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Abstract 

 

Stretching the Limits in Thermoplastic Forming of Bulk Metallic Glasses 

Rodrigo Miguel Ojeda Mota 

2021 

 

Metallic glasses (MG) suggest that superb mechanical properties can be paired with plastic-

like processing. Their high strength and elasticity are often paired with fracture toughness. 

Their supercooled liquid region gives rise to plastic-like processing and suggests parts and 

shapes that can otherwise not be obtained for crystalline metals. However, current 

processing techniques only allow for limited options in terms of geometry, thicknesses 

uniformity, and shape complexity. In the first part of my thesis, I introduce the form-giving 

aspect of metallic glass thermoforming, by introducing stretch blow molding, to expand 

the geometries that can be fabricated with metallic glasses. For this I developed a model, 

which allows to quantify stretch blow molding and provides insight into its potential use 

and limitations. We demonstrate that with stretch blow molding overall strains exceeding 

2000% are achievable, significantly higher than the previously reported ~150% of blow 

molding. In the second part of my thesis, I focused on the effect of the processing on 

metallic glasses properties. This is motivated by the current understanding that most 

metallic glasses lack sufficient ductility or toughness when fabricated under conditions 

resulting in bulk glass formation. To address this shortcoming, I used strain rate to excite 

the liquid while simultaneously cooling it to freeze the excited liquid into a glass with a 

higher fictive temperature. Microscopically, straining causes the structure to dilate, hence 
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“pulls” the structure energetically up the potential energy landscape. Upon further cooling, 

the resulting excited liquid freezes into an excited glass that exhibits enhanced ductility. I 

used Zr44Ti11Cu10Ni10Be25 as an example to pull metallic glasses through this excited liquid 

cooling method, which can lead to the tripling of bending ductility. 
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Chapter 1. Motivation, Background, and Key Contributions 

1.1 Motivation, Metals, Plastics, and the Best of Both Worlds 

In the ever-evolving need for new products and intricate designs, materials scientists have 

been developing new materials and processes to meet these needs. In the past 150 years 

two types of materials; plastics and metals, have become the leading options in industrial 

design.  

Plastics can be readily processed and shaped. Techniques include die forming, extrusion, 

injection molding, compression molding, and blow molding [1], which allow a wide range 

of shapes. Something as familiar as a soda bottle can be processed to have undercuts, 

stamping, and be made in asymmetric shapes. They can be shaped very fast and at the cost 

of a few cents. Yet, plastics often exhibit insufficient strength and toughness. In contrast, 

metals are the archetype of a structural material with high strength and toughness. They are 

used from centimeter-sized pins that hold you on the ride of an amusement park to meter-

sized beams and planks that provide support to buildings and vessels. Although there is a 

considerable amount of processing techniques for metals such as casting, drawing, 

hydroforming, CNC machining and others; metals processing has always been limited to a 

few simple symmetric geometries, such as sheets, bars, tubes, and cylinders. While CNC 

machining increases the opportunity of shapes obtained, as the part’s complexity increases, 

the amount of wasted material does so proportionally. Although 3D printing has seen major 

breakthroughs in current years, there is still a limit in the minimum thickness that can be 

achieved with this technique.  
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Today, making the same soda bottle which takes seconds and costs cents is a major 

challenge to realize as a metal. The available aluminum soda bottles cannot be fabricated 

in a single step or piece, taking longer to process, and sometimes costing more than 100 

times the cost of their plastic counterpart.  Even more important, they’re still restricted to 

simple high symmetry shapes, making the addition of undercuts, asymmetries, or extra 

features on the surface virtually impossible[2].  

The focus of this thesis has been to explore if there are processing methods that allow 

processing of metals like plastics. To have the ability to merge the best characteristics of 

both materials and be able to provide new products parts and shapes, that cannot be 

otherwise obtained for regular metals.  By using metallic glasses, which are a new type of 

materials that could be processed in a similar fashion to plastics while also displaying the 

strength and structural integrity that the best metals provide, we set to develop a new 

processing technique that allowed to obtain parts with larger aspect ratios than what was 

previously possible for metallic glasses.  

This can be best appreciated in Figure 1: There exists an ideal region for the properties 

displayed by the materials/parts under use which polymers cannot achieve, this region is 

characterized by a high strength/viscosity of the material, hence, processing under this 

region is not feasible.  Metals can be molten to process them, but the viscosity drops too 

low to be useful for any meaningful forming technique. On the other hand, polymers and 

metallic glasses can be “softened” to just the right amount, making its viscosity sufficiently 

low to allow the use of many processing techniques but not so low that there is no control 

of the deformation process.  
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In this regard we aimed to develop a new processing technique that allowed for a controlled 

deformation of the metallic glass while providing access to new options in terms of strains, 

shapes, and designs. 

 

 

Figure 1. Ideal performance vs. ideal processing regions for polymers, metals, and metallic glasses 

 

Likewise, processing a material is half of the equation, as you will see it is the case for 

metallic glasses, being able to maintain the properties or improving them once the material 

is processed is also of paramount importance. We thus, set to find innovative ways to 

improve the ductility of metallic glasses during the processing and determine the 

circumstances and conditions that makes it possible. 
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1.2 Background: Materials Shapes and the Need of a New Kind of Materials 

Products that can be obtained and manufactured can be classified in two distinctive groups: 

one where the thickness is on the same order of magnitude in size with respect to other 

dimensions which will be called closed shapes (Figure 2). For the closed parts most of the 

manufacturing technology is already mature and well developed either for polymers or 

metals. In contrast, parts with cavities and high aspect ratios where the thickness is 

significantly smaller compared to the rest of the dimensions will be called open shapes. 

These are in a high demand for use in a wide range of applications, including containers, 

casings, housings, covers, tubing, hoses, and bellows. While a wide range of processes 

exists for the fabrication of closed shape articles, including forging, casting, and stamping, 

processes to fabricate open shape metal parts are limited to high symmetry shapes, which 

are generally difficult to realize in a metal. CNC can be used in some cases, but the amount 

of material lost makes it cost prohibitive as the complexity of the part increase. Additive 

manufacturing alleviates the challenge to some extent; however, closed shape articles are 

much easier to fabricate than open shape metal articles with a thin wall thickness[3-6].  

 

Figure 2.Classification of the obtainable parts according to their final geometry 
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With the rise of super plastic forming (SPF), some limitations in fabricating open shape 

metal articles have been overcome in relation to size, thickness, and usable metals[7-10]. 

Extensive research has concluded however, that SPF suffers from material thinning and is 

limited to relatively low achievable strain rates[11]. 

Open shape articles can be readily achieved in thermoplastics[12, 13]. One example is 

extrusion blow molding, which can fabricate high-strain parts within seconds, as 

demonstrated by the canonical example of the soda bottle. The reason for such ease is that 

thermo-plastics exist in a viscosity range on the order of 102–105 Pa·s, where they can be 

readily deformed under gas pressure. Such a viscosity range is generally not accessible in 

metals, which was suggested as the reason for the asymmetry in the difficulty of fabricating 

metals vs. thermoplastics[14]. 

 

1.2.1 Bulk Metallic Glasses: A Versatile Material 

A metallic material class that provides access to such a viscosity range is metallic 

glasses[15-17], being discovered in 1960[18], metallic glasses are relatively new in the 

material science arena and are the focus of active research; made from multi-metallic 

alloys, the main element can vary from system to system, Au, Al, Cu, Fe, Zr, Ti, Ni and 

many more can conform systems of bulk metallic glasses[19-24], but regardless of their 

composition  the fingerprint characteristic is that the internal atomic arrangement is 

amorphous. This structure is obtained through rapid cooling, there is a critical cooling rate 

(Rc) that must be achieved to obtain an amorphous structure (Figure 3).  
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Figure 3.Glass formation from metallic alloys upon cooling, the cooling rate will determine the final 
structure of the sample.  

 

The critical cooling rate can be determined in a Time-Temperature-Transformation 

diagram (Figure 4a): conventional metallic systems tend to generate crystalline structures 

upon cooling from liquidus temperature (TL) as is the most thermodynamically stable 

equilibrium state. Metallic glasses avoid crystallization by fast cooling the metallic glass 

from TL below a glass transition temperature (Tg) where the material is kinetically impeded 

to impart periodicity to its atoms, leaving the material in a metastable equilibrium state 

without any long-range periodicity in three dimensions[25]. Arriving at this crystallization 

nose, needs to be avoided to obtain an amorphous material, and its exact location is 

determined experimentally for each metallic glass system[26]. The region between the 

liquidus temperature and the glass transition temperature is denominated supercooled 

liquid region (SCLR); although the ability of pure metallic elements to be made amorphous 

by the same method has been long theorized, the time window to form a glass is very low 

(Figure 2b), requiring cooling rates close to 1012 K/s whereas for metallic glasses the 

required cooling rate can be on the order of a few K/s. Is only recently in 2014, when it 
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was demonstrated by ultrafast quenching of Tantalum nanotips, that single pure elements 

could form glasses[27].  

 

Figure 4. a) Schematic of a TTT diagram, depending on the cooling rate imparted on the alloy from the 
liquidus temperature, the alloy can (1) crystallize or (2) form a glass b) Schematic of the timescales 
required to form a glass for pure metals, ribbons, or bulk metallic glasses 

 

1.2.2 The Best Metallic Material in Terms of Processing 

When processed in the liquid state, the viscosity of most metals is like that of the water, 

this provides a facile deformation, but it is too low of a viscosity that the evolution of the 

deformation process becomes uncertain, reducing the options of processing metals in this 

condition only to die casting.  Plastics have an advantage for this matter, by presenting a 

Tg they can be softened, but present a viscosity that provides control over the deformation 

process which increase the processing options. Metallic glasses display the same behavior 

when heated between Tg and TL, on the SCLR, the viscosity can drop drastically at a rate 

of ~1 order of magnitude for every 20 K increased in temperature, making them ideal 

candidates for processing[16, 28, 29]. There exist however, several differences in the 

behavior between polymers and metallic glasses while in this softening region; metallic 
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glasses are considered to behave as a purely Newtonian fluid whereas polymers have a 

viscoelastic behavior and a viscosity dependance on the shear rate. Also, the viscosities 

observed differ several orders of magnitude, for perspective Table 1, shows the viscosities 

of different liquids. Although some non-Newtonian behavior has been observed in metallic 

glasses, it has been associated with the formation of extra free volume, nanoclusters, or 

nanocrystals, and not from an intrinsic characteristic of a “pure” metallic glass[30-33]. 

Table 1.Viscosities of different materials 

Material µ (Pa·s) 
Air (0°C) 1.7 x 10-5 
Molten steel (1500°C)         10-3 
Water (20°C) 10-3  

Mercury (20°C) 1.6 x 10-3 
Oils 10-2 to 104 
Polymer melts 102 to 104 
Molten glass 102 to 104 
Metallic glass in SCLR 106 to 1012 

 

The most crucial difference between polymers and metallic glasses is that where polymers 

cant crystallize to a 100%,  metallic glasses will fully crystallize after a certain period of 

time if left at a temperature between Tg and TL (chapter 2), leaving a limited amount of 

time for processing, but nonetheless making them a suitable candidate for the manufacture 

of parts where the mechanical properties of metals are required[34, 35]. 

 

1.2.3 Mechanical properties of metallic glasses: Strength, fracture toughness, and ductility 

The superb mechanical properties of metallic glasses derive from its amorphous structure, 

which prevents the formation of grain boundaries, dislocations and defects that are 
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otherwise present in crystalline systems. From a structural viewpoint strength and ductility 

are two characteristics that determine the quality of the service a part will produce. Bulk 

metallic glasses display a tensile yield strength that compares or surpasses most of the 

conventional alloys, at the same time, they display an elastic limit around 2% which is on 

par with polymers and almost 10 times a s those of metals (Figure 5)[36, 37], the metallic 

glass with the highest strength is known to exceed 5 GPa, while the  best Ti and Fe alloys 

approach 0.5 to 1.5 GPa at most[38].  

While strength is of paramount importance to provide structural support, fracture toughness 

and ductility are also key parameters for the usability of the material. If we define fracture 

toughness as an indication of the amount of stress that a material can withstand before 

propagating a preexisting flaw, it becomes evident that it would play a central role as 

manufacturing processes are far from ideal conditions. 

 

Figure 5. Strength and elastic limits of metallic glasses compared to other materials. Adapted from [36]  

 

Fracture toughness in metallic glasses varies dramatically and has been the subject of a 

wide range of studies; from a near perfectly brittle behavior of fracture toughness values 
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of ~2 MPa·m1/2 for Mg based metallic glasses[39, 40], to the toughest examples with ~200 

MPa· m1/2 for a Pd based metallic glass[41]. This phenomenon is present even for a same 

family of metallic glasses where researchers have obtained different values (Figure 4)[42-

46]. This effect has been attributed not only to the randomness of the molecular structure 

inherent of metallic glasses but also to the procedure used to prepare the samples[47, 48], 

pointing to processing conditions being of vital importance for the final mechanical 

properties provided by metallic glasses. 

 

Figure 6. Fracture toughness data from separate research groups for a family of Zr-based alloys. Vit1: 
Zr41.5Ti13.75Cu12.5Ni10Be22.5, Var 1: Zr33.5Ti24Cu15Be27.5, Vit 105: Zr52.5Al10Ti5Cu17.9Ni14.6, Z2: 
Zr55Cu30Ni5Al10 Adapted from [49] 

 

From a structural point of view, ductility is also important to consider as it precludes the 

material from a catastrophic failure during service. Usually, ductility is provided through 

a high level of plastic deformation in materials, common alloys and metals display ductility 

through slipping and twinning; having multiple slip systems from highly symmetrical 

structures and low resistance from the lattice for dislocation motion can provide most 

crystalline materials very good plasticity and hence ductility. Bulk metallic glasses lack 
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these mechanisms due to its amorphous nature, hence suffering from low ductility. A 

typical stress-strain curve under tension for metallic glasses will display a high level of 

elasticity and yield strength but a non-existent plastic deformation for all practical 

purposes, exhibiting brittle behavior (Figure 6a). Ductility can be enhanced in metallic 

glasses by different means, thermal treatments, mechanical cycling, changes in the 

geometry or the size of the parts, by introducing heterogeneities, severe plastic 

deformation, and others[50-54]. In geometries under 1 mm metallic glasses can show 

ductility  due to plastic deformation occurring in a highly localized manner[55](Figure 6b). 

Ductility in metallic glasses will be explored in more detail in chapter 4.  

 

 

Figure 7. a) Typical tensile stress-strain curve for a metallic glass exhibiting a brittle behavior b) 
Micrograph of plastic bending of a Zr based metallic glass under 1mm in thickness. Adapted from [55, 
56] 
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1.3 Key Contributions 

Although metallurgy and its manufacturing techniques have been a part of the human 

progress since ancient ages, the development of new processing techniques has slowed 

tremendously in the past few decades. This can be attributed to the intrinsic characteristics 

of metals, and it translates to a rather limited portfolio of available shapes and structures 

that can be formed. By departing from the regular crystalline structure of most metallic 

alloys, metallic glasses present a new opportunity of developing new processing techniques 

that increases this portfolio of shapes and structures. By looking at blow molding for 

plastics, and the form-giving aspects of thermoplastic forming (chapter 2) we were able to 

develop a new technique for metallic glasses, “Stretch blow molding”, which increased the 

strain rates that could be attained compared to previous techniques from 150% in strain to 

over 2000% and accessed thicknesses not previously available for metallic parts. We also 

explored at the thickness distribution models available and develop a new model that better 

adjust to the process we developed while determine the conditions that provide a better 

control of the thickness evolution (Chapter 3).  

Even though metallic glasses can be processed as plastics, there are some processing 

aspects on the metallic glasses properties that need to be considered. The presence of a 

supercooled liquid region, a crystallization nose, and the cooling rate used during 

processing will all influence the properties of the material. Straining while cooling from 

the supercooled liquid region, was theorized to affect the mechanical characteristics of the 

metallic glasses (Chapter 4). We provide direct evidence that ductility can be increased 

over 3 times by straining under cooling from the SCLR for a Zr44Ti11Cu10Ni10Be25 alloy 

and propose a framework called “Exited liquid cooling mechanism” to define under which 
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conditions does straining lead to better mechanical properties and how it can be applied to 

existing processing techniques (Chapter 5).    

We also look at the new questions and unknowns that have arisen from this work and those 

that remain unanswered that will complement it (Chapter 6). 

Finally, although not integrated in this thesis, we encourage the reader to read [57] which 

takes a look on the metallic glasses with the best mechanical properties and where the 

“Criticality” framework is used to look at the selection of the metallic glass components 

from an environmental, ecological and political perspective. with the growing interest on 

using materials that have low environmental and ecological footprint this could be used as 

a guide for selection and development of metallic glasses from a non-traditional 

perspective. 
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Chapter. 2 Form-Giving Aspects of Thermoplastic Forming 

2.1 TTT Diagram and Formability 

Although being the characteristic that provides an advantage of metallic glasses over 

regular metals in terms of processing, the appearance of a SCLR and a crystallization nose 

is also the one that presents the initial hurdle to have an unlimited number of processing 

steps and maintain the properties of the material through them. Upon cooling from melt, 

metallic glasses attain a high energy state (metastable). Once reheated from room 

temperature to a temperature above Tg, the atoms inside a metallic glass have the required 

kinetic energy to move around and initiate the process to rearrange themselves in a 

crystalline fashion to lower their energy state. Crystallization of metallic glasses occur 

between Tg and a crystallization temperature Tx below the liquidus temperature of the alloy 

and, once crystallized, the alloy (no longer a glass) will lose most of its mechanical 

properties, rendering it useless. Avoiding crystallization then, is important from the 

technological perspective and it is one of the major problems to avoid in processing 

metallic glasses[38, 58, 59].  

The temperature range for the SCLR and the size of the crystallization nose will be 

dependent on the alloy components, making the available time to crystallization at a given 

temperature from seconds to hours[60-62]. Theoretically, the capacity of the material to be 

formed can be described by the maximum strain before reaching crystallization, so for an 

isothermal process, the formability is given by: 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖 =
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐

3𝜂𝜂
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Where the isothermal formability (Fiso) is dependent of the time to crystallization (tcryst) 

and the viscosity (η) [63, 64]. The formula reveals a strong dependance on temperature, 

since the viscosity change for one order of magnitude every 20 K while the crystallization 

time changes about an order of magnitude every 50 K[65] (Figure 8a), making any error of 

even 10 K during experimental procedures vary the value obtained quite a lot. The most 

widely used method to assess formability is a standard method introduced in 2008, where 

0.1 cm3 of material is compressed at a constant load of 4500 N and heated from Tg to Tx at 

a heating rate of 20 K/min, resulting in discs with different diameters (Figure 8b). This 

allows a more practical way to determine and compare formability between different 

systems and their selection[66]. 

 

 

Figure 8. a) TTT diagram vs viscosity for Zr44Ti11Cu10Ni10Be25 b) Formability evaluation of various 
metallic glasses: (1) Zr44Ti11Cu10Ni10Be25, (2) Zr57Nb5Cu15.4Ni12.6Al10, (3) Zr58.5Nb2.8Ni12.8Cu15.6Al10.3, (4) 
Pt57.5Cu14.7Ni5.3P22.5, (5) Zr41Ti14Cu12Ni10Be23, (6) Au49Ag5.5Pd2.3Cu26.9Si16.3, (7) Pd43Ni10Cu27P20, (8) 
Zr65Al10Ni10Cu15. The final diameter provides a better indication of formability amongst different metallic 
glasses. Adapted from [66, 67] 
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2.2 Die Casting and Thermoplastic Forming 

This leaves two approaches for the processing of bulk metallic glasses (Figure 9); the first 

one consists of directly casting from the melt with methods such as die casting and suction 

casting[68-70]. One of the benefits of die casting is that bulk metallic glasses present lower 

shrinkage upon solidification, about 0.5% compared to 5% of regular alloys[71, 72]. It also 

provides the opportunity to have a high-volume production of small to medium size 

articles, limited mostly by attaining the required cooling rate throughout the part, the 

thicknesses would range typically from a few millimeters to 10 centimeters depending on 

the alloy system.  

 

 

Figure 9. Processing for metallic glasses can be done through casting from the melt or by thermoplastic 
forming. 
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Having low melting temperatures, it reduces the energy required to process over regular 

metals, which translates in lower costs due to a shorter heating cycle, lower energy 

consumption and the need of less specialized tools and molds. Nonetheless, the critical 

cooling rate (Rc) and the shape of the TTT diagram can be affected by the temperature from 

where the metallic glass was cooled down. It has been found that for a wide range of glass 

forming alloys, there exist a threshold temperature that must be exceeded in order to have 

a metallic glass with good characteristics, this temperature (TOH) is usually 300°C above 

the liquidus temperature of the metallic glass[73-75], and in some cases overheating the 

metallic glass can affect the viscosity of the material[73, 76, 77], overall diminishing the 

benefits of having a low liquidus temperature. 

While shrinkage is significative less than with other metals, any gap between the mold and 

the metallic glass could affect the cooling rate, making this gap the limiting factor for the 

heat transfer. Also during casting, the metallic glass must be under non-oxidative 

atmosphere as this promotes crystallization, while depending on the system used, there 

could be a meaningful correlation between the ability of the alloy to form a glass, and the 

pressure use during casting[78]. Finally, having the metallic glass forming process coupled 

with the part shaping, usually means that as the designs become more intricate, the more 

difficult will be to maintain the mandatory cooling rate through the whole part while 

assuring a complete filling of the mold[20, 79].  Is for this reasons that direct casting from 

the liquid will provide a low yield of options besides a few elemental shapes such as rings, 

rods, or plates. 
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The second available option consist of thermoplastic forming; by considering the 

circumstances mentioned before we can decouple the metallic glass forming process from 

the part shaping: making a preform or stock, while in a separate step heat it above its Tg 

and deform it to the geometry required if we do not reach crystallization. It has been found 

that the available time to process metallic glasses is that for samples processed at a single 

temperature, the time available to the onset of crystallization is additive, but for a multi-

step process the time to crystallization severely deviates from an additive behavior[80], so 

a careful selection of materials and processing steps is needed, but thermoforming has been 

the preferred method for expanding the options to process metallic glasses. 

One such method is hot rolling, this technique has been demonstrated to be useful in 

producing bulk metallic glass sheets [81]. For example, a disc of 1.7 mm in thickness and 

14 mm in diameter can be rolled to obtain a 100 µm thick and an equivalent diameter of 

60 mm; the author participated in the development of this technique and is currently under 

commercial usage[82]. Although hot rolling can be useful to obtain feedstock material for 

the proposed technique in this prospectus, it is unpractical for using it as the sole medium 

of production of open shaped parts, since generating parts will require subsequent folding 

and joining of the material to obtain high aspect ratio parts in three dimensions. 

 

2.3 Compression Molding and No-Slip Conditions 

To go from two-dimensional sheets to three-dimensional shapes compression molding has 

been adapted from polymer processing into metallic glasses. It has been the most used in 

the formation of closed shapes from gears to net-shape samples that allows consistent 
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measurement of the fracture toughness of metallic glasses making it the de facto method 

of processing metallic glasses [19, 21, 47, 48, 83]. 

During compression molding, a feedstock material is placed between two molds and heated 

into the SCLR, once the required viscosity is reached, a pressure that exceeds the flow 

stress of the material is applied to deform into the required shape, this process does not 

require fast cooling and the part would be useful if is not allowed to crystallize, figure 10 

shows an schematic of the process an examples of the versatility of the compression 

molding process, several parts from a few hundredths of microns to a few centimeters can 

be achieved. It is also very useful for imprinting and embossing.   

 

 

Figure 10. a) Schematics of compression molding b) Examples of the versatility of shapes that can be 
obtained through compression molding. 
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In terms of its use for the fabrication of high aspect ratio parts, it has been shown to be 

useful for making parts with a low aspect ratio (~2) with dimensions of centimeters and 

where the thickness remains in the order of millimeters [20]. But fabricating thin-walled 

open shape metallic glass parts with high aspect-ratios is challenging when using 

techniques like compression molding. This is because during TPF, the metallic glass is 

subject to perfect stick conditions (zero velocity at metallic glass/mold interface)[84]. The 

resulting creep-flow exhibits a scaling of forming pressure (P), with wall thickness (d) of: 

𝑃𝑃 = 32
𝜂𝜂𝜂𝜂𝜂𝜂
𝑑𝑑2

 

 Where v is velocity, η is viscosity and L the filling depth. Such scaling suggests that 

compression molding becomes rapidly more difficult when forming articles with thin 

walls[16, 85].  If we consider the velocity (v) the filling length (L) divided by the maximum 

time available for the metallic glass to flow, crystallization time (tcryst), we arrive at the 

equation: 

𝜂𝜂 = �
𝑃𝑃 ∗ 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖𝑐𝑐 ∗ 𝑑𝑑2

32𝜂𝜂
 

Where we can estimate the maximum filling depth for a particular set of conditions.  

Figure 11 shows the calculated maximum filling depth for a channel with diameters from 

0 to 3 mm. The calculation assumes the use of Zr44Ti11Ni10Cu10Be25, which at 460°C has a 

viscosity of 9.8x106 Pa∙s and a crystallization time of 315 s. If we consider a typical 

pressure used of 15 MPa it is easy to see how obtaining parts with high aspect ratio and 

reduced thickness becomes harder as we approach smaller sizes. Surprisingly, in the 
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nanometer size, the use for compression molding has found use to make closed high aspect 

parts (~20) where the effect of capillary forces drives the material flow [86, 87]. 

 

 

Figure 11. Maximum filling depth for different channel diameters. 

 

In terms of other processing techniques such as extrusion, besides increasing the pressure 

required as the thickness of the channel decreases, the non-slip condition together with a 

crystallization time, implies that over time the layer in contact with the mold that did not 

flow, eventually crystallizes, effectively reducing the channel thickness over time and 

being the reason why process like extrusion, although very popular for plastics, it has not 

been adopted for metallic glasses. 
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2.4 Blow Molding and Delaying Mold Contact 

An approach to drastically reduce the required shear strain and shear stress rates for the 

same geometry is the use of processes where the metallic glass is, for the most part, not in 

contact with the mold during the shaping operation. One of these processes is blow 

molding, where low pressures (∼1 atm) and short times (∼10 s) have been demonstrated 

to suffice for the fabrication of thin wall open shape articles [88-90]. In the absence of any 

flow restriction, for a free forming bubble, the pressure required to form it is close to the 

pressure generated with the human lung (~104 Pa). The stress present in the walls of the 

forming hemisphere can be estimated by: 

𝜎𝜎𝐻𝐻 = ∆𝑃𝑃
𝑟𝑟

2𝑡𝑡
 

The stress on the hemisphere wall (σH) is defined by the pressure difference (ΔP), the radius 

of the bubble (r) and inversely proportional to the thickness (t). For a bulk metallic glass 

to deform in the SCLR, the flow stress must be lower than the stress experienced by the 

hemisphere wall. Metallic glasses display a Newtonian behavior while at the SCLR, thus 

the flow stress can be calculated by: 

𝜎𝜎𝑓𝑓𝑓𝑓𝑖𝑖𝑓𝑓 = 3𝜂𝜂𝜀𝜀̇ 

Where the flow stress (σflow) is determined by the viscosity of the metallic glass and the 

straining rate. By using these relationships one can find that indeed, the pressure required 

to deform a metallic glass sample in the absence of restricting boundaries is very low 

(Figure 12b), of course higher pressure is possible to use, but this might not be desirable 

on a working environment.  
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Figure 12. a) Schematic of a setup for free forming a metallic glass bubble, either a pressurized gas from 
the bottom or a vacuum on the top can be used to deform the metallic glass b) Example of a bubble made 
from Zr44Ti11Ni10Cu10Be25 disk with a diameter of 3.5 mm and a thickness of 0.8mm using 0.2 MPa for 40 
s at 460°C under a strain rate of 0.1 s-1(adapted from [88]) 

 

Furthermore, material thinning, reflected in the strain rate exponent of unity (𝑚𝑚 = 𝑑𝑑𝑑𝑑
𝑑𝑑�̇�𝑑

=

1), is essentially absent during blow molding of metallic glasses[91, 92]. However, 

geometrical thinning limits this process to relatively low strain when using sheet-like 

feedstock. This issue, present in essentially all blow molding processes, stems from the 

boundary conditions of the metallic glass to the mold as in compression molding; once the 

metallic glass touches the mold, it no longer deforms, and the remaining deformation must 

be accomplished only with the metallic glass that has not yet touched the mold, imposing 

a higher strain on the metallic glass as it evolves.  

Thinning is particularly problematic for parts with high aspect ratios and has therefore 

limited blow molding to metallic glass parts with a small over-all strain. This can be 

appreciated in figure 13, where forming a cylinder with an aspect ratio of only 2 (d = 20 

mm, h= 40 mm) already presents a highly visible difference in the thickness achieved. 
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Figure 13.Schematic of the evolution of a metallic glass blow molded piece with an aspect ratio of 2 (d = 
20 mm, h = 40 mm) from t = 0 to the end of the process (tend). On the lower right corner, a picture of the 
actual sample obtained, even for low aspect ratios blow molding is a limited method 

 

By using a kinematic model, we can estimate the thickness variation. We assume an 

incompressible Newtonian fluid, with a half hemisphere advancing front and with the 

thickness fixed once the metallic glass touches the mold. Following the previous 

assumptions, the thickness profile of a blow molded metallic glass in relation to the blow 

molding depth (z) is given by the initial thickness (t0) and the radius of the sample (R) 

(Supplement 1): 

𝑡𝑡 =
𝑡𝑡0𝑒𝑒

−𝑧𝑧𝑅𝑅

1 − 𝑡𝑡0
2𝑅𝑅 (1 − 𝑒𝑒

−𝑧𝑧
𝑅𝑅 )

 

Figure 14 shows the thickness profile calculated for a blow molded sample of 9 mm in 

diameter up to 140 mm in depth and starting with a thickness of 2.5 mm. Despite that the 

kinematic model does not consider the pressure or the properties of the material, it is 
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enough to reveal that regardless of how big the pressure differential we can generate, it will 

not be possible to obtain a uniform thickness distribution if the no-slip condition is present; 

preventing us from obtain uniform thin-walled high aspect ratio parts. 

 

 

Figure 14. Calculated thickness for a blow molded sample of 9 mm up to 140 mm in depth and starting 
with a thickness of 2.5 mm 

 

One strategy to overcome geometry limitations due to geometrical thinning is the use of 

pre-shaped parisons Figure 15a. When using parisons, which resemble the final shape of 

the article, all parts of the mold are filled at a similar time after a similar amount of strain. 

Hence, thinning is eliminated, and most of the deformation should be carried out without 

any contact to the mold. Though effective in realizing complex shapes that require high 

strains, and permitting hollow, thin, seamless shapes that might require undercuts, the 
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required additional processing step to fabricate the parison enhances costs, complexity of 

the process, and consumes thermal budget[14]. 

 

Figure 15. a) Schematic of the thickness distribution by using a preformed parison b) example of a 
perfume bottle formed by the use of a pre-shape[14] 
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Summary 

One of the challenges of processing metallic glasses in particular, stem from the intrinsic 

characteristics of the material. Direct casting provides an easy way to shape metallic 

glasses if only a handful of very simple geometries is sought, but very limited as the 

metallic glass forming process is coupled with the part shaping aspect. Thermoplastic 

forming provides a solution by decoupling these two processes by deforming the material 

while in the SCLR. If we take a careful look at the compromise between the lowest 

viscosity the metallic glass can display and the time to crystallization, methods like 

compression molding and blow molding have proven successful in expanding the array of 

parts that can be obtained. While compression molding is the best choice for closed shaped 

parts, the required stresses to use it for open shape parts, particularly with thin walls, render 

it unsuitable for the task due to the no-slip phenomena.  Blow molding has helped to 

increase the aspect ratio of the shapes that can be obtained as it removes for a while the 

limitation imposed by the mold walls but stills falls short by displaying a thinning effect as 

the aspect ratio of the parts made is increased. Is considering this that a new method to 

process metallic glasses is needed. 
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Chapter 3. Stretching the Limits of Metallic Glasses: 

Overcoming Geometric Limitations in Metals 

3.1 Stretch Blow Molding 

Having looked at the advantages and disadvantages of the available processing techniques 

for metallic glasses, is clear that a new processing technique was needed which could 

increase the available geometries that can be fabricated especially high aspect-ratio thin-

walled parts. As determined in the previous chapter, having the metallic glass deformed in 

the absence of a restraining boundary, provided the best results in terms of pressure 

required and thickness distribution. In this work, we overcome the limitations imposed by 

geometrical thinning and expand the range of achievable shapes that can be realized with 

metallic glasses by first stretching a sheet-like metallic glass feedstock into the mold cavity 

(Figure 16). Subsequently, but in the same heating cycle, the stretched feedstock is blow 

molded against the mold, assuming and replicating its shape. 

  

Figure 16. Thickness profile when a sheet-like feedstock is stretched prior to blow molding.  
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The stretching step creates a pre-shape which can be designed to resemble aspects of the 

final shape such as length, aspect ratio and/or geometrical features. This allows us to 

fabricate complex shapes from sheet feedstock with one heating cycle, which we term 

“stretch blow molding”. Such stretch blow molding results in an approximately uniform 

thickness distribution even for very high overall strains. 

 

3.2 Methods and Materials 

There are several requirements for the stretch blow molding process to work: 

• A stretching mechanism with a temperature control, to avoid any cooling of the 

sample through conduction from the metallic glass to the poker. 

• Temperature control through the process; we needed to be sure we could obtain the 

required temperatures to process the material in the stretching and blow molding 

steps but also to allow for it to cool down before crystallization. 

• A holding mechanism that ensured a seamless contact between the metallic glass 

and the mold to avoid any gas leaking through the blow molding process and did 

not interfere with the stretching step. 

• A method to vary the holding force between the mold and the metallic glass that 

avoided squeeze flow but also prevented slippage of the sample through the 

stretching step. 

We designed a new equipment to comply with these requirements and test the stretch blow 

molding process in its full capacity. Two tool steel plates that allowed the insertion of PID 

controlled cartridge heaters would work as the holding mechanism of the metallic glass 
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feedstock into the mold. The bottom plate was fixed into an aluminum frame that provided 

the required rigidity to the whole equipment. The top plate had a circular hole in the center 

which provided an entrance for the poking mechanism and the blow molding gas; this was 

attached to a spring mechanism that provided the clamping force require to hold the 

material and mold in place, while allowing to determine the applied force by measuring its 

displacement (figure 17a).  The poking mechanism consisted of a stainless-steel tube with 

an interchangeable tip to allow different geometries as poker tips. The poker also allowed 

the insertion of a cartridge heater to avoid any heat loss from the metallic glass to the 

equipment, the poker had a concentric cap attached at the top to seal the whole system once 

the poking step was finished (Figure 17b). This was all mounted in a main lever system 

that allowed the hot plates to be open or closed as needed (Figure 17c). 

 

Figure 17. a) hotplates, b) poking mechanism, c) lever mechanism for the setup d) picture of the stretch 
blow molding equipment. 
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To stretch blow mold metallic glasses, we developed the following protocol: for metallic 

glass feedstock we use Zr44Ti11Cu9.8Ni10.2Be25, as it has high formability[63, 66], is 

commercially available, and is widely studied[93-96]. A disc of this metallic glass 

feedstock is then clamped on top of the mold cavity. Subsequently, the feedstock is heated 

above the glass transition temperature Tg, where it reaches the supercooled liquid region, 

at which the feedstock softens and becomes moldable. For the stretch blow molding 

process, we considered temperatures ranging from 365°C to 430°C. The viscosity of 

Zr44Ti11Cu9.8Ni10.2Be25 in this temperature region ranges from 109 Pa∙s (365°C) to 106 Pa∙s 

(430°C)[28, 65]. 

 A concentric and axisymmetric poker then pushes and stretches the feedstock into the 

mold with a varying force of approximately 1 N–1500 N and a strain rate of ∼0.60 s−1. This 

stretching is carried out without any contact of the metallic glass to the mold walls and 

creates a pre-shape (Figure 17). It is this step that enables the fabrication of high-aspect 

ratio metallic glass articles. Once the metallic glass material has been stretched to its final 

extension inside the cavity, the gas pressure applied in the subsequent blow molding step 

separates the metallic glass from the poker and molds it against the mold cavity, replicating 

its shape. Finally, the sample is cooled down below Tg for extraction from the mold.  

 

Figure 18. Pre-shape forming with the stretch blow molding equipment before the blow molding step. 
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The amorphous nature of the material was confirmed to be retained after all processing 

steps using differential scanning calorimetry (TA instruments Q200) and X-ray diffraction 

(Rigaku Smart Lab X-ray Diffractometer).  

Bending tests were performed on strips from stretch blow molded samples, confirming that 

the material maintained its mechanical properties during stretch blow molding. 

 

3.3 Thickness Distribution According to Previous Models 

Models have been developed for different materials deformed under similar techniques. 

For polymers the first model was presented by Williams [97]. He shows that large strain 

solutions may be obtained from approximations of thin membrane theories, with a form of 

stress-strain relation to predict the profile and thickness variation of blown domes and other 

axisymmetric shapes. A direct loading was considered with a 2D geometry as shown in 

figure 19a, together with the variables involved. A strip of width 2b is forced upwards 

centrally by a force (F), with boundaries at 𝑟𝑟 = 𝑎𝑎, 𝑟𝑟 = 𝑏𝑏 and a strain ( 𝜆𝜆𝐻𝐻), where H is the 

poker penetration or height: 

 𝜆𝜆𝐻𝐻 = � 𝐻𝐻
𝐻𝐻0
� = 1. 

From this geometry of the deformation, Williams derived the following ratio for the 

thickness variation: 

𝑡𝑡
𝑡𝑡0

= 𝜆𝜆𝑐𝑐 =  
1

�1 + � 𝐻𝐻
𝑟𝑟 𝑙𝑙𝑙𝑙 𝑎𝑎𝑏𝑏

�
2
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The results are shown in Figure 19b. Although Williams shows experimental points in the 

graph for a PMMA membrane, it does not comment or provide any information on the 

experimental conditions.  

 

Figure 19. a) Geometry used by Williams for a direct loading of a polymeric sheet b) direct loading forming 
thickness variations. Adapted from [97] 

 

In light of lack of a through experimental comparison, Throne developed a more robust 

model including the force require to deform a rubbery sheet, using various plug diameters 

and two material thicknesses [98]. The results were further compared with the large strain 

solution from Williams.  
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Throne analysis shown that plug-assist deformation of rubber sheets results in plane-strain 

deformation; that is, every point on the undeformed sheet is displaced in the force direction 

onto the deformed sheet. As a result, the strain in the radial direction is unity everywhere. 

This can be appreciated in the images in figure 20 which show a top view of a circle pattern 

draw in the rubber sheet in the unstrained and strained conditions. Eccentric plug-assist 

deformation yielded plane-strain deformation as well. 

 

Figure 20. Top view of a) Unstrained rubber sheet. b) Sheet extended 7cm c) Side view of the extended 
sheet.[98] 

 

Throne also found that the extent of deflection of a rubbery sheet is a linear function of the 

applied force and that the thickness of the rubbery sheet decreases in a hyperbolic way with 

decreasing sheet radius from the rim to the plug. The angle the sheet makes with the 

horizontal also increases with decreasing sheet radius. The approach to the development of 

the respective equations (Williams and Throne) were based in the figures shown in figure 
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21a and a comparison of some of the results obtained by Throne and Williams are shown 

in Figure 21b. Is interesting to note that although both Williams and Throne, developed a 

model for the thermoforming of a plastic membrane with a plug, Williams used a 

thermoplastic PMMA membrane for experimental data with the temperature near or at Tm 

(160°C) while Throne uses a natural rubber sheet (elastomer) at room temperature, thus a 

direct comparison on the applicability of said models is not strictly correct. 

 

 

Figure 21. a) Williams coordinate system for the membrane in large strain deformation b)Throne 
coordinate system for large strain deformations of a rubbery membrane c)comparison of experimental 
and theoretical force-deflection for a 0.010 in thick rubbery sheet with a plug diameter of 2.1 cm[98] 

 

From the models described before; the closest to the processing characteristics of the 

metallic glass is the model proposed by Williams. We calculated the predicted profile and 

thickness variation using this model to have an idea of what we should obtain. The results 
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are shown in Figure 22. The values used for the calculation include the initial thickness of 

the disc 1.25 mm, the radius of the poker 4.5 mm, a radius for the disc of 12.25 mm and a 

poking depth of 50 mm. Following Williams model, the deflection profile is given by: 

𝐷𝐷 =
𝐻𝐻

ln 𝑎𝑎𝑏𝑏
ln
𝑎𝑎
𝑟𝑟

 

Where D is the deflection at a given radius from the center axis, H is the total penetration 

depth, a is the radius of the disc (or mold) and b is the radius of the poker.  

 

 

Figure 22. Deflection profile and thickness distribution calculated from Williams’s model.  
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The thickness distribution is given by:  

𝑡𝑡 =
𝑡𝑡0

�1 + � 𝐻𝐻
𝑟𝑟 ln �𝑎𝑎𝑏𝑏�

�

2
 

Where t0 is the initial thickness. According to Williams’s model, we would expect that the 

material closest to the center to thin out more as it is the one sustaining more strain and 

displacement. For the deflection profile of the material, we would expect a deflection in a 

quasi-linear manner where the metallic glass is only in contact with the poker within the 

surface of the tip. 

 

3.4 Thickness Distribution in Pre-Shape After Stretching 

An essential aspect of the introduced stretch blow molding process is the control of the 

thickness distribution in the pre-shape after stretching. We used feedstock discs (25 mm 

diameter,1.25 mm thickness) of amorphous Zr44Ti11Cu9.8Ni10.2Be25, which were stretched 

at a temperature of 415°C to various depths of 25 mm, 50 mm, and 75 mm. A circular 

poker with diameter of 10 mm was used. Two distinctive regions are observed upon 

stretching (Figure 23). One of these regions, which we refer to as the contact region, is in 

contact with the poker and exhibits a relatively uniform thickness distribution. The contact 

region is thickest at the location that first touches the poker and thinnest at the location that 

last touches the poker. The region that does not touch the poker has a different thickness 

distribution and is referred to as the non-contact region. The shape and thickness 
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distribution of the non-contact region is defined by the ratio of the outer rim to the poker 

diameter, and by the original feedstock thickness and depth of the contact region. 

 

Figure 23. Thickness profile of stretched metallic glass to different stretching depths. Two distinct regions 
are observed. One is the contact region (blue), which comprises a purely extensional flow prior to contact 
with the poker and no deformation once the metallic glass touches the poker. The non-contact region 
(green) is the reservoir of metallic glass that has not touched the poker yet and deforms in a more 
homogenous fashion. 

  

The non-contact region is characterized by a stretching process undergoing a purely 

extensional flow(Trouton model)[99]; where the contact region is characterized by a quasi-

uniform thickness due to the deformation process being switched from a purely extensional 

flow to a shear flow enforced by the non-slip condition of the poker surface (Figure 24). 

These two straining processes compete as the metallic glass is stretched and the thickness 

values obtained for the contact region suggest that once the metallic glass touches the 

poker; any further thinning can be neglected as the thickness is similar at any given point 

in the contact region regardless of the amount stretched. 
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Figure 24. Straining regions developed under axisymmetric stretching 

 

To better explain this, as a simple approximation; we can use the geometry in Figure 25 

where we want to double the length and halve the thickness of the specimen shown, this 

will help to appreciate the difference between the two straining processes.  

 

 

Figure 25. Comparison of the stress required for the same amount of deformation for a pure extensional 
flow vs. simple shear. 

 

For a pure extensional flow, the extensional stress (σ) is given by[100]:  

𝜎𝜎 = 𝜂𝜂𝜀𝜀̇ 
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The material viscosity (η) and the elongational strain rate (𝜀𝜀̇), with the strain rate defined 

as: 

𝜀𝜀̇ =
𝑑𝑑𝜀𝜀
𝑑𝑑𝑡𝑡

=
𝑑𝑑
𝑑𝑑𝑡𝑡

(
𝜂𝜂(𝑐𝑐) − 𝜂𝜂0

𝜂𝜂0
) 

Measured by the change of the elongation strain (ε) over time, which depends on the 

original length of the sample (L0) and the length at time t (Lt).  Whereas for simple shear is 

given by the viscosity (η) and the shear rate (�̇�𝛾)[100]: 

𝜎𝜎 = 𝜂𝜂�̇�𝛾 

Where the sear rate is defined by the change in velocity (v) over the height (h): 

𝛾𝛾 =
𝜂𝜂
ℎ

 

Back to figure 25, assuming we take 10 s to double the length and halve the thickness 𝜀𝜀̇ =

0.1 𝑠𝑠−1 but �̇�𝛾 = 20 𝑠𝑠−1so just by virtue of the difference in the deformation mode; we can 

appreciate that to impose the same strain, the stress required for the shearing process is at 

least 200 times that of the pure extensional deformation. Since these both processes 

compete during stretching, the deformation on the contact region (shear) is negligible. 

To quantitatively describe the thickness distribution in the stretched pre-shape, we 

developed a 3D model of the stretching process (Figure 26) based on the following 

assumptions:   

The depth of the non-contact region remains constant (Z = PC), the thickness in the contact 

region is defined by the changing thickness of t = tc, and no further deformation occurs for 

material at z > PC. Finally, we also assume that the material is incompressible. A complete 
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derivation of the model can be found in supplement 2. The model predicts that the thickness 

evolution in the contact region decays exponentially with the stretch depth, z: 

𝑡𝑡(𝑧𝑧) = 𝑡𝑡𝑐𝑐𝑒𝑒
−54(𝐷𝐷0−𝑧𝑧𝑃𝑃𝑐𝑐

) 

Here, the thickness t at a depth z is a function of a critical point Pc (depth where metallic 

glass and poker make contact), the total stretching depth Do and the thickness value tt at 

the tip (initial thickness at the first point of contact with the poker wall vertically) (Figure 

26).  

 

Figure 26. Schematics of the model for the derivation of thickness model. h0 is the original thickness of 
the feedstock, R(z) is the radius from the center of the poker to the metallic glass, tc is the thickness at the 
critical point where the metallic glass first touches the poker at a depth z = Pc , t(z) is the thickness value 
at a certain depth, R0 is the radius of the mold cavity, r0 is the radius of the poker. The z-axis origin is 
placed at the top of the mold where the metallic glass is originally placed. Z = D0 is the final stretching 
depth. 
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The model shows reasonable agreement with experimental data (see dashed lines in Figure 

27) but overestimates the thickness variations and underestimates the overall thickness. We 

argue that the model’s overrepresentation of the thickness is that it does not consider the 

tip effect, the rapidly changing contact angle due to the typical hemispherical tip shape of 

the poker.  

 

Figure 27. Comparison of the thickness model vs. the actual measurements. Dashed lines represent 
predicted thickness evolution according to thickness model equation for 50mm (red) and 75mm (blue). 

 

3.5 Controlling the Thickness Profile Distribution 

The thickness distribution predicted by our model and experimentally observed in Figure 

27 is non-uniform. To control the thickness distribution, we first evaluated using a thermal 

gradient within the disc feedstock to vary the deformation resistance locally. As a second 

option, we also evaluated the ability of the poker geometry to manipulate the location of 

Pc as t is a strong function of z. 
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3.5.1 Thickness Control Through Thermal Gradient 

The strong temperature dependence of the metallic glasses’ viscosity [101], so called 

fragility, can be used as a tool to control the thickness distribution in the stretching step. 

For example, a change in the temperature in the supercooled liquid region by 20°C results 

in a change of viscosity by approximately one order of magnitude [65]. The same effect 

through feedstock geometry (Figure 28a), corresponds to a thickness variation in the initial 

feedstock of also one order of magnitude, such thickness variation would be difficult to 

realize and likely result in an instability [88, 102, 103], preventing the usage of highly non-

uniform sheet feedstock material.  

 

 

Figure 28. Control of the thickness distribution by a) Modification of the initial thickness/geometry of the 
feedstock material. b) Imposing a temperature gradient on the feedstock to locally vary the viscosity. 

 

To realize a controlled radial temperature gradient in the disc-shaped feedstock, we control 

the temperature on the outside of the sample (T1, clamp temperature) and at the center of 

the feedstock (T2, poker temperature) (Figure 28b).  To reduce the thickness variation in 

the stretched pre-shape (Figure 23), a lower temperature in the center of the feedstock 

material, T2, should be used relative to the clamp temperature T1. Therefore, the center 
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region experiences higher resistance to deformation and thins to a lesser degree than it 

would when both temperatures are identical. Likewise, the outer region will strain more, 

hence compensating for the geometrical thinning. Temperature differences T1-T2 ranging 

from 15°C to 65°C were realized and their resulting thickness distribution in the stretched 

(50 mm deep) pre-shape were determined (Figure 29).   

 

 

Figure 29.Thickness distribution profile for samples with a radial thermal gradient where the outer 
temperature T1 is always higher than the center temperature T2 

 

Upon stretching, the overall thickness in non-contact region (Figure 23) decreases more 

quickly as compared to samples where a single uniform temperature was imposed. With 

increasing temperature gradient from T1-T2 = 15°C to T1-T2 = 55°C, the thickness becomes 

more uniform. When further increasing T1-T2, the variation in thickness throughout the 

stretched pre-shape increases again, particularly in the clamped region (depth 0 mm in 
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Figure 29). Here, the flow resistance at T1 is overcompensated relative to T2. By imposing 

a thermal gradient during the stretching step, however, one must consider the reduced time 

to the onset of crystallization at the highest temperature used to avoid any unwanted 

modification in the mechanical characteristics of the part.  

 

3.5.2 Modification of the Point of Contact by Poker Geometry 

An alternative approach to control the thickness distribution in the stretched pre-shape is 

based on the modification of the poker geometry, a schematic illustration is shown in figure 

30, where the diagram compares the use of a constant radius poker to a poker with 

increasing radius. 

 

Figure 30. Alteration of the point of contact between the poker and the feedstock; I) shows a zoomed 
representation of a typical profile obtained using a poker with a constant diameter. Here, the point of 
contact Pc remains at the same height from time 1 to time 3). II) shows that by using a poker with an 
increasing diameter (tapered), the amount of metallic glass in contact at a given time can be adjusted. The 
initial Pc at time 1 is continuously moving upwards at the following times 2 and 3. Thereby, one can use 
the taper angle of the poker to generate a desired thickness distribution.   
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 By varying the poker geometry, the contact region of the poker with the feedstock metallic 

glass can be adjusted.  For a constant poker radius, at an arbitrary time 1 the poker subtracts 

a certain amount of metallic glass from the non-contact region. Since the volume of the 

material is finite at a subsequent step at time 2, the poker subtracts a smaller metallic glass 

volume. To compensate for this continuous change, we can increase the poker radius to 

reach for metallic glass material at a higher position by displacing the contact point Pc 

upwards (Figure 28 II). A tapered poker can therefore result in a more even thickness 

distribution.  

For a cone shaped poker with a round tip, we estimated that an angle of 88.75 degrees 

would give the most uniform thickness distribution, based on the thickness profile obtained 

experimentally. Samples of Zr44Ti11Cu9.8Ni10.2Be25 with an initial thickness of 1.25mm 

were stretched to 80 mm in depth. 

 

Figure 31. Thickness distribution profiles for samples stretched with a constant radius poker (red) and a 
poker with increasing poker radius with an angle of 88.75° (black). 
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 Figure 31 shows the comparison of the thickness profile obtained for a sample stretched 

with a uniform poker radius vs. the thickness profile obtained for a sample stretched with 

a poker with a tapered angle with increasing radius. With the tapered poker, we obtain a 

uniform wall thickness across a larger region of the samples. 

 

3.6 Thermal, Structural, and Mechanical Characterization of Stretched Metallic 

Glass 

An important aspect in metallic glass processing is how processing affect properties [16, 

104-106] . It has been shown that changes in fictive temperature [107-110] and partial 

crystallization [111] can have dramatic effects on the metallic glass properties, particularly 

on their mechanical properties.  In addition, some research has suggested that 

crystallization can be affected by a strain rate during exposure in the supercooled liquid 

state [112-115]. 

To characterize the effect of stretch blow molding on thermal, structural, and mechanical 

properties we carried out a range of characterization at various stages of the stretch blow 

molding. To quantify their thermal characteristics, we carried out differential scanning 

calorimetry (DSC). Specifically, we characterized metallic glass after it was stretch blow 

molded and used material from various locations (Figure 32a) at different stretched depths 

(a=15 mm, b=30 mm and c=60 mm, sample cap). Based on their glass transition 

temperature, Tg, their crystallization temperature, Tx, and their heat of crystallization, ΔH, 

the thermograms from the samples at the various considered locations after stretch blow 

molding are indistinguishable from the as cast feedstock material. This suggests that stretch 
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blow molding can be carried out without introducing crystallization or even consuming 

large fractions of the thermal budget.  

These findings are supported by XRD characterization which reveal an amorphous 

structure for the stretch blow molded samples, indistinguishable from the as cast feedstock 

(Figure 32b). 

 

Figure 32. a) DSC thermograms of a stretch blow molded sample taken at three different heights: 15 
mm(a), 30 mm (b), and 60 mm (c), and for comparison the thermogram of the feedstock. The thermograms 
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for the samples from the various locations after stretch blow molding are undistinguishable within 
experimental error from the as cast feedstock sample judging by their Tg, Tx, and ∆H b) XRD spectra of 
feedstock and stretched blow molded sample both reveal amorphous structure. 

A powerful indicator to determine processing effects on metallic glasses is the bending 

strain to failure [116, 117]. Whereas metallic glasses typically do not show any tensile 

ductility in uniaxial loading, they can exhibit significant ductility in bending, particularly 

when their thickness is below 1 mm [116]. To quantify their bending ductility, bending 

tests around mandrels with various radii were performed on cut strips from stretch blow 

molded samples (Figure 33). Strain to failure is calculated by: 

𝜖𝜖 = 𝑡𝑡 2𝑟𝑟⁄  

where t is the thickness of the sample and r is the bending radius.  

 

Figure 33 a) mandrels used for ductility analysis of the stretch blow molded and feedstock Zr-Based 
metallic glass parts b) example of a manually bent metallic glass strip from the stretch blow molded sample. 
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Stretch blow molded samples, which were taken from various locations as well as samples 

from as cast feedstock all with an average thickness of ~0.125 mm start to deform 

plastically at a bending radius of 2.5 mm with a corresponding strain of ~2.5 % and fracture 

at a bending radius 0.25 mm at a failure strain of 25%. Such large plasticity in all samples 

further suggests that stretch blow molding can result in metallic glass parts that maintain 

their high properties during processing.  

 

3.7 Parts Manufactured Through Stretch Blow Molding 

Using the strategies described above to control the thickness distribution during the 

stretching step, we were able to fabricate thin-walled metal parts that are open shaped 

(Figure 34). Starting with a flat, sheet-like feedstock, strains of up to 2000% and parts with 

an aspect ratio of four were achieved. It should be mentioned that likely even larger strains 

and aspect ratios can be achieved; here we were limited by the equipment design. By 

comparison, blow molding using sheet like feedstock can only provide parts with an aspect 

ratio of < 1.5 [88]. This technique also allows fabricating single piece geometries with 

undercuts and side features, which are impossible with conventional metal processing 

methods such as spinning or deep drawing (Figure 32). For example, the versatility of our 

process allows to fabricate seamless open shape parts, which are only for high symmetry 

possible with other metal processing methods. All metallic glass parts replicated the mold 

surface and details. In fact, recent studies of the fidelity of thermoplastic forming processes 

suggest that much smaller features can be achieved as the surface appearance [118, 119]. 

This suggest that surface finishes, for example a mirror finish can be incorporated into the 
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stretch blow molding processing step, as oppose to conventionally where it is subsequently 

added at high costs. 

 

Figure 34. Parts obtained through the stretch blow molding process. By starting with a flat sheet-like 
feedstock with a few mm in thickness as the one shown at the center of the image parts with aspect ratios 
of 4 and strains over 2000% were obtained. 
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Summary 

We have developed stretch blow molding which allows for the fabrication of high aspect 

ratio open shape structures from flat, sheet-like bulk metallic glass feedstock. Including a 

stretching step in the blow molding process eliminates previous limitations such as small 

aspect ratios and non-uniform thicknesses during blow molding. Achievable overall strains 

with reasonable thickness variations were increased from ~150% achieved during blow 

molding to ~2000% when incorporating the stretching processing step. Mechanical, 

thermal, and structural analysis revealed that during stretch blow molding the amorphous 

structure is maintained. Hence when using appropriate feedstock metallic glass in sheet-

like form, thin-walled shapes, previously unachievable with any metal process can be 

realized and these shapes exhibit superb mechanical properties. 

Open shape geometries are ideal application of metallic glasses, as they yield exceptional 

bending ductility as long as the wall thickness is below ~1 mm [116]. Additionally, open 

shape structures utilize less material, which is an important consideration due to the 

relatively high material costs and criticality of metallic glasses when compared to steel 

[120].  Therefore, stretch blow molding offers a highly practical and effective method to 

net-shape complex open shape articles from metallic glasses, and we are looking forward 

to a broad commercial adaptation of this method, where we currently submitted a patent 

application (62/641,65). We recommend the reader to watch a neat demonstration of a blow 

molding process: https://www.youtube.com/watch?v=Bd370rlvT5M and for a 

demonstration of stretch blow molding use:  

https://www.youtube.com/watch?v=iBbpIFwvxwI. 

https://www.youtube.com/watch?v=Bd370rlvT5M
https://www.youtube.com/watch?v=iBbpIFwvxwI
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Chapter 4. Processing Aspects on the Metallic Glass Properties 

So far, we have focused on the form giving aspects of thermoplastic forming metallic 

glasses to obtain new parts and shapes; and while we must comply with certain conditions 

to obtain a glass (cooling rate > Rc), and then to process it on the SCLR (avoid the 

crystallization nose by controlling temperature and time in the SCLR); most of the known 

metallic glasses lack sufficient ductility or toughness when fabricated under conditions 

resulting in bulk glass formation. In this regard, improving the mechanical characteristics 

of metallic glasses while processing and understanding how the processing conditions 

affect the metallic glasses final properties is of uttermost importance.  

 

4.1 Fictive Temperature and the Energy Landscape 

When a metallic glass forming liquid is cooled, its structure continuously reconfigures into 

a new temperature dependent metastable equilibrium structure. Such reconfiguration, 

referred to as structural relaxation, proceeds with a characteristic time, τrel that rapidly 

increases with decreasing temperature. Reconfiguration occurs if the required time scale 

for relaxation exceeds the available time, which is usually set by the cooling rate, R; τcool 

= 1/R. However, at a certain temperature, usually referred to as the fictive temperature (Tf) 

or glass transition temperature upon cooling, the metastable liquid can no longer find its 

metastable equilibrium and freezes into a glass. This fictive temperature is used to describe 

the structural state of the metallic glass when the liquid falls out of equilibrium, resulting 

in the liquid and the glass having the same structure, volume and enthalpy at this point 

(Figure 35)[121].  
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Figure 35. Change in enthalpy or volume according to temperature for a metallic glass 

 

For the same metallic glass, the colling rate from the SCLR will affect the obtained fictive 

temperature, as the cooling rate is faster, Tf departs from equilibrium to become metastable 

at a higher temperature, while a slow cooling rate allows for sufficient time for the metallic 

glass to relax and take more time to depart from equilibrium, translating into a low Tf.  For 

metallic glasses, it has been generally observed that higher fictive temperatures result in 

higher ductility of the corresponding amorphous structure [105, 109, 122-125], in this 

regard, processing temperatures and cooling rates start to paint a more complex picture 

where the displayed properties of metallic glasses are sensitive to the processing 

conditions[126]. 

If given the sufficient time, metallic glasses can obtain a different structure or Tf from the 

one it had before. The time required to do so is defined by the Vogel-Fulcher-Tamman 

(VFT) equation: 

𝜏𝜏𝑐𝑐𝑟𝑟𝑓𝑓 = 𝜏𝜏0 exp �
𝐷𝐷∗ ∙ 𝑇𝑇0
𝑇𝑇𝑓𝑓 − 𝑇𝑇0

� 
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Where the relaxation time (τrel) is a function of the relaxation time (τ0) in the limit as 1/T 

tends to 0 (infinite temperature relaxation time), while (D*) is the fragility parameter and 

(T0) is the temperature where the barrier to flow goes to infinity[127-129]. For Zr based 

metallic glasses τ0 has been calculated to be 2.5x10-13 s[129].   

To better understand the complex phenomenology of the different internal states a metallic 

glass can attain as an amorphous material a convenient visualization is described through 

the potential energy landscape (PEL) [130, 131]. The PEL is a multidimensional surface 

that describes the relationship between the potential energy to the coordinates or 

configurations of the atoms, and where there are many local optima for particle 

packaging[132]. In this framework, the state of the system is characterized by the ensemble 

of energy minima visited by the system[133, 134]. This has also been use to explain the 

properties of other disordered materials such as colloids, foams and granular materials[135, 

136] and although several studies have focused on determine the PEL directly, it remains 

a difficult task[131, 137, 138], thus, PEL is often presented as an schematic.  

 

 

Figure 36.Schematic diagram of the PEL for a metallic glass (right). Depending on where the glass falls 
out of the equilibrium, is the position/structure that occupies on the energy landscape. 
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To visualize the different glass states of a metallic glass and the effect of the cooling rate, 

we can use a one-dimensional PEL (Figure 36), glass in general will arrive at a local 

minima basin (amorphous inherent structures). A fast cooled glass will present a high 

fictive temperature and be in a high energy state (red). On the contrary, a slowly cooled 

glass will be able to minimize its energy, presenting a lower fictive temperature (blue) and 

tending to an ideal glassy structure, nature however, imposes a strict limit in the cooling 

rates that can be experimentally achieved. 

 

4.2 Relaxation and Rejuvenation 

The most common method to change the metallic glass to a lower structural state is through 

annealing. If the metallic glass is let at a particular temperature for a time longer that its 

characteristic relaxation time at that temperature, the metallic glass will achieve this new 

structural state, or “relax” into it. Annealing will provide enough energy for the atoms in 

the structure to change it configuration into different wells in the PEL. If annealing is done 

below Tg, the metallic glass can only reconfigure to adjacent configurations (figure 37). 

Theoretically, crystallization is possible to attain but highly unlikely, and the time scale to 

do so is of no practical use. For a temperature between Tg but below TL the metallic glass 

has enough energy to sample several configurational states; the minimum energy is still 

the crystalline state, to which the metallic glass will eventually arrive given sufficient time. 

Being this the reason of the metallic glasses’ crystallization nose on the TTT diagram, and 

the reason there is a maximum processing time available.  
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Figure 37. PEL for an arbitrary metallic glass. The close up shows the mechanism of structural 
relaxation to lower energy levels when done at temperatures lower than Tg , adapted from [139] 

 

Beyond the theoretical approach, there are experimental approaches to quantify these 

changes in structure, free volume, and enthalpy. One of the most effective tools is the DSC, 

which is probably the most sensitive tool to energy fluctuation during glass transition and 

relaxation among all the characterization techniques. Figure 38 depicts a diagram for a 

DSC obtained for an arbitrary metallic glass. In general, a metallic glass from the as-cast 

state will undergo a glass transition, where it approaches the SCLR, a crystallization, where 

the material has achieved enough energy to arrange its atoms in a periodic fashion and 

finally melting, as it achieves a liquid state. If we zoom in the glass transition region, we 

can observe changes according to the thermal history of the metallic glass. A relaxed 

metallic glass will have a lower enthalpy compared to the as-cast material, so as it is heated 

up in the DSC and it has enough energy to rearrange its atoms, it will experience an excess 

of enthalpy that it can gain, which it is shown as a positive increase in enthalpy (shaded 

area). 
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Figure 38. Diagram of a DSC thermogram from an as-cast metallic glass compared to one from a relaxed 
metallic glass 

 

Early work on relaxation of metallic glasses has shown that it promotes the embrittlement 

of metallic glasses[123, 140-142], making usage temperatures and times worth of 

consideration for metallic glass parts. 

Like relaxation, which decreases the internal energy of the system, rejuvenation can be 

used to increase it, this increase in energy has been associated with a more “disordered” 

system with increased volume, providing an increase in ductility for metallic glasses[143-

146]. From the PEL perspective, the rejuvenation of a material would mean a climb to 

higher levels in the potential landscape. If we look at it through DSC measurements, 

compared to the as-cast material, the rejuvenated glass will experiment a decrease in heat 

flow as the system arrives at the glass transition region (Figure 39). In general, it has been 

shown that these two processes can be reversed, as long as there is no crystallization or 

damage imposed in the sample[106, 147].  
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Figure 39. Diagram of a DSC thermogram from an as-cast metallic glass compared to one from a 
rejuvenated metallic glass 

 

4.3 Deformation and Processing Effects in Bulk Metallic Glasses 

Whether a material shows a brittle fracture, or a plastic deformation is of high relevance 

for its usage. Under tensile stress, most metallic alloys display an elastic region within a 

strain of usually 0.2% until they yield. Following yielding, regular alloys show plastic 

deformation by the gliding of dislocations inside the crystals, and finally a catastrophic 

failure through the propagation of cracks through the grains or grain boundaries. An 

important phenomenon during its processing is work hardening, where following plastic 

deformation, more dislocations are generated through the material that impede the 

continuation of the gliding, generating work hardening behavior. Annealing will usually 

result in relaxation (recovery) but the only way to substantially reduce the dislocation 

density is through recrystallization, typically at temperatures above 60% of the absolute 

melting temperature.  
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Compared to regular alloys, in metallic glasses the elastic strain is non-affine, meaning that 

in the atomic level the atoms never occupy equivalent positions to their crystalline 

counterparts. Rearrangements can occur upon unloading, but the exact structure is not 

restored, so there is a net structural change. Under the elastic region, soft spots with local 

plasticity emerge in an apparently rigid matrix, which upon unloading pushes the soft spots 

roughly back to their original configurations. In general, metallic glasses will show a yield 

strain of around 2% which is higher than regular metals. Usually, past this point, the 

metallic glasses will go directly to fracture without showing any macroscopic plastic 

deformation as in regular metallic alloys.  In this regard we can identify two types of plastic 

deformation in metallic glasses below its glass transition temperature; under a low stress, 

the metallic glass shows homogeneous deformation, described as creep flow. If the stress 

increases, the plastic flow is inhomogeneous and localized into shear bands that become 

part of the fracture mechanism[148]. 

 

 

Figure 40. a) Fracture surface of Zr41Ti14Cu12.5Ni10Be22.5 showing plastic flow b) Same material after 
annealing at 623 K for 12 h, the fracture surface shows brittle fracture. Adapted from[149] 
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Some metallic glasses however, behave brittle both locally and globally, such as 

magnesium-based alloys with a toughness less than 5 MPa m1/2 [39]. Figure 40a shows the 

surface of a vein pattern that is formed in a Zr-based alloy evidencing high local plasticity. 

The same alloy was annealed for 12 h at 623 K to relax the material and increase its 

brittleness. The surface shows a river pattern associated with the fracture of brittle materials 

(Figure 40b). Once above the glass transition temperature, metallic glasses deform as 

highly viscous liquids. 

 
 

4.4 Current Methods to Modify the Structure and Increase Ductility 

It has been widely shown that metallic glasses of the same chemistry can have greatly 

different ductility or fracture toughness[150-152]. Relative to the metallic glass as-cast 

structure, ductility or fracture toughness can be reduced [151, 153, 154] or enhanced [105, 

110]. This can be achieved through thermal treatments such as the use of different cooling 

rates [105, 155], annealing protocols [109, 153, 156, 157], or mechanical treatments such 

as quasistatic mechanical loading [158-162], plastic deformation [144, 163-165] , thermal 

cycling [104, 166-168],  shot peening [143] , and radiation damage [169-173] .  

For mechanical treatments, the glass itself is manipulated. Manipulation of the glass is 

often inhomogeneous, most extremely during treatments that generate shear bands where 

most of the treatment effects are localized in shear bands occupying a very small volume 

fraction of the sample. For thermal treatments over the glass transition temperature, enable 

the liquid metallic glass former to be affected before it freezes into a glass, providing a 

more dramatic effect in the metallic glass properties compare to thermal treatment below 
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Tg[174], Figure 41 shows the normalized notch fracture toughness measured for different 

metallic glasses, the value increase dramatically as the material is set to fictive 

temperatures above Tg. A through table in Supplement 3 show a comprehensive list of the 

available techniques to modify the mechanical properties of metallic glasses.  

 

 

Figure 41. Notch fracture toughness for Zr44Ti11Ni10Cu10Be25 (black squares), Pd43Cu27Ni10P20 (red 
circles) and Pt57.5Cu14.7Ni5.3P22.5 (blue triangles), showing an abrupt change in the normalized values for 
the notch fracture toughness in the region around the glass transition temperature. From [174] 
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Summary 

Even when complying with the general processing requirements to avoid crystallization 

and obtain the best processing parameters defined by the TTT diagram of metallic glasses, 

a more through look reveals that several aspects might affect the final displayed properties 

of the material. For two different pieces, even if they undergo similar thermoforming 

processes, they can end with totally different internal structures and characteristics defined 

by its fictive temperature and where they are in the potential energy landscape, as they have 

a direct effect in how brittle or ductile the pieces can be. Thanks to the amorphous 

characteristic of metallic glasses, these properties are not fixed, and they can be modified 

to a degree by means of relaxation or rejuvenation of the material. Mechanical modification 

of the properties has been focused on inhomogeneous deformation of the BMG outside the 

SCLR with limited success and no practical or commercial application outside the 

laboratory. A new method to improve the properties of metallic glasses while 

thermoforming is then needed. 
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Chapter 5. Improving Ductility Through Straining 

5.1 Straining at SCLR While Cooling 

Realizing a higher Tf and hence a ductile state in a glass upon cooling requires either a 

slower relaxation process or faster cooling. As the relaxation process of a metallic glass 

forming liquid is an alloy specific and intrinsic property, only the cooling rate can act as a 

tool to enhance ductility. As a consequence, ductile states can generally only be realized in 

thin and simple geometries where sufficiently high cooling rates can be achieved [105], 

and most metallic glasses in bulk form lack ductility or fracture toughness [175-177].  

Recognizing such limitations in realizing a ductile state under metallic glass forming 

conditions has led to the development of processing strategies to enhance ductility after the 

glass has already been formed. Such strategies are based on mechanical means [178] and 

include irradiation [169-173], static loading [158-162], cyclic loading [179], shot peening 

[143], rolling [180], twin roll casting [181], thermal cycling [104, 166-168], and severe 

plastic deformation [144, 164]. Among these methods addressing the glass are some that 

offer practical methods to enhance ductility in metallic glass forming alloys [104]. 

However, it is unclear for which metallic glasses these techniques lead to rejuvenation or 

relaxation and hence a more ductile or brittle behavior, respectively [167]. Beyond cooling 

rate, other strategies that directly affect the liquid prior to glass formation have been 

explored but remain inconclusive [182].    

Here, we strain the supercooled liquid metallic glass former during cooling. The resulting 

excited liquid originates from the evolving competition between structural relaxation and 

strain rejuvenation. Upon freezing into a glass, the temperature at which the excited liquid 
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state has been resumed is the representative fictive temperature of the resulting excited 

glass. The level to which straining enhances the fictive temperature depends on the 

difference between the time scales set by the strain rate, which increases the potential 

energy, and by structural relaxation, which decreases the potential energy. An increase in 

fictive temperature is reflected in an increase in ductility which we measure in bending. 

 

5.2 Setup and Testing Method 

Amorphous Zr44Ti11Ni10Cu10Be25 rods of ~1.8 mm in diameter were prepared by copper 

mold casting. High purity ingots (for all constituent purity higher than 99.99) were arc-

melted under argon atmosphere to alloy the constituents; subsequently, the alloy was 

reheated to a temperature of ~1000 ºC and under an argon gas pressure forced from the 

quartz nozzle into a copper mold with the final shape (Figure 42). The amorphous condition 

for the rods was confirmed by thermal analysis on some of the rods, revealing the typical 

thermogram for a fully amorphous sample which was cooled with a rate ~500 K/sec [109].    

 

 

Figure 42. Zr44Ti11Ni10Cu10Be25 rods made by allowing the components in a quartz tube and subsequently 
prepared by copper mold casting 
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To strain the samples on the SCLR, the amorphous Zr44Ti11Ni10Cu10Be25 rods were heated 

to a temperature 80 K above the calorimetric glass transition temperature (Tg = 623 K) in 

an induction coil to deform it under a load and air cooling while deforming (Figure 43). 

 

` 

Figure 43. a) Induction heating is used to heat a metallic glass rod to a desired temperature in the 
supercooled liquid region b) A constant force, which can vary between 1 and 100 N is applied to strain the 
sample. Upon straining, the sample is air cooled with a varying cooling rate ranging ~10-100 K/s. The 
variation of the cooling rate originates from the decreasing diameter of the sample upon straining from 
initially ~1.8 mm to a final ~ 0.1 mm. Strain, γ, is calculated from the sample’s initial length, L0 and length 
at time, L(t), by γ(t)=((L(t)-L0)/L0) * 100 

 

To determine when the required temperature is achieved, and have a consistent set of 

measurements, we rely on the VTF equation for the temperature dependance of the 

viscosity, where the viscosity (η) of the material can be calculated at a given temperature 

T with the fragility parameter (D*), the temperature where barriers with respect to flow 

would go to infinity (T0), and η0 is the high temperature limit of viscosity[183]: 

𝜂𝜂𝑇𝑇 = 𝜂𝜂0 exp �
𝐷𝐷∗ ∙ 𝑇𝑇0
𝑇𝑇 − 𝑇𝑇0

� 
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The stress (σ) imposed by the weight on the material is given by the relationship: 

𝜎𝜎 =
𝐹𝐹
𝐴𝐴

 

With the force calculated with the weight in use, and the area (A) being the cross-sectional 

area of the sample. Finally, by substituting both equations in the flow stress of the material: 

𝜎𝜎 = 𝜂𝜂�̇�𝛾 

 we can determine the strain rate imposed on the sample and use it as a proxy for the 

temperature measurement under a constant load (Figure 42). 

 

 

Figure 44. a) A small weight (m1) is used to determine temperature once deformation can be detected. 
Using the corresponding strain rate ~  �̇�𝜸 = 𝟎𝟎.𝟏𝟏 𝒔𝒔−𝟏𝟏  and �̇�𝜸 ∗  𝜼𝜼 = 𝑭𝑭/𝑨𝑨 the corresponding viscosity can be 
determined due to the strong temperature dependence of viscosity [184] b) Variable evolution over time 
for a sample wire 
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The rod is held from above inside an RF-coil, affixed with a hanging weight (100 g) and a 

second weight that is suspended not to exert any force on the sample initially (0-10000 g). 

The RF- coil is turned on, and once the rod deforms sufficiently to lengthen 5mm due to 

the 100 g force, the larger weight is released and rapidly strains the sample rod into a wire 

(Figure 45). 

 

 

Figure 45. Snapshots of the deforming metallic glass in its supercooled liquid state 

 

By varying the load, the strain rate can be manipulated. The decreasing cross section of the 

deforming sample and the strong temperature dependence of the viscosity control the 

evolution of temperature and strain rate profile (Figure 46).  As the cross section of the 

sample continuously decreases, the cooling rate continuously increases (at least for T > Tg). 

Strain rate (�̇�𝛾) under constant applied force is controlled by the time dependent cross-
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sectional area and by the temperature dependent viscosity. The later can be approximated 

with a Vogel-Fulcher-Tammann (VFT) temperature dependence, hence exponentially 

increasing with decreasing temperature. 

 

 

Figure 46. A typical time evolution of temperature and strain. Temperature evolution is estimated 
assuming convective air cooling and estimated through a lumped-capacitance model, which gives 
T(t)=Tenv+(T0-Tenv) e-t)⁄τ, Tenv: room temperature, T0 : initial temperature of the sample, τ : time variable of 
the system, defined by τ = mc ⁄ (hA); m : mass of the sample, c : specific heat capacity, h : heat transfer 
coefficient, A : heat transfer surface area (see Supplement 4) b) Thickness distribution within the pulled 
wire. 
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Strain rate once the required weight is released after obtaining the required temperature is 

determined from video analysis and varied by changing the mass of the second weight. The 

first processing step with the 100 g weight warrants control over the initial temperature as 

the deformation to 5 mm is predominately controlled by viscosity which is highly 

temperature sensitive [185]. 

Qualitatively �̇�𝛾(𝑇𝑇) exhibits a peak with values of several hundred strain per second, before 

decreasing again (Figure 46a). The sample presents a consistent thickness through the 

sample but in the region close to the undeformed edges (Figure 46). For a full derivation 

of the heat transfer during pulling please refer to supplement 4.  

 

5.4 Evaluation of the Effects on Bending Ductility 

The samples which were processed according to the simultaneous cooling and straining 

processing protocol were subsequently characterized to determine their ductility (Figure 

45a). We choose bending characterization to determine the metallic glass samples’ 

ductility. Metallic glasses exhibit typically no ductility in tension [176], and ductility 

measurements in compression are often overshadowed by misalignment and confinement 

effects [186]. Hardness and modulus trends have been associated with ductility trends and 

used for experimental convenience; however, these offer indirect information at best. The 

most reliable quantification of a ductile vs. brittle behavior can be achieved through 

fracture toughness measurements [187]. As those measurements are not possible due to the 

samples’ geometry after pulling, we carry out bending experiments.  
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It has been shown that some metallic glasses, including the Zr44Ti11Ni10Cu10Be25 alloy 

considered here, exhibit a well-defined and characteristic bending ductility in geometries 

where their thickness is below ~1 mm [116, 188, 189]. As the absolute value of the bending 

ductility is a function of the samples’ thickness [116], only samples with similar thickness 

should be compared.   

 

 

Figure 47. Characterization of the effect of excited liquid cooling on Zr44Ti11Ni10Cu10Be25 metallic glass 
bending ductility a) Wires are mechanically characterized through bending around cylinders of 
successively small diameter until fracture b) In order to separate the effects of excited liquid cooling from 
the fast-cooling rate of the small geometry, wires are separated into two, with one segment characterized 
as pulled and the other annealed. 

 

A challenge is to isolate the effect of the applied strain rate from other effects such as the 

cooling rate [182]. To be able to separate the effects, wires are divided into roughly equal 

segments and separated into two categories: as pulled and annealed (Figure 47b). Both sets 
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of wires are characterized via bending around cylinders of successively smaller diameters 

until fracture. Fractured wires are measured under an optical microscope to determine 

thickness and radius of fracture to determine bending plastic strain. This value is then added 

to the measured elastic strain limit (which is in close agreement with previously reported 

values 55) to determine bending fracture strain 𝜀𝜀FB.  

 We annealed one half of each wire at Tg + 60 K for 180 sec (~500 times the relaxation 

time [185], Figure 47b) to ensure that any history of the strain rate is erased after annealing, 

and a glass with the new fictive temperature of Tg + 60 K is created while at this elevated 

temperature[109]. Cooling from Tg + 60 K is carried out in the same way as the as-pulled 

samples, in ambient air, resulting in the same cooling rate as during the wire pulling 

experiments.  

 

 

Figure 48. Temperature profile of wire annealing treatment. A salt bath is preheated to 60 K above the 
calorimetric cooling glass transition temperature (683 K) for at least an hour. Sample wires are submerged 
in the salt bath for 180 s before being retrieved and allowed to air cool.  
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The history of the straining is erased in the annealed wires while maintaining the same 

cooling profile as in the as-pulled samples. Subtracting the property values of the annealed 

samples from those of the as-pulled samples allows us to isolate the effect of strain rate 

during excited liquid cooling on the ductility, Figure 48 shows the temperature profile for 

the annealed samples. 

 

 

Figure 49. As pulled wires show a positive correlation between maximum strain rate of the pulling process 
and bending fracture strain. Annealed wires lose the added ductility to approximately the value of the as 
cast sample. However, as the final wire thickness decreases slightly with increasing strain rate, a small 
positive correlation between bending fracture strain and applied strain rate is present in the annealed 
wires, due to geometric effects in determining bending ductility [116]. 

 

A summary of the bending characterization of the differently strained metallic glass 

samples are shown in Figure 49. The bending fracture strain (𝜀𝜀FB) increases with increased 

experimental strain rate. For the same thickness of 100 μm, the as-cast 
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Zr44Ti11Ni10Cu10Be25 exhibits an average 𝜀𝜀FB  = 6%. With increasing strain rate, 𝜀𝜀FB  

increases from ~4% for �̇�𝛾~40 s-1 to a maximum value of 𝜀𝜀FB  = 16 % for �̇�𝛾 = 890 s-1. In 

some cases, even higher plastic bending strains of up to 𝜀𝜀FB ~20 % are observed.  We 

contribute the large scatter in the resulting bending fracture strain to the experimental 

difficulty of our setup in applying strain rate and cooling rate in a controlled synchronized 

way.     

The samples that have been annealed after the pulling process exhibit a slightly higher but 

very similar 𝜀𝜀FB  ~7% compared to the as-cast material of ~6%. This suggest that the 

significant enhancement in 𝜀𝜀FB  measured in the as-pulled samples is predominantly due to 

the applied strain rate. 

 

5.5 Thermal Characterization 

Thermal characterization was also carried out on samples processed through excited liquid 

cooling (Figure 48). Thermal analysis was conducted using in a TA Q200 differential 

scanning calorimeter under argon flow with a heating rate of 20 K min-1. All samples were 

heated through crystallization, subsequently cooled, and then heated again with the same 

heating rate to establish a baseline to be subtracted from the initial heating run. 

Measurements for the heat of enthalpy were made by finding the area of the curve with 

respect to the baseline, shown as a dashed line in Figure 48a. 

 Specifically, we consider the enthalpy of relaxation, ΔHrel, which has been used as a 

thermodynamic measure to quantify the degree of rejuvenation [155, 157, 167, 190, 191]. 

For the strained samples, an increase in ΔHrel compare to the annealed sample is present 
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(Figure 50a). Specifically, ΔHrel increases from 0.21 kJ/mol for �̇�𝛾 = 215 s-1 to 0.81 kJ/mol 

for the highest �̇�𝛾 = 830 s-1 (Figure 48b). The maximum absolute value of ΔHrel of 0.81 

kJ/mol is comparable to previously reported sub Tg mechanical rejuvenation techniques 

including high pressure torsion and notched triaxial strain [147, 158, 162] and among the 

highest reported changes in enthalpy of relaxation when compared to the reference sample.  

 

Figure 50. Thermal characterization of Zr44Ti11Ni10Cu10Be25 metallic glass processed through excited 
liquid cooling. a) Thermograms measured with differential scanning calorimetry reveal the thermal signal 
of the excited liquid cooling. b) The enthalpy of relaxation increases with increasing strain rate applied 
during excited liquid cooling. 
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5.6 Excited Liquid Cooling Mechanism 

The general understanding is that with both thermal and mechanical treatments, the 

potential energy of the glass can be manipulated. Enhancing the potential energy of a glass 

structure in the potential energy landscape is equivalent to increasing the fictive 

temperature of a glass [192].  Further, it has been argued that a high Tf can be generally 

associated with a larger ductility or fracture toughness [105, 109, 110, 193]. The treatment 

of excited liquid cooling discussed here directly affects the supercooled liquid.  

 

We argue that the straining of the supercooled liquid is counteracting the relaxation 

process, preventing the liquid from assuming its metastable equilibrium and hence causing 

it to assume an excited state (Figure 49). The kinetic freezing of the (supercooled) liquid 

metallic glass former into a glass originates from the competition of the involved time 

scales. Under cooling conditions without an imposed strain rate, one of the involved time 

scales is set be the relaxation time, 𝜏𝜏rel, which is the temperature dependent time required 

for the liquid to assume the (meta)stable equilibrium configuration which continuously 

changes e.g., with temperature.  Widely used to approximate 𝜏𝜏rel is the VFT equation:  

𝜏𝜏rel =  𝜏𝜏0𝑒𝑒𝑒𝑒𝑒𝑒 �
𝐷𝐷∗𝑇𝑇0
𝑇𝑇− 𝑇𝑇0

� with T0 as the VFT temperature, D* the VFT fragility parameter, and 

τ0 the high temperature limit of the relaxation time. This intrinsic time scale, with its 

exponential dependence on temperature, must be compared with the extrinsic time scale 

set by the processing protocol, 𝜏𝜏cool . During a typical cooling process, 𝜏𝜏cool is defined by 

the cooling rate, R, and can be described by 𝜏𝜏cool = 1
𝑅𝑅
 .  
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Figure 51. Excited liquid cooling mechanism a) Illustration of the characteristic time scales involved in 
the excited liquid cooling mechanisms as a function of temperature. The structural relaxation time, τrel, 
increases exponentially with decreasing temperature (black curve). A requirement for the excited liquid 
cooling mechanism is that the time scale set by the strain rate (green line), 𝝉𝝉�̇�𝜸 = 𝟎𝟎.𝟎𝟎𝟎𝟎

�̇�𝜸
  is smaller than the 

available time set by the cooling rate (red line), 𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉 = 𝟏𝟏
𝑹𝑹
 . Upon cooling, the liquid metallic glass former 

remains in metastable equilibrium for 𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉 < 𝝉𝝉�̇�𝜸 until 𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉 = 𝝉𝝉�̇�𝜸. Here, an “excited liquid” state is 
maintained through a competition between straining, causing the potential energy to increase, and 
relaxation, which decreases the potential energy for  𝑻𝑻𝑻𝑻

�̇�𝜸 > T > Tf (�̇�𝜸 = 𝟎𝟎).  When  𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉 = 𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉, at Tf, the 
excited liquid can no longer reconfigure on the experimental time scale to maintain its metastable 
equilibrium and freezes into an excited glass. The structure that freezes into a glass at Tf is that of the 
excited liquid with a fictive temperature of 𝑻𝑻𝑻𝑻

�̇�𝜸. b and c) The effectiveness of excited liquid cooling is 
controlled by the relative rates of cooling and straining, inversely related to 𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉 and 𝝉𝝉�̇�𝜸. For 𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉 − 𝝉𝝉�̇�𝜸 > 
0, the enhancement of fictive temperature 𝑻𝑻𝑻𝑻

�̇�𝜸 - Tf scales with 𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉 − 𝝉𝝉�̇�𝜸 (i and ii). For 𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉𝝉 − 𝝉𝝉�̇�𝜸 ≤ 0, 
structural rearrangements due to �̇�𝜸 do not occur (sufficiently) and hence do not affect fictive temperature 
or ductility (iii and iv).   
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At high temperatures, 𝜏𝜏rel <  𝜏𝜏cool,  and the liquid has sufficient time to reconfigure during 

cooling to its temperature dependent metastable equilibrium. At lower temperatures 𝜏𝜏rel >

 𝜏𝜏cool, which is due to the exponential temperature dependence of 𝜏𝜏rel, hence the liquid can 

no longer reconfigure into its temperature dependent metastable equilibrium. 

Consequently, the liquid falls out of metastable equilibrium at  𝜏𝜏rel =  𝜏𝜏cool,  and freezes 

into a glass. The temperature Tf at which this freezing occurs (𝜏𝜏rel =  𝜏𝜏cool) is referred to 

as the fictive temperature or the glass transition temperature upon cooling. As 𝜏𝜏rel is an 

intrinsic property of the liquid metallic glass former, one is left with only 𝜏𝜏cool as a tool to 

manipulate Tf. A higher cooling rate reduces 𝜏𝜏cool and, hence, results in a glass with a 

higher fictive temperature (Figure 49a).   

In the present excited liquid cooling, a strain is applied at a certain rate during cooling of 

the liquid metallic glass former, working against the liquid’s drive to assume a denser 

packed metastable equilibrium with decreasing temperatures. Straining a supercooled 

liquid metallic glass former causes it to dilate and loosens its packing [194], which 

increases its potential energy in opposition to the relaxation process of decreasing potential 

energy with decreasing temperature. To assign a characteristic time to the straining process 

we assume a critical strain of 2% which results in a characteristic time, 𝜏𝜏γ̇ = 0.02
�̇�𝛾

 . 

Assuming 2% strain as a critical value to cause a “significant” structural change is based 

on previous work where this strain level has been observed to cause shear transformation 

zones to become unstable and cause a “significant” structural irreversible change [195]. 

However, it has also been pointed out that “weak” shear transformations occur at a much 

lower strain levels [122, 160, 196, 197], however significantly less in number.  
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When cooling a liquid metallic glass former under a strain rate, all three characteristic time 

scales, 𝜏𝜏γ̇, 𝜏𝜏rel, and 𝜏𝜏cool must be considered (Figure 51).  Following the liquid metallic 

glass former upon cooling, it remains in metastable equilibrium down to 𝑇𝑇f
�̇�𝛾 (Figure 51). 

This is because for T > 𝑇𝑇f
�̇�𝛾 the times scales are such that 𝜏𝜏rel <  𝜏𝜏γ̇ < 𝜏𝜏cool  hence, relaxation 

occurs within the available time. With decreasing temperature, 𝜏𝜏rel increases and 𝜏𝜏rel = 𝜏𝜏γ̇ 

at T = 𝑇𝑇f
�̇�𝛾. For temperatures below 𝑇𝑇f

�̇�𝛾,  the liquid can no longer reconfigure to reach its 

metastable equilibrium before that relaxation process is disturbed by the strain rate. Hence, 

the structure of the liquid falls out of metastable equilibrium and resumes an excited 

structure characterized by 𝑇𝑇f
�̇�𝛾.  It is important to emphasize that the metallic glass is still in 

a liquid state, meaning that the structure rapidly changes, and these changes take place 

more rapidly than the available time set by the cooling rate 𝜏𝜏cool. This “excited liquid” state 

which is present between 𝑇𝑇f
�̇�𝛾 and Tf is maintained through a competition between straining, 

which increases the potential energy, and relaxation, which decreases the potential energy. 

Upon further cooling 𝜏𝜏rel = 𝜏𝜏cool at Tf, and the excited liquid is no longer able to 

reconfigure on the time scale set by the experiments and, consequently, freezes into an 

excited glass. Even though the excited liquid freezes into a glass at Tf, its structural state 

has been established at a higher temperature 𝑇𝑇f
�̇�𝛾which is the underlying mechanism of the 

excited liquid cooling method to achieve a ductile glass. 

The effect of an applied strain rate in excited liquid cooling on increasing the fictive 

temperature of the glass (and hence ductility) depends on the relative magnitudes of the 

characteristic time scales. To increase the fictive temperature through an application of a 

strain rate, meaning 𝑇𝑇f
�̇�𝛾 > Tf (�̇�𝛾 = 0) requires  𝜏𝜏γ̇ < 𝜏𝜏cool. If 𝜏𝜏γ̇ > 𝜏𝜏cool, the time required 
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for structural changes to occur due to straining exceeds the time available during the 

cooling process and hence, structural changes originating from an applied strain rate do not 

occur. For example, a strain rate > 2 s-1 is required to enhance the fictive temperature and 

thereby ductility during bulk metallic glass formation at a cooling rate of 100 K/s (𝜏𝜏cool = 

10-2 s). The effectiveness of �̇�𝛾 in enhancing fictive temperature scales with 𝜏𝜏cool − 𝜏𝜏γ̇ 

(Figure 51 b & c).  For 𝜏𝜏cool − 𝜏𝜏γ̇ > 0, the enhancement of fictive temperature 𝑇𝑇f
�̇�𝛾 - Tf scales 

with 𝜏𝜏cool − 𝜏𝜏γ̇ . With decreasing strain rate (but the same cooling rate) such that 𝜏𝜏cool −

𝜏𝜏γ̇ ≤ 0, structural rearrangements due to �̇�𝛾 can no longer significantly occur on the time 

scale of experiment. Hence, it is only for combinations of strain rates and cooling rates that 

fulfil 𝜏𝜏cool − 𝜏𝜏γ̇ > 0 that excited liquid cooling takes place. The effect on ductility increases 

with increasing 𝜏𝜏cool − 𝜏𝜏γ̇. 

In the proposed mechanism for excited liquid cooling assumptions where made which will 

now be discussed. Key to excited liquid cooling is the competition between relaxation and 

straining. Relaxation is a three-dimensional mechanism where atoms under the action of 

thermal energy (quantified in temperature) probe a vast range of structural states. On the 

other hand, the strain rate applied here is a one-dimensional mechanism which may even 

result into anisotropic properties and structure [198, 199]. During excited liquid cooling, 

the two effects compete with each other. However, structural relaxation is a more efficient 

mechanism utilizing all three physical dimensions to lower potential energy whereas strain 

rate only meaningfully accesses one dimension to increase potential energy. This makes a 

quantitative comparison of both contributions challenging.  
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Furthermore, in the above discussion on the mechanism of excited liquid cooling, we 

assumed a constant applied strain rate down to T = Tf. In general, such an assumption is 

oversimplified. Fundamentally, metallic glasses change their deformation behavior as a 

function of temperature and strain rate. At high temperatures, they deform in a homogenous 

fashion, essentially entirely affine, whereas at low temperatures, deformation is highly 

localized and non-affine [200]. To qualitatively represent this dramatic change in behavior 

as a function of temperature we assume �̇�𝛾 = 𝑐𝑐𝑐𝑐𝑙𝑙𝑠𝑠𝑡𝑡 ≥ 0 as a finite and constant strain rate 

for T > Tf and �̇�𝛾 = 0 for T < Tf. This behavior is however simplified, as the practically 

realizable changes in �̇�𝛾(𝑇𝑇) between Tl and Tf are less drastic.  

It is generally understood that the viscosity in metallic glass forming liquids for T > Tf is 

strain rate independent [201, 202] . However, for high strain rates, significant non-

Newtonian effects have been observed [114, 115, 203], which may also take place during 

excited liquid cooling. In addition, straining of the sample may also generate heat which 

will affect cooling rate. Considering all this, our model to describe excited liquid cooling 

under the current assumptions offers only a qualitative description. For a quantitative 

description, more complicated calculations, using more detailed values of evolving process 

variables, would be required. 

To compare the effectiveness of excited liquid cooling with other metallic glasses 

rejuvenation methods we use the enthalpy of relaxation, ΔHrel which has been reported in 

most publications on rejuvenation techniques (Supplement 3). Comparison reveals that 

excited liquid cooling is among the most effective techniques to enhance the potential 

energy of the glass, offering a considerable increase in the enthalpy of relaxation through 

a mechanism directly affecting the liquid. It should be mentioned that comparison by their 
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effect on mechanical properties is not possible, as the reported studies of the various 

methods use different properties. 

 

5.7 How Can This Be Applied in Processing? 

The technological motivation of the various techniques to rejuvenate metallic glasses are 

to improve mechanical properties [104, 166, 167, 178]. Therefore, such methods, including 

our excited liquid cooling, will have to be practical to be used as a toughening strategy for 

metallic glass articles. Key to an effective practical usage of the excited liquid cooling 

method is a sufficiently high strain rate (𝜏𝜏𝑐𝑐𝑖𝑖𝑖𝑖𝑓𝑓 − 𝜏𝜏γ̇ > 0) present at temperatures including 

Tf and 𝑇𝑇f
�̇�𝛾 and that the excited liquid can be frozen into a glass state. It is important to 

mention that the absolute strain applied during excited liquid cooling is irrelevant. In the 

present setup, we use such high strains only for experimental convenience. To generate and 

freeze an excited liquid, only the strain rate over a narrow temperature interval is relevant. 

This interval is in the vicinity of Tf, where it sets 𝑇𝑇f
�̇�𝛾  and maintains this state until Tf.  Such 

a situation can be realized in several metallic glass fabrication methods (Figure 52). For 

example, the pulling used here can be utilized to fabricate ductile metallic glass wires as a 

final product (Figure 52a). Similarly, sheets can be produced. For their synthesis, in 

addition to regular rolling, a subsequent pulling of the escaping sheet is required to 

establish a simultaneous straining and cooling. If one establishes 𝜏𝜏cool − 𝜏𝜏γ̇ > 0 for 

temperatures down to Tf, ductile sheets can be fabricated (Figure 52b & d). The requirement 

of 𝜏𝜏cool − 𝜏𝜏γ̇ > 0 for temperatures down to Tf  can also be realized during blow molding 

and thereby net-shape complex metallic glass articles while establishing their ductile state 
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(Figure 52c & e). Here, the metallic glass feedstock is deformed through a gas pressure 

towards a cold mold. It has been previously determined that once the metallic glass touches 

the mold, the strain rate drops essentially instantaneous to zero [102, 204]. If the mold is 

set to a low temperature, and a temperature gradient between deforming feedstock and 

mold can established through the separating vacuum, the excited liquid can be rapidly 

frozen into a glass upon touching the mold, hence metallic glass parts can be net-shaped 

into their ductile state. 

 

 

Figure 52. Metallic glass processing techniques that can be extended to incorporate excited liquid cooling 
a) Wire pulling where the wire ductility is controlled through maximizing  𝑻𝑻𝑻𝑻

�̇�𝜸 - Tf. For a given strain rate, 
𝑻𝑻𝑻𝑻
�̇�𝜸 - Tf scales with the steepness of the spatial temperature gradient (From bright red being the highest 

temperature to blue being any temperature below Tf) b) In order to fabricate ductile sheets, excited liquid 
cooling can be realized through hot-rolling and subsequent pulling of the escaping sheet down a 
temperature gradient c) Blow molding [102]  against a cold mold results into excited liquid cooling and 
hence enables to net-shape  metallic glass articles into their ductile state d) A hot-rolling mill with a puller 
to realize b. e) A blow molding machine to realize c 
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Summary 

We show here that an applied strain rate can excite the metallic glass in its liquid state to a 

higher potential energy. Microscopically, straining causes the structure to dilate, hence 

“pulls” the structure energetically up the potential energy landscape. Upon further cooling, 

the resulting excited liquid freezes into an excited glass that can triple its ductility compare 

to that of the unstrained material. Based on the requirement for the excited liquid cooling, 

we identify metallic glass processing techniques that allow to shape and net-shape metallic 

glasses into a complex geometry while assuming a ductile state. 
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Chapter 6. Conclusions and Outlook 

6.1 New Methods to Process Metallic Glasses While Improving Their Ductility 

Metallic glasses show promising characteristics that merge the best of two worlds: a high 

strength and mechanical properties from metals, while being able to process in viscosity 

ranges that allow for controlled deformations such as in polymers. These characteristics 

make them good candidates to substitute regular alloys that are limited in the complexity 

of their shapes that can be formed. By accessing the supercooled liquid region, several 

processing techniques have been developed for bulk metallic glasses, from flat sheets[82] 

to processes that enable features integrations[205] and its use as a reusable mold[206]; 

most of the research have been focused on closed shape or low-aspect ratio parts[207]. In 

this work we developed a new processing technique that allows bulk metallic glasses to 

obtain strain rates on the order of 2000% whereas previous techniques allow 150% at most, 

providing an increase in strain that can be realized by over 13 times; all while preserving 

the amorphous state and having control on the thickness distribution. Its applicability is 

demonstrated by its adoption from a Start-up company for its commercialization[208].  

Furthermore, there has been an active research on the relationship between the different 

aspects of bulk metallic glasses and its final mechanical properties displayed, by looking 

at the effect of chemical composition over fracture toughness[177] and the environmental 

impact they may have[57], new alloys have been developed using combinatorial 

techniques[209].  Lately, a look at why the values measured fracture toughness for the 

same alloy reported by various authors, found that the way that samples were processed 

had a profound effect on the scattered values[47, 48, 52].  
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In this regard, several authors have worked on thermally improving the properties of 

metallic glasses by means of annealing or thermal cycling. In this work we demonstrate 

that straining a bulk metallic glass while cooling from the supercooled liquid region, 

“pulls” the material to higher energy states. Such structural changes can improve their 

ductility by as much as three times over the ductility of the same material, processed under 

the same conditions but without the application of a strain rate. Likewise, we propose the 

requirements and conditions under which straining has an effect on structure and 

properties, and realizing such requirements in thermoplastic processes including stretch-

blow molding[204].  

 

6.2 How Far Can These Improvements Go? 

While we have shown that straining on the supercooled liquid region while cooling is an 

effective method to modify the bulk metallic glass properties, it is unclear to what extent 

this effect can be imposed on bulk metallic glasses or if this effect can be exerted across 

all the bulk metallic glasses families and compositions. Magnesium based bulk metallic 

glasses for example, display good corrosion resistance characteristics and are promising 

candidates for biological implants[210], but they are extremely brittle[57]. Being able to 

translate to other alloys and predict the outcome, could become a powerful tool to improve 

properties of some BMGs. 
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6.3 Anisotropic Properties of Metallic Glasses 

In general, metallic glasses are considered isotropic and hence possess isotropic properties. 

Recent experiments have shown that when uniaxially stressed, metallic glasses show 

anisotropy in the elasticity they exhibit, with a 4% difference in the young’s modulus[211]. 

While this effect was evaluated by mechanically treating the bulk metallic glasses under 

their glass transition temperature, it will be interesting to determine if the excited liquid 

cooling mechanism also induce anisotropy on the bulk metallic glasses, if so to what degree 

and if the atomic rearrangement is providing this. 

 

6.4 Improving Mechanical Properties While Processing 

In the first part of this thesis, we were able to merge the formability of plastics with the 

superior strength of metals by developing the stretch blow molding for metallic glasses. In 

the second part, we demonstrated that under the right conditions, it is possible to obtain an 

excited liquid state and improve the mechanical properties of the metallic glass if the 

required strain rates are achieved. The final step is to incorporate these improvements on 

the material while processing. For the case of stretch blow molding, the poker will allow 

the metallic glass to be at the exact temperature required prior to blow molding. By 

improving the temperature control of the blow molding process, we could apply strain rates 

that allow it to maintain an excited liquid configuration and cool it while deforming it, to 

retain such configuration. If this can be achieved in one single process such as the stretch 

blow molding, it will be a breakthrough for the commercialization of metallic glasses, as it 

will provide the material with better mechanical characteristics than what you started with. 
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Figure 53. Generating an excited liquid state to improve the material properties while processing. Once 
the poker has introduced most of the material inside the mold, it can be used to equilibrate the sample 
temperature to be blow molded at the required strain rates. While cooling during this step, the material is 
frozen in the excited liquid state once it touches the mold. 
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Supplement 1. Derivation of a Kinematic Model for the 

Thickness Evolution of a Metallic Glass in a Cylindrical Mold 

A metallic glass disc is held firmly in a cylindrical mold cavity and a pressure difference 

is applied for blow molding the metallic glass into the mold. Figure 15 shows a schematic 

of the process. 

 

Figure 54. Schematic of the blow molding process. At a time, T=0 and z=0 the thickness is assumed to be 
equal to the initial thickness. At a time=T, the metallic glass touching the wall observe the no-slipping 
condition, preventing it from further thinning. We assumed a uniform half sphere advancing front from 
the free forming volume. 

 

We would assume that the metallic glass is incompressible, that the bubble evolves as an 

advancing hemisphere front and that the thickness is uniform along this half hemisphere. 

Since the metallic glass behaves as a Newtonian fluid we will assume no-slip conditions at 

the boundary which prevents from further thinning of the material once it touches the mold. 

The volume of the sample is finite and that the thickness at Z0 will be equal to the thickness 

at T0.  
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The initial volume of the sample is given by: 

𝑉𝑉 = 𝜋𝜋𝑡𝑡0𝑅𝑅2 

= � 𝜋𝜋
𝑧𝑧

0
�𝑅𝑅2 − (𝑅𝑅 − 𝑡𝑡(𝑧𝑧))2� 𝑑𝑑𝑧𝑧 +  2𝜋𝜋𝑅𝑅2𝑡𝑡(𝑧𝑧) 

Since the volume of the material does not change: 

𝑑𝑑𝑉𝑉
𝑑𝑑𝑧𝑧

= 0 =  𝜋𝜋[𝑅𝑅2 − (𝑅𝑅 − 𝑡𝑡)2] +  2𝜋𝜋𝑅𝑅2𝑡𝑡(𝑧𝑧)
′  

=  𝜋𝜋(2𝑅𝑅𝑡𝑡 − 𝑡𝑡2) + 2𝜋𝜋𝑅𝑅2
𝑑𝑑𝑡𝑡
𝑑𝑑𝑧𝑧

 

𝑑𝑑𝑡𝑡
𝑑𝑑𝑧𝑧

= −
2𝑅𝑅𝑡𝑡 − 𝑡𝑡2

2𝑅𝑅2
 

�
𝑑𝑑𝑡𝑡

2𝑅𝑅𝑡𝑡 − 𝑡𝑡2
=  �−

𝑑𝑑𝑧𝑧
2𝑅𝑅2

 

ln(𝑡𝑡) − ln(2𝑅𝑅 − 𝑡𝑡) =  −
𝑧𝑧
𝑅𝑅

+ 𝐶𝐶1 

By exponentiation of both terms: 

𝑡𝑡
2𝑅𝑅 − 𝑡𝑡

=  𝐶𝐶1𝑒𝑒
−𝑧𝑧𝑅𝑅 

𝑡𝑡 = 2𝑅𝑅𝐶𝐶1𝑒𝑒
−𝑧𝑧𝑅𝑅 − 𝑡𝑡𝐶𝐶1𝑒𝑒

−𝑧𝑧𝑅𝑅 

𝑡𝑡 �1 + 𝐶𝐶1𝑒𝑒
−𝑧𝑧𝑅𝑅� = 2𝑅𝑅𝐶𝐶1𝑒𝑒

−𝑧𝑧𝑅𝑅 

𝑡𝑡 =
2𝑅𝑅𝐶𝐶1𝑒𝑒

−𝑧𝑧𝑅𝑅

1 + 𝐶𝐶1𝑒𝑒
−𝑧𝑧𝑅𝑅
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Knowing that t=t0 at z=0 then we can find the value for C1: 

𝑡𝑡0 =
2𝑅𝑅𝐶𝐶1

1 + 𝐶𝐶1
 

𝑡𝑡0 + 𝐶𝐶1𝑡𝑡0 = 2𝑅𝑅𝐶𝐶1 

𝑡𝑡0 = 2𝑅𝑅𝐶𝐶1 − 𝐶𝐶1𝑡𝑡0 

𝑡𝑡0 = (2𝑅𝑅 − 𝑡𝑡0)𝐶𝐶1 

𝐶𝐶1 =
𝑡𝑡0

2𝑅𝑅 − 𝑡𝑡0
 

And substituting back in the original equation we get: 

𝑡𝑡 =
2𝑅𝑅 𝑡𝑡0

2𝑅𝑅 − 𝑡𝑡0
𝑒𝑒−

𝑧𝑧
𝑅𝑅

1 + 𝑡𝑡0
2𝑅𝑅 − 𝑡𝑡0

𝑒𝑒−
𝑧𝑧
𝑅𝑅

 

Rearranging: 

𝑡𝑡 =
2𝑅𝑅𝑡𝑡0𝑒𝑒

−𝑧𝑧𝑅𝑅

2𝑅𝑅 − 𝑡𝑡0 + 𝑡𝑡0𝑒𝑒
−𝑧𝑧𝑅𝑅

 

𝑡𝑡 =
2𝑅𝑅𝑡𝑡0𝑒𝑒

−𝑧𝑧𝑅𝑅

2𝑅𝑅(1 − 𝑡𝑡0
2𝑅𝑅 + 𝑡𝑡0𝑒𝑒

−𝑧𝑧𝑅𝑅

2𝑅𝑅 )

 

So, we arrive to the final form of the equation: 

𝑡𝑡 =
𝑡𝑡0𝑒𝑒

−𝑧𝑧𝑅𝑅

1 − 𝑡𝑡0
2𝑅𝑅 (1 − 𝑒𝑒

−𝑧𝑧
𝑅𝑅 )
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Supplement 2. Derivation of the Thickness Distribution Model 

for the Sticking Region. 

 

Figure 55. Schematics of the model used for the derivation 

Assumptions: 

1) Profile of purely extensional region does not change. 

𝑡𝑡0 =
ℎ0

𝑅𝑅0 − 𝑟𝑟0
𝑃𝑃𝑐𝑐 

2) Thickness distribution of extensional region is linear. 

𝑡𝑡(𝑧𝑧,𝐷𝐷) =
𝑧𝑧
𝑃𝑃𝑐𝑐
𝑡𝑡𝑐𝑐 +

𝑃𝑃𝑐𝑐 − 𝑧𝑧
𝑃𝑃𝑐𝑐

𝑡𝑡0 
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3) Shape profile of extensional region is a straight line. 

𝑅𝑅(𝑧𝑧) =
𝑧𝑧
𝑃𝑃𝑐𝑐
𝑟𝑟0 +

𝑃𝑃𝑐𝑐 − 𝑧𝑧
𝑃𝑃𝑐𝑐

𝑅𝑅0 

4) Thickness of poker tip does not change over time. 

𝑡𝑡(𝐷𝐷,𝐷𝐷) = 𝑡𝑡(𝑃𝑃𝑐𝑐,𝑃𝑃𝑐𝑐) = 𝑡𝑡𝑐𝑐(𝑃𝑃𝑐𝑐) = 𝑡𝑡𝑐𝑐 

5) The material is uncompressible and once it meets the obstacle, the thickness is 

defined.  

𝑑𝑑𝑉𝑉𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑓𝑓
𝑑𝑑𝐷𝐷

= −[𝜋𝜋 ∗ 𝑡𝑡𝑐𝑐2(𝐷𝐷) + 2𝜋𝜋𝑟𝑟0𝑡𝑡𝑐𝑐(𝐷𝐷)] 

Where, to calculate the volume of the purely extensional region: 

𝑉𝑉𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑓𝑓 = � [𝜋𝜋(𝑅𝑅(𝑧𝑧) + 𝑡𝑡)2 − 𝜋𝜋𝑅𝑅2(𝑧𝑧)]
𝑃𝑃𝑐𝑐

0
 𝑑𝑑𝑧𝑧 

= � �𝜋𝜋 �
𝑡𝑡𝑐𝑐 − 𝑡𝑡0
𝑃𝑃𝑐𝑐

𝑧𝑧 + 𝑡𝑡0�
2

+ 2𝜋𝜋 �
𝑧𝑧
𝑃𝑃𝑐𝑐
𝑟𝑟0 +

𝑃𝑃𝑐𝑐 − 𝑧𝑧
𝑃𝑃𝑐𝑐

𝑅𝑅0� �
𝑡𝑡𝑐𝑐 − 𝑡𝑡0
𝑃𝑃𝑐𝑐

𝑧𝑧 + 𝑡𝑡0��
𝑃𝑃𝑐𝑐

0
 𝑑𝑑𝑧𝑧 

=
1
3
𝜋𝜋𝑃𝑃𝑐𝑐(𝑡𝑡𝑐𝑐 − 𝑡𝑡0)2 + 𝜋𝜋𝑃𝑃𝑐𝑐𝑡𝑡02 + 𝜋𝜋𝑃𝑃𝑐𝑐𝑡𝑡0(𝑡𝑡𝑐𝑐 − 𝑡𝑡0) +

2
3
𝜋𝜋𝑃𝑃𝑐𝑐(𝑟𝑟𝑐𝑐 − 𝑅𝑅0)(𝑡𝑡𝑐𝑐 − 𝑡𝑡0) 

+2𝜋𝜋𝑃𝑃𝑐𝑐𝑟𝑟0𝑡𝑡0 +  𝜋𝜋𝑃𝑃𝑐𝑐𝑅𝑅0(𝑡𝑡𝑐𝑐 − 𝑡𝑡0) + 𝜋𝜋𝑃𝑃𝑐𝑐𝑡𝑡0(𝑟𝑟𝑐𝑐 − 𝑅𝑅0)     (1) 

To maintain the total volume: 

−[𝜋𝜋 𝑡𝑡𝑐𝑐2(𝐷𝐷) + 2𝜋𝜋𝑟𝑟0𝑡𝑡𝑐𝑐(𝐷𝐷)] = 𝑑𝑑𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑑𝑑𝐷𝐷

      (2) 

Notice in the equation (1), only tc is a function of D. 
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𝑑𝑑𝑉𝑉𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑓𝑓
𝑑𝑑𝐷𝐷

=
𝑑𝑑𝑉𝑉𝑟𝑟𝑒𝑒𝑐𝑐𝑟𝑟𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑓𝑓

𝑑𝑑𝑡𝑡𝑐𝑐
𝑑𝑑𝑡𝑡𝑐𝑐
𝑑𝑑𝐷𝐷

 

=
𝑑𝑑
𝑑𝑑𝐷𝐷

�
1
3
𝜋𝜋𝑃𝑃𝑐𝑐(𝑡𝑡𝑐𝑐2 − 2𝑡𝑡0𝑡𝑡𝑐𝑐) + 𝜋𝜋𝑒𝑒𝑐𝑐𝑡𝑡0𝑡𝑡𝑐𝑐 +

2
3
𝜋𝜋𝑃𝑃𝑐𝑐(𝑟𝑟0 − 𝑅𝑅0)𝑡𝑡𝑐𝑐 + 𝜋𝜋𝑃𝑃𝑐𝑐𝑅𝑅0𝑡𝑡𝑐𝑐� 

=
𝑑𝑑𝑡𝑡𝑐𝑐
𝑑𝑑𝐷𝐷

�
2
3
𝜋𝜋𝑃𝑃𝑐𝑐𝑡𝑡𝑐𝑐 −

2
3
𝜋𝜋𝑃𝑃𝑐𝑐𝑡𝑡0 + 𝜋𝜋𝑃𝑃𝑐𝑐𝑡𝑡0 +

2
3
𝜋𝜋𝑃𝑃𝑐𝑐(𝑟𝑟0 − 𝑅𝑅0) + 𝜋𝜋𝑃𝑃𝑐𝑐𝑅𝑅0� 

= 𝑡𝑡𝑐𝑐′ �
2
3
𝜋𝜋𝑃𝑃𝑐𝑐𝑡𝑡𝑐𝑐 + 1

3
𝜋𝜋𝑃𝑃𝑐𝑐𝑡𝑡0 + 2

3
𝜋𝜋𝑃𝑃𝑐𝑐𝑟𝑟0 + 1

3
𝜋𝜋𝑃𝑃𝑐𝑐𝑅𝑅0�          (3) 

Applying equation (3) into equation (2): 

𝑑𝑑𝑡𝑡𝑐𝑐
𝑑𝑑𝐷𝐷

= −
𝜋𝜋𝑡𝑡𝑐𝑐2 + 2𝜋𝜋𝑟𝑟0𝑡𝑡𝑐𝑐

1
3𝑃𝑃𝑐𝑐(2𝑡𝑡𝑐𝑐 + 𝑡𝑡0 + 2𝑟𝑟0 + 𝑅𝑅0)

 

The equation above leads to: 

   �𝑌𝑌
𝑐𝑐𝑐𝑐

+ 𝑋𝑋
𝑐𝑐𝑐𝑐+2𝑐𝑐0

� 𝑑𝑑𝑡𝑡𝑐𝑐 = 𝑑𝑑𝐷𝐷        (4) 

Where: 

⎩
⎨

⎧𝑋𝑋 = −
1
6
𝑃𝑃𝑐𝑐(2 −

𝑡𝑡0
𝑟𝑟0
−
𝑅𝑅0
𝑟𝑟0

)

𝑌𝑌 = −
1
6
𝑃𝑃𝑐𝑐(

𝑡𝑡0
𝑟𝑟0

+ 2 +
𝑅𝑅0
𝑟𝑟0

)
 

Solving equation (4) we have: 

𝐷𝐷 = 𝐶𝐶𝑐𝑐𝑙𝑙𝑠𝑠𝑡𝑡𝑎𝑎𝑙𝑙𝑡𝑡 + 𝑋𝑋 ln(𝑡𝑡𝑐𝑐 + 2𝑟𝑟0) + 𝑌𝑌 ln(𝑡𝑡𝑐𝑐) 

Which can be written as: 

𝑒𝑒
𝐶𝐶𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐−𝐷𝐷

−𝑋𝑋 = (𝑡𝑡𝑐𝑐 + 2𝑟𝑟0)𝑡𝑡𝑐𝑐
(𝑌𝑌 𝑋𝑋⁄ ) 
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By Applying the initial conditions when D=Pc then tc=tt so: 

𝑒𝑒
𝐶𝐶𝑖𝑖𝑒𝑒𝑖𝑖𝑐𝑐−𝑃𝑃𝑐𝑐

−𝑋𝑋 −𝐷𝐷−𝑃𝑃𝑐𝑐−𝑋𝑋 =
(𝑡𝑡𝑐𝑐 + 2𝑟𝑟0)𝑡𝑡𝑐𝑐

(𝑌𝑌 𝑋𝑋⁄ )

𝑒𝑒
𝐷𝐷−𝑃𝑃𝑐𝑐
−𝑋𝑋

 

= (𝑡𝑡𝑐𝑐(𝐷𝐷) + 2𝑟𝑟0)[𝑡𝑡𝑐𝑐(𝐷𝐷)]
𝑌𝑌
𝑋𝑋 

So, we have: 

[𝑡𝑡𝑐𝑐(𝐷𝐷)]
𝑌𝑌
𝑋𝑋 =

𝑡𝑡𝑐𝑐 + 2𝑟𝑟0
𝑡𝑡𝑐𝑐(𝐷𝐷) + 2𝑟𝑟0

𝑒𝑒
𝐷𝐷−𝑃𝑃𝑐𝑐
−𝑋𝑋� ∗ 𝑡𝑡𝑐𝑐

𝑌𝑌
𝑋𝑋 

Since tc < tt << 2r0 

[𝑡𝑡𝑐𝑐(𝐷𝐷)] = �𝑡𝑡𝑐𝑐
𝑌𝑌
𝑋𝑋� 𝑒𝑒

𝐷𝐷−𝑃𝑃𝑐𝑐
−𝑋𝑋� �

𝑋𝑋
𝑌𝑌�
 

= 𝑡𝑡𝑐𝑐
𝑒𝑒
−(𝐷𝐷−𝑃𝑃𝑐𝑐)

𝑌𝑌
�  

By applying the conditions in our procedure, tt=.2mm, t0=1.5mm, R0/r0=2.4, r0=5mm 

𝑌𝑌 = −
1
6
∗

23.5
5

𝑃𝑃𝑐𝑐 ≈ −
4
5
𝑃𝑃𝑐𝑐 

𝑡𝑡𝑐𝑐(𝐷𝐷) = 𝑡𝑡𝑐𝑐𝑒𝑒
−54(𝐷𝐷𝑃𝑃𝑐𝑐

−1) 

So, the thickness of the sticking region is approximated by: 

𝑡𝑡 = 𝑡𝑡(𝑧𝑧) = 𝑡𝑡𝑐𝑐𝑒𝑒
−54(𝐷𝐷0−𝑧𝑧𝑃𝑃𝑐𝑐

)          (5) 
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Supplement 3. Previous Methods of Ductility Enhancement 

Table 2. Summary of previous methods for manipulating metallic glasses properties 

Method 
Description 

Effect 
on 

glass 
or 

liquid 

Effect Mechanical 
tests 

Homogeneous/ 
Inhomogeneous 

Alloys Change 
in 

thermal 
signal 

Reference 

High 
temperature 

creep 

Glass Increased 
plasticity (in 

some 
samples) 

Compression Homogenous 
deformation, 

possible 
anisotropy 

Zr50Cu40Al10 
Zr65Cu17Ni8Al10 
Zr55Cu30Ni5Al10 

No 
difference 
observed 

vs. as-
cast  

[212, 213] 

Elastostatic 
loading 

Glass Condition 
dependent 

rejuvenation 
or 

relaxation 

Nanoindentation Homogenous Cu57Zr43 
Zr35Ti30Be27.5Cu7.5 

0.247-0.4 
kJ/mol 

[214-216] 

Hot rolling Liquid Unstudied N/A Homogenous Zr44Ti11Cu10Ni10Be25 N/A [81] 

Twin roll 
casting 

Liquid Rejuvenation Hardness Homogenous Zr41.2Ti13.8Cu12.5Ni10Be22.5 0.2 
kJ/mol 

[181] 

Notched 
uniaxial 

compression 
(Triaxial) 

Glass Rejuvenation, 
decreased 
hardness, 
increased 
plasticity 

Tensile and 
hardness 

Inhomogeneous Zr64.13Cu15.75Ni10.12Al10 0.59 
kJ/mol 

[53, 54] 

High 
pressure 
annealing 

Glass Rejuvenation, 
increased 
density, 

shear, and 
elastic 

modulus 

N/A N/A La60Ni15Al25 0.1-0.9 
kJ/mol 

[217] 

High 
pressure 
torsion 

Glass Rejuvenation Nanoindentation Inhomogeneous Zr50.7Cu28Ni9Al12.3 
Zr50Cu40Al10 

0.5-1.1 
kJ/mol 

[147, 216, 
218] 

Cyclic 
nanoindenta

tion 

Glass Increased 
hardness 

Nanoindentation Inhomogeneous Fe41Co7Cr15Mo14C15B6Y2 N/A [219] 

Uniaxial 
compression 

Glass Increase in 
plastic strain 

Uniaxial 
compression 

Homogenous Ni62Nb38 .179 
(from as 
cast) (.3 

total) kJ/g 

[220] 

Dynamic 
excitation 

upon 
cooling 

Glass Rejuvenation DMA Homogenous Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 
Zr66.5Cu33.5 

Pd77.5Cu6Si16.5 

.5 to 5 
kJ/mol 

[221] 

Cyclic 
compression 

Glass Rejuvenation 
elastic, 
plastic 

anisotropy 

Compression 
testing 
Vickers 
hardness 

Inhomogeneous Zr61Cu27Fe2Al10 0.25 
kJ/mol 

[222] 

Laser shock 
peening. 

Shockwave 
imparted by 

a laser 

Glass Rejuvenation Compression 
testing 

Inhomogeneous Zr52.5Cu17.9Ni14.6Al10.0Ti5.0 
Zr41.2Ti13.8Cu12.5Ni10Be22.5 

N/A [223, 224] 
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Table 2 Cont’d. Summary of previous methods for manipulating metallic glasses properties. 

Method 
Description 

Effect 
on 

glass 
or 

liquid 

Effect Mechanical 
tests 

Homogeneous/ 
Inhomogeneous 

Alloys Magnitude 
of thermal 

signal 

Reference 

Shot 
peening 

Glass Increased 
plasticity 

(hardening by 
residual 
stress, 

softening by 
sheer bands) 

Microhardness, 
compression 

Inhomogeneous Zr41.25Ti13.75Ni10Cu12.5Be22.5 N/A [143, 225] 

Shock 
compression 

Glass Rejuvenation N/A Inhomogeneous Zr55Cu30Ni5Al10 .423 to 
1.32 

kJ/mol 

[216] 

Thermal 
cycling 

Glass Rejuvenation, 
increased 
plasticity, 
decreased 
hardness 

Uniaxial 
compression, 

hardness 

Inhomogeneous  Cu46Zr46Al7Gd1 
La55Ni20Al25 (ribbon) 

 La55Ni10Al35 
Zr62Cu24Fe5Al9 
ZrCuNiAl(Nb) 
ZrTiCuNiBe 

PdNiCuP 
PtNiCuP 

(1.08-.74) 
= .34 

kJ/mol 

[226-228] 
[166, 167, 

229] 

Cold wire 
drawing 

Glass Decrease in 
yield stress, 
increase in 

fracture stress 
and plasticity 

Tensile testing Inhomogeneous Pd77.5Cu6Si16.5 N/A [230] 

Cold rolling Glass Increased 
ductility 
Work-

hardening 
rejuvenation 

Nanoindentation, 
ultrasonic testing 

Inhomogeneous Zr55Cu30Ni5Al10 
Cu47.5Zr47.5Al5 

Zr46.5Cu45Al7Ti1.5 

.3-.5 
kJ/mol 

[231-233] 

Ball milling Glass rejuvenation None Inhomogeneous Pd40Cu30Ni10P20 
Zr70Cu20Ni10 

<.1 kJ/g [234, 235] 

 Neutron 
and high 
energy 

particles 
irradiation 

Glass  Rejuvenation 
or relaxation, 

increased 
ductility 

Bending and 
Tension 

Homogenous many N/A [171, 236-
238] 

Fatigue 
coaxing 

Glass Increase in 
fatigue limit 

3-point bending Inhomogeneous Zr41.8Ti12.9Ni9.5Cu12Be23.8 N/A [239] 

Equal 
channel 
angular 

processing 

Glass Decreased 
yield 

strength, 
increased 
plasticity, 

likely due to 
shear banding 

not 
rejuvenation 

Uniaxial 
compression 

Inhomogeneous Zr57Cu20Al10Ni8Ti5 N/A [240, 241] 

Hot Wire 
Drawn 

Liquid Decreased 
modulus and 

hardness 

Nanoindentation Homogeneous Pd40Cu30Ni10P20 
 

28% 
increase 
from as 

cast 

[182] 

        

Static 
mechanical 

loading 

glass Strain 
hardening 
Increased 
plasticity 

Tension, 
compression 

Shear 
Transformation 

Zones 

various 40% [158, 162, 
242] 
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Cooling rate 
and 

annealing 
temperature 

liquid Density, 
Hardness, 
Modulus 

 Homogenous Cu-based, ZrCuNiAl, 
MgCuY 

 

yes [155, 157, 
191] 

 

Supplement 4. Cooling Rate for Pulled Wires.  

Assuming that the temperature is uniform throughout the wire deforming region, varying 

with time (relative position) but not with absolute position, and a constant heat transfer 

coefficient; we can use the lumped capacitance model to obtain the change in temperature.  

From newton’s law of cooling: 

�̇�𝑄 = ℎ ∗ 𝐴𝐴 ∗  (𝑇𝑇(𝑡𝑡) − 𝑇𝑇_𝑒𝑒𝑙𝑙𝜂𝜂 ) = ℎ ∗ 𝐴𝐴 ∗ ∆𝑇𝑇(𝑡𝑡) 

Where: 

�̇�𝑄 is the heat rate transfer out of the body 

ℎ is the heat transfer coefficient  

𝐴𝐴 is the heat transfer surface area 

𝑇𝑇(𝑡𝑡) is the temperature of the object’s surface 

𝑇𝑇𝑟𝑟𝑒𝑒𝑒𝑒 is the environment or room temperature 

In the case of an incompressible material with a total internal energy U characterized by a 

single uniform temperature T(t), The heat capacity of the body C is 𝑑𝑑𝑑𝑑
𝑑𝑑𝑇𝑇

 .The internal energy 

may be written in terms of the temperature of the body, the heat capacitance, and a 

reference temperature at which the internal energy is zero: 
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𝑈𝑈 = 𝐶𝐶(𝑇𝑇 − 𝑇𝑇𝑐𝑐𝑟𝑟𝑓𝑓) 

 

 

Differentiating U with respect to time: 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑡𝑡

= 𝐶𝐶
𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

 

If no work is exerted, by the first law of thermodynamics: 

𝑑𝑑𝑈𝑈
𝑑𝑑𝑡𝑡

= −𝑄𝑄 

Thus: 

𝑑𝑑𝑇𝑇(𝑡𝑡)
𝑑𝑑𝑡𝑡

= −
ℎ𝐴𝐴
𝐶𝐶

(𝑇𝑇(𝑡𝑡) − 𝑇𝑇𝑟𝑟𝑒𝑒𝑒𝑒) = −
1
𝜏𝜏
∆𝑇𝑇(𝑡𝑡) 

Where: 

𝜏𝜏 =
𝐶𝐶

(ℎ𝐴𝐴) =  
𝑚𝑚𝑐𝑐

(ℎ𝐴𝐴)
 

τ is the time constant of the system  

C is the heat capacity 

m is the mass of the material 

c is the material specific heat capacity 

When the environmental temperature is constant with time, we can define ∆𝑇𝑇(𝑡𝑡) = 𝑇𝑇(𝑡𝑡) −

𝑇𝑇𝑟𝑟𝑒𝑒𝑒𝑒 and the equation becomes: 
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𝑑𝑑𝑇𝑇(𝑡𝑡)
𝑑𝑑𝑡𝑡

=  
𝑑𝑑∆𝑇𝑇(𝑡𝑡)
𝑑𝑑𝑡𝑡

=
1
𝜏𝜏
∆𝑇𝑇(𝑡𝑡) 

 

 

Which solution by integration from the initial condition is: 

∆𝑇𝑇(𝑡𝑡) =  ∆𝑇𝑇(0)𝑒𝑒−𝑐𝑐/𝜏𝜏 

Where ΔT(0) is the temperature difference at time 0, and to obtain the temperature at a 

given time t: 

𝑇𝑇(𝑡𝑡) = 𝑇𝑇𝑟𝑟𝑒𝑒𝑒𝑒 + (𝑇𝑇0 − 𝑇𝑇𝑟𝑟𝑒𝑒𝑒𝑒)𝑒𝑒−𝑐𝑐 𝜏𝜏�  

Which becomes a function of the time and the heat transfer surface area. 

If we assume that the region of interest from the wire it is a cylinder-shaped region with 

constant volume, we can obtain the change in surface area with respect to the change in 

length. 

The volume of a cylinder is given by: 

𝑉𝑉 = π𝑟𝑟2𝜂𝜂 

Where: 

𝝉𝝉 is the radius 

𝑳𝑳 is the length of the wire 

Solving for the radius we get: 
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𝑟𝑟 = � 𝑉𝑉
π𝜂𝜂

 

The curved surface area of the cylinder is given by: 

𝐴𝐴 = 2𝜋𝜋𝑟𝑟𝜂𝜂 

and so: 

𝑟𝑟 =
𝐴𝐴

2𝜋𝜋𝑟𝑟
 

So, we can stablish: 

𝐴𝐴
2𝜋𝜋𝑟𝑟

= � 𝑉𝑉
𝜋𝜋𝜂𝜂

 

Finally: 

𝐴𝐴 = 2√𝜋𝜋𝜂𝜂𝑉𝑉 

 

Where the volume (V) is constant, and the length (L) varies with time. 
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