
Yale University Yale University

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale

Yale Graduate School of Arts and Sciences Dissertations

Spring 4-1-2021

Change Management Systems for Seamless Evolution in Data Change Management Systems for Seamless Evolution in Data

Centers Centers

Omid Alipourfard
Yale University Graduate School of Arts and Sciences, h@omid.io

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations

Recommended Citation Recommended Citation
Alipourfard, Omid, "Change Management Systems for Seamless Evolution in Data Centers" (2021). Yale
Graduate School of Arts and Sciences Dissertations. 6.
https://elischolar.library.yale.edu/gsas_dissertations/6

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more
information, please contact elischolar@yale.edu.

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/6?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F6&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu

Abstract

Change Management Systems for Seamless Evolution in Data Centers

Omid Alipourfard

2021

Revenue for data centers today is highly dependent on the satisfaction of their

enterprise customers. These customers often require various features to migrate their

businesses and operations to the cloud. Thus, clouds today introduce new features at

a swift pace to onboard new customers and to meet the needs of existing ones. This

pace of innovation continues to grow, e.g., Amazon deployed 1400 new features in

2017 alone.

However, such a rapid pace of evolution adds challenges for both clouds and users.

Clouds struggle to keep up with the deployment speed, and users struggle to learn

which features they need and how to use them. Three contributions are needed to

advance the state of the art, (1) clouds need systematic techniques, instead of rules of

thumb, to manage the deployment of new features; and (2) customers need systematic

techniques to identify features they need and how to use them. (3) we need adaptable

measurement systems that keep up with the pace of innovation.

This dissertation makes original contributions to address the need. In particular,

this dissertation introduces Janus to address the first need, and Cherrypick to address

the second. Together, they contribute to fundamental techniques to enable continued

cloud innovations.

Janus helps data center operators roll out new changes to the data center network.

It automatically adapts to the data center topology, routing, traffic, and failure set-

tings. The system reduces the risk of new deployments for network operators as they

can now pick deployment strategies which are less likely to impact users’ performance.

Cherrypick addresses challenges for users to effectively configure cloud resources

for key cloud usage (i.e., data analytics). It helps users to address a key challenge, how

to search through new machine types that clouds are constantly introducing. Being

able to adapt to new big-data frameworks and applications, Cheerypick computes

cloud configurations that meet users’ budget constraints and achieve near-optimal

performance.

Our study of measurement algorithms shows that today’s measurement algorithms

can readily adapt to the pace of innovation. Specifically, today’s workloads map well

to current and future hardware architectuers. We find that for a wide range of settings

simple hash tables often outperform more sophisticated measurement algorithms such

as counting sketches.

As the pace of cloud innovations increases, it is critical to have tools that allow

operators to deploy new changes as well as those that would enable users to adapt

to achieve good performance at low cost. The tools and algorithms discussed in this

thesis help accomplish these goals.

2

Change Management Systems for Seamless Evolution in Data Centers

A Dissertation
Presented to the Faculty of the Graduate School

of
Yale University

in Candidacy for the Degree of
Doctor of Philosophy

by
Omid Alipourfard

Dissertation Director: Yale University

June, 2021

Copyright © 2021 by Omid Alipourfard
All rights reserved.

Contents

1 Introduction 10

1.1 Innovations: the tussle for customers 12

1.2 Deployments: the tussle for clouds 12

1.3 Building tools that adapt . 13

2 Searching for optimal cloud configurations for customer workloads 15

2.1 Introduction . 16

2.2 Background and Motivation . 18

2.2.1 Benefits . 19

2.2.2 Challenges . 19

2.2.3 Strawman solutions . 21

2.3 CherryPick Design . 22

2.3.1 Overview . 22

2.3.2 Problem formulation . 23

2.3.3 Solution with Bayesian Optimization 24

2.3.4 Why do we use Bayesian Optimization? 26

2.3.5 Design options and decisions 28

2.3.6 Handling uncertainties in clouds 31

2.4 Implementation . 32

2.5 Evaluation . 34

1

2.5.1 Experiment setup . 35

2.5.2 Effectiveness of CherryPick 37

2.5.3 Why CherryPick works? . 41

2.5.4 Handling workload changes 42

2.5.5 Handling performance constraints 43

2.6 Discussion . 43

2.7 Related Work . 45

2.8 Conclusion . 47

3 Searching for optimal deployment plans in data centers 48

3.1 Introduction . 49

3.2 Challenges and key ideas . 52

3.2.1 Risk assessment for network changes 52

3.2.2 Challenges . 54

3.2.3 Janus’s key ideas . 58

3.3 Janus Design . 61

3.3.1 Identifying blocks of equivalent switches 61

3.3.2 Finding equivalent subplans 62

3.3.3 Estimating cost with Monte Carlo simulations 70

3.3.4 Handling failures . 72

3.4 Implementation . 72

3.5 Evaluation . 75

3.5.1 Evaluation settings . 76

3.5.2 Cost savings over MRC . 78

3.5.3 Scalability . 81

3.5.4 Adaptivity . 82

3.6 Related Work . 84

3.7 Conclusion . 85

2

4 Revisiting measurement algorithms in software switches 86

4.1 Introduction . 87

4.2 Background and Motivation . 89

4.2.1 Three classes of measurement algorithms 89

4.2.2 Previous works on measurement algorithms 91

4.3 Evaluation of measurement algorithms in software 92

4.3.1 Evaluation settings . 93

4.3.2 A single hash function is better than multiple 96

4.3.3 Use data structures with the simplest computation 98

4.4 Generality to diverse measurement tasks 100

4.4.1 Impact of traffic skew, data structure size, and value size . . . 102

4.4.2 Impact of measurement tasks and storage of key-values 105

4.5 Measurement algorithms on multiple cores 108

4.5.1 Sharing states across multiple cores 108

4.5.2 Sharing resources with other applications 110

4.6 Related Work . 112

4.7 Discussion . 113

4.8 Conclusion . 113

5 Conclusions 115

3

List of Figures

2.1 Regression and TeraSort with varying RAM size (64 cores) 17

2.2 Regression and TeraSort cost with varying cluster size (M4) 17

2.3 Regression and TeraSort cost with varying VM type (32 cores) 17

2.4 CherryPick workflow . 22

2.5 An example of BO’s working process (derived from Figure 1 in [1]). . 25

2.6 Architecture of CherryPick’s implementation. 33

2.7 Comparing CherryPick with coordinate descent. The bars show 10th and

90th percentile. 37

2.8 Running cost by CherryPick and random search. The bars show 10th and

90th percentile. 37

2.9 Comparing Ernest to cherrypick (TPC-DS). 39

2.10 Search cost and running cost of SparkKm with different EI values. 39

2.11 Bayesian opt. process for the best/worst configuration (TeraSort). 39

2.12 Search path for TPC-DS and SparkReg 40

2.13 CherryPick learns diminishing returns of larger clusters (TPC-H, c4.2xlarge

VMs). 42

2.14 Sensitivity to workload size . 42

2.15 CherryPick works with time constraints (TPC-H). 42

3.1 No upgrades. 55

3.2 Upgrading C1 (no congestion) . 55

4

3.3 Upgrading A1, A2 (no cong.) . 55

3.4 Upgrading A1, C1 (congestion) . 55

3.5 The impact of different subplans. ToR to aggregate links are 40Gbps and

aggregate to core links are 10Gbps. The traffic from T1s to T2s is 4500

Mbps; other traffic to T2s are 6*7500= 45000 Mbps. The change task is

to upgrade A1, A2, and C1 (yellow circles); Grey circles are switches under

changes. The network runs ECMP: numbers on each link indicates the

traffic on the link. 55

3.6 Janus decomposes network graphs into blocks 59

3.7 Janus’s Design . 60

3.8 Example of quotient graphs for FatTree topology. 60

3.9 Example of equivalent subplans. The actions show forwarding decisions at

each switch for a rule matching destination (Dst). 61

3.10 Renaming functions for finding equivalent subplans 61

3.11 Comparing Janus with MRC under various settings. 78

3.12 Janus adjusts to operators constraints and cost functions and has universal

benefits across all settings. The bars show the average cost of the plans by

Janus compared to the MRC planner. 79

3.13 Janus suggests a rollback plan (Green line) that safely revert an ongoing

change. 83

3.14 Different cost functions for delayed changes. MRC fails to factor time and

incurs heavy cost. 83

4.1 Comparing a single hash function with multiple ones 93

4.2 Performance and accuracy comparison of hashes, sketches, and heaps

(traffic skew Z=1.1) . 98

4.3 Effect of traffic skews on measurement algorithms and sizes 103

4.4 Performance and accuracy of superspreader detection 106

5

4.5 Performance and accuracy of change detection 106

4.6 Latency of measurement algorithms for tasks with various entry sizes

(traffic skew Z=1.1) . 107

4.7 Comparing linear hash tables with and without pointers (key size=48

bytes) . 107

4.8 Latency of shared vs. separate count array across two cores 109

4.9 Impact of resource sharing across applications 109

6

List of Tables

2.1 Comparing the maximum, average, and minimum cost of configurations for

various applications. 19

2.2 Configurations for one instance family. 36

3.1 Example staged cost functions from cloud providers 57

3.2 Cost functions for purely mathematical functions where C clamps the out-

put between 0 and 100. 57

3.3 An example of different subplans impacting different percentage of ToR pairs. 57

3.4 Configurations and change task for each topology. We upgrade all core and

aggregate switches in all the pods. 76

3.5 Janus planning time. 83

4.1 A survey of proposed measurement solutions 90

7

Preface

I have always tried to be conscious of the decisions that I make in my life. Most often,

I have tried to explore the sides that people tell me not to, just to give myself the

opportunity to explore things that are not the norm and to feel that I am making

conscious decisions for myself. Starting a PhD was a conscious decision for me. As

opposed to many people in oppressed countries, I wasn’t trying to run away to build

a better life for myself. I genuinely was interested in the science and the impact that

I could have in the bigger picture—as what I hope is typical with many students that

take on this journey.

However, a few years along this path, I forgot myself. I lost consciousness. I lost

mindfulness. And I became a slave to what was asked of me. I forgot what “I” was

looking for, that killed my passion, and my program became my prison. This happens

far too often, especially with young researchers that haven’t given life enough chances

to prepare them for it.

I am writing this not as a preface to this thesis. But as a preface to all the PhD

students that want to take on this journey. If you are reading this, remember that

it is far too easy to lose yourself on this journey (and in life). And it is too hard to

actively remind yourself that you are bigger than what you believe, than what you

are told, and than what you perceive.

Make your PhD a journey of not learning to think but a journey of learning to be

conscious of your needs and emotions, a journey about being present, and a journey

about being mindful. Frankly, if you get accepted to a PhD program, chances are

that you already know how to think and you just need to be taught how to advertise

your thinking. But that’s the easy part. The hard part, and the part that no one

tells you, is how to be there for yourself.

8

To my mother and brother ...

9

Chapter 1

Introduction

For the past decade or so, data centers have grown rapidly to keep up with the

customer demands. Today, a typical cloud hosts upwards of a hundred thousand

machines and offers hundreds of services [2, 3, 4] to its users. Such tight requirements

require fast innovations. As an example, every major cloud has built its own dedicated

wide-area backbone [5, 6, 7] and has gone through multiple generations of networking

fabric [8].

Keeping up with this pace of growth is challenging for both operators and their

users. Operators have to deploy new services and devices without disrupting their

users. And users are on the clock to adapt to new services to save cost and get better

performance.

The motivation for this thesis is the lack of tools that (1) enable safe, fast, and

secure deployments for the operators; and (2) tools that enable users to adopt new

technologies and services deployed in the cloud. Today, both operators and users

rely on processes that are manual, are hard to adapt, and costly. We hope that by

automating parts of these processes, we allow operators and users to have an easier

time adopting innovations.

Ideally, such tools should (1) be able to adapt to the constantly changing environ-

10

ment of a data center. (2) They need to be accurate so operators and users can rely

on them (3) and they should be cheap to use and maintain.

Adaptivity: If tools were tightly coupled to the applications or infrastructure of

the data center, they would go obsolete quickly. For example, a tool that suggests

cloud configurations (e.g., the type of the virtual machine and the number of such

machines) for a SQL database in the cloud is free to use the knowledge of the inner

workings of the SQL query planner, e.g., to decide on the RAM size. However, by

doing so, the tool becomes tightly coupled to the architecture of the underlying SQL

database. That is, if clouds introduced a new noSQL database or newer generations

of big data analytics frameworks that heavily rely on fast discs, the tool would not

be as effective.

High accuracy: A cloud configuration recommender tool suggesting suboptimal

configurations leaves users unhappy. However, achieving both high accuracy and high

adaptivity is difficult. Adaptivity needs abstractions and generalizations. Accuracy

embraces details. For example, a cloud configuration recommender that knows how

the query planner of a SQL database works is likely to make more accurate recom-

mendations than one that does not. However, such a tool will have a harder time

adapting to new types of databases.

Low cost: Finally, cloud tools should be cheap to use while being adaptive and

accurate. Operators and users define cost in terms of the amount of time and money

that they have to spend. For example, in the case of a cloud configuration optimizer,

it is possible to run an exhaustive search across all possible configurations (that is

accurate and adaptive). However, such a strategy is costly and the search space is

not always intractable.

In this thesis, we look into building these tools from three viewpoints. In Cher-

rypick, we delve into the problem of adapting to the constantly changing landscape

of hardware/software stack in the big data analytics world. In Janus, we look into

11

deploying new products in data center networks. And finally, in our study of measure-

ment algorithms for packet processing, we show that some algorithms automatically

adapt to the changing environment because the available resources grow with the

demand.

1.1 Innovations: the tussle for customers

Users need to adapt to newly introduced devices and services—new systems often

solve problems in cheaper and more efficient ways [9]. The trend for introducing new

features has rapidly grown in the past years. Amazon has gone from releasing 98

features per year in 2009 to 1400 features in 2017.

It is challenging for the users to keep up with this pace of innovation. For example,

finding the optimal configuration to run a recurring big analytics job among 1000s

of configurations is challenging and if users are not careful with their configuration,

they may end up paying a lot more [10].

However, automatically adapting to the changing environment is a rocky road for

two reasons. First, clouds introduce tens of new instances and frameworks every year.

Building specialized tools for the cartesian product of all the possible configurations

does not scale. Second, cloud customers have different usage patterns and software

stacks. This makes it hard to rely on the stability of users’ workloads or applications.

Ideally, our tools should be able to build and learn a model within a few runs of the

users’ workload on the cloud.

1.2 Deployments: the tussle for clouds

Today, operators guarantee certain levels of availability and performance [11] for their

customers. Amazon EC2 promises 99.95% availability for their virtual machines which

translates to 20 minutes a month of downtime budget. The difficulty is that operators

12

have to uphold these guarantees as they roll out new features and services. Any error

in rollouts could show as performance degradations or even loss of connectivity for

users resulting in revenue and reputation loss for the cloud operator.

New deployments are difficult because of the higher rate of failures and unexpected

events. Typically, operators perform new deployments with additional support in

terms of software (e.g., additional monitoring), hardware (e.g., additional spare ca-

pacity), humans (e.g., operators that are oncall), and time (e.g., slow rollout). Thus,

it may take a long time to accrue the support needed to roll out a new feature—often

even longer than the time it takes to design the feature.

Further, studying deployment risks is not straightforward and depends on the

practices that cloud operators follow. Some operators prefer to buy more infrastruc-

ture upfront, so there is enough spare capacity to deal with failures. Others prefer to

spend more on software-systems that are more reliable. These variations even occur

even within the same cloud: private clouds are managed and built differently than

public ones and there are regional differences across data centers due to geopolitical

constraints. So ideally, we need tools that let operators pick their operating point

where we optimize their settings.

1.3 Building tools that adapt

It is straightforward to build an algorithm that adapts to a changing landscape: A

brute force search looking at all the possibilities can always come up with the optimal

answer. The problem with this approach is that for almost any interesting problem, a

brute force search is intractable (resource or cost-wise). For example, to find a cloud

configuration to run a recurring analytical job, we can run the job on all the possible

cloud configurations and choose the best one, however, the number of such configu-

rations, typically in the order of thousands, makes a brute force search prohibitively

13

expensive. Similarly, in a data center, to find the best deployment plan for a new

product (e.g., a new type of networking switch), we can simulate and measure the

risk of every deployment plan, but the number of plans is almost always exponential.

In this thesis, we look into ways to make such search problems interactable.

In Cherrypick, we show that by combining modeling and searching, we find cloud

configurations that are as good as a brute force search. Cherrypick relies on a feed-

back loop where modeling moves the focal point of the searching algorithm and the

searching output updates the model. This coupling lets us find near-optimal cloud

configurations even without having a lot of information about the underlying work-

loads, configurations, or the behavior of the cloud machines.

In Janus, we focus on the problem of finding a deployment plan for new products in

datacenters. Datacenter networks are often super-symmetric (architecturally). Such

a symmetric architecture has many benefits from easing the software development

to easing the management and monitoring. Janus leverages the symmetry in data-

center topology to reduce the search space exponentially to the point that a brute

force search algorithm becomes tractable.

Finally, in our study of measurement algorithms for software, we look into finding

a measurement algorithm that adapts to different workloads and traffic distributions.

Such an algorithm is crucial in a data center so that it adapts to the workloads of the

users and the growth and change in data center traffic demands.

14

Chapter 2

Cherrypick: Searching for optimal cloud

configurations for customer workloads

Picking the right cloud configuration for recurring big data analytics jobs running in

clouds is hard, because there can be tens of possible VM instance types and even more

cluster sizes to pick from. Choosing poorly can significantly degrade performance and

increase the cost to run a job by 2-3x on average, and as much as 12x in the worst-

case. However, it is challenging to automatically identify the best configuration for

a broad spectrum of applications and cloud configurations with low search cost. To

make matters worse, clouds introduce new products every year making it challenging

to build a system that adapts to the changing landscape of the cloud. CherryPick

is a system that leverages Bayesian Optimization to dynamically build and update

performance models for various applications. In Cherrypick, the models are just

accurate enough to let a searching algorithm distinguish the best or close-to-the-best

configuration from the rest with only a few test runs. Our experiments on five analytic

applications in AWS EC2 show that CherryPick has a 45-90% chance to find optimal

configurations, otherwise near-optimal, saving up to 75% search cost compared to

existing solutions.

15

2.1 Introduction

Big data analytics running on clouds are growing rapidly and have become criti-

cal for almost every industry. To support a wide variety of use cases, a number

of evolving techniques are used for data processing, such as Map-Reduce, SQL-like

languages, Deep Learning, and in-memory analytics. The execution environments

of such big data analytic applications are structurally similar: a cluster of virtual

machines (VMs). However, since different analytic jobs have diverse behaviors and

resource requirements (CPU, memory, disk, network), their cloud configurations – the

types of VM instances and the numbers of VMs – cannot simply be unified.

Choosing the right cloud configuration for an application is essential to service

quality and commercial competitiveness. For instance, a bad cloud configuration can

result in up to 12 times more cost for the same performance target. The saving

from a proper cloud configuration is even more significant for recurring jobs [12, 13]

in which similar workloads are executed repeatedly. Nonetheless, selecting the best

cloud configuration, e.g., the cheapest or the fastest, is difficult due to the complexity

of simultaneously achieving high accuracy, low overhead, and adaptivity for different

applications and workloads.

Accuracy The running time and cost of an application have complex relations to

the resources of the cloud instances, the input workload, internal workflows, and con-

figuration of the application. It is difficult to use straightforward methods to model

such relations. Moreover, cloud dynamics such as network congestions and stragglers

introduce substantial noise [14, 15].

Overhead Brute-force search for the best cloud configuration is expensive. Devel-

opers for analytic applications often face a wide range of cloud configuration choices.

For example, Amazon EC2 and Microsoft Azure offer over 40 VM instance types with

a variety of CPU, memory, disk, and network options. Google provides 18 types and

also allows customizing VMs’ memory and the number of CPU cores [16]. Addition-

16

�
���
���
����

����� ����� ������
��
��
��

�
�
��
��
��
�

��������

�������������������
���������������������

����������������

Figure 2.1: Regression and
TeraSort with varying RAM
size (64 cores)

����
����
����
����

�� ��� ��� ��� ��� ���

�
��
��
��
�

������������

�������������������
���������������������

����������������

Figure 2.2: Regression and
TeraSort cost with varying clus-
ter size (M4)

�����
�����
�����
�����

�� �� �� �� �� �� �� ���
��
��
��
��
�
��
��
��
�

����������������������������

�������������������
���������������������

����������������

Figure 2.3: Regression and
TeraSort cost with varying VM
type (32 cores)

ally, developers also need to choose the right cluster size.

Adaptivity Big data applications have diverse internal architectures and dependen-

cies within their data processing pipelines. Manually learning to build the internal

structures of individual applications’ performance model is not scalable.

Existing solutions do not fully address all of the preceding challenges. For exam-

ple, Ernest [17] trains a performance model for machine learning applications with

a small number of samples but since its performance model is tightly bound to the

particular structure of machine learning jobs, it does not work well for applications

such as SQL queries (poor adaptivity).

Further, Ernest can only select VM sizes within a given instance family, and perfor-

mance models need to be retrained for each instance family.

In this chapter, we present CherryPick—a system that unearths the optimal or

near-optimal cloud configurations that minimize cloud usage cost, guarantee applica-

tion performance and limit the search overhead for recurring big data analytic jobs.

Each configuration is represented as the number of VMs, CPU count, CPU speed per

core, RAM per core, disk count, disk speed, and network capacity of the VM.

The key idea of CherryPick is to build a performance model that is just accurate

enough to allow us to distinguish near-optimal configurations from the rest. Tolerating

the inaccuracy of the model enables us to achieve both low overhead and adaptivity:

only a few samples are needed and there is no need to embed application-specific

insights into the modeling.

17

CherryPick leverages Bayesian Optimization (BO) [1, 18, 19], a method for op-

timizing black-box functions. Since it is non-parametric, it does not have any pre-

defined format for the performance model. BO estimates a confidence interval (the

range that the actual value should fall in with high probability) of the cost and

running time under each candidate cloud configuration. The confidence interval is

improved (narrowed) as more samples become available. CherryPick can judge which

cloud configuration should be sampled next to best reduce the current uncertainty in

modeling and get closer to go the optimal. CherryPick uses the confidence interval to

decide when to stop the search. Section 2.3 provides more details on how BO works

and why we chose BO out of other alternatives.

To integrate BO in CherryPick we needed to perform several customizations (Sec-

tion 2.3.5): i) selecting features of cloud configurations to minimize the search steps;

ii) handling noise in the sampled data caused by cloud internal dynamics; iii) selecting

initial samples; and iv) defining the stopping criteria.

We evaluate CherryPick on five popular analytical jobs with 66 configurations on

Amazon EC2. CherryPick has a high chance (45%-90%) to pick the optimal config-

uration and otherwise can find a near-optimal solution (within 5% at the median),

while alternative solutions such as coordinate descent and random search can take

up to 75% more running time and 45% more search cost. We also compare CherryP-

ick with Ernest [17] and show how CherryPick can improve search time by 90% and

search cost by 75% for SQL queries.

2.2 Background and Motivation

In this section, we show the benefits and challenges of choosing the best cloud config-

urations.

We also present two strawman solutions to solve this problem.

18

Application Avg/min Max/min
TPC-DS 3.4 9.6
TPC-H 2.9 12

Regression (SparkML) 2.6 5.2
TeraSort 1.6 3.0

Table 2.1: Comparing the maximum, average, and minimum cost of configurations for
various applications.

2.2.1 Benefits

A good cloud configuration can reduce the cost of analytic jobs by a large amount.

Table 2.1 shows the arithmetic mean and maximum running cost of configurations

compared to the configuration with minimum running cost for four applications across

66 candidate configurations. The details of these applications and their cloud con-

figurations are described in Section 2.5. For example, for the big data benchmark,

TPC-DS, the average configuration costs 3.4 times compared to the configuration

with minimum cost; if users happen to choose the worst configuration, they would

spend 9.6 times more.

Picking a good cloud configuration is even more important for recurring jobs where

similar workloads are executed repeatedly, e.g. daily log parsing. Recent studies report

that up to 40% of analytics jobs are recurring [12, 13]. Our approach only works for

repeating jobs, where the cost of a configuration search can be amortized across many

subsequent runs.

2.2.2 Challenges

There are several challenges for picking the best cloud configurations for big data

analytics jobs.

Complex performance model: In addition, performance under a cloud config-

uration is not deterministic. In cloud environments, which is shared among many

tenants, stragglers can happen. We measured the running time of TeraSort-30GB

19

on 22 different cloud configurations on AWS EC2 five times. We then computed the

coefficient of variation (CV) of the five runs. Our results show that the median of the

CV is about 10% and the 90 percentile is above 20%. This variation is not new [13].

Cost model: The cloud charges users based on the amount of time the VMs are up.

Using configurations with a lot of resources could minimize the running time, but it

may cost a lot more money. Thus, to minimize cost, we have to find the right balance

between resource prices and the running time. Figure 2.2 shows the cost of running

Regression on SparkML on different cluster sizes where each VM comes with 15 GBs

of RAM and 4 cores in AWS EC2. We can see that the cost does not monotonically

increase or decrease when we add more resources into the cluster. This is because

adding resources may accelerate the computation but also raises the price per unit of

running time.

Large searching space: Clouds offer a large number of instance types for users. For

example, Amazon EC2 offers over 40 VM instance types. The instances are grouped

into instance families such as general purpose (M4), compute optimized (C4), memory

optimized (R3), and storage optimized (I2) [2]. Within each instance family, different

instances have different amount of virtual CPUs (1-40 cores), memory (0.5-244 GB),

network bandwidth (20Mbps-10Gbps), and disks (different amount of local disk and

remote Elastic Block Storage [20]). Cloud providers also add new instance types every

year [2]. In addition to instance types, users have to pick the right cluster size that

minimizes the cost while ensuring a short running time.

Large searching space: Clouds provide a large number of instance types to users.

Amazon, for example, offers 40 VM types grouped into general purpose (M4), com-

pute optimized (C4), memory optimized (R3), and disk-optimized (I2). The resource

variation across these families together with the newly added instance types every

year, making brute force searching the right cloud configuration time consuming and

costly.

20

The heterogeneity of applications: Figure 2.3 shows different shapes for TPC-DS

and Regression on Spark and how they relate to instance types. For TeraSort, a low

memory instance (8 core and 15 GBs of RAM) performs the best because CPU is a

more critical resource. On the other hand for Regression, the same cluster has 2.4

times more running time than the best candidate due to the lack of RAM.

Moreover, the best choice often depends on the application configurations, e.g.,

the number of map and reduce tasks in YARN. Our work on identifying the best cloud

configurations is complementary to other works on identifying the best application

configurations (e.g., [21, 22]). CherryPick can work with any (even not optimal)

application configurations.

2.2.3 Strawman solutions

The two strawman solutions for predicting a near optimal cloud configuration are

modeling and searching.

Accurate modeling of application performance. One way is to model applica-

tion performance and then pick the best configuration based on this model. However,

this methodology has poor adaptivity. Building a model that works for a variety

of applications and cloud configurations can be difficult because the knowledge of

the internal structure of specific applications is needed to make the model effective.

Moreover, building a model through human intervention for every new application

can be tedious.

Static searching for the best cloud configuration. Another way is to exhaus-

tively search for the best cloud configuration without relying on an accurate perfor-

mance model. However, this methodology has high overhead. With 40 instance types

at Amazon EC2 and tens of cluster sizes for an application, if not careful, one could

end up needing tens if not hundreds of runs to identify the best instance. In addition,

trying each cloud configuration multiple times to get around the dynamics in the

21

Figure 2.4: CherryPick workflow
cloud (due to resource multiplexing and stragglers) would exacerbate the problem

even further.

To reduce the search time and cost, one could use coordinate descent and search

one dimension at a time. Coordinate descent could start with searching for the

optimal CPU/RAM ratio, then the CPU count per machine, then cluster size, and

finally disk type. For each dimension, we could fix the other dimensions and search

for the cheapest configuration possible. This could lead to suboptimal decisions if for

example, because of bad application configuration a dimension is not fully explored

or there are local minima in the problem space.

2.3 CherryPick Design

2.3.1 Overview

CherryPick follows a general principle in statistical learning theory [23]: “If you pos-

sess a restricted amount of information for solving some problem, try to solve the

problem directly and never solve a more general problem as an intermediate step.”

In our problem, the ultimate objective is to find the best configuration. We

also have a very restricted amount of information, due to the limited runs of cloud

22

configurations we can afford. Therefore, the model does not have enough information

to be an accurate performance predictor, but this information is sufficient to find a

good configuration within a few steps.

Rather than accurately predicting application performance, we just need a model

that is accurate enough for us to separate the best configuration from the rest.

Compared to static searching solutions, we dynamically adapt our searching scheme

based on the current understanding and confidence interval of the performance model.

We can dynamically pick the next configuration that can best distinguish performance

across configurations and eliminate unnecessary trials. The performance model can

also help us understand when to stop searching earlier once we have a small enough

confidence interval. Thus, we can reach the best configuration faster than static

approaches.

Figure 2.4 shows the joint process of performance modeling and configuration

searching. We start with a few initial cloud configurations (e.g., three), run them,

and input the configuration details and job completion time into the performance

model. We then dynamically pick the next cloud configuration to run based on the

performance model and feed the result back to the performance model. We stop when

we have enough confidence that we have found a good configuration.

2.3.2 Problem formulation

For a given application and workload, our goal is to find the optimal or a near-

optimal cloud configuration that satisfies a performance requirement and minimizes

the total execution cost. Formally, we use T px⃗q to denote the running time function

for an application and its input workloads. The running time depends on the cloud

configuration vector x⃗, which includes instance family types, CPU, RAM, and other

resource configurations.

Let P px⃗q be the price per unit time for all VMs in cloud configuration x⃗. We

23

formulate the problem as follows:

minimize
x⃗

Cpx⃗q “ P px⃗q ˆ T px⃗q

subject to T px⃗q ď Tmax

(2.1)

where Cpx⃗q is the total cost of cloud configuration x⃗ and Tmax is the maximum

tolerated running time1. Knowing T px⃗q under all candidate cloud configurations

would make it straightforward to solve Eqn (2.1), but it is expensive because all

candidate configurations need to be tried. Instead, we use BO (with Gaussian Process

Priors, see Section 2.6) to directly search for an approximate solution of Eqn (2.1)

with significantly smaller cost.

2.3.3 Solution with Bayesian Optimization

Bayesian Optimization (BO) [1, 18, 19] is a framework to solve optimization problem

like Eqn. (2.1) where the objective function Cpx⃗q is unknown beforehand but can

be observed through experiments. By modeling Cpx⃗q as a stochastic process, e.g. a

Gaussian Process [24], BO can compute the confidence interval of Cpx⃗q according to

one or more samples taken from Cpx⃗q. A confidence interval is an area that the curve

of Cpx⃗q is most likely (e.g. with 95% probability) passing through. For example, in

Figure 2.5(a), the dashed line is the actual function Cpx⃗q. With two samples at x⃗1

and x⃗2, BO computes a confidence interval that is marked with a blue shadowed area.

The black solid line shows the expected value of Cpx⃗q and the value of Cpx⃗q at each

input point x⃗ falls in the confidence interval with 95% probability. The confidence

interval is updated (posterior distribution in Bayesian Theorem) after new samples

are taken at x⃗3 (Figure 2.5(b)) and x⃗4 (Figure 2.5(c)), and the estimate of Cpx⃗q

improves as the area of the confidence interval decreases.
1Cpx⃗q assumes a fixed number of identical VMs.

24

Figure 2.5: An example of BO’s working process (derived from Figure 1 in [1]).
BO can smartly decide the next point to sample using a pre-defined acquisition

function that also gets updated with the confidence interval. As shown in Figure 2.5,

x⃗3 (x⃗4) is chosen because the acquisition function at t “ 2 (t “ 3) indicates that it

has the most potential gain. There are many designs of acquisition functions in the

literature, and we will discuss how we chose among them in Section 2.3.5.

BO is embedded into CherryPick as shown in Figure 2.4. At Step 2, CherryP-

ick leverages BO to update the confidence interval of Cpx⃗q. After that, at Step 3,

CherryPick relies on BO’s acquisition function to choose the best configuration to

run next. Also, at Step 4, CherryPick decides whether to stop the search according

25

to the confidence interval of Cpx⃗q provided by BO (details shown in Section 2.3.5).

Another useful property of BO is that it can accommodate observation noise in

the computation of confidence interval of the objective function. Suppose in practice,

given an input point x⃗, we have no direct access to Cpx⃗q but can only observe Cpx⃗q1

that is:

Cpx⃗q1 “ Cpx⃗q ` ϵ (2.2)

where ϵ is a Gaussian noise with zero mean, that is ϵ „ N p0, σ2
ϵ q. Because Cpx⃗q1 is

also Gaussian, BO is able to infer the confidence interval of Cpx⃗q according to the

samples of Cpx⃗q1 and ϵ [1]. Note that in our scenario, the observation noise on Cpx⃗q

is negligible because the measurement on running time and price model is accurate

enough. However, the ability to handle the additive noise of BO is essential for us to

handle the uncertainty in clouds (details in Section 2.3.6).

In summary, by integrating BO, CherryPick has the ability to learn the objective

function quickly and only take samples in the areas that most likely contain the

minimum point. For example, in Figure 2.5(c) both x⃗3 and x⃗4 are close to the

minimum point of the actual Cpx⃗q, leaving the interval between x⃗1 and x⃗4 unexplored

without any impact on the final result.

2.3.4 Why do we use Bayesian Optimization?

BO is effective in finding optimal cloud configurations for Big Data analytics for three

reasons.

First, BO does not limit the function to be of any pre-defined format, as it is

non-parametric. This property makes CherryPick useful for a variety of applications

and cloud configurations.

Second, BO typically needs a small number of samples to find a near-optimal

26

solution because BO focuses its search on areas that have the largest expected im-

provements.

Third, BO can tolerate uncertainty. CherryPick faces two main sources of uncer-

tainty: (i) because of the small number of samples, CherryPick’s performance models

are imperfect and usually have substantial prediction errors; (ii) the cloud may not

report a stable running time even for the same application due to resource multiplex-

ing across applications, stragglers, etc. BO can quantitatively define the uncertainty

region of the performance model. The confidence interval it computes can be used to

guide the searching decisions even in face of model inaccuracy. In Section 2.3.6, we

leverage this property of BO to handle the uncertainty from cloud dynamics.

One limitation of BO is that its computation complexity is OpN4q, where N is

the number of data samples. However, this is perfectly fine because our data set is

small (our target is typically less than 10 to 20 samples out of hundreds of candidate

cloud configurations).

Alternatives Alternative solutions often miss one of the above benefits: (1) linear

regression and linear reinforcement learning are not generic to all applications because

they do not work for non-linear models; (2) techniques that try to model a function

(e.g., linear regression, support vector regression, boosting tree, etc.) do not consider

minimizing the number of sample points. Deep neural networks [25], table-based mod-

eling [26], and Covariance matrix adaptation evolution strategy (CMA-ES) [27] can

potentially be used for black-box optimization but require a large number of samples.

(3) It is difficult to adapt reinforcement learning [25, 28] to handle uncertainty and

minimize the number of samples while BO models the uncertainty so as to accelerate

the search.

27

2.3.5 Design options and decisions

To leverage Bayesian Optimization to find a good cloud configuration, we need to

make several design decisions based on system constraint and requirements.

Prior function As most BO frameworks do, we choose to use Gaussian Process as

the prior function. It means that we assume the final model function is a sample from

Gaussian Process. We will discussion this choice in more details in Section 2.6.

We describe Cpx⃗q with a mean function µp¨q and covariance kernel function kp¨, ¨q.

For any pairs of input points x⃗1, x⃗2, we have:

µpx⃗1q “ ErCpx⃗1qs; µpx⃗2q “ ErCpx⃗2qs

kpx⃗1, x⃗2q “ ErpCpx⃗1q ´ µpx⃗1qqpCpx⃗2q ´ µpx⃗2qqs

Intuitively, we know that if two cloud configurations, x⃗1 and x⃗2 are similar to each

other, Cpx⃗1q and Cpx⃗2q should have large covariance, and otherwise, they should have

small covariance. To express this intuition, people have designed numerous formats

of the covariance functions between inputs x⃗1 and x⃗2 which decrease when ||x⃗1 ´ x⃗2||

grow. We choose Matern5/2 [29] because it does not require strong smoothness and

is preferred to model practical functions [19].

Acquisition function There are three main strategies to design an acquisition func-

tion [19]: (i) Probability of Improvement (PI) – picking the point which can maximize

the probability of improving the current best; (ii) Expected Improvement (EI) – pick-

ing the point which can maximize the expected improvement over the current best;

and (iii) Gaussian Process Upper Confidence Bound (GP-UCB) – picking the point

whose certainty region has the smallest lower bound(when we minimize a function).

In CherryPick we choose EI [1] as it has been shown to be better-behaved than PI,

28

and unlike the method of GP-UCB, it does not require its own tuning parameter [19].

Jones et al. [30] derive an easy-to-compute closed form for the EI acquisition

function. Let Xt be the collection of all cloud configurations whose function values

have been observed by round t, and m “ minx⃗tCpx⃗q|x⃗ P Xtu as the minimum function

value observed so far. For each input x⃗ which is not observed yet, we can evaluate its

expected improvement if it is picked as the next point to observe with the following

equation:

EIpx⃗q “

$

’

’

&

’

’

%

pm ´ µpx⃗qqΦpZq ` σpx⃗qϕpZq, if σpx⃗q ą 0

0, if σpx⃗q “ 0

(2.3)

where σpx⃗q “
a

kpx⃗, x⃗q, Z “
m´µpx⃗q

σpx⃗q
, and Φ and ϕ are standard normal cumulative

distribution function and the standard normal probability density function respec-

tively.

The acquisition function shown in Eqn (2.3) is designed to minimize Cpx⃗q without

further constraints. Nonetheless, from Eqn 2.1 we know that we still have a perfor-

mance constraint T px⃗q ď Tmax to consider. It means that when we choose the next

cloud configuration to evaluate, we should have a bias towards one that is likely to

satisfy the performance constraint. To achieve this goal, we first build the model of

running time function T px⃗q from Cpx⃗q

P px⃗q
. Then, as suggested in [31], we modify the EI

acquisition function as:

EIpx⃗q1 “ P rT px⃗q ď Tmaxs ˆ EIpx⃗q (2.4)

Stopping condition We define the stopping condition in CherryPick as follows:

when the expected improvement in Eqn.(2.4) is less than a threshold (e.g. 10%) and

29

at least N (e.g. N “ 6) cloud configurations have been observed. This ensures that

CherryPick does not stop the search too soon and it prevents CherryPick from strug-

gling to make small improvements.

Starting points Our choice of starting points should give BO an estimate about

the shape of the cost model. For that, we sample a few points (e.g., three) from

the sample space using a quasi-random sequence [32]. Quasi-random numbers cover

the sample space more uniformly and help the prior function avoid making wrong

assumptions about the sample space.

Encoding cloud configurations We encode the following features into x⃗ to repre-

sent a cloud configuration: the number of VMs, the number of cores, CPU speed per

core, average RAM per core, disk count, disk speed and network capacity of a VM.

To reduce the search space of the Bayesian Optimization, we normalize and dis-

cretized most of the features. For instance, for disk speed, we only define fast and

slow to distinguish SSD and magnetic disks. Similarly, for CPU, we use fast and

slow to distinguish high-end and common CPUs. Such discretization significantly

reduces the space of several features without losing the key information brought by

the features and it also helps to reduce the number of invalid cloud configurations.

For example, we can discretize the space so that the CPUs greater (smaller) than

2.2GHz are fast (slow) and the disks with bandwidth greater (smaller) than 600MB/s

are fast (slow). Then, if we suggest a (fast, fast) combination for (CPU, Disk), we

could choose a 2.5Ghz and 700MBs instance (or any other one satisfying the boundary

requirements). Or in place of a (slow, slow) configuration we could pick an instance

with 2Ghz of speed and 400MB/s of IO bandwidth. If no such configurations exist,

we can either remove that point from the candidate space that BO searches or return

a large value, so that BO avoids searching in that space.

30

2.3.6 Handling uncertainties in clouds

So far we assumed that the relation between cloud configurations and cost (or running

time) is deterministic. However, in practice, this assumption can be broken due to

uncertainties within any shared environment. The resources of clouds are shared by

multiple users so that different users’ workload could possibly have interference with

each other.

Moreover, failures and resource overloading, although potentially rare, can impact

the completion time of a job. Therefore, even if we run the same workload on the

same cloud with the same configuration for multiple times, the running time and cost

we get may not be the same.

Due to such uncertainties in clouds, the running time we can observe from an

actual run on configuration x⃗ is T̃ px⃗q and the cost is C̃px⃗q. If we let T px⃗q “ ErT̃ px⃗qs

and Cpx⃗q “ ErC̃px⃗qs, we have:

T̃ px⃗q “ T px⃗qp1 ` ϵcq (2.5)

C̃px⃗q “ Cpx⃗qp1 ` ϵcq (2.6)

where ϵc is a multiplicative noise introduced by the uncertainties in clouds. We

model ϵc as normally distributed: ϵc „ N p0, σ2
ϵcq.

Therefore, Eqn (2.1) becomes minimizing the expected cost with the expected

performance satisfying the constraint.

BO cannot infer the confidence interval of Cpx⃗q from the observation of C̃px⃗q

because the latter is not normally distributed given that BO assumes Cpx⃗q is Gaussian

and so is p1 ` ϵcq. One straightforward way to solve this problem is to take multiple

samples at the same configuration x⃗, so that Cpx⃗q can be obtained from the average

of the multiple C̃px⃗q. Evidently, this method will result in a big overhead in search

31

cost.

Our key idea to solve this problem (so that we only take one sample at each input)

is to transform Eqn. (2.1) to the following equivalent format:

minimize
x⃗

logCpx⃗q “ logP px⃗q ` log T px⃗q

subject to log T px⃗q ď log Tmax

(2.7)

We use BO to minimize logCpx⃗q instead of Cpx⃗q since:

log C̃px⃗q “ logCpx⃗q ` log p1 ` ϵcq (2.8)

Assuming that ϵc is less than one (e.g. ϵc ă 1), log p1 ` ϵcq can be estimated by ϵc,

so that log p1 ` ϵcq can be viewed as an observation noise with a normal distribution,

and log C̃px⃗q can be treated as the observed value of logCpx⃗q with observation noise.

Eqn.(2.8) can be solved similar to Eqn.(2.2).

In the implementation of CherryPick, we use Eqn. (2.7) instead of Eqn. (2.1) as

the problem formulation.

2.4 Implementation

In this section, we discuss the implementation details of CherryPick as shown in Fig-

ure 2.6. It has four modules.

1. Search Controller: Search Controller orchestrates the entire cloud configuration

selection process. To use CherryPick, users supply a representative workload (see Sec-

tion 2.6) of the application, the objective (e.g. minimizing cost or running time), and

the constraints (e.g. cost budget, maximum running time, preferred instance types,

maximum/minimum cluster size, etc.). Based on these inputs, the search controller

32

Figure 2.6: Architecture of CherryPick’s implementation.

obtains a list of candidate cloud configurations and passes it to the Bayesian Op-

timization Engine. At the same time, Search Controller installs the representative

workload to clouds via Cloud Controller. This process includes creating VMs in each

cloud, installing the workload (applications and input data), and capturing a cus-

tomized VM image which contains the workload. Search Controller also monitors the

current status and model on the Bayesian Optimization engine and decides whether

to finish the search according to the stopping condition discussed in Section 2.3.5.

2. Cloud Monitor: Cloud Monitor runs benchmarking workloads of Big Data de-

fined by CherryPick on different clouds. It repeats running numerous categories of

benchmark workloads on each cloud to measure the upper-bound (or high percentile)

of the cloud noise 2. The result is offered to Bayesian Optimization engine as the ϵc

in Eqn. (2.8). This monitoring is lightweight; we only need to run this system every

few hours with a handful of instances.

3. Bayesian Optimization Engine: Bayesian Optimization Engine is built on top

of Spearmint [33] which is an implementation of BO in Python. Besides the standard

BO, it also has realized our acquisition function in Eqn (2.3) and the performance
2Over-estimating ϵc means more search cost.

33

constraint in Eqn (2.4). However, Spearmint’s implementation of Eqn (2.4) is not ef-

ficient for our scenario because it assumes Cpx⃗q and T px⃗q are independent and trains

the models of them separately. We modified this part so that T px⃗q is directly derived

from Cpx⃗q

P px⃗q
after we get the model of Cpx⃗q. Our implementation of this module focuses

on the interfaces and communications between this module and others. For taking

a sample of a selected cloud configuration, the BO engine submits a cluster creation

request and a start workload request via the Cloud Controller.

4. Cloud Controller: Cloud Controller is an adaptation layer which handles the

heterogeneity to control the clouds. Each cloud has its own APIs and semantics to do

the operations such as create/delete VMs, create/delete virtual networks, capturing

images from VMs, and list the available instance types. Cloud Controller defines a

uniform API for the other modules in CherryPick to perform these operations. In

addition, the API also includes sending commands directly to VMs in clouds via SSH,

which facilitates the control of the running workload in the clouds.

The entire CherryPick system is written in Python with about 5,000 lines of code,

excluding the legacy part of Spearmint.

2.5 Evaluation

We evaluate CherryPick with 5 types of big data analytics applications on 66 cloud

configurations. Our evaluations show that CherryPick can pick the optimal configu-

ration with a high chance (45-90%) or find a near-optimal configuration (within 5% of

the optimal at the median) with low search cost and time, while alternative solutions

such as coordinate descent and random search can reach up to 75% more running

time and up to 45% more search time than CherryPick. We also compare CherryPick

with Ernest [17] and show how CherryPick can reduce the search time by 90% and

search cost by 75% for SQL queries. We discuss insights on why CherryPick works

34

well and show how CherryPick adapt to changing workloads and various performance

constraints.

2.5.1 Experiment setup

Applications: We chose benchmark applications on Spark [34] and Hadoop [35] to

exercise different CPU/Disk/RAM/Network resources: (1) TPC-DS [36] is a recent

benchmark for big data systems that models a decision support workload. We run

TPC-DS benchmark on Spark SQL with a scale factor of 20. (2) TPC-H [37] is

another SQL benchmark that contains a number of ad-hoc decision support queries

that process large amounts of data. We run TPC-H on Hadoop with a scale factor

of 100. Note that our trace runs 20 queries concurrently. While it may be possible

to model each query’s performance, it is hard to model the interactions of these

queries together. (3) TeraSort [38] is a common benchmarking application for big

data analytics frameworks [39, 40], and requires a balance between high IO bandwidth

and CPU speed. We run TeraSort on Hadoop with 300 GB of data, which is large

enough to exercise disks and CPUs together. (4) The SparkReg [41] benchmark

consists of machine learning workloads implemented on top of Spark. We ran the

regression workload in SparkML with 250k examples, 10k features, and 5 iterations.

This workload heavily depends on memory space for caching data and has minimal

use for disk IO. (5) SparkKm is another SparkML benchmark [41]. It is a clustering

algorithm that partitions a space into k clusters with each observation assigned to the

cluster with the closest mean. We use 250k observations with 10k features. Similar

to SparkReg, this workload is dependent on memory space and has less stringent

requirements for CPU and disk IO.

Cloud configurations: We choose four families in Amazon EC2: M4 (general

35

Instance Size Number of instances
large 16 24 32 40 48 56
xlarge 8 12 16 20 24 28
2xlarge 4 6 8 10 12 14

Number of Cores 32 48 64 80 96 112

Table 2.2: Configurations for one instance family.

purpose), C4 (compute optimized), R3 (memory optimized), I2 (disk optimized) in-

stances.

Objectives: We define the objective as minimizing the cost of executing the ap-

plication under running time constraints. By default, we set a loose constraint for

running time so CherryPick searches through a wider set of configurations. We eval-

uate tighter constraints in Section 2.5.4. Note that minimizing running time with no

cost constraint always leads to larger clusters, and therefore, is rather simple. On the

other hand, minimizing the cost depends on the right balance between cluster size

and cluster utilization.

CherryPick settings: By default, we use EI“ 10%, N “ 6, and 3 initial samples.

In our experiments, we found that EI“ 10% gives a good trade-off between search

cost and accuracy. We also tested other EI values in one experiment.

Alternative solutions: We compare CherryPick with the following strategies: (1)

Exhaustive search, which finds the best configuration by running all the configurations;

(2) Coordinate descent, which searches one coordinate – in order of CPU/RAM ratio

(which specifies the instance family type), CPU count, cluster size, disk type – at a

time (Section 2.2.3) from a randomly chosen starting point. The ordering of dimen-

sions can also impact the result. It is unclear whether a combination of dimensions

and ordering exists that works best across all applications. Similar approaches have

been used for tuning configurations for Map Reduce jobs and web servers [42, 43].

(3) Random search with a budget, which randomly picks a number of configurations

given a search budget. Random search is used by previous configuration tuning works

36

[44, 45].

Metrics: We compare CherryPick with alternative solutions using two metrics: (i)

the running cost of the configuration: the expense to run a job with the selected

configuration; (ii) the search cost: the expense to run all the sampled configurations.

All the reported numbers are normalized by the exhaustive search cost and running

cost across the clusters in Table 2.2.

We run CherryPick and random search 20 times with different seeds for starting

points. For the coordinate descent, we start from all the 66 possible starting con-

figurations. We then show the 10th, median, and 90th percentile of the search cost

and running cost of CherryPick normalized by the optimal configuration reported by

exhaustive search.

����

����

����

����

����

��
��
��

��
��
�

��
��
��
��

��
��
��
��

��
��
��
�

�
��
��
��
��
��
��
��
��
��
��

����������

�������������������
����������

(a) Running cost

��

���

���

���

��
��
��

��
��
�

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����������

�������������������
����������

(b) Search cost
Figure 2.7: Comparing CherryPick with coordinate
descent. The bars show 10th and 90th percentile.

����

����

����

����

����

��
��
��
�

��
��
��
��

��
��
��

��
��
�

��
��
��
��

�
��
��
��
��
��
��
��
��
��
��

����������

�������������������
������������
������������
������������

Figure 2.8: Running cost
by CherryPick and random
search. The bars show 10th
and 90th percentile.

2.5.2 Effectiveness of CherryPick

CherryPick finds the optimal configuration in a high chance (45-90%) or a

near-optimal configuration with low search cost and time: Figure 2.7a shows

the median, 10th percentile, and 90th percentile of running time for the configuration

picked by CherryPick for each of the five workloads. CherryPick finds the exact op-

timal configuration with 45-90% chance, and finds a configuration within 5% of the

optimal configuration at the median. However, using exhaustive search requires 6-9

37

times more search cost and 5-9.5 times more search time compared with CherryPick.

On AWS, which charges on an hourly basis, after running TeraSort 100 times, ex-

haustive search costs $581 with $49 for the remainder of the runs. While CherryPick

uses $73 for searching and $122 for the rest of the runs saving a total of $435.

In terms of accuracy, we find that that CherryPick has good accuracy across ap-

plications. On median, CherryPick finds an optimal configuration within 5% of the

optimal configuration. For TPC-DS, CherryPick finds a configuration within 20% of

the optimal in the 90th percentile; For TPC-H, the 90th percentile is 7% worse than

optimal configuration; Finally, for TeraSort, SparkReg, and SparkKm CherryPick’s

90th percentile configuration is 0%, 18%, 38% worse than the optimal respectively.

It is possible to change the EI of CherryPick to find even better configurations.

CherryPick is more stable in picking near-optimal configurations and has

less search cost than coordinate descent. Across applications, the median con-

figuration suggested by coordinate descent is within 7% of the optimal configuration.

On the other hand, the tail of the configuration suggested by coordinate descent can

be far from optimal. For TPC-DS, TPC-H, and TeraSort, the tail configuration is

76%, 56%, and 78% worse than optimal, while using comparable or more search cost.

This is because coordinate descent can be misled by the result of the run. For ex-

ample, for TPC-DS, C4 family type has the best performance. In our experiment,

if coordinate descent starts its search from a configuration with a large number of

machines, the C4 family fails to finish the job successfully due to the scheduler fail-

ing. Therefore, the C4 family is never considered in the later iterations of coordinate

descent runs. This leads coordinate descent to a suboptimal point that can be much

worse than the optimal configuration.

In contrast, CherryPick has stronger ability to navigate around these problems

because even when a run fails to finish on a candidate configuration, it uses Gaussian

process to model the global behavior of the function from the sampled configurations.

38

��

����

����

����

����

�����

�����

�����
�����

��
������

�

����
������

�

����

�������������������
������

Figure 2.9: Comparing
Ernest to cherrypick (TPC-
DS).

����

����

����

����

����

�� �� ���

�
��
��
��
��
��
��
��
��
��
��

��

��

���

���

���

�� �� ���

�
��
��
��
��
��
��
��
��
��
��
��

��

Figure 2.10: Search
cost and running cost of
SparkKm with different EI
values.

��

��

��

��

��

��

��

�� �� �� ��� ��� ���

�
��
��
��
�

��������������������

����������������
����������

���������������
���������

Figure 2.11: Bayesian opt.
process for the best/worst
configuration (TeraSort).

CherryPick reaches better configurations with more stability compared

with random search with similar budget: Figure 2.8 compares the running

cost of configurations suggested by CherryPick and random search with equal/2x/4x

search cost. With the same search cost, random search performs up to 25% worse

compared to CherryPick on the median and 45% on the tail.

With 4x cost, random search can find similar configurations to CherryPick on

the median. Although CherryPick may end up with different configurations with

different starting points, it consistently has a much higher stability of the running

cost compared to random search. CherryPick has a comparable stability to random

search with 4x budget, since random search with a 4x budget almost visits all the

configurations at least once.

CherryPick reaches configurations with similar running cost compared

with Ernest [17], but with lower search cost and time: It is hard to extend

Ernest to work with a variety of applications because it requires using a small repre-

sentative dataset to build the model. For example, TPC-DS contains 99 queries on

24 tables, where each query touches a different set of tables. This makes it difficult to

determine which set of tables should be sampled to build a representative small-scale

experiment. To overcome this we use the TPC-DS data generator and generate a

dataset with scale factor 2 (10% of target data size) and use that for training. We

then use Ernest to predict the best configuration for the target data size. Finally, we

39

��

���

���

���

���

����

����

�� ���� ���� ���� ���� ���� ���� ���� ���� ����

�
��
��

�
��
�

��������

�����������

��

����

��

��

��

(a) SparkReg

��

���

���

���

���

����

����

�� ���� ���� ���� ���� ���� ���� ���� ���� ����

�
��
��

�
��
�

��������

�����������

��

����

��

��

��

����

��

(b) TPC-DS

SparkReg TPC-DS
Step VM Type # VMs VM Type # VMs

1 r3.2xlarge 10 r3.2xlarge 10
2 r3.2xlarge 4 r3.2xlarge 4
3 c4.xlarge 8 c4.xlarge 8
4 r3.large 32 r3.large 32
5 i2.2xlarge 10 r3.2xlarge 14
6 r3.2xlarge 14 c4.2xlarge 4
7 m4.xlarge 28
8 m4.2xlarge 14
9 c4.2xlarge 10

(c) Search path for TPC-DS and SparkReg
Figure 2.12: Search path for TPC-DS and SparkReg

note that since Ernest builds a separate model for each instance type we repeat the

above process 11 times, once for each instance type.

Figure 2.9 shows that Ernest picks the best configuration for TPC-DS, the same

as CherryPick, but takes 11 times the search time and 3.8 times the search cost.

Although Ernest identifies the best configuration, its predicted running time is up to

5 times of the actual running time. This is because, unlike iterative ML workloads,

the TPC-DS performance model has a complex scaling behavior with input scale

and this is not captured by the linear model used in Ernest. Thus, once we set a

tighter performance constraint, Ernest suggests a configuration that is 2 times more

expensive than CherryPick with 2.8 times more search cost.

CherryPick can tune EI to trade-off between search cost and accuracy: The

error of the tail configuration for SparkKm as shown in Figure 2.7a can be as high as

38%. To get around this problem, the users can use lower values of EI to find better

40

configurations. Figure 2.10 shows the running cost and search cost for different values

of EI. At EI ă 6%, CherryPick has much better accuracy, finding configurations that

at 90th percentile are within 18% of the optimal configuration. If we set EI ă 3%,

CherryPick suggests configurations that are within 1% of the optimal configuration

at 90th percentile resulting in a 26% increase in search cost.

This can be a knob where users of CherryPick can trade-off optimality for search

cost. For example, if users of CherryPick predict that the recurring job will be popular,

setting a low EI value can force CherryPick to look for better configurations more

carefully. This may result in larger savings over the lifetime of the job.

2.5.3 Why CherryPick works?

Previous performance prediction solutions require many training samples to improve

prediction accuracy. CherryPick spends the budget to improve the prediction accu-

racy of those configurations that are closer to the best. Figure 2.11 shows the means

and confidence intervals of the running cost for the best and worst configurations,

and how the numbers change during the process of Bayesian optimization. Initially,

both configurations have large confidence intervals. As the search progresses, the con-

fidence interval for the best configuration narrows. In contrast, the estimated cost

for the worst configuration has a larger confidence interval and remains large. This is

because CherryPick focuses on improving the estimation for configurations that are

closer to the optimal.

Figure 2.13 shows CherryPick’s final estimation of the running time versus cluster

size. The real curve follows Amdahl’s law: (1) adding more VMs reduces the running

time; (2) at some point, adding more machines has diminishing returns due to the

sequential portion of the application. The real running time falls within the confidence

interval of CherryPick. Moreover, CherryPick has smaller confidence intervals for the

more promising region where the best configurations (those with more VMs) are

41

��
����
����
����
����

�����
�����
�����
�����
�����

�� �� �� �� �� �� �� �� ���

�
��
��
��
�

������������������

���������������
����
����

Figure 2.13: CherryPick
learns diminishing returns
of larger clusters (TPC-H,
c4.2xlarge VMs).

����

����

����

����

����

����

����

��� ��� ���� ���� ����

�
��
��
��
��
��
��
��
��
��
��

�������������

��������
��������

Figure 2.14: Sensitivity to
workload size

���

���

���

���

���

���

���� ���� ���� ���� ���� ���� �����

�
��
��
��

�
�
��
��
��
�

�������������������

������� ����������

Figure 2.15: CherryPick
works with time constraints
(TPC-H).

located. It does not bother to improve the estimation for configurations with fewer

VMs.

Even though CherryPick has minimal information about the application, it adapts

the search towards the features that are more important to the application. Figure

2.12 shows example search paths for TPC-DS and SparkReg from the same three

starting configurations. For SparkReg, CherryPick quickly identifies that clusters

with larger RAM (R3 instances) have better performance and redirects the search

towards such instances. In contrast, for TPC-DS, the last few steps suggest that

CherryPick has identified that CPU is more important, and therefore the exploration

is directed towards VMs with better CPUs (C4 instances). Figure 2.12 shows that

CherryPick directly searches more configurations with larger #cores for TPC-DS than

for SparkReg.

2.5.4 Handling workload changes

CherryPick depends on representative workloads. Thus, one concern is CherryPick’s

sensitivity to the variation of input workloads. In Figure 2.14, we keep the best

configuration for the original workload (100% input size) C100 and test the running

cost of the C100% on workloads with 50% to 150% of the original input size. For

TeraSort, we can continue to use C100% to achieve the optimal cost with different

input sizes. For SparkReg, C100% remains effective for smaller workloads. However,

42

when the workload is increased by 25%, C100% can get to 260% the running cost of the

new best configuration (C125%). This is because C100% does not have enough RAM

for SparkReg, which leads to more disk accesses.

Since input workloads usually vary in practice, CherryPick needs a good selection

of representative workloads For example, for SparkReg, we should choose a relatively

larger workload as the representative workload (e.g., choosing 125% gives you more

stability than choosing 100%). We will discuss more on how to select representative

workloads in Section 2.6.

When the difference between CherryPick’s estimation of the running cost and

the actual running cost is above a threshold, the user can rerun CherryPick. For

example, in Figure 2.14, suppose the user trains CherryPick with a 100% workload

for SparkReg. With a new workload at size 125%, when he sees the running cost

becomes 2x higher than expected, he can rerun CherryPick to build a new model for

the 125% workload.

2.5.5 Handling performance constraints

We also evaluate CherryPick with tighter performance constraints on the running

time (400 seconds to 1000 seconds) for TPC-H, as shown in Figure 2.15.

CherryPick consistently identifies near-optimal configuration (2-14% difference

with the optimal) with similar search cost to the version without constraints.

2.6 Discussion

Representative workloads: CherryPick relies on representative workloads to learn

and suggest a good cloud configuration for similar workloads. Two workloads are

similar if they operate on data with similar structures and sizes, and the computations

43

on the data are similar. For example, for recurring jobs like parsing daily logs or

summarizing daily user data with the same SQL queries, we can select one day’s

workload to represent the following week or month, if in this period the user data

and the queries are not changing dramatically. Many previous works were built on

top of the similarity in recurring jobs [12, 13]. Picking a representative workload for

non-recurring jobs hard, and for now, CherryPick relies on human intuitions. An

automatic way to select representative workload is an interesting avenue for future

work.

The workload for recurring jobs can also change with time over a longer term.

CherryPick detects the need to recompute the cloud configuration when it finds large

gaps between estimated performance and real performance under the current config-

uration.

Larger search space: With the customizable virtual machines [16] and containers,

the number of configurations that users can run their applications on becomes even

larger. In theory, the large candidate number should not impact on the complexity of

CherryPick because the computation time is only related with the number of samples

rather than the number of candidates (BO works even in continuous input space).

However, in practice, it might impact the speed of computing the maximum point of

the acquisition function in BO because we cannot simply enumerate all of the candi-

dates then. More efficient methods, e.g. Monte Carlo simulations as used in [33], are

needed to find the maximum point of the acquisition function in an input-agnostic

way. Moreover, the computations of acquisition functions can be parallelized. Hence,

customized VM only has small impacts on the feasibility and scalability of CherryP-

ick.

Choice of prior model: By choosing Gaussian Process as a prior, we assume that

the final function is a sample from Gaussian Process. Since Gaussian Process is

non-parametric, it is flexible enough to approach the actual function given enough

44

data samples. The closer the actual function is to a Gaussian Process, the fewer the

data samples and searching we need. We admit that a better prior might be found

given some domain knowledge of specific applications, but it also means losing the

automatic adaptivity to a set of broader applications.

Although any conjugate distribution can be used as a prior in BO [46], we chose

Gaussian Process because it is widely accepted as a good surrogate model for BO

[19]. In addition, when the problem scale becomes large, Gaussian Process is the only

choice which is computationally tractable as known so far.

2.7 Related Work

Current practices in selecting cloud configurations Today, developers have to

select cloud configurations based on their own expertise and tuning. Cloud providers

only make high-level suggestions such as recommending I2 instances in EC2 for IO

intensive applications, e.g., Hadoop MapReduce. However, these suggestions are

not always accurate for all workloads. For example, for our TPC-H and TeraSort

applications on Hadoop MapReduce, I2 is not always the best instance family to

choose.

Google provides recommendation services [47] based on the monitoring of average

resource usage. It is useful for saving cost but is not clear how to adjust the resource

allocation (e.g. scaling down VMs vs. reducing the cluster size) to guarantee the

application performance.

Selecting cloud configurations for specific applications The closest work to us

is Ernest [17], which we have already compared in Section 2.1. We also have discussed

previous works and strawman solutions in Section 2.2 that mostly focus on predicting

application performance [21, 48, 17]. Bodik et al. [49] proposed a framework that

learns performance models of web applications with lightweight data collection from

45

a production environment. It is not clear how to use such data collection technique

for modeling big data analytics jobs, but it is an interesting direction we want to

explore in the future.

Previous works [26, 50] leverage table based models to predict performance of

applications on storage devices. The key idea is to build tables based on input pa-

rameters and use interpolation between tables for prediction. However, building such

tables requires a large amount of data. While such data is available to data center

operators, it is out of reach for normal users. CherryPick works with a restricted

amount of data to get around this problem.

Tuning application configurations: There are several recent projects that have

looked at tuning application configurations within fixed cloud environments. Some of

them [21, 22, 51] propose to monitor resource usage in Hadoop framework and adjust

Hadoop configurations to improve the application performance. Others search for the

best configurations using random search [21] or local search [42, 43]. Compared to

Hadoop configuration, cloud configurations have a smaller search space but a higher

cost of trying out a configuration (both the expense and the time to start a new clus-

ter). Thus we find Bayesian optimization a better fit for our problem. CherryPick is

complementary to these works and can work with any application configurations.

Online scheduler of applications: Paragon [52] and Quasar [53] are online sched-

ulers that leverage historical performance data from scheduled applications to quickly

classify any new incoming application, assign the application proper resources in a

datacenter, and reduce interferences among different applications. They also rely on

online adjustments of resource allocations to correct mistakes in the modeling phase.

The methodology cannot be directly used in CherryPick’s scenarios because usually,

users do not have historical data, and online adjustment (e.g., changing VM types

and cluster sizes) is slow and disruptive to big data analytics. Containers allow online

adjustment of system resources, so it might be worth revisiting these Approaches.

46

Parameter tuning with BO: Bayesian Optimization is also used in searching opti-

mal Deep Neural Network configurations for specific Deep Learning workloads [54, 19]

and tuning system parameters [55]. CherryPick is a parallel work which searches cloud

configurations for big data analytics.

2.8 Conclusion

We present CherryPick, a service that selects near-optimal cloud configurations with

high accuracy and low overhead. CherryPick adaptively and automatically builds

performance models for specific applications and cloud configurations that are just

accurate enough to distinguish the optimal or a near-optimal configuration from the

rest. Our experiments on Amazon EC2 with 5 widely used benchmark workloads

show that CherryPick selects optimal or near-optimal configurations with much lower

search cost than existing solutions.

47

Chapter 3

Janus: Searching for optimal deployment

plans in data centers

Data center networks evolve as they serve customer traffic. When applying network

changes, operators risk impacting customer traffic because the network operates at

reduced capacity and is more vulnerable to failures and traffic variations. The impact

on customer traffic ultimately translates to operator cost (e.g., refunds to customers).

However, planning a network change while minimizing the risks is challenging as

we need to adapt to a variety of traffic dynamics, cost functions, and operator and

geo-related constraints while scaling to large networks and large changes. Today,

operators often use plans that maximize the residual capacity (MRC), which often

incurs a high cost under different traffic dynamics. Instead, we propose Janus, which

searches the large planning space by leveraging the high degree of symmetry in data

center networks. Our evaluation on large Clos networks and Facebook traffic traces

shows that Janus generates plans in real-time only needing 33~71% of the cost of

MRC planners while adapting to a variety of settings.

48

3.1 Introduction

Data center networks are evolving fast to keep up with traffic doubling every year

[8, 56] and frequent rollouts of new applications. They continuously change both

hardware and software to scale out and add new features. These changes include

repairs such as firmware security patches and upgrades such as addition of new fea-

tures to switch hardware or software. Such changes are even more common in recent

years with the adoption of software-defined networking [57, 58, 59] and programmable

switches [60, 61, 62].

Changes come with an inherent risk of impacting customers and their traffic:

operators have to apply network changes while upholding high availability and good

performance—draining the entire data center before applying changes is too costly

(typically measured through SLAs). When a change is taking place, the network

operates at reduced capacity and has less headroom for handling traffic variations

and failures [63, 64]. Google reports that 68% of failures occur during the network

changes [63]. There are also other risks due to delayed changes and bugs in the change

itself (§3.2.1).

A risk is the likelihood of any event impacting customer traffic. These events

result in a violation of service-level objectives (SLOs) and hurt operator income. For

example, Amazon refunds 30% of credits to customers experiencing less than 90%

uptime. Thus, reducing risk is critical for all operators, but it also requires investment

and is not cheap. Operators can reduce risk by overprovisioning the network [64]: with

enough capacity, the network has headroom to absorb traffic variations and failures

during network changes seamlessly, but this comes at a high CAPEX and OPEX cost.

There is a fundamental tradeoff between risk tolerance and cost: operators can

choose to pay more, upfront, by overprovisioning to keep network utilization and risk

low; or run the network at high utilization and accept a moderate risk of impacting

customer traffic. Each data center operator can choose its operating point based on

49

their budget for network resources and penalties associated with SLO violations.

Given an operating point (i.e., the level of capacity overprovisioning), operators

have to make decisions on when and how to apply changes in a way that minimizes

the expected cost of risks. However, planning a network change is challenging because

it has to meet two goals:

Adaptivity: The best change plan depends on (1) Temporal and spatial traffic

dynamics influence the expected risk of a plan. A safe plan now could be unsafe one

hour later when traffic volumes are high (temporal dynamics). Similarly, whether

we can apply a change to a core switch depends on the intra-pod and inter-pod traf-

fic (spatial dynamics). (2) Cost functions which are the penalties operators incur

when customers’ traffic is affected in the network. The penalty depends on the cus-

tomer/cloud agreements, and it is often defined based on the type of service [65, 66]

(see examples in §3.2.1). (3) Other factors also need to be taken into account, e.g.,

failures, the topology, and routing (see §3.2.2).

Today, most operators use capacity-based planning. For example, Google [8, 63]

divides the switches involved in a change into equal-sized sets and applies the change

sequentially to maximize the residual capacity during the change. This approach is

simple and scalable, but it does not adapt to traffic dynamics or failures, and it often

results in higher penalties such as increased cost (see §3.2.2). Therefore, new solutions

are needed that can adapt to such changes.

Scalability: Finding a plan for a change is not easy: the space of possible plans

is super-exponentially large (§3.2.1). For example, there are 3.4 ˆ 101213 plans for

upgrading 500 switches. Brute force search of the entire space is not scalable. We

often need to plan changes in real-time (as plans become obsolete after long durations

due to changes in traffic variations and failures) and therefore, there is a need for a

system that can search the space of possible plans efficiently to find the best possible

plan. We build Janus to do exactly that.

50

Janus is a change planner that leverages the inherent symmetry of data center

networks to search for the best plan in a large planning space. Janus has the following

key ideas:

Find blocks of equivalent switches: Given topology and routing, Janus identifies

blocks of switches that connect to the same set of other switches (i.e., switches in one

block are interchangeable). Within a block, we do not need to decide which individual

switches to change at any given time, but rather how many switches to change (§3.3.1).

Find equivalent subplans: Some subplans include switches in different blocks

but have the same impact on customer traffic under all traffic settings (§3.3.2). We

leverage graph automorphism to identify these equivalent subplans.

Scale cost estimation: We run flow-level Monte-Carlo simulations to estimate the

impact of each subplan on customer traffic (for various risk factors) and compute its

cost. To speed up simulations, we build quotiented network graphs, a compressed rep-

resentation of a data center network while ensuring its estimation accuracy (§3.3.3).

Account for failures: Data centers have frequent failures that lower network

capacity and impact customers. It is challenging to estimate the impact of a change

due to the sheer number of failure scenarios that need to be taken into account.

We introduce the notion of equivalence failure classes similar to equivalent subplans

(§3.3.4).

We evaluate Janus on large-scale Clos topologies [8] and Facebook traffic traces

[56]. Our evaluation shows that Janus only needs 33~71% of the cost compared

to current best practice approaches and can adjust to a variety of network change

policies such as different cost functions and different deadlines. Janus generates plans

in real-time: it only takes 8.75 seconds on 20 cores to plan a change on 864 switches

in a Jupiter-size [8] network (61K hosts and 2400 switches).

51

3.2 Challenges and key ideas

In this section, we formulate the network change planning problem. We use examples

to discuss strawmans (maximum residual capacity planners) and their limitations.

We then summarize Janus’s design addressing these limitations.

3.2.1 Risk assessment for network changes

We focus on planned network changes (such as upgrading switch firmware or replacing

faulty links and switches) where operators can reliably prepare ahead of time. Such

changes are typically at a larger scale and require more time than unplanned changes—

ones that are in reaction to unexpected failures (e.g., mitigating a fault).

Risk assessment is critical for planning such changes: these changes reduce the

residual network capacity and leave less headroom for dealing with unexpected events—

such as traffic variations, concurrent failures, and failed changes.

To plan a network change, we consider operator specified risks and probabilities

and estimate their impact on customers and the corresponding penalty to operators

(i.e., cost). We choose a plan that minimizes the expected cost —operators can choose

to minimize other metrics such as 99th percentile to be more resilient to the worst-case

events. The steps involved are as follows:

Operator specifies risks and probabilities: Janus relies on operators to provide

the types of risks and their probabilities. Some risks are easier to estimate than

others; for example, operators keep historical failures of devices, which makes it easy

to determine the risk of failures for network devices [63, 67, 68]. Operators also

keep historical traffic matrices [69], which we can use to estimate the risk of traffic

variations. However, there are other risks which are harder to measure, for example,

the risk of losing customers during downtimes, the impact of downtimes during high

profile events such as Black Friday, or the risk of delaying a pushing a security upgrade.

52

We posit that even though we cannot measure the impact of these risks accurately,

allowing operators to express such types of risks (with estimates or best guesses)

allows for better planning decisions.

We refer readers to site reliability engineering (SRE) books, blog posts, and talks

[70, 71, 72] for more detail on techniques to estimate risks. Improving these techniques

is a research topic in and of itself and is out of scope for this chapter.

Estimating the impact on customer traffic: We next estimate the impact

of these risks on customer traffic during network changes. We measure impact by

counting the percentage of ToR pairs experiencing packet loss (similar to prior work

[69, 73]). We consider ToR pairs (as opposed to host pairs) to reduce the traffic matrix

size while preserving the traffic dynamics inside the network [69]. We use packet loss

as our measure of impact as it is an important customer experience indicator [73].

Our solution can be extended to support cost functions defined on throughput and

latency.

The impact is a random variable that depends on the probabilities of traffic matri-

ces and risks. We run Monte Carlo simulations to estimate the impact under various

traffic matrices and risks. For example, we model concurrent failures by enumerating

failure scenarios and their probabilities. Under each failure scenario, the network has

a lower capacity (removing all the switches that fail in this scenario). We simulate

and measure the impact on customer traffic.

Assessing the cost to operators: Customer impact ultimately translates to

operator cost because cloud providers have to refund customers for missing any service-

level agreements (SLAs). These functions are often staged: For example, Amazon

uses a staged function for refunding credits for availability violations: it provides

10% refund between 99.99% and 99.0% uptime, 30% refund for anything below 99.0%

uptime [66]. Similarly, Azure provides its own version: 10% refund between 99.99%-

99.0% uptime, 25% refund for 95%-99%, and 100% for anything below [65]. These

53

functions may differ depending on the type of service [65, 66] and customer settings

(e.g., enterprise agreements [11]). For example, operators may want to assign a higher

penalty when interrupting critical systems, such as lock services that many other

systems depend on, than interrupting background jobs (e.g., log analysis systems).

Similar to customer impact, the cost is also a random variable given various risk

probabilities.

The change planning problem: We define a network change as a set of operations

on switches or links. When applying each operation, we move traffic away from the

associated switch or link (drain), apply the operation, and move traffic back (undrain).

A plan of execution is a partitioning of changes into subsets where changes in each

subset run concurrently. We refer to each subset of changes in a plan of execution

as a subplan. Given a plan, we compute the cost as the sum of the cost of all the

subplans (i.e., steps).

Janus searches for the best plan that minimizes the expected cost1 given an

operator-specified deadline. Operators set deadlines to ensure bug fixes and feature

updates are done in a timely fashion. Operators may also set other planning con-

straints (e.g., plan cable replacement according to the technician’s work hours) and

tie-breaker policies for plans with equal cost (e.g., select the plan that finishes faster

when multiple plans have equal cost).

Janus tunes the plan in response to traffic variations, failures, and other sources of

risks. When the risk of continuing a change is too high, operators can opt to rollback

the change.

3.2.2 Challenges

Given a deadline for applying a change, operators follow rules of thumb that guides

them to devise a plan. For example, Google [8, 63] uses a capacity-based planner
1We can also minimize other statistics such as 90th percentile.

54

A1 A2 A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s
T1s￫T2s: 4500

￫T2s:
7500

￫T2s:
7500

￫T2s:
7500

￫T2s:
7500

￫T2s:
7500

￫T2s:
7500

1500 1500
1500

750
750 8250

16500

Figure 3.1: No upgrades.

A1 A2 A3

C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s
T1s￫T2s: 4500

￫T2s:
0

￫T2s:
9000

￫T2s:
9000

￫T2s:
9000

￫T2s:
9000

￫T2s:
9000

900 1800 1800 19800

900 9900

+1500

Figure 3.2: Upgrading C1 (no congestion)

A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s
T1s￫T2s: 4500

￫T2s:
7500

￫T2s:
7500

￫T2s:
7500

￫T2s:
7500

￫T2s:
7500

￫T2s:
7500

4500
19500

2250 9750

Figure 3.3: Upgrading A1, A2 (no cong.)

A2 A3

C2 C3 C4 C5 C6

A4 A5 A6

T1s T2s
T1s￫T2s: 4500

2250
2250

10125

20250

1125

￫T2s:
0

￫T2s:
9000

￫T2s:
9000

￫T2s:
9000

￫T2s:
9000

￫T2s:
9000

+1500

Figure 3.4: Upgrading A1, C1 (congestion)

Figure 3.5: The impact of different subplans. ToR to aggregate links are 40Gbps and
aggregate to core links are 10Gbps. The traffic from T1s to T2s is 4500 Mbps; other traffic
to T2s are 6*7500= 45000 Mbps. The change task is to upgrade A1, A2, and C1 (yellow
circles); Grey circles are switches under changes. The network runs ECMP: numbers on
each link indicates the traffic on the link.

that at every step changes an equal number of aggregate switches in each pod and

an equal number of core switches, which leaves an equal amount of residual capacity

at each step. Such rules of thumb typically aim to maximize the minimum residual

capacity during the change on the operator’s network.

Without having additional information about when, where, or how badly traffic

variations and failures happen, planners that maximize the minimum residual capacity

(MRC planners) are the best planners for absorbing the impact of worst-case events

in the network.

However, in data centers, operators continuously monitor traffic variations and

55

failures [8, 56]. This means we have an opportunity to do much better than MRC if

we consider these factors when planning network changes. We use a few examples to

discuss MRC’s limitations and where there is an opportunity to improve.

Say we want to upgrade switches A1, A2, C1 in Fig. 3.5. Given a deadline of

2 steps, an MRC planner may upgrade switches A1, C1 and then A2. This plan

ensures the minimum ToR capacity to any other ToR is 2
3

of its original capacity.2

However, we show that this plan has more cost than alternative plans under some

traffic settings and cost functions.

Plan choices depend on spatial traffic distribution. Consider that traffic from

T1s and T2s is 4.5 Gbps, and traffic from the rest of the network to the T2s is 45

Gbps. The MRC plan of upgrading A1 and C1 in the first step causes congestion

at links between C3/C4/C5/C6 and A4/A5/A6 (Fig. 3.5(d)). Instead, if we upgrade

two aggregate switches (A1, A2) and then C1, there is no congestion (Fig. 3.5(c)).

Plan choices depend on temporal traffic dynamics. Let us consider a different

scenario where the steady-state traffic between the T1s to T2s is for the majority of the

time around 10 Gbps and the rest of the network to T2s is on average 45 Gbps. Say

when we start the upgrade task, the current traffic between the T1s to T2s becomes

4.5 Gbps. MRC, which upgrades A1 and C1, still causes congestion. However, if we

know about the temporal traffic changes (i.e., the steady-state is 10Gbps), we can

choose to upgrade C1 now and upgrade A1 and A2 after. Delaying upgrading C1

to later means we may never have the chance to upgrade it safely later because of

steady-state traffic dynamics.

Plan choices depend on cost functions. The cost function further complicates

change planning. Suppose based on the current traffic dynamics, the probabilities

of impacting traffic for different subplans are summarized in Table 3.3. Inspired by
2Other plans leave less residual capacity: Upgrading A2 and C1 first (and then A1) reduces the

capacity of ToRs in the first pod (T1s) to ToRs in the second pod (T2) by 50%. Similarly, upgrading
A1 and A2 reduces the network capacity for ToRs in pod one to one-third.

56

uptime refund uptime refund uptime refund
Staged-1 <95% 100% <99% 25% <99.95% 10%
Staged-2 <95% 50% <99% 25% <99.99% 10%
Staged-3 <95% 100% <99% 30% <99.99% 10%

Table 3.1: Example staged cost functions from cloud providers
Cost function Formula Cost at 99.95% 99.90% 99.75%

log Cp100 ln p637x ` 1qq 20 40 90
linear Cp50000xqq 20 50 100
quad Cpp4200xq2qq 0 10 100
exp Cp100pe277x ´ 1qq 10 30 100

Table 3.2: Cost functions for purely mathematical functions where C clamps the output
between 0 and 100.

Subplan C1 A1 A2 C1, A1 C1, A2 A1, A2 C1, A1, A2
%ToR pairs 0.1% 0.1% 0.1% 0.2% 2% 2% 4%

Table 3.3: An example of different subplans impacting different percentage of ToR pairs.

clouds today, we define three types of staged cost functions in Table 3.1. For Staged-3

function, the optimal plan choice is to upgrade A1, A2, and C1 in three steps and

sequentially (cost of 10`10`10 “ 30). However, for Staged-1, the optimal plan choice

is to upgrade A1, A2, C1 concurrently (cost of 25). If Staged-1 returned 35 instead

of 25, then the plan choice would have been the same as Staged-3. Alternatively, if

we were upgrading 4 switches (instead of 3), each upgrade incurring 10 units of cost,

then the best plan would be to upgrade all switches concurrently.

Other factors that impact the plan choice. The best plan also depends on other

factors: topology, failures, and routing. In a Fat-tree topology, we need to be careful

about the aggregate core connectivity [74] but not in a Clos topology (where each

aggregate has the same set of connections). The best plan also depends on failures: if

switches in a given pod have higher failure rates than other pods (e.g., because they

are from different vendors), we have to apply their changes more carefully. Finally,

different data centers employ different routing algorithms which react to failures and

traffic variations differently [75, 8].

Key challenge: In summary, the plan choice depends on factors such as spatiotem-

57

poral traffic dynamics, cost functions, topology, routing, and failures. Such diversity

makes it challenging to find a heuristic that works for all cases.

We could search for all possible plans, but there are many possible plans for

upgrading n switches: the number of possible k-step plans is the number of ways

we can divide n switches into k subsets (i.e., Stirling number S(n,k)) where 1 ď

k ď n). Therefore, the number of plans grows super-exponentially (
řn

k“1 k!Spn, kq «

Op n!
logn`1

e 2
q). For example, for a change involving 500 switches, we have more than

3.4 ˆ 101213 plans. Even by exploiting the high degree of symmetry in data center

topologies, the number of plans still remains prohibitively large. The same upgrade

task (for 500 switches) in Jupiter topology [8] has more than 2120 plan realizations—

this is true even after we eliminate plans that violate operator specified constraints.

The problem is exacerbated when we consider traffic dynamics and failures, forcing

us to make planning decisions in real-time and in response to in-network events. The

planning decisions should be faster than the operation time (or by the time we can

apply the plans they are obsolete). Since many network operations, especially ones

on switches, take minutes [76], the planning time itself should be in seconds.

In summary, Janus has to be adaptive and support a variety of constraints, scalable

and work with the largest data centers, and fast so that it can select plans in real-time.

3.2.3 Janus’s key ideas

Given a set of switches (or links) involved in a network change, the plan navigator

builds a repository of candidate plans (i.e., an ordered set of subplans) based on op-

erator specified constraints. Janus continuously monitors traffic dynamics, evaluates

the cost of plans using a simulator, and selects a plan with the minimum cost. After

each subplan (step) finishes, Janus adjusts the plans for the remainder of the change

based on traffic changes and failures.

Our key idea is to leverage the high degree of symmetry in data centers to navigate

58

the large planning space in real-time. We show how we use network automorphism

using an example topology in Fig. 3.6:

Block C

Block 1 Block 2 Block N

Figure 3.6: Janus decomposes network graphs into blocks

Identifying blocks of equivalent switches: We first identify switches that have

the same connectivity and routing tables and group them into blocks. Switches in each

block are, for all traffic purposes, indistinguishable (§3.3.2). Therefore, a subplan

operating on a block needs to only care about the number of switches and not which

switches it is changing. Fig. 3.6 shows several core and aggregate blocks. Given n

blocks, we can describe a subplan as a tuple of n numbers ă b1, ...bn ą where the

ith index is the number of steps for upgrading the ith block. Operators can further

reduce this space by taking similar actions on different blocks, i.e., merge two blocks

to build superblocks (§3.3.1).

Identifying equivalent subplans using graph automorphism: For most data

center networks, the number of blocks is large and so is the number of subplans. How-

ever, many subplans, even on different blocks, have the same impact on customers.

For example, in Fig. 3.5, upgrading A1, C1 is equivalent to upgrading A2, C3 even

though A1 and A2 are in different blocks. Network automorphisms can identify such

equivalent subplans. Equivalent subplans speed up planning by confining risk simu-

lations to unique subplans (§3.3.1).

Estimating the cost of subplans with scalable Monte Carlo simulations: We

run Monte Carlo simulations on all possible traffic matrices during the network change.

We discuss how we predict future possible traffic matrices and handle prediction errors

59

§3.2 Subplan Equivalence Classes§3.1 Blocks = (G1, G2, G3, G4, G5, G6)

G1 G2 G3

G4 G5 G6 G4 G5 G6

§3.4 Modeling Failures

≲ (1, 0, 0, 0, 0, 0)

≲ (0, 0, 0, 1, 0, 0)

A1 A2 A3

C1 C2 C3 C4 C5 C6

A4 A5 A6

(2, 1, 0, 1, 1, 0) ≃ (0, 1, 2, 0, 1, 1)
(1, 0, 0, 1, 0, 0) ≃ (0, 1, 0, 0, 1, 0)

§3.3 Simulation

T1s T2s

T1s T2s
Topology,
Routing,
Traffic

Plan
Selection

Figure 3.7: Janus’s Design

C3, C4

(b) Quotient graph
for the subplan that updates C1

C1 ... C4

A1, A2 A7, A8

(a) Quotient graph of FatTree (k=4)

C2

A2A1 A7 A8

T2 T8 T2 T8T1 T7T1 T7

Figure 3.8: Example of quotient graphs for FatTree topology.

in §3.3.3. For each traffic matrix and its probabilities, we run flow-level simulations

to estimate its risk of impacting customer traffic and the corresponding costs. We

then compute the expected cost under all scenarios.

Monte Carlo simulation on many different TMs take a long time, e.g., the sim-

ulation for a single TM takes minutes even for a modest size data center with 600

switches (a relatively small data center) on a single core (§3.5.3). To reduce sim-

ulation time, we leverage network symmetry to simulate flows on a quotient graph

instead of the original topology but ensure the estimated risk remains the same (See

§3.3.3).

Failure equivalence: To estimate the cost of a large number of failure scenarios,

we introduce failure equivalence classes similar to equivalent subplans. Data centers

typically use a fail-stop model to deal with failures. This makes failures similar to

subplans as they both bring down a set of switches, links, or line cards. We thus can

model failures as subplans taking down the failed elements for a change task.

60

Dst
A1

Action
A2

Action
C2

Action
C3

Action
C4

Action

T7 C2 C3, C4 A7 A8 A8

T8 C2 C3, C4 A7 A8 A8

...

Dst
A1

Action
A2

Action
C1

Action
C2

Action
C3

Action

T7 C1, C2 C3 A7 A7 A8

T8 C1, C2 C3 A7 A7 A8

...

Renaming
Function (f)

s1 s2

C2 C3

C3 C1

C4 C2

A1 A2

A2 A1

A7 A8

...

C1

N/s
1

A1 A2

T1 T7T2 T8

A7 A8

C4

N/s
2

T1 T7T2 T8

A8A1 A7A2

C3C2 C4 C1 C2 C3

Figure 3.9: Example of equivalent subplans. The actions
show forwarding decisions at each switch for a rule matching
destination (Dst).

f3f3

f1 f2

f3

A1 A2

C1 C3C2 C4

T1 T7T2 T8

A7 A8

Pod 1 Pod 4

Figure 3.10: Renaming func-
tions for finding equivalent
subplans

3.3 Janus Design

Janus has to adapt to a variety of conditions (e.g., traffic dynamics, failures, and cost

functions) and scale to large networks and large changes. For that, Janus leverages

the high degree of symmetry in data center topologies to search the large planning

space. Fig. 3.7 shows the four key components in Janus: (1) Given the topology

and routing information, Janus starts by identifying blocks of equivalent switches; (2)

Janus then identifies equivalent subplans across blocks; (3) Janus runs Monte-Carlo

simulations using quotient networks to estimate the impact and cost of each subplan

and selects plans accordingly; (4) To estimate the impact of failures, we identify

equivalent classes of failures in the same way as equivalent subplans.

3.3.1 Identifying blocks of equivalent switches

Given topology and routing information, we group switches connecting to the same

hosts and have the same routing table into blocks. There are many such blocks in

data centers today (Fig. 3.6). A block is fully specified by two values: a switch and

the number of such switches in that block. Operators can then granulate the number

of steps it takes to upgrade switches in a block, e.g., i
k

with 0 ď i ď k of switches

in each block. Blocks are a good representation because they are high level enough

for operators to understand and are succinct enough for planning purposes—we only

61

need to know a switch in that block and the number of such switches.

Operators can further make the planning space coarser by collapsing multiple

blocks into one and using the same steps to upgrade them. We call these groupings

superblocks. The intuition behind superblocks is that in large data center networks,

there is enough path diversity and redundancy that many close plans have a similar

impact on traffic. For example, for two pods with 20 aggregate switches, upgrading 3

switches in pod 1 and 4 switches in pod 2 versus upgrading 4 switches in both pods

are practically similar from the residual capacity standpoint. Therefore, instead of

searching in the exact planning space, we can search in a coarse-grained planning

space with superblocks.

There are many ways to group blocks into superblocks. For example, they can

build superblocks based on communication patterns, so that they upgrade two blocks

talking with each other as one entity; or by spreading blocks with high traffic across

different super blocks—so that two blocks with high traffic have the opportunity of

being upgraded separately; or in its simplest form group blocks based on the type

of switches, e.g., upgrade all aggregate blocks together and upgrade all core blocks

together.

3.3.2 Finding equivalent subplans

The most computationally intensive part of planning is estimating the impact of

subplans on large scale topologies. The saving grace here is that many subplans have

an equal impact under all settings. If we had an automated way of identifying such

subplans, we then would only need to simulate for each unique class of subplans.

However, checking the equivalence of two subplans is not straightforward because

of topological and routing complexities (§3.2.2). Here, we formalize the notion of

subplan equivalence and discuss how we can efficiently find such subplans.

Definition 3.3.1 (Subplan Equivalence). We define two subplans s1 and s2 to

62

be equivalent in a network N , when a renaming function f exists that satisfies three

properties:

1. P1: Equivalent topologies. f maps switches in GN{s1 (i.e., the topology after

removing switches in the subplan s1) and GN{s2 , where for each link pA,Bq, for

switches A and B in GN{s1 , there exists a matching link, (fpAq,fpBq), in GN{s2

with the same capacity.

2. P2: Equivalent traffic matrices. The traffic volume between ToRs pA,Bq in s1 is

the same as the traffic volume between pfpAq, fpBqq in s2.

3. P3: Equivalent routing. For a routing algorithm that makes forwarding decisions

based on the topology in P1 and the traffic matrix in P2, all the forwarding tables

in N{s1 and N{s2 are equivalent. That is, for switch S P N{s1 and fpSq P N{s2 we

have: for the ith rule on switch S of the form (src, dst, action) there exists an ith rule

(fpsrcq, fpdstq, fApactionq) on switch fpAq in N{s2, where action is a set of (nex-

thop, weight) tuples, and fApactionq “ tpfpnexthopq,weightq|pnexthop,weightq P

actionu.

For example, in Fig. 3.9, using this definition, a subplan, s1, that updates C1 and

a subplan, s2, that updates C4 are equivalent. To show this, consider the renaming

function, f , shown in the table of the same figure. Using this function, the topologies

in N{s1 after removing C1 and N{s2 after removing C4 are equivalent (i.e., isomor-

phic), because we can map {C2 Ñ C3, C3 Ñ C1, C4 Ñ C2, A1 Ñ A2, A2 Ñ A1, A7

Ñ A8, A8 Ñ A7, …}. Similarly, since the traffic sources T1, T2, . . ., T7, T8 map to

themselves, their flows remain intact and the flow volumes between the pairs remain

the same. If we use a routing algorithm that makes forwarding decisions based on P1

and P2, then P3 is also satisfied.

Many routing algorithms are equivalent, i.e., they match P3. For example, ECMP

shortest path routing only uses topology information to devise multiple shortest paths

between pairs of hosts. Similarly, WCMP matches P3 because its routing decisions

63

only depend on the topology. It is possible to extend this definition to other routing

algorithms that rely on switch configurations, such as BGP, by defining an equivalence

between the switch configurations.

Theorem 3.3.1. If traffic forwarding only uses the topology, traffic, and routing as

defined in Definition 3.3.1, two equivalent subplans have the same impact under all

traffic scenarios.
Proof sketch: P1, P2, and P3 guarantee that traffic between two ToRs traverses in

the same exact manner throughout the network and thus sees the same impact during

the execution of the two equivalent subplans: we can find a bisimulation between the

two subplan networks (see §3.3.2).

Subplan equivalence with graph automorphism. A naive approach to finding

equivalent subplans may enumerate all the subplans and do a pairwise equivalence

check. However, this takes too much time. Instead, we focus on finding equivalence

classes of subplans: if we find a renaming function for the network that preserves

P1, P2, and P3 before applying a subplan, we could rename the network first. The

subplan lacks enough information to tell the difference between the original and the

renamed network. Thus, we can apply the subplan on the renamed network, and in

the process make it change a different set of switches. For example, in Fig. 3.9, if we

rename C1 to C4 and C4 to C1, a subplan that operated on C1 now can also operate

on the renaming of C1, that is C4. Concretely:

Theorem 3.3.2 (Network Automorphism). For a subplan, s, and a renaming func-

tion, f , that maps network N onto itself, if f preserves properties P1, P2, and P3,

the two subplans s and f ¨ s (the subplan after applying the renaming function to its

elements) are equivalent.

Proof sketch: By finding a renaming f that preserves P1, P2, and P3 for the

network, N , we guarantee we can find a renaming function between N{s and pf ¨Nq{s.

64

Similarly, we can also prove that a renaming function between N{pf ¨sq and pf ¨Nq{s

exists. Therefore, N{pf ¨ sq and N{s are equivalent (see appendix for proof §3.3.2).

For example, consider the renaming function f in Fig. 3.9 where f , maps {C1 Ñ

C4, C2 Ñ C3, C3 Ñ C2, C4 Ñ C1, A1 Ñ A2, …, A7 Ñ A8, T1 Ñ T1, …, T8 Ñ T8}.

The two subplans pf ¨ Nq{s and N{s are equivalent under the renaming function f ,

because they preserve P1, P2, P3. Similarly, the two subplans pf ¨Nq{s and N{pf ¨ sq

are equivalent under the identity function, which indeed preserves P1, P2, and P3.

Therefore, N{pf ¨ sq ” N{s.

The theorem shows that using the set of renaming functions for a network N , we

can generate many subplans equivalent to any other given subplan.

Given a set of renaming functions and a set of subplans, we can use the renaming

functions to partition the subplans into equivalence classes. We observe the set of

renaming functions forms a permutation group (it has identity, inverse, associativity,

and closure properties). Using this group, we define a group action on our subplans:

G ¨s “ ttf ¨v|v P su|f P Gu where G is the group of renaming functions, s is a subplan,

v is a switch in the subplan, and f is a renaming function. This action preserves the

basic properties of group actions: compatibility and identity. Group actions partition

the set they act on—by using the group action, we can partition the subplan set to

find equivalence classes of subplans.

For example, Fig. 3.10 shows three renaming functions for a k=4 FatTree. The

three functions are: {f1: (C1 C2), f2: (C3 C4), f3: (C1 C3)(C2 C4)(A1 A2)(A3 A4)}.

We can use the three renaming functions f1, f2, and f3, subplan {C1} is equivalent to

subplan f1¨{C1} = {f1¨C1} = {(C1 C2)¨C1} = {C2}, f3¨{C1} = {C3}, and f3f2¨{C1}

= {C4}. Similarly, a subplan s2 = {A1, C2} is equivalent to f1¨s2 = {A1, C1}, f3¨s2

= {A2, C3} and f3f2¨s2 = {A2, C4} but not to {A2, C1}. This is because no possible

combination of generators renames A1 to A2 only.

Encoding for graph automorphism engines. We can use a graph automor-

65

phism engine to find the renaming group that preserves P1, P2, and P3. Graph au-

tomorphism engines typically find automorphism groups of vertex-colored graphs—a

vertex-colored graph is a graph where a coloring function, C, assigns colors to nodes.

The automorphism engine guarantees the permutation of the nodes respects the col-

oring: we can only permute nodes that have the same color. We can define colors in

a way that two nodes have the same color when they satisfy properties P1, P2, P3.

We define a label tuple for each node with one label per property in Theorem 3.3.1.

Two nodes are permutable, if their labels exactly match, i.e., all the properties of

Theorem 3.3.1 hold. To build the labels:

For P1, take the topology as an input to the graph automorphism engine. To

encode each links’ bandwidth, we assign a unique label per unique link capacity to

each edge, e.g., if the data center topology uses 40G and 100G links, we use two

unique labels to describe each link.

For P2, we assign a unique label to each traffic source. This coloring ensures

that for every pair of traffic source, (A, B), there exists a pair, (f(A), f(B)), in the

renamed network—the number of unique colored pairs matches the number of cells in

the traffic matrix. If two traffic sources see similar traffic, we can allow the coloring

to rename them by using the same labels. This ensures that each pair in the network

has a unique traffic label assigned to it.

As P3 depends on P1 and P2, and we already label those properties, the same

labels can be used for P3.

After labeling, we assign a unique color to each unique label. The number of

unique colors is equal to the number of unique label tuples in the network. It is true:

no polynomial algorithms are known for the general case of graph automorphism,

but many polynomial-time algorithms exist for special cases of this problem [77].

In particular, we found Nauty [78] can find the automorphism groups of a large

data center with 2,400 switches in 6.25 seconds (§3.5.3), which matches the real-time

66

requirements of planning—we observed similar computation times for expanders [79],

fat-tree [75], and bCube [80] topologies.

Proof for the subplan equivalence theory:

Here we show a formal proof of the subplan equivalence theory. We define a model to

capture the states for a flow level simulation of the network.This allows us to refine

the operational semantics of other algorithms on top of the network state for various

purposes. For example, the semantics could use proportional fairness or max-min

fairness.

Definition Network: We define a network as a tuple pG,R, Sq where:

P1) G “ pV,Eq is a graph specifying the network topology. V is the set of nodes

and E : V ˆ V Ñ R is a function specifying which nodes are connected together and

what is the capacity of the edge.

P2) R is a function assigning rules to nodes:

R : V Ñ R˚ where R “ tpsrc, dst, t, actionq | in, out P V,

t is packet specific test conditionu

We refer to the ith rule as Rv,i; t describes packet testing conditions not captured

in the form of source or destination nodes, e.g., protocol or port; and action is one

of drop or fwd P where P Ă pV ˆ Rq. P specifies the portion of traffic that goes

through a specific port.

P3) S is a partial function specifying the traffic sent from the end-hosts: S :

V ˆ V á T. Where u actively generates traffic towards v, Spu, vq describes that

traffic in terms of a model-specific encoding T.

Definition Network Isomorphism: We say two networks are equivalent up to

67

isomorphism if there is a vertex renaming function (bijection) that permutes the nodes

between the two networks while preserving the G,R, S relations. More concretely, two

networks, N » N 1 are isomorphic if DπV : V ÐÑ V 1 where G »π G1, R »π R1, S »π S 1.

For a renaming function πV :

1) G and G1 are isomorphic when:

Epv1, v2q “ E 1pπV pv1q, πV pv2qq

2) R and R1 are isomorphic when:

Ri “ pv, tq ô R1
i “ pπV pvq, πT ptqqwhere:

πT ptq “ pπV pv1q, πV pv2q, t, πApaqq

πApaq “

$

’

’

&

’

’

%

drop, if a “ drop

fwd tπV pvq|@v P portsu, if a “ fwd ports

3) S and S 1 are isomorphic when: @u, v P V : Spu, vq “ πT pS 1pπV puq, πV pvqqq

where πT permutes the nodes encoded in the traffic using πV .

Definition Isomorphic network function: A network-isomorphic-invariant func-

tion F : N Ñ T is a function that does not use identifying information for the nodes.

That is, F is invariant under network isomorphisms if N » N 1 ñ F pNq “ F pN 1q for

all networks N,N 1.

Theorem A.1: A network-isomorphic-invariant function, F , outputs the same

value for two isomorphic networks, N,N 1, that is: F pNq “ F pN 1q.

Proof: The proof is given by the definition of F .

Theorem A.2: Max-min fairness is agnostic under network isomorphism.

68

Proof: Max-min fairness is solving the following equation:

maximize
ÿ

i

Upxiq

s.t.
ÿ

i

Rlixi ď cl variablesxi ě 0

Where, xi is the rate allocation between two nodes. cl is the capacity of the link l.

And Rli is the routing on the links. Rli is one when flow i goes through link l and

zero otherwise.

By using P1 and P2, we guarantee that the set of equations that we write for max-

min fairness are the same between the two networks. We know that the output of

max-min fairness is unique. Therefore, an arbitrary renaming of the variables names

does not impact the optimization result. Therefore, since the two sets of equations

between the two networks are only different in the name of the variables and since

the result is unique, we can conclude that max-min fairness is network-isomorphic

invariant.

Network Automorphism

Theorem 3.3.3 (Network Automorphism). For a subplan, s, and a renaming func-

tion, f , that maps network N onto itself, if f preserves properties P1, P2, and P3,

the two subplans s and f ¨ s (the subplan after applying the renaming function to its

elements) are equivalent.

Proof: To prove this it is enough to show that a renaming function between the

two networks exist. We prove this in two parts: First, we prove that pf ¨ Nq{s is

equivalent to N{pf ¨ sq. Second, We then prove that pf ¨ Nq{s is equivalent to N{s.

Finally, we conclude that N{pf ¨ sq ” N{s.

To prove the first part, we use the identity function as the renaming function.

69

First, it is easy to verify that the two graphs are isomorphic, that is, for every switch

A P pf ¨ Nq{s there exists a switch with the same name A P N{pf ¨ sq. Similarly, for

every link, between two switches in one network, we can find a similar link in the

other network. Therefore, P1 is true.

For P2, since a subplan does not impact traffic sources, we know that for every

traffic source in one graph, there exists a traffic source in the other graph. And

therefore, the traffic between the two has not changes.

P3 is true given that we have proved P1 and P2.

To prove the second part, we already know by definition that f ¨ N and N are

equivalent, therefore, we can replace N in place of f ¨ N .

3.3.3 Estimating cost with Monte Carlo simulations

We measure the number of ToR pairs experiencing packet losses using flow-level

Monte-Carlo simulations under various traffic matrices and translate the number

based on cost functions. Since we search the entire planning space, we can support

various cost functions. We can also extend Janus to support multiple tenants, each

with their cost function.

We have to model congestion in the network, that is, how competing ToRs divide

(the scarce) bandwidth among themselves. For that, we run max-min fairness to

decide how much bandwidth each ToR gets (similar to [57]). This objective matches

that of TCP. We also consider the network’s routing tables, which is important as

the network reacts to failures and traffic variations through routing changes. This is

in contrast to previous work that used multi-commodity flow (MCF) for simulating

data center traffic [81, 82]: while MCF is a reasonable estimation of the bisection

bandwidth, it ignores routing algorithms and fairness objectives.

Our simulation relies on knowing possible traffic matrices during the change. To-

day, data center operators continuously collect traffic matrices (TMs). We use the

70

current TM to represent what happens in the next planning interval and use the past

TMs to predict the TMs for the remainder of the change. Previous work [69] use

a similar approach and find that the current TM is a good estimation of the future

(e.g., the next step of the plan)—the intuition is that the TM does not (typically)

change dramatically in such a short time. When traffic is unpredictable, and our

predictions are not a good representative sample of future TMs, Janus may lose some

of its temporal benefits—because Janus’s view of the future was incorrect. However,

Janus still gains spatial benefits due to more accurate short-term predictions.

With max-min fairness as our objective, we have to find ways to speed up simu-

lations. This is especially important for larger data centers where simulations may

take much longer to complete. We use the inherent symmetries in the data center

network to achieve faster simulations: we build a quotient graph per subplan by merg-

ing switches with the same forwarding rules (e.g., all the ECMP paths). Fig. 3.8(a)

shows the quotient graph for a k=4 FatTree. Fig. 3.8(b) shows the quotient graph

for a subplan upgrading C1.

We build quotient graphs by using network automorphism (see §3.3) to identify

equivalent sets of switches under P1, P2, P3. We run the group action G on individual

switches (instead of subplans) and build an equivalence relation on the switches. We

can merge equivalent switches because they have similar, per-link, traffic patterns.

For all switches in the same equivalence class, we build a super-switch and have one

virtual forwarding table across all original switches—we can merge the forwarding

tables if they are the same, e.g., all the core switches have similar forwarding tables

in a Fat-tree network. To add links between super switches, we only have to ensure

the link capacity between super-switches is the same as the original network. Since

the new topology has far fewer links/paths, we can simulate the network much faster.

71

3.3.4 Handling failures

Failures are a common risk source when planning network changes. Google reports

that nearly 68% of failures occur when a change is in progress [63]. Janus models

failures as capacity reductions—a failure on a set of switches remove these switches

from the network graph (fail-stop), which increases the risks of impacting customer

traffic.

Operators can input failure scenarios and probabilities based on their logging of

historical failure events for each vendor [67, 63]. Given failure scenarios and probabil-

ities, we can run simulations to measure impact and estimate the expected cost for

each network change plan.

However, the size of failure space is exponential in the number of switches, e.g., to

model independent switch failures for 2400 switches, we have 22400 possible scenarios.

Instead, we model the most likely failure scenarios that cover P (e.g., 99%) of the

most probable failures, i.e., Pr rFailuress ě P . For example, if switches have 0.1%

failure rate in a topology of 2400 switches, we only need to simulate up to 7 concurrent

failures (binomial distribution) to cover 99% of failures.

To further reduce the number of failure scenarios, we introduce failure equivalence

classes, i.e., failures that result in isomorphic network graphs. We can view a failure

scenario as a subplan bringing down switches in the failure set (or links/line-cards).

Thus, to simulate failures during a change, Janus considers a bigger change task

involving both failed switches and change switches. We can then apply the same

techniques above to estimate cost under failures.

3.4 Implementation

Janus has 7.2k lines of C code. It operates in three steps:

Operators specify the change, the cost function, and the risks. Operators

72

can input arbitrary change requests into Janus. For each change, operators specify

the length of its operations and a deadline for the change. Operators then define a

cost function where the input is the percentage of ToR pairs impacted during a change

interval, and the output is the associated cost. Operators can also specify time-based

cost functions—to model time constraints during planning, e.g., to emphasize the

risk of delaying a critical bug fix. In its current state, Janus can model concurrent

failure of switches in the data center where failures are independent. We chose to

implement this failure model following the example of previous work [83]. For more

complex failure models, e.g., correlated failures, we rely on previous work and use

their proposed sampling techniques [84] to cover the failure space.

Simulation. We assume the data center network upholding Max-min fairness for

the traffic it routes through its network. Max-min fairness is also commonly used

[85, 86, 57] to model how TCP flows affect each other during congestion. To model

Max-min fairness, we simulate the network while respecting the routing, topology,

and link constraints. Since our simulation uses P1, P2, and P3 (in Definition 3.3.1),

it satisfies the conditions of Theorem 3.3.1. Therefore, we can rely on Theorem 3.3.1

to reduce the subplan search space. For each setting, we convert the network into a

quotient network, then run our network simulator on the quotient network.

Janus uses the current TM as a prediction of the traffic for the upcoming subplan

and the 10 previously observed TMs as a prediction of traffic for the rest of the plan.

In practice, data center operators may have better traffic predictors and are free to

use their own.

Estimate cost in real-time and adjust the plan. At runtime, Janus goes

through all the subplans, applies the failure model on each subplan, and uses the TM

predictions to estimate the impact of each choice. It then measures the impact of

each plan and chooses a plan with the lowest expected cost. If there are multiple can-

didate plans, Janus picks the plan according to operator-specified tiebreakers. Other

73

termination conditions are also possible; for example, ones that return the best plan

within a deadline.

Scalability. Monte-Carlo simulations are easily parallelizable: we can run each

scenario (i.e., subplan and traffic matrix) independently from others and on different

machines/cores. We can then merge the results of all scenarios to build the cost

random variable of each subplan.

Plan ports and links changes. Janus supports port and link changes by modeling

them as virtual switches. To plan changes for links, we replace each link in the network

graph with a passthrough virtual switch that sends the incoming traffic on each of its

port to its other port. Any operation on links can thus be modeled as an operation

on virtual switches. The virtual switch abstraction allows us to use the previous

theorems for scaling. Similarly, to handle ports, we model each as a passthrough

virtual switch similar to links.

Janus supports line card changes (e.g., replacements). A line card is a collection

of N ports. We can substitute a virtual switch with N ` N ports in place of a line

card. We connect the first N virtual switch ports to the links and the second N ports

to the switch where the line card belongs. The routing table of the virtual switch is,

again, a passthrough table where the first port is directly connected to port N ` 1,

the second port to port N ` 2 and so on.

Rollbacks. It is possible that due to unexpected events, a change task becomes

costly, e.g., because there are no suitable plans or simply because the change is faulty.

In that case, operators would want to rollback the upgrade. Janus generates rollback

plans instantly: A rollback plan is a change plan for a subset of original change tasks.

Failed instructions. Operators may fail to follow Janus’s instructions accurately.

In such cases, operators can accommodate by adding these failed instructions back

into the change. For example, if during the execution of a change, Janus issues an im-

possible instruction, e.g., because switches are physically too far apart, operators can

74

mark these instructions as incomplete so that Janus schedules them in the upcoming

intervals.

Janus offline. There are cases where operators cannot spare the computational

cost of real-time planning, e.g., if they lack good traffic predictors (so they have to

model many TMs) or when using complex failure models or simulators that prohibit

real-time planning. Under such circumstances, operators can use Janus in what we

call the offline-mode.

In offline-mode, operators feed a large number of traffic matrices (possibly from

previous days) and historical failures into Janus. For example, operators could use

historical traffic of recent days to predict future days [69, 87, 88, 89]. Janus then

finds a static plan for the change that will highly likely minimize the expected cost

under the provided traffic and failure settings. Operators may also want to change the

objective of Janus to, for example, minimizing the 99th percentile of the risk, so that

the plans that Janus suggests are resilient to worst-case scenarios. This mode is very

similar to MRC, as both planners find static plans. However, Janus still enjoys the

spatial benefits, and it also respects operators planning constraints such as deadlines

and cost functions.

3.5 Evaluation

Here, we demonstrate the cost reduction, scalability, and generality of Janus using

large-scale data center topologies, network change tasks, and realistic traffic traces.

Our evaluation shows that Janus only needs 33~71% of MRC cost and can adjust

to a variety of network change policies such as different cost functions and different

deadlines. Janus generates plans in real-time: it only takes 8.75 seconds on 20 cores

to plan a change on 864 switches in a Jupiter-size [8] network (61K hosts and 2400

switches).

75

switches in the DC
Topology # pods # cores,

aggs, ToRs # switches # hosts # upgrades
(cores, aggs)

Scale-1 8 8, 64, 96 168 3840 72 (8, 64)
Scale-4 16 24, 192, 384 600 15360 216 (24, 192)
Scale-9 24 54, 432, 864 1350 34560 486 (54, 432)
Scale-16 32 96, 768, 1536 2400 61440 864 (96,768)

Table 3.4: Configurations and change task for each topology. We upgrade all core and
aggregate switches in all the pods.

3.5.1 Evaluation settings

Topology. We evaluate Janus on Clos topologies (Table 3.4). We use four different

scales ranging from the default Scale-1 which updates 8 pods (3.8K hosts and 168

switches) to a scale comparable to the size of Google’s Jupiter topology [8] (61K hosts

and 2400 switches).

Traffic. We generate a cloud-like trace using Google job traces to model the size and

arrivals of tenants [90] and Facebook traffic traces [56] to model the traffic for each

tenant. Specifically, for each tenant, we decide its arrival and leaving times and the

number of ToRs it runs on based on the Google job trace. We then randomly select

its traffic type: either Hadoop or web traffic, and select the corresponding trace from

Facebook. We generate 400 such traffic matrices at a 5-minute interval—Minute-level

TMs map to the granularity that operators use to measure SLOs in data centers today.

By default, our traffic has an average maximum link utilization (MLU) of 80% (the

median link utilization is 17%). We use average MLUs ranging from 65% to 95%.

Network change tasks. We evaluate Janus on a large change so that it has

to explore a large planning space. Concretely, we upgrade all core and aggregate

switches in the data center. Table 3.4 shows the details for each upgrade task. We

assume each upgrade takes one timeslot (5 minutes), i.e., one traffic matrix, matching

the length of firmware upgrades of today’s switches [76]. Each upgrade is repeated

50 times across different hours. We report the average and standard deviation of this

cost. We set deadlines of 2, 4, or 8 steps for finishing the change and choose 4 as

76

default—this means that MRC leaves 50%, 75%, 87.5% of residual capacity in the

network at each step.

Cost functions. We define three types of staged cost functions following the shape

of the refund functions of major cloud providers such as Azure, Amazon, and GCloud

(Table 3.1)3. To test the generality of Janus under various cost functions, we also

evaluate a range of synthetic functions, namely, logarithmic, linear, quadratic, and

exponential, where the input is the number of ToR pairs experiencing packet loss and

the output is a cost value between 0 and 100. The details of these functions are in

Table 3.2.

We use the Staged-1 function by default. One should only interpret the relative

cost differences across approaches and settings, not the absolute values because de-

spite using cloud cost functions (that operators use today in practice), it is difficult to

gauge whether the combination of our choices of cost functions, topology, and traffic

matrices represent what operators experience in practice.

Planners. We evaluate two planners: (1) Janus which uses the last 10 and the

current traffic matrices to plan the change; Janus adjusts the plan based on traffic

changes (§3.4). (2) Janus Offline which uses history traffic to choose a fixed plan that

does not change during execution. (3) MRC : a planner that maximizes the residual

capacity at each step of the plan §3.2.2, similar to the state-of-the-art solutions used

in data centers today [8].

Evaluation metrics. We report the expected cost of applying a network change

while meeting each change’s deadline. For each data point, we run 50 experiments

and take the average.
3Even though we use these functions differently than the clouds today, we suspect that the shape

and nature of cost functions will be the same.

77

 0

 10

 20

 30

 40

 50

70% 75% 80% 85% 90% 95%

C
o
st

MLU

Janus
MRC

(a) Avg./std. of plan costs
(static traffic)

 0

 10

 20

 30

 40

 50

65% 70% 75% 80% 85% 90% 95%

C
o
st

MLU

Janus Offline
Janus
MRC

(b) Avg./std. of plan cost
(dynamic traffic)

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 1% 2% 3% 4% 5%

C
o
st

 R
a
ti

o

Switch Failure Rate

Janus/MRC

(c) Avg. plan cost ratio un-
der switch failure

Figure 3.11: Comparing Janus with MRC under various settings.

3.5.2 Cost savings over MRC

Spatial benefits: We start our evaluation with a simple scenario of static traffic

(using a randomly chosen TM). Because the traffic does not change, Janus online is

the same as Janus offline. Janus achieves lower or equal cost to MRC under all MLU

settings (Fig. 3.11a). At 85% MLU, Janus takes only 25% of the cost of MRC (2.5

units of cost vs. 10 units). When MLU is low (e.g., ď 75%), there is enough capacity

in the network so both Janus and MRC can pick plans that apply the change with

zero cost. Janus picks plans that upgrade more switches initially and fewer switches

later on and only for busy pods. In contrast, MRC equally allocates the switches at

each step. When MLU is high (e.g., ě 80%), every step of the plan is likely to impact

ToR pairs. Janus automatically changes its goal to choose plans with a fewer number

of steps to minimize the duration of traffic disruption.

Temporal benefits: Next, we evaluate Janus with tenant and traffic dynamics as

discussed in our evaluation settings. Fig. 3.11b shows that both Janus and Janus

offline have a lower cost than MRC under all MLUs. On average, Janus has 33~71%

of the cost of MRC. At 85% MLU, Janus takes only 52% of the cost comparing to

MRC. This is because Janus can change more switches under a low traffic load and

fewer switches under a higher load.

Janus offline does not consider traffic dynamics and thus performs worse than

Janus, but still better than MRC. At 85% MLU, Janus offline takes 90% of the cost

comparing to MRC. This is because of the spatial benefits mentioned above. In our

78

setting, the spatial benefit is smaller than the temporal benefit because, with tenant

dynamics, the traffic shifts across ToRs fast, so there is not as much spatial skewness.

MRC also has higher variance than Janus because it chooses a fixed plan which

sometimes performs very poorly. Such lack of predictability makes it difficult to

understand the potential impacts of MRC plans on customers. In contrast, both

Janus and Janus offline identify the best plan based on operators’ policies (including

plan deadlines, other constraints, and tiebreakers).

 0

 0.2

 0.4

 0.6

 0.8

 1

Staged-1

Staged-2

Staged-3
log

lin
ear

quad.
exp

C
o
st

 R
a
ti

o

Cost Function

Janus/MRC

(a) Janus has benefits for all cost functions.

 0

 0.2

 0.4

 0.6

 0.8

 1

2 4 8
C

o
st

 R
a
ti

o
Deadline (steps)

70% 80% 90%

(b) Different deadlines. Each color is a dif-
ferent MLU setting.

 0

 0.2

 0.4

 0.6

 0.8

 1

Scale-1

Scale-4

Scale-9

Scale-16

C
o
st

 R
a
ti

o

Scale

Janus/MRC

(c) Janus has benefits across all data center
scales.

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 20% 40% 60% 80%100%

C
o
st

Portion of Webserver traffic

Janus/MRC

(d) Impact of Hadoop/Webserver user split
on Janus plans.

Figure 3.12: Janus adjusts to operators constraints and cost functions and has universal
benefits across all settings. The bars show the average cost of the plans by Janus compared
to the MRC planner.

Predictability of traffic. Janus lowers the planning cost even when the traffic is

hard to predict. Here, we try 5 different traffic traces where we change the ratio of

Hadoop (unpredictable: all to all communication patterns that exhibit on-off chatters)

to Web servers (predictable: spatially stable and constant chatter of Web servers to

cache servers) users in our trace while keeping the MLU fixed. Fig. 3.12d shows that

79

Janus saves cost under all settings. As we increase the proportion of Web server to

Hadoop users, Janus costs decrease from 74% of MRC-plan to 51%. As traffic becomes

less predictable, Janus’s temporal benefits disappear, but Janus gains benefit because

of spatial patterns.

Concurrent failures. Janus also considers the probabilities of failures when it

plans network changes. Here we mode independent switch failures using Bernoulli

random variables, that is a switch either fails or does not with 1-5% failure rate at

every step (i.e., every 5 minutes). Typically, failure rates are lower in data centers, e.g.,

Gill et al. [91] report 2.7% failure rate for aggregate switches over a year. However,

we choose high failure rates to ensure there is a non-zero chance of concurrent switch

failures in Scale-1: at 5% failure rate, we expect 4 concurrent switch failures in the

space of 80 switches. High failure rate stress tests Janus as it requires the simulation

of a much larger failure space: to model 99% of possible failures at 5% failure rate

across 80 switches (binomial distribution), we have to consider more than 2.6 trillion

failure scenarios:
ř10

x“1

`

80
x

˘

ě 2.6trillion.

Fig. 3.11c shows that Janus online has 52% to 85% of the cost of MRC. As we

increase the failure rates, Janus becomes more conservative in preparing for potential

failures and thus requires a higher cost. MRC does not consider failure rates, and

its cost remains the same for all failure rates. With a higher failure rate, Janus gets

closer to MRC. This is because, as discussed in §3.2.2, MRC is a good option when we

have little information about failures. Interestingly, as we increase failure rates, we

are indirectly reducing our knowledge of failures by increasing the number of failure

scenarios that we have to consider. More concretely, to cover 99% of probable failures

for 80 switches, we only need to simulate 85k different scenarios at 1% failure rate,

whereas that number explodes to 2.6 trillion at 5% failure rate.

80

3.5.3 Scalability

Janus finds plans in real-time even for large topologies. We evaluate on Scale-1 to

Scale-4 (61k hosts) topologies. The details of these topologies are shown in Table 3.4).

Janus online plans cost 42% to 61% of MRC plans (Fig. 3.12c).

Janus spends the majority of its time (>99%) estimating the impact of subplans at

every step, which depends on the number of subplans and the simulation time to esti-

mate the impact of each subplan. In §3.3.2, we discussed how network automorphism

allows Janus to reduce both the number of subplans using subplan equivalence and

the simulation time through quotient network graphs. Another added benefit is that

as subplans are completely independent of each other, we can parallelize Janus very

easily by computing the impact of each subplan (or TM) on a different core/machine.

We measure the total running time of Janus across all the steps on one core and

report it in Table 3.5. We also interpolate the time to 20 cores 4 to show that Janus

can plan changes in real-time even for the largest data centers. With 1 core, it takes

Janus 175 seconds to plan a change for upgrading 864 switches for Scale-16. With 20

cores, it takes 8.75 seconds.

We also compare the simulation time per traffic matrix for a four-step plan with

and without the quotient graph optimization: The running time on one core of Scale-

1 improves from 2.9s to 0.01s, a reduction of 290x. Similarly, the running time of

Scale-4 improves from 184 seconds to 0.045, a reduction of 4100x–at Scale-4 topology

finding a plan could take upwards of 12 hours on a single core. We could not run the

flow simulations at Scale-9 and Scale-16 without quotient graphs because we ran out

of memory.
4This is an artifact of the code running single-threaded.

81

3.5.4 Adaptivity

Janus is adaptive in selecting plans that have low expected cost for various planning

constraints and metrics.

Different cost functions: Fig. 3.12a shows that Janus online and offline are

consistently better than MRC under a variety of cost functions. Janus online’s plans

cost is 64% of MRC under Staged-2 and Staged-3 cost functions and Janus offline’s

plans cost is 86% of the MRC cost. The results are similar for the Staged-2 and

Staged-3 functions as their cost functions are similar when the packet loss rate is low

(10% credit for 99.99% ToR pair connectivity). The benefits under Staged-1’s cost

function is larger (49% of cost compared to MRC) because Azure’s cost function has

more room for losses (10% credit for 99.95% availability).

Janus online uses 75~85% cost compared to MRC for logarithmic, linear, quadratic,

and exponential cost functions. Janus is uniformly better than MRC regardless of

cost function as Janus exhaustively searches the entire plan space.

Different deadlines: Fig. 3.12b shows that Janus has a lower cost than MRC for all

deadlines. The cost ratio of Janus follows a U-shape for all MLUs: when the deadline

is small, there are fewer candidate plans and thus less room for Janus to reduce cost

compared to MRC. When the deadline is far away, MRC touches fewer switches per

step and incurs less cost. For deadlines in the middle (where the majority of settings

are), Janus has the most gains over MRC. The actual deadline with the best gain

depends on the MLU.

Rollback: We show a scenario where the cost estimates provided by Janus helps

operators to make rollback decisions. As before, the change involves upgrading all

the core and aggregate switches in the Scale-1 topology (72 switches). Janus initially

selects an eight-step plan but continuously estimates the cost of other plans and

rollback plans, as shown in Fig. 3.13. At step 5, Janus reports that the expected

82

Topology
(Change size)

Planning time simulation time per TM
1 core 20 cores Without quotient With quotient

Scale-1 (72) 2.5 s 0.125 s 2.9 s 0.01 s
Scale-4 (216) 10.06 s 0.503 s 184 s 0.045 s
Scale-9 (486) 35.9 s 1.795 s Out of mem. 0.149 s
Scale-16 (864) 175.0 s 8.75 s Out of mem. 0.8 s

Table 3.5: Janus planning time.

Step

C
os

t

Operator issues rollback to save cost

25

20

5

0

10

15

6 7 8

Rollback plan 2

Rollback plan 1

Original Plan

5

Figure 3.13: Janus suggests a rollback
plan (Green line) that safely revert an on-
going change.

 0
 0.2
 0.4
 0.6
 0.8

 1

Default
Const.

Increasin
g

Deadline

C
o
st

 R
a
ti

o

Time Cost Function

Janus Online/MRC
Janus Offline/MRC

Figure 3.14: Different cost functions for
delayed changes. MRC fails to factor time
and incurs heavy cost.

cost of the remainder of the plan (42 switches left) is 9.901 units (red curve) and

the cost of rollback of the initial bit of the plan (30 switches) is 3.354 (green curve).

If operators consider the cost of 9.901 to be too high (e.g., because their budget is

only 5 units), they may choose the rollback plan. After issuing the rollback, Janus

can immediately select a plan for it. For example, Fig. 3.13 shows two rollback plans

provided by Janus: Plan 1 upgrades 17, 12, 1 switches in 3 steps, and Plan 2 upgrades

17, 13 switches in 2 steps. At step 6, Janus picks Plan 1 as Plan 2 is too risky (cost

of 10) due to traffic dynamics.

Delaying changes: In practice, operators may not have a strict deadline but

instead, have to pay for a cost if a change takes a longer time. Janus can plan for

such cases. We introduce three types of cost for delayed changes: (1) Constant cost

(labeled as Constant): Each step of the plan has a fixed cost (4 units). For example,

applying a change may require a fixed amount of engineering effort in each step. (2)

Increasing cost (labeled as Increasing): We use a linear cost function where the nth

83

step of the plan costs n units. This happens if, for example, we need to fix critical

bugs quickly and the longer we wait, the more network remains vulnerable (i.e., more

cost to operators). (3) Cost after a deadline (labeled as Deadline): We model this

as a fixed cost of 30 units after the 6th step. This happens, for example, when an

engineer relays the rest of the change to another engineer at the end of his shift (and

increases the risk of making errors). (4) The Default bar is the original function with

only customer impact cost. We minimize the total expected cost of customer impact

and delayed changes.

Fig. 3.14 shows that Janus online only takes 11%-47% of the MRC cost; similarly,

Janus offline has 24%-55% of the MRC cost. Janus adjusts the plan based on the cost

function. However, MRC can only use a fixed-step plan (e.g., 8 steps in this case)

independent of the cost function.

For Constant and Increasing, Janus selects a shorter plan (on average 2.82 and

2.84 steps) to reduce the cost of delayed changes at the expense of increasing the

customer impact cost (from 8.6 in default to 12.4 and 11.96). In this way, Janus

identifies the best tradeoff between the two types of cost. For Deadline, because

there is a significant cost beyond 6 steps, Janus fits the plan within 6 steps to reduce

the overall cost with the expense of slightly increasing the customer impact cost (from

8.6 to 9).

3.6 Related Work

Scheduling network updates. A few prior efforts focus on planning network

updates (i.e., forwarding plane changes). Reitblatt et al. [92] introduce consistent

switch rule updates to avoid loops or black-holes. zUpdate [93] plans traffic migrations

(caused by network updates) with no packet loss during the worst-case traffic matrices.

SWAN [58] and Dionysus [94] schedule forwarding plane updates for WAN by breaking

84

the updates into stages with barriers in-between. While these low-level tools are useful

in updating individual switch configurations, Janus plans upgrades for a (large) group

of switches or links in data centers. Moreover, Janus adjusts plans based on traffic

changes in real-time.

Failure mitigation. Autopilot [95] manages end-host updates and remedies fail-

ures at the end-hosts through reimaging or rebooting. Bodik et al. [96] discuss an

optimization framework for increasing the resiliency of end-host applications to faults.

Janus deals with the general problem of network upgrades and can provide scheduling

support for these failure mitigation solutions.

Network symmetry. Beckett et al. [97] compress the control plane of large

networks to test data plane properties, e.g., reachability and loop freedom. Plotkin

et al. [98] scale up network verification for reachability properties by using symmetry.

It is unclear how such techniques apply to network change planning under traffic

dynamics. Janus builds a compressed data-plane to speed up simulations and uses

subplan equivalence to prune the plan search space.

3.7 Conclusion

Fast network changes are critical for enabling quick evolutions of data centers today.

Janus applies network changes by estimating the impact of various plans and dynam-

ically adjusting the plans based on traffic variation and failures. Janus uses network

automorphism to scale to a large number of plans. Janus plans in real-time even for

the largest of data-centers and finishes upgrades with 33% to 71% of the cost of MRC

planners.

85

Chapter 4

Revisiting measurement algorithms in

software switches

Many network functions are moving from hardware to software to get better pro-

grammability and lower cost. Measurement is critical to most network functions

because getting detailed information about traffic is often the first step to make con-

trol decisions and diagnose problems. The key challenge for measurement is how

to keep a large number of counters while processing packets at line rate. Previous

work on measurement algorithms mostly focuses on reducing memory usage while

achieving high accuracy. However, software servers have plenty of memory but in-

cur new challenges of achieving both high performance and high accuracy. In this

chapter, we revisit the measurement algorithms and data structures under the new

metrics of performance and accuracy. We show that saving memory through extra

computation on these switches is not worthwhile. As a result, a linear hash table

and count array outperform more complex data structures such as Cuckoo hashing,

Count-Min sketches, and heaps in a variety of scenarios. We argue that this trend

is to be expected granted that the memory, network speed, and CPU have grown at

proportional speeds.

86

4.1 Introduction

To reduce the cost and management complexity of hardware switches and middle-

boxes, there is a growing need of moving network functions to software. For example,

today, data centers often run load balancing and firewalls in software [99, 100], and

ISPs have started to deploy virtualized network functions (VNFs) to replace their

hardware boxes [101].

Measurement is a key component in many network functions: for detecting anoma-

lies (e.g., heavy hitters, superspreaders), profiling traffic of applications, or inspecting

individual packets (DPI). Other network functions such as load balancing and traffic

engineering also rely on accurate measurement of traffic statistics [89]. Measurement

tasks can run on bare-metal, e.g., a software switch [102], or inside containers either

standalone or as part of another NFV, e.g., a load balancer container that detects

and spreads heavy-hitter flows across all the backend servers [103].

To support measurement functions, we need to keep a large number of counters for

individual packets and flows. Therefore, most measurement algorithms focus on how

to store many counters with limited memory while retaining measurement accuracy,

at the expense of more hash functions (e.g., Cuckoo hashing [104] and Count-Min

sketch [105, 106]) or more computations (e.g., heaps). Even some recent proposals

focusing on software measurement also target reducing memory usage [107, 108, 109,

110, 111, 112].

However, we argue that, in software, the key metric is not memory usage, but

packet processing performance (i.e., throughput and latency). This is because modern

servers have plenty of memory, an efficient caching hierarchy, and highly optimized

compilers. Instead, the key challenge is to achieve high throughput and low latency.

If we spend too many CPU cycles to fetch measurement data into cache and compute

the right values and locations for counters, we may delay the packet processing and

affect throughput. Note that the tail latency also matters because even if a few

87

packets experience long delay, the queue size increases which causes packet drops.

In this chapter, we re-evaluate measurement algorithms in software with a focus

on performance and accuracy metrics. We study three measurement tasks (heavy

hitters, superspreaders, and change detection) on a variety of measurement algorithms

(including hash tables, sketches, and heaps). Our key observations are:

1. We show that saving memory through extra computation is not worthwhile

in achieving high performance and high accuracy for measurement in software.

For example, using more hash functions in Cuckoo hashing or a Count-Min

sketch provides worse performance than a linear hash table or a count array.

Using more computationally intensive data structures (e.g., heaps) also hurts

performance. Instead, to improve the accuracy, one can simply allocate larger

memory to a simple linear hash table or a count array while still achieving better

performance than the other data structures with more computation. (Section

4.3)

2. Our conclusion holds for heavy hitter detection and other measurement tasks

with different memory access patterns (superspreader detection) and more com-

plex computation (change detection). It also holds for measurements with dif-

ferent entry sizes, value sizes, and traffic skews. (Section 4.4)

3. In a multicore setting, it is a bad idea to save memory by sharing resources

across cores. Instead, we should maintain separate data structures across cores

to avoid synchronization and aggregate the results during the reporting time.

(Section 4.5)

In addition to the above observations, we discuss possible ways to improve mea-

surement algorithms in software in Section 4.6. We describe related works in Section

4.7 and conclude in Section 4.8.

88

4.2 Background and Motivation

To support various network functions, we need a variety of measurement tasks such

as heavy hitter detection, traffic change detection, and flow size distribution estima-

tion. We observe that most of these tasks are often implemented using three classes

of algorithms (Table 4.1). In this section, we give some backgrounds on these mea-

surement tasks and algorithms and their design principles. We then motivate why it

is important to re-evaluate these algorithms in the software context.

4.2.1 Three classes of measurement algorithms

We consider three classes of measurement algorithms: hash tables, sketches, heap/tree-

based solutions. To illustrate their design principles, we take heavy hitter detection

as an example. We define a heavy hitter as a source and destination IP address pair

that sends traffic volume more than a pre-specified threshold. Heavy hitters are very

useful for many management tasks. For example, operators can collocate chatty VMs

(source-destination pairs with heavy traffic) in the same server or rack to save network

bandwidth in data centers.

Hash tables: Hash tables compute a hash function for each key and use the

result to locate a bucket in the array to store the key and its value. To handle hash

collisions, many hash table designs such as linear hashing, Cuckoo hashing [104], or

hopscotch hashing [124] probe a set of additional buckets to identify an empty bucket

to hold the key. When the hash table has a high occupancy rate (load factor), finding

an empty bucket takes multiple probing rounds, which leads to high packet processing

delay and delay variance. We compare Cuckoo hashing that is commonly used for

software switches [125, 126] to the linear hash table.

For heavy hitter detection in the hash table, we use the source and destination

IP pair as the key and count the number of packets for each pair. A pair is a heavy

89

Function Meaning Sketch Heap/tree-
based

Hash
table

Heavy hitter A traffic aggregate identified by a
packet header field that exceeds a
specified volume

NSDI’13[113]
[106]

[105, 111],
ANCS’11 [114]

SIGCOMM
’02[115]

Super spreader A source IP that communicates with
a more than a threshold number
of distinct destination IP/port pairs
(Defined for destinations in a similar
way.)

NSDI’13[113]
[107]

IMC’10 [116],
[110]

Flow size distribu-
tion

The distribution of sizes of flows dis-
tinguished by a set of packet header
fields

[117] IMC’10 [116]

Change detection A drastic change of volume/# pack-
ets from a traffic aggregate com-
pared to a prediction model

IMC’04 [108]
[118]

[119] IMC’10 [116]

Entropy estimation Entropy (A measure of random-
ness/diversity) of volume/# packets
from different flows

[120] IMC’10 [116],
SIGMET-
RICS’06
[121]

Quantiles Dividing an ordered set of flows
(e.g., based on source IP) into equal-
weight subsets

[122] SIGMOD’01 [109],
SIG-
MOD’99 [123],[106]

Table 4.1: A survey of proposed measurement solutions

hitter if its count is above a certain threshold. The implementation details of the

hash table may affect the packet processing performance significantly [127]. To speed

up the hash table, we applied several system optimizations such as cache prefetching,

cache access alignment, and SIMD instructions to calculate the hash function.

Sketches: Sketches are summaries of streaming data to approximately answer a

specific set of queries. For example, Count-Min sketch [106] is commonly used to find

heavy hitters [128, 129, 130] 1. A Count-Min sketch keeps a two-dimensional array of

counters with d rows and w columns. It computes d hash functions per packet and

updates the corresponding d positions in each row. To find the counter for a given

IP pair, the minimum counter in the d locations is returned because it has minimum

collisions. If the minimum counter is above the threshold, we add the IP pair to a set.

Later at the report time, we report the set of IP pairs as heavy hitters. In contrast,

a count array sketch computes one hash function per packet. When there are hash

collisions, a count array simply adds up the counters for the collided keys.

Heaps and trees: Heaps reduces the memory usage by only keeping the most
1The conclusions of this chapter is easily extensible to other sketches.

90

important entries for the measurement query (e.g., big flows). For example, the

SpaceSaving algorithm [105] finds heavy hitters by tracking the volume of traffic

from IP pairs in a small hash table. When the hash table gets full, it finds the entry

with the minimum volume, say vmin, replaces that with the new IP pair, and adds the

packet volume to the original counter (vmin plus the size of the new packet). To find

the minimum entry, we need to keep a heap data structure [105]. Thus for each entry

in the hash table, there is a corresponding entry in the heap, and for each packet, the

heap must be updated to maintain its property.

Trees are also used to store a hierarchical set of counters [114, 119, 128]. For

example, to detect heavy hitters, we can build an IP prefix tree and dynamically

zoom in and out the subtrees based on the monitored traffic counters to reduce the

number of monitored prefixes.

4.2.2 Previous works on measurement algorithms

Many previous works on measurement algorithms [115, 116, 113, 114, 121, 131, 119,

118, 132, 106, 110] promote the sketch-based solutions which maintain approximate

counters with compact memory by leveraging multiple hash functions. This idea

fits hardware switches which typically have limited high-speed memory. However, in

software with a memory hierarchy, the total memory usage does not matter, but the

number of memory accesses at different levels of the cache hierarchy affects the packet

processing latency and throughput. As a result, it is not worthwhile to reduce the

total memory usage at the expense of more instructions for calculating additional

hash functions and more time to access extra entries. In fact, we will show in our

evaluation that if we can reduce the number of hash functions and memory accesses,

we can still achieve low latency and high throughput with a large total memory.

Unfortunately, even previous measurement works that target software environ-

ments [107, 108, 109, 110, 111, 112], only compare the different set of sketch and

91

heap solutions and focus on the comparison of total memory usage. Some papers

[129, 105] that compare hierarchical Count-Min sketch and heap-based solutions show

that heap-based solutions can achieve better performance and accuracy. Other work

claim to achieve reasonable performance without rigorous testing on modern servers

and comparison with single hash-based solutions.

Instead, in this chapter, we focus on a systematic comparison of both the perfor-

mance and accuracy of hash tables, sketches, and heaps through extensive evaluations.

We conclude that simple is often the best. For example, the simplest implementations

of hash tables and sketches (i.e., the linear hash table and the count array) achieve

the best performance and accuracy for heavy hitter detection. We also extend the

evaluation to other measurement tasks and over different traffic traces.

4.3 Evaluation of measurement algorithms in soft-

ware

Our key observation is that saving memory through extra computation is not worth-

while in achieving high performance and high accuracy for measurement in software.

This is because packet batching and memory prefetching can mask the memory access

latency. On the other hand, the latency due to extra computation cannot be masked

as easily—superscalar processors and compilers already perform efficient interleaving

of instructions and utilize the computation resources as much as possible.

We noticed two common approaches that use more computation to save memory:

more hashes and complex data structures: (1) Computing multiple hashes to save

memory degrades performance. For example, a count-array that uses a single hash

function and large memory beats a Count-Min sketch that uses a smaller memory but

makes up for accuracy loss by using multiple hashes. Also, the linear hash table has

lower average and tail latency than the Cuckoo hash table that saves memory using

92

multiple hashes. (2) It is possible to achieve the accuracy of more computationally

intensive data structures by allocating more memory to simpler data structures while

achieving better performance: we compare data structures based on sketch, hash

table, and heap.

We start by evaluating measurement algorithms for heavy hitter detection in a

single-core setting, and then we extend the result to other measurement tasks in

Section 4 and multicore settings in Section 5.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 1 10 100 1000

La
te

n
cy

 (
n
s)

Size (MB)

Cuckoo-1 entry
Cuckoo-4 entries

Linear

(a) Linear vs Cuckoo hash ta-
ble

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.1 1 10 100

La
te

n
cy

 (
n
s)

MB

Count min Count array

(b) Average and tail latency
of count array and Count-
Min sketch

 91
 92
 93
 94
 95
 96
 97
 98
 99

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

ci
si

o
n

99th Latency (ns)

Count min Count array

(c) Precision vs. tail latency
of count array and Count-
Min sketch

Figure 4.1: Comparing a single hash function with multiple ones

4.3.1 Evaluation settings

Testbed: We use a Xeon E5-2650 v3 processor with 10 cores, 256 KB of L2 cache per

core, 25 MB of shared L3 cache, and a 10G network interface card. On this processor,

the L1 access time is 1.6 ns, L2 access time is 5 ns, L3 is 15 ns, and main memory

is 69 ns [133]. Typically, the access time of L1, L2, L3, and main memory follows a

similar trend across the latest CPU architectures [134].

Traffic traces: We use a one-minute trace from Equinix data center at Chicago

from CAIDA [135] with 27 million packets and around 1 million unique flows. The

CAIDA trace has a skew of Z=1.1 (which means that the most frequent entry has 10

times more packets than the 8th most frequent one [136, 137]). To generate traffic

traces with different skews, we build a pool of source and destination IPs from the

base CAIDA trace and sample from this pool using a Zipfian distribution.

93

In all experiments, we use the smallest TCP packet size, i.e., 64 bytes, to stress-test

the measurement tasks under the highest possible per packet rate.

Measurement tasks: We focus on heavy hitter detection. We define heavy

hitters as the source and destination IP pairs that have more than 0.1% of the total

traffic in an epoch. We report in epochs of 2 million packets, which translates to a

130ms time window on a 10Gbps network interface card with 64-byte packets. We

evaluate the generality of our observations for tasks that save more information per

flow by evaluating heavy hitter detection with a variety of value sizes.

Measurement algorithm implementation: We evaluate three types of mea-

surement algorithms: hash tables including linear hash tables and Cuckoo hash tables,

sketches including count arrays and count-min sketches, and heaps (§4.2.1). By de-

fault, we keep the keys as source and destination IP pairs and the values as 12 byte

counters. For each algorithm, we do not implement unnecessary features (e.g., for

heavy hitter detection, we do not need to perform bookkeeping or have a decrement

operator). This decision lets us save as many cycles as possible for each algorithm.

We now describe our algorithm implementation in detail:

Hash tables: Our implementation of linear hash table holds one item per bucket

and performs linear search on collisions. There are also other collision resolution

techniques, e.g., Hopscotch [124] or Robin Hood hashing [138]. We opted not to use

them, because as the size of the data structure increases the number of collisions

decrease, which hides the impact of collision resolution strategy for packet processing.

For Cuckoo hash table, we followed DPDK implementation [139] but removed the

bookkeeping (required for deletion) to improve the performance.

Sketches: Count-array implementation is similar to the linear hash table, but

instead the collision resolution strategy overwrites previous values. Our Count-Min

sketch uses three count-arrays with pairwise independent hash functions.

Heaps and trees: We use a binary min heap as a representative tree like data

94

structure for packet processing that is actively used across many algorithms, e.g.,

change detection [119], heavy hitter detection [105, 111]. We optimized the imple-

mentation by ensuring that we only heapify-down when updating values because the

flow metrics, e.g., volume or packet count, can only increase.

We perform extensive system optimizations to make the measurement system as

efficient as possible. For example, we use DPDK [139] to read packets from the NIC

and send them as a batch to the application. Batching packets has several benefits:

(a) it gives the compiler more freedom to optimize the code, e.g., through data-flow

analysis [140], (b) it enables the instruction level parallelism across packets in the

same batch; and (c) the compiler and the programmer can use prefetching and Single

Instruction Multiple Data (SIMD) instructions to hide the latency of memory and

CPU operations [141, 142].

Evaluation metrics: We consider two metrics: (1) Performance: We measure

the average and tail latency (i.e., 99th percentile latency). We measure the latency

from fetching packets from the NIC to sending the packets out of the measurement

module and maintain the histogram. The average latency dictates the packet pro-

cessing throughput. The tail latency indicates the variance of packet processing time.

A larger tail latency causes more packet drops because the NIC needs to maintain a

longer queue. Note that this can happen even when the average latency per packet is

low. (2) Accuracy: We measure the precision and recall for each measurement task.

For example, to measure the precision of heavy hitter detection, we count the frac-

tion of selected flows that are true heavy hitters; similarly, the recall is the fraction

of true heavy hitters that are detected. The recall and precision of other tasks, e.g.,

superspreader or change detection, follow the same definition.

Evaluation settings: We run a warm up trace right before each experiment to

ensure that the software switch code is cached. We perform zero-packet-loss perfor-

mance benchmark: for each experiment, we replay the trace at the highest throughput

95

where packet loss is zero.

We process packets in batches of 64. To compute the average and tail latency, as

it is too expensive to record the delay per packet, we measure the number of cycles

to process each batch and add the corresponding per packet cycle into a histogram.

The histogram has 2k buckets with each bucket representing 2 cycles.

4.3.2 A single hash function is better than multiple

We compare data structures with a single hash function to those with multiple hash

functions (linear hash table vs. Cuckoo hashing and count array vs. Count-Min sketch).

We observe that using a single hash function achieves better performance on average

and in tail than using more hash functions without losing accuracy.

The linear hash table has lower average and tail latency than Cuckoo

hash table. Figure 4.1a shows the average and the 99th percentile latency for the

linear and Cuckoo hash tables. For the Cuckoo hash table, we first consider an

implementation with one entry per bucket. For each hash bucket, we store one key-

value pair (i.e., one entry per bucket is labeled as Cuckoo-1 entry). The Cuckoo hash

table has between 30% (40%) to 10% (13%) higher average (tail) latency than the

linear hash table over the whole range. This is because, with lookup misses, Cuckoo

hashing always needs two hash functions to verify the miss whereas the linear hash

table always requires one. This also means that Cuckoo hashing needs to make two

random memory accesses, whereas linear hash table only needs to probe the current

entry. The locality and predictability of reference in linear hash table and the size of

the cache sizes (64 bytes) further help to ensure the availability of next key in cache.

This makes linear hash table have an overall better performance even with larger data

structures and when the load factor is low.

To increase the locality of reference, we may reduce the number of memory opera-

tions in the Cuckoo hashing by chaining, e.g., saving four entries per bucket (labeled

96

as Cuckoo-4 entries)[143]. Thus, when collisions happen, we can save the entry in the

same bucket with high probability without computing the second hash. Note that we

chose four entries per bucket because the four entries fit in one cache line. Although

Cuckoo-4 improves the tail latency of Cuckoo-1, it still has higher latency compared

to linear hash table (Figure 4.1a). This is because with equal sized tables, there are

fewer indices available in Cuckoo-4 than linear hash table, and thus, Cuckoo-4 can

require multiple comparisons to find the key.

There is a large body of works on using Cuckoo hash tables for applications with

high performance such as forwarding tables of switches [144] and for key-values stores

[143]. Previous works choose Cuckoo hash tables because they focus on the load

factor of the hash table, but in our context, we care less about the load factor since

the number of records is much smaller than a table for a key-value store. In other

words, Cuckoo hashing is not the fastest in our context because each lookup may

require two hash computations and an insertion may require random shuffling of

many entries in the hash table. Instead, we can use a large table—because the table

size is only a fraction of the total memory size in modern software switches—and

avoid computations that allow Cuckoo hash table to achieve a high load-factor.

The count array has lower average and tail latency than the Count-Min

sketch. The count array with one hash function has lower average and tail latency

with the same accuracy than Count-Min sketch, which uses three hashes, across all

data structure sizes (Figure 4.1b). This is because the Count-Min sketch computes

multiple hashes and needs multiple random memory accesses per packet, which defeats

the purpose of smaller memory size for packet processing. The tradeoff between the

performance (i.e., 99th percentile tail latency) and accuracy (i.e., precision2) is shown

in Figure 4.1c. For example, the count array reaches 98% precision with 45 ns tail

latency while the Count-Min sketch takes 64 ns for the same precision due to the
2Recall also has the same trend.

97

additional hash function computations. Even when count array memory does not fit

in the CPU cache, most of its memory accesses are still served by the cache because

of the packet batching, memory prefetching, and traffic skews, which is common in

networks [145, 146].

 0

 20

 40

 60

 80

 100

 120

 140

 0.1 1 10 100

La
te

n
cy

 (
n
s)

Measurement data size (MB)

Heap
Linear

Count array

(a) Average and tail latency

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

P
re

ci
si

o
n

99th Latency (ns)

Heap
Linear
Count array

(b) Precision vs tail latency

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

R
e
ca

ll

99th Latency (ns)

Heap
Linear
Count array

(c) Recall vs tail latency

Figure 4.2: Performance and accuracy comparison of hashes, sketches, and heaps
(traffic skew Z=1.1)

4.3.3 Use data structures with the simplest computation

We compare three classes of algorithms for heavy hitter detection: count arrays, lin-

ear hash tables, and heap-based algorithms. Among the three, count array has the

least amount of computations, linear hash table is a bit more complex because of the

collision resolution strategy, and the heap-based algorithm is the most computation-

ally demanding but uses smaller memory. We show that using more computation to

save memory does not improve the performance.

Count array has the lowest average latency compared to linear hash

table and heap. We first compare the average latency of the three algorithms for

heavy hitter detection for different sizes of data structures in Fig. 4.2a. The count

array has 142% better performance than the heap implementation and 28% better

performance than the linear hash table. Figure 4.2a shows that as the size of the data

structure grows, the latency difference between the linear hash table and count array

vanishes because collisions rarely happen.

The heap has the worst performance among the three algorithms as it takes multi-

ple memory accesses to navigate and maintain the heap data structure. For example,

98

updating a heap entry with a subtree of height three may require updating all the

tree layers.

Note that heap is still faster than more complex algorithms such as hierarchical

sketches [129, 105]. Hierarchical sketches use multiple sketches to extract the heavy

hitter flow information from their counters as counters in sketches do not keep the

flow information (e.g., IP). However, updating multiple sketches in software requires

many hash computations and memory accesses 3.

With larger data sizes, the tail latency increases significantly for the

count array and linear hash table, but decreases for heap. The error bars in

Figure 4.2a show the 99th percentile tail latency. The tail latencies of count array and

linear hash table increase significantly when the measurement data size is above the

L3 cache of the CPU (25 MB). If the measurement data is larger than the L3 cache,

the memory access latency affects the tail latency of the packet processing pipeline.

It is worth noting that small linear hash tables have higher latency than the

larger ones. This is due to the high load factor of small tables that incurs additional

collision resolution cost. For example, in our experiments, a linear hash table with 3

MB performs 22% more memory accesses than a linear hash table with 200 MB.

However, the average and tail latencies of min-heap decrease with more memory.

This is because with larger heaps, more heavy hitters end up in the leaves (versus

nodes inside the heap), which makes heapify operation cheap because it only touches

the leaves.

To achieve 100% accuracy, we should use the linear hash table; if ac-

curacy loss is acceptable, count array has the best performance. Figure

4.2b compares the tradeoff between accuracy (i.e., precision/recall) and the perfor-

mance (i.e., latency/tail latency) of different measurement algorithms. Even though
3Our approach for using the count array is to simply keep heavy hitters in a set (i.e., add the

flow to a set if it updates a counter above the threshold). Thus, we only need one sketch, and count
array becomes a better choice than the heap for software.

99

heap works well with small memory space, it has the highest latency and the worst

accuracy among the three algorithms and is never a good choice for measurement in

software.

The linear hash table always achieves 100% precision and recall because it handles

collisions. Its average latency is 46ns and its tail latency is 53ns. However, count

array achieves 99.5% precision and 96.54% recall with 40ns average latency and 46ns

tail latency. Saving 6ns in average latency improves the throughput by 9% for the

smallest packet size where we only have 67ns to process each packet (6ns
67ns

). The

reduction in tail latency also lowers the chance of packet drops in the NIC queue as

the maximum queue length drops. Therefore, the count array is the best choice if

the consumer of measurement data can tolerate some accuracy loss. For example, for

traffic engineering, handling a few small flows as heavy hitters (ă 100% precision) or

missing a few heavy hitters (ă 100% recall) does not have much impact, especially,

because the size of false detected heavy hitters and missed heavy hitters is close to

the threshold [130].

4.4 Generality to diverse measurement tasks

We discussed that for detecting heavy hitters, large and computationally lightweight

data structures have better performance and comparable accuracy to small and com-

plex data structures. Here, we generalize the result to a group of measurement tasks

that keep per item state and update that state for every incoming packet. All the

six measurements in Table 4.1 follow this model. For example, heavy hitter detection

increments the per flow counters, superspreader detection updates a bloom filter per

source IP. Such measurement tasks only rely on a data-structure that maps items to

their state, i.e., a key-value store. We can implement a key-value store in software

using (1) hash tables or (2) tree based algorithms.

100

Hash tables rely on hash functions and collision resolution strategies to find the

location of an item; on the other hand, trees traverse a path from the root node and

incur multiple memory accesses to find the location of the item. To compare the

solutions, we need to compare the number of cycles used to find the location of a key.

Under no collisions, a hash table requires a single hash function to locate a key-

value pair in the table. There are many well designed uniformly random hash function

implementations [147], e.g., Metrohash, Cityhash, Murmur3, which typically take

between 40~60 cycles for 16 bytes (>5 tuples) of data to execute. In comparison,

L2 and L3 accesses take 10 and 40 cycles respectively. Thus, a hash table with no

collisions takes between 50~100 cycles to locate the value of a key. On the other hand,

a tree based solution requires multiple memory accesses (typically in the Oplogpnqq

memory accesses and comparisons) to find the location of a key. Assuming the same

memory access latency numbers for L2 and L3, a tree that is completely cached

in L2 memory can only have between 63~2047 entries—ignoring any computational

overhead and branch mispredictions—for a comparable performance to a hash table,

which can be much larger. This means that a hash table with no collisions has a

much better performance than tree based solutions.

The unique opportunity for network measurement tasks is that they can avoid

collisions in hash tables using large tables. This is because the data of measurement

algorithms is a fraction of the software memory hierarchy (e.g., 10s of MBs compared

to 10s of GBs available on modern software switches). Thus, we can make the hash

tables large enough that collisions become rare. Furthermore, we can mask the mem-

ory access latency through packet batching and prefetching. In contrast, the database

and hardware switch community [143, 148], where most streaming algorithms come

from, do not have the luxury of serving most queries from cache and thus have to

rely on trading off computation and accuracy for memory size.

Finally, different measurement tasks have different strategies for updating the

101

values associated with the keys. For example, when using count array for heavy

hitter detection, values that map to the same bucket overwrite each other, whereas

a linear hash table would resolve collisions through probing, and a heap would move

the items around to preserve the heap property. Later in this Section, we discuss how

the general result, use simple but large data structures, also apply to superspreader,

which has complex memory access procedure for updates, and change detection, which

is computationally complex.

4.4.1 Impact of traffic skew, data structure size, and value

size

The efficiency of memory hierarchy in software switches depends on the location of

a state associated with a packet. This is because when the state is in upper layers

of the memory hierarchy, the access latency becomes multiplicatively slower. For

example, on our test server, the access latency of memory is 4.6 times slower than

L3. There are two factors that dictate the location of a packet state in the memory

hierarchy: (1) Traffic skew. With a skewed traffic, the packet processing pipeline

serves a larger fraction of packets from the cache, leading to overall lower latency

per packet. In contrast, a more uniform traffic distributes the state associated with

a packet across all the layers, leading to higher latency per packet. (2) The data

structure size. Whereas the data of a small data structure may fit in L1-L3 cache,

a large data structure might still need to access memory to locate its data, leading

to overall higher latency per packet. Here we discuss the impact of entry size, traffic

skew, and data-structure size on the performance of packet processing pipelines.

Traffic skew. We study the impact of skew on measurement tasks by fixing the

measurement task to heavy hitter detection and the data structure size to 32 MB.

This size ensures that the measurement task does not fit in the L3 cache in our test

server.

102

 0

 50

 100

 150

 200

 0.6 0.8 1 1.2 1.4 1.6 1.8

9
9

th
 L

a
te

n
cy

 (
n
s)

Traffic dist (Zipf param)

Count min
Count array

(a) Hash based algorithms
(32MB)

 0

 50

 100

 150

 200

 250

 0.6 0.8 1 1.2 1.4 1.6 1.8

9
9

th
 L

a
te

n
cy

 (
n
s)

Traffic dist (Zipf param)

Count array
Heap

Linear

(b) Measurement algorithms
(32MB)

 0

 20

 40

 60

 80

 100

 120

 0.01 0.1 1 10 100 1000

La
te

n
cy

 (
n
s)

MB

Count array (Z=0.5)
Count array (Z=1.1)
Count array (Z=1.5)

(c) Measurement data sizes

Figure 4.3: Effect of traffic skews on measurement algorithms and sizes

We first compare the impact of the skew across implementations with varying

number of hash functions and memory accesses. Typically, as the traffic skew de-

creases, access patterns distribute more evenly across the memory hierarchy. Thus,

measurement tasks with lower number of memory accesses per packet are less affected

by the skew. Fig. 4.3a shows the tail latency of count array and Count-Min sketch

for heavy hitter detection. Since the Count-Min sketch makes 3 memory access per

packet as opposed to only one for count array, the jump from skew 1.1 to 0.75 is larger

for the Count-Min than the count array—even though the amount of computation

per packet does not change with the skew.

Then, we compare the impact of skew across the heap, count array sketch, and

linear hash table. Fig. 4.3b shows the 99th percentile per packet processing latency

of these implementations across varying skews. Since the data structure is large (32

MB), the collisions are rare, and thus, the performance of linear hash table is only

slightly worse than the count array sketch. Thus, under our settings, operators may

prefer the linear hash table because it provides a guaranteed 100% accuracy with

negligible impact on latency versus the count array.

However, the effect of skew on heap is more prominent: the skew not only affects

the number of memory accesses but also the amount of computation that the heap

performs. This is because under low skew the heap is more likely to move an item

across multiple levels than when the skew is high. Fig. 4.3b shows this where the heap

latency grows by 45ns from skew 1.5 to 1.1, but by more than 100ns when going from

103

skew 1.1 to 0.75.

Data structure size. To study the effect of skew changes together with the size

of data structures, we fix the measurement task algorithm to count array and measure

the packet latency when the traffic skew changes. Here, the skew dictates the working

set of the data structure in L1, L2, and L3 cache of CPU. Traffic with higher skew is

more likely to access the lower layer cache for packet data than the traffic with higher

latency. Figure 4.3c shows the average and tail latency of the count array when we

change its size from 48 KB to 200 MB over different traffic skews.

The two jumps at 200kB and 32MB indicate the size of the L2 and L3 cache. When

the data structure is small enough to fit in L2 cache, no matter how the access pattern

looks like, it will always get served from the L1 and L2 cache. As the data structure

size increases, data gets distributed across other layers of the memory hierarchy. With

less skewed traffic, we are more likely to access upper layer memories, and thus the

latency gets affected more. This is visible in the figure by the separation of latency

for different traffic skews once we pass the L3 cache size.

Entry size. A key factor for the difference in performance of measurement algo-

rithms is the size of the stored state. The size of the entry dictates the percentage

of the entries that are available in the lower layer of the memory hierarchy. Fewer

number of larger entries fit in lower layer cache as opposed to smaller entries.

An entry contains both the key and the value. Typically, the key size depends

on the flow granularity, e.g., whether we keep one IP address (4 bytes), source and

destination IP addresses (8 bytes), or 5 tuples (13 bytes). For the value field, we

keep a 4 byte counter together with the first few bytes of the latest packet to fill out

the remaining space for that entry. We fix the key size to avoid incurring additional

memory comparisons and hash function computation overhead and only keep the

source and destination IPs (8 byte keys).

We implementat heavy hitter detection algorithms as discussed in the previous

104

section. Measurement tasks may keep additional information, e.g., timestamp per

flow (with a total value size of 12 bytes) or keep a list of destinations that the flow

has contacted (e.g., 20 bytes on average). But that should not affect the generality

of the impact of entry size on the performance.

Fig. 4.6 shows that the tail latency of count array, linear hash table, and heap

increases as the entry size grows. This is because we are more likely to access the

upper layers of the memory hierarchy to locate our data. The jump for the heap here

is linear and smaller than the jump shown in Fig. 4.3b because here the number of

memory accesses or the amount of computation of the heap does not change with

varying entry size—we still use the packet counter to reorder the heap.

4.4.2 Impact of measurement tasks and storage of key-values

To cover the impact of memory and computational aspect of measurement task, we

study two tasks: (1) superspreader detection, which updates a large memory portion

per value, and (2) change detection, which is computationally more intensive than

heavy hitter detection. We show that our results from the previous section still hold

even on the two extremes of memory and computation complexity. Finally, we study

the impact of value size on the performance, and suggest a strategy to decide whether

the key and values should be colocated in the hash table or not.

Superspreader detection. Superspreaders are the sources that chat with a large

number of distinct destinations. They can identify distributed denial of service attacks

(DDoS) or sudden changes in traffic pattern. We implement the superspreader module

to report all the source IPs that send traffic to more than 128 different destinations

in every epoch (2 mil packets). For every source IP, we keep a distinct Bloom filter

counter per entry [149] with three hash functions and 1024 bits of data to identify

new destinations. Due to the Bloom filter, superspreader has a more complex update

procedure than heavy hitter detection.

105

 0

 20

 40

 60

 80

 100

 120

 1 10 100 1000

La
te

n
cy

 (
n
s)

MB

Count array
Cuckoo-1 entry

Cuckoo-4 entries
Linear

(a) Latency/Size

 90

 92

 94

 96

 98

 100

 0 20 40 60 80 100 120

P
re

ci
si

o
n

99th Latency (ns)

Count array
Cuckoo-1 entry

Cuckoo-4 entries
Linear

(b) Precision/99th Latency

 90

 92

 94

 96

 98

 100

 0 20 40 60 80 100 120

R
e
ca

ll

99th Latency (ns)

Count array
Cuckoo-1 entry

Cuckoo-4 entries
Linear

(c) Recall/99th Latency
Figure 4.4: Performance and accuracy of superspreader detection

Figure 4.4b shows the average and tail latency of different implementations of su-

perspreader detection. Count array still has the lowest latency among the algorithms

while reaching 97% precision (Figure 4.4b). The hash tables all have a precision of

99% and recall of 100% (The accuracy is less than 100% because of the Bloom filter

error in distinct counting) with linear hash table being the fastest. The conclusion

here follows the result for heavy hitter detection algorithms.

Change detection. Change detection identifies anomalies in packet streams, e.g.,

when the traffic pattern of a host suddenly changes or when the traffic volume changes

too rapidly. Operators can use change detection for detecting compromised hosts, or

as a signal to a control framework, e.g., load balancing, when sudden changes happen.

For evaluation, we use an EWMA model to predict the traffic of each flow and report

the flows that are outside the predicted value. Due to the prediction model, change

detection is more computationally intensive than heavy hitter detection in updating

per flow state.

 0

 50

 100

 150

 200

 250

 1 10 100 1000

La
te

n
cy

 (
n
s)

MB

Count array
Linear
Heap

(a) Latency/Size

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

P
re

ci
si

o
n

99th Latency (ns)

Count array
Linear
Heap

(b) Precision/99th Latency

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250 300

R
e
ca

ll

99th Latency (ns)

Count array
Linear
Heap

(c) Recall/99th Latency
Figure 4.5: Performance and accuracy of change detection

Figure 4.5b shows the average and tail latency for different implementations of

change detection. Count array still has the lowest latency among all the algorithms

106

while reaching 99% precision (Figure 4.5b). The linear hash table has a precision of

100% and recall of 100%. Similarly, heap also has a precision and recall of 100% but

with 80-100 ns higher latency.

Direct and indirect key-value storage. For measurement tasks with large values,

it is better to store the values separately and only store a pointer in the hash table.

We can then keep a contiguous list of keys to increase the locality of memory accesses

for lookups when collisions happen. However, when the value size is small, it is more

beneficial to keep the key and values together so that they share the cache line. To

understand this tradeoffs, we implement two versions of linear hash tables: Linear

which store keys and values together and LinearPtr which stores the keys with a

pointer to the values.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 15 20 25 30 35 40

La
te

n
cy

 (
n
s)

Entry Size (bytes)

Linear Heap Count array

Figure 4.6: Latency of mea-
surement algorithms for
tasks with various entry
sizes (traffic skew Z=1.1)

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0 10 20 30 40 50 60

La
te

n
cy

 (
n
s)

Value Size (bytes)

L@0.75

L@1.25

L@1.75

LP@0.75

LP@1.25

LP@1.75

(a) Impact of value sizes

 0

 20

 40

 60

 80

 100

 120

 140

 0.6 0.8 1 1.2 1.4 1.6 1.8

La
te

n
cy

 (
n
s)

Traffic dist (Zipf param)

Linear
LinearPtr

(b) Impact of traffic skews
Figure 4.7: Comparing linear hash tables with and with-
out pointers (key size=48 bytes)

Figure 4.7a shows the tail latency of both solutions with different traffic skews.

For the lowest skew (Z “ 0.75), the working set does not fit in cache and entries

come in and go out of the cache. Each pointer is 8 bytes so keeping values smaller

than 8 bytes only incurs additional delay. However as the value becomes larger, using

a pointer becomes more beneficial. For example, for value size of 60 bytes, using a

value pointer (LinearPtr) decreases the tail latency by 30%. This is because with

large values lookups and insertions in a linear hash table are more likely to traverse

multiple cache lines. Instead, value pointers promote key locality, which improve

insertions and lookups by lowering cache lines that we go through.

107

For higher skew traffic (Z “ 1.75 and Z “ 1.25), the working set is small enough

to fit in the CPU cache while the additional memory accesses due to the separation

of keys and values has negligible overhead (about 5ns).

4.5 Measurement algorithms on multiple cores

Measurement tasks never run in a standalone fashion. With a pipeline of network

functions, it becomes harder for a single core to sustain the line rate packet processing.

To get around this, we can load balance the incoming traffic across multiple cores

based on a hash of the flows [150]; each core then runs the pipeline for a subset of

flows [151]. Although, this leaves us with isolated measurement functions on each

core and requires state synchronization across the cores. In this section, we will first

investigate how to share the measurement data across cores running only measurement

tasks. We will then study the impact of sharing resources with other applications.

4.5.1 Sharing states across multiple cores

When a measurement function runs over multiple cores, we need to synchronize states

across cores. Maintaining locks on the shared state for consistency has a huge over-

head, especially when the cache line that holds the lock is passed between the cores

[152]. To get around this, we can either use (a) shared lockless data structures or (b)

separated data structure for each core.

Shared lockless data structures. The linear hash table and the count array

are easy to implement in a lockless fashion. For example, we can use compare-and-

swap (or similar atomic operations) to update a counter atomically in a multithreaded

environment. However, it is harder to implement lockless access for more complex

data structures such as a heap.

Separated data structures. Each core maintains its own copy of the data

108

structure. When we need to report the overall measurement results, we can merge

the state/results from each data structure accordingly. Typically, merging the mea-

surement results from multiple cores has little overhead if the reporting frequency

is a few orders of magnitude greater than the packet processing time (e.g., ą10ms

reporting frequency vs. 67ns processing per packet). This is because a separate core

can merge the data with low memory bandwidth usage. For example, with a measure-

ment interval of 100ms and a 5MB data structure per core, a reporting core merging

measurements of 10 cores only requires 500MB/s memory bandwidth, which is less

than 1% of the total available memory bandwidth of our Xeon processor.

 0

 10

 20

 30

 40

 50

 60

 70

 0.001 0.01 0.1 1 10 100 1000

La
te

n
cy

 (
n
s)

MB

Shared Separate

Figure 4.8: Latency of
shared vs. separate count
array across two cores

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000

L3
 c

a
ch

e

La
te

n
cy

 (
n
s)

Memory footprint of contending application (MB)

Cuckoo-1 entry
Cuckoo-4 entries
Linear
Count array

(a) Impact of L3 cache con-
tention

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

 1 2 3 4 5 6 7

La
te

n
cy

 (
n
s)

busy cores

Cuckoo-4 entries
Linear
Count array

(b) Impact of memory con-
troller contention

Figure 4.9: Impact of resource sharing across applica-
tions

Separated option has lower latency than shared option. Figure 4.8 com-

pares the latency of heavy hitter detection for the two options using a count array of

different sizes. The average and tail latency of the separate approach are consistently

lower than the shared one (The accuracy is not shown because it is the same). For

example, when the size of count array is 32 KB, the tail latency of the shared count

array is 12 ns higher than the separated count arrays. This is because of the overhead

of running the compare and swap operations for maintaining the consistency of the

shared data structure. Moreover, because the L3 cache is shared, the cache-coherency

protocol will perform additional operations when a cache line in a core is read by a

different core. On modern CPUs, this additional overhead can be as large as 40 cycles

[153]. In contrast, the overhead of merging separate data structures is lower because

109

we only need to pay the overhead at the reporting time rather than on a per-packet

basis. Thus, saving memory also decreases the performance on multiple cores because

it requires some sort of synchronization and wastes CPU cycle.

The shared count array latency is initially high and then decreases by 10% and

remains almost constant until 20MB. For smaller count-arrays there is a higher chance

that the two cores access the same entry (and cache line) in the count array, leading

to extra latency due to compare-and-swap and the cache coherency protocol.

4.5.2 Sharing resources with other applications

The measurement tasks may run in conjunction with other network functions or ap-

plications on the same machine. Because all of these applications share resources,

e.g., the cache and memory bandwidth, they end up affecting each other. For ex-

ample, previous works have shown that cache-hungry applications can degrade the

performance of other network functions [151]. To understand the impact of sharing

resources on measurement algorithms, in addition to running the heavy hitter detec-

tion algorithm, we run two types of concurrent applications: (a) We run a single

L3 aggressive application on a separate core that accesses random memory locations

to show the impact of the contention on the L3 cache; (b) We run multiple of such

applications on different cores that aggressively read and write memory to show the

impact of the contention at the memory controller.

Impact of the L3 cache contention. We run a memory aggressive application

on a core in the same NUMA domain as our measurement task. The application uses

a hash function to access a random memory address and increment the value there.

To guarantee that this application has higher priority for using the L3 cache than

our measurement pipeline, we lowered the traffic rate so that the measurement task

accesses the L3 at a much slower pace than the application core. We then measure the

latency of the measurement task as the memory footprint of this application increases.

110

Figure 4.9a shows that the latency of the measurement task remains almost con-

stant up to the L3 cache size. After, the memory aggressive application starves L3

cache and leaves no room for the measurement task, which cause the measurement

task to access the main memory, leading to the sudden jump. Increasing the memory

footprint of cache aggressive applications further does not increase the latency. This

is because the next bottleneck is the memory bandwidth and our bandwidth usage

is less than 10% of the available bandwidth of a NUMA domain (1.1GB/s out of

17GB/s) [154].

Impact of memory controller contention. Today, many big data analyt-

ics frameworks rely on the large memory available on modern servers to improve

their performance. For example, Spark [155] keeps most of the intermediate data in

memory for later usage; Hadoop [35] keeps portions of the files in memory for faster

successive accesses. These applications can quickly drain the available memory band-

width. Previous studies [156] show that Spark on average uses 40% of the memory

bandwidth can can burst up to 90%. This high memory bandwidth usage affects the

performance of the measurement tasks running on the same server. To study this,

we wrote an application that aggressively utilizes the memory bandwidth. A single

instance of this application utilizes 12GB/s of the 17GB/s of memory bandwidth4.

We run many instances of this application to increase the contention of the memory

bandwidth.

Figure 4.9b shows that as the number of applications increases, the latency of

the measurement task increases. This is because with more requests to the memory

controller, it becomes harder for the measurement task to fetch the packet data from

memory, and therefore, with 7 cores the average latency of the measurement task

increases by a factor of 2.9 for the count array.

Note that in both cache and memory bandwidth contention scenarios, the differ-
4We found out that even by running multiple instances of this application, we cannot utilize more

than 14.5GB/s of the bandwidth, which we attribute to the queuing effect and the CPU parameters.

111

ences between the measurement algorithms still hold. The count array always has

the lowest latency in all settings.

4.6 Related Work

In addition to the related works covered in Section 4.2, our previous workshop paper

[157] performed a preliminary evaluation of measurement algorithms. This chapter

extends the workshop paper in the following aspects: (1) Implementation: Our previ-

ous study was on the Click modular router [158], which is limited in throughput as it

did not let us use advanced techniques such as batching and packet data prefetching

from the cache. In this chapter, we run all algorithms directly on DPDK and apply

different techniques to reach the maximum packet rate. (2) Algorithms: Our previ-

ous study mainly focuses on count array, Count-Min sketch, and heap. In addition,

this chapter investigates more in hash table implementation. It compares the linear

hash table and the Cuckoo hashing and shows that the linear hash table is the fastest

choice when we need 100% accuracy. (3) Measurement tasks: In addition to heavy

hitter detection in [157] which identifies keys with heavy volume counters, we also

tested superspreader detection which counts the number of distinct items and change

detection which identifies anomalies in traffic. (4) Settings: We also evaluate these

algorithms on a variety of scenarios including multiple cores, different traffic skews,

and a variety of entry sizes.

In addition to the three classes of algorithms introduced in Section 4.2, there

are other packet and flow sampling solutions [159, 115, 160, 116]. These solutions are

orthogonal to our algorithms and can always be combined to reduce the measurement

load.

Recent works on optimizing the performance of network function in software

switches [151, 161] mostly focus on better management of the memory usage of dif-

112

ferent network functions. Our work can help improve the performance of network

functions by guiding developers to design and select the best measurement algorithms.

Dobrescu et al. [151] associate the degradation of the network functions performance

with the number of L3 references that competing applications make. We give insights

on how to improve the performance of measurement components in such settings.

4.7 Discussion

Theoretical model. While a theoretical model for estimating the latency of mea-

surement pipeline helps in making design and optimization decisions, it is a chal-

lenging task as the performance of the packet processing pipeline depends on many

factors, e.g., implementation of the algorithm (packet batching and/or prefetching,

SIMD instructions), other resident applications, CPU properties (pipelining, specula-

tive execution). Our previous work [157] shows a preliminary model for estimating

the measurement algorithm latency. We incorporate the above factors into the model

in the future.

4.8 Conclusion

With the trend of running network functions in software, keeping states inside these

functions, and performing measurement to guide the deployment of these functions,

it is important to understand which algorithms and data structures work the best

in software. The key metrics in software are performance and accuracy rather than

memory and accuracy in hardware. Our experiments and analysis show that simple

is often the best. For measurement tasks that do not require perfect accuracy, a

count array, which is general enough for a wide range of measurement tasks, has the

lowest latency and the highest throughput. For tasks that require 100% accuracy, we

recommend a linear hash table. We verified this conclusion for a variety of traffic

113

settings, measurement tasks, and multiple core settings.

114

Chapter 5

Conclusions

In this dissertation, we explored how we can utilize effective searching algorithms that

adapt to changes in the underlying systems while being accurate and cost-efficient. In

Cherrypick, we looked at Bayesian optimization which adapts to variations in software,

workload, and machine types in the cloud for big data analytic workloads. In Janus,

we leveraged the symmetry of data center networks to replace a brute force search

over an exponentially large space (deployment plans) with a brute force search over

a much smaller space. Finally, in our study of measurement algorithms in software,

we showed how a simple hash table can adapt to variations in traffic and workload

while more complex solutions fail when traffic or workload changes.

The central theme to making adaptable tools is to focus our effort on building

algorithms for a layer that changes slower than the problem we are solving. More

concretely, in Cherrypick, we assume that most of the time, moving software or

workload from one cloud configuration to another closely related cloud configuration

does not result in radically different behavior. Said differently, there is a smoothness

to the function that maps cloud configurations of a workload to performance and this

is independent of the workload. This assumption gives the modeling and searching

approach tremendous power over where to search. Similarly, in Janus, we note that

115

the symmetry of a data center is an indivisible part of a data center—without it

managing and debugging a data center becomes almost impossible—so we leverage

this knowledge to reduce the search space while allowing each operator to encode their

risk and expectations. And finally, in our study of software switches, todays’ traffic

workload follows a pattern that fits in the cache of any modern CPU, suggesting that

an algorithm that does the least amount of computation has the best performance.

Ultimately, a systematic study of searching algorithms and how we can use them to

build adaptable tools is left to future work.

116

Bibliography

[1] Eric Brochu, Vlad M Cora, and Nando De Freitas. A tutorial on Bayesian opti-

mization of expensive cost functions, with application to active user modeling

and hierarchical reinforcement learning. arXiv preprint arXiv:1012.2599, 2010.

[2] Amazon EC2 Instance Types. https://aws.amazon.com/ec2/

instance-types/.

[3] Microsoft Azure: Virtual Machine Pricing. https://azure.microsoft.com/

en-us/pricing/details/virtual-machines/.

[4] Google Cloud Platform: Machine Types. https://cloud.google.com/

compute/docs/machine-types.

[5] Leveraging AWS Global Backbone for Data Center Migration and Global Ex-

pansion, 2020.

[6] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-

han Nanduri, and Roger Wattenhofer. Achieving high utilization with software-

driven WAN. In ACM SIGCOMM, 2013.

[7] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Ar-

jun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4:

Experience with a globally-deployed software defined WAN. ACM SIGCOMM,

2013.

117

https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
https://cloud.google.com/compute/docs/machine-types
https://cloud.google.com/compute/docs/machine-types

[8] Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy

Bannon, Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand

Kanagala, Jeff Provost, Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Höl-

zle, Stephen Stuart, and Amin Vahdat. Jupiter Rising: A Decade of Clos Topolo-

gies and Centralized Control in Google’s Datacenter Network. SIGCOMM,

2015.

[9] AWS: Previous Generation Instances, 2021.

[10] AI dungeon 2 costing over $10k/day to run on GCS/Colab, 2019.

[11] Enterprise Cloud Computing on AWS, 2019.

[12] Sameer Agarwal, Srikanth Kandula, Nicolas Bruno, Ming-Chuan Wu, Ion Sto-

ica, and Jingren Zhou. Re-optimizing Data-parallel Computing. NSDI, 2012.

[13] Andrew D Ferguson, Peter Bodik, Srikanth Kandula, Eric Boutin, and Rodrigo

Fonseca. Jockey: guaranteed job latency in data parallel clusters. In Proceedings

of the 7th ACM European Conference on Computer Systems, 2012.

[14] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp: com-

paring public cloud providers. In SIGCOMM, 2010.

[15] G. Wang and T. Ng. The impact of virtualization on network performance of

Amazon EC2 data center. In INFOCOM, 2010.

[16] Custom Machine Types - Google Cloud Platform. https://cloud.google.

com/custom-machine-types/.

[17] Shivaram Venkataraman, Zongheng Yang, Michael Franklin, Benjamin Recht,

and Ion Stoica. Ernest: Efficient performance prediction for large-scale ad-

vanced analytics. In NSDI, 2016.

118

https://cloud.google.com/custom-machine-types/
https://cloud.google.com/custom-machine-types/

[18] Jonas Mockus. Bayesian approach to global optimization: theory and applica-

tions. Springer Science & Business Media, 2012.

[19] Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical Bayesian opti-

mization of machine learning algorithms. In Advances in Neural Information

Processing Systems, 2012.

[20] Amazon EC2 - Elastic Balance Storage. https://aws.amazon.com/ebs/.

[21] Herodotos Herodotou, Fei Dong, and Shivnath Babu. No one (cluster) size fits

all: automatic cluster sizing for data-intensive analytics. In Proceedings of the

2nd ACM Symposium on Cloud Computing. ACM, 2011.

[22] Abhishek Verma, Ludmila Cherkasova, and Roy H Campbell. ARIA: automatic

resource inference and allocation for mapreduce environments. In Proceedings of

the 8th ACM International Conference on Autonomic Computing. ACM, 2011.

[23] Vladimir N. Vapnik. Statistical Learning Theory. John Wiley & Sons, 1998.

[24] David JC MacKay. Introduction to Gaussian processes. NATO ASI Series F

Computer and Systems Sciences, 1998.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-

ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland,

Georg Ostrovski, et al. Human-level control through deep reinforcement learn-

ing. Nature, 2015.

[26] Eric Anderson. HPL-SSP-2001-4: Simple table-based modeling of storage de-

vices, 2001.

[27] Ilya Loshchilov and Frank Hutter. CMA-ES for Hyperparameter Optimization

of Deep Neural Networks. arXiv preprint arXiv:1604.07269, 2016.

119

https://aws.amazon.com/ebs/

[28] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduc-

tion. MIT press Cambridge, 1998.

[29] Carl Edward Rasmussen. Gaussian processes for machine learning. MIT Press,

2006.

[30] Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global

optimization of expensive black-box functions. Journal of Global optimization,

1998.

[31] Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger,

and John Cunningham. Bayesian Optimization with Inequality Constraints. In

International Conference on Machine Learning, 2014.

[32] Ilya M Sobol. On quasi-monte carlo integrations. Mathematics and Computers

in Simulation, 1998.

[33] Spearmint. https://github.com/HIPS/Spearmint.

[34] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and

Ion Stoica. Spark: cluster computing with working sets. In Proceedings of the

2nd USENIX conference on Hot Topics in Cloud Computing, 2010.

[35] Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.

[36] TPC Benchmark DS. http://www.tpc.org/tpc_documents_current_

versions/pdf/tpc-ds_v2.3.0.pdf.

[37] TPC Benchmark H. http://www.tpc.org/tpc_documents_current_

versions/pdf/tpch2.17.1.pdf.

[38] Owen O’Malley. Terabyte sort on apache hadoop. Yahoo, available online at:

http://sortbenchmark.org/Yahoo-Hadoop.pdf, 2008.

120

https://github.com/HIPS/Spearmint
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.3.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.3.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpch2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpch2.17.1.pdf
http://sortbenchmark.org/Yahoo-Hadoop.pdf

[39] Apache Spark the fastest open source engine for sorting a petabyte. https:

//databricks.com/blog/2014/10/10/spark-petabyte-sort.html.

[40] Alexander Rasmussen, George Porter, Michael Conley, Harsha V. Madhyastha,

Radhika Niranjan Mysore, Alexander Pucher, and Amin Vahdat. TritonSort:

A balanced large-scale sorting system. In NSDI, 2011.

[41] Performance tests for Spark. https://github.com/databricks/spark-perf.

[42] Min Li, Liangzhao Zeng, Shicong Meng, Jian Tan, Li Zhang, Ali R. Butt, and

Nicholas Fuller. MrOnline: MapReduce online performance tuning. In Inter-

national Symposium on High-performance Parallel and Distributed Computing,

2014.

[43] Bowei Xi, Zhen Liu, Mukund Raghavachari, Cathy H. Xia, and Li Zhang. A

smart hill-climbing algorithm for application server configuration. In Interna-

tional Conference on World Wide Web, 2004.

[44] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,

Fatma Bilgen Cetin, and Shivnath Babu. Starfish: A Self-tuning System for

Big Data Analytics. In Conference on Innovative Data Systems Research, 2011.

[45] Tao Ye and Shivkumar Kalyanaraman. A recursive random search algorithm

for large-scale network parameter configuration. SIGMETRICS Perform. Eval.

Rev., 2003.

[46] Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Fre-

itas. Taking the human out of the loop: a review of Bayesian optimization.

Proceedings of the IEEE, 2016.

[47] Google VM rightsizing service. https://cloud.google.com/compute/docs/

instances/viewing-sizing-recommendations-for-\instances.

121

https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html
https://databricks.com/blog/2014/10/10/spark-petabyte-sort.html
https://github.com/databricks/spark-perf
https://cloud.google.com/compute/docs/instances/viewing-sizing-recommendations-for-\instances
https://cloud.google.com/compute/docs/instances/viewing-sizing-recommendations-for-\instances

[48] Yurong Jiang, Lenin Ravindranath, Suman Nath, and Ramesh Govindan.

WebPerf: Evaluating what-if scenarios for cloud-hosted web applications. In

SIGCOMM, 2016.

[49] Peter Bodik, Rean Griffith, Charles Sutton, Armando Fox, Michael I Jordan,

and David A Patterson. Automatic exploration of datacenter performance

regimes. In Proceedings of the 1st workshop on Automated control for data-

centers and clouds. ACM, 2009.

[50] Mengzhi Wang, Kinman Au, Anastassia Ailamaki, Anthony Brockwell, Chris-

tos Faloutsos, and Gregory R Ganger. Storage device performance prediction

with CART models. In Modeling, Analysis, and Simulation of Computer and

Telecommunications Systems. IEEE, 2004.

[51] Zhuoyao Zhang, Ludmila Cherkasova, Abhishek Verma, and Boon Thau Loo.

Automated Profiling and Resource Management of Pig Programs for Meeting

Service Level Objectives. In International Conference on Autonomic Computing,

2012.

[52] Christina Delimitrou and Christos Kozyrakis. QoS-Aware Scheduling in Het-

erogeneous Datacenters with Paragon. ACM Trans. Comput. Syst., 2013.

[53] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-efficient and

QoS-aware Cluster Management. ASPLOS. ACM, 2014.

[54] Whetlab. http://www.whetlab.com/.

[55] Valentin Dalibard. A framework to build bespoke auto-tuners with structured

Bayesian optimisation. Technical report, University of Cambridge, Computer

Laboratory, 2017.

122

http://www.whetlab.com/

[56] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.

Inside the Social Network’s (Datacenter) Network. In SIGCOMM, 2015.

[57] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski,

Arjun Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jon

Zolla, Urs Hölzle, Stephen Stuart, and Amin Vahdat. B4: Experience with a

Globally-deployed Software Defined Wan. SIGCOMM, 2013.

[58] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-

han Nanduri, and Roger Wattenhofer. Achieving High Utilization with Software-

driven WAN. SIGCOMM, 2013.

[59] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon

Poutievski, Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue,

Takayuki Hama, et al. Onix: A distributed control platform for large-scale

production networks. In OSDI, 2010.

[60] Software for Open Netwroking in the Cloud. https://bit.ly/2WbFspS, 2016.

[61] Sean Choi, Boris Burkov, Alex Eckert, Tian Fang, Saman Kazemkhani, Rob

Sherwood, Ying Zhang, and Hongyi Zeng. Fboss: Building switch software at

scale. In SIGCOMM, 2018.

[62] Amin Vahdat Jim Wanderer. Google Cloud using P4Runtime to build smart

networks. http://bit.ly/2HG2jG4, 2018.

[63] Ramesh Govindan, Ina Minei, Mahesh Kallahalla, Bikash Koley, and Amin

Vahdat. Evolve or Die: High-Availability Design Principles Drawn from Googles

Network Infrastructure. In SIGCOMM, 2016.

[64] Albert Greenberg, James Hamilton, David A. Maltz, and Parveen Patel. The

123

https://bit.ly/2WbFspS
http://bit.ly/2HG2jG4

cost of a cloud: Research problems in data center networks. SIGCOMM Com-

puter Communication Review, 2008.

[65] Azure Service Level Agreements. https://bit.ly/1TnZwOn, 2018.

[66] Amazon Compute Service Level Agreement. https://amzn.to/2NMCHuJ, 2018.

[67] Navendu Jain and Rahul Potharaju. When the network crumbles: An empirical

study of cloud network failures and their impact on services. In SOCC, 2013.

[68] Why The Drain in the Bathtub Curve Matters, 2012.

[69] Xin Wu, Daniel Turner, Chao-Chih Chen, David A. Maltz, Xiaowei Yang, Li-

hua Yuan, and Ming Zhang. Netpilot: Automating datacenter network failure

mitigation. SIGCOMM ’12, 2012.

[70] B. Beyer, C. Jones, J. Petoff, and N.R. Murphy. Site Reliability Engineering:

How Google Runs Production Systems. 2016.

[71] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure

trends in a large disk drive population. In FAST, 2007.

[72] Large Installation System Administration Conference, 2019.

[73] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind

Krishnamurthy, and Thomas Anderson. Understanding and mitigating packet

corruption in data center networks. In SIGCOMM, 2017.

[74] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.

F10: A fault-tolerant engineered network. NSDI, 2013.

[75] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, ,

Parantap Lahiri, Dave Maltz, and and. Vl2: A scalable and flexible data center

network. In SIGCOMM, 2009.

124

https://bit.ly/1TnZwOn
https://amzn.to/2NMCHuJ

[76] Arista warrior. http://bit.ly/2DxBYoI, 2012.

[77] Eugene M Luks. Isomorphism of graphs of bounded valence can be tested in

polynomial time. Journal of computer and system sciences, 1982.

[78] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}.

Journal of Symbolic Computation, 2014.

[79] Simon Kassing and Asaf Valadarsky and Gal Shahaf and Michael Schapira and

Ankit Singla. Beyond Fat-Trees without Antennae, Mirrors, and Disco-Balls.

SIGCOMM, 2017.

[80] Chuanxiong Guo and Guohan Lu and Dan Li and Haitao Wu and Xuan Zhang

and Yunfeng Shi and Chen Tian and Yongguang Zhang and Songwu Lu and

Guohan Lv. BCube: A High Performance, Server-centric Network Architecture

for Modular Data Centers. SIGCOMM, 2009.

[81] Brandon Schlinker, Radhika Niranjan Mysore, Sean Smith, Jeffrey C. Mogul,

Amin Vahdat, Minlan Yu, Ethan Katz-Bassett, and Michael Rubin. Condor:

Better Topologies Through Declarative Design. SIGCOMM, 2015.

[82] Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish:

Networking Data Centers Randomly. NSDI’12, 2012.

[83] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and

David Gelernter. Traffic engineering with forward fault correction. In SIG-

COMM, 2014.

[84] Ennan Zhai and Ruichuan Chen and David Isaac Wolinsky and Bryan Ford.

Heading Off Correlated Failures through Independence-as-a-Service. OSDI,

2014.

125

http://bit.ly/2DxBYoI

[85] Alok Kumar, Sushant Jain, Uday Naik, Anand Raghuraman, Nikhil Kasinad-

huni, Enrique Cauich Zermeno, C. Stephen Gunn, Jing Ai, Björn Carlin, Mi-

hai Amarandei-Stavila, Mathieu Robin, Aspi Siganporia, Stephen Stuart, and

Amin Vahdat. BwE: Flexible, Hierarchical Bandwidth Allocation for WAN

Distributed Computing. SIGCOMM ’15, 2015.

[86] Emilie Danna, Subhasree Mandal, and Arjun Singh. A practical algorithm for

balancing the max-min fairness and throughput objectives in traffic engineering.

INFOCOM, 2012.

[87] Masoud Moshref, Minlan Yu, Abhishek Sharma, and Ramesh Govindan. Scal-

able Rule Management for Data Centers. NSDI, 2013.

[88] Timothy Wood, Prashant Shenoy, Arun Venkataramani, and Mazin Yousif.

Sandpiper: Black-box and Gray-box Resource Management for Virtual Ma-

chines. Comput. Netw.: The International Journal of Computer and Telecom-

munications Networking, 2009.

[89] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. Microte:

Fine grained traffic engineering for data centers. CoNEXT ’11, 2011.

[90] Abhishek Verma, Luis Pedrosa, Madhukar R. Korupolu, David Oppenheimer,

Eric Tune, and John Wilkes. Large-scale cluster management at Google with

Borg. In EuroSys, 2015.

[91] Phillipa Gill, Navendu Jain, and Nachiappan Nagappan. Understanding Net-

work Failures in Data Centers: Measurement, Analysis, and Implications. SIG-

COMM, 2011.

[92] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David

Walker. Abstractions for Network Update. SIGCOMM, 2012.

126

[93] Hongqiang Harry Liu, Xin Wu, Ming Zhang, Lihua Yuan, Roger Wattenhofer,

and David Maltz. zUpdate: Updating Data Center Networks with Zero Loss.

In SIGCOMM, 2013.

[94] Xin Jin, Hongqiang Harry Liu, Rohan Gandhi, Srikanth Kandula, Ratul Maha-

jan, Ming Zhang, Jennifer Rexford, and Roger Wattenhofer. Dynamic Schedul-

ing of Network Updates. SIGCOMM, 2014.

[95] Michael Isard. Autopilot: Automatic Data Center Management. SIGOPS, 2007.

[96] Peter Bodik, Ishai Menache, Mosharaf Chowdhury, Pradeepkumar Mani,

David A. Maltz, and Ion Stoica. Surviving Failures in Bandwidth-constrained

Datacenters. SIGCOMM, 2012.

[97] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and David Walker. Control Plane

Compression. SIGCOMM, 2018.

[98] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Rybalchenko, and

George Varghese. Scaling network verification using symmetry and surgery.

POPL ’16, 2016.

[99] Amin Vahdat. Enter the Andromeda zone - Google Cloud Platform’s Latest

Networking Stack, 2014.

[100] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert Green-

berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu

Wu, Changhoon Kim, and Naveen Karri. Ananta: Cloud Scale Load Balancing.

In SIGCOMM, 2013.

[101] AT&T Domain 2.0 vision white paper, 2013.

[102] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J. Jackson, Andy Zhou, Jarno

Rajahalme, Jesse Gross, Alex Wang, Jonathan Stringer, Pravin Shelar, Keith

127

Amidon, and Martín Casado. The design and implementation of open vswitch.

In Proceedings of the 12th USENIX Conference on Networked Systems Design

and Implementation. USENIX Association, 2015.

[103] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. NetVM: High Perfor-

mance and Flexible Networking Using Virtualization on Commodity Platforms.

In NSDI, 2014.

[104] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. J. Algorithms,

2004.

[105] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computa-

tion of frequent and top-k elements in data streams. In ICDT, 2005.

[106] Graham Cormode and S. Muthukrishnan. An Improved Data Stream Summary:

The Count-Min Sketch and its Applications. Journal of Algorithms, 2005.

[107] G Cormode and S Muthukrishnan. Space Efficient Mining of Multigraph

Streams. In PODS, 2005.

[108] Robert Schweller, Zhichun Li, Yan Chen, Yan Gao, Ashish Gupta, Yin Zhang,

Peter A. Dinda, Ming-Yang Kao, and Gokhan Memik. Reversible Sketches:

Enabling Monitoring and Analysis over High-speed Data Streams. Transaction

on Networking, 2007.

[109] Michael Greenwald and Sanjeev Khanna. Space-efficient Online Computation

of Quantile Summaries. In SIGMOD, 2001.

[110] Shobha Venkataraman, Dawn Song, Phillip B. Gibbons, and Avrim Blum. New

Streaming Algorithms for Fast Detection of Superspreaders. In NDSS, 2005.

[111] Michael Mitzenmacher, Thomas Steinke, and Justin Thaler. Hierarchical heavy

hitters with the space saving algorithm. arXiv preprint arXiv:1102.5540, 2011.

128

[112] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li, Lu Tang, Yi-Chao Chen, and

Gong Zhang. SketchVisor: Robust network measurement for software packet

processing. In SIGCOMM, 2017.

[113] Minlan Yu, Lavanya Jose, and Rui Miao. Software Defined Traffic Measurement

with OpenSketch. In NSDI, 2013.

[114] Faisal Khan, Nicholas Hosein, Chen-Nee Chuah, and Soheil Ghiasi. Streaming

Solutions for Fine-Grained Network Traffic Measurements and Analysis. In

ANCS, 2011.

[115] Cristian Estan and George Varghese. New Directions in Traffic Measurement

and Accounting. In SIGCOMM, 2002.

[116] Vyas Sekar, Michael K. Reiter, and Hui Zhang. Revisiting the Case for a

Minimalist Approach for Network Flow Monitoring. In IMC, 2010.

[117] Abhishek Kumar, Minho Sung, Jun (Jim) Xu, and Jia Wang. Data Streaming

Algorithms for Efficient and Accurate Estimation of Flow Size Distribution. In

SIGMETRICS, 2004.

[118] Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding Frequent

Items in Data Streams. In Automata, Languages and Programming. 2002.

[119] Ying Zhang. An Adaptive Flow Counting Method for Anomaly Detection in

SDN. In CoNEXT, 2013.

[120] Ping Li and Cun-Hui Zhang. A New Algorithm for Compressed Counting with

Applications in Shannon Entropy Estimation in Dynamic Data. In COLT, 2011.

[121] Ashwin Lall, Vyas Sekar, Mitsunori Ogihara, Jun Xu, and Hui Zhang. Data

Streaming Algorithms for Estimating Entropy of Network Traffic. In SIGMET-

RICS/Performance, 2006.

129

[122] Richard Wang, Dana Butnariu, and Jennifer Rexford. OpenFlow-based Server

Load Balancing Gone Wild. In Hot-ICE, 2011.

[123] Gurmeet Singh Manku, Sridhar Rajagopalan, and Bruce G. Lindsay. Random

Sampling Techniques for Space Efficient Online Computation of Order Statistics

of Large Datasets. In SIGMOD, 1999.

[124] Maurice Herlihy, Nir Shavit, and Moran Tzafrir. Hopscotch hashing. In Pro-

ceedings of the 22Nd International Symposium on Distributed Computing, 2008.

[125] OVS hash map, 2017.

[126] Dong Zhou, Bin Fan, Hyeontaek Lim, David G. Andersen, and Michael Kamin-

sky. Scalable, High Performance Ethernet Forwarding with CuckooSwitch. In

CoNEXT, 2013.

[127] Writing a damn fast hash table with tiny memory footprints, 2017.

[128] Masoud Moshref, Minlan Yu, and Ramesh Govindan. Resource/Accuracy

Tradeoffs in Software-Defined Measurement. In HotSDN, 2013.

[129] Graham Cormode and Marios Hadjieleftheriou. Finding Frequent Items in Data

Streams. VLDB Endowment, 2008.

[130] Masoud Moshref, Minlan Yu, Ramesh Govindan, and Amin Vahdat. SCREAM:

Sketch Resource Allocation for Software-defined Measurement. In CoNEXT,

2015.

[131] Nick Duffield, Carsten Lund, and Mikkel Thorup. Estimating Flow Distribu-

tions from Sampled Flow Statistics. In SIGCOMM, 2003.

[132] Daniel Egloff and Markus Leippold. Quantile Estimation with Adaptive Im-

prtance Sampling. The Annals of Statistics, 2010.

130

[133] Intel haswell, 2013.

[134] 7-Zip LZMA Benchmark, 2018.

[135] CAIDA Anonymized Internet Traces 2012, 2012.

[136] Flip Korn, S Muthukrishnan, and Yihua Wu. Modeling Skew in Data Streams.

In SIGMOD, 2006.

[137] Graham Cormode and S Muthukrishnan. Summarizing and Mining Skewed

Data Streams. In SIAM International Conference on Data Mining, 2005.

[138] Pedro Celis, Per-Ake Larson, and J Ian Munro. Robin hood hashing. In Foun-

dations of Computer Science, 1985., 26th Annual Symposium on, pages 281–288.

IEEE, 1985.

[139] DPDK. http://dpdk.org, 2016.

[140] Martin Kong, Richard Veras, Kevin Stock, Franz Franchetti, Louis-Noël

Pouchet, and P. Sadayappan. When Polyhedral Transformations Meet SIMD

Code Generation. PLDI, 2013.

[141] Luigi Rizzo. netmap: A novel framework for fast packet i/o. In Presented as

part of the 2012 USENIX Annual Technical Conference (USENIX ATC 12),

2012.

[142] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader: A

gpu-accelerated software router. In Proceedings of the ACM SIGCOMM 2010

Conference, 2010.

[143] Bin Fan, David G. Andersen, and Michael Kaminsky. Memc3: Compact and

concurrent memcache with dumber caching and smarter hashing. In Proceedings

of the 10th USENIX Conference on Networked Systems Design and Implemen-

tation, 2013.

131

http://dpdk.org

[144] Dong Zhou, Bin Fan, Hyeontaek Lim, Michael Kaminsky, and David G. An-

dersen. Scalable, high performance ethernet forwarding with cuckooswitch. In

Proceedings of the Ninth ACM Conference on Emerging Networking Experi-

ments and Technologies, 2013.

[145] Theophilus Benson, Aditya Akella, and David A. Maltz. Network Traffic Char-

acteristics of Data Centers in the Wild. In IMC, 2010.

[146] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye,

Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan.

Data Center TCP (DCTCP). SIGCOMM computer communication review,

2011.

[147] SMHasher, 2017.

[148] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown,

Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding metamorpho-

sis: Fast programmable match-action processing in hardware for SDN. ACM

SIGCOMM, 2013.

[149] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 1970.

[150] Scaling in the linux networking stack.

[151] Mihai Dobrescu, Katerina Argyraki, and Sylvia Ratnasamy. Toward Predictable

Performance in Software Packet-Processing Platforms. In NSDI, 2012.

[152] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris, and Nickolai Zeldovich.

Non-scalable Locks Are Dangerous. In Linux Symposium, 2012.

[153] David Levinthal. Performance Analysis Guide for Intel Core i7 Processor and

Intel Xeon 5500 processors, 2009.

132

[154] Intel performance counter monitor.

[155] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and

Ion Stoica. Spark: Cluster computing with working sets. In Proceedings of the

2Nd USENIX Conference on Hot Topics in Cloud Computing, 2010.

[156] Tao Jiang, Qianlong Zhang, Rui Hou, Lin Chai, Sally A Mckee, Zhen Jia, and

Ninghui Sun. Understanding the behavior of in-memory computing workloads.

In Workload Characterization (IISWC), 2014 IEEE International Symposium

on, 2014.

[157] Omid Alipourfard, Masoud Moshref, and Minlan Yu. Re-evaluating measure-

ment algorithms in software. In Proceedings of the 14th ACM Workshop on Hot

Topics in Networks, 2015.

[158] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans

Kaashoek. The Click Modular Router. Transaction on Computer Systems,

2000.

[159] Benoit Claise. Cisco Systems NetFlow Services Export Version 9. RFC 3954,

2004.

[160] Nicolas Hohn and Darryl Veitch. Inverting Sampled Traffic. In IMC, 2003.

[161] Mihai Dobrescu, Katerina Argyraki, Gianluca Iannaccone, Maziar Manesh, and

Sylvia Ratnasamy. Controlling Parallelism in a Multicore Software Router. In

PRESTO, 2010.

133

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

28320265

2021

	Change Management Systems for Seamless Evolution in Data Centers
	Recommended Citation

	1 Introduction
	1.1 Innovations: the tussle for customers
	1.2 Deployments: the tussle for clouds
	1.3 Building tools that adapt

	2 Searching for optimal cloud configurations for customer workloads
	2.1 Introduction
	2.2 Background and Motivation
	2.2.1 Benefits
	2.2.2 Challenges
	2.2.3 Strawman solutions

	2.3 CherryPick Design
	2.3.1 Overview
	2.3.2 Problem formulation
	2.3.3 Solution with Bayesian Optimization
	2.3.4 Why do we use Bayesian Optimization?
	2.3.5 Design options and decisions
	2.3.6 Handling uncertainties in clouds

	2.4 Implementation
	2.5 Evaluation
	2.5.1 Experiment setup
	2.5.2 Effectiveness of CherryPick
	2.5.3 Why CherryPick works?
	2.5.4 Handling workload changes
	2.5.5 Handling performance constraints

	2.6 Discussion
	2.7 Related Work
	2.8 Conclusion

	3 Searching for optimal deployment plans in data centers
	3.1 Introduction
	3.2 Challenges and key ideas
	3.2.1 Risk assessment for network changes
	3.2.2 Challenges
	3.2.3 's key ideas

	3.3 Design
	3.3.1 Identifying blocks of equivalent switches
	3.3.2 Finding equivalent subplans
	3.3.3 Estimating cost with Monte Carlo simulations
	3.3.4 Handling failures

	3.4 Implementation
	3.5 Evaluation
	3.5.1 Evaluation settings
	3.5.2 Cost savings over MRC
	3.5.3 Scalability
	3.5.4 Adaptivity

	3.6 Related Work
	3.7 Conclusion

	4 Revisiting measurement algorithms in software switches
	4.1 Introduction
	4.2 Background and Motivation
	4.2.1 Three classes of measurement algorithms
	4.2.2 Previous works on measurement algorithms

	4.3 Evaluation of measurement algorithms in software
	4.3.1 Evaluation settings
	4.3.2 A single hash function is better than multiple
	4.3.3 Use data structures with the simplest computation

	4.4 Generality to diverse measurement tasks
	4.4.1 Impact of traffic skew, data structure size, and value size
	4.4.2 Impact of measurement tasks and storage of key-values

	4.5 Measurement algorithms on multiple cores
	4.5.1 Sharing states across multiple cores
	4.5.2 Sharing resources with other applications

	4.6 Related Work
	4.7 Discussion
	4.8 Conclusion

	5 Conclusions

