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Abstract

Interdisciplinary Machine Learning Methods for Particle Physics:

The Search for the Higgs Boson Produced in Association with a Leptonically-Decaying
Vector Boson and Decaying to a Tau Pair, Hadronic Tau Identification in the ATLAS

High-Level Trigger, and Predictions of Many-Body System Dynamics

Mariel Pettee

2021

Following the discovery of a Higgs boson-like particle in the summer of 2012 at the

Large Hadron Collider (LHC) at CERN, the high-energy particle physics community has

prioritized its thorough study. As part of a comprehensive plan to investigate the many

combinations of production and decay of the Standard Model Higgs boson, this thesis

describes a continued search for this particle produced in association with a leptonically-

decaying vector boson (i.e. a W or Z boson) and decaying into a pair of tau leptons.

In Run 1 at the LHC, ATLAS researchers were able to set an upper constraint on the

signal strength of this process at µ = σ/σSM < 5.6 with 95% confidence using 20.3 fb−1 of

collision data collected at a center-of-mass energy of
√
s = 8 TeV. My thesis work, which

builds upon and extends the Run 1 analysis structure, takes advantage of an increased

center-of-mass energy in Run 2 of the LHC of
√
s = 13 TeV as well as 139 fb−1 of data,

approximately seven times the amount used for the Run 1 analysis. While the higher center-

of-mass energy in Run 2 yields a higher expected cross-section for this process, the analysis

faces the additional challenges of two newly-considered final states, a higher number of si-

multaneous interactions per event, and a novel neural network-based background estimation

technique. I also describe advanced machine learning techniques I have developed to sup-

port tau identification in the ATLAS High-Level Trigger as well as predicting and analyzing

the dynamics of many-body systems such as 3D motion capture data of choreography.
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1 Theoretical Motivation

Leucippus and Democritus had the right idea, at least. Circa 400 BCE, this pair estab-

lished the notion of atomism, from the Greek atomos, meaning “indivisible”, in an attempt

to define the core elements of physical reality [1]. Atomism asserted that the universe

fundamentally consists of indestructible particles swirling and colliding to form temporary

structures in an otherwise empty void.

In the millenia since, the particle physics community has learned that the vacuum of

space is hardly empty (instead, it’s more of a carbonated beverage bubbling with pairs of

particles that pop in and out of existence) and that many of these particles are actually

quite short-lived. The notion that the universe is a grand assemblage of particles with no

constituent parts, however, persists through today in the widely-accepted scientific theory

known as the Standard Model. Established in the latter decades of the twentieth century,

the Standard Model provides a theoretical description of how the universe operates at its

most basic level: what is the all the stuff in the universe made of, and what determines

how this stuff behaves? Particle physicists are therefore concerned with understanding the

fundamental pieces of matter (particles) and their many kinds of interactions (forces).

The Standard Model is often considered a triumph within the history of physics and

perhaps of human intellectual accomplishment in general. As a theory, it is remarkably

powerful – with just a few notable exceptions, experimental results across the board align

beautifully with its predictions, and it includes the most precise agreement between theory

and experiment in the history of science (over 10 significant digits!). Its success is the

result of the interplay of brilliant advances from both theorists and experimentalists over

many decades. In this chapter, I’ll describe the theoretical and mathematical frameworks

underpinning this theory.

1.1 The Standard Model of Particle Physics

The dozens of fundamental particles described by the Standard Model can be neatly

categorized based on something called their spin, a concept related to the weirdness of

8



angular momentum in quantum mechanics. In the classical (i.e. macroscopic) world, we can

measure different forms of angular momentum in, say, the rotation of the Earth. The angular

momentum of the Earth is composed of an orbital component from its yearly rotation around

the Sun as well as a spin component from its daily rotation, each of which is calculated

differently. In the quantum (i.e. subatomic) world, we can also measure orbital and spin

angular momenta, but the rules of quantum mechanics require these calculations to look

rather different than their classical analogues. While a classical measurement of angular

momentum could result in any number, any measurement of a particle’s quantum orbital

angular momentum will result in a restricted set of quantized values ~
√
l(l + 1), where

l = (0, 1, 2, 3, · · · ) and ~, Planck’s constant, is ≈ 1.05× 10−34 m2·kg
s . Even more intriguingly,

every measurement of a given particle’s quantum spin angular momentum will always be

exactly the same: ~
√
s(s+ 1), where s could be an integer or half-integer. Since s (the

spin quantum number, or just “spin”) is fixed for every fundamental particle, it’s a very

useful fundamental property for organizing our picture of the Standard Model’s description

of matter and forces.

Each of the fundamental particles of the Standard Model are shown in Figure 1, along

with lines describing which particles interact with each other.

1.1.1 Fermions: s = ±1
2

Fermions are the core elements of all known observable matter in our universe. In fact,

nearly all matter that we interact with on a daily basis is made up of just three fermions:

the electron, the up quark, and the down quark. While fermions are defined as particles

with half-integer spin values, in practice, every known fundamental fermion has spin = ±1
2 .

The fermions, as illustrated in Table 1, can be further subdivided into quarks, which

interact with the strong force, and leptons, which do not. All of the fermions interact

via the weak force, however. Each quark and three of the leptons, the electron (e), muon

(µ), and tau (τ), also carry an electric charge. The remaining neutral leptons, neutrinos,

interact via the weak force, but not the strong or electromagnetic forces. Each fermion has

a corresponding antiparticle with the same mass but opposite essential properties such as

charge, lepton number, and chirality. Interestingly, both leptons and quarks have six known

9



Fig. 1: The fundamental particles of the Standard Model are shown as black circles, while the
connections between them indicate how they interact. The photon only interacts with charged
particles: the charged leptons and the W boson. The weak bosons, W and Z, interact with all
leptons and quarks. Gluons, however, only couple with quarks. Lastly, the Higgs boson couples
with every particle that has a mass except neutrinos – the charged leptons, quarks, and weak
bosons. (Public domain image from Wikimedia Commons).
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fundamental particles that may be conveniently arranged into pairs known as Generations

I, II, and III, in order of increasing mass.

Particle Symbol Generation Electric Charge [e] Mass
Electron e I −1 0.511 MeV

Electron Neutrino νe I 0 < 2 eV
Muon µ II −1 106 MeV

Muon Neutrino νµ II 0 < 0.19 MeV
Tau τ III −1 1.78 GeV

Tau Neutrino ντ III 0 < 18.2 MeV
Up Quark u I 2/3 2.2 MeV

Down Quark d I −1/3 4.7 MeV
Charm Quark c II 2/3 1.28 GeV
Strange Quark s II −1/3 95 MeV

Top Quark t III 2/3 173 GeV
Bottom Quark b III −1/3 4.18 GeV

Table 1: Properties of the Standard Model fermions (antiparticles omitted), all with spin 1/2.
Masses are approximate and up-to-date with 2018 Particle Data Group listings [2].

Particle Symbol Spin Electric Charge [e] Mass
Photon γ 1 0 0

W Boson W± 1 ± 1 80.4 GeV
Z Boson Z0 1 0 91.2 GeV
Gluon g 1 0 0

Higgs Boson H 0 0 125 GeV

Table 2: Properties of the Standard Model bosons. Masses are approximate and up-to-date with
2018 Particle Data Group listings [2].

1.1.2 Vector Bosons: s = ±1

Vector bosons are the conduits of the three fundamental forces treated in the Standard

Model: electromagnetism, the weak force, and the strong force. Like the fermions, they are

fundamental particles, but they exhibit a unique behavior as mediators of particle interac-

tions. This means that each fundamental force has one or more corresponding vector bosons

that are exchanged between two fermions during an interaction. The particles belonging to

this category (all with spin 1) are the photon (γ), which mediates electromagnetism; the W

& Z bosons (W± & Z0), which mediate the weak force; and the gluon (g), which mediates

the strong force.
11



1.1.3 Scalar Bosons: s = 0

Until 2012, the only fundamental bosons observed experimentally had spin s = ±1,

though theoretically in the Standard Model there could exist bosons with spins of any

integer. The announcement of the discovery of the Higgs boson at CERN on July 4, 2012

introduced particle physics to its first scalar boson, meaning a boson with spin s = 0.

All bosons, vector and scalar, are summarized in Table 2. While the Higgs boson isn’t

a force-carrier like the vector bosons, it is a physical excitation of the Higgs field, which

couples with several fundamental particles to give them nonzero masses. The theoretical

underpinnings of the Higgs boson are central to this thesis, so I will explore them in detail

in Section 1.4.

1.1.4 Conservation Rules

Once equipped with a given pair of particles to begin with, one can proceed to construct

all possible subsequent interactions by piecing together the various interaction vertices al-

lowed under the conservation rules of particle physics. Particle interactions observed in

nature should conserve:

• Energy and momentum: This means that massive particles will decay into less

massive particles, unless prevented by another conservation law. (A decay is a spon-

taneous conversion into other particles.)

• Electric charge: The sum of electric charges of the beginning particles must equal

the sum of the electric charges of the final-state particles.

• Color charge: All observable particles are color-neutral, where color is analogous to

electric charge for the strong force.

• Baryon number:
(# of quarks) − (# of antiquarks)

3

• Lepton number:

(# of leptons) − (# of antileptons)

12



• Charged lepton flavor: The number of leptons of a particular flavor/generation of

the charged leptons (e, µ, and τ). Neutrinos, which are electrically neutral, have been

observed in recent decades to violate lepton flavor conservation through the process

of neutrino oscillations.

1.1.5 Feynman Diagrams

Though particle physics is inherently a study of particles we often cannot see, a the-

oretical contribution from the famously unconventional physicist Richard Feynman called

Feynman diagrams provides a visual framework for understanding particle interactions.

The apparent simplicity of these diagrams belies their capacity to represent the complex

integrals and dynamics that we’ll explore in Section 1.2.

A Feynman diagram represents a particle interaction over time. I will use the convention

that time moves from left to right across the diagram, meaning that the leftmost lines

represent the particles before the interaction, and the rightmost lines represent the particles

in the final state of the interaction. Internal lines represent so-called propagators or virtual

particles – these are the mediator particles of the interaction in question, and are not

detected in either the initial or final states of the process.

Feynman devised a straightforward visual system of lines and interaction vertices to

represent particles and their interactions, as seen in Table 3. Given the guidelines just

described in Section 1.1.4, only a limited number of interaction vertices are permitted under

the constraints of the Standard Model. These vertices usually have three (or, rarely, four)

lines attached, representing particles. From this foundational set of interaction vertices,

we can construct full interactions by sticking these basic interactions together like a set of

tinker toys. The most important 3-particle allowed interaction vertices are summarized in

Figures 2 - 5.

1.1.6 Physics Beyond the Standard Model

Despite the many successful experimental predictions that have emerged from the Stan-

dard Model, it should not be mistaken as a complete theory of the fundamental physics of
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Fig. 2: Primary allowed 3-particle vertices for
Quantum Electrodynamics (QED), i.e. the elec-
tromagnetic force, where f is a charged fermion of
any flavor.
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Fig. 3: Primary allowed 3-particle vertices
for Quantum Chromodynamics (QCD), i.e.
the strong force, where q is any flavor of
quark.
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Fig. 4: Primary allowed 3-particle vertices for the electroweak (EW) force. Notably, flavor-changing
neutral currents are disallowed, meaning the Z must couple with fermions of the same flavor.
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Fig. 5: Primary allowed 3-particle vertices for the Higgs boson.
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Particle Symbol
Fermion

Anti-Fermion
γ, W , or Z

Gluon
Higgs boson

Table 3: The building blocks of Feynman diagrams are made up of lines to indicate particles. With
time reading from left to right, antiparticles may be thought of as particles moving backwards in
time (though this shouldn’t be taken literally).

the universe. There are several major observed phenomena that lack a theoretical explana-

tion by the Standard Model, including:

• Gravity: Compared with the other forces described by the Standard Model (elec-

tromagnetism, the weak force, and the strong force), the force of gravity is extremely

weak – so much so that it can typically be ignored between subatomic particles be-

cause other forces overwhelm it. We don’t yet know whether or not it behaves as the

other fundamental forces do at the quantum level.

• Dark Matter: The consensus of the astrophysics community is that the majority of

matter in the universe – about 5 times the amount of known matter – is made up of

an unknown substance called dark matter. While dark matter has not been directly

detected, its presence has been inferred through a variety of indirect calculations

relating to angular velocities of galaxies, gravitational lensing, the Cosmic Microwave

Background, and the apparent mass distributions of galaxy clusters. Several theories

of dark matter suggest that it should take the form of a fundamental particle, but

such a particle is not included in the Standard Model.

• Dark Energy: Dark energy is believed to make up the majority of the energy content

of the universe and to be responsible for the accelerating expansion of the universe.

Evidence for this accelerating expansion has been collected from analyses of Type Ia

supernovae as well as peaks in the correlation function of baryon acoustic oscillations

in the early universe.

• Matter-Antimatter Asymmetry: The Standard Model holds that matter and an-
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timatter are created in equal amounts in allowed interactions, with a small amount of

asymmetry introduced by a concept called CP violation. However, astrophysical mea-

surements tell us that the nearby universe is overwhelmingly composed of matter, with

very little antimatter. The Standard Model’s allowance of CP violation alone cannot

account for the vast matter-antimatter asymmetry seen in the observable universe.

• Neutrino Masses: The Standard Model was extended to include a mathematical

description of neutrino oscillations following their discovery. However, this extension

necessitates that neutrinos have non-zero masses. Experimental results show that the

neutrino masses are many orders of magnitude smaller than the masses of the other

Standard Model particles, but the Standard Model does not explain this discrepancy,

nor does it outline a mechanism that grants neutrinos their masses.

1.2 Quantum Field Theory (QFT)

The theoretical success of the Standard Model is rooted in Quantum Field Theory

(QFT), a framework that extends the physical laws of the subatomic world (quantum me-

chanics) to extremely high energies and fast speeds (special relativity). More specifically,

QFT becomes relevant when we are interested in measuring distances that are smaller than

the Compton wavelength of a relativistic particle
(
λC = ~

mc

)
.

To understand why quantum mechanics alone is insuffient to describe particles at dis-

tances this small, we must understand that at these length scales, it becomes impossible

to identify a specific location of a given particle. Why is this? Consider perhaps the most

famous equations representing each of the two fields entwined in QFT:

1. Special Relativity:

E = mc2 (1)

2. Quantum Mechanics: Heisenberg’s Uncertainty Principle,

∆E∆t ≥ ~
2

(2)

The first of these equations states that energy can be converted into mass, and vice-

versa, with an exchange rate of c2, the speed of light squared, for a particle at rest. The
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second equation demonstrates the fundamental limits of measuring multiple properties of

a particle at once – we can individually precisely measure the energy of a particle or a

particular length of time, but cannot measure both at once with perfect accuracy.

In a particle physics experiment for which we are interested in measuring how far a

moving particle travels to great precision, we could equivalently try to measure how long

a moving particle stays in our detector with great precision. Thus, our uncertainty in our

measurement of time, ∆t, must be very small. But this has consequences for our uncertainty

in ∆E:

∆E ≥ ~
2∆t

(3)

If ∆t ≤ λC
2c , then ∆E ≥ mc2. In other words, the uncertainty in our energy mea-

surement is wide enough to include the possibility that a particles of mass m could have

spontaneously emerged from that amount of energy. If an identical particle could emerge

at our measurement site, how could we be sure which particle we were attempting to mea-

sure in the first place? The Compton wavelength therefore marks the threshold at which

quantum mechanics and special relativity become incompatible.

To handle this problem, the framework of QFT shifts its perspective from the analysis

of single particles of fixed numbers to the analysis of fields that permeate all of space and

time, from which many particles could frequently be appearing and disappearing. In QFT,

these fields are the bedrock of the universe and particles are excited states of these fields.

1.2.1 Lagrangians in QFT

The dynamics of quantum fields are encoded in a mathematical construct called a La-

grangian density, or just Lagrangian for short. This Lagrangian is an analogue of the

Lagrangians commonly used in classical mechanics, which are defined as

L = (Kinetic Energy) - (Potential Energy). (4)

Classically, once one has determined the Lagrangian describing a desired physical sys-

tem, one can derive the equations of motion for that system by calculating the Euler-
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Lagrange equations for the coordinates qi and their time derivatives q̇i:

d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0. (5)

Extending the Lagrangian L for discrete particles to describe quantum fields that exist

throughout spacetime means redefining L as an integral over a Lagrangian density L, a

function of one’s coordinates φi and their partial derivatives over the three coordinates of

space and the one coordinate of time, all indexed by µ:

L =

∫
L(φi, ∂µφi) dxµ (6)

It is this L that we commonly refer to as the Lagrangian in QFT. Finally, we can follow

the same principle1 that led to the derivation of Equation 5 to derive the Euler-Lagrange

equation for a relativistic field φi:

∂µ

(
∂L

∂(∂µφi)

)
− ∂L

∂φi
= 0. (7)

1.2.2 Local Gauge Invariance

One additional concept that is crucial to grasping how the Standard Model operates

is symmetry. In Noether’s Theorem, the mathematician and theoretical physicist Emmy

Noether revealed a crucial connection between a Lagrangian’s symmetries and corresponding

conserved quantities: When physicists discuss symmetries, “symmetric” is synonymous with

“invariant” or even “redundant” – each of these terms reflects that the Lagrangian can be

modified in some way that will have no ultimate effect. Classically, for example, we can use

Noether’s Theorem to show that the law of conservation of energy is actually a result of

classical Lagrangians being invariant in time.

Similarly, the Standard Model is explicitly structured so that the Standard Model La-

grangian obeys a special kind of symmetry called a local gauge symmetry. A gauge
1The Principle of Least Action can be understood as the notion that objects in the universe follow the

most efficient paths that satisfy their constraints from the laws of physics. For example, a beam of light will
always follow the shortest path between two points. The action (S) is defined as the integral of a Lagrangian
over time: S =

∫ t2
t1

L dt. One can derive the path followed by a given object by calculating the path between
two states for which the action S is minimized (δS = 0).
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symmetry differs from more familiar forms of symmetry like angular invariance, time in-

variance, translation invariance, etc. because the symmetry is mathematical, not physical.

If there are multiple mathematical descriptions of relativistic quantum fields that result in

the same Lagrangian, i.e. the same physical dynamics, then that Lagrangian has an in-

herent gauge symmetry. Moreover, a local gauge symmetry implies that this mathematical

symmetry doesn’t have to be uniformly applied at every point in spacetime.

The mathematical procedure of promoting global gauge symmetries to local gauge sym-

metries reveals which particles in the Standard Model interact with each other. This is

because converting a global gauge symmetry to a local one necessitates the creation of new

dynamical gauge fields that interact with other particles. In the next section, I’ll outline

this process in a simple case for demonstration purposes, but this same method is applied

for each sector of the Standard Model to construct the overall Standard Model Lagrangian

and the dynamical gauge fields associated with it. Then, in Section 1.4, I’ll show how this

central tenet of local gauge invariance necessitates the existence of the Higgs boson.

1.2.3 Promoting a Global Symmetry to a Local Symmetry

Consider the Dirac Lagrangian representing an interaction between fermions:

L = ψ(iγµ∂µ −m)ψ, (8)

where ψ represents a fermion and ψ = ψ†γ0 is constructed such that ψψ is Lorentz-invariant.

To generate a Lagrangian for this QFT, we will additionally require that L obey a global

(for now) gauge symmetry ψ → eiθψ, for which θ is a constant – essentially a constant

phase shift for the fermionic field at every point in spacetime.

Propagating this transformation of ψ through the Lagrangian, we find:

L = ψ(iγµ∂µ −m)ψ (9)

= (e−iθψ)(iγµ∂µ −m)(eiθψ) (10)

= ψ(iγµ∂µ −m)ψ (11)
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e±iθ are each constants that can commute with each of the other terms in the Lagrangian,

and they will cancel each other out. The Lagrangian is therefore invariant under this global

gauge transformation.

To promote this global symmetry to a local one, we will now require that L obey

ψ → eiθ(x)ψ, where θ(x) is now a function of xµ, i.e. a point in spacetime. We need

not propagate this transformation of ψ through the Lagrangian, though, to know that the

Lagrangian will not be invariant under this local gauge symmetry. This is because of the

term involving the partial derivative ∂µ:

∂µ(e
iθ(x)ψ) = ∂µ(e

iθ(x))ψ + (eiθ(x))∂µψ (12)

= ieiθ(x)∂µθ(x) + (eiθ(x))∂µψ (13)

There is a new term relating to ∂µθ(x) that prevents this derivative term from achieving

local gauge invariance.

The fix to make the field ψ invariant under this local gauge symmetry is actually to

introduce a new, massless field Aµ such that under the same local gauge transformation,

Aµ → Aµ − ∂µθ(x). (14)

We have therefore constructed (by hand) a term to cancel out the problematic ∂µθ(x) term

from Equation 13. We can then formulate a quantity that is invariant, namely:

Dµ = (∂µ + iAµ). (15)

We refer to Equation 15 as the gauge covariant derivative, i.e. the derivative that

transforms just like the fermion field under local gauge invariance:

20



Dµψ → (Dµψ)
′ = (∂µ + iA′

µ)ψ
′ (16)

= (∂µ + i(Aµ − ∂µθ(x)))(e
iθ(x)ψ) (17)

= ∂µe
iθ(x)ψ + iAµe

iθ(x)ψ − i∂µθ(x)e
iθ(x)ψ (18)

= �������
ieiθ(x)∂µθ(x) + (eiθ(x))∂µψ + iAµe

iθ(x)ψ −�������
ieiθ(x)∂µθ(x)ψ (19)

= eiθ(x)(∂µ + iAµ)ψ = eiθ(x)Dµψ. (20)

The theory is now fundamentally altered – it includes a new gauge field, Aµ, that

interacts with the fermions already present in the theory. Aµ is necessarily massless because

its associated mass term would not be invariant under the same gauge transformation.

However, as a whole, the theory is now invariant under the local gauge symmetry, as desired:

L = ψ(iγµDµ −m)ψ → L′ = ψ(iγµDµ −m)ψ (21)

1.2.4 Continuous Symmetry Groups in the Standard Model

Each particle in the Standard Model obeys certain physical symmetries (translation-

invariance, rotation-invariance, and invariance under Lorentz boosts, or the set of all space-

time transformations that preserve a constant speed of light) captured by the Poincaré

group SO+(1, 3) o R(1,3) as well as three local gauge symmetries: SU(3)C, SU(2)L, and

U(1)Y. Each of these symmetries is continuous (such as a rotation in 3D space, which

can be parameterized by continuous parameters like θ and φ), as opposed to discrete (such

as a reflection across an axis of symmetry, which cannot be described by a continuous

parameter). Overall, then, the entire Standard Model Lagrangian is invariant under

SO+(1, 3)oR(1,3) × SU(3)C × SU(2)L × U(1)Y. (22)

Eugene Wigner laid the foundation for the remarkable correspondence between these

continuous symmetry groups, also called Lie groups, and the physical particles in the

universe in 1939 with a study of the Poincaré group. He found that he could classify the

known particles based on irreducible mathematical representations of the Poincaré group.
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In particular, many irreducible representations of the Poincaré group can be parameterized

by two quantities m and s, where m ≥ 0 and s ∈ Z
2 . These mathematical quantities directly

correspond with the basic physical properties of mass and spin for fundamental particles!

We will soon discover that the irreducible representations of the other groups in the SM

Lagrangian also correspond with other essential properties of the fundamental particles.2

SU(3)C refers to the local gauge invariance in Quantum Chromodynamics (QCD) related

to color charge; SU(2)L refers to the local chiral gauge invariance of weak isospin, and

U(1)Y refers to the local gauge invariance in the weak force of weak hypercharge. While

SU(3)C describes the QCD sector of the Standard Model on its own, SU(2)L × U(1)Y

combine to form the Standard Model’s Electroweak (EW) sector. Incorporating these three

local gauge symmetries into the Standard Model Lagrangian LSM introduces new, massless

gauge fields that will correlate directly with the very vector bosons described in Section

1.1.2, though the journey from these three symmetry groups to the SM vector bosons is

complicated by an additional step of Electroweak Symmetry Breaking, which I’ll discuss

in Section 1.4.1. This is because the gauge bosons introduced by applying the steps in

Section 1.2.3 are necessarily massless. The Higgs mechanism (described in Section 1.4) will

complete the picture by explaining the origins of mass for the W and Z bosons as well as

for the charged fermions they couple with.

1.3 The Standard Model Lagrangian

The Standard Model Lagrangian may be concisely written as:
2This connection between mathematics and the physical world was so striking to some eminent

physicists (such as Werner Heisenberg, Steven Weinberg, and Abdus Salam [3]) that a kind of folklore
emerged within a subsection of the particle physics community arguing that fundamental particles literally
are irreducible representations of Lie groups – or, rather, that these continuous symmetries are ontologically
more fundamental to the universe than the particles themselves. This controversial concept obviously
ventures far outside the scope of this thesis and into the territory of philosophy of physics, so I won’t dwell
on it, but will instead leave the reader with a quote by Eugene Wigner later in life, from his essay The
Unreasonable Effectiveness of Mathematics in the Natural Sciences:

“The miracle of the appropriateness of the language of mathematics for the formulation
of the laws of physics is a wonderful gift which we neither understand nor deserve. We
should be grateful for it and hope that it will remain valid in future research and that
it will extend, for better or for worse, to our pleasure, even though perhaps also to our
bafflement, to wide branches of learning.” [4]
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LSM = Lgauge fields + Lfermions + LHiggs. (23)

As the reader will recall from Equation 22, the SM Lagrangian must obey three local

gauge symmetries, and each of these symmetries corresponds with a dynamical gauge field

introduced due to the formalism demonstrated in Section 1.2.3. We’ll name these three

fields (by historical convention) Bµ for U(1)Y , Wµ for SU(2)L, and Aµ for SU(3)C . The

gauge covariant derivative applied throughout the SM Lagrangian is

Dµ = ∂µ − ig1
Y

2
Bµ − ig2W

j
µt

j − ig3A
k
µT

k. (24)

1.3.1 Lgauge fields

Lgauge fields refers to the terms associated with the three gauge fields introduced to pro-

mote each portion of this overall symmetry from a global to a local symmetry. This term,

Lgauge fields = −1

4

∑
Xµ

F j
µνF

jµν , (25)

is an expression involving the Standard Model field strength tensor:

F a
µν = ∂µX

a
ν − ∂νX

a
µ − gxf

abcXb
µX

c
ν (26)

where Xµ is one of the three gauge fields (Bµ, Wµ, or Aµ) and gx is the coupling constant

(g1, g2, or g3) associated with each gauge field Xµ. The fabc are real, nonzero, and totally

antisymmetric under permutations of any two indices for the non-Abelian groups SU(2)L

and SU(3)C , since non-Abelian groups are noncommutative, and are zero for the Abelian

group U(1)Y .

1.3.2 Lfermions

In the covariant derivative (Equation 39), tj (j = {1, 2, 3}) and T k (k = {1, · · · , 8})

refer to two bases of Hermitian matrices that obey the Lie algebra

[T a, T b] = ifabcT c. (27)
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This means that they are the generators of the gauge groups SU(2) and SU(3). In general,

a group SU(N) has dimension N2 − 1, as it is generated by traceless Hermitian matrices.

SU(2) is therefore three-dimensional and SU(3) is eight-dimensional. Each group has the

same number of generators as it has dimensions.

The group SU(2) has three generators: tj = −iσj

2 , where the σj are the three Pauli

matrices. The group SU(3) has eight generators: T k = λk
2 , where the λk are the eight

Gell-Mann matrices – the 3× 3 SU(3) analogues of the 2× 2 Pauli matrices of SU(2).

With these definitions in mind, we can, in principle, expand out all the terms of Lfermions:

Lfermions = −
∑
f

f̄γµDµf + LYukawa
3 (28)

Some of these terms will contain couplings between the fermions and Aµ, the field introduced

by the SU(3)C symmetry from QCD. C here stands for color, a metaphorical term given

to the label indexing each of the three fields in the triplet representation of each quark in

SU(3). QCD is mathematically quite similar to QED, with the exception that QCD is a

non-Abelian theory while QED is Abelian. This means that the structure constants fabc

are nonzero for QCD, leading to self-interaction terms with Aµ (i.e. the gluons), while they

are zero for QED, meaning the photon is not self-interacting. In fact, these theories are so

similar that the matrix element of quark-quark scattering needs only a constant correction

factor of 2
9 accounting for the various color options of the quarks involved to modify the

QED matrix element for quark-quark scattering.

The remaining terms not involving Aµ can be re-organized according to four different

operators – one corresponding to U(1)Y (i.e. Bµ) and three corresponding to SU(2)L: W 1
µ ,

W 2
µ , and W 3

µ . We can further group these terms by defining

W±
µ =

1√
2
(W 1

µ ∓ iW 2
µ), (29)

which, when acting on doublets of particles such as l =

νe
e

 or q =

u
d

, aligns with the

electric charge of the gauge boson. However, this arrangement has a clear flaw: it violates
3See Section 1.4.3.
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parity, i.e. mirror flips across all three spatial dimensions: ~x → −~x. This is a consequence

of the weak force being chiral – it couples differently with fermions that are left-handed

versus right-handed. “Handedness” here refers to the orientation of the projection of a

particle’s spin onto its momentum, otherwise known as helicity, which in the limit of a

massless particle moving at the speed of light is a binary notion called chirality. Chirality

is analagous to the handedness established by the right-hand rule in physics: just as only

the right-hand rule can tell us the direction of a magnetic force on a charged current in a

magnetic field, the weak force cannot couple to massless particles with right-handed chirality

nor massless antiparticles with left-handed chirality. This is empirically known as well: all

observed neutrinos have left-handed chirality, and all observed antineutrinos have right-

handed chirality. Mathematically, introducing handedness into the SU(2) gauge symmetry

means including the helicity projection operators PL,R = 1
2(1∓γ

5), where γ5 = iγ0γ1γ2γ3 is

a combination of the four Dirac matrices. Unfortunately, introducing γ5 into the Lagrangian

yields terms such as ψγ5γµ∂µψ that violate parity invariance.

The Standard Model explains this chiral behavior of the weak force by asserting that

only left-handed fermions transform under SU(2)L, while right-handed fermions are sin-

glets of SU(2)L, meaning they don’t transform under this group. However, right-handed

fermions should still couple with the photon and the Z boson. To address this, the remain-

ing two operators not used to construct Wµ± – Bµ and W 3
µ – are proposed to mix together,

parameterized by the Weinberg angle or “weak mixing angle” θW , to create the physical

eigenstates corresponding to the photon and Z boson, i.e. Aµ and Zµ:

Aµ

Zµ

 =

 cos θW sin θW

−sin θW cos θW


Bµ

W 3
µ

 (30)

This methodology of uniting the electromagnetic and weak forces into the electroweak

force turns out to explain the behavior of the fermions with great precision, down to the

quantization of their electric charges and the relationships between them. However, by

using different representations of SU(2)× U(1) for left-handed and right-handed fermions,

we eliminate the possibility of including mass terms for fermions. This is on top of the local,

chiral gauge symmetry already forbidding masses for both the fermions and the gauge bosons
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associated with the symmetry itself. The seamless reintroduction of these masses comes due

to electroweak symmetry breaking, addressed in Section 1.4.1.

1.3.3 LHiggs

The SM Higgs model contains a doublet of complex scalar fields

φ =

φ+
φ0

 =
1√
2

φ1 + iφ2

φ3 + iφ4

 (31)

for which

LHiggs =
1

2
(∂µφ)

†(∂µφ)− V(φ), (32)

where V (φ) is the Higgs potential:

V(φ) = µ2(φ†φ) + λ(φ†φ)2. (33)

φ is a doublet because it was designed as a member of the electroweak sector of the SM

and therefore should transform under the SU(2)L × U(1)Y local gauge symmetry. Thus,

we represent it as a doublet of weak isospin with the top element (the charged field φ+)

of weak isospin 1
2 and the bottom element (the neutral field φ0) of weak isospin −1

2 . Both

fields are necessary because the Higgs mechanism has to explain the mass of the neutral Z0

boson as well as the charged W± bosons, and as we’ll see in Section 1.4.1, the four degrees

of freedom introduced by using two complex fields (φ1, φ2, φ3, and φ4) are necessary to the

process of electroweak symmetry breaking that will eventually yield four massive bosons

(W+, W−, Z0, and H0).

It’s worth noting that Equation 33 is written in terms of µ2 and λ in order to suggest

something like a mass term (where the coefficient of φ†φ is taken to be −m2

2 ) and a self-

interaction term (where the coefficient of (φ†φ) is related to the self-coupling strength).

However, we can only properly interpret µ2(φ†φ) as a mass term if it has the correct sign

– that is, if µ2 < 0. Keep this in mind as we explore the Higgs potential in more depth in

the next section.
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1.4 The Higgs Boson

As the most recently-discovered fundamental particle, the Higgs boson is the subject of

many current particle physics studies probing every aspect of its behavior. Its discovery

was announced on July 4th, 2012, at CERN (my third day of work at the experiment!) to

great fanfare.

According to the Standard Model, we expect to be able to create a Higgs boson in a few

different ways, each with different likelihoods. Furthermore, the Higgs boson is a short-lived

particle, and as soon as it forms, it is expected to quickly decay in one of several different

ways, each with different likelihoods. The Standard Model gives clear predictions for the

likelihoods of each of these Higgs boson production and decay mechanisms. While the

distribution of Higgs boson decays is independent of how each Higgs boson is produced, the

frequency of each production mode within a particle accelerator may be calculated based

on the energies and types of particles collided.

Before explaining how Higgs bosons are made at the LHC, however, it’s important to

tackle one further concept: the theoretical prediction that led to the Higgs boson discovery

and explains how the massive gauge bosons and fermions in the SM acquired a mass without

breaking their respective symmetries: electroweak symmetry breaking.

1.4.1 Electroweak Symmetry Breaking

Returning to Equation 33 describing the Higgs potential energy as a function of µ2 and

λ, we will investigate the properties of this potential by looking for a stable ground state

(i.e. a minimum point of the potential) and looking at small perturbations around that

minimum. However, it’s evident that the potential itself will look different depending on

the values of µ2 and λ in its definition. There are two relevant configurations (illustrated

in Figure 6) to consider based on the values of these two parameters:

1. µ2 > 0, λ > 0: A stable equilibrium at φ = 0.

2. µ2 < 0, λ > 0: A multiply-degenerate stable equilibrium at |φ| =
√

−µ2

2λ ≡ v√
2
.

These situations mark two different configurations of the Higgs field over time: (1) in

the first < 10−12 seconds of the early universe, when the temperature of space exceeded the
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Fig. 6: On the left, the Higgs potential (Equation 33) for a complex scalar field φ when
µ2 > 0 and the SU(2) symmetry is preserved. There is one stable equilibrium location
at |φ| = 0. This is the configuration of the Higgs field for a tiny fraction of a second
following the Big Bang. On the right, the Higgs potential when µ2 < 0, i.e. when the
SU(2) symmetry is spontaneously broken in the ground state. There are infinitely many
stable equilibrium locations along the circle |φ| = v√

2
in the complex φ plane. This is the

configuration of the Higgs field for the remainder of our universe’s history.
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critical temperature TC ≈ 160 GeV4, and (2) the remainder of the history of our universe,

when the universe’s temperature cooled below this point. Similarly to how water vapor

smoothly condenses into a liquid below a certain temperature, the Higgs field also went

through a transition around this point that affected the configuration of its potential. It is

at this point in time (T ≤ TC) that the process of electroweak symmetry breaking occurred

and resulted in the massive bosons and charged fermions in the SM.

Recall from Equation 31 that the Higgs field φ transforms as a doublet of SU(2), i.e.

φ =

φ+
φ0

 =

φ0 + iφ1

φ2 + iφ3

 , (34)

where φ+ is electrically charged and φ0 is electrically neutral. Without loss of generality,

we can choose to focus on one of the infinitely-many options for the ground state of this

potential along the circle |φ| = v√
2

to be φ0 = φ1 = φ3 = 0 and φ2 = v√
2

(a convention

called the unitary gauge):

〈φ〉 =

 0

v√
2

 . (35)

This is a good choice of ground state because it sets φ to be nonzero only in its φ0, i.e.

electrically neutral, component, which is consistent with experimental measurements that

the vacuum of space is electrically neutral.

The act of choosing one of these degenerate ground states for the potential is, in fact,

the breaking of the symmetry of the Higgs potential. Just as a pencil stood vertically on

its tip will temporarily exhibit a rotational symmetry before tipping over, breaking that

symmetry, the necessity of choosing a single ground state out of the infinite degenerate

ground states breaks the symmetry of the Higgs potential.
4Otherwise known as around 1015 degrees Fahrenheit, or about a trillion times the temperature of the

surface of our sun.
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1.4.2 The Higgs Mechanism

The Higgs mechanism5 refers to the process sparked by spontaneously breaking the

symmetry of the Higgs potential that results in massive W± and Z0 bosons.

Now that we have chosen a minimum point and broken a symmetry, we can introduce

small fluctuations about the equilibrium by adding a scalar field h(x) that corresponds to

excitations of the Higgs field, i.e the Higgs boson itself. The Higgs field can now be written

as

φ =

φ+
φ0

 =

 0

1√
2
(v + h(x))

 . (36)

Plugging this expressing for φ back into Equation 33, we will find that a mass term has

emerged for the new field h(x):

V (φ) =
1

2
µ2h(x)2 + · · · , (37)

suggesting that the mass of this field (i.e. the mass of the Higgs boson particle, the excitation

of the Higgs field) is

mh =
√
−µ2 =

√
2λv2. (38)

We can also use our new expression for φ with the gauge covariant derivative corre-

sponding to the electroweak sector:

Dµ = ∂µ − ig1
Y

2
Bµ − ig2W

j
µt

j , (39)

and look just at the mass terms emerging from the quantity |Dµφ|2, noting that since the

Higgs doublet in Equation 31 has “down-type” weak isospin −1
2 and no electric charge,

Y = 2(Q − IW ) = 1. We will find that these gauge boson mass terms can be concisely

written as
5You can thank me for not referring to this concept the way Peter Higgs himself sometimes does to

acknowledge the other physicists who contributed to its formulation: “the ABEGHHK’tH mechanism,” for
Anderson, Brout, Englert, Guralnik, Hagen, Higgs, Kibble, and ’t Hooft.
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v2

8

(
W 1 W 2 W 3 B0

)∗



g22

g22

g22 −g1g2

−g1g2 g21





W 1

W 2

W 3

B0


. (40)

Since the W 1 and W 2 fields can be combined to form the W± bosons (Equation 29),

we can conclude that

mW =
1

2
g2v. (41)

However, the mass terms for W 3 and B0 are mixed via the matrix

v2

8

 g22 −g1g2

−g1g2 g21

 . (42)

To see how these masses will translate to the physical Zµ and Aµ fields corresponding to

the Z0 boson and photon (γ0), we can rewrite these fields in terms of the Weinberg mixing

angle from Equation 30:

Aµ = Bµ cos θW +W 3
µ sin θW (43)

Zµ =W 3
µ cos θW −Bµ sin θW , (44)

and choose a new basis that diagonalizes the matrix from Equation 42 such that we can

identify terms that look like

1

2

(
Aµ Zµ

)m2
A 0

0 m2
Z


Aµ

Zµ

 . (45)

This matrix in diagonalized form is:

v2

8

0 0

0 g21 + g22

 , (46)

from which we can directly read off the masses of the Aµ and Zµ:
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mA = 0 and mZ =
v

2

√
g21 + g22. (47)

Amazingly, the Higgs mechanism has broken the electroweak symmetry and resulted in

three massive bosons (W+, W−, and Z0) and one massless boson (Aµ, i.e. the photon).

How can we understand this result in the context of the process shown in Section 1.2.3 that

outlined clear instructions for achieving local gauge invariance only with the introduction of

a massless gauge field? The Lagrangian itself remains unchanged by the Higgs mechanism,

i.e. we are still talking about the same physical system. However, we have rewritten the

field φ in terms of fluctuations around a minimum ground state and chosen an explicit form

for it in a convenient gauge. We should remember, too, that gauge symmetries are not

physical symmetries of spacetime, but rather redundancies in the mathematical description

of a system. Fixing a gauge by choosing a particular ground state doesn’t have physical

repercussions, but it does allow us to learn about the mass and interaction terms for the

Higgs field. Physicists sometimes explain the appearance of masses for the three new gauge

field as well as the scalar Higgs field as these fields “eating” the massless Goldstone bosons

that would have emerged in our calculations had we not broken the symmetry by choosing

a particular ground state.

Note that the massive gauge boson masses are related: mW /mZ = cos θW . The verifi-

cation of this relationship between the W± and Z masses and the cosine of the Weinberg

angle was one of the important steps of validating the Higgs mechanism that led particle

physicists to eagerly seek out the detection of the Higgs boson. Based on measurements

of mW and g2, we can also approximate the value of v as 246 GeV/c2. Physicists refer to

v as the electroweak scale. Once the values for v and the Higgs boson mass mh ≈ 125

GeV/c2 were determined, the value of the Higgs self-coupling constant λ was also fixed to

be ≈ 0.13.

In addition to the gauge boson mass terms (v2V V , where V = {W±, Z0}), the new

electroweak Lagrangian will also contain terms proportional to hV V and hhV V , corre-

sponding to the triple and quadruple vertexes between two V bosons and one or two Higgs

bosons h. The coefficients of these terms can be used to calculate the expected coupling
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strength between the Higgs bosons and the V bosons. In each case, the coupling strength

is proportional to the mass of the V boson.

1.4.3 Fermion masses

Just as mass terms for the gauge bosons are explicitly forbidden under the electroweak

SU(2)L×U(1)Y symmetry, fermion mass terms are also forbidden under the same symmetry.

Introducing the doublet of complex scalars φ =

φ+
φ0

 from Equation 31 also allows us to

rewrite the Lagrangian with new terms corresponding to fermion mass terms (LYukawa) that

do obey the SU(2)L × U(1)Y symmetry. For example, the mass term for the tau lepton

would take the form:

Lτ = −gτ

(ντ τ̄

)
L

φ+
φ0

 τR + τ̄R

(
φ− φ0∗

)ντ
τ


L

 (48)

By choosing the same gauge as before for φ that only keeps φ0 nonzero, the mass terms

for the neutrinos disappear, leaving only mass terms for the charged leptons. When acting

on doublets of quarks, however, this choice would also remove mass terms for the up-type

quarks (u, c, t), which is problematic. We can fix this by conjuring another Higgs doublet

φc =

−φ0∗

φ−

 , (49)

called its conjugate, that transforms just as φ does. Writing φ in this way results in addi-

tional mass terms for the up-type quarks.

The Yukawa coupling parameters gf in the fermion mass terms are free parameters in

the Standard Model, meaning the theory has no preference for their values – they must be

experimentally measured. However, they all follow the pattern

gf =
√
2
mf

v
, (50)

meaning they scale with the masses of the fermions in question. These Yukawa couplings

vary from ge ≈ 3× 10−6 (smallest) to gt ≈ 0.995 (largest).
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Fig. 7: Higgs boson production mechanisms. [5] Fig. 8: Higgs boson branching ratios. [5]

1.4.4 Production Mechanisms

Higgs boson events at the LHC, which primarily collides two protons at center-of-mass

energies of around
√
s = 13 TeV, will mostly feature four main Higgs boson production

processes, each described in Table 4. 88% of Higgs bosons produced at the LHC at
√
s = 13

TeV come from gluon-gluon fusion via a quark loop (Figure 7-a). Given that the Higgs

boson couples most strongly to the heaviest quarks, this loop typically involves top or

bottom quarks. The remaining 12% of Higgs bosons are primarily generated from vector

boson fusion (Figure 7-b), associated production with a vector boson, i.e. a W or Z boson

(Figure 7-c), and associated production with a pair of top quarks (Figure 7-d).

Production Mode Symbol % of Total Higgs Boson Production
Gluon-Gluon Fusion ggF 88.2%
Vector Boson Fusion V BF 6.86%

Associated Production with a Vector Boson V H 4.08%
Associated Production with 2 Top Quarks ttH 0.91%

Table 4: Predicted frequencies of Higgs boson production mechanisms at the Large Hadron Collider
in proton-proton collisions at

√
s = 13 TeV. Percentages reflect the ratio of expected cross-section

to total Higgs boson cross-section according to the 2018 PDG review [5].

1.4.5 Decay Mechanisms

The Standard Model also predicts the relative frequency of Higgs boson decays into

various collections of lighter fundamental particles as a function of the Higgs boson mass.

These decays occur nearly instantaneously with Higgs boson productions, as the lifetime
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of the Higgs boson is only about 10−23 seconds, meaning that a Higgs boson will traverse

a distance orders of magnitude smaller than the radius of a proton before it decays. The

ATLAS and CMS detectors at the LHC can only begin tracking particles a couple of cen-

timeters away from the central beam line, meaning they will only ever detect the decay

products of each Higgs boson. The majority of 125 GeV Higgs bosons are expected to decay

into a bottom-antibottom quark pair, followed by (in order of descending likelihood) two

W bosons, two gluons, and a tau-antitau pair. The branching ratios of the main decay

channels for a 125 GeV Higgs boson are shown in Figure 8 and detailed in Table 5.

Decay Mode Symbol % of Total Higgs Boson Decays
Bottom Quark Pair bb̄ 57.1%

W Boson Pair WW̄ 22.0%
Gluon Pair gg 8.53%

Tau Lepton Pair τ τ̄ 6.26%
Charm Quark Pair cc̄ 2.88%

Z Boson Pair ZZ 2.73%
Photon Pair γγ 0.23%

Other − 0.27%

Table 5: Decay channels for a 125 GeV Higgs boson [6]
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2 The ATLAS Experiment at CERN

Physicists love a good acronym, and sometimes go to great lengths to compress their

experiment names into impressive abbreviations. This thesis represents an analysis of data

collected at one of the best examples of this phenomemon: the ATLAS Experiment at

CERN, where ATLAS stands for “A Toroidal LHC ApparatuS.”

Two more acronyms are relevant to undertanding the context for the ATLAS Experi-

ment: CERN, or Conseil Européen pour la Recherche Nucléaire (more commonly referred

to in English as the European Organization for Nuclear Research), and the LHC, or Large

Hadron Collider.

2.1 CERN

CERN refers to the organization and physical site of the largest particle physics lab-

oratory in the world, located just outside of Geneva, Switzerland (see Figure 9). CERN

is a massive international research organization comprising nearly 18,000 employees repre-

senting dozens of countries. Founded in 1954, CERN was established in the wake of World

War II as an explicit endeavor to promote peace through international collaboration and

scientific discovery for the public good. In fact, its charter proclaims:

“The Organization shall provide for collaboration among European States in
nuclear research of a pure scientific and fundamental character, and in research
essentially related thereto. The Organization shall have no concern with work
for military requirements and the results of its experimental and theoretical
work shall be published or otherwise made generally available.” [7]

Over its nearly 70-year history, CERN has been the site of several particle accelerators

of increasing size and power, beginning in 1957 with the 600 MeV Synchrocylotron [8]. Most

activities at CERN currently involve the Large Hadron Collider (LHC), described in the

next section. CERN is also notable as the birthplace of the World Wide Web, which was

invented by Tim Berners-Lee in 1989 in order to facilitate sharing information with other

physicists around the world collaborating on experiments at CERN [9].
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Fig. 9: The campus of CERN, the largest particle physics laboratory in the world, is
located outside of Geneva, Switzerland. Here, we can see the city of Geneva in the distance,
bordering Lake Geneva, under a canopy of the Alps, including Mont Blanc. Outlined in
yellow is the circumference of the Large Hadron Collider (LHC), a circular tunnel that lies
underground. Labels along the circumference of the LHC indicate the locations of the major
experiments that study the LHC’s collisions. [10]

2.2 The Large Hadron Collider

Historically, experimental particle physics has made many of its largest scientific strides

with the aid of particle colliders. Of course, fundamental particles are all around us, but

the particles we interact with on an everyday basis are only a fraction of the particles

predicted by the Standard Model. Experimental particle physicists are often interested

in studying particles that we rarely see on Earth. Even if we were able to produce these

rare particles easily, their quantum mechanical natures would require us to make frequent

measurements to collect sufficient data on their many possible interactions. However, pro-

ducing these rarer particles with any regularity is not easy, particularly given that the LHC

37



uses protons, which are not fundamental particles at all (see Section 2.2.2). Additionally,

since the Standard Model makes statistical predictions, statistically-significant numbers of

observations are needed for compelling experimental results. These goals have led the field

to construct elaborate machinery in order to repeatedly produce and measure high-energy

particle collisions in order to observe rare particle processes in a controlled manner.

High-energy collisions are a worthwhile target because, in general, the higher the en-

ergy of the particle collision, the more massive the particles that may be produced in the

aftermath of that collision. As the reader might recall from the discussion of the Standard

Model particles in Section 1.1, some of our most familiar particles (electrons, up quarks,

and down quarks, say) are also among the least massive particles. More massive particles

are often rarer and therefore more difficult to produce and study. Higher energies also

correlate with extremely short length scales. Recalling our discussion about the necessity

of QFT to study quantum mechanical behaviours at high energies (Section 1.2), we found

that measuring small distances (such as lengths smaller than the Compton wavelength of a

particle, λC = ~
mc) requires larger and larger amounts of energy. One can therefore think

of a particle collider as a kind of superpowered microscope: by producing large amounts of

energy, it allows us to measure properties of particles and forces at extremely small length

scales.

The Large Hadron Collider (LHC) is currently the largest particle collider on Earth.

By some estimates, it is among the largest and most sophisticated machines ever constructed

by humans. Located around 300 feet underground below the site of the CERN campus

outside of Geneva, it takes the form of a massive circular tunnel that stretches 17 miles

in circumference. It also creates the highest-energy particle collisions ever produced by

humans. Most frequently, the particle beams in the LHC are made up of protons, though

the “hadron” in its name is a more general term referring to a particle composed of three

quarks. Its circular shape is motivated by the goal of facilitating high-energy particle

collisions: just as two trains colliding head-on at full speed would produce a larger crash

than a single train hitting a wall, two particles colliding head-on from opposite directions will

make a larger burst of energy than a single particle beam hitting a static target. However,

we must remember that we’re not colliding trains – we’re colliding some of the smallest
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objects in the universe. The procedure to set up a particle collision therefore requires a

staggering amount of precision. The circular tunnel configuration of the LHC allows us to

recycle particles that did not manage to collide on previous passes around the ring. When

this occurs, the particles are guided around the circular tunnel to the next interaction point

and we re-try the collision. This maximizes the amount of experimental collision data we

can observe.

Of course, the process of producing a high-energy particle collision is anything but

simple. The design of the LHC is the result of decades of invention and reinvention of

the concept of a particle collider since the end of World War II. Particle physicists at

CERN are hardly the only beneficiaries of this technological innovation – in fact, particle

accelerators have led to breakthrough cancer treatments such as proton therapy, advanced

cargo screening for homeland security, and even more efficient ways to produce safe, durable

packaging for food products. In the next sections, however, I’ll focus on detailing the

operation of the LHC for its intended purpose: colliding particles at very high speeds.

Then, in Section 2.3, I’ll discuss the ATLAS detector that measures the outputs of these

particle collisions.

2.2.1 Definitions & Units

Measuring the properties of some of the smallest objects in the universe has led to a

unique set of measurement units. In particular, the energies of fundamental particles are

historically reported in units of electron volts (eV), i.e. the amount of energy an electron

gains when it is accelerated through an electrical potential difference of 1 Volt. One electron

volt corresponds to 1.6 × 10−19 Joules, where Joules are a unit often used to describe an

energy level comparable to that of a household light bulb. For particle physics at the LHC,

we will frequently encounter energy levels in terms of millions, billions, or trillions of electron

volts (MeV, GeV, and TeV, respectively). While these prefixes might suggest extremely high

energies, it’s important to keep in mind that these energies are still far smaller than 1 Joule,

so they are still small by most human standards.

Circular colliders like the LHC are categorized by their center-of-mass energy Ecm, also

known as
√
s. This Lorentz-invariant quantity summarizes the combined energy & momen-
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tum of the two particles colliding head-on. If two particles collide with equal and opposite

momenta, their relativistic four-vectors will look like p1 = (E1, ~p) and p2 = (E2,−~p). One

Lorentz-invariant quantity combining these two four-vectors is s:

(p1 + p2)
2 = (E1 + E2)

2 − (~p+ (−~p))2 (51)

= (E1 + E2)
2 (52)

= (Ecenter of mass)
2 ≡ s (53)

In its most recent years of operation, the LHC accelerated proton beams with energies

Ecm =
√
s = 6.5 TeV each in order to produce collisions with a combined center-of-mass

energy of up to 13 TeV.

Another key metric for understanding the power of particle colliders is instantaneous

luminosity (L). While the center-of-mass energy Ecm =
√
s contains information about

which particles that collider might be able to produce, instantaneous luminosity contains in-

formation about how frequently the collider will be able to produce the particles in question.

At the LHC, physicists refer to the collision of two particles as an event. The instantaneous

luminosity of the LHC tells us how frequently we can observe events within the collider.

Relatedly, a quantity called integrated luminosity (L) tells us how many events we po-

tentially observed over a given period of time.

The instantaneous luminosity L of the LHC scales with the frequency of collisions within

the experiment (f), but it requires a little more information than the collision frequency

alone. Rather than collide a single particle with a single other particle, which is prohibitively

difficult to consistently accomplish, at the LHC we collide tightly-packed bunches of particles

with other bunches of particles. This increases the likelihood of collisions. The instantaneous

luminosity therefore also depends on the number of particles in each bunch (n1 and n2) as

well as on the distribution of particles within each bunch. If we assume that the particles

in each bunch resemble a 2D Gaussian distribution along their axes perpendicular to the

beamline, then we can write the instantaneous luminosity as a function of f , n1, n2, and

the beam standard deviations in the x̂ and ŷ directions σx and σy:
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L = f
n1n2

4πσxσy
(54)

This quantity has units of 1
time·area . If we are interested in counting the number of events

at the LHC over a given period of time, we can use the integrated luminosity L, which has

units of inverse area, and cross section (σ), which has units of area:

Number of events = σ

∫
L(t) dt. (55)

The cross section is of crucial importance for particle physicists, as it is our metric for

understanding the likelihood of certain particle processes occurring. A very rare process will

have a small cross section, while a common process will have a large cross section. Clearly,

then, in order to observe a very rare process at the LHC multiple times, it is essential for

the beam design to result in a large enough L (or at least a long enough time frame t) that

can counteract the smallness of the σ in question.

The convention of using a cross section to describe the likelihood of events is a historical

one, and in the context of particle beams colliding, it is somewhat unintuitive at first. It

originated from earlier particle collider designs that used a single beam of particles colliding

with a fixed target material. In a fixed-target experiment, one can think of particle processes

as different-sized targets: it’s easy for a particle to hit a large target, but difficult to hit a

tiny target. Cross-sections, with units of surface area, are therefore a useful way of thinking

about relative likelihoods of particle processes. This picture is more complicated in collider

experiments like the LHC, where each bunch of protons is simultaneously the particle beam

and the (moving) target material, but we still use the same convention.

An additional historical quirk of particle collider notation is the unit of area used to

report cross sections and luminosities: the barn6. One barn is 10−28 m2, comparable to

the size of a uranium nucleus. In the context of luminosities, which are measured in units

of inverse area, the relevant unit becomes inverse barns, usually with various size prefixes
6As with other weird terminology in particle physics, this unit was coined humorously. In this case, it

originated from physicists working on the Manhattan Project in 1942 who needed to invent a secret word
to conceal the nature of their calculations. Apparently, one of the physicists had a rural upbringing, and he
suggested that for an atomic nucleus, a target of this size would be as big as a barn. [11]
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in scientific notation. The most common luminosity units seen at the LHC are “inverse

picobarns” and “inverse femtobarns” to refer to 10−40 m2 and 10−43 m2, respectively.

2.2.2 Proton PDFs

The protons circulating in the LHC are, crucially, not fundamental particles. This

means that a proton has constituent parts, i.e. quarks and gluons, that are collectively

called partons. Each proton’s quantum numbers are defined by its three valence quarks,

two up quarks and one down quark, with gluons mediating their interactions. These gluon

exchanges have significant effects on the dynamic interactions within the proton, and must

be accounted for to effectively understand the resulting particle collisions following the

intersection of two proton beams. Physicists therefore use parton distribution functions,

or PDFs, to aggregate information about the likely proton dynamics as a function of x ∈

[0, 1], where x represents the fraction of the proton’s longitudinal momentum carried by

each parton, and Lorentz-invariant energy scale Q2. These PDFs cannot be calculated a

priori with the usual methods of perturbation theory because the coupling constant defining

parton interactions, αS ≈ 1, is far too large. Particle physicists have therefore constructed

proton PDFs from experimental measurements using external particles as probes.

Example proton PDFs at different values of Q2 are shown in Figure 10. At low values

of Q2, when the proton has lower energy, more of the fraction of its overall momentum

tends to be carried by its valence quarks. The limit of x = 1 represents the fully-elastic

scenario in which a given quark carries all of the momentum of the proton, and therefore

the proton will behave as a single point-like particle. As Q2 increases, however, it becomes

more and more likely that the proton will contain a number of quark-antiquark pairs, called

sea quarks, generated by gluons. The overall fraction x of proton momentum shouldered

by a given valence quark therefore decreases, as the momentum is distributed across the

additional sea quarks and gluons.

2.2.3 Synchrotron Mechanics

The LHC’s goal is to collide protons (or, more precisely, the partons contained within

protons), but in order to get to the point of collision, it must first accelerate those protons
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Fig. 10: A global analysis of proton PDFs shows different inner dynamics of the proton at
lower energy scales (Q2 = 10 GeV2, on the left) versus higher energy scales (Q2 = 10, 000
GeV2, on the right). The valence quarks uV and dV are shown in dark blue and lime green,
while gluons are shown in red, and the remaining colors correspond to sea quarks of various
flavors. The thickness of the colored bands corresponds to 68% confidence levels. The
probability of finding primarily valence quarks within the proton increases at first with x
and peaks around x = 1

3 , indicating that each of the three quarks carries an equal fraction
of the proton’s longitudinal momentum, though the probability of any given valence quark
carrying all of a proton’s momentum is small. As Q2 increases, the proton is more likely to
have its longitudinal momentum carried significantly by gluons and sea quarks. [12]

to high speeds. In particular, the LHC is a type of particle accelerator called a synchrotron.

This name derives from the concept that the magnetic fields of the magnets within the

accelerator change simultaneously as the particles contained within on a closed-loop path

increase in speed.

The protons themselves are obtained from stores of hydrogen gas. Applying an electro-

magnetic field to the gas strips away the electrons in the gas, leaving the bare protons. These

protons are then fed into a series of linear and circular accelerators from the past decades

of CERN’s operation that gradually increase their speed: the Linac 2, the PS Booster, the

Proton Synchrotron, the Super Proton Synchrotron, and finally, the largest ring: the LHC

itself (see Figure 11).

Synchrotrons accelerate charged protons using powerful radio-frequency (RF) systems

in resonant metallic cavities that serve as acceleration points for the particles circling the
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Fig. 11: This schematic of the LHC shows the path of protons (labeled “p” in the bottom
left) as they move through a series of linear and circular accelerators before finally reaching
the LHC’s main ring, where they receive their final bursts of energy from the RF cavities
in order to reach their maximum speed. The four main LHC experiments (in yellow) show
the locations of beam crossings and therefore particle collisions.

synchrotron ring. The LHC has 16 RF cavities containing time-varying electromagnetic

fields that oscillate at 400 MHz, yielding a maximum voltage of 2 MV each. The timing

of these oscillations allows for protons passing through the time-dependent field to acceler-

ate due to an incremental transfer of energy. The RF cavities also result in the bunched

structure of the proton beam, as any protons with slightly higher or lower energies than the

target energy will arrive in the cavity at different times and will accelerate or decelerate

accordingly.

While the RF cavities accelerate the protons forward, the particles would move linearly

if not for very strong (8 Tesla, or more than 100,000 times more powerful than the Earth’s

own magnetic field) dipole magnets placed along the circumference of the ring designed to

bend the particles in a circle. The strength of these dipole magnets is essential to turning
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the proton bunches around the LHC’s circumference, as weaker magnets would necessitate a

much larger circular tunnel structure. Each dipole magnet produces two immensely strong

opposing magnetic fields nestled closely together in order to steer each of the two paths of

proton bunches in opposite directions along the LHC’s perimeter.

Fig. 12: A cross-sectional view of a dipole magnet at the LHC showing the two beam pipes
surrounded by superconducting coils and an iron yoke cooled to a temperature of around 2
Kelvin – colder than the average temperature of empty space.

These magnets operate on the principle of the Lorentz force ~F on a charged particle q

moving at velocity ~v through a magnetic field ~B and electric field ~E:

~F = q( ~E + ~v × ~B) (56)

When a nonzero magnetic field is present, the cross-product in this formula causes

a charged particle’s trajectory to bend. This same principle is also important for the

beam-focusing quadrupole magnets placed at the four main LHC particle detectors that are
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responsible for squeezing the opposite-moving beams even more closely together in order to

cross and maximize the likelihood of the proton beams intersecting.

The ability of synchrotrons to increase the energies of the charged particles within is

limited by the effect of synchrotron radiation, a kind of electromagnetic radiation emitted

by charged particles when they experience an acceleration perpendicular to their velocity

(i.e. when they curve). While synchrotron radiation is sometimes a desired effect in a

laboratory setting, at the LHC, it is an undesirable loss of energy for the protons we are

so actively trying to accelerate. However, the amount of synchrotron radiation emitted by

protons is far less than what would be emitted in the same context by electrons because

protons have significantly larger masses and therefore don’t accelerate as much as electrons

would with the same energy transfer by the RF cavities.

2.2.4 Operation

At the LHC, the frequency of collisions is f = 40 MHz, i.e. 40 million times per second,

with new bunches of protons colliding every 25 nanoseconds. This means that approximately

3,000 bunches of protons can, in theory, fit along the circumference of the LHC ring during

any given run. In practice, several of these bunches are left empty (the so-called “abort

gap”) to allow for safe beam dumps during a run. Each bunch travels at a speed very

close to the speed of light, looping over 11,000 times around the entire circumference every

second. At the start of each datataking run, there are approximately 120 billion protons

tightly compacted together within each bunch. While the energy of each proton within

each bunch is small by human standards – 6.5 TeV, or around one millionth of a Joule –

together, all the protons within all the bunches within an LHC beam combine to an energy

of around 350 million Joules, which is more comparable to the kinetic energy of an aircraft

carrier moving at 150 mph. It’s all the more remarkable, then, that that massive amount of

energy is squeezed into such a tiny area at the collision point: less than 100 µm2, or around

the width of a human hair.

This thesis examines data from the entirety of Run 2 datataking at the LHC. As shown

in the long-term LHC schedule (Figure 13), Run 2 extended from the years 2015 through

2018. The first datataking run at the LHC, Run 1, took place from 2011 - early 2013.

46



Following a long shutdown period from 2019 - 2020, Run 3 of datataking was scheduled to

commence in 2021, but this timeline was extended due to the COVID-19 pandemic, and

Run 3 is now slated to commence in March 2022 [13].

Fig. 13: The long-term schedule of LHC datataking shows Run 1 (2011-2013), Run 2
(2015-2018), and upcoming Run 3 (2022-2024, pushed back approximately 1 year due to
COVID-19 pandemic). The High-Luminosity LHC, or HL-LHC, is shown on the right in
dark blue. It is scheduled to begin in 2024 and run for approximately a decade.

Run 1 at the LHC operated at 7 and 8 TeV center-of-mass energy and produced about

30 fb−1 of integrated luminosity. Run 2 operated at a higher center-of-mass energy of 13

TeV and produced about 150 fb−1 of integrated luminosity (see Figure 14). The High-

Luminosity LHC, or HL-LHC, is planned to operate at the same energy as Run 3 (designed

for 14 TeV), but a much higher instantaneous luminosity in order to produce potentially

more than 3,000 fb−1 of integrated luminosity across its lifetime of approximately a decade,

starting in 2024.

2.3 The ATLAS Detector

At 44 meters long and 25 meters tall [15], the gargantuan ATLAS detector has been

recording collisions within the Large Hadron Collider (LHC) since late 2009 [16]. It was de-

signed as a general purpose detector, meant to seek out any and all new physics phenomena

accessible at the unprecedented energy scales of the LHC. Roughly cylindrical in shape, the

detector is aligned with the beamline of the LHC.

2.3.1 Coordinate System

The center of the ATLAS detector, i.e. the interaction point of the colliding proton

beams, is defined as the origin for the experiment’s common coordinate system. The ẑ axis
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Fig. 14: The cumulative integrated luminosity collected at the LHC over time during Run
2 shows a total amount of data delivered by the LHC to the ATLAS Experiment of 156 fb−1

(in green). The vast majority of this data is recorded by ATLAS (in yellow), but some data
is lost at this stage due to inefficiencies in the data acquisition process and the need to ramp
up the voltages of the tracking detectors and pixel system preamplifiers before recording
data. Finally, “good for physics” (in blue) denotes data where all physics objects have been
reconstructed with good data quality. [14]

runs along the beamline of the LHC and through the center of the detector. The +x̂ axis

points from the interaction point to the center of the LHC, while the +ŷ axis points up from

the interaction point to the surface of the Earth. The x̂− ŷ plane is therefore perpendicular

to the beamline.

Rather than using x̂ and ŷ to describe positions in the transverse plane, the ATLAS

experiment uses the coordinates φ and η. φ represents the azimuthal angle around the

beamline. η, a Lorentz-invariant quantity also known as pseudorapidity, is defined in terms

of the polar angle θ:
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Fig. 15: The ATLAS detector, with two human figures shown standing near the leftmost
muon chambers to convey a sense of scale.

η = −ln tan
(
θ

2

)
(57)

Radial distance from the interaction point is commonly reported in terms of ∆R:

∆R =
√

(∆φ)2 + (∆η)2 (58)

2.3.2 Inner Detector

The innermost layers of the detector surrounding the beamline constitute the mecha-

nisms for tracking charged particles emanating from the collision site. This Inner Detector

region is also placed within a magnet system that supplies a magnetic field parallel to

the beamline of approximately 2 Tesla. Closest to the beamline lies the Pixel Detector,

densely packed with roughly 80,000,000 silicon pixels to ensure high-granularity tracking

close to the event [18]. The Pixel Detector was augmented in 2014 with the Insertable B-

Layer (IBL), which further improves reconstruction of the impact parameter while providing
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Fig. 16: A cross-sectional view of one portion of the ATLAS detector, with its Inner
Detector, EM and Hadronic Calorimeters, and Muon Spectrometer. [17]

needed support to the innermost pixel tracker layers that experienced significant radiation

damage during Run 2 operations [19]. Surrounding the Pixel Detector are the Semiconduc-

tor Tracker and the Transition Radiation Tracker, which collect tracking information for

charged particles with silicon microstrips and 4mm straw tubes, respectively [20].

2.3.3 Calorimeters

Outside of the Inner Detector and its magnetic field are the calorimeters, meant to

extract the energy deposited by particles they absorb. The innermost Electromagnetic (EM)

Calorimeter uses lead to absorb particles (and thereby initiate particle showers as a particle

interacts with the lead) and liquid argon as its sampling material. A particle’s energy is

measured using the information from how its shower forms through the layers of absorbing
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Fig. 17: Above: The ATLAS Inner Detector, including the Transition Radiation Tracker
(TRT), Semiconductor Tracker (SCT), and Pixel detector. Below: A cross-sectional view
of the ATLAS Inner Detector subsystem, including the IBL closest to the beamline.
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and sampling material. The EM Calorimeter is surrounded by the Hadronic Calorimeter,

which instead uses steel plates as its absorbing material with scintillating tiles interspersed

between them to sample the shower [21]. As seen in Figure 16, the EM Calorimeter is

optimized to absorb energy from particles that can interact via the electromagnetic force

such as electrons and photons. The Hadronic Calorimeter, however, is designed to absorb

energy from hadrons, i.e. particles containing quarks, such as protons and neutrons. As the

interaction length of hadrons tends to be larger than the radiation length of electrons and

photons in dense materials7, the Hadronic Calorimeter lies outside of the EM Calorimeter.

Together, both of these calorimeters are typically able to stop most particles emanating

from the collision site other than muons and neutrinos.

Fig. 18: The ATLAS calorimeter system, including the EM (LAr) & Hadronic (Tile)
calorimeters.

7Both the nuclear interaction length and the electromagnetic radiation length give approximate length
scales for characterizing electromagnetic vs. hadronic particle showers. In particular, the nuclear interac-
tion length refers to the mean distance a hadronic particle travels between nuclear interactions, while the
electromagnetic radiation length corresponds to 7/9 of the mean free path for photon pair production or the
mean length over which an electron loses all but 1/e of its original energy.
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2.3.4 Muon Spectrometer

At the outer edges of the ATLAS detector lies the Muon Spectrometer. The muon

spectrometer system was designed to identify and measure the momenta of muons as they

exit the ATLAS calorimeters [22]. The spectrometer is embedded in a 0.5 Tesla magnetic

field, and muons are tracked within three levels of monitored drift tubes. The monitored

drift tubes, with the aid of cathode strip chambers on either end of the detector, also

measure muon pT in the bending plane. Timing information for muons passing through

the spectrometer is received from resistive plate chambers, which are used for triggering

purposes as well as measurements of muon pT in the non-bending plane. [23]

Fig. 19: The ATLAS muon spectrometer subsystem.
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2.4 Trigger & Data Acquisition at ATLAS

As we learned in Section 2.2.4, LHC particle collisions occur every 25 nanoseconds,

meaning a frequency of 40 million per second (40 MHz). From each of these crossing of

proton beams comes a number of particle collision events – an average of 33.7 interactions

per bunch crossing during Run 2 (see Figure 20).

Fig. 20: An event display of a real ATLAS event from June 2015, during the first stable LHC
beams at 13 TeV. Left: A perspective along the LHC beamline, with curved lines indicating
charged particle trajectories in the tracking detectors and the green and yellow rectangles
indicating the magnitude of energy deposits in the calorimeters. Right: The same event
from a perspective perpendicular to the beamline. This angle makes it clear that there
were several particle interactions, here visualized as different-colored lines emanating from
distinct vertices, during this single beam crossing. It is likely that several of these vertices
correspond to lower-energy collisions, also called “pileup events”, that serve as undesirable
background noise for many particle physics analyses.

The amount of data produced during an LHC run is therefore staggeringly large, and

it is neither possible nor, even from a physics standpoint, desirable to store every piece

of data from every collision. Many of the interactions per bunch crossing will yield low-

energy, “soft” collision events that won’t contain the interesting particles researchers care
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about, like taus or Higgs bosons. The ATLAS Trigger & Data Acquisition (TDAQ) system

was therefore designed to record LHC data at a more manageable rate of 1 kHz during

Run 2. The TDAQ system is tasked to decide in real time whether or not a given physics

event should be one of the fewer than 1% of total collision events recorded to disk for later

analysis.

Fig. 21: A schematic of the ATLAS Trigger & Data Acquisition system, including the
Level-1 (L1) trigger, the High Level Trigger (HLT), and the flow of data from the detector
to permanent storage in the offline Tier-0 computing facility. The Fast TracKer (FTK),
shown in this diagram, was planned for rapid track reconstruction at the L1 accept rate in
Run 2, but the project was cancelled in 2019 and it was not used by the HLT in Run 2. [24]

The ATLAS TDAQ system, detailed in Figure 21, consists of two stages: the Level-1

(L1) trigger, a hardware-based trigger, and the High-Level Trigger (HLT), a software-based

trigger.

• The hardware-based L1 trigger acts on a variety of information including event-level

quantities, object multiplicities, reduced-granularity information from the calorime-
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ters (L1Calo) and muon detectors (L1Muon), and topological (meaning kinematic or

geometric) requirements (L1Topo). This information is synthesized in the Central

Trigger Processor (CTP) to form the final L1 trigger decision for a given event. The

L1 trigger has a maximum readout rate of 100 kHz and operates with a latency of

2.5 µs. Once the L1 trigger has accepted an event, detector information is streamed

from the Front-End (FE) detector electronics to the Read-Out Drivers (RODs) for

processing and then to the Read-Out System (ROS) for buffering the data. The data

is then passed by request from the ROS to the HLT to inform the second stage of the

triggering process.

• The High-Level Trigger (HLT) is software-based, consisting of many dedicated

algorithms to identify the approximately 1,500 specific event signatures of interest

in the trigger menu. These algorithms are deployed on a computing farm of around

40,000 processors. When requested, they can also make use of information from the

full detector. The algorithms are generally designed to operate on a region of interest

(RoI) identified by the L1 trigger. After extracting certain features from the RoI, the

HLT then uses one or more custom methods to determine its overall trigger decision.

The ATLAS HLT had an average readout of approximately 1.2 kHz and an average

throughput rate of physics data to permanent offline storage of 1.2 GB/s in Run 2.

2.5 Event Simulation

ATLAS analyses depend crucially on simulations of particle physics events to inform our

expectations for which events we should see during LHC datataking runs and how those

collisions will interface with the detector. Claiming evidence of a new particle or physics

process requires a thorough understanding of the data we would expect to have collected

in the absence of this new behavior. We can then calculate how likely it is that the data

we observed could have emerged from a null hypothesis, i.e. a scenario aligned with our

current understanding of the Standard Model, versus a process unexplained by the Standard

Model. Because these simulation methods are grounded in Monte Carlo methods, meaning

repeated random sampling techniques, they are often referred to as Monte Carlo (MC)
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simulations.

The MC simulation process begins with the generation of the underlying physics inter-

action and its immediate particle decays. For events involving QCD-induced hadronization,

this process (described in Section 2.5.2) is considerably more involved. There are then steps

to simulate the interaction of that physics process with the ATLAS detector itself, followed

by a digitization step that outputs raw electronic voltages and currents in the same format

that we would see from the real readout of a physics event.

MC generators at ATLAS include generators of the matrix element only (e.g. Mad-

Graph, Powheg) as well as general-purpose generators that include parton showering

capabilities in addition to matrix element calculations. The MC simulations used for this

thesis work are primarily from the generators Powheg+Pythia8 and Sherpa [25].

2.5.1 Matrix Element Calculations

Calculating the expected rate of a particle physics interaction, at its core, springs from

Fermi’s Golden Rule:

Γfi = 2π|Tfi|2ρ(Ef ) (59)

where Γfi is the number of transitions per unit time from an initial state i to a final state f ,

|Tfi| is the transition matrix element of the superposition of an unperturbed Hamiltonian

and a perturbing interaction potential, and ρ(Ef ) is the density of states that accounts for

the kinematic likelihood of the transition. Imposing requirements for Lorentz invariance,

energy conservation, and momentum conservation modifies this core structure into a more

useful form:

Γfi =
(2π)4

2Ei

∫
|Mfi|2δ(Ei −

∑
f

Ef )δ
3(~pi −

∑
f

~pf )
∏
f

d3~pf
(2π)32Ef

(60)

This form allows us to integrate over all possible final states allowed by energy and mo-

mentum conservation given a specific initial state, but the integral itself is now Lorentz

invariant. The delta functions impose the conservation rules explicitly, the matrix element

Tfi is replaced with a Lorentz-invariant analogue Mfi, and the density of states ρ(Ef ) is
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now a product of normalized Lorentz-invariant phase spaces for each final-state particle.

The fundamental particle physics laws defining the likelihood of a given interaction are

all encoded in the matrix element Mfi, so the approximation of these matrix elements are

a primary component of our MC simulation techniques.

2.5.2 Hadronization

For many QCD processes at the LHC, a formula like Equation 60 is insufficient for

describing the full dynamics of the particle event, as it only considers the products of the

hard-scattering (high-momentum transfer, or high Q2) interaction, not the softer (lower-

momentum, or low Q2) aftereffects of QCD-initated gluon and quark radiation from the

core underlying event. Following the hard-scattering interaction, final-state partons then

undergo a period of parton showering during which they radiate cascades of partons that

typically align with the directions of the original partons. Finally, the showers begin the

process of hadronization, during which they develop into multi-parton bound states called

hadrons. It is at this point that nonperturbative QCD effects become nonnegligible. Figure

22 shows an illustration of each of these steps over time.

Just as we dealt with non-perturbative QCD effects for the proton with parton distribu-

tion functions (PDFs) in Section 2.2.2, MC generators also make use of PDFs to calculate

cross-sections of QCD processes at the LHC. To nth order in perturbation theory, the in-

clusive cross-section for pp→ X is:

σ(n) = PDF(x1, µF )⊗ PDF(x2, µF )⊗ σ̂(n)(x1, x2, µF , µR), (61)

where the two PDFs correspond to each incoming proton at factorization energy scale µF

and σ̂(n) is the hard-scattering, parton-level cross-section that depends on µF as well as the

renormalization scale µR. These energy scales are set not by an a priori calculation, and so

their values are chosen by hand. The inclusion of energy scales µF and µR is necessitated

by divergences in the matrix element calculation: introducing cutoff scales prevents the

integrals from diverging to infinity. µF accounts for the infrared (IR) divergences, while µR

accounts for the ultraviolet (UV) divergences.
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Fig. 22: An example schematic of a QCD hadronization process emerging from electron-
positron annihiliation into two quarks. From the two final state quarks, we see cascades of
partons radiating in parton showers, and then a hadronization stage, followed by the decays
of those hadrons. [26]

2.5.3 Detector Simulation and Digitization

Once generated, physics events are then run through a software called Geant4 that

propagates a record of all the stable “truth” particles in an event through a complex simu-

lation of the ATLAS detector. This simulation accounts for not only detector geometry and

its possible misalignments, but also qualities relating to how particles could interact with

the materials of the detector. Following the propagation of the event through the simulated

ATLAS detector, additional custom software elements convert the simulated event into raw

electronic outputs. This stage also includes simulations of various sources of electronic noise

from the detector. The digitized outputs, called Raw Data Objects (RDOs), can be easily

converted into bytestream form in order to match the actual ATLAS detector outputs. This

allows ATLAS physicists to run the same trigger-level algorithms on both simulated and

real data.
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2.6 Reconstruction and Identification of Analysis Objects

Up until this point, we have covered in detail the steps taken to produce two beams of

protons, accelerate them in opposite directions around the tunnel of the LHC, and intersect

their beams in order to rapidly produce high-energy particle collisions. The aftermath of

these collisions is then converted into electrical signals by the ATLAS detector, and these

signals are filtered by the TDAQ system in order to store the events for offline analysis.

However, this story omits a critical step: the reconstruction and identification of objects

that will then be fed into physics analyses. In other words, how do we convert each dazzling

spray of electronic signals into a structured list of electrons, muons, taus, and more? The

ATLAS Experiment has devised bespoke methods for the classification of detector signals

into physics objects such as electrons, photons, muons, QCD jets, and missing ET that I

will summarize in this section.

Note: As tau objects are particularly important for this analysis, I will discuss tau

reconstruction and identification at length in Chapter 4.

2.6.1 Electrons

As charged particles, electrons leave charged tracks in the ATLAS inner detector. They

also leave localized energy deposits, particularly within the EM calorimeter, corresponding

with their energies. Electron reconstruction therefore involves a careful matching of suitable

charged tracks with corresponding clusters of energy deposits in the EM calorimeter. Figure

23 shows a detailed schematic of the typical path of an electron from the beam axis, through

the inner detector, and finally to the EM calorimeter.

Electron track reconstruction begins with the formation of a track seed of three hits from

silicon tracker layers. A pattern recognition algorithm is then run in hopes of extending the

track seed to a full track of at least seven silicon hits for track candidates with pT > 400

MeV. Any distinct track candidates sharing silicon tracker hits are then passed to algorithms

designed for ambiguity resolution to unequivocally assign silicon track hits to individual

track candidates. Then, to account for the energy loss resulting from charged particles

interacting with detector materials, a track-fitting method based on a Kalman filter called

the Gaussian-sum filter (GSF) is run.
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Fig. 23: The red arrow shows an example path of an electron moving through the trackers of
the ATLAS inner detector in a curved trajectory before interacting with the EM calorimeter.
The red dashed arrow indicates the path of a photon produced as a result of the electron
interacting with the tracking material. [27]

In Run 2, a preexisting method for reconstructing calorimeter seed clusters based on a

sliding-window method over fixed-sized clusters of calorimeter cells was replaced with a dy-

namic clustering method to create variable-size clusters called superclusters. Topo-clusters,

or topologically-connected calorimeter cell clusters, form the seeds of these superclusters.

The topo-clusters first emerge by finding calorimeter cells initiating a cluster that contain

energies greater than four times the expected cell noise from electronic and pileup noise.

Neighbor cells then join these initial proto-clusters if their energies exceed twice the expected

cell noise. In general, only the energy deposits from the EM calorimeter are summed for

the electron reconstruction. To transform topo-clusters into superclusters, the EM topo-

clusters are considered in descending order in ET and tested to see if they pass a minimum

ET > 1 GeV and are matched to a track with at least four silicon tracker hits.

Given both a GSF-filtered track candidate and a candidate calorimeter supercluster, we

apply a matching procedure to require that the track and calorimeter supercluster are close

together in η and φ: |ηcluster − ηtrack| < 0.05 and −0.1 < −q× (φcluster −φtrack) < 0.05. The

overall cluster energy is calibrated to match the original energy of the incoming electron
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using multivariate techniques, and the final track parameters of the electron candidate are

taken from the best-matched track to the supercluster. As shown in Figure 24, electron

reconstruction efficiency (defined as the percent of true electrons that are reconstructed as

an electron candidate with good track quality, i.e. one pixel hit and seven silicon tracker

hits) is better than 97% above ET > 15 GeV.

Fig. 24: The reconstruction efficiency for sim-
ulated electrons from a single-electron sample is
shown as a function of true ET , or transverse en-
ergy, during each step of the electron reconstruc-
tion process. Above ET > 15 GeV, the reconstruc-
tion efficiency is higher than 97%. [27]

Fig. 25: Electron identification ef-
ficiencies measured in Z → ee
data events as a function of ET

are shown for three working points:
loose (blue), medium (red), and tight
(black). [27]

Additional electron quality criteria are applied to reconstructed electron candidates

in the form of electron identification. This is valuable for separating prompt, isolated

electrons from background processes such as photon conversions or hadronic decays from

other processes. A suite of variables including basic track and cluster parameters are fed

into a data-driven likelihood discriminant model (an adaptive kernel density estimator, or

KDE) in bins of ET and η. The performance of this electron identification scheme in Run

2 is shown as a function of ET in Figure 25.

2.6.2 Photons

Photon reconstruction follows essentially the same calorimeter-clustering techniques as

are used for electrons. As photons are electrically-neutral, they will not leave charged tracks

in the inner detector. However, between 20-65% of photons will convert to an electron-
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positon pair in the inner detector depending on their position in |η|. Therefore an uncon-

verted photon corresponds to a calorimeter supercluster with no associated ID track, while

a converted photon corresponds to a calorimeter supercluster with an associated conversion

vertex in the ID. For converted photons only, the superclustering step will incorporate new

topo-clusters that match with the same conversion vertex as the seed cluster.

Given the similarities in supercluster development for both electrons and photons, an

ambiguity resolution scheme is sometimes needed to decide whether to assign a given super-

cluster to an electron or photon object based on the presence of a quality track candidate

attached to the supercluster.

Photon identification uses a cut-based selection based on calorimeter shower shape vari-

ables. The identification efficiencies for unconverted and converted photons at the tight

working point are shown in Figure 26.

Fig. 26: Identification efficiencies versus ET for the tight working point for unconverted
(left) and converted (right) photons in |η| < 2.37. For ET < 25 GeV, events come from
Z → llγ, and for ET > 25 GeV, events come from inclusive photon production. [27]

2.6.3 Muons

Like electrons, muons will also leave charged tracks in the tracking detectors, but unlike

electrons, muons at the LHC are often produced at energies corresponding to a minimum

in their stopping power, i.e. how much energy is lost as they interact with materials in the
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detector. A muon with this trait is referred to as a minimally-ionizing particle. Muons’

calorimeter energy deposits are therefore very unlike those of electrons, photons, or hadrons.

The Muon Spectrometer (MS) subsystem was designed to augment muon reconstruction

and identification with additional tracking signatures of muon candidates beyond the inner

detector trackers.

Track reconstruction in the MS involves a global χ2 fit of the muon’s trajectory through

hits in the MS, taking into account the muon’s expected interactions with the detector

materials. The track candidate is then extended to include additional hits and is re-fit.

As with electron track reconstruction, ambiguities with tracks sharing multiple track hits

are resolved by eliminating lower-quality tracks that share many hits with another, higher-

quality track. When possible, MS tracks are matched to inner detector (ID) tracks to formed

a “combined” muon candidate. Otherwise, muon candidates can also be constructed by

extrapolating ID track candidates out to possible candidate hits in the MS. MS track can-

didates with no matching ID track candidates can be extrapolated inwards to the beamline.

Additionally, muon candidates can emerge from calorimeter tagging, in which ID tracks

are extrapolated through the calorimeters and find the energy signatures characteristic of

a minimally-ionizing particle.

Muon identification methods are then applied to reconstructed muon candidates to apply

further quality criteria when desired. This is particularly useful when distinguishing prompt

muons from non-prompt muons emerging from processes such as hadron decays. For muons

with an ID track, all muon identification working points require at least one pixel detector

hit and five silicon detector hits. Muon reconstruction and identification efficiencies across

Loose, Medium, and Tight working points measured in both data and MC are shown as a

function of pT and η in Figure 27.

2.6.4 Jets

The broad term “jets” refers to a wide class of sprays of particles initiated by the parton

showering and hadronization processes affiliated with QCD interactions. While the jet

itself is not a well-defined physics object, the identity of the original parton seeding the jet

will define many kinematic properties of the jet, and therefore jets can be associated (or
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Fig. 27: ATLAS Run 2 muon reconstruction and identification efficiencies for the Loose,
Medium, and Tight working points are calculated in both data and MC for (left) J/Ψ → µµ
events as a function of pT and (right) for Z → µµ events as a function of η. Above pT > 15
GeV, all working points exceed 90% efficiency for |η| < 2.5. For |η| > 0.1, all working points
exceed 95% efficiency for pT > 10 GeV. [28]

“tagged”) by their originating parton.

Before the jets are tagged to determine their likely originators, they must first be re-

constructed as a jet in the first place via a jet-clustering algorithm. The purpose of jet

clustering is to aggregate calorimeter topo-clusters into discrete groupings that can then

be assigned a (calibrated) energy. The default ATLAS jet-finding algorithm is the anti-kt

algorithm [29], which produces circular hard jets, using distance parameter R = 0.4 for

“small-R” jets representing quarks and gluons and R = 1.0 for “large-R” jets representing

massive particles decaying hadronically [30]. Figure 28 shows an illustration of the results

of an anti-kt clustering using R = 1.0 on a sample parton-level event.

Once a jet has been clustered, potential pileup contributions are removed via a pileup

suppression scheme. First, the jet axis is relocated to the hard-scattering vertex of interest,

and then the energy corresponding to the product of the jet area times the event-specific

energy density within |η| < 2.0 is subtracted from the jet. Next, the Jet Energy Scale (JES)

is calibrated using MC truth information to calculate the lost energy between a true jet and

a reconstructed jet.

Following a jet’s calibration is the jet tagging algorithm to identify the origin of the jet.

Dedicated algorithms exist for top-quark tagging, W boson tagging, and c-quark/b-quark
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Fig. 28: The clustering results of the anti-kt jet-finding algorithm for a parton-level event
are shown as a function of φ, y, and pT . [29]

tagging, among others ([31], [32]).

2.6.5 Missing ET

Counterintuitively, one of the crucial physics analysis objects we consider at ATLAS isn’t

an observable at all. Missing ET , sometimes referred to as MET, refers to the combined

energy in the transverse plane carried out of the ATLAS detector by particles we are unable

to detect. Proton-proton beam collisions along the ẑ axis are assumed to be head-on,

meaning they should take place with exactly zero momentum in the transverse (x̂ − ŷ)

plane. Based on energy and momentum conservation laws, we should therefore expect the

sum of all the transverse energy in the final state of the particle collision process to also be

exactly zero.
∑
Emiss

T 6= 0 in the final state suggests the presence of a particle, whether a

neutrino or perhaps a new particle from a process beyond the Standard Model, that can

escape the ATLAS detector without being detected. Neutrinos are expected to escape the

ATLAS detector as they are electrically neutral, colorless, and nearly massless, meaning that

they will leave neither significant calorimeter deposits nor tracker hits. In fact, neutrinos
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interact so rarely with regular matter that they usually pass without a trace through the

entire Earth’s diameter, so we certainly expect them to escape the ATLAS detector.

The process of reconstructing missing ET requires inputs from the whole detector from

fully-reconstructed and calibrated electrons, muons, taus, photons, and jets. There are

two contributing terms to the reconstruction: one for the pT vectors of the hard-scattering

objects and one for the pT vectors of the soft event signals, i.e. charged tracks, associated

with the vertices of hard-scattering events but not the objects themselves:

Emiss
x(y) = −

∑
i∈{hard objects}

px(y),i −
∑

j∈{soft signals}

px(y),j (62)

Given the components Emiss
x and Emiss

y , Emiss
T is constructed as:

Emiss
T =

√
(Emiss

x )2 + (Emiss
y )2. (63)

The performance of missing ET reconstruction in data and MC simulation in Run 2 is

shown by comparing data and MC as a function of missing ET in Figure 29.

Fig. 29: A distribution of missing ET for inclusive Zµµ events at
√
s = 13 TeV shows good

agreement between data and MC for all relevant samples. [33]
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3 Common Machine Learning (ML) Architectures

3.1 Introduction

Machine learning (ML) researchers try to build machines that learn. What does this

actually mean, and why is it significant? For much of the history of technology, machines

were programmed to perform specific tasks based on complicated pre-installed logic. A

machine that learns, however, is a much more subtle thing. This often means that a machine

has an internal model of the world (or, more realistically, the environment immediately

surrounding the task at hand) that it regularly and automatically updates based on feedback

from its attempts to perform a task. When this process succeeds, the machine’s internal

model can not only solve problems it has already seen, but can also generalize pretty well

on completely new data.

To achieve this, researchers commonly split a dataset into separate portions and only

use one portion for training, or fitting, a model to that data. The model is then run on

another portion of the data, called validation or testing data, to test how well it performs

on data it has not previously encountered. ML training regimens are structured around the

delicate balance between finding an optimal solution for the training data while preserving

generalizability, i.e. performance on the validation or test sets.

Though the term “machine learning” was first popularized in 1959 [34], the models

developed for this thesis all belong to the category of deep neural networks that emerged

in more recent decades and has seen an explosion in growth since 2012 that is sometimes

called the deep learning revolution. Deep neural networks provide plentiful possibilities for

learning complex relationships in data without the need for heavy feature engineering by

stacking multiple hidden layers of artificial neurons, or “units”, together with nonlinear

activation functions (see Figure 30). These operations allow the model to create abstracted

representations of input data. With a large enough hidden layer, this model structure has

been shown to be able to theoretically approximate any function to within an arbitrary

precision [35]. However, computing and time constraints often mean that training the

largest possible network is not feasible, and so many variants of the basic neural network
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Fig. 30: A diagram of a neural network, with information flowing from left to right, starting with
an input layer of size 3, a hidden layer of size 4, and an output layer of size 2. (Public domain image
from Wikimedia Commons).

structure have been developed to exploit specific properties of the data such as structural

symmetries or sparsity. These variants can also have benefits in terms of interpretability –

their latent structures can reveal meaningful patterns in the data.

In the following sections, I will give a brief overview of a variety of neural network

architectures that will be relevant for understanding the results shown in later chapters.

Important deep neural network models I won’t cover here, as they are not relevant to the

studies I show later, include Convolutional Neural Networks (CNNs), Generative Adversar-

ial Networks (GANs), transformers, and many others.

3.2 Neural Networks (NNs)

A deep neural network is fundamentally a series of functions applied to a single instance

of input data. These functions are a combination of linear and nonlinear in nature, and

the specific construction of functions in a ML model is called its architecture. The linear

functions are called layers and the nonlinear functions are called activation functions.

Usually, activation functions are applied after each layer such that linear and nonlinear
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functions alternate.

The basic linear operation applied in each layer is:

f(hj) =
∑
i

Wi,jhi + bj (64)

where ~h is a vector of the model’s representation of the input data, W is a matrix of

weights, and ~b is a bias vector with the same length as ~h.

In the first layer of the NN, ~h is simply the input data. To get the updated representation

of the data after a pass through the first layer of the model, we apply the weight matrix and

then add an offset provided by the bias vector. The weight matrix and bias vector (together

called the model’s trainable parameters) typically begin with random initializations, but

are updated during the model’s training process to better adapt to the task at hand.

This operation is completely linear, analogous to y = mx + b. Stacking purely linear

functions together is, unfortunately, not going to allow us to approximate any given function

to within arbitrary precision. The expressive power of neural networks is significantly

improved with the inclusion of nonlinear activation functions following each layer. There

are countless possible activation functions to choose from, but ones recently popular in the

ML field include the Rectified Linear Unit (ReLU) and sigmoid (σ) activation functions

depicted in Figure 31. These functions are defined as:

ReLU(x) = f+(x) = max(0, x) (65)

σ(x) =
1

1 + e−x
(66)

In most of the models I discuss in this thesis, ReLU activation functions are used

throughout, while sigmoid functions are often applied in the very last layer of a model

if it is meant to be used as a classifier. This is because the ReLU function has several com-

putational benefits during training compared with the more complex sigmoid function, but

unlike ReLU, the sigmoid function helpfully maps an initial activation (−∞,∞) → [0, 1],

i.e. an output score.

At this point in the description of a neural network, we have understood how an example

of input data is transformed into an abstract representation by passing through multiple
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Fig. 31: Common nonlinear activation functions used in modern neural networks. Left:
the Rectified Linear Unit (ReLU); Right: the sigmoid (σ) function.

layers and activation functions. However, no learning has happened yet – the flow of

information has only been in one direction. A machine learning model must adapt its

weight matrices and bias vectors in hopes of learning from its mistakes. We can picture this

taking place in three (simplified) main steps:

1. The model receives a piece of input data and transforms it into an output.

2. The quality of the output is measured by comparing it to the correct output value.

3. The model adjusts its internal parameters based on the feedback it received about the

quality of its outputs.

Our model is a bit like an idealized student with the following learning process:

1. The student receives a pop quiz, thinks about the questions, and takes their best guess

at the answers.

2. The teacher collects the quiz, grades it, and hands it back to the student.

3. The student reflects on their mistakes, paying more attention to the costlier mistakes,

and adjusts their thinking process to better prepare for the next quiz.

The quality of a machine learning’s output given a specific input is measured with a

loss function. The specific formulation of a loss function varies significantly based on the
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Fig. 32: An illustration of gradient descent in a challenging loss landscape (left: in 2D;
right: in 3D) shows a trajectory towards a local minimum of the loss function. Step sizes
decrease as the model gets closer to the local minimum and the gradient decreases. Public
domain images from Wikimedia Commons.

task, but a basic example is mean squared error (MSE) loss commonly used for regression

problems:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2, (67)

where N is the total number of data points, yi is the model’s output, and ŷi is the true

value, i.e. what the model would have guessed if it had perfect knowledge of the problem.

A higher loss value, then, indicates that the model’s prediction was very far from the target

output. Poetically, the loss is also sometimes referred to as “regret”.

Once equipped with the computed loss for a specific output (forward propagation, in the

sense that information is flowing forwards, away from the input data and towards the output

data), the model can move on to adjusting its trainable parameters (backward propagation,

commonly called backpropagation, in the sense that information is flowing backwards

from the output data and into the model itself). This means calculating the gradient of

the loss function with respect to the model’s trainable parameters θ: ∇θL(θ). To understand

the usefulness of the gradient, consider that minimizing the loss function is often a high-

dimensional optimization problem not unlike a hiker walking through a complex landscape

of hills and valleys (see Figure 32). A hiker trying to quickly descend to the lowest point in
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the landscape should take a step along the steepest path down from their current location.

Likewise, the gradient of the loss function indicates the direction with the steepest increase

in the loss value, and consequently −∇θL(θ) indicates the direction of steepest descent in

the loss landscape. This process of taking steps in the direction of steepest descent and

adjusting the model’s parameters accordingly is called gradient descent. With step sizes

parameterized by a learning rate γ, the parameters θ are adjusted as:

θ → θ′ = θ − γ∇θL(θ) (68)

Exactly calculating the gradient is computationally demanding, as it necessitates using

the entire training dataset, so many modern training methods incorporate a form of gradient

descent that operates on mini-batches of data a portion at a time as a way of stochastically

approximating the true gradient. This is usually coupled with an optimizer function that

can dynamically adjust the learning rate γ to improve the training process.

The canonical neural network structure, also known as a Multi-Layer Perceptron (MLP),

is a multi-layer dense (or “fully-connected”) neural network, meaning each node in each

layer is connected to every other node in its neighboring layers (as shown in Figure 30).

The following sections will describe more advanced variations on this core structure.

3.3 Recurrent Neural Networks (RNNs)

The family of Recurrent Neural Networks (RNNs) are neural networks specially-formulated

to process sequential data. This could mean timeseries data such as a stock price or other

kinds of ordering, e.g. words in a sentence. They are optimized to retain contextual infor-

mation about what values preceded a particular value in a sequence. Additionally, RNNs

can process input data sequences of arbitrary lengths, though this doesn’t necessarily mean

that they will perform well on very long sequences.

An RNN retains contextual information via a stored hidden state that is updated

throughout its training. The updating of this hidden state is regulated by gates that control

the flow of information via their own activation functions. The RNN model described later

in this thesis uses Long Short-Term Memory (LSTM) RNN layers, which are controlled
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Fig. 33: A diagram of an LSTM unit, with information flowing from bottom to top. An input
sequence (xt−1, xt, xt+1, · · · ) is fed into the LSTM cell with input gate It, forget gate Ft, and
output gate Ot, and the cell outputs a sequence (ot−1, ot, ot+1, · · · ). (Public domain image from
Wikimedia Commons).

by three gates: a forget gate, an input gate, and an output gate (see Figure 33). These

gates determine what information should be stored for later decisions and what information

has become irrelevant and should be removed from the internal hidden state. The basic

operations of an LSTM layer are (as a function of the recurrent cell state ct at time t, the

weight matrix W , the bias vector b, and the hidden vector h, with ◦ denoting a Hadamard,

or element-wise, product):

1. Forget Gate: Remove information that is no longer needed.

ft = σ(Wf · [ht−1, xt] + bf ) (69)

2. Input Gate: Choose what new information to consider.

it = σ(Wi · [ht−1, xt] + bi) (70)

c̃t = tanh(Wc · [ht−1, xt] + bc) (71)

3. Update recurrent hidden state: Incorporate new information chosen by input

gate.

ct = ft ◦ ct−1 + it ◦ c̃t (72)

4. Output Gate: Choose what parts of the internal cell state to output.

ot = σ(Wo · [ht−1, xt] + bo) (73)
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Fig. 34: An example diagram of an autoencoder designed to reconstruct input images of hand-
written digits. The input image is split into 784 pixels and fed through the encoder, on the left,
until the data has been transformed into an abstract 2-dimensional latent vector. Then, that latent
vector is augmented through the decoder until the output matches the dimensions of the input.
Once well-trained, the autoencoder’s 2-dimensional latent space has learned a useful representation
of the input data such that the image is able to be reconstructed fairly well using a starting point
of just 2 dimensions instead of the original 784.

5. Update hidden layer: Apply output of the LSTM cell to the hidden layer.

ht = ot ◦ tanh(ct) (74)

3.4 Variational Autoencoders (VAEs)

Autoencoders are a class of neural networks designed such that the outputs closely

mirror the inputs. Deep autoencoders typically consist of an encoder and a decoder, each

of which contains several NN layers. The layer connecting the encoder and the decoder

contains a latent representation of the data. By adjusting their internal parameters to

efficiently imitate input data, autoencoders can learn useful representations of the data

that can be exploited for other purposes. For example, autoencoders with a small latent

layer in the middle of the network can be used as a dimensionality-reduction technique

that is both nonlinear and invertible. Autoencoders designed for dimensionality-reduction

usually have a characteristic “bow-tie” shape due to the reduced dimension of the latent

layer forming an information bottleneck in the model architecture (see Figure 34).
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Variational autoencoders (VAEs) are a special subcategory of autoencoders that are

often used as generative models. Unlike a basic autoencoder with single values associated

with each of its latent dimensions, variational autoencoders output a probability distribution

associated with each of its latent dimensions. Commonly, these probability distributions

are assumed to be Gaussian, and are therefore exactly described by vectors of µ (mean)

and σ (standard deviation) values. The encoder portion of the VAE is designed to output

a µ and σ value for each latent dimension, thereby constructing as many distinct Gaussian

distributions as the size of the latent space. Sampling from these distributions then provides

the input vector for the decoder. This procedure has the advantage of creating a latent

space that is explicitly continuous, whereas a vanilla autoencoder might have large gaps in

its latent space not covered by the training data.

The loss function of a VAE has two terms: the reconstruction loss and the Kullback-

Leibler (KL) loss.

LVAE = Lreconstruction + β
∑
i

KL(qi(z|x) || N (0, 1)) (75)

The reconstruction loss captures the accuracy of the model’s outputs compared with the

true target values, while the KL loss constrains the i latent distributions learned by the

model to resemble unit Gaussian distributions with µ = 0 and σ = 1. The KL loss term

derives from the KL divergence, a quantity capturing the difference between two probability

distributions. The KL loss is an important regularizer in the network that helps enforce

continuity in the latent space, but it needs to be carefully balanced (by tuning the weight

coefficient β) with the reconstruction loss in order to maintain good model performance.

In general, the KL divergence between two probability distributions p(x) and q(x) can

be written as:

DKL(p || q) =
∑
x

p(x) log
(
p(x)

q(x)

)
(76)

Conveniently, when p(x) is Gaussian and q(x) is a unit Gaussian, this can be written

in a closed-form expression parametrized by the means (~µ) and standard deviations (the

matrix Σ with ~σ along the main diagonal) of p(x):
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DKL(N (~µ,Σ) || N (0, I)) =
1

2

∑
i

(Σ + µ2 − 1− ln(Σ)) (77)

In practice, Σ is often replaced with ln(Σ) when coding this term in the loss function, as

exponentiating is more numerically stable than taking a logarithm.

The “variational” title for VAEs refers to the origin of this construction of the loss

function from the application of variational inference to approximate the posterior p(z|x),

where z is a latent variable and x is an observation. This is a nice way of summarizing the

process of a VAE: we want to understand the distribution of latent variables z that best

describes our actual data, x. By Bayes’ Theorem, the posterior is expressed as

p(z|x) = p(x|z)p(z)
p(x)

. (78)

However, calculating p(x) is onerous and usually intractable, as it requires integrating over

every possible configuration of the latent space. We can therefore use notions from varia-

tional inference to construct a new, tractable probability distribution q(z|x) that resembles

the original posterior p(z|x) as closely as possible. This new distribution will allow us

to approximate the intractable posterior. The requirement that q(z|x) resemble p(z|x) as

much as possible can be translated into minimizing the KL divergence between these two

distributions, i.e.:

DKL(q(z|x) || p(z|x)) (79)

After applying principles from variational inference, we find that minimizing DKL is

equivalent to maximizing the Evidence Lower Bound (ELBO):

Eq(z|x) log p(x|z)−DKL(q(z|x) || p(z)), (80)

where Eq(z|x) log p(x|z) is the reconstruction likelihood. To translate the task of maximizing

the ELBO into the training process, we flip the sign on each term and convert it into a

loss term that the model tries to minimize. Thus, we arrive at the loss term described

in Equation 75: negating the reconstruction likelihood creates a reconstruction loss term,

while the second term adds the KL divergence term.
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Fig. 35: Two examples of graph-structured data with 53 nodes. Left: A fully-connected
graph, meaning there are edges connecting every pair of nodes. Right: A more sparsely-
connected graph, meaning there are only a handful of edges connecting some nodes in the
graph.

3.5 Graph Neural Networks (GNNs)

Graph neural networks are a class of neural networks designed to operate on graph-

structured data such as social networks, knowledge graphs, or molecular structures. This

means that the data takes the form of some finite number of vertices (or nodes) connected

by links (or edges). Graph-structured data is sometimes sparsely-connected (see Figure 35),

meaning only some nodes are connected via edges. In a directed graph, there is a specific

orientation to these connections (i.e. Node 1 connects to Node 2, but not vice-versa). In

an undirected graph, edges connect pairs of nodes in each direction.

Graph-structured data is complicated: meaningful connections might exist not only

between a node and its neighbors, but also between a node and distant nodes on the

graph, yet graphs can be arbitrarily large. Furthermore, there is no spatial locality enforced

for graphs: one can contort a graph quite a bit, but as long as its connections remain

unchanged, it remains unaltered. Other ML algorithms designed for Euclidean-structured

data or sequential data are typically not suitable for use on graphs. Graph Neural Networks

(GNNs) are designed specifically to handle some of the nuances necessary for analyzing

graph-structured datasets.

A common form of GNN takes a graph-structured input G = (V,E), where V is a set of

nodes and E a set of edges, and learns a hidden representation of the graph that is repeatedly
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Fig. 36: An example of message passing implemented on a fully-connected graph with four
nodes. Left: Each of the four nodes has a hidden node representation hi. Right: To
update the hidden representation h1 corresponding to Node 1, messages are aggregated
from each incoming edge from the neighborhood of Node 1. [36]

updated via a method called message passing. These updates happen separately for edges,

as a function of nodes xi, edges x(i,j), and hidden node embeddings hi:

h(i,j) = fedge(hi, hj , x(i,j)) (81)

and nodes:

h′i = fnode(hi,
∑
j∈Ni

h(j,i), xi). (82)

Both fedge and fnode are themselves neural networks – usually MLPs.

The edge update step in the message passing algorithm creates a hidden representation

of the information contained in each edge of the graph as a function of the values of the nodes

connected by that edge. Subsequently, the node update step aggregates the edge messages

incoming to a particular node from its neighborhood of immediately-connected nodes Ni.

This message passing scheme can be repeated such that the latent graph representation is

updated based on information propagated from throughout the whole graph. Additional

layers can then be added to e.g. aggregate the hidden node embeddings in order to classify

the entire graph structure.
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4 ML for Triggering on Hadronic Taus

4.1 Properties of Taus

The Higgs boson decay mode of interest in the signal process of this thesis work involves

the most massive leptons: tau leptons, which I’ll refer to in the future as simply taus. As

a Generation III lepton, discovered after the electron and muon, the tau’s name was chosen

by Martin Perl and his collaborators from the Greek word τριτν, meaning “third”. Perl

later received the 1995 Nobel Prize in Physics for the discovery of the tau.

As the reader might recall from Table 1, taus are fermions with electric charge −e, just

like electrons, but with a mass of 1.78 GeV, exceeding 3,000 electrons. While an electron

is stable, the average lifetime of the tau is approximately 3 × 10−13 seconds. This means

that even taus moving at relativistic speeds will almost always decay before encountering

the ATLAS detector. The average distance traversed by the tau is d = (velocity)(time) =

(v)(γττ ) = βcγττ , where ττ is the tau’s lifetime, c is the speed of light, γ is the Lorentz

factor and β = v/c. In its rest frame, a tau’s proper decay length is 87 µm. A tau produced

at a substantial energy of 100 GeV would travel about 5 mm, but the ATLAS detector

begins at a radius of about 33.25 mm. The tau’s decay products are therefore the actual

physics objects we analyze in order to understand the nature of the taus from which those

products originated.

Fig. 37: Sample Feynman diagrams illustrating leptonic vs. hadronic tau decays. The
leptonic decay modes include a W boson decaying to a lepton and anti-neutrino pair of the
same lepton flavor (either e or µ). The hadronic decay modes include a coupling of the W
boson to quarks (qi and qj) and, subsequently, a variety of hadrons. All tau decay modes
feature a tau neutrino (ντ ) in their final states in order to preserve lepton flavor.
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Approximately 35% of the time, a given tau will decay leptonically, i.e. τ → lν̄lντ ,

where l = e, µ. In other words, the tau decays into a tau neutrino plus an additional lepton

(electron or muon) and its corresponding antineutrino, thereby preserving charged lepton

flavor, lepton number, and electric charge. This follows the same pattern of the muon,

which has one dominant decay mode: µ→ eν̄eνµ.

The remaining 65% of the time, the tau will decay into collections of mostly hadrons

(composite particles consisting of two or more quarks). This special quality makes the tau

unique among the leptons, as it is the only one massive enough to decay into hadrons.

Though a tau neutrino will always be present in the final state due to lepton flavor conser-

vation, and therefore one of the decay products will always be a lepton, I’ll refer to these

final states containing hadrons as hadronic tau decays for convenience. Example diagrams

of each of these two categories of decays may be seen in Figure 37.

The tau’s primary hadronic decay modes include 1 or 3 charged hadrons as well as

potentially one or more neutral hadrons. Pions are the main hadrons appearing in hadronic

tau decays, followed by kaons. This is because pions are mesons combining quarks of the

same generation (up and down, i.e. Generation I) while kaons combine quarks between

Generations I and II (i.e. up, down, and strange quarks). To understand this effect, we

can look at the Cabbibo-Kobayashi-Maskawa (CKM) Matrix in theoretical particle physics,

shown in Equation 83, that describes the strengths of flavor-changing weak interactions.

Experimental results have confirmed that the quarks have much stronger interaction vertices

for interactions within a single generation rather than between generations. Hadronic tau

decays into pions, then, are referred to as “Cabibbo-favored”, while hadronic tau decays

into kaons are “Cabibbo-suppressed.”


|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|

|Vtd| |Vts| |Vtb|

 =


0.9745± 0.0001 0.2245± 0.0004 0.0037± 0.0001

0.2244± 0.0004 0.9736± 0.0001 0.0421± 0.0008

0.0090± 0.0002 0.0413± 0.0007 0.9991± 0.00003

 (83)

A hadronic decay mode with 1 charged hadron, i.e. one associated charged track, is

called a 1-prong tau, while a hadronic decay mode with 3 charged hadrons and three

associated charged tracks is called a 3-prong tau. Since the tracking portion of the ATLAS
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Tau Decay Mode Leptonic Decay Hadronic Decay Prongs % Total Decays
π−π0ντ X 1-prong 25.4941± 0.0893
µν̄µντ X 17.3937± 0.0384
eν̄eντ X 17.8175± 0.0399
π−ντ X 1-prong 10.8164± 0.0512

π−2π0ντ X 1-prong 9.2595± 0.0964
π−π−π+ντ X 3-prong 8.9868± 0.0513
π−π−π+π0ντ X 3-prong 2.7404± 0.0710

Table 6: Summary of the primary tau decay modes [2].

detector is only sensitive to charged tracks, we only consider charged tracks for labeling tau

decays. 1-prong taus represent 72% of all hadronic tau decays, while 3-prong taus represent

22% of all hadronic tau decays [37]. The most frequent hadronic decay mode is τ → π−π0ντ

via the ρ− resonance, an excited state of a charged pion (see Table 6).

As leptonic tau decays into lighter leptons are largely under the purview of electron and

muon reconstruction and identification, tau reconstruction and identification in this thesis

refers to hadronic taus only. The main sources of background in the pursuit of hadronic

tau reconstruction and identification are jets of hadrons initiated by the QCD hadronization

processes of gluons and quarks. Additionally, electrons are a key background for 1-prong

hadronic taus, as they leave similar signatures in the ATLAS tracker and calorimeters.

4.2 Tau Reconstruction

Hadronic tau candidates require an initial jet seed with pT > 10 GeV and |η| < 2.5,

excluding the crack region between the barrel and endcap calorimeters (1.37 < |η| < 1.52).

Charged tracks falling in a cone of ∆R < 0.2 around the jet’s center of mass are consid-

ered associated with the jet seed so long as they have a pT > 1 GeV, |d0| < 1 mm, and

|z0 sin(θ)| < 1.5 mm.8 Those tracks associated with the jet seed are defined to fall within

the core region (∆R < 0.2), while any tracks just outside of the core region are defined

to fall in the isolation region (0.2 < ∆R < 0.4).

The tau’s vertex is chosen as the vertex of the tracks in the core region containing the

largest fraction of the tau’s momentum. The tau’s η and φ values are then calculated as the
8Recall that d0 and |z0 sin(θ)| are defined as the points of closest approach from the transverse and

longitudinal planes, respectively.
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vector sum of the respective η and φ values of the tau’s constituent TopoClusters within

∆R < 0.2 of the seed jet’s center of mass.

4.3 Tau Energy Scale Calibration

The reconstructed tau’s mass is defined as exactly zero, meaning that the tau candidate’s

pT and ET are equivalent. Dedicated calibration schemes are applied to each visible tau

candidate in order to best match the measured energy deposits from the calorimeter to

the true visible energy of the original tau. By referring to a visible tau’s energy here, we

acknowledge that a hadronic tau decay has an invisible contributor to its total energy in its

neutrino, but it is often useful for us to only focus on calibrating the energy of the visible

tau decay products. First, the energies of the tau candidate’s TopoClusters are calibrated

using the Local Cluster (LC) calibration scheme designed to calibrate the energy of each cell

based on the probability that the entire cluster is hadronic [38]. The sum of these calibarted

energies is denoted ELC. Next, there is a correction to the tau candidate’s energy designed

to subtract contributions to the tau’s energy from pileup, i.e. other interactions from the

same bunch crossing. This is done by subtracting Epileup from ELC, where Epileup scales

linearly with the difference between the event’s number of pileup vertices and the average

pileup (NPV − 〈NPV〉) in bins of |η|. Then, a response calibration R is calculated as the

average of the corrected tau candidate energy distribution (ELC − Epileup)/E
vis
true.

The baseline tau energy scale correction is calculated as:

Ecalib =
ELC − Epileup

R(ELC − Epileup, |η|, np)
(84)

This information, along with additional tracking and calorimeter information, is then fed

into a Boosted Regression Tree (BRT) designed to output the final energy of the hadronic

tau candidate.

4.4 Tau Reconstruction in the ATLAS Trigger

The ATLAS tau trigger is optimized to perform the difficult task of separating hadronic

tau decays from high-rate quark- or gluon-initiated jet backgrounds of a given energy (see
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Fig. 38: A diagram of typical signatures of a hadronic tau decay versus a quark- or gluon-
initiated jet used to inform hadronic tau identification strategies in the tau trigger. Hadronic
taus have constrained numbers of charged tracks from charged hadrons due to charge con-
servation from the tau parent, and these tracks tend to be collimated in the core region
(∆R < 0.2) surrounding the reconstructed tau’s center of mass for tau candidates with
the same ET . Quark- or gluon-initiated jets do not have the same charged track number
constraints, and depending on their origin, the tracks can tend to be less collimated than
those of a hadronic tau. This means that some charged tracks may appear in the isolation
region (0.2 < ∆R < 0.4) surrounding the core.

illustrations in Figure 38). Hadronic tau decays mainly feature track multiplicities of 1 or

3 in the core region (∆R < 0.2 from the reconstructed tau cluster’s center of mass) and no

tracks in the isolation region (0.2 < ∆R < 0.4) surrounding the core. Quark- and gluon-

initiated jets, on the other hand, can feature many tracks with a more even distribution

throughout the core and isolation regions.

Though the tau trigger follows similar methodologies as offline tau reconstruction when

possible, it operates under unique constraints. The tau trigger must operate within the

latency budget of the trigger and data acquisition system, and it does not have access to

the full granularity of the ATLAS detector. The processes of energy calibration, calorimeter

clustering and track-finding therefore differ slightly from the offline methods. The ATLAS

tau trigger also follows a similar tau identification scheme as is used offline, but special

requirements at the trigger level necessitated a dedicated architecture and training scheme

(detailed in Section 4.6) [39].
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4.4.1 Calibration, Clustering, and Tracking

At Level 1, the ATLAS calorimeter trigger towers have a granularity of ∆η × ∆φ =

0.1×0.1 and a coverage of |η| < 2.5. (For comparison, as shown in Figure 23, the middle layer

of the EM calorimeter has a granularity of ∆η×∆φ = 0.025×0.025.) The “core” region for

a tau seed in the EM calorimeter is defined by a 2×2 square of towers, while the “isolation”

region consists of the ring of surrounding trigger towers between ∆η ×∆φ = 0.2× 0.2 and

∆η × ∆φ = 0.4 × 0.4 (see Figure 39). After a minimum ET cut at Level 1 for the core

calorimeter towers based on the Level 1 trigger threshold, there is an energy-dependent ET

cut in the isolation region defined up to 60 GeV:

EEM isol
T ≤ ET

10 GeV
+ 2. (85)

Calorimeter clustering in the software-based ATLAS High-Level Trigger (HLT) again

uses calibrated TopoClusters of calorimeter cells, but they are instead derived from a cone

of ∆R < 0.2 surrounding the Level 1 tau seed, which can sometimes differ from the offline

seed as Level 1 only has access to lower-granularity information. Energy calibration in

the ATLAS HLT for tau candidates resembles the methods used offline, but is customized

for the trigger environment. For example, instead of using NPV, or the number of pileup

vertices in the event, the average number of interactions per bunch crossing µ is used for

the pileup subtraction. An HLT-level calorimeter-only preselection is also applied at this

stage, including a minimum pT cut.

Tracking in the ATLAS HLT is done in two steps. First comes a preselection called the

Fast Track Finder (FTF). The FTF searches for a track in a narrow cone (∆R < 0.1) around

the cluster’s center of mass and along the full beamline (|z| < 225 mm). This establishes

the leading track for the tau candidate, and if no track is found, the candidate is rejected.

Next, the FTF reconstructs all tracks within a larger angular region (∆R < 0.4) but a

more restricted range along the beamline (|z| < 10 mm), as illustrated in Figure 40. The

track seeds identified in the FTF process are then passed onto the second stage of tracking:

precision tracking. During precision tracking, a more comprehensive tracking is applied to

the track seeds identified at the FTF stage.
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Fig. 39: The Level 1 ATLAS calorimeter towers, with a granularity of ∆η×∆φ = 0.1× 0.1
and a coverage of |η| < 2.5, are shown. The core region of a tau candidate at Level 1 of the
trigger is shown in lime green, with its surrounding isolation region in the Electromagnetic
and Hadronic calorimeters shown in yellow and pink, respectively. [40]
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Fig. 40: The geometric ranges searched during the Fast Track Finder (FTF) in the first
portion of tracking in the ATLAS HLT are shown. The pink region shows the region of
interest (RoI) identified at Level 1. In blue is the first range searched: ∆R < 0.1 and
|z| < 225 mm. In green is the second range searched: ∆R < 0.4 and |z| < 10 mm.

Finally, a cut is applied on the number of tracks identified in the core and isolation

regions of the tau candidate. A tau candidate must have between 1 and 3 (inclusive) tracks

in the core region and 1 or 0 tracks in the isolation region to pass onto the tau identification

stage.

4.5 Online BDT Tau Identification

Note: The word online here indicates that the process occurs at the trigger level during

live datataking, as opposed to offline analysis that need not occur during datataking.

At the start of Run 2, the online tau identification scheme was based on a Boosted

Decision Tree (BDT) trained on a fixed number of high-level tau identification variables

detailed in Table 7 [39]. Two separate BDT models were trained for 1-prong and 3-prong

taus using simulated Z → ττ signal events and QCD multijet background events. These

events were required to have at least one reconstructed tau candidate that passed the full

offline selection, not including the final BDT identification criteria, and a total missing

ET ≤ 20 GeV, to suppress any events from W → lν+jets processes. An independent set of

signal and background simulations was used to evaluate the performance of the model.

The trained BDT model maintained an efficiency of 96% for true 1-prong taus and 82%

for true 3-prong taus that also passed offline reconstruction as a baseline medium working
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Variable Description 1-prong 3-prong

fcent Central energy fraction X X

f−1
leadtrack Leading track momentum fraction X X

Rtrack Track radius X X

f track-HAD
EM Fraction of EM energy from charged pions X X

fEM
track Ratio of EM energy to track momentum X X

mEM+track Mass of track + EM system X X

pEM+track
T /pT Ratio of track + EM system pT to tau pT X X

|Sleadtrack| Leading track impact parameter significance X

f track
iso Fraction of pT from tracks in isolation region X

∆Rmax Maximum ∆R X

Sflight
T Transverse flight path significance X

mtrack Track mass X

Table 7: The high-level input variables used for BDT tau identification in the ATLAS HLT
at the start of Run 2, as well as whether they were used for the 1-prong model, the 3-prong
model, or both.

88



Fig. 41: Background rejection vs. signal efficiency curves for the 1-prong (solid red line)
and 3-prong (dashed blue line) tau identification BDT models used in the ATLAS HLT at
the beginning of Run 2. The tight, medium, and loose working points are marked with green
triangles in order of decreasing rejection for each model. [39]

point, as shown in Figure 41. It operated with an average latency of less than 1 ms, or

∼ 1% of the total execution time of the tau HLT.

4.6 Online RNN Tau Identification

Online RNN tau identification used a very similar architecture as the RNN tau identi-

fication scheme designed for offline tau identification in the latter part of Run 2 [41]. I will

describe the methodology here and point out key differences from the offline construction.

4.6.1 Data Pre-Processing

MC simulations of γ∗ → ττ signal and dijets background (binned in pT ranges be-

tween 0 and 1,800 GeV) were used for training and testing. Samples were converted
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into MxAOD ROOT formats with trigger-level variables included using the ATLAS in-

ternal software THOR. Then, these ROOT files were converted into flat Pandas dataframes

[42] stored in HDF5 binary file formats using PyROOT, i.e. ROOT’s Python-C++ bind-

ings [43], and root_numpy [44]. Samples used trigger-level variables from the HLT chain

HLT_tau25_idperf_tracktwoEF, which provides events with additional trigger-level track-

ing information saved. The specific MC samples used were produced with Pythia8 and

the NNPDF23LO PDF set.

Each of the three RNN models applied the following cuts to tau candidates:

• 0-prong

– Reconstructed tau pT > 20 GeV

– Reconstructed tau |η| < 2.5

– True tau pT > 20 GeV (signal only)

– True tau |η| < 2.5 (signal only)

– # of charged tracks = 0

– # of true charged tracks = 1 or 3 (signal only)

• 1-prong

– Reconstructed tau pT > 20 GeV

– Reconstructed tau |η| < 2.5

– True tau pT > 20 GeV (signal only)

– True tau |η| < 2.5 (signal only)

– # of charged tracks = 1 or 3

– # of true charged tracks = 1 (signal only)

– Truth-matched (signal only)

• Multi-prong

– Reconstructed tau pT > 20 GeV
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– Reconstructed tau |η| < 2.5

– True tau pT > 20 GeV (signal only)

– True tau |η| < 2.5 (signal only)

– # of charged tracks = 2 or 3 if tau pT < 440 GeV, otherwise ≥ 2 tracks

– # of true charged tracks = 3 (signal only)

– Truth-matched (signal only)

While the offline RNN tau identification trainings reweighted the background dijet pT

spectrum to match the signal γ∗ → ττ pT spectrum in bins of pT during training and

evaluation, in the online implementation, I reweighted the signal to match the background

pT spectrum in bins of pT after training to determine same-rejection working points, as the

tau trigger rates are dominated by low-pT jets.

The input variables used in the online RNN trainings are listed below, and were scaled to

have a mean of 0 and a standard deviation of 1. In some cases, the logarithm of the variable

is also used in its place in order to better capture dynamic differences across multiple orders

of magnitude. The variables used are almost the same between online and offline except

for ptIntermediateAxis (vertex-corrected tau axis starting from the calorimeter cluster

center-of-mass), which is replaced with ptDetectorAxis (uncorrected tau axis starting from

the calorimeter cluster center-of-mass) online, and variables related to the counting of track

hits:

• nInnermostPixelHits (# of innermost pixel hits) → nIBLHitsAndExp (if an IBL hit

is expected, use the number of innermost pixel hits; otherwise, use 1)

• nPixelHits (# of pixel hits) → nPixelHitsPlusDeadSensors (# of pixel hits + #

of dead pixel sensors)

• nSCTHits (# of SCT hits) → nSCTHitsPlusDeadSensors (# of SCT hits + # of dead

SCT sensors)

These changes were made to protect against varying detector conditions and unneces-

sarily eliminating tau track candidates with no track hits in the IBL.
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Fig. 42: A diagram of an example calorimeter cluster with its corresponding geometrical
cluster moments related to λcluster and rcluster. [45]

4.6.2 RNN Input Variables

The input variables into the RNN include both low-level and high-level quantities re-

lating to tracking and calorimetry information. The same 12 high-level tau identification

variables used as inputs to the BDT (see Table 7) are included. Track-level variables in-

clude basic, low-level quantities like pT of the tau candidate, pT of the jet seed, points of

closest approach to the tau candidate from the transverse and longitudinal planes (|d0| and

|z0 sin(θ)|), angular distance from each track to the axis of the tau candidate (∆η and ∆φ),

and information about the quality of each track based on track hits. Cluster-level variables

include basic information such as ET , pT of the jet seed, angular distance from each cluster

to the axis of the tau candidate (∆η and ∆φ), and cluster moments capturing geometric

information about the clusters including λcluster, 〈λ2cluster〉, and 〈r2cluster〉. These represent

the spread of the cluster along the cluster axis and perpendicular to the cluster axis, as

shown in Figure 42.

• Track-level variables

– pt_log: Log of track pT

– pt_jetseed_log: Log of jet seed pT

– d0_abs_log: Log of track |d0|
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– z0sinThetaTJVA_abs_log: Log of track |z0 sin(θ)|

– dEta: ∆η between track and tau axis

– dPhi: ∆φ between track and tau axis

– nIBLHitsAndExp: If a hit in the innermost pixel layer is expected, use the actual

number of IBL hits. If not, set the number of IBL hits = 1.

– nPixelHitsPlusDeadSensors: Number of pixel hits in the tracker + number of

dead sensors

– nSCTHitsPlusDeadSensors: Number of SCT hits in the tracker + number of

dead sensors

• Cluster-level variables

– et_log: Log of cluster ET

– pt_jetseed_log: Log of jet seed pT

– dEta: ∆η between cluster and tau axis

– dPhi: ∆φ between cluster and tau axis

– CENTER_LAMBDA: λcluster, the distance from the cell to the cluster center of mass

along the cluster axis

– SECOND_LAMBDA: 〈λ2cluster〉, the moment of inertia of the cluster along the cluster

axis

– SECOND_R: 〈r2cluster〉, the moment of inertia of the cluster perpendicular to the

cluster axis

4.6.3 RNN Architecture

Unlike the BDT, which recieved a fixed number of high-level input variables for each

tau candidate, the Recurrent Neural Network (RNN) architecture treats the problem of tau

identification as a sequence-classification problem. It receives a variable number of tracks

and clusters, sorted in descending order in pT and ET respectively, associated with each tau

along with the fixed set of tau identification variables. This is analogous to tasks encountered
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in Natural Language Processing (NLP) such as categorizing the sentiment of sentences with

a variable number of constituent words in each sentence. This RNN architecture used Long

Short-Term Memory (LSTM) layers.

The general RNN architecture is split into three branches: one for track inputs, one

for cluster inputs, and one for tau identification variable inputs. The tau identification

variables, having a fixed size for each tau candidate, do not need the advantages of the

recurrent layers, and instead are fed into a series of fully-connected, or “dense”, layers of

sizes (128, 128, 16). Track and cluster inputs, on the other hand, are fed separately into

branches consisting of two dense layers with shared weights of size 32 units each, thereby

forming latent representations of the tracks and clusters. These latent representations are

then passed to two recurrent LSTM layers of size 32 for tracks and 24 for clusters that map

the input sequences of tracks or clusters into a single latent vector each. The output vectors

of each branch are then concatenated together via a Merge layer, and this concatenated

state is passed through a final set of three dense layers of sizes (64, 32, 1) to result in a

final output size of 1 unit. This final unit, after transformation under a sigmoid activation

function, represents the final RNN score for the input tau candidate. ReLU activation

functions are used throughout, with the exception of the output layer. The full model has

approximately 56,000 trainable parameters.

Though the offline RNN tau identification scheme consists of two separate trained models

for 1-prong and 3-prong taus, I trained three different models for “0-prong”, 1-prong, and

“multi-prong” taus. “0-prong” refers to a true 1-prong tau for which the initial tau seed

track has been misidentified, while “multi-prong” refers to a true 3-prong (or higher) tau

for which at least one charged track has been poorly reconstructed. These 0-prong taus, at

the trigger level, represent an important cause of signal inefficiencies, particularly for taus

with low pT in a high-pileup environment.

4.6.4 Training Details

The number of tracks and clusters used per tau candidate was variable but capped at

10 and 6 respectively, as it was determined that increasing the numbers beyond this point

did not yield a significant benefit in terms of performance.
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Fig. 43: A diagram of the three branches included in the overall RNN architecture for
tracks, clusters, and tau identification variables. [41]

The models were trained using stochastic gradient descent (SGD) with an initial learning

rate of 0.01, momentum of 0.9, and minimizing the binary crossentropy loss term. The

sample sizes used for online trainings had fewer statistics than the versions used for offline,

especially at low pT :

• 0-prong: Signal = ∼100,000 events, Background = ∼50,000 events

• 1-prong: Signal = ∼2,000,000 events, Background = ∼175,000 events

• 2-prong: Signal = ∼700,000 events, Background = ∼3,000,000 events

Initial samples were split between training/validation samples at a ratio of 80%/20%.

Each model was trained until convergence, with early stopping induced after 10 consecutive

epochs with no improvement to the validation loss. Trainings took up to approximately 6

hours on an NVIDIA Tesla p100 GPU. Following trainings, the output scores were trans-

formed in order to be invariant across µ (average number of interactions per bunch crossing)

and pT . These models were implemented in Keras [46] with a TensorFlow backend [47].

Trained models were converted into a format suitable for use in a C++ production frame-

work using lwtnn [48].

4.6.5 Performance

These trigger-level RNN tau identification models were implemented in the ATLAS HLT

in July 2018 and operated with an average latency at the High-Level Trigger comparable to

that of the BDT. Each RNN model saw improved background rejection vs. signal efficiency

compared to the 1-prong and 3-prong BDT models previously implemented at the trigger
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Fig. 44: Trigger efficiencies in MC simulation samples at s =
√
13 TeV for tau triggers

with comparable rates. In the left column are efficiencies for 1-prong taus, while in the
right column are efficiencies for 3-prong taus. In the top row, the x̂-axis is pT of offline
taus passing the Medium BDT working point. In the bottom row, the x̂-axis is µ, the
average number of pileup interactions. The triggers using RNN tau identification (blue
triangles) show better performance across each of these criteria compared to triggers using
BDT tau identification with precision tracks (red squares) and fast tracks (black circles),
even approaching the efficiency of the Level-1 trigger (pink crosses) for large values of offline
tau pT .

level. Overall, particularly due to the recovery of true 1-prong taus with a misreconstructed

track thanks to the 0-prong RNN network, the tau trigger increased its background rejection

by approximately 35%.

Tau efficiencies at the trigger level are shown versus pT of offline taus passing the Medium

BDT identification working point and versus µ (average number of pileup interactions) in

Figure 44 for triggers with comparable rates. The triggers using RNN tau identification have

excellent efficiencies compared with their BDT equivalents across a wide range of offline tau

pT values.
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4.6.6 Future Directions

This RNN method will be the default tau identification algorithm in the ATLAS HLT

in Run 3. Future iterations of tau identification for the HL-LHC will have to contend

with much higher pileup contamination from quark- and gluon-initiated jets, potentially

up to an average pileup level of 〈µ〉 = 200 [49]. This high-pileup environment will create

additional challenges for the HLT tau tracking algorithms and could result in significantly

degraded performance for low-pT tau candidates. Not only will the RNN tau identification

models need to be re-trained, potentially on data instead of MC, but they might need

to be re-imagined entirely. This could involve innovative Graph Neural Network (GNN)-

based tracking models implemented at Level 1 on FPGAs [50], Lorentz-equivariant networks

trained on tau candidates [51], or perhaps a more unified approach to tau reconstruction

and identification. Without a doubt, advanced machine learning models will be essential to

identifying taus at the trigger level throughout the remaining lifetime of the LHC.
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5 ML for Dynamic Many-Body Systems

5.1 Motivation

Throughout this thesis, I have deliberately avoided using the term artificial intelligence,

or AI, in favor of the more constrained vocabulary of machine learning (ML). The concept

of AI lacks a precise definition even among academics engaged in computer science research,

making it a somewhat unhelpful form of scientific jargon. Additionally, depictions of AI

in popular media can misleadingly suggest that what a scientist calls “AI” these days has

something resembling consciousness or human-like intelligence. The models I describe in this

thesis have a level of consciousness and intelligence much more comparable to a microwave

oven than to HAL 9000 or R2-D2. That said, we can still attempt to think deeply about

what it might mean for a model to exhibit artificial intelligence as a way of inspiring new

types of model architectures and research paradigms.

Artificial intelligence is sometimes splintered into more specific pieces: narrow AI and

general AI. Narrow AI is essentially analogous to what I call machine learning: using

software algorithms to analyze and learn patterns from data in a semi-autonomous manner,

meaning that the models themselves can automatically adjust to find optimal solutions

under certain constraints. Narrow AI models are designed to solve specific tasks within

a narrow scope of applicability. General AI, on the other hand, refers to a speculative

kind of AI model that would exhibit human-like problem-solving skills, reasoning, and even

consciousness. What would it take to construct something resembling a human mind out

of code? It’s a humbling and compelling question, and more importantly, one that should

be approached carefully, as it has the potential to cause real-world harm by strengthening

preexisting prejudices and injustices in human society.

The field of computational creativity is engaged in the pursuit of General AI by prac-

tically considering what it would mean for an algorithm to be creative. Creativity, even

in humans, is poorly understood and is often thought of as intuitive or possibly beyond

description. There are rich discussions to be had in the intersection between (Narrow or

General) AI and creativity that challenge the capabilities of our algorithms just as much as
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they challenge our own understanding of art and the human mind. For these reasons and

more, I find research directions in computational creativity, or broadly what I call Cre-

ative ML, to be particularly important and stimulating. Just as CERN was founded with

a mission of peace, my vision for Creative ML is fundamentally tied to the betterment of

humanity. Research in Creative ML can be inspired not only by profit, but by pure curiosity

in service of an artistic practice. Additionally, Creative ML is just as interested in lateral

progress, i.e. disrupting one research direction by splintering it into many sub-questions,

as it is in forward progression towards state-of-the-art metrics along preexisting paths. I

believe this impulse is essential for making meaningful progress in ML that is orthogonal to

the strong incentives from surveillance capitalism that ultimately benefit corporations and

frequently reinforce social disparities based on race, class, gender, and other stratifiers ([52,

53, 54, 55], etc.). Through the lens of Creative ML, we can ask expansive questions at the

cutting edge of technological progress without compromising critical conversations about

how these advances are shifting power in the real world or if they should exist at all.

Throughout my PhD, I led multiple independent research teams engaged in questions

relating to ML and human movement – more specifically, understanding my own dancing

and embodied thought process with ML. Using a motion capture studio, I collected data of

myself performing solo improvisations, and together with my research collaborators, learned

latent representations of my movements in order to extract larger patterns and meaning

from that data. Though we have published our methods, code, and data in the spirit of

openness and collaboration, these projects really emerged from an introspective impulse.

They were designed for my own creative use, in hopes of building tools to help me continue

to innovate in my specific movement practice.

These models are clearly instances of Narrow AI, and moreover were designed to be

explicitly useful for my own art practice only. I am including them in this thesis, ironically,

because of their generality. What began as a deeply personal investigation has clear poten-

tial for applications far beyond generating movements that resemble my own. Section 5.2

describes a generative model for time-dependent many-body systems in 3D, while Section

5.3 describes a methodology for discovering categories of interactions and graph structures

within those same systems. What is listed here as a method for understanding cross-body
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interactions could, with just a different dataset, transform into a multi-particle tracking

system within the ATLAS detector.

By orienting the models’ successes towards my own creative instincts instead of external

reward structures, and by training and applying them on my own body alone, I have

tried to build these tools to ask big questions while minimizing possible unintended harms.

ML tools to estimate 3D human poses from video alone have dramatically improved in

recent years, meaning that these kinds of models are becoming available to a much broader

audience than those who happen to have access to a state-of-the-art motion capture studio.

This availability is especially concerning given recent results showing that even supposedly

“anonymized” datasets of human movement can be quickly de-anonymized. This means

that a unique individual can be identified out of a pool of more than 500 anonymized

participants with > 95% accuracy using less than 5 minutes of their movement data [56]. I

believe we can build ML tools like the ones detailed in this chapter for diffuse applications

designed to enrich the lives of individuals, but great care must be taken in this direction to

prevent abuses related to privacy, surveillance, and human rights.

I hope this chapter serves as proof that artistic questions can be just as fruitful as

traditionally scientific ones when wading through the murky waters of technological research

towards something like General AI, and that engaging with these diverse perspectives is

essential if we are to truly build AI tools that serve everyone.

5.2 Beyond Imitation: Generative & Variational Choreography with VAEs

The contents of this chapter were adapted from a publication in the proceedings of the

10th International Conference on Computational Creativity [57] in 2019. This work was

developed from 2017 - 2019 alongside my collaborators Chase Shimmin, Douglas Duhaime,

Ilya Vidrin, and Raymond Pinto, with generous support from the Yale Center for Collabo-

rate Arts & Media.

5.2.1 Introduction

“I didn’t want to imitate anybody. Any movement I knew, I didn’t want to use.” [58]

Eminent postmodern dance choreographer Pina Bausch felt the same ache that has pierced
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artists of all generations – the desire to generate something truly original from within the

constraints of your own body.

Recent technologies enabling the 3D capture of human motion as well as the analysis

and prediction of timeseries datasets with machine learning have opened provocative new

possibilities in the domain of movement generation. This project introduces a suite of

configurable machine learning tools to augment a choreographer’s workflow.

Many generative movement models from recent publications use Recurrent Neural Net-

works (RNNs) [59] as their fundamental architecture [60, 61, 62, 63, 64, 65]. Others create

methods to draw trajectories through a lower-dimensional space of possible human poses

constructed through techniques such as Kernel Principal Component Analysis (KPCA) [66,

67]. In this project, my collaborators and I build upon existing RNN techniques with

higher-dimensional datasets and introduce autoencoders [68] of both poses and sequences

of poses to construct variations on input sequences of movement data and novel unprompted

sequences sampled from a lower-dimensional latent space.

Our models not only generate new movements and dance sequences both with and with-

out a movement prompt, but can also create infinitely many variations on a given input

phrase. These methods have been developed using a dataset of my own improvisational

dance, recorded using a state-of-the-art motion capture system with a rich density of dat-

apoints representing the human form. With this toolset, we equip artists and movement

creators with strategies to tackle the challenge Bausch faced in her own work: generating

truly novel movements with both structure and aesthetic meaning.

5.2.2 Context within Dance Scholarship

Dance scholarship, psychology, and philosophy of the past century has increasingly seen

movement as embodied thought. Prominent proposals including psychologist Jean Piaget’s

sensorimotor stage of psychological development, the philosopher Maurice Merleau-Ponty’s

“phenomenology of embodiment”, and Edward Warburton’s concept of dance enaction have

guided us today to view the human body as an essential influencer of cognition and percep-

tion [69].

Our vision for the future of creative artificial intelligence necessitates the modeling of
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not only written, visual, and musical thought, but also kinesthetic comprehension. The

application of machine learning to movement research serves not as a mere outsourcing of

physical creative expressiveness to machines, but rather as a tool to spark introspection and

exploration of embodied knowledge in humans.

Concurrently with this branch of research, choreographers have wrestled with the prob-

lem of constructing a universal language of movement. Movement writing systems in use

today such as Labanotation, Benesh Choreology, and Eshkol-Wachmann Notation can be

effective, but none are as universal as, say, musical notation, and some make culturally-

specific assumptions about how human bodies and types of motion should be abstracted

and codified [71].

It is not our aim to replace existing methods of dance notation. However, we note

the significance of 3D motion-capture techniques and abstract latent spaces in potentially

reorienting movement notation away from culturally-centered opinions such as qualities of

movement or which segments of the body get to define movement. Rather than gravitating

in the direction of defining “universal” movement signifiers, we see this work as more aligned

with the expressive figures generated by the visual artist Henri Michaux in an attempt

to capture what he called envie cinétique, or “kinetic desire” – in other words, the pure

impulse to move (see Figure 45). We therefore avoid limiting our generated movement

outputs to only physically-achievable gestures, as this would only serve to limit the potential

imaginative sparks lying dormant in these sequences.

Ethics in the philosophy of emerging media raise particular questions about how technol-

ogy impacts what it means to be human, especially given the way constraints and resources

of technology affect our embodied dispositions. When we consider the ethical dimensions

of choreography in the context of machine learning, one major benefit is the opportunity

to reflect on movement habits by observing, interpreting, and evaluating what is generated

technologically. Other drawbacks could also emerge: if we ascribe great value to what we

see, we may find ourselves in a position where we envy an algorithm’s capacity to generate

novel choreography. This may in turn lead us to cast judgement on ourselves and doubt our

own human-created choreographies. While technology may provide new insights into pat-

terns within dance sequences, it also inevitably leads to normative discussion about what
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Fig. 45: Henri Michaux’s notion of envie cinétique, or “kinetic desire”, is represented by
expressive, personal, and idiosyncratic gestures in calligraphic ink in his series Mouvements
[70].
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it means to choreograph well, or appropriately, or even creatively. This opens the door

for fears of replacing our own practice with algorithms that could ostensibly rob us of the

opportunity to get better at choreography, or learn to be more creative.

Several prominent choreographers have sought out both motion capture and machine

learning tools to augment their practice, from Bill T. Jones and the OpenEndedGroup’s

1999 motion capture piece Ghostcatching to William Forsythe to Merce Cunningham [72,

73, 74]. Wayne McGregor recently collaborated with Google Arts & Culture to create Living

Archive, a machine learning-based platform to generate a set of movements using movement

data extracted from McGregor’s video archives [75].

Our work represents a unique direction in the space of “AI-generated” choreographies,

both computationally and artistically. Computationally, we combine high-dimensional and

robust 3D motion capture data with existing RNN-based architectures as well as introducing

the use of autoencoders for 3D pose and movement sequence generation. Artistically, we

deviate from having novel predicted sequences as the only end goal – in addition to this

functionality, we grant choreographers the power to finely-tune existing movement sequences

to find subtle (or not-so-subtle) variations from their original ideas.

5.2.3 Methods

Training data was recorded in a studio equipped with 20 Vicon Vantage motion-capture

cameras and processed with Vicon Shogun software. This data consists of the positions of 53

fixed vertices on a dancer in 3 dimensions through a series of nearly 60,000 temporal frames

recorded at 35 fps, comprising approximately 30 minutes of real-time movement. Each

frame of the dataset is transformed such that the overall average (x,y) position per frame

is centered at the same point and scaled such that all of the coordinates fit within the unit

cube. The data was then exported to Numpy array format for visualization and processing

in Python, and to JSON format for visualization with the interactive 3D Javascript library

three.js. The neural network models were constructed using Keras with a Tensorflow

backend.

In the following subsections, we describe two methods for generating dance movement in

both conditional (where a prompt sequence of fixed length is provided) and unconditional
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(where output is generated without input) modes. The first method involves a standard

approach to supervised training for sequence generation: an RNN is presented with a se-

quence of training inputs, and is trained to predict the next frame(s) in the sequence. The

second method takes advantage of autoencoders to convert either an arbitrary-length se-

quence of dance movement into a trajectory of points in a low-dimensional latent space, or

a fixed-length sequence to a single point in a higher-dimensional latent space.

LSTM+MDN: The model proposed in chor-rnn [61] uses RNNs to generate dance

from a dataset of 25 vertices captured with a single Kinect device, which requires the

dancer to remain mostly front-facing in order to capture accurate full-body data. Our RNN

model uses an input layer of size (53 × 3 ×m) to represent 53 three-dimensional vertices

with no rotational restrictions in a prompt sequence of m frames at a time. These sequences

are then input to a series of LSTM layers, typically three, followed by a Mixture Density

Network [62] that models proposals for the vertex coordinates of the subsequent n frames.

The LSTM layers ensure the model is capable of capturing long-term temporal dependencies

in the training data, while the MDN layer ensures generated sequences are dynamic and do

not stagnate on the conditional average of previous vertex sequences [76]. The network is

trained using supervised pairs of sequences by minimizing the negative log likelihood (NLL)

of the proposed mixture model.

We also developed a modification of this structure using Principal Component Analysis

(PCA) to reduce the dimensionality of the input sequences. This reduces the amount

of information that must be represented by each LSTM layer. We then invert the PCA

transformation to convert generated sequences in the reduced-dimensional space back into

the (53× 3× n)-dimensional space.

The structure of a Mixture Density Network, as laid out in detail in [76], allows us to

sample our target predictions from a linear combination of m Gaussian distributions, each

multiplied by an overall factor of αi, rather than from a single Gaussian. The probability

density is therefore represented by

p
(
~t | ~x

)
=

m∑
i=1

αi(~x)φi
(
~t | ~x

)
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where ~x represents our input data, ~t reprents a given predicted output, m represents the

total number of Gaussian distributions in the mixture, and c represents the total number of

components to predict (here, 53× 3 for each timeslice). Each of the Gaussian distributions

is modeled as:

φi
(
~t | ~x

)
=

1

(2π)
c
2σi(~x)c

e
− |~t−~µi(~x)|

2

2σi(~x)
2 ,

where ~µi(~x) and σi(~x) represent the mean values and variances for each component of the

generated output.
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Fig. 46: (a) The 2-dimensional latent space of an autoencoder trained on a subset of the
full dataset. The frame numbers show the procession of the sequence through time at a
frame rate of 35 fps. (b) An example sequence of real training data is highlighted in this
latent space. Note that its structure is highly noncontinuous. (c) The 2-dimensional latent
space of an autoencoder trained on the same subset of data as the previous plots, but with
the angular orientation of the frames subtracted. (d) The same sequence of real training
data is highlighted, showing a much smoother and more continuous structure.

106



Autoencoder Methods: Unlike the RNN methods described above, autoencoders can

learn features of the training data with a less directly supervised approach. The input and

output layers are identical in dimensionality, while the intermediate layer or layers are of a

reduced dimension, creating a characteristic bottleneck shape in the network architecture.

The full network is then trained to replicate the training samples as much as possible by

minimizing the mean-squared error loss between the input and the generated output. The

network therefore learns a reduced dimensionality representation of “interesting” features in

an unsupervised manner that can be exploited in the synthesis of new types of movement.

While a well-trained autoencoder merely mimics any input data fed into it, the resulting

network produces two useful artifacts: an encoder that maps inputs of dimension (53×3×m)

to a (d × m)-dimensional space (d < 159) and a decoder that maps (d × m)-dimensional

data back into the original dimensionality of (53× 3×m). This allows us to generate new

poses and sequences of poses by tracing paths throughout the (d ×m)-dimensional latent

space which differ from those found in the training data.

While there are many other dimensional reduction techniques for data visualization,

such as PCA, UMAP, and t-SNE [77, 78, 79], a significant advantage of autoencoders is that

they learn a nonlinear mapping to the latent space that is by construction (approximately)

invertible. Some differences between these other dimensionality-reducing techniques are

illustrated in Figure 47.

In principle, autoencoders can be used to synthesize new dance sequences by decoding

any arbitrary trajectory through the latent space. We prioritize continuity and smoothness

of paths in the latent space when possible, as this allows human-generated abstract trajec-

tories (for example, traced on a phone or with a computer mouse) a greater likelihood of

creating meaningful choreographies. These qualities of trajectories in the latent space are

most prevalent in PCA and our autoencoder methods (see Figure 47). However, as PCA is

a linear dimensionality-reduction method, it is far more limited in ability to conform to the

full complexity of the realistic data manifold compared to autoencoder methods.

The autoencoders’ latent spaces do tend to produce mostly continuous trajectories for

real sequences in the input data. This continuity can be greatly enhanced by subtracting

out angular and positional orientation of the dancer, as shown in Figure 46. Removing these
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Fig. 47: A variety of 2D latent spaces are compared across multiple linear and nonlinear
dimensionality-reduction techniques (excluding autoencoders): (a) PCA, (b) t-SNE, (c)
t-SNE following PCA, and (d) UMAP. The top row shows full latent spaces for a subset of
the training data, while the bottom row highlights the same example sequence of 50 frames
in each space. All but PCA show a very segmented and discontinuous path for the sequence
across the latent space. Our autoencoder techniques (see Figure 46) are comparable to PCA
in terms of continuity of the paths in latent space, but have a much higher capacity to learn
complex, nonlinear relationships than PCA alone.

dimensions of variation further reduces the amount of information that must be stored by

the autoencoder and allows it to create less convoluted mappings of similar poses regardless

of the overall spatial orientation of the dancer.

However, absent a deliberate human-selected trajectory as an input, it is a priori unclear

how to select a meaningful trajectory, i.e., one that that corresponds to an aesthetically or

artistically interesting synthetic performance.

In order to address this limitation, and to give some insight into the space of “interesting”

trajectories in the latent space, we take another approach in which a second autoencoder

is trained to reconstruct fixed-length sequences of dance poses by mapping each sequence

to a single point in a high-dimensional latent space. Moreover, we train this network

as a Variational Autoencoder (VAE) [80] which attempts to learn a latent space whose

distribution is compatible with a (d×m)-dimensional Gaussian. Sampling from this latent

space results in unconditionally-generated sequences that are realistic and inventive (see

Figure 48). For each sampling, we look at a single point in the latent space corresponding

to a fixed-length movement sequence. Within the scope of this project, we do not attempt
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to impose any continuity requirements from one sampling to the next. Latent space points

are chosen approximately isotropically. This creates a complementary creative tool to our

previously-described traditional autoencoder for poses. We anticipate that choreographers

and researchers could draw continuous paths through the latent space of poses to generate

new movements as well as sample from the VAE latent space to generate new movement

phrases and/or variations on existing phrases.

With both standard and variational autoencoders trained to replicate single poses and

sequences of poses respectively, we introduce some techniques for taking a given input

phrase of movement and generating infinitely many variations on that phrase. We define

“variation” to mean that the overall spirit of the movement be preserved, but implemented

with slightly different timing, intensity, or stylistic quality.

After identifying a desired dance phrase from which to create variations, we identify the

sequence of points in the latent space representing that sequence of poses. We first con-

structed trajectories close to the original sequence by adding small sinusoidal perturbations

to the original sequence. This created sequences resembling the original phrase, but with

Fig. 48: Unconditionally-sampled sequences from the VAE.

Fig. 49: Unconditionally-sampled
sequences from the VAE projected
into the latent space of the pose au-
toencoder (1 = top-most sequence; 4
= bottom-most sequence). Trajecto-
ries begin at darker colors and end at
lighter colors.

109



an oscillatory frequency that was apparent in the output. This frequency could be tuned

to the choreographer’s desired setting, if the oscillatory effect is desired. However, we also

sought out a method that constructed these paths in a less contrived manner.

For a VAE trained on sequences of poses, each point in the latent space represents an

entire sequence of a fixed length m. We can construct variations on the input sequence by

adding a small amount of random noise to the latent point and then applying the decoder

to this new point in the latent space. This creates a new generated variation on the original

sequence, with a level of “originality” that scales with the amount of noise added. Since the

VAE’s latent space has been constrained to resemble a Gaussian distribution, we can sample

frequently from the latent space within several standard deviations of the origin without

observing highly unphysical output sequences. Sampling within less than approximately

0.5σ tends to give very subtle variations, usually in timing or expressiveness in the phrase.

Sampling within approximately 1 to 2σ gives more inventive variations that deviate further

from the original while often preserving some element of the original, e.g. a quick movement

upwards of a limb or an overall rotational motion. Sampling within 3 to 4σ and higher can

produce myriad results ranging from no motion at all to extreme warping of the body to

completely destroying the sense of a recognizeable human shape.

The relationship between these two latent spaces – that of the pose autoencoder and

that of the sequence VAE – may be exploited to gain insight into the variations themselves.

Points in the VAE latent space directly map to trajectories in the pose autoencoder space.

By introducing a slight amount of noise to the point in the VAE latent space corresponding

to a desired input sequence, we may decode nearby points to construct trajectories in pose

space that are highly related to the original input sequence. Examples of variations from

reference sequences are shown in Figure 50.

5.2.4 Results and Discussion

Both the RNN+MDN and autoencoded outputs created smooth and authentic-looking

movements. Animations of input and output sequences for various combinations of our

model parameters may be viewed here: http://www.beyondimitation.com.

Training the RNN+MDN with a PCA dimensionality reduction tended to improve the
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quality of the generated outputs, at least in terms of the reconstruction of a realistic human

body. We used PCA to transform the input dataset into a lower-dimensional format that

explains 95% of its variance. This transformation of the training data shortened the training

time for each epoch by up to 15%, though test accuracy was not significantly affected. The

output resulted in a realistic human form earlier in the training than without the application

of PCA. In the future, we may also investigate nonlinear forms of dimensionality reduction

to further improve this technique.

The architectures used for the RNN+MDN models included 3 LSTM layers with sizes

varying from 32 to 512 nodes. They took input sequences of length m ranging from 10 to

128 and predicted the following n frames ranging from 1 to 4 with a learning rate of 0.00001

and the Adam optimizer [81].

The final architecture for the pose autoencoder comprises an encoder and a decoder

each with two layers of 64 nodes with LeakyReLU activation functions with α = 0.2 and

compiled with the Adam optimizer. The pose autoencoder takes inputs of shape (53 × 3)

and maps them into a latent space of 32 dimensions. Training this over 80% of our full

dataset with a batch size of 128 and a learning rate of 0.0001 produced nearly-identical

reconstructions of frames from the remaining 20% of our data after about 50 epochs. We

also trained a modification of this architecture with a data augmentation technique that

added random offsets between [0, 1] to the x̂ and ŷ axes. This did not yield a significant

advantage in terms of test accuracy, however, so we did not use it for our latent space

explorations.

The final architecture for the sequence VAE also comprises an encoder and a decoder,

each with 3 LSTM layers with 384 nodes and 1 dense layer with 256 nodes and a ReLU

activation function, where 256 represents the dimensionality of the latent space. The model

was compiled with the Adam optimizer. The VAE maps inputs of shape (53× 3× l), where

l is the fixed length of the movement sequence, to the (256 × l)-dimensional latent space

and then back to their original dimensionality. We used input sequences of length l = 128,

which corresponds to about 4 seconds of continuous movement. We augmented our data by

rotating the frames in each batch by a randomly-chosen θ ∈ [0, 2π]. The VAE was trained

with a learning rate of 0.001, a Kullback-Leibler weight = 0.0001, and a Mean Squared Error
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(MSE) loss scaled by the approximate resolution of the motion capture data for about 1

day on a CuDNN-enabled GPU.

Sampling from the latent space of standard and variational autoencoders for both poses

and sequences provided a rich playground of generative movements. We are particularly

interested in the dynamic range provided by these tools to create variations on input se-

quences: by increasing the magnitude of the perturbation of the latent sequence to be

decoded, choreographers can decide how ‘creative’ the outputs should look. By opting for

either a standard or variational autoencoder, choreographers can sample from latent spaces

with a bit more or a bit less similarity in the movements themselves to the training data.

Adding sinusoidal perturbations as well as generating stylistically-related variations by ex-

ploiting the relationship between these two latent spaces proved effective and compelling

methods for creating choreographic variations. The subtlety and smoothness with which we

can vary input sequences using the VAE also underscores that the model is truly generating

new outputs rather than memorizing the input data.

These methods have already been effective at sparking choreographic innovation in the

studio. They center the choreographer’s embodied knowledge as something to be modeled

and investigated – not just as a compendium of possible bodily positions, but as a complex

and high-dimensional landscape from which to sample movements both familiar and foreign.

Movements throughout these abstract landscapes can be constructed in a variety of ways

depending on the application. For example:

• For a choreographer seeking primarily to document their practice, training these mod-

els allows them to save not only the physical motions captured in the motion capture

data, but also their potential for movement creation as approximated by a well-trained

model. Different models may be saved from various periods of their practice and com-

pared or re-explored indefinitely.

• For a choreographer looking to construct a new piece out of their own typical patterns

of movement, sampling from within 1σ in the VAE latent space can generate multiple

natural-looking phrases that can then be stitched together in the studio to create a

cohesive piece. They could also prompt new sequences of arbitrary length following
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from existing choreography via the RNN+MDN model.

• For a choreographer who wants to understand and perhaps break out of their typical

movement patterns, analyzing the latent space of the pose autoencoder can be instruc-

tive. Visualizing trajectories through the space can inform what areas lie unexplored.

Drawing continuous paths through the latent space can then construct new phrases

that might otherwise never emerge from an improvisation session.

• A choreographer might also use these methods to support teaching movements to

others. By comparing trajectories in the same latent space, students can track their

mastery of a given movement sequence.

Future technical work to develop these methods will include the investigation of non-

linear, invertible data-reduction techniques as a form of pre-processing our inputs, other

neural network-based models designed to work with timeseries data such as Temporal Con-

volutional Networks, and more sophisticated methods for sampling from latent spaces.

Feedback from other choreographers who used our interactive models also indicated that

it would be interesting to extend our current dataset with additional data focused on the

isolation of certain regions of the body and/or modalities of movement. Another possible

next step in extending this work includes exploring latent spaces of multiple dancers. While

only solo dances were captured for these studies, the Vicon system can readily accommodate

multiple simultaneous dancers, which could allow us to explore the generation of duets and

group choreographies.
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Fig. 50: In the left column, a reference input sequence (above, A) and a generated variation
sequence (below, B) with 0.5σ noise added to the input’s representation in latent space are
shown, both with lengths of 32 frames (time progressing from left to right). In the right
column, Reference (A) and generated (B) variation sequences projected into the pose au-
toencoder space. Trajectory colors go from dark to light over time. Observed modifications
to the sequences include: (a) while the reference sequence includes a rotation, the generated
variation removes the spin, while the movements of the left arm are synchronous in both
cases; (b) the generated variation preserves the rising motion but adds a rotation; and (c)
the reference sequence features a kick, while the variation instead translates this upward
motion into the arms, rather than the feet.
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5.3 Choreo-Graph: Learning Latent Graph Representations of the Dancing

Body

The contents of this chapter were adapted from a publication in the proceedings of

the NeurIPS 2020 Workshop on Machine Learning for Creativity and Design [82]. This

work was developed in 2020 during a summer internship with Intel’s AI lab alongside my

collaborators Santiago Miret, Somdeb Majumdar, and Marcel Nassar.

5.3.1 Introduction

This project introduces, to the best of my knowledge, the first use of Graph Neural

Networks (GNNs) for the generation and analysis of choreographic data.

Extending the work in [57] just described in Section 5.2, we apply GNNs to impose

an explicit graph structure to the latent space encodings of movement sequences based

on the Neural Relational Inference (NRI) model [83]. These latent graphs represent the

body as nodes and a variational topology of edges, with positions over time included as

node features. This method not only generates future movements, but also augments the

analysis by highlighting compelling learned categories of connections and identifying a small

subset of important interactions within the dancer’s body. The creative implications of this

work are somewhat different than my earlier work using VAEs: rather than only focusing on

movement generation, this work results in an introspective analysis on the interconnectivity

of the moving body.

The results shown here are from our custom implementation of the NRI model using

the GNN library Pytorch Geometric [84]. Our code, data, and animations of our generated

outputs and edge types can be found at https://github.com/mariel-pettee/choreo-

graph.

5.3.2 Neural Relational Inference

NRI is a GNN-based model designed to analyze the dynamic evolution of many-body

systems for which the underlying interaction structure between particles is unknown. Based

on a VAE, the model learns to categorize the edges of a fully-connected input graph into

a finite number of learned edge types. It uses a neural network-based encoder to convert
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the input graph data into a discrete probability distribution over edge types, and then

applies an RNN-based decoder to predict the future system dynamics given those edge type

predictions (see Figure 51). The encoder and decoder are jointly trained with a Gumbel-

Softmax sampling of edge types in the latent graph embedding space.

The Gumbel-Softmax approximation allows differentiable sampling during training, which

can then become categorical during inference runs after training. The loss function consists

of two components: (1) the negative log-likehood (NLL) reconstruction loss and (2) the

Kullback-Leibler (KL) loss reflecting how much the latent edge type probability distribu-

tions resemble the desired prior distribution. Our experiments used a sequence length of 49

timesteps, of which the final 10 timesteps are predicted, and four total edge types, including

a non-edge as the first type.

5.3.3 Visualization of Edge Types

Following training of our model, we use our test set to create animations of the generated

sequences as well as the categories of edges learned by the model. Each learned edge type

defines a category of directed edges within the body that describe similar physical dynamics

between two nodes. By ranking the edges by their normalized log-probabilities within each

edge type, we can isolate the most indicative edges for each learned category, revealing

distinct latent cross-body interactions that would be otherwise invisible (see Figure 52). The

first edge type is coded as a non-edge in order to encourage sparse graph representations.

This ranking strategy can reduce a dataset of nearly 3,000 fully-connected, directed edges

into fewer than 100 edges total that still capture the main kinematic features and edge

categorizations of the motion.

5.3.4 Context within Contemporary Dance & Future Directions

Building on post-modern and contemporary dance’s rich history of generating chore-

ography via algorithms, games of chance, and other technologies [72, 73, 75, 85, 86], this

application of GNNs to dance opens new pathways for generating movements for both hu-

man and animated bodies with techniques that many dancers already use. The discovery of

various edge types yields new insight into a dancer’s movements, revealing their dominant
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cross-body interactions and challenging them to focus on their least important connections

for future improvisations as a way of resisting more comfortable patterns of movement gen-

eration. AI-generated dance could also be fine-tuned to fit various aesthetic preferences by

varying the strengths of these edge connections.

In our experiments, we find that the important learned edges often correlate with tenets

of the dancer’s classical and contemporary dance training. In the example in Figure 52,

category (c) reflects the balletic notion of the opposition of arms and legs. This example also

has distinct edge types representing how the movement of the left hand influences the upper

torso and head (b) as well as how the left foot influences the movements of the hands (d).

This notion of cause-and-effect, of one body part initiating a movement that ripples to a

distant corner of the body, is suggestive of Ohad Naharin’s movement vocabulary Gaga [87],

which emphasizes the generative potential of various “engines” within the body. Through

the lens of Gaga, the body is highly connective, and regular movement practice can help a

dancer become more sensitive to these granular self-interactions.

Interestingly, most of the learned edge types in our experiments do not follow the phys-

ical connectivity of the skeleton. The model’s emphasis on the extremities as initiators

makes sense in the context of the dancer’s many years of ballet training, which emphasizes

extension through the hands and feet. Contemporary and post-modern dance, including

Gaga, can tend to focus more on contractions of the abdominals and the hips than of move-

ments in the body’s distal extremeties. We could also potentially interpret the lack of edges

to and from the core of the body as a relative dearth of datapoints from the motion capture

suit in this area.

Future work in this direction will include a description of the qualities of the learned

interaction types, as well as an ablation study to determine how much predictive information

is contained in the sparsest edge types. We hope that our application of GNNs to the body

can introduce dancers to a new set of self-interactions to investigate as a complement to

their own embodied knowledge and perceptions.
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5.3.5 Additional Technical Details

• Dataset: We use the same motion capture dataset used in [57], which contains

approximately 50,000 timesteps of (x,y,z) positions for 53 points on the body. This

corresponds to around 30 minutes of improvisational choreography of my own body,

drawing from my extensive background in ballet and contemporary dance. Of the

53 points on my body, about 10% are on the head, 30% on the arms, 8% on the

hips, 37% on the legs and feet, and the remaining 15% on the chest and back. We

also calculate velocities for each timestep in the dataset. For training the GNN, we

convert the dataset into batches of fully-connected graphs for sequences of 49 timesteps

in a sliding window fashion. The first 70% of the batches are designated as training

batches, the next 15% are used for validation during training, and the remaining 15%

are used for testing following the completion of the training.

• Training: The model used, which embeds the node features to 256 dimensions and

contains hidden layers of size 256 as well, has 1.7 million trainable parameters. The

Adam optimizer was used with learning rate 0.00005 and a weight decay coefficient

of 0.0005. The model was trained on a GPU until convergence for approximately 12

hours.

5.3.6 Ethical Considerations

These results should be understood as a personal investigation into one dancer’s move-

ment generation process, not as a general declaration about what body connections are

significant for all dancers or bodies. The dataset reflects the unique movement practice of

a single dancer and therefore cannot represent the full diversity of human bodies or global

movement practices. By only using motion capture data captured from my own body, we

ensured the data was sourced consensually, with the explicit goal of using it to train machine

learning models for creative insight.
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5.4 Physics Applications

Though the methods described in this chapter were developed for a particular dataset

of my own movements, the techniques are generic, and have several interesting connections

to recent problems in ML for physics. Generative models such as VAEs could be used in

the future for studies concerning the creation of simulated LHC data without the signifi-

cant computational demands of the current MC generators. In contrast with Generative

Adversarial Networks (GANs) that have been applied towards this problem, VAEs are of-

ten faster, more stable, and easier to train [88]. Rather than generating e.g. images of

jets [89], the methods described here could be adapted to consider timeseries datasets or

dynamic object trajectories such as particle tracks. GNNs are also of great interest for track

reconstruction in the HL-LHC [90], and the particular focus on using GNNs for learning in-

teraction edges has seen compelling results in extracting physically-meaningful relationships

from edge types on simulations and even real dark matter data [91].

By applying our GNN model to particle track information, we can extract the most

important interaction edges between tracker hits, investigate the interaction types learned

by the model, and predict the future trajectories of the tracks. By imposing a sparse prior

distribution on the edge types, we can require that the majority of edges are classified as

a non-edge, potentially allowing for more efficient, information-rich representations of the

underlying particle interactions themselves. I am particularly curious to use this model to

reframe trigger-level and offline particle identification, whether for taus vs. QCD-initiated

jets or for classifying many different particle types at once, as a question of learning latent

time-dependent interaction graph structures.
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Fig. 52: The top 1% of edges, ranked by the normalized magnitude of each edge’s log-
probability, for the four learned edge types on the same batch of test data. (a) represents a
non-edge, while the other edge types show directed edges going primarily from (b) the left
hand to the upper body, (c) right hand to left foot, and (d) left foot to both hands.
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6 The V → leptons, H → ττ Analysis Strategy

6.1 Motivation

One of the primary mandates of the LHC is to investigate whether the origin of the

masses of most elementary particles is actually the result of electroweak symmetry breaking

and the Higgs mechanism. Since the discovery of the Higgs boson in 2012, LHC physicists

have been feverishly investigating its properties to understand if this new particle aligns

with our theoretical expectations for the Higgs boson from the Standard Model. This is a

monumental task, as we can study the Higgs boson from a variety of angles based on its

many combinations of production channels and decay channels. As we saw in Table 4, there

are four primary ways we expect to produce a 125 GeV Higgs boson at the LHC at
√
s = 13

TeV:

• Gluon-gluon fusion (ggF ): ∼88% of total Higgs boson production cross-section (σH)

• Vector boson fusion (V BF ): ∼7% of σH

• Associated production with a vector boson (V H): ∼4% of σH

• Associated production with 2 top quarks (ttH): < 1% of σH

The Standard Model also provides predictions for the branching ratios of the Higgs

boson as it decays into other particles (shown in Table 5). However, this does not necessarily

correlate with the most likely observations of 125 GeV Higgs decays at the LHC, as some

decay channels are more difficult to detect than others. For example, H → γγ has a

relatively small branching ratio, with less than 1% of expected Higgs boson decays, yet

it was one of the first Higgs boson decay channels observed at the LHC due to its clean

experimental signature. The primary Higgs boson decay channels targeted during Run 2 at

the LHC are:

• Higgs decaying to two photons (H → γγ)

• Higgs decaying to two Z bosons (H → ZZ∗)

• Higgs decaying to two W bosons (H →WW ∗)

• Higgs decaying to two tau leptons (H → τ τ̄)

• Higgs decaying to two b quarks (H → bb̄)
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Of the 20 possible combinations of these primary production and decay modes, only

three have been excluded from the latest combination measurements of the properties of

the Higgs boson (see Figure 53): ggF , H → bb̄; V H, H → WW ∗; and V H, H → τ τ̄ . If

the Higgs boson is indeed responsible for lepton masses via the Yukawa couplings, the most

massive lepton – the tau – is our main probe of Higgs interactions with the lepton sector.

The V H, H → τ τ̄ process is therefore an important missing piece of our overall description

of the Higgs boson based on the decay modes we have best access to at the LHC.9

Run 2 at the LHC is a particularly interesting time for the V H, H → ττ analysis: for

the first time, we might have enough data to detect evidence of this interaction. The Run 1

V H, H → ττ analysis was limited in its statistics for this rare channel and was only able to

set upper limits on the overall V H, H → ττ cross-section [93]. This current analysis work,

however, uses about seven times the total integrated luminosity from the Run 1 analysis at

the LHC. It also benefits from the increased average number of bunch crossings per event

and higher center-of-mass energy of Run 2 (
√
s = 8 GeV →

√
s = 13 GeV). Thanks to these

improved experimental conditions, both the V H production mode [94] and the H → ττ

decay mode [95] have separately been observed by the ATLAS Experiment in recent years

with > 5σ significance. Additionally, since this analysis targets specifically V → leptons,

H → ττ , we benefit from high trigger efficiencies for electrons and muons in particular for

selecting our events. By using electron and muon triggers exclusively, we do not risk biasing

our H → ττ decay with the use of tau triggers. Evidence of this channel in Run 2 would

be a significant milestone in our study of the Higgs boson with the potential to improve the

precision of the combined H → ττ measurement and our understanding of the Higgs boson

as a whole.

6.2 Summary of Analysis Strategy

The V → leptons, H → ττ analysis is composed of four signal regions:

• W → lνl, H → τlepτhad

• W → lνl, H → τhadτhad
9Note that I will omit the bar (τ̄) when writing out H → τ τ̄ for the remainder of this chapter, both for

simplicity and to avoid implying that we require each of our leptonic/hadronic tau decays to be a particular
sign, rather than the more general requirement that the pair of taus is opposite-sign.
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Fig. 53: The cross-section σ times branching ratio (BR) for each combination of Higgs
boson production and decay modes included in the overall Higgs boson measurements using
Run 2 data at

√
s = 13 TeV are shown, normalized to their SM expected values. The black

error bars show the total uncertainties in the measurements, while the yellow boxes show
statistical and blue boxes show systematic uncertainty values. Notably absent from this list
are three primary Higgs boson modes, including V H, H → τ τ̄ . [92]

124



• Z → ll, H → τlepτhad

• Z → ll, H → τhadτhad

In each of these cases, l ≡ {e, µ}. Interactions with the Higgs boson decaying to two

leptonically-decaying taus, i.e. H → τlepτlep, are excluded from our analysis to avoid over-

lapping with other important Higgs decay channels such as H → ZZ∗ → llll. Due to the

multiple neutrinos (i.e. sources of missing ET ) present in the final state of each signal region

from the tau decays, it is not possible to make a fully-reconstructed measurement of the

Higgs boson mass. Each signal region therefore uses a particular technique for estimating

or constraining the Higgs boson mass (described in Section 6.8). The ZH categories use

a technique called the Missing Mass Calculator (MMC), while the WH categories use a

quantity called Late-Projected Transverse Mass (M2T).

Across the four signal categories, there are two possible sources of non-signal events that

we must account for: irreducible and reducible background events. Irreducible events

are those in which all final-state particles have been correctly reconstructed and identified

and match the final-state configuration for one of our signal regions, but the event itself is

not a V → leptons, H → ττ process. These events are typically diboson events, e.g. WZ

(W → lν, Z → ττ) and ZZ (Z → ll, Z → ττ), where a Z → ττ decay mimics a H → ττ

decay. The Run 1 analysis used a Monte Carlo (MC) subtraction technique to estimate the

contributions of these events [93]. For Run 2, I have developed a neural network technique

trained on MC that exploits the kinematic differences between diboson and signal events

for this separation. Reducible backgrounds, on the other hand, are a variety of events that

enter into our signal region because of one or more misidentified objects and/or correctly-

identified objects that originated from a non-prompt process, e.g. conversion electrons

produced from photon interactions in the ATLAS detector. These types of events, called

fakes, are dominated by the contribution from quark- and gluon-initiated jets misidentified

as taus, but also have contributions from fake electrons and muons. Electron, muon, and

tau fake factors are calculated separately using a data-driven technique called the Fake

Factor Method. These fake factors allow us to estimate the contribution of fake objects in

our signal region based on how many fake objects are measured in a fake-enriched region

in data (Z → ll + jets).
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6.2.1 Data and Monte Carlo Sample Productions

The data used for this analysis corresponds to the full Run 2 LHC dataset, i.e. years 2015

- 2018 of datataking, deemed good for physics. This amounts to an integrated luminosity

of 139 fb−1 of data. Table 8 summarizes the simulated processes incorporated into this

analysis. Both data and MC samples were produced using the HIGG4D1 (“lep-lep”) and

HIGG4D2 (“lep-had”) derivations to correspond with the ZH and WH analysis regions.

Process MC Generator + UEPS PDF Set Perturbative Order
W → lν, H → ττ Powheg+Pythia8 NNPDF30NLO NLO
Z → ll, H → ττ Powheg+Pythia8 NNPDF30NLO NLO
ggF H → ττ Powheg+Pythia8 NNPDF30NNLO NNLO
VBF H → ττ Powheg+Pythia8 NNPDF30NLO NLO
ttH, H → ττ Powheg+Pythia8 NNPDF23LO LO

Diboson Sherpa 2.2.2 NNPDF30NNLO NNLO
Triboson Sherpa 2.2.2 NNPDF30NNLO NNLO
W+jets Sherpa 2.2.1 NNPDF30NNLO NNLO
Z+jets Sherpa 2.2.1 NNPDF30NNLO NNLO

t Powheg+Pythia8 NNPDF30NLO NLO
tt̄ Powheg+Pythia8 NNPDF30NLO NLO

Table 8: Information on the Monte Carlo generators used to produce the major simulated
processes incorporated into this analysis in Run 2, including the process name, names of
the MC generator and the model of the underlying event with hadronization and parton
showering (UEPS), the corresponding PDF set, and the perturbative order in QCD to
which the cross-section has been calculated (NLO = Next-to-leading order; NNLO = Next-
to-next-to-leading order.)

The HIGG4D1 (“lep-lep”) derivation requires one of the following reconstruction-level

criteria for an event to be included:

• Two electrons with peT > 13 GeV and passing medium ID

• One electron with peT > 13 GeV and passing medium ID + one muon with pµT > 13

GeV with good reconstruction quality

• One muon with pµT > 13 GeV + one muon with pµT > 9 GeV, each with good recon-

struction quality

The HIGG4D2 (“lep-had”) derivation requires one of the following reconstruction-level

criteria for an event to be included:
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• One electron passing medium ID + one hadronic tau with electric charge |q| = 1 and

one or three charged tracks, passing either peT > 22 GeV & pτT > 18 GeV or peT > 15

GeV & pτT > 23 GeV

• One muon with good reconstruction quality + one hadronic tau with electric charge

|q| = 1 and one or three charged tracks, passing either pµT > 18 GeV & pτT > 18 GeV

or pµT > 12 GeV & pτT > 23 GeV

6.2.2 Analysis Software

After producing the HIGG4D1 and HIGG4D2 derivations for our MC and data samples,

we apply a software called the xTauFramework for producing ROOT TTree output files for

further analysis. The ATLAS-internal xTauFramework is collectively maintained and up-

dated by several ATLAS members and is used for other tau-related analyses such as the

ggF/V BF H → ττ coupling measurement as well as searches for lepton flavor-violating

processes involving taus in the final state. It is written primarily in C++ and is responsible

for calibrating and sorting physics objects, calculating scale factors and systematic uncer-

tainty variations, and applying overlap removal. Additionally, we require events to contain

at least one reconstructed tau and one reconstructed electron or muon passing overlap re-

moval, as this is the minimal set of shared objects across all four of our signal regions. From

input xAODs or derivation (DxAOD) files, the xTauFramework outputs ROOT files called

MxAODs, or “mini xAODs”, as ∼ 1 GB-size files suitable for interactive analysis.

With these ROOT files in hand, we then use a custom (ATLAS-internal) Python-based

analysis framework called vhtautau to apply our selections, calculate event-level and object-

level weights, and make our fake rate measurements. Our software benefits from uproot

[96], a package designed for pure Python-based ROOT I/O, to convert our variable-length

vectors of particles in the ROOT file structure into fixed-length Pandas [42] DataFrames

stored in an HDF5 binary file format.
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6.3 Event Selection

6.3.1 Trigger Selection

One of the advantages of the search for H → ττ in the leptonic V H production mode is

the guaranteed presence of electrons or muons in our final states of our signal events. We

therefore optimize our analysis to take advantage of the relatively clean and efficient electron

and muon triggers and suppress background from multijet pileup events. We use the same

trigger chains as the H → τlepτlep channel in the ggF/V BF SM H → ττ combination

analysis: single-electron triggers, single-muon triggers, e + µ triggers, e + e triggers, and

µ+µ triggers. Because each of these triggers is not maximally efficient at the minimum pT

threshold (see Figures 54 and 55), we apply pT cuts on our triggered objects that exceed

the minimum trigger thresholds by 2 GeV.

Fig. 54: Efficiency of the HLT_e24_lhvloose_nod0 trigger versus offline electron ET for
2018 datataking. A steep turn-on curve in efficiency starting at the minimum trigger pT
threshold demonstrates the benefit of applying a slightly higher pT requirement on our
triggered objects. [27]

128



Trigger Type 2015 Threshold(s) [GeV] 2016-2018 Threshold(s) [GeV]
Single electron peT > 24 peT > 26
Single muon pµT > 20 pµT > 26

Electron + muon peT > 17, pµT > 14 peT > 17, pµT > 14
Symmetric di-electron peT > 12 peT > 17
Symmetric di-muon pµT > 14 pµT > 14

Asymmetric di-muon pµ1

T > 20, pµ2

T > 8 pµ1

T > 22, pµ2

T > 8

Table 9: Run 2 minimum trigger thresholds. Analysis-level cuts are 2 GeV higher than
each of these thresholds in order to avoid the relatively degraded efficiency of the trigger at
its minimum threshold.

6.3.2 Overlap Removal

During the ATLAS reconstruction and identification process for each physics object, it

is sometimes the case that a single object will be reconstructed as multiple categories of

objects. For example, an electron candidate might also be reconstructed as a 1-prong tau.

If these different reconstructed objects overlap, i.e. their calorimeter clusters or tracks fall

within the same region of ∆R, then an overlap removal process is initiated in order to assign

each reconstructed object a single label. Broadly, this results in the preference of electrons

and muons over taus and the preference of taus over jets. The standard overlap removal

process in ATLAS Run 2 compares particles in the following order:

1. Choose electrons over taus (within ∆R < 0.2)

2. Choose muons over taus (within ∆R < 0.2)

3. Choose muons over electrons (if the object has a muon-like calorimeter signature);

otherwise, prefer electrons to muons

4. Choose electrons/muons over photons (within ∆R < 0.4)

5. Choose electrons/muons over jets (within ∆R < 0.2); otherwise, choose jets over

electrons/muons (within ∆R < 0.4)

6. Choose taus over jets (within ∆R < 0.2)

7. Choose jets over photons (within ∆R < 0.4)
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Fig. 55: Efficiency of passing the single muon trigger HLT_mu26_ivarmedium or HLT_mu50
as a function of muon pT in the barrel (above, |η| < 1.05) and endcap regions (below,
1.05 < |η| < 2.5). [28]

130



6.3.3 Object Criteria

The following documents the specific object criteria we require for physics objects used

in the V H, H → ττ analysis in Run 2. In many cases, they closely map onto similar

requirements from the Run 1 analysis, but overall they reflect the latest recommendations

based on optimizations and changes in object reconstruction and identification in Run 2.

This analysis does not make explicit selections using photons, missing ET , or jets, though

missing ET is used to separate our WH and ZH categories when calculating our fake rates

and it is also an important input into our Higgs mass variables (MMC and M2T). Several

of our analysis regions also include b-jet vetos, which implicitly places object requirements

on jets.

• Electrons: Electrons are required to pass a minimum pT threshold of 13 GeV, have

an |η| < 2.47, have good reconstruction quality, and pass the Loose likelihood work-

ing point for electron identification (corresponding to an average of 93% efficiency for

2015-2017 datasets) [27]. For an electron to qualify as part of one of our signal cate-

gories, however, it must pass the Tight working point (80% efficient). Electrons addi-

tionally must pass overlap removal as described in the previous subsection. Electrons

must also pass an isolation criterion called FCLoose, short for “Fixed Cut Loose”,

defined for both calorimeter-level and track-level isolation [97]. At the calorimeter

level, the calorimeter cluster associated with the electron candidate must satisfy

Eiso
T (∆R < 0.2)/ET < 0.2,

meaning the combined transverse energies of the calorimeter topo-clusters in a cone of

∆R < 0.2 around the electron candidate must be less than 20% of the total transverse

energy of the electron candidate. Similarly, at the track level, the electron candidate

must satisfy

piso
T (∆Rvar < 0.3)/pT < 0.15,

meaning the scalar sum of good-quality electron tracks in a cone of a pT -dependent

∆R value around the electron candidate must be less than 15% of the total pT of

the electron candidate. Good-quality tracks are defined as those with pT > 1 GeV
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and with longitudinal impact parameter |z0 sin(θ)| < 3 mm, meaning the distance of

closest approach in the longitudinal plane to the track. The varying parameter ∆Rvar

has a maximum value of 0.2 and decreases as a function of pT in increments of 10

GeV/pT .

• Muons: Muons are required to pass a minimum pT threshold of 9 GeV, have an

|η| < 2.5, have good reconstruction quality, and pass the Loose muon identification

working point (corresponding to over 98% efficiency) [28]. For a muon to qualify as

part of one of our signal categories, however, they must pass the Tight working point

(between 90-93% efficient, depending on the pT of the muon). They additionally must

pass overlap removal as described in the previous subsection. Muons must also pass

a track-based isolation criterion called TightTrackOnly_FixedRad, defined as

pvarcone30
T < 0.06 · pµT ,

meaning the scalar sum of the muon pT within a cone of ∆R = min(10 GeV/pµT , 0.3)

must be less than 6% of the total muon candidate pT for pµT < 50 GeV. For muon

candidates pµT > 50 GeV, a fixed radius of ∆R < 0.2 is used instead to help reject

hadronic activity. Tracks included in this isolation requirement must have a minimum

track pT > 1 GeV.

• Taus: Taus are required to pass a minimum pT threshold of 20 GeV and have an

|η| between 0 and 2.5, excluding the crack region between the barrel and endcap

calorimeters (1.37 < |η| < 1.52). They must also have an absolute electric charge

|q| = 1 and either 1 or 3 charged tracks. The baseline tau requirements for our

analysis do not require a specific RNN tau ID working point, but instead make the

cut JetRNNSigTransMin > 0.01, meaning taus must not fall in the bottom 1% of the

RNN tau ID score distribution that has been flattened vs. µ and pT . For a tau to

qualify as part of one of our signal categories, however, it must pass the Medium RNN

ID working point (75% efficient for 1-prong taus and 60% efficient for 3-prong taus).

Taus must also pass the standard overlap removal process.

• Jets: Jets are required to pass a minimum of pT threshold of 20 GeV and fall within
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|η| < 4.5. Jets with pT < 60 GeV and |η| < 2.4 must also pass a Jet Vertex Tagger

(JVT) cut, a multivariate algorithm designed to help suppress pileup events [98]. Jet

cleaning criteria are also applied to minimize jets coming from non-prompt processes.

We also apply a b-tagging requirement to our jets with a fixed efficiency of 85%.

6.4 W → lν, H → τlepτhad Analysis Region

In this and the three following subsections, I will detail the selection requirements placed

on our four analysis regions. Each of these is structured with an initial preselection stage

that forms the baseline cuts for all subcategories under that same analysis region. From

there, additional cuts are applied to form the final signal region analysis region. Some of

these signal region cuts are altered or negated to form one or more control regions that

aid primarily in the validation of our background estimation methods.

These cuts are based on the selection criteria used for the Run 1 analysis, but have been

restructured for consistency across the four analysis regions such that what we refer to as

“preselection” in each case is truly a baseline for both the signal and control regions. They

have also been updated to include the latest recommendations for object reconstruction and

identification in Run 2. A summary table of all signal selections in the Run 2 analysis is

depicted in Table 10.

When applying our trigger selections, only one trigger is associated with an event, and

if multiple triggers are fired for one event, the trigger is chosen with the following order of

preference: (1) single muon; (2) single electron; (3) di-muon; (4) di-electron; (5) electron +

muon.

These selections are subject to change for the Run 2 analysis as we continue to establish

our anticipated background levels. For example, the thresholds on the b-jet veto, |pT | sums,

∆R requirements, etc. may need adjustments to suppress additional background events in

our analysis regions. We may also introduce additional control regions to take advantage

of increased statistics throughout.
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Category Selections
W → lνl & H → τlepτhad Taus:

• Exactly one τhad passing medium RNN ID
• τhad pT > 25 GeV
• τhad has opposite charge as other leptons

Leptons:
• Exactly two tight, isolated leptons (electrons or muons)
• Same electric charge

Other:
• |pT | of both leptons + |pT | of τhad > 80 GeV
• Veto b-jets

W → lνl & H → τhadτhad Taus:
• Exactly two τhad passing medium RNN ID
• pT > 20 GeV for each τhad
• Opposite electric charges
• Sum of |pT | > 100 GeV
• 0.8 < ∆R(τ1had, τ

2
had) < 2.8

Leptons:
• Exactly one isolated lepton l (l = e, µ)
• mT (l, E

miss
T ) > 20 GeV

Other:
• Veto b-jets

Z → ll & H → τlepτhad Taus:
• Exactly one τhad passing medium RNN ID
• τhad pT > 20 GeV
• Opposite electric charge as the lepton from the Higgs boson
• Sum of |pT | from both taus > 60 GeV

Leptons:
• Exactly three leptons l (l = e, µ)
• Two of these must be a same-flavor, opposite-sign particle-

antiparticle pair with invariant mass between 80 and 100 GeV
Z → ll & H → τhadτhad Taus:

• Exactly two τhad passing medium RNN ID
• pT > 20 GeV for each τhad
• Opposite electric charges
• Sum of |pT | > 88 GeV

Leptons:
• Exactly one particle-antiparticle pair of electrons or muons
• Combined invariant mass between 60 and 120 GeV

Table 10: Run 2 preselections + signal selections for the four leptonic VH analysis regions. These
have been adapted from the Run 1 analysis for the new Run 2 analysis environment, but have not
been fully optimized.
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6.4.1 Preselection

W → lν, H → τlepτhad events must fire one of the trigger types summarized in Table 9.

Following trigger selection, we require exactly two reconstructed, isolated leptons passing

the Tight identification working point and exactly one reconstructed hadronic tau passing

the Medium RNN identification working point. The hadronic tau is additionally required

to pass pτT > 25 GeV.

6.4.2 Signal Selection

Following preselection, we further define our signal selection in this category by requiring

that the two selected leptons have the same sign (to avoid selecting Z → + 1 jet events) and

the hadronic tau has the opposite sign. All three objects then must pass a requirement on

their combined pT to help reduce multijet backgrounds, which often consist of low-pT jets:

pl1T +pl2T +pτT > 80 GeV. Finally, we apply a b-jet veto, meaning we require that signal events

have no jets with the signature of a jet initialized by a b-quark, to reduce tt̄ backgrounds.

The motivation for the b-tagged jet veto comes from the CKM matrix. The top quark

must decay through a W boson and a bottom-type quark (d, s, or b), but approximately

90% of the time, we can expect it to decay into a W boson and b quark due to the relative

dominance of the |Vtb| element of the CKM matrix compared to the other elements involving

top quarks. Finally, to calculate the M2T lower bound on the Higgs boson mass, we choose

the lepton with the lowest reconstructed pT as the lepton associated with the Higgs boson.

6.4.3 Control Regions

• Z → ττ Control Region

– Following preselection, we further define the Z → ττ control region by imposing

a b-jet veto and requiring that the two leptons have opposite sign, therefore

negating one of the signal selection criteria and increasing the likelihood that

the two leptons came from the same neutral parent particle (i.e. the Z). We

then require that the invariant mass of the dilepton pair falls between [60,120]

GeV – a wide window around the Z mass peak. These selections optimize for
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Z → τlepτlep+1 jet background events for which the jet has been misidentified as

a tau.

• tt̄ Control Region

– Following preselection, we further define the tt̄ control region by requiring at

least 1 b-tagged jet and requiring that the two leptons be opposite-sign. We

expect that a top quark pair decaying through two W bosons and two b quarks

will yield opposite-sign leptons from the opposite-sign W decays.

6.5 W → lν, H → τhadτhad Analysis Region

6.5.1 Preselection

W → lν, H → τhadτhad events must fire one of the single-lepton trigger types summarized

in Table 9. Following trigger selection, we require exactly one reconstructed, isolated leptons

passing the Tight identification working point and exactly two reconstructed hadronic tau

passing the Medium RNN identification working point.

6.5.2 Signal Selection

Following preselection, we further define our signal selection in this category by requiring

that the two hadronic taus have opposite sign. We then apply a b-jet veto, i.e. requiring

that there are no b-tagged jets in the event, to reduce tt̄ backgrounds. Next, we require

that the two hadronic taus fall within the following range in angular separation ∆R: 0.8 <

∆R(τ0, τ1) < 2.8. We then apply a cut on the transverse mass mT between the lepton

and the missing transverse energy ET in the event: mT (l, E
miss
T ) > 20 GeV, targeting the

reduction of Z → ττ background events. Finally, we require that the sum of the pT of each

hadronic tau is greater than 100 GeV to suppress multijets, W+jets, and Z+jets events

that contribute low-pT jets that may be misreconstructed as taus.

6.5.3 Control Regions

• W+jets Control Region
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– This control region marks the dominant background in the W → lν, H →

τhadτhad channel. To target W+jets events, we require same-sign hadronic taus,

thereby negating one of the signal region criteria, and apply the transverse mass

cut mT (l, E
miss
T ) > 60 GeV to avoid selecting Z+jets events.

• Z → τlepτhad + jets Control Region

– This control region first applies a b-jet veto to avoid selecting tt̄ events, then

requires that the transverse mass mT (l, E
miss
T ) < 40 GeV, helping to isolate Z

events. Lastly, it selects for events with M2T < 60 GeV.

• tt̄ Control Region

– This control region requires at least one b-tagged jet for the same reasons ex-

plained in the W → lν, H → τlepτhad control region section.

• Same-Sign Taus Control Region

– This control region applies a b-jet veto and requires that the two hadronic taus

be same-sign. Unlike the other control regions, it does not target a particular

background source, but provides an orthogonal region in phase space to our signal

region to analyze our background compositions.

• M2T Sideband Control Region

– This control region, like the Same-Sign Taus control region, does not target a

particular background source. It applies a b-jet veto and requires that the Late-

Projected Transverse Mass (M2T) of the Higgs parent particle falls in either of

the mass variable sideband regions: M2T < 60 GeV or M2T > 120 GeV.

6.6 Z → ll, H → τlepτhad Analysis Region

6.6.1 Preselection

Z → ll, H → τlepτhad events must fire one of the trigger types summarized in Table 9.

Following trigger selection, we require exactly three reconstructed, isolated leptons passing
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the Tight identification working point and exactly one reconstructed hadronic tau passing

the Medium RNN identification working point. Among the three leptons, we require that

there exist at least one pair of same-flavor, opposite-sign leptons. If there is only one such

pair, we associate that pair with the two leptons coming from the Z boson. If more than

one such pair exists, we choose the pair with the closest invariant mass to the Z mass to

associate with the Z → ll decay. Lastly, we require that the calculated MMC value for the

event is strictly positive (MMC > 0) to eliminate any events for which the MMC algorithm

did not converge.

6.6.2 Signal Selection

Following preselection, we further define our signal selection in this category by requiring

that the hadronic tau and the lepton associated with the leptonic tau decay have opposite

sign, a characteristic of a H → ττ event. The lepton associated with the leptonic tau

decay is chosen as the remaining lepton not included in the same-flavor, opposite-sign

lepton pair. Furthermore, we require that the same-flavor, opposite-sign lepton pair has

an invariant mass between 80 and 100 GeV, in order to constrain the pair to have a mass

within approximately 10 GeV of the Z boson mass (91 GeV). Lastly, we require that the

sum of the pT of the hadronic tau and of the lepton associated with the leptonic tau decay

is greater than 60 GeV, to reduce lower-pT multijet events.

6.6.3 Control Regions

• Same-Sign Taus Control Region

– In addition to preselection cuts, this control region applies a selection requiring

that the hadronic tau and the lepton associated with the leptonic tau decay have

the same sign. This negates one of the signal selection criteria.

• MMC Sideband Control Region

– This control region applies a requirement in addition to the preselection that the

hadronic tau and lepton associated with the leptonic tau decay be opposite-sign
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and that the MMC of this pair fall within one of two sidebands of the MMC

signal region of interest: MMC < 80 or MMC > 160 GeV.

6.7 Z → ll, H → τhadτhad Analysis Region

6.7.1 Preselection

Z → ll, H → τhadτhad events must fire one of the trigger types summarized in Table 9.

Following trigger selection, we require exactly two reconstructed, isolated leptons passing

the Tight identification working point and exactly two reconstructed hadronic taus passing

the Medium RNN identification working point. We require that the pair of leptons have

the same flavor but opposite sign, and associate the pair with the two leptons coming from

the Z boson. Lastly, we require that the MMC calculated using the two hadronic taus is

strictly positive (MMC > 0) to eliminate any events for which the MMC algorithm did not

converge.

6.7.2 Signal Selection

Following preselection, we further define our signal selection in this category by requiring

that the two hadronic taus have opposite sign and that pτ1T + pτ2T > 88 GeV. These cuts

target H → ττ events and suppress Z + jets backgrounds. Furthermore, we require that

the same-flavor, opposite-sign lepton pair has an invariant mass between 60 and 120 GeV,

in order to constrain the pair to have a mass within approximately 30 GeV of the Z boson

mass (91 GeV).

6.7.3 Control Regions

• Same-Sign Taus Control Region

– In addition to preselection cuts, this control region applies a selection requiring

that the two hadronic taus have the same sign. This negates one of the signal

selection criteria.

• MMC Sideband Control Region
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– This control region applies a requirement in addition to the preselection that the

two hadronic taus be opposite-sign and that the MMC of the hadronic tau pair

fall within one of two sidebands of the MMC signal region of interest: MMC

< 80 or MMC > 160 GeV.

6.8 Higgs Boson Mass Reconstruction

Reconstructing the mass of a resonance such as a boson decaying to multiple taus is

difficult due to the presence of a neutrino in the final state associated with each tau in the

decay. Since neutrinos are not detectable with the ATLAS detector, we can only infer their

characteristics based on missing transverse energy (Emiss
T ). This is an event-level quantity,

not an object-level quantity, and therefore it is not obvious how to make judgments about

how many neutrinos were present in the event, what their energies were, and what directions

they went in.

Following the reduction of our real and fake backgrounds, the amount of signal observed

is determined via a fit to the reconstructed mass of particles assumed to have come from the

Higgs boson in each of the four final state categories. Given that there are between two and

four neutrinos in each final state, however, it is necessary to arrive at this reconstructed mass

via an additional calculation. In ZH events with either two or three final-state neutrinos,

we use the Missing Mass Calculator (MMC) method [99] to generate a most-likely Higgs

boson mass. In WH events, we can no longer assume that the missing ET is entirely

associated with the Higgs boson and its tau decay products, as the W boson will introduce

an additional neutrino to the final state. For this reason, instead of using MMC, we use the

Late-Projected Transverse Mass (M2T) method to generate an event-by-event lower bound

on the reconstructed Higgs boson mass [100].

6.8.1 Missing Mass Calculator (MMC)

Without a more sophisticated strategy, we could approach the challenge of calculating

the estimated mass of the Higgs boson in a Z → ll, H → ττ event by simply calculating the

mass of the Higgs boson based on the masses of its visible decay products and adding the

missing ET . This method is suboptimal because it does not take the geometric configuration
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of the neutrinos into account, and it is often the case that two taus produced in a H → ττ

decay are produced almost back-to-back, meaning their missing ET will partially cancel

out. This will produce a wide distribution for the H → ττ mass that is difficult to separate

from other background sources of ditau decays.

Another method used for this problem is the collinear mass approximation, which as-

sumes that each neutrino is approximately angularly aligned with its associated visible tau

decay products. While this method yields a reasonable mass resolution for boosted H → ττ

decays, the collinear assumption is not valid for many H → ττ events.

The Missing Mass Calculator (MMC) method provides a more precise manner of calcu-

lating a most-likely parent particle mass when that parent also decays into multiple sources

of missing ET for all H → ττ event topologies [99]. It uses a likelihood minimization strat-

egy on simulated distributions of kinematically-allowed configurations of the neutrinos to

choose a most-likely geometry of the event, then calculates a most-likely parent mass.

A system of four equations must be solved to exactly calculate the ditau mass:

Emiss
Tx

= ~pmiss1 sin(θmiss1) cos(φmiss1) + ~pmiss2 sin(θmiss2) cos(φmiss2) (86)

Emiss
Ty

= pmiss1 sin(θmiss1) sin(φmiss1) + pmiss2 sin(θmiss2) sin(φmiss2) (87)

M2
τ1 = m2

miss1 +m2
vis1 + 2

√
p2miss1 +m2

vis1

√
p2vis1 +m2

vis1 − 2pmiss1pvis1∆θ1 (88)

M2
τ2 = m2

miss2 +m2
vis2 + 2

√
p2miss2 +m2

vis2

√
p2vis2 +m2

vis2 − 2pmiss2pvis2∆θ2 (89)

Emiss
Tx

and Emiss
Tx

refer to the x̂ and ŷ components of the event missing ET , while Mτ1 and

Mτ2 refer to the rest masses of the two taus. mmiss1 and mmiss2 refer to the missing invariant

mass from the additional neutrino associated with a leptonic tau decay, while ~pmiss1 and

~pmiss2 are the missing momenta of the two tau neutrinos. mvis1 and mvis2 refer to the visible

invariant mass of the tau decay products, while ~pvis1 and ~pvis2 are the visible momenta of

each tau’s decay products. The visible and invisible components of the tau decay products
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Fig. 56: Example simulated ∆R distributions, along with their fits, are shown for a given
value of pτ . These distributions correspond to a (left) 1-prong hadronic tau decay, (middle)
3-prong hadronic tau decay, and (right) leptonic tau decay. [99]

each have their own θ and φ. Lastly, ∆θ indicates the angle between each tau’s visible and

invisible decay product momenta.

For Z → ll, H → τhadτhad events, there is no additional neutrino from a leptonic

tau decay, so mmiss1 and mmiss2 are set to 0. There are then 6 unknowns (3 each from the

missing momenta of the neutrino involved in each of the two hadronic tau decays, ~pmiss1 and

~pmiss2), and therefore this system of equations is underconstrained. However, given two more

inputs, say φmiss1 and φmiss2 , the masses could be exactly calculated. The MMC algorithm

therefore calculates the ditau mass exactly for several pairs of (φmiss1 ,φmiss2) in a grid in

kinematically-allowed phase space. Each of these masses is then weighted by a probability

drawn from fits of each of the simulated ∆R distributions: P(∆R1, pτ1)×P(∆R2, pτ2) (see

Figure 56). The values of (φmiss1 ,φmiss2) are chosen based on which pair minimizes the

negative log-likelihood:

L = −log(P(∆R1, pτ1)× P(∆R2, pτ2)). (90)

For Z → ll, H → τlepτhad events, there is an additional unknown introduced by a mmiss

variable from the additional neutrino associated with the leptonic tau decay. In this case,

the grid search occurs in three dimensions instead of two: (φmiss1 ,φmiss2 ,mmiss), where mmiss

is sampled uniformly across all kinematically-allowed values.
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6.8.2 Late-Projected Transverse Mass (M2T)

While the MMC technique is particularly effective for the Z → ll, H → ττ channels, it

is not as suitable for application to our W → lν, H → ττ channels. This is because the

Z boson has no invisible decay products in our chosen final states, while the W boson will

decay into a lepton and neutrino. This neutrino not only adds further unknowns to our

already underconstrained system of equations described in Equations 86 - 89, but it also

adds a source of missing ET to the event that is not associated with the Higgs boson decay

products. This means that the assumption underlying the formulation of Equations 86 - 89

– that the Higgs boson decay is the only source of missing ET – is no longer valid.

Instead, we use the Late-Projected Transverse Mass (M2T) method [100] for our Higgs

boson mass variable in the W → lν, H → ττ channels. Unlike MMC, which provides a

most-likely Higgs boson mass, the M2T method provides an event-by-event lower bound for

the Higgs boson mass. The term “late-projected” refers to the ordering of the two primary

operations involved in this process: (1) combining the desired momentum vectors via a

summation and (2) projecting them into the transverse plane. “Late-projected” therefore

indicates that the projection happens after the momentum summation. Unlike the combi-

nation of space-like vectors such as pT , for which this order of operations has no effect on

the final result, combining time-like quantities such as ET or mT in the transverse plane

does require careful attention to this ordering.

One might wonder why we bother calculating the transverse mass, mT , rather than

attempting to calculate the full invariant mass. This is because the incoming momenta

of the proton beams colliding at the LHC is not exactly known. However, the incoming

transverse momentum, in the x̂− ŷ plane orthogonal to the beamline, is known to be almost

exactly 0. It is therefore advisable to design our analysis such that is invariant to changes

in the proton beam pz, or momentum along the beamline.

M2T is a specific case of the generic method MNT, where N refers to the number of

parent particles involved as well as the number of mass inputs that parameterize the invisible

sector. For our use case, we have 2 parent particles: the Higgs boson and the W boson. In

the first stage of M2T, the four-vectors of the visible and invisible decay products of each
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parent are separately combined. This results in four (1+3)-dimensional four-vectors: Pµ
1

and Qµ
1 , representing the combined visible and invisible momenta of Parent #1, and Pµ

2 and

Qµ
2 , representing the combined visible and invisible momenta of Parent #2. The combined

visible and invisible vectors for Parent #1, for example, take the form:

Pµ
1 =



E1

p1x

p1y

p1z


=


E1

~p1T

p1z

 ; where E1 =
∑

i ∈ visible daughters

√
M2

i + (~piT )2 + p2iz (91)

Qµ
1 =



Ẽ1

q1x

q1y

q1z


=


Ẽ1

~q1T

q1z

 ; where Ẽ1 =
∑

i ∈ invisible daughters

√
M̃2

i + (~qiT )2 + q2iz (92)

Once these combined vectors have been constructed, they are then projected into the

transverse plane. This yields four (1+2)-dimensional vectors indexed by α. The transverse-

projected versions of the (1+3)-dimensional vectors shown above are:

pα1T =

e1T
~p1T

 ; where e1T =
√
M2

1 + (~p1T )2 =
√
E2

1 − p21z (93)

qα1T =

ẽ1T
~q1T

 ; where ẽ1T =

√
M̃2

1 + (~q1T )2 =

√
Ẽ2

1 − q21z (94)

The transverse masses of Parents #1 and #2 may then be constructed as:

M1T ≡
√
(e1T + ẽ1T )2 − (~p1T + ~q1T ) (95)

M2T ≡
√
(e2T + ẽ2T )2 − (~p2T + ~q2T ) (96)

Since we expect the Higgs boson to be more massive than the W boson, we choose the

heaviest of these two masses, but with an additional constraint that the sum of the invisible
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momenta,
∑

i ~qiT , must equal the total missing ~pT in the event. The final M2T variable

is therefore chosen as the minimum value of the more massive parent particle’s transverse

mass subject to this constraint:

M2T = min∑
~qiT=��~pT

[max{M1T ,M2T }] (97)

For our analysis, we additionally require that the invariant mass of the W boson decay

products be as close as possible to the W boson rest mass.

Performing this minimization in full would require optimizing across a 9- or 12-dimensional

phase space for the W → lν, H → τhadτhad and W → lν, H → τlepτhad channels. To reduce

to the dimensionality of this problem, the collinear approximation is used, meaning that

neutrinos are assumed to be aligned with their affiliated visible tau decay products. This

allows neutrino momenta to be calculated via

~pν =

(
1

x
− 1

)
~pvis, where x =

pvis
pvis + pν

. (98)

These constraints and approximations reduce a previously 9- to 12-dimensional opti-

mization problem into one parametrized by just three variables:

1. qz,ν , the ẑ-momentum of the neutrino from the W decay

2. x1, the fraction of τ1 momentum that goes into visible decay products

3. x2, the fraction of τ2 momentum that goes into visible decay products

By construction, the actual mass of the heaviest parent particle must be greater than or

equal to M2T, and the actual mass forms an upper bound for this quantity. Additionally,

by using the “late-projected” rather than “early-projected” formulation of transverse mass,

we take advantage of the fact that M2T = M2. In other words, this method uses transverse

information, but is equivalent to using (1+3)-dimensional vectors throughout instead. M2 is

not exactly the same as the true invariant mass of the most massive parent particle, as it is

a function of the combined visible and invisible momenta and not the individual visible and

invisible momenta. Given our ignorance of the actual neutrino kinematics, however, this

method does a good job of constraining our Higgs boson mass with a reasonable number of

parameters.
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7 Background Estimation for V → leptons, H → ττ

7.1 Reducible Background Estimation

The largest source of background events for this analysis come from events for which

one or more reconstructed hadronic taus or leptons is actually a misidentified jet or non-

prompt lepton. These events are primarily from Z → ττ and tt̄ processes. We call these

events “fakes” and use a data-driven background estimation strategy called the Fake Factor

Method to predict the quantity of these events expected in our signal region [101].

7.1.1 Z → ll + Jets Selection

The fake-enriched analysis region uses Z → ee + jets and Z → µµ + jets MC samples. It

is designed to reflect our analysis region closely without overlapping with any of our actual

analysis phase space. It therefore uses the same trigger selection as in our signal regions.

Additionally, it requires that there exists at least one pair of light leptons l, where l = {e, µ},

that are same-flavor, opposite-sign, pass the Medium identification working point, and pass

their respective isolation criteria. The electron, muon, and tau fake rates are calculated

using additional electron, muon, or tau objects in the event in addition to this baseline

selection.

7.1.2 The Fake Factor Method

Our analysis’ signal regions are composed of objects (electrons, muons, and taus) that

we pass through various selection cuts until we choose a subset of these objects. These

objects, however, are fundamentally a mix of correctly- and incorrectly-identified electrons,

muons, and taus. For explanatory purposes, I will only focus on fake taus here, though the

method can be straightforwardly expanded to include multiple possible fake categories.

We can express the number of what we call “selected taus” in our analysis regions as:

Nselected = εNreal taus + rNfake taus, (99)

where ε represents the selection efficiency for true taus (assumed to be 100% for this method)
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while r represents the selection efficiency of fake taus. r is also called the fake rate. In

other words, we can assume that some portion of the taus we select in our analysis will

actually be fakes, and it is useful to state this explicitly in order to anticipate our expected

fake contributions.

The fake rate r is calculated in data in the fake-enriched Z → ll + jets region described

above. It is calculated individually for 1-prong WH and ZH events as well as 3-prong

WH and ZH events. Following the calculation of the fake rate r for a particular analysis

region, the fake factor f is then used to extrapolate the number of selected fakes from our

fake-enriched region to our signal region:

NVH data
selected taus = NVH MC

selected real taus + f(NZ→ll + jets data
anti-selected fake taus −NZ→ll + jets MC

anti-selected true taus), (100)

where f is defined as:

f =
r

1− r
. (101)

The fake factor f provides an extrapolation factor that is then applied to the number

of anti-selected taus measured in the fake-enriched Z → ll + jets region in data following a

subtraction (calculated in the Z → ll + jets region in MC) of any real taus that were labeled

as anti-taus in the fake-enriched region. This extrapolation factor allows us to estimate the

contribution of fake taus to our selected V H signal regions in data. While the fake rate r

expresses the ratio of the number of selected taus to the total number of reconstructed tau

candidates in the fake-enriched region, the fake factor f expresses the ratio of the number

of selected taus to the number of anti-selected taus in the fake region. It is therefore the

fake factor f that we apply to the number of anti-selected tau candidates in the fake region

in Equation 100 in order to get a projected contribution for our signal region.

The actual implementation of the Fake Factor Method in our analysis is complicated by

the fact that multiple types of objects can be faked (electrons, muons, and taus) and that

there are three (four) selected objects in our WH (ZH) signal regions that could potentially

be faked in each event. Since we don’t have complete information as to whether or not a

given tau candidate in data is real or fake, we construct the mathematical expression of
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the Fake Factor Method based on observable quantities like the number of selected or anti-

selected events. These expressions take into account that while there are a fixed number of

selected objects for a given analysis region, there are many potential objects in the event

that could fake a given selected object.

The 1-object case of the Fake Factor Method, relevant for an analysis with one selected

object in its final state, results in the following expression:

NS̄ = fNA, (102)

where NS̄ represents the number of objects entering the signal region as a result of the fake

factor extrapolation and NA is the number of anti-selected objects measured in the fake

region. Each additional anti-selected object requires an additional fake factor. This is a

simplified expression encapsulating a potentially infinite sum of possibilities of which one

object out of the arbitrarily many available objects is selected for a given event. In each of

these cases, f could potentially be different depending on the type and kinematics of the

selected object.

The 2-object case, for an analysis with 2 selected final-state objects, results in:

NS̄S̄ = fNSA − ffNAA. (103)

This extends the 1-object case by including a subtraction term associated with scenarios

in which the two final-state objects are anti-selected instead of selected. Again, f will vary

for each term in the summation based on the selected objects in each case.

Finally, we can move on to the 3-object and 4-object cases, which are the ones actually

relevant for our WH and ZH signal regions. These follow the convention that terms are

positive with an odd number of fake factors and negative with an even number of fake

factors:

NS̄S̄S̄ = fNSSA − ffNSAA + fffNAAA (104)

NS̄S̄S̄S̄ = fNSSSA − ffNSSAA + fffNSAAA − ffffNAAAA (105)
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The full derivations of these expressions are tedious, and I recommend referring to the

thorough treatment in [102] for more detail.

7.1.3 Tau Fake Rates

The tau fake rate r is defined as the ratio of the number of selected taus to the total

number of reconstructed tau candidates in the Z → ll + jets fake-enriched region in data.

Reconstructed tau candidates must pass all of the selections described in Section 6.3.3

except for the Medium RNN ID score requirement. Selected taus must pass all of these

selections, including the Medium RNN ID score requirement.

Preliminary tau fake rate measurements, along with statistical uncertainties, are re-

ported in Tables 11 - 14 for approximately 20 million events passing our Z → ll + jets

selection in Run 2 data. 1-prong tau fake rates are significantly higher than 3-prong tau

fake rates, reflecting the fact that 3-prong taus are more difficult for a jet to fake. Tau fake

rates are currently binned in pT and |η|, though other parameterizations are being explored

for the final analysis result.

Tau Fake Rate |η| < 0.8 0.8 < |η| < 1.37 1.37 < |η| < 2.5

20 < pT < 25 GeV 0.152 ± 0.002 0.150 ± 0.002 0.124 ± 0.002
25 < pT < 30 GeV 0.151 ± 0.003 0.152 ± 0.003 0.131 ± 0.002
30 < pT < 35 GeV 0.145 ± 0.003 0.133 ± 0.004 0.119 ± 0.003
35 < pT < 40 GeV 0.133 ± 0.004 0.125 ± 0.005 0.109 ± 0.004
40 < pT < 60 GeV 0.123 ± 0.003 0.115 ± 0.004 0.094 ± 0.003
pT > 60 GeV 0.105 ± 0.004 0.097 ± 0.005 0.069 ± 0.004

Table 11: Preliminary WH, H → ττ fake rates for 1-prong taus.

Tau Fake Rate |η| < 0.8 0.8 < |η| < 1.37 1.37 < |η| < 2.5

20 < pT < 25 GeV 0.029 ± 0.001 0.033 ± 0.001 0.023 ±0.001
25 < pT < 30 GeV 0.030 ± 0.001 0.032 ± 0.002 0.027 ±0.001
30 < pT < 40 GeV 0.025 ± 0.001 0.027 ± 0.001 0.024 ±0.001
pT > 40 GeV 0.020 ± 0.001 0.021 ± 0.001 0.015 ±0.001

Table 12: Preliminary WH, H → ττ fake rates for 3-prong taus.

7.1.4 Fake Factor Validation

The modeling of the Fake Factor Method is assessed using closure tests, meaning a

comparison of the projected distributions of tau fakes stacked on top of MC estimates with
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Tau Fake Rate |η| < 0.8 0.8 < |η| < 1.37 1.37 < |η| < 2.5

20 < pT < 25 GeV 0.169 ± 0.002 0.166 ± 0.002 0.137 ± 0.002
25 < pT < 30 GeV 0.169 ± 0.003 0.164 ± 0.003 0.143 ± 0.003
30 < pT < 35 GeV 0.151 ± 0.003 0.160 ± 0.004 0.122 ± 0.003
35 < pT < 40 GeV 0.137 ± 0.004 0.134 ± 0.006 0.118 ± 0.005
40 < pT < 60 GeV 0.117 ± 0.003 0.115 ± 0.004 0.099 ± 0.004
pT > 60 GeV 0.089 ± 0.005 0.074 ± 0.006 0.072 ± 0.005

Table 13: Preliminary ZH, H → ττ fake rates for 1-prong taus.

Tau Fake Rate |η| < 0.8 0.8 < |η| < 1.37 1.37 < |η| < 2.5

20 < pT < 25 GeV 0.029 ± 0.001 0.034 ± 0.001 0.027 ± 0.001
25 < pT < 30 GeV 0.033 ± 0.001 0.038 ± 0.002 0.033 ± 0.001
30 < pT < 40 GeV 0.029 ± 0.001 0.032 ± 0.002 0.022 ± 0.001
pT > 40 GeV 0.016 ± 0.001 0.017 ± 0.002 0.015 ± 0.001

Table 14: Preliminary ZH, H → ττ fake rates for 3-prong taus.

the data for our analysis regions. If the fake model is performing well, the MC+fakes

histograms should agree within uncertainties with our data distributions. These closure

tests are plotted only in the preselection and control regions, not our final analysis regions,

to avoid “unblinding,” or revealing our final result before we are prepared to finalize our

analysis. Example preliminary closure tests for each of our four analysis preselection regions

are shown in Figure 57.

7.1.5 Tau Fake Factor Systematic Uncertainty

The dominant systematic uncertainty associated with the tau fake factor calculation is

in the composition of quark-initiated versus gluon-initated jets in the fake-enriched Z → ll

+ jets region compared with our V H analysis regions. The tau fake factor is particularly

sensitive to the ratio of quark jets to gluon jets, and unfortunately there’s no guarantee that

this composition will be equivalent between our V H analysis regions and our Z → ll + jets

region in which we measure our fake rates. Furthermore, the exact composition cannot be

exactly determined in data, as we don’t have access to the true origin of each jet in a given

event. I have investigated the Run 1 method for calculating the tau fake factor systematic

uncertainty and have begun evaluating its suitability for the Run 2 analysis. These studies

are ongoing, and it is possible that we will select an alternative procedure for our final

calculation.
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(a) W → lνl & H → τlepτhad (Dilepton mass) (b) W → lνl & H → τhadτhad (Lead tau pT )

(c) Z → ll & H → τlepτhad (pT of leading
lepton from same-flavor, opposite-sign pair)

(d) Z → ll & H → τhadτhad (Ditau MMC)

Fig. 57: Preliminary closure tests validating our Fake Factor Method at the preselection
level in each of our four signal categories for several different distributions. MC contributions
at preselection are stacked with the Fake Factor estimate of fake contributions, and this
combination is compared with the actual data distributions. In each of our four analysis
regions, these closure tests indicate that our Fake Factor Method is performing well at
predicting the contributions from fakes in these regions. This data represents 36.2 fb−1 of
the Run 2 dataset, and the final validation plots will include even higher statistics.
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The Run 1 method for calculating the tau fake factor systematic uncertainty relies on

the composition of gluon and quark jets varying with different minimum cuts on the event

missing ET . The strategy is as follows:

1. Apply missing ET cuts (Emiss
T > 20 GeV and Emiss

T > 30 GeV) to both MC and data

samples in the fake-enriched region (Z → ll + jets).

2. Calculate the gluon jet fractions r1 and r2 in each MC subsample.

3. Calculate the tau fake rates FR(r1) and FR(r2) in each data subsample.

4. Calculate the extrapolated values for a fully gluon-dominated fake rate (FRg) and a

fully quark-dominated fake rate (FRq) by inverting the following relationship:FR(r1)
FR(r2)

 =

r1 1− r1

r2 1− r2


FRg

FRq

 (106)

to get the relationship:FRg

FRq

 =
1

r1(1− r2)− r2(1− r1)

1− r2 −(1− r1)

−r2 r1


FR(r1)
FR(r2)

 (107)

5. Calculate the fake rate as a function of gluon jet fraction FR(r) using:

FR(r) = r · FRg + (1− r) · FRq (108)

6. Vary r between rnom/2 and 2rnom, where rnom is the nominal gluon fraction measured

in the fake region.

7. Treat these differences in the fake rate as the systematic uncertainty on the fake rate

measurement.

An initial study into the efficacy of this method for the Run 2 analysis environment

using approximately 50 fb−1 of data revealed that the systematic uncertainties for 3-prong

taus were reasonable, but were rather large for 1-prong taus, as shown in Table 15. The

nominal fake rate for 1-prong and 3-prong taus, with uncertainties, was measured to be

0.136 ± 0.09 and 0.029 ± 0.0069, respectively. Distributions for the gluon jet fraction and
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Systematic Uncertainty rnom/2 2rnom

1-prong taus -47% 94%

3-prong taus 16% -32%

Table 15: The systematic uncertainty for 1-prong and 3-prong tau fake rates from a pre-
liminary investigation into the efficacy of the Run 1 method for calculating tau fake factor
systematic uncertainty is reported. The 1-prong systematic uncertainties are large enough
to merit an investigation of other methods in addition to the Run 1 technique. In Run
1, the largest tau fake factor systematic uncertainties ranged from approximately -15% to
30%.

(a) 1-prong (b) 3-prong

Fig. 58: The fraction of leading jets that are gluon-initiated vs. quark-initiated as a function
of minimum missing ET cut for events with a 1-prong or 3-prong leading tau.

(a) 1-prong (b) 3-prong

Fig. 59: The tau fake rate as a function of minimum missing ET cut, measured in a subset
of the Run 2 dataset in the fake-enriched region.
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tau fake rates as a function of missing ET cuts are shown in Figures 58 and 59, while the

dependence of the extrapolated fake rate on the gluon jet fractions is shown in Figure 60.

The combined H → ττ analysis is currently developing a tool for calculating this sys-

tematic uncertainty using a template fit method that determines the estimated quark/gluon

jet composition in a sample via an interpolation of the tau jet width. Though this tool is

not yet recommended for official use, it provides an interesting future direction for potential

alternative strategies for this calculation.

(a) 1-prong (b) 3-prong

Fig. 60: The extrapolated tau fake rate as a function of gluon jet fraction for the 1-prong
and 3-prong cases. As in Run 1, the 1-prong and 3-prong cases are anti-correlated. The
three vertical lines correspond to rnom/2, rnom, and 2rnom, from left to right.

7.2 Irreducible Background Estimation

There are other physics processes beyond the four signal categories considered in this

analysis that can result in the exact same final-state physics objects we seek. When this

happens – each hadronic tau and lepton has been correctly reconstructed and identified, but

the origin process was not a V H event – we refer to the event as an irreducible background.

These are primarily diboson events such as WZ and ZZ for which the Z decays to two taus,

mimicing the H → ττ decay process. In Run 1, the contributions of these backgrounds were

estimated from Monte Carlo simulation and subtracted from the final counts in each signal

region.
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7.2.1 Motivation

Given the increased signal statistics in Run 2, a more sophisticated strategy for estimat-

ing the contributions of these backgrounds is warranted. The Run 1 analysis also included a

preliminary study using a Boosted Decision Tree (BDT) architecture trained on each signal

category to separate WH signal from WZ backgrounds and ZH signal from ZZ back-

grounds. Though it was not used in the final analysis, the initial study showed promising

results for such a structure – a potential combined improvement in the upper limit of 30%.

Using the input variables of this BDT as a guide, I implemented four separate neural

network architectures for each signal region. Using a neural network instead of a BDT

allowed more freedom to design layers inspired by the physics of the network during the

training process.

7.2.2 Neural Network Architecture

For each of the four analysis regions, I trained a baseline neural network with a single

fully-connected hidden layer of 10 nodes and ReLU activation followed by an output layer

of 1 node with a sigmoid activation. The performance of this model set the baseline for

comparisons when creating the optimized NN architecture.

The optimized NN architecture for each model consisted of two initial transformation

layers followed by three fully-connected hidden layers of 128 nodes each, each with a ReLU

activation function. The output layer consisted of a single node with a sigmoid activation

function.

The intial transformation layers had the following purposes:

1. Global φ Offset: Add a global φ offset to the φ input variables, to help the network

learn that events can be globally-rotated in φ without affecting the classification of

the physics event. This layer is only activated during training time, not during model

inference.

2. Angular Encoding: Split each φ input variable into sin(φ) and cos(φ), to help the

network learn that φ+ 2πn→ φ for n ∈ Z.

Each model’s optimized architecture had approximately 32,000 trainable parameters.
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7.2.3 Training Details

70% of each overall simulated dataset was dedicated to the training dataset, while the

remaining 30% was split equally between the validation and test datasets. As diboson

background statistics sometimes significantly outnumbered the V H signal statistics, class

weights were used to balance the training process and account for the imbalance in statistics

between the two classes on the training dataset only. MC weights were not used during the

training process, though events with negative MC weights (approximately 5% of all events)

were excluded from the training dataset. MC weights were then used for the evaluation of

the NN performances, however. Training datasets ranged in total size from approximately

50,000 - 200,000 events. Each model was trained using Stochastic Gradient Descent (SGD)

with momentum = 0.9 as an optimizer.

Following training of each network, the optimal cut on the NN score to separate signal

from background was determined by choosing the cut that would maintain signal efficiency

above 80% while simultaneously maximizing the MC-weighted significance (S/
√
B) calcu-

lated in a wide window of 50 GeV - 150 GeV in MMC or M2T for ZH and WH events,

respectively. The performance of each network is described in detail in the following sections

and summarized in Table 16, Figure 61, and Figure 62.

7.2.4 WH LepHad Performance

The W → lν, H → τlepτhad channel had the highest statistics out of the four analysis

regions. The training dataset consisted of 28,375 signal events and 200,917 WZ background

events. To ameliorate the discrepancy in sizes between signal and background training sets,

class weights were used to weight the signal 7.1 times more than the background during

training. The optimized neural network architecture had an AUC (Area Under Curve) score

of 0.915. The optimal neural network score cut was placed at nn_score > 0.41 to increase

the significance (S/
√
B) at preselection from 0.29 to 0.45, a relative increase of 56%. This

cut yielded a signal efficiency of 83.6% with a background rejection of 79%, i.e. a rejection

factor of 4.76. Crucially, the mean of the signal M2T distribution only shifted by 0.6%

following this score cut, meaning the neural network is not severely biasing our final fit

quantity. The diboson background, on the other hand, shifted by -25%.
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(a) W → lνl & H → τlepτhad (b) W → lνl & H → τhadτhad

(c) Z → ll & H → τlepτhad (d) Z → ll & H → τhadτhad

Fig. 61: Unweighted & normalized plots of test signal and background MC sorted by the
neural network output score.

7.2.5 WH HadHad Performance

The W → lν, H → τhadτhad channel had a training dataset consisting of 19,873 signal

events and 41,955 background events. Class weights were used to weight the signal 2.1 times

more than the background during training. The optimized neural network architecture had

an AUC (Area Under Curve) score of 0.877. The optimal neural network score cut was

placed at nn_score > 0.42 to increase the significance (S/
√
B) at preselection from 0.38

to 0.53, a relative increase of 40%. This cut yielded a signal efficiency of 80.3% with a

background rejection of 79.4%, i.e. a rejection factor of 4.85. The mean of the signal M2T

distribution shifted by 3.0% following this score cut, introducing a minimal bias into our
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Fig. 62: Example unweighted and MC-weighted distributions of M2T (above, in the WH
LepHad channel) and MMC (below, in the ZH HadHad channel) for signal and background
before (in pink and grey) and after (in blue and black) the cut on the neural network
output score show a large decrease in background events with relatively few signal events
lost by comparison. The peaks of the signal mass distributions move very little following
the neural network score cut and are also still fairly distinct from the peaks of the diboson
backgrounds. The signal has been given an additional weight factor of 10X in the weighted
histograms for the purposes of visibility during plotting.

final fit quantity, while the background distribution shifted by -55.4%.

7.2.6 ZH LepHad Performance

The Z → ll, H → τlepτhad channel had a training dataset consisting of 20,236 signal

events and 71,640 background events. Class weights were used to weight the signal 3.5 times

more than the background during training. The optimized neural network architecture had

an AUC (Area Under Curve) score of 0.837. The optimal neural network score cut was
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Region ROC AUC nn_score cut ∆ S√
B

Sig. Efficiency Bkg. Rejection

WH LepHad 0.915 0.41 +56% 83.6% 4.76

WH HadHad 0.877 0.42 +40% 80.3% 4.85

ZH LepHad 0.837 0.26 +24% 86.3% 2.63

ZH HadHad 0.899 0.41 +91.6% 80% 6.62

Table 16: A summary of the preliminary performance of the four diboson neural networks.

placed at nn_score > 0.26 to increase the significance (S/
√
B) at preselection from 0.23

to 0.29, a relative increase of 24%. This cut yielded a signal efficiency of 86.3% with a

background rejection of 62.0%, i.e. a rejection factor of 2.63. The mean of the signal MMC

distribution shifted by 2.1% following this score cut, introducing a minimal bias into our

final fit quantity, while the background distribution shifted by 10%.

7.2.7 ZH HadHad Performance

The Z → ll, H → τhadτhad channel had a training dataset consisting of 15,215 signal

events and 51,508 background events. Class weights were used to weight the signal 3.4 times

more than the background during training. The optimized neural network architecture had

an AUC (Area Under Curve) score of 0.899. The optimal neural network score cut was

placed at nn_score > 0.41 to increase the significance (S/
√
B) at preselection from 0.20

to 0.38, a relative increase of 91.6%. This cut yielded a signal efficiency of 80% with a

background rejection of 84.9%, i.e. a rejection factor of 6.62. The mean of the signal MMC

distribution shifted by 3.2% following this score cut, introducing a minimal bias into our

final fit quantity, while the background shifted by 21.3%.
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8 From Run 1 to Run 2

8.1 ATLAS Results from Run 1

The Run 1 search for this process, detailed in [93], considered 20.3 fb−1 of LHC data

at center-of-mass energy s =
√
8 TeV. The observed signal strength of this process, defined

as µ = σ/σSM , was found to be 2.3± 1.6. This signal strength is consistent with Standard

Model expectations for a 125 GeV Higgs boson, but is not yet significant enough to claim

a discovery of this Higgs boson process. We are, however, able to set an upper limit on the

signal strength of this process at µ < 5.6 with a 95% confidence level.

Distributions of expected real and fake backgrounds as well as actual observed data as

a function of each reconstructed Higgs boson mass variable from Run 1 are shown in Figure

63. Expected and observed event counts from the Run 1 analysis are summarized in Table

17. Expected and observed significances for each of the four signal regions in Run 1 are

shown in Table 18.

Signal Region Obs. Signal Σ Backgrounds Fake Factor Diboson
W → lν, H → τlepτhad 35 1.95± 0.05 32.4± 1.9 13.1± 1.3 13.54± 0.35
W → lν, H → τhadτhad 33 1.84± 0.04 35.5± 2.7 28.1± 2.4 7.4± 1.2
Z → ll, H → τlepτhad 24 1.14± 0.03 24.6± 1.5 17.1± 1.5 7.28± 0.16
Z → ll, H → τhadτhad 7 0.64± 0.02 6.8± 1.2 4.7± 1.2 2.09± 0.09

Table 17: Expected and observed event counts from the Run 1 analysis. Background
events not listed explicitly are mostly tt̄ events and contribute primarily to the sum of the
backgrounds in the W → lν, H → τlepτhad signal region. Only statistical uncertainties are
given.

Signal Region Expected significance Observed significance
W → lν, H → τlepτhad 0.36σ 0.44σ
W → lν, H → τhadτhad 0.32σ 0.60σ
Z → ll, H → τlepτhad 0.28σ 0.29σ
Z → ll, H → τhadτhad 0.32σ 1.38σ

Table 18: Expected and observed significances for each of the four signal regions in Run 1.
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(a) W → lνl & H → τlepτhad (b) W → lνl & H → τhadτhad

(c) Z → ll & H → τlepτhad (d) Z → ll & H → τhadτhad

Fig. 63: Expected signal, expected backgrounds, and observed data from Run 1 in each of the four
main analysis categories as a function of the reconstructed Higgs boson mass variables. “Others”
refers primarily to tt̄ events.

8.2 Changes in Run 2

This analysis strategy is heavily drawn from the previous Run 1 analysis, with a few

notable exceptions. In Run 1, the analysis category W → lνl & H → τlepτhad required

exactly one electron and one muon in the final state. Our analysis newly includes final

states with same-flavor leptons from both the W and Higgs bosons. We also newly include

muon fake factors in addition to tau and electron fake factors in Run 2. We have also

introduced an update to our irreducible background estimation technique in using my MC-

trained neural networks for separating true signal from diboson backgrounds instead of the
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Fig. 64: The combined Run 1 V H, H → ττ measurements. On the left, the 95% confidence-
level (CL) upper limits for σ/σSM for each of the four signal regions are shown, along with
the combined upper limit for all four channels. Expected upper limits are shown in dotted
lines, while observed upper limits are shown in solid lines. The lime green regions mark the
±1σ significance interval, while the yellow regions mark the ±2σ significance interval. On
the right, the measured signal strength µ = σ/σSM for mH = 125 GeV is shown for each
signal region individually and combined. The dashed vertical red line indicates a perfectly
Standard Model-like result. Each of the four categories shows a measurement of the signal
strength µ that is consistent, within error bars, with the Standard Model prediction. [93]

Run 1 subtraction MC subtraction method.

In addition to these analysis strategy updates, the Run 2 dataset brings many changes

from the Run 1 analysis environment, including an increase of center-of-mass energy from
√
s = 8 TeV to

√
s = 13 TeV as well approximately a seven-fold increase in integrated

luminosity, around double the average number of pileup events, and consequently higher

trigger thresholds for each of our objects.

8.3 Expected Event Counts

Calculating our expected event counts for the Run 2 analysis involves not only a scaling

based on the amount of total integrated luminosity considered, but also a scaling based on

the increase in signal cross-section associated with a higher center-of-mass energy in Run

2 versus Run 1. Scaling up the total integrated luminosity from the Run 1 (20.3 fb−1) to

Run 2 (139 fb−1) analysis yields a factor of approximately 6.85. Scaling up the increase

in signal cross-section based on the increased center-of-mass energy yields an additional

factor of approximately 1.95 for the WH channels and 2.10 for the ZH channels. In total,

162



we might expect the WH channels to increase in counts by about a factor of 13.36 and

the ZH channels to increase in counts by about a factor of 14.39. However, scaling our

Run 1 observed counts up by these factors neglects many other subtleties in our analysis,

from increased lepton trigger pT thresholds to additional final states in the analysis to

a potentially improved final significance in each signal region due to the diboson neural

network.

Taking a different approach, and instead calculating the theoretical number of WH and

ZH events we expect to see based on cross-sections and branching ratios, we can get an

upper bound on the number of expected events in our analysis regions:

NVH events = Lint · σVH · BR(V → leptons) · BR(H → τlepτhad +H → τhadτhad) (109)

These values are approximately:

• Lint = 139 fb−1

• Inclusive σWH at
√
s = 13 TeV = 1.380 pb

• Inclusive σZH at
√
s = 13 TeV = 0.8696 pb

• BR(W → lν) = 0.324

• BR(Z → ll) = 0.101

• BR(H → τlepτhad) = BR(H → ττ) · BR(τlepτhad) = 0.06272 · 0.455 = 0.0285

• BR(H → τhadτhad) = BR(H → ττ) · BR(τhadτhad) = 0.06272 · 0.4225 = 0.0265

Combining these values, we get the following approximate upper bounds on our signal

categories:

• W → lν, H → τlepτhad: 1,774 events

• W → lν, H → τhadτhad: 1,647 events

• Z → ll, H → τlepτhad: 348 events

• Z → ll, H → τhadτhad: 324 events

Of course, these counts do not incorporate acceptance information from the perspective of

inefficiencies in our detector coverage, our TDAQ system, our particle identification schemes,

or our analysis cuts. In Run 1, the signal acceptance for the WH channels was 1.9%, while

the signal acceptance for the ZH channels was 5.3%.
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8.4 Current Analysis Status

The Run 2 V H, H → ττ analysis is in excellent shape and is nearing its completion.

The analysis has hit major milestones such as producing full MC and data samples with the

proper object selections and overlap removal applied corresponding to the Run 2 dataset,

creating a fully Python-based standalone analysis framework, measuring fake rates for elec-

trons, muons, and taus, implementing the fake factor method and producing preliminary

closure test plots in each of our analysis preselection categories and control regions, calculat-

ing the tau fake factor systematic uncertainty using the Run 1 methodology, and developing

and evaluating the NN-based irreducible diboson background separation method. We have

implemented custom analysis methods for re-calculating the MMC for WH events following

our object selections and are developing a similar method for M2T as well.

Remaining milestones on the horizon for this analysis include the optimization of our

analysis selection cuts alongside the integration of the diboson NN score cut, the possible re-

parameterization of the fake rate measurements to optimize fake factor modeling, a finalized

calculation of the tau fake rate systematic uncertainty with potentially a new methodology,

and a variation of our full analysis across several systematic uncertainty parameters.

We could not be more excited or honored to be able to soon share our upcoming re-

sults on this still-undetected rare process that will contribute to humanity’s fundamental

understanding of the Higgs boson.
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Appendix: Individual Contributions

• RNN Tau ID in the Tau Trigger

– I produced training samples with trigger-level information, adapted the offline

tau CP’s NN architecture designed by Christopher Deutsch [41] for use with

trigger-level variables, and iterated to find the optimal performance of the RNN

for HLT-level taus under the guidance of my supervisor, Bertrand Martin dit

Latour. Ultimately, I trained three separate neural networks for 0-prong, 1-prong,

and multi-prong taus that were implemented in the ATLAS HLT in summer 2018.

• Implementation of M2T

– I created a custom C++/ROOT-based module to calculate M2T and contributed

it to the xTauFramework repository.

• Sample processing & analysis framework

– I was a major contributor to the production of ntuple-level samples for our anal-

ysis via the xTauFramework.

– I helped pioneer the shared Python/uproot/Pandas-based framework vhtautau

for our analysis group and re-optimized our analysis several times for significant

improvements in speed and computing requirements.

• Tau fake rate & systematic uncertainty

– I calculated the first round of tau fake rates for our analysis and measured the

tau fake rate systematic uncertainty using the Run 1 method based on missing

ET cuts.

– I also used the experimental version of a new fake tau tool to calculate fake rates

using a template fit parameterized by pT and jet width.

• Diboson NN

165



– I designed (with the exception of the two φ-translation layers in the neural net-

work suggested by my colleague Chase Shimmin), trained, optimized, and eval-

uated the performance of the four separate NN models for separating signal and

diboson MC.

• HLeptons Trigger Contact

– I served as a liaision between the trigger groups and the HLeptons group, which

primarily focuses on the H → ττ analyses, from 2017-2021.

– I performed several validation studies of proposed new triggers to measure the

trigger acceptance and quantify subsequent efficiency gains for the H → ττ

analysis regions under various kinematic selections.

– My studies provided sufficient motivation to include several new triggers in the

Run 3 trigger menu to benefit the H → τlepτhad analysis.

• Contributions to upgrade physics

– I performed studies to understand the acceptance gains based on maximum |η|

cuts on leading and sub-leading jets in the H → τhadτhad analysis for VBF

triggers.

– I co-wrote and edited Expected Performance of the ATLAS Detector at the High-

Luminosity LHC for the CERN Yellow Report [49].

• Choreo VAE

– I gathered and led an independent research team to collaboratively develop a

VAE model trained on motion capture data of my own movements. I contributed

the studies of the alternative dimensionality-reduction strategies such as t-SNE,

PCA, and UMAP.

• Choreo GNN

– I designed and implemented an original GNN based on the equations described in

the NRI paper [83] using graph-based libraries in Pytorch Geometric. I trained

and evaluated the GNN on my own movements.
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• Service to the collaboration

– I have participated in three years of advocacy trips to Capitol Hill to meet with

congressional offices to discuss the importance of high-energy physics research

and STEM funding in general.

– I have served several times as a reviewer for the NeurIPS Machine Learning for

the Physical Sciences Workshop as well as for the Women in Machine Learning

(WiML) Workshop.

• Science outreach

– I have given a number of public talks about particle physics, including: winning

the Windy City Physics Slam at ICHEP 2016, a televised interview with PBS

Chicago, a speaker for Yale’s Science in the News delivering scientific talks to

the broader New Haven community, and on social media as a featured speaker

for Randi Zuckerberg’s STEM outreach initiative.

– I have also written a long-form opinion piece making a case for a future circular

collider beyond the LHC for Yale’s Distilled magazine and an essay on how

physicists view the nature of reality for Sightline Arts.
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