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Abstract 

Mechanisms by which Metaflammation and Adiponectin Regulates Glucose and Lipid 

Metabolism 

Xiruo Li 

2021 

 

Obesity and Type 2 Diabetes mellitus (T2DM) are among the most serious global 

health problems as they are increasing in prevalence and related to many chronic 

diseases, including cardiovascular and cerebrovascular diseases, cancer and other 

metabolic disorders. Obesity increases the risk for T2DM through the development of low-

grade inflammation and insulin resistance. Specifically, studies have shown that enhanced 

inflammation in adipose tissue is an essential player in the progression of insulin 

resistance and T2DM in obese individuals. However, how immune cells sense nutritional 

status and contribute to whole-body metabolism are largely unknown. In addition, most of 

the currently available therapies do not address the root cause of T2DM: insulin resistance. 

Pharmacological agents that improve diabetes have limited success due to side effects 

and decline in efficacy as most patients develop resistance over time.  As such, 

understanding the pathogenesis of T2DM and finding new interventions to ameliorate 

insulin resistance are of great interest.  

In this doctoral dissertation, I describe work that elucidates the nutritional 

regulation of macrophage function and its contribution to whole-body metabolism, as well 

as the mechanisms by which a new potential treatment, adiponectin, ameliorates insulin 

resistance. Protein O-GlcNAcylation is thought to be a metabolic sensor that modulates 

cell signaling. I showed that overnutrition stimulated nutrient-sensing O-linked β-N-

acetylglucosamine (O-GlcNAc) signaling in macrophages and O-GlcNAc signaling was 

down-regulated during macrophage pro-inflammatory polarization. Further, mice with O-



 

 

GlcNAc transferase (Ogt) deletion in macrophages and other myeloid cells displayed 

enhanced macrophage pro-inflammatory activation in adipose tissue and lipolysis, 

increased ectopic lipid accumulation in peripheral tissues, and exacerbated tissue-specific 

and whole-body insulin resistance in diet-induced obese mice. O-GlcNAc signaling 

inhibited macrophage pro-inflammatory polarization by catalyzing ribosomal protein S6 

kinase beta-1 (S6K1) serine 489 O-GlcNAcylation and suppressing S6K1 phosphorylation. 

These studies uncovered O-GlcNAc signaling as a novel homeostatic regulator at the 

interface of inflammation and metabolism and suggested that O-GlcNAc signaling may 

serve as a therapeutic target for obesity, diabetes, and other immune-related diseases.  

Finally, I examined the mechanisms for the anti-diabetic effect of adiponectin. 

Adiponectin has emerged as a promising insulin-sensitizing adipokine and a potential 

therapy to treat T2DM; however, the mechanisms by which adiponectin administration 

improves insulin sensitivity were unclear. To address this question, I examined the effects 

of a 2-week continuous subcutaneous infusion of globular adiponectin (gAcrp30) or saline 

on glucose and lipid metabolism in a high-fat diet (HFD) fed mouse model. Whole-body 

and tissue-specific insulin action was assessed by a hyperinsulinemic-euglycemic clamp 

(HEC). gAcrp30-treated mice displayed reduced fasting plasma glucose and insulin 

concentrations and increased glucose infusion rate during the HEC, reflecting increased 

whole-body insulin sensitivity. Increased insulin sensitivity could be attributed to reduced 

endogenous glucose production and increased glucose uptake in muscle and adipose 

tissues. We found that these liver and muscle sensitivity improvements were associated 

with reductions in the plasma membrane-associated diacylglycerol (DAG) content, and 

contrary to prior studies, were independent of reductions in total ceramide content. These 

effects in turn led to decreased protein kinase Cε (PKCε) activation in liver, decreased 

PKCε/PKCθ activity in muscle, and improved insulin signaling in these tissues. I further 

demonstrated that globular adiponectin (gAcrp30) and full-length adiponectin (Acrp30) 



 

 

reverse insulin resistance in HFD-fed mice through reductions in ectopic lipid in liver and 

muscle likely by stimulation of lipoprotein lipase (LPL) activity in white adipose tissue and 

increased epithelial nitric oxide synthase (eNOS)/ 5' AMP-activated protein kinase (AMPK) 

activation and fat oxidation in muscle.  

Taken together, the work presented in the dissertation provides novel mechanistic 

insight into the regulation and function of O-GlcNAc signaling in the immunometabolism 

and the mechanisms by which adiponectin reverses HFD-induced liver and muscle insulin 

resistance in mice.  As such, adiponectin and O-GlcNAc signaling activators, such as 

glutamine and glucosamine, could serve as viable treatment options for T2DM, insulin 

resistance and other obesity-associated morbidities. 
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CHAPTER 1 

Introduction to Obesity and Insulin Resistance 
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Obesity and Type 2 Diabetes mellitus (T2DM) are two of the major healthcare 

burdens of the 21st century, with an incidence that increases yearly (1). Obesity has almost 

tripled globally since the 1970s (2). More than 1.9 billion adults (40% of the world adult 

population) were overweight and more than 650 million were categorized as obese (3). 

T2DM currently affects more than 30.3 million people in the United States and the 

prevalence of diabetes is growing rapidly, mirroring an increase in the prevalence of 

obesity and overweight people (Fig. 1). As the incidence and prevalence of diabetes 

continue to rise, the Centers for Disease Control and Prevention estimate one in three 

Americans will suffer from T2DM by 2050 (4). Obesity serves as an important risk factor 

for the development of numerous diseases, including T2DM, non-alcoholic fatty liver 

disease (NAFLD), cardiovascular diseases (CVD), more than one dozen cancers and 

some immune-related disorders. Insulin resistance plays a critical role in the pathogenesis 

of T2DM and other obesity-related diseases, such as NAFLD and CVD (5-7). As such, 

understanding the pathogenesis of insulin resistance and finding effective therapies have 

become essential to treat T2DM and obesity-related diseases.  

Chronic obesity-associated inflammation, particularly in adipose tissue and liver, 

has been widely reported as a significant pathogenic factor associated with insulin 

resistance and T2D in both rodents and humans (8-10). In obese subjects, adipose tissue 

is enriched with pro-inflammatory immune cells such as macrophages and lymphocytes 

(8). These immune cells secrete excessive cytokines such as IL-6 and TNFα which have 

been shown to have lipolytic effects and increase ectopic lipid accumulation in insulin-

responsive tissues (9, 11, 12). The relationship between chronic low-grade obesity-

associated inflammation (metaflammation) and insulin resistance will be explored in 

Chapter 2. 
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Figure 1. Number of people with diabetes worldwide and per region in 2017 and 

2045 (20–79 years) (http://diabetesatlas.org/). 
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The association between ectopic lipids and insulin resistance is widely accepted 

(13-15). Although studies in normal weight, non-diabetic adults found that triglyceride 

(TAG) content was a stronger predictor of insulin resistance than circulating fatty acid in 

soleus muscle (16), experiments showed that TG concentrations are dissociated from 

insulin resistance (7, 16). One hypothesis proposed that its precursor, DAG may induce 

insulin resistance. Increased DAG level impairs insulin action via activation and membrane 

translocation of protein kinase Cε (PKCε) in liver(17, 18) and both PKCε and PKCθ in 

skeletal muscle, which will impair subsequent insulin receptor kinase (IRK) activity (14, 19, 

20). Hepatic insulin resistance will lead to reduced suppression of gluconeogenesis and 

insulin resistance in muscle will result in reduced glucose uptake. In addition to liver and 

muscle, insulin resistance develops in white adipose tissue (WAT). In this condition, insulin 

fails to suppress WAT lipolysis, which will lead to increased free fatty acid delivery into 

liver and muscle to further raise TAG and DAG levels (6, 7). In addition to the direct effect 

of insulin, experiments from our laboratory have shown that fasting hyperglycemia in 

rodent models of T2D is caused by inappropriate increases in hepatic gluconeogenesis in 

the setting of increased white adipose tissue (WAT) lipolysis and increased glycerol and 

acetyl CoA delivery to the liver (9). Increased conversion of glycerol to glucose is driven 

by a substrate push mechanism and conversion of pyruvate to glucose is increased 

through allosteric activation of pyruvate carboxylase (PC) by acetyl CoA. Published papers 

regarding the insulin signaling and lipid-induced insulin resistance will be reviewed in 

Chapter 3. 

Mitigating insulin resistance and achieving normoglycemia is a critical objective in 

the treatment of T2DM, which would reduce the risk of diabetes-associated complications 

(21, 22). Adiponectin has emerged as an anti-diabetic, anti-inflammatory and anti-

atherogenic adipokine(23, 24). Adiponectin is an adipokine mostly secreted by adipose 

tissue. Studies in humans and monkeys showed that plasma adiponectin levels correlate 
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significantly with whole-body insulin sensitivity (25, 26). Overexpression or administration 

of adiponectin results in a decrease in hyperglycemia and improvement in systemic insulin 

sensitivity (23, 27), whereas adiponectin-deficient mice exhibit impaired insulin sensitivity 

and diabetes (24, 28). As such, adiponectin may serve as a viable treatment option for 

T2DM, insulin resistance and other obesity-related diseases. The current available 

therapies to treat T2DM and the proposed mechanisms of adiponectin’s anti-diabetic 

effect will be discussed in Chapter 4. 

With the context provided above, the remainder of the dissertation will describe the 

original research I conducted during my PhD that fulfilled the doctoral requirements of the 

Yale University Graduate School of Arts and Sciences. The research project to study how 

immune cells, especially macrophages in adipose tissues, sense nutritional clues and 

contribute to the whole-body metabolism will be described in Chapter 5. In this project, I 

used a novel O-GlcNAc transferaseflox (Ogtflox) LyzM-Cre+/- (OGT MKO) mouse model by 

crossing Ogtflox mice (provided by Dr. Steven Jones) with LyzM-Cre mice. Dr. Steven 

Jones’ group found that although OGT deletion in cardiomyocyte did not cause any 

significant functional change in sham-operated mice, infarcted cardiomyocyte OGT KO 

mice and long-term OGT loss in cardiomyocyte significantly exacerbated cardiac 

dysfunction compared with WT (29, 30). This project reveals an intrinsic mechanism 

maintaining adipose tissue and whole-body metabolic homeostasis during overnutrition 

through macrophage O-GlcNAc signaling. Chapter 6 will describe a novel mechanism by 

which adiponectin reverses insulin resistance in high-fat diet fed mice, providing important 

therapeutic implications for treating insulin resistance and T2DM. Finally, Chapter 7 will 

summarize the whole dissertation research in a broader context and point out potential 

directions for future studies. 
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CHAPTER 2 

Chronic Low-grade Inflammation in Adipose Tissues Links Obesity to 

Insulin Resistance and Type 2 Diabetes 
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In obesity, the chronic low-grade metabolic inflammation (metaflammation) 

develops in multiple organs such as adipose (31, 32), liver (33, 34), skeletal muscle (35, 

36), pancreas (37, 38), brain (39, 40) and gut (41, 42) and is defined by increased 

infiltration and activation of innate and adaptive immune cells. Adipose tissue inflammation, 

the major and most well-characterized form of metaflammation, negatively impacts whole-

body energy homeostasis and has been linked to the development of obesity-induced 

insulin resistance (32, 43, 44). In obesity, adipose tissue is enriched with pro-inflammatory 

immune cells such as macrophages (31), neutrophils (45), T cells (46) and B cells (47). 

These immune cells secrete excessive cytokines such as IL-6 and TNFα which have been 

shown to have lipolytic effects both in vitro and in vivo (11, 12, 48). 

Macrophages, which are the primary immunue cells studied in the dissertation, are 

the most abundant innate immune cells infiltrating and accumulating into adipose tissues 

and constitute up to 40% of all adipose tissue cells (8, 49). It is suggested that 

macrophages are the primary sources of pro-inflammatory cytokines such as IL-6 and 

TNF-α (7). In obesity, adipose tissue macrophages are polarized into pro-inflammatory 

macrophages and secrete excessive pro-inflammatory cytokines, leading to increased 

adipose tissues lipolysis (Fig. 2). Increased lipolysis leads to increased free fatty acid 

delivery into liver and skeletal muscle to raise TAG and diacylglycerol DAG levels. In 

addition, increased lipolysis has also been shown to drive increased rate of hepatic 

gluconeogenesis by increasing acetyl CoA levels as well as glycerol influx, causing fasting 

hyperglycemia (50). 

Besides macrophages, many other immune cells (e.g., neutrophils, dendritic cells, 

mast cells, B cells, and T cells) reside in adipose tissue during obesity, playing a vital role 

in the development of adipose tissue inflammation and insulin resistance. Neutrophils are 

relatively rare in adipose tissue of lean mice (51), but they are the first immune cells 

recruited to adipose tissues after 3 days of HFD and prolonged for over 90 days (45, 52). 
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Neutrophils mediate insulin resistance in mice by producing TNF-α, MCP-1 and elastase, 

which impairs glucose uptake in adipose tissue and degrades IRS-1 (45, 53, 54). Dendritic 

cells accumulate in adipose tissue of HFD-fed mice and obese humans (55). Dendritic 

cells have been shown to induce insulin resistance by recruiting macrophages in adipose 

tissue and increasing pro-inflammatory cytokine IL-6 production (56, 57). Similarly, mast 

cells infiltrate into adipose tissue and significantly increase in the adipose tissue of mice 

and humans with obesity and T2DM (58, 59). Mast cells are regulated by IL-6 and IFN-γ 

but not by TNF-α and they promote inflammation in adipose tissue by mediating 

macrophage infiltration (58, 60). B cells and T cells also play essential roles in macrophage 

infiltration and activation (8). B cells in adipose tissue are quite unique and different from 

B cells found in other tissues (61). B cells significantly increase in the adipose tissue of 

obese mice and induce insulin resistance by producing chemokines and promoting the 

recruitment of neutrophils, T cells and macrophages (8, 51). B cells also produce 

immunoglobulin G antibodies and pro-inflammatory cytokines, which may also lead to 

increased inflammation in adipose tissue (47, 62). CD3+ T cells are the second largest 

immune cell population in adipose tissue and are increased in obese mice (8). T cells can 

be further divided into CD4+ and CD8+ T cells. CD8+ T cells are increased in the adipose 

tissue and promote chemotaxis and macrophage activation in obesity (46). The 

abundance of pro-inflammatory CD3+CD4+ T helper (Th1) cells is increased in obesity, 

while the number of anti-inflammatory CD3+CD4+Th2 cells and CD3+CD4+FOXP3+ (Treg) 

cells is reduced, which contribute to increased inflammation and reduced insulin sensitivity 

(8, 63, 64). 
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Figure 2. Schematic representations of the metaflammation-lipolysis-insulin 

resistance model. 
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Chapter 3 

Lipid-Induced Insulin Resistance 
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It is well known that insulin resistance and T2DM are closely associated with 

obesity and ectopic lipid accumulation (6, 65). In the early stages of obesity, healthy 

adipose tissue expansion buffers the excessive calorie intake and limits net energy flow 

into lean body components such as liver and skeletal muscle. However, in the chronic 

stage of obesity, disrupted energy buffering capacity of adipose tissue causes energy 

spillover in the form of accelerated lipolysis, leading to ectopic lipid accumulation and 

subsequent metabolic syndromes, such as hepatic steatosis and insulin resistance (65).  

DAGs and ceramides have emerged as the two best-studied ectopic lipids that 

have been proposed to mediate lipid-induced insulin resistance (66). DAG is an important 

intermediate in TAG metabolism and an essential second messenger that can activate 

PKC. Numerous studies have demonstrated the association between DAG and insulin 

resistance. Previous studies in human liver and muscle biopsies have shown that total 

DAG content was more strongly associated with insulin resistance in liver and muscle than 

other putative mediators of insulin resistance (67, 68). More evidence suggests that DAG 

in liver and muscle was significantly correlated with insulin resistance (suppression of 

glucose production, HOMA-IR, insulin signaling cascade and etc.) (19, 69, 70). In subjects 

with hepatic insulin resistance, sn-1,2-DAG accumulates in the liver and activates PKCε 

(71). Insulin receptor kinase (IRK) Thr1160 has been recently identified as a PKCε 

substrate and IRK phosphorylation destabilizes the active configuration of the IRK, leading 

to impaired IRK activity and downstream insulin signaling (17). In subjects with muscle 

insulin resistance, sn-1,2-DAG activates PKCθ and further increases insulin receptor 

substrate (IRS)-1 serine phosphorylation, which inhibits insulin-stimulated IRS-1 tyrosine 

phosphorylation and downstream insulin signaling (68, 72-74).  

Ceramide is another potential mediator of insulin resistance in liver and muscle 

(75-78). Two major mechanisms have been proposed to explain ceramide-induced insulin 

resistance (79-81). The first mechanism is that ceramides activate PKCζ, resulting in 
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reduced translocation of protein kinase B (Akt) to the plasma membrane and impaired 

downstream insulin action. Another mechanism is that ceramides activate protein kinase 

2A, which could further dephosphorylate and inactivate Akt. 
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Chapter 4 

Current Treatments for Type 2 Diabetes and an Introduction to Adiponectin 
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T2DM is one of the leading causes of mortality in the adult population worldwide 

(82, 83) and plays a critical predisposing role in the pathogenesis of metabolic syndrome, 

nonalcoholic fatty liver disease (NAFLD) and cardiovascular disease (CVD) (5-7, 84). A 

combination of lifestyle changes and pharmacological treatment is important to achieve 

great metabolic control in diabetes patients (85). The current available treatments for 

T2MD and a potential novel therapy, adiponectin will be briefly reviewed.  

Metformin is considered as the first-line treatment for T2DM. In the intestines, 

metformin can change the composition of gut microbiota and activates mucosal AMP-

activated protein-kinase (AMPK) that maintains the integrity of the intestinal barrier (86, 

87). In the liver, metformin can inhibit gluconeogenesis by several mechanisms (88). The 

most frequent side effects of metformin are gastrointestinal and metformin reduces 

intestinal absorption of vitamin B12 (85). Sulfonylureas and meglitinides can stimulate 

insulin release by similar mechanisms (89). Sulfonylureas are a classic first or second-line 

therapy for patients with T2DM (90). The main problems related to sulfonylureas and 

meglitinides are loss of efficacy due to beta cell dysfunction, hypoglycemia, weight gain 

and cardiovascular risk (91-96). The alpha-glucosidase inhibitors delay carbohydrate 

absorption and digestion, resulting in a reduction in postprandial hyperglycemia and TAGs 

(97, 98). The side effects are mainly gastrointestinal and α-glucosidase inhibitors can 

produce asymptomatic elevation of liver enzymes (98, 99).  

Thiazolidinediones (TDZs) increase insulin sensitivity, activate peroxisome 

proliferator-activated receptors (PPARs) and preserve pancreatic beta cell function (85). 

The main side effects of TDZs are weight gain and heart failure (100, 101). Dipeptidyl 

peptidase-4 inhibitors (iDPP4) are used as monotherapy in patients inadequately 

controlled by diet and exercise, and dual therapy in combination with metformin, TZDs 

and insulin. iDPP4 inhibit DPP4, an enzyme that rapidly inactivates incretins (GLP1 and 

GIP), and therefore increase incretin concentrations, which can further improve insulin 
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secretion and inhibit glucagon (85). The side effects of iDPP4 are rare. Sodium glucose 

co-transporter-2 inhibitors (iSGLT2) inhibit renal reabsorption of glucose, increase its 

excretion and reduce hyperglycemia in patients with T2DM, resulting in a reduction in 

weight and blood pressure (102). Urogenital tract infections, orthostatic hypotension and 

volume depletion are the main side effects of iSGLT2 (103). 

Almost all currently available therapies have side effects, and they are often 

inadequate. Lots of studies have been shown that current therapies are valuable for 

reducing microvascular complications, but are not effective in reducing cardiovascular 

events, probably even being harmful in those with advanced type 2 diabetes (104, 105).  

So cardiovascular safety of anti-diabetic medications has become another essential 

requirement for new medications. In addition, given that current treatment approaches do 

not prevent or slow the loss of β-cell function, there is clearly an urgent need for alternative 

approaches. As such, these obstacles highlight a clear scientific and health priority for 

developing more effective treatments for T2DM and insulin resistance. Adiponectin has 

emerged as an anti-diabetic, anti-inflammatory and anti-atherogenic adipokine produced 

exclusively by adipocytes as the form of full-length and globular adiponectin (23, 24). 

Globular adiponectin is generated by proteolytic cleavage of full-length adiponectin (106). 

Adiponectin forms different multimers and is present in serum in trimer, hexamer or high 

molecular weight form (106). Almost all adiponectin appears to exist as full-length 

adiponectin in plasma, globular adiponectin only accounts for a relatively small amount. 

But globular adiponectin is more potent than the full-length adiponectin. Plasma 

adiponectin levels in humans range from 0.5 to 30 μg/ml, which is about 1000-fold higher 

than the concentrations of most other hormones such as leptin and insulin (107). Plasma 

adiponectin levels are decreased in obesity, insulin resistance and T2DM (108, 109). 

Administration of adiponectin has been shown to produce a rapid glucose-lowering effect 

and ameliorate insulin resistance in mice (110-112). Studies in humans and monkeys 
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showed that plasma adiponectin levels correlate significantly with whole-body insulin 

sensitivity (25, 26). Overexpression or administration of adiponectin results in a decrease 

in hyperglycemia, improvement in systemic insulin sensitivity, protection cardiovascular 

health and maintenance of β-cell function (23, 27, 113, 114), whereas adiponectin-

deficient mice exhibit impaired insulin sensitivity and diabetes (24, 28). 

The effect of adiponectin seems to be mediated by several mechanisms (Fig. 3). 

In the liver, adiponectin has been shown to reduce hepatic glucose production in isolated 

hepatocytes (111) by activating AMPK and consequently reducing the expression of 

gluconeogenic proteins such as PEPCK and G6Pase (115). Full-length adiponectin can 

also enhance fatty acid oxidation in liver slices by increasing the phosphorylation of ACC 

in an AMPK-dependent pathway (116) and reduce fatty acid synthesis by suppressing 

LKB1/AMPK/SREBP1c pathways (115, 117). However, Yaumachi et al. found that 

globular adiponectin cannot activate hepatic AMPK signaling pathways. So the underlying 

mechanisms by which globular adiponectin reduces hepatic triglyceride (TAG) are still 

unclear (112). Similarly, in the muscle, adiponectin can reduce TAG content and improve 

peripheral insulin sensitivity by increasing fatty acid oxidation in an AMPK/ACC dependent 

pathway and through modulation of calcium influx (23, 115, 118). An alternative 

mechanism proposed to explain adiponectin’s insulin sensitizing effect is by stimulating 

ceramidase activity and reducing liver ceramide content, which is independent of AMPK 

(114).  

However, there are a lot of controversial studies regarding insulin signaling 

pathways. For example, numerous studies have dissociated ceramide content from insulin 

sensitivity (66, 67, 119, 120), calling into question the physiologic relevance of this finding. 

Our study will be critical to clarify those controversies. Furthermore, notably, most of the 

mechanistic studies were performed in vitro or ex vivo, lacking in vivo studies that model 

physiologic metabolism and the complex stimuli involved in regulating these processes. 
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Furthermore, direct effects of adiponectin on insulin signaling molecules, rates of 

endogenous glucose production (EGP), tissue-specific glucose uptake and tissue-specific 

rates of mitochondrial oxidation remain poorly investigated. Thus, understanding the 

underlying mechanisms of adiponectin would unveil a novel pathway affecting diabetes 

susceptibility. 
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Figure 3. Schematic representations of the molecular mechanisms by which 

adiponectin reduces plasma glucose levels and decreases fat in liver (A) and 

skeletal muscle (B). 
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Chapter 5 

OGT suppresses S6K1-mediated macrophage inflammation and metabolic 

disturbance  
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ABSTRACT  

Enhanced inflammation is believed to contribute to overnutrition-induced metabolic 

disturbance. Nutrient flux has also been shown to be essential for immune cell activation. 

Here, we report an unexpected role of nutrient-sensing O-linked β-N-acetylglucosamine 

(O-GlcNAc) signaling in suppressing macrophage pro-inflammatory activation and 

preventing diet-induced metabolic dysfunction. Overnutrition stimulates an increase in O-

GlcNAc signaling in macrophages. O-GlcNAc signaling is down-regulated during 

macrophage pro-inflammatory activation. Suppressing O-GlcNAc signaling by O-GlcNAc 

transferase (OGT) knockout enhances macrophage pro-inflammatory polarization, 

promotes adipose tissue inflammation and lipolysis, increases lipid accumulation in 

peripheral tissues, and exacerbates tissue-specific and whole-body insulin resistance in 

high fat diet-induced obese mice. OGT inhibits macrophage pro-inflammatory activation 

by catalyzing ribosomal protein S6 kinase beta-1 (S6K1) O-GlcNAcylation and 

suppressing S6K1 phosphorylation and mTORC1 signaling. These findings thus identify 

macrophage O-GlcNAc signaling as a homeostatic mechanism maintaining whole-body 

metabolism in the setting of overnutrition1.  

  

 
1 Other contributors to this work include Yunfan Yang, Harding Luan, Bichen Zhang, Kaisi Zhang, 
Jin Hyun Nam, Zongyu Li, Minnie Fu, Alexander Munk, Dongyan Zhang, Simeng Wang, Yuyang 
Liu, João Paulo Albuquerque, Qunxiang Ong, Rui Li, Qi Wang, Marie E. Robert, Rachel J. Perry, 
Dongjun Chung, Gerald I. Shulman, Xiaoyong Yang 
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INTRODUCTION 

Modern global healthcare faces challenges that are different from past generations, 

as embodied by the prevalence of obesity worldwide. Obesity and associated insulin 

resistance play a pivotal role in the pathogenesis of type 2 diabetes, nonalcoholic fatty 

liver disease, atherosclerotic heart disease and other disorders (65, 121). The association 

between obesity and the immune system has long been appreciated. The vicious cycle of 

inflammation between metabolic organs and immune cells in obese individuals is of major 

importance to the development of whole-body insulin resistance and metabolic 

dysfunction (122-125). For example, changes in adipose tissue microenvironment caused 

by chemokine release, adipocyte death, and other changes. during obesity lead to 

macrophage infiltration and pro-inflammatory activation, which further lead to detrimental 

effects on insulin action in metabolic tissues and contributes to whole-body insulin 

resistance (50, 126, 127). On the other hand, metabolic rewiring has been shown to be 

essential for immune cell maturation and acquisition of functional competency (128, 129). 

For example, classical (M1-like; pro-inflammatory) activation of macrophages is coupled 

to increased glycolysis, reduced mitochondrial oxidative phosphorylation and fragmented 

TCA cycle, while alternative (M2-like; anti-inflammatory) activation of macrophages are 

characterized by changes in iron metabolism, fatty acid oxidation, glutamine metabolism, 

and UDP-GlcNAc pathway (130, 131). Despite the growing knowledge of the function of 

immune cells in tissue and whole-body metabolism and an emerging role of metabolic 

pathways in immune cell activation and immune responses, how immune cells sense and 

integrate nutritional cues and how the nutrient-sensing mechanisms control immune cell 

activation and whole-body metabolism remain overarching questions in the field. 

O-GlcNAcylation is a nutrient-sensing post-translational modification that involves 

the attachment of a single O-linked β-N-acetylglucosamine (O-GlcNAc) moiety to proteins 

(132-134). Nutrients including glucose, amino acid, fatty acid, and nucleotide flux into the 
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hexosamine biosynthetic pathway (HBP) to generate the donor molecule for O-

GlcNAcylation, uridine diphosphate GlcNAc (UDP-GlcNAc). A single pair of enzymes, O-

GlcNAc transferase (OGT) and O-GlcNAcase (OGA), catalyze the addition and removal 

of O-GlcNAc moieties from serine and threonine residues of nuclear, cytoplasmic, and 

mitochondrial proteins, respectively. O-GlcNAc signaling, the dynamic and reversible 

modification in cells, has been shown to fluctuate with the availability of nutrients and 

regulate numerous signaling pathways (135-139). Dysregulated O-GlcNAc homeostasis 

has been linked to chronic human diseases associated with metabolic dysregulation, such 

as obesity, diabetes, cardiovascular diseases, Alzheimer’s disease, and cancer (140-142). 

Studies have shown that O-GlcNAcylation dampens insulin signaling both in vitro and in 

vivo (134, 135, 143). Key metabolic regulators such as protein kinase B (Akt), forkhead 

box protein O1 (FOXO1), carnitine palmitoyltransferase 2 (CPT2) and peroxisome 

proliferator-activated receptor-γ coactivator (PGC-1α), can be regulated by O-

GlcNAcylation (144-147). O-GlcNAcylation was discovered in immune cells over 30 years 

ago and has been shown to regulate several immune signaling pathways in vitro, such as 

extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38 mitogen-

activated protein kinase, and nuclear factor κB (NF-κB) signaling pathways (135-137, 148-

150). However, the function of O-GlcNAc signaling in immune regulation, especially during 

metabolic perturbations, remains elusive. 

In obesity and insulin resistance, chronic low-grade inflammation develops in 

multiple organs such as adipose tissue, liver and skeletal muscle, which is reflected by 

immune cell infiltration and elevated pro-inflammatory cytokine production (8, 31, 34, 35, 

122, 123, 125). Macrophages are the primary cell type responsible for immune responses 

in metabolic tissues (127, 151). Adipose tissue inflammation is characterized by 

macrophage infiltration and has been linked to impaired whole-body energy homeostasis 

(50, 127, 152). Approximately 10-15% of the stromal cells in adipose tissue are 
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macrophages in lean mice, whereas it increases up to 60% of in obese mice (31, 153). 

Furthermore, macrophages are capable of acquiring diverse functions in response to 

physiological and environmental signals. Classically activated (M1-like) macrophages 

produce pro-inflammatory cytokines and promote insulin resistance, while alternatively 

activated (M2-like) macrophages produce anti-inflammatory cytokines and are associated 

with insulin sensitivity and the lean phenotype (154, 155).  

Here, we explored the role of O-GlcNAc signaling in macrophage activation and 

metabolic regulation in a mouse model of diet-induced obesity. We observed an increase 

in macrophage O-GlcNAc signaling during overnutrition and a transient decrease in O-

GlcNAc signaling during macrophage pro-inflammatory polarization. Loss of OGT 

enhances macrophage pro-inflammatory activation in adipose tissue, which leads to 

enhanced adipocyte lipolysis, ectopic lipid accumulation in liver and muscle, and whole-

body insulin resistance. These data elucidate an anti-inflammatory role for O-GlcNAc 

signaling through inhibiting macrophage pro-inflammatory activation and provide a 

molecular link between overnutrition, inflammation and metabolic dysfunction. 
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RESULTS 

O-GlcNAc signaling is altered during overnutrition and macrophage activation.  

To study the nutritional regulation of macrophage function, we first examined how 

macrophages respond to different nutrient environments in vitro. Mouse peritoneal 

macrophages and bone marrow-derived macrophages (BMDMs) were first maintained in 

a culture medium containing physiological (5 mM) glucose and then challenged with 25 

mM glucose or 0.3 mM palmitate to mimic glucolipotoxic conditions in type 2 diabetes. 

Glucosamine (GlcN) was used as a positive control to boost HBP and O-GlcNAcylation. 

Both conditions and GlcN led to enhanced overall O-GlcNAcylation levels, but not OGT 

and OGA levels, in cultured macrophages (Fig. 1A and S1A). Moreover, peritoneal 

macrophages cocultured with epididymal white adipose tissue (AT) from the high-fat diet 

(HFD)-fed mice have increased overall O-GlcNAcylation levels, but not OGT and OGA 

levels, as compared to macrophages cocultured with AT from normal chow (NC)-fed mice 

(Fig. 1B). These results suggest that overnutrition stimulates an increase of O-GlcNAc 

signaling in macrophages in vitro, possibly by boosting the HBP pathway.  

We then sought to determine the activity of O-GlcNAc signaling during 

macrophage activation. Gene expression profiles retrieved from the Gene Expression 

Omnibus repository showed the level of OGT transcripts was decreased by ~20% in 

LPS/IFNγ polarized M1-like human macrophages, while no change in OGA transcriptional 

level was found (156) (Fig. S1B). To further determine the activation of O-GlcNAc 

signaling during macrophage activation, we induced pro-inflammatory M1 [M(LPS)] and 

anti-inflammatory M2 [M(IL-4)] polarization by using lipopolysaccharides (LPS) and 

interleukin-4 (IL-4) respectively in mouse peritoneal macrophages, BMDMs, and 

macrophage cell line RAW 264.7. Consistent with the changes observed in human 

macrophages, quantitative real-time PCR (qRT-PCR) analysis showed that OGT 

transcriptional level was decreased during LPS-induced M1 polarization but not IL-4-
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induced M2 polarization, without any difference in OGA transcripts (Fig. 1C and S1C). 

Next, we examined the activation of O-GlcNAc signaling at the protein level in BMDMs. 

The overall O-GlcNAc modification level was decreased by 25-40% during M1 polarization, 

accompanied by a ~45% decrease in the OGT protein level (Fig. 1D and S1D). A transient 

elevation of overall O-GlcNAc modification, but no significant changes in OGT and OGA 

protein levels, were observed during M2 polarization (Fig. S1E). These results 

demonstrate that O-GlcNAc signaling is temporarily suppressed during M1 polarization 

and transiently enhanced at the onset of M2 polarization.  

We then examined the dynamic changes of overall O-GlcNAcylation levels in 

various subpopulations of adipose tissue macrophages during HFD feeding by using flow 

cytometry (Fig. 1E, F and S1F-I and S2). F4/80 served as a pan macrophage marker. 

CD11c and CD206 were used as markers for M1-like and M2-like macrophages, 

respectively. MGL1, highly expressed in resident population of adipose tissue 

macrophages, and CCR2, critical for macrophage recruitment to inflammation sites, were 

also used as markers (157-159). The results showed that: (1) MGL1+ macrophages 

generally have higher overall O-GlcNAcylation levels, as compared to CCR2+ 

macrophages; (2) CD206+ M2-like macrophages generally have higher overall O-

GlcNAcylation levels, as compared to CD11c+ M1-like macrophages; (3) Macrophage O-

GlcNAc signaling is enhanced or maintained at a similar level at the early stage of obesity 

(1-week and 4-week HFD feeding) but decreased at the late stage of obesity (12-week 

HFD feeding), as compared to the NC-fed mice. Based on these results, we hypothesized 

that macrophage O-GlcNAc signaling may have an anti-inflammatory function and 

involves in maintaining metabolic homeostasis, especially at the early stage of obesity.  
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Figure 1. Nutrient-sensing O-GlcNAc signaling is regulated during overnutrition and 

macrophage activation. (A) Western blot analysis of OGT, OGA, and overall O-

GlcNAcylation levels in mouse peritoneal macrophages after 2 hours treatment. “Vehicle” 

was 0.2% BSA and “Ctrl” was culture medium. Glucosamine (GlcN) was used as a positive 

control. RL2 recognizes O-GlcNAc modification on proteins. (B) Western blot analysis of 

OGT, OGA, and overall O-GlcNAcylation levels in mouse peritoneal macrophages co-

cultured with epididymal white adipose tissue (AT) of normal chow (NC)-fed and high fat 

diet (HFD)-fed mice for 2 hours. (C) Ogt mRNA level in mouse peritoneal macrophages 

(peri. MPs), mouse bone marrow-derived macrophages (BMDMs), and RAW 264.7 

macrophage cells (n = 4-8). LPS was used to stimulate M1 polarization. (D) 

Representative western blots of OGT, OGA and overall O-GlcNAcylation levels in mouse 
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BMDMs. LPS was used to stimulate M1 polarization. (E and F) Flow cytometric analysis 

of average intensity of O-GlcNAc (RL2) staining of macrophage subpopulations including 

F4/80+ CCR2+ cells, F4/80+ MGL1+ cells (E), F4/80+ CD11c+ M1-like macrophages, and 

F4/80+ CD206+ M2-like macrophages (F) in the stromal vascular fraction (SVF) of 

epididymal white adipose tissue (eWAT) from NC-fed, 1-week HFD-fed, 4-week HFD-fed, 

and 12-week HFD-fed WT mice (n = 4-6). Data are shown as mean ± SEM. *p < 0.05, **p 

< 0.01, ***p < 0.001 by unpaired Student’s t-test. 
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Figure S1. Macrophage O-GlcNAc signaling is regulated during overnutrition and 

macrophage activation. (A) Western blots showing the levels of overall O-GlcNAcylation 

(RL2), OGT, OGA, and β-actin in bone marrow derived macrophages (BMDMs) with 0, 2, 

8, and 24 hours of incubation with 25 mM glucose (Glc) or 0.3 mM palmitate. (B) Ogt and 

Oga mRNA levels in primary human peripheral blood monocytes, cells in the monocyte-

macrophage differentiation process (In differ.), in vitro differentiated macrophages (MPs), 
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and M1- and M2-polarized macrophages (n = 3). Data were retrieved from Gene 

Expression Omnibus repository (GSE47122). (C) Oga mRNA levels in mouse peritoneal 

macrophages (peri. MPs), mouse bone marrow-derived macrophages (BMDMs), and 

RAW 264.7 macrophage cells (n = 4-8). LPS was used to stimulate M1 polarization. (D) 

Quantitative analysis of OGT, OGA and overall O-GlcNAcylation levels in mouse BMDMs 

as shown in Fig. 1D (n = 3). (E) Representative western blots and quantitative analysis of 

OGT, OGA and overall O-GlcNAcylation levels in mouse BMDMs. IL-4 was used to 

stimulate M2 polarization (n = 5). (F and G) Flow cytometric analysis of average intensity 

of O-GlcNAc (RL2) staining of macrophage subpopulations including F4/80+ CCR2+ cells, 

F4/80+ MGL1+ cells, CD11c+ M1-like macrophages, and CD206+ M2-like macrophages in 

the stromal vascular fraction (SVF) of inguinal white adipose tissue (iWAT) (F) and 

interscapular brown adipose tissue (BAT) (G) from NC-fed, 1-week high fat diet (HFD)-

fed, 4-week HFD-fed, and 12-week HFD-fed WT mice. (H and I) Statistical analysis of 

macrophage subpopulations in the SVF of epididymal white adipose tissue (eWAT) from 

NC-fed, 1-week HFD-fed, 4-week HFD-fed, and 12-week HFD-fed WT mice (n = 4-6). 

Data are shown as mean ± SEM. ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001 by 

one-way ANOVA with Dunnett multiple comparisons for (B), (H) and (I). *p < 0.05, **p < 

0.01, ***p < 0.001 by unpaired Student’s t-test for other graphs.  
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Figure S2. O-GlcNAcylation level in various subpopulations of adipose tissue 

macrophages during HFD feeding. (A-H) Gating strategy of macrophage 

subpopulations in the SVF of eWAT. Debris (A) and doublet cells (B) were excluded 

according to forward scatter profiles (FSC-A) and side scatter profiles (SSC-A and SSC-

H). Subsequently, Live/Dead Dye staining were used to exclude dead cells (C), and F4/80+ 

cells were selected (D). Macrophages (F4/80+ cells) were plotted according to MGL1 or 

CCR2 expression to show F4/80+ MGL1+ cells (MGL1: a tissue-resident macrophage 

marker) (E) and F4/80+ CCR2+ cells (CCR2: an infiltrated macrophage marker) (F). 
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Similarly, macrophages were plotted according to CD206 or CD11c expression to identify 

F4/80+ CD11c+ cells (CD11c+ M1-like macrophages) (G) and F4/80+ CD206+ cells 

(CD206+ M2-like macrophages) (H). (I-L) Representative flow cytometry dot plots of 

overall O-GlcNAcylation levels in F4/80+ CCR2+ cells (CCR2 subset) and F4/80+ MGL1+ 

cells (MGL1 subset) in the SVF of eWAT from NC-fed (I), 1-week HFD-fed (J), 4-week 

HFD-fed (K), and 12-week HFD-fed (L) WT mice. (M-P) Representative flow cytometry dot 

plots of overall O-GlcNAcylation levels in CD11c+ M1-like macrophages (CD11c subset) 

and CD206+ M2-like macrophages (CD206 subset) in the SVF of eWAT from NC-fed (M), 

1-week HFD-fed (N), 4-week HFD-fed (O), and 12-week HFD-fed (P) WT mice. 
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Macrophage Ogt knockout mice are prone to diet-induced metabolic dysfunction.  

To test our hypothesis, we bred the Ogtflox strain with the LysM-Cre transgenic line 

to generate a mouse line with Ogt deletion in macrophages and other myeloid cells 

(hereafter termed OGT MKO mice) (Fig. S3A-C) and provided them with ad libitum access 

to NC and HFD. Flow cytometric analysis showed that OGT KO preferentially affect O-

GlcNAc signaling in CCR2+ macrophages (Fig. S3D). OGT MKO mice fed NC showed no 

difference in body weight, body composition, and whole-body insulin sensitivity compared 

to their wild-type (WT) littermates (Fig. S3E-K).  We then challenged the mice with HFD. 

OGT MKO mice gained slightly more body weight and fat mass compared to their WT 

controls after 12 weeks of HFD feeding, which could be attributed to increased food intake 

(Fig. 2A, B and S3L). In contrast, there is no difference in lean mass, oxygen consumption 

(VO2), respiratory exchange ratio (RER), physical activity and energy expenditure (Fig. 

2C and S3M-P). Increases in tissue weights of subcutaneous inguinal white adipose 

tissue (iWAT) and interscapular brown adipose tissue (BAT), but not epididymal white 

adipose tissue (eWAT), were observed in OGT MKO mice (Fig. S4A-C). Despite an 

increase in BAT mass, the core body temperature of OGT MKO mice dropped more 

quickly than WT mice during an acute cold challenge (Fig. S4D), which is likely due to 

BAT whitening (Fig. S4E).  

Whole-body glucose metabolism of HFD-fed WT and OGT MKO mice was 

assessed by intraperitoneal glucose tolerance test (GTT), insulin tolerance test (ITT), and 

hyperinsulinemic-euglycemic clamps before their body weight diverge (Fig. 2A and S4F-

H). OGT MKO mice showed a 2-fold increase in plasma insulin levels after overnight 

fasting without any significant difference in fasting plasma glucose, non-esterified fatty 

acid (NEFA) or triacylglycerol (TAG) concentrations (Fig. S4I-L), reflecting whole-body 

insulin resistance. GTT and ITT showed that OGT MKO mice had impaired glucose 

metabolism and insulin resistance as compared to WT controls (Fig. S4M-Q), which is 
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also illustrated by an increase in the homeostatic model assessment for insulin resistance 

(HOMA-IR) (Fig. S4R). During the hyperinsulinemic-euglycemic clamp, OGT MKO mice 

exhibited a marked impairment in whole-body insulin sensitivity as reflected by a ~55% 

decline in the glucose infusion (GINF) rate required to maintain euglycemia (Fig. 2D and 

Fig. S4S, T). Despite no difference in the basal endogenous glucose production (EGP) 

rate, the EGP during the clamp was significantly higher in OGT MKO mice (Fig. 2E), 

demonstrating impaired hepatic insulin sensitivity. The increased EGP during the clamp 

may be attributable to increased acetyl-CoA (Fig. S4U), an allosteric activator of pyruvate 

carboxylase (50). We also observed a reduced whole-body glucose turnover rate in OGT 

MKO mice (Fig. 2F), which could be at least partially attributed to reduced glucose uptake 

in eWAT, BAT, and gastrocnemius muscle (Fig. 2G). Together, these results demonstrate 

that loss of macrophage OGT exacerbates diet-induced whole-body insulin resistance 

independent of body weight changes. 
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Figure 2. OGT MKO mice are prone to diet-induced metabolic dysfunction. (A) Body 

weight of HFD-fed WT and OGT MKO mice. (B and C) Fat mass (B) and lean mass (C) of 

18-week HFD-fed WT and OGT MKO mice (n = 12-19). (D) Glucose infusion (GINF) rate 

to maintain euglycemia during hyperinsulinemic-euglycemic clamps in 8-week HFD-fed 

WT and OGT MKO mice. (E and F) Endogenous glucose production (EGP) rate (E) and 

whole-body glucose turnover rate (F) in both basal (without insulin stimulation) and clamps 

(with insulin stimulation) states in 8-week HFD-fed WT and OGT MKO mice. (G) Glucose 

uptake in eWAT, BAT and gastrocnemius muscle under insulin-stimulated condition in 8-

week HFD-fed WT and OGT MKO mice (n = 5-8). Data are shown as mean ± SEM. *p < 

0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t-test.   
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Figure S3. NC-fed OGT MKO mice have normal glucose metabolism, while HFD-fed 

OGT MKO have impaired glucose metabolism and increased food intake. (A) The 

scheme for generating myeloid cell-specific Ogt knockout (OGT MKO) and wide type (WT) 

control mice. (B and C) qRT-PCR (n = 7-12) and western blot analysis showing the mRNA 

and protein levels in peritoneal macrophages isolated from WT and OGT MKO mice. (D) 

Flow cytometric analysis of average intensity of O-GlcNAc (RL2) staining of F4/80+ CCR2+ 

cells and F4/80+ MGL1+ cells in the SVFs of eWAT from 12-week HFD-fed WT and OGT 

MKO mice (n = 5). (E-G) Body weight (E) (n = 5) and body composition (F and G) (n = 17) 

of normal chow (NC)-fed WT and OGT MKO mice. (H-K) Insulin tolerance test (H and I) 

and glucose tolerance test (J and K) in NC-fed WT and OGT MKO mice. (L) Average daily 
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food intake of 12-week HFD-fed WT and OGT MKO mice. (M-P) Whole-body oxygen 

consumption rates (M), respiratory exchange ratios (RERs) (N), physical activities (O), 

and energy expenditure (P) of 12-week HFD-fed WT and OGT MKO mice (n = 4). Data 

are shown as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t-

test. 
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Figure S4. Impaired BAT function and insulin sensitivity in HFD-fed OGT MKO mice. 

(A-C) Tissue weights of inguinal white adipose tissue (iWAT) (A), eWAT (B), and 

intrascapular brown adipose tissue (BAT) (C) of 18-week HFD-fed WT and OGT MKO 

mice (n = 7-12).  (D) Cold challenge test in 12-week HFD-fed WT and OGT MKO mice (n 

= 8-14). (E) Hematoxylin and eosin (H&E) staining of BAT from HFD-fed WT and OGT 

MKO mice. Scale bar, 20 μm. (F-H) Body weight (F) and body composition (G and H) of 

8-week HFD-fed WT and OGT MKO mice. (I and J) Plasma insulin and blood glucose 
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concentrations of 8-week HFD WT and OGT MKO mice after overnight fasting (n = 6-14). 

(K and L) Plasma non-esterified fatty acid (NEFA) (K) and triglyceride (TAG) (L) levels of 

8-week HFD WT and OGT MKO mice after overnight fasting (n = 5-6). (M and N) Plasma 

glucose concentrations (M) and AUCglucose (N) during the insulin tolerance test (ITT) in 12-

week HFD-fed WT and MKO mice. (O-Q) Plasma glucose concentrations (O), AUCglucose 

(P) and insulin concentrations (Q) during the intraperitoneal glucose tolerance test (GTT) 

in 12-week HFD-fed WT and MKO mice. AUCglucose was calculated using the trapezoidal 

rule. (R) Homeostasis model assessment of insulin resistance (HOMA-IR) in 12-week 

HFD-fed WT and OGT MKO mice (n = 5-14). (S) Plasma glucose levels during 

hyperinsulinemic-euglycemic clamps in 8-week HFD-fed WT and OGT MKO mice (n = 5-

8). (T and U) Plasma insulin concentrations (T) and hepatic acetyl-CoA contents (U) of 8-

week HFD WT and OGT MKO mice at the end of the hyperinsulinemic-euglycemic clamps 

(n = 6). Data are shown as mean ± SEM. *p < 0.05 by unpaired Student’s t-test. 
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Loss of macrophage OGT promotes inflammation, adipose tissue lipolysis, and 

ectopic lipid accumulation and insulin resistance.  

We then assessed the activation of insulin signaling in peripheral tissues of HFD-

fed WT and OGT MKO mice. The phosphorylation of insulin receptor (IR) kinase and Akt 

were reduced in liver, gastrocnemius muscle and eWAT of OGT MKO mice during the 

clamp, indicating impaired insulin signaling (Fig. 3A, B and S5A). Ectopic lipid 

accumulation is closely associated with insulin resistance (6, 65). To explore the 

underlying mechanism of insulin resistance in OGT MKO mice, levels of TAGs and 

diacylglycerols (DAGs) in liver and skeletal muscle were determined and the results 

showed that OGT MKO mice had a 2-3 fold increase in TAG content in liver and muscle 

(Fig. 3C and D). Consistently, a fatty liver phenotype including increased liver weight, 

pale-colored liver and histopathologic features of steatosis was observed in OGT MKO 

mice (Fig. S5B-E).  A 1.5-3 fold increase in DAG content was also found in all tested 

compartments (membrane, lipid droplets and cytosol) in both liver and muscle of OGT 

MKO mice (Fig. 3E, F and Fig. S5F-I). Previous studies demonstrated that membrane 

DAG induces peripheral insulin resistance by promoting the membrane translocation of 

PKCε in liver and PKCθ in skeletal muscle (17, 20). Consistently, OGT MKO mice showed 

increased PKCɛ translocation from cytosol to the membrane in liver and increased PKCθ 

and PKCε translocation in muscle (Fig. 3G-I and Fig. S5J, K). In contrast, no difference 

in hepatic and muscle ceramide content was observed (Fig. S5L and M). Taken together, 

these data suggest that loss of macrophage OGT promotes diet-induced whole-body 

insulin resistance by enhancing ectopic lipid accumulation and activating the DAG-PKC 

pathway in liver and skeletal muscle. 

Next, we sought to understand the cause of ectopic lipid accumulation in peripheral 

tissues of OGT MKO mice. Studies have shown that excessive adipose tissue lipolysis 

plays an essential pathogenic role in diet-induced insulin resistance by enhancing fatty 
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acid flux into metabolic tissues (50, 160, 161). Consistent with this idea, OGT MKO mice 

had increased fatty acid turnover rates during the clamp (Fig. 3J), suggesting that loss of 

macrophage OGT impaired insulin suppression of adipose tissue lipolysis. We then 

performed an ex vivo lipolysis assay with freshly prepared tissue trunks of WATs from 

HFD-fed WT and OGT MKO mice. The results showed that CL-316,243 (a β3-adrenergic 

receptor agonist)-stimulated lipolysis was significantly enhanced in sWAT and eWATs of 

OGT MKO mice (Fig. 3K and L). To explore the underlying mechanism, we obtained 

cultured mature adipocytes differentiated from stromal vascular fraction (SVF) of mouse 

eWAT. Then we examined the effects of in vitro cultured WT and OGT KO macrophages 

on adipocyte lipolysis in contact (coculture) and non-contact (transwell) manners. The 

results showed that both WT and OGT KO macrophages stimulated adipocyte lipolysis in 

a cell-cell contact-independent manner. More importantly, compared to WT macrophages, 

OGT KO macrophages were more potent to stimulate adipocyte lipolysis (Fig. 3M), 

demonstrating an essential role for macrophage OGT in suppressing adipocyte lipolysis 

through secreted factors. Previous studies have shown that inflammatory cytokines are 

important regulators of adipocyte lipolysis (50, 162). We then determined the levels of pro-

inflammatory cytokines including TNF-α and IL-6 in the serum of 8-week HFD-fed WT and 

OGT MKO mice and observed a 3-4 fold increase in OGT MKO mice (Fig. 3N and O). 

Further analysis and histological analysis of hematoxylin-eosin (H&E) staining showed 

that TNF-α and IL-6 levels were increased by ~25% in eWAT of OGT MKO mice, but no 

significant difference in hepatic inflammation (Fig. 3P-S and S5E), showing that adipose 

tissue is a primary target of macrophage-induced inflammation. Taken together, these 

data indicate that macrophage OGT depletion promotes adipose tissue inflammation and 

lipolysis, enhances fatty acid flux into liver and muscle, and finally leads to ectopic lipid 

accumulation and DAG-PKC-mediated insulin resistance in these metabolic tissues. 
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Figure 3. Loss of macrophage OGT promotes inflammation, adipose tissue lipolysis, 

and ectopic lipid accumulation and insulin resistance in liver and muscle 

independent of body weight changes. (A) Western blots of insulin-stimulated insulin 

receptor (IR) phosphorylation (Y1162) in liver, gastrocnemius muscle and eWAT of 8-

week HFD-fed WT and OGT MKO mice after overnight fasting. (B) Western blots of 

insulin-stimulated Akt phosphorylation (S473) in liver, gastrocnemius muscle and eWAT 

of 8-week HFD-fed WT and OGT MKO mice after overnight fasting. (C and D) Triglyceride 

(TAG) levels in liver (n = 4) and gastrocnemius muscle (n = 9-11) of 12-week HFD-fed WT 
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and OGT MKO mice. (E and F) Membrane diacylglycerol (DAG) levels in liver and 

gastrocnemius muscle of 12-week HFD-fed WT and OGT MKO mice (n = 6-14). (G) 

Hepatic membrane/cytosolic PKCε ratio in 12-week HFD-fed WT and OGT MKO mice. (H 

and I) Membrane/cytosolic PKCθ and PKCε ratio in gastrocnemius muscle of 12-week 

HFD-fed WT and OGT MKO mice (n = 5). (J) Whole-body fatty acid turnover of 8-week 

HFD-fed WT and OGT MKO mice (n = 6). (K and L) Basal and stimulated (10 μM CL-

316,243) lipolysis measured by glycerol released from tissue trunks of iWAT (K) and 

eWAT (L) of 12-week HFD-fed WT and OGT MKO mice (n = 10-12). (M) Scheme and 

glycerol release rate of in vitro cultured adipocyte when co-cultured with WT and OGT KO 

peritoneal macrophages in contact (Coculture) and non-contact (Transwell) manners. (N-

S) TNF-α and IL-6 levels in serum (N and O), eWATs (P and Q) and livers (R and S) of 8-

week HFD-fed WT and OGT MKO mice. Data are shown as mean ± SEM (n = 5-8). *p < 

0.05, **p < 0.01, ***p < 0.001 by two-way ANOVA with Dunnett multiple comparisons for 

(K), (L) and (M). *p < 0.05, **p < 0.01 by unpaired Student’s t-test for other panels.  

  



 

 47 

 

Figure S5. Increased hepatic steatosis and enhanced liver and muscle insulin 

resistance in HFD-fed OGT MKO mice. (A) Western blots of Akt phosphorylation(T308) 

in liver, gastrocnemius muscle and eWAT. (B-D) Tissue weights (B) (n = 7-12), images (C) 

and H&E staining (D) of liver from 12-week HFD-fed WT and OGT MKO mice. Scale bar, 

20 μm. (E) Blinded histological scoring of liver staining to evaluate hepatic steatosis and 

liver inflammation and liver injury in 12-week HFD-fed WT and OGT MKO mice. (F-I) DAG 
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levels in lipid droplet fraction and cytosolic fraction in liver (F and G) and gastrocnemius 

muscle (H and I) of 12-week HFD-fed WT and OGT MKO mice (n = 6-14). (J and K) 

Western blots showing levels of PKCε in membrane fraction and cytosolic fraction of liver 

(J) and levels of PKCε and PKCθ in membrane fraction and cytosolic fraction of 

gastrocnemius muscle (K). (L and M) Ceramide contents in liver (L) and gastrocnemius 

muscle (M) of 12-week HFD-fed WT and OGT MKO mice (n = 4-6). Data are shown as 

mean ± SEM. *p < 0.05 by Mann-Whitney test for (E). *p < 0.05 by unpaired Student’s t-

test for other graphs. 
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Loss of macrophage OGT promotes adipose tissue inflammation.  

To determine the role of macrophage OGT in adipose tissue inflammation, flow 

cytometric analysis of adipose tissue macrophages and macrophage subpopulations was 

performed. In WT mice, 12-week HFD feeding induced a 2.5-fold increase of CCR2+ 

macrophages in eWAT as compared to iWAT, while no difference in MGL1+ macrophages 

was found (Fig. S6A and B). Macrophages (F4/80+ cells) comprised 10% of SVF cells in 

BAT and 30-40% in iWAT and eWAT  (Fig. S6C). In 12-week HFD-fed OGT MKO mice, 

a significant increase in the number of total macrophages was found in BAT (~2.5 fold), 

but not in iWAT and eWAT, as compared to WT mice (Fig. S6D and S7A). Nevertheless, 

a ~2-4 fold increase of F4/80+ CD11c+ macrophages in all examined adipose tissues and 

a ~40-50% decrease of F4/80+ CD206+ macrophages in iWAT and eWAT (per gram of 

tissue) were observed (Fig. 4A,  S6E, F and S7B). 

We identified a ~2.5 fold increase in the number of crown-like structures (CLSs) 

formed by pro-inflammatory macrophages surrounding necrotic adipocytes in the whole-

mount adipose tissue staining of iWAT and eWAT from OGT MKO mice (Fig. 4B and C), 

which is consistent with enhanced accumulation of pro-inflammatory CD11c+ M1-like 

macrophages in WATs of OGT MKO mice. qRT-PCR analysis showed that the expression 

of macrophage pro-inflammatory polarization markers, Il-6 and Nos2, was increased in 

various adipose tissues of OGT MKO mice compared with WT mice, without difference in 

Arg1 expression, an M2 polarization marker (Fig. 4D, E and S7C). These data 

demonstrate that loss of macrophage OGT aggravates adipose tissue inflammation by 

promoting pro-inflammatory macrophage activation and/or infiltration, which may 

contribute to increased WAT lipolysis. 
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Figure 4. Loss of macrophage OGT promotes adipose tissue inflammation. (A) 

Quantification of flow cytometric analysis of F4/80+ CD11c+ cells in BAT, iWAT and eWAT 

from 12-week HFD-fed WT and OGT MKO mice (n = 4). (B) Whole-mount staining of iWAT 

and eWAT of 12-week HFD-fed WT and OGT MKO mice showing adipocytes (BODIPY 

FL, stains lipids) and macrophages (CD11c+ cells) in crown-like structures (CLSs). Scale 

bar, 80 μm. (C) Quantitative results of CLSs in iWAT and eWAT of 12-week HFD-fed WT 

and OGT MKO mice (n = 6). (D and E) Nos2 and Il-6 mRNA levels in BAT, iWAT, and 

eWAT of 12-week HFD-fed WT and OGT MKO mice (n = 4-8). Data are shown as mean 

± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t-test. 
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Figure S6. HFD-fed OGT MKO mice have enhanced accumulation of M1-like 

macrophages in adipose tissue as compared with HFD-fed WT mice. (A-C) Flow 

cytometric analysis of macrophage subpopulations including F4/80+ CCR2+ cells (A), 

F4/80+ MGL1+ cells (B), and overall macrophages (F4/80+ cells) (C) in the SVF of eWAT, 

iWAT, and BAT from NC-fed, 1-week HFD-fed, 4-week HFD-fed, and 12-week HFD-fed 

WT mice (n = 4-6). (D) Representative flow cytometry dot plots showing macrophages 
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(F4/80+ cells) in SVF of adipose tissue from HFD-fed WT and OGT MKO mice. (E and F) 

Representative dot plots showing CD11c+ cells and CD206+ cells gated through F4/80+ 

cells shown in (D). 
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Figure S7. O-GlcNAc signaling is involved in macrophage M1 polarization, but not 

M2 polarization. (A and B) Quantification of flow cytometric analysis of macrophages 

(F4/80+ cells) and CD206+ M2-like macrophages in the SVF of BAT, iWAT and eWAT from 

12-week HFD-fed WT and OGT MKO mice. (C) Arg1 mRNA level in BAT, iWAT, and 

eWAT of 12-week HFD-fed WT and OGT MKO mice (n = 4). (D) Nos2, Ccl2, TNF-α, and 

pro-Il-1b mRNA levels in WT and OGT KO BMDMs. IFN-γ was used to stimulate M1 

polarization. (E) Arg1, Clec10, Chi3l3, and Retnla mRNA levels in WT and OGT KO 

BMDMs. IL-4 was used to stimulate M2 polarization (n = 6). (F) Nos2 and Il-6 mRNA levels 

in DMSO-, thiamet-G (TMG)-, 6-Acetamido-6-deoxy-castanospermine (6-Ac-Cas)-, and 
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PUGNAc-treated RAW 264.7 cells under unstimulated and LPS-stimulated conditions. (G) 

Nos2 and Il-6 mRNA levels in Myc-, Myc-OGT-, and Myc-OGT-CD-overexpressing RAW 

264.7 cells under unstimulated and LPS-stimulated conditions (n = 3). (H) Western blots 

showing levels of overall O-GlcNAcylation (RL2), OGT, and β-actin of BMDMs 

overexpressing Myc, Myc-OGT and Myc-OGT-CD (D925N). Data are shown as mean ± 

SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by two-way ANOVA with Dunnett multiple 

comparisons for (F) and (G). *p < 0.05, **p < 0.01 by unpaired Student’s t-test for other 

panels.  
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O-GlcNAc signaling suppresses macrophage pro-inflammatory activation.  

Based on the above results, we hypothesized that O-GlcNAc signaling plays a 

suppressive role in macrophage pro-inflammatory activation. M1-like polarized 

macrophages are known to exhibit an elongated and spreading morphology with 

pseudopod-like protrusions (163). LPS-induced peritoneal macrophage activation was 

analyzed and we defined the spread cells as “activated cells” and the round-shaped cells 

as “resting cells” (Fig. 5B). Bright-field imaging showed that OGT KO group had a 2-3 fold 

increase in the percentage of activated cells, as compared to the WT group, under both 

unstimulated and LPS-stimulated (30 minutes) conditions (Fig. 5A-C), suggesting loss of 

OGT accelerates and promotes LPS-induced macrophage pro-inflammatory activation. 

We then treated WT and OGT KO BMDMs with fluorescein-labeled zymosan particles and 

found that OGT KO BMDMs internalized ~75% more zymosan particles compared to WT 

BMDMs (Fig. 5D-F), suggesting loss of OGT enhances macrophage phagocytic activity. 

Finally, qRT-PCR analysis showed that loss of OGT enhanced the expression of LPS-

induced M1 markers including Nos2, Ccl2, TNF-α, and Il-6 or pro-Il-1b by 100-200% and 

IFN-γ- induced M1 markers by 50-100% (Fig. 5G and S7D), but had no effect on IL-4-

induced M2 markers expression including Arg1, Clec10a, Chi3l3, and Retnla (Fig. S7E). 

Together, these data demonstrate a specific role of OGT in suppressing macrophage pro-

inflammatory polarization.  

To gain further insight into the role of O-GlcNAc signaling in macrophage pro-

inflammatory polarization, O-GlcNAc signaling was interrogated in BMDMs and RAW 

264.7 cells by treatment with various OGA inhibitors: thiamet-G (TMG), 6-Acetamido-6-

deoxy-castanospermine (6-Ac-Cas) and PUGNAc. The results showed that the 

pharmacological inhibition of OGA suppressed the expression of LPS-induced M1 

markers, Nos2 and Il-6, by 40-60% (Fig. 5H and S7F). Consistent with this finding, OGT 

overexpression suppressed LPS-induced Nos2 and Il-6 expression by 40-60%, while 
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overexpression of the dominant negative OGT catalytic dead mutant (OGT-CD, D925N) 

significantly enhanced LPS-induced Nos2 and Il-6 expression (Fig. 5I and S7G, H). Taken 

together, these results demonstrate a suppressive role of O-GlcNAc signaling in 

macrophage pro-inflammatory activation.  
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Figure 5. O-GlcNAc signaling suppresses macrophage pro-inflammatory activation. 

(A-C) Bright field imaging and statistical analysis of unstimulated and LPS-stimulated 

activation of peritoneal macrophages isolated from WT and OGT MKO mice (n = 4-8). 

Scale bars, 20 μm. (D-F) Fluorescence imaging and statistical analysis of phagocytosis of 

zymosan particles by WT and OGT KO BMDMs. Scale bar, 20 μm. (G) Macrophage M1 

marker Nos2, Ccl2, TNF-α, and Il-6 mRNA levels in un-stimulated and LPS-stimulated WT 

and OGT KO BMDMs (n = 3-6). (H) Nos2 and Il-6 mRNA levels in DMSO-, thiamet-G 

(TMG)-, 6-Acetamido-6-deoxy-castanospermine (6-Ac-Cas)-, and PUGNAc-treated 

BMDMs under unstimulated and LPS-stimulated conditions (n = 6). (I) Nos2 and Il-6 
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mRNA levels in Myc-, Myc-OGT-, and Myc-OGT-CD-overexpressing BMDMs under 

unstimulated and LPS-stimulated conditions (n = 4). Data are shown as mean ± SEM. *p 

< 0.05, **p < 0.01, ***p < 0.001 by two-way ANOVA with Dunnett multiple comparisons for 

(C), (H), and (I). *p < 0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t-test for other 

panels. 
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RNA sequencing analysis reveals a preferential regulation of macrophage pro-

inflammatory polarization by OGT.  

Macrophage activation involves extensive transcriptional rewiring (130). To assess 

the role of OGT in the systemic reprogramming during macrophage activation, we 

performed RNA sequencing-based transcriptional profiling for unstimulated (M0), LPS-

stimulated (M1) and IL-4-stimulated (M2) WT and OGT KO BMDMs. Overall, the heat map 

of differentially expressed genes (DEGs) showed that loss of OGT led to a significantly 

increased expression of a large set of genes and a decreased expression of a small set 

of genes in M0, M1 and M2 polarized BMDMs (Fig. 6A). These results demonstrate a 

prevalent role of OGT in suppressing macrophage activation at the transcriptional level. 

Strikingly, DEGs between WT and OGT KO BMDMs in M0 and M2 groups shared a similar 

expression pattern, whereas DEGs in the M1 group showed a very unique pattern (Fig. 

6A). Venn diagram showing the overlap of DEGs between every two groups also support 

the same conclusion (Fig. S8A). Then all three groups of DEGs were overlaid with a group 

of genes identified as macrophage-related genes (164, 165). Nine DEGs were found to 

be present in all groups, suggesting a robust OGT-mediated regulation of these genes. 

Again, a larger set of macrophage-related DEGs were found to be specifically present in 

the M1 group (57 in M1 vs. 19 in M2 and 14 in M0) (Fig. S8B). Together, these results 

suggest that OGT in macrophages preferentially regulates macrophage M1 polarization, 

which is consistent with our previous results showing that loss of OGT affects LPS- and 

IFN-γ- induced M1 polarization but not IL-4-induced M2 polarization (Fig. 5G and S7D, 

E). The expression of selected M1 and M2 markers determined by RNA sequencing were 

also analyzed. Consistent with the previous results, loss of OGT enhanced the expression 

of M1 markers in LPS-treated BMDMs but did not affect the expression of M2 markers in 

IL-4-treated BMDMs (Fig. 6B and S8C). 
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Gene set enrichment analysis (GSEA) for the Gene Ontology terms showed that 

loss of OGT in M1-polarized BMDMs enhanced the expression of genes that are highly 

enriched in the following GO terms: cytokine production, regulation of cytokine production, 

defense response, positive regulation of multicellular process, and immune response (Fig. 

S8D), supporting a role of OGT in suppressing macrophage M1 activation and 

inflammation. Genes enriched in GO terms including myeloid cell differentiation and 

myeloid leukocyte differentiation were down-regulated in M1-polarized OGT KO BMDMs 

(Fig. S8D). To determine whether macrophage maturation is affected by OGT, qRT-PCR 

analysis was performed and similar levels of F4/80, a macrophage marker, was observed 

in WT and OGT KO BMDMs (Fig. S8E), demonstrating that LyzM-Cre-mediated OGT KO 

does not affect monocyte-macrophage differentiation. GSEA comparing M1- and M2- 

activated pathways between WT and OGT KO BMDMs showed that two pathways, 

inflammatory response and signaling receptor binding, were significantly enhanced in M1-

polarized OGT KO BMDMs (Fig. S8F and G), suggesting that OGT may suppress 

macrophage M1 polarization by inhibiting signaling pathways involved in an inflammatory 

response. 

To provide additional insights into the mechanism by which OGT regulates 

macrophage M1 polarization, top DEGs between WT and OGT KO BMDMs in the M1 

group were shown in a Volcano plot (Fig. 6C). Among the top up-regulated DEGs in OGT 

KO BMDMs, genes closely related to M1 polarization including Il12b, Ccl22, Nos2, Ifng, 

Ccr7, and Ifnb1 were found. A large portion of the up-regulated DEGs including Clic5, 

Dnase1l3, Kynu, Adra2b, Rasgrf1, Tspan10, Dll4, Hamp, and Gpihbp1 have been known 

to play important roles in macrophage M1 polarization. Also, a small set of genes known 

to be involved in macrophage regulation including Mmp9, Dcstamp, Cyp2s1, and Mgat5b 

were identified in the top down-regulated DEGs (Fig. 6C). Together, these results 
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demonstrate a profound role of OGT-mediated transcriptional rewiring in the suppression 

of macrophage pro-inflammatory polarization. 
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Fig. 6. RNA sequencing analysis reveals a preferential regulation of macrophage M1 

polarization by OGT. (A) Heat map showing the differentially expressed genes (DEGs) 

between WT and OGT KO BMDMs, where colors indicate counts per million (cpm) values 

scaled by row (n =4). (B) Heat maps of expression levels of M1 macrophage markers 

determined by RNA sequencing. (C) Volcano plot showing top DEGs between M1-

polarized WT and OGT KO BMDMs. Red dot-labelled genes are up-regulated in OGT KO 

BMDMs and are closely related to M1 polarization. Purple and green dot-labelled genes 

have known functions related to M1 polarization and are up- and down-regulated in OGT 

KO BMDMs, respectively. 
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Figure S8. RNA sequencing analysis of M1- and M2-polarized WT and OGT KO 

BMDMs. (A) Venn diagram showing the overlap of DEGs (between WT and OGT KO 

BMDMs) between different polarization groups (M0 and M2; M0 and M1; and M2 and M1). 

(B) Venn diagram showing the overlap among DEGs (between WT and OGT KO BMDMs) 

from different polarization groups and macrophage-related genes. (C) Heat maps of 

expression levels of M2 macrophage markers determined by RNA sequencing. (D) Gene 



 

 64 

set enrichment analysis (GSEA) of DEGs between M1-polarized WT and OGT KO 

BMDMs for Gene Ontology terms. x axis indicates –log10-transformed p-values of GSEA, 

multiplied by +1 and -1 for up- and down-regulated pathways, respectively. (E) F4/80 

mRNA levels in in vitro differentiated WT and OGT KO BMDMs (n = 6). (F and G) Heat 

maps showing the differentially regulated biological (F) and molecular (G) pathways in M1- 

and M2-polarized WT and OGT KO BMDMs, where cell colors in the heatmap show –

log10-transformed p-values of GSEA, multiplied by +1 and -1 for up- and down-regulated 

pathways, respectively. The most up-regulated pathway in each analysis was marked with 

a red box over the heatmap. 
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OGT inhibits macrophage pro-inflammatory activation by suppressing 

mTORC1/S6K1 signaling.  

To understand the molecular mechanism by which O-GlcNAc signaling 

suppresses pro-inflammatory macrophage activation, we assessed the activation of 

several signaling pathways essential for macrophage pro-inflammatory polarization in WT 

and OGT KO BMDMs. We observed loss of OGT significantly enhanced LPS-induced 

activation of mTORC1/ribosomal protein S6 kinase beta-1 (S6K1) and NF-κB signaling 

but not the activation of ERK, JNK, AKT, and p38 signaling (Fig. 7A). Moreover, TMG 

treatment suppressed LPS-induced S6K1 activation in BMDMs (Fig. S9A). To determine 

the role of NF-κB and mTORC1/S6K1 signaling in OGT-mediated macrophage pro-

inflammatory polarization, we first treated WT and OGT KO BMDMs with PF-04708671 

(S6K1 inhibitor) and rapamycin (mTORC1 inhibitor), and then with LPS to induce pro-

inflammatory M1 polarization. qRT-PCR analysis showed that blocking mTORC1/S6K1 

signaling, but not NF-κB signaling, completely abolished the enhancement of Nos2 and Il-

6 expression in OGT KO macrophages upon LPS stimulation, suggesting that OGT 

suppresses macrophage M1 polarization by inhibiting mTORC1/S6K1 pathway (Fig. 7B, 

C and S9B-E).  

To determine how OGT regulates mTORC1 signaling, we first tested if tuberous 

sclerosis complex 2 (TSC2), a key regulator of mTORC1 signaling, can be modified by O-

GlcNAcylation. Our previous proteome-wide analysis of OGT-binding proteins in HEK 

293T cells showed that TSC2 is among the 853 putative OGT-binding proteins (145) (Fig. 

S9F). However, we were not able to detect any notable O-GlcNAcylation on TSC2, even 

in OGT-overexpressing cells (Fig. S9G). Moreover, the levels of TSC2 phosphorylation 

on multiple sites were not changed in OGT KO macrophages (Fig. S9H), suggesting that 

OGT may not affect TSC2 activity. S6K1 is a major mTORC1 downstream signaling 

molecule. A previous study showed that ribosomal protein S6 kinase-like 1 (S6LK), which 



 

 66 

shares ~40% homology with S6K1, can be modified by O-GlcNAcylation (166). We 

observed a robust interaction between exogenous OGT and S6K1 in HeLa cells and RAW 

264.7 cells (Fig. 7D and S10A). OGT overexpression in HeLa cells and RAW 264.7 cells 

led to enhanced O-GlcNAcylation and decreased serine phosphorylation on S6K1 (Fig. 

7E and S10B), indicating a competition between S6K1 O-GlcNAcylation and 

phosphorylation. We then sought to identify the glycosylation sites on S6K1.  Based on a 

list of potential O-GlcNAcylation sites predicted by two independent online computational 

prediction analyses (167, 168), a series of S6K1 single-site mutants were generated and 

how these mutations affect overall S6K1 O-GlcNAcylation was determined. The results 

showed that the mutation of serine 489 to alanine (S489A) largely eliminated overall S6K1 

O-GlcNAcylation in HeLa cells and RAW 264.7 cells (Fig. 7F and S10C-E), indicating that 

serine 489 is the primary site for S6K1 O-GlcNAcylation.  

To establish the functional relevance of S6K1 O-GlcNAcylation in macrophage 

activation, we examined the effect of S6K1 O-GlcNAcylation on S6K1 phosphorylation in 

RAW 264.7 cells. The results showed that eliminating S6K1 serine 489 O-GlcNAcylation 

enhanced S6K1 phosphorylation at serine 418 and threonine 229 (Fig. 7G), supporting 

the notion that loss of S6K1 O-GlcNAcylation at serine 489 promotes S6K1 

phosphorylation at the C-terminus autoinhibitory domain, which further facilitates 

phosphorylation and activation of its N-terminal kinase domain (169-171). Consistently, 

LPS-induced pro-inflammatory M1 polarization was enhanced by 40-70% in RAW 264.7 

cells overexpressing HA-S6K1-S489A mutation, as compared to HA- and HA-S6K1-

overexpressing cells (Fig. 7H, and S10F-H). These studies indicate that OGT suppresses 

macrophage pro-inflammatory polarization by modulating S6K1 O-

GlcNAcylation/phosphorylation and S6K1 activation (Fig. 7I).  
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Figure 7. OGT inhibits macrophage pro-inflammatory polarization by suppressing 

mTORC1/S6K1 signaling. (A) Western blot analysis showing the activation of S6K1, NF-

κB, ERK, JNK, p38 MAPK, AKT in unstimulated and LPS-stimulated (30 minutes) WT and 

OGT KO peritoneal macrophages. (B and C) Nos2 and Il-6 mRNA levels in unstimulated, 

LPS-stimulated, and PF-04708671-pretreated LPS-stimulated WT and OGT KO BMDMs 

(n = 4). (D) Immunoprecipitation (IP) and western blot analysis showing the interaction 

between exogenously expressed HA-S6K1 and Myc-OGT in HeLa cells. (E) IP and 

western blot analysis showing that OGT overexpression enhances S6K1 O-GlcNAcylation 
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and decreases S6K1 serine phosphorylation in HeLa cells. (F) IP and western blot 

analysis showing that serine 489 to alanine (S489A) mutation in S6K1 greatly abolished 

the overall O-GlcNAcylation on S6K1 in HeLa cells. (G) IP and western blot analysis 

showing that S489A mutation in S6K1 enhanced LPS-induced S6K1 phosphorylation on 

Threonine 229 (T229) and S418 in RAW 264.7 cells. (H) Nos2 mRNA levels in untreated 

and LPS-stimulated RAW 264.7 cells overexpressing HA, HA-S6K1 and HA-S6K1-S489A 

(n = 4-6). (I) Molecular model for OGT function in mTORC1/S6K1 signaling. Data are 

shown as mean ± SEM. **p < 0.01 by two-way ANOVA with Dunnett multiple comparisons 

for (H). **p < 0.01, ***p < 0.001 by unpaired Student’s t-test for other panels. 
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Figure S9. Suppressing NF-κB signaling does not rescue the enhanced M1 

polarization in OGT KO macrophages. (A) Western blot analysis of S6K1 and its 

phosphorylation in untreated and TMG-pretreated BMDMs. LPS treatment (30 minutes) 

was used to stimulate M1 polarization. (B and C) Nos2 and Il-6 mRNA levels in 

unstimulated, LPS-stimulated, and rapamycin (Rapa)-pretreated LPS-stimulated WT and 

OGT KO peritoneal macrophages (n = 4-8). (D and E) Nos2 and Il-6 mRNA levels in 

unstimulated, LPS-stimulated, and BMS-345541-pretreated LPS-stimulated WT and OGT 

KO peritoneal macrophages. BMS-345541, an IκB kinase inhibitor, was used to inhibit NF-

κB signaling (n = 6). (F) Intensities of Tuberin (TSC2) binding to OGT under various 

conditions determined by our proteome-wide analysis of OGT-binding proteins in HEK 

293T cells. (G) Immunoprecipitation (IP) and western blot analysis showing no interaction 

was found between exogenously expressed Flag-TSC2 and Myc-OGT in HEK 293T cells. 
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(H) Western blot analysis of TSC2 and its phosphorylation in unstimulated and LPS-

stimulated (30 minutes) WT and OGT KO peritoneal macrophages. Data are shown as 

mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t-test. 
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Figure S10. OGT inhibits macrophage pro-inflammatory polarization by regulating 

S6K1. (A) IP and western blot analysis showing the interaction between exogenously 

expressed HA-S6K1 and Myc-OGT in RAW 264.7 cells. (B) IP and western blot analysis 

showing that OGT overexpression enhances S6K1 O-GlcNAcylation and decreases S6K1 

serine phosphorylation in RAW 264.7 cells. (C) Statistical analysis showing that serine 

489 to alanine (S489A) mutation in S6K1 largely abolished the overall O-GlcNAcylation 

on S6K1 in HeLa cells (n = 3). (D and E) IP (D) and statistical analysis (E) showing that 

S489A mutation in S6K1 greatly abolished S6K1 O-GlcNAcylation in RAW 264.7 cells (n 

= 3). (F) S6K1 mRNA level in RAW 264.7 cells with ectopically expressed HA, HA-S6K1 

and HA-S6K1-S489A (n = 4). (G and H) Il-6 and TNF-α mRNA levels in untreated and 

LPS-stimulated RAW 264.7 cells overexpressing HA tag, HA-S6K1 and HA-S6K1-S489A 

(n = 4-6). Data are shown as mean ± SEM. *p < 0.05, **p < 0.01 by one-way ANOVA with 

Dunnett multiple comparisons for (F). **p < 0.01, ***p < 0.001 by two-way ANOVA with 

Dunnett multiple comparisons for other graphs. 
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DISCUSSION 

In this study, we demonstrate that macrophage O-GlcNAc signaling plays a 

profound role in suppressing adipose tissue inflammation and insulin resistance. Recent 

studies have expanded our knowledge about the functional and molecular integration of 

metabolic and inflammatory pathways. Hyperglycemia and energy surplus associated with 

obesity and metabolic syndrome have been shown to promote inflammatory responses 

through various mechanisms (172, 173). Changes in glucose uptake, glycolysis, and UDP-

GlcNAc biosynthesis were observed during macrophage polarization (130, 131). 

Additionally, free fatty acids have been shown to activate inflammatory pathways and 

impair insulin action in adipose tissue (174). These findings prompted us to postulate that 

nutrient-sensing O-GlcNAc signaling serves as a link between overnutrition and insulin 

resistance by regulating macrophage function in metabolic tissues. However, only few 

studies have attempted to directly evaluate the role of O-GlcNAc signaling in macrophage 

activation and contradictory results were reported (175-177). Here, using in vitro and in 

vivo models, we demonstrate that O-GlcNAc signaling suppresses macrophage pro-

inflammatory M1-like polarization and is dispensable for anti-inflammatory M2-like 

polarization, which supports an immunosuppressive role of O-GlcNAc signaling in 

macrophage activation.  

Increasing evidence has established a causative link between pro-inflammatory 

macrophage and insulin resistance in both rodents and human (50, 155). Previous studies 

have shown that suppressing macrophage pro-inflammatory activation or entirely 

depleting the macrophage population is protective against diet-induced metabolic 

dysregulation (178, 179). Consistent with this, we found that genetic ablation of OGT in 

macrophages results in increased adipose tissue inflammation and excessive adipose 

tissue lipolysis, thus leading to increases in ectopic lipid accumulation and whole-body 

insulin resistance. Our study provides compelling evidence for the existence of a 
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protective mechanism against inflammation through O-GlcNAc signaling in obesity. O-

GlcNAc signaling enables macrophages to sense external nutrients and restrains 

macrophage pro-inflammatory activation, which contributes to adipose tissue and whole-

body metabolic homeostasis. We speculate that macrophage O-GlcNAc signaling is part 

of a homeostatic mechanism maintaining metabolic homeostasis at the early stage of 

obesity. However, pro-inflammatory stimuli, such as adipocyte cell death and pro-

inflammatory cytokines secreted by other cells, are aggravated by prolonged HFD feeding. 

Eventually, the protective mechanism is pushed to the limit and becomes dysfunctional in 

severely obese animals. Consistent with this idea, a study showed that pro-inflammatory 

macrophages in mouse epididymal fat appear 3 weeks after the initiation of HFD feeding. 

In contrast, the accumulation of neutrophils peaks at day 3 after initiating HFD feeding 

(180). These results suggest that the pro-inflammatory activation of macrophages is 

inhibited at an early stage of exposure to excess amounts of nutrients.  

mTOR signaling lies at the core of nutrient-sensing and inflammatory pathways 

(181). Previous studies implicate that TSC1, an upstream regulator of mTORC1, 

orchestrates macrophage M1 and M2 activation via separate pathways. Loss of TSC1 

promotes M1-like activation by stimulating the ERK pathway, while inhibiting M2-like 

activation by suppressing the ERK and C/EBPβ pathways (182, 183). Several studies 

have suggested that obesity is associated with increased mTOR activity, and deficiency 

of the downstream mediator S6K1 can protect mice against diet- and age-induced insulin 

resistance (184, 185). The current study has identified OGT as a key regulator of the 

mTOR/S6K1 pathway. We have shown that O-GlcNAcylation suppresses mTORC1 

signaling by directly regulating S6K1. S6K1 O-GlcNAcylation inhibits sequential 

phosphorylation required for kinase activation, resulting in suppression of pro-

inflammatory gene transcription. Suppression of mTORC1/S6K1 pathway abrogates the 

effect of OGT deletion on LPS-induced M1 activation, suggesting that S6K1 is integral to 
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OGT-mediated macrophage regulation. Therefore, our study provides novel mechanistic 

insight into the regulation and the function of mTORC1/S6K1 pathway in 

immunometabolism. 

Macrophages display considerable plasticity with M1 and M2 activation states at 

two extremes. How macrophages acquire diverse activation states in response to 

metabolic cues is still largely unknown. A previous study showed that mTOR/MYC 

signaling enhances O-GlcNAc signaling by promoting OGT protein expression (186). The 

AMP-activated protein kinase (AMPK) pathway is the other nutrient-sensing pathway 

involved in macrophage polarization, and AMPK can negatively regulate the mTOR 

pathway (187). Furthermore, there is evidence that O-GlcNAcylation of AMPK regulates 

its enzymatic activity (188). Taken together, it is likely that OGT, mTORC1 and AMPK 

pathways form a complex nutrient-sensing network that underpins a spectrum of 

macrophage activation states.  

In summary, this study demonstrates O-GlcNAc signaling as a novel homeostatic 

regulator at the interface of inflammation and metabolism. The results have important 

implications for our understanding of the integration of metabolism and immunity, an 

evolutionary need for survival (189). Future studies to explore how macrophage O-GlcNAc 

signaling integrates nutritional signals to dictate the immune response would help develop 

new immunomodulatory strategies to treat chronic metabolic diseases. Glutamine and 

glucosamine, the popular nutritional supplements implicated in immunometabolism, both 

are known to fuel the hexosamine biosynthetic pathway and promote O-GlcNAc signaling. 

Studies have shown that human adipose glutamine levels correlate inversely with fat mass 

and white fat inflammation (190). Glutamine supplementation attenuates adipose tissue 

inflammation and reduces metabolic risk in rodents (190, 191). Supplementing 

glucosamine in HFD-fed rats improves glucose metabolism and reduces visceral fat mass 

(192). Further investigation is warranted to determine whether O-GlcNAc signaling in 
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immune cells is involved in these processes. It is worth noting that glucosamine also 

protects against sepsis-induced tissue injury and septic death in mouse and zebrafish 

models (177). Therefore, the immunosuppressive function of O-GlcNAc signaling may 

have broader implications in both obesity-associated morbidity and immune-related 

diseases. 
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METHODS 

Animals 

Ogtflox mice were crossed with LyzM-Cre mice to generate Ogtflox LyzM-Cre-/- (WT) 

and Ogtflox LyzM-Cre+/- (OGT MKO) mice. Ogtflox mice were described previously (193) 

and were kindly provided by Dr. Steven Jones at the University of Louisville. LyzM-Cre 

mice were from The Jackson Laboratory (Catalog No. 004781). All mice were housed in 

a 12 h: 12 h light-dark cycle at 25 °C. Unless otherwise specified, mice were free to access 

water and food and were maintained on a normal chow diet. High fat fed mice were given 

ad libitum access to a high fat diet (D12492, Research Diets) when they were 6-9 weeks 

old. Male mice were used for the experiments. All animal experiments were performed in 

accordance with protocols approved by Yale University’s Institutional Animal Care and 

Use Committee. Body weights were recorded every week. Body composition was 

measured by nuclear magnetic resonance relaxometry using an EchoMRI system. Freshly 

dissected tissues were used to determine tissue weights. For metabolic cage analysis, 

single-housed mice were first acclimated in metabolic chambers for 3 days. Then gas 

exchange, energy expenditure, and physical activity were recorded for 4 days. Average 

daily food intake of each mouse was measured by weighing the food every day at the 

same time continuously for 3 days. 

 

Biochemical Analyses 

Blood glucose concentrations were measured by using a Nova Max Glucometer 

or the YSI 2700 Select Biochemistry Analyzer. Plasma insulin concentrations were 

measured by ELISA (Millipore) or radioimmunoassay (Millipore). Plasma non-esterified 

fatty acid (NEFA) and triglyceride concentrations were measured by using a Wako kit and 

the Sekisui triglyceride-SL reagent respectively. Serum inflammatory cytokine (IL-6 and 

TNF-α) concentrations were measured by ELISA (BD OptEIA) assay.  
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Tissue Analyses 

Liver and skeletal muscle triglyceride contents were measured as previously 

described (194). Briefly, lipids were extracted from liver and gastrocnemius muscle using 

2:1 chloroform:methanol and measured by using the Sekisui triglyceride-SL reagent 

spectrophotometrically. Tissue acetyl-CoA, diacylglycerols, and ceramide concentrations 

were measured by liquid chromatography/mass spectrometry/mass spectrometry (LC-

MS/MS) (19, 50, 195). For the measurement of inflammatory cytokine (IL-6 and TNF-α) 

levels, tissues were first homogenized in PBS and then centrifuged at 4°C to obtain 

supernatant. The supernatants were then analyzed by ELISA (BD OptEIA) assay. 

 

Glucose tolerance test and insulin tolerance test 

For glucose tolerance test, mice were fasted overnight and injected 

intraperitoneally with a single dose of glucose (1.5 g/kg body weight), then tail-vein blood 

was taken at designated times and blood glucose levels were determined using a Nova 

Max Glucometer. For insulin tolerance test, mice were fasted for 6 hours in the morning 

and injected intraperitoneally with a single dose of insulin (1 U/kg body weight for all NC-

fed mice and 1.5 U/kg body weight for all HFD-fed mice), then blood glucose levels were 

measured as described above. 

 

Basal and hyperinsulinemic-euglycemic clamp study 

An indwelling catheter was placed in the jugular vein seven days before the clamp 

study. Mice were fasted overnight the day before the study. To measure whole-body 

lipolysis, a 120 minutes basal infusion with [3-3H] glucose (HPLC purified; PerkinElmer) 

and [13C16] potassium palmitate (Cambridge Isotopes) was performed as described (50). 

Blood was collected from the tail vein at 120 minutes. After the basal period, a 140-minute 
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hyperinsulinemic-euglycemic clamp was performed by infusing a continuous rate of insulin 

(10 mU/[kg-min] for 3 minutes and 3 mU/[kg-min] for 140 minutes) and variable rates of 

20% dextrose to maintain euglycemia along with the infusion of [13C16] sodium palmitate, 

while periodic tail vein blood sampling was performed. In the last 55 minutes of the clamp 

period, 10 μCi 2 deoxy-[1-14C] glucose (2-DG) was injected to measure tissue-specific 

glucose uptake. At 140 minutes, a final blood sample was collected and the mice were 

euthanized by intravenous injection of sodium pentobarbital. Liver, gastrocnemius muscle, 

white and brown adipose tissues were freeze-clamped in pre-cooled in liquid nitrogen and 

stored at -80 °C for further analyses. 

      

Flux measurements 

The specific activity of [3-3H] glucose in plasma samples collected at the steady 

state during basal and clamp study was measured by using a liquid scintillation counter 

as previously described (50). During basal, endogenous glucose production (EGP) is the 

only source of glucose appearance whose rate equals to glucose turnover rate at steady 

state, therefore EGP = glucose turnover rate. During clamp, EGP and glucose infusion 

together contribute to glucose appearance, therefore EGP = glucose turnover rate - 

glucose infusion rate. [13C16] palmitate enrichments were measured using gas 

chromatography-mass spectrometry (GC/MS) as previously described (196). Palmitate 

turnover = ([13C16] palmitate tracer enrichment/[13C16] palmitate plasma enrichment-1) x 

infusion rate. The fatty acid turnover was measured by correcting for the percentage of 

palmate in total fatty acids (197).  

 

Cold challenge 

For thermogenesis studies, single-housed mice were transferred from room 

temperature to 4 °C for 6 hours. Core body temperature was examined in conscious mice 
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using a rectal thermometer. During this process, food was removed but the mice had free 

access to water and the bedding material was left in the cage.  

 

Cell culture and treatments 

All cells were cultured at 37 °C in 5% CO2. RAW 264.7, HeLa, and HEK 293T cells 

were from the American Type Culture Collection and were cultured in DMEM (GIBCO) 

supplemented with 10% FBS (GIBCO). Plasmids were transfected into cells by using 

FuGENE HD (Promega) or jetPEI-Macrophage (Polyplus-transfection). For primary 

adipocyte culture, the stromal vascular fraction (SVF) of the mouse epididymal white fat 

was isolated, cultured and differentiated into adipocytes as described previously (198). 

Murine resident peritoneal macrophages and bone marrow-derived macrophages 

(BMDMs) were isolated and generated as described (199). To test the effects of OGA 

inhibitors, macrophages were pretreated with 10 μM TMG, 6-Ac-Cas, or PUGNAc for 6 

hours. Then LPS was added (in the presence of OGA inhibitors) to stimulate M1 

polarization. Similarly, PF-04708671 (1 μM), BMS-345541, and rapamycin (100 nM) were 

added 1 hour prior to the LPS treatment.   

 

Macrophage polarization and phagocytosis assay 

BMDMs and peritoneal macrophages were treated with LPS (100 ng/ml, unless 

specified otherwise) to induce M1 polarization. A higher concentration of LPS (1 μg/ml) 

was used to induce M1 polarization in RAW 264.7 cells. IL-4 (10 ng/ml) was used to induce 

M2 polarization in BMDMs and peritoneal macrophages. Unless otherwise stated, 

macrophages were collected 30 minutes later for cell signaling analysis or 12 hours later 

for qRT-PCR analysis. For the phagocytosis assay, BMDMs were cultured in M-CSF-free 

medium for 24 hours and then incubated with opsonized fluorescently labeled zymosan A 

bioparticles (Thermo Fisher) for 1 hour at 37°C. Then phagocytosis was stopped by adding 
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cold PBS. BMDMs were washed, fixed, and counterstained with DAPI for fluorescence 

microscopy.  

 

Quantitative real-time PCR and RNA-seq 

Total RNA was isolated from untreated, LPS-treated, and IL-4-treated (12 hours 

unless otherwise stated) WT and OGT KO BMDMs using TRIzol Reagent (Invitrogen). 

Then total RNA samples were used for cDNA synthesis (iScript cDNA Synthesis Kit) and 

SYBR Green-based quantitative real-time PCR analysis (Bio-Rad). The level of 36b4 was 

used as internal control. Primer sequences are: 36b4-F (5’-AGATGCAGCAGATCCGCAT-

3 ’ ) ,  3 6 b 4 - R  ( 5 ’ - G T T C T T G C C C A T C A G C A C C - 3 ’ ) ;  O g t - F  ( 5 ’ -

AAGAGGCACGCATTTTTGAC-3’), Ogt-R (5’-ATGGGGTTGCAGTTCGATAG-3’); Oga-F 

( 5 ’ - C T C A G A G G C T G A G A A A A T A A T G T T G A G - 3 ’ ) ,  O g a - R  ( 5 ’ -

AAGGGAAGTTGGCAAGGAAAGT-3’); Nos2-F (5’-TTCTGTGCTGTCCCAGTGAG-3’), 

N o s 2 - R  ( 5 ’ - T G A A G A A A A C C C C T T G T G C T - 3 ’ ) ;  I l 6 - F  ( 5 ’ -

GAGGATACCACTCCCAACAGACC-3’), Il6-R (5’-AAGTGCATCATCGTTGTTCATACA-

3 ’ ) ;  TNF-α -F  (5 ’ -CATCTTCTCAAAATTCGAGTGACAA-3 ’ ) ,  TNF-α -R (5 ’ -

TGGGAGTAGACAAGGTACAACCC-3’); Ccl2-F (5’-ATTGGGATCATCTTGCTGGT-3’), 

C c l 2 - R  ( 5 ’ - C C T G C T G T T C A C A G T T G C C - 3 ’ ) ;  p r o - I l 1 b - F  ( 5 ’ -

A A G A G C T T C A G G C A G G C A G T A T C A - 3 ’ ) ,  p r o - I l 1 b - R  ( 5 ’ -

ATGAGTCACAGAGGATGGGCTCTT-3’); Arg1-F (5’-TTTTTCCAGCAGACCAGCTT-3’), 

A r g 1 - R  ( 5 ’ - A G A G A T T A T C G G A G C G C C T T - 3 ’ ) ;  C l e c 1 0 - F  ( 5 ’ -

CTCTGGAGAGCACAGTGGAG-3’), Clec10-R (5’-ACTTCCGAGCCGTTGTTCT-3’); 

R e t n l a - F  ( 5 ’ - C T G G A T T G G C A A G A A G T T C C - 3 ’ ) ,  R e t n l a - R  ( 5 ’ -

CCCTTCTCATCTGCATCTCC-3’); Chi3l3-F (5’-TTTCTCCAGTGTAGCCATCCTT-3’), 

Chi3l3-R (5’-TCTGGGTACAAGATCCCTGAA-3’). For RNA-seq, total RNA was isolated 

by using the RNeasy Plus Mini Kit (QIAGEN). RNA integrity was examined by 
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electrophoresis for quality control purpose. Then the RNA samples were used to generate 

eukaryotic transcriptome libraries. The sequencing was performed on the HiSeq PE-150 

platform with 30m reads. For RNA-seq analysis, total RNA-seq reads were mapped to 

iGenome UCSC MM10 gene annotation using TopHat (200) version 2.1.0. Mapped reads 

were summarized for each gene using HTSeq (201) version 0.9.1. Differential expression 

analysis was implemented using edgeR (202, 203) version 3.22.5 with FDR = 0.05 and at 

least 1 absolute log2 fold change. Gene set enrichment analysis was implemented using 

t h e  T o p p G e n e  S u i t e  ( h t t p s : / / t o p p g e n e . c c h m c . o r g / ) . 

 

Western blotting and immunoprecipitation 

Cells were lysed in lysis buffer containing 1% Nonidet P-40, 50 mM Tris-HCl, 150 

mM NaCl, 0.1 mM EDTA together with proteinase inhibitors and protein phosphatase 

inhibitors. Protein lysates were then denatured by heating in laemmli sample buffer 

containing SDS and β-mercaptoethanol, resolved by SDS-PAGE, and transferred to 

PVDF membranes (Millipore). The membranes were blocked with 5% skimmed milk or 

bovine serum albumin (BSA), incubated with primary antibodies first, and then with 

horseradish peroxidase-conjugated secondary antibodies (Cell Signaling Technology). 

Proteins were visualized with ECL western blotting substrate (Pierce). For protein kinase 

Cε (PKCε) and PKCθ translocation, cytoplasm and plasma membrane fractions were 

separated by ultracentrifugation as previously described (67, 71). For immunoprecipitation, 

cell lysates were incubated with antibody-conjugated agarose beads at 4 °C overnight. 

The beads were then washed and boiled in laemmli sample buffer, and the proteins were 

examined by western blotting. 

 

Reagents and plasmids 
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Antibodies against O-GlcNAc [RL2] (ab2739), phosphoserine [PSR-45], NaK-

ATPase [464.6] and OGA (EPR7154(B)) (Abcam); OGT (D1D8Q), JNK1 (2C6), phospho-

JNK (81E11), phospho-Akt (Ser473) (587F11), phospho-Akt (Thr308) (244F9), Akt (9272), 

phospho-p38 (D3F9), phospho-ERK 1/2 (D13.14.4E), ERK 1/2 (137F5), phospho-TSC2 

(Thr1462) (3611), phospho-TSC2 (Ser1387) (D2R3A), phospho-TSC2 (Ser939) (3615), 

TSC2 (D93F12), phospho-IR (Y1162) (3024), IR (3020), and GAPDH (14C10) (Cell 

Signaling Technology); S6K1 (DK7994), phospho-S6K1 (Thr229) (DK7994), phospho-

S6K1 (Ser371) (DK3904), and phospho-S6K1 (Ser418) (AC0176) (eBioscience); NF-κB 

p65 (A-12), and p-NF-κB p65 (Ser 536), and Myc (9E10) (Santa Cruz Biotechnology); Flag 

(M2), HA (H3663), and β-actin (A5441) (Sigma-Aldrich); PKCε (610086) and PKCθ 

(610090) (BD Bioscience) were purchased from the indicated sources. PF-04708671, 

BMS-345541, and rapamycin (Cayman Chemical), TMG (Carbosynth), and PUGNAc 

(Sigma-Aldrich) were from indicated sources. LPS (B5S-36-01, InvivoGen), mouse IL-4 

(5208, Cell Signaling Technology), IFN-γ (2728403, Millipore), and rmM-CSF (416-ML, 

R&D Systems) were from the indicated sources. Mammalian expression plasmids pCMV-

Myc-hOGT and catalytic dead pCMV-Myc-hOGT-G598S (catalytic dead) were described 

and kindly provided by Dr. Xiaochun Yu at the University of Michigan. pRK7-HA-S6K1-

WT encoding HA-tagged rat S6K1 was from Addgene (Plasmid #8984). HA-S6K1 mutants 

were generated using QuikChange II site-directed mutagenesis kit (Agilent). 

 

Lipolysis assay 

For white adipose tissue ex vivo lipolysis assay, freshly dissected adipose tissue 

was cut into small explants (~3 mm diameter), washed in PBS, and transferred to Krebs-

Ringer buffer with 3 mM HEPES and 1% free fatty acid-free BSA and incubated in a 37 °C 

shaker. Media samples were collected at selected time points. The amount of free glycerol 

released into the medium was measured using the Free Glycerol Reagent (Sigma-Aldrich). 
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To determine lipolysis in cultured adipocytes, SVFs of the mouse epididymal white fat 

were isolated and differentiated into mature adipocytes as previously described (198). 

Peritoneal macrophages were plated directly on top of the adipocytes or in a transwell (0.4 

μM pore size) inserted into the adipocyte culture medium. The macrophages were 

stimulated with LPS (100 ng/ml, 30 minutes) and then the cells were washed with PBS 

and incubated in phenol red-free medium. The amount of released glycerol was 

determined by using the Free Glycerol Reagent (Sigma-Aldrich).  

 

Flow cytometry 

For flow cytometry analysis, SVFs of mouse adipose tissues were isolated as 

described previously (198). In brief, mouse adipose tissue was dissected and minced into 

fine pieces on ice. Then, adipose tissues were digested to get single cell suspensions. 

Digestion buffer and mature adipocytes were removed by centrifugation. The pellets were 

collected, resuspend in FACS buffer (1X DPBS, 2 mM EDTA, and 1% FBS), filtered 

through 70 μm filters, and centrifuged again to obtain SVFs. Generally, 1×106 cells were 

used for staining. For cell surface marker staining, the following fluorochrome-conjugated 

antibodies from Biolegend were added: F4/80 (BM8, 1:200 dilution), CD11c (N418, 1:100), 

CD206 (C068C2, 1:100), MGL1 (LOM-8.7, 1:200), CCR2 (SA203G11, 1:200), and 

CD16/CD32 (Fc block, 93, 1:1000). Zombie NIR™ Fixable Viability Kit (Biolegend) was 

used to determine live cells. If intracellular staining for O-GlcNAcylation was required, cells 

were then fixed and permeabilized by using Fixation/Permeabilization Solution Kit 

(Biosciences). Cells were then washed and incubated with AlexaFluor 647-conjugated O-

GlcNAc antibody (RL2, Novus Biologicals, 1:800). Stained SVFs were filtered through 40 

μm filters and analyzed by a BD LSRII flow cytometer. The results were analyzed by using 

FlowJo. 
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Histology 

Animals were sacrificed and tissues were collected, fixed (4% paraformaldehyde, 

overnight at 4 °C), dehydrated, and embedded in paraffin. Tissue sections were then 

prepared by using a microtome and stained with hematoxylin-eosin (H&E) staining. 

Blinded histological scoring of liver slides was performed by an experienced pathologist. 

 

Whole-mount adipose tissue staining 

To visualize macrophages in adipose tissue, freshly prepared whole mounted 

adipose tissue (~4 mm x 4 mm x 2 mm) was fixed in a mild fixative (1% paraformaldehyde, 

30 minutes), penetrated in a mild detergent buffer (0.5% Tween 20, 30 minutes), and 

stained with Alexa Fluor 647-conjugated anti-CD11c antibody (N418, BioLegend), 

BODIPY FL, and DAPI. The stained tissue was mounted and imaged as described (204).  

 

Statistical analysis 

Data were plotted and statistically evaluated using GraphPad Prism version 7.0a 

(GraphPad Software). Results were presented as mean ± SEM. Two-condition 

comparisons were performed using unpaired two-tailed Student’s t-test. For 

nonparametric comparison of means, Mann-Whitney test was used. For multiple-

conditions comparisons, one-way or two-way ANOVA with Dunnett multiple comparisons 

was used. Differences that are statistically significant were plotted as p < 0.05 (∗), p < 0.01 

(∗∗), and p < 0.001 (∗∗∗). 
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Chapter 6 

Mechanisms by Which Adiponectin Reverses High Fat Diet-induced Insulin 

Resistance in Mice 
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ABSTRACT  

Adiponectin has emerged as a potential therapy for type 2 diabetes mellitus, but 

the molecular mechanism by which adiponectin reverses insulin resistance remains 

unclear. Two-weeks of globular adiponectin (gAcrp30) treatment reduced fasting plasma 

glucose, triglyceride (TAG) and insulin concentrations and reversed whole-body insulin 

resistance, which could be attributed to both improved insulin-mediated suppression of 

endogenous glucose production and increased insulin-stimulated glucose uptake in 

muscle and adipose tissues. These improvements in liver and muscle sensitivity were 

associated with reductions in liver and muscle TAG and plasma membrane (PM) 

associated diacylglycerol (DAG) content and occurred independently of reductions in total 

ceramide content. Reductions of PM DAG content in the liver and skeletal muscle were 

associated with reduced PKCε translocation in liver and reduced PKCθ and PKCε 

translocation in skeletal muscle resulting in increased insulin-stimulated insulin receptor 

tyrosine1162 phosphorylation, IRS-1/IRS-2-associated PI3-kinase activity and Akt-serine 

phosphorylation. Both gAcrp30 and full-length adiponectin (Acrp30) treatment increased 

eNOS/AMPK activation in muscle and muscle fatty acid oxidation. gAcrp30 and Acrp30 

infusions also increased plasma triglyceride uptake in eWAT, which could be attributed to 

increased lipoprotein lipase (LPL) activity. These data suggest that adiponectin and 

adiponectin-related molecules reverse lipid-induced liver and muscle insulin resistance by 

reducing ectopic lipid storage in these organs resulting in decreased membrane DAG-

induced nPKC activity and increased insulin signaling. Adiponectin mediates these effects 

by both promoting the storage of plasma triglyceride in eWAT likely through stimulation of 

LPL, as well as by stimulation of AMPK in muscle resulting in increased muscle fat 

oxidation.2 

 
2 Other contributors to this work include Dongyan Zhang, Daniel F. Vatner, Leigh Goedeke, Sandro 
M. Hirabara, Ye Zhang, Rachel J. Perry, and Gerald I. Shulman 
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INTRODUCTION 

Type 2 diabetes mellitus (T2DM) is one of the leading causes of morbidity and 

mortality in the adult population worldwide (82, 205) and is associated with disease in 

many organ systems, including nonalcoholic fatty liver disease (NAFLD) and 

atherosclerotic vascular disease (ASCVD) (5-7, 84). Insulin resistance plays a critical role 

in the pathogenesis of T2DM and metabolic syndrome. The adipokine adiponectin has 

emerged as a potential anti-diabetic, anti-inflammatory and anti-atherogenic factor (23, 

24). Unlike adipokines such as leptin, plasma adiponectin levels are inversely correlated 

with adiposity and decreased in obesity, insulin resistance and T2DM (108, 109). 

Adiponectin is present in human plasma as full-length adiponectin (Acrp30) and as a C-

terminal globular fragment (gAcrp30) (110, 118, 206). The C-terminal globular fragment is 

produced by proteolytic cleavage and is thought to be the pharmacologically active moiety 

(110). A wide variety of explanations for adiponectin's glucose-lowering and insulin-

sensitizing properties has been proposed, which have been derived predominantly from 

in vitro and ex vivo studies, including: suppression of gluconeogenesis (111, 115, 207); 

increased 5' AMP-activated protein kinase (AMPK)/ acetyl-CoA carboxylase (ACC)-

dependent fatty acid oxidation in liver and muscle (23, 115, 118, 208); and reduced hepatic 

ceramide content by activation of hepatic ceramidase (114). A clear, consistent model for 

adiponectin’s action in vivo is lacking, and the mechanisms by which adiponectin 

ameliorates insulin resistance are a matter of active debate. 

The association between ectopic lipid and insulin resistance in the liver and 

skeletal muscle is widely recognized (13-15). Diacylglycerols (DAGs) and ceramides are 

the two best-studied mediators of lipid-induced insulin resistance. Ceramides have been 

shown to impair insulin action at the level of protein kinase B (Akt) phosphorylation, 

through activation of protein kinase Cζ (PKCζ) and/or protein phosphatase 2A (81, 209, 

210).  In contrast, plasma membrane sn-1,2-DAGs, which has been shown to be the key 
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DAG stereoisomer, impair insulin action via activation of novel PKCs (nPKCs), including 

PKCε in liver (17, 18, 66) and both PKCθ and PKCe in skeletal muscle (68, 211). PKCe 

activation subsequently impairs insulin receptor kinase (IRK) tyrosine kinase activity and 

PKCq activation impairs insulin signaling at the level of IRS-1/IRS-2 associated PI3-kinase 

activity (14, 19, 20). Insulin resistance in the liver leads to reduced insulin-stimulated 

hepatic glycogen synthesis and defects in insulin suppression of hepatic glucose 

production, while insulin resistance in the skeletal muscle leads to reduced insulin-

stimulated muscle glucose transport. In the setting of white adipose tissue (WAT) insulin 

resistance, WAT lipolysis is resistant to suppression by insulin, leading to increased non-

esterified fatty acid (NEFA) delivery to the liver and muscle, which may further promote 

increased liver and muscle ectopic lipid content (6, 7, 161, 212). 

Given that prior studies have demonstrated that increased plasma adiponectin 

concentrations lead to accretion of WAT and improved glycemia in mice (213, 214), we 

hypothesized that the insulin-sensitizing properties of adiponectin might be due to 

protection against ectopic lipid deposition in insulin-responsive tissues. To address this 

hypothesis, we performed a comprehensive series of studies to assess the effects of two-

week gAcrp30 and Acrp30 treatment on multiple metabolic fluxes using a combination of 

stable- and radio-labeled isotopic tracers, in a high fat diet (HFD)-fed mouse model of 

lipid-induced insulin resistance. Here, we demonstrate that two weeks of gAcrp30 

treatment reverses whole-body insulin resistance in HFD-fed mice by reducing plasma 

membrane DAG content, resulting in decreased translocation of PKCε to the plasma 

membrane in liver and decreased PKCε/ PKCθ translocation in skeletal muscle leading to 

increased insulin signaling in both of these tissues. This reduction in ectopic lipid storage 

in liver and muscle could be attributed to increased lipoprotein lipase activity in epididymal 

WAT (eWAT), resulting in increased lipid uptake in eWAT, as well as activation of AMPK 

in muscle, which in turn promoted increased fatty acid oxidation in skeletal muscle. Taken 
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together, these results provide new insights into the mechanisms by which adiponectin 

reverses insulin resistance in vivo. 
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RESULTS 
 
Two-week globular adiponectin treatment ameliorates lipid-induced insulin 

resistance 

In order to examine the effect of long-term exposure to increased globular 

adiponectin (gAcrp30) on glucose metabolism, we performed continuous subcutaneous 

gAcrp30 infusions (2.5μg/day) in 12-week HFD-fed mice for two weeks. As expected, 

plasma adiponectin concentrations increased in the gAcrp30-treated mice compared with 

control mice (Fig. 1A). To assess the effect of gAcrp30 on energy balance, metabolic 

cages were utilized and whole-body energy expenditure was determined by indirect 

calorimetry. Consistent with the lack of difference in body weight or body composition (Fig. 

1B and 1C), we observed no effect of gAcrp30 on whole-body oxygen consumption, 

carbon dioxide production, energy expenditure, caloric intake, respiratory exchange ratio, 

drinking or activity (Fig. 1D-1J). 
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Figure 1. Two-week adiponectin treatment has no effect on whole-body energy 

metabolism of control and gAcrp30-treated mice. (A) Plasma adiponectin 

concentrations after overnight fasting in HFD-fed mice treated with globular adiponectin 

(gAcrp30) or vehicle-control for two weeks.  (B) Body weight of control and gAcrp30-

treated mice (n = 9-11). (C) Fat mass of control and gAcrp30-treated mice. (D) Whole-

body oxygen consumption. (E) Whole-body carbon dioxide production. (F) Whole-body 

energy expenditure. (G) Whole-body caloric intake. (H) Whole-body respiratory exchange 
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ratio. (I) Drinking. (J) Activity Counts. Data are shown as mean ± SEM. **p < 0.01 by 

unpaired Student’s t-test for other panels. 
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While gAcrp30 did not alter whole-body energy metabolism, plasma triglyceride 

(TAG) concentrations as well as liver TAG content and muscle TAG content were 

significantly reduced by 35%, 45% and 60% respectively (Fig. 2A-2C). Consistent with a 

reduction in ectopic lipid content in liver and skeletal muscle, mice treated for two weeks 

with gAcrp30 exhibited a 10% reduction in plasma glucose concentrations and a 65% 

reduction in plasma insulin concentrations after overnight fasting (Fig. 2D and 2E). In 

contrast, there was no difference in fasting plasma NEFA concentration between groups 

(Fig. 2F). In order to determine the effects of gAcrp30 on tissue-specific insulin action, we 

performed hyperinsulinemic-euglycemic clamps combined with radiolabeled and stable 

isotopes. Basal endogenous glucose production (EGP) was reduced by 13% in the 

gAcrp30 group as compared with the control group (Fig. 2G), resulting in reduced fasting 

plasma glucose concentrations (Fig. 2D). During the hyperinsulinemic phase of the clamp 

study, gAcrp30-treated mice displayed a two-fold increase in the glucose infusion rate 

required to maintain euglycemia, reflecting increased whole-body insulin-sensitivity (Fig. 

2H-2J). The increased whole-body insulin sensitivity could be attributed to both a 2-fold 

increase in insulin-mediated suppression of hepatic glucose production, and a 15% 

increase in insulin-stimulated peripheral glucose disposal (Fig. 2G, 2K and Fig. 2L). 

Specifically, our data demonstrated that glucose uptake is increased by 50-100% in all 

assessed tissues, including skeletal muscle, WAT and brown adipose tissue (Fig. 2M-

2O).  
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Figure 2. Globular adiponectin treatment ameliorates lipid-induced insulin 

resistance in high-fat diet (HFD) fed mice. (A) Plasma triglyceride concentrations of 

control and gAcrp-30 treated mice after overnight fasting. (B)-(C) Liver and muscle 

triglyceride content of control and gAcrp-30 treated mice. (D)-(E) Plasma glucose (n = 10) 

and insulin concentrations (n = 4-5) of control and gAcrp-30 treated mice after overnight 

fasting. (F) NEFA under basal and hyperinsulinemic-euglycemic conditions. (G) 
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Endogenous glucose production rate under basal and the hyperinsulinemia-euglycemia 

clamp states (n = 8-10). (H) Glucose infusion rate during the hyperinsulinemic-euglycemic 

clamp. (I) Glucose concentrations during the hyperinsulinemia-euglycemia clamp of 

control and gAcrp-30 treated mice. (J) Insulin concentrations after the hyperinsulinemia-

euglycemia clamp. (K) Endogenous glucose production rate suppression during the 

hyperinsulinemia-euglycemia clamp. (L) Glucose turnover rate during the 

hyperinsulinemia-euglycemia clamp. (M)-(O) Insulin-stimulated glucose uptake rate in 

skeletal muscle, white adipose tissue and brown adipose tissue in control and gAcrp30-

treated mice. Data are shown as mean ± SEM. *p < 0.05, **p < 0.01 by two-way ANOVA 

with Dunnett multiple comparisons for (F) and (G). *p < 0.05, **p < 0.01, ***p < 0.001 by 

unpaired Student’s t-test for other panels. 
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Globular adiponectin reduces plasma membrane DAG content and nPKC activation 

in liver and skeletal muscle 

As two weeks of gAcrp30 treatment resulted in a marked improvement in liver and 

muscle insulin sensitivity, we next assessed insulin signaling pathways in the liver and 

skeletal muscle of these mice. Consistent with increased whole-body insulin sensitivity, 

gAcrp30 treated mice manifested 2 to 4-fold increases in insulin-mediated insulin receptor 

tyrosine autophosphorylation (tyrosine 1162) in both liver and skeletal muscle (Fig. 3A 

and 3B). We also observed four-fold increases in insulin-stimulated insulin receptor 

substrate-2 (IRS-2) associated phosphoinositide 3-kinase (PI3K) activity in liver and IRS-

1 associated PI3K activity in muscle, as well as two-fold increases in Akt2 phosphorylation 

in liver and skeletal muscle of gAcrp30 treated mice as compared with vehicle-treated 

mice in the clamp state (Fig. 3C-3F), indicating improved insulin signaling in liver and 

muscle. Activated c-Jun N-terminal kinase (JNK) can phosphorylate insulin receptor 

substrate-1 (IRS-1) serine 302, resulting in negative regulation of the insulin signaling 

pathway in mouse tissues (23, 215). This mechanism may play a role in the improved 

insulin sensitivity seen in gAcrp30 treated mice, as we observed an ~40% decrease in 

JNK phosphorylation in liver and muscle from animals treated with gAcrp30 vs. vehicle-

treated animals (Fig. 3G and 3H), which may in part be due to adiponectin’s effect on 

reducing oxidative stress (23).  
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Figure 3. Globular adiponectin increases insulin signaling at the level of insulin 

receptor kinase in liver and skeletal muscle. (A)-(B) Western blot images for insulin 

receptor kinase phosphorylation (pY1162) in liver (n = 5-7) and skeletal muscle (n = 5) of 

control and gAcrp30-treated mice under the hyperinsulinemic-euglycemic clamp 

condition. Quantification is shown below. (C) IRS-2 associated PI3K activity in liver. (D) 

IRS-1 associated PI3K activity in muscle (n = 5). (E)-(F) Western blot images for Akt 

phosphorylation (pS473) in liver (n = 5-7) and skeletal muscle (n = 5) in the clamp state. 

Quantification is shown below. (G) Representative western blot images for JNK 

phosphorylation in liver of control and gAcrp30-treated mice in the clamp state. 

Quantification is shown below. (H) Western blot images for JNK phosphorylation skeletal 

muscle (n = 5) in the clamp state. Quantification is shown below. Data are shown as mean 

± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 by unpaired Student’s t-test. 
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DAGs and ceramides are two well-studied bioactive lipids that have been proposed 

to mediate lipid-induced insulin resistance (66). Plasma membrane DAGs have been 

shown to mediate insulin resistance by activation of nPKCs, specifically PKCε in the liver 

and both PKCε and PKCθ in the skeletal muscle (17, 19, 216, 217). Among the three 

stereoisomers of DAG (sn-1,2-DAG, sn-1,3-DAG and sn-2,3-DAG), sn-1,2-DAG is thought 

to be primarily responsible for nPKC activation (218-220). To understand the mechanism 

by which gAcrp30 treatment ameliorates lipid-induced liver and muscle insulin resistance, 

DAG content, ceramide content and nPKC translocation were measured in these tissues. 

Hepatic plasma membrane sn-1,2-DAG was decreased by 35% in gAcrp30-treated mice, 

which was associated with an ~50% reduction in PKCε membrane translocation, reflecting 

reduced PKCε activation (Fig. 4A and 4B). Plasma membrane sn-2,3-DAG content was 

decreased by 35% without any difference in sn-1,3-DAG content and sn-1,2-DAG content 

in other subcellular compartments (Fig. 4A, 4C and 4D). INSR Thr1160 is a PKCε target, 

upon which phosphorylation impairs the tyrosine kinase activity of the insulin receptor, and 

thereby diminishes downstream insulin signaling (17, 219). Consistent with reductions in 

PKCe activity and improved hepatic insulin sensitivity, hepatic insulin receptor Thr1160 

phosphorylation was decreased in gAcrp30-treated mice (Fig. 4E). Similarly, in the 

gastrocnemius muscle, gAcrp30-treated mice exhibited a ~55% reduction in plasma 

membrane DAG content with an associated 60-80% reduction in PKCθ and PKCε 

translocation (Fig. 4F-4H). In contrast, despite the reductions in liver and muscle TAG 

content, plasma membrane DAG content and marked reversal of insulin resistance in liver 

and skeletal muscle, there were no significant changes in total ceramide content in these 

tissues (Fig. 5A and 5B), arguing against an important role for adiponectin-induced 

activation of ceramidase as the insulin sensitizing mechanism by which adiponectin would 

have been expected to lead to a reduction in total ceramide content (114). In addition, we 

did not observe any significant differences in the total content of specific ceramide species 
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(C16:0 and C18:0) which have been specifically hypothesized to mediate insulin 

resistance in rodents (78, 221) (Fig. 5C-5F). While gAcrp30 treatment did not cause a 

reduction in total tissue ceramide content, it did result in reductions in several hepatic 

ceramide species (C16:0, C20:0, C22:0, C24:0 and C24:1) in the plasma membrane (Fig. 

5G), which correlated with the improved insulin sensitivity in liver.   
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Figure 4. Globular adiponectin reduces tissue membrane DAG content and nPKC 

activation in liver and muscle. (A) Hepatic sn-1,2-DAG content in five subcellular 

compartments (ER: endoplasmic reticulum; LD: lipid droplets; PM: plasma membrane; 

Mito: mitochondrial; Cyto: cytosol). (B) Hepatic membrane/cytosolic PKCε ratio. 

Quantification is shown below. (C) Hepatic sn-2,3-DAG in five subcellular compartments. 

(D) Hepatic sn-1,3-DAG in five subcellular compartments. (E) Western blot images for 

insulin receptor kinase phosphorylation (pY1160) in liver (n = 5). Quantification is shown 

below. (F) Membrane DAG content in skeletal muscle. (G)-(H) Membrane/cytosolic PKCθ 

and PKCε ratio in skeletal muscle. PKCθ and PKCε were probed from the same 
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membrane and therefore have the same corresponding loading controls (GAPDH and 

Na/K-ATPase). Quantification is shown below. Data are shown as mean ± SEM. *p < 0.05, 

**p < 0.01 by two-way ANOVA with Dunnett multiple comparisons for (A), (C) and (D). *p 

< 0.05, **p < 0.01 by unpaired Student’s t-test. 
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Figure 5. Globular adiponectin did not significantly affect total ceramide content but 

changes several plasma membrane ceramide species. (A)-(B) Total ceramide content 

in liver (n = 16) and skeletal muscle. (C)-(F) C16:0 and C18:0 ceramide concentrations in 

liver and skeletal muscle. (G) Six different hepatic ceramide species in five subcellular 

compartments (ER: endoplasmic reticulum; LD: lipid droplets; PM: plasma membrane; 
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Mito: mitochondrial; Cyto: cytosol). Data are shown as mean ± SEM. *p < 0.05, **p < 0.01 

by unpaired Student’s t-test for other panels. 
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gAcrp30 improves insulin signaling in white adipose tissue 

Next, we sought to understand the effect of gAcrp30 treatment on insulin signaling 

in WAT and on WAT lipolysis. gAcrp30 administration increased phosphorylation of IRK 

and Akt2, and reduced phosphorylation of perilipin, adipose triglyceride lipase (ATGL) and 

hormone-sensitive lipase (HSL) in the clamp state, indicating improved insulin signaling in 

WAT (Fig. 6A-6E). Consistent with these data, gAcrp30-treated mice had reduced whole-

body glycerol turnover rate in the basal and clamp state, demonstrating that gAcrp30 

treatment reduced WAT lipolysis and improved insulin signaling in WAT (Fig. 6F). 

Reduced glycerol conversion to glucose may result in reduced hepatic glucose production 

and plasma glucose concentrations (222). However, surprisingly there were no differences 

in the whole-body fatty acid turnover rate or plasma non-esterified fatty acids (NEFA) 

concentrations (Fig. 6G and 2F), suggesting that gAcrp30 may also promote WAT re-

esterification. Consistent with the lack of differences in fatty acid turnover, we observed 

no differences in hepatic acetyl-CoA, malonyl-CoA, or long-chain acyl-CoA concentrations 

(Fig. 6H-6G). Taken together, these data indicate that gAcrp30 treatment also improves 

insulin signaling in WAT and may affect WAT lipolysis and re-esterification. 
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Figure 6. gAcrp30 improves insulin signaling in white adipose tissue and may affect 

WAT lipolysis and re-esterification. (A) Western blot images for insulin receptor kinase 

phosphorylation (pY1162) in white adipose tissue (n = 5-6) in the clamp state. 

Quantification is shown below. (B) Western blot images for Akt phosphorylation (pS473) 

in white adipose tissue (n = 5-6) in the clamp state. Quantification is shown below. (C)-(E) 

Western blot images for perilipin, hormone-sensitive lipase (HSL) and adipose triglyceride 

lipase (ATGL) phosphorylation in white adipose tissue (n = 5-6) in the clamp state. 

Quantification is shown below. (F) Glycerol turnover rate under basal and 

hyperinsulinemic-euglycemic conditions (n = 5-7). (G) Fatty acid turnover rate under basal 

and hyperinsulinemic-euglycemic conditions (n = 5). (H)-(J) Basal hepatic acetyl CoA, 
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Malonyl CoA and Long-chain acyl CoA concentrations. Data are shown as mean ± SEM. 

*p < 0.05, **p < 0.01 by two-way ANOVA with Dunnett multiple comparisons for (F) and 

(G). *p < 0.05, **p < 0.01 by unpaired Student’s t-test for other panels. 

  



 

 107 

Globular adiponectin treatment promotes a switch from glucose to fat oxidation in 

slow-twitch gastrocnemius and soleus muscles  

In order to determine whether the reduction in ectopic lipid (TAG/DAG) content 

could be attributed to increased fatty acid oxidation in liver and muscle, we assessed 

mitochondrial function in vivo and ex vivo. We employed positional isotopomer NMR tracer 

analysis (PINTA) to assess the effects of gArcp30 on in vivo hepatic citrate synthase flux 

(VCS, i.e. mitochondrial oxidation) and hepatic pyruvate carboxylase flux (VPC, i.e. 

gluconeogenesis from pyruvate) (223) and observed no significant differences in hepatic 

VPC or VCS in gAcrp30 treated mice (Fig. 7A and 7B). In addition, there was no difference 

in the phosphorylation of two key regulators of hepatic fatty acid oxidation and 

biosynthesis: AMPK and ACC with gAcrp30 treatment (Fig. 7C and 7D). In summary, no 

differences were observed in hepatic mitochondrial oxidation rate or its upstream 

regulators or downstream outflow (VPC) in the gAcrp30 treated mice.  

Relative rates of mitochondrial ketone oxidation and β-oxidation (VFAO) normalized 

to citrate synthase flux (VCS) were determined in vivo in multiple tissues. gAcrp30 

treatment promoted a shift away from glucose to other substrates (fatty acids, ketones, 

ketogenic amino acids) in gastrocnemius muscle (Fig. 7E), despite no effect on liver or 

quadriceps muscles (Fig. 7F and 7G). To further examine the effects of gAcrp30 on 

absolute rates of fatty acid oxidation and glucose oxidation in muscle, we assessed rates 

of 14CO2 production in isolated soleus muscle with [1-14C]palmitic acid and [14C6]D-glucose 

as substrates. Consistent with the in vivo gastrocnemius data, both fatty acid oxidation 

and glucose oxidation were increased in the Acrp30-treated and gAcrp30-treated soleus 

muscles (Fig. 7H and 7I). To understand the potential molecular mechanisms by which 

fatty acid oxidation was increased in the soleus muscle, we measured phosphorylation of 

AMPK, ACC and endothelial nitric oxide synthase (eNOS). Previous studies have shown 

that there is a positive feedback loop between nitric oxide production and AMPK activation 
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(224). Consistent with these studies, we observed significant increases in phosphorylation 

of AMPK, ACC and eNOS in the skeletal muscle of both Acrp30-treated and gAcrp30-

treated mice (Fig. 7J-7L). These data suggest that gAcrp30 and Acrp30 treatment 

activates the eNOS/AMPK/ACC pathway and promotes a switch from glucose oxidation 

to fatty acid oxidation in predominately slow-twitch gastrocnemius and soleus muscles but 

does not impact hepatic mitochondrial fat oxidation. 
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Figure 7. gAcrp30 increases the switch from glucose to fat oxidation in skeletal 

muscle in vivo. (A) Hepatic citrate synthase flux rate in control and gAcrp30-treated mice 

(n = 10). (B) Hepatic pyruvate carboxylase flux rate (n = 10). (C)-(D) Western blot images 

for basal 5' AMP-activated protein kinase (AMPK) and acetyl-CoA carboxylase (ACC) 

phosphorylation in liver. Quantification is shown below. (E)-(G) Ratio of mitochondrial 

ketone oxidation and β-oxidation (VFAO) to citrate synthase flux (VCS) in soleus muscle (n 
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= 5-6), liver and quadriceps femoris muscle. (H) Fatty acid oxidation rates of solus muscles 

with no treatment (control), control + etomoxir, gAcrp30 treatment, gAcrp30 + etomoxir, 

Acrp30 treatment, Acrp30 + etomoxir (n = 2-6). (I) Glucose oxidation rates of soleus 

muscles with no treatment (control), gAcrp30 treatment, Acrp30 treatment and insulin 

treatment (n = 8-14). (J)-(L) Representative western blot images for non-treated, gAcrp30-

treated and Acrp30-treated AMPK, ACC and endothelial nitric-oxide synthase 

phosphorylation in soleus muscle. Quantification is shown below. Data are shown as 

mean ± SEM. *p<0.05, **p<0.01, ***p<0.001 by one-way ANOVA with Tukey multiple 

comparisons for (H)-(L). *p<0.05 by unpaired Student’s t-test for other panels. 
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Globular adiponectin and full-length adiponectin increase lipoprotein lipase activity 

and lipid uptake in epidydimal white adipose tissue 

To determine whether adiponectin treatment alters ectopic lipid deposition by 

changing triglyceride rich lipoprotein metabolism, we performed a series of studies 

assessing very-low-density lipoprotein (VLDL) production and chylomicron clearance. We 

first measured the rates of hepatic VLDL-TAG production to evaluate whether hepatic 

VLDL-TAG production contributed to the reduced plasma TAG in the gAcrp30-treated 

mice. No significant difference in the hepatic VLDL-TAG production rate with gAcrp30 

treatment was observed (Fig. 8A and 8B). Then we tested the hypothesis that the 

reductions in TAGs and membrane DAGs in liver and skeletal muscle may be explained 

by increased uptake of lipids into WAT, thereby diverting circulating triglycerides away 

from storage in liver and skeletal muscle. Consistent with the hypothesis, plasma lipid 

clearance was increased during an oral lipid tolerance test in the gAcrp30-treated mice 

(Fig. 8C and 8D). gAcrp30 treatment promoted increased lipid uptake in epididymal 

adipose tissue (eWAT) despite no significant difference in lipid uptake in subcutaneous 

WAT (sWAT) or skeletal muscle (Fig. 8E-8G).  

Lipoprotein lipase (LPL) plays an important role in the clearance of plasma TAG 

and the import of TAG-derived fatty acid to muscle and heart for utilization and adipose 

tissues for storage (225). We measured plasma and tissue-specific LPL activity to assess 

whether gAcrp30 alters adipose chylomicron clearance via alterations in LPL activity. 

gAcrp30 treated mice have increased heparin-releasable LPL activity in plasma and 

increased LPL activity in eWAT and heart (Fig. 8H-8J). In contrast, there were no 

significant effects of gAcrp30 treatment on sWAT, brown adipose tissue (BAT) or skeletal 

muscle LPL activity (Fig. 8K-8M). 

  



 

 112 

 

Figure 8. Globular adiponectin increases lipoprotein lipase activity and lipid uptake 

in epidydimal white adipose tissue. (A) Plasma triglyceride levels in overnight-fasted 

control and gAcrp30 treated mice after an intraperitoneal injection of poloxamer. (B) Liver 

triglyceride production rate in control and gAcrp30 treated mice. (C) Plasma triglyceride 

concentrations of control and gAcrp30-treated mice during oral lipid tolerance test. (D) 

Area under the plasma triglycerides curve of control and gAcrp30-treated mice. (E)-(G) 
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Triglyceride uptake in epidydimal white adipose tissue (n = 8-10), subcutaneous white 

adipose tissue and skeletal muscle (n = 10) of control and gAcrp30-treated mice. (H) Post-

heparin plasma LPL activity of control and gAcrp30-treated mice (n = 5). (I) Epidydimal 

white adipose tissue LPL activity of control and gAcrp30-treated mice (n = 5). (J) Heart 

LPL activity of control and gAcrp30-treated mice. (K) Subcutaneous white adipose LPL 

activity of control and gAcrp30-treated mice (n = 5). (L) Brown adipose tissue LPL activity 

of control and gAcrp30-treated mice (n = 5-7). (M) Skeletal muscle LPL activity of control 

and gAcrp30-treated mice (n = 5). Data are shown as mean ± SEM. *p < 0.05 by unpaired 

Student’s t-test. 
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It has previously been shown that Acrp30 also reduces plasma and tissue TAG 

content in mice liver and skeletal muscle (112, 226). To determine whether the decreased 

TAG content by Acrp30 could be explained by similar mechanisms as gAcrp30 treatment, 

we performed continuous subcutaneous Acrp30 infusions (10μg/day) in HFD-fed mice for 

two weeks and a series of studies assessing chylomicron clearance and LPL activity. As 

expected, plasma TAG was decreased with Acrp30 treatment (Fig. 9A). Analogous to 

what we observed in gAcrp30 treated mice, two-week Acrp30 treatment increased lipid 

clearance during the oral lipid tolerance test and improved lipid uptake in eWAT, without 

significant difference in lipid uptake in sWAT or skeletal muscle (Fig. 9A-9E). Acrp30 

infusion also increased heparin-releasable plasma LPL activity and increased LPL activity 

in eWAT and BAT (Fig. 9F-9H). No significant differences in sWAT, heart and muscle 

were observed (Fig. 9I-9K). Taken together, these data demonstrate that both full-length 

and globular adiponectin treatment enhances lipid uptake in eWAT, which may be 

attributed to localized stimulation of LPL activity in eWAT. 
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Figure 9. Globular adiponectin and full-length adiponectin increase lipoprotein 

lipase activity and lipid uptake in epidydimal white adipose tissue. (A) Plasma 

triglyceride concentrations of control and Acrp30-treated mice during oral lipid tolerance 

test. (B) Area under the plasma triglycerides curve of control and Acrp30-treated mice. 

(C)-(E) Triglyceride uptake in epidydimal white adipose tissue, subcutaneous white 

adipose tissue and skeletal muscle of control and Acrp30-treated mice. (F) Post-heparin 

plasma LPL activity of control and Acrp30-treated mice. (G) Epidydimal white adipose 

tissue LPL activity of control and Acrp30-treated mice. (H) Brown adipose tissue LPL 

activity of control and Acrp30-treated mice. (I) Subcutaneous white adipose LPL activity 

of control and Acrp30-treated mice. (J) Heart LPL activity of control and Acrp30-treated 
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mice. (K) Skeletal muscle LPL activity of control and Acrp30-treated mice. Data are shown 

as mean ± SEM. *p < 0.05, ***p<0.001 by unpaired Student’s t-test. 
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DISCUSSION 
 

White adipose tissue is not only a critical energy storage depot, but it also acts as 

an endocrine organ sensing metabolic signals and secreting hormones and 

adipocytokines (e.g. leptin and adiponectin) that regulate whole-body energy homeostasis 

(196, 227-229). Consistent with previous reports (111, 115, 208), we have demonstrated 

that administration of globular adiponectin results in an improvement in whole-body 

glucose homeostasis. Despite great interest in adiponectin, the mechanism by which 

adiponectin reverses insulin resistance had remained unclear. To address this question, 

we performed a comprehensive series of studies including hyperinsulinemic-euglycemic 

clamp studies combined with stable- and radio-labeled isotopic tracers to characterize 

adiponectin’s effects on endogenous glucose production and tissue-specific insulin 

sensitivity and followed these studies up by measuring bioactive lipid metabolites and 

cellular insulin signaling phosphorylation events in liver, skeletal muscle and WAT.   

Adiponectin receptor associated ceramidase activity, promoting decreased total 

hepatic ceramide content and ceramide-induced insulin resistance, has been proposed to 

mediate adiponectin’s insulin-sensitizing properties (114). However, in contrast to this 

hypothesis, we dissociated changes in total ceramide content in the liver and skeletal 

muscle from gAcrp30-induced improvements in liver and muscle insulin sensitivity. The 

results are different possibly because 1) the mouse models we used are different. 

Scherer’s group used ob/ob mice and transgenic mice, but we used HFD-fed WT mice; 2) 

the treatment and dose of adiponectin are different. They performed an acute (60-min) 

intravenous injection of full-length adiponectin and the dose they used (2 μg/g) is 

unphysiological large dose, while we did a relatively long-term (2-week) subcutaneous 

administration of both full-length or globular adiponectin, and the doses (Acrp30: 10 

μg/day and gAcrp30: 2.5 μg/day) we used are more physiological relevant dose. The 

chronic treatment may be more relevant for human therapy. We also did not observe any 
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significant differences in the content of specific ceramide species (C16:0 and C18:0) which 

have been specifically hypothesized to mediate insulin resistance in rodents (78, 221). 

While gAcrp30 treatment did not cause a reduction in total tissue ceramide content or in 

changes in C16:0 or C18:0 ceramides, it did result in reductions in several hepatic 

ceramide species (C16:0, C20:0, C22:0, C24:0 and C24:1) in the plasma membrane which 

correlated with improved insulin sensitivity in liver. Whether these specific plasma-

membrane associated ceramide species also contributed to alterations in insulin action 

will need to be examined in future studies.  

Nevertheless, ceramide-induced insulin resistance is thought to alter downstream 

insulin signaling at the level of Akt; however we observed that gAcrp30 improved insulin 

action at the level of the insulin receptor, which is not compatible with the putative 

mechanisms by which adiponectin is thought to mediate insulin resistance at the level of 

AKT2 phosphorylation.  

In contrast with ceramide-induced insulin resistance, DAG-PKCe induced insulin 

resistance can explain improved insulin signaling at the level of the insulin receptor. By 

this mechanism, sn-1,2-DAG accumulation in the plasma membrane of liver and muscle 

results in nPKC translocation from the cytoplasm to the plasma membrane, leading to 

decreased insulin signaling at the level of the insulin receptor due to PKCe activation and 

at the level of IRS-1 and IRS-2 associated PI3-kinase due to PKCq activation (17-19). We 

observed that 2 weeks of gAcrp30 treatment reduced plasma membrane sn-1,2-DAG in 

liver and membrane associated DAG in muscle, leading to decreased PKCε activity in liver 

and both PKCθ and PKCε activity in skeletal muscle. As a result, insulin signaling at the 

level of insulin receptor kinase increased in both of these tissues. As such, the effect of 

globular adiponectin on tissue-specific insulin action appears to occur through reductions 

in liver and muscle plasma membrane DAG content resulting in reduced PKCe activation 

in liver and reduction in both PKCe and PKCq activation in skeletal muscle.  



 

 119 

In both in vitro and ex vivo studies, adiponectin has been suggested to reduce 

triglyceride content in the liver and muscle by enhancing fatty acid oxidation in an AMPK 

dependent manner (23, 115, 117, 118, 230). However, Yamauchi et al. found that globular 

adiponectin cannot activate hepatic AMPK signaling pathways (112). No competing 

hypothesis has yet been published, and so the underlying physiological mechanisms by 

which gAcrp30 reduces hepatic TAG are still debated. Further complicating this question, 

most mechanistic studies examining adiponectin’s mechanism of action have been 

performed purely in vitro and ex vivo, although in vivo studies are critical to understand 

the complex inter-organ crosstalk that regulates metabolic physiology. Reduced ectopic 

lipid content in liver and skeletal muscle may be due to several factors including: 1) 

decreased NEFA flux to these tissues from reduced WAT lipolysis; 2) increased rates of 

tissue mitochondrial fatty acid oxidation; and 3) decreased lipid delivered to tissues from 

circulating lipoproteins. We evaluated each of these potential mechanisms for the 

gAcrp30-induced reductions in ectopic lipids in HFD-fed mice using a comprehensive 

series of in vivo metabolic studies.  While gAcrp30 appeared to suppress rates of WAT 

lipolysis, as reflected by reduced rates of glycerol turnover and increased WAT insulin 

sensitivity, as reflected by increased insulin-stimulated glucose uptake, it did not affect 

whole-body fatty acid turnover potentially due to compensatory changes in re-esterification. 

Additionally, hepatic mitochondrial fatty acid oxidation and the regulation of fat oxidation 

in liver were unchanged. In gastrocnemius and soleus muscle, gAcrp30 treatment 

increases muscle fatty oxidation in vivo and ex vivo, an effect that was correlated with 

increased phosphorylation of ACC in a manner consistent with previously described 

eNOS/AMPK-dependent regulation of ACC (224). This increase in skeletal muscle fatty 

acid oxidation could account, in part, for the reduced ectopic lipid deposition seen in 

several tissues in gAcrp30 treated mice, and the improvement in muscle insulin sensitivity.  
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In addition to promoting increased muscle fatty acid oxidation, we also found that 

both gAcrp30 and Acrp30 treatment reduces ectopic lipid (TAG/plasma membrane DAG) 

accumulation in liver and skeletal muscle by improving WAT triglyceride uptake and further 

increasing WAT storage capacity. Adiponectin-treated mice displayed increased LPL 

activity in post-heparin plasma and eWAT, and improved adipose postprandial 

triacylglycerol uptake. These results are consistent with our observations that two weeks 

of gAcrp30 or Acrp30 treatment increased eWAT mass but did not change total fat mass, 

as assessed by 1H NMR.  

Our findings also imply an important role for decreased plasma adiponectin in the 

development of lipid-induced liver and skeletal muscle insulin resistance. In humans and 

monkeys, plasma adiponectin levels correlate significantly with whole-body insulin 

sensitivity (25, 26). Overexpression or administration of adiponectin in mice results in a 

decrease in hyperglycemia and improvement in systemic insulin sensitivity (23, 27), 

whereas adiponectin-deficient mice exhibit impaired insulin sensitivity and are prone to 

diabetes (24, 28). Tying all of this together, circulating adiponectin may be a reflection of 

the presence of functioning adipose tissue, a part of the machinery the WAT uses in its 

fat-storing operation. In normal physiology, healthy adipose tissue secretes sufficient 

adiponectin to promote storage of circulating triglyceride in WAT, and signal a shift to 

increase fatty acid oxidation in skeletal muscle. However, in obesity, as adipose tissue 

has limited storage capacity, WAT secretion of adiponectin decreases. This derangement 

in fat storage and muscle fat oxidation may then lead to increased ectopic lipid (TAGs/ 

plasma membrane DAGs) accumulation in liver and skeletal muscle and the subsequent 

development of insulin resistance in these organs leading to the metabolic syndrome, 

hepatic steatosis/NASH, and atherosclerosis. 

Taken together, these results suggest that chronic adiponectin administration 

ameliorates insulin resistance in an HFD-fed mouse model of obesity, NAFLD and insulin 
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resistance by two major mechanisms. First, adiponectin treatment promotes increased 

WAT LPL activity, which may lead to increased uptake of triglyceride into WAT thus 

diverting circulating triglyceride away from storage in liver and skeletal muscle. Second, 

adiponectin treatment promotes increased fatty acid oxidation in skeletal muscle, which in 

turn may be attributed to the activation of AMPK and eNOS. These two effects of 

adiponectin in turn lead to reductions in liver and muscle membrane associated sn-1,2-

DAG content, resulting in decreased PKCε activity in liver and decreased PKCε and PKCθ 

in muscle resulting in increased insulin signaling and insulin action in these tissues. 

Furthermore adiponectin-induced improvement in liver and muscle insulin sensitivity in 

insulin resistant HFD-fed mice occurred independently of changes in total ceramide 

content in these tissues. Taken together, these studies provide new insights into the 

mechanisms by which adiponectin reverses HFD-induced liver and muscle insulin 

resistance in mice.   
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METHODS 

Animals and diets 

All rodent studies were approved by the Yale University Institutional Animal Care 

and Use Committee. Male C57BL/6J mice (Jackson Laboratory) were group housed at 

the animal care facility at Yale University Animal Research Center and maintained under 

controlled temperature (23°C) and lighting (12:12 h light/dark cycle, lights on at 7:00 AM) 

with free access to water and food. Diet-induced obesity studies were carried out by 

feeding mice a high fat diet (60% calories from fat, Research Diets D12492). To study the 

effects of adiponectin treatment, following 2 weeks or 10 weeks of HFD, mini-osmotic 

pumps (Alzet) containing recombinant mouse globular adiponectin protein (Abcam), 

recombinant mouse full-length adiponectin (Abcam) or vehicle (saline) were implanted 

subcutaneously. Adiponectin was released at a rate of 2.5 μg/day (globular adiponectin) 

or 10 μg/day (full-length adiponectin) for 14 days based on previous literature (112, 115). 

Food and water intake measurements and indirect calorimetry were performed using 

Columbus Lab Animal Monitoring System metabolic cages (Columbus Instruments). 

During this time, food intake and body weight were regularly monitored. The mice used 

for euglycemic clamp and in vivo tracer studies underwent surgery under isoflurane 

anesthesia to place catheters in the jugular vein and single-housed mice were allowed to 

recover 6-7 days before planned experiments.  

 

Hyperinsulinemic-euglycemic clamps 

Clamps were performed as previously described (9, 18). Briefly, after an overnight 

fast, a 120-min basal infusion with [3-3H] glucose (PerkinElmer) at a rate of 0.05 μCi/min, 

[1,1,2,3,3-D5] glycerol (Sigma Aldrich) at a rate of 1.5 μmol/(kg-min)and potassium [13C16] 

palmitate (Cambridge Isotopes) at a rate of 0.7 μmol/(kg-min) was performed. After the 

basal period, mice underwent a 140 min hyperinsulinemic-euglycemic clamp by infusing 
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[3-3H] glucose, [1,1,2,3,3-D5] glycerol and potassium [13C16] palmitate at the rates indicated 

above, and in the last 55 minutes of the clamp period, 2-deoxy-[1-14C] glucose (2-DG) 

(PerkinElmer) was given to estimate tissue-specific glucose uptake. 20% dextrose 

(Hospira) at a variable rate and insulin at a rate of 3mU/[kg-min] was infused through the 

jugular venous catheter to maintain a steady state plasma glucose concentration of ~120 

mg/dL. Plasma glucose concentrations were measured every 10-15 min during the 

hyperinsulinemic-euglycemic clamp period. At the end of the study, mice were euthanized 

with intravenous pentobarbital and tissues were obtained following the clamp study using 

freeze-clamps pre-cooled in liquid nitrogen. The specific activity of glucose was measured 

in plasma samples collected at the steady state during basal and clamp by liquid 

scintillation counting.   

 

Flux measurement 

Positional isotopomer NMR tracer analysis (PINTA) was applied to measure rates 

of hepatic mitochondrial citrate synthase flux (VCS) and pyruvate carboxylase flux (VPC) as 

previously described(223).  Infusion of [3-3H] glucose (PerkinElmer) at a rate of 0.05 

μCi/min and [3-13C] sodium  lactate (Cambridge Isotopes) at a rate of 40 μmol/(kg-min) 

was performed for a total of 120 min to measure VPC/VCS and VPC/VEGP as we previously 

described(223).  

The ratio of pyruvate dehydrogenase flux to citrate synthase flux (VPDH/VCS) was 

used to indicate tissue-specific metabolic substrate oxidation after a 2 hr infusion of 

[1,2,3,4,5,6-13C6]glucose (16.7 μmol/[kg-min] prime for 5 min, 5.6 μmol/[kg-min] 

continuous infusion) as previously described (231). Briefly, VPDH/VCS was measured as the 

ratio of [4,5-13C2]glutamate/[13C3]alanine. [13C3]alanine enrichment was measured by GC-

MS and [4,5-13C2]glutamate enrichment was measured by liquid chromatography-tandem 

mass spectrometry (LC-MS/MS) as previously described (211).  
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[1,1,2,3,3-D5]glycerol and [13C16]palmitate enrichments were measured using gas 

chromatography-mass spectrometry (GC/MS) as previously described (231). Briefly, 

glycerol turnover = ([1,1,2,3,3-D5] glycerol tracer enrichment/[1,1,2,3,3-D5] glycerol 

plasma enrichment-1) x infusion rate. Palmitate turnover = ([13C16] palmitate tracer 

enrichment/[13C16] palmitate plasma enrichment-1) x infusion rate. Fatty acid turnover = 

Palmitate turnover rate/ (palmitate/total fatty acids). 

 

Palmitate and glucose oxidation measurement ex vivo 

Ex vivo muscle oxidation measurements were performed as previously described 

(232) with minor modifications. Briefly, mice were fasted overnight (12 h) before the 

procedure. Animals were euthanized during tissue collection under isoflurane anesthesia; 

intact soleus muscles were rapidly removed and pinned in stainless steel clips to maintain 

resting tension. Muscles were preincubated in Krebs-Ringer bicarbonate buffer (KRBB), 

with 10 mM glucose and 0.5 % BSA, pH 7.4, at 35°C, for 30-45 min. Soleus muscles were 

then incubated in the same buffer containing either radiolabeled palmitic acid [0.1 mM 

palmitic acid (Sigma Aldrich) and 0.2 μCi/mL [1-14C]palmitic acid (PerkinElmer)] or 

radiolabeled glucose [10 mM glucose (Sigma Aldrich) and 0.2 μCi/mL [14C6]D-glucose 

(PerkinElmer)] for one hour. 14CO2 produced was trapped in NaOH (0.3 mL at 2 N) during 

incubation. Muscles were removed, washed in cold saline for one min, blotted on filter 

paper, and weighed. Incubation vials were tightly capped and 0.5 mL of 2 N HCl added 

directly to the KRBB using a syringe; vials were incubated for 2 h at 37°C.  14CO2 absorbed 

in NaOH solution was then quantified by scintillation counting. 

 

Biochemical analysis 

Plasma glucose was measured enzymatically using a YSI Glucose Analyzer (YSI). 

Plasma insulin concentrations were measured by radioimmunoassay (EMD Millipore) at 
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the Yale Diabetes Research Center. Plasma NEFA and triglyceride concentrations were 

measured by standard spectrophotometric assays (NEFA: Wako Diagnostics; 

Triglyceride: Sekisui/Fujifilm). Plasma adiponectin (full-length and globular adiponectin) 

concentrations were measured by enzyme-linked immunoassay (ELISA) (Abcam).  

 

Tissue analysis 

Liver DAG stereoisomers in five subcellular compartments were measured as 

previously described (219, 233). Briefly, liver tissues were first homogenized with a 

Doucne-type homogenizer in cold (4°C) TES buffer (250 mM sucrose, 10 mM Tris - pH 

7.4, 0.5 mM EDTA). Then the homogenate was centrifuged (at 12,000 rpm with SS-34 

rotor or 17,000 g, 15 min, 4°C) to obtain pellet A and supernatant A. The top lipid layer 

was collected as the lipid droplet fraction. The supernatant A was washed, centrifuged 

and then resuspended in TES buffer and gently layered on top of 1.12 M sucrose buffer 

cushion in ultracentrifuge tubes. Then it was centrifuged (at 35,000 rpm with TLS-55 rotor 

or 105,000 g, 20 min, 4°C) to obtain pellet B, interface B and supernatant B. The interface 

B was collected, washed and centrifuged to get plasma membrane fraction. The pellet B 

was washed and centrifuged to obtain mitochondria fraction. The supernatant B was 

centrifuged (at 65,000 rpm with Ti-70.1 rotor or 390,000 g, 75 min, 4°C) to separate pellet 

C and supernatant C. Pellet C was washed, centrifuged and collected as the endoplasmic 

reticulum fraction. Supernatant C was collected as the cytosol fraction. DAG and ceramide 

concentrations (19), hepatic long-chain acyl-CoA (19), acetyl- and malonyl-CoA (9) were 

measured as previously described.  

Tissue TAG content was measured by a standard kit (Sekisui/Fujifilm) after 

extraction by the method of Bligh and Dyer (194). For nPKC translocation, cytoplasm and 

plasma membrane fractions were separated by ultracentrifugation as previously described 

(67, 71).   
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Insulin signaling and Western blotting 

IRS-1 and IRS-2 associated PI3K activity were determined as previously described 

(217). Briefly, IRS-1 and IRS-2 associated PI3K activities were measured in liver and 

muscle extracts after immunoprecipitation with IRS-1 antibody (BD Transduction 

Laboratories) or IRS-2 antibody (Cell Signaling)/agarose conjugate overnight at 4 °C. 

Then the incorporation of 32P into PI to yield phosphatidylinositol-3-monophosphate was 

measured to determine the IRS-1 and IRS-2 associated PI3K activity. 

Proteins from tissue lysate were separated by 4–12% sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) (Invitrogen) and then transferred onto 

polyvinylidene difluoride membranes (Millipore). After blocking in 5% bovine serum 

albumin (BSA)/tris buffered saline with tween (TBST) (10 mM Tris, 100 mM NaCl, and 

0.1% Tween-20) solution, membranes were incubated overnight at 4°C with antibodies 

obtained from Cell Signaling Technology (pIRK-Y1162, IRK,  GAPDH, pAkt-S473, Akt, 

pJNK, peNOS, AMPK, pAMPK, ACC, pACC, Perilipin, ATGL, pHSL and HSL), BD 

Transduction Laboratories (PKCε, PKCθ and eNOS), Shulman Lab (pIRK T1160)(219), 

EMD Millipore (JNK), VALAsciences (pPerilipin)and Abcam (Na/K ATPase and pATGL). 

After washing with TBST, membranes were incubated with horseradish peroxidase-

conjugated secondary antibodies and detection was performed with enhanced 

chemiluminescence. For assaying the IRK-T1160 phosphorylation, after protein 

concentration quantitation, protein samples were first immunoprecipitated by Dynabeads 

M-270 Epoxy (Invitrogen) conjugated with D2 anti-IR alpha-subunit antibody. The primary 

antibody solution was diluted 1:100 – 1:200 for pIRK-T1160 detection. 

 

Hepatic VLDL-TG production 
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Hepatic VLDL-TG production was assessed as previously described (234). In 

order to determine the basal plasma TAG level, after overnight fasting, blood samples 

were collected. Mice were injected intraperitoneally with poloxamer 407 (1g/ kg of body 

weight; Sigma Aldrich) to inhibit tissue LPL activity and blood samples were collected at 

1, 2, 3, 4 hours after injection. The VLDL-TG production rate was calculated by the 

resultant increase in plasma TAG concentrations.  

 

Oral lipid tolerance test and tissue-specific lipid uptake 

Lipid clearance and tissue-specific uptake were measured by using [9,10-3H] 

triolein as previously described (234, 235). After overnight fasting, mice received a gavage 

of a mixed meal: 10ul/g 10% dextrose in Intralipid (20%; Abbott Laboratories) conjugated 

with 10μCi of [9,10-3H]triolein (PerkinElmer). Blood was collected by tail vein massage at 

0, 1, 2, 3, and 4h for plasma TAG determination. Plasma TAG concentrations was 

measured by a standard kit (Sekisui/Fujifilm) and 3H radioactivity was measured by 

scintillation counter. 

 

Lipoprotein lipase activity assay 

LPL activity was assessed as previously described (236, 237). Briefly, for plasma 

LPL activity, blood samples were collected after overnight fasting to determine basal 

plasma TAG and LPL activity. Then mice were injected intravenously with heparin (50U/ 

kg of body weight) and blood samples were taken after 10 minutes injection. Post-heparin 

plasma LPL activity was assessed by a fluorometric assay (Cell Biolabs).  Tissue LPL was 

extracted by incubation of tissue at 37°C for 1 h in phosphate-buffered saline (PBS) with 

5 U/ml heparin and 2 mg/ml bovine serum albumin. Samples were centrifuged at 900g for 

15 minutes and the supernatant tissue LPL activities were measured in the presence of 

heat-inactivated mouse serum using a fluorometric assay (Cell Biolabs). 
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Statistical analysis 

All data are expressed as the mean ± SEM. Results were assessed using two-

tailed unpaired Student’s t-test or two-way ANOVA. *P<0.05, **P<0.01, *P<0.05, **P<0.01, 

***P<0.001, ****P<0.0001. GraphPad Prism 8.0 was used for all statistical analyses. In 

most cases, n = 6-9 per group, unless otherwise indicated in the figure legends.  
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Chapter 7 

Summary and Future directions 
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Multiple studies have shown that chronic low-grade inflammation in obesity is a 

major pathogenic factor associated with insulin resistance and type 2 diabetes in both 

rodents and humans. However, the molecular mechanisms by which inflammation 

regulates whole-body metabolic dysfunction have remained elusive. O-GlcNAc signaling 

has been shown to be involved in neutrophil chemotaxis, B cell activation, and T cell self-

renewal and activation. Recent studies also show that downregulation of O-GlcNAc 

signaling promotes innate immune responses in acute microbial infection. Together, these 

results suggest that O-GlcNAc signaling plays important roles in fine-tuning immune 

responses under various nutritional and pathological conditions. Those findings raised the 

question of whether O-GlcNAc signaling in macrophage senses metabolic status and 

directly regulates whole-body metabolic homeostasis. To test the hypothesis, we 

developed an OGT MKO mouse model and utilized comprehensive methods to elucidate 

the mechanisms. For the first time, we demonstrate an anti-inflammatory, anti-diabetic role 

of macrophage O-GlcNAc signaling. Our study showed several essential roles that O-

GlcNAc homeostasis plays in immune actions and metabolic actions in response to 

excessive calorie intake, including: 1) reduced O-GlcNAc signaling increases macrophage 

pro-inflammatory activation; 2) increases WAT inflammation and lipolysis; 3) increases 

fatty acid delivery to liver and skeletal muscle and reduces TAG, DAG content, resulting 

in reduced novel PKC activation and impaired insulin sensitivity. Furthermore, we found 

that O-GlcNAc signaling regulates mTORC1/S6K1 and AMPK pathways, which are the 

novel pathways to regulate macrophage activation. Taken together, this study defines O-

GlcNAc signaling as a suppressor of pro-inflammatory macrophage activation and adds 

new insight into metabolic regulation of macrophage activation. O-GlcNAc signaling may 

serve as a novel target to treat obesity-induced insulin resistance, hepatic steatosis and 

type 2 diabetes. 
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For future work, it would be interesting to figure out why O-GlcNAc signaling is 

reduced during LPS-induced M1 polarization (Fig. 1D and S1D) by tracing the glucose 

during WT and OGT MKO macrophage polarization. A growing body of evidence 

emphasizes the importance of metabolism in functional activation of macrophages (238). 

We hypothesize that the decrease of O-GlcNAc signaling in pro-inflammatory macrophage 

may be due to increased glucose utilization (e.g., glycolysis and/or glucose oxidation). 

Studies have been shown that microglial inflammation determines the immunologic 

response of the mediobasal hypothalamus to dietary excess and regulates hypothalamic 

control of energy homeostasis in mice (239). We observed that HFD-fed OGT MKO mice 

had increased food intake (Fig. S3L), suggesting that microglial inflammation may also 

play a role. The mechanisms linking microglia inflammation and its metabolic 

consequences could also be studied. 

As indicated by these data, suppressing inflammation and ameliorating insulin 

resistance could be important to treat type 2 diabetes. Adiponectin has emerged as a 

promising therapeutic agent to reduce inflammation and ameliorate insulin resistance. We 

then performed a comprehensive set of metabolic flux analyses to assess the effects of 

long-term adiponectin treatment on glucose and lipid metabolism in vivo and understand 

the underlying mechanisms. I hypothesize that adiponectin administration will result in 

reduced ectopic lipid accumulation due to increased mitochondrial oxidation, decreased 

lipolysis and/or reduced lipid uptake into liver and skeletal muscle, leading to improved 

insulin sensitivity. By testing possible hypotheses, our results showed that adiponectin 

administration ameliorates insulin resistance by two major mechanisms: 1) adiponectin 

treatment promotes increased WAT LPL activity, which may lead to increased uptake of 

triglyceride into WAT thus diverting circulating triglyceride away from storage in liver and 

skeletal muscle; 2) adiponectin treatment promotes increased fatty acid oxidation in 

skeletal muscle, which may be attributed to the activation of AMPK and eNOS. The pros 
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for adiponectin to become a potential agent to treat type 2 diabetes are: 1) The dose for 

adiponectin is relatively small; 2) adiponectin has novel mechanisms of increasing insulin 

sensitivity by targeting WAT LPL activity, which could be used as a combination with 

currently available therapy. The cons for adiponectin to become a potential therapy are: 

1) adiponectin is a protein, which requires a relative restricted storage requirement; 2) 

adiponectin could increase WAT mass. 

In future studies, it will be essential to elucidate the mechanisms by which 

adiponectin specifically activates WAT LPL. One hypothesis is that adiponectin may bind 

with scaffold proteins and then bind specific LPL regulators in white adipose tissue to 

regulate LPL activity. Another hypothesis is that adiponectin may increase WAT LPL 

activity by increasing LPL and VLDL receptor mRNA levels. It has also been uncovered 

that one dose of adiponectin injection caused a dramatic increase in the glucose infusion 

rate (GINF) within 30-40 minutes in euglycemic clamp (114). However, the underlying 

mechanisms are still unclear. It is a very rapid process which may not involve 

transcriptional and translational regulation. As a result, a novel yet unknown mechanism 

may be involved in the acute injection of adiponectin. 
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