrigerant is typically vapor 

and the passes have more tubes than at the exit of the heat exchanger where the refrigerant is 

typically liquid. The geometry calculations are summarized in Appendix C. 

The schematic of Figure 3.4 is slightly different than the actual geometry of the Ford 

Crown Victoria condenser. In the actual condenser there are seven passes. Because we define 

each pass to be a single cell, the condenser is modeled using seven cells. Each cell has the 

same length of refrigerant tube but contains a different number of tubes. As a result, each cell 

has a different cross sectional area and a different volume. Treating the condenser in this 

manner implicitly assumes a perfect refrigerant distribution between the tubes in each pass. 

3.4.1 Heat Transfer Correlations 

Equation 3.12 determines the overall heat transfer coefficient for each cell of the heat 

exchanger. In the condenser model, the heat transfer coefficient through the refrigerant wall is 
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neglected. Only the air heat transfer coefficient and the refrigerant heat transfer coefficient are 

needed. 
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Figure 3.4 Illustration of refrigerant tube arrangement in the condenser. 
Air flow direction is into the page. 
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Vapor, liquid, and superheated vapor heat transfer correlations are needed for the 

refrigerant. These correlations were first used in the ACRC room air conditioner model 

RACMOD (Hahn, 1991). The heat transfer coefficient for the vapor is determined by the Hiller 

and Glicksman (1976) correlation and is based on circular tube data from Kays and London 

(1984). 

where 

h - G Pr-2/3 R C2 vapor - cl cp eD 

Cl = 1.10647 

c2 = -0.78992 

Relam $; ReD < Retur cl = 3.5194 x 10-7 

c2 = 1.03804 

Cl = 0.01080 

c2 = -0.13750 

(3.25) 

As noted by the Reynolds number range, this correlation is valid for laminar, turbulent, and 

transitional flow. The limits defined by Hiller and Glicksman is Relam= 3500 and Retur= 6000. 

We modified this limits to Relam= 3585 and Retur= 6560 to prevent discontinuities in the 

equations. 

The liquid heat transfer correlation is the Dittus-Boelter equation (1930). 

hliquid = 0.023 ~ ReD 0.8 Pr°.3 (3.26) 

The two-phase flow correlation is from Dobson et al. (1994). 

_ kl 0.8 0.4( 2.22) htwo-phase - 0.023 - ReI Prl 1 + 0.889 
D Xtt 

(3.27) 

The Lockhart-Martinelli correlation for turbulent liquid and vapor flow, Xtt, is defined as 
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_ (pV)OOS(IlI )001(1_X)009 
XU - - - -- . 

PI Ilv x 
(3.28) 

In our model, we use the simplified form of this curve fit determined by Jung and Radermacher 

(1989). 

P (1_X)009 
XU = 0.551- --

Perit x 
(3.29) 

The two-phase correlation (Equation 3.29) is only valid for annular flow. Dobson also 

provides a correlation for wavy flow but for this specific geometry and conditions the wavy 

flow equation is only valid if the mass flow rate is less than 0.001 kg/so This mass flow rate is 

approximately ten times smaller than any mass flow rate occurring during steady-state 

conditions. 

When the refrigerant is saturated liquid (x = 0) the two-phase correlation (Equation 

3.25) does not exactly equal the liquid correlation (Equation 3.24). To prevent discontinuities 

in the equations, the liquid and two-phase correlations are weighted between x = 0.05 and x = 
O. 

href - hliquid x 
(3.30) = 

htwo-phase(X = 0.5) - hliquid 0.5 

Similarly, the vapor (Equation 3.23) and two-phase (Equation 3.25) correlations are weighted 

between x = 0.95 and x = 1. 

The heat transfer coefficient for the air side is determined from a plain fin correlation 

(Gray and Webb, 1986). The j-factor is determined from the following equations. 

[ 
N _00031]00607(4-N) 

Rfaetor = 0.991 2.24 ReDeff -00092 ( "4 ) (3.31) 
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where 

(s J-0.502( B JO.0312 
j = 0.14 ReDeff-0.328 J -- Rfactor 

SL Deff 

Deff = Dout + 2tfin' 

Dout = outer diameter, 

tfin = fin thickness, 

N = number of tubes in air flow directon, 

ST = tube spacing transverse to air flow direction, 

SL = tube spacing in air flow direction, and 

B = fin spacing. 

The heat transfer coefficient is then 

(2/3) . 
hair = Gair cp Pr J . 

The VA value is given by 

UAcond = 
1 1 

1 1 = 
------+----
llsurf h airAoutside h ref A inside 

The equations for the surface efficiency, llsurf' are summarized in Appendix C. 

3.4.2 Pressure Drop Correlations 

(3.32) 

(3.33) 

(3.34) 

Both friction and minor losses play an important role in predicting the pressure drop in 

the condenser. Frictional pressure drops occur both in the refrigerant tubes and the manifolds. 

Minor losses occur at the entrance and exit of the tubes, at the entrance and exit of the 

manifolds, and at the return bends. It is difficult to analytically determine the pressure drops 

for each of these factors, especially for two-phase flow. 

We have developed an empirical equation to calculate pressure drop through the 

condenser. In the empirical equation, pressure is in Pascal (Pa) and mass flow rate is in 

kilograms per second (kg/s). 
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M>fric + M> minor = (-14088 + 2.4652 X 106 m) Lcell 
L tot 

for 0.01 < m < 0.045 (3.35) 

= 10564~ Lcell 
0.01 Ltot 

3.4.3 Steady-state Condenser Model Validation 

for mSO.Ol (3.36) 

The condenser model was validated with data from Ru bio-Quero, Collins, and Hemami. 

Figure 3.5 show a comparison of the experimental capacity with the predicted capacity. The 

model agrees within 5% of the data. It is important to have a good capacity prediction to 

accurately predict outlet subcooling (Figure 3.6). The model predicts the subcooling within 6 

K. 

Figure 3.7 shows the pressure drop validation. The predicted pressure drop agrees 

within 20% of the experimental data. At the maximum pressure drop of approximately 90 kPa, 

a 20% error is 18 kPa or 2.6 psi. In the steady-state experimental data sets, the average 

condenser pressure is 1020 kPa (148 psi). 18 kPa is less than 2 percent of 1020 kPa which is 

negligible. 
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Figure 3.5 Comparison between experimental condenser capacity and modeled 

condenser capacity. 
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Figure 3.7 Comparison between experimental condenser pressure drop and 

modeled condenser pressure drop. 
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3.5 Evaporator Model 
This section summarizes the correlations for the heat transfer coefficients and pressure 

drop parameters for the evaporator. The equations for the evaporator are documented in 

Section 3.3. 

Plate-fin evaporators are typically used in mobile air-conditioners. They are 

constructed as a sandwich of flat plates with fins inbetween the plates. The refrigerant and air 

are carried between alternate pairs of plates in crossflow. 

The specific plate-fin evaporator we modeled is designed for the Ford Crown Victoria. 

Figure 3.8 illustrates the general refrigerant circuiting of the heat exchanger. The refrigerant 

manifold From orifice tube 

\ J 

-~================~==============~I-

~I==================~==============~!~ 

~I==================~==============~I~ 

~~==================:=============~,~ 

To accumulator 

Figure 3.8 

" "\ 
manifold 

airside fins vw 
plates 

Illustration of refrigerant circuiting in the evaporator. Air flow is 
into the plane of the page. 
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enters a manifold on one side of the evaporator which feeds the first pass. The refrigerant 

flows across the length of the heat exchanger into the second manifold. This manifold then 

feeds the next pass. Each plate spans the length and width of the evaporator. The Ford Crown 

Victoria evaporator has three passes and each pass has approximately the same number of 

plates. Each of the passes is divided into two cells resulting in a total of six cells. 

3.S.1 Heat Transfer Correlations 

In the plate-fin evaporator, both the plates and fins are augmented to increase heat 

transfer. The heat transfer correlations are specifically dependent on the geometry of the 

augmentation. The refrigerant, wall, and air heat transfer coefficients are included in the 

overall heat transfer coefficient. The air and refrigerant geometry calculations are given in 

Appendix C. 

3.5.1.1 Refrigerant Heat Transfer Correlations 

During steady-state operation the refrigerant is either two-phase or superheated vapor. 

After compressor shutdown, the refrigerant can become pure liquid during certain situations. 

The liquid heat transfer coefficient is simply modeled by determining the saturated liquid (x = 

0) heat transfer coefficient from the two-phase model. 

Heat transfer in the refrigerant plates is enhanced by fins. The geometry of the fins 

resembles elongated dimples (Figure 3.9). No literature documenting the heat transfer 

coefficient for this specific geometry could be found; therefore, the fins are modeled as the 

similar serrated fin geometry (Figure 3.9). The heat transfer coefficient for the serrated fin 

single-phase refrigerant is from Robertson and Lovegrove (1983). 

hvapor = 0.2106 ~ ReD 0.62 Pr(l/3) 
DH H 

(3.37) 

The two-phase heat transfer coefficient is based from Kandlikar (1991) and can be 

modified for different types of plate-fins augmentations. The two-phase heat transfer 

coefficient is the larger of either the nucleate boiling (NB) or convective boiling (CB) heat 

transfer coefficient. 

htwo-phase = larger of {
hNB 

heB 
(3.38) 
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Figure 3.9 Comparison of actual evaporator plate geometry with modeled plate 

geometry. 

These heat transfer coefficients are determined as follows. 

h - 1 136 Co -0.9 (1- x)0.8 h E + 667 2 BoO.7 (1- x)0.8p h E CB - . 10 CB· fl 10 NB 

(3.39) 

(3.40) 

Pfl is a fluid dependent parameter that is equal to 1.63 for R134a. The convection number, Co, 

is 

The boiling number, Bo, is 

Bo = O/Acs 
G hfg 
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. 
Q is determined from Equation 3.9 and is not known until the heat transfer coefficient is 

calculated. In order to avoid an iterative solution for the heat transfer coefficient, the boiling 

number is approximated by 

(3.43) 

hin and hout refer to the inlet refrigerant enthalpy and the outlet refrigerant enthalpy to the cell, 

respectively. This approximation is exactly correct for steady-state flow. 

ECB is the augmentation factor for convective boiling and ENB is the augmentation 

factor for nucleate boiling. For the fin geometry documented by Robertson and Lovegrove, 

Kandlikar determined that ECB = 1.20 and ENB = 0.77. The liquid correlation for heat transfer 

coefficient is from Robertson and Lovegrove (1983). 

(3.44) 

3.5.1.2 Air-side Heat Transfer Correlations 

The air-side fins are similar to louvered fins except that they are parallel to the flow 

rather than angled to the flow. The fins are actually more similar to offset-strip fins (Figure 

3.10). 

The air-side heat transfer coefficient is modeled with an offset-strip correlation from 

Manglik and Bergles (1995). This correlation is valid in laminar, turbulent, and transition 

region. The equations for the j factor are 

(3.45) 

where 

. cl = 0.6522 (X fin -0.1856 ~fin 3.767 Y fin -0.2659 (3.46) 

c2 = 5 259 X 10-5 (Xfi 0.504 ~fi 0.456 Yfi -1.055 . m m m (3.47) 
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Figure 3.10 Comparison of actual evaporator airside fin geometry with modeled 

airside fin geometry. 

{If' = sfin 
10 

hfin 

s: _ tfin 
Ufin - -

lfin 

"ffin = tfin 
sfin 

(3.48) 

(3.49) 

(3.50) 

sfin' hfin' tfin' and lfin are the fin dimensions labeled in Figure 3.11. The Reynolds number is 

based on the hydraulic diameter which is defined by Manglik and Bergles. 
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Figure 3.11 Offset strip fin geometry. 

3.5.1.3 Wall Heat Transfer Correlations 

The resistance for the wall is defined by 

RWall = 

(3.51) 

(3.52) 

twall is the thickness of the wall, and Awall is the surface area of the wall. The thermal 

conductivity of the wall is set to 173 W/m-K which is a reasonable average value for 

aluminum alloys. 

3.5.1.4 Effectiveness-NTU Functions 

The effectiveness-NTU functions are used to determine the final heat transfer. The 

important parameters are the ratio of the heat capacity rates, Cr, and the number of transfer 

units, NTU. 
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= (mcp)min 

(mCp)max 
(3.53) 

(3.54) 

If the refrigerant is two-phase, Cmax is infinity and Cr becomes zero. The effectiveness-NTU 

correlation is independent of geometry. 

e= l-exp(-NTU) (3.55) 

When the refrigerant is single-phase, the approximation for the effectiveness for both fluids 

unmixed is from Incropera and DeWitt (1990). 

(3.56) 

3.5.2 Pressure Drop Correlations 

An empirical curve fit is used to determine the minor losses and frictional pressure drop 

(Pa) as a function of mass flow rate (kg/s). This curve fit was determined from the data of 

Rubio-Quero, Collins and Hemami. 

A nAn - 8 4 04 m Lcell fi . 0 01 Llrfric + Llrminor - . 5xl -- --- or m< . 
0.01 Ltotal 

Mlfric + Ml min or = (-1220 + 9.67 X 105 m) Lcell for m ~ 0.01 
Ltot 
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3.5.3 Steady-state Evaporator Model Validation 

The steady-state evaporator model was compared with experimental data obtained by 

Rubio-Quero, Collins, and Hemami. The modeled capacity or heat transfer agrees within 5% 

of the experimental data (Figure 3.12). This results in the evaporator superheat being predicted 

within 8 K for the majority of the data points (Figure 3.13). The evaporator pressure drop is 

predicted within 25% for the majority of data points (Figure 3.14). The maximum difference 

between the modeled evaporator pressure drop and the experimental pressure drop is 

approximately 10 kPa which is less than 1.5 psi (Figure 3.15). 
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Figure 3.12 Comparison between experimental evaporator capacity and 

modeled evaporator capacity. 
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Figure 3.14 Comparison between experimental evaporator pressure drop and 

modeled evaporator pressure drop. 
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Figure 3.15 Difference between modeled evaporator pressure drop and 

experimental evaporator pressure drop. 

3.6 Compressor Model 
The compressor performs work on the vapor refrigerant exiting the accumulator in order 

to raise the pressure in the condenser. The following quasi-steady state model was developed 

for a Ford FS-10 externally-driven reciprocating compressor. The drive ratio for this 

compressor operating in a Ford Crown Victoria is 1.46 meaning that the compressor operates at 

a faster speed than the vehicle engine. 

Figure 3.16 illustrates the input and output parameters of the compressor modeL There 

are four input parameters to the compressor model. 

(a) inlet pressure (Pin), 

(b) inlet enthalpy (hin) 

(c) exit pressure (P out) 

(d) compressor speed ( N) 

The output parameters from the compressor model are 

(a) mass flow rate (m), 

(b) compressor power (W), and 

(c) exit enthalpy (houJ. 
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Figure 3.16 Compressor conceptualization. 

Since we model the compressor as quasi-steady state, the inlet mass flow rate and the 

outlet mass flow rate are equal (Equation 3.62). The compressor heat transfer, Q, may be 

required in a compressor model to determine the outlet enthalpy from the conservation of 

energy equation (Equation 3.63). However, it is generally of no practical interest as an O?tput 

variable. The compressor power is modeled as positive into the compressor. The compressor 

heat transfer is modeled as positive out of the compressor. 

Most compressor models are based on calorimetry data which are measurements of 

mass flow rate and compressor power (exit enthalpy is often omitted) for a wide variety of 

operating conditions. To fully define perfonnance, the four inputs (three if compressor speed is 

fixed) noted above must each be varied independently. Fixing the inlet temperature or 

superheat eliminates one input variable although no infonnation on the effect of this variable is 

then produced. 

Our model is based on two sets of data taken for a single compressor. The first set of 

data was taken by Ford Motor Company in their compressor calorimetry laboratory. For each 

of five compressor speeds (600 RPM, 1000 RPM, 2000 RPM, 3000 RPM, and 5000 RPM), six 

pairs of compressor inlet and exit pressures were used giving a total of 30 tests. Superheat 

varied in the narrow range between roughly 8 °C and 10 °C. The second data set consists of 

148 tests from our own facility obtained by Rubio-Quero, Collins, and Hemami. These data 

represent a random sampling of operating conditions. Table 3.3 compares the two data sets 

with respect to the key input parameters considered. The VIVC data generally involve a 
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narrower range of compressor speeds, lower pressures and higher superheat values. The two 

sets of data are characterized by different extremes yet have a significant area of overlap where 

direct comparisons are possible. 

Two important issues must be considered when using calorimetry data. The trrst is 

transferability. Transferability is the extent to which performance data collected in one test 

facility can be transferred to another test facility or to an operating system. We shall discuss 

the transferability between the data obtained from the Ford Motor Company test facility and the 

UIUC test facility in Section 3.6.3. A second issue is manufacturing variability which is the 

variation among multiple units of the same compressor type. Since all of our experimental data 

was obtained from a single compressor, we do not analyze the effect of manufacturing 

variability. 

Variable Ford data UIUCdata 

Number of data points 30 148 

Minimum compressor speed [RPM] 600 847 

Mean compressor speed [RPM] 2320 2172 

Maximum compressor speed [RPM] 5000 3542 

Minimum inlet pressure [kPa] 237.8 93.2 

Mean inlet pressure [kPa] 316.1 179.2 

Maximum inlet pressure [kPa] 446.8 337.9 

Minimum exit pressure [kPa] 1311 723 

Mean exit pressure [kPa] 2106 1031 

Maximum exit pressure [kPa] 2901 1810 

Minimum inlet superheat [OC] 7.88 2.11 

Mean inlet superheat [0C] 8.62 31.62 

Maximum inlet superheat [0C] 9.49 61.40 

Table 3.3 Comparison of the UIUC and Ford compressor data sets. 

For the purpose of the discussion here, compressor models may be divided into three 

broad categories according to their level of empiricism as follows: (a) empirical models, (b) 

semi-empirical models, and (c) first-principles models. We shall examine each of these 

categories individually below beginning with empirical models (Section 3.6.1). We shall then 

move to the other extreme and examine first-principles models (Section 3.6.2). Lastly, we shall 

62 



consider semi-empirical models which combine elements of the previous two approaches 

(Section 3.6.3). We shall summarize the final semi-empirical model in Section 3.6.4. 

When the clutch is disengaged, the compressor is essentially a closed valve between the 

accumulator and the condenser. The models described in Sections 3.6.1-3.6.4 only used when 

the compressor is operating. Section 3.6.5 summarizes the correlations for when the 

compressor is not operating. 

3.6.1 Empirical Models 

Empirical models are curve-fits or interpolations of calorimetry data. In stationary 

systems where compressor speed and inlet temperature or superheat are fixed, mass flow rate 

and power are commonly written as bi-quadratic functions of evaporating and condensing 

temperatures as follows. 

mref= amI + am2 Tevap + am3 Tcond + am4 (Tevap)2 

2 + amSTevap Tcond + am6 (Tcond) 

. 2 
W ref = awl + aw2 Tevap + aw3 Tcond + aw4 (Tevap) 

+ awS Tevap Tcond + aw6 (Tcond) 
2 

(3.59) 

(3.60) 

Here, mref and Wref are the mass flow rate and power at the reference inlet temperature or 

superheat. These values must be adjusted for the actual inlet temperature or superheat. Mass 

flow rate is typically adjusted by applying an inlet density correction factor as follows. 

( Ja7 
. Pin . 

mref= -- m 
Pref 

(3.61) 

where Pin is the actual inlet density, Pref is the inlet density at the inlet pressure and reference 

temperature or superheat, and a7 is an empirical coefficient typically equal to 1 based on the 

assumption that suction volumetric flow rate is independent of inlet temperature. Compressor 

power can be similarly corrected although the most common approach is to neglect the effect of 

inlet temperature altogether (i. e., W = Wref). To obtain exit enthalpy, compressor heat 

transfer is detennined using a surface temperature and overall heat transfer coefficient (UA). 

The exit enthalpy is calculated from the energy equation described below (Equation 3.63). 
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Note that the use of evaporating and condensing temperatures in formulating an 

empirical model is roughly equivalent to taking the logarithm of the inlet and outlet pressures. 

Empirical models have one key advantage and two significant disadvantages. The key 

advantage is that these models are based on performance measurements and thus reflect all the 

complexity inherent in the real device. However, good empirical models require (a) a rich set 

of data and (b) a proven set of functional forms that fully represent the variation of each of the 

three outputs with the four inputs. The first problem is to fit a set of data with four degrees of 

freedom. For the limited range of operating conditions typical of stationary systems, the bi

quadratic method described above yields a reasonable fit of the data given two degrees of 

freedom. However, the fitting coefficients lack physical significance, and, because the fitting is 

done dimensionally, the number of coefficients is greater than necessary. The methods 

typically employed to correct for inlet temperature and, in the case of mobile systems, 

compressor speed are largely untested. Lastly, there is the issue of determining compressor 

heat transfer or, alternatively, exit enthalpy. Modeling heat transfer and using this value to 

obtain exit enthalpy again involves several untested assumptions. The second disadvantage of 

empirical models centers on the large number of data required to fully define three separate 

four-dimensional functions. Practicality dictates that only a subset of the possible variations be 

tested, yet artificially fixing one parameter to reduce the number of possible variations 

significantly degrades the scope of the measurements. 

3.6.2 First-principles Models 

A model based on first principles has only a few parameters, and these parameters can 

either be measured directly or else inferred from diagnostic measurements. However, in 

developing a first-principles model, one must necessarily make simplifying assumptions and 

approximations. As a result, first-principles models may fail to fully capture the true 

complexity of the real system. Nevertheless, a first-principles approach is highly desirable 

from both a conceptual and a practical perspective. 

First-principles models can be developed from either a macroscopic or a microscopic 

viewpoint. In the macroscopic viewpoint, the compressor is treated as a continuous flow 

device whereas, in the microscopic viewpoint, the behavior of the fluid inside the compressor is 

analyzed. We shall start with the macroscopic viewpoint and then turn to the microscopic 

viewpoint. 

From a macroscopic viewpoint, we apply the steady-state conservation equations to 

compressor. The conservation of mass is 
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min = mout = m. 

The conservation of energy equation written in terms of enthalpy (energy equation) is 

The conservation of energy equation written in terms of entropy (entropy equation) is 

Finally, the second law of thermodynamics is 

where 

. f ((t. V).V q".VTJ 
Sinternal = T - T2 dVol ~ 0 

Vol 

q" 
n 

S internal 
Vol 
't 

V 

= inlet entropy, 
= outlet entropy, 
= surface of the system (control volume) , 
= heat transfer rate per unit area (a vector quantity), 
= unit vector normal to surface S, 
= internal rate of entropy production, 
= system volume, 
= fluid shear stress, and 
= fluid velocity. 

Several points regarding these equations warrant discussion as follows. 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

(a) The mass equation is trivial in that the inlet and outlet mass flow rates are implicitly 

assumed to be equal. 

(b) Since the forces acting on the compressor are not of interest here, the momentum 

equation is omitted. 

(c) The kinetic and potential energy terms are omitted from the energy equation. These 

terms are generally negligible. 

(d) The energy equation may be re-written in terms of entropy using the defining 

relationship for entropy; namely, Tds = dh - v dP. Once this is done, physical 

significance can be assigned to the various terms to identify entropy inflows, outflows, 
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and internal production. The kinetic and potential energy terms as well as the work 

term do not appear in the energy equation re-written in this manner. 

(e) For simplicity, we shall refer to the energy equation written in terms of entropy simply 

as the "entropy equation" to distinguish it from the energy equation written in terms of 

enthalpy which we shall simply refer to as the "energy equation". In doing so, we must 

remember that entropy is not a conserved quantity and the entropy equation is actually 

the energy equation in disguise. 

(0 The second law of thermodynamics may be stated as two simple hypotheses: (i) friction 

always dissipates mechanical energy to heat and (ii) heat always flows from hot to cold. 

These hypotheses are valid independent of any constitutive relationship between shear 

stress and velocity or between heat transfer rate and temperature. 

(g) The entropy equation contains the volume integral Sintemal which is unknown except 

for the fact that it must be positive. 

(h) The entropy equation includes a problematic surface integral that requires knowledge of 

(a) the heat transfer rate per unit area and (b) the temperature everywhere on the surface 

of the control volume. However, for the purpose of using the entropy equation to 

develop an efficiency concept, the integral can be satisfactorily approximated by 

or 

Jq".n Q 
-dS=-. 

T Tin 
S 

(3.66) 

The entropy equation thus becomes 

(3.67) 

The energy equation can be used to relate heat transfer and exit enthalpy as follows. 

. . 
W-Q 

haut = hin + . 
·m 

66 

(3.68) 

.(3.69) 



Because heat transfer is an "extra" output of the compressor model, the net gain is zero in terms 

of equations and unknowns. 

Similarly, the entropy equation introduces the additional unknown Sintemal again 

yielding a net change of zero in terms of equations and unknowns. However, the entropy 

equation allows us to define an efficiency for the compressor by comparing actual performance 

to the performance of an ideal device with no internal entropy generation (Sintemal = 0). The 

operation of the ideal compressor is identical with the actual compressor except for two 

variables. One variable measures performance, and the other is the exit enthalpy. The 

efficiency is then obtained from the ratio of the performance measures. Because the ideal 

device is reversible, we call this efficiency the "reversible efficiency". 

In the first method for determining the reversible efficiency, we fix the (a) compressor 

speed, (b) heat transfer, (c) inlet pressure, (d) inlet enthalpy, (e) outlet pressure, and (t) work. 

We vary the mass flow rate and the outlet enthalpy. The two equations defining the ideal 

device performance are as follows. 

0= m max [Sin - s(Pout. hout, i)] - Q / Tin 

The reversible efficiency is then 

. 
m 

l1rev = -.-. 
mmax 

(3.70) 

(3.71) 

(3.72) 

In the second method for determining the reversible efficiency, we fix the (a) 

compressor speed, (b) heat transfer, (c) inlet pressure, (d) inlet enthalpy, (e) outlet pressure, and 

(f) mass flow rate. We vary the work and the outlet enthalpy. Now, the two equations defining 

the ideal device performance are as follows. 

o = m (hin - hout, i) + Vi min - Q (3.73) 

0= m [Sin - s(POUh hout, i)] - Q / Tin (3.74) 
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The reversible efficiency is then 

. 
Wmin 

'Tlrev = --:- . 
W 

(3.75) 

Both methods yield identical numerical values of the reversible efficiency, 'Tlrev, for the 

adiabatic case. The primary difference is that Method 1 defines the efficiency as the ratio of 

the actual mass flow rate to the maximum mass flow rate possible given the power available 

whereas Method 2 defines efficiency as the ratio of the minimum power needed to produce the 

given mass flow rate to the actual power used by the compressor. We prefer the first method 

(Equation 3.72) because it is consistent with the broader definition of efficiency given by 

actual useful effect produced 
'Tl = maximum useful effect produced by ideal device 

(3.76) 

This same definition can be uniformly applied to all energy transferring devices. Most 

thermodynamics textbooks, however, adopt the second method for compressors, and thus this 

approach may be more generally familiar to the reader. 

Two additional non dimensional parameters can be obtained from the macroscopic view 

point. The heat transfer fraction is 

The irreversibility fraction is 

. 
fI =!- = Tin Si?ternal 

W W 

(3.77) 

(3.78) 

where i = Tin S internal is compressor irreversibility. Because heat transfer can, in principle, be 

any positive or negative value, fQ varies between -00 and +00. In practice, however, heat 

transfer is always from the compressor to the ambient (i. e., positive by our sign convention) 

and less than the power input. Thus, the practical range of fQ is between 0 and 1. The 

performance of the system is improved by making fQ as large as possible although the value is 
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usually much less than 1. Because irreversibility is always positive, fr varies between 0 and 00 

although the ratio is usually less than 1. The performance of the system is improved by making 

fr as small as possible. Some authorities define 112 = (1 - fr) as an additional system efficiency 

often designated the "second-law" efficiency to contrast it with the efficiency defined above 

which is designated the "first-law" efficiency. Actually, both definitions rely on the use of the 

Second Law, the only difference being that 112 can be computed from the operating parameters 

of the real device alone without introducing the concept of an ideal device. However, because 

112 can be negative, we use the simple ratio fr without associating an "efficiency" concept with 

it. 

Turning to the microscopic viewpoint, we now consider what happens inside the 

compressor cylinder. To this end, we consider one representative cycle of the piston and define 

the following reference points. 

State Point 1: Cylinder volume is maximum 

State Point 2: Exhaust valve opens 

State Point 3: Cylinder volume is minimum 

State Point 4: Intake valve opens 

Note that State Points 1 and 3 are defined in terms of piston position. We tacitly 

assume that the exhaust valve is closed at State Point 1 and opens sometime during the 

compression stroke (State Point 1 to State Point 3). Similarly, we assume that the intake valve 

is closed at State Point 3 and opens sometime during the suction stroke (State Point 3 to State 

Point 1). Otherwise, no further assumptions about valve operation are made. 

Figure 3.17 shows this cycle on a P-Vol diagram. The macroscopic variables of mass 

flow rate and compressor power may be related to the cycle quantities as follows. 

(3.79) 

. NWcycle 
W=-----=~ (3.80) 

11mech 

. 
where N is compressor speed in cycles per unit time, m 1 is the cycle mass at State Point 1, m3 

is cycle mass at State Point 3, 11mech is the mechanical efficiency of the compressor drive 

system, and Wcycle is the cycle work given by the closed integral 
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3 

Wcycle = J P deVol). 

cycle 

---~1 
""",c--- VOid = Vol -Vol . 

max min 

Vol. Vol 
min max 

Volume 

Figure 3.17 Representative cycle on P-Vol diagram. 

(3.81) 

To make use of this analysis, we require several assumptions about the processes of the 

cycle. The conventional assumptions as described by Threlkeld (1970) are: 

1. Process 1-2 involves polytropic (isentropic) compression with m2 = mI. 

2. Process 2-3 involves exhaust at constant temperature and pressure. 

3. Process 3-4 involves polytropic (isentropic) expansion with Ill4 = m3. 

4. Process 4-1 involves intake at constant temperature and pressure. 

5. PI = P 4 = Pin - ~in and P2 = P3 = Pout + ~P out, where ~in and ~P out are known 

valve differential pressure. 

In addition to these assumptions, m, P, Vol and T are linked everywhere in the cycle by 

the equation of state for the working fluid. 

We started with this approach in the hope of developing a first-principles model of the 

compressor similar to the models developed for the other system components. Based on our 
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analysis of the experimental data, we concluded that the assumption of constant pressure during 

the exhaust phase is inconsistent with observed system behavior. Even when this assumption 

was relaxed and the polytropic exponents and mechanical efficiency were made functions of 

compressor speed, we were unable to produce a reasonable collapse of the data. A first

principles model with coefficients that are complex functions of the input variables has no 

advantage over an empirical model that treats mass flow rate, compressor power, and exit 

enthalpy as empirical functions directly. We concluded that the above cycle analysis 

oversimplifies what actually occurs in the compressor by neglecting important flow and heat 

transfer effects. Consequently, it does not provide an adequate basis for practical compressor 

model development. 

Although the processes occurring in the compressor cylinder are indeed complex, the 

microscopic viewpoint does provide the basis for two additional nondimensional parameters 

characteristic of compressor performance. One such parameter is the volumetric efficiency of 

the compressor. Volumetric efficiency is a nondimensional parameter between 0 and 1 that 

scales out the first-order effects of inlet density and compressor speed from mass flow rate. To 

define the volumetric efficiency, we first introduce the reference mass flow rate given by 

mideal = Pin N Void' (3.82) 

. 
where Pin is inlet density, N is once again compressor speed, and VOId is displacement volume. 

To understand the assumptions which underlie this definition, consider the expression for mass 

flow rate obtained from the microscopic viewpoint and substitute the product of density and 

volume for mass. 

(3.83) 

If PI = P3 = Pin, then 

(3.84) 

The condition that PI = P3 = Pin is satisfied if the exit density is the same as the inlet density 

and the compressor operates slowly enough that equilibrium is reached at the end of the suction 

and exhaust strokes. The actual mass flow rate is necessarily less than this value owing to 

(a) nonzero pressure and temperature increases across the compressor and (b) valve restrictions 
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that limit flow into and out of the cylinder. Using m ideal as the reference value, the 

volumetric efficiency becomes 

m 
T\v = . 

mtdeal 
(3.85) 

From the above discussion, we conclude that volumetric efficiency should approach 1 

as the compressor speed approaches 0 and the pressure ratio across the compressor approaches 

1. We shall use this fact later in formulating a semi-empirical model. 

The second nondimensional parameter derived from the microscopic viewpoint is the 

polytropic exponent for compression given by 

(3.86) 

In principle, ncomp can vary between 0 and 00 although, once again, the practical range is 

actually quite limited. Two reference values are significant. The isothermal case corresponds 

to ncomp = 1, and the adiabatic, frictionless (isentropic) case corresponds to ncomp = ns = 1.1 for 

R-134a. I1comp is increased by friction and reduced by heat transfer. The isothermal case 

represents unrestricted heat transfer. Values between 1 and ns indicate that the effect of heat 

transfer outweighs the effect of friction whereas values greater than ns indicate that the effect of 

friction outweighs the effect of heat transfer. One may also reasonably argue that ncomp should 

rise with compressor speed because the time available for heat transfer is reduced. 

Compressor speed can be made nondimensional by multiplying it by a time constant 

characteristic of the compressor. Two time constants are possible. One is related to the cooling 

rate of the compressor, and the other is related to the maximum flow rate through the valve. 

The latter is the more important in this analysis because it characterizes the ability of the 

cylinder to fill. Unfortunately, an examination of valve flow behavior requires detailed 

knowledge not generally available. Thus, we choose to scale the compressor speed by a 

reference speed as follows. 

N 
r=-.-. (3.87) 

Nref 

Although no specific scaling is used, the choice of reference speed is motivated by the 

extensive data analysis presented below. 
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In summary, a frrst-principles approach gives rise to nine nondimensional parameters 

that characterize compressor operation: 

r = reduced compressor speed = N / N ref 

rp = compressor pressure ratio = Pout / Pin 

rT = compressor temperature ratio = Tout / Tin 

rp = compressor density ratio = Pout / Pin . 
llv = volumetric efficiency = m / (Pin N VoId), 

llrev = reversible efficiency = m / m rev, . . 
fQ = heat transfer fraction = Q / W , . . 
fI = irreversibility fraction = Tin S internal / W , and 
ncomp = polytropic exponent for compression 

= In (rp) / [In (rp) -In(rT)]. 

3.6.3 Semi-empirical Models 

Semi-empirical models seek to (a) leverage the power of nondimensionalization to 

minimize the number of fitting coefficients and (b) choose functional forms based on a frrst

principles analysis. Removing frrst-order dependence by scaling the variables appropriately 

simplifies the fitting process, and the use of physically based functional forms provides a useful 

starting point for the analysis. 

Our development of a semi-empirical model is based on the use of the nondimensjonal 

parameters defined in the previous section and the experimental data. Figures 3.18 through 

3.22 present the two sets of data in terms of the five nondimensional parameters defined in the 

previous section. All parameters are plotted as functions of reduced speed based on a reference 

speed of 6000 RPM. Specifically, Figure 3.18 shows the variation of reversible efficiency 

(Equation 3.72), Figure 3.19 shows the variation of irreversibility fraction (Equation 3.78), 

Figure 3.20 shows the variation of polytropic exponent (Equation 3.86), Figure 3.21 shows the 

variation of heat transfer fraction (Equation 3.77), and Figure 3.22 shows the variation of 

volumetric efficiency (Equation 3.85). 

Figures 3.18 and 3.19 show how well the compressor performs as an energy transferring 

device. The primary conclusions from these results are (a) the two sets of data generally agree, 

(b) a slight departure is suggested at low compressor speeds although the UIUC data in this 

range are insufficient to draw a frrm conclusion, (c) reversible efficiency llrev decreases linearly 

from roughly 60% to 35% as reduced compressor speed increases from roughly 0.1 to 0.8, and 

(d) irreversibility fraction fI increases from roughly 0.4 to 0.6 over the same speed range. 

Reversible efficiency and irreversibility ratio do not provide the most expedient route to a semi

empirical model owing to the need to solve simultaneous algebraic equations involving 
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refrigerant properties. Although solving these equations numerically is indeed possible, the 

added complexity proves unnecessary. 

Figure 3.20 shows the variation of polytropic exponent ncomp with reduced speed. The 

two reference values noted earlier are shown. One is ncomp = 1 which corresponds to 

isothermal compression where heat transfer is ostensibly unrestricted. The second is ncomp = Ilg 

== 1.1 which is the isentropic or frictionless-adiabatic case. Heat transfer reduces the exponent 

from ns whereas friction increases the exponent. If the effect of heat transfer is greater then the 

exponent will lie in the sub-isentropic region (ncomp < Ilg); if the effect of friction is greater 

then the exponent will lie in the super-isentropic region (ncomp > ns). From the results of 

Figure 3.20, we see that the relative importance of friction increases as compressor speed 

increases but that the effect of friction always outweighs the effect of heat transfer. Because 

the two sets of data are in general agreement, a single fit of polytropic exponent is justified. 

Indeed, a simple linear fit of the form 

(3.88) 

appears to work nicely, and our extensive analysis of the data revealed no systematic 

dependence of polytropic exponent on pressure ratio, temperature ratio or density ratio. The 

only well defined correlation is with reduced speed. On conceptual grounds, one expects the 

polytropic exponent to approach the isothermal limit as compressor speed goes to zero, but as a 

practical matter this limit is reached only at speeds below the range of practical interest even 

for compressor start-up. 

A correlation for polytropic exponent allows the exit temperature and thus all other exit 

parameters to be determined (Equation 3.86). Specifically, the exit enthalpy hout can be 

determined from Tout and Pout. This is an important first step in obtaining a practical semi

empirical model. 

Figure 3.21 shows how heat transfer fraction fQ varies with compressor speed. Two 

important aspects of this figure are immediately apparent. First, we note that the two data sets 

show significant differences in terms of both overall magnitude and the trend at low speed. The 

second key observation is that this ratio is roughly constant for all operating conditions. This 

latter result is consistent with our hypothesis that the compressor surface temperature is driven 

by heat transfer rather than heat transfer being driven by a compressor surface temperature. 

Tying heat transfer to compressor power is decidedly preferable to computing heat transfer 

using a compressor surface temperature, ambient temperature, and UA value, all of which are 

generally unknown and generally of no practical interest to us. 
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Despite the differences between the Ford and UIVC data sets, we chose to approximate 

the ratio as a single constant based on the aggregate of the two data sets. No substantial 

improvement in the performance of the empirical model was realized by fitting the two data 

sets separately or by making the ratio a function of the nondimensional input parameters. 

U sing this value of fQ and hout determined as noted above, compressor power can be obtained 

from the energy equation in the form 

(3.89) 

once the third and final variable, mass flow rate, is known. 

The simplest and most direct route to mass flow rate is through the use of the 

volumetric efficiency. Figure 3.22 shows how volumetric efficiency varies with compressor 

speed. Unlike the polytropic exponent ncomp which we approximate as a linear function of 

reduced speed and the heat transfer fraction fQ which we approximate as a constant, the 

volumetric efficiency depends on density differences across the compressor as well as 

compressor speed. Considering once again the microscopic view of the compression process as 

outlined in Section 3.6.2 on First-principles models, we have that 

-Ttv = (1 + CF)2L - CF P3 
Pin Pin 

(3.90) 

where, as before, the subscripts "1" and "3" denote the beginning and end of the compression 

stroke, respectively, and CF is the clearance factor given by V 3 / V d. The two density ratios 

are, in tum, dependent on reduced speed, pressure ratio, temperature ratio, and density ratio. 

Because PI and P2 are not measured, we must infer their values from the volumetric efficiency. 

However, we have but one equation from which to determine two density factors. Because CF 

is small, the controlling factor is (PI/Pin>; the factor (P3 / Pin) is of secondary importance. We 

thus define f = (Pin / PI) and assume that (P3 / Pin) = f (Pout / Pin). This later assumption does 

materially affect the trends obtained. The resulting expression becomes 

I+CF 
Ttv = f -CF frp (3.91) 
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which can be solved for f. Figure 3.23 shows the results of this analysis. The UIVC data 

appear to be well described by a linear function of reduced speed. More importantly, these data 

show the expected asymptotic behavior; namely, f goes to 1 as r goes to O. The Ford data on 

the other hand show a sharply different trend appearing to approach an asymptote of about 1.4 

at low speed. We could find no systematic explanation for this disparity. One can theorize, for 

example, that the greater heat transfer evident for the Ford data corresponds to an artificially 

lower exit temperature and thus an incorrect exit density. Correcting for this difference has a 

negligible effect on the above results, however. Also, one can theorize that the pressure 

measurements are affected by flow related pressure drops. Unfortunately, the required 

correction has the opposite trend; namely, a large correction is needed at low speeds where 

flow rates are small. Yet another problem in calculating volumetric efficiency as shown above 

stems from the fact that the clearance factor is difficult to accurately determine in practice 

owing to the complex geometry of the head and valve regions. Changing the clearance factor 

cannot explain the disparity between the Ford and UIVC data sets, however. 

We pursue a simpler approach. First, we write the volumetric efficiency as the product 

of two factors: (a) fp(rp), the pressure-ratio factor and (b) fs(r), the speed factor. Based on the 

assumption that the volumetric efficiency approaches 1 as the compressor speed approaches 0 

and the pressure ratio approaches 1, we have that (a) fp(rp) goes to 1 as rp goes to 0 and (b) fs(r) 

goes to 1 as r goes to zero. Both factors must decline monotonically as pressure ratio and 

reduced speed increase. This simple thinking leads to the following proposed functional forms. 

(3.92) 

and 
(3.93) 

We found that b = 1/4 provides a good collapse of the data. Figure 3.24 shows how the 

speed factor varies with reduced speed after eliminating the effect of fp(rp). Here, we again see 

a clear difference between the two data sets. This difference cannot be reconciled within the 

context of our empirical model, nor were we able to find any explanation for the disparity other 

than differences in compressor installation between the two test facilities. Both sets of data are 

internally consistent based on their own built-in redundancy, so the possibility of a systematic 

experimental error in either data set seems unlikely. This difference highlights the problems 

inherent in transferring results between test facilities. 
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Figure 3.18 Reversible efficiency as a function of reduced speed. 
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Figure 3.19 Irreversibility fraction as function of reduced speed. 
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Figure 3.21 Heat transfer fraction as function of reduced speed. 
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Figure 3.22 Volumetric efficiency as function of compressor speed. 
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Figure 3.23 Intake density factor as a function of reduced speed. 
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Figure 3.24 Speed adjustment factor as function of compressor speed. 

3.6.4 Final Semi-empirical Compressor Model 

For the sake of clarity we will summarize all of the equations here. The three residual 

equation used in the system model are as follows. 

(3.94) 

m out = m comp (3.95) 

o = hout,pred - hout (3.96) 

The mass flow rate is determined from the following equations. 

mcomp= llv,pred Pin N VoId (3.97) 

where 
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llv,pred = (1- b2(-A-J2J (p~ut )-c 
Nref Pm 

(3.98) 

1'2 = 1.442 for the VIDe data 

1'2 = 0.638 for the Ford data 

c =0.25 

Vo~ = 1.7 x 10-4 m3 

The predicted outlet enthalpy is calculated from the following equations. The predicted 

polytropic exponent is 

where 

The pressure exponent is 

The predicted outlet temperature is 

ncomp,pred = ao + aIr. 

ao = 1.128 

al = 0.107 

ncomp pred - 1 
n - , p-

ncomp,pred 

(3.99) 

(3.100) 

(3.101) 

The predicted outlet enthalpy is calculated from the predicted outlet temperature and the outlet 

pressure. 

(3.102) 

Finally, the compressor work is determined from the heat transfer fraction, 
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· mcomp(hout,pred - hin) 
W comp= ----!.---:..:..---....!.... 

I-fQ 
(3.103) 

where fQ = 0.246. 

Figure 3.25 through 3.28 compare the predicted and observed mass flow rate, 

compressor power, exit temperature, and enthalpy change, respectively. The agreement 

between model predictions and the corresponding measured values is within experimental 

error. Thus, we conclude that a simple semi-empirical model with only five coefficients can 

adequately represent compressor performance over a wide range of inlet condition, exit 

condition, and compressor speed. The model performs well in terms of all three of the 

variables required for system modeling; namely, mass flow rate, compressor power and exit 

enthalpy. 
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Figure 3.25 Comparison of predicted and measured mass flow rate. 
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Figure 3.26 Comparison of predicted and measured compressor power. 
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Figure 3.28 Comparison of predicted and measured enthalpy change. 

3.6.5 Disengaged Clutch Model 

When the compressor shuts off (N = 0), we assume that it is similar to a valve closing 

and there is no flow between inlet and outlet. The mass flow rate and compressor power are 

exactly equal to zero. Equations 3.94-3.95 become 

(3.104) 

m out = 0 (3.105) 

Because there is no refrigerant flow through the compressor, the inlet and outlet 

refrigerant temperature are only linked by conduction through the compressor shell. From 

studying experimental data, we concluded that this rate of conduction is fairly small, and the 

inlet and outlet refrigerant temperatures basically become decoupled after shutdown. The inlet 

compressor temperature becomes a function of the accumulator outlet conditions. A thermal 

time constant is used to determine the outlet compressor temperature. 
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where 

Tout -Troom 

Tinitial - Troom 
= exp( t J 

t comp 

t comp = 724.1 s 

(3.106) 

The thennocouple which measures the outlet compressor temperature is midway between the 

compressor and condenser. We do not model this refrigerant line in our system model. This 

time constant simulates the rate at which this refrigerant cools off. 

When the clutch is disengaged, we no longer have a closed loop of equations because 

the compressor does not allow any refrigerant flow (Section 3.1). Equations 3.104 - 3.106 

become inputs to the model rather than equations solved simultaneously. 

3.7 Orifice Tube Model 
The conservation of mass and the conservation of energy equations for the orifice tube 

are quasi-steady-state. The inlet and outlet mass flow rates are equal, and they are equal to the 

orifice-tube mass flow rate detennined from the inlet pressure, outlet pressure, and inlet 

enthalpy. The orifice tube has zero shaft work and is assumed to be adiabatic; therefore, the 

inlet enthalpy is equal to the outlet enthalpy. (Here, the tenn "outlet enthalpy" refers tQ that 

point downstream of the orifice tube at which all of the excess kinetic energy has been 

dissipated by friction.) The orifice tube equations thus are 

min = morifice (3.107) 

m out = morifice (3.108) 

(3.109) 

The same three equations are used for the steady-state solution and transient solution. The only 

correlation needed for this model is the orifice-tube mass flow rate as a function of inlet and 

outlet parameters. 

3.7.1 Orifice Tube Mass Flow Rate Correlation 

The mass flow rate correlation was detennined by Hmjak (1998) and is valid for the 

standard orifice tubes found in automotive air-conditioning systems as summarized in Table 3.4 
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below. The geometry inputs into the model are the orifice tube length (L) and diameter (d). 

The orifice tube cross-sectional area (A orifice) is determined from the diameter. 

Orifice Tube nominal diameter (mm) length (mm) 

brown 1.22 38.4 
green (gray) 1.32 38.4 
orange 1.45 38.4 
red 1.55 38.4 
blue 1.70 38.4 

Table 3.4 Orifice tubes used in automotive air-conditioning systems. 

The orifice-tube model is semi-empirical with coefficients determined from laboratory 

data. This laboratory data covers all inlet flow regimes of interest: subcooled liquid, two-phase, 

and superheated vapor. The flow is assumed to be choked and the refrigerant is pure R134a 

with no oil. The empirical fit to the data agrees to the measured value with an accuracy of 

±1O%. 

When the inlet is subcooled, a modified orifice flow equation is used. 

(3.110) 

P sat is the saturation pressure calculated from the inlet temperature, and Pf is the saturated 

liquid density at the inlet temperature. The empirical coefficient, k, is determined from the 

following equation. 

k = c2(S+2 KJC3 + (~)C4(~)C5 + C6(~) + c7(PCrit -PoutJ (3.111) 
Tcrit 1 mm 1 mm 1 mm Pcrit 

Pcrit and Tcrit are the critical pressure and temperature, respectively. S is the amount of 

subcooling at the orifice tube inlet in Kelvin. 

When the inlet is vapor, the Fanno flow equation is used. 

(3.112) 
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M is the Mach number, y is the specific heat ratio, and R is the gas constant for R134a (82.29 

J/kg-K). The Mach number is determined from the Fanno flow relationship shown below. 

4fL I-M2 (Y+l)l [M2( y+l J] D = yM2 + 2Y n 2+(y-l)M2 
(3.113) 

Here, f is the Fanning friction factor which was determined to be 0.008 through nitrogen flow 

tests. This equation cannot be explicitly solved for the Mach number. To simplify the 

calculation, we developed a curve fit for the Mach number for R134a (Y= 1.13). 

( )
-0.6385 

M = 0.093931 4~ (3.114) 

When the inlet is two-phase, the mass flow rate is determined from a quality (xin) 

weighted average between the pure liquid flow rate equation (Equation 3.107) and pure vapor 

flow rate equation (Equation 3.109). 

( . ( )Cg • C ) morifice = msub 1- xin + mfannoxin 9 (3.115) 

If the refrigerant is pure liquid, then xin = 0; if the refrigerant is pure vapor, then xin = 1. The 

values of the empirical coefficients for the model are listed in Table 3.5. 

Coefficient Value Coefficient Value 

cl 0.265249714 c6 0.0000218672 

c2 -0.11497189 c7 0.0362919356 

c3 0.041465780 c8 1.7562517005 

c4 -0.006578346 c9 0.4970578018 

c5 0.0039000541 

Table 3.5 Empirical coefficients for the orifice tube model. 
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3.7.2 Comparison Between the Mass Flow Rate Correlation and Experimental Data 

Figure 3.29 shows a comparison between the model predictions and experimental data 

using our experimental facility. Rubio-Quero, Collins, and Hemami obtained the data for the 

brown, green, and orange orifice tubes, respectively. In all of the cases, the refrigerant at the 

inlet is subcooled liquid. The model significandy overpredicts the mass flow rate for the brown 

and green orifice tubes. The model overpredicts the mass flow rate for the orange orifice tube 

data as well, but the error is within the tolerance of the model (± 10%). 
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Figure 3.29 Comparison of experimental data with the orifice tube model using 

the correct diameters. 

To understand the differences between the data obtained with the brown, green, and 

orange orifice tube, we must review the chronology of the data. The brown-orifice-tube data 

were obtained in the spring of 1995, and the green-orifice-tube data were obtained in the fall of 

1996. The orange-orifice-tube data were obtained in the summer of 1997. Also, in the summer 

of 1997, all of the data were compared with the orifice tube model. Because the most recent 

data agrees well with the model while the earlier data earlier does not agree well, we can 

assume that the problem causing the discrepancy in the previous data has been corrected. 

There appear to be two possible problems which could contribute to the discrepancy 

between the experimentally measured mass flow rate and the predicted mass flow rate. One 

possible problem is a systematic error in one or more of the measurement devices. The second 
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possible problem is that since the inlet pressure and temperature are not measured directly in 

front of the orifice tube, a restriction in the refrigerant pipe could occur between the 

measurement devices and the orifice tube causing a reduction in the mass flow rate. 

First, we shall examine the extent to which errors in the experimental measurements 

could explain the apparent discrepancy. The measurements which are inputs to the model are 

(a) the inlet orifice tube pressure, (b) the inlet orifice tube temperature, and (c) the outlet orifice 

tube pressure, and the model predicts (d) the mass flow rate. In our experimental facility as 

shown in Figure 3.3 these four values correspond, respectively, to (a) the pressure measured at 

the liquid venturi, (b) the temperature measured at the liquid venturi, (c) the pressure 

measured at the inlet evaporator, and (d) the mass flow rate measured by the Micro Motion™ 

flow meter. The calibrations of these instruments did not change significantly over the two 

year period when we obtained the orifice tube data. 

To asses the extent that experimental measurements can affect the model prediction, we 

determined the amount of error in the measurements required for the experimental mass flow 

rate to agree with the predicted mass flow rate. As a reference point, we first note that the 

model over predicts the mass flow rate for the brown orifice tube data by roughly 20%. First, 

we can eliminate errors in the mass flow rate measurement because the accuracy of the 

calibration of the Micro Motion™ flow meter is ± 0.2 % (Weston 1996). The only way that 

large errors could be reported by the mass flow meter is if the refrigerant is not subcooled 

liquid. However, the fact that the refrigerant is subcooled liquid is visually verified using a 

sightglass between the Micro Motion TM and the liquid venturi. 

Turning, our attention to the three variables which are inputs to the model, we first 

consider the outlet pressure (Pout) which only affects the mass flow rate prediction through 

Equation 3.111. Changes in the downstream pressure have a very small effect on mass flow 

rate because the flow is essentially choked. In the data obtained with the brown orifice tube, 

Pout ranges from 0.14 - 0.30 MPa (21 - 44 psi). If all outlet pressures were in fact 0 Pa, the 

predicted mass flow rate only changes by an average of 0.4%. 

The remaining input variables, inlet pressure and inlet temperature, affect mass flow 

rate to approximately the same degree, primarily because the saturation pressure in Equation 

3.110 is a function of inlet temperature. Decreasing Pin by 7%, eliminates the systematic error 

observed for the brown orifice tube. A 7% error corresponds to a 0.05 - 0.08 MPa (7 - 12 psi) 

error. As mentioned above, the inlet orifice tube pressure is measured at the liquid venturi. A 

partially redundant pressure measurement is obtained upstream of the liquid venturi at the 

condenser outlet. If a 7% error exists in the liquid venturi pressure measurement, there should 

be a large difference between the pressure at the condenser outlet and the liquid venturi. For 

the data obtained with the brown orifice tube, the average difference in pressures is 8700 Pa 
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(1.3 psi). For the orange-orifice-tube data, the average difference in pressures is 8000 Pa (1.2 

psi). Since the orange orifice tube and brown orifice tube pressure difference are comparable, 

we can eliminate errors in the inlet pressure measurement as causing the discrepancy between 

the measured and predicted mass flow rate. 

Changing the orifice tube inlet temperature affects the predicted mass flow rate 

primarily by changing the saturation pressure (PsaJ in Equation 3.110. For the brown orifice 

tube, the inlet temperature must be increased by 3 K (5.4 F) to remove the systematic error in 

the predicted mass flow rate. The inlet temperature is between 296 - 306 K (73 - 91 F). Again, 

there is a redundant temperature measurement at the outlet of the condenser. For the brown 

orifice tube, the average difference in temperature is 0.48 K (0.9 OF). For the orange orifice 

tube, the average difference in temperature is 0.87 K (1.5 OF). Since the average temperature 

difference is consistently less than 1 K, we assume that the inlet temperature data cannot cause 

the error. 

From the above analysis, we concluded that measurement errors did not cause the 

discrepancy between the predicted and modeled mass flow rates. Another possible problem 

could be in the piping. If a restriction in the pipe occurred between the measurement devices 

summarized above and the orifice tube, then the mass flow rate could be less than the predicted 

mass flow rate. Many changes were made in the test facility regarding the refrigerant pipe 

around the orifice tube between the fall of 1996 and the summer of 1997 (Wandell 1997). 

Wandell removed the refrigerant pipe between the liquid venturi and the evaporator which 

contained initially the brown orifice tube and later the orange orifice tube in fall of 1996. 

Wandell installed two parallel pipes (Figure 3.3). One contains the orifice tube and the other 

contains an electronic expansion valve (EEV). Ball valves were installed at the inlet an outlet 

of each of these parallel lines so the refrigerant flow could be switched between the two 

metering devices without discharging the entire loop of refrigerant. This current configuration 

which contains the orange orifice tube apparently does not substantially restrict the refrigerant 

flow. 

One final possibility is that the orifice tube was clogged with debris from the circulating 

refrigerant. We located the original green orifice tube, and no evidence of clogging was 

apparent. 

The data we obtained from the current test facility configuration agrees well with the 

orifice tube model. We cannot say for certain why the model overpredicts the experimental 

data for the brown and green orifice tubes. Because of the changes to the piping in the test 

facility, the opportunity to resolve this issue has been permanently lost. 

We set the mass flow rate from the model equal to the mass flow rate in the 

experimental data to solve for a theoretical diameter. These empirical diameters are reported in 
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Table 3.6. Hrnjak reports that there is a variation in the actual diameters of the orifice tubes 

compared with the nominal diameter. However, the empirical diameters of the brown and 

green orifice tubes do not realistically fit in this range. The empirical diameter for the orange 

orifice tube is realistic. Figure 3.30 show a comparison between the experimental data and the 

model using the theoretical diameter. 

In order to make use of the extensive data obtained with the brown and green orifice 

tube, the empirical diameter is used in all of the system model comparisons with data instead of 

the nominal diameter. 

Orifice Tube Nominal diameter (mm) Empirical diameter (mm) 

brown 1.22 1.097 
green (gray) 1.32 1.156 
orange 1.45 1.423 

Table 3.6 Nominal and empirical orifice tube diameters. 
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Figure 3.30 Comparison of experimental data with the orifice tube model using 

the corrected diameters. 
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3.7.3 Extensions to the Orifice Tube Mass Flow Rate Correlation 

The model by Hrnjak only treats the steady-state operating conditions. We needed to 

extend the model to work in start-up and shut-down conditions when the flow is not choked. 

We must be able to predict when the flow becomes choked and nonchoked mass flow rate. 

When the inlet pressure equals the outlet pressure, there is no flow through the orifice 

tube. As the inlet pressure drops, the mass flow rate increases and it is dependent on the 

difference between the inlet and outlet pressures. As the pressure drops further, eventually the 

Mach number at the exit of the orifice tube will equal one and the flow becomes choked. At 

this point, as the outlet pressure decreases, the mass flow rate and the pressure at the exit of the 

orifice tube will remain basically constant. 

If the fluid is an ideal gas, then the Fanno flow equations can be used to determine the 

pressure at which the· flow just becomes choked. For simplicity, we will refer to this pressure 

are the choked flow pressure. This pressure depends on he inlet pressure, diameter, length, and 

friction factor. If the outlet pressure is less than the choked pressure, then the flow is choked. 

However, for two-phase flow it is not trivial to determine the pressure at which the flow 

chokes. A solution similar to the heat exchangers must be performed where the orifice tube is 

discretized and the conservation equations are applied to each section. This solution is more 

complex than is required for a system model, therefore we will use a simplified approach to 

determine when the flow becomes choked and the equation for the nonchoked flow. 

The nonchoked mass flow rate through an unchoked orifice tube is approximated using 

the orifice equation. 

(3.116) 

For turbulent single-phase flow (Re > 104), the pressure drop to acceleration losses and 

entrance losses is 

.M>entrance 

2 
= (I+K)PV 

2 
(3.117) 

where K = 0.5 for sudden contractions from large to small tubes (Idelchik, 1994). The pressure 

drop to exit losses is (ldelchik, 1994) 
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( A )2 V2 
8P . = 1 + orifice -p-. 

eXit A 2 
tube 

(3.118) 

Because the orifice tube area is much smaller than the tube area, the ratio is approximately 

zero. For this limiting case, Idelchik gives the discharge coefficient to be 0.667. 

Instead of trying to predict the two-phase critical conditions, we shall use Equation 

3.116 whenever it is less than the mass flow rate predicted by Equation 3.115. This 

accomplishes a smooth transition between choked and nonchoked flow. 

A further extension to the orifice tube model allows for the mass flow rate to be 

negative when the evaporator pressure is greater than the condenser pressure. The physical 

difference between the inlet and outlet of the orifice tube is the shape of the screens which 

prevent debris from clogging the orifice tube. Hrnjak reports that the screens do not effect the 

mass flow through the orifice tube and the model is also valid for backwards flow. 

3.8 Accumulator Model 
The accumulator is basically a tank between the evaporator and compressor which 

prevents liquid from flowing into the compressor. Figure 3.31 show the internal geometry of 

the accumulator. As the refrigerant enters the accumulator, the inlet tube directs the refrigerant 

to the top of the accumulator (Point 1) and then down the sides of the accumulator. The liquid 

then remains at the bottom. Vapor enters the exit tube at Point 2. The exit tube loops down 

towards the bottom of the accumulator where there is an oil return hole. This hole draws in a 

small amount of the liquid/oil mixture, so oil can be returned to the compressor. 

An accumulator is used in clutch-cyclinglorifice-tube systems. During clutch-cycling 

conditions, the level of liquid in the accumulator is changing. When the compressor clutch 

disengages, the refrigerant initially migrates from the condenser to the evaporator because of 

the pressure difference. The evaporator cannot physically hold all of the system charge, so the 

refrigerant subsequently flows out of the evaporator and fills the accumulator. When the 

compressor is turned on again, the suction-line pressure decreases rapidly causing the 

refrigerant in the accumulator to begin to boil. The refrigerant vaporization causes the 

temperature of the liquid to drop requiring heat transfer with the ambient air to sustain the 

evaporator of liquid. The compressor will cycle off when the evaporator pressure decreases 

below a set point. At this time, the accumulator starts to fill with liquid refrigerant. During 

more extreme operating conditions (such as the initial pulldown) the clutch is engaged for a 

long period of time and all of the liquid evaporates from the accumulator. During less extreme 
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operating conditions, the clutch cycles more frequently and liquid refrigerant can exist in the 

accumulator at all times. 

vapor 

From ~ 

evaporator 

t 

- _ To 
.----r-...,--=----, compressor 

oil return hole 

Figure 3.31 Internal accumulator geometry. 
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The accumulator should be sized to contain all of the refrigerant in liquid form. After 

shutdown, all of the charge migrates to the coldest part of the system. Immediately after 

shutdown, the evaporator is the coldest part of the system. The evaporator is in the cabin and 

can later heat up with the cabin temperature. As the evaporator heats up, most of the refrigerant 

migrates to the accumulator. If the accumulator is undersized, it entirely fills with liquid. 

Because of the geometry of the accumulator (Figure 3.31) once the accumulator has filled with 

liquid, liquid exits to the compressor before it exits to the evaporator. When the compressor is 

turned on, the liquid flowing into the compressor can remove the oil required for lubrication. 

3.S.1 Steady-state Accumulator Model 
We have modeled the accumulator as a single cell in the system. We will investigate 

two different operating conditions. The first condition occurs when the accumulator is filled 

with superheated vapor. The second condition occurs when the accumulator is filled with two

phase refrigerant. 

When the accumulator is filled with superheated vapor it is similar to a heat exchanger. 

The heat transfer between the ambient air and the refrigerant in the accumulator is very small. 

Rubio-Quero's data set was run at a low-charge condition where the accumulator was 

completely vapor. From these data, we conclude there is no enthalpy change across the 

accumulator when it contains vapor refrigerant. 

When two-phase refrigerant is in the accumulator, a steady-state condition exists when 

the amount of liquid and vapor refrigerant in the accumulator remain constant with respect to 

time. The liquid in the accumulator must be evaporating at exactly the same rate as liquid 

flows into the accumulator. This requirement for steady-state operation rarely occurs during 

normal operation. However, when the rest of the system has apparently reached a steady-state 

condition, the rate of evaporation is generally small enough that we can assume a quasi-steady

state condition exists. 

The following equations are used to model a quasi-steady-state accumulator. 

o = min - mout (3.119) 

o = Pin - Pout - Mlfric (3.120) 

o = hout - hout,calc (3.121) 

where 
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(3.122) 

hout,calc = hin for xin > 1 

The frictional pressure drop and minor losses are lumped into one empirical parameter, 

£Wfric' as discussed in Section 3.8.3. 

3.8.2 Transient Accumulator Model 

The accumulator is also modeled as a single cell in the transient model. The standard 

conservation of mass, energy, and momentum equations apply. With the additional constraint 

equation, the equations are 

where 

dmacc = 
dt 

d(mu)acc = .. ( ) 
minhin - mouthout - VAacc Tacc - Tambient 

dt 

o = hout - hout,calc 

hout,calc = hin for xin > 1 

(3.123) 

(3.124) 

(3.125) 

(3.126) 

(3.127) 

These equations are similar to the steady-state form except for the transient term in the 

conservation of mass and energy equations. The state variables are ffiacc' Pin' hout> and mout . 

In Section 3.84 we summarize how we determine the accumulator heat transfer coefficient, VA. 

In the standard heat exchanger equations (Section 3.3) the outlet enthalpy is set equal to 

the cell enthalpy. This assumption is not valid for the accumulator because the refrigerant at 

the outlet of the accumulator is always vapor regardless of the cell properties in the 

accumulator. As a result, we include an additional equation (Equation 3.127) and an additional 

variable (mace) to correctly model the accumulator. 
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Several additional equations are required for the accumulator model are. The density of 

the refrigerant in the accumulator is calculated from the refrigerant mass and the accumulator 

volume. 

Pace = 
mace 

Volaee 

The derivative in Equation 3.6 is calculated from the following equations. 

where 

d(mu)acc 
dt 

du dm = m ~+u ace 
ace dt ace dt 

dUaee _ 1 dmaee au dPaee au +---
dt Vol ace dt ap dt ap 

(3.128) 

(3.129) 

(3.130) 

The accumulator volume includes the volume of the accumulator itself plus the refrigerant line 

between the evaporator and the accumulator and the accumulator and the compressor. 

The results from the steady-state model are used as starting conditions for the transient 

model. During steady-state operation, we assume that the accumulator cell properties are equal 

to the inlet accumulator properties. 

3.8.3 Pressure Drop Correlations 
The pressure drop in the accumulator is due to frictional losses and minor losses in the 

entrance tube and exit tubes. An empirical parameter was determined for the pressure drop 

similarly to the evaporator and condenser. Different correlations were determined depending 

on whether the inlet refrigerant is two-phase or superheated. The data of Rubio-Quero, Collins, 

and Hemami were used to determine an empirical correlation for pressure drop. 

APfrie = 1.13 x 109 mi2 
Pin 

for xin < 1 (3.131) 

APfrie = 1.51 x 109 min for xin > 1 
p. 2 

10 
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To prevent a discontinuity around xin = 1, the equations are weighted between xin = 0.95 and 

xin = 1. Figure 3.32 provides a comparison between the model and the experimental data. 
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Figure 3.32 Comparison between predicted accumulator pressure drop and 

experimental accumulator pressure drop. 

3.8.4 Heat Transfer Coefficient 

Heat transfer between the accumulator refrigerant and the ambient air causes the 

refrigerant to evaporate. The outside surface of the accumulator is smooth and the heat transfer 

between the air and the surface is caused by natural convection. The interior of the 

accumulator is also smooth. The configuration of the entrance tube (Figure 3.31) causes the 

inlet refrigerant to flow down the inside of the walls which increases the heat transfer 

coefficient. The heat transfer coefficient is a function of the following parameters: 

1) Liquid level in the accumulator, 

2) Inlet quality, 

3) Inlet mass flow rate, 

4) Refrigerant properties, 

5) Air properties, and 

6) Accumulator wall properties 
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Currently, we use a constant value for the accumulator heat transfer coefficient. This 

heat transfer coefficient is calculated from the steady-state conditions. 

3.9 Solution Technique 
This section summarizes the solution techniques for the steady-state and transient 

models. 

3.9.1 Steady-state Solution 
The steady-state solution is needed to provide initial conditions for the transient solution 

and to verify the accuracy of the steady-state model. The steady-state model consists of 3 

equations and 3 unknowns per cell. The unknowns are the enthalpy, pressure, and mass flow 

rate at the inlets and outlets of the cells (Figure 3.2). The governing equations are the 

conservation of mass, energy, and momentum equations. The relevant equations are 

summarized in Sections 3.2 - 3.8. For n cells, a set of 3n simultaneous equations are written in 

the following form. 

F(x) = 0 (3.132) 

A Newton-Raphson technique (Press et a1.1992) is used to solve the equations. 

The Newton-Raphson algorithm must be provided with initial guesses for the 

unknowns, x. The Jacobian matrix is then calculated numerically. 

J .. - aFi 
IJ - ax· J 

(3.133) 

From the Jacobian, we solve the linear system of equations for OX, which will set the equations 

directly equal to zero. 

J ·ox = -F (3.134) 

New next iteration of x is 

xnew = xold + ox. (3.135) 
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The vector x is accepted as the solution when the maximum residual (maximum value of F) is 

below a user specified tolerance or else the maximum change in the solution vector x is below a 

user specified tolerance. 

If the initial guesses are poor, the above method may not converge. To avoid this 

situation the magnitude of the residual vector is evaluated at each step. 

(3.136) 

If the full Newton-Raphson step, 8x does not reduce f then we backtrack along the Newton 

direction until we find an acceptable step size. This method can still fail by landing on a local 

minimum of f. A good initial guess must still be provided for the best convergence. 

3.8.2 Transient Solution 

The transient model consists of 4 transient equations per cell when we include the heat 

exchanger wall conservation of energy (Equation 3.10). If we do not include this equations, the 

transient model contains 3 transient equations per cell. In addition, we have 3 algebraic 

equations describing the compressor and 3 algebraic equations describing the orifice tube. A 

system of differential and algebraic equations has the following form. 

F(t, y, y') = 0 

y(tO) = YO 

y'(tO) = YO 

(3.137) 

(3.138) 

(3.139) 

Equation 3.6 is the vector of equations and Equations 3.7 and 3.8 are the initial conditions. 

The solver we used is a public domain program DASSL (differential-algebraic system 

solver) (Brenan et aI., 1996). DASSL is based on the algorithms developed by Gear (1971) for 

stiff systems. 

The algorithms in DASSL are only briefly summarized here. The derivatives in 

Equation 3.6 are replaced with a kth order Backwards Difference Formula (BDF). 

k 

Y n = L aniY n-i + hn~nOY~ 
i = 1 

100 

(3.140) 



hn is the step size. ani and f3no are coefficients specific to the algorithm. The resulting 

equations are solved using a Newton-Raphson method similar to the one summarized in Section 

3.9.1. A good initial guess for Yn and Yn' are obtained from an explicit equation called the 

predictor formula. 

DASSL uses a variable step size (hn) and variable order (k) method. The new order is 

determined by calculating the error if the previous steps had been taken at a constant step size 

with the current order k and the order k-2, k-l, and k+ 1. The new order, kn+l> is lowered if the 

error increases as k increases and raised if the error decreases with k. Using the new order 

kn+l> the new stepsize is chosen so the error estimate based on taking constant stepsizes, dtn+h 

satisfies the error test. The coefficients ani and f3no depend on the stepsize and the order. 

From the author's experience, we can conclude that DASSL is an extremely robust 

program. However, it is not very efficient. It is extremely useful for developing models for 

design purposes but it is too slow to apply to a model for controls or any real time application. 

When solving differential equations, one must take care to make sure no discontinuities 

exist in the equations. Discontinuities in the refrigerant properties or the correlations for 

friction factors or heat transfer coefficients will cause DASSL to take extremely small time 

steps and possibly fail. Removing the discontinuities from the correlations will also improve 

the convergence of the steady-state code. 
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Chapter 4 

Steady -state Model Validation 

In Chapter 3, we summarized the overall organization of the model, the steady-state 

equations, and the steady-state solution technique. Also, we validated the correlations for the 

heat transfer coefficient, friction factor coefficient, mass flow rates, and power with steady

state data. In this chapter, we shall combine the component models into a steady-state system 

model. This system model will be validated with experimental data. 

4.1 Model Validation 
As shown in Chapter 3, the steady-state model provides the appropriate method for 

validating component models. In addition, the steady-state model provides the starting point 

for the transient model once the system is fully in operation. The steady-state model is the 

same as the transient model except that the time derivatives are set to zero. The orifice-tube 

and compressor models are exactly the same because these models are quasi-steady-state. In 

the heat exchanger and accumulator models, the time derivatives in the conservation of energy 

equation and the conservation of mass equation are set equal to zero. The conservation of 

energy equation for the heat exchanger wall is not needed in the steady-state model. 

The model is compared with steady-state data obtained by Rubio-Quero (1995), Collins 

(1996), and myself using a facility specifically designed to test mobile air-conditioners. The 

primary difference between the three data sets is the size of the orifice tube and amount of 

refrigerant mass in the system. The test facility and the associated data are discussed in detail 

in Section 3.2. 

The steady-state equations are solved with a Newton-Raphson technique discussed in 

Section 3.9. The physical parameters which define the operating point of the system are 

1) Evaporator inlet air temperature, 

2) Condenser inlet air air temperature, 

3) Ambient temperature, 

4) Evaporator air mass flow rate, 

5) Condenser air mass flow rate, 

6) Compressor speed, and 

7) Refrigerant mass. 
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It is very difficult to accurately predict the refrigerant mass in the two-phase regime, and as a 

result it is difficult to predict the amount of refrigerant mass in the system. Different two-phase 

void fraction correlations are summarized in Section 4.2. Instead of using refrigerant mass as 

an input to the model, we specified either the condenser subcooling or the evaporator superheat. 

The refrigerant subcooling at the condenser outlet is a good choice because predictions are very 

sensitive to the value selected. Section 4.1.1 summarizes the comparisons between the model 

predictions and data when subcooling is specified. To study the influence of selecting 

condenser subcooling as an input, in Section 4.2.2 we shall compare model predictions with the 

data using evaporator superheat as an input. 

4.1.1 Results Obtained Using Condenser Subcooling as an Input 

For these steady-state simulations, the only difference between the three data sets 

(Rubio-Quero, Collins, and Hemami) are the orifice-tube diameter and the refrigerant mass. 

The inputs to the steady-state model for this simulation are 

1) Evaporator inlet temperature, 

2) Condenser inlet air temperature, 

3) Ambient temperature, 

4) Evaporator air mass flow rate, 

5) Condenser air mass flow rate, 

6) Compressor speed, and 

7) Condenser outlet refrigerant subcooling. 

Figure 4.1 shows a comparison between the modeled mass flow rate and the 

experimental mass flow rate. The mass flow rates generally agree within 10%. During a 

steady-state operating condition, all of the mass flow rates at all points in the system is the 

same. Therefore, the mass flow rates at the orifice tube and the compressor must be equal. 

These mass flow rates are functions of the condenser pressure, evaporator pressure, condenser 

subcooling, and inlet compressor density. 

Good agreement between the modeled and experimental mass flow rates suggest that 

we can expect good agreement between the modeled and experimental pressures. Figures 4.2 

and 4.3 show comparisons between the predicted and experimental pressures for the condenser 

and evaporator, respectively. The experimental and predicted inlet condenser pressures agree 

within 10%. The experimental and predicted inlet evaporator pressures agree within 15%. 

Since the flow through the orifice-tube is choked, evaporator pressure has a very small effect 
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on the mass flow rate through the orifice tube. As a result, the evaporator pressure is difficult 

to predict because of the low correlation between evaporator pressure and system operation. 

Next, we shall look at heat transfer and power comparisons for the system model. The 

heat transfer rate is computed by mUltiplying the refrigerant mass flow rate by the refrigerant 

enthalpy difference across a component. Figure 4.4 shows the comparison between the 

modeled and experimental condenser capacity. The system model agrees within approximately 

15% of the data. The system model agrees within approximately 10% of the data for the 

evaporator capacity (Figure 4.5). We have good agreement between the predicted and 

experimental heat capacities which indicates that the heat transfer coefficients are accurate. 

The modeled compressor power is within approximately 10% of the experimental compressor 

power (Figure 4.6). 
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Figure 4.1 Mass flow rate validation (subcooling input). 
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Figure 4.2 Inlet condenser pressure comparison (subcooling input). 
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Figure 4.3 Inlet evaporator pressure comparison (subcooling input). 
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Figure 4.5 Evaporator capacity comparison (subcooling input). 
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Figure 4.6 Compressor power comparison for the system model (subcooling input). 

As just seen, Figures 4.1 - 4.6 provided an overview of some of the important system 

parameters. Figures 4.7 - 4.9 show comparisons between the predicted and experimental 

component pressure drops. The predicted condenser pressure drop agrees within approximately 

20% of the data. The predicted evaporator pressure drop exceeds the experimental pressure 

drop by between 0% and 30%. The pressure drop through the evaporator is small and a larger 

error can be tolerated. The pressure drop through the accumulator is predicted within 20% 

(Figure 4.9). 

Figure 4.10 shows the differences between the modeled evaporator superheat and the 

experimental superheat. The model predicts the evaporator superheat within 15 K. Evaporator 

superheat is extremely sensitive to evaporator capacity, and this error is considered to be quite 

good. 

The system model shows good agreement with the experimental data. Having good 

agreement between the steady-state data and the steady-state model is the first step in having 

good agreement between a transient model and transient data. 
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Figure 4.7 Condenser pressure drop comparison for system model (subcooling 

input). 
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input). 
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(subcooling input). 
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Figure 4.10 Evaporator superheat comparison (subcooling input). 
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4.1.2 Results Obtained Using Evaporator Superheat as an Input 

As mentioned as in Section 4.1.1, using the condenser subcooling as an input could bias 

the comparison between model predictions and measured values. Condenser subcooling is an 

input to the orifice-tube model. Using condenser subcooling as an input means that it is exactly 

correct and helps ensure good agreement between the predicted and measured mass flow rate 

through the orifice tube. To determine the effect of this bias, we used evaporator superheat as 

an input instead of condenser subcooling. Everything else in the model remains the same as in 

Section 4.1.1. The inputs to the steady-state model for this simulation are then 

1) Evaporator inlet air temperature, 

2) Condenser inlet air temperature, 

3) Ambient temperature, 

4) Evaporator air mass flow rate, 

5) Condenser air mass flow rate, 

6) Compressor speed, and 

7) Evaporator outlet refrigerant superheat. 

First, we shall investigate the comparison between the experimental and predicted mass 

flow rate (Figure 4.11). Slightly more error exists when evaporator superheat is an input (15%) 

than when condenser subcooling is an input (10%). When evaporator superheat is an input, the 

model overpredicts at low mass flow rates and underpredicts at high mass flow rates. The 

predicted condenser (Figure 4.12) and evaporator (Figure 4.13) pressure agree with the 

experimental data within 10% and 15%, respectively, which are the same errors obtained when 

condenser subcooling was an input. The increase in error in the mass flow rates can be caused 

by the an error in the outlet condenser subcooling. Figure 4.14 shows the difference between 

the predicted and experimental subcooling as a function of temperature. A general trend can be 

seen where the subcooling is overpredicted at low mass flow rates and underpredicted at high 

mass flow rates. This trend seems to cause the increased error in the mass flow rate prediction. 

However, the mass flow rate prediction is still quite good for a system model. 
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Figure 4.11 Mass flow rate validation (superheat input). 
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Figure 4.12 Inlet condenser pressure comparison (superheat input). 
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Figure 4.13 Inlet evaporator pressure comparison (superheat input). 
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Figure 4.14 Condenser subcooling comparison (superheat input). 
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Figure 4.15 shows a comparison between the predicted and the experimental condenser 

capacity. The error is 15% which is approximately the same as the error observed in Figure 

4.4. Figure 4.16 shows that the error between the modeled and experimental evaporator 

capacity is 15%. Comparing Figure 4.16 to Figure 4.5, we can see that the error in the 

evaporator capacity is slightly increased when evaporator superheat is used as an input rather 

then condenser subcooling. The error in the evaporator capacity (Figure 4.16) shows the same 

trend as the error in the system mass flow rates (Figure 4.11). The compressor power also has a 

slightly larger error when the evaporator superheat is an input (Figure 4.17). 

The small errors in the mass flow rate show the largest affect on the pressure drops 

through the components. The pressure drops are modeled as empirical linear functions of mass 

flow rate. In Figure 4.18, we see that the pressure drop through the condenser is greatly 

overpredicted when the pressure drop is small. A small condenser pressure drop corresponds to 

a small mass flow rate; accordingly, the model overpredicts the mass flow rate when it is small. 

The same trends can be seen in the evaporator pressure drop (Figure 4.19) and the accumulator 

pressure drop (Figure 4.20). 
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Figure 4.15 Condenser capacity comparison (superheat input). 
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Figure 4.16 Evaporator capacity comparison (superheat input). 
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Figure 4.17 Compressor power comparison for the system model (superheat input). 
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Figure 4.18 Condenser pressure drop comparison for system model (superheat 

input). 
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input). 
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Figure 4.20 Accumulator pressure drop comparison for system model (superheat 

input). 

In conclusion, using condenser subcooling rather that evaporator superheat as an input 

increases the accuracy of the model slightly. As previously noted, we traced this effect to the 

fact that condenser subcooling is an input to the orifice-tube equation. When the subcooling is 

exact, mass flow rate predictions agree better with the experimental data. Because mass flow 

rate influences every variable in the system, accuracy is improved. For the remainder of the 

steady-state simulations, condenser subcooling is the input variable used instead of evaporator 

superheat or refrigerant mass. 

4.2 Refrigerant Mass Prediction 
The steady-state solution summarized above provides the refrigerant state points 

throughout the system. Now, we shall use that information to predict the refrigerant mass in 

the system. 

It is trivial to predict the refrigerant mass in a single-phase cell. As discussed in Section 

3.3, the average cell pressure is determined by a downwind scheme, and the average cell 

enthalpy is determined by an upwind scheme. 

116 



Pin = Peell 

hout = heen 

The refrigerant mass in the cells is then determined by the following equations. 

Peen = f(Peell,heen) 

fficen = Peen volcen 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

The pure vapor cells contribute a negligible amount of the refrigerant charge. Even if the 

density in a vapor cell changes by a large amount, the above algorithm gives a very small error 

in the overall mass prediction. The cells containing pure liquid contain an extremely large 

fraction of the entire refrigerant charge. The density changes in the liquid cell are small and 

thus contribute a very small error to the mass prediction. Thus, it is the two-phase region where 

mass prediction is problematic. 

In our transient model, we use Equations 4.1 - 4.4 to determine the mass in the two

phase refrigerant cells. In this section, we shall determine the error which results from this 

method compared with void fraction correlations. In the final comparison, the above method is 

named the "Upwind" algorithm because the enthalpy (which is up winded) is the variable which 

most strongly influences the mass of refrigerant in a cell. 

The void fraction is defined as 

The mass flux quality is 

A vapor 
a= 

<I> = 

AtotaI 

mvapor 

mtotaI 

(4.5) 

(4.6) 

U sing basic algebra, we determined the relationship between the void fraction and the mass 

flux quality. 
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1 
(4.7) c:x.= 

1 + (.!.:.!)(pg Vg) 
<I> Pf Vf 

In Equation 4.7, one generally knows the mass flux void fraction, and the saturation densities 

can be calculated from the pressure. The ratio of the vapor velocity to the liquid velocity is not 

known. This ratio (or more generally the void fraction as a function of mass flux quality and 

pressure) can be determined from the void fraction correlation. 

Equation 4.7 is used to find the void fraction at a cross sectional area. This equation 

must be integrated over a length to determine the average void fraction in the entire tube. 

Lout 

J c:x.(L) elL 
_ Volv _ Lin 

c:x.cv ------"~L---
Vol out 

JelL 
Lin 

(4.8) 

In order to perform the integration in Equation 4.8, we must determine the how the mass flux 

quality changes with respect to length, 1. This is dependent on the heat flux fQ(<I» 

approximation (Rice, 1987). 

Combining Equations 4.8 and 4.9, we get 

<Pout J c:x.( <1» d<l> 
fQ( <1» 

c:x. - -,'<P""'in'--__ _ 
cv - <Pout 

J fQ ~ <1» d<l> 
G>in 

118 

(4.9) 

(4.10) 



The simplest assumption of the fonn of fQ(cj» is constant heat flux. Rice (1987) detennined that 

the heat-flux assumption is less important than the void-fraction assumption when detennining 

two-phase mass. Assuming constant heat flux, Equation 4.10 becomes 

cj)out 

<Xcv = f <x(cj» dcj>. 

cj)in 

The mass can then be detennined from the following equation 

(4.11) 

(4.12) 

Integration in Equation 4.11 is perfonned using a Gaussian-Legendre fonnulation summarized 

in Porter (1992). 

Next, we shall summarize the specific void fraction correlations which were compared 

with the upwind method. 

The slip ratio is defined as 

(4.13) 

In the homogenous correlation, the slip ratio is set equal to one. The void fraction is simply 

<X= 
1 

l+ Pg (I-cj»· 
Pf cj> 

(4.14) 

During two-phase flow, the vapor refrigerant has a larger velocity than the liquid 

refrigerant. Zivi (1964) improved the homogeneous correlation by defining the slip ratio as a 

function of the vapor and liquid density. 

(4.15) 
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Premoli et al. (1971) used empirical equations to calculate void fraction as a function of 

liquid Reynolds number and the liquid Weber number. In this formulation, this slip ratio is 

defined as 

S = 1 + Fl( Y _y~J1f2 
1+yF2 

(4.16) 

where 

( )
0.22 

Fl = 1.578 ReL -0.19 ~~ , (4.17) 

(4.18) 

(4.19) 

~ = 1 
(4.20) 

I+ Pg (1-<I>J' 
Pf <I> 

Gd 
ReL =-, and 

~f 
(4.21) 

(4.22) 

The surface tension correlation needed to calculate the Weber number is from Stegou-Sagia 

(1996). 

The final void fraction correlation investigated is from Hughmark (1962). The 

empirical equation for void fraction is 
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a= (4.23) 

where 

KH =J(Z). (4.24) 

The values of KH as a function of Z are provided in Table 4.1. The variable Z is determined 

from the following equations. 

(4.25) 

(4.26) 

Fr = V2 1 (G<l> J2 
g d = gd ~Pg 

(4.27) 

YL = l-~ (4.28) 

~ is defined in Equation 4.20. Note that Reynolds number (Equation 4.26) is a function of the 

void fraction. These equations must be calculated iteratively. 

One final note must be made on how the refrigerant mass in the two-phase region was 

computed. If a cell has two-phase refrigerant at both the inlet and the outlet then Equation 4.11 

can be used directly. If one interface is two-phase and the other interface is single-phase, then 

we must predict at what point in the cell the refrigerant switches from single phase to two phase 

in order to obtain an accurate mass prediction. For example, if a cell in the evaporator has two

phase refrigerant at the inlet and superheated refrigerant at the exit, then the fraction of the cell 

which is two-phase must be determined. We again assume constant heat flux (Equation 3.9) 

which indicates that the enthalpy changes linearly with length. Then the fraction of the heat 

exchanger cell which is two-phase is calculated. 
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Z KH 

1.3 0.185 

1.5 0.225 

2.0 0.325 

3.0 0.49 

4.0 0.605 

5.0 0.675 

6.0 0.72 

8.0 0.767 

10 0.78 

15 0.808 

20 0.73 

40 0.88 

70 0.93 

130 0.98 

Table 4.1 Hughmark flow parameter KH. 

= hin - hg 

hin - hout 

The average void fraction in the two-phase region is determined from 

1 

a ev ,2 phase = f a( <1» d<l>. 
<l>in 

(4.29) 

(4.30) 

The mass in the two-phase region is determined from Equation 4.12. The mass in the single

phase region is determined from Equation 4.4, and the vapor density is assumed to be equal to 

the saturated vapor density. The refrigerant mass in the cell is then 
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mcell = f2phasem2phase + (1- f2phase )mlPhase (4.31) 

A similar algorithm is used in the condenser if the inlet is superheated and the exit is two

phase, or if the inlet is two-phase and the outlet is superheated. 

Now, we shall summarize the comparisons between the different void fraction 

correlations and the experimental data. Figure 4.21 shows the comparisons between the mass 

predictions and the refrigerant mass in Rubio-Quero's data set. Figure 4.22 shows the 

comparisons between the mass predictions and the refrigerant mass in Collins's and Hemami' s 

data sets. The two differences between these figures is the mass in the system and the volume 

of the liquid line. Modifications to the liquid line were made after Rubio-Quero obtained his 

data in the spring of 1995 which added approximately 50% more refrigerant line between the 

condenser and orifice tube. This refrigerant line in our system is extremely long because it 

contains instrumentation to measure the oil concentration in the system. During steady-state 

operation, this line is filled with subcooled liquid and contains approximately 60% of the 

refrigerant charge. 

At this point, we should also note that the volumes of the heat exchangers are known 

extremely well. The heat exchangers were filled with water and then weighed to determine the 

volumes. The volume of the refrigerant lines were calculated by physically measuring the 

length of the line and the diameter. Since the refrigerant lines contain such a large percentage 

of the charge, errors in the predi~tion of these volume correspond directly to errors in the 

prediction of the refrigerant mass. 

Table 4.2 summarizes the average errors between the different void fraction correlations 

for both refrigerant masses. The Premoli void fraction correlations predict the refrigerant 

charge the most accurately. The Hughmark correlation slightly overpredicts the refrigerant 

mass. The upwind algorithm underpredicts the mass by approximately 4% for the case with the 

larger mass. This error is taken to be reasonable and the upwind correlation is a valid 

approximation for our model. 
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Void fraction Experimental Average predicted Error (%) 

correlation mass (kg) mass (kg) 

Hughmark 1.02 1.05 2.9 

1.34 1.44 7.5 

Premoli 1.02 0.989 -3.0 

1.34 1.37 2.2 

Zivi 1.02 0.956 -6.3 

1.34 1.32 -1.5 

Ul'wind 1.02 0.935 -8.3 

1.34 1.29 -3.7 

Homogeneous 1.02 0.863 -15.4 

1.34 1.21 -9.7 

Table 4.2 Errors associated with the average predicted mass using different 

void fraction correlations. 
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Figure 4.21 Refrigerant mass prediction using different void fraction correlations 

for Rubio-Quero's data. 
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Chapter 5 

Transient Model Validation 

In Chapter 3, we presented the equations and solution technique for the transient model. 

In this chapter we shall validate the transient model with experimental data. All of the data for 

the transient tests were obtained from a Ford Crown Victoria air-conditioning system installed 

in the test facility described in Section 3.2. The transient data were obtained in the spring and 

summer of 1997 using an orange orifice tube and 1.34 kg of refrigerant charge. I personally 

took all of the transient data except for the clutch cycling data which were obtained by Johnston 

(1997). 

The presentation is divided in four sections as summarized below: 

1) Section 5.1 - Transient city driving cycle, 

2) Section 5.2 - Final compressor shutdown, 

3) Section 5.3 - Initial compressor startup, and 

4) Section 5.4 - Clutch cycling. 

5.1 City Driving Cycle 

The city driving cycle simulates an automobile driving at 30 mph for 30 s, decelerating 

to 0 mph over 12 s, waiting at a stop light over 20 s, and accelerating to 30 mph over 10 s. The 

inputs for the driving cycle are summarized in Figure 7.1. We are simulating an outside air 

temperature of 309 K (96.5 OF). The evaporator is being operated without recirculation; all of 

the air flowing over the coil is fresh outside air at 309 K. This condition results in a high load 

condition so the clutch does not cycle. This specific simulation is convenient for testing the 

transient model without compressor cycling. The thermal capacitance of the heat exchangers 

was neglected in this analysis. 

Figure 5.1 show how the compressor speed and condenser air flow rate change with 

time. The acceleration and deceleration of the compressor speed and condenser air flow rate 

are modeled as a linear change between their corresponding values at 0 mph and 30 mph. This 

simplification does not take into account the transmission changing gears or a nonlinear 

combination between the ram air effect and condenser fan effect. 

Figure 5.2 shows good agreement between the experimental mass flow rates and the 

modeled mass flow rate. The mass flow rate is measured with a Micro Motion flowmeter 
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Input variable units o mph 30 mph 

Compressor speed RPM 1085 1685 

mcond,air kgls 0.84 0.92 

cfm 1480 1620 

mevap,air kgls 0.11 0.11 

cfm 194 194 

Tcond,air K 309 309 

Tevao,air K 309 309 

Tambient K 302 302 

Table 5.1 Driving-cycle conditions. 
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Figure 5.1 Driving-cycle transient inputs. 
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Figure 5.2 Driving-cycle mass flow rates. 

between the condenser and the orifice tube. The mass flow rate follows the same trend as the 

compressor speed. Figure 5.3 shows a comparison between predicted and measured pressures. 

The condenser pressure is predicted extremely well; the evaporator pressure is slightly 

overpredicted. 

Figure 5.4 shows a comparison of predicted and measured evaporator capacities. The 

predicted capacity follows the transient behavior well, but underpredicts it by about 7%. This 

is within the error of the model; however, it should be noted that under these operating 

conditions the outlet of the evaporator is two-phase. As a result, the measured air heat capacity 

is used to determine the outlet refrigerant enthalpy. This additional calculation adds more 

uncertainty to the experimental capacity measurements. 

Figure 5.5 shows the calculated mass distribution in the air-conditioning system as a 

function of time. The majority of the mass is in the liquid line between the condenser and the 

orifice tube. Since this refrigerant is subcooled, the liquid-line mass remains constant with 

respect to time. Only very small oscillations exist in the evaporator mass (between 2.75% and 

3.25% of the total charge). The majority of the mass is redistributed between the accumulator 

and the condenser. Decreasing the air flow across the condenser decreases the heat transfer 

coefficient and thus the amount of subcooled refrigerant in the condenser. This excess charge 

then collects in the accumulator. 
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Figure 5.4 Driving-cycle evaporator capacity. 
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Figure 5.5 Driving-cycle mass distribution. 

5.2 Compressor Shutdown 

300 

During compressor shutdown, the compressor clutch is disengaged, and the condenser 

and evaporator fans are turned off. After the clutch is disengaged, eventually the system comes 

to new steady state value where all of the pressures are equal and all of the mass flow rates are 

zero. The refrigerant temperature comes to equilibrium with the ambient temperature. 

We have modeled two different cases. The first is a typical case when the evaporator 

inlet air is colder than the condenser inlet air. This occurs when the air blowing over the 

evaporator is recirculating from the cabin. In the second case the condenser air is colder than 

the evaporator air. This situation does not frequently occur during a system shutdown; 

however, it is interesting to note the differences between the two opposite cases. 

Unlike the previous analysis, the thermal capacitance of the refrigerant walls is included 

here. The compressor speed ramps from the steady-state value to zero over 3 s. The evaporator 

and the condenser air mass flow rates ramp from their steady-state values to zero over 3 sand 

12 s, respectively. When the mass flow rate over the heat exchanger is zero, so is the air heat 

transfer coefficient. 

Table 5.2 summarizes the initial conditions for the Case 1. Figure 5.6 shows a 

comparison between the experimental and modeled outlet condenser pressure and outlet 

evaporator pressure. All of the pressures on the high side and the low side show the same basic 
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trend; for simplicity we only show one pressure on each side. The predicted evaporator 

pressure shows extremely good agreement with the experimental evaporator pressure. The 

modeled condenser pressure follows the predicted condenser pressure exactly for the first 6 s. 

At that point, the model predicts that the refrigerant entering the orifice tube changes from 

subcooled liquid to two-phase. In the experiment, the refrigerant became two-phase at 

approximately 10 s. We can determine when the refrigerant becomes two-phase by studying 

the mass flow rate data in Figure 5.7. The mass flow meter reads unreasonable values when the 

refrigerant is not single-phase. This effect can be seen between 10 sand 45 s in the 

experimental mass flow rate measurements. When liquid refrigerant flows through the orifice 

tube, the slope of the condenser pressure is much steeper than when the two-phase refrigerant 

flows through the orifice. Since we predict the refrigerant becoming two-phase slightly early, 

we overpredict the condenser pressure after 6 s. The model predicts that the orifice tube 

becomes unchoked at 53 s. The modeled pressures and the experimental pressures equalize at 

approximately the same time. 

Input variable units Initial 

condition 

compressor speed RPM 2548 

mcond,air kg/s 0.41 

cfm 726 

mevap,air kg/s 0.17 

cfm 296 

Tmncfllir K 316 

Tevlln_llir K 309 

T ,l, • K 296 

Tsllh_conn K 9.3 

Table 5.2 Compressor shutdown initial conditions for Case 1 (the condenser is 

warmer than the evaporator). 
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Figure 5.8 shows the predicted mass distribution of the system. Initially the majority of 

the mass is in the liquid line. After the compressor shuts off, refrigerant begins flowing out of 

the condenser and liquid line into the evaporator. The evaporator cannot hold the complete 

system charge, so the excess flows out of the evaporator and into the accumulator. Eventually, 

the majority of the charge is in the accumulator. 

Figure 5.9 provides some insight into the liquid distribution in the system. In this plot, 

we define a pseudo-quality defined by 

v-vf x = _----l'- • (5.1) 
vg-vf 

Using this definition, the pseudo-quality can be less than zero indicating a subcooled liquid 

state or greater than one indicating superheated vapor. The condenser eventually becomes pure 

vapor. The liquid line still contains liquid refrigerant after the pressures equalize. The 

evaporator and the accumulator are mostly filled with liquid. 

Table 5.3 summarizes the initial conditions for Case 2 in which the evaporator is 

warmer than the condenser. Comparing Figure 5.10 to Figure 5.6, we can see that the pressures 

!alee a longer time to equalize when the evaporator is warmer than the condenser. Both figures 

show similar trends when the refrigerant becomes two-phase. The model predicts that the 

refrigerant at the orifice tube inlet becomes two-phase slightly sooner than the data show .. This 

effect results in an overprediction of the condenser pressure for much of the shutdown. Again, 

the predicted evaporator pressure agrees extremely well with the experimental data. Figure 

5.11 shows a comparison between the predicted and measured mass flow rates. Again, we can 

see the different times at which the orifice tube inlet becomes two-phase. 

The mass distribution (Figure 5.12) and the component quality (Figure 5.13) show the 

same trends for Case 2 as for Case 1. The refrigerant migrates from the high side to the low 

side and the majority of the refrigerant is in the accumulator when steady-state is reached. 
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Input variable units Initial 

condition 

compressor speed RPM 1480 

mcond,air kg/s 0.74 
cfm 1305 

mevap,air kg/s 0.17 
cfm 296 

Tcond~air K 299 

Tevao,air K 316 

Tambient K 299 

Tsub,cond K 9.7 

Table 5.3 Compressor-shutdown initial conditions for Case 2 (the evaporator is 

warmer than the condenser). 
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(the evaporator is warmer than the condenser). 
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5.3 Compressor Start-up 
In this section we compare the model with compressor start-up experimental data. 

These data were obtained after the system was allowed to sit for at least two hours before the 

compressor clutch is engaged. When the clutch is engaged, all of the refrigerant pressures are 

equal, the mass flow rates are zero, and the refrigerant temperatures are in equilibrium with the 

surrounding air temperatures. 

We have modeled two different cases. In the ftrst case the evaporator air is warmer than 

the condenser air and the ambient air. This case simulates a vehicle parked in the sun causing 

the air in the cabin (surrounding the evaporator) to be warmer than the air in the engine 

compartment (surrounding the remainder of the system). In the second case the evaporator, 

condenser, and ambient air temperatures are all equal. This case simulates a vehicle parked in 

the shade. 

For these tests, the compressor is assumed to ramp to the steady-state compressor speed 

over a 6 s period. All of the other parameters remain constant during the simulation. The 

thermal capacitance of the heat exchangers was neglected in the modeling. 
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Input variable units Steady-state 

condition 

compressor speed RPM 1720 

mcond,air kg/s 0.95 

cfm 1675 

mevap,air kg/s 0.12 

cfm 209 

Tcond,air K 303 

Tevap,air K 319 

Tambient K 303 

Tsub,cond K 9.0 

Table 5.4 Compressor-startup initial conditions for Case 1 (the evaporator is 

warmer than the condenser). 

Table 5.4 lists the steady-state conditions for Case 1. The refrigerant mass is calculated 

from the steady-state model using the steady-state conditions. It was found to be 1.37 kg. The 

refrigerant pressure is set equal to the saturation pressure at the lowest temperature in the 

system. In this case the lowest temperature is the ambient air temperature which is the same as 

the condenser air temperature. As a result, only saturated refrigerant exists in the condenser, 

accumulator, and refrigerant lines. Since the evaporator is warmer than the condenser, the 

evaporator is filled with superheated vapor. We define the initial mass distribution as follows: 

1) Saturated vapor is in the first 5 (out of a total of 7) cells of the condenser. 

2) Saturated liquid is in the last 2 cells of the condenser and the liquid line. 

3) Superheated vapor is in the evaporator. 

4) The remainder of the mass is placed in the accumulator. 

The initial mass distribution can be seen on Figure 5.17 by observing the respective mass 

values at time = 0 s. 

Figure 5.14 shows the comparison between the predicted and experimental condenser 

and evaporator outlet pressures. Both predicted pressures agree extremely well with the 

measured values. The pressures reach the new steady-state values in approximately 8 s. Figure 

5.15 shows a comparison between the predicted and experimental mass flow rates. In our 

simulation, liquid refrigerant in always flowing at the inlet of the orifice tube. The flow at the 

exit of the orifice becomes choked at 3.75 s. 
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Figure 5.16 shows a comparison between the predicted and experimental evaporator 

capacities. The predicted capacity increases more quickly than does the experimental capacity. 

In Figure 5.17, we illustrate how the refrigerant mass distribution in the system changes over 

time. The refrigerant in the liquid line is always liquid, and thus the mass there remains 

relatively constant. The refrigerant mass in the condenser and evaporator increases with time, 

while the refrigerant mass in the accumulator decreases with time. 

Figure 5.18 shows the pseudo-quality (as defined by Equation 5.1) in each component. 

Immediately after start-up, some of the liquid exits from the condenser, and the quality 

increases slightly. As the pressure rises in the condenser, the saturation temperature also 

increases, the refrigerant begins to condense, and the quality decreases. The quality in the 

evaporator immediately initially decreases rapidly as first liquid and then two-phase refrigerant 

begins flowing into it. Some of the low quality refrigerant empties into the accumulator and the 

evaporator reaches a steady-state condition. The liquid in the accumulator evaporates and 

eventually reaches a steady-state condition. 
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Figure 5.14 Compressor-startup pressures for Case 1 (the evaporator is warmer 

than the condenser). 
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Figure 5.16 Compressor-startup capacity for Case 1 (the evaporator is warmer 
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Table 5.5 lists the steady-state conditions for Case 2. In this case the air evaporator, 

condenser, and ambient temperatures are equal to each other and constant throughout the entire 

simulation. Only the compressor speed changes with time; it ramps from zero to the steady

state speed over a 6 s period. 

Input variable Units Steady-state 

condition 

compressor speed RPM 1720 

mcond,air kg/s 0.95 

cfm 1675 

mevap,air kg/s 0.12 

cfm 209 

Tcond,air K 302 

Tevap,air K 302 

Tambient K 302 

Tsub,cond K 5.3 

Table 5.5 Compressor-startup initial conditions for Case 2 (all air temperatures 

are equal). 

Figure 5.19 presents the condenser and evaporator pressure histories for this case. 

Because the system is initially in equilibrium at 302 K, the refrigerant is saturated everywhere 

in the system at this temperature. To obtain the initial conditions in our model, we must 

assume the initial distribution of liquid and vapor throughout the system. 

If the liquid line is initially fleoded, the model predicts a condenser pressure history 

similar to Figure 5.14. Comparing the experimental results shown in Figure 5.19 with the 

model predictions in Figure 5.14, we note two distinct differences. The first difference is that 

Case 1 shows an asymptotic approach to steady state pressure where Case 2 shows a distinct 

overshoot. The seconds difference involves the time to reach the equilibrium pressure. Case 1 

reaches equilibrium after only 5 s whereas Case 2 does not reach eqUilibrium for more than 20 

s. Because of the compressor overshoot, we are forced to conclude that the condenser and 

liquid line contain very little liquid. Based on these comparisons, we conclude that the 

assumption of the flooded liquid line does not produce the observed behavior for this case. If 

on the other hand we assume the liquid line is initially filled with vapor or two-phase 

refrigerant, then the time required to reach equilibrium pressure is much larger than indicated 
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by Figure 5.19. We conclude that no initial mass distribution can produce the observed 

behavior of the experimental system. 

To understand why this problem occurs, we must consider the sequence of events 

following start-up. If liquid refrigerant is initially placed in the evaporator, it will move almost 

immediately to the accumulator after start-up. Therefore, there is practically no difference 

between placing the mass in the evaporator or the accumulator. Once the mass is in the 

accumulator, it can only leave by boiling off as vapor because liquid is preventing from flowing 

out of the accumulator. The compressor rapidly pulls the accumulator to a low pressure which 

leads to intense boiling in the accumulator. The temperature of the liquid refrigerant drops 

rapidly and boiling eventually becomes limited by ambient heat transfer which is quite low. 

Thus there is a long time constant associated with removing the liquid from the accumulator. 

This problem only affects model predictions at start-up when the liquid line is not 

flooded. We believe that the physics of the accumulator are correctly modeled and that some 

other phenomenon causes the refrigerant to leave the accumulator. Figure 5.20 shows a 

comparison between the predicted and experimental mass flow rates exiting the compressor. 

The experimental mass flow rate is measured with a venturi flow meter. It appears that during 

the first 8 s the model greatly underpredicts the mass flow rate through the compressor. This 

effect can be caused by slugs of liquid traveling through the compressor and transferring a large 

amount of mass out of the accumulator. Our model does not account for liquid entering the 

compressor. 

To model this case, we use the following initial distribution of liquid and vapor. 

1) The condenser and liquid line contain saturated vapor. 

2) The first 4 (out of a total 6) evaporator cells contains refrigerant at a quality of 0.3, 

3) The last two cells of the evaporator contain saturated vapor. 

4) The accumulator contains the rest of the mass. 

The initial mass distribution can be seen in Figure 5.22 at time = 0 s. 

To treat this very large initial mass flow rate seen in the experimental data, we 

artificially transfer mass from the accumulator to the liquid line. 

Figure 5.19 shows a comparison between the predicted and experimental pressures. 

The condenser pressure is slightly underpredicted. The predicted evaporator pressure reaches 

the steady-state value slightly faster than the measured evaporator pressure. Figure 5.21 shows 

a comparison between the predicted and measured mass flow rates at the orifice tube. In the 

model, the mass flow rate through the orifice tube becomes choked at 2.25 s. The model 

predicts that the refrigerant in the liquid line becomes flooded at 13 s. We determine that the 

refrigerant in the experimental facility becomes flooded at approximately the same time from 

the mass flow meter (Figure 5.21) and the temperature at the orifice inlet (Figure 5.22). Two 
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interesting phenomenon an be seen in this model. First, for approximately 6 s before the liquid 

line becomes flooded the mass flow rate remains constant. After the liquid line floods it 

gradually increases to the steady-state rate. The experimental data show that the two-phase 

goes through the orifice tube at approximately the same time. However, the experimental mass 

flow rate is much greater than the modeled mass flow rate this point. This discrepancy is most 

likely caused by the slight overprediction of the condenser outlet pressure at this point. 

Figure 5.23 shows a comparison between the predicted and measured evaporator 

capacity. The capacities agree extremely well. Figure 5.24 shows the distribution of the mass 

in the air conditioning system. Note that since we have reduced the length of the liquid line, it 

holds a much smaller proportion of the mass than the in the previous simulations. The mass in 

the liquid line increases until it becomes flooded at 13 seconds. The mass in the accumulator 

empties and fills the condenser. The mass in the evaporator decreases slightly. Figure 5.25 

shows the pseudo-quality (Equation 5.1) for each component. 
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Figure 5.19 Compressor-startup pressures for Case 2 (all air temperatures are equal). 
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Figure 5.20 Compressor-startup compressor mass flow rate for Case 2 (all air 

temperatures are equal). 
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Figure 5.21 Compressor-startup mass flow rate for Case 2 (all air temperatures 

are equal). 

146 



10 

5 

S2' -Cl 
.5 
0 0 
0 

.8 
:J 

C/) 

-5 

+ 

-10 L-______ ~ ______ ~ ________ L_ ______ ~ ______ ~ 

o 20 40 60 80 100 

time (s) 

Figure 5.22 Compressor-startup orifice inlet subcooling for Case 2 (all air 

temperatures are equal). 

4000 r-------~------~------_r-------.------_. 

-~ ->-- 2000 .g 
Co 
ro 
() 

1++ ~ -+ ++ 
++1 ++ + 1++· ++++r+++-++++++ 1. + 

~o ed'I"""li']""'''''' 
. : : : : 

:. +! ! Model a: 1 ! 
: + l : + Experiment 

1000 • 1 • . . 
:····~···············l························f························f·········· __ ············f··········· ........ ---

o i.: Ii' I 
o 20 40 60 80 100 

time (s) 

Figure 5.23 Compressor-startup capacity for Case 2 (all air temperatures are 

equal). 
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Figure 5.24 Compressor-startup mass distribution for Case 2 (all air temperatures 

are equal). 
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5.4 Clutch cycling 
On-off control (or clutch cycling) uses a pressure sensor at the exit of the evaporator to 

engage and disengage the clutch. This control strategy prevents the evaporator from frosting by 

always keeping the saturation temperature above the freezing point of water. The clutch 

disengages when the pressure falls below the low-pressure set point of 25 psig (approximately 

270 kPa absolute) and engages when the pressure reaches a high-pressure set point of 43 psig 

(approximately 400 kPa absolute). 

In the following simulation, we model the vehicle as driving at a steady speed (Table 

5.6). The outside air temperature flowing over the condenser is at 317 K (110 OF). The air 

flowing over the evaporator is recirculated air from the cabin that was cooled to 295 K (72 OF). 

In this simulation we must use the same correction of artificially transferring liquid out of the 

accumulator as summarized in Section 5.3. 

Figure 5.26 shows a comparison between the predicted and measured pressures for one 

clutch cycle. The clutch is disengaged at 0 s and re-engaged at 9 s. The trends of the predicted 

and measured evaporator outlet pressures agree extremely well. The trends of the predicted and 

measured outlet pressures agree well except that it appears that the predicted pressure leads the 

measured value slightly after the clutch is engaged. 

Input variable units Steady-state 

condition 

compressor speed RPM 1713 

mcond,air kg/s 0.90 

cfm 1585 

mevap,air kg/s 0.14 

cfm 243 

Tcond,air K 317 

Tevap,air K 295 

Tambient K 298 

Tsub,cond K 2.0 

Table 5.6 Clutch cycling conditions. 
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Figure 5.26 Clutch cycling pressures. 

Figure 5.27 shows a comparison between the predicted and measured mass flow rates. 

The mass flow meter reads unreasonable values when the refrigerant is not single-phase, and 

we use this fact to determine when the liquid line is two-phase. The predicted and observed 

periods when the flow in the liquid-line is two-phase is labeled in the figure. The model 

predicts that the refrigerant at the orifice tube inlet becomes two-phase at 3.75 s and then is 

flooded again at 17.5 s. The experimental data show that the liquid line becomes two-phase 

approximately at the same time as the model, but does not become flooded again until 5 s after 

the time predicted by the model. We consider this discrepancy to be insignificant and may be 

an artifact of the mass flow meter itself. 

A more disturbing fact is that the mass flow rate through the orifice tube is 

systematically underpredicted by approximately 20%. Since the condenser and evaporator 

pressures are predicted accurately, this error can be traced to either the orifice tube model or 

incorrect subcooling at the orifice inlet. 

Figure 5.28 shows a comparison between the predicted and measured evaporator 

capacity. Since the refrigerant at the evaporator exit is two-phase for most of the simulation, 

the experimental capacity was determined from airside measurements. The model slightly 

underpredicts evaporator capacity; however, this underprediction is within experimental error. 

The predicted evaporator capacity shows the same trends as the measured evaporator capacity, 

but the predicted capacity reaches its minimum sooner than does the experimental capacity. 
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Figure 5.27 Clutch cycling mass flow rate. 
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Figure 5.28 Clutch cycling evaporator capacity. 
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Figure 5.29 shows the refrigerant mass distribution in the system. After the clutch 

disengages at 0 s, mass in the condenser and liquid line empties into the evaporator and 

accumulator. The mass in the evaporator increases until the clutch engages again at 9 s. After 

this point, the evaporator empties its excess mass into the accumulator. The mass in the 

accumulator increases until approximately 13 s. After that, the excess mass in the accumulator 

is redistributed to the condenser and liquid line. 

Figure 5.30 shows the pseudo-quality in each of the components. The quality in the 

condenser and liquid line remains relatively constant. The quality in the evaporator decreases 

sharply after the clutch disengages. After the clutch re-engages the evaporator essentially 

empties of liquid and then refills to return to approximately the same steady-state value. 
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Figure 5.29 Clutch cycling mass distribution. 
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Chapter 6 

Refrigerant Property Routines Background 

An important aspect of modeling any refrigeration or air-conditioning system is 

accurately determining the thermodynamic state and the refrigerant properties. Specifically in 

vapor-compression systems, it is important to accurately model the vapor, liquid, and two

phase vapor-liquid regions. Additionally, the supercritical region is important for transcritical 

vapor-compression cycles. 

The computer codes which solve for thermodynamic properties are called refrigerant 

property routines. Good property routines must 

1) Accurately solve for the refrigerant properties, 

2) Quickly solve for the refrigerant properties, 

3) Provide versatility with respect to the input properties, 

4) Have a convenient user interface, and 

5) Provide results for different refrigerants. 

Poorly formulated property routines can cause problems in a computer model by providing 

inaccurate refrigerant properties and thus providing poor agreement with the experimental data. 

Also, numerical discontinuities in the property routines can cause problems with convergence 

of a simulation code. 

This chapter reviews the basic thermodynamic concepts regarding thermodynamic 

properties and different equations of state. We also discuss how to compute properties from the 

equations of state, and we review currently available refrigerant property routines. The next 

chapter details the refrigerant property routine code written for the transient air conditioner 

model. 

6.1 Equilibrium Thermodynamic Properties 
A thermodynamic property is defined as any quantity that is dependent on the state of 

the system and is independent of the prior history of the system. Intensive or mass specific 

properties are given on a per unit mass basis. Unless otherwise specified, mass specific 

properties are indicated by the use of lower case letters. The thermodynamic properties 

discussed in this chapter are temperature (T), pressure (P), density (p), specific volume (v), 

enthalpy (h), internal energy (u), entropy (s), Gibbs free energy (g), specific heat at constant 
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volume (cv), and specific heat at constant pressure (cp)' For simplicity, we will restrict this 

discussion of thermodynamic properties to a single component. 
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Figure 6.1 T -v phase diagram for water. 

The state of a material is completely described by a three-dimensional T-v-P surface, 

but it is more common to see a two-dimensional projection of this surface. Figure 6.1 displays 

a T-v phase diagram for water. It illustrates the temperature and specific volume ranges for the 

solid, liquid, vapor, and two-phase regions. The two-phase liquid-solid region reduces to a line 

between the single phases in this two-dimensional projection. The triple-point is the only 

temperature at which the three phase can coexist in equilibrium. The critical point is at the 

maximum temperature, Terit, of the liquid-vapor region. A critical pressure, Perit' and critical 

density, Perit. are also defined at this point. The liquid-vapor dome is the two-phase liquid

vapor region. The minimum temperature of this dome is the triple point and the maximum 

temperature is the critical point. Above the critical point is the supercritical region. In this 

region as the liquid transforms to vapor, no separable phases exist between the liquid and 

vapor. Vapor-compression refrigeration cycles operate in the liquid, vapor, and two-phase 

region. Additionally, transcritical vapor-compression cycles operate in the supercritical region. 

Refrigerant property routines traditionally solve for properties between the triple point 

temperature and a maximum temperature which is above the critical point. 
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According to Gibbs phase rule, two independent thermodynamic properties are required 

to specify the equilibrium state of a single-phase, single-component substance. One property is 

needed to specify the state of a two-phase, single-component substance. Figure 6.2 shows the 

liquid-vapor dome for R134a with equilibrium isobars in the two-phase region. 
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Figure 6.2 Liquid-vapor dome for R134a. 

It is evident that both temperature and pressure are needed to determine the density in the 

liquid, vapor, and supercritical regions. Within the two-phase region, the temperature exactly 

defines the pressure and vice versa. The two-phase temperature and pressure are called the 

saturation pressure and the saturation temperature, respectively. In equilibrium, the liquid and 

vapor are at the same temperature (thermal equilibrium) and pressure (dynamic equilibrium). 

Tliquid = Tvapor (6.1) 

~iquid = P vapor (6.2) 

Although either the temperature or pressure are required to specify the state in a two

phase region, this single intensive property does not provide information on the relative 

amounts of the two phases. An additional property is required to provide this information. The 

quality of a two-phase mixture is defined as 
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x = mvapor 
mliquid + mvapor 

(6.3) 

Within the two-phase region, the liquid is at the saturated liquid state (defined by subscript f) 

and the vapor is at the saturated vapor state (defined by subscript g). The saturation liquid and 

vapor properties are defined along the saturation lines which separate the single and two-phase 

regions (Figure 6.2). Consequently, the two-phase specific volume, enthalpy, internal energy, 

and entropy are determined from the following equations. 

v = Vf + x(Vg - Vf) (6.4) 

h = hf + x(hg - hf ) (6.5) 

u = uf + x(ug - uf) (6.6) 

s = sf + x(Sg - Sf) (6.7) 

The two-phase density is 

(6.8) 

In conclusion, in order to determine the properties of a single-phase substance, two 

intensive properties are required. For a two-phase substance, either temperature and pressure 

are required to determine the state. An additional property is required to provide the respective 

amounts of liquid and vapor. 

6.2 Equations of State 
An equation of state is an analytical representation of the thermodynamic behavior of a 

substance. It is a mathematical relationship between two independent and one dependent 

property such as P-p-T (pressure, density, and temperature) and has the form 
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P =f(T, p) . (6.9) 

When this equation is combined with an equation for the ideal gas specific heat, cv·, one can 

explicitly solve for the thermodynamic properties as a function of temperature and density 

(Section 7.2.1). 

cv· =f(T) (6.10) 

The next section summarizes different types of P-p-T equations of states. The cv• equation is 

usually in the form of a polynomial. 

Another method of calculating properties is to interpolate from a thermodynamic table. 

The data in property tables are originally obtained from an equation of state because it is 

difficult to obtain an adequate amount of experimental data. Also, it is impossible to measure 

thermodynamic properties such as enthalpy or entropy. Using a computer program to 

interpolate from a table is a time efficient method but the precision depends on the density of 

data points in the table. The advantage of using an equation of state is that the calculated 

properties are as accurate as the curve fit of the P-p-T data. 

6.2.1 Types of Equations of State 

The three types of equations of state are general, theoretical, and empirical. General 

equations of state are used to represent property behavior over a limited region of state. 

Theoretical equations of state are derived from kinetic theory or statistical thermodynamics. 

Empirical equations of state are curve fits of experimental P-v-T data. 

The ideal gas law is an example of a general equation of state. 

Pv=RT (6.11) 

This equation of state only applies in the superheated and supercritical regions away from the 

critical point. The van der Walls and Redlich-Kwong equation of state attempt to modify the 

ideal gas equation in order to provide accurate values over a broader range of conditions. 

P(T, v) RT a 
= 

v- b - v 2 
(van der Walls) (6.12) 
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peT, v) = RT 
(Redlich -Kwong) (6.13) 

The coefficients for van der Walls equations (a and b) and Redlich-Kwong equation (ark and 

brk) can be determined analytically from the temperature and pressure at the critical point. 

Both equations of state increase the accuracy of the ideal gas law but none of these generalized 

equations are valid in the liquid, solid, or multiphase regions. 

Statistical mechanics is used to predict the form of a theoretical equation of state. An 

example of a theoretical equation of state is the virial equation. 

P(T,v)=RT + RT~(T)+ RT~(T)+ 
v v v 

(6.14) 

The functions Band C are called the second and third virial coefficient. These coefficients can 

be related to parameters characterizing the intermolecular potential function. The equation is 

often truncated after the second coefficient and is then only valid in the vapor region for small 

deviations from ideal-gas behavior. 

Another theoretical equation of state is based on a theoretical reference fluid. For 

example, the Carnahan-Starling-D-eSantis (CSD) equation of state models the hard-sphere fluid 

(DeSantis, 1975). This fluid exhibits an infinite repulsion force for a bimolecular collisism at 

some distance of closest approach. 

where 

y = 

159 

b 
4v' 

a 

RT(v + b) 
(6.15) 

(6.16) 

(6.17) 

(6.18) 



The above equation does not model a real fluid exactly, but it correctly represents the fluid in 

the vapor region and for saturated liquid properties. The coefficients (ao, bO' b I , and ~) for 

real fluids are empirically determined. 

Empirical equations of state can be extremely accurate if a sufficient amount of 

experimental data is obtained. The minimum experimental data needed to define an equation of 

state consist of P-v-T data along lines of constant volume in the vapor phase, saturated liquid 

density and vapor pressure over a range of temperatures, and the critical point (McLinden et aI., 

1989). An example of an empirical equation of state is given by Martin and Hou (1955). One 

form of the equation is listed below; however, several modifications exist. 

RT 5 1 [ ( -kT )] P(T,v) = -- + L j Ai +BiT+Cjexp --
(v-b) . (v-b) Terit 

1=2 

(6.19) 

This equation is not accurate in the subcooled region. 

None of the above equations of state predict refrigerant properties in the subcooled 

liquid region. As result, an additional model must be employed to compute the properties in 

this region. Another empirical equation, the Modified Benedict-Webb-Rubin (MBWR) 

equation of state (Jacobsen and Stewart, 1973), accurately predicts the refrigerant properties in 

the superheated vapor, subcooled liquid, and supercritical regions. It is widely used for the 

representation of hydrocarbons and cryogenic fluid. The MBWR equation has 32 adjustable 

parameters which provide an accurate representation of the experimental data and requires an 

involved fitting procedure. The form of the MBWR equation is 

9 ( 2) 15 
P(T,p) = Lan(T) pn + exp -~ 2 Lan(T) p2n-17 

n=1 Pent n=1O 
(6.20) 

The form of functions al-al5 are given in Table 7.2. 

The above equations of state calculate pressure as a function of temperature and density. 

An additional equation for the ideal gas specific heat (Equation 6.10) is needed to obtain a 

complete description of the thermodynamic properties. The fundamental equation of state 

provides a complete description of thermodynamic properties in a single equation (Lemmon et 

aI., 1995). The Helmholtz energy is used as the dependent variable instead of pressure. The 

Helmholtz energy is defined as 
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a = u - Ts (6.21) 

The fundamental equation of state has the general form 

a 
aO(8,t) + a(8,t) (6.22) = 

RT 

where 

8 = _P- (6.23) 
Perit 

and 

T 
(6.24) t= 

Terit 

aO is the ideal gas contribution and a is the real fluid contribution. The specific form of these 

equations is summarized in Lemmon et al. (1995). An advantage of the fundamental equation 

of state is that the properties of mixtures can be computed by applying mixing rules to the 

Helmholtz energy (McLinden et af, 1998). 

The final equation of state we will discuss is the extended corresponding states (ECS) 

model (Huber and Ely, 1994). This model is useful for fluids with limited amounts of 

experimental data. A reference fluid is chosen which is chemically similar to the fluid of 

interest and has a well defined equation of state. This model assumes that similar fluids obey 

the same intermolecular force laws. As a result, the real fluid contribution to the Helmholtz 

energies, a, of different fluids are equal with the appropriate scaling of the temperature and 

density. The temperature and density are scaled by the critical parameters and by empirically 

determined coefficients. 

6.2.2 Solving for Thermodynamic Properties 

The above formulation of the equation of state (Equations 6.9 and 6.10) allow all of the 

properties to be explicitly calculated from temperature and density (Section 7.2.1). To be 

practical in a modeling application, a refrigerant property routine program should allow the 

user to input any two of the following properties: temperature, density, pressure, enthalpy, 

internal energy, entropy, and quality. Either a one-dimensional or two-dimensional search is 
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performed to calculate the correct temperature and density from which the output property is 

calculated. The refrigerant property routine program must be robust and accurately converge 

on the correct properties. 

0-D Searches I-D Searches 2-D Searches 

T,p T,P p,P P, h h,u 

T, h p,h P, u h, s 

T, u p,u P, s u, s 

T, s p,s 

Table 6.1 Dimension of searches for combinations of single-phase input 

properties. 

Table 6.1 summarizes the dimensions of the search required for each combination of 

single-phase input properties. If temperature and either pressure, enthalpy, internal energy, 

entropy, or quality are inputs, then a one-dimensional search is used to calculate the correct 

density. Similarly, a one-dimensional search calculates the correct temperature if density and 

one other property are inputs. If neither temperature nor density are inputs, then a two

dimensional search determines the correct temperature and density. 

O-D Searches 1-D Searches 

T,x P, x p,h x,p 

T,p P,p p,u x,h 

T,h P,h p,s x,u 

T, u P,u h-u x,s 

T, s P, s h-s 

u-s 

Table 6.2 Dimension of searches for combinations of two-phase input 

properties. 

In the two-phase region, a different algorithm is used to determine the thermodynamic 

properties. The properties are uniquely determined by the temperature and quality. If 

temperature and density, enthalpy, internal energy, or entropy are inputs then the quality can be 

determined from Equations 6.4 - 6.8. If pressure instead of temperature is an input, then the 
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saturation temperature and the quality can be determined. If neither of the inputs are 

temperature and pressure, then a one-dimensional search is performed for the saturation 

temperature. The quality calculated for the two properties from the temperature must be equal. 

Table 6.2 summarizes the dimensions of the searches for each combination of two-phase input 

properties. 

The property routines must be able to determine whether the state is single-phase or 

two-phase to determine the correct result. The specific algorithms used in our refrigerant 

property routines are detailed in the next chapter (Section 7.3). The following section 

summarizes some of the refrigerant property routines which are currently available. 

6.3 Review of Refrigerant Property Routines 
Some of the programs developed to solve for refrigerant properties are REFPROP, 

ALLPROPS, and EES. Table 6.3 shows an overall comparison between the routines. Table 

6.4 shows the combinations of input properties for which each routine solves. 

ALLPROPS REFPROP EES 

Developer University of NIST F-Chart 

Idaho Software 

Equation of State Fundamental MBWR, Martin-Hou 

Fundamental, 

ECS 

Number of refrigerants 43 43 43 

Allows refrigerant mixtures no yes no 

Programming language FORTRAN FORTRAN Independent 

PC program 

Table 6.3 Comparison of refrigerant property routines. 

REFPROP is a FORTRAN program developed by the National Institute of Standards 

and Technology (NIST) (McLinden et al., 1998). The main advantage of this program is that it 

determines properties for arbitrary mixtures of up to five refrigerants. The disadvantages are 

that it does not allow for many different combinations of input properties. Also, the 

FORTRAN interface is somewhat cumbersome for use in models. 
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ALLPROPS is a FORTRAN program developed by Center for Applied 

Thermodynamic Studies at the University of Idaho (Lemmon, et aI., 1995). It allows for more 

combinations of input properties and has a better user interface than REFPROP. However it 

still does not allow for all of the combinations of input properties. 

The Engineering Equation Solver (EES) runs on a personal computer and uses a 

Newton-Raphson iteration scheme to solve a set of algebraic equations. Incorporated into EES 

are the thermophysical properties of 43 fluids. EES allows one to calculate any thermodynamic 

properties from all combinations properties except for internal energy and enthalpy. It uses the 

Martin-Hou equation of state which is not valid in the liquid region. In the liquid region, the 

pressure is set equal to the saturation pressure and is independent of density. It is generally a 

robust program except when internal energy is used as an input variable. 

6.4 Conclusion 
No currently available refrigerant property routines meet all of the requirements needed 

for a system model. This chapter reviewed some basic definitions of thermodynamic properties 

and the different types of equations of states. It also explained how to calculate properties from 

the equations of state. The next chapter explains how this theory was implemented in a new 

refrigerant property routine. 
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Input Properties Refrigerant Property Routines 

0-D Searches 

1-D Searches 

2-D Searches 

ALLPROPS REFPROP 

T, p x x 

T,P * x 

T, h 

T, u 

T, s x 

T, x 

p,P x 

p,h x 
. 

p,u x 

p,s x 

p,x 

P,h x x 

P, u 

P, s x x 

P,x 

h,u 

h, s 

h,x 

u, s 

U,x 

s, x 

x = solves for properties 

* = requires an initial guess for p 

** = has convergence problems 

EES 

x 

x 

x 

** 
x 

x 

x 

x 

** 
x 

x 

x 

** 
x 

x 

x 

x 

** 

** 
x 

Table 6.4 Combinations of input properties for which the property routines. 
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Chapter 7 

Refrigerant Property Routines 

A need exists for a robust set of FORTRAN refrigerant property routines which can 

easily be used with a computer model. We have developed a property routine which uses the 

Modified Benedict-Webb-Rubin (MBWR) equation of state and provides a convenient user 

interface. It allows for any of the following properties as inputs: temperature, density, pressure, 

enthalpy, internal energy, entropy, and qUality. The program solves for any of the above 

properties as well as specific heat at constant volume, specific heat at constant pressure, the 

speed of sound, and Gibbs free energy. 

The previous chapter provided an overview of the available property routines and their 

limitations. This chapter outlines the algorithms used in our property routine code. As 

summarized in Chapter 6, the purpose of a property routine code is to take two independent 

properties and to calculate a third output property. Our property routines uses the following 

basic procedure. 

1) Obtain two independent input properties from the user interface and the desired 

output property. 

2) Determine if the refrigerant is single phase or two-phase. 

3) If the refrigerant is single phase find the correct temperature and density. 

4) If the refrigerant is two-phase find the correct temperature and quality. 

5) Find the correct output property. 

Section 7.1 provides an overview of the user interface. It describes the FORTRAN 

commands used to call the property routines and the valid input and output properties. It also 

shows the units of the properties. 

In Section 7.2, we provide details about the equation of state used in the property 

routines. Also, we explain how all of the output properties are calculated from the equation of 

state. 

Section 7.3 explains how to determine if the refrigerant is single phase or two-phase. It 

also explains how to find saturation conditions from the equation of state. 
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Section 7.4 summarizes the search routines, single-phase searches and two-phase 

searches. In the single-phase region, the properties can be directly calculated from the 

temperature and density. If the two input properties are not temperature and density, then a 

search routine must be executed to determine the correct temperature and density. They 

include 

1) One-dimensional search for temperature given density and one other property. 

2) One-dimensional search for density given temperature and one other property. 

3) Two-dimensional search for temperature and density given two other properties. 

In the two-phase region, all properties can be determined from temperature and quality. 

The two phase searches are 

1) One-dimensional search for saturation temperature given saturation pressure. 

2) One-dimensional search for saturation temperature given two other propenies not 

including pressure. 

Sections 7.5 and 7.6 describe the performance and accuracy of the property routines. 

7.1 User Interface 
The user interface for the FORTRAN refrigerant property routines is designed to be 

intuitive and convenient. First, a refrigerant subroutine which initializes the program for a 

specific refrigerant must be called. The name of the subroutine is simply the name of the 

substance. For example, R 134a is initialized with the following call. 

call R134a 

After the refrigerant is initialized, properties can be determined with a call to the FORTRAN 

function prop. This function solves for one thermodynamic property given two other 

thermodynamic properties. 

OUT = prop(cout,cin1,xin1,cin2,xin2) 

Inputs: cout = 

cin1 = 

a string of 3 characters indicating the desired output 

property 

a string of 3 characters indicating the first input 

property 
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Outputs: 

xin1 = 
cin2 = 

xin2 = 
OUT = 

double precision value of the first input property 

a string of 3 characters indicating the second input 

property 

double precision value of the second input property 

double precision value of desired output property 

For example, to determine pressure given temperature (300 K) and density (0.01 kg/m3) the 

following function call is used. 

P = propCP " 'T " 300dO, 'rho', 0.01dO) 

The unit system and variables used in the program are summarized in Table 7.1. All of the 

variables in Table 7.2 are valid outputs but only temperature, pressure, density, specific 

volume, enthalpy, entropy, internal energy, entropy, and quality are valid inputs. 

Property Variable Unit Valid Valid 

Input Output 

tem~erature T K yes yes 

. pressure P Pa yes yes 

density rho kg/m3 yes yes 

specific volume v m3 /kg yes yes 

enthalpy h J /kg yes yes 

internal energy u J /kg yes yes 

entropy s J / kg-K yes yes 

quality x ----- 2'es yes 

~ecific heat at constant pressure cp J / kg-K no yes 

specific heat at constant volume cv J / kg-K no yes 

Gibbs free energy g J /kg no yes 

Table 7.1 Description of properties used in the refrigerant property routines. 

The program does some minimal error checking when the function prop is called. It 

checks that the user has not used both density and specific volume as inputs. It also verifies 
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that if temperature or density are inputs, they are within the correct range. How this range is 

determined is detailed in Section 7.2. 

The refrigerant property routines have two additional user subroutines. The input for 

the first subroutine is the saturation temperature .. The outputs are the saturation pressure and 

the saturated liquid and saturated vapor values for specific volume, enthalpy, and entropy. 

subroutine sac T(Tsat, Psat,vg, vf,hg,hf,sg,sf) 

Inputs: Tsat = Saturation temperature 

Outputs: Psat = Saturation pressure 

vg = Saturated vapor specific volume 

vf = Saturated liquid specific volume 

hg = Saturated vapor enthalpy 

hf = Saturated liquid enthalpy 

sg = Saturated vapor entropy 

sf = Saturated liquid entropy 

The second subroutine also returns the saturation properties but the input is pressure. 

subroutine sacP(Psat, Tsat,vg,vf,hg,hf,sg,sf) 

Inputs: Psat = Saturation pressure 

Outputs: Tsat = Saturation temperature 

vg = Saturated vapor specific volume 

vf = Saturated liquid specific volume 

hg = Saturated vapor enthalpy 

hf = Saturated liquid enthalpy 

sg = Saturated vapor entropy 

sf = Saturated liquid entropy 

If the input temperature or pressure is greater than the critical value, then zero is returned for all 

of the saturation values. 

One refrigerant, R134a, has been programmed into the refrigerant property routines. 

The procedure for adding additional properties is detailed in Appendix E. 

7.2 Equation of State 
The Modified Benedict-Webb-Rubin (MBWR) equation of state is used in the 

refrigerant property routines. This equation of state is empirical and is extremely accurate 
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because it has thirty-two empirical coefficients. The MBWR equation of state is valid in the 

vapor, liquid, and supercritical regions. It is also a common equation of state and coefficients 

have been determined for many refrigerants. This equations determines pressure as a function 

of temperature and density. y is a constant equal to the critical specific volume. For the below 

coefficients y=1.948 10-3. 

9 15 
P = Lao po + exp(_p2y2) Lao p20-17 

0=1 0=10 

Coefficient Equation 

al RT 

a2 bIT + b2'fO.5 + b3 + b4 / T + b5 / T2 
a3 b6T + b7 + b8 / T + h9 / T2 
~ blOT + bll + b12 / T 

a5 b13 

~ bI4/T+bI5/ T2 
a7 b16/ T 

a8 b17 / T + b18 / T2 
a9 b19/ T2 

alO h20 / T2 + b21 / T3 

an h22/ T2 + b23 /T4 

a12 h24 / T2 + b25 / T3 

a13 h26/T2 + b27 /T4 

a14 b28 / T2 + b29 / T3 

a15 b30/T2 + b31 /T3 + b32/T4 

Table 7.2 Equations for the al - a15 coefficients in the Modified Benedict

Webb-Rubin equation of state. 
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Coefficient Value Coefficient Value 

bi 0.9271836240E+OO b17 -0.6241811030E-13 

In 0.3859943345E+02 bI8 0.3241227725E-I0 . 

b3 0.3796685328E+03 bI9 -0.8832148917E-14 

b4 0.1292327632E+05 Ino -0.63950 14970E+05 

bs -0. 1339463227E+08 Ini -0. 1195678765E+08 

b6 -0.2911857245E-03 1n2 -0.3854864317E+OO 

b7 0.2752746684E+OO 1n3 0.9222468987E+04 

bg -0.1554841102E+03 h24 0.1621989396E-06 

h9 0.1418884002E+06 Ins -0.8109327456E-04 

blO Oo4936522116E-07 b26 -Oo4771379477E-12 

bll 0.5019195534E-03 b27 -0. 1475162087E-07 

b12 -0. 1950030878E+OO 1n8 -0.3184879150E-18 

b13 -0.2425521321E-06 b29 0.1146516844E-15 

bI4 -Oo4796051391E-07 b30 0.6184422434E-25 

biS -0.7549801475E-04 b3I -0. 1324227401E-21 

bI6 0.1782613900E-09 b32 0.1742223096E-20 

Table 7.3 Values of the empirical coefficients of the Modified Benedict -Webb

Rubin equation of state for R 134a (Huber and Ely, 1994). 

Table 7.2 and Table 7.3 summarize the empirical coefficients used in the equations of 

state. Along with an equation for the ideal specific heat at constant volume all other properties 

can be determined (Section 7.2.1). Equation 7.2 is the equation for the ideal specific heat at 

constant volume and the coefficients are summarized in Table 7 A. 

(7.2) 
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Coefficient Value 

CI -3.0112041712E+03 

c2 4.8340122646E+Ol 

C3 -2.6767243954E-Ol 

C4 7.80640 12365E-04 

C5 -1.2102287867E-06 

C6 9.4181503738E-1O 

C7 -2.8847327981E-13 

Table 7.4 Values of coefficients of the ideal specific heat at constant volume 

equation (Equation 7.2) for R134a (Huber et al, 1996). 

One of the main difficulties found when developing property routines using the MBWR 

equation of state is that multiple answers exist for some of the one-dimensional and two

dimensional searches for temperature and density. The MBWR equation is only accurate for a 

certain range of temperatures and densities. Outside this range, redundant solutions exist for 

the search parameters. 

6.0107 ,..-----,.-----,----,------,.-----, 

4.0107 

'@' 2.0107 
a. -CD 
5 0.0100 
(/) 
(/) 

e 
a. -2.0107 

.. . ........ ·· ...... ·· .... , .. ·· .... ····· .. ·· ...... ·1 .... ·· ........ · ...... r .................... · ..................... . 

::l~~~-r:~~~~;~]-· 
. :: .... 

: : 
. • 1 1 .... 

··· .. · ...... · .. ··· .... r····· ............ ·· .... I ...... =~·1 .. ~·;~········ .. ··r· .... · .... · .. ·· ... 
...................... f ........................ f .. · .. - - T = 275 ........ ·f .................... .. 

if···· T = 375 f 
l! 1 -6.0 107 '--__ -'-__ ---'"--__ -1...-__ --' __ ----' 
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Density (kg/m 3) 

Figure 7.1 Pressure as a function of temperature and density from the MBWR 

equation of state. 
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Figure 7.1 shows an example of this phenomenon. The lowest temperature, 175 K, is 

below the minimum temperature for the properties. For a given pressure and density, it is 

possible to have two mathematically valid temperatures. However, only one of the 

temperatures is physically correct. 

In order to ensure that the property routines converge on the correct result, a minimum 

and maximum temperature and a minimum and maximum density must be defined in the code. 

The temperature range for which the property routine is valid is generally available from the 

data. The valid density range is generally not always provided by the data. We used the 

following algorithm to determine the minimum and maximum density. 

Pmin (7.3) 

(7.4) 

These values provided a reasonable bound for the search routines. Table 7.5 summarizes the 

actual minimum and maximum temperatures and densities used for R 134a. 

. nnmmum maximum 

Temperature (K) 200 500 

Density (kg/m3) 0.0001 1600 

Table 7.5 Temperature and density range for R134a. 

All of the algorithms and search routines discussed in this chapter were only checked 

with the MBWR equation of state. It is believed that these routines would be applicable for any 

equation of state with only minor modifications. 

7.2.1 Calculating the Single-phase Properties 

Pressure can be explicitly calculated from Equation 7.1. Equations for enthalpy (h), 

internal energy (u), entropy (s), specific heat at constant volume (cv), specific heat at constant 

pressure (cp)' Gibbs free energy (g), and the speed of sound (ss) can be derived from Equation 

7.1 and 7.2 using the following thermodynamic relations. 
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u(T,p) = f c/ dT + f(P-T~~) ~ 

P 
h(T,p)=u+ -

p 

f c 0 f 1 ap s(T,p) = -v-dT + 2- dp 
T P ap 

ap 
cp (T, p) = Cv + dT 

g(T,p) = h - Ts 

ss(T,p) = ~ (~: l 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

(7.11) 

Equations 7.1 and 7.2 are plugged into Equations 7.5 - 7.11 which results in a set of algebraic 

equations where all of the above properties can be directly calculated from temperature and 

density (Appendix D). Also, the derivatives with respect to temperature and density of all of 

the above equations are determined. If temperature and density are not inputs into the property 

routines, a search routine must be performed to determine the correct temperature and density. 

These search routines are summarized in Section 7.4 

7.2.2 Calculating Two-phase Properties 

The MBWR equation accurately predicts gas properties, liquid properties, supercritical 

properties, and saturation properties. The properties predicted in the two-phase region are not 
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equal to the equilibrium values. As a result, a different algorithm determines the properties in 

the two-phase region. 

Temperature and quality uniquely define the properties in the two-phase region. The 

two-phase specific volume, enthalpy, internal energy, entropy, and density are determined from 

Equations 6.4 - 6.8. If temperature and quality are not inputs to the property routines, the 

appropriate algorithm must be used to determine the temperature and quality (Section 7.4.3). 

The next section discusses how to determine the saturation properties and the phase of the 

refrigerant. 

7.3 Determining the Phase of the Refrigerant 
There are different methods for determining the phase of the refrigerant for different 

pairs of input properties. If temperature (T) is one of the inputs then it trivial to determine the 

phase of the refrigerant with any other input (Table 7.6). Alternatively, if pressure is an input 

then the saturation temperature can be calculated and the phase is determined from the Table 

7.6. If one of the inputs is quality, then it is known that the refrigerant is in the two-phase 

region (qualities less than zero or greater than one are not accepted as a valid input). It is not 

trivial to determine the phase of the refrigerant if none of the inputs are temperature, pressure, 

or quality. 

Phase INPUTS 

Tandp T and h (or T and s or T and u) TandP 

vapor p ::; piT) h ~ h l1(T) P<Perit 

liquid p ~ p£<T) h ::; h£<T) P > Perit 

two-phase PI!(T) < P < p£<T) hl!(T) > h > hr(T) P=Pr.ril 

supercritical T > Terit T>Terit T>Tr.ril 

Table 7.6 Conditions for determining the phase of the refrigerant if temperature 

is an input. 

No experimental data from the two-phase region is used to determine the coefficients in 

the Modified Benedict-Webb-Rubin equation of state. The answers returned from the MBWR 

equation in the two-phase region are not equal to the equilibrium thermodynamic properties. 

For example, in the two-phase region the equilibrium pressure remains constant along an 

isotherm. Figure 7.2 illustrates the isotherms returned by the MBWR equation in the two-phase 

region. Although the pressure varies greatly, it always remains within the two-phase dome. 
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We can use this infonnation to detennine if the properties are in the single-phase or two-phase 

region. 

The following algorithm is used if the input properties include two of the following 

properties: density, enthalpy, internal energy, or entropy. The appropriate single-phase search 

is perfonned to calculate a single-phase temperature, T Iphase' and density, P 1 phase' (Section 

7.4.2). If T1phase and Plphase are in the two-phase region (Table 7.6) then the correct two-phase 

properties temperature and quality must be detennined (Section 7.4.3). If T 1 phase and P Iphase 

are in the single-phase region, then they are correct. This algorithm works for all combinations 

of the input properties (density, enthalpy, internal energy, or entropy) except for enthalpy and 

internal energy. These properties are not independent in the two-phase region as summarized 

. in Section 7.5. 

C? a.. -
--Saturation Pressure 

- Equilibrium pressure 

-7.510 6 - -- - MBWR pressure 

\ 

\ 

, 
I 
I , , 
I , 
" ' , ' 
" , 

-1.2 1 0 7 '--_--'----'.---'.-1-...L...L-'-'-'--_--'----'---'--'--'--"--'-'--'---_-' 

10 100 1000 

Density (kg/m3) 

Figure 7.2 A comparison of the two-phase equilibrium pressure with the 

pressure detennined from the MBWR equation of state. 

In order to detennine the phase of the refrigerant, it is necessary to be able to calculate 

the saturation properties at a given temperature. The following sections describe that 

procedure. 
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7.3.1 Calculating the Saturation Properties 
When different phases of a pure substance are in equilibrium, each phase must have the 

same temperature, pressure, and Gibbs free energy per unit mass. 

Tliquid = T vapor (7.12) 

Pliquid = P vapor (7.13) 

(7.14) 

Given a temperature, a two-dimensional search is performed to find the corresponding saturated 

liquid density and saturated vapor density. The two equations for the search are Equations 7.13 

and 7.14. The trivial answer for those equations is 

Pr = Pg = P (7.15) 

where P can be any value. In order to solve for two distinct values of Pr and Pg initial guesses 

which are close to the actual value must be provided. Curve fits of the saturation propenies 

were developed for this purpose. 

7.3.2 Determining Curve Fits of the Saturation Properties 

In order to develop curve fits for the saturation properties, the saturation properties first . 

need to be obtained from the equation of state. A program independent of the property routines 

was developed for this purpose. An array of temperature Tn is created from the minimum valid 

temperature to the critical temperature. Since the saturation densities change greatly near the 

critical point, many temperatures should be clustered around the point. A seed is given for the 

initial guess for pr and Pg at T min which can be obtained from a table of refrigerant propenies. 

The program calls a two-dimensional Newton-Raphson search routine as specified below. 

Inputs: T· 1 

Unknowns: Pr, Pg 

Initial guess: Pr = Pr,i-l 

Pg = Pg,i-l 
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Equations: P(Ti'Pg) = P(Ti,Pf) 

g(Ti'Pg) = g(Ti,Pf) 

(7.16) 

(7.17) 

After the search routine has converged on a the saturation vapor density and the saturation 

liquid density, these values are used a initial guesses for the search at the next temperature. 

Using this method, the saturation dome was created for R134a (Figure 7.3). 
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Figure 7.3 Saturation dome for R134a. 

10000 

A curve fit of Pf vs. T and P sat vs. T was created from this data for R 134a (Figure 7.4 

and Figure 7.5). The form of the saturated liquid density equation is 

(7.18) 

where 

T* = (1_~)1f3 
Tent 

(7.19) 
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ro = 520.73223019 

rl = 718.02485183 

r2 = 1477.8123759 

r3 = -1987.0643174 

r4 = 1299.9953261 

Terit= 374.18 

1800 r------------.,.-------,--------, 

1600 ·······················-1-······················-1-······················r······················1 .................... . 

M 1400 ................................................. , .... ···················r·········· ......... : ....................... . 
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400 L-__ ~ __ ~ ___ ~ __ ~ __ ~ 
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T· 

Figure 7.4 Curve fit for the saturated liquid density of R134a. 

The form of the saturation pressure curve fit is 

where 

Po = -67.372739467 

PI = 1.0348363554 

P2 = -0.0058497264175 

P3 = 1.7771926183e-05 
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C? 
a.. --
a.. N -.E 

P4 = -2.7991145435e-08 

Ps = 1.8003152482e-ll 
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14 . . . 

If'f 
::r;I-1 
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Tsat (K) 

Figure 7.5 Curve fit for the saturation pressure of R 134a. 

Reid, Prausnitz, and Poling (1987) have examples of different forms of these curve fits. 

The actual subroutine which calculates the saturation properties in the property routines 

is called Subroutine sat. This subroutine calculates the saturation pressure (Psat) , saturated 

liquid density (Pf), and saturated vapor density (Pg) at a given temperature. The initial guess 

for the saturated liquid density is calculated from the curve fit of Pf versus T. The initial guess 

for the saturated vapor density is determined from the ideal gas law. 

Subroutine sat 

Inputs: 

Unknowns: 

Initial guess: 

Equations: 

T 

Pf, Pg 

Pf = Pf (T) from Equation 7.18 

Pg = ~ where P = Psat(T) from Equation 7.20 
RT 

P(T'Pg) = P(T,Pf) 
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(7.23) 

The code verifies that Pg is in the vapor region by checking if aPldp is less than zero. If ap/ap 

is greater than zero, the code halves Pg until the derivative is less than zero. The search routine 

is a two-dimensional Broydn' s method or multidimensional secant method. 

Near the critical point, the program tends to converge on the same density for both 

unknowns since the difference between saturation densities is small. The initial guesses must 

be extremely close to the actual values for the two-dimensional search to converge on the 

correct densities. A different algorithm is used to find the initial guesses if T ~ 0.975 Terit. The 

saturation liquid density determined from the curve fit is assumed to be correct. Then a one

dimensional search is performed to calculate the saturated vapor density. After this program 

has converged, the results are used in the two-dimensional search to find the exact answer. 

7.3.3 Notes about the Critical Point 

The critical point is illustrated in Figure 6.1. It is the maximum temperature and 

pressure of the two-phase region. The critical point is defined by 

( ap) = 0 
ap T 

(7.24) 

(7.25) 

The critical point defined by the equations of state does not exactly meet both of these 

conditions. 

A two-dimensional search was performed to find the temperature and density at the 

critical point using the above equations as residuals. The search was given several initial 

guesses very close to the critical point. For R134a, the search consistently returned the same 

temperature, 374.182 K, for various initial guesses. It always returned a density close to the 

initial guess rather than the actual critical density. From this search the saturation temperature 

and saturation pressure were determined to be 374.182 K and 4.05598 MPa. The critical 

density was determined from the two-dimensional search detailed in Section 7.3.1 and is 

512.658 kg/m3. 
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7.4 Overview of Search Routines and Solvers 
In Section 7.3, we discussed how to determine the phase of the refrigerant. In the 

single-phase region, the temperature and density are required to find the output property. In the 

two-phase region, temperature and quality are required to find the output property. This section 

summarizes the different search routines which are required to find the correct temperature, 

density, or quality. 

Figure 7.6 shows the different algorithms required to find the output property for each 

pair of input properties. Each box refers to an algorithm. Table 7.7 shows where each of those 

algorithms is discussed in the text. 

Algorithm Section 

Find the 2hase Table 7.6 

Find T Section 704.1.1 

Find p Section 704.1.2 

Find T, p Section 704.1.3 

Find x Section 7.2.2 

Find Tsat 1 Section 704.2.1 

Find T~:lt 2 Section 704.2.2 

Table 7.7 Key for Figure 7.6. 

'Find the phase' requires temperature and one other property as an input. It determines 

whether the properties are one-phase or two-phase. 

In the single-phase region, all output properties can either be calculated from 

temperature and density. 'Find T' performs a one-dimensional search for temperature given 

density and one other property. If temperature is one of the input properties, then a one

dimensional search for density is performed in 'Find p.' 'Find T, p' performs a two

dimensional search for temperature and density. 

In the two-phase region, temperature and quality are needed to find the output 

properties. 'Find Tsat l' executes a one-dimensional search for saturation temperature given 

pressure. 'Find Tsat 2' performs a one-dimensional search for saturation temperature and given 

two properties not including pressure. 'Find x' solves for the quality from the equations in 

Section 7.2.2. 
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~ ·1 
one-phase • output 

Find the phase 
two-phase ., 

Find x , • output 

.' Find P , • output T,P 
one-phase 

T, h 
T,u 

Find the phase ., two-phase 
Find x , T, s • output 

B two-phase • output 

x,P 
x,P 

two-Phas~' Find Tsat 2' x,h • output 
x,U 
x, s 

.' Find T , • output 

~ ., Find Tsat " ., Find the phase 1 
one-phase 

two-phase ., 
Find x , • output 

.1 Find T, p , • output 
P,h one-phase 
P,u Find the phase 
P,s two-phase ·1 Find x 1 • output 

one-phase • output 
Find the phase 

two-phas~ 

/ Find Tsat 2/ • output 

h,u one-phase • output 
h,s Find the phase 
s, u two-phas~ I Find T sat 21 • output 

Figure 7.6 Search algorithms for each pair of input properties. 
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Section 7.4.1 summarizes the solver required for the four one-dimensional searches, 

'Find T', 'Find p', 'Find Tsat 1', and 'Find Tsat 2'. There is one two-dimensional search, 

'Find T, p'. The two-dimensional solver is summarized in that section 7.4.2.3. 

7.4.1 One-dimensional Solver 
The purpose of solver is solve for n unknowns given n equations. The equations are 

defined as 

f(x) = 0 (7.26) 

where x are the unknowns. The solver attempts to minimize the residuals r(i). 

(7.27) 

The search routines used in the property routines must be efficient and calculate output with a 

minimum number of iterations. They must also be robust and always converge on the correct 

answer. 

An extremely efficient solution technique is the Newton-Raphson solver. In this 

method both the function f(x) and the derivative of the function f'(x) are calculated. The 

tangent line f'(x) is then extended until it crosses zero, and the next guess is at the zero crossing 

point. This solution technique is very efficient and converges quadratically. One drawback to 

the Newton-Raphson technique is that it requires the derivative of the function. We have 

already explicitly calculated the derivatives of each property with respect to temperature and 

density from the MBWR equation of state (Appendix D). As a result, the derivative is 

computed quickly and accurately. A second drawback to the Newton-Raphson solution 

technique is that it needs an extremely good initial guess. If the initial guess isn't close to the 

actual solution, the next guess obtained from the zero crossing point of the tangent can be 

extremely far from the solution. This can cause problems with robustness. 

One dimensional searches are performed to find either temperature or density. Finding 

a good initial guess for temperature is fairly easy. The equation of state is usually only valid 

over several hundred degree Kelvin. An initial guess of the critical value or the average of the 

minimum or maximum temperature is generally good enough. It is much more difficult to 

provide a good initial guess for density. Valid densities range over several orders of 

magnitude. With such a large range, a Newton-Raphson routine can easily converge to a 

negative density or an extremely large density. 
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An extremely robust one-dimensional search routine is bisection. Bisection is 

guaranteed to return a solution. Bisection routines are provided a minimum and maximum 

value of the unknown. The residual must have different signs at the brackets to guarantee at 

least one solution. The bisection algorithm evaluates the sign at the midpoint of the minimum 

and maximum value. The midpoint replaces the endpoint which has the same sign of the 

residual. After each iteration the size of the region containing the roots decreases by a factor of 

two. This method is slower than Newton-Raphson and only converges linearly. 

Our one-dimensional solver is a combination of the Newton-Raphson and bisection 

searches. The solver uses a Newton-Raphson algorithm to determine the next guess for the 

unknown. If the next guess is outside of the minimum and maximum bounds, the solver 

switches to a bisection routine for one iteration. 

The next two sections summarize the single-phase and two-phase search routines. The 

specifications for each one-dimensional search are listed in the sections. 

7.4.2 Single-Phase Search Routines 

If density is one input and either pressure, enthalpy, internal energy, or entropy is the 

other input, then a one-dimensional search is performed to find the temperature. This search is 

summarized in Section 7.4.1.1. A one-dimensional search for density is performed if 

temperature and either pressure, enthalpy, internal energy, or entropy are inputs (Section 

7.4.1.2). If neither temperature or density are inputs (the inputs include pressure, enthalpy, 

internal energy, or entropy) then a two-dimensional search is conducted to find the temperature 

and density (Section 7.4.1.3). 

7.4.1.1 Search for Temperature 

A one-dimensional search is performed for temperature when the inputs are density and 

either pressure, enthalpy, internal energy, or entropy. The parameters for the one-dimensional 

search for temperature are defined below. 

Subroutine FIND T 

Inputs: 

Unknowns: 

Minimum: 

Maximum 

Initial guess: 

p,y 

(y = P, h, u, or s) 

T 

Tmin 

Tmax 

Terit 

185 



Equations: y = y(T,p) (7.28) 

T min and T max are the bounds for which the equation of state is valid defined (Section 

7.2). Terit is determined directly from the equation of state. This is a straightforward search 

routine because there is a small range (less than an order of magnitude) of valid temperatures. 

If pressure is an input, it known before the one-dimensional search whether the 

properties are in the single phase or two-phase region. If enthalpy, energy, or internal energy 

are inputs, the program must check whether the properties are in the single-phase or two-phase 

regions after the search routine returns a temperature. 

7.4.1.2 Search for Density 

A one-dimensional search is performed for density when the inputs are temperature and 

either pressure, enthalpy, internal energy, or entropy. Searching for density is challenging 

because there is a wide range of valid densities between the minimum density and the 

maximum density. Also, the minimum and maximum density are only correct at the minimum 

temperature (Section 7.2). We can guarantee convergence on the correct density because we 

can provide the search routine with a very good initial guess. The phase of the refrigerant is 

already known since temperature is an input (Table 7.6). Since the phase is known, an 

extremely good initial guess can be provided to the search routine. The parameters for the 

search are as follows. 

Subroutine FIND rho 

Inputs: 

Unknowns: 

Minimum: 

Maximum 

Initial guess: 

Equations: 

T, Y 

(y = P, h, u, or s) 

p 

Pmin 

Pmax 

Pg 

Pf 

(T<Terit, y~yg) 
(T < Terit, Y ~ yr) 

Perit / 10 (T > T erit) 

y = y(T,p) (7.29) 

This search is robust and will converge on the correct answer even if multiple answers exits 

between the minimum and maximum density. The one-dimensional search will converge on 

the density closest to the initial guess. 
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7.4.2.3 Two-dimensional Search for Temperature and Density 

A two-dimensional search is performed when neither of the two inputs are temperature 

or density. The valid inputs for this search are pressure, enthalpy, internal energy, and entropy. 

The search routine is a globally convergent multidimensional Newton-Raphson method. This 

search does not allow minimum or maximum bounds to be set for each variable. In order to 

guarantee convergence, extremely good initial conditions must be defined. 

The challenges of the two-dimensional search is similar to the challenges of the one

dimensional search for density. The valid range of values for density encompasses several 

orders of magnitude. If the fluid is liquid (the density is large) and the initial guess of density is 

small, the solver can easily wander into regions of extremely large density. This could cause 

the property calls to fail because one coefficient in the equation of state would become larger 

than the FORTRAN compiler could evaluate. If the fluid is vapor (density is small) and the 

initial guess for density is too large, then the Newton-Raphson routine could converge on a 

negative density which would cause the equations of state to fail. It is important to give the 

search routine a reasonably close guess for the density. 

Subroutine FIND Trho 

Inputs: 

Unknowns: 

Initial guess: 

Equations: 

y,z 

(y=P,h,u,ors) 

(z = P, h, u, or s) 

T,p 

T = (Tmin+Tcrit) / 2 
* p=p 

Y = y(T, p) 

z = z(T, p) 

(7.30) 

(7.31) 

The initial guess for density is determined by trying an array of different densities between the 

minimum and maximum density. 

P· - P . * loi 1- mm . (7.32) 

i = 0 to n where Pn+l > Pmax 
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Next we find the residuals for Equations 7.30 and 7.31 at each combination of the initial 

temperature, Tinit, and density, Pi. An error is associated with each pair of residuals. 

r(1) = y - y(Tinit,pd 
y 

r(2) =z-z(Tinit,Pi) 
z 

)112 
err(i) = (ro)2 + r(2)2 

The initial guess for density is the density associated with the minimum value of the error. 

* P = Pi at the minimum err(i) 

(7.33) 

(7.34) 

(7.35) 

(7.36) 

Instead of iterating on temperature and density, the solver iterates on the following 

variables. 

x(l) = T-Tcrit 
Tcrit-Tmin 

x(2) = log P 

(7.37) 

(7.38) 

Taking the logarithm of density prevents it from becoming negative. Temperature is 

constrained between -1 and (T max-T crit) / (Tcrit-T min). For R 134a, the logarithm of density (in 

kg/m3) is constrained approximately between -4 and 3.2. The multi-dimensional Newton

Raphson solver generally converges better if the unknowns and the residuals are of the order 

one. 

As discussed in Section 7.3, if the temperature and density returned from Subroutine 

FIND _Trho are in the two-phase region, then the solution should also be in the two-phase 

region. Also, if the temperature is less than the minimum temperature, this indicates that the 
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properties are in the two-phase region as well. The algorithms used to find two-phase 

properties are summarized in Section 7.5. 

7.4.3 Two-phase Search routines 

Section 7.3 summarizes how the program determines if the properties are in the single

phase or the two-phase region. If the properties are two-phase, then the temperature and quality 

must be determined to find the output property. 

If pressure is an input, then a search must be performed to find the saturation 

temperature (Section 7.4.3.1). If neither pressure nor temperature are inputs, then a different 

search must be performed to find the saturation temperature (Section 7.4.3.2). 

7.4.3.1 Search for Saturation Temperature Given Saturation Pressure 

This subroutine performs a bounded one-dimensional search for temperature. It solves 

for the saturation temperature given pressure. 

Subroutine FIND Tsatl 

Inputs: 

Unknowns: 

Minimum: 

Maximum 

Initial guess: 

Equations: 

P 

Tsat 

Tmin 

Tcrit 

Tinit = (T min + T crit) /2. 

P = Psat(T) (7.39) 

Two one-dimensional searches are performed in this subroutine. The first search solves 

uses the curve fit of saturation pressure (Equation 7.20) for Equation 7.39. The saturation 

temperature determined from this search is used as an initial guess for the second search. The 

second search uses Subroutine sat (Section 7.3.1) to accurately solve for the saturation 

pressure. The first search is very fast since the computer can very quickly solve a polynomial. 

The second search is much slower because each time the subroutine sat is called a two

dimensional search for Pf and Pg is performed. The temperature determined from the first 

search is generally good enough that only one or two iterations of the second search are 

required. 

7.4.3.2 Search for Temperature in the Two-phase Region 

If the input properties include density, enthalpy, internal energy, entropy, and quality, a 

search must be performed to find the saturation temperature. 
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Subroutine FIND Tsat2 

Inputs: 

Unknowns: 

Minimum: 

Maximum 

Initial guess: 

Equations: 

y,z 

(y = p, h, u, s, or x) 

(z = p, h, u, s, or x) 

Tsat 

Tmin 

Terit 

Tinit = (Tmin + TeriJ / 2. 

x(Tsat'y) = x(Tsat'z) (7.40) 

Subroutine FIND _Tast2 returns a temperature and the quality calculated in equations 

7.41. This program will generally converge on a quality between zero and one. If the final 

value of Xl and X2 is greater than 1.00001 or less than -0.00001, then another search must be 

performed to find the correct quality. This only occurs when the properties are near the 

saturation line or when the temperature is close to the minimum temperature. 

To perform another search, the initial guess of the temperature is changed. If the quality 

is gieater than one, then the then the program has converged on a temperature which is too 

large. The minimum temperature is decreased by 5 K. The initial guess is still (T min + T max ) / 

2. If the quality is less than zero, then the then the program has converged on a temperature 

which is too small. The new initial guess for the temperature is (T min + T max + 5 K) / 2. 

If the solver returns the same temperature and quality after the above modifications are 

made, then the two-dimensional search for temperature and density is called (Section 7.4.3). If 

the quality is greater than one that means the fluid is in the vapor region. The initial guesses for 

the density is the saturated vapor density. If the quality is less than the zero, then the initial 

guess for density is the saturated liquid density. 

7.5 Performance of the Property Routines 
The following procedure is used too determine if the search routines are converging on 

the correct solution. It is not attempting to determine if the accuracy of the property routines. 

That is summarized in Section 7.6. 
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7.5.1 Test Procedure 

The following procedure is used to test the property routines. An array of temperatures 

is created between the minimum and critical temperatures. For each temperature, nine densities 

are tested which are summarized in Table 7.8. 

The code determines whether the properties are one-phase or two-phase and then 
-

calculates the pressure, enthalpy, internal energy, and entropy from the temperature and 

pressure. The code then performs all combinations of one-dimensional and two-dimensional 

searches to calculate temperature and density. An error check is performed comparing the 

actual temperature or density with the calculated one. An error is documented if 

!Tact - Teale! > 10-4 or !Pact - Peale! > 10-4 
Tact Pact 

Number Region Calculation 

1 vapor pg/2 

2 two-phase (Pf + pg) / 2 

3 liquid Pf+ 10 kg/m3 

4 saturated vapor pg 

5 high quality pg * 1.01 

6 low superheat pg /1.01 

7 saturated liquid Pf 

8 low quality Pf /1.01 

9 low subcool Pf * 1.01 

Table 7.8 Test array of densities for each temperature below the critical 

temperature. 
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Number Calculation 

1 Pmin 

2 Perit / 2 

3 Perit 

4 Perit + 100 

Table 7.9 Test array of densities for each temperature above the critical 

temperature. 

These values should not be interpreted as an accuracy. Rather they are used to indicate that the 

property routine is converging on values and that there aren't multiple answers. The same tests 

are performed for another array of temperature between the critical temperature and the 

maximum temperature. The densities are summarized in Table 7.9. 

The following sections summarize the results from this test. 

7.5.1.1 Vapor and Supercritical Regions 

The program consistently converges to the correct answer for all combinations of input 

in the vapor as long as the density is within the proper range. The routines will not always 

converge for extremely small densities in both regions and extremely large densities in the 

supercritical region. The MBWR equation of state was not fitted to this region and as a result 

and incorrect answer will be returned. In the supercritical region the program returns incorrect 

answers for enthalpy and internal energy for larger densities. This error occurs for the same 

reason as in the liquid region. The region surrounding the critical point is summarized in 

Section 7.5.1.3. 

7.5.1.2 Two-phase Region 

Multiple answers occur in the two-phase region for inputs of quality and either 

enthalpy, internal energy, and entropy. The code tends to converge on the smallest correct 

temperature. The one-dimensional search finds temperature from the following residual for an 

input of, for example, quality and enthalpy. 

r = x _ h - hf 
hg - hf 

(7.42) 

The residual of the equation when it converged on an alternate temperature was on the order of 

10-13. This tends to happen closer to the saturated vapor line than to the saturated liquid line. 
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Multiple answers occur in the two-phase region for inputs of enthalpy and internal 

energy. This is a result of the definition of enthalpy rather than the equation of state. Enthalpy 

is defined as 

P 
h=u+

p 
(7.43) 

An infinite number of combinations of pressure and density occur for any given enthalpy and 

. internal energy. In the one-phase region 

P=J(T,p) (7.44) 

The above two equations have two unknowns, temperature and density, so there is a unique 

answer for temperature and density. In the two-phase region pressure is only a function of 

temperature. 

P = J(T) (7.45) 

Since pressure and density are not related, the solution is an infinite number of combinations of 

temperature and density. 

7.5.1.3 Liquid Region 

In the previous section it was documented how multiple answers exist for an input of 

enthalpy and internal energy in the two-phase region. A similar problem exists in the liquid 

region. In the two-phase region multiple answers were returned because pressure is only a 

function of temperature. In the liquid region, the fluid is incompressible so again pressure is 

only a function of temperature. As a result, many answers exist for an input of enthalpy and 

internal energy. It is strongly recommended that the programmer does not use enthalpy and 

internal energy in the liquid region because the program can completely fail if it starts to 

converge on a density which is too large. 

Redundant densities exist for inputs of temperature and enthalpy in the two-phase 

region and the liquid region. Figure 7.7 shows a an isothenn on a plot of enthalpy versus 

density. The enthalpy decreases as density increases in the two-phase region. In the liquid 

region, enthalpy increases as density increases. This effect occurs because enthalpy is such a 

strong function of pressure. In the liquid region, small changes in the density cause large 
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changes in the pressure. When the density increases slightly, the pressure increases much more 

and the enthalpy will also increase. It is obvious from Figure 7.7 that redundant densities exist 

for temperature and enthalpy near the saturated liquid line. Our property routines always return 

the two-phase density. 

7.5.1.4 Properties Near the Critical Point 

Near the critical point, the saturation densities change greatly with temperature. As a 

result a much finer temperature grid is used. The property routines converged extremely well 

to the correct temperature and pressure except within 0.005 K of the critical temperature. 

Given pressure and either enthalpy, entropy, or internal energy the program converges to the 

wrong the density. The density has at most 0.3% error. 
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Figure 7.7 Enthalpy as a function of density and temperature near the saturated 

liquid line. 

7.5.2 Summary 

For the majority if the inputs the code will converge to the correct input. Table 7.10 

summarizes the combinations of inputs and the region in which the code will fail to return the 

correct answer. 
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Input 1 Input 2 Region 

quality enthalpy two-phase 

quality internal energy two-phase 

I quality entropy two-phase 

enthalpy internal energy two-phase, liquid 

supercritical - high densities 

temperature enthalpy liquid 

Table 7.10 Conditions for which the property routines will fail to return a correct 

answer. 

7.6 Accuracy of the Refrigerant Property Routines 
To determine the accuracy of our property routines, we compared our property routines 

to experimental data documented in the literature. We compared the model with a) single

phase P-v-T data, b) saturation pressure data, c) saturated liquid density data, and d) speed of 

~ound data. The results of all of the comparison are in Table 7.11. Tables 7.12 - 7.15 

summarize the data sets used for each comparison. 

Data Number of Average absolute Percentage of data with greater 
comparison points error than 1 % absolute error 

P-v-T 1613 0.14% 1.7% 

Psat 223 0.16 1.8 

Q£ 94 0.19 3.2 

ss 298 0.14 1.3 

Table 7.11 Summary of the comparison between the properties calculated by the 

property routines and experimental data. 

Figure 7.8 shows that the density predictions from the property routines are in 

extremely good agreement with the experimental P-v-T data. Most of the large deviations are 

close to the critical point. At 423 K, three of the data points obtained from Tillner-Roth and 

Baehr (1991) have errors less than -2%. All of these data points were obtained at the lowest 

pressures at that temperature (0.2-0.7 MPa). 
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Figure 7.9 illustrates the comparison between the predicted saturation pressure and the 

experimental saturation pressure. All of the data are in extremely good agreement except at 

low temperatures. The data points with errors below -0.75% and temperatures below 250 K 

were obtained by Wilson and Basu (1988). The one data point with an error below -1 % at 280 

K was obtained by Maezawa et al. (1990). All of these outlying data points were the lowest 

temperature data point obtained for each data set. 

In Figure 7.10, we can see that the calculated saturated liquid density agrees very well 

with the experimental values near the critical point. Near the critical point, small changes in 

temperature result in a large changes in the saturated liquid density. For example at the critical 

temperature (374.182 K) the property routines predict the saturation density to be 512.6 kg/m3. 

At 372 K the property routines predict the saturation density to be 690.5 kg/m3. 

A comparison between the calculated speed of sound and experimental speeds of sound 

is shown in Figure 7.11. All of the outliers were obtained by Guedes and Zollweg (1992). No 

apparent discrepancy could be found with this data except that they are all at approximately the 

same temperature (360-380 K) and at a low pressure ranges for those temperatures (3.5 MPa -

5.2 MPa). 

7.7 Conclusions 
We have developed refrigerant property routines which use the Modified Benedict

Webb-Rubin (MBWR) equation of state to calculate the thermodynamic properties for R134a. 

Our property routines have a convenient user interface, and they allow for any permutation of 

input properties. Section 7.5 verified that the properties are robust and converge to the 

appropriate answer. As seen in Section 7.6, the properties determined by the routines agree 

well with experimental data in the literature. These property routines can easily be expanded to 

include other refrigerant. 

Table 7.16 compares our refrigerant property routines, prop.f, with those available in 

the literature. Our property routines have been developed work for all possible combinations of 

input properties. ALLPROPS and REFPROP are the other available FORTRAN subroutines 

which only work for a limited combination of properties. EES, which can not be called from 

FORTRAN programs, works for all combinations of inputs except those that involve internal 

energy. 
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Source Number of Temperature range (K) Pressure range (MPa) 
data points minimum maximum minimum maximum 

Diller et a1. (1991) 63 200 300 0.62 33.7 

Rou et a1. (1992) 417 180 380 0.75 70.9 

Laesecke et al. (1992) 215 200 390 0.05 68.2 

Maezawa et al. (1990) 10 280 340 0.51 2.0 

Magee (1992) 141 200 320 2.58 29.2 

McLinden et a1. (1989) 22 250 250 0.10 0.10 

Morrison and Ward (1991) 120 280 370 0.70 5.8 

Piao et a1. (1990) 159 310 420 0.80 11.8 

Tillner-Roth and Baehr (1991) 410 290 450 0.08 16.4 

Weber (1989) 56 320 420 1.23 5.32 

Table 7.12a Summary of experimental P-v-T data. 

Source Absolute error 
average maximum 

Diller et a1. (1991) 0.06% 0.10% 

Rou et al. (1992) 0.14 1.26 

Laesecke et al. {1992) 0.15 2.19 

Maezawa et al. (1990) 0.14 0.18 

Magee (1992) 0.07 0.20 

McLinden et al. (1989) 0.06 0.13 

Morrison and Ward (1991) 0.06 0.80 

Piao et al. (1990) 0.37 1.93 

Tillner-Roth and Baehr (1991) 0.11 4.09 

Weber (1989) 0.07 0.20 

Table 7.12b Summary of errors for the P-v-T data. 
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Figure 7.8 R134a density comparison with P-v-T experimental data. 
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Source Number of Temperature range (K) Absolute error 
data points minimum maximum average 

Baehr and Tillner-Roth (1991) 37 300 374 0.01% 

Kubota et al. (1989) 25 250 373 0.23 

Maezawa et al. (1990) 13 280 350 0.38 

Magee and Howley (1992) 17 180 350 0.23 

Morrison and Ward (1991) 11 270 374 0.09 

Piao et al. (1990) 46 310 374 0.09 

Wilson and Basu (1988) 32 210 370 0.34 

Zhu et al. (1992) 42 280 360 0.08 

Table 7.13 Summary of experimental saturation pressure data. 
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Figure 7.9 R 134a saturation pressure comparison with experimental data. 
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Source Number of Temperature range (K) Absolute error 
data points minimum maximum average 

Diller et aI. (1991) 25 200 320 0.05% 

Kabata et aI. (1989) 9 340 374 1.05 

Maezawa et al. (1990) 24 210 370 0.11 

McLinden et aI. (1989) 1 247 0.09 

Morrison and Ward (1991) 26 270 370 0.12 

Wilson and Basu (1988) 9 240 370 0.14 

Table 7.14 Summary of experimental saturated liquid density data. 
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Figure 7.10 R134a saturated liquid density comparison with experimental data. 
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Source Number of Temperature range (K) Pressure range (MPa] 
data points minimum maximum minimum maximum 

Goodwin and Moldover (1990) 93 230 340 0.005 0.058 

Guedes and Zollweg (1992) 184 200 380 0.13 70 

McLinden et al. (1989) 21 300 350 0.10 0.10 

Table 7.1Sa Summary of experimental single-phase speed of sound data. 

Source Absolute error 
average maximum 

Goodwin and Moldover (1990) 0.01% 0.04% 

Guedes and Zollweg (1992) 0.22 2.32 

McLinden et al. (1989) 0.02 0.04 

Table 7.1Sb Summary of errors for experimental single-phase speed of sound data. 
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Figure 7.11 R134a single-phase speed of sound comparison with experimental data. 
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Input Properties 

O-D Searches T,p 

I-D Searches T,P 

T,h 

T,u 

T, s 

T,x 

p,P 

p,h 

p,U 

p,s 

p,x 

2-D Searches P,h 

P,u 

P, s 

P,x 

h,u 

h, s 

h,x 

u,s 

u,x 

s, x 

Refrigerant Prop_erty Routines 

ALLPROPS REFPROP EES 

x x x 

* x x 

x 

** 
x x 

x 

x x 

x x 

x ** 
x x 

x 

x x x 

** 
x x x 

x 

x 

** 

** 

** 

** 

x = solves for properties 

* = requires an initial guess for p 

** = has convergence problems 

*** = problems in the liquid region 

prop.f 

x 

x 

*** 
x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

x 

**** 
x 

** 

x 

** 

** 

**** = only independent in the vapor region 

Table 7.16 Combinations of input properties for which the property routines. 
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Chapter 8 

Conclusions 

In this thesis, a transient model was developed to predict the behavior of the vapor 

compression cycle of a mobile air-conditioning system. Mobile air-conditioning systems 

operate in a transient mode due to the variations in compressor speed, condenser air flow rate, 

and the control strategy such as clutch-cycling. The majority of transient models in the 

literature are for stationary systems which operate under different transient conditions than do 

mobile systems. Because an important part of the system model involves calculating the 

refrigerant properties correctly, we developed property routines to accurately compute the 

properties of R134a in the transient model. 

A review of the work concerning transient modeling is provided in Section 8.1. Section 

8.2 summarizes the work regarding the property routines. Section 8.3 provides suggestions for 

future work. 

8.1 Transient Mobile Air-conditioning System Model 
Our transient model treats the components in a vapor compression refrigeration system 

including the compressor, condenser, orifice tube, evaporator, and accumulator. Each 

component model is designed to use enthalpy (h), pressure (P), and mass flow rate (m) as inlet 

and outlet properties. 

The model operates in three different modes: (a) as a steady-state model, (b) as a 

compressor-on transient model, and (c) as a compressor-off transient model. The above models 

were validated with experimental data obtained from a test facility specifically designed to 

simulate mobile air conditioners. 

We model the heat exchangers using a control-volume approach. The refrigerant circuit 

in the evaporator and condenser is divided into a series of constant-volume cells. The 

conservation of mass, conservation of energy, and conservation of momentum equations are 

applied to each cell. Between simulations, the number of cells and/or the volume of the cells 

can be modified in order to change the resolution of the model. 

The condenser is a fin-tube heat exchanger, and the evaporator is a plate-fin heat 

exchanger. It is necessary to separately model the air and refrigerant heat transfer coefficient in 

order to simulate the correct behavior during compressor start-up and shut-down. In the 

condenser model, we use the following heat transfer correlations: a) Hiller and Glicksman 
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(1976) for the vapor flow, b) Dobson et al. (1994) for two-phase flow, c) Dittus-Boelter (1930) 

for liquid flow, and d) Gray and Webb (1986) for the air flow. We use the following heat 

transfer correlations in the evaporator model: a) Kandlikar (1991) for two-phase flow, b) 

Robertson and Lovegrove (1983) for vapor flow, and c) Manglik and Bergles (1995) for the air 

flow. The refrigerant pressure drop correlation is empirical for both heat exchangers. 

A semi-empirical model is used for the compressor. We based the compressor model 

on data acquired in our own laboratory (VIUC data) and data obtained by Ford Motor Company 

(Ford data) for the exact same compressor. The mass flow rate equation is based on the 

volumetric efficiency and requires different coefficient for the UIUC data and Ford data. After 

extensive analysis of the data, we concluded that the differences arise from different installation 

of the compressors between the two test facilities. The outlet temperature is predicted by 

assuming a polytropic process. Compressor power is directly proportional to the mass flow rate 

and enthalpy change across the compressor. 

The orifice tube model is semi-empirical and was developed by Hmjak (1998). It is 

valid when the inlet refrigerant is subcooled liquid, two-phase, and superheated vapor and the 

flow is choked. When the inlet is subcooled, a modified orifice flow equation is used. When 

the inlet is vapor, the Fanno flow equation is used. When the inlet is two-phase, the mass flow 

rate is determined from a quality weighted average between the pure liquid flow rate and pure 

vapor flow rate. We compared the model with experimental data acquired from our test facility 

using three different diameter orifice tubes. The model accurately predicts the mass flow rate 

for the third tube tested, but significantly overpredicts the mass flow rate for the first tubes 

tested. The refrigerant pipes around the orifice tube were modified after tests with the first two 

tubes were completed. This modification to the refrigerant pipes is the only systematic 

difference we could identify to explain the disparity. An empirical correction was made to 

bring the mass flow rates for the first two orifice tubes in agreement with the model. 

The accumulator model is a slight modification of the heat exchanger model. The 

conservation of energy, conservation of momentum, and conservation of mass equations are 

applied to the accumulator. An additional equation constrains the accumulator exit to be vapor. 

The equations for the component models are combined into a system model. The 

steady-state equations are solved using a globally convergent Newton-Raphson technique. The 

transient equations are solved using a public domain program DASSL which solves a 

combination of algebraic and differential equations. 

The steady-state model was compared to experimental data. The predicted and 

measured mass flow rates agree within 10%. The model predicts the condenser pressure within 

10% and the evaporator pressure within 15% of the measured values. The predicted and 

measured condenser and evaporator capacities agree within 10% and 15%, respectively. 
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The transient model was compared with a) city driving cycle data, b) compressor shut

down data, c) compressor start-up data, and d) clutch-cycling data. The model predictions 

agree extremely well with the city driving cycle data. The model agrees well with the two 

different compressor shut-down simulations. The model predicted that the liquid line becomes 

two-phase sooner than the experimental data indicates. This difference in time causes a slight 

overprediction in the condenser pressure. 

The transient model predictions agree well with the first case of the compressor start-up 

data in which the liquid line was flooded. In the second case, the experimental data indicate 

that the liquid line is initially either vapor or two-phase refrigerant. The model predicts that the 

liquid line took much longer to flood than seen in the experimental data. We believe that 

during the initial start-up, slugs of liquid refrigerant are exiting the accumulator, traveling 

through the compressor, and filling the liquid line. Our model does not account for liquid 

entering the compressor. To treat this very large initial mass flow rate seen in the experimental 

data, we artificially transfer mass from the accumulator to the liquid line. After this 

modification is made, the model provides good agreement with the experimental data for the 

second case of the compressor start-up and the clutch cycling case. 

8.2 Refrigerant Property Routine 
We developed a computer program to calculate the temperature, pressure, density, 

enthalpy, internal energy, entropy, quality, specific heat at constant pressure, specific heat at 

constant volume, Gibbs free energy, and speed of sound of R134a in the liquid, vapor, two

phase, and supercritical regions using any reasonable pair of these parameters. 

We use the Modified Benedict-Webb-Rubin (MBWR) equation of state in the property 

routines because it is extremely accurate, it is valid in the vapor, liquid, and supercritical 

regions, and the coefficients have already been determined for many refrigerants. This 

equation determines the pressure as a function of temperature and density. When this equation 

of state is combined with an equation of the ideal specific heat at constant volume, all other 

single-phase properties can be determined explicitly as a function of temperature and density. 

The two-phase properties can be explicitly calculated from the temperature, quality, and 

saturation properties. As a result, we need to be able to calculate the saturation properties as a 

function of temperature. The saturated liquid and vapor properties are defined as having the 

same temperature, pressure, and Gibbs free energy. We developed a two-dimensional search 

routine to find the saturation densities and pressure at a given temperature. 

Our property routines compute an output property from any combination of the 

following input properties: temperature, pressure, density, enthalpy, internal energy, entropy, 

and qUality. In the single-phase region, unless both temperature and density are given, we first 
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perform a search routine to find these parameters frorp which we compute all other output 

properties. If either temperature or density is an input, then a one-dimensional search must be 

performed to find the other one. If neither temperature nor density are given, then a two

dimensional search must be performed to find both temperature and density. In the two-phase 

region, temperature and quality are required to compute the output property. If pressure is an 

input, then a one-dimensional search is performed to determine the saturation temperature. If 

neither temperature nor pressure are inputs, then a one-dimensional search is performed to 

determine the correct saturation temperature and quality. 

The MBWR equation of state is only accurate for a certain range of temperatures and 

densities. Outside of this range, redundant solutions exist for the search parameters. As a 

result, the above search routines must be constrained. 

We must be able to determine whether the refrigerant is in the single-phase or two

phase region. If either temperature or pressure are an input property, it is trivial to determine 

the phase by directly calculating the saturation properties. If neither temperature nor pressure 

are inputs, then we use a single-phase search to find the temperature and density. We then 

determine if these properties are in the single-phase or the two-phase region. If they are in the 

single-phase region then the temperature and density are correct. If they are in the two-phase 

region, we must perform a two-phase search to calculate the correct temperature and quality. 

We tested the property routines to ensure that the search routines converge on the 

correct properties. The property routines converged to the correct answer whenever the input 

properties uniquely defined the state. Redundant answers exist in the liquid region for a) 

temperature and enthalpy and b) enthalpy and internal energy. In the two-phase region, 

redundant answers exist for a) quality and enthalpy, b) quality and internal energy, and c) 

quality and entropy, and d) enthalpy and internal energy. 

To determine the accuracy of our property routines, we compared predictions to 

experimental a) single-phase P-v-T data, b) saturation pressure data, c) saturated liquid density 

data, and d) speed of sound data. The property routines agree extremely well with the 

experimental data found in the literature. 

8.3 Recommendations for Future Work 
The transient mobile system model can be extended in several different directions. The 

model can be modified to include other control strategies such as thermal or electronic 

expansion valves. Also, the vapor compression model can be combined with an airside model 

which can predict the vehicle cabin temperature. The evaporator model can be extended to 

include the effects of humidity and frosting on the heat transfer coefficient. Finally, the 
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slugging phenomena through the compressor at start-up should be investigated more 

thoroughly. 

Regarding the refrigerant property routines, these can easily be extended to include 

more refrigerants and more equations of state. Also, an important extension involves adding 

transport properties, predicting the properties of refrigerant mixtures, and adding oiVrefrigerant 

mixtures. 
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Appendix A 

Transport Properties for R134a 

This appendix summarizes the correlations for the liquid and vapor transport properties 

for R134a. All of these equations were obtained from technical manuals provided by DuPont 

Co. (1992). The equation for the liquid viscosity is valid between -57 ·C and 93 .c. 

J.1liquid = 267.67 - 3.6494T + 3.9304*1O-2 T2 - 2.191*1O-4 T3 (A.I) 

The equation for the vapor viscosity is valid between 38 ·C and 149 .c. 

Ilvapor = 11.021 + 3.8599 * 10-2 T (A.2) 

The units for Equations A.l and A.2 are jlPa·s for viscosity and ·C for temperature. 

The liquid and vapor thermal conductivity for R 134a are 

kliquid =9.537*10-2 - 5.17dO*IO-6 T (A.3) 

k 1 212 * 10-2 + 9.60 * 10-5 T vapor = . (A.4) 

The unit of thermal conductivity is W/m·K and the unit of temperature is·C. The range of the 

liquid thermal conductivity is between -60 ·C and 60·C. The range of the vapor thermal 

conductivity is between O·C and 120 .c. 
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AppendixB 

Dry Air Properties 

This appendix summarizes the correlations for dry air properties used in the transient 

system model. These properties are used to find the air heat transfer coefficient for the heat 

exchangers. All of these properties are at atmospheric pressure. 

The equation for the thermal conductivity of air was developed from data obtained from 

Incropera and DeWitt (1990). It is valid between 200 and 400 K. The units of the thermal 

conductivity is (W/m·K) and the units of temperature are (K). 

kair = 2.54 * 10-3 + 7.82 * 10-5 T (B.1) 

The equation for the viscosity was also obtained from data compiled in Incropera and 

DeWitt (1990). It is also valid between 200 and 400 K. The unit of the viscosity is Pa·s and 

the unit of temperature is K. 

~air = 3.672 * 10-6 + 4.876 * 10-8 T (B.2) 

The specific heat is assumed to be constant. 

Cp,air = 1007 J /kg. K (B.3) 
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Appendix C 

Heat Exchanger Geometry Calculations 

C.I Condenser 
A description of the fin-tube condenser is provided in Section 3.4. This section 

describes the calculations perfonned to obtain the diameters, area, and volumes required for the 

heat exchanger model. 

C.I.I Condenser Refrigerant-side Geometry 

In the condenser the refrigerant flows through round tubes and round manifolds (Figure 

3.4). The following parameters are measured from the heat exchanger. 

Din = Inner diameter of the refrigerant tube 

Ltube = Length of a single refrigerant tube 

Voltot = Total internal volume 

Ntot = Total number of tubes 

The total internal volume is detennined by filling the heat exchanger with water and measuring 

the volume of the water. 

The cross sectional area of a tube is used to compute the mass flux. 

1t 2 
Acs = -Din 

4 
(CI) 

The surface area of a tube is multiplied by the refrigerant heat transfer coefficient. We only 

include the surface area of the tubes. 

(C2) 

The volume of the tubes is needed to find the refrigerant mass in the system. 
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Vol tot 
Vol tube = 

Ntot 
(C.3) 

To determine the surface area, cross sectional area, and volume of a pass, the values computed 

above must be multiplied by the number of tubes in a pass. 

C.l.2 Condenser Air-side Geometry 

The following equations were obtained from Fisher and Rice (1983) and Bridges (1995) 

for computing the geometry dimensions for plain fins. The following dimensions define the 

airside of the condenser. 

hhx = Height of the heat exchanger 

dhx = Depth of the heat exchanger 

Lhx = Length of the heat exchanger 

Dout = Outer tube diameter 

Ntubes,tot = Total number of tubes in the airflow direction 

Ntubes,front = Total number of tubes in the airflow direction 

ST = Tube spacing transverse to the air flow direction 

SL = Tube spacing in the air flow direction 

Fth = Fin thickness 

fp = Fin pitch 

The effective diameter is used in finding the airside Reynolds number. 

Deff = Dout + 2Fth (C.4) 

The minimum free flow area is used to the determine mass flux. 

Afreeflow = Ahx,frontal - Atubes,front - Afins,front (C.5) 

The frontal area of the heat exchanger is 

(C.6) 
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The frontal area of the refrigerant tubes is 

Atubes,front = Ntubes,front Dout Lexposed (C.?) 

where Lexposed is the length of tube not covered by fins. 

(C.8) 

The frontal area of the fins is 

(C.9) 

The surface area is multiplied by the heat transfer coefficient to find the heat transfer resistance. 

The surface area of the tubes is 

Atubes = Ntubes,tot 1t Dout Lexposed' (C.lO) 

The surface area of the fins is 

- [ 1t 2J Afin - 2 fp Lhx hhxdhx - N tubes,tot "4 Dout . (C. II) 

A surface efficiency accounts for the fact that the fin temperature is not the same as the tube 

temperature. First we must compute the fin efficiency for thin sheet fins. 

11 fin 
tanh( m Lfin,eff ) 

= 
m Lfin,eff 

(C.12) 

When the fin extends from tube to tube, the effective fin length is half the tube spacing. In our 

condenser, the transverse fin spacing is different from the tube spacing in the flow direction. 

We take an average of the spacing in the two directions. 
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-(~+~) 
Lfln,eff - 2 (c. 13) 

The fin parameter is 

m= (C.14) 

where hair is the airside heat transfer coefficient and kwall is the thermal conductivity of the 

wall. 

The surface efficiency is 

11 surf 
= A tube + l1finAfin 

A tube + Afin 

The surface efficiency is used to find the in the overall heat transfer coefficient for the air. 

The above calculations are for the entire heat exchanger. 

C.2 Evaporator 

(C.15) 

(C.16) 

A description of the plate-fin evaporator is given in Section 3.5. This section describes 

the calculations performed to obtain the diameters, area, and volumes needed for the heat 

exchanger model. 

C.2.1 Evaporator Refrigerant-side Geometry 

In the evaporator the refrigerant flows through flat plates with fins. The following 

parameters are specified. 

Lplate = Length of the plate in the flow direction 

NCin = Number of fins perpendicular to the flow direction 

LCin = Fin length 
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hfin = Fin height 

sfin = Spacing between adjacent fins 

tfin = Fin thickness 

Vol tot = Total internal volume 

N tot = Total number of plates 

The fins in the evaporator are modeled as serrated fins (Section 3.5.1) The hydraulic 

diameter is determined by the following equation (Manglik and Bergles, 1995). 

= (C.17) 
Asurface/L 

The cross sectional area is determined from the following equation. 

Acs,plate = sfin hfin (N fin + I) (C.I8) 

The surface area per plate is 

A surface, plate = 2 (Nfin + l)(hfins + Sfins) Lplate (C.19) 

Because the height of the fins is small compared with the spacing between the fins, the surface 

efficiency is modeled as equal to unity. As a result, we do not need to distinguish between the 

area of the plate and the area of the fins. 

The total internal volume is again determined by filling the evaporator with water and 

measuring the volume of the water. The volume of the plate is 

Volplate 
= Vol tot 

Ntot 
(C.20) 

Above dimensions are all given for a single plate. To find the dimensions of a pass, the cross 

sectional area, surface area, and volume must be multiplied by the number of plates per pass. 

223 



C.2.2 Evaporator Air-side Geometry 

The fins on the airside are modeled as offset-strip fins (Figure 3.10). A single row of 

fins exists between each refrigerant plate. The following dimensions define the evaporator 

airside. 

hhx = Height of the heat exchanger 

dhx = Depth of the heat exchanger 

Lhx = Length of the heat exchanger 

Nfin,rows = Number of rows of fins 

fp = fin pitch 

Fth = Fin thickness 

hfin = Fin height 

sfin = Spacing between adjacent fins 

Lfin = Fin length 

tfin = Fin thickness 

Nplate = Number of total plates 

hplate = Height of the outside of the plate 

In the specific evaporator used in the model, three different lengths of airside fins exists. The 

following parameters must be computed for each length of fins. 

The hydraulic diameter is the same as Equation C.17. The minimum free flow frontal 

area is 

Afreeflow = Ahx,frontal - Aplates,front - Afins,front· (C.21) 

The total frontal area of the heat exchanger is 

(C.22) 

The frontal area of the plates is 

. Aplate,frontal = N plate Lhx hplate . (C.23) 

The frontal area of the fins is 
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A fins, front = 2 N fin,rows (fp L hx ) tfins hfins· 

The surface area of plates is 

Aplate = 2 N plates d hx Lhx· 

The surface area of fins is 

The fin efficiency for offset-strip fins is (Carey and Mandrusiak , 1986) 

11 fin 

~here the fin parameter is 

m= 

= 
tanh(m hfins) 

m hfins 

2 hair ( tfins + L fins ) 

kwaUtfinsLfins 

(C.24) 

(C.25) 

(C.26) 

(C.27) 

(C.28) 

hair is the heat transfer coefficient of the air and kwaU is the thermal conductivity of the wall. 

The surface efficiency is 

l1surf (C.29) 

The surface efficiency is used in the following overall heat transfer coefficient calculation. 

(C.30) 

The above calculations are for the entire heat exchanger. 
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AppendixD 

Calculating Properties from the 

Modified Benedict Webb Rubin Equation of State 

D.I Calculating Thermodynamic Properties from an Equation of State 
This section documents how to calculate thennodynamic properties explicitly from an 

equation of state of the following fonn. 

Nf 

P(T,p) = L/i(T) gi(P) (D.I) 

i=l 

Nc . 

c/ (T) = L ci di(T) (D.2) 

i=l 

Using the above two equations, internal energy, enthalpy, entropy, Gibbs free energy, specific 

heat at constant volume, specific heat at constant pressure, and the speed of sound can be 

explicitly calculated as a function of temperature and density. The fonns of the functions fi and 

gj are unique to the specific equation of state. The function di is generally a polynomial and ci 

is a vector of constants. 

The nomenclature defined below is used to simplify the documentation of the equations. 

, df. 
fi (T) = _1 

dT 
(D.3) 

" d2f. 
fi (T) = 1 

dT2 
(D.4) 

, dgj 
gj (T) = 

dT 
(D.S) 
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(D.6) 

Di(T) = f dieT) dT (D.7) 

Ei (T) = f diiT) dT (D.8) 

The functions summarized above are used to solve for the thermodynamic properties explicitly 

as a function of temperature and density. We will also solve for the derivatives of each 

thermodynamic property with respect to temperature and density. 

D.1.1 Pressure Equations 

Pressure is determined from Equation D.l. The derivatives of pressure are 

ap 
aT (T,p) 

ap(T ) 
ap ,p 

D.I.2 Internal Energy Equations 

Nf 

= L fi' (T) gi (p) 
i=l 

Nf 

= Lfj(T)gj'(p) 

i=l 

(D.9) 

(D.lO) 

Internal energy can be calculated from temperature and density with the following 

thermodynamic equations. 

f 0 f( ap) dp u(T,p) = Cv dT + P-T aT p2 (D. II) 

Calculating internal energy from equation D.l and D.2 gives 

Nc N f 

u(T,p) = LCiDi(T) + L[fi(T)-Tfj'(T)]Gi(P) (D.12) 

i=l i=l 
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The derivatives of internal energy are 

D.l.3 Enthalpy Equations 

The definition of enthalpy is 

p 
h(T,p)=u+

p 

The equation for enthalpy from Equation D.12 and D.1 is 

The derivatives of enthalpy are 

D.l.4 Entropy Equations 

(D.13) 

(D.14) 

(D. IS) 

(D.17) 

(D. IS) 

Entropy can be calculated from temperature and density with the following 

thennodynamic equations. 
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f evO flOP 
s(T,p) = -dT + ~-dp 

T P op 
(D.19) 

Plugging Equation D.I and D.2 into D.19 we get 

Nc N f 

s(T,p) = I>i Ei(T) - If/ (T) Gi(P) (D.20) 

i=I i=l 

The derivatives of equation D.20 are 

(D.21) 

(D.22) 

D.1.S Gibbs Free Energy Equations 

The equations for Gibbs free energy is 

g(T,p) = h - Ts (D.23) 

From Equations D.16 and D.20 we get 

(D.24) 

The derivatives are 
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N f ' 

~g(T,P) = L/i'(T)gdp) 
P i=l P 

D.I.6 Specific Heat at Constant Volume 

The specific heat at constant volume is calculated from the following equation. 

From Equation D.1 and D.2 we get 

Nc Nf 

cv(T,p) = L ci di(T) - T Lfi" (T) Gi(P) 

i=l i=l 

D.I.7 Specific Heat at Constant Pressure 

The thermodynamic equation of the specific heat at constant pressure is 

From Equations D.28 and D.1 we get 

Nc Nf Nf 

cp(T,p) = LCi di(T) - TLfi"(T)Gi(p) + Lfj'(T)gi(P) 

i=l i=l j=l 

D.I.S Speed of Sound Equations 

The speed of sound is defined 
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(0.25) 

(D.26) 

(0.27) 

(0.28) 

(D.29) 

(D.30) 



SS(T'P)~) (~:), 

The property is calculated from the following equations 

ss(T,p) = dP 
dp 

dP ds 
--
dTdp 

ds 

dT 

(D.31) 

(D.32) 

The derivatives in the above equations are calculated from Equations D.19, D.lO, D.2l, and 

D.22. 

D.2 Functions for the Modified Benedict Webb Rubin Equation of State 
The Modified Benedict Webb Rubin (MBWR) equation of state has the following form. 

9 (J 15 P = L:an pn + exp -~ Lan p2n-17 
n=l Pent n=10 

(D.33) 

If we write it in the notation defined in Equation D.l, the parameters for the functions fi and gi 

are summarized in Table D.l. The variables b I-b32 are empirical coefficients. To compute f' 

(Equations D.3) the following equation is used. 

(D.34) 

To compute f" (Equations DA) the following equation is used. 

(D.35) 
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i fj(T) gj(p) 

1 RT P 

2 btT+ brif + b~ + b4 /T+ bs /T2 p2 

3 b6T + b7 + b8 / T + bg / T2 p3 

4 blOT + bll + b12 / T p4 

5 b13 p5 

6 bI4 / T + bI5 / T2 p6 

7 b16/ T p7 

8 bI7 / T + bI8 / T2 p8 

9 bI9/ T2 p9 

10 b20 / T2 + b2I / T3 p-' expJ -~~"J 
11 b22 / T2 + b23 / T4 p:J exp( -'Yp~ I 
12 b24 / T2 + b25 / T3 pi exp( -yp~J 

13 b26 / T2 + b27 / T4 p~ exp( -'Yp~ I 
14 h28 / T2 + b29 / T3 p •• exp( _ypL I 
15 b30 / T2 + b3I / T3 + b32 / T4 pU exp( _ypL I 

Table D.I Functions which define the MBWR equation of state. 

To compute g' (Equations D.5) the following equations are used. 

(D.36) 

(D.37) 

To compute G (Equations D.6) the following equations are used. 

. !pn_I f 1 - n ~ 1 
pn p2 dp = n-l 

log(p) n = 1 
(D.38) 
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The equation for the ideal gas specific heat at constant volume is 

To compute D (Equations D.7) the following equation is used. 

J Tn+l 
TndT = -

n +1 

To compute E (Equations D.7) the following equation is used. 
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Appendix E 

Adding New Refrigerants to Prop.f 

Three subroutines must be added and two functions must be modified to add a new 

refrigerant to the property routines. One subroutine must be added to initialize the coefficients 

of the refrigerant, for example Subro':ltine R134a. This subroutine must be called by the user 

before properties of the new substance can be computed. In this procedure we will call this 

Subroutine X. A subroutine must be added which contains the curve fit of the saturation 

pressure as a function of temperature. Another subroutine must be added which contains the 

curve fit of the saturated liquid density as a function of temperature. For R134a these 

subroutines are called Subroutine PsatT_r134a and Subroutine rhofT_r134a. In this procedure 

we will call the new subroutine Subroutine PsatT _ X and Subroutine rhofI..)( .. Function PsatT 

must be modified to call the Subroutine PsatT X and Function rhofT must by modified to call 

Subroutine rhofT _X. The following procedures list what specific changes must be made to the 

program to add a new refrigerant. 

1) Find the coefficients for-the MBWR equation of state and the ideal specific heat (CV O) 

equation for the new refrigerant. 

2) Convert the coefficients to the correct units which are K, Pa, and kg/m3 for temperature, 

pressure, and density, respectively. Table E.l summarizes the units for each coefficient in the 

MBWR equation of state. 

3) Copy Subroutine R134a and modify it for the new the refrigerant. Set all of the constants 

equal to zero. At this point 

A) Change the subroutine name to one appropriate for the refrigerant (e.g. Subroutine 

X). 

B) Change refname to an unused integer 

C) Change the ideal gas constant and the molecular weight. 

D) Change the coefficients of the MBWR equations of state. 

E) Change the coefficients of the specific heat equations. 
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F) Change the minimum and maximum temperature as specified by the equation of 

state. 

b unit b unit b unit b unit 

1 Pa 9 PaK2 17 PaK 24 PaK2 
(kg/m2)2K (kg/m2)8 (kg/m2)3 (kg/m2)7 

2 Pa 10 Pa 18 PaK2 26 PaK2 
(kg/ m2)2KO.5 (kg/m2)4K (kg/m2)8 (kg/m2)9 

3 Pa 11 Pa 19 PaK2 27 PaK4 
(kg/m2)2 (kg/m2)4 (kg/m2)9 (kg/m2)9 

4 PaK 12 PaK 20 PaK2 28 PaK2 
(kg/m2)2 (kg/m2)4 (kg/m2)3 (kg/m2)1l 

5 PaK2 13 Pa 21 PaK3 29 PaK3 
(kg/m2)5 (kg/m2)2 (kg/m2)6 (kg/m2)11 

6 Pa 14 PaK 22 PaK2 30 PaK2 
(kg/m2)3 K (kg/m2)6 (kg/m2)5 (kg/m2)I3 

7 Pa 15 PaK2 23 PaK4 31 PaK3 
(kg/m2)3 (kg/m2)6 (kg/m2)6 (kg/m2)I3 

8 PaK 16 PaK 24 PaK2 32 PaK4 
(kg/m2)3 (kg/m2)7 (kg/m2)7 (kg/m2)I3 

Table E.l Units of the empirical coefficients of the MBWR equation of state. 

4) Determine the saturation densities and pressures. Find the critical point from a table of 

refrigerant properties. Create an array of temperatures between the minimum and critical 

temperature; cluster a lot of points around the critical value. From a table of refrigerant 
properties find an initial guess for Pg and Pf at T miD' Perform a two-dimensional search to find 

the saturation properties as described in Section 7.3.1. 

5) Find the critical point using the two-dimensional search described in Section 7.3.3. After 

determining the critical temperature, repeat Step 4 using the correct critical temperature for the 

equation of state to find the critical density. Changing the critical temperature, pressure, and 

density in Subroutine X. 

6) Take the saturation data obtained in Step 4 and determine curve fits for the saturated liquid 

density and saturation pressure as functions of temperature. Reid et al. (1987) document 
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possible forms of the curve fits. Place the equations for the curve fits in Subroutine PsatT -.X 
and Subroutine rhop _X. Modify Function PsatT and Function rhop to call the Subroutine 

PsatT _ X and Subroutine rhop _ X when refname equals the integer specified in Step 3. 

8) Next find the constants to define the reference state for enthalpy and entropy. To use the 

ASHRAE standard use the following steps. 

A) Make uc(l) = - prop('h ','T ',233.15,'x "OdO) 

B) Make sc(l) = -prop('s ','T ',233.15,'x "OdO) 

If instead you would like to use the international standard use the following steps. 

A) Make uc(l) = - prop('h ','T ',273.15,'x ',OdO) + 200 

B) Make sc(l) = - prop(,s ','T ',273.15,'x "OdO) + 1 

Change uc( 1) and sc( 1) in Subroutine X. 

9) Begin analyzing the performance of the property routine as described in Section 7.5. If the 

density range is unknown use the following equations. 

Pmin (E.1) 

Pmax = Pf (Tmin) + 100 (E.2) 

Change rhomin and rhomax to the correct value in Subroutines X. 
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