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Abstract

Analytic Studies of Fermions in the Conformal Bootstrap

Soner Albayrak

2021

In this thesis, we analyze unitary conformal field theories in three dimensional spaces by

applying analytic conformal bootstrap techniques to correlation functions of non-scalar op-

erators, in particular Majorana fermions. Via the analysis of these correlation functions, we

access several sectors in the spectrum of conformal field theories that have been previously

unexplored with analytic methods, and we provide new data for several operator families.

In the first part of the thesis, we achieve this by the large spin expansions that have been

traditionally used in the conformal bootstrap program for scalar correlators, whereas in the

second part we carry out the computations by combining several analytic tools that have

been recently developed such as weight shifting operators, harmonic analysis for the Eu-

clidean conformal group, and the Lorentzian inversion formula. We compare these methods

and demonstrate the superiority of the latter by computing nonperturbative correction terms

that are inaccessible in the former. A better analytic grasp of the spectrum of fermionic

conformal field theories can help in many directions including making new precise analytic

predictions for supersymmetric models, computing the binding energies of fermions in curved

space, and describing quantum phase transitions in condensed matter systems with emergent

Lorentz symmetry.
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Chapter 1

Introduction

It would not be an overstatement to say that quantum field theories (QFTs) with conformal

symmetry are tremendously important in modern theoretical physics. Understanding such

theories may shed light on numerous areas, including but not limited to

1. the study of quantum gravity through the gauge gravity correspondence,

2. beyond the standard model physics via phenomenological applications,

3. condensed matter systems through critical phenomena,

4. effective field theories perturbed around CFTs via renormalization flow.

Such relevance of conformal field theories (CFTs) has stimulated an intensive amount of

research into analytic and numerical tools to understand the underlying principles and re-

strictions of conformal symmetries in field theories. In two dimensional spacetimes, the

restrictions of conformal symmetry are enhanced to those of the Virasaro symmetry, hence

two dimensional CFTs enjoy a greater number of constraints which in turn enable their clas-

sification and in some cases their complete solution. In contrast, CFTs in general dimensions

are harder to solve analytically and the analysis of these theories has been relatively idle in

the 20th century.

In the past decade, there has been a revival in the analytic study of conformal field the-

ories, particularly through nonperturbative tools and general constraints such as unitarity
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and causality. This program, coined the conformal bootstrap in analogy to the s-matrix boot-

strap program of 1960s, has yielded novel insight into the analytic structure of CFTs, both

in Euclidean signature — convergence of the operator product expansion (OPE), analytic

expansions for the conformal blocks, the existence of the operators that shift the conformal

weights of local operators, etc. — and in Lorentzian signature — the existence of infinite

double twist families, analyticity in spin, light-ray operators, etc.

Despite the stupendous progress of the last decade, the analytic studies in CFTs have

been mostly focused on the direct study of the scalar operators, i.e. local operators in

the trivial representation of the rotation subgroup of the conformal group.1 Conformal

symmetry tells us that symmetric traceless representations of the SO(d) group appear in

the OPE of scalar operators, so the analysis of scalar operators is deemed sufficient if one is

only interested in such operators. This is especially a natural choice as the direct analysis of

spinning operators through correlation functions of such operators is far more complicated for

a variety of technical reasons. However analysis of correlation functions of scalar operators

alone (or correlation functions of any bosonic operators for that matter) does not give access

to the fermionic operators in the spectrum of CFTs.

There are various reasons as to why CFTs with fermionic operators are of great relevance.

In d = 4, we expect non-trivial non-supersymmetric fermionic CFTs because of the UV

Lagrangian descriptions based on matter coupled to gauge theories that flow in the IR to

weakly coupled Caswell-Banks-Zaks fixed points [11, 12]. The situation is similar in d = 3

where we can consider IR fixed points of QED coupled to matter or the Gross-Neveu-

Yukawa (GNY) models. Furthermore, there is a fermionic sector in any supersymmetric

conformal field theory (SCFT) in any d,2 and a better analytic grasp of such theories is not

only important for their theoretical relevance but also for their utility in the description of

many condensed matter systems (such as a critical point on the boundary of topological

superconductors [14]).

In this thesis we address this missing link in the literature by extending the analytic

1. Among some of the exceptions for the analytic bootstrap with external spinning operators, we can name
the lightcone bootstrap [1–7], Mellin space techniques [8, 9], and mean field theory computations [10].

2. We note that superalgebras actually only exist for d ≤ 6 [13].
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progress achieved for bosonic CFTs to 3d CFTs with fermionic sectors. We will do this by

considering correlation functions of Majorana fermions with scalars and with each other; this

allows us to reach various new sectors such as the fermionic double twist operators.3 Our

work has two main consequences: firstly we provide explicit new data that is applicable in

any unitary 3d CFT; secondly we detail and discuss two different technologies to achieve this

— an old style method that has been used for scalars for some time now, and a new method

that combines several analytic tools that have been recently developed in the bootstrap

literature. We believe that our results can be utilized in various concrete CFTs such as the

GNY models and that our method for the analysis of the fermionic correlators be extended

to higher-spin operators, which would ultimately enrich our understanding of conformal field

theories even further.

Outline of the thesis

We start with a general introduction of conformal symmetry and the conformal bootstrap

program in Chapter 2. In particular, we review the historical development of both, alongside

with a brief mathematical description of conformal symmetry. We then specialize to fermions

in three dimensional spacetime in Chapter 3: we set our conventions, define the spectrum of

fermionic theories, review the traditional so-called lightcone bootstrap approach, and carry

out the computations in this scheme to obtain the CFT data.

The results obtained in Chapter 3 are not analytic in the spin ` of the relevant CFT

operators; in particular, they should be regarded as asymptotic results around ` ∼ ∞.

At finite spin, we may get spurious poles which ruin the analyticity: such spurious poles

are actually canceled by what we call the non-perturbative corrections, i.e. terms that are

exponentially suppressed in ` — hence are invisible to the framework of Chapter 3. In

Chapter 4, we detail this difference and demonstrate its importance in concrete scalar CFTs

such as the 3d Ising and O(N) models. In these theories, we obtain the non-perturbative

3. The irreducible representations of the so(2, 1) algebra are real, so we do not lose any generality by
considering Majorana spinors of the Pin(2, 1) group. This is in contrast to d = 4 case where the irreducible
representations of the so(3, 1) algebra are complex hence Majorana fermions are special cases (Technically,
in both d = 3, 4, we have pseudo-Majorana spinors instead of Majorana spinors but we will gloss over this
distinction [15]).
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corrections through a recently developed analytic tool (the Lorentzian inversion formula).

In the rest of the chapter, we discuss how to extend this approach to spinning operators,

review necessary ingredients, and apply the derived relations to obtain the non-perturbative

corrections for various fermionic operators. The backbone of this approach relies on the 6j

symbols of the conformal group; in Appendix A, we provide further details for these objects.

Citations to Previous Work

Chapter 3 is essentially identical to

S. Albayrak, D. Meltzer, and D. Poland, “More Analytic Bootstrap: Nonper-

turbative Effects and Fermions,” JHEP 08 (2019) 040, arXiv:1904.00032 [hep-th]

Chapter 4 is excerpted from

S. Albayrak, D. Meltzer, and D. Poland, “More Analytic Bootstrap: Nonper-

turbative Effects and Fermions,” JHEP 08 (2019) 040, arXiv:1904.00032 [hep-th]

S. Albayrak, D. Meltzer, and D. Poland, “The Inversion Formula and 6j

Symbol for 3d Fermions,” JHEP 09 (2020) 148, arXiv:2006.07374 [hep-th]

Appendix A is excerpted from

S. Albayrak, D. Meltzer, and D. Poland, “The Inversion Formula and 6j

Symbol for 3d Fermions,” JHEP 09 (2020) 148, arXiv:2006.07374 [hep-th]
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Chapter 2

Preliminaries

2.1 Historical background

2.1.1 Brief account of conformal symmetry in the past centuries

In this section, we will review the evolution of the conformal bootstrap. A more appropriate

history should actually start around 19th century, encompassing the story of conformal

transformations themselves. Such a review would take us from the times of Joseph Liouville

and Sophus Lie, and would include all the relevant topics along the timeline of conformal

symmetries. As it happens, there is a such a review and interested reader is directed there

[16]. Below, we will recap the developments in the last century and set the scene for the

emergence of the conformal bootstrap as we understand it today.1

The end of the 19th century and the first half of 20th century have witnessed exiting

advancements in the area of scale invariance among which the first observation of critical

opalescence and the exact solution of 2d Ising model come to mind [18, 19]. Conformal

invariance also entered into physics around this time through the Maxwell equations. Later

with the advancement of the Wilsonian renormalization group, it was realized that CFTs

have a much broader usage than their mere application in statistical and classical physics

because any QFT connects to a CFT in the UV and another one in the IR via renormalization

group flow.2

1. See [17] for a thorough analysis along with an extensive historical account.

2. Technically endpoints of renormalization group flow are either TQFTs or scale invariant theories, which
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The greater appreciation of CFTs lead to their involvement in more and more physical

theories. However, the conformal bootstrap differs from other employment of conformal sym-

metries in both conceptual and practical senses. To understand that, we need to appreciate

the term bootstrap in physics.

The 1960’s have seen rapid proliferation of strongly interacting particles detected in

high energy collisions. The intuitive expectation that we can explain all particles in terms

of elementary ones and that local fields should be used to calculate observables started

to be doubted. In this environment, Geoffrey Chew proposed what he called the nuclear

democracy [20]. It is an approach fundamentally different in the sense that it rejects standard

reductionism in high energy physics and proposes that one should focus on fundamental laws

and how they constrain observable particles while treating them equally instead of finding

a minimal set of elementary particles to which all others can be reduced [21, 22].

Chew’s work later turned into what we call today the s-matrix bootstrap because boot-

strappers were trying to obtain the scattering matrix starting from the fundamental laws

such as Lorentz invariance and unitarity. The program was not particularly successful at

that time, besides some work on Regge trajectories such as that of Dolen, Horn, and Schmid

[23, 24]; and, the interest in s-matrix bootstrap plummeted once strong interactions were

understood in the framework of Quantum Chromodynamics. Veneziano utilized the ad-

vancements in the Regge theories [25] however this lead to a different direction, i.e. the rise

of string theory [26].

The following year of Veneziano’s work, Wilson [27] — followed by Kadanoff [28] —

initiated the analysis of current algebras in the lines of the s-matrix bootstrap3 where the

authors promoted the usage of operator product expansion (OPE) associativity as a consis-

tency condition, which was demonstrated to be sufficient to produce an alternative solution

for 2d Ising model in addition to that of Onsager’s original solution [19].

We can see the appeal of these advancements: the main problem with the s-matrix boot-

usually tend to be conformally invariant as well.

3. Like the s-matrix bootstrap, Wilson’s approach was also bypassing conventional local fields. Nonetheless,
his work with operator product expansions were proved in the realm of QFT, initially perturbatively by
Zimmerman [29]. One can also show it nonperturbatively via radial quantization with the path integral
formalism [30].
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strap was the lack of sufficient constraints to extract a large set of concrete results. However,

this can be circumvented if one also includes the constraints of CFTs and the consistency

of OPEs. This was first realized by Ferrara, Grillo, and Gatto [31], and independently by

Polyakov [32]. We can safely take these papers to be the birth of the conformal bootstrap,

though it was not until 1984 that the term bootstrap was used for this approach [33].

Despite the appreciation of its importance, progress on the conformal bootstrap has

been rather slow until the past two decades, except with 2d CFTs which have seen rapid

development due to their mathematical simplicity and relevance in string theories. The

stagnancy in higher dimensional CFTs changed in 2008 when Rattazzi, Rychkov, Tonni,

and Vichi introduced a numerical method into the conformal bootstrap [34]. They argued

that one can use linear programming to extract useful bounds on physical quantities such

as scaling dimensions of the operators in the CFT, without analytically solving them. Since

then, the conformal bootstrap attracted much attention and created a revival in the area.

This revival also led to a nice amount of progress on the analytical side as well, and we will

discuss this in the next section.

2.1.2 Recent developments in the field

Numerics

The conformal bootstrap flourished since the introduction of linear programming (LP) into

the area with the seminal paper of Rattazzi et al. [34]. The method they introduce is

a simple yet elegant application of “proof by contradiction”: one assumes some properties

about the spectrum of a CFT, such as the scaling dimension of the lowest lying operators.

One then checks whether this spectrum is consistent with crossing symmetry and unitarity;

if it is self-consistent, we do not obtain any new information. If not, we conclude that the

assumed spectrum cannot be realized in any unitary CFT. This way, we can put bounds on

the spectrum of any unitary CFT without the need for a full analytical solution.

Several works were published in the literature within the next three years after [34]

appeared, applying this numerical technique in numerous ways; e.g. to bound the scaling

dimension of the φ2 operator via the analysis of 〈φφφφ〉 [34–36], to bound the OPE coefficient
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of two scalars with a traceless symmetric tensor O [36, 37], to obtain similar bounds for

N = 1 supersymmetric theories [36, 38], and to bound the central charge of generic CFTs

[36, 38–40]. In those papers, conserved currents of global symmetries and stress tensors are

also studied in (non-)supersymmetric theories.4

This revival in the conformal bootstrap gained an acceleration with the realization of

an alternative to LP in [36]. In that paper, Poland, Simmons-Duffin, and Vichi introduced

semi-definite programming (SDP) into the conformal bootstrap, which they used to update

the previously computed bounds significantly by carving out various 4d CFTs with(out)

global symmetries and supersymmetry.

The advantages of SDP over LP are discussed in [36]; for a more detailed review, one

can refer to [42]. Here we will only mention one of these advantages: semi-definite opti-

mization is a very standard problem in engineering hence there are various sophisticated

implementations to address such problems.5

Even after the introduction of SDP into the conformal bootstrap, there were some anal-

yses which kept relying on LP. Most of these papers employed the simplex algorithm of LP

implemented via the ILOG CPLEX optimizer through a Mathematica interface [44–50]. In

contrast, the bootstrap community gradually switched to SDP: during the next 4 years after

the introductions of SDP, the conformal bootstrap analyses were mostly implemented via

the algorithm SDPA-GMP [51–63]. Some papers simply used both LP and SDP in the same

work [64].

In 2015 David Simmons-Duffin introduced SDPB, a SDP implementation specialized for

the conformal bootstrap applications [65]. This algorithm boosted the numerical analyses

even further and has become the de-facto optimizer used in the conformal bootstrap commu-

nity and has been actively improved thanks to Simons Collaboration on the Nonperturbative

Bootstrap.6 Some of the papers among this intense research program can be grouped as

follows:

4. See [41] as well.

5. For a review of SDP applications, see [43].

6. See https://github.com/davidsd/sdpb for further details.
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1. Various 3d scalar models: Precision islands in the Ising model [66], N = 1 Ising and

WZ models [67], O(N) models [66, 68], CFTs with a continuous global symmetry [69],

stress-tensor bootstrap [70], and the random-bond Ising model [71].

2. 4d supersymmetric theories: Minimial N = 1 SCFTs [72], mixed correlators in N = 1

SCFTs [73], chiral correlators in N = 2 SCFTs [74, 75], general N = 3 SCFTs [76],

stress tensor supermultiplets in N = 4 SCFTs [77], and N = 4 O(N) Vector Models

[78].

3. Models in d > 4 dimensions: Mixed correlators in the 5d critical O(N) Models [79],

and the 6d superconformal bootstrap [80].

4. Fermionic theories: Identical Majorana fermions in 3d [81], Dirac fermions in QED3

[82], and Weyl fermions in 4d [83].

Of course, this is only a small fraction of the research using numerical bootstrap techniques.

In addition to these, there are a variety of different theories where numerical bootstrap has

been extensively used. These include tetragonal CFTs [84], the half-BPS line defect [85],

universality of BTZ spectral density [86], Virasoro minimal models [87, 88], M-theory [89],

Argyres-Douglas theory [90], flavored 2d CFT partition functions [91], conformal multi-flavor

QCD on lattice [92], pure quantum gravity in AdS3 [93], many-flavor gauge theories [94],

long multiplets of N = 2, 3 SCFTs [95], modular constraints on CFTs with currents [96],

high-precision bootstrap of a non-unitary CFTs [97], and K3 CFT [98].

Analytics

The rapid progress in the numerics was accompanied by the development of various analytical

tools, allowing us to discover the rich structure of conformal theories. Below we will briefly

review this progress.

The first point that we should mention is the convergence of OPE. Being at the heart of

the conformal bootstrap program, this convergence was extensively analyzed in [99] where

the authors show the exponential suppression of operators with higher and higher scaling

dimensions. In that paper, the authors make use of the radial quantization and the mapping
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between Rd and R × Sd−1; it is also realized that extensive usage of radial coordinates has

various advantages over standard Dolan and Osborn coordinates {z, z}, especially for the

convergence of the conformal blocks written as series expansions [100, 101].

Such series expansions are particularly important since the absence of compact and

explicit expressions for the conformal blocks in odd dimensions poses a serious practical

problem.7 There are some special cases where the conformal blocks are known even in

odd dimensions [105, 106], however the generic case is yet to be derived.8 In the past

decade, this problem was partially circumvented by going to the specific kinematical limits.

The most intensively studied one is the lightcone limit for which the conformal blocks in

any dimension reduce to the collinear conformal blocks whose compact form is known. In

[111, 112] the authors showed that every CFT admits a large spin expansion and the lightcone

limit probes this sector. Using the bootstrap equations, they show the existence of infinitely

many operators which organize into families of almost the same twist.9 In mean field theory,

such operators are composite objects built out of fundamental fields and they have exactly

the same twist; i.e., the operators φ∂µ1 · · · ∂µnφ all have the twist 2∆φ for the scalar φ with

twist ∆φ.10 Following [112], such operators are called double twist operators in the bootstrap

literature.

In a strongly interacting theory, we can no longer interpret double twist operators as in

given the schematic forms; furthermore, those operators start to develop anomalous dimen-

sions. However, [111, 112] proved that double twist operators exist in any CFT, and they

7. Even though the OPE of two scalars and a spin ` operator was known for years, it was first in [102]
that the summation was carried out and explicit conformal blocks were derived! In that and the following
papers, Dolan and Osborn gave the closed form expressions for conformal blocks of external scalars in even
dimensions, and provided several expressions such as integral representations for conformal blocks of external
scalars in odd dimensions [102–104].

8. There is a new research program where the calculations are carried out in the embedding space, including
the application of OPE [107–110]. The authors provide the compact and complete results for the necessary
ingredients for any conformal block in any dimension.

9. We define twist τ := ∆ − ` for the scaling dimension ∆ and spin ` for the symmetric traceless repre-
sentations — all representations are such in three dimensions. For a general mixed representation in other
dimensions, ` is taken to be the length of the first row of the Young tableau.

10. The operator φ∂µ1 · · · ∂µnφ is neither in an irreducible representation of the rotation group nor a
conformal primary. One can ensure these properties by symmetrizing open indices and subtracting the

traces. Furthermore, one needs to replace ∂ with
→
∂−
←
∂

2
because ∂ =

→
∂−
←
∂

2
+
→
∂+
←
∂

2
and second term simply

creates descendants.
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asymptotically have the same properties as composite MFT operators at large spin.11

Despite being an asymptotic expansion,12 analysis of the large spin sectors via the light-

cone bootstrap received a great deal of attention [117–124] where mostly the CFT data of

double twist operators are investigated. The generalization to multi-twist operators and

eikonalization are discussed in [125], and David Simmons-Duffin systematized the lightcone

bootstrap in [126]: he introduced an SL(2,R) expansion as a means to go beyond leading

order in spin, discussed the sensitivity of large spin expansion to finite spin effects, addressed

the issue of mixing, and compared the predictions of analytics with the numerics in the case

of the 3d Ising model.

Concurrently, Simon Caron-Huot introduced in 2017 an inversion formula which calcu-

lates the OPE data using the correlator as an input, much like the Froissart-Gribov formula

yields the angular momentum partial wave coefficients using the amplitude as an input in

relativistic s-matrix theory [127]. More importantly, Caron-Huot’s inversion formula es-

tablishes the analyticity in spin in CFTs just as the Froissart-Gribov formula established

the analyticity in spin in s-matrix theory [128–130]. This is an intrinsically Lorentzian

phenomena as this inversion formula uses specific causal orderings of the operators. This

Lorentzian inversion formula was further analyzed [131], generalized to arbitrary Lorentz

representations [132], and utilized in various works [1, 133, 134].

We stated above that the conformal blocks have been poorly understood even though

the OPE of two scalars has been known for a very long time, and that the explicit conformal

blocks were derived only less than two decades ago [102]. However, this recently changed

quite dramatically. Firstly, the conformal blocks of traceless symmetric operator exchange

for external bosonic spinning operators were derived by a judicious use of differential oper-

ators on scalar conformal blocks [135]. Then a procedure to calculate any conformal block

was introduced in [136], and is employed, among others, to derive superconformal blocks

11. The inverse proportionality of anomalous dimension with spin justifies viewing the large spin sector
as a perturbation around the generalized free theory. Via AdS/CFT such operators correspond to widely
separated weakly interacting particles [113, 114]

12. It is shown in [115] that the large spin expansion is asymptotic but Borel-summable. The validity of
this expansion is partially solidified in [116].
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[137, 138] and conformal blocks of identical external fermions in 3d [81].13 There has been

numerous other progress in the derivation of the conformal blocks in a variety of dimensions

as well [143–151]. However, the most comprehensive approach to get spinning conformal

blocks was introduced in [152]. The authors use group theoretical arguments and manage

to construct a formalism to relate different spinning three point structures to each other

by exchanging a finite dimensional representation of the conformal group. One can use

these relations inside Euclidean pairings of three point structures and relate partial waves

of different operators. Using monodromy arguments explicitly discussed back in [136], one

can then relate spinning conformal blocks to each other, and as an important subset of

that fermion conformal blocks to bosonic ones. Alternatively, one can directly use these

weight shifting operators with the Lorentzian inversion formula, bypassing partial waves and

directly working with conformal blocks [132].14

The advancement in extracting spinning conformal blocks went hand in hand with the

analysis of correlators of external spinning operators. In fact, the authors of [135] cited

above started their analysis by constructing a formalism to analyze the spinning correlators

in great generality [153].

The problem of classifying three point functions of arbitrary spin ` has been discussed

several times in the literature [154–158]. What Costa, Penedones, Poland, and Rychkov

did in [153] was to reintroduce the embedding space into the conformal bootstrap and to

combine it with an index-free formalism, hence developing necessary tools to write down

any bosonic spinning three point correlator as well as the conditions on conserved tensors.15

13. The procedure is conceptually quite simple and elegant. One uses the well known shadow formalism
[139–142] to derive the partial waves in the embedding space, and then obtains the conformal blocks using
a monodromy projection. Even though the process is quite general, it does not immediately provide an
explicit compact result.

14. In this thesis, we refer to the single-valued solutions of the conformal Casimir equation as partial waves.
They decompose into conformal blocks and the shadow conformal blocks. The main intuitive difference
between Euclidean and Lorentzian pairings is the integration range: the integration is over all spacetime in
the Euclidean inversion formula hence it yields both conformal blocks and their shadows; in other words,
partial waves are the main objects. In contrast, the integration range is a causal diamond in Lorentzian
formula, and Lorentzian pairing of two three point function is proportional to a conformal block. The reason
for the difference in the integration range follows from the necessity to work with the so-called light-ray
operators which are continuous-spin generalization of local operators. Being analytic in spin, Lorentzian
inversion formula can be conceptually explained only by these operators, even though it was not originally
derived through them [127, 131].

15. Usage of embedding space started with Dirac and has been on and off since then [31, 157, 159–162]
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The extension to fermionic correlators is a little bit more complicated. Individual cases

of fermionic analysis can be found in the literature; e.g. Weinberg used the embedding

formalism to analyze 4d fermions back in 2010 [157], see also [6, 81, 164] for more recent

studies. However, a more general treatment only started relatively recently [152, 165–167].

In these papers, Kravchuk and his collaborators analyzed classification of conformal correla-

tors, generalized Casimir recursion relations, discussed generic 4d bootstrap equations, and

introduced the weight shifting operators.

There are a variety of other areas which benefited from and contributed to the analytical

bootstrap program. Among others, we can list some of them:

1. supersymmetric theories: analyses of N = 1, 2, 4 superconformal blocks [38, 168, 169],

discussion of chiral superconformal primary OPE [38, 40, 170], study of superconformal

theories with global symmetries [171], and many others [172–177].

2. gauge gravity duality : analyses of unitarity and analyticity of holographic s-matrix

[178, 179], study of AdS3/CFT2 [180–183], establishment of a holographic connection

to Witten and geodesic Witten diagrams [184–188].

3. various other applications: finite temperature CFTs [189, 190], Mellin space boot-

strap16 [195, 196], multi-point conformal blocks [197, 198], defect CFTs [199, 200],

complex CFTs [201], global symmetries [202, 203], boundary and crosscap CFTs [204],

fractal Ising model [205], and so on [4, 206–213].

2.2 Primer on conformal field theories

In this section, we will review the basics of conformal field theory. For concreteness, we

will consider the Euclidean conformal group though the discussion can straightforwardly be

extended to the Lorentzian conformal group.

— it is extensively discussed in [153]. Likewise, derivation of the conservation conditions on three point
structures goes back to the last century [156, 163].

16. The Mellin representation of conformal correlators actually goes all the way back to Mack [155], see
also [191–194].
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2.2.1 Conformal transformations and conformal algebra

We define the conformal transformations as the transformations that leave the metric in-

variant upto a local rescaling, that is

g′ij(x
′) = Λ(x)gij(x) . (2.2.1)

As a second rank covariant tensor, the metric transforms under an infinitesimal transforma-

tion xi → xi + εi(x) as

g′ij =
∂xk

∂x′i
∂x`

∂x′j
gk` = gij − (∂iεj + ∂jεi) +O(ε2) , (2.2.2)

which in turn restricts conformal transformations to satisfy the condition

∂iεj + ∂jεi = λ(x)gij(x) . (2.2.3)

Contracting both sides with gij(x), we can solve for λ(x) and insert it back to obtain

∂iεj + ∂jεi =
2

d
(∂ · ε)gij(x) . (2.2.4)

By acting on both sides with ∂i and ∂i∂j , we further obtain the conditions

d

2
�εj =

2− d
2

∂j(∂ · ε) + δgj , (2.2.5a)

(d− 1)�(∂ · ε) =∂ · δg (2.2.5b)

for δgj := (∂igij)(∂ · ε). In flat spacetimes, which will be the focus of this thesis, we have

δgi = 0, hence we can solve the equations above for the most general form of εi in d > 2:

εi = ai + cxi + θijx
j + 2(b · x)xi − x2bi (2.2.6)

for the antisymmetric matrix θij = −θij .

We see that conformal transformations in d-dimensional flat space are parametrized by
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the scalar c, vectors ai & bi, and the antisymmetrix matrix θij , leading to the conclusion

that the conformal group has dimension (d+2)(d+1)
2 .

To get further insight into the generators of the conformal group, let us first consider

the translation group: in QFT, this group is generated by the the momentum operator

Pµ, which by Noether’s theorem should be the conserved charge of a current. The relevant

current here is the stress tensor Tµν , and we have the relation

Pµ(t) = −
∫
dd−1xT 0µ(x) , (2.2.7)

where the integration is over a constant time slice of the spacetime. In fact, Pµ is a topo-

logically conserved charge and we can rewrite the integration over any hypersurface Σ as
∫

Σ dSµT
µν(x); in a similar fashion, we can define a new set of conserved charges Qε as

Qε(Σ) := −
∫

Σ
dSµεν(x)Tµν(x) (2.2.8)

if ∂µ (εν(x)Tµν(x)) = 0. Conservation of stress tensor, ∂µTµν = 0, then implies

(∂µεν + ∂νεµ)Tµν = 0 . (2.2.9)

For a generic stress tensor this implies

∂µεν + ∂νεµ = 0 . (2.2.10)

This is the Killing equation, and it has the solutions ε = εµ∂µ as

pµ :=∂µ , (2.2.11a)

mµν :=xµ∂ν − xν∂µ , (2.2.11b)

which generate the usual Poincaré algebra with p andm generating translations and rotations

respectively.

If we impose that the stress tensor is traceless, i.e. gµνT
µν = 0, we instead have the
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Conformal Killing equation

∂µεν + ∂νεµ = λ(x)gµν(x) (2.2.12)

which is precisely eqn. (2.2.3). Therefore, in the field theory context, conformal field theory

is a local field theory with a traceless stress tensor. For this equation, we obtain two new

set of vector fields for ε = εµ∂µ:

d :=xµ∂µ , (2.2.13a)

kµ :=2xµ(x · ∂)− x2∂µ , (2.2.13b)

where d generates dilations and k generates so-called special conformal transformations. By

comparing the generators in eqn. (2.2.11) and eqn. (2.2.13) with the most general form of the

conformal transformation in eqn. (2.2.6), we conclude that the parameters a, b, c, θ param-

eterize translations, special conformal transformations, dilations, and rotations respectively.

It is illustrative to investigate the algebras constructed with these generators, which we

summarize in Table. (2.1). We can also collect the full set of commutation relations as

[mij ,mk`] = (δi`δkrδjp + δjkδirδ`p + δikδ`pδjr + δj`δipδkr)mpr , (2.2.14a)
[
p±i ,mjk

]
= (δijδk` − δikδj`) p±` , (2.2.14b)

[
p±i , d

]
=± p±i , (2.2.14c)

[
p+
i , p

−
j

]
=2δijd− 2mij , (2.2.14d)

for p+
i := pi and p−i := ki.

The interpretation of these relations is straightforward. The first equation simply states

thatm generates a rotation algebra. The second equation and the absence of nonzero [d,mab]

indicate that p± and d transform as a vector and a scalar under rotations respectively. The

third equation shows that p± behave like ladder operators with respect to the dilation d;

and finally, the last equation gives their non-commutative nature.
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Table 2.1: Conformal algebra and its subalgebras.17

Name of the algebra Denotation Decomposition Commutation relations

Translation t(N) – [pi, pj ] = 0

Rotation so(N) –
[mij ,mk`] = mi`gjk −mjkgi`

+mikgj` −mj`gik

Euclidean iso(N) t(N)⊕s so(N) [pk,mij ] = gkipj − gkjpi

Dilation d(1) – –

Translation & Dilation – t(N)⊕s d(1) [pi, d] = pi

Euclidean & Dilation – iso(N)⊕s d(1) [mij , d] = 0

Special conformal c(N) – [ki, kj ] = 0

General conformal gc(N) –

[kk,mij ] =gkikj − gkjki

[ki, d] =− ki

[pi, kj ] =2gijd− 2mij

2.2.2 Conformal group and its linear realizations

In section 2.2.1 we reviewed the conformal symmetry and the differential representation

of the conformal algebra. By an exponential map, one can extend the analysis from the

conformal algebra to the conformal group — or rather its connected component around the

identity element. Indeed, this way, we can write the action of the conformal group under a

finite transformation by starting with the infinitesimal transformation in eqn. (2.2.6); here,

we simply present the final results:

P : xi → xi + ai , (2.2.15a)

M : xi → eθijxj , (2.2.15b)

D : xi → ecxi , (2.2.15c)

K : xi → xi − bix2

1− 2b · x+ b2x2
. (2.2.15d)

17. In the table, the symbol ⊕s denotes a semi-direct sum. We remind the reader that an algebra g can
be written as a semi-direct sum of its subalgebras g1 and g2 as g = g1 ⊕s g2 if the conditions [ḡ1, ḡ1] ∈ g1,
[ḡ2, ḡ2] ∈ g2, and [ḡ1, ḡ2] ∈ g1 are satisfied for all elements ḡi ∈ gi. We also would like to note that one can
construct further subalgebras by replacing t(N) with c(N) in the table; for example, we can define a second
Euclidean subalgebra of the conformal algebra as c(N)⊕s so(N).
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The transformation under the first three generators is fairly intuitive: we translate, rigidly

rotate, or scale the coordinates. The last transformation on the other hand can be explained

intuitively only through an inversion operation:

I : xi → xi

x2
. (2.2.16)

Even though this operator is not an element of the conformal group, conjugation by an

inversion is actually the outer authomorphism of the conformal group and one can show

that

K = −I · P · I . (2.2.17)

In other words, the special conformal transformation in eqn. (2.2.15d) is simply an inversion

followed by a translation followed by another inversion!

The nonlinear nature of the transformation in eqn. (2.2.15d) complicates the construction

of the representations of the conformal group in Rd. However, there actually exists another

space in which the realization of the conformal group is linear. To see that, we define the

generators MAB

Mij =mij ,

M0,−1 =d ,

Mi,−1 =
1

2

(
p+
i + p−i

)
,

Mi,0 =
1

2

(
p−i − p+

i

)
,

(2.2.18)

where A = −1, 0, 1, . . . , d and i = 1, . . . , d. In terms of MAB, we can rewrite the comutation

relations in eqn. (2.2.14) as

[MAB,MCD] = (gADMBC + gBCMDA + gACMDB + gBDMAC) (2.2.19)

for the metric

gAB
.
= diag (−1, 1, . . . , 1) . (2.2.20)

We realize that eqn. (2.2.19) is the commutation relations for the rotation algebra which

indicates that the Euclidean group gc(d) is isomorphic to an orthogonal algebra in d + 2
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dimensions, i.e.

gc(d) ' so(d+ 1, 1) . (2.2.21a)

Similarly, we can identify the algebra of the Lorentzian conformal algebra with another

orthogonal algebra:

gc(d− 1, 1) ' so(d, 2) . (2.2.21b)

This isomorphism of the algebras suggests that we can work in Rd+1,1 (Rd,2) instead of

Rd (Rd−1,1) where the action of the conformal group is realized linearly. This embedding

space approach was first suggested by Dirac, and has been extensively used ever since [153,

157, 159]. Below, we will quickly review this approach and illustrate how to construct

invariant/covariant objects of the conformal group (such as correlation functions) via this

approach.

The nonlinear action of the conformal group in eqn. (2.2.15) can be mapped to the linear

action of the special orthogonal group in the embedding space, once the extra degrees of

freedom are taken care of: this is achieved by mapping null rays in Rd+1,1 to points in Rd.

The intuitive explanation for this is that null rays are the objects in Rd+1,1 that are mapped

to themselves under the action of so(d+ 1, 1) — similar to Rd being mapped to itself under

gc(d) — and that they have the correct degrees of freedom.

A straightforward procedure to map from the embedding space back to the physical

space is by fixing the gauge of the freedom XA ∼ λXA; a common choice is the Poincaré

section where we scale XA to Pa defined as

PA := (1, x2, xi) (2.2.22)

in the lightcone coordinate XA = (X+, X−, Xi) for X± = X0 ±X−1. With this choice, we

see that so(d+ 1, 1) invariants map as

XAY
A → −1

2
(xi − yi)2 . (2.2.23)
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Similarly, one can show that so(d+ 1, 1) tensors map as

TA1···A`(X
A
1 , . . . ) → ta1···a`(P

A
1 , . . . ) ≡

∂PA1

∂xa1
· · · ∂P

A`

∂xa`
TA1···A`(X

A
1 , . . . ) . (2.2.24)

We can also write down a prescription to map fermionic representations of so(d+1, 1) but it

is actually far easier to work in an index-free fashion where auxiliary spinors and auxiliary

vectors are used in the embedding space to construct so(d+1, 1) invariants. However, before

illustrating that, we will briefly discuss the stabilizer subgroup of the conformal group to

review the labeling of the operators in the irreducible representations.

The stabilizer subalgebra h of the conformal algebra consists of the generatorsmij , p
−
i , d

if we choose it to fix the point x = 0. From eqn. (2.2.14) we then see that

h = (c(N)⊕s d(1))⊕s so(N) . (2.2.25)

We realize from eqn. (2.2.14c) that p−i acts a lowering operator for d, hence we can define

primary operator which satisfies
[
p−i ,O(0)

]
= 0 , (2.2.26)

which is in the highest weight representation of d(1). As these operators are invariant under

the action of c(N),18 the stabilizer algebra for primary operators is effectively d(1)⊕s so(N)

for which the operators are labeled by a continuous parameter ∆ ∈ R for d(1) and a rep-

resentation ρ ∈ so(d) for the conformal algebra in Rd. When we map from algebra to the

group, we need to take the fermionic representations into account as well, hence we denote

primary operators: O∆,ρ with ∆ ∈ R , ρ ∈ Spin(d) . (2.2.27a)

As eqn. (2.2.14c) indicates that p+
i is a raising operator for d, operators p+

i · O, p+
i · p+

i · O,

and so on are not primary operators. Such operators are called descendant operators and

18. Under the action of c(N), O(0) transforms as e−b
ip−i O(0)eb

ip−i = O(0) + bi[O(0), p−i ] + · · · = O(0) by
the Hausdorff formula.
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are given by eqn. (2.2.11a) as

descendant operators:
∂nO∆,ρ

∂xµ1 . . . ∂xµn
with n ∈ Z+ and O = primary . (2.2.27b)

With the little detour of the labeling of operators under the conformal group finished, we

can get back to their construction in the embedding space, and in particular, the index-free

construction of conformal correlators which bypass technical computations in eqn. (2.2.24).

Without dwelling on the details, we will simply review the procedure

• For the bosonic representations in any d, introduce an auxiliary vector ZA for each

row of the Young diagram of the representation ρ for the operator O∆,ρ. In d = 3,

we can instead introduce a single auxiliary spinor SI for both bosonic and fermionic

representations. In d = 4, we instead introduce two auxiliary spinors SI and S̄I for all

representations.

• We construct the most general function of the auxiliary vectors/spinors and position

vectors which satisfy following constraints:

1. Invariant under the action of SO(d+ 1, 1).

2. Homogeneous in both the auxiliary vectors/spinors and position vectors with

degrees of homogeneity fixed for a given representation.

3. Restricted to the null cone X2 = 0.

4. Transverse, i.e. position and auxilary vector/spinor are orthogonal. In 3d, this

means SIXI
J = 0.19

• The resultant expression is projected to the Poincaré section by XA → PA for PA in

eqn. (2.2.22) and by projecting auxiliary vectors/spinors accordingly. For example, in

3d we project the 5d spinor SI as

SI →




sα

xαβs
β


 (2.2.28)

19. Here XI
J is the position vector written in spinor indices.
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in terms of the position xαβ ≡ xµ(γµ)αβ and the 3d spinor sα.

We can illustrate this procedure for the construction of the two point function 〈O(x1, s1)O(x2, s2)〉

in 3d, where we use the shorthand notation

O(x, s) := sα1 . . . sα2`
Oα1...α2`(x) (2.2.29)

for the spinor indices αi. In embedding space, we are then trying to construct 〈O(X1, S1)O(X2, S2)〉

which is homogeneous in Xi and Si with degrees −∆ − ` and 2`. We then write down the

only such SO(d+ 1, 1) invariant:

〈O(X1, S1)O(X2, S2)〉 = c

(
(S1)I(S2)I

)2`

((X1)A(X2)A)∆+`
, (2.2.30)

where we note that (S1)I(X1)IJ(S2)J = (S1)I(X2)IJ(S2)J = 0 by the transverness condition.

With eqn. (2.2.23) and eqn. (2.2.28), we then obtain

〈O(x1, s2)O(x2, s2)〉 ∝

[
(s1)α(x12)αβ(s2)β

]2`

x2∆+2`
12

. (2.2.31)

2.3 Lightning review of the conformal bootstrap

In this section, we will briefly review the historical philosophy of the conformal bootstrap

and its modern applications in practice.

As we noted in section 2.1.1, the bootstrap approach historically bypasses construction-

ism: one starts with some fundamental conditions and derive the theory with a bottom-up

approach, using these conditions as constraints on the landscape of the theory. Conformal

symmetry by itself is sufficient to fix the form of two and three point correlation functions,

and one aims to use other conditions such as unitarity and operator product expansion as-

sociativity to entirely determine the form of all correlation functions, importantly, without

resorting to any input from a microscopic theory.

This method is in stark contrast to the traditional top-down approach where one usually
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starts a theory by writing down a Lagrangian. This is an old habit of physicists and it served

them extremely well for the past few centuries. However there is an important philosophical

difference between the Lagrangian approach and that of the bootstrap: starting in the UV

by writing a Lagrangian, one inherently assumes that physics is constructive, i.e. one can

not only reduce all physics to some fundamental laws and particles but also obtain useful

information regarding phenomena observed in the IR by starting with fundamental laws and

particles in the UV and by constructing their way back. In contrast, the main objects of the

conformal bootstrap are correlation functions, hence there is no need for constructionism as

one already works with the theoretically closest objects to the observables.

Despite this philosophical difference between Lagrangian and bootstrap approaches, most

physicists including the bootstrappers already accept both a reductionist and a construc-

tionist approach towards nature — and hence combine the bootstrap approach with the

Lagrangian theories — and we will assume in the rest of the thesis that both top-down and

bottom-up approaches are equivalent in this sense.20

Let us switch gears and review the modern employment of the conformal bootstrap; for

simplicity, we will consider the analytic bootstrap for scalar 4-point functions 〈φ1φ2φ3φ4〉,

which take the general form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =

(
x23

x13

)∆12
(
x13

x14

)∆43 G(z, z̄)

x∆1+∆2
12 x∆3+∆4

34

, (2.3.1)

where xij = xi − xj and ∆ij = ∆i − ∆j , with ∆i being the scaling dimension of φi. The

conformal cross-ratios (z,z) are given by

zz =
x2

12x
2
34

x2
13x

2
24

, (1− z)(1− z) =
x2

14x
2
23

x2
13x

2
24

. (2.3.2)

The function G(z, z̄) can be expanded in conformal blocks for the φ1φ2 → φ3φ4 OPE as

G(z, z̄) =
∑

O
f12Of43Og

r,s

h,h̄
(z, z̄) , (2.3.3)

20. Interested reader can refer to the infamous paper of Anderson [214] and a more recent relevant
talk, 27th Occam lecture of Slava Rychkov — see https://www.merton.ox.ac.uk/event/27th-ockham-lecture-
reductionism-vs-bootstrap-are-things-big-always-made-things-elementary.
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where we have introduced the variables

r =
∆1 −∆2

2
, s =

∆3 −∆4

2
, (2.3.4a)

h =
∆− `

2
, h̄ =

∆ + `

2
, (2.3.4b)

where ∆ and ` are the scaling dimension and spin of the exchanged operator. This pa-

rameterization is convenient for the lightcone expansion, where h is the natural expansion

parameter.

For a spacelike configuration of the operators, we have 〈φ1φ2φ3φ4〉 = 〈φ3φ2φ1φ4〉 which

with eqn. (2.3.1) and eqn. (2.3.3) indicate

∑

O∈φ1×φ2

f12Of43O
gr,s
h,h̄

(z, z̄)

((1− z)(1− z))(∆1+∆3)/2
=

∑

O∈φ3×φ2

f32Of41O
gr,s
h,h̄

(1− z, 1− z̄)
(zz)(∆1+∆3)/2

. (2.3.5)

This is the crossing equation: it constraints the dynamical data — OPE coefficient f ’s —

in C spanned by z, z where the conformal blocks, g(z, z), are theory-independent kinematic

objects.

In general dimensions the conformal blocks are not known in a simple closed form,21

but in the limit where two operators become light-like separated they display a universal

behavior which makes analytic results possible. In terms of the conformal cross-ratios, if we

take the limit z → 0, then the leading order behavior of conformal blocks in any dimension

is

gr,s
h,h

(z, z) '
z→0

zhzh2F1

[
h− r h+ s

2h
; z

]
, (2.3.6)

where 2F1 is the standard hypergeometric function. This approximation is sufficient to

compute the leading large-` corrections to the spectrum of double-twist operators using

analytic bootstrap techniques, as was first demonstrated in [111, 112].

In this thesis we will be interested in higher order corrections in the large-` expansion

[115, 119, 126], hence we will need subleading terms in the above expansion. In three dimen-

sions, one can use dimensional reduction to expand the conformal block in terms of the 2d

21. See [17] for a review of various methods to calculate the blocks.
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conformal blocks [215], or equivalently use an SL(2,R) expansion [126]. These two methods

are equivalent since the 2d blocks are a simple combination of 1d, or SL(2,R), blocks.

The conformal blocks in any dimension can be expanded as

gr,s
h,h

(z, z) =
∞∑

n=0

n∑

j=−n
Ar,sn,j(h, h)zh+nkr,s

2(h̄+j)
(z̄) , (2.3.7a)

kr,s
2h̄

(z̄) := zh2F1

[
h− r, h+ s

2h
; z

]
, (2.3.7b)

where kr,s
2h̄

(z) is the SL(2,R) block. Using the decomposition mentioned above, or by solving

the Casimir differential equation, the first two levels are straightforward to work out and

are given by

Ar,s0,0(h, h) = 1 , (2.3.8a)

Ar,s1,−1(h, h) =
h− h̄

2h− 2h̄+ 1
, (2.3.8b)

Ar,s1,0(h, h) =
1

2

(
rs
(
h− 2h̄2 + 2h̄− 1

)

(2h− 1)(h̄− 1)h̄
− h− r + s

)
, (2.3.8c)

Ar,s1,1(h, h) =
(h+ h̄− 1)(h̄− r)(h̄+ r)(h̄− s)(h̄+ s)

4h̄2(2h̄− 1)(2h̄+ 1)(2h+ 2h̄− 1)
, (2.3.8d)

for d = 3. By using such an expansion one can solve eqn. (2.3.5) order by order in z.
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Chapter 3

Fermions in Conformal Field

Theories: A Perturbative Approach

3.1 Fermions in d = 3

There are important and relevant 3d CFTs with fermionic operators such as the 3d super-

symmetric Ising and GNY models, and they are invoked to explain several phenomena such

as the phase transitions in graphene and the time-reversal symmetry breaking in d-wave

superconductors. We refer to [17] for details; we’ll only briefly review GNY model below as

an example.

The GNY model can be described by the action [216–218]

S =
1

2

∫
ddx

(
ψ̄i(/∂ + gφ)ψi + ∂µφ∂

µφ+m2φ2 + λφ4
)

(3.1.1)

for the flavor index i = 1, . . . , N . In d = 4 − ε, one can show by working perturbatively

at large N that this theory has an IR fixed point which coincides with the UV fixed point

of the GN model [219, 220]. This is similar to the familiar relation between the Wilson-

Fisher fixed points of the φ4 theory and the UV fixed points of the non-linear sigma model

in d = 2 + ε [221]. The critical point is believed to survive up to ε = 1 (hence d = 3), where

large N studies have been carried out [222–224]. Reference [225] furthermore studies the

conformal OPE expansion alongside the large N expansion of this model.
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The numerical bootstrap has addressed fermions in d = 3 — along with the contact to

GNY models — in [81] and [226]: we refer the reader to those papers for further details.

3.1.1 Notations & Conventions

In this thesis, we follow the same conventions with [1] for 3d fermions, so we will be brief here.

We use the Minkowski metric in mostly plus signature ηµν = diag(−1, 1, 1), and as our focus

are fermions we will be considering the double cover of the 3d conformal group SO(3, 2),

which is isomorphic to Sp(2,R). We will hence use representations of the symplectic group;

in particular, the smallest fundamental representation will act on a real two dimensional

vector space, describing Majorana fermions.

The conformal group SO(3, 2) can be realized linearly in two higher dimensions as we

reviewed in section 2.2.2, therefore we embed Sp(2,R) representations as the projective null

representations of Sp(4,R) in this 5d embedding space, use the fact that conformal symmetry

acts as linear isometries in this formalism, and project back to physical structures by fixing

the extra degrees of freedom in the embedding space.

In practice, one removes the extra degrees of freedom of the embedding space by going

to the so-called Poincaré section,

XA → (xµ, 1, x2) , (3.1.2)

where we are working in the lightcone coordinates XA = (Xµ, X+, X−) and X± are related

to the Cartesian coordinates as X± = X4 ± X3. One can reverse this projection and lift

any point to the embedding space in this Poincaré section.1

As developed in [153] and generalized to 3d spinors in [81], one can encode spinors by

1. The only exception is the point ∞: one cannot use the same Poincaré section (xµ, 1, x2) used for
finite points for the point at infinity as well. A simple way to see this is as follows. We start with Xa =
(xµ, X+, X−) and impose nullness to obtain XA = (xµ, X+, x2/X+). If we now consider an inversion as
xµR = xµ/x2, we see that XA

R = (xµ/x2, X+, (x2X+)−1) ∼ (xµ, x2X+, 1/X+) where we use projectiveness
of the representation. For x2 6= 0, we can choose X+ = 1/x2 for XA

R and X+ = 1 for XA, which means we
can write both xµ and xµR using the same Poincaré section (xµ, 1, x2). For x2 = 0, this is no longer possible,
and the reflected point xµR = xµ/x2 =∞ should be instead in the Poincaré section (xµ, x2, 1).
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polynomials with auxiliary spinor fields:

O(x, s) = sα1sα2 . . . sα2`
Oα1α2...α2`(x) ,

Oα1α2...α2`(x) =
1

(2`)!

∂2`

∂sa1
∂sa2

. . . ∂sa2`

O(x, s) .
(3.1.3)

In this formalism, we can relate the spinor field Ψ(X,S) := SIΨ
I(X) in the embedding

space and the spinor field ψ(x, s) := sαψ
α(x) in the physical space as

Ψ(X,S) =
1

(X+)∆ψ
ψ(x, s) , (3.1.4)

where SI is taken to the Poincaré section via setting

SI =
√
X+




sα

xαβs
β


 . (3.1.5)

Here we use the matrices γ and Γ to convert the indices,

XI
J ≡ XA(ΓA)IJ , xαβ ≡ xµ(γµ)αβ . (3.1.6)

The 3d gamma matrices and Sp(2,R) invariant ε are defined as

(γ0)αβ = i(σ2)αβ , (γ1)αβ = (σ1)αβ , (γ2)αβ = (σ3)αβ , εαβ = εαβ = i(σ2)αβ , (3.1.7)

where σi are the standard Pauli matrices:

σ1 =




0 1

1 0


 , σ2 =




0 −i

i 0


 , σ3 =




1 0

0 −1


 . (3.1.8a)
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The embedding space gamma matrices and Sp(4,R) invariant Ω are then defined as:2

Γ0 = γ2 ⊗ γ0 , Γ1 = I⊗ γ1 , Γ2 = I⊗ γ2 , Γ3 = γ0 ⊗ γ0 , Γ4 = γ1 ⊗ γ0 , Ω = ε⊗ I
(3.1.9)

with the embedding space metric gIJ = diag (−,+,+,+,−). In lightcone coordinates, the

gamma matrices take the form

(Γµ)IJ =




(γµ)αβ 0

0 (γµ) β
α


 , (Γ+)IJ =




0 2εαβ

0 0


 , (Γ−)IJ =




0 0

2εαβ 0


 .

(3.1.10)

Finally, we raise (lower) the spinor indices with SP invariants by acting from right (left),

e.g. xα = εαβx
β and xα = xβε

βα.

To describe the embedding space spinor structures, we define the shorthand notation

〈S1X2X3 . . . Xn−1Sn〉 ≡ − S1 ·X2 ·X3 · · ·Xn−1 · Sn

=− (S1)I(X2)IJ(X3)JK · · · (Xn−1)LM (Sn)M .

(3.1.11)

In this convention, we diagonalize the spectrum and normalize the operators O∆,` such that

they satisfy
〈
O∆,`(X1, S1)O∆,`(X2, S2)

〉
= i2`

〈S1S2〉2`

X2∆+2`
12

. (3.1.12)

For example, two-point functions of fermions in embedding and physical spaces read as

〈Ψ(X1, S1)Ψ(X2, S2)〉 = i
〈S1S2〉
X

∆ψ+ 1
2

12

, 〈ψα(x1)ψβ(x2)〉 = i
(x12)αβ

x
2∆ψ+1
12

. (3.1.13)

Conformal symmetry also fixes the form of three point correlators albeit non-uniquely

unless two of the operators are scalars. Therefore, in general, one writes down there point

correlator 〈O1O2O3〉 in terms of three point structures 〈O1O2O3〉(i) as

〈O1O2O3〉 =
∑

i

λiO1O2O3
〈O1O2O3〉(i) , (3.1.14)

2. We note that gamma matrices are defined such that the generators of Sp(2,R) and Sp(4,R) are given
as − i

4
[γµ, γν ] and − i

4
[ΓA,ΓB ], respectively.

30



where λ are the OPE coefficients. We stress that 〈O1O2O3〉(i) are not physical three point

correlator; in particular, they are formal expressions and do not necessarily satisfy Fermi-

statistics if operators are interchanged. Throughout this paper, we will refer to these objects

as three-point structures, for which we will follows the conventions of [81, 148] and choose

three point structures as:

〈φ1φ2O3〉(1) =
〈S3X1X2S3〉`

X
(∆123+`)/2
12 X

(∆231+`)/2
23 X

(∆312+`)/2
31

, (3.1.15a)

〈ψ1φ2O3〉(1) =
〈S1S3〉 〈S3X1X2S3〉`−

1
2

X
(∆123+`− 1

2
)/2

12 X
(∆231+`− 1

2
)/2

23 X
(∆312+`+ 1

2
)/2

31

, (3.1.15b)

〈ψ1φ2O3〉(2) =
〈S1X2S3〉 〈S3X1X2S3〉`−

1
2

X
(∆123+`+ 1

2
)/2

12 X
(∆231+`+ 1

2
)/2

23 X
(∆312+`− 1

2
)/2

31

, (3.1.15c)

〈ψ1ψ2O3〉(1) =
〈S1S2〉 〈S3X1X2S3〉`

X
(∆123+`+1)/2
12 X

(∆231+`)/2
23 X

(∆312+`)/2
31

, (3.1.15d)

〈ψ1ψ2O3〉(2) =
〈S1S3〉 〈S2S3〉 〈S3X1X2S3〉`−1

X
(∆123+`−1)/2
12 X

(∆231+`)/2
23 X

(∆312+`)/2
31

, (3.1.15e)

〈ψ1ψ2O3〉(3) =
(X23 〈S1S3〉 〈S2X1S3〉+X13 〈S2S3〉 〈S1X2S3〉) 〈S3X1X2S3〉`−1

X
(∆123+`−1)/2
12 X

(∆231+`)/2
23 X

(∆312+`)/2
31

, (3.1.15f)

〈ψ1ψ2O3〉(4) =
(X23 〈S1S3〉 〈S2X1S3〉 −X13 〈S2S3〉 〈S1X2S3〉) 〈S3X1X2S3〉`−1

X
(∆123+`−1)/2
12 X

(∆231+`)/2
23 X

(∆312+`)/2
31

, (3.1.15g)

where we define for brevity

Xab := −2Xa ·Xb , (3.1.16a)

and

∆abc := ∆a + ∆b −∆c . (3.1.16b)

For integer spin we can also convert to vector notation,

Oα1...α2J =Oµ1...µJγα1α2
µ1

· · · γα2J−1α2J
µJ ,

Oµ1...µJ =

(
−1

2

)J
γµ1
α1α2
· · · γµJα2J−1α2J

Oα1...α2J ,

(3.1.17)

where Oµ1...µJ is a symmetric traceless tensor. If we introduce the auxiliary polarization
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vectors zµ, and insist that

zµ1 . . . zµ`Oµ1...µ` = sα1 . . . sα2`
Oα1...α2` (3.1.18)

holds, we find the following relation:

zµ = sαsβγ
αβ. (3.1.19)

We can now use these relations to convert two and three-point functions to vector notation

for integer spin. In particular, eqn. (3.1.12) and eqn. (3.1.15a) become

〈
O∆,`(X1, Z1)O∆,`(X2, Z2)

〉
=

1

2`
H`

12

X∆`
12

, (3.1.20a)

〈φ(X1, Z1)φ(X2, Z2)O(X3, Z3)〉 =
V `

3

X
(∆123−`)/2
12 X

(∆231+`)/2
23 X

(∆312+`)/2
31

, (3.1.20b)

where we define

H12 ≡ − 2 [(Z1 · Z2)(X1 ·X2)− (X1 · Z2)(Z1 ·X2)] ,

V3 ≡
(Z3 ·X1)(X2 ·X3)− (Z3 ·X2)(X1 ·X3)

X1 ·X2
,

(3.1.21)

in the conventions of [153].

Associated to every representation O is a shadow representation Õ which has dimension

∆̃ and the same SO(d) representation ρ3 where we define

∆̃ = d−∆ (3.1.22)

for brevity. Then there exists a conformally-invariant pairing:

(
Õ†,O

)
=

∫
ddxÕ†α1···α2J

(x)Oα1···α2J (x), (3.1.23)

where Õ† has dimension ∆̃. We will work with real operators, so we can drop the † in the

3. In even dimensions we actually need the reflected representation ρR, but in odd dimensions the two are
equivalent so to simplify the discussion we will ignore the distinction.
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expressions which follow.

In the rest of the thesis we will implicitly contract indices when an operator and its

shadow are being integrated over, we will always use spinor indices, and suppressed spinor

indices always go from southwest to northeast. In particular, this means that order of

correlators in an expression matters in our conventions, for instance

∫
dx 〈O1O(x)O2〉

〈
O3Õ(x)O4

〉
= (−1)2`O

∫
dx
〈
O3Õ(x)O4

〉
〈O1O(x)O2〉 . (3.1.24)

By using the conformally-invariant pairing in eqn. (3.1.23), we can define shadow trans-

formation which maps a representation O to Õ:

S[O](x) ≡
∫
dyO(y)

〈
Õ(y)Õ(x)

〉
. (3.1.25)

We will adopt the convention that the shadow transform always acts by multiplying the

two-point function from the left. The distinction is immaterial for bosonic correlators, but

when we introduce fermions the ordering does matter.

3.1.2 Double twist sector of 3d fermions

It is shown in [111] that every CFT has a double twist sector which asymptottes to MFT

operators at large spin. This spectrum is important for various reasons; for example, it

is an open question whether several relevant operators such as stress tensor lie in these

trajectories. Likewise, these operators correspond to two particle states in the bulk via the

AdS/CFT correspondence. Finally, double twist operators are the relevant spectrum in a

channel to reproduce low lying operators such as exchange of the identity operator and stress

tensor in the crossed channel in the light-cone limit.

In the free theory limit, double twist operators can be written down as composite oper-

ators of the form

: Aα1...αp∂β11β12 · · · ∂βq1βq2(∂2)rBρ1...ρs : − total derivatives , (3.1.26)

where total derivative parts are extracted from the normal-ordered product to ensure that
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the resultant operator is a primary. In addition, the open indices above are symmetrized or

antisymmetrized (contracted) dependent on the representation.

We group such operators into towers which has the same twist τ = ∆− `. In particular,

we observe that inclusion of a partial derivative with open indices does not change the twist

hence we define and denote the double twist towers as

[AB]n
free theory limit−−−−−−−−−−→ {A(∂2)nB, A∂α1β1(∂2)nB, A∂α1β1∂α2β2(∂2)nB, · · · } , (3.1.27)

where A and B may have open or contracted indices. In a free theory, the double twist tower

[AB]n is a collection of composite operators schematically given in the equation above4 and

all these operators have the same twist τ[AB]n = τA+ τB + 2n. Once we move away from the

free theory, we can no longer describe double twist operators with such simple composite

structures; nevertheless, they are still in the spectrum and they satisfy

lim
`→∞

τ[AB]n = τA + τB + 2n , (3.1.28)

hence we can define a double twist tower as a collection of operators with the same twist

accumulation point as spin goes to infinity. At finite spin, we have

τ[AB]n = τA + τB + 2n+ γ[AB]n(n, `) , (3.1.29)

where γ is the anomalous dimension. One of the successes of the lightcone bootstrap was

to show that for any CFT5

lim
`→∞

`τ0γ[AB]n(n, `) = constant , (3.1.30)

where τ0 is the twist of lowest twist non-identy operator in the spectrum of the crossed

4. We emphasize that the expression A(∂2)nB and so on are schematic as the correct form should be
normal-ordered with total derivative pieces removed as defined in eqn. (3.1.26).

5. We restrict ourselves to local CFTs with twist gap. In d = 3, any unitary CFT does have the required
twist gap.
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channel, which is usually the stress tensor. For example, we expect a double twist family

[ψαψ
α]0

free theory limit−−−−−−−−−−→ {ψαψα, ψα∂β11β12ψ
α, ψα∂β11β12∂β21β22ψ

α, · · · } (3.1.31)

in the spectrum of fermionic CFTs: one aim of the conformal bootstrap is to find an analytic

form for the anomalous dimension of this tower.

Let’s now step back and briefly discuss what kind of representations we expect for double

twist operators for 3d CFTs. We know that the irreducible representations of the so(3)

algebra are labeled by one index j ∈ 1
2Z≥0, where tensor products of two irreps have the

well known reduction

j1 ⊗ j2 = (j1 + j2)⊕ (j1 + j2 − 1)⊕ (j1 + j2 − 2)⊕ · · · ⊕ |j1 − j2| . (3.1.32)

For example, 1
2 ⊗ 1

2 = 1 ⊕ 0 indicates that we have both spin-1 and spin-0 operators con-

structed out of two fermions, i.e. ψ{αψβ} and ψ[αψβ] = −1
2εαβ(ψσψ

σ). In what follows, we

will assume that all open Sp(2,R) indices are symmetrized as any antisymmetric pair can

be rewritten in terms of contracted indices and εαβ . So, we say that 1
2 ⊗ 1

2 = 1⊕ 0 indicates

that ψα × ψβ can be decomposed into ψαψβ and ψαψα.

In some cases, we are interested in CFTs with parity symmetry where the relevant algebra

is enlarged from so(3) to o(3) which are labeled by the previous index j and a sign p = ±1.

We will denote the representation as jp, where p indicates if the corresponding irrep is parity

even or parity odd. The decomposition of products of two irreps now becomes

j+
1 ⊗ j+

2 = (j1 + j2)+ ⊕ (j1 + j2 − 1)− ⊕ (j1 + j2 − 2)+ ⊕ · · · ⊕ |j1 − j2|+|− , (3.1.33)

where parity alternates between different irreps. Likewise, if some of the parities are flipped

on left hand side, so are those in the right hand side, e.g. j+
1 ⊗ j−2 = (j1 + j2)− ⊕ · · · .

We now turn to the bispinors we can construct out of ψα and ψβ . The representation

of the Majorana fermion can be taken as either 1
2

+ or 1
2

−: this ambiguity reflects the fact

that it is not the O(2, 1) but the Pin(2, 1) group which acts on the spinors. Nevertheless,

as we will always be interested in composite operators or correlators with even number of
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fermions, our results will be ambiguity-free. Let us choose that ψα transforms under the

Pin(2, 1) with the representation 1
2

+. We then have the decomposition

1

2

+

⊗ 1

2

+

= 1+ ⊕ 0− , (3.1.34)

which means we can construct a parity even vector and a parity odd scalar out of two ψ.6

These are exactly ψαψβ and ψαψ
α, which should then appear in the double twist towers

[ψαψβ]n and [ψαψ
α]n .

We can now include a partial derivative, which is parity even spin−1 object. That means

1

2

+

⊗ 1

2

+

⊗ 1+ = 2+ ⊕ 1−2 ⊕ 0+ , (3.1.35)

where a denotes the multiplicity of the representation j in the notation ja. These objects

are

ψα∂γλψβ , ψα∂βγψ
α , ψα∂βγψ

γ , ψα∂
α
βψ

β . (3.1.36)

First two objects already appear in [ψαψβ]n and [ψαψ
α]n double twist towers. We are left

to conclude that inclusion of a derivative yields only two new towers: a parity odd tower

[ψa(∂ψ)β]n and a parity even tower [ψa(∂ψ)α]n.

Considering more derivatives will not produce new towers as we expect a total of four

different double twist towers. To see that, we first note that out of the irreducibly represen-

tations in the decomposition of p-derivatives, i.e. 1+⊗ 1+ · · ·⊗ 1+, only the fully symmetric

representation is relevant as contracted derivatives can be rewritten in terms of (∂2) and

fewer number of derivatives with open indices due to the identity ∂αγ∂
γ
β = (∂2)δαβ . Hence,

the independent towers in the decomposition of two fermions with p−derivatives appear in
1
2

+ ⊗ 1
2

+ ⊗ p+ ∈ 1
2

+ ⊗ 1
2

+ ⊗ 1+ ⊗ 1+ · · · ⊗ 1+ which is decomposed as

1

2

+

⊗ 1

2

+

⊗ p+ = (p+ 1)+ ⊕ p−2 ⊕ (p− 1)+ , (3.1.37)

6. One can also check this explicitly. If we choose parity transformation as a reflection
x1 → −x1 and x0,2 → x0,2, the Majorana fermion transforms as ψα → ±(γ1ψ)α where the ambiguity
is the same one discussed above. By using ψα = εαβψ

β , we can show that ψα → ∓(ψγ1)α, hence
ψαψ

α → −(ψγ1)α(γ1ψ)α = −ψαψα indicating that ψαψα is a parity-odd scalar. One can similarly check
the parities of other operators.
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Table 3.1: We list the different double-twist families for Majorana fermions in 3d, with their
twist accumulation points, parities, and spins.

Family Twist Parity Spin
[ψ(αψβ)]n,` 2∆ψ + 2n− 1 Even ` ≥ 2, Even
[ψαψ

α]n,` 2∆ψ + 2n Odd ` ≥ 0, Even
[ψ(ρ∂

ρ
αψβ)]n,` 2∆ψ + 2n Odd ` ≥ 1, Odd

[ψα(∂ψ)α]n,` 2∆ψ + 2n+ 1 Even ` ≥ 0, Even

which are the towers

[ψαψβ]n , [ψαψ
α]n , [ψα(∂ψ)β]n , [ψα(∂ψ)α]n . (3.1.38)

With the double twist towers constructed as above, we finally turn to the selection rules

on spin imposed by the fact that double twist operators satisfy certain symmetries as they

are defined modulo total derivatives. For example, via integration by parts we see that

ψα∂µ1 . . . ∂µ`∂
2nψb = (−1)`+1ψβ∂µ1 . . . ∂µ`∂

2nψα + total derivatives , (3.1.39)

hence ψ(α∂µ1 . . . ∂µp∂
2nψb) is nonzero only if p+1 ∈ 2Z+. This then indicates that the tower

[ψαψβ]n has operators of even spin only. By a similar analysis, we show that only odd/even

spin operators contribute to each double twist tower: we summarize them in Table. (3.1).

3.2 Large spin expansion

3.2.1 Lightcone bootstrap

Short review

In the following calculations, we review the work of [126] which solves the lightcone bootstrap

in a perturbative expansion. We start by considering the 4-point function of identical scalars,

〈φφφφ〉. The 4-point function is invariant under 1↔ 3 (or s↔ t) crossing, which implies

(
(1− z)(1− z̄)

zz

)2hφ∑

O
PφφOghO,hO(z, z) =

∑

O
PφφOghO,hO(1− z, 1− z) , (3.2.1)
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where PφφO = f2
φφΩ.

We can now consider this equation in the lightcone limit z � 1 − z̄ � 1. In the limit

z � 1, the identity operator dominates on the left-hand side, while taking 1− z̄ � 1 allows

us to use the SL(2,R) expansion on the right-hand side. In this limit, the crossing equation

becomes (
1− z̄
z

)2hφ

≈
∑

O
PφφO(1− z̄)hOk2hO

(1− z) . (3.2.2)

By the arguments of [111, 112], in order to match the z → 0 divergence on the left-hand

side, which is not present in any individual t-channel block, we need to sum over operators

with unbounded spin on the right-hand side. Specifically, we need a tower of “double-twist”

operators in the t-channel, [φφ]0,`, such that h0,` → 2hφ as `→∞.

At this point we could use a Bessel function approximation of the blocks to derive the

large-` asymptotics of the OPE coefficients, but it will be more useful to use our knowledge

of 1d generalized free field theories to write down the exact sum [126]

∑

h̄=−a+`
`=0,1,...

Sa(h̄)k2h̄(1− z) =

(
z

1− z

)a
,

(3.2.3a)

where

Sa(h̄) =
Γ(h̄)2Γ(h̄− a− 1)

Γ(−a)2Γ(2h̄− 1)Γ(h̄+ a+ 1)
. (3.2.3b)

From (3.2.3), we now have at large `, where h̄ ≈ 2hφ + `, the following result for the

OPE coefficients:

PφφO(h̄) ∼ S−2hφ(h̄) . (3.2.4)

The “∼” is because with this approach we can only find the asymptotic expansion for the

OPE coefficients at large h̄. Note that by expanding to higher orders in 1− z̄ one can also

prove the existence of operators [φφ]n,` which have hn,` → 2hφ + n as `→∞.

To extend these calculations to higher orders in the large-h̄ expansion, we can use the

SL(2,R) expansion on both sides of the crossing equation (3.2.1), expand in z � 1− z̄ � 1,

and then use (3.2.3) to unambiguously match generic powers of z in the s-channel to the

large-spin asymptotics of double-twist operators in the t-channel.
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Of course, there are subtleties in this procedure which we have glossed over. First, for

the arguments of [111, 112] to work when matching a power of z in the s-channel to an

infinite sum of t-channel blocks, we need the s-channel term to be more divergent than any

individual t-channel block. From (3.2.1), we see this is only true if hO < 2hφ. However,

as noted in [115], we can make any generic, individual power of za on the left-hand side

of (3.2.1) as divergent as we like by repeatedly acting with a SL(2,R) Casimir differential

operator:

C ≡ (1− z)2z∂2
z + (1− z)2∂z . (3.2.5)

Since the t-channel SL(2,R) blocks are eigenfunctions of this Casimir, these differential

operators leave the form of the t-channel expansion unchanged. Therefore, by acting with

this differential operator sufficiently many times we can make the s-channel more divergent

than the crossed channels.

In the terminology of [126], generic powers za are “Casimir-singular”. On the other hand,

terms like zn and zn log(z), with n a non-negative integer, are called “Casimir-regular”. If

we repeatedly act with C on these terms, we eventually get 0. Therefore, we cannot use the

arguments of [111, 112] to match these terms with large-spin asymptotics of double-twist

operators and they are more sensitive to finite-spin effects.

In the study of the lightcone bootstrap, there are a few places where Casimir-regular

terms can appear. The first is if we start the SL(2,R) sum (3.2.3) at a generic point h̄0:

∑

h̄=h̄0+`
`=0,1,...

Sa(h̄)k2h̄(1− z) =

(
z

1− z

)a
+A(h̄0) , (3.2.6)

where A(h̄0) is defined in [126] (we will not need its explicit form). Since the choice of

starting point only affects a finite number of blocks, changing the lower limit of the sum will

not affect predictions for large-spin asymptotics.

Another important issue is that our sums over blocks are not actually integer spaced.

In general, the double-twist operators will get anomalous dimensions which also depend on

the spin. Therefore, for a tower of double-twist operators O` parametrized by the spin ` we
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have

h̄O` = 2hφ + `+ δhO` , (3.2.7)

where δhO` is half the anomalous dimension with respect to the generalized free field value.

To account for this effect, we can reparametrize our sum by inserting a Jacobian:

∞∑

`=0

∂h̄O`
∂`

P (h̄O`)k2h̄O`
(1− z) =

∞∑

`=0

P (2hφ + `)k4hφ+2`(1− z) + . . . , (3.2.8)

where the dropped terms are Casimir-regular in z. In the current discussion we will not be

concerned with matching Casimir-regular terms, but will rather focus on how we can use

the SL(2,R) expansion to match individual conformal blocks in the s-channel.

Thus, let us now consider the effect of single generic conformal block ghi,h̄i(z, z̄) in the

s-channel. In the limit z � 1− z̄ � 1 it has the general form:

ghi,h̄i(z, z̄) =

(
z

1− z

)hi
(Ai log(1− z̄) +Bi + Ω(1− z̄)) + . . . , (3.2.9)

where we have only written the leading order terms. It is straightforward to include SL(2,R)

descendants using the results of [126, 215], and to expand to higher orders in (1− z̄) using

the explicit form of the hypergeometric functions, where such terms are needed to fix the

corrections for higher twist towers, i.e. [φφ]n>0.7 Here we will be primarily interested in the

form of the correction for the leading twist [φφ]0 operators.

The crossing equation then becomes

(
z

1− z

)−2hφ

+
∑

i

(
z

1− z

)hi−2hφ

(Ai log(1− z̄) +Bi +O(1− z̄))

=
∑

O∈[φφ]0

PφφO(1− z̄)hO−2hφk2h̄O
(1− z) + . . . . (3.2.10)

To match the log terms we have to expand in the anomalous dimension, hO = 2hφ+δhO,

7. We will drop the label ` when referring to a given twist tower.
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and we find

PφφO ∼ 2
∂h̄O
∂`

[
S−2hφ(h̄O) +

∑

i

BiShi−2hφ(h̄O)

]
, (3.2.11a)

δhOPφφO ∼ 2
∂h̄O
∂`

[∑

i

AiShi−2hφ(h̄O)

]
. (3.2.11b)

The factors of 2 are because we only sum over double-twist operators of even spin in the

t-channel. To find the asymptotic, large-spin behavior of the anomalous dimensions we then

just need the ratio of these terms:

δhO ∼
∑

iAiShi−2hφ(h̄O)

S−2hφ(h̄O) +
∑

iBiShi−2hφ(h̄O)
. (3.2.12)

In order to compute PφφO we can then plug this into the relation ∂h̄O
∂` =

(
1− ∂δhO

∂h̄O

)−1
.

Coefficient Expansions

In eqn. (3.2.3b), we provided the MFT coefficient Sa(h) for identical operators. Its general-

ization Sr,sa (h) are defined as

Sr,sa (h) :=
1

Γ(−a− r)Γ(−a− s)
Γ(h− r)Γ(h− s)

Γ(2h− 1)

Γ(h− a− 1)

Γ(h+ a+ 1)
, (3.2.13)

which satisfy the one dimensional Mean Field Theory sum [126]:

∑

h=`−a
`=0,1,...

Sr,sa (h)(1− z)h2F1

[
h− r, h+ s

2h
; 1− z

]
=

zr+a

(1− z)a . (3.2.14)

Sr,sa (h) scales like 4−hh
− 3

2
−2a−r−s at large h, meaning that we can expand Sr,sa (h) as

Sr,sa (h) =
∞∑

k=0

cr,s,m,nk,a Sr+m,s+n
a−m+n−k

2

(h) , (3.2.15)

with h-independent coefficients cr,s,m,nk,a . Since we are working at next-to-next-to-leading
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order in 1/h, we can truncate this expansion as

Sr,sa (h) u cr,s,m,n0,a Sr+m,s+n
a−m+n

2

(h) + cr,s,m,n1,a Sr+m,s+n
a−m+n−1

2

(h) + cr,s,m,n2,a Sr+m,s+n
a−m+n−2

2

(h) . (3.2.16)

Armed with this, let us consider the following summation which appears repeatedly in

eqn. (3.2.36) after insertion of the ansatz in eqn. (3.2.38):

∞∑

`=0

∂h

∂`
S0,0
a (h)(1− z)h2F1

[
h−m,h+ n

2h
; 1− z

]
. (3.2.17)

For parity-even structures, m,n = 0, hence we can immediately use eqn. (3.2.37). For

parity-odd structures, we can expand S0,0 in terms of Sm,n and obtain

∞∑

`=0

∂h

∂`
S0,0
a (h)(1− z)h2F1

[
h−m,h+ n

2h
; 1− z

]

= za+m−n
2

(
cr,s0,a + cr,s1,a

√
z +

(
2a−m− n

2
cr,s0,a + cr,s2,a

)
z +O

(
z3/2

))
, (3.2.18)

where cm,nk,a ≡ c0,0,m,n
k,a . This equation simply means that we replace factors of

(
z

1−z

)a
in

eqn. (3.2.39) with the expression above for parity-odd structures.

We list below the coefficients c0, c1, and c2 for the reader’s convenience:

cr,s,m,nk,a = κk
Γ
(
−a− m

2 + n
2 − r − k

2

)
Γ
(
−a+ m

2 − n
2 − s− k

2

)

Γ(−a− r)Γ(−a− s) , k ∈ {0, 1, 2} , (3.2.19)

with

κ0 =1 , (3.2.20a)

κ1 =− m(m+ 2r) + n(n+ 2s)

2
, (3.2.20b)

κ2 =
1

8
m4 +

4r − 1

8
m3 +

n(1 + 2n+ 4s) + 4r(r − 1)− 2(a+ 1)

8
m2

+
n2(1 + 4r) + n(8rs− 4)− 4a(n− 2) + 4(a2 − r2 + 1)

8
m

+
n

8

(
(n+ 2s)2(n− 1)− 2n− 2a(n− 4) + 4(a2 + 1)

)
. (3.2.20c)
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3.2.2 Fermion conformal blocks and the crossing equations

Having reviewed lightcone bootstrap for scalars, we will now move on to 4-point functions of

fermions 〈ψψψψ〉 in 3d. Our focus for now will be to compute the first several perturbative

1/h̄ corrections to the [ψψ]0 coefficients and anomalous dimensions, generalizing the method

of section 3.2.1 to fermions. As illustrated in [126], such perturbative calculations are in

many cases numerically sufficient and also quite useful in providing consistency checks on

formulas obtained from the inversion formula approach.

We will be using the method of [81] to generate the fermion conformal blocks by hitting

the four-scalar conformal block with differential operators in the embedding space.8 Specif-

ically, a contribution to 〈ψψψψ〉 takes the form:

(
X24

X14

)∆12
2
(
X14

X13

)∆34
2 tIg

I;a,b

h,h̄
(z, z̄)

X
∆1+∆2+1

2
12 X

∆3+∆4+1
2

34

= DaD̃b



(
X24

X14

)∆12
2
(
X14

X13

)∆34
2 gh,h̄(z, z̄)

X
∆1+∆2

2
12 X

∆3+∆4
2

34


 , (3.2.21)

where tI are different 4-point structures in embedding space, a, b are indices denoting possible

3-point structures, and we have suppressed the dependence of the blocks on the external

dimensions. The operators Da are defined as follows:

D1 = 〈S1S2〉Π1+2+ , (3.2.22a)

D2 = −
〈
S1

δ

δX1

δ

δX2
S2

〉
Π1−2− , (3.2.22b)

D3 =

〈
S1

δ

δX1
S2

〉
Π1−2+ −

〈
S2

δ

δX2
S1

〉
Π1+2− , (3.2.22c)

D4 =

〈
S1

δ

δX1
S2

〉
Π1−2+ +

〈
S2

δ

δX2
S1

〉
Π1+2− , (3.2.22d)

where Πaibj are operators which shift external dimensions such that

Πaibj : {∆a,∆b} → {∆a +
i

2
,∆b +

j

2
} . (3.2.23)

8. A review of the embedding space formalism can be found in section 3.1.1.
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The corresponding operators acting on the points (X3, X4) are found via the replacement

D̃a := Da

∣∣∣∣
(1,2)→(3,4)

. (3.2.24)

An alternative basis denoted by Di was used in [81], given by:9

D1 = D1 , (3.2.25a)

D2 =
1

4(h− h)(h+ h− 1)
(D2 − (2h+ 2∆ψ − 4)(2h− 2∆ψ + 1)D1) , (3.2.25b)

D3 =
1

2(h+ h− 1)
D3 , (3.2.25c)

D4 =
1

2(h− h)
D4 . (3.2.25d)

These two bases have different merits. One nice feature of the Di basis is that the

operators are independent of (h, h̄), so there is a clean separation between the calculation

of double-twist data and the differential operators, i.e. we do not want these operators to

also depend on the anomalous dimensions. By comparison Di generates the most natural

basis of embedding space, 3-point tensor structures. We find that it is most convenient to

use the Di basis when performing the calculations and presenting the results.

The operators D1 and D2 generate parity-even structures, whereas D3 and D4 generate

parity-odd ones. When the external fermions are identical, there are also selection rules on

the spins of the exchanged operators: D1, D2, and D3 are associated to operators of even

spin while odd spins are associated with D4.

Now let us write down the condition from crossing symmetry. For convenience we will

define the prefactor p as

p (∆1,∆2,∆3,∆4) ≡
(
X24

X14

)∆12
2
(
X14

X13

)∆34
2

X
−∆1+∆2

2
12 X

−∆3+∆4
2

34 , (3.2.26)

9. There is also an additional term in D4 which vanishes for identical external operators.
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and introduce the shorthand notations

pi ≡ p (∆1,∆2,∆3,∆4) , (3.2.27a)

pψ ≡ p

(
∆ψ +

1

2
,∆ψ +

1

2
,∆ψ +

1

2
,∆ψ +

1

2

)
. (3.2.27b)

Then we can write a more compact form of the conformal block for identical fermions:

tIg
I;a,b

h,h̄
(z, z̄) =

(
DaD̃b

[
pi gh,h̄(z, z̄)

])
∆i→∆ψ

pψ
, (3.2.28)

and crossing symmetry implies

pψ
∑

O
tIP

a,b
O gI;ab

h,h
(z, z) = − (pψtI)

∣∣∣∣
1↔3

∑

O
P a,bO gI;ab

h,h
(1− z, 1− z) , (3.2.29)

where we use P for the coefficients in the Da differential basis.

To simplify some expressions, we will first consider the contributions of double-twist

operators in the (12) → (34) OPE. Then later we will take 1 ↔ 3 so that they appear in

the t-channel, and match their sum to the contributions of individual s-channel blocks, as

in section 3.2.1.

The 3-point structures will be unimportant in the following discussion so we will simplify

the notation of the left-hand side of (3.2.29) to

∑

different
structures

∑

O

(
DD̃

[
piPOgh,h(z, z)

]) ∣∣∣∣
∆i→∆ψ

. (3.2.30)

We can also interchange the order of differential operators and summation over relevant

operator families. Since p is independent of the exchanged operator, the double-twist sum

reduces to
∑

different
structures

(
DD̃

[
pi
∑

O
POgh,h(z, z)

])

∆i→∆ψ

. (3.2.31)

To go any further, we need to specify which operators O must appear to reproduce

the lightcone limit of the crossed channel. In particular, we know that an infinite sum of

double-twist operators is needed to reproduce the identity operator in the crossed channel
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[111, 112, 126]. The required operators and their quantum numbers are schematically shown

in Table 3.1.

To remove clutter, we will denote different double-twist families generically as [ψψ]n

below. Their contribution then reads as

∑

different
structures

(
DD̃

[
pi

∞∑

n=0

∞∑

`=0

P[ψψ]ngh[ψψ]n , h̄[ψψ]n
(z, z)

])

∆i→∆ψ

, (3.2.32)

where the summation over all relevant families [ψψ]n appearing in Table 3.1 is implicit.

Restoring possible dependence on the external dimension differences r, s (which arise

from the shift operators Π), we will now use Eq. (2.3.7) in a slightly modified form after

applying g(z, z) = g(z, z) symmetry:

gr,s
h,h

(z, z) =
∞∑

n=0

n∑

j=−n
Ar,sn,j(h, h)z̄h+nkr,s

2(h̄+j)
(z) . (3.2.33)

By expanding

h[ψψ]n = h[ψψ]0 + n+ δh[ψψ]n , (3.2.34)

the leading part of the double-twist sum at small z̄ can then be rewritten as

∑

different
structures

(
DD̃

[
pi

∞∑

`=0

P[ψψ]0z
h[ψψ]0

+δh[ψψ]0kr,s
2h[ψψ]0

(z)

])

∆i→∆ψ

(1 +O(z)) . (3.2.35)

To reproduce log terms in the crossed channel, we will expand to linear order in the

anomalous dimension:10

∑

different
structures

(
DD̃

[
pi z

h[ψψ]0

{ ∞∑

`=0

P[ψψ]0k
r,s

2h[ψψ]0

(z) + log(z)

∞∑

`=0

P[ψψ]0δh[ψψ]0k
r,s

2h[ψψ]0

(z)

}])

∆i→∆ψ

.

(3.2.36)

In [126] it was shown how to sum over 2F1 hypergeometric functions to reproduce terms

10. Higher order terms in δh are matched with multi-twist operators in the s-channel.
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Casimir-singular in z:

∞∑

`=0

∂h

∂`
Sr,sa (h)kr,s

2h
(1− z) =

(
z

1− z

)a
+ [· · · ]z , (3.2.37)

which is the generalization of eqn. (3.2.3) to non-identical external scaling dimensions. The

explicit form of Sr,sa (h) is given in eqn. (3.2.13), though it will not be necessary for the

following calculations.

As explained in section 3.2.1, we make the ansatz

P a,b[ψψ]0
(h̄) =

(
∂h[ψψ]0

∂`

)∑

{i}

Aa,b,iS
0,0
i (h[ψψ]0) , (3.2.38a)

(δhP )a,b[ψψ]0
(h̄) =

(
∂h[ψψ]0

∂`

)∑

{j}

Ba,b,jS
0,0
j (h[ψψ]0) , (3.2.38b)

and insert this into eqn. (3.2.36) to obtain

1

2

∑

different
structures


DD̃


pizh[ψψ]0


∑

{i}

Aa,b,i

(
1− z
z

)i
+ log(z)

∑

{j}

Ba,b,j

(
1− z
z

)j







∆i→∆ψ

.

(3.2.39)

The 1/2 in front accounts for the fact that we are summing over operator families with even-

integer spacing [126], since we are dealing with identical external fermions. In particular,

P 4,4 = 0 for even `, and P 1,1 = P 1,2 = P 2,1 = P 2,2 = P 3,3 = 0 for odd ` [81].

After acting with the differential operators we take 1↔ 3 and (z, z̄)→ (1− z, 1− z̄) and

match to individual s-channel blocks. We will find the sets {i} and {j}, and the coefficients

A and B by matching the s-channel.

There is actually a subtle point we skipped while going from eqn. (3.2.37) to eqn. (3.2.39).

As evident from eqn. (3.2.22), we need S±
1
2
,± 1

2 to be able to use eqn. (3.2.37) for parity-odd

structures even though we used S0,0 in our ansatz above. We resolve this in appendix 3.2.1

by expanding Sr+n,r+ma in terms of Sr,sa+k.
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3.2.3 Results

In this section, we first discuss identity matching and find the MFT solutions. Then we

consider the exchange of parity-even and parity-odd operators of arbitrary dimension and

spin, and calculate their contribution to the OPE coefficients and anomalous dimensions of

the double-twist families [ψ(αψβ)]0,`, [ψαψ
α]0,`, and [ψ(ρ∂

ρ
αψβ)]0,` at leading and sub-leading

order in the small z expansion. As special cases, we will present the contributions due to

stress tensor exchange and scalar exchanges.

The reader is reminded that the contributions of all double-twist families are present,

but we simply match the subset of terms relevant for the above families. For example,

we match the O
(
z1−∆ψ(1− z̄)0

)
contribution of the stress tensor without matching the

O
(
z−∆ψ(1− z̄)1

)
contribution from identity exchange, even though the latter is more dom-

inant in the lightcone limit. However, these contributions come from different twist families

in the crossed channel, and there is no mixing for the terms leading order in (1 − z̄). For

instance, both [ψ(αψβ)]0,` and [ψ(αψβ)]1,` bring contributions of order O
(
z−∆ψ(1− z̄)1

)
,

however only [ψ(αψβ)]0,` brings O
(
z−∆ψ(1− z̄)0

)
terms. So by requiring [ψ(αψβ)]0,` to re-

produce these in the crossed channel, we can extract its OPE coefficients and anomalous

dimensions.

Below, we will suppress the label for the double twist families whenever there is no

ambiguity. For example, we will simply write the OPE coefficient f1
[ψ(αψβ)]0,`

as f1. We can

extract the relevant family due to the conditions listed in Table 3.1 and the fact that the

four types of 3-point functions fa are associated with (parity, spin) as: (+, even), (+, even),

(−, even), and (−, odd), respectively.

Identity matching

Let us first focus on the identity contribution alone. In the s-channel the relevant terms are

O
(
z−

1
2
−∆ψ(1− z̄)0

)
and O

(
z

1
2
−∆ψ(1− z̄)0

)
. We reproduce these terms in the t-channel

by tuning Aa,b,i in eqn. (3.2.38a); for example, we need

{
A2,2, 3

2
−∆ψ

, A2,2, 5
2
−∆ψ

}
(3.2.40)
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for the double-twist family [ψ(αψβ)]0,`. The fact that A1,1,i, A1,2,i, and A2,1,i are zero reflects

the vanishing of the 3-point coefficient f1 at all orders.

As there is no anomalous dimension for the identity exchange alone we have ∂h
∂` = 1,

hence we can immediately get P a,b with eqn. (3.2.38), then solve for the physical 3-point

coefficients11

P a,bO = (−1)`faψ1ψ2Of
b
ψ3ψ4O ,

(3.2.41)

where the identity itself has the OPE coefficients f1
ψψ1 = i and f2

ψψ1 = 0.

Using the steps described above, we compute the OPE coefficients

f1 = 0 , (3.2.42a)

f2 =
f0

4h
2

(
1− 8∆ψ − 17

16h̄
−

256∆3
ψ − 2112∆2

ψ + 4208∆ψ − 2787

1536h
2 +O

(
1

h

)3
)
, (3.2.42b)

f3 =
f0

2h

√
∆ψ − 1

2h

(
1− 24∆ψ − 31

16h̄
+O

(
1

h

)2
)
, (3.2.42c)

f4 =
f0

2h

√
∆ψ − 1

2h

(
1 +

8∆ψ − 1

16h̄
+O

(
1

h

)2
)
, (3.2.42d)

where for convenience we have defined the prefactor f0 as

f0 ≡ i 4
√
π

2
3
2
−h̄h̄∆ψ− 1

4

Γ
(
∆ψ + 1

2

) . (3.2.43)

Note that the results take a slightly simpler form in the D basis. E.g., at leading order

f2

∣∣∣∣
D

= f0 , f3,4

∣∣∣∣
D

= f0

√
∆ψ − 1

2h
, (3.2.44)

which follows from eqn. (3.2.25).

Matching the exchange of a generic parity-even operator

Let us turn to the contribution of the exchange of a generic parity-even operator O+
τ,` of

twist τ and spin ` in the s-channel to the double-twist families [ψ(αψβ)]0, [ψαψ
α]0, and

11. The (−1)` term here would be absent in the notation of [81], however we need it as our conformal
block normalization in eqn. (2.3.6) differs from that paper by a factor of (−1)`.
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[ψ(ρ∂
ρ
αψβ)]0 in the t-channel.

When calculating corrections to the anomalous dimensions of double-twist families we

need to recall that the contributions of multiple operators are not additive. Additionally,

in general there can be multiple double-twist families that mix with each other. The full

formula for their anomalous dimension matrix is12

γ[ψψ]

2
= δh[ψψ] =

∑
O

(
δh[ψψ]P

a,b
[ψψ]J

−1
[ψψ]

)
O

∑
O

(
P a,b[ψψ]J

−1
[ψψ]

)
O

, (3.2.45)

where J is the Jacobian

J[ψψ] ≡
∂δh[ψψ]

∂h
. (3.2.46)

Here O runs over all exchanged operators in the s-channel. Likewise, the OPE coefficients

fa[ψψ] are given as

(−1)`fa[ψψ]f
b
[ψψ] = J[ψψ]

∑

O

(
P a,b[ψψ]J

−1
[ψψ]

)
O
. (3.2.47)

In the large h̄ expansion, we can of course truncate the summation over operators in

twist to extract the large h̄ behavior. For example, in the first few orders, we see that

γ[ψψ]

2
= δh[ψψ] =

(
δh[ψψ]P

a,b
[ψψ]

)
O(

P a,b[ψψ]

)
1

+
(
P a,b[ψψ]

)
O

, (3.2.48a)

(−1)`fa[ψψ]f
b
[ψψ] =

(
P a,b[ψψ]

)
1

+
(
P a,b[ψψ]

)
O

, (3.2.48b)

for the identity operator 1 along with the operator with minimum twist O, which is usually

either the stress tensor or a scalar of low dimension.

At leading order in 1/h̄ one can easily isolate the contribution of any operator. Only

the identity operator contributes in the denominator in eqn. (3.2.45), allowing one to write

an isolated contribution to the anomalous dimension. Likewise, at leading order, one can

immediately calculate an individual contribution to fa.

Once we go beyond leading order, we can work with
(
P a,b[ψψ]J

−1
[ψψ]

)
O

and

12. The anomalous dimension matrix (3.2.45) is diagonal if there is no mixing between the double-twist
families.
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(
δha,b[ψψ]P

a,b
[ψψ]J

−1
[ψψ]

)
O
, make an ansatz for their large h̄ behavior, and then calculate the

corrections to the 3-point coefficients and anomalous dimensions. We find

(
P 1,1J−1)

O+
τ,`

=− f2
+

16h̄4(f ′1O )2(H`+ τ
2
−1)2

×
[{(

f ′1O
)2

(5− 4∆ψ)− 4
(
f2
O
)2
`(`+ τ − 1)(−2∆ψ + τ + 1)2

}2

+O
(

1

h

)]
,

(3.2.49a)

(
P 2,2J−1)

O+
τ,`

=−
f2

+

(
f ′1O
)2

16h̄4

[
1 +
−8∆ψ + 4τ + 17

8h̄
+O

(
1

h

)2
]
, (3.2.49b)

(
(δhP )2,2J−1)

O+
τ,`

=− f2
+

32h
4
H`+ τ

2
−1

[ (
f ′1O
)2(

1 +
17 + 4τ − 8∆ψ

8h

)

+
1

(2`− 1)(2`+ 2τ − 1)h̄2

((
f ′1O
)2

384
− f ′1O f2

O`(τ − 1)(`+ τ − 1) (−2∆ψ + τ + 1)2

+
(
f2
O
)2
`(`+ τ − 1)

(
4`τ + 4(`− 1)`+ 2τ2 − 5τ + 2

)
(2∆ψ − τ − 1)2

)

×
{

4`2
(
−8τ3 + 72τ2 + 512τ + 1851

)
+ 16τ4 − 128τ3 − 928τ2 − 3214τ

+ 1827− 4`
(
8τ4 − 80τ3 − 440τ2 − 1339τ + 1851

)
− 128(2`− 1)∆3

ψ(2`+ 2τ − 1)

− 16∆ψ

(
`2(96τ + 652) + `

(
96τ2 + 556τ − 652

)
− 42τ2 − 302τ + 157

)
+ 192∆2

ψ

(
2`2(τ + 13) + 2`

(
τ2 + 12τ − 13

)
− τ2 − 12τ + 6

)}
+O

(
1

h

)3
]
,

(3.2.49c)(
P 3,3J−1)

O+
τ,`

=−
(
P 4,4J−1)

O+
τ,`

=
f2

+f
′1
O

16h
3

[(
1 +
−8∆ψ + 4τ + 15

8h̄

)

×
{
f ′1O (τ + 2)− 2∆ψ(f ′1O − 4f2

O`(`+ τ − 1))− 4f2
O`(τ + 1)(`+ τ − 1)

}
+O

(
1

h

)2
]
,

(3.2.49d)(
(δhP )3,3J−1)

O+
τ,`

=− f2
+

32h̄3H`+ τ
2
−1

[
f ′1O
(
f ′1O (2∆ψ − τ − 2)− 4f2

O`(2∆ψ − τ − 1)(`+ τ − 1)
)

− 1

8h̄

(
(f ′1O )2 (48∆2

ψ + τ(4τ + 35)− 2∆ψ(16τ + 55) + 62
)

− 4f ′1O f
2
O`(24∆ψ − 4τ − 23)(2∆ψ − τ − 1)(`+ τ − 1)

+ 16(f2
O)2`(τ − 2)(`+ τ − 1)(2∆ψ − τ − 1)2

)
+O

(
1

h

)2
]
,

(3.2.49e)

(
(δhP )4,4J−1)

O+
τ,`

=−
(
(δhP )3,3J−1)

O+
τ,`

+
f2

+

32h̄4H`+ τ
2
−1

[
(f ′1O )2(4(∆ψ − 1)(2∆ψ − τ − 2)− τ)

− 8f ′1O f
2
O`(2∆ψ − 1)(2∆ψ − τ − 1)(`+ τ − 1)

+ 4(f2
O)2`(τ − 2)(`+ τ − 1)(2∆ψ − τ − 1)2 +O

(
1

h

)]
,

(3.2.49f)
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where Ha is the Harmonic number, and we defined

f ′1O ≡ f1
O + (2∆ψ − τ − 1) (2∆ψ + τ − 4) f2

O (3.2.50)

and

f+ ≡
2

3
2
−h̄+`+ τ

2 h̄∆ψ− 1
4

(1+2τ)

Γ
(
∆ψ + 1−τ

2

)
√(

`+
τ

2

)
1
2

H`+ τ
2
−1 (3.2.51)

for convenience. Note that f+ reduces back to eqn. (3.2.43) for identity exchange after

setting ` = τ = δh = 0. The appearance of (f ′1O )2 in the denominator of P 1,1 is because we

compute it by first matching P 1,2 and then using the relation P 1,1 = (P 1,2)2/P 2,2.

Reproducing identity matching: As a consistency check, let us use this general form

to reproduce the identity exchange contribution to the [ψ(αψβ)]0,` family. We can first check

that the anomalous dimension due to sole identity exchange is indeed zero:13

γ[ψ(αψβ)]0,` = 2δh[ψ(αψβ)]0,` = 2

(
(δhP )2,2

)
O+
τ,`

(P 2,2)O+
τ,`

∣∣∣∣
f1
O→i, f

2
O→0, `→0, τ→0

= 0 . (3.2.52)

With this, one can now straightforwardly calculate

(
f1
)2

=
(
P 1,1

)
O+
τ,`

∣∣∣∣
f1
O→i, f

2
O→0, `→0, τ→0

, (3.2.53a)

(
f2
)2

=
(
P 2,2

)
O+
τ,`

∣∣∣∣
f1
O→i, f

2
O→0, `→0, τ→0

, (3.2.53b)

which match eqn. (3.2.42).

Parity-even scalar exchange: We can also consider the special case of exchange of a

parity-even scalar of twist τs. Let us write down the anomalous dimension to leading order

in 1/h for convenience. We then only need to use P i,j for identity exchange and (δhP )i,j

for scalar exchange.

We can immediately read the leading-order anomalous dimensions due to a parity-even

13. One sees a possible divergence if one does not take f2
O → 0 first. This is natural because the corre-

sponding 3-point structure does not exist for scalars so its coefficient should be taken to vanish before setting
` = 0.
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scalar exchange as follows:

γ[ψ(αψβ)]0 = 2

(
(δhP )2,2

)
O+
τ,`

∣∣
f1
O→fφ, f

2
O→0, `→0, τ→τs

(P 2,2)O+
τ,`

∣∣
f1
O→f1, f2

O→0, `→0, τ→0

=
f2
φ

h
τs

2τs
(
τs
2

)
1
2

((
− τs

2 + ∆ψ + 1
2

)
τs
2

)2

√
π

,

(3.2.54a)

and likewise

γ[ψαψα]0 = γ[ψ(ρ∂
ρ
αψβ)]0

=
f2
φ

h
τs

2τs
(
τs
2

)
1
2

((
− τs

2 + ∆ψ + 1
2

)
τs
2

)2 (
∆ψ − 1− τs

2

)
√
π (∆ψ − 1)

. (3.2.54b)

There are two comments in order. Firstly, γ[ψαψα]0 and γ[ψ(ρ∂
ρ
αψβ)]0

naïvely seem to be

divergent in the MFT limit ∆ψ → 1. However, what really matters when solving the analytic

bootstrap is the weighted contribution (f[ψψ]0
)2γ[ψψ]0

. We can check from eqn. (3.2.42) that

the squared OPE coefficients also vanish linearly as ∆ψ → 1. So, we need to check that this

weighted contribution in fact vanishes in mean field theory, or that the factor

(
−τs

2
+ ∆ψ +

1

2

)

τs
2

=
Γ(∆ψ + 1

2)

Γ(− τs
2 + ∆ψ + 1

2)
(3.2.55)

is zero. In mean field theory we have the contributions from scalar operators [ψα∂
αβψβ]n

with twist 2∆ψ + 1 + 2n for n ∈ N0. Plugging in the mean field theory twist we obtain a

factor of Γ(−n)−1, so the result vanishes as expected.

Secondly, we recall that fφ ≡ fψψφ is purely imaginary due to the Grassmann nature of

fermions, hence γ[ψ(αψβ)]0 < 0, as expected for the leading double-twist trajectory [112].

Stress tensor exchange: As a last example we consider stress tensor exchange. From

Ward identities, we know that14

f1
ψψT =

3i (∆ψ − 1) (2∆ψ + 1)

16
√
CT

, f2
ψψT = − 3i

32
√
CT

, (3.2.56)

14. See [81] for their calculation in the D basis.
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where CT is the central charge. Hence, we compute

γ[ψ(αψβ)]0 = 2

(
(δhP )2,2

)
O+
τ,`

∣∣
f1
O→f

1
ψψT , f

2
O→f

2
ψψT , `→2, τ→1

(P 2,2)O+
τ,`

∣∣
f1
O→f1, f2

O→0, `→0, τ→0

= − 48Γ
(
∆ψ + 1

2

)2

πCTΓ (∆ψ − 1)2 h
,

(3.2.57a)

and

γ[ψαψα]0 = γ[ψ(ρ∂
ρ
αψβ)]0

= −24 (∆ψ − 1) (2∆ψ + 1) Γ
(
∆ψ + 1

2

)2

πCTΓ (∆ψ)2 h
. (3.2.57b)

Matching the exchange of a generic parity-odd operator

Similar to the previous computation, we can also consider the contribution of the exchange of

a generic parity-odd operator O−τ,` in the s-channel to the double-twist operators [ψ(αψβ)]0,

[ψαψ
α]0, and [ψ(ρ∂

ρ
αψβ)]0 in the t-channel.

The analogue of eqn. (3.2.49) now reads as

(
P 1,2J−1)

O−
τ,`

= −f2
−

[((
f ′3O
)2 − (f ′4O )2)(1 +

−8∆ψ + 4τ + 13

8h̄

)
+O

(
1

h

)2
]
, (3.2.58a)

(
(δhP )2,2J−1)

O−
τ,`

= − f2
−

8h
2

[
(2`+ τ − 1)

((
f ′3O
)2
`−

(
f ′4O
)2

(τ + `− 1)
)

`(`+ τ − 1)

×
(

1 +
−8∆ψ + 4τ + 21

8h̄

)
+O

(
1

h

)2
]
, (3.2.58b)

(
(δhP )3,3J−1)

O−
τ,`

= −f
2
−

4

[((
f ′4O
)2

+
(
f ′3O
)2)

(2`+ τ − 1) +
2`+ τ − 1

8h

×
{(

f ′4O
)2

(8(1− 3`)∆ψ + 4(`− 1)τ + 23`− 4)

`

+

(
f ′3O
)2

(−8∆ψ(3`+ 3τ − 2) + (`+ τ)(4τ + 23)− 19)

`+ τ − 1

}
+O

(
1

h

)2
]
,

(3.2.58c)

(
(δhP )4,4J−1)

O−
τ,`

= −f
2
−

4

[((
f ′4O
)2

+
(
f ′3O
)2)

(2`+ τ − 1) +
2`+ τ − 1

8h

×
{(

f ′4O
)2

(8(`− 1)∆ψ + 4(`+ 1)τ + 7`+ 4)

`

+

(
f ′3O
)2

(8∆ψ(`+ τ) + `(4τ + 7) + τ(4τ − 1)− 11)

`+ τ − 1

}
+O

(
1

h

)2
]
,

(3.2.58d)
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where for convenience we have defined

f ′3O ≡ 2(τ + `− 1)f3
O , (3.2.59a)

f ′4O ≡ 2`f4
O , (3.2.59b)

f− ≡
2
τ
2
−h̄+`−1h̄∆ψ− 1

4
(7+2τ)

Γ
(
∆ψ − τ

2

)√(
`+ τ

2

)
1
2

. (3.2.59c)

Note that f ′3O and f ′4O are actually the 3-point coefficients in the D basis as one can see by

comparing eqn. (3.2.22) and eqn. (3.2.25). Quantities not shown, e.g. P 1,1 and P 2,2, do

not appear in the matching conditions at this order, hence we do not learn about any new

contributions to them. Let us also comment that since P 1,2 = 0 in the free theory limit,

P 1,2 being required to be nonzero serves as a probe of the effect of interactions.

Parity-odd scalar exchange: At leading order, the exchange of a parity-odd scalar

contributes to the anomalous dimension of the double-twist families as

γ[ψ(αψβ)]0 = 2

(
(δhP )2,2

)
O−τ,`

∣∣
f ′3O→fφ, f

4
O→0, `→0,τ→τs

(P 2,2)O+
τ,`

∣∣
f1
O→f1, f2

O→0, `→0,τ→0

=
f2
φ

h
τs+1

2τs−1

((
2∆ψ−τs

2

)
τs+1

2

)2

√
π
(
τs
2

)
1
2

,

(3.2.60a)

where fφ is given in the more standard D basis. Similarly,

γ[ψαψα]0 = −γ[ψ(ρ∂
ρ
αψβ)]0

=
f2
φ

h
τs

2τs
((

2∆ψ−τs
2

)
τs+1

2

)2

√
π
(
τs
2

)
− 1

2
(∆ψ − 1)

. (3.2.60b)

Comparing with eqn. (3.2.54), we see that the contribution of parity-odd scalar exchange to

the parity-even double-twist family [ψ(αψβ)]0 comes at the higher order h−τs−1 instead of

h
−τs .
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Chapter 4

Fermions in Conformal Field

Theories: Non-Perturbative

Corrections

4.1 Perturbative vs Non-perturbative

In section 3, we computed CFT data for fermions using large spin expansion. While large

spin expansions has been historically useful and are numerically shown to provide surpris-

ingly good results even at finite values of spin, there exists an alternative method which

makes far more conceptual and practical sense to utilize and we will turn to that in this

section.

This alternative elegant way to calculate OPE data is by making use of the Lorentzian in-

version formula [127, 131]. In addition to providing a resummation of the 1/` expansion, this

formalism also allows one to compute nontrivial nonperturbative effects which are exponen-

tially suppressed at large ` but may be important at smaller values of ` [8, 9, 133, 227, 228].

Such effects are in fact needed in order to obtain a resummation which is analytic in `.

We would like to take the opportunity to review a derivation of these effects, generalizing

previous computations to different external dimensions and arbitrary SL(2,R) blocks, and
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also to illustrate their importance in 3d CFTs.1

For a 4-point function of scalars 〈φ1φ2φ3φ4〉, the CFT inversion formula gives the OPE

data for the s-channel in terms of two integrals of the function g(z, z̄):

c(h, h̄) = ct(h, h̄) + (−1)h−hcu(h, h̄) , (4.1.1)

where

ct(h, h̄) =
κ2h̄

4

1∫

0

dzdz̄µ(z, z̄)gr,s
d−1−h,h̄(z, z̄)dDisct[g(z, z̄)] , (4.1.2a)

κ2h ≡
Γ(h+ r)Γ(h− r)Γ(h+ s)Γ(h− s)

2π2Γ(2h− 1)Γ(2h)
, (4.1.2b)

µ(z, z̄) =

∣∣∣∣
z − z̄
zz̄

∣∣∣∣
d−2 ((1− z)(1− z̄))s−r

(zz̄)2
, (4.1.2c)

and we recall that r = h1 − h2 and s = h3 − h4. The double discontinuity around z = 0,

which we call the s-channel dDisc, is defined by

dDiscs[g(z, z̄)] = cos (π(s− r)) g(z, z̄)− 1

2
eiπ(s−r)g(ze2πi, z̄)− 1

2
eiπ(r−s)g(ze−2πi, z̄) .

(4.1.3)

The t and u-channel double discontinuities are defined in the same way, except around z = 1

and z = ∞ respectively. The term cu(h, h̄) is also defined in the same way as (4.1.2a), but

with the integration being taken from −∞ to 0.

In [127] the inversion formula was written in terms of (∆, `), in which case the OPE

1. The Lorentzian inversion formula yields an analytic complete result only as long as it is used properly.
As we will review, Lorentzian inversion formula relies on inversion of the conformal blocks — which will be
made clearer below — and in practice, this translates into inversion of some other function with which the
conformal block is written as an expansion over since closed form expressions for 3d conformal blocks are not
available. Now, if the chosen function provides a convergent expansion for the conformal block for the whole
range z ∈ [0, 1], then the inversion formula works properly. For instance, k2h(z) defined in eqn. (2.3.7b) is
such a function hence the expansion in eqn. (2.3.7a) with k2h inverted does provide the full analytic results
with non-perturbative corrections. On the other hand, one can also expand conformal block as functions
of y := z

1−z and invert the monomial ya. As this expansion is only convergent for z ∈ [0, 1
2
], the result of

Lorentzian inversion formula only provides the perturbative terms, same terms that would be obtained by
large spin computations as large spin expansion is an asymptotic expansion determined by the region z ∼ 0
(same region ya expansion is convergent). In practice, this reflects on the result of the inversion formula:
one observes non-analytic behavior at finite spin [227] — for further details see footnote 28 of [133].
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coefficients for generic ∆ are given by

f12Of34O = −Res∆′=∆ c(∆
′, `) , for fixed `. (4.1.4)

Here we need to take residues of c(h, h̄) with respect to h at fixed h̄ − h = `, which will

introduce some extra Jacobians as in the lightcone bootstrap. We will focus on ct since the

u-channel can always be found by taking 1↔ 3 and multiplying by (−1)`.

It is convenient to define a generating function for the poles of ct(h, h̄):

ct(h, h̄)

∣∣∣∣
poles

=

1∫

0

dz

2z
z−hCt(z, h̄) . (4.1.5)

The outer integral turns powers of z inside Ct(z, h̄) into poles for h. Since we are interested

in the low-twist data, and in particular the n = 0 double-twist operators, we study the small

z limit of C(z, h̄):

Ct(z, h̄) ≈
1∫

0

dz̄
(1− z̄)s−r

z2 κ2h̄k
r,s

2h̄
(z̄)dDisct

[
(zz̄)h1+h2g(1− z, 1− z̄)

[(1− z)(1− z̄)]h2+h3

]
, (4.1.6)

where we have used crossing symmetry inside the dDisc. This is a generating function for

the SL(2,R) primaries with respect to z̄ and to subtract descendants along z we have to

expand the inverted block in (4.1.2a) in powers of z.

One nice example is to consider a 4-point function of identical scalars, 〈φφφφ〉. As in

the lightcone bootstrap, terms regular and logarithmic in z in Ct(z, h̄) will correspond to

corrections of OPE coefficients and scaling dimensions of the double-twist towers [φφ]n,

respectively. To see this we will assume the anomalous dimensions of double-twist operators

are small and expand Ct(z, h̄) both in z and the anomalous dimension:

Ct(z, h̄) ≈ z2hφP[φφ]0(h̄)(1 + δh[φφ]0(h̄) log(z)) + . . . , (4.1.7)

where the log(z) comes from a single t−channel conformal block. Integrating over z we see

the term regular in z becomes a single pole while the term logarithmic in z becomes a double
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pole. Some of these corrections at finite spin were recently derived in the works [8, 9, 133,

227, 228]. We will review these results and present some generalizations.

As an example, we can consider the exchange of a scalar operator O of twist τO = 2hO

in the t-channel and use the inversion formula to extract the anomalous dimension of the

[φφ]0 tower. In the limit z → 0, the log(z) piece of the scalar block ghO,hO(1 − z, 1 − z̄) is

known in closed form. In a general 4-point function 〈φ1φ2φ3φ4〉 the t-channel blocks develop

logs when h1 + h2 = h3 + h4, with the coefficient given by2

ghO,hO(1− z, 1− z̄)
∣∣∣∣
log(z)

= − log(z)
Γ(2hO)

Γ(h1 − h4 + hO)Γ(−h1 + h4 + hO)

× (1− z̄)hO2F1

[
h1 − h4 + hO,−h1 + h4 + hO

2hO − d−2
2

; 1− z̄
]
. (4.1.8)

Focusing for now on the case where the external scalars are the same, we can match the

log(z) term in the generating function, yielding the correction

(δhP )[φφ]0(h) = −f2
φφO

Γ(2hO)

Γ(hO)2
κ2h̄

1∫

0

dz̄

z̄2
k2h̄(z̄)

× dDisct

[(
z̄

1− z̄

)2hφ

(1− z̄)hO2F1

[
hO, hO

2hO − d−2
2

; 1− z̄
]]

. (4.1.9)

Notice that this formula gives the product δh × P and one still needs to compute the

corrected OPE coefficients, as well as add the u-channel contribution (identical up to a

factor (−1)h̄−h), in order to find the anomalous dimension.

Using a hypergeometric transformation, we can rewrite this as

(δhP )[φφ]0(h) = −f2
φφO

Γ(2hO)

Γ(hO)2
κ2h̄

∫ 1

0

dz̄

z̄2

(
1− z̄
z̄

)−h
2F1

[
h, h

2h
;− z̄

1− z̄

]

× z̄−hO2F1

[
hO, hO − d−2

2

2hO − d−2
2

;−1− z̄
z̄

]
dDisct

[
(1− z̄)hO

(
z̄

1− z̄

)∆φ
]
. (4.1.10)

Finally, we can write the hypergeometric functions as a Mellin-Barnes integral and perform

2. The conformal block normalization is the same as in Eq. (2.3.6).
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the z̄ integral using the identity

∫ 1

0

dz̄

z̄(1− z̄)

(
z̄

1− z̄

)α
= 2πδ(iα) (4.1.11)

to find:

(δhP )[φφ]0(h) =− f2
φφO sin2 (π(hO − 2hφ))

Γ(2hO)Γ
(
2hO − d−2

2

)

π2Γ(hO)3Γ
(
hO − d−2

2

) Γ(h)2

Γ(2h− 1)

× 1

2πi

∫ i∞

−i∞
ds′

(
Γ (hO − 2hφ + 1 + s′)2 Γ

(
h− hO + 2hφ − 1− s′

)

Γ
(
h+ hO − 2hφ + 1 + s′

)

Γ (hO + s′) Γ
(
hO − d−2

2 + s′
)

Γ(−s′)
Γ
(
2hO − d−2

2 + s′
)

)
.

(4.1.12)

Finally, summing over the poles of Γ(−s′) gives

(δhP )[φφ]0(h)
∣∣
pert = −f2

φφO sin2(π(hO − 2hφ))
Γ(2hO)Γ(hO − 2hφ + 1)2

π2Γ(hO)2

× Γ(h̄)2Γ(h̄− hO + 2hφ − 1)

Γ(2h̄− 1)Γ(h̄+ hO − 2hφ + 1)
4F3

[
hO, hO − d−2

2 , hO − 2hφ + 1, hO − 2hφ + 1

−h̄+ hO − 2hφ + 2, h̄+ hO − 2hφ + 1, 2hO − d−2
2

; 1

]
,

(4.1.13)

which when expanded at large h̄ reproduces the perturbative 1/h̄ expansion from the light-

cone bootstrap. It can also be obtained by expanding the hypergeometric function inside

Eq. (4.1.10) at small z̄, performing the integrals term-by-term, and resumming the result.

However, this resummation contains spurious poles in h̄, leading to a non-analytic func-

tion, connected to the fact that performing the small z̄ expansion inside the integral fails to

correctly capture its behavior near z̄ ∼ 1 as noted in footnote 1.

Additionally summing over the poles of Γ
(
h̄− hO + 2hφ − 1− s′

)
gives the correction

(δhP )[φφ]0(h̄)
∣∣
nonpert =− f2

φφO sin2 (π(hO − 2hφ))
Γ(2hO)Γ

(
2hO − d−2

2

)

π2Γ(hO)3Γ
(
hO − d−2

2

) Γ(h̄)4

Γ(2h̄− 1)Γ(2h̄)

× Γ(−h̄+ hO − 2hφ + 1)Γ(h̄+ 2hφ − 1)Γ(h̄+ 2hφ − d
2)

Γ(h̄+ hO + 2hφ − d
2)

× 4F3

[
h̄, h̄, h̄+ 2hφ − 1, h̄+ 2hφ − d

2

2h̄, h̄− hO + 2hφ, h̄+ hO + 2hφ − d
2

; 1

]
.

(4.1.14)
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The full sum (δhP )[φφ]0(h̄) = (δhP )[φφ]0(h̄)
∣∣
pert + (δhP )[φφ]0(h̄)

∣∣
nonpert has no spurious

poles, and the same asymptotics as (δhP )[φφ]0(h̄)
∣∣
pert, since

(
δh[φφ]0(h̄)

)
nonpert ∼ 4−h̄h̄1/2−4hφ (4.1.15)

is exponentially damped at asymptotically large h̄. Such exponentially damped contributions

can be understood as arising from the region of integration near z̄ ∼ 1, while the perturbative

contributions come from expanding the integrand near z̄ ∼ 0.

We will now generalize the log matching to different external dimensions by considering

the 4-point function 〈φ1φ2φ2φ1〉. The s-channel OPE data is given by integrating over the

t- and u-channel double discontinuities, so the anomalous dimensions are given by

(δhP )[φ1φ2]0
(h) = f11Of22O (δhP )1221 (h) + f2

12O (δhP )1212 (h) , (4.1.16)

where

(δhP )1234 (h)

∣∣∣∣
pert

= − sin(π(h1 + h4 − hO)) sin(π(h2 + h3 − hO))

× Γ(2hO)Γ(hO − h2 − h3 + 1)Γ(hO − h1 − h4 + 1)

π2Γ(hO + h2 − h3)Γ(hO − h2 + h3)

× Γ(h̄+ h1 − h2)Γ(h̄+ h3 − h4)Γ(h̄− hO + h2 + h4 − 1)

Γ(2h̄− 1)Γ(h̄+ hO − h2 − h4 + 1)

× 4F3

[
hO − h2 + h3, hO − h2 + h3 − d−2

2 , hO − h2 − h3 + 1, hO − h1 − h4 + 1

−h̄+ hO − h2 − h4 + 2, h̄+ hO − h2 − h4 + 1, 2hO − d−2
2

; 1

]
,

(4.1.17)

(δhP )1234 (h)

∣∣∣∣
nonpert

= − sin(π(h1 + h4 − hO)) sin(π(h2 + h3 − hO))

× Γ(2hO)Γ
(
2hO − d−2

2

)

π2Γ(hO + h2 − h3)Γ(hO − h2 + h3)2Γ
(
hO − h2 + h3 − d−2

2

)

× Γ(h̄+ h1 − h2)Γ(h̄− h1 + h2)Γ(h̄+ h3 − h4)Γ(h̄− h3 + h4)

Γ(2h̄)Γ(2h̄− 1)

× Γ(−h̄+ hO − h2 − h4 + 1)Γ(h̄+ h1 + h2 − 1)Γ
(
h̄+ h1 + h2 − d

2

)

Γ(h̄+ hO + h2 + h4 − d
2)

× 4F3

[
h̄− h1 + h2, h̄− h3 + h4, h̄+ h1 + h2 − 1, h̄+ h1 + h2 − d

2

2h̄, h̄− hO + h2 + h4, h̄+ hO + h2 + h4 − d
2

; 1

]
.

(4.1.18)
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To derive these expressions from the inversion formula, we had to set h1 + h2 = h3 + h4

so the u- and t-channel blocks have log(z) terms, but we left this equality implicit in the

above expression.

Corrections to OPE coefficients can be derived in a similar way, by matching regular

terms in t-channel conformal blocks. Somewhat cumbersome formulas for such corrections

in general dimension and for general spin exchange were given in [228]. In section 4.2 we

will describe an alternate and perhaps simpler approach to obtaining anomalous dimensions

and OPE coefficient corrections in 3d CFTs, via dimensional reduction.

4.2 A detour: effect of non-perturbative terms in scalar CFTs

Ising CFT

To demonstrate why nonperturbative corrections can be important, we would like to see

how they affect analytic predictions for the 3d Ising CFT. We will restrict ourselves to the

4-point function 〈σσσσ〉 and extract predictions for the [σσ]0 scaling dimensions and OPE

coefficients. We will improve the results found in [115, 126].

For the Ising CFT we will focus on the effects of three operators, the identity operator

1, the lightest parity-even scalar ε, and the stress-tensor Tµν . We will also use the following

results from the numerical bootstrap [46, 126] as inputs:

hσ = 0.25907445(50) , hε = 0.7063125(50) , hT = 0.5 ,

fσσε = 1.0518537(41) , fσσT = 0.32613776(45) .

(4.2.1)

To use the inversion formula, we will use dimensional reduction to write the 3d blocks
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as sums of 2d blocks [215]. Specifically, we use the expansion3

g
r,s,(3d)

h,h̄
(z, z̄) =

∞∑

n=0

n∑

j=max(−n,n−`)

Ar,sn,j(h, h̄)g
r,s,(2d)

h+n,h̄+j
(z, z̄) , (4.2.2a)

g
r,s,(2d)

h,h̄
(z, z̄) =

1

1 + δh̄−h,0

(
zh2F1(h+ r, h+ s, 2h, z)z̄h̄2F1(h̄+ r, h̄+ s, 2h̄, z̄) + (z ↔ z̄)

)
.

(4.2.2b)

In [215] this expansion was derived in closed form for r = s = 0, which will be sufficient for

our calculations.

Since each 2d block is a sum of hypergeometrics, we can use the same techniques as when

inverting a single scalar block in the previous section. Specifically, after setting r = s = 0

and extracting the leading z → 0 behavior of the hypergeometrics in the t-channel, we have

contributions from SL(2,R) blocks of the form

g
(2d)

hO,h̄O
(1− z, 1− z̄)

∣∣∣∣
z→0

=
1

1 + δh̄O−hO,0

[
−Γ(2hO)

Γ(hO)2
(log(z) + 2ψ(0)(hO) + 2γ) + . . .

]

× (1− z)hOk2h̄O
(1− z̄) + (hO ↔ h̄O) .

(4.2.3)

Here ψ(0)(z) = Γ′(z)/Γ(z) is the digamma function and γ is the Euler constant. We then

we find the following corrections to the OPE coefficients and anomalous dimensions after

inverting the t-channel block:

3. Our parametrization differs from [215], so Ahere
n,j = Athere

n+j
2
,h̄−h+j−n, and our normalization is such that

c
(d)
` = (d−2)`

( d−2
2 )

`

in Eq. (2.35) of [215].
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(δhP )hO,h̄O[σσ]0
(h̄)

∣∣∣∣
pert

= −f2
σσO sin2(π(2hσ − h̄O))

× Γ(2hO)Γ(h̄O − 2hσ + 1)2

π2Γ(hO)2

Γ(h̄)2

Γ(2h̄− 1)

Γ(h̄− h̄O + 2hσ − 1)

Γ(h̄+ h̄O − 2hσ + 1)

× 4F3

[
h̄O, h̄O, h̄O − 2hσ + 1, h̄O − 2hσ + 1

2h̄O,−h̄+ h̄O − 2hσ + 2, h̄+ h̄O − 2hσ + 1
; 1

]
, (4.2.4a)

(δhP )hO,h̄O[σσ]0
(h̄)

∣∣∣∣
nonpert

= −f2
σσO sin2(π(2hσ − h̄O))

× Γ(2hO)Γ(2h̄O)

π2Γ(hO)2Γ(h̄O)2

Γ(h̄)4

Γ(2h̄− 1)Γ(2h̄)

Γ(−h̄+ h̄O − 2hσ + 1)Γ(h̄+ 2hσ − 1)2

Γ(h̄+ h̄O + 2hσ − 1)

× 4F3

[
h̄, h̄, h̄+ 2hσ − 1, h̄+ 2hσ − 1

2h̄, h̄− h̄O + 2hσ, h̄+ h̄O + 2hσ − 1
; 1

]
, (4.2.4b)

with the net contribution from a given 2d block in both the t− and u-channels given by

(δhP )[σσ]0 =
1 + (−1)h̄−h

1 + δh̄O−hO,0

[
(δhP )hO,h̄O[σσ]0

(h̄)

∣∣∣∣
pert

+ (δhP )hO,h̄O[σσ]0
(h̄)

∣∣∣∣
nonpert

]

+ (hO ↔ h̄O) .

(4.2.5)

Similarly, by matching regular terms we obtain the corrections to the OPE coefficients

δP[σσ]0 =
1 + (−1)h̄−h

1 + δh̄O−hO,0

(
2ψ(0)(hO) + 2γ

)[
(δhP )hO,h̄O[σσ]0

(h̄)

∣∣∣∣
pert

+ (δhP )hO,h̄O[σσ]0
(h̄)

∣∣∣∣
nonpert

]

+ (hO ↔ h̄O) .

(4.2.6)

Note that if we take O = 1 to be the identity operator and take the limit hO = h̄O → 0

(as well as set fσσ1 = 1), then we reproduce the expected identity contribution P[σσ]0 =

(1 + (−1)h̄−h)S−2hσ(h̄).

At finite spin and finite anomalous dimensions one does not expect that it is sufficient

to match the terms logarithmic and regular in z to obtain the precise OPE data. Although

inverting individual operators produces factors of zh[σσ]n,` and z
h[σσ]n,` log z, we know the
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Figure 4.1: Spectrum for [σσ]0 in the Ising CFT derived using the inversion formula, asymp-
totic lightcone expansion, and numerical bootstrap. Numerical data is taken from [126]. The
curves in this and later plots are obtained by matching at z = .1.

exact generating function Ct(z, h̄) at small z is [127]:

Ct(z, h̄) = C[σσ]0(h̄)z2hσ+δh[σσ]0
(h̄) + ... , (4.2.7)

where we ignore terms subleading in z.

We can then extract the anomalous dimension via:

δh[σσ]0(h̄) = lim
z→0

(z∂z − 2hσ)Ct(z, h̄)

Ct(z, h̄)
, (4.2.8)

which we in practice evaluate by evaluating the generating function at small but finite z.

We find the OPE coefficients in a similar way by taking our value for δh[σσ]0(h̄) and using:

C[σσ]0(h̄) = lim
z→0

Ct(z, h̄)

z2hσ+δh[σσ]0
(h̄)

, (4.2.9)

where we once again evaluate the right-hand side at small but finite z.

In evaluating these expressions one wishes to take z small, but not too small so as to

avoid neglected terms with higher powers of log z from becoming important. In [126] it was
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Figure 4.2: OPE coefficients fσσ[σσ]0 in the Ising CFT. Numerical data is taken from [126]
and the OPE coefficients are normalized by dividing by the mean field theory OPE coefficients.

found that z = .1 is a good choice for the Ising model (there called ȳ0), so we will present

results at this value in our analysis. It may be helpful to further optimize the matching

value of z. As more operators are included one should also see that the results become less

and less sensitive to this choice.

Now the procedure should be clear: we can expand the 3d blocks as sums of 2d blocks

and invert each block term by term. This procedure is sufficient to extract finite-spin data

from the Lorentzian inversion formula. In practice we find that we need to expand to at

most 10 to 15 orders in the 2d expansion such that the errors introduced by truncating this

expansion are smaller than the errors from the numerical input.

With this data and the above expressions, we can extract P[σσ]0 and δh[σσ]0 , but we have

to do a little more work to extract the physical OPE coefficients and scaling dimensions. To

find the scaling dimensions, we need to solve the equation

h̄− 2hσ − δh[σσ]0(h̄) = ` , (4.2.10)

where ` is the spin of the local, double-twist operator. As the anomalous dimensions are

expressed in terms of 4F3 hypergeometric functions, we will solve this equation numerically.
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Table 4.1: We list results for the twists and OPE coefficients for the double-twist family [σσ]0,`
in the 3d Ising model by either matching at z = .1 or using the naïve log z matching valid for
perturbative anomalous dimensions. Approximate errors come from numerical input.

Numerics Inversionz=.1 Inversionlog z Lightconez=.1 Lightconelog z

τ[σσ]0,2 1 1.000060(2) 0.998459(4) 0.998082(4) 0.9962944(46)
τ[σσ]0,4 1.022665(28) 1.0226890(7) 1.022472(3) 1.022510(3) 1.0222880(28)
fσσ[σσ]0,2 0.32613776(45) 0.325981(1) 0.3262377(9) 0.327398(1) 0.3277057(10)
fσσ[σσ]0,4 0.069076(43) 0.0691405(2) 0.0691445(2) 0.0691630(2) 0.0691671(2)

We then calculate the physical OPE coefficients fσσ[σσ]0 using the relation

f2
σσ[σσ]0

≈
(

1−
∂δh[σσ]0(h̄)

∂h̄

)−1

Pσσ[σσ]0 , (4.2.11)

where the Jacobian appears because we need to take residues of the OPE function c(∆, `)

in terms of ∆ at fixed spin `.

A comparison of results from the numerical bootstrap [126], the leading asymptotic

lightcone bootstrap (3.2.11a, 3.2.12), and the inversion formula result, can be found in

Table 4.1. We focus here on how accurately we can reproduce the low-spin data. We see

that in all cases, including the nonperturbative effects from the inversion formula leads to

more accurate results. This is clearest for the scaling dimensions, where we have at least an

extra digit of precision for the lightest spin-2 and spin-4 operators.

This improvement is especially marked for the stress-tensor and gives additional evidence

that the stress-tensor should be thought of as a double-twist operator composed of two σ

operators. We see a similar improvement for the OPE coefficients, although it is smaller

in comparison to the dimensions. The errors listed come from the errors in the numerical

input and do not include errors from truncating the operator product expansion to include

only a few light operators. As we include more operators beyond ε and Tµν we expect the

results to improve even further.
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Figure 4.3: Spectrum of [φφ]
(I)
0 and [φφ]

(A)
0 in the O(2) model. The black dots corresponds

to the stress tensor and conserved current which have twist one.

O(2) model

We can repeat the above analysis, but now for the O(2) vector model. We will study the

4-point function of fundamental scalars
〈
φiφjφkφ`

〉
, which we can decompose in terms of

the exchanged global symmetry representations as

x
2∆φ

12 x
2∆φ

34 〈φiφjφkφ`〉 = δijδk`I(u, v) + (δi`δjk − δikδj`)A(u, v)

+ (δi`δjk + δikδj` − δijδk`)S(u, v) , (4.2.12)

where I, A, and S correspond to contributions from exchanged operators that transform in

the singlet, antisymmetric, and symmetric traceless representation of O(2), respectively.

If we collect them into a vector ~Z(u, v) = {I(u, v), A(u, v), S(u, v)}, then (1, i)↔ (3, k)

crossing implies
(u
v

)∆φ ~Z(u, v) = M · ~Z(u, v) , (4.2.13a)
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Figure 4.4: OPE coefficients for f
φφ[φφ]

(I)
0

and f
φφ[φφ]

(A)
0

in the O(2) model. Numerical data
is taken from [61] and the OPE coefficients are normalized by dividing by the mean field theory
OPE coefficients.

for

M =




1
2

1
2 1

1
2

1
2 −1

1
2 −1

2 0



. (4.2.13b)

We will use the following results from the numerical bootstrap [61, 66, 68]:

hφ = 0.25963(16) , hφ2 = 0.7559(13) , (4.2.14a)

ht = 0.6179(16) , fφφφ2 = 0.68726(65) , (4.2.14b)

fφφJ = 0.52558(46) , fφφT = 0.23146(16) . (4.2.14c)

Here t refers to the lightest symmetric, traceless scalar in the φi×φj OPE. There is one

crucial piece of OPE data missing, the OPE coefficient fφφt, although there are estimates

from the ε-expansion [195], which yield

fφφt ≈ {0.8944, 0.8246, 0.8850} at {O(ε), O(ε2), O(ε3)}. (4.2.15)

Using this data as input, we can calculate the low-spin spectrum for the O(2) vector

model using either the asymptotic lightcone bootstrap or the inversion formula. In our cal-
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Table 4.2: We list results for the twists and OPE coefficients for the double-twist family [φφ]0,`
in the 3d O(2) model by either matching at z = .1 or using the naïve log z matching valid for
perturbative anomalous dimensions. The errors are approximate and come from both numerical
input and from using the lower and upper values in (4.2.15).

Numerics Inversionz=.1 Inversionlog z Lightconez=.1 Lightconelog z

τ
[φφ]

(I)
0,2

1 1.0012(24) 0.9996(26) 0.9992(25) 0.9973(27)

τ
[φφ]

(A)
0,1

1 0.9958(60) 0.9933(66) 0.9480(90) 0.933(13)

f
φφ[φφ]

(I)
0,2

0.231462(16) 0.23128(46) 0.23147(48) 0.23231(50) 0.23254(52)

f
φφ[φφ]

(A)
0,1

0.52558(46) 0.5270(32) 0.5286(36) 0.6005(97) 0.630(17)

culations we expanded to 12th and 20th order in the 2d conformal blocks to obtain converged

results for the stress-tensor and conserved current OPE data, respectively. The results are

shown in Table 4.2.

We see that the inversion formula in general gives more accurate results for both the

conserved current Jµ and the stress-tensor Tµν . The improvement is particularly large for

cφφ[φφ]A0,1
, or the coupling between two scalars and Jµ. One reason the inversion formula

gives an improved estimate for this OPE coefficient is because it also gives a much more

accurate result for τ
[φφ]

(A)
0,1

, which is used as input in the calculation of the OPE coefficient.

Finally, we should note that the inversion formula is only guaranteed to hold for spin J > 1,

but we see for the O(2) vector model it likely holds down to at least J = 1.

The one exception appears to be the twist of the stress-tensor itself, for which the

lightcone analysis gives a result which is slightly closer to the exact answer. We expect this

is an artifact of truncating the t-channel expansion: as we include more operators the results

for the twist will decrease which will push the lightcone result further from the exact result.

We can also take a different point of view and use the inversion formula to make a

prediction for fφφt. For example, if we require that the inversion formula reproduces the

exact twist of Tµν then we find the following range:

fφφt ∈ (0.857, 0.951) , (4.2.16)

with a central value of approximately fφφt = 0.9038. Using results from Monte Carlo [229]
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as input, setting hφ = 0.259525(50), hφ2 = 0.75562(11), and ht = 0.6180(5),4 and repeating

the above analysis, the window shrinks to

fφφt ∈ (0.883, 0.901) . (4.2.17)

By including more operators in the inversion formula or the effects of operator mixing it

should be possible to improve the above results further. It will be interesting to understand

which operators need to be included in order to reproduce the current beyond the 10−3 level.

It would also be interesting to extend this work to higher orders in the small-z expansion to

understand the higher-twist families.

4.3 Review: harmonic analysis on the conformal group

In section 4.1 we compared large spin expansions and the inversion formula and stated that

the inversion formula is far more elegant both conceptually and in practical computations;

furthermore, it allows us to reach non-perturbative corrections with which the analytic

results behave far better at finite values of spin. We demonstrated this by carrying out

the computations via inversion formula for 3d Ising and O(2) models and compared those

results with numerics and large spin expansions in section 4.2. In the rest of the thesis, we

will extend the application of inversion formula to CFTs with fermionic operators.

Our strategy to study the inversion formula for spinning operators involves a combina-

tion of Euclidean and Lorentzian ingredients. Our starting point for relating the fermionic

6j symbol to the scalar one involves their Euclidean definition as an overlap of partial waves.

Then we use weight-shifting operators [152], which transform in a finite-dimensional repre-

sentation of the conformal group, to expand the fermionic 6j symbol as a sum over scalar

symbols. We can plug in the explicit form of the scalar 6j symbol as calculated via the

Lorentzian inversion formula to obtain the fermionic 6j symbol in closed form.5 Finally,

4. This range comes from comparing the bootstrap data in Figure 9 of [68] with the Monte Carlo allowed
region.

5. The full 6j symbol is only known in d = 1, 2, 4 but the poles and residues are computable in general
dimensions.
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since a partial wave for general external operators can be split as a sum over two blocks,

there exists a similar split for the 6j symbol in terms of the inversion of two blocks. By

splitting the scalar and fermionic 6j symbols, we then find the inversion of a single block

when we have external fermions.

In this section, we will review the harmonic analysis.

4.3.1 Shadow transform and shadow coefficients

In eqn. (3.1.25) we introduced the shadow transformation O → S[O] as an application of

the conformally-invariant pairing given in eqn. (3.1.23). We remind the reader that in our

conventions it reads as

S[O](x) ≡
∫
dyO(y)

〈
Õ(y)Õ(x)

〉
. (4.3.1)

As S[O] is in the same conformal representation as Õ, we expect that the tree point structures

of one can be expanded about those of the other one: we define the shadow matrix as the

transformation matrix between these two basis, i.e.

〈O1O2S[O3]〉a = Sac (O1O2[O3])
〈
O1O2Õ3

〉c
. (4.3.2)

One nice way to understand such relations is through the diagrammatic notation intro-

duced in [10]. In this language, one denotes two point functions as

〈OO〉 = O
, 〈ÕÕ〉 = Õ

=
O

,
(4.3.3)

where we see that taking the shadow is equivalent to changing the direction of arrow. Like-

wise, pairing operators is gluing the arrows; for example the diagrammatic equation

O O = NO O (4.3.4)
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a

O2

O1

S[O] = a

O2

O1

O = Sac (O1O2[O]) c

O2

O1

O

Figure 4.5: Diagrammatic definition of shadow coefficients. Note that a and c label the three-
point structures, and arrows allow us to keep track of scaling dimensions. We use the standard
convention where an operator O∆,J with an outgoing arrow from a three-point structure enters
that structure as itself. On the contrary, changing the direction of arrow is equivalent to
changing O∆,J to Õ∆,J ≡ O∆̃,J ≡ O3−∆,J .

stands for

〈
· · ·S2[O](x) · · ·

〉
=

∫
dxdy 〈· · · O(x) · · ·〉

〈
Õ(x)Õ(y)

〉
〈O(y)O(z)〉 = NO 〈· · · O(z) · · ·〉 ,

(4.3.5)

or S2[O] = NOO. This follows from the definition of the shadow transformation in eqn. (3.1.25)

and the irreducibility of the representations. The factor N in our conventions is

N∆,` =
π3 tan(π (∆ + `))

(∆− 3
2)(−∆ + `+ 2)(∆ + `− 1)

. (4.3.6)

In the diagrammatic language, three point structures are denoted by three arrows con-

nected by a node with an additional label for the basis index. For example, one can see

eqn. (4.3.2) in Figure. (4.5).
One can compute shadow matrices by either in position space through the action of the

weight shifting operators, or in Fourier space where the shadow transformation turns into a
simple convolution [10]. Either way, we will not go into the details and simply provide the
final form of the shadow matrices in our conventions for the relevant three point structures
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in this thesis:

S1
2([ψ∆ψ ]φ∆φO∆,`) = −

iπ3/2Γ
(
∆ψ − 1

)
Γ
(

1
2

(
`+ ∆−∆φ −∆ψ + 5

2

))
Γ
(

1
2

(
`−∆ + ∆φ −∆ψ + 7

2

))
Γ
(

7
2
−∆ψ

)
Γ
(

1
2

(
`+ ∆−∆φ + ∆ψ + 1

2

))
Γ
(

1
2

(
`−∆ + ∆φ + ∆ψ − 1

2

)) ,

S1
1(ψ∆ψ [φ∆φ ]O∆,`) =

π sin
(
π∆φ

)
Γ
(
2
(
∆φ − 2

))
Γ
(

1
2

(
`+ ∆−∆φ −∆ψ + 5

2

))
Γ
(

1
2

(
`−∆−∆φ + ∆ψ + 5

2

))
22∆φ−5Γ

(
1
2

(
`+ ∆ + ∆φ −∆ψ − 1

2

))
Γ
(

1
2

(
`−∆ + ∆φ + ∆ψ − 1

2

)) ,

S1
2(ψ∆ψφ∆φ [O∆,`]) =

(−1)`+1Γ(∆− 1)Γ(`+ ∆− 1)Γ
(

1
2

(
`−∆ + ∆φ −∆ψ + 7

2

))
Γ
(

1
2

(
`−∆−∆φ + ∆ψ + 5

2

))
π−3/2Γ

(
∆− 1

2

)
Γ(`−∆ + 3)Γ

(
1
2

(
`+ ∆ + ∆φ −∆ψ − 1

2

))
Γ
(

1
2

(
`+ ∆−∆φ + ∆ψ + 1

2

)) ,
S1

3([ψ∆1
]ψ∆2

O∆,`) =
i (−∆ + ∆1 + ∆2 − 2) Γ (∆1 − 1) Γ

(
1
2

(`+ ∆−∆1 −∆2 + 2)
)

Γ
(

1
2

(`−∆−∆1 + ∆2 + 3)
)

2π−3/2Γ
(

7
2
−∆1

)
Γ
(

1
2

(`+ ∆ + ∆1 −∆2)
)

Γ
(

1
2

(`−∆ + ∆1 + ∆2 + 1)
) ,

S1
3(ψ∆1

[ψ∆2
]O∆,`) =S1

3([ψ∆2
]ψ∆1

O∆,`),

S1
1(ψ∆1ψ∆2 [O∆,`]) =

π3/2(−1)`Γ
(
∆− 3

2

)
Γ(`+ ∆− 1)Γ

(
1
2

(`−∆ + ∆1 −∆2 + 3)
)

Γ
(

1
2

(`−∆−∆1 + ∆2 + 3)
)

Γ(∆− 1)Γ(`−∆ + 3)Γ
(

1
2

(`+ ∆ + ∆1 −∆2)
)

Γ
(

1
2

(`+ ∆−∆1 + ∆2)
) ,

(4.3.7)

where we can get all other nonzero components from the relations

S1
2([ψ∆ψ ]φ∆φO∆,`) = −S2

1([ψ∆ψ ]φ−∆φO−∆,`),

S1
1(ψ∆ψ [φ∆φ ]O∆,`) = S2

2(ψ∆ψ [φ∆φ ]O∆,`−1),

S1
2(ψ∆ψφ∆φ [O∆,`]) = −S2

1(ψ−∆ψφ−∆φ [O∆,`]),

S1
4([ψ∆1

]ψ∆2
O∆,`)

`
∆−∆1−∆2+2

=
S2

3([ψ∆1
]ψ∆2

O∆,`)
−∆+∆1+∆2+`−1
2(∆−∆1−∆2+2)

=
S2

4([ψ∆1
]ψ∆2

O∆,`)

−−∆+∆1+∆2+`−1
2(∆−∆1−∆2+2)

= S1
3([ψ∆1

]ψ∆2
O∆,`),

S3
1([ψ∆1 ]ψ∆2O∆,`)
−∆−∆1+∆2+`+2

∆+∆1−∆2−2

=
S3

2([ψ∆1 ]ψ∆2O∆,`)
2`

∆+∆1−∆2−2

=
S4

1([ψ∆1 ]ψ∆2O∆,`)
−∆−∆1+∆2+`+2

∆+∆1−∆2−2

=
S4

2([ψ∆1 ]ψ∆2O∆,`)

− 2(∆+∆1−∆2−1)
∆+∆1−∆2−2

= S1
3([ψ∆1 ]ψ−∆2O−∆,`),

S1
4(ψ∆1

[ψ∆2
]O∆,`)

− `
∆−∆1−∆2+2

=
S2

3(ψ∆1
[ψ∆2

]O∆,`)
−∆+∆1+∆2+`−1
2(∆−∆1−∆2+2)

=
S2

4(ψ∆1 [ψ∆2 ]O∆,`)
−∆+∆1+∆2+`−1
2(∆−∆1−∆2+2)

= S1
3(ψ∆1 [ψ∆2 ]O∆,`),

S3
1(ψ∆1

[ψ∆2
]O∆,`)

−∆+∆1−∆2+`+2
∆−∆1+∆2−2

=
S3

2(ψ∆1
[ψ∆2

]O∆,`)
2`

∆−∆1+∆2−2

=
S4

1(ψ∆1
[ψ∆2

]O∆,`)
∆−∆1+∆2−`−2

∆−∆1+∆2−2

=
S4

2(ψ∆1
[ψ∆2

]O∆,`)
2(∆−∆1+∆2−1)

∆−∆1+∆2−2

= S1
3(ψ−∆1

[ψ∆2
]O−∆,`),

S2
1(ψ∆1

ψ∆2
[O∆,`])

− 2∆−3
2(∆−1)

=
S2

2(ψ∆1
ψ∆2

[O∆,`])

−∆−2
∆−1

= S1
1(ψ∆1

ψ∆2
[O∆,`]),

S3
3(ψ∆1

ψ∆2
[O∆,`])

(∆− 1) (∆ + ∆1 −∆2 − 2) (∆−∆1 + ∆2 − 2)− (∆− 2)`2 − (∆− 2)`
=

S1
1(ψ−∆1

ψ−∆2
[O∆+1,`])

2(2∆− 3)(−∆ + `+ 2)(∆ + `− 1)
,

S4
4(ψ∆1

ψ∆2
[O∆,`])

−(∆− 2)
(
(∆− 1)2 −∆2

1 −∆2
2 + 2∆1∆2

)
+ (∆− 1)`2 + ∆`− `

=
S1

1(ψ−∆1
ψ−∆2

[O∆+1,`])

2(2∆− 3)(−∆ + `+ 2)(∆ + `− 1)
,

S3
4(ψ∆1

ψ∆2
[O∆,`])

(2∆− 3) (∆2 −∆1) `
=

S4
3(ψ∆1

ψ∆2
[O∆,`])

(2∆− 3) (∆1 −∆2) (`+ 1)
=

S1
1(ψ−∆1

ψ−∆2
[O∆+1,`])

2(2∆− 3)(−∆ + `+ 2)(∆ + `− 1)
.

(4.3.8)

The block (anti-)diagonal form of shadow matrices reflects the property that shadow

transformation is parity-definite and that we have chosen our three-point structures with

definite parity. As the two point function in eqn. (3.1.25) carries a definite parity, the shadow

matrix relates the same (opposite) parity structures if the shadowed operator is of integer

(half-integer) spin; this is why, say, Sab ([ψ]ψO) is block anti-diagonal whereas Sab (ψψ[O]) is

block diagonal.6

6. We remind the reader that what we refer to here as parity is simply the inversion Xi → −Xi in
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4.3.2 Euclidean pairings

In this section and the rest of the thesis, we will denote conformally invariant pairings of

correlation functions as (〈. . .〉 , 〈. . .〉) which is defined as

(
〈O1(x1) · · · On(xn)〉 ,

〈
Õπ1(xπ1) · · · Õπn(xπn)

〉)

:=

∫
ddx1 · · · ddxn

vol(SO(d+ 1, 1))
〈O1(x1) · · · On(xn)〉

〈
Õπ1(xπ1) · · · Õπn(xπn)

〉
(4.3.9)

for any permutation π. We remind the reader that suppressed indices of any operator and

its dual are contracted from southwest to northeast; for instance,

(
〈φ1(x1)φ2(x2)O3(x3)〉 ,

〈
φ̃1(x1)φ̃2(x2)Õ3(x3)

〉)

=

∫
d3x1d

3x2d
3x3

vol(SO(4, 1))

〈
φ1(x1)φ2(x2)(O3)α1...α2`3

(x3)
〉〈

φ̃1(x1)φ̃2(x2)(Õ3)α1...α2`3 (x3)
〉
.

(4.3.10)

Two Point Pairings and Plancherel Measure

Let us first consider the pairing of scalar two-point functions.We denote it as

(
〈φ(x1)φ(x2)〉 ,

〈
φ̃(x1)φ̃(x2)

〉)
=

∫
ddx1d

dx2

vol(SO(d+ 1, 1))
〈φ(x1)φ(x2)〉

〈
φ̃(x1)φ̃(x2)

〉

=
1

2dvol(SO(1, 1))× vol(SO(d))
〈φ(0)φ(∞)〉

〈
φ̃(0)φ̃(∞)

〉
,

(4.3.11)

where vol(SO(1, 1)) × vol(SO(d)) is the stabilizer group for two points and the factor 2d is

the Fadeev-Popov determinant.

We define an operator at infinity as

O(∞) ≡ lim
L→∞

L2∆O(êL) (4.3.12)

embedding space.
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for a unit vector ê hence
〈
φ̃(0)φ̃(∞)

〉
= 1 in our conventions, meaning

(
〈φ(x1)φ(x2)〉 ,

〈
φ̃(x1)φ̃(x2)

〉)
=

1

64π2vol(SO(1, 1))
. (4.3.13)

We can use this result to compute the pairing of spinning two point functions. To do this,

we first rewrite the two-point function 〈OO〉∆,J in terms of weight-shifting operators Da,b

acting on 〈OO〉∆−a,J−b,7 then integrate it by parts, and finally act with the adjoint weight-

shifting operators
(
Da,b

)∗ ∝ Da,−b on the other two-point function. Diagrammatically,

O Õ ∝ O′ ÕS ∝ O′ Õ′ .

We can find the coefficient between the first two diagrams above by direct calculation. For

example, if we choose a = b = 1
2 , we have

〈O1O2〉∆,J = − iD(+,+)
1A D(+,+)A

2

16 (∆− 2)
(
∆− 3

2

)
(∆ + J − 2) (∆ + J − 1)

〈O1O2〉∆−
1
2
,J− 1

2 , (4.3.14)

where we can integrate by parts and carry these differential operators to the other two-point

function using the relation

(
D+,+
α O∆− 1

2
,J− 1

2 ,O3−∆,J
)

=
(
O∆− 1

2
,J− 1

2 ,
(
D+,+
α

)∗O3−∆,J
)

= − 1

2J

(
O∆− 1

2
,J− 1

2 ,D+,−
α O3−∆,J

)
. (4.3.15)

Carrying out the computation, we find that

(
〈O1O2〉∆,J , 〈O1O2〉3−∆,J

)
=

2J + 1

2J

(
〈O1O2〉∆,J−

1
2 , 〈O1O2〉3−∆,J− 1

2

)
. (4.3.16)

Note that this recursion relation is independent of which weight-shifting operator we choose:

we get exactly the same relation for all a, b = ±1
2 choices.

7. We review these operators in section ??.
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Using eqn. (4.3.13), we get the final result

(
〈O1O2〉∆,J , 〈O1O2〉3−∆,J

)
=

2J + 1

64π2vol(SO(1, 1))
. (4.3.17)

We can use this expression to compute the Plancherel measure8 for the conformal group.

It is easy to see this diagrammatically:

O O =NO O = NO
µ(O)

vol(SO(1,1)) ,

where we first make use of S2 = N to convert the pairing into a circle and then identify the

circle as the Plancherel measure up to the volume factor; see [10] for details. Therefore, we

conclude that

µ(O∆,`) =
vol(SO(1, 1))

N∆,`
〈O1O2〉∆,` · 〈O1O2〉3−∆,` , (4.3.18)

and we compute it as

µ(O∆,`) =
(2∆− 3)(−∆ + `+ 2)(∆ + `− 1)Γ(2`+ 2) cot(π(∆ + `))

128π5
. (4.3.19)

Three Point Pairings

In our conventions we have

(
〈φ1φ2O〉 ,

〈
φ̃1φ̃2Õ

〉)
= (−2)J

∫
ddx1d

dx2d
dx3

vol(SO(d+ 1, 1))
〈φ1(x1)φ2(x2)Oµ1...µJ (x3)〉

×
〈
φ̃1(x1)φ̃2(x2)Õµ1...µJ (x3)

〉
, (4.3.20)

8. Plancherel measure of a locally compact group G describes the decomposition of the irreducible unitary
representations (IUR) into regular representations and are defined on the set of IUR.
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which can be calculated by gauge fixing

(
〈φ1φ2OJ〉 ,

〈
φ̃1φ̃2ÕJ

〉)
=

(−1)J ĈJ(1)

2d−J vol(SO(d− 1))
, (4.3.21)

where 2d is the appropriate Fadeev-Popov determinant. In 3d this reads as9

(
〈φ1φ2OJ〉 ,

〈
φ̃1φ̃2ÕJ

〉)
=

(−1)JΓ (J + 1)

16
√
πΓ
(
J + 1

2

) . (4.3.22)

The pairing of spinning three-point functions can be calculated by reducing them via

the weight-shifting operators and using the scalar pairing above. Schematically,

a c

O3

O1

O2

= Mac
O1O2O3

O3

φ1

φ2

.

The procedure to calculate the matrix Mac is as follows. We first expand the 〈ψψO〉a

and 〈ψφO〉a three-point functions in terms of 〈φφO〉, schematically

ψ∆1
1

O∆,J

m φ∆2
2

=
∑

a=± 1
2

(K−)
m
a

ψ∆1
1

O∆,J

φ∆1+a
1

O∆− 1
2 ,J− 1

2

φ∆2
2S ,

ψ∆2
2

ψ∆1
1

m O∆,J =
∑
a,b

Km
a,b

ψ∆2
2

ψ∆1
1

φ∆2+a

φ∆1+b

O∆,JS .

We then integrate by parts and act with the adjoint of these weight-shifting operators on

the other spinning three-point function, which produces 〈φφO〉 up to overall coefficients.10

9. We have the convention vol(SO(n)) = vol(SO(n − 1))vol(Sn−1) with vol(SO(2)) = 2π. As what really
matters is only the ratios of group volumes, this choice does not affect any physical result.

10. In d = 3, there actually exists a compact expression for three point pairings of operators of any spin
in [10], thus one can bypass this computation.
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By this procedure, we find that

(〈
ψ∆1

1 φ∆2
2 O

∆,J
〉m

,
〈
ψ3−∆1

1 φ3−∆2
2 O3−∆,J

〉n)
=

(−1)J−
1
2 Γ
(
J + 3

2

)
16
√
πΓ(J + 1)

−1 0

0 1

 , (4.3.23a)

(〈
ψ∆1

1 ψ∆2
2 O

∆,J
〉m

,
〈
ψ3−∆1

1 ψ3−∆2
2 O3−∆,J

〉n)
=



(−1)JΓ(J + 1)

8
√
πΓ
(
J + 1

2

)


−1 1
2

0 0

1
2
− 2J+1

4J
0 0

0 0 1 0

0 0 0 −J+1
J


J > 0

1

8π

−1 0

0 1

 J = 0

(4.3.23b)

4.3.3 Euclidean inversion formula

An n−point correlator can be expanded as a tensor product of two irreducible representations

of the Euclidean conformal group, which basically provides us with an integral representation

of a higher-point correlator in terms of lower point ones. This has been known for almost

half a century since the early work of Dobrev et. al. [230] and was revived in recent

years [10, 127, 132, 231]. In the notation of [132], we can schematically write

〈O1 · · · On〉 =

∫
dO
∫
ddx 〈O1(x1)O2(x2)O(x)〉a P aO(x3, . . . xn;x) (4.3.24)

for a generic n−point correlator. This corresponds to the following diagram11

11. For notational brevity, we denote the matrix inverse of the pairings of three point structures as pairings
in denominator, i.e. (

〈ABC〉a ,
〈
ÃB̃C̃

〉b)
(
〈ABC〉c ,

〈
ÃB̃C̃

〉a) =

(
〈ABC〉b ,

〈
ÃB̃C̃

〉a)
(
〈ABC〉a ,

〈
ÃB̃C̃

〉c) = δbc . (4.3.25)
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n

3

n− 1

4 2

1

... =

∫
dO µ(O)

(〈O1O2O〉a,〈Õ1Õ2Õ〉c)

n

3

a c

n− 1

4

...

1′

2′

O

1

2

,

(4.3.26)

where we identify

PaO(x3, . . . , xn;x)
.
= µ(O)

(〈O1O2O〉c,〈Õ1Õ2Õ〉a)

n

3

c O(x)

n− 1

4

...

1′

2′

. (4.3.27)

Here the integration measure is dO = 2π∆``′δ (ν − ν ′) and it is defined over the Euclidean

principal series

∆ =
d

2
+ iν, ν ≥ 0, ` ∈ Z. (4.3.28)

We are glossing over the details in this quick review and refer the reader to [10, 132] for

more details.

Let us consider this general expression in the case of 〈O1O2O3O4〉. For four-point

functions, we can decompose P aO(x3, x4;x) in terms of three-point structures:

P aO(x3, x4;x) = ρ
(s)
ab (O)

〈
O3(x3)O4(x4)Õ(x)

〉b
. (4.3.29)

Here ρ(s)
ab (O) are partial wave expansion coefficients and are related to OPE coefficients via

eqn. (??) as we will see below. With eqn. (4.3.31), we can use the equation above to obtain
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c

4

3

1

2

O = ρ
(s)
ba (O)

(〈O1O2O〉b,〈Õ1Õ2Õ〉c)
µ(O) a

4

3

O

Figure 4.6: We can take the definition of the OPE function ρ to be the coefficients of the
pairing between a four-point correlator 〈O1O2O3O4〉 and a three-point structure 〈O3O4O〉c in
the basis of the three point structures 〈O1O2O〉a. Note that the overall coefficient also depends
on the bubble coefficient B which is a calculable kinematic term. By pairing both sides with〈
O1O2Õ

〉e
, we can reduce this relation to the more standard definition generally used in the

literature, such as (2.33) of [133], (2.40) of [10], or (1.6) of [131]. Note that these references use
different conventions so the formulas are not entirely the same.

the partial wave expansion12 of four-point function:

〈O1O2O3O4〉 = 〈O1O2〉 〈O3O4〉+

∫

C
dOρ(s)

ab (O)Ψ
(s)ab
O (xi) , (4.3.30)

where we define the s-channel conformal partial wave as the gluing of two three-point func-

tions

Ψ
(s)ac
O (xi) =

∫
ddx 〈O1O2O(x)〉a

〈
O3O4Õ(x)

〉c
= a c

2

1

O

3

4 .

. (4.3.31)

We would like to note two points about eqn. (4.3.30). The first point is the fact that

we are explicitly writing the identity contribution because the identity block is actually

orthogonal to the partial waves, hence it cannot be expanded in terms of them [127]. It

is further argued in [131] that there may be other non-normalizable contributions to the

four-point function that need to be written out explicitly. In particular, any scalar operator

with ∆ < d
2 gives such a contribution. We will assume that either there is no scalar with

12. In some papers P aO(x3, . . . , xn;x) is referred to as conformal partial wave as well. We will not be using
these objects in this paper and will reserve this term for Ψab

O defined in eqn. (4.3.31).
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Figure 4.7: Diagrammatic illustration of the s-channel partial wave expansion of the four-point
function, assuming that the identity contribution is the only non-normalizable contribution.
Instead of separating it, we can deform it onto the principal series and deform back after the
analytic continuation from principal series to physical poles.

∆ < d
2 in the spectrum of the theory or that their contributions can be obtained by analytic

continuation from the principal series.

The second point we would like to draw attention is the integration in eqn. (4.3.30): we

specified that the integration is over the contour C which we define as

∫

C
dO ≡

∑

JO

d
2

+i∞∫

d
2

d∆O
2πi

,

∫

C′
dO ≡

∑

JO

d
2

+i∞∫

d
2
−i∞

d∆O
2πi

(4.3.32)

for convenience.13 Also, note that we give the expansion in terms of s-channel partial waves.

This is indicated by the explicit (s) superscript on ρ and Ψ. Additionally, we leave the

dependence of ρ and ψ on external operators implicit.

The definition of ρ in eqn. (4.3.29) is diagrammatically shown in figure 4.6. We can pair

both sides with a three-point function and obtain the Euclidean inversion formula:

ρ
(s)
ab (O5) =

∫
ddx1...ddx5

vol(SO(d+1,1))µ(O5)
〈
Õ1Õ2Õ5

〉c
〈O1O2O3O4〉

〈
Õ3Õ4O5

〉d

(〈
Õ1Õ2Õ5

〉a
, 〈O1O2O5〉c

)(〈
O3O4Õ5

〉d
,
〈
Õ3Õ4O5

〉b) . (4.3.33)

13. To be precise, in the measure dO we now have a sum over either integer or half-integer spin, depending
on the four-point function — in general dimensions d we have to sum over all allowed SO(d) representations.
In odd dimensions we can also have the discrete series of ∆, but they will be canceled by poles in ρ(s)

ab (O),
so we will not include them explicitly.
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Note that we can rewrite this as14

ρ
(s)
ab (O) =

∫
ddx1...ddx4

vol(SO(d+1,1))

(∫
ddx5

〈
Õ1Õ2Õ5

〉c 〈
Õ3Õ4O5

〉d)
〈O1O2O3O4〉

(−1)Σ55

µ(O5)

(〈
Õ1Õ2Õ5

〉a
, 〈O1O2O5〉c

)(〈
Õ3Õ4O

〉b
,
〈
O3O4Õ5

〉d) , (4.3.34)

for the shorthand notation

Σij =





−1 if Oi and Oj are both fermions

1 otherwise
(4.3.35)

As we will show below, the “denominator” above is actually the inverse of the partial

wave normalization hence we conclude

ρ
(s)
ab (O) = ηO(ac)(bd)

(
Ψ

(̃s)cd

Õ
(xi), 〈O1O2O3O4〉

)
. (4.3.36)

where ηO(ac)(bd)η
(ce)(df)
O = δeaδ

f
b for η(ce)(df)

O given in eqn. (4.3.44).15

We could have derived this result by starting from the partial wave expansion of figure

4.7, pairing it with Ψ
(̃s)cd

Õ
, and utilizing the orthogonality of the partial waves directly.16

We would like to remind the reader that the diagrams, albeit useful, are to be considered

as schematic expressions only. In particular, they are agnostic to possible signs associated

14. Remember that suppressed indices are contracted and they always go from southwest to northeast,
hence the order of correlators are important in our conventions, i.e. 〈. . .〉 〈· · ·〉 = (−1)# 〈· · ·〉 〈. . .〉.

15. In the rest of the thesis, we use the shorthand notation Ψ
(̃χ)ab
O (xi) which is defined as

Ψ
(̃χ)ab
O (xi) = Ψ

(χ)ab
O (xi)|O1→Õ1,...,O4→Õ4

for any channel χ = s, t, u.

16. When we pair the partial wave expansion eqn. (4.3.30) with a partial wave of the same channel, there
is actually another term coming from the pairing of identity exchange with the partial wave. However the
pairing of identity exchange with the partial wave of the same channel is proportional to a tadpole diagram:




2

1

3

4

,

2

1

3

4

O




∝ O
. (4.3.37)

Such diagrams are zero by the irreducibility of the representations unless O = 1, which is never the case for
the partial waves on the principal series.

83



to the orderings of fermions. As an example, consider eqn. (4.3.26): in our conventions it

stands for

〈O1O2O3 · · · On〉 =

∫
dOµ(O)

∫
ddxddx′1d

dx′2

〈O1O2O(x)〉a
〈
Õ(x)Õ′2Õ′1

〉c
〈O′1O′2O3 · · · On〉

(〈
ÕÕ2Õ1

〉a
, 〈O1O2O〉c

) ,

(4.3.38a)

but not

〈O1O2O3 · · · On〉 6=
∫
dOµ(O)

∫
ddxddx′1d

dx′2

〈O1O2O(x)〉a 〈O′1O′2O3 · · · On〉
〈
Õ(x)Õ′2Õ′1

〉c
(〈
ÕÕ2Õ1

〉a
, 〈O1O2O〉c

) .

(4.3.38b)

However, one cannot deduce this from the diagram alone.

Bubble Coefficients and Partial Wave Normalization

One of the interesting pairings that we can consider is the so-called bubble integral17

〈
· · · Õ′(x) · · ·

〉∫
ddx1d

dx2

〈
O1(x1)O2(x2)O′(x)

〉a 〈Õ1(x1)Õ2(x2)Õ(y)
〉b

= δOO′δ
d(x− y)BabO1O2;O

〈
· · · Õ(y) · · ·

〉
, (4.3.39)

which we can see in figure 4.8 in diagrammatic language. By imposing O′ = O and taking

the trace of both sides without acting on
〈
· · · Õ′(x) · · ·

〉
, we can relate the bubble coefficient

BabO1O2;O to the three point pairing and the Plancherel measure:

BabO1O2;O =

(
〈O1O2O〉a ,

〈
Õ1Õ2Õ

〉b)

µ(O)
.

(4.3.40)

One straightforward usage of these bubble matrices is the calculation of the normalization

of the conformal partial wave defined in eqn. (4.3.31):

(
Ψ

(̃s)ab
O5

,Ψ
(s)cd
O6

)
=

∫
ddx1...d

dx6

SO(d+ 1, 1)

〈
Õ1Õ2O5

〉a
·
〈
Õ3Õ4Õ5

〉b
· 〈O1O2O6〉c ·

〈
O3O4Õ6

〉d
,

(4.3.41)

17. This follows from the irreducibility of representations.
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a c

O1

O2

O′
O = δOO′BacO1O2;O O

Figure 4.8: Definition of the bubble annihilation matrix B. One can explicitly calculate B
by removing the gray blob above and connecting both ends: this relates B times the Plancherel
measure to the pairing of two three-point functions, which can then be computed by going to a
fixed conformal frame and carrying out the explicit calculations. A similar calculation is carried
out in 4d in [10], see appendix C there. Here we repeated it for 3d.

If we perform the x3,4 integrals, we obtain

(
Ψ

(̃s)ab
O5

,Ψ
(s)cd
O6

)
= δO5Õ6

(−1)Σ66BbdÕ3Õ4;O6

(〈
Õ1Õ2Õ6

〉a
, 〈O1O2O6〉c

)
, (4.3.42)

where δO5Õ6
= δ`5`62πδ(ν5−ν6) for ∆ = d

2 +iν and where (−1)Σ66 follows from the change of

the order of the three-point functions. Next we use eqn. (4.3.40) to find the more symmetric

form: (
Ψ

(̃s)ab
O5

,Ψ
(s)cd
O6

)
= δO5Õ6

η
(ac)(bd)
O5

(4.3.43)

for

η
(ac)(bd)
O5

:=
(−1)Σ55

µ(O5)

(〈
Õ1Õ2Õ5

〉a
· 〈O1O2O5〉c

)(〈
Õ3Õ4O5

〉b
·
〈
O3O4Õ5

〉d)
. (4.3.44)

Note that changing the order of the three-point functions brings an overall sign

(−1)2(`1+`2+`3+`4) = 1.18 Since we also have µ (O) = µ(Õ), the partial wave normaliza-

tion satisfies the following symmetries:

(
Ψ

(̃s)ab

Õ
,Ψ

(s)cd
O

)
=

(
Ψ

(s)cd
O ,Ψ

(̃s)ab

Õ

)
, (4.3.45a)

(
Ψ

(̃s)ab

Õ
,Ψ

(s)cd
O

)
=

(
Ψ

(̃s)cd

Õ
,Ψ

(s)ab
O

)
. (4.3.45b)

18. That this term is 1 follows from Lorentz invariance as we need an even number of fermions in a non-zero
vacuum expectation value.
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4.3.4 Partial Waves and Conformal Blocks

In this section we will briefly review the relation between the conformal partial wave ex-

pansion and the conformal block expansion. The goal is to establish the general dictionary

between the two for general four-point functions. The method we use is not new, but it

will be useful to present the results in our conventions, taking care of signs with fermionic

operators.

First we recall that our definition for the partial wave and shadow transform are:

Ψ
(s)ab
O5

=

∫
ddx5 〈O1O2O5〉a

〈
O3O4Õ5

〉b
, (4.3.46)

S[O](x) =

∫
ddyO(y) 〈O(y)O(x)〉 . (4.3.47)

We will also find it useful to define the kinematic functions C:

lim
x1→x2

〈O1(x1)O2(x2)O5(x5)〉a ∼ CaO1O2O5
(x12) 〈O2(x2)O2(x5)〉 . (4.3.48)

We can then define s-channel conformal blocks for 〈O1O2O3O4〉 as solutions to the

conformal Casimir equation with the following behavior in the limit x3 → x4 and x1 → x2:

G
(s)ab
O5

(xi) ≈ CpO1O2O5
(x12)CqO3O4O5

(x34) 〈O5(x2)O5(x4)〉 . (4.3.49)

Here we work in Euclidean space and the order of limits does not matter. With this definition

the four-point function has the following conformal block expansion:

〈O1O2O3O4〉 =
∑

O
λaO1O2Oλ

b
O3O4OG

(s)ab
O (xi) , (4.3.50)

for the OPE coefficients λ are defined as in eqn. (3.1.14).

Now we have to expand the conformal partial wave as a sum of two conformal blocks.

To extract their coefficients, we just need to study the integrand in certain limits. We start

by taking the limit x1 → x2 under the integrand in (4.3.46) and then performing the x5
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integral. In this limit we have:

Ψ
(s)ab
O5

(xi) ⊃
∫
ddx5C

a
O1O2O5

(x12) 〈O5(x2)O5(x5)〉
〈
O3O5Õ5(x5)

〉b

⊃ CaO1O2O5
(x12)Sbc(O3O4[Õ5]) 〈O3O4O5(x2)〉c . (4.3.51)

To get the second line we have to reorder the operators in the two-point function and

implicitly raise and lower the spinor indices, so the two possible signs cancel. Taking the

x3 → x4 limit we find:

Ψ
(s)ab
O5

(xi) ⊃ CaO1O2O5
(x12)Sbc(O3O4[Õ5])CcO3O4O5

(x34)(−1)Σ55 〈O5(x2)O5(x4)〉 . (4.3.52)

To get the coefficient for the other block we take the limit x3 → x4 under the integrand,

perform the x5 integral and then take the limit x1 → x2:

Ψ
(s)ab
O5

(xI) ⊃ Sac (O3O4[O5])CcO1O2O5
(x12)CbO3O4O5

(x34)(−1)Σ55 〈O5(x2)O5(x4)〉 . (4.3.53)

We therefore find that the full partial wave is:

Ψ
(s)ab
O5

(xi) = (−1)Σ55

[
Sbc(O3O4[Õ5])G

(s)ac
O5

(xi) + Sac (O1O2[O5])G
(s)cb

Õ5
(xi)

]
. (4.3.54)

We can now use this equation inside eqn. (4.3.30) to obtain19

〈O1O2O3O4〉 =

∫

C
dOρ(s)

ab (O)(−1)Σ55

[
Sbc(O3O4[Õ5])G

(s)ac
O5

(xi) + Sac (O1O2[O5])G
(s)cb

Õ5
(xi)

]

=

∫

C′
dOρ(s)

ab (O)(−1)Σ55Sbc(O3O4[Õ5])G
(s)ac
O5

(xi)

(4.3.55)

where in the second line we used the shadow symmetry of the integrand and the definitions

of the contours, i.e. eqn. (4.3.32). By closing the contour to the right and comparing

with eqn. (4.3.50), we find the following relation between the OPE function and the OPE

19. There are also non-renormalizable contributions such as identity contribution, but we are dropping
them here with the assumption that they can be obtained later by analytic continuation.
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coefficients:

λaO1O2O5
λbO3O4O5

= (−1)1+Σ55Res∆=∆5ρ
(s)
ac S

c
b(O3O4[Õ5])

∣∣∣∣
J=J5

, (4.3.56)

where we first set J = J5 and then evaluate the residue.

4.3.5 6j Symbols

In eqn. (4.3.56), we found the relation to compute the OPE coefficients from the Euclidean

inversion formula. We can now ask the general question: what does the contribution of

a single operator O in the t-channel map to in the s-channel under crossing? As realized

in [111, 112], by studying the lightcone limit, an isolated operator O maps to double-twist

operators in the crossed channel. To review this result in the current language, let us first

introduce the 6j symbol of the conformal group.

The 6j symbol is defined as the overlap of a t- and s-channel partial wave, which for

external scalars is





φ1 φ2 O6

φ3 φ4 O5





=
(

Ψ̃
(s)

Õ5
,Ψ

(t)
O6

)

=

∫
dx1...dx6

〈
φ̃1φ̃2Õ5

〉〈
φ̃3φ̃4O5

〉
〈φ3φ2O6〉

〈
φ1φ4Õ6

〉
. (4.3.57)

Using the 6j symbol it is possible to write a single t-channel partial wave as a spectral

integral over s-channel partial waves:

Ψ
(t)
O6

(xi) =

∫

C

dO5
1

ηO5





φ1 φ2 O6

φ3 φ4 O5





Ψ
(s)
O5

(xi) , (4.3.58)

where ηO5 is the normalization of partial waves of external scalars, special case of the general

formula in eqn. (4.3.44).

In practice the 6j symbol (4.3.57) has been calculated using the Lorentzian inversion

formula in d = 2 and d = 4. The Lorentzian inversion formula gives another integral

representation of the OPE function, but now with the correlator integrated over a causal
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diamond in Minkowski space:20

ρ(s)(∆, J) = α∆,J

1∫

0

1∫

0

dzdz̄µ(z, z̄)G
(s)
J+d−1,∆+1−d(z, z̄)

〈[φ3, φ2][φ1, φ4]〉
T (s)

+ (u-channel) ,

(4.3.59)

α∆,J = − πd−2Γ(d−2
2 )Γ(J + d− 2)

2d+J+3vol(SO(d− 1))Γ(d− 2)Γ(J + d−2
2 )

Γ(J + 1)Γ(∆− d
2)

Γ(J + d
2)Γ(∆− 1)

Γ(∆12+J+∆
2 )Γ(∆21+J+∆

2 )Γ(∆34+J+∆̃
2 )Γ(∆43+J+∆̃

2 )

Γ(J + ∆)Γ(J + d−∆)
. (4.3.60)

Here T (s) is a kinematic s-channel prefactor:

T (s) =
1

|x12|∆1+∆2 |x34|∆3+∆4

( |x24|
|x14|

)∆1−∆2
( |x14|
|x13|

)∆3−∆4

. (4.3.61)

The u-channel term is the same but with 3 ↔ 4. One can show that this form of the

Lorentzian inversion formula is equivalent to the form we used above in. eqn. (4.1.2), where

we extract by comparing eqn. (4.3.56) and eqn. (4.1.4) that c(∆, `) = ρ(s)(∆, `)S(O3O4[Õ∆,`]).

By first inverting individual blocks we can find the 6j symbol:





φ1 φ2 O6

φ3 φ4 O5





= S(φ3φ4[Õ6])




φ1 φ2 O6

φ3 φ4 O5


+ S(φ1φ2[O6])




φ1 φ2 Õ6

φ3 φ4 O5


 ,

(4.3.62)



φ1 φ2 O6

φ3 φ4 O5


 =

(
Ψ1̃2̃3̃4̃

∆5,J6
, G3214

∆6,J6

)
L
, (4.3.63)

where the subscript L in (4.3.63) is to emphasize that we use the Lorentzian inversion

formula [133].

We do not have a closed form expression for the 6j symbol in generic dimensions, but for

d = 3 it is straightforward to calculate its poles and residues by using dimensional reduction

and the explicit d = 2 expressions [1, 215]. Let us now focus on the problem of inverting a

20. Our convention is vol(SO(n)) = vol(SO(n− 1))vol(Sn−1).
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single operator. The contribution of a single block for O6 exchange gives

〈φ1φ2φ3φ4〉 ⊃ λφ3φ2O6λφ1φ4O6

∫

C′

dO5
1

ηO5




φ1 φ2 O6

φ3 φ4 O5


S(φ3φ4[Õ5])G1234

O5
(xi) .

(4.3.64)

As a function of ∆5 the integrand of (4.3.64) has poles at the following locations:

∆5 = ∆1 + ∆2 + 2n+ J5 , (4.3.65)

∆5 = ∆3 + ∆4 + 2n+ J5 . (4.3.66)

These are the dimensions and spins of the double-twist operators [φ1φ2]n,J and [φ3φ4]n,J in

mean field theory (MFT) [111, 112]. A special case is when ∆1+∆2 = ∆3+∆4 in which case

we get single and double poles corresponding to corrections to the MFT spectrum and OPE

coefficients of [φ1φ2]n,J . An important exception is when we are inverting the identity block,

O6 = 1, in which case we get single poles and find the MFT OPE coefficients themselves.

We will work out the MFT OPE coefficients for fermions in section 4.4.

We will now extend this discussion to non-scalar external operators. To keep track of

possible signs associated with fermionic operators, let us proceed step by step. For spacelike

seperated operators, we have the relation 〈O1O2O3O4〉 = (−1)Σ23+Σ12+Σ13 〈O3O2O1O4〉,

with which eqn. (4.3.36) reads

ρ
(s)
ab (O5) = (−1)Σ23+Σ12+Σ13ηO5

(ac)(bd)

(
Ψ

(̃s)cd

Õ5
(xi), 〈O3O2O1O4〉

)
. (4.3.67)

If we now apply the partial wave expansion in eqn. (4.3.30) we obtain

ρ
(s)
ab (O5) = (−1)Σ23+Σ12+Σ13ηO5

(ac)(bd)

∫

C
dO6ρ

(t)
ef (O6)

(
Ψ

(̃s)cd

Õ5
(xi),Ψ

(t)ef
O6

(xi)

)
. (4.3.68)

We identify the conformally invariant pairing above as the generalization of 6j symbol in
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eqn. (4.3.57):




O1 O2 O6

O3 O4 O5





abcd

=
(

Ψ̃
(s),ab

Õ5
,Ψ

(t),cd
O6

)
=

∫
ddx1...d

dx6

〈
Õ1Õ2Õ5

〉〈
Õ3Õ4O5

〉

× 〈O3O2O6〉
〈
O1O4Õ6

〉
. (4.3.69)

As in the scalar case we can split this into two pieces, corresponding to the inversion of

individual blocks:




O1 O2 O6

O3 O4 O5





abcd

= (−1)Σ66

[
Sde

(
O1O4[Õ6]

)


O1 O2 O6

O3 O4 O5




abce

+ Sce (O3O2[O6])



O1 O2 Õ6

O3 O4 O5




abed ]
, (4.3.70)



O1 O2 O6

O3 O4 O5




abcd

=
(

Ψ̃
(s),ab
O5

, G
(t),cd
O6

)
L
. (4.3.71)

By using the shadow symmetry of the integrand, we can then rewrite eqn. (4.3.68) as

ρ
(s)
ab (O5) = (−1)Σ66+Σ23+Σ12+Σ13ηO5

(ac)(bd)

×
∫

C′
dO6ρ

(t)
ef (O6)Sfg

(
O1O4[Õ6]

)


O1 O2 O6

O3 O4 O5




cdeg

. (4.3.72)

If we now close the contour C′ to the right and pick up the residues at ∆ = ∆6, multiply

both sides with Scb(O3O4[Õ5]), and then pick up the residues of both sides at ∆ = ∆5, we

obtain the formula for the correction due to the inversion of a single block G(t),fg
O6

in the
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crossed channel:

λ125,aλ345,b

∣∣∣∣
G

(t),fg
O6

= (−1)1+Σ55+Σ12+Σ13+Σ23λ326,fλ146,g

× Res∆=∆5 η
∆,J
(ad)(ce)



O1 O2 O6

O3 O4 O∆,J




defg

Scb(O3O4[Õ])

∣∣∣∣
J=J5

, (4.3.73)

where we use eqn. (4.3.56) both in s and t channels.

The problem now is how to reduce the full 6j symbol, (4.3.69), to a sum of scalar 6j

symbols, (4.3.57). To do this we will need to use weight-shifting operators, which allow us

to reduce general conformal integrals involving fermions to those involving scalars. We will

review these operators in the next section.

4.3.6 Weight-Shifting Operators

The work [152] introduced differential operators, DA, which transform in a finite-dimensional

representation of the conformal group SO(d + 1, 1) given by the index A. By acting with

weight-shifting operators we can transform a conformally-invariant tensor structure involving

an operator O to a conformally covariant structure involving a new operator O′. Here, we

will use weight-shifting operators which change the spin by half-integers.

In d = 3 the double cover of the conformal group SO(3, 2) is Sp(4,R), so we will use

weight-shifting operators which transform in the fundamental representation of Sp(4,R). We

will use the notation of [152] and write the four possible operators as

D±± : [∆, `]→ [∆± 1

2
, `± 1

2
] , (4.3.74)
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which in embedding space are given by

(
D−+

)
a

=Sa , (4.3.75a)
(
D−−

)
a

=Xab
∂

∂Sb
, (4.3.75b)

(
D++

)
a

=− 2(∆− 1)Sb(∂X)ba − SaSb(∂X)bc
∂

∂Sc
, (4.3.75c)

(
D+−)

a
=4(1 + `−∆)(∆− 1)Ωab

∂

∂Sb
+ 2(1 + `−∆)Xab(∂X)bc

∂

∂Sc

− Sa
∂

∂Sb
Xbc(∂X)cd

∂

∂Sd
. (4.3.75d)

In the rest of the paper, we will suppress spinor index of the weight-shifting operators.

We will use these operators to relate conformal integrals involving fermionic tensor struc-

tures to known integrals involving bosonic structures. For this, we need to define the adjoint

of a weight-shifting operator with respect to our bilinear pairing:

(
DO, Õ′

)
=
(
O,D∗Õ′

)
, (4.3.76)

(
O, Õ

)
=

∫
ddxO(x)Õ(x) . (4.3.77)

We should stress that here O is shorthand for some representation of the conformal group

and does not need to obey the spin-statistics theorem. We will define the adjoint by moving

from the left to the right, where we recall there are suppressed spinor indices.

It is not hard to see that

(Dpq)∗
∣∣∣∣
∆,`

= ζpq` Dp,−q
∣∣∣∣
∆̃∓ p

2
,`± q

2

, (4.3.78)

where p, q = ±1 and we have emphasized that the adjoint of a weight-shifting operator

depends explicitly on the representation it acts on, although the coefficient ζ only depends

on the spin.

To calculate the adjoints in practice we go to the Poincaré section, or work in physical
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space. The result is summarized as:

ζ−−` = −2` , ζ−+
` =

1

2`+ 1
, (4.3.79)

ζ+−
` = 2` , ζ++

` = − 1

2`+ 1
. (4.3.80)

The next ingredient we need is the crossing equation for covariant two-point functions:21

Dpq1

〈
O∆,`(x1)O∆+ p

2
,`+ q

2
(x2)

〉
= αpq∆,`D

−p,−q
2

〈
O∆,`(x1)O∆+ p

2
,`+ q

2
(x2)

〉
, (4.3.81)

and we find

α−−∆,` =
i`

(2∆− 3)(∆ + `− 1)
, (4.3.82a)

α−+
∆,` =− i

2(2∆− 3)(2`+ 1)(−∆ + `+ 2)
, (4.3.82b)

α+−
∆,` =− 8i(∆− 1)`(−∆ + `+ 1) , (4.3.82c)

α++
∆,` =

4i(∆− 1)(∆ + `)

2`+ 1
. (4.3.82d)

We can now find the shadow transform of weight-shifted operators:

S[DpqO∆,`](x) =

∫
ddy (DpqO∆,`(y))

〈
Õ∆+ p

2
,`+ q

2
(y)Õ∆+ p

2
,`+ q

2
(x)
〉

=

∫
ddyζpq` α

p,−q
∆̃− p

2
,`+ q

2

O∆,`(y)D−a,b2

〈
Õ∆,`(y)Õ∆,`(x)

〉

= ζpq` α
p,−q
∆̃− p

2
,`+ q

2

D−pqS[O∆,`](x) , (4.3.83)

or

S[DpqO∆,`](x) = χpq∆,`D−p,qS[O∆,`] , (4.3.84a)

χpq∆,` = ζpq` α
p,−q
∆̃− p

2
,`+ q

2

. (4.3.84b)

21. To avoid clutter, we will use D±±n to denote a weight-shifting operator acting on the nth operator in
the correlator that follows the weight-shifting operator. For example, Dab2 〈O∆1,`1(x1)O∆2,`2(x2)O∆3,`3(x3)〉
stands for Dab(X2, S2) 〈O∆1,`1(X1, S1)O∆2,`2(X2, S2)O∆3,`3(X3, S3)〉 in the embedding space.
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This gives a way to push the shadow transform past the weight-shifting operators. Then to

calculate the shadow transform of a three-point tensor structure we will relate the fermionic

structures to the bosonic ones. For simplicity we focus on three-point function structures

involving one fermion and one scalar:

〈ψ∆1φ∆2O∆3,`3〉 , (4.3.85)

where O has half-integer spin. We want to use weight-shifting operators to write such a

three-point function in terms of a structure involving two scalars:

〈
φ∆′1

φ∆2O∆′3,`
′
3

〉
, (4.3.86)

where the third operator O now has integer spin. There are two equivalent ways to do this:

〈ψ∆1φ∆2O∆3,`3〉a =
∑

p

κa1,p(ψ∆1φ∆2O∆3,`3)D−p,+1 D−+
3

〈
φ∆1+ p

2
φ∆2O∆3+ 1

2
,`− 1

2

〉
, (4.3.87a)

〈ψ∆1φ∆2O∆3,`3〉a =
∑

p

κa2,p(ψ∆1φ∆2O∆3,`3)D−p,+1 D++
3

〈
φ∆1+ p

2
φ∆2O∆3− 1

2
,`− 1

2

〉
, (4.3.87b)

where each matrix, κ1,2, is invertible. As the next simplest case, we can consider the three

point structure involving two fermions

〈ψ∆1ψ∆2O∆3,`3〉a =
∑

p,q

κa3,pq(ψ∆1ψ∆2O∆3,`3)D−p,+1 D−q,+2

〈
φ∆1+ p

2
φ∆2+ q

2
O∆3

〉
. (4.3.88)

where now the index a runs from 1 to 4 hence κ3 is again invertible. The explicit forms of

these κ matrices are easily computable though we will not present them as they are rather

lengthy and do not provide any particular insight.

As we stated in section 4.3.1, one can use weight shifting operators to find shadow

matrices. To illustrate this, let us consider a few simple examples. The first one is the
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calculation of the matrix Sab (ψ1[φ2]O3):

〈ψ∆1S[φ∆2 ]O∆3,`3〉a (4.3.89)

= S2

∑

p

κa1,p(ψ∆1
φ∆2
O∆3,`3)D−p,+1 D−+

3

〈
φ∆1+ p

2
φ∆2
O∆3+ 1

2 ,`− 1
2

〉
,

=
∑

p

κa1,p(ψ∆1φ∆2O∆3,`3)S(φ∆1+ p
2
[φ∆2 ]O∆3+ 1

2 ,`− 1
2
)D−p,+1 D−+

3

〈
φ∆1+ p

2
φ∆̃2
O∆3+ 1

2 ,`− 1
2

〉
,

=
∑

p,b

κa1,p(ψ∆1
φ∆2
O∆3,`3)S(φ∆1+ p

2
[φ∆2

]O∆3+ 1
2 ,`− 1

2
)
(
κ−1

1 (ψ∆1
φ∆̃2
O∆3,`3)

)p
b

〈
ψ∆1

φ∆̃2
O∆3,`3

〉b
.

(4.3.90)

Here we first wrote the fermionic structure in terms of the bosonic one, then acted with the

shadow transform on the simple three point function involving two scalars, and then finally

acted with the weight-shifting operators. After acting with the weight-shifting operators we

expressed the answer in the original basis. Therefore, the relevant shadow matrix is

Sab (ψ∆1
[φ∆2

]O∆3,`3) =
∑

p

κa1,p(ψ∆1
φ∆2
O∆3,`3)S(φ∆1+ p

2
[φ∆2

]O∆3+ 1
2 ,`− 1

2
)
(
κ−1

1 (ψ∆1
φ∆̃2
O∆3,`3)

)p
b
.

(4.3.91)

As the next example, let us turn to Sab ([ψ∆1 ]φ∆2O∆3,`3). To find the shadow transform of

ψ∆1 , we now have to pass the shadow transform past the weight-shifting operators using

(4.3.84a) and (4.3.84):

Sab ([ψ∆1 ]φ∆2O∆3,`3) (4.3.92)

=
∑

p

κa1,p(ψ∆1φ2O∆3,`3)χ−p,+
∆+ p

2
,0
S
(

[φ∆1+ p
2
]φ∆2O∆3+ 1

2
,`− 1

2

)(
κ−1

1 (ψ
∆̃1
φ∆2O∆3,`3)

)−p
b
.

Lastly, one needs to pass shadow transform past the weight shifting operator for the shadow

transform of the O∆3,`3 in a similar manner:

Sab (ψ∆1φ∆2 [O∆3,`3 ]) =
∑

p

κa1,p(ψ∆1φ2O∆3,`3)χ−,+
∆3+ 1

2
,`3− 1

2

(
κ−1

2 (ψ∆1φ∆2O∆̃3,`3
)
)p
b
. (4.3.93)

The computation of shadow matrices via weight shifting operators are analogus for three

point structures of two fermions. For the sake of completeness, the shadow matrix for the
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shadow transform of spin−` operator reads as

Sab (ψ1ψ2[O∆3,`3 ]) =
∑

p,q

κa3,pq(ψ∆1
ψ∆2
O∆3,`3)S(φ∆1+ p

2
φ∆2+ q

2
[O∆3,`3 ])

(
κ−1

3 (ψ∆1
ψ∆2
O∆̃3,`3

)
)pq
b
,

(4.3.94)

whereas the expression for the shadow transform of one of the ψ operators is

Sab ([ψ1]ψ2O3]) =
∑

p,q

κa3,pq(ψ∆1ψ∆2O∆3,`3)S([φ∆1+ p
2
]φ∆2+ q

2
O∆3,`3)

× χ−p,+
∆1+ p

2
,0

(
κ−1

3 (ψ
∆̃1
ψ∆2O∆3,`3)

)−p,q
b

. (4.3.95)

4.4 Mean Field Theory OPE Coefficients

In mean field theory we have the factorized correlator

〈O1O2O3O4〉 = 〈O1O2〉 〈O3O4〉+ (−1)Σ23 〈O1O3〉 〈O2O4〉+ 〈O1O4〉 〈O2O3〉 . (4.4.1)

The two-point function 〈Oi(xi)Oj(xj)〉 is only non-zero when Oi = Oj , but we will leave

this restriction implicit in this section.

We will now expand the MFT four-point function in s-channel partial waves and extract

the partial wave expansion coefficient. The first term is automatically separated in the

s-channel partial wave expansion, so we can focus on the latter two Wick contractions.

The 〈O1O4〉 〈O2O3〉 contraction gives

ρ
(s)
ab (O)

∣∣∣∣
〈14〉〈23〉

= ηO5

(ac)(bd)

(
Ψ̃

(s),cd
O5

, 〈O1O4〉 〈O2O3〉
)

= ηO5

(ac)(bd)

∫
ddx1...d

dx5

vol(SO(d+ 1, 1))

〈
Õ1Õ2Õ5

〉c 〈
Õ3Õ4O5

〉d
〈O1O4〉 〈O2O3〉

= ηO5

(ac)(bd)(−1)Σ11+Σ22Sde (Õ2[Õ1]O5)Sef ([Õ2]O1O5)
(〈
Õ1Õ2Õ5

〉c
, 〈O2O1O5〉f

)
,

(4.4.2)

where we have made the replacements O3,4 → O2,1, respectively.
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The other contraction gives a similar result:

ρ
(s)
ab (O)

∣∣∣∣
〈13〉〈24〉

= (−1)Σ23ηO5

(ac)(bd)

(
Ψ̃

(s),cd
O5

, 〈O1O3〉 〈O2O4〉
)

= (−1)Σ23+Σ11+Σ22ηO5

(ac)(bd)S
d
e ([Õ1]Õ2O5)Sef (O1[Õ2]O5)

(
〈Õ1Õ2Õ5〉c, 〈O1O2O5〉f

)
.

(4.4.3)

The full result in MFT is then

ρ
(s),MFT
ab (O) = δ̂O1O4 δ̂O2O3ρ

(s)
ab (O)

∣∣∣∣
〈14〉〈23〉

+ δ̂O2O4 δ̂O1O3ρ
(s)
ab (O)

∣∣∣∣
〈13〉〈24〉

, (4.4.4)

where δ̂O1O2 = δ∆1∆2δ`1`2 and should not be confused with the delta function on the principal

series. Next we will apply this explicitly to various correlators containing fermions in order

to calculate their MFT coefficients.

4.4.1 〈ψφφψ〉

For the correlator 〈ψφφψ〉, the identity operator only appears in the t-channel, hence

eqn. (4.4.4) becomes

ρ
(s)
ab (O) =− ηO(ac)(bd)S

d
e (φ̃[ψ̃]O)Sef ([φ̃]ψO)

(〈
ψ̃φ̃Õ

〉c
, 〈φψO〉f

)
. (4.4.5)

By explicit calculation, we find

ρ(s)
ac (O)Scb(φψ[Õ]) =

π5/2(2∆− 3)(2J + 1)4∆φ−2Γ
(
∆− 3

2

)
(−∆ + J + 2)(∆ + J − 1)

Γ(∆− 1)Γ
(
J + 3

2

)
Γ (∆ψ − 1) Γ

(
∆ψ + 1

2

)

× Γ(J + 1) csc (π∆ψ) sin (π∆φ) csc (2π∆φ) csc(π(J −∆))

Γ (2∆φ − 1) Γ(−J + ∆− 1)Γ(J + ∆)




c1 0

0 c2


 , (4.4.6)

with coefficients

c1 = −Γ
(

1
4 (2J + 2∆Oφψ − 1)

)
Γ
(

1
4 (2J + 2∆Oψφ + 1)

)

Γ
(

1
4 (2J − 2∆Oφψ + 5)

)
Γ
(

1
4 (2J − 2∆Oψφ + 7)

)

× Γ
(

1
4 (2J + 2∆φψO − 1)

)
Γ
(

1
4 (2J + 2∆ + 2∆φ + 2∆ψ − 5)

)

Γ
(

1
4 (2J − 2∆φψO + 5)

)
Γ
(

1
4 (2J − 2∆− 2∆φ − 2∆ψ + 13)

) (4.4.7a)
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and

c2 =
Γ
(

1
4 (2J + 2∆Oφψ + 1)

)
Γ
(

1
4 (2J + 2∆Oψφ − 1)

)

Γ
(

1
4 (2J − 2∆Oφψ + 7)

)
Γ
(

1
4 (2J − 2∆Oψφ + 5)

)

× Γ
(

1
4 (2J + 2∆φψO + 1)

)
Γ
(

1
4 (2J + 2∆ + 2∆φ + 2∆ψ − 7)

)

Γ
(

1
4 (2J − 2∆φψO + 7)

)
Γ
(

1
4 (2J − 2∆− 2∆φ − 2∆ψ + 11)

) , (4.4.7b)

where ∆abc := ∆a + ∆b −∆c as in eqn. (3.1.16b).

We see that the first component has residues at ∆ = ∆ψ + ∆φ + J − 1
2 + 2n, which

corresponds to the double twist families [φψα]n,J . In contrast, the last component has

residues at ∆ = ∆ψ + ∆φ + J + 1
2 + 2n, which corresponds to the double twist families

[φ∂αβψ
β]n,J .

By taking their respective residues, we can find the OPE coefficients. For the leading

(n = 0) tower,22 they read as

P
(s)
11 ([φψ]0,J) =−

Γ (J + ∆ψ) Γ
(
J + ∆φ − 1

2

)
Γ (J + ∆φ + ∆ψ − 1)

Γ
(
J + 1

2

)
Γ
(
∆ψ + 1

2

)
Γ (∆φ) Γ

(
2J + ∆φ + ∆ψ − 3

2

) , (4.4.8a)

P
(s)
22 ([φ∂ψ]0,J) =− (2J + 1)23−2∆φΓ(J + 1)Γ (∆ψ) Γ (J + ∆ψ) (∆ψ + ∆φ + J − 1)√

π (2∆ψ − 1) Γ(2J + 3)Γ (2∆ψ − 2) Γ (∆φ) Γ
(
J + ∆φ + ∆ψ − 1

2

)
×

Γ
(
J + ∆φ + 1

2

)
Γ (2J + 2∆φ + 2∆ψ − 3)

Γ
(
2J + ∆φ + ∆ψ − 1

2

) . (4.4.8b)

where we define shorthand notation23

P
(s)
ab (O) := λaO1O2Oλ

b
O3O4O .

(4.4.9)

At large J , the leading behavior is

P
(s)
11 ([φψ]0,J) ∼−

√
π2−∆ψ−∆φ−2J+ 5

2J∆ψ+∆φ−1

Γ
(
∆ψ + 1

2

)
Γ(∆φ)

, (4.4.10a)

P
(s)
22 ([φ∂ψ]0,J) ∼−

√
π (∆ψ − 1) 2−∆ψ−∆φ−2J+ 3

2J∆ψ+∆φ−2

Γ
(
∆ψ + 1

2

)
Γ (∆φ)

. (4.4.10b)

As we are working with three-point structures such that λφψO,a = (−1)J−
1
2λψφO,a, we see

22. Results for higher-twist towers are given in section 4.4.4.

23. The reason for the difference between eqn. (4.4.9) and P a,bO = (−1)`faψ1ψ2Of
b
ψ3ψ4O as given in

eqn. (3.2.41) is the difference in the conformal block normalization used in this chapter and chapter 3
— also see footnote 11.
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that

(λψφO,1)2 ∼− (−1)J−
1
2

√
π2−∆ψ−∆φ−2J+ 5

2J∆ψ+∆φ−1

Γ
(
∆ψ + 1

2

)
Γ(∆φ)

, (4.4.11a)

(λψφO,2)2 ∼− (−1)J−
1
2

√
π (∆ψ − 1) 2−∆ψ−∆φ−2J+ 3

2J∆ψ+∆φ−2

Γ
(
∆ψ + 1

2

)
Γ (∆φ)

. (4.4.11b)

In the free theory limit with {∆φ,∆ψ} → {1
2 , 1}, these become

(λψφO,1)2 ∼ −(−1)J−
1
2 41−J

√
J

π
, (λψφO,2)2 ∼ 0 . (4.4.12)

We see that this matches the results of [148] once we take the normalizations into account.

Specifically, they normalize their operators as

〈O∆,`(X1, S1)O∆,`(X2, S2)〉 = cthereO i2`
〈S1S2〉2`

X2∆+2`
12

, (4.4.13)

cthereO =
4∆−1(−1)

1
2
−JΓ

(
J + 3

2

)
(

1
2

)
J+ 1

2

, (4.4.14)

while we take chereO = 1. Thus we have

cthereO (λψφO,1)2 ∼ −4J , (4.4.15)

which can be compared with Eq. (4.4) of [148].

4.4.2 〈ψ1ψ2ψ2ψ1〉

Now we turn to correlators containing four fermions. For a correlator of the form 〈ψ1ψ2ψ2ψ1〉,

the identity operator only appears in the 14→ 23 channel, hence eqn. (4.4.4) becomes

ρ
(s)
ab (O) = ηO(ac)(bd)S

d
e (ψ̃2[ψ̃1]O)Sef ([ψ̃2]ψ1O)

(〈
ψ̃1ψ̃2Õ

〉c
, 〈ψ2ψ1O〉f

)
. (4.4.16)

When we calculate ρ, which we will not reproduce here, we see that it is block-diagonal,

with the upper 2× 2 block having poles at ∆ = ∆ψ1 + ∆ψ2 +J − 1 + 2n, and with the lower

2× 2 block having poles at ∆ = ∆ψ1 + ∆ψ2 + J + 2n. These correspond to the double-twist
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families [ψ1αψ2β]n,J and [ψ1αψ
α
2 ]n,J respectively. We then can read off the explicit results

for OPE coefficients.

For the leading tower (n = 0) we obtain:

P
(s)

[ψ1αψ2β ]0,J
= −

Γ
(
J + ∆1 − 1

2

)
Γ
(
J + ∆2 − 1

2

)
Γ (J + ∆1 + ∆2 − 1)

Γ
(
∆1 + 1

2

)
Γ
(
∆2 + 1

2

)
Γ(J)Γ (2J + ∆1 + ∆2 − 2)

0 0

0 1

 ,

P
(s)

[ψ1αψ
α
2 ]0,J

= −
(∆1 + ∆2 + 2J − 1) Γ

(
J + ∆1 − 1

2

)
Γ
(
J + ∆2 − 1

2

)
Γ (J + ∆1 + ∆2 − 2)

4Γ
(
∆1 + 1

2

)
Γ
(
∆2 + 1

2

)
Γ(J + 2)Γ (2J + ∆1 + ∆2)

×

(∆1 + ∆2 − 2)
(
∆1 + J − 1

2

) (
∆2 + J − 1

2

)
+ c1 (∆1 −∆2) J(J + 1)

(
∆1 + ∆2 + J − 3

2

)
− (∆1 −∆2) J(J + 1)

(
∆1 + ∆2 + J − 3

2

)
(∆1 + ∆2 − 2)

(
∆1 + J − 1

2

) (
∆2 + J − 1

2

)
− c1

 ,

(4.4.17)

with

c1 =
1

4
(2∆1 − 1) (∆1 + ∆2 − 2) (2∆2 − 1)

+ (∆1 + ∆2 − 2) J3 +

(
∆2

1 +

(
4∆2 −

9

2

)
∆1 + ∆2

2 −
9∆2

2
+ 3

)
J2

+ (∆1 + ∆2 − 1) (∆1 (2∆2 − 1)−∆2) J . (4.4.18)

Results for higher-twist towers are given in section 4.4.4.

4.4.3 〈ψψψψ〉

For identical fermions 〈ψψψψ〉, both the t- and u-channels contribute, hence we have

ρ
(s)
ab (O) = ηO(ac)(bd)S

d
e (ψ̃[ψ̃]O)Sef ([ψ̃]ψO)

(〈
ψ̃ψ̃Õ

〉c
, 〈ψψO〉f

)

− ηO(ac)(bd)S
d
e ([ψ̃]ψ̃O)Sef (ψ[ψ̃]O)

(〈
ψ̃ψ̃Õ

〉c
, 〈ψψO〉f

)
.

For the leading (n = 0) tower, the explicit expressions for the OPE coefficients are as

follows:

P
(s)

[ψαψβ ]n,J
=

2(−1)J+1 (∆ψ + J − 1) Γ
(
J + ∆ψ − 1

2

)
2Γ (J + 2∆ψ − 1)

Γ(J)Γ
(
∆ψ + 1

2

)
2Γ (2J + 2∆ψ − 1)

0 0

0 1 + (−1)J

 ,

P
(s)

[ψαψα]n,J
=

(−1)J+12−2JJΓ (∆ψ) Γ
(
J + ∆ψ + 1

2

)
Γ (J + 2∆ψ)

(1− 2∆ψ) 2Γ(J + 1)Γ
(
∆ψ − 1

2

)
Γ (2∆ψ − 2) Γ (J + ∆ψ)

 1+(−1)J

J(J+2∆ψ−2)
0

0 1−(−1)J

(J+1)(J+2∆ψ−1)

 .

(4.4.19)

After an appropriate change of basis, these results match perfectly to those calculated using
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the lightcone bootstrap at large J [1].

4.4.4 MFT Coefficients for Higher Twist Towers

In the subsections above we presented the MFT coefficients for the leading twist towers;

here we will present the results for higher twist towers.

For 〈φψψφ〉 :

P
(s)
11 ([φψ]n,J) =

(2J + 1)Γ(J + 1) cos (π (∆ψ + ∆φ)) Γ (n+ ∆ψ − 1) Γ
(
n+ ∆φ − 1

2

)
Γ (J + n+ ∆ψ)

24−2∆φπ3/2n!Γ
(
J + 3

2

)
Γ (∆ψ − 1) Γ

(
∆ψ + 1

2

)
Γ (2∆φ − 1) Γ(J + n+ 1)

×
(2∆ψ + 2∆φ + 4J + 4n− 3) Γ

(
J + n+ ∆φ − 1

2

)
Γ
(
−2n−∆φ −∆ψ + 7

2

)
Γ
(
2J + 2n+ ∆φ + ∆ψ − 1

2

)
×

Γ
(
n+ ∆φ + ∆ψ − 5

2

)
Γ
(
J + n+ ∆φ + ∆ψ − 3

2

)
Γ (J + 2n+ ∆φ + ∆ψ − 1)

Γ
(
J + 2n+ ∆φ + ∆ψ − 3

2

) , (4.4.20a)

P
(s)
22 ([φ∂ψ]n,J) =P

(s)
11 ([φψ]n,J)

(∆ψ + n− 1)
(
∆φ + J + n− 1

2

) (
∆ψ + ∆φ + n− 5

2

)
2(J + n+ 1)

(
1
4

(2∆ψ + 2∆φ − 5) + n
) (

∆ψ + ∆φ + J + 2n− 3
2

)
×

(
1
2

(∆ψ + ∆φ + J − 1) + n
)(

J + 1
4

(2∆ψ + 2∆φ + 4n− 3)
) . (4.4.20b)

For 〈ψ1ψ2ψ2ψ1〉 :

P
(s)
[ψ1αψ2β ]n,J

= −



n(∆1+∆2+2J+2n−2)

4J c1 c2

c2 (∆1 + ∆2 + J + 2n− 2) (∆1 + ∆2 + 2J + 2n− 2) c3




× Γ
(
J + n+ ∆2 − 1

2

)
Γ
(
J + n+ ∆1 + ∆2 − 5

2

)
Γ (J + 2n+ ∆1 + ∆2 − 3)

Γ (2n+ ∆1 + ∆2 − 3) Γ
(
J + 2n+ ∆1 + ∆2 − 5

2

)
Γ (2J + 2n+ ∆1 + ∆2 − 1)

× Γ
(
J + 3

2

)
Γ (n+ ∆1 − 1) Γ (n+ ∆2 − 1) Γ (n+ ∆1 + ∆2 − 3) Γ

(
J + n+ ∆1 − 1

2

)

(J + 1)n!Γ (∆1 − 1) Γ
(
∆1 + 1

2

)
Γ (∆2 − 1) Γ

(
∆2 + 1

2

)
Γ(J)Γ

(
J + n+ 3

2

) , (4.4.21)

and

P
(s)
[ψ1αψα2 ]n,J

= −22∆1+2∆2−6




1+J
2 d1 d2

−d2 −J2 d3




× Γ
(
J + 3

2

)
(∆1 + ∆2 + 2J + 2n− 1) Γ (n+ ∆1 − 1) Γ (n+ ∆2 − 1) Γ (n+ ∆1 + ∆2 − 2)

π (2∆1 − 1) (2∆2 − 1) (J + 1)n!Γ (2∆1 − 2) Γ (2∆2 − 2) Γ(J + 1)Γ
(
J + n+ 3

2

)

× Γ
(
J + n+ ∆1 − 1

2

)
Γ
(
J + n+ ∆2 − 1

2

)
Γ
(
J + n+ ∆1 + ∆2 − 3

2

)
Γ (J + 2n+ ∆1 + ∆2 − 2)

Γ (2n+ ∆1 + ∆2 − 2) Γ
(
J + 2n+ ∆1 + ∆2 − 3

2

)
Γ (2J + 2n+ ∆1 + ∆2)

,

(4.4.22)
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where

c1 =4J2 (∆1 + ∆2 + n− 3) + 4J (∆1 + ∆2 + n− 3) (∆1 + ∆2 + 2n− 2)

+ (∆1 + ∆2 + 2n− 3) (2∆1 + 2∆2 + 2n− 5) ,

c2 =4n

(
∆1 + ∆2 + n− 7

2

)(
1

2
(∆1 + ∆2 + J − 2) + n

)(
J +

1

2
(∆1 + ∆2 + 2n− 2)

)
,

c3 =J2 + J (∆1 + ∆2 + 2n− 2) + (2n+ 1) (∆1 + ∆2 + n− 3) ,

d1 =2J2 (∆1 + ∆2 + 2n− 2) + (2∆1 + 2n− 1) (∆1 + ∆2 + 2n− 2) (2∆2 + 2n− 1)

+ J
(
−9∆1 − 9∆2 + 2

(
∆2

1 + ∆2
2 + 4∆1∆2 + 6n2 + (6∆1 + 6∆2 − 9)n

)
+ 6
)
,

d2 = (∆1 −∆2) J(J + 1)

(
∆1 + ∆2 + J + 2n− 3

2

)
,

d3 =J
(
−11∆1 − 11∆2 + 2

(
∆2

1 + ∆2
2 + 4∆1∆2 + 6n2 + (6∆1 + 6∆2 − 11)n

)
+ 10

)

+ 4 (∆1 + n− 1) (∆2 + n− 1) (∆1 + ∆2 + 2n− 1) + 2J2 (∆1 + ∆2 + 2n− 2) .

(4.4.23)

For 〈ψψψψ〉 :

P
(s)
[ψαψβ ]n,J

= n
(−1)J+1

(
(−1)J + 1

)
2−2J−4n+1Γ

(
J + 3

2

)
Γ (n+ ∆ψ − 1) Γ (n+ 2∆ψ − 3)

(1− 2∆ψ)2 Γ(J + 2)Γ(n+ 1)Γ (2 (∆ψ − 1)) 2Γ
(
J + n+ 3

2

)

× Γ
(
J + n+ ∆ψ − 1

2

)
Γ
(
J + n+ 2∆ψ − 5

2

)
Γ (J + 2n+ 2∆ψ − 3)

Γ
(
n+ ∆ψ − 3

2

)
Γ (J + n+ ∆ψ − 1) Γ

(
J + 2n+ 2∆ψ − 5

2

)



c1 c2

c2
1
nc3


 , (4.4.24)

and

P
(s)
[ψαψα]n,J

=
(−1)J2−2J−4nΓ

(
J + 3

2

)
Γ (n+ ∆ψ) Γ (n+ 2∆ψ − 2) Γ (J + 2n+ 2∆ψ)

(1− 2∆ψ) 2Γ(J + 2)Γ(n+ 1)Γ (2∆ψ − 2) 2Γ
(
J + n+ 3

2

)
Γ
(
J + 2n+ 2∆ψ − 3

2

)

× Γ
(
J + n+ ∆ψ + 1

2

)
Γ
(
J + n+ 2∆ψ − 3

2

)

Γ
(
n+ ∆ψ − 1

2

)
Γ (J + n+ ∆ψ)


 −

(1+(−1)J)(J+1)

J+2(n+∆ψ−1) 0

0
(−1+(−1)J)J
J+2n+2∆ψ−1


 , (4.4.25)

where

c1 =4J2 (2∆ψ + n− 3) + 8J (∆ψ + n− 1) (2∆ψ + n− 3) + (2∆ψ + 2n− 3) (4∆ψ + 2n− 5) ,

c2 =2J (4∆ψ + 2n− 7) (J + 2 (∆ψ + n− 1)) ,

c3 =4J (J + 2 (∆ψ + n− 1))
(
J2 + 2J (∆ψ + n− 1) + (2n+ 1) (2∆ψ + n− 3)

)
.

(4.4.26)
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4.5 CFT data of a general spectrum

In this section, we will use the techniques we developed in previous section to calculate the

anomalous dimensions of the double-twist operators exchanged in the 〈ψφφψ〉 and 〈ψψψψ〉

correlators. For this, we will primarily focus on using the coefficient of the double poles in

eqn. (A.2.3) to obtain δhP , and we will divide it by PMFT to obtain δh = γ/2.24 We also

give an example of calculating OPE coefficient corrections in section 4.5.2.

4.5.1 Applications in the computation of anomalous dimensions

As we reviewed in section 4.3.5, 6j symbols develop double poles when certain relations are

satisfied; in the case of eqn. (A.2.3), we have double poles in ∆′ at ∆′ = ∆1 + ∆2 + J ′ if

∆1 + ∆2 = ∆3 + ∆4. Here these correspond to double-twist operators [φ1φ2]. We will stick

to decomposition coefficients K with O′6 = O6, so taking the coefficient of double poles of

eqn. (A.2.3) roughly translates into relating δhP[O1O2]

∣∣
O6

to δhP[φ1φ2]

∣∣
O6

, where here φi are

some fictitious scalar operators. For later convenience, we define

dpJ,n1 (φ1, φ2,O6) ≡ lim
∆→∆1+∆2+J+2n

(∆−∆1 −∆2 − J − 2n)
2 S(φ3φ4[Õ5])

η
(s)
O5


 φ1 φ2 O6

φ2 φ1 O∆,J


 ,

(4.5.1a)

dpJ,n2 (φ1, φ2,O6) ≡ lim
∆→∆1+∆2+J+2n

(∆−∆1 −∆2 − J − 2n)
2 S(φ3φ4[Õ5])

η
(s)
O5


 φ1 φ2 O6

φ1 φ2 O∆,J


 ,

(4.5.1b)

which describe the corrections δhP with external scalars after the OPE coefficients are

stripped off:

δhP[φ1φ2]

∣∣∣∣
O6∈φ1×φ1

=λφ1φ1O6λφ2φ2O6dp
J,n
1 (φ1, φ2,O6) ,

δhP[φ1φ2]

∣∣∣∣
O6∈φ1×φ2

=λ2
φ1φ2O6

dpJ,n2 (φ1, φ2,O6) .

(4.5.2)

As a reminder, in these formulas η is the normalization for the scalar partial wave.

The particular decomposition we will be using in eqn. (A.2.3) will be the one with O6

24. One can further improve these results by considering the residues of eqn. (A.2.3) to obtain δP as in
(A.2.5) or the example in 4.5.2, with which one schematically has δh = δhP

PMFT+δP
up to possible mixing

between different twist towers. Necessary K coefficients needed for these computations are provided in [2].
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kept constant, hence by taking the coefficients of double poles on both sides, we obtain

(δhP )ab([O1O2]n,J)

∣∣∣∣
G

(t),fg
O6

=

− λ326,fλ146,g

∑

φi,J ′,n′

Kfgab

(
O1 O2 O3 O4 [O1O2]n,J O6

φ1 φ2 φ2 φ1 [φ1φ2]n′,J′ O6

)
dpJ

′,n′

1 (φ1, φ2,O6)

− λ326,fλ146,g

∑

φi,J ′,n′

Kfgab

(
O1 O2 O3 O4 [O1O2]n,J O6

φ1 φ2 φ1 φ2 [φ1φ2]n′,J′ O6

)
dpJ

′,n′

2 (φ1, φ2,O6) . (4.5.3)

For example, for the leading parity-even tower in the s-channel of 〈ψφφψ〉, we find25

(δhP )11([φψ]+0,J)

∣∣∣∣
G

(t)
O6

= −iλφφO6λ
1
ψψO6

dp
J− 1

2
,0

1 (ψ
1
2 , φ,O6)

− iλφφO6λ
2
ψψO6

(1− δ0,`6)

((
J + 1

2

)
(J + 1)

(∆6 − 1) `6
dp
J+ 1

2
,0

1 (ψ−
1
2 , φ,O6)

+
2 (∆ψ + J − 1) 2 (∆ψ + ∆φ + J − 2) (2∆ψ + 2∆φ + 2J − 5)

(∆6 − 1) `6 (2∆ψ + 2∆φ + 4J − 5) (2∆ψ + 2∆φ + 4J − 3)
dp
J− 1

2
,0

1 (ψ−
1
2 , φ,O6)

+
(−2∆ψ −∆6 + `6 + 4) (2∆ψ −∆6 + `6 − 1)

4 (∆6 − 1) `6
dp
J− 1

2
,0

1 (ψ
1
2 , φ,O6)

)
. (4.5.4)

For the parity-odd tower, we instead have

(δhP )22

(
[φψ]−0,J

) ∣∣∣∣
G

(t)
O6

= iλφφO6λ
1
ψψO6

(
J + 1

2

J + 1
dp
J+ 1

2
,0

1 (ψ
1
2 , φ,O6)

+
2 (2∆φ + 2J − 1)2 (∆ψ + ∆φ + J − 1)

(2∆ψ + 2∆φ + 2J − 3) (2∆ψ + 2∆φ + 4J − 3) (2∆ψ + 2∆φ + 4J − 1)
dp
J− 1

2
,0

1 (ψ
1
2 , φ,O6)

)
+ iλφφO6λ

2
ψψO6

(1− δ0,`6)

(
1

(∆6 − 1) `6
dp
J− 1

2
,1

1 (ψ−
1
2 , φ,O6)

+
(2J + 1) (−2∆ψ −∆6 + `6 + 4) (2∆ψ −∆6 + `6 − 1)

8 (∆6 − 1) (J + 1)`6
dp
J+ 1

2
,0

1 (ψ
1
2 , φ,O6)

+

(
J + 1

2

)
(∆ψ − 1) 2

(
∆ψ + ∆φ − 5

2

)
(∆ψ + ∆φ + J − 1)

(∆6 − 1) (J + 1)`6
(
∆ψ + ∆φ − 3

2

) (
∆ψ + ∆φ + J − 3

2

)dpJ− 1
2
,0

1 (ψ
1
2 , φ,O6)

+
(2∆φ + 2J − 1) 2 (−2∆ψ −∆6 + `6 + 4) (2∆ψ −∆6 + `6 − 1) (∆ψ + ∆φ + J − 1)

2 (∆6 − 1) `6 (2∆ψ + 2∆φ + 2J − 3) (2∆ψ + 2∆φ + 4J − 3) (2∆ψ + 2∆φ + 4J − 1)
dp
J− 1

2
,0

1 (ψ
1
2 , φ,O6)

)
.

(4.5.5)

We would like to point out the appearance of dpJ−
1
2
,1

1 (ψ−
1
2 , φ,O6) which indicates that we

may need to extract the data of non-leading twist scalar towers from the scalar 6j symbol

25. In this section, we use the following shorthand notation for brevity: φai ≡ φ∆i+a, φ̃
a
i ≡ φ3−∆i+a,

Oa,bi ≡ O∆i+a,`i+b, and Õ
a,b
i ≡ O3−∆i+a,`i+b.
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in order to obtain the leading twist spinning towers. This happens for the cases where the

scaling dimensions of O1,2 and `5 are shifted downwards while the scaling dimension of O5

is shifted upwards. We also note that the absence of λ3,4
ψψO6

follows from our parity-definite

choice of three-point structures.26

Using the K coefficients given explicitly in the attached Mathematica notebook of [2],

one can similarly obtain all cases for four fermions as well. For brevity, we reproduce here

a few cases for `6 = 0:

(δhP )22

(
[ψψ]+0,J

) ∣∣∣∣
G

(t)
φ6

= λ1
ψψO6

λ1
ψψO6

dpJ−1,0
1 (ψ

1
2 , ψ

1
2 , φ6)

+ λ3
ψψO6

λ3
ψψφ6

(
2J

(∆6 − 1)2 dp
J,0
2 (ψ−

1
2 , ψ

1
2 , φ6)

+

(
∆ψ + J−2

2

) (
∆ψ + J − 3

2

)

(∆6 − 1) 2 (∆ψ + J − 1)
dpJ−1,0

2 (ψ−
1
2 , ψ

1
2 , φ6)

)
, (4.5.6)

and

(δhP )11

(
[ψψ]+0,J

)
= (δhP )12

(
[ψψ]+0,J

)
= (δhP )21

(
[ψψ]+0,J

)
= 0 . (4.5.7)

Unlike the parity-even case, parity-odd families have non-zero off-diagonal components:

(δhP )34

(
[ψψ]+0,J

) ∣∣∣∣
G

(t)
φ6

=
λ3
ψψφ6

λ3
ψψφ6

(∆6 − 1)2

(
− dpJ−1,1

2 (ψ−
1
2 , ψ

1
2 , φ6) +

J (J + 1) (2J + 3)

2J + 1
dpJ+1,0

2 (ψ−
1
2 , ψ

1
2 , φ6)

+
(2∆ψ + J − 2) (2∆ψ + J − 1) (2∆ψ + 2J − 3) (2∆ψ + 2J − 1) (4∆ψ + 2J − 5)

64 (∆ψ + J − 1) 2 (4∆ψ + 2J − 3)
dpJ−1,0

2 (ψ−
1
2 , ψ

1
2 , φ6)

+
J (2∆ψ + J − 1)

(
8∆3

ψ + 2
(
4J2 − 8J + 3

)
∆ψ − 4J2 + 4(4J − 3)∆2

ψ + 4J − 3
)

8 (2∆ψ − 1) (∆ψ + J − 1) (∆ψ + J)
dpJ,02 (ψ−

1
2 , ψ

1
2 , φ6)

)
,

(δhP )43

(
[ψψ]+0,J

) ∣∣∣∣
G

(t)
φ6

= (δhP )34

(
[ψψ]+0,J

) ∣∣∣∣
G

(t)
φ6

,

(4.5.8)

where one can write down (δhP )33

(
[ψψ]+0,J

)
6= 0 and (δhP )44

(
[ψψ]+0,J

)
6= 0 as well. How-

ever, all non-block-diagonal terms such as (δhP )13

(
[ψψ]+0,J

)
are zero as the corresponding

structures do not develop double poles. This is why we do not have terms with the mixed

coefficient λ1
ψψO6

λ3
ψψO6

.

26. The OPE coefficients λ3,4
ψψO6

can only appear through the product of 3−point structures
〈φφO6〉 〈ψψO6〉3,4, which are parity-odd under X → −X in embedding space (see footnote 5 as well).
In the s-channel this can only match to the non-diagonal pieces 〈ψφO5〉1,2 〈ψφO5〉2,1 for which no double
pole appears: (δhP )12 ([φψ]0,J) = (δhP )21 ([φψ]0,J) = 0.
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To calculate the scalar coefficients dpJ,0i we will use the Lorentzian inversion formula [1,

127, 133], combined with either dimensional reduction of the 3d block [1, 215] or resumma-

tions of the lightcone expansion [232]. Using dimensional reduction we find for the n = 0

double-twist operators:

dpJ,01 (φ1, φ2,O6) = −
∞∑

p=0

p∑

q=max(−p,p−2J6)

2κ0,0

2h̄
sin(π(h6 − 2h1)) sin(π(h6 − 2h2))

×A0,0
p,qΩ

h1h2h2h1

h̄,h6+p,2h2

Γ(2(h̄+ q))

Γ2(h̄+ q)

∣∣∣∣
h̄=h1+h2+J

, (4.5.9)

dpJ,02 (φ1, φ2,O6) = −
∞∑

p=0

p∑

q=max(−p,p−2J6)

2κh21,h12

2h̄
sin2(π(h6 − h1 − h2))

×Ah21,h12
p,q Ωh1h2h1h2

h̄,h6+p,h1+h2

Γ(2(h̄+ q))

Γ(h12 + h̄+ q)Γ(h21 + h̄+ q)

∣∣∣∣
h̄=h1+h2+J

. (4.5.10)

Here we have defined h = 1
2(∆− J), h̄ = 1

2(∆ + J), hij = hi − hj , and

κa,b
2h̄

=
Γ(h̄+ a)Γ(h̄− a)Γ(h̄+ b)Γ(h̄− b)

2π2Γ(2h̄)Γ(2h̄− 1)
. (4.5.11)

The coefficients Aa,bp,q come from performing dimensional reduction for 3d blocks in terms

of the chiral, 2d blocks and were found for a = b = 0 in [215].27 For general a and b we can

compute Aa,b
h,h̄

recursively using the Casimir equation. For explicit results, we will mainly

be interested in the large spin asymptotics, in which case we can restrict to p = q = 0 and

use Aa,b0,0 = 1. Finally, the function Ω is given by [133]:

Ωh1,h2,h3,h4

h5,h6,p
=

Γ(2h5)Γ(h6 − p+ 1)Γ(h5 + h12 − h6 + p− 1)Γ(−h12 + h34 + h6 − p+ 1)

Γ(h5 + h12)Γ(h5 + h34)Γ(h5 − h12 + h6 − p+ 1)

4F3

[
h23 + h6, h6 − h14,−h12 + h34 + h6 − p+ 1, h6 − p+ 1

2h6, h5 − h12 + h6 − p+ 1,−h5 − h12 + h6 − p+ 2
; 1

]

+
Γ(2h6)Γ(h5 + h13 + p− 1)Γ(h5 + h42 + p− 1)Γ(−h5 − h12 + h6 − p+ 1)

Γ(h6 − h14)Γ(h23 + h6)Γ(h5 + h12 + h6 + p− 1)

4F3

[
h5 + h13 + p− 1, h5 + h42 + p− 1, h5 + h34, h5 + h12

h5 + h12 + h6 + p− 1, 2h5, h5 + h12 − h6 + p
; 1

]
. (4.5.12)

When we study double-twist operators with large spin, or equivalently large h̄, the first

27. In comparison to [215] we use Ahere
p,q = Athere

pq
2
,h̄−h+q−p, and for Eq. (2.35) there we use c(d)` = (d−2)`

( d−2
2 )

`

.
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4F3 hypergeometric yields the asymptotic, large-spin prediction while the second 4F3 gives

effects which are exponentially suppressed.

By inserting eqn. (4.5.9) and eqn. (4.5.10) into eqn. (4.5.3), we can obtain δhP for various

double-twist operators of fermions. Below we will consider some examples.

δhP of double-twist towers [φψα]±0,`5 due to scalar exchange:

From eqn. (4.5.4) and eqn. (4.5.5), we find that

(δhP )
(p)
11 = −λφφφ6λ

1
ψψφ6

(−1)`5+1Γ (∆6) (sin (π (−∆ψ −∆φ + ∆6)) + sin (π (∆ψ −∆φ)))

Γ
(

∆6
2

)

× Ω
2∆ψ+1

4
,
∆φ
2
,
∆φ
2
,
2∆ψ+1

4
2∆ψ+2∆φ+4`5−1

4
,
∆6
2
,∆φ

(4.5.13a)

and

(δhP )
(p)
22 = −λφφφ6

λ1
ψψφ6

(−1)`5Γ (∆6) cos
(
π
(
∆ψ − ∆6

2

))
sin
(
π
(
∆φ − ∆6

2

))

Γ
(

∆6

2

)2

×
(

(2`5 + 1)

`5 + 1
Ω

2∆ψ+1

4 ,
∆φ
2 ,

∆φ
2 ,

2∆ψ+1

4
2∆ψ+2∆φ+4`5+3

4 ,
∆6
2 ,∆φ

− 4 (2∆φ + 2`5 − 1) 2 (∆ψ + ∆φ + `5 − 1)

(2∆ψ + 2∆φ + 2`5 − 3) (2∆ψ + 2∆φ + 4`5 − 3) (2∆ψ + 2∆φ + 4`5 − 1)
Ω

2∆ψ+1

4 ,
∆φ
2 ,

∆φ
2 ,

2∆ψ+1

4
2∆ψ+2∆φ+4`5−1

4 ,
∆6
2 ,∆φ

)
.

(4.5.13b)

By expanding the perturbative terms at large `, we can obtain the leading order behavior

(δhP )11([φψ]+0,`5)

∣∣∣∣
G

(t)
φ6

∼ λφφφ6λ
1
ψψφ6

√
π(−1)`5+1Γ (∆6) 2−∆ψ−∆φ−2`5+ 5

2 `
∆ψ+∆φ−∆6−1
5

Γ
(

∆6
2

)
2Γ
(
−∆6

2 + ∆ψ + 1
2

)
Γ
(
∆φ − ∆6

2

) ,

(4.5.14a)

(δhP )22([φψ]−0,`5)

∣∣∣∣
G

(t)
φ6

∼
λφφφ6λ

1
ψψφ6

(−1)`5 (−2∆ψ + ∆6 + 2) Γ
(

1
2 (∆6 + 1)

)
`
∆ψ+∆φ−∆6−2
5

2∆ψ+∆φ−∆6+2`5+ 1
2 Γ
(

∆6
2

)
Γ
(
−∆6

2 + ∆ψ + 1
2

)
Γ
(
∆φ − ∆6

2

) .

(4.5.14b)

By dividing these by the MFT coefficients at large ` give in eqn. (4.4.10), we obtain the
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anomalous dimensions at leading order:

γ
[φψ]+

0,`5

∣∣∣∣
G

(t)
φ6

=
2

P
(s)
11

(δhP )11

∣∣∣∣
G

(t)
φ6

=
iλφφφ6λ

1
ψψφ6

`∆6
5

2∆6Γ
(

1
2

(∆6 + 1)
)

Γ
(
∆ψ + 1

2

)
Γ (∆φ)

√
πΓ
(

∆6
2

)
Γ
(

1
2

(−∆6 + 2∆ψ + 1)
)

Γ
(

1
2

(2∆φ −∆6)
) ,

(4.5.15a)

γ
[φψ]−

0,`5

∣∣∣∣
G

(t)
φ6

=
2

P
(s)
22

(δhP )22

∣∣∣∣
G

(t)
φ6

= −
iλφφφ6λ

1
ψψφ6

`∆6
5

2∆6−1
(

∆6
2
−∆ψ + 1

)
Γ
(

∆6+1
2

)
Γ
(
∆ψ + 1

2

)
Γ (∆φ)

√
π (∆ψ − 1) Γ

(
∆6
2

)
Γ
(
−∆6+2∆ψ+1

2

)
Γ
(

2∆φ−∆6

2

) .
(4.5.15b)

δhP of parity-even double-twist tower [φψα]+0,`5 due to stress tensor exchange:

By inserting eqn. (4.5.9) and eqn. (4.5.10) into eqn. (4.5.4), we obtain

(δhP )11([φψ]+0,`5)

∣∣∣∣
G

(t)
T

=
3∆φ sin (π`5) Γ (`5 + ∆ψ) Γ

(
`5 + ∆φ − 1

2

)
Γ
(
`5 + ∆φ + ∆ψ − 3

2

)

2
√

2π2cTΓ (`5 + 1) Γ (∆ψ − 1) Γ
(
∆φ − 1

2

)
Γ
(
2`5 + ∆φ + ∆ψ − 1

2

)

×
(

(2∆ψ + 1) (2∆ψ + 2∆φ + 4`5 − 3) 4F3

[ 1
2 ,

1
2 ,

3
2 −∆φ, 1−∆ψ

1, `5 + 1,−`5 −∆φ −∆ψ + 5
2

; 1

]

− 4 (∆ψ + `5 − 1) (∆ψ + ∆φ + `5 − 2) 4F3

[ 1
2 ,

1
2 ,

3
2 −∆φ, 2−∆ψ

1, `5 + 1,−`5 −∆φ −∆ψ + 7
2

; 1

]

+ 4

(
`5 +

1

2

)(
∆φ + `5 −

1

2

)
4F3

[ 1
2 ,

1
2 ,

3
2 −∆φ, 2−∆ψ

1, `5 + 2,−`5 −∆φ −∆ψ + 5
2

; 1

])

+ (non-perturbative terms), (4.5.16)

where we set

`6 = 2 , ∆6 = 3 , λφφT = − 3∆φΓ
(

3
2

)

2(2π)3/2√cT
, λ1

ψψT =
3i(∆ψ − 1)

4
√
cT

, λ2
ψψT = − 3i

2
√
cT
,

(4.5.17)

where cT is the central charge, which here is defined as the normalization of the stress tensor

two-point function. At large spin, the leading order term is then

(δhP )11([φψ]+0,`5)

∣∣∣∣
G

(t)
T

∼ 3i(−1)`5∆φ2−∆ψ−∆φ−2`5+4`
∆ψ+∆φ−2
5

π3/2cTΓ (∆ψ − 1) Γ
(
∆φ − 1

2

) , (4.5.18)

and we obtain the anomalous dimension via eqn. (4.4.10):

γ[φψ]+0,`5

∣∣∣∣
G

(t)
T

=
2

P
(s)
11

(δhP )11

∣∣∣∣
G

(t)
T

=
1

`5

3
√

2Γ
(
∆ψ + 1

2

)
Γ (∆φ + 1)

π2cTΓ (∆ψ − 1) Γ
(
∆φ − 1

2

) . (4.5.19)
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δhP of parity-even double-twist tower [ψψ]+0,`5 due to the exchange of a generic

parity-even operator or parity-odd scalar:

Similar to the previous examples, we obtain the relevant δhP by inserting eqn. (4.5.9) and

eqn. (4.5.10) into eqn. (4.5.6). As the expressions are quite lengthy, we will not reproduce

the full results but instead present their asymptotic forms at large spin. We find that

(δhP )11([ψψ]+0,`5)

∣∣∣∣
G

(t)
O6

= (δhP )12([ψψ]+0,`5)

∣∣∣∣
G

(t)
O6

= (δhP )21([ψψ]+0,`5)

∣∣∣∣
G

(t)
O6

= 0,

(δhP )22([ψψ]+0,`5)

∣∣∣∣
G

(t)
O6

∼
(
λ1
ψψO6

)2 (−1)`5+12−2∆ψ+∆6−2`5+`6+2`
2∆ψ−∆6+`6− 1

2
5 Γ

(
1
2 (`6 + ∆6 + 1)

)

Γ
(

1
2 (`6 + ∆6)

)
Γ
(

1
2 (`6 −∆6 + 1) + ∆ψ

)2 ,

(4.5.20)

where contributions due to λ2,3,4
ψψO6

come at subleading order.28 By dividing by the MFT

coefficients given in eqn. (4.4.19), we obtain the anomalous dimension at large spin:

γ[ψψ]+0,`5

∣∣∣∣
G

(t)
O6

=
2

P
(s)
22

(δhP )22

∣∣∣∣
G

(t)
O6

=

(
λ1
ψψO6

)2

`∆6−`6
5

2∆6+`6Γ
(
∆ψ + 1

2

)
2Γ
(

1
2 (`6 + ∆6 + 1)

)
√
πΓ
(

1
2 (`6 + ∆6)

)
Γ
(

1
2 (`6 −∆6 + 1) + ∆ψ

)2 .

(4.5.21)

For example, for stress tensor exchange we can impose eqn. (4.5.17) which yields

γ[ψψ]+0,`5

∣∣∣∣
G

(t)
T

= − 1

`5

48Γ
(
∆ψ + 1

2

)2

πcTΓ (∆ψ − 1)2 , (4.5.22)

whereas for parity-even scalar exchange it becomes

γ[ψψ]+0,`5

∣∣∣∣
G

(t)
φ6

=

(
λ1
ψψO6

)2

`∆6
5

2∆6Γ
(

∆6+1
2

)
Γ
(
∆ψ + 1

2

)2
√
πΓ
(

∆6
2

)
Γ
(
−∆6

2 + ∆ψ + 1
2

)2 . (4.5.23)

For the exchange of a parity-odd scalar in the crossed channel, we still have (δhP )ij = 0

unless i = j = 2, which now becomes

(δhP )22([ψψ]+0,`5)

∣∣∣∣
G

(t)
φ6

∼
(
λ3
ψψφ6

)2 (−1)`5Γ
(

∆6
2

)
2−2∆ψ+∆6−2`5+1`

2∆ψ−∆6− 3
2

5

Γ
(

1
2 (∆6 + 1)

)
Γ
(
∆ψ − ∆6

2

)
2

, (4.5.24)

28. We see that this result matches the one calculated using lightcone bootstap methods in [1], once
the change of basis and the difference in conformal block normalization is taken into account; compare
eqn. (4.5.20) here with (3.30c) there.
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from which we can extract the anomalous dimension as

γ[ψψ]+0,`5

∣∣∣∣
G

(t)
φ6

=
2

P
(s)
22

(δhP )22

∣∣∣∣
G

(t)
φ6

=

(
λ3
ψψφ6

)2

`∆6+1
5

2∆6−1Γ
(

∆6
2

)
Γ
(
∆ψ + 1

2

)
2

√
πΓ
(

∆6+1
2

)
Γ
(
∆ψ − ∆6

2

)2 . (4.5.25)

We see that the anomalous dimensions in eqn. (4.5.22), eqn. (4.5.23), and eqn. (4.5.25)

match precisely to the results computed using large-spin expansions in [1].

4.5.2 Computation of corrections to OPE Coefficients: a working exam-

ple

In eqn. (A.2.3) we relate the OPE function of spinning operators to the scalar 6j symbols,

which we reproduce for reader’s convenience:

ρ(s)
ac (O)Scb(O3O4[Õ])

∣∣∣∣
G

(t),fg
O6

= λ326,fλ146,g

∑

φi,O′,O′6

Kfgab

(
O1 O2 O3 O4 O O6

φ1 φ2 φ3 φ4 O′ O′6

)

× S(φ3φ4[Õ′])
η

(s)
O′




φ1 φ2 O′6
φ3 φ4 O′


 . (4.5.26)

By taking the double poles in ∆ on both sides, we can extract δhP for spinning operators

in terms of scalar data, which we detailed and illustrated in section 4.5.1. In this section,

we will use this equation to extract correction to OPE coefficients for double twist operators

[φψ]+0 due to an exchange of a scalar in the crossed channel.

We see in eqn. (4.5.4) that the δhP for [φψ]+0,J reads as

(δhP )11([φψ]+0,J)

∣∣∣∣
G

(t)
φ6

=− iλφφφ6λ
1
ψψφ6

dp
J− 1

2
,0

1 (ψ
1
2 , φ, φ6) ,

(δhP )12([φψ]+0,J)

∣∣∣∣
G

(t)
φ6

=(δhP )21([φψ]+0,J)

∣∣∣∣
G

(t)
φ6

= (δhP )22([φψ]+0,J)

∣∣∣∣
G

(t)
φ6

= 0 ,

(4.5.27)

as only the first term in eqn. (A.2.7) contributes. For (δP ) on the other hand, we do not
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need double poles (single poles are sufficient) and there are also cross terms, hence we have

(δP )11([φψ]+0,J)

∣∣∣∣
G

(t)
φ6

=− iλφφφ6λ
1
ψψφ6

p
J− 1

2
,0

1,+ ,

(δP )12([φψ]+0,J)

∣∣∣∣
G

(t)
φ6

=− λφφφ6λ
3
ψψφ6

(
i (2`5 + 1)

∆6 − 1
p
J+ 1

2
,0

1,−

+
8i (∆ψ + `5 − 1) (∆φ + `5 − 1) (∆ψ + ∆φ + `5 − 2)

(∆6 − 1) (2∆ψ + 2∆φ + 4`5 − 5) (2∆ψ + 2∆φ + 4`5 − 3)
p
J− 1

2
,0

1,−

)
,

(δP )12([φψ]+0,J)

∣∣∣∣
G

(t)
φ6

=iλφφφ6λ
3
ψψφ6

1

∆6 − 1
p
J− 1

2
,0

2,− ,

(δP )22([φψ]+0,J)

∣∣∣∣
G

(t)
φ6

=0 ,

(4.5.28)

where we define the shorthand notation

pJ,ni,± ≡ pJ,ni (ψ±, φ, φ, ψ
1
2 , φ6) (4.5.29)

for

pJ,n1 (φ1, φ2, φ3, φ4,O6) ≡ lim
∆→∆1+∆2+J+2n

(∆−∆1 −∆2 − J − 2n)
S(φ3φ4[Õ∆,J ])

η
(s)
O∆,J

 φ1 φ2 O6

φ3 φ4 O∆,J

 ,

(4.5.30a)

pJ,n2 (φ1, φ2, φ3, φ4,O6) ≡ lim
∆→∆3+∆4+J+2n

(∆−∆3 −∆4 − J − 2n)
S(φ3φ4[Õ∆,J ])

η
(s)
O∆,J

 φ1 φ2 O6

φ3 φ4 O∆,J

 .

(4.5.30b)

We can compute p similar to dp and include both perturbative and nonperturbative

corrections to OPE coefficients. For brevity, we only reproduce the leading piece of the

perturbative correction at large `:

(δP )([φψ]+0,`5)

∣∣∣∣
G

(t)
φ6

=
i
√
π(−1)`5−

1
2 2−∆ψ−∆φ+∆6−2`5+ 5

2 `
∆ψ+∆φ−∆6−1
5

Γ
(
−∆6

2 + ∆ψ + 1
2

)
Γ
(
∆φ − ∆6

2

)

×




−λφφφ6λ
1
ψψφ6

Γ
(

∆6+1
2

)
H∆6−2

2√
πΓ
(

∆6
2

) λφφφ6λ
3
ψψφ6

Γ
(
−∆6

2
+∆ψ+ 1

2

)
2
√
`5Γ
(

∆ψ−
∆6
2

)
λφφφ6λ

3
ψψφ6

Γ
(
−∆6

2
+∆ψ+ 1

2

)
2
√
`5Γ
(

∆ψ−
∆6
2

) 0


 , (4.5.31)
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where Ha is the Harmonic number. As a consistency check, we see that setting

∆6 → 0 , λφφφ6 → 1 , λ1
ψψφ6

→ i , λ3
ψψφ6

→ 0 (4.5.32)

reduces the result to the MFT coefficient eqn. (4.4.11a).
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Chapter 5

Discussion

In this thesis we reviewed various analytic tools that have been developed in recent years and

used them to extend the progress of the analytic conformal bootstrap program to fermionic

conformal field theories in three dimensional spacetimes.

In the first part of the thesis, we used the SL(2,R) expansion of the conformal blocks

and the known formulae for the summation of the Casimir-irregular terms to derive the

relation between the CFT data of different channels in the lightcone bootstrap. This old-

style lightcone bootstrap has been used for scalars and is sufficient to derive the large spin

behavior of the double twist families in the spectrum, although the results surprisingly match

the numerics even at low spins for scalar theories such as the 3d Ising and O(N) models. We

extended this technique to fermions and derived the OPE coefficients and the anomalous

dimensions for the large spin spectrum of fermionic CFTs. In particular, we provided both

leading and next-to-leading order terms in the large spin expansion.

In the second part of the thesis, we provided a different approach for the analytic anal-

ysis of CFTs with spinning operators (such as fermions). This approach relies on deriving

relations between the 6j symbols of the conformal group and using the known 6j symbols for

scalars. The relations between the 6j symbols are derived using the conformally invariant

pairings of the three point structures and the differential operators that can be used to shift

the conformal weights of a given operator. When combined, these technologies allow one to

compute the CFT data of fermionic operators non-perturbatively, that is by including both

the perturbative and exponentially suppressed terms in spin. The second piece is inaccessi-

114



ble with the traditional lightcone bootstrap that we used in the first part of the thesis, and

it ensures that the result is analytic all the way down to low spins, yielding expressions far

more compatible with the numerical results. We first demonstrated the importance of these

non-perturbative pieces in the 3d Ising and O(N) models, then extended the calculations to

generic unitary fermionic CFTs by deriving the analytic expressions for their double twist

spectrum.

While extending the application of the Lorentzian inversion formula to spinning cor-

relators, we derived relations between the 6j symbols of different representations of the

conformal group.1 Aside from their employment in the construction of the OPE function

(hence the derivation of the CFT data), the J−coefficients that we have constructed for this

relation may be useful on their own. As 6j symbols are kinematic objects of the conformal

group without any dynamic data, the relations between these objects are valid in any system

with the conformal symmetry, and we believe that our results for these coefficients may have

pure mathematical value, considering our derivation (and the resultant J−coefficients) are

completely exact without any sort of approximation. We hope that further mathematical

insight can be obtained from these objects in the future.

There are several open questions left that can be considered by the tools and results of

this thesis. For instance, our demonstration for the improvement of the analytic predictions

for 3d Ising and O(N) models with the inclusion of non-perturbative effects can be extended

to concrete fermionic CFTs, such as GNY models. Would we then expect new precise

analytic predictions that match the results of the numerical bootstrap [81, 226]? It is

also natural to ask if we can predict analytic trajectories that cannot be accessed using

scalar correlators in 3d N = 1 SCFTs such as the supersymmetric Ising [233, 234] and

Wess-Zumino [235] models. This is an interesting question as the implications of imposing

analytic bootstrap constraints for all external operators in the same supermultiplet has not

yet been fully understood, so our results for external fermionic operators can be utilized to

address this question in SCFTs.

Moreover, it is also straightforward to go to higher spin now that we understand how to

1. The reader can refer toeqn. (A.1.18) for this relation and the definition of J−coefficients.
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spin down a fermionic 6j symbol in 3d. As a simple example, our results could then also

be used to study correlation functions of conserved currents Jµ in the O(N) vector model.

There are many physically relevant observables, such 〈JJT 〉, which are only accessible with

spinning correlators. Based on [1, 126, 127] we now know that the current and stress tensor lie

on the double-twist trajectories composed of the fundamental scalars, φ, so these correlators

are now within reach of analytic methods.

Finally, we note that our results are directly applicable to the study of Witten diagrams

with external fermionic operators. For example, by studying the contribution of the stress

tensor Tµν to a fermionic correlator, e.g. 〈φψψφ〉, we can derive the binding energy for

a two-particle state dual to [φψ]n, due to tree-level graviton exchange. The anomalous

dimension, or corresponding 6j symbol, can then be used to bootstrap a graviton loop in

AdS4 [133, 236]. Likewise, by extending our computations to external currents, we can derive

similar results for gauge interactions in AdS4, which would provide valuable data that can

be cross-checked with perturbative bulk computations.2 Lastly, if one wants to study an

AdS theory with fermions, we need to understand the tree-level fermionic correlators to fully

determine a one-loop scalar four point function. We therefore hope the results presented

here are useful in the wider study of AdS4 correlators.

2. As part of his PhD work not included in this thesis [237–243], the author studied AdS4 gluons in
momentum space, showing that written in a particular gauge any tree-level gluon Witten diagram can be
purely computed algebraically (without any bulk-integration) which is demonstrated by the computation of
the explicit results for several higher point amplitudes [237, 238]. It would be interesting to connect to these
bulk computations from a boundary perspective.
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Appendix A

6j Symbols

In section 4.3.5 we defined and reviewed 6j symbols. In this appendix, we will further discuss

6j symbols and detail our method of deriving relations between 6j symbols for operators of

different spins.

A.1 Spinning Down the 6j Symbol

We first draw the attention of the reader to the problem of inverting a single partial wave

(or block) with external spinning operators. This allows us to compute corrections to the

anomalous dimensions of double twist operators. As a reminder, the general form of the 6j

symbol is given by




O1 O2 O6

O3 O4 O5





abcd

=
(

Ψ̃
(s),ab
O5

,Ψ
(t),cd
O6

)

=

∫
ddx1...d

dx6

〈
Õ1Õ2Õ5

〉〈
Õ3Õ4O5

〉
〈O3O2O6〉

〈
O1O4Õ6

〉
.

(A.1.1)

Our strategy will in a way be the reverse of the scalar case [133]. Instead of using the

Lorentzian inversion formula, we will follow the strategy outlined in [152] and use weight-

shifting operators to calculate the 6j symbol for external fermions in terms of the 6j symbol

for external scalars. We then use the expression (4.3.62), which splits the scalar 6j symbol
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into two pieces from inverting the physical block and its shadow to find the corresponding

split for the fermionic 6j symbol.

To start, we use the results of [152] to write the t-channel spinning partial wave as a

differential operator acting on the partial wave for external scalars:

Ψ
(t),ab
O (xi) = Dab

t Ψ
(t),scalar
O′ (xi) , (A.1.2)

where Ψ
(t),scalar
O′ (xi) is a partial wave for four external scalars, 〈φ3φ2φ1φ4〉. We are being very

schematic here and it should be understood that Dab
t is a sum of multiple weight-shifting

operators. For each term in the sum we may have to choose a different shifted operator

O′, with scaling dimension and spin shifted from O, as well as different external scaling

dimensions ∆i of the scalar partial wave.

Given this expression we can simplify the spinning 6j symbol by taking the adjoint of

this operator:

(
Ψ̃

(s),ab
O5

,Ψ
(t),ab
O6

)
=
(
Dab
s Ψ̃

(s),scalar
O′5

,Dab
t Ψ

(t),scalar
O′6

)

=
(

Ψ̃
(s),scalar
O′5

,D∗,abs Dab
t Ψ

(t),scalar
O′6

)
. (A.1.3)

The two weight-shifting operators acting on the t-channel conformal partial wave then give

a linear combination of undifferentiated t-channel conformal partial waves, at the price of

more shifts for the internal and external labels. In the end we are left with an equality of

the form




O1 O2 O6

O3 O4 O5





abcd

=
∑

φi,O′5,6

J abcd
(
O1 O2 O3 O4 O5 O6

φ1 φ2 φ3 φ4 O′5 O′6

)


φ1 φ2 O′6
φ3 φ4 O′5




,

(A.1.4)

where the sum runs over some set of scaling dimensions for the fictitious external scalars

φi, whose dimensions are related to Oi by some (half-)integer shift, and over both scaling

dimensions and spins for O′5,6, which are again related to the O5,6 by (half-)integer shifts in

both labels. We now turn to how to compute these coefficients.
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The general strategy to compute the decomposition factors Jabcd in eqn. (A.1.4) can be

systematized by the following procedure:

• Write a three-point structure in terms of weight-shifting operators acting on three-

point structures of lower spins.

• Use integration by parts and crossing symmetry of covariant three-point structures to

move the weight-shifting operators such that they act on the same operator.

• By using irreducibility of the representations, the weight-shifting operators become

multiples of the identity.

• Repeat until all three-point structures are of the form 〈φφO〉, i.e. we are left with

three-point functions involving two scalars.

Below, we will unpack this procedure further by detailing each step in the explicit decom-

position of the 6j symbol of two external scalars and two external fermions.

In our conventions, the 6j-symbol for the correlator 〈φφψψ〉 reads as




φ1 φ2 O6

ψ3 ψ4 O5





·s2t1t2
=

∫
ddx1...d

dx6

〈
φ̃1φ̃2Õ5

〉〈
ψ̃3ψ̃4O5

〉s2 〈ψ3φ2O6〉t1
〈
φ1ψ4Õ6

〉t2
,

(A.1.5)

where the first three-point structure is already in the appropriate form for a 6j symbol of

four external scalars, so all we need to do is to massage the remaining structures. As the

first step, we use eqn. (4.3.88) to rewrite
〈
ψ̃3ψ̃4O5

〉s2
:1

∫
ddx3d

dx4d
dx6

〈
ψ̃3ψ̃4O5

〉s2 〈ψ3φ2O6〉t1
〈
φ1ψ4Õ6

〉t2

=

∫
ddx3d

dx4d
dx6

∑

a,b

κs23,ab(ψ̃3ψ̃4O5)D−a,+1 D−b,+2

〈
φ̃a3φ̃

b
4O5

〉
〈ψ3φ2O6〉t1

〈
φ1ψ4Õ6

〉t2
.

(A.1.6)

1. We use the same shorthand notation as is used in section 4.5.1: φai ≡ φ∆i+a, φ̃
a
i ≡ φ3−∆i+a,

Oa,bi ≡ O∆i+a,`i+b, and Õ
a,b
i ≡ O3−∆i+a,`i+b.
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After that, we integrate by parts to obtain

∫
ddx3d

dx4d
dx6

〈
ψ̃3ψ̃4O5

〉s2 〈ψ3φ2O6〉t1
〈
φ1ψ4Õ6

〉t2
=

∫
ddx3d

dx4d
dx6

∑

a,b

κs23,ab(ψ̃3ψ̃4O5)
〈
φ̃a3φ̃

b
4O5

〉 [(
D−a,+1

)∗
A
〈ψ3φ2O6〉t1

] [(
D−b,+2

)A∗ 〈
φ1ψ4Õ6

〉t2]
, (A.1.7)

where we are showing the spinor indices of weight-shifting operators explicitly. With

eqn. (4.3.78), the equation further reduces to

∫
ddx3d

dx4d
dx6

〈
ψ̃3ψ̃4O5

〉s2 〈ψ3φ2O6〉t1
〈
φ1ψ4Õ6

〉t2

=

∫
ddx3d

dx4d
dx6

∑

a,b

κs23,ab(ψ̃3ψ̃4O5)ζ−a,+0 ζ−b,+0

〈
φ̃a3φ̃

b
4O5

〉

×
[(
D−a,−1

)
A
〈ψ3φ2O6〉t1

] [
E
t2t′2
φψO→Oφψ

(
D−b,−3

)A 〈
Õ6φ1ψ4

〉t′2
]
, (A.1.8)

where we defined the exchange matrix E

〈O2O1O〉a = Eab21O→12O 〈O1O2O〉b (A.1.9)

to reorder the last tensor structure so that the weight-shifting operator acts on the third

operator.2 We can then use the crossing for conformally covariant three-point structures as

derived in [152], which reads as

(
D−a,−b3

)A 〈
O1O2Oa,b3

〉m
=
∑

c,d,n




O1 O2 Oc,d1

O3 S Oa,b3





mn

(
D−c,−d1

)A 〈
Oc,d1 O2O3

〉n
(A.1.10)

2. We do this because we will use the convention of [152] for finite-dimensional representations, where the
weight-shifting operator acts on the first (third) operator in the s (t) channel.
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for the fermionic representation of weight-shifting operators in 3d. Thus we obtain

∫
ddx3d

dx4d
dx6

〈
ψ̃3ψ̃4O5

〉s2
〈ψ3φ2O6〉t1

〈
φ1ψ4Õ6

〉t2

=

∫
ddx3d

dx4d
dx6

∑

a,b

κs23,ab(ψ̃3ψ̃4O5)ζ−a,+0 ζ−b,+0

〈
φ̃a3φ̃

b
4O5

〉

×
[(
D−a,−1

)
A
〈ψ3φ2O6〉t1

]

Et2t

′
2

φψO→Oφψ
∑

c,d




Õ6 φ1 Õc,d6

φ−b4 S ψ4





t′2· (
D−c,−d1

)A 〈
Õ6φ1φ

−b
4

〉

 .

(A.1.11)

We can integrate by parts and use the crossing again to get both weight-shifting operators

to act on the same operator:

∫
ddx3d

dx4d
dx6

〈
ψ̃3ψ̃4O5

〉s2
〈ψ3φ2O6〉t1

〈
φ1ψ4Õ6

〉t2

=

∫
ddx3d

dx4d
dx6

∑

a,b,c,d

κs23,ab(ψ̃3ψ̃4O5)ζ−a,+0 ζ−b,+0 ζ−c,−d`t+d




Õ6 φ1 Õc,d6

φ−b4 S ψ4





t′2·
E
t2t
′
2

φψO→Oφψ

×
〈
φ̃a3φ̃

b
4O5

〉[ ∑

e,f,n





ψ3 φ2 Oe,f3

O−c,d6 S O6





t1n

(
D−a,−1

)
A

(
D−e,−f1

)A 〈
Oe,f3 φ2O−c,d6

〉n
]〈
Õ6φ1φ

−b
4

〉
.

(A.1.12)

By the irreducibility of the representations, we have

(
D−a,−b

)
A

(
Dc,d

)A
O∆,` = δacδbdβ∆,`

ab O∆,` (A.1.13)
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with which we finally obtain3

∫
ddx3d

dx4d
dx6

〈
ψ̃3ψ̃4O5

〉s2 〈ψ3φ2O6〉t1
〈
φ1ψ4Õ6

〉t2

= ddx3d
dx4d

dx6

∑

a,b,c,d

β∆3−a,0
a,+ κs23,ab(ψ̃3ψ̃4O5)ζ−a,+0 ζ−b,+0 ζ−c,−d`t+d

E
t2t′2
φψO→Oφψ

×




Õ6 φ1 Õc,d6

φ−b4 S ψ4





t′2·


ψ3 φ2 φ−a3

O−c,d6 S O6





t1· 〈
φ̃a3φ̃

b
4O5

〉〈
φ−a3 φ2O−c,d6

〉n 〈
φ1φ

−b
4 Õc,d6

〉
.

(A.1.15)

Inserting this into eqn. (A.1.5), we get




φ1 φ2 O6

ψ3 ψ4 O5





·s2t1t2
=
∑

a,b,c,d

J ·s2t1t2
(

φ1 φ2 ψ3 ψ4 O5 O6

φ1 φ2 φ−a3 φ−b4 O5 O−c,d6

)

×




φ1 φ2 O−c,d6

φ−a3 φ−b4 O5





, (A.1.16)

where

J ·s2t1t2
(

φ1 φ2 ψ3 ψ4 O5 O6

φ1 φ2 φ−a3 φ−b4 O5 O−c,d6

)
= β∆3−a,0

a,+ κs23,ab(ψ̃3ψ̃4O5)ζ−a,+0 ζ−b,+0 ζ−c,−d`t+d

× Et2t
′
2

φψO→Oφψ




Õ6 φ1 Õc,d6

φ−b4 S ψ4





t′2·


ψ3 φ2 φ−a3

O−c,d6 S O6





t1·
. (A.1.17)

Note that if `5 = 0, there are only 2 independent structures for 〈ψ3ψ4φ5〉s2 , hence we need

to take a 2 × 2 invertible submatrix of κ3. We can do this by restricting to the structures

〈ψ3ψ4φ5〉1,3 in eqn. (3.1.15), and fixing b = 1
2 in eqn. (A.1.16) instead of summing over

b = ±1
2 .

3. One can derive β by acting on the two point function with weight shifting operators in embedding
space. In our conventions, we have

β∆,`
a,b ≡ b(a+ 2∆− 3)(b+ 2`+ 1)(2ab∆ + a(2b+ 1)(a+ b− 2) + 2`) for a, b = ±1· (A.1.14)
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Despite the complicated and lengthy expressions, the procedure is actually quite straight-

forward and most easily tractable in the diagrammatic notation, see figure A.1 for a summary

of the decomposition above. However, one should only use the diagrammatic expressions as

a guide, as there are ambiguities in their meaning, most notably sign ambiguities as they do

not carry the information of the order of operators in the equations.

For spinning correlators beyond 〈φφψψ〉 we can repeat the procedure above and recur-

sively spin-down the 6j symbol. For this, we first define a generalized form of eqn. (A.1.4):




O1 O2 O6

O3 O4 O5





abcd

=
∑

φi,O′5,6

J abcdefgh


 O1 O2 O3 O4 O5 O6

O′1 O′2 O′3 O′4 O′5 O′6







O′1 O′2 O′6
O′3 O′4 O′5





efgh

,

(A.1.18)

where we obtain the ultimate result Jabcd of eqn. (A.1.4) by summing over these intermediate

factors Jabcdefgh.

For four external fermions, we only need to repeat this process twice, where in the first

step we reduce from four external fermions to two external fermions and two external scalars,

and then in the second step we reduce from two external fermions and two external scalars

to four external scalars. The second step is already what we derived above, so the only new

ingredient is the first step:





ψ1 ψ2 O6

ψ3 ψ4 O5





s1s2t1t2

=
∑

a,b,c,d,t′1,t
′
2

J s1s2t1t2·s2t′1t′2
(

ψ1 ψ2 ψ3 ψ4 O5 O6

φ−a1 φ−b2 ψ3 ψ4 O5 O−c,d6

)

×





φ−a1 φ−b2 O−c,d6

ψ3 ψ4 O5





·s2t′1t′2
. (A.1.19)

Combining this with eqn. (A.1.16), we obtain the final result





ψ1 ψ2 O6

ψ3 ψ4 O5





s1s2t1t2

=
∑

a,...,h

J s1s2t1t2
(

ψ1 ψ2 ψ3 ψ4 O5 O6

φ−a1 φ−b2 φ−e3 φ−f4 O5 O−c−g,d+h6

)

×





φ−a1 φ−b2 O−c−g,d+h
6

φ−e3 φ−f4 O5




, (A.1.20)
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⇒
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ψ4

ψ3φ3

φ4

W ⇒

t1

t2

φ1

φ2

Os Ot

ψ4

ψ3
φ3

φ4

W ⇒

t1

φ1

φ2

Os Ot

O′
t

ψ3
φ3

φ4

W ⇒

φ1

φ2

Os Ot

O′
t

O′′
t

φ3

φ4

W ⇒

φ1

φ2

Os O′
t

φ4

φ3

Figure A.1: Step by step diagrammatic illustration for the decomposition of the 6j sym-
bol for 〈φψψφ〉 into the 6j symbol for 〈φφφφ〉. The idea is as follows: one re-expresses a
fermionic three-point structure, 〈ψψO〉, in terms of weight-shifting operators acting on a scalar
three-point structure, 〈φφO〉. The weight-shifting operators are then moved inside the dia-
grammatic loop until they act on the same leg. By the irreducibility of the representations, i.e.(
Da,b

)
A

(
D−c,−d

)A ∼ δacδbd, the diagram reduces to that of a scalar 6j symbol. To be able to
move around the weight-shifting operators, one either integrates by parts or uses the crossing
relation for covariant three-point structures as explained in the main text. The diagrams above
correspond to the equations eqn. (A.1.5), eqn. (A.1.6), eqn. (A.1.8), eqn. (A.1.11), eqn. (A.1.12),
and eqn. (A.1.15) respectively.
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where

J s1s2t1t2
(

ψ1 ψ2 ψ3 ψ4 O5 O6

φ−a1 φ−b2 φ−e3 φ−f4 O5 O−c−g,d+h6

)

=
∑

t′1,t
′
2

J s1s2t1t2·s2t′1t′2
(

ψ1 ψ2 ψ3 ψ4 O5 O6

φ−a1 φ−b2 ψ3 ψ4 O5 O−c,d6

)

× J ·s2t′1t′2
(

φ−a1 φ−b2 ψ3 ψ4 O5 O−c,d6

φ−a1 φ−b2 φ−e3 φ−f4 O5 O−c−g,d+h6

)
. (A.1.21)

We can derive Js1s2t1t2·s2t′1t′2 in a similar manner to how we derived J·s2t1t2 . For brevity we

skip the intermediate steps, illustrated diagrammatically in figure A.2, and only present the

final result here:

J s1s2t1t2·s2t′1t′2
(

ψ1 ψ2 ψ3 ψ4 O5 O6

φ−a1 φ−b2 ψ3 ψ4 O5 O−c,d6

)
=

∑

u1,u2,u′1,u
′
2

κs13,ab(ψ̃1ψ̃2Õ5)ζ−b,+0 ζ−a,+0 ζ−c,−d`t+d

× β∆2−b,0
b,+ Et1u1

ψ1ψ2O→ψ2ψ1O





ψ2 ψ3 φ−b2

O−c,d6 S O6





u1u′1

E
u′1t
′
1

φψO→ψφOE
t2u2
ψ1ψ2O→Oψ2ψ1

×




Õ6 ψ4 Õc,d6

φ−a1 S ψ1





u2u′2

E
u′2t
′
2

Oψφ→φψO . (A.1.22)

A.2 OPE Function and its Decomposition

In section 4.3.5 we discussed how 6j symbols are related to OPE coefficients. We reproduce

eqn. (4.3.73) for convenience:

λ125,aλ345,b

∣∣∣∣
G

(t),fg
O6

= −Res∆=∆5 ρ
(s)
ac (O)Scb(O3O4[Õ])

∣∣∣∣
G

(t),fg
O6

= (−1)1+Σ55+Σ12+Σ13+Σ23λ326,fλ146,g

× Res∆=∆5 η
∆,J
(ad)(ce)



O1 O2 O6

O3 O4 O∆,J




defg

Scb(O3O4[Õ])

∣∣∣∣
J=J5

.

(A.2.1)
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O′
t
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W ⇒

s2
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c

ψ4
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O′
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O′′
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W ⇒ s2
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ψ4

ψ3

Os O′
t

φ2

φ1

W

Figure A.2: Step by step diagrammatic illustration for the decomposition of 6j symbol of four
external fermions, 〈ψψψψ〉, in terms of 6j symbols of two external fermions and two external
scalars.
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We aim to relate the inversion of a single block for external fermions to the inversion

of a single block for a scalar four-point function. For that, by comparing (4.3.62), (4.3.70),

and (A.1.4) we write down



O1 O2 O6

O3 O4 O5




abcd

= (−1)Σ66

(
S−1(O1O4[Õ6])

)d
e

×
∑

φi,O′5,6

J abce
(
O1 O2 O3 O4 O5 O6

φ1 φ2 φ3 φ4 O′5 O′6

)
Kφ1φ4

Õ′6




φ1 φ2 O′6
φ3 φ4 O′5


 . (A.2.2)

We then find the following expression for the OPE function:

ρ(s)
ac (O)Scb(O3O4[Õ])

∣∣∣∣
G

(t),fg
O6

= λ326,fλ146,g

∑

φi,O′,O′6

Kfgab

(
O1 O2 O3 O4 O O6

φ1 φ2 φ3 φ4 O′ O′6

)

S(φ3φ4[Õ′])
η

(s)
O′




φ1 φ2 O′6
φ3 φ4 O′


 ,

(A.2.3)

where η(s)
O5

is the normalization of the scalar partial wave for 〈φ1φ2φ3φ4〉 and we have defined

Kfgab

(
O1 O2 O3 O4 O O6

φ1 φ2 φ3 φ4 O′ O′6

)
≡ (−1)Σ55+Σ66+Σ12+Σ13+Σ23Kφ1φ4

Õ′6

Scb(O3O4[Õ])

S(φ3φ4[Õ′])

×
(
S−1(O1O4[Õ6])

)g
h
η

(s)
O′ η

(s)O
(ad)(ce)J

defh

(
O1 O2 O3 O4 O O6

φ1 φ2 φ3 φ4 O′ O′6

)
. (A.2.4)

We expect the physical poles for inverting a fermionic block to come from the physical

poles from inverting a scalar block. We then have for example

λ125,aλ345,b

∣∣∣∣
G

(t),fg
O6

= −λ326,fλ146,g

∑

φi,O′,O′6

Kfgab

(
O1 O2 O3 O4 O5 O6

φ1 φ2 φ3 φ4 O′5 O′6

)

× Res∆=∆5

S(φ3φ4[Õ′∆,J ])

η
(s)
O′∆,J




φ1 φ2 O′6
φ3 φ4 O′∆,J



∣∣∣∣
J=J5

. (A.2.5)
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Here we have assumed the inversion of a single block just has single poles. In general

when studying a correlator 〈O1O2O3O4〉 with ∆1 + ∆2 = ∆3 + ∆4 we find both single and

double poles. The double poles give the OPE coefficients times the anomalous dimensions

while the single poles gives the OPE coefficients themselves [127].

Equation A.2.3 is the main result of this approach: by using weight-shifting operators

successively, we can express CFT data of spinning operators in terms of 6j symbols of ex-

ternal scalars and the decomposition coefficients K. The former can be calculated efficiently

using the Lorentzian inversion formula whereas the latter is given in terms of partial wave

normalization factors, shadow matrices, and 6j symbol decomposition coefficients J , each

of which we have computed explicitly.

We presented the most general form in eqn. (A.2.3), however one can in fact choose either

O5 or O6 to stay the same by moving the weight-shifting operators through the other leg

only. Indeed, we kept O5 the same in the calculation of the J coefficients both for 〈φφψψ〉

and for 〈ψψψψ〉, as we can observe in eqn. (A.1.16) and eqn. (A.1.20). One can similarly

compute J while keeping O6 constant, though a separate calculation is not necessary: there

are several identities between various J coefficients, which follow from the symmetries of

the 6j symbols that we have summarized in appendix A.4. In particular, via eqn. (A.4.5),

we have

J abcdefgh

(
O1 O2 O3 O4 O5 O6

Oδ1,ε11 Oδ2,ε22 Oδ3,ε33 Oδ4,ε44 Oδ5,ε55 Oδ6,ε66

)
= (−1)Σ55+Σ5′5′+Σ66+Σ6′6′

× J dcbahgfe

(
Õ1 Õ4 Õ3 Õ2 O6 O5

Õ−δ1,ε11 Õ−δ4,ε44 Õ−δ3,ε33 Õ−δ2,ε22 Oδ6,ε66 Oδ5,ε55

)
. (A.2.6)

Let us now turn to the explicit results for the Kfgab coefficients. Despite the complicated

intermediate steps, the final form they take is quite simple as they are relatively short

meromorphic functions in scaling dimensions and spins. For example, the only nonzero K
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coefficients for 〈ψφφψ〉 arising from the exchange of a scalar φ6 in the t-channel are

K·111


 ψ1 φ2 φ2 ψ1 O5 φ6

φ
1
2
1 φ2 φ2 φ

1
2
1 O

1
2
,− 1

2
5 φ6


 = i, (A.2.7a)

K·111


 ψ1 φ2 φ2 ψ1 O5 φ6

φ
1
2
1 φ2 φ2 φ

1
2
1 O−

1
2
, 1
2

5 φ6


 =

i
(
∆5 − 3

2

) (
`5 + 1

2

) (
`5 −∆251 + 5

2

)2

4 (∆5 − 2) (`5 + 1) (`5 −∆5 + 2) (`5 −∆5 + 3)
,

(A.2.7b)

K·122


 ψ1 φ2 φ2 ψ1 O5 φ6

φ
1
2
1 φ2 φ2 φ

1
2
1 O

1
2
, 1
2

5 φ6


 = − i

(
`5 + 1

2

)

`5 + 1
, (A.2.7c)

K·122


 ψ1 φ2 φ2 ψ1 O5 φ6

φ
1
2
1 φ2 φ2 φ

1
2
1 O−

1
2
,− 1

2
5 φ6


 = − i

(
∆5 − 3

2

) (
∆251 + `5 − 3

2

)2

4 (∆5 − 2) (∆5 + `5 − 2) (∆5 + `5 − 1)
, (A.2.7d)

K·312


 ψ1 φ2 φ2 ψ1 O5 φ6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O

1
2
, 1
2

5 φ6


 =

i
(
`5 + 1

2

) (
`5 −∆125 + 5

2

)

(∆6 − 1) (`5 + 1)
, (A.2.7e)

K·312


 ψ1 φ2 φ2 ψ1 O5 φ6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O−

1
2
,− 1

2
5 φ6


 =

i
(
∆152 + `5 − 3

2

) (
∆251 + `5 − 3

2

)

4
(
∆5 − 3

2

)−1
(∆5 − 2) (∆6 − 1) (∆5 + `5 − 2)

×
(
∆1 + ∆2 + ∆5 + `5 − 9

2

)

∆5 + `5 − 1
, (A.2.7f)

K·321


 ψ1 φ2 φ2 ψ1 O5 φ6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O

1
2
, 1
2

5 φ6


 =

i
(
∆125 + `5 − 3

2

)

∆6 − 1
, (A.2.7g)

K·321


 ψ1 φ2 φ2 ψ1 O5 φ6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O−

1
2
, 1
2

5 φ6


 =

i
(
∆5 − 3

2

) (
`5 + 1

2

) (
`5 −∆1 −∆2 −∆5 + 11

2

)

4 (∆5 − 2) (∆6 − 1) (`5 + 1) (`5 −∆5 + 2)

×
(
`5 −∆152 + 5

2

) (
`5 −∆251 + 5

2

)

−∆5 + `5 + 3
, (A.2.7h)

We would like to emphasize two points. Firstly, as there is not a unique way to write

eqn. (A.2.5), the statement that the K in eqn. (A.2.7) are the only nonzero coefficients for

〈ψφφψ〉 with an exchange of a scalar φ6 in the t-channel should be understood for a partic-

ularly chosen decomposition in eqn. (A.2.5). One can of course change the decomposition,

which would then require a new set of K coefficients. For example, we used a set of K

coefficients with O6 held constant in eqn. (A.2.7); another set with O5 held constant instead

can be immediately obtained via eqn. (A.2.6).4 Secondly, we note that the absence of K·112 ,

4. It should be noted that not all different decompositions are related to each other via symmetries. For
example, O′4 = φ

1
2
1 whereas O′1 = φ

± 1
2

1 in eqn. (A.2.7): this follows from fixing b = 1
2
in eqn. (A.1.17) as
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K·121 , K·311 , and K·322 is not coincidental: they are forbidden by the parity symmetry as we

work in a parity-definite basis.5

A.3 K Coefficients

In this appendix, we present the explicit expression for theK coefficients defined in eqn. (A.2.4)

for 〈ψφφψ〉. As there are a different number of three-point tensor structures depending on

whether `5,6 = 0, the minimal complete set of nonzero K coefficients differs for each case.

We already presented the results for 〈ψφφψ〉 with `6 = 0 in eqn. (A.2.7), so we will detail

the 〈ψφφψ〉 with `6 6= 0 below. For 〈ψ1ψ2ψ2ψ1〉 and 〈ψψψψ〉, the coefficients become quite

lengthy so we do not reproduce them here; please see the Mathematica file of [2] for their

explicit expressions.

For the correlator 〈ψφφψ〉, the list below constitutes a sufficient set of nonzero K coeffi-

cients if the exchanged operator in t-channel is not a scalar.6 For convenience, we will use

a different shorthand notation in this section, i.e.

∆abc = ∆a + ∆b + ∆c , ∆c
ab = ∆a + ∆b −∆c. (A.3.1)

we noted after the equation. If we were to fix b = − 1
2
instead, we would then have a set of K coefficients

with O′4 = φ
− 1

2
1 and O′1 = φ

± 1
2

1 , and these new coefficients are not related to eqn. (A.2.7) in any manifestly
symmetric way.

5. We would like to caution the reader that this statement follows from the symmetries of three-point
structures 〈O1O2O3〉a under the transformation X → −X in embedding space, hence it is true whether the
relevant physical theory has parity symmetry or not, i.e. 〈O1O2O3〉a are merely formal entities and should
not be thought of as physical three-point structures.

6. For scalar exchange in the t-channel, see eqn. (A.2.7).
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The coefficients are:

K·211

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

− 1
2

1 O−
1
2
,− 1

2
5 O6

 i(∆5− 3
2 )(∆125+`5− 9

2 )2(∆2
15+`5− 3

2 )2

16(∆5−2)(∆6−1)`6(∆5+`5−2)(∆5+`5−1)

K·222

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

− 1
2

1 O−
1
2
, 1
2

5 O6

 − i(∆5− 3
2 )(`5+ 1

2 )(−∆125+`5+ 11
2 )2(−∆2

15+`5+ 5
2 )2

16(∆5−2)(∆6−1)(`5+1)`6(−∆5+`5+2)(−∆5+`5+3)

K·222

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

− 1
2

1 O
1
2
,− 1

2
5 O6

 − i(∆5
12+`5− 3

2 )2

4(∆6−1)`6

K·211

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

− 1
2

1 O
1
2
, 1
2

5 O6

 i(`5+ 1
2 )(−∆5

12+`5+ 5
2 )2

4(∆6−1)(`5+1)`6

K·312

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O−

1
2
,− 1

2
5 O6

 i(∆5− 3
2 )(∆125+`5− 9

2 )(∆2
15+`5− 3

2 )(∆1
25+`5− 3

2 )
8(∆5−2)(∆6−1)(∆5+`5−2)(∆5+`5−1)

K·412

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O−

1
2
,− 1

2
5 O6

 i(∆5− 3
2 )(∆125+`5− 9

2 )(∆2
15+`5− 3

2 )(∆1
25+`5− 3

2 )
8(∆5−2)`6(∆5+`5−2)(∆5+`5−1)

K·321

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O−

1
2
, 1
2

5 O6

 i(∆5− 3
2 )(`5+ 1

2 )(−∆125+`5+ 11
2 )(−∆2

15+`5+ 5
2 )(−∆1

25+`5+ 5
2 )

8(∆5−2)(∆6−1)(`5+1)(−∆5+`5+2)(−∆5+`5+3)

K·421

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O−

1
2
, 1
2

5 O6

 i(∆5− 3
2 )(`5+ 1

2 )(−∆125+`5+ 11
2 )(−∆2

15+`5+ 5
2 )(−∆1

25+`5+ 5
2 )

8(∆5−2)(`5+1)`6(−∆5+`5+2)(−∆5+`5+3)

K·321

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O

1
2
,− 1

2
5 O6

 i(∆5
12+`5− 3

2 )
2(∆6−1)

K·421

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O

1
2
,− 1

2
5 O6

 i(∆5
12+`5− 3

2 )
2`6

K·312

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O

1
2
, 1
2

5 O6

 i(`5+ 1
2 )(−∆5

12+`5+ 5
2 )

2(∆6−1)(`5+1)

K·412

 ψ1 φ2 φ2 ψ1 O5 O6

φ
− 1

2
1 φ2 φ2 φ

1
2
1 O

1
2
, 1
2

5 O6

 i(`5+ 1
2 )(−∆5

12+`5+ 5
2 )

2(`5+1)`6

K·321

 ψ1 φ2 φ2 ψ1 O5 O6

φ
1
2
1 φ2 φ2 φ

− 1
2

1 O−
1
2
,− 1

2
5 O6

 i(∆5− 3
2 )(∆125+`5− 9

2 )(∆2
15+`5− 3

2 )(∆1
25+`5− 3

2 )
8(∆5−2)(∆6−1)(∆5+`5−2)(∆5+`5−1)

K·421

 ψ1 φ2 φ2 ψ1 O5 O6

φ
1
2
1 φ2 φ2 φ

− 1
2

1 O−
1
2
,− 1

2
5 O6

 i(∆5− 3
2 )(1−∆6)(∆125+`5− 9

2 )(∆2
15+`5− 3

2 )(∆1
25+`5− 3

2 )
8(∆5−2)(∆6−1)`6(∆5+`5−2)(∆5+`5−1)

K·312

 ψ1 φ2 φ2 ψ1 O5 O6

φ
1
2
1 φ2 φ2 φ

− 1
2

1 O−
1
2
, 1
2

5 O6

 i(∆5− 3
2 )(`5+ 1

2 )(−∆125+`5+ 11
2 )(−∆2

15+`5+ 5
2 )(−∆1

25+`5+ 5
2 )

8(∆5−2)(∆6−1)(`5+1)(−∆5+`5+2)(−∆5+`5+3)

K·412

 ψ1 φ2 φ2 ψ1 O5 O6

φ
1
2
1 φ2 φ2 φ

− 1
2

1 O−
1
2
, 1
2

5 O6

 i(∆5− 3
2 )(1−∆6)(`5+ 1

2 )(−∆125+`5+ 11
2 )(−∆2

15+`5+ 5
2 )(−∆1

25+`5+ 5
2 )
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Figure A.3: Diagrammatic form of the 6j symbol
(

Ψ
(̃s)cd

Õ5
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as a tetrahedron.
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A.4 Symmetries of 6j Symbols

By representing the 6j symbol as a tetrahedron as in figure A.3, we can reveal its symmetries,

as was done in [133]. Explicitly, we can consider the three transformations as the generators

of the symmetry group:

S1 Rotation around the axis that passes through the vertex a and the center of the triangle

∆bcd, generated by the permutation (15̃4̃)(1̃54)(236)(2̃3̃6̃)(bcd):





O1O2O6

O3O4O5





cdab

= (−1)2`O6





Õ5O3O2

O6Õ1O4





dbac

. (A.4.1a)
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S2 Rotation around the axis that passes through the vertex c and the center of the triangle

∆abd, generated by the permutation (125)(1̃2̃5̃)(3̃46)(34̃6̃)(bad):





O1O2O6

O3O4O5





cdab

= (−1)2`O1





O2O5Õ3

Õ4O6O1





cbda

. (A.4.1b)

S3 Reflection with respect to the plane that passes through the points c, d, and the mid-

point of the line segment ab, generated by the permutation (12)(1̃2̃)(34)(3̃4̃)(66̃)(ba):





O1O2O6

O3O4O5





cdab

= (−1)2`O6





O2O1Õ6

O4O3O5





cdba

. (A.4.1c)

The overall phases in the front follow from the fermionic nature of the correlators and can

be checked explicitly.

The validity of eqn. (A.4.1) depends on the choice of three point basis. For example, the

first two equalities require us to work in a basis which respects the cyclic permutations; i.e.,

we should have 〈O1O2O3〉a = 〈O2O3O1〉a = 〈O2O3O1〉a. Generically, we can always find a

basis which respects this property.

The equality eqn. (A.4.1c) on the other hand requires the basis to respect inversions,

i.e. we should have 〈O1O2O3〉a = 〈O2O1O3〉a. We can always choose a basis to respect this

unless we have `O1 = `O2 . In that case, we can no longer choose two independent bases

〈O1O2O3〉a and 〈O2O1O3〉a to satisfy the required equality; we need the same basis to

satisfy this condition. However, if we work in a parity definite basis, all nonzero 6j symbols

will have an even number of parity odd three-point structures, therefore the equality holds.

Assuming we are in such a basis, we can use following relations to derive all permutations:

S13 = S23 = S32 = E with (S2 ∗ S1)2 = (S3 ∗ S1)4 = (S3 ∗ S2)2 = E (A.4.2)

where E is the identity transformation.

In summary, we can derive eqn. (A.4.1) and similar identities by considering the inver-

sions and rotations of the tetrahedron and are valid in a parity definite basis with a cyclic
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property. These conditions are trivially satisfied for external scalars as there is only one

three-point structure.

An interesting set of transformations is the one that does not move the edges 5, 6. There

are only three such permutations:

(12)(1̃2̃)(34)(3̃4̃)(66̃)(ab),

(55̃)(23)(2̃3̃)(14)(1̃4̃)(cd),

(13)(1̃3̃)(24)(2̃4̃)(55̃)(66̃)(ab)(cd),

(A.4.3)

which yields





O1O2O6

O3O4O5





cdab

= (−1)2`O6





O2O1Õ6

O4O3O5





cdba

= (−1)2`O5





O4O3O6

O2O1Õ5





dcab

= (−1)2`O5
+2`O6





O3O4Õ6

O1O2Õ5





dcba

. (A.4.4)

But we also know how to relate





O1O2O6

O3O4Õ5





to





O1O2O6

O3O4O5




, and likewise for O6, due to

shadow symmetry of the partial waves.

We may also be interested in interchanging O5,6 in the 6j symbol, and this can be

achieved with the transformation T = (11̃)(24̃)(33̃)(56)(ad)(bc):





O1O2O6

O3O4O5





cdab

= (−1)2(`O5
+`O6)





Õ1Õ4O5

Õ3Õ2O6





badc

. (A.4.5)

Likewise, with the transformation T = (13̃)(22̃)(44̃)(56̃)(ac)(bd), we get





O1O2O6

O3O4O5





cdab

=





Õ3Õ2Õ5

Õ1Õ4Õ6





abcd

. (A.4.6)
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