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Abstract 

Improving Risk Factor Identification of Human Complex Traits in Omics Data 

Weimiao Wu 

2021 

 

With recent advances in various high throughput technologies, the rise of omics data 

offers a promise of personalized health care with its potential to expand both the depth 

and the width of the identification of risk factors that are associated with human complex 

traits. In genomics, the introduction of repeated measures and the increased sequencing 

depth provides an opportunity for deeper investigation of disease dynamics for patients. 

In transcriptomics, high throughput single-cell assays provide cellular level gene 

expression depicting cell-to-cell heterogeneity. The cell-level resolution of gene 

expression data brought the opportunities to promote our understanding of cell function, 

disease pathogenesis, and treatment response for more precise therapeutic development. 

Along with these advances are the challenges posed by the increasingly complicated data 

sets. In genomics, as repeated measures of phenotypes are crucial for understanding the 

onset of disease and its temporal pattern, longitudinal designs of omics data and 

phenotypes are being increasingly introduced. However, current statistical tests for 

longitudinal outcomes, especially for binary outcomes, depend heavily on the correct 

specification of the phenotype model. As many diseases are rare, efficient designs are 

commonly applied in epidemiological studies to recruit more cases. Despite the enhanced 

efficiency in the study sample, this non-random ascertainment sampling can be a major 

source of model misspecification that may lead to inflated type I error and/or power loss 
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in the association analysis. In transcriptomics, the analysis of single-cell RNA-seq data is 

facing its particular challenges due to low library size, high noise level, and prevalent 

dropout events. The purpose of this dissertation is to provide the methodological 

foundation to tackle the aforementioned challenges. We first propose a set of 

retrospective association tests for the identification of genetic loci associated with 

longitudinal binary traits. These tests are robust to different types of phenotype model 

misspecification and ascertainment sampling design which is common in longitudinal 

cohorts. We then extend these retrospective tests to variant-set tests for genetic rare 

variants that have low detection power by incorporating the variance component test and 

burden test into the retrospective test framework. Finally, we present a novel gene-graph 

based imputation method to impute dropout events in single-cell transcriptomic data to 

recover true gene expression level by borrowing information from adjacent genes in the 

gene graph. 
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Chapter 1 

Single-SNP Retrospective Association Tests 

For Longitudinal Binary Traits 

1.1 Abstract 

Longitudinal phenotypes have been increasingly available in genome-wide 

association studies (GWAS) and electronic health record-based studies for identification 

of genetic variants that influence complex traits over time. For longitudinal binary data, 

there remain significant challenges in gene mapping, including misspecification of the 

model for the phenotype distribution due to ascertainment. Here, we propose L-BRAT, a 

retrospective, generalized estimating equations-based method for genetic association 

analysis of longitudinal binary outcomes. We also develop RGMMAT, a retrospective, 

generalized linear mixed model-based association test. Both tests are retrospective score 

approaches in which genotypes are treated as random conditional on phenotype and 

covariates. They allow both static and time-varying covariates to be included in the 

analysis. Through simulations, we illustrated that retrospective association tests are 

robust to ascertainment and other types of phenotype model misspecification, and gain 

power over previous association methods. We applied L-BRAT and RGMMAT to a 

genome-wide association analysis of repeated measures of cocaine use in a longitudinal 

cohort. Pathway analysis implicated association with opioid signaling and axonal 

guidance signaling pathways. Lastly, we replicated important pathways in an independent 
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cocaine dependence case-control GWAS. Our results illustrate that L-BRAT is able to 

detect important loci and pathways in a genome scan and to provide insights into genetic 

architecture of cocaine use. 

1.2 Introduction 

Genome-wide association studies (GWAS) have successfully discovered many 

disease susceptibility loci and provided insights into the genetic architecture of numerous 

human complex diseases and traits. In some genetic epidemiological studies, 

longitudinally collected phenotype data are available. This is the case for many electronic 

health record (EHR)-based studies. As many of these studies continue to follow enrolled 

subjects (e.g. the UK Biobank (UKB) and the Million Veteran Program (MVP)), 

longitudinal phenotypes will be increasingly available with the passage of time, providing 

new data resources that require appropriate analytical tools for optimal analysis. Standard 

association tests that consider one time point or collapse repeated measurements into a 

single value such as an average do not capture the trajectory of phenotypic traits over 

time and may result in a loss of statistical power to detect genetic associations. In 

addition, the effects of time-varying covariates cannot be easily incorporated in such 

analyses. Recently, methodological developments for GWAS have proliferated to make 

full use of the available longitudinal data. For population cohorts, methods that account 

for dependence among observations from an individual include mixed effects models 

[1,2], generalized estimating equations (GEE) [3], growth mixture models[4,5], and 

empirical Bayes models [6]. Most of these approaches are prospective analyses and have 

been successfully applied to quantitative phenotypes. 



16 

 

As many diseases are rare, efficient designs, such as the case-control design, are 

commonly applied in epidemiological studies to recruit study subjects. Despite the 

enhanced efficiency in the study sample, non-random ascertainment can be a major 

source of model misspecification that may lead to inflated type I error and/or power loss 

in association analysis. The linear mixed model and the logistic mixed model do not 

perform well when the case-control ratio is unbalanced in large-scale genetic association 

studies [7]. Prospective analysis in which a population-based model is used ignores 

ascertainment bias and can result in compromised statistical inference. Furthermore, in 

the ascertained sample, the prospective approach conditional on the genotype and 

covariates may lose information when the joint distribution of the genotype and 

covariates carries additional information on whether the phenotype is associated with the 

genotype [8]. In this regard, several retrospective association methods have been 

proposed for analyzing ascertained population-based case-control studies [9,10], family-

based studies of continuous traits [11], family-based case-control studies [12,13], and 

family-based longitudinal quantitative traits [14]. Compared to prospective tests, 

retrospective tests conditional on the phenotype and covariates are more robust to 

misspecification of the trait model[8].  

To generalize case-control sampling, outcome-dependent sampling designs have 

become popular for binary data in longitudinal cohort studies [15–17]. However, 

association tests for longitudinally measured binary data are less well developed in 

GWAS. Here, we propose L-BRAT, a retrospective, GEE-based method for genetic 

association analysis of longitudinal binary outcomes. It requires specification of the mean 

of the outcome distribution and a working correlation matrix for repeated measurements. 
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L-BRAT is a retrospective score approach in which genotypes are treated as random 

conditional on the phenotype and covariates. Thus, it is robust to ascertainment and trait 

model misspecification. It allows both static and time-varying covariates to be included 

in the analysis. We note that GMMAT, a recently proposed prospective test using the 

logistic mixed model to control for population structure and cryptic relatedness in case-

control studies [18], can be adapted for repeated binary data. For comparison, we also 

develop RGMMAT, a retrospective, generalized linear mixed model (GLMM)-based 

association test for longitudinal binary traits. 

We performed simulation studies to evaluate the type I error and power of L-BRAT 

and RGMMAT, and compared them to the existing prospective methods. The results 

demonstrate that the retrospective association tests have better control of type I error 

when the phenotype model is misspecified, and are robust to various ascertainment 

schemes. Moreover, they are more powerful than the prospective tests. Finally, we 

applied L-BRAT and RGMMAT to a genome-wide association analysis of repeated 

measurements of cocaine use in a longitudinal cohort, the Veterans Aging Cohort Study 

(VACS), and replicated the results using data from an independent cocaine dependence 

case-control GWAS. 

 

1.3 Materials and methods 

Suppose a binary trait is measured over time on a study population of 𝑛𝑛 individuals. 

We have their genome-wide measures of genetic variation. A set of covariates, static or 

dynamic, are also available. Let 𝑛𝑛𝑖𝑖 be the number of repeated measures on individual 𝛽𝛽 



18 

 

and 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=1  be the total number of observations. For individual 𝛽𝛽, let 𝑿𝑿𝑖𝑖𝑖𝑖 and 𝑌𝑌𝑖𝑖𝑖𝑖 be 

the 𝑝𝑝-dimensional covariate vector, assumed to include an intercept, and the binary 

response at time 𝑡𝑡𝑖𝑖𝑖𝑖, respectively. In this setting, individuals are permitted to have 

measurements at different time points and different number of observations. We let 𝒀𝒀 

denote the outcome vector of length 𝑁𝑁, and let 𝑿𝑿 denote the 𝑁𝑁 × 𝑝𝑝 covariate matrix. 

Here, we focus on the problem of testing for association between a genetic variant and 

the longitudinal binary outcomes. Let 𝑮𝑮 denote the vector of genotypes for the 𝑛𝑛 

individuals at the variant to be tested, where 𝐺𝐺𝑖𝑖 = 0, 1, or 2 is the number of minor alleles 

of individual 𝛽𝛽 at the variant. 

1.3.1 Generalized estimating equations (GEE) model 

We consider a GEE approach in which the mean of the outcome distribution, given 

the genotype and covariates, is specified as 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖 � 𝑮𝑮,𝑿𝑿� = 𝜇𝜇𝑖𝑖𝑖𝑖 ,   logit �𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷 + 𝐺𝐺𝑖𝑖𝛾𝛾,   𝛽𝛽 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 ,              (1) 

where 𝜷𝜷 is a 𝑝𝑝-dimensional vector of covariate effects and 𝛾𝛾 is a scalar parameter of 

interest representing the effect of the tested variant. Writing in a matrix form, we have the 

mean model 

𝐸𝐸(𝒀𝒀 | 𝑮𝑮,𝑿𝑿) = 𝝁𝝁,   logit (𝝁𝝁) = 𝑿𝑿𝜷𝜷 + 𝑩𝑩𝑮𝑮𝛾𝛾,                                     (2) 

where 𝑩𝑩 is an 𝑁𝑁 × 𝑛𝑛 matrix representing the measurement clustering structure, and its 

(𝑙𝑙, 𝛽𝛽)th entry 𝐵𝐵𝑙𝑙𝑖𝑖 is an indicator of the 𝑙𝑙th entry of 𝒀𝒀 being a measurement on individual 𝛽𝛽. 

Here, the vector 𝑩𝑩𝑮𝑮 is the vertically expanded genotype vector that maps the genotype 

data 𝑮𝑮 from the individual level to the measurement level. The covariance structure of 𝒀𝒀 

is given by 
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Var(𝒀𝒀 | 𝑮𝑮,𝑿𝑿) = 𝚪𝚪1/2𝚺𝚺𝚪𝚪1/2,                                                 (3) 

where 𝚪𝚪 = diag�𝜇𝜇1,1�1 − 𝜇𝜇1,1�, … , 𝜇𝜇1,𝑛𝑛1�1 − 𝜇𝜇1,𝑛𝑛1�, … , 𝜇𝜇𝑛𝑛,1�1 − 𝜇𝜇𝑛𝑛,1�, … , 𝜇𝜇𝑛𝑛,𝑛𝑛𝑛𝑛�1 −

𝜇𝜇𝑛𝑛,𝑛𝑛𝑛𝑛�� is an 𝑁𝑁-dimensional diagonal matrix and 𝚺𝚺 is an 𝑁𝑁 × 𝑁𝑁 correlation matrix. The 

covariance specification in Eq. (3) ensures that the variance of the dichotomous response 

𝑌𝑌𝑖𝑖𝑖𝑖 depends on its mean in a way that is consistent with the Bernoulli distribution. To 

apply the GEE method, a working correlation structure such as independent, 

exchangeable, and first-order autoregressive (AR(1)) must be specified. For a given 

within-cluster correlation matrix 𝚺𝚺(𝜏𝜏), which may depend on some parameter 𝜏𝜏, the 

estimating equations for the unknown parameters (𝜷𝜷, 𝛾𝛾) are written as 

𝑼𝑼 = �
𝑼𝑼(𝜷𝜷)
𝑈𝑈(𝛾𝛾)� = � 𝑿𝑿𝑇𝑇𝚪𝚪1/2𝚺𝚺−1𝚪𝚪−1/2(𝒀𝒀 − 𝝁𝝁)

(𝑩𝑩𝑮𝑮)𝑇𝑇𝚪𝚪1/2𝚺𝚺−1𝚪𝚪−1/2(𝒀𝒀 − 𝝁𝝁)
�. 

To detect association between the genetic variant and the phenotype, we consider a 

score approach to test 𝐻𝐻0: 𝛾𝛾 = 0 against 𝐻𝐻1: 𝛾𝛾 ≠ 0. The null estimate of 𝜷𝜷, denoted by 

𝜷𝜷�0, is the solution to a system of estimating equations 𝑼𝑼(𝜷𝜷) = 0 under the constraint 𝛾𝛾 =

0, which can be computed iteratively between a Fisher scoring algorithm for 𝜷𝜷 and the 

method of moments for 𝜏𝜏 until convergence. Then, the score function for 𝛾𝛾 is 

𝑈𝑈0 = 𝑈𝑈(𝛾𝛾)|𝜷𝜷�0,0,𝜏𝜏�0 = (𝑩𝑩𝑮𝑮)𝑇𝑇𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0),                             (4) 

where 𝝁𝝁�0, 𝚪𝚪�0 and 𝚺𝚺�0 are 𝝁𝝁, 𝚪𝚪 and 𝚺𝚺 evaluated at (𝜷𝜷, 𝛾𝛾, 𝜏𝜏) = �𝜷𝜷�0, 0, �̂�𝜏0�. 

In the GEE approach, the prospective score statistic for testing 𝐻𝐻0: 𝛾𝛾 = 0 takes the 

form 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 = 𝑈𝑈02

Var0�𝑈𝑈0 � 𝑮𝑮,𝑿𝑿� =
�(𝑩𝑩𝑮𝑮)𝑇𝑇𝚪𝚪�0

1/2𝚺𝚺�0−1𝚪𝚪�0
−1/2(𝒀𝒀−𝝁𝝁�0)�

2

(𝑩𝑩𝑮𝑮)𝑇𝑇𝑸𝑸𝑩𝑩𝑮𝑮
 ,                             (5) 
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where the null variance of 𝑈𝑈0 is evaluated using a robust sandwich variance estimator, 

conditional on the genotype and covariates. Here 𝑸𝑸 = 𝑽𝑽 − 𝑽𝑽𝑿𝑿(𝑿𝑿𝑇𝑇𝑽𝑽𝑿𝑿)−1𝑿𝑿𝑇𝑇𝑽𝑽, where 

𝑽𝑽 = 𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2Cov� (𝒀𝒀)𝚪𝚪�0
−1/2𝚺𝚺�0−1𝚪𝚪�0

1/2 and the sample covariance of 𝒀𝒀, Cov� (𝒀𝒀), is 

estimated by (𝒀𝒀 − 𝝁𝝁�0)(𝒀𝒀 − 𝝁𝝁�0)𝑇𝑇. Under the null hypothesis, the 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺 test statistic has an 

asymptotic 𝜒𝜒12 distribution.  

1.3.2 L-BRAT retrospective test 

In what follows, we introduce a new GEE-based association testing method, L-BRAT 

(Longitudinal Binary-trait Retrospective Association Test). The L-BRAT test statistic is 

also based on the score function 𝑈𝑈0 in Eq. (4). In contrast to the prospective GEE score 

test, L-BRAT takes a retrospective approach in which the variance of 𝑈𝑈0 is assessed 

using a retrospective model of the genotype given the phenotype and covariates. An 

advantage of the retrospective approach is that the analysis is less dependent on the 

correct specification of the phenotype model. We assume that under the null hypothesis 

of no association between the genetic variant and the phenotype, the quasi-likelihood 

model of 𝑮𝑮 conditional on 𝒀𝒀 and 𝑿𝑿 is 

𝐸𝐸0(𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 2𝑝𝑝𝟏𝟏𝑛𝑛,   Var0(𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 𝜎𝜎𝑔𝑔2𝚽𝚽,                                   (6) 

where 𝑝𝑝 is the minor allele frequency (MAF) of the tested variant, 𝟏𝟏𝑛𝑛 is a vector of 

length 𝑛𝑛 with every element equal to 1, 𝜎𝜎𝑔𝑔2 is an unknown variance parameter, and 𝚽𝚽 is 

an 𝑛𝑛 × 𝑛𝑛 genetic relationship matrix (GRM) representing the overall genetic similarity 

between individuals due to population structure. Because 𝑩𝑩𝟏𝟏𝑛𝑛 = 𝟏𝟏𝑁𝑁, which is the first 

column of 𝑿𝑿 that encodes an intercept, and 𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0), the 𝑁𝑁-dimensional 
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vector of transformed null phenotypic residuals, is orthogonal to the column space of 𝑿𝑿, 

then the null mean model of 𝑮𝑮 in Eq. (6) ensures that 

𝐸𝐸0(𝑈𝑈0 | 𝒀𝒀,𝑿𝑿) = 𝐸𝐸0(𝑨𝑨𝑇𝑇𝑮𝑮 | 𝒀𝒀,𝑿𝑿) = 2𝑝𝑝𝑨𝑨𝑇𝑇𝟏𝟏𝑛𝑛 = 0, 

where 𝑨𝑨 = 𝑩𝑩𝑇𝑇𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0) is the individual-level transformed phenotypic 

residual vector of length 𝑛𝑛. 

In model (6), the GRM 𝚽𝚽 can be obtained using genome-wide data, given by 

𝚽𝚽 =
1
𝐾𝐾
�

�𝑮𝑮(𝑘𝑘) − 2�̂�𝑝𝑘𝑘��𝑮𝑮(𝑘𝑘) − 2�̂�𝑝𝑘𝑘�
𝑇𝑇

2�̂�𝑝𝑘𝑘(1 − �̂�𝑝𝑘𝑘)

𝐾𝐾

𝑘𝑘=1

 , 

where 𝐾𝐾 is the total number of genotyped variants, 𝑮𝑮(𝑘𝑘) is the genotype vector at the 𝑘𝑘th 

variant, and �̂�𝑝𝑘𝑘 is the estimated MAF, for example, �̂�𝑝𝑘𝑘 = �̅�𝐺𝑘𝑘/2, the sample MAF at the 

𝑘𝑘th variant. For the variant of interest, let �̂�𝑝 = �̅�𝐺/2 be its sample MAF. Under Hardy-

Weinberg equilibrium, the variance of the genotype is estimated by 𝜎𝜎�𝑔𝑔2 = 2�̂�𝑝(1 − �̂�𝑝). Or 

we can use a more robust variance estimator (Jakobsdottir and McPeek 2013) given by 

𝜎𝜎�𝑔𝑔2 = (𝑛𝑛 − 1)−1𝑮𝑮𝑇𝑇𝑾𝑾𝑮𝑮, 

where 𝑾𝑾 = 𝚽𝚽−1 −𝚽𝚽−1𝟏𝟏𝑛𝑛(𝟏𝟏𝑛𝑛𝑇𝑇𝚽𝚽−1𝟏𝟏𝑛𝑛)−1𝟏𝟏𝑛𝑛𝑇𝑇𝚽𝚽−1. Finally, the L-BRAT test statistic can 

be defined as 

L-BRAT = 𝑈𝑈02

Var0�𝑈𝑈0 � 𝒀𝒀,𝑿𝑿� = �𝑨𝑨𝑇𝑇𝑮𝑮�
2

Var0�𝑨𝑨𝑇𝑇𝑮𝑮 � 𝒀𝒀,𝑿𝑿� = �𝑨𝑨𝑇𝑇𝑮𝑮�
2

𝜎𝜎�𝑔𝑔2𝑨𝑨𝑇𝑇𝚽𝚽𝚽𝚽
 .                         (7) 

Under regularity conditions, L-BRAT asymptotically follows a 𝜒𝜒12 distribution under the 

null hypothesis. 

1.3.3 Generalized linear mixed model (GLMM) 

The Generalized linear Mixed Model Association Test (GMMAT) was originally 

designed to use random effects in logistic mixed models to account for population 
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structure and cryptic relatedness in case-control studies[18].To extend the GMMAT 

method for case-control analysis to repeated binary data, we consider the following 

logistic mixed model: 

logit �𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜷𝜷 + 𝐺𝐺𝑖𝑖𝛾𝛾 + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 ,   𝛽𝛽 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 ,                            (8) 

where 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑃𝑃�𝑌𝑌𝑖𝑖𝑖𝑖 = 1 � 𝐺𝐺𝑖𝑖 ,𝑿𝑿𝑖𝑖𝑖𝑖 ,𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖� is the probability of a binary response at time 𝑡𝑡𝑖𝑖𝑖𝑖 

for individual 𝛽𝛽, conditional on his/her genotype, covariates, and random effects 𝑎𝑎𝑖𝑖 and 

𝑟𝑟𝑖𝑖𝑖𝑖, 𝜷𝜷 and 𝛾𝛾 are the same as defined in model (1), 𝑎𝑎𝑖𝑖 is the individual random effect, and 

𝑟𝑟𝑖𝑖𝑖𝑖 is the individual-specific time-dependent random effect. The two random effects were 

used to capture the correlation among repeated measures in gene-based association test 

for longitudinal traits [19]. Here, 𝑎𝑎𝑖𝑖 's are assumed to be independent and 𝑎𝑎𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑎𝑎2). 

The vector of time-dependent random effects 𝒓𝒓𝑖𝑖 = (𝑟𝑟𝑖𝑖1, … , 𝑟𝑟𝑖𝑖,𝑛𝑛𝑖𝑖) has a multivariate 

normal distribution, 𝒓𝒓𝑖𝑖 ∼ 𝑀𝑀𝑀𝑀𝑁𝑁(𝟎𝟎,𝜎𝜎𝑟𝑟2𝑹𝑹𝑖𝑖), where an AR(1) structure is assumed for the 

correlation matrix 𝑹𝑹𝑖𝑖, in which 𝜏𝜏 is the unknown parameter. The binary responses 𝑌𝑌𝑖𝑖𝑖𝑖 are 

assumed to be independent given the random effects 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖. Note that the first 

relatedness matrix of the random effects in the original GMMAT paper is genetic 

relationship matrix, but in our model for the longitudinal data, the two relatedness 

matrices correspond to the individual random effect and the individual specific time-

dependent random effect.  

To construct a score test for the null hypothesis 𝐻𝐻0: 𝛾𝛾 = 0 vs. the alternative 𝐻𝐻1: 𝛾𝛾 ≠

0, we use the penalized quasi-likelihood method [20] to fit the null logistic mixed model 

and obtain the null estimates of 𝜷𝜷,𝜎𝜎𝑎𝑎2,𝜎𝜎𝑟𝑟2 and 𝜏𝜏, denoted by 𝜷𝜷�0,𝜎𝜎�𝑎𝑎2,𝜎𝜎�𝑟𝑟2 and �̂�𝜏0 [18]. 
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Similarly, the best linear unbiased predictor (BLUP) of random effects, 𝒂𝒂� and 𝒓𝒓�, can be 

obtained. Then, the resulting score function for 𝛾𝛾 is 

𝑆𝑆0 = 𝑆𝑆(𝛾𝛾)|𝜷𝜷�0,0,𝜎𝜎�𝑎𝑎2,𝜎𝜎�𝑟𝑟2,𝜏𝜏�0,𝒂𝒂�,𝒓𝒓� = (𝑩𝑩𝑮𝑮)𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0),                                         (9) 

where 𝝁𝝁�0 = logit−1(𝑿𝑿𝜷𝜷�0 + 𝑩𝑩𝒂𝒂� + 𝒓𝒓�) is a vector of fitted values under 𝐻𝐻0. 

In GMMAT, the null variance of the score 𝑆𝑆0 is evaluated prospectively [18], i.e., 

Var0(𝑆𝑆0 | 𝑮𝑮,𝑿𝑿) = (𝑩𝑩𝑮𝑮)𝑇𝑇𝑷𝑷𝑩𝑩𝑮𝑮, where 𝑷𝑷 = 𝚿𝚿−1 −𝚿𝚿−1𝑿𝑿(𝑿𝑿𝑇𝑇𝚿𝚿−1𝑿𝑿)−1𝑿𝑿𝑇𝑇𝚿𝚿−1, and 𝚿𝚿 =

𝚪𝚪�0−1 + 𝜎𝜎�𝑎𝑎2𝑩𝑩𝑩𝑩𝑇𝑇 + 𝜎𝜎�𝑟𝑟2𝑹𝑹�. Here 𝚪𝚪�0 and 𝑹𝑹� are 𝚪𝚪 and 𝑹𝑹 evaluated at (𝜷𝜷, 𝛾𝛾,𝜎𝜎𝑎𝑎2,𝜎𝜎𝑟𝑟2, 𝜏𝜏) =

�𝜷𝜷�0, 0,𝜎𝜎�𝑎𝑎2,𝜎𝜎�𝑟𝑟2, �̂�𝜏0�, where 𝚪𝚪 is the same as defined in Eq. (3) and 𝑹𝑹 = diag{𝑹𝑹1, … ,𝑹𝑹𝑛𝑛} is 

a block diagonal matrix. The GMMAT test statistic can be written as 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑇𝑇 = 𝑆𝑆02

Var0�𝑆𝑆0 � 𝑮𝑮,𝑿𝑿� = �(𝑩𝑩𝑮𝑮)𝑇𝑇(𝒀𝒀−𝝁𝝁�0)�
𝟐𝟐

(𝑩𝑩𝑮𝑮)𝑇𝑇𝑷𝑷𝑩𝑩𝑮𝑮
 .                                         (10) 

1.3.4 RGMMAT retrospective test 

Like L-BRAT, we can construct a retrospective test to assess the significance of the 

GLMM score function of Eq. (9), which we call RGMMAT, based on the quasi-

likelihood model of 𝑮𝑮 in Eq. (6). Thus, we define the RGMMAT statistic by 

RGMMAT = 𝑆𝑆02

Var0�𝑆𝑆0 � 𝒀𝒀,𝑿𝑿� = �𝑪𝑪𝑇𝑇𝑮𝑮�
2

Var0�𝑪𝑪𝑇𝑇𝑮𝑮 � 𝒀𝒀,𝑿𝑿� = �𝑪𝑪𝑇𝑇𝑮𝑮�
2

𝜎𝜎�𝑔𝑔2𝑪𝑪𝑇𝑇𝚽𝚽𝑪𝑪
 ,                              (11) 

where 𝑪𝑪 = 𝑩𝑩𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0) is the 𝑛𝑛-dimensional vector of phenotypic residuals at the 

individual level by summing over all time points for an individual, and the phenotypic 

residuals are obtained by fitting the null logistic mixed model. Both the GMMAT and 

RGMMAT test statistics are assumed to have 𝜒𝜒12 asymptotic null distributions. 

1.3.5 Simulation studies 
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We performed simulation studies to evaluate the type I error and power of the two 

retrospective tests we propose, and compared them to the prospective GEE and GMMAT 

methods. We also assessed sensitivity of L-BRAT and RGMMAT in the presence of 

model misspecification and ascertainment. In the simulations, we considered two 

different trait models and three different ascertainment schemes. Because both the L-

BRAT and GEE methods require specification of a working correlation matrix, we 

implemented three working correlation structures: (1) independent, (2) AR(1), and (3) a 

mixture of exchangeable and AR(1). 

To generate genotypes, we first simulated 10,000 chromosomes over a 1 Mb region 

using a coalescent model that mimics the linkage disequilibrium (LD) and recombination 

rates of the European population [21]. We then randomly selected 1,000 non-causal 

single nucleotide polymorphisms (SNPs) with MAF > 0.05. In addition, we generated 

two causal SNPs that were assumed to influence the trait value with epistasis. In the type 

I error simulations, we tested association at the 1,000 non-causal SNPs. In each 

simulation setting, we generated 1,000 sets of phenotypes at five time points. Putting 

together, 106 replicates were used for the type I error evaluation. In the power 

simulations, we tested the first of the two causal SNPs and empirical power was assessed 

using 1,000 simulation replicates. In all tests considered, the genotypes at the untested 

causal SNP(s) were assumed to be unobserved. 

Trait models 

We simulated two types of binary trait models at five time points, in which the two 

unlinked causal SNPs were assumed to act on the phenotype epistatically. The first type 

is a logistic mixed model, given by 
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𝑌𝑌𝑖𝑖𝑖𝑖|𝑿𝑿𝑖𝑖𝑖𝑖 ,𝐺𝐺𝑖𝑖(1),𝐺𝐺𝑖𝑖(2),𝑎𝑎𝑖𝑖 , 𝑟𝑟𝑖𝑖𝑖𝑖 ∼ Bernoulli �𝜇𝜇𝑖𝑖𝑖𝑖�, 

logit �𝜇𝜇𝑖𝑖𝑖𝑖� = −2.5 + 0.2(𝑗𝑗 − 1) + 0.5𝑋𝑋𝑖𝑖𝑖𝑖(1) + 0.5𝑋𝑋𝑖𝑖(2) + 𝜃𝜃1�𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0� + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 , 

where 𝑋𝑋𝑖𝑖𝑖𝑖(1) is a continuous, time-varying covariate generated independently from a 

standard normal distribution, 𝑋𝑋𝑖𝑖(2) is a binary, time-invariant covariate taking values 0 or 

1 with a probability of 0.5, 𝐺𝐺𝑖𝑖(1) and 𝐺𝐺𝑖𝑖(2) are the genotypes of individual 𝛽𝛽 at the two 

causal SNPs, 𝜃𝜃 is a scalar parameter encoding the effect of the causal SNPs, 

1�𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0� is an indicator function that takes value 1 when individual 𝛽𝛽 has at least 

one copy of the minor allele at both the causal SNPs, 𝑎𝑎𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖 are the individual-level 

time-independent and time-dependent random effects, respectively. Here we assume 𝑎𝑎𝑖𝑖 ∼

𝑁𝑁(0,  𝜎𝜎𝑎𝑎2) and 𝒓𝒓𝑖𝑖 = (𝑟𝑟𝑖𝑖1, … , 𝑟𝑟𝑖𝑖5) ∼ 𝑀𝑀𝑀𝑀𝑁𝑁(𝟎𝟎,𝜎𝜎𝑟𝑟2𝑹𝑹), where 𝑹𝑹 is a 5 × 5 correlation matrix 

specified by the AR(1) structure with a correlation coefficient 𝜏𝜏. The two causal SNPs are 

assumed to be unlinked with MAFs 0.1 and 0.5, respectively. The variance components 

are set to 𝜎𝜎𝑎𝑎2 = 𝜎𝜎𝑟𝑟2 = 0.64 and 𝜏𝜏 = 0.7. 

The second type of trait model we considered is a liability threshold model in which 

an underlying continuous liability determines the outcome value based on a threshold. 

Specifically, the phenotype 𝑌𝑌𝑖𝑖𝑖𝑖 is given by 

𝑌𝑌𝑖𝑖𝑖𝑖 = 1 if 𝐿𝐿𝑖𝑖𝑖𝑖 > 0, 

with 𝐿𝐿𝑖𝑖𝑖𝑖 = −2.0 + 0.2(𝑗𝑗 − 1) + 0.5𝑋𝑋𝑖𝑖𝑖𝑖(1) + 0.5𝑋𝑋𝑖𝑖(2) + 𝜃𝜃1�𝐺𝐺𝑖𝑖(1)>0,𝐺𝐺𝑖𝑖(2)>0� + 𝑎𝑎𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖

+ 𝑒𝑒𝑖𝑖𝑖𝑖 , 
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where 𝐿𝐿𝑖𝑖𝑖𝑖 is the underlying liability for individual 𝛽𝛽 at time 𝑡𝑡𝑖𝑖𝑖𝑖, and 𝑒𝑒𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁(0,𝜎𝜎𝑒𝑒2) 

represents independent noise, with 𝜎𝜎𝑒𝑒2 = 0.64. All other parameters are the same as those 

in the logistic mixed model. 

In both models, we included a time effect and assumed that the mean of the outcome 

increases with time. The effect of the causal SNPs was set to 𝜃𝜃 = 0.34 in the type I error 

simulations. For the power evaluation, we considered a range of values for 𝜃𝜃, where we 

set 𝜃𝜃 = 0.3, 0.32, 0.34, 0.36, and 0.38. At the given parameter values, the prevalence of 

the event of interest ranges from 12.8% to 27.7% over time. The proportion of the 

phenotypic variance explained by the two causal SNPs ranges from 0.69% to 1.10% in 

the logistic mixed model, and from 0.49% to 0.78% in the liability threshold model. 

Sampling designs 

We considered three different sampling designs. In the “random” sampling scheme, 

the sample contains 2,000 individuals that were randomly selected from the population 

regardless of their phenotypes. Thus, ascertainment is population based. In the “baseline” 

sampling scheme, we sampled 1,000 case subjects and 1,000 control subjects according 

to their outcome value at baseline only. In the “sum” sampling scheme, individuals were 

stratified into three strata (1, 2, and 3) based on a total count that sums each subject’s 

response over time, where samples in stratum 1 never experienced the event of interest, 

i.e., ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 0, samples in stratum 2 sometimes experienced the event, i.e., 0 < ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 <

𝑛𝑛𝑖𝑖, and samples in stratum 3 always experienced the event, i.e., ∑ 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑛𝑛𝑖𝑖. Following 

the outcome-dependent sampling design for longitudinal binary data [17], we selected 
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100, 1,800, and 100 individuals from the three strata respectively to oversample subjects 

who have response variation over the course of the study. 

1.3.6 Application to cocaine use data from VACS 

We illustrated the utility of our proposed methods by analyzing a GWAS dataset of 

cocaine use from VACS [22]. VACS is a multi-center, longitudinal observational study 

of HIV infected and uninfected veterans whose primary objective is to understand the 

risk of alcohol and other substance abuse in individuals with HIV infection. We analyzed 

longitudinal cocaine use in patient surveys collected at six clinic visits on 2,470 

participants. Among them, 69.8% are African Americans (AAs), 19.3% are European 

Americans (EAs), and 10.9% are of other races. We considered the responses at each 

visit as 0 if individuals had never tried cocaine or had not used cocaine in the last year, 

and as 1 if individuals had used cocaine in the last year. The proportion of case subjects 

at each visit ranges from 13.7% (𝑛𝑛 = 192) to 24.3% (𝑛𝑛 = 526), and the missing rate at 

each visit ranges from 3.0% to 44.2%. 

All samples were genotyped on the Illumina OmniExpress BeadChip. After data 

cleaning, there are 2,458 individuals available for genotype imputation. IMPUTE2 [23] 

was used for imputation using the 1000 Genomes Phase 3 data as a reference panel. We 

excluded subjects who did not meet either of the following criteria: (1) completeness (i.e., 

proportion of successfully imputed SNPs) > 95% and (2) empirical self-kinship < 0.525 

(i.e., empirical inbreeding coefficient < 0.05). Based on the above criteria, 2,231 

individuals were retained in the analysis, with 2,114 males and 117 females, of whom 

1,557 are AAs, 431 are EAs, and 243 are of other races. There are 1,433 individuals who 

had never used cocaine during the study period, 639 individuals who sometimes used 
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cocaine, i.e., exhibited response variation, and 159 individuals who had used cocaine at 

least once every year over the course of the study. SNPs that satisfied all of the following 

quality-control conditions were included in the analysis: (1) call rate > 95%, (2) Hardy-

Weinberg 𝜒𝜒2 statistic P-value > 10-6, and (3) MAF > 1%. All together there are a final set 

of 10,215,072 SNPs retained in the analysis. The VACS dataset, both the genotype file in 

the plink format and the phenotype files including the longitudinally measured cocaine 

use and the covariates, will be deposited to dbGap (https://www.ncbi.nlm.nih.gov/gap).  

Pathway and enrichment analyses 

We then performed pathway analysis on the top SNPs for which at least one of the 

longitudinal tests had a P-value < 5 × 10−5 using the Ingenuity Pathway Analysis (IPA). 

The Ingenuity database gathers information from manually reviewed literature, as well as 

large public databases. In this analysis, the top SNPs’ RSID were uploaded into the IPA 

and mapped, if possible, to the reference set in the Ingenuity knowledge. The IPA 

performs a Fisher’s Exact test to determine whether the submitted SNP list belongs to 

genes of a particular function annotation more than expected by chance. We report below 

both Fisher’s exact test P-value and adjusted P-value using Benjamini-Hochberg method 

for multiple testing adjusting for the number of ontologies tested. We consider pathways 

with adjusted P-value less than 0.05 to be significant.  We also performed an enrichment 

analysis to see whether the top SNPs in our analysis are more likely to regulate brain 

gene expression.  

Replication data 

We used an independent cocaine dependence case-control GWAS from the Yale-

Penn study [24] to replicate the top findings from our longitudinal analysis results in 

https://www.ncbi.nlm.nih.gov/gap
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VACS. The summary statistics from the Yale-Penn cocaine dependence GWAS were 

obtained. Note that the lifetime cocaine dependence diagnosis was made using the Semi-

Structured Assessment for Drug Dependence and Alcoholism (SSADDA) [25], which is 

different from the outcome used in VACS, and there were no longitudinal phenotype 

measures in Yale-Penn. Pathway analysis using IPA was applied to the summary 

statistics of Yale-Penn on the top SNP list identified from VACS. The Fisher’s exact test 

P-values were calculated for each pathway to evaluate if there were more associated 

SNPs than would be expected by chance. 

1.4 Results 

1.4.1 Type I error assessment 

To assess type I error, we tested for association at unlinked and unassociated SNPs. 

Table 1.1 gives the empirical type I error of the L-BRAT, RGMMAT, GEE, and 

GMMAT tests, based on 106 replicates, at the nominal type I error level 𝛼𝛼, for 𝛼𝛼 = 0.05, 

0.01, 0.001, and 0.0001. In all simulations, the type I error of the two retrospective tests, 

L-BRAT and RGMMAT, exhibited no inflation at any of the nominal levels considered. 

In contrast, the prospective GEE tests, regardless of the choice of working correlation, 

had inflated type I error at most of the nominal levels in all settings. This is likely due to 

the fact that the asymptotic distribution of robust sandwich variance estimators used in 

GEE are not well calibrated. The inflated type I error was also reported in longitudinal 

GWAS with quantitative traits using GEE [3]. In GMMAT, the type I error was much 

lower than the nominal level when 𝛼𝛼 = 0.05, 0.01, 0.001, and 0.0001. These results 

demonstrate that the two retrospective tests, L-BRAT and RGMMAT, are robust to trait 
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model misspecification and ascertainment, whereas GEE has type I error inflation and 

GMMAT is overly conservative. Overall, the choice of the working correlation matrix 

does not have much impact on the type I error of the L-BRAT method. 

Table 1.1. Empirical type I error of L-BRAT, RGMMAT, GEE, and GMMAT, based on 106 
replicates. 

Test Level 
Logistic Mixed Model Liability Threshold Model 

Random Baseline Sum Random Baseline Sum 

GEE 

(ind) 

0.05 5.38 × 10-2 5.08 × 10-2 5.27 × 10-2 5.36 × 10-2 5.19 × 10-2 5.38 × 10-2 

0.01 1.18 × 10-2 1.04 × 10-2 1.13 × 10-2 1.17 × 10-2 1.07 × 10-2 1.17 × 10-2 

0.001 1.32 × 10-3 1.16 × 10-3 1.23 × 10-3 1.37 × 10-3 1.14 × 10-3 1.37 × 10-3 

0.0001 1.67 × 10-4 1.28 × 10-4 1.43 × 10-4 1.34 × 10-4 1.36 × 10-4 1.76 × 10-4 

GEE 

(AR1) 

0.05 5.36 × 10-2 5.02 × 10-2 5.26 × 10-2 5.34 × 10-2 5.17 × 10-2 5.37 × 10-2 

0.01 1.16 × 10-2 1.04 × 10-2 1.12 × 10-2 1.16 × 10-2 1.06 × 10-2 1.17 × 10-2 

0.001 1.31 × 10-3 1.13 × 10-3 1.21 × 10-3 1.36 × 10-3 1.14 × 10-3 1.36 × 10-3 

0.0001 1.73 × 10-4 1.19 × 10-4 1.37 × 10-4 1.32 × 10-4 1.35 × 10-4 1.78 × 10-4 

GEE(mix) 

0.05 5.34 × 10-2 5.07 × 10-2 5.26 × 10-2 5.34 × 10-2 5.19 × 10-2 5.37 × 10-2 

0.01 1.17 × 10-2 1.04 × 10-2 1.13 × 10-2 1.16 × 10-2 1.07 × 10-2 1.17 × 10-2 

0.001 1.29 × 10-3 1.17 × 10-3 1.22 × 10-3 1.38 × 10-3 1.14 × 10-3 1.36 × 10-3 

0.0001 1.70 × 10-4 1.29 × 10-4 1.37 × 10-4 1.31 × 10-4 1.30 × 10-4 1.70 × 10-4 

GMMAT 

0.05 3.89 × 10-2 3.53 × 10-2 4.76 × 10-2 4.80 × 10-2 4.89 × 10-2 4.91 × 10-2 

0.01 6.07 × 10-3 5.24 × 10-3 9.08 × 10-3 9.29 × 10-3 9.51 × 10-3 9.33 × 10-3 

0.001 4.29 × 10-4 3.74 × 10-4 7.84 × 10-4 8.63 × 10-4 8.96 × 10-4 8.33 × 10-4 

0.0001 2.20 × 10-5 2.20 × 10-5 6.80 × 10-5 6.30 × 10-5 9.10 × 10-5 8.80 × 10-5 

L-BRAT 

(ind) 

0.05 4.93 × 10-2 4.91 × 10-2 4.98 × 10-2 5.01 × 10-2 4.99 × 10-2 4.98 × 10-2 

0.01 9.45 × 10-3 9.60 × 10-3 9.84 × 10-3 9.90 × 10-3 9.75 × 10-3 9.55 × 10-3 

0.001 8.30 × 10-4 9.78 × 10-4 9.24 × 10-4 9.55 × 10-4 9.45 × 10-4 8.78 × 10-4 

0.0001 7.20 × 10-5 9.50 × 10-5 8.20 × 10-5 8.20 × 10-5 9.40 × 10-5 9.20 × 10-5 

L-BRAT 0.05 4.93 × 10-2 4.88 × 10-2 4.97 × 10-2 4.99 × 10-2 4.98 × 10-2 4.97 × 10-2 
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(AR1) 0.01 9.48 × 10-3 9.72 × 10-3 9.78 × 10-3 9.84 × 10-3 9.76 × 10-3 9.55 × 10-3 

0.001 8.26 × 10-4 9.62 × 10-4 9.22 × 10-4 9.17 × 10-4 9.47 × 10-4 8.48 × 10-4 

0.0001 8.80 × 10-5 9.60 × 10-5 8.20 × 10-5 7.10 × 10-5 1.02 × 10-4 8.90 × 10-5 

L-BRAT 

(mix) 

0.05 4.93 × 10-2 4.91 × 10-2 4.99 × 10-2 5.01 × 10-2 4.98 × 10-2 4.98 × 10-2 

0.01 9.57 × 10-3 9.61 × 10-3 9.86 × 10-3 9.88 × 10-3 9.79 × 10-3 9.54 × 10-3 

0.001 8.35 × 10-4 9.86 × 10-4 9.26 × 10-4 9.57 × 10-4 9.37 × 10-4 8.78 × 10-4 

0.0001 8.20 × 10-5 1.01 × 10-4 8.60 × 10-5 7.40 × 10-5 9.70 × 10-5 8.90 × 10-5 

RGMMAT 

0.05 4.72 × 10-2 4.91 × 10-2 4.98 × 10-2 4.93 × 10-2 4.99 × 10-2 4.98 × 10-2 

0.01 8.76 × 10-3 9.64 × 10-3 9.85 × 10-3 9.63 × 10-3 9.78 × 10-3 9.55 × 10-3 

0.001 7.20 × 10-4 9.52 × 10-4 9.09 × 10-4 9.12 × 10-4 9.43 × 10-4 8.75 × 10-4 

0.0001 6.80 × 10-5 8.90 × 10-5 8.20 × 10-5 7.70 × 10-5 9.10 × 10-5 9.30 × 10-5 

 

1.4.2 Power comparison 

To compare power, we considered five effect sizes at the two causal SNPs, and tested 

association between the trait and the first causal SNP. Empirical power was calculated at 

the significance level 10-3, based on 1,000 simulated replicates. Figure 1 demonstrates the 

power results for each method. In all the simulation settings, the retrospective tests 

consistently had higher power than the prospective tests. The L-BRAT association tests 

under three different working correlation structures had similar power. The RGMMAT 

method also achieved high power. In contrast, the prospective GEE methods had the 

lowest power in all settings except under the baseline sampling and the liability threshold 

model, in which GMMAT performed the worst in power. Overall, we found that the 

baseline sampling scheme generated the highest power under different trait models, while 

the sum sampling scheme had a power gain over the random sampling scheme under the 

logistic mixed model, but was less powerful under the liability threshold model. These 
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results suggest that L-BRAT and RGMMAT outperform the prospective tests, and the 

power of L-BRAT is not sensitive to the choice of the working correlation structure.  

 

Figure 1.1. Empirical power of L-BRAT, RGMMAT, GEE, and GMMAT. Power is based 
on 1,000 simulated replicates at five time points with 𝛼𝛼 = 10−3. In the upper panel, the trait is 
simulated by the logistic mixed model, and in the lower panel, it is by the liability threshold 
model. Power results are demonstrated in samples of 2,000 individuals according to three 
different ascertainment schemes: random, baseline, and sum. This figure appears in color in the 
electronic version of this article. 
 

1.4.3 Analysis of Longitudinal Cocaine Use Data from VACS 

Genome-wide association testing for longitudinal cocaine use was performed using L-

BRAT, RGMMAT, and the prospective GEE and GMMAT tests in the entire VACS 

sample. Sex, age at baseline, HIV status, and time were included as covariates in the 

analysis. The top ten principal components (PCs) that explained 89.4% of the total 

genetic variation were included as covariates to control for population structure. We 
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considered two working correlation structures: independent and AR(1). For the L-BRAT 

and RGMMAT methods, the GRM was calculated using the LD pruned SNPs with 

MAF > 0.05. 

To compare the performance of longitudinal association analysis with that of 

univariate analysis on the summary metrics of cocaine use in VACS, we considered two 

alternative cocaine phenotypes: baseline and trajectories. Longitudinal cocaine use 

trajectories were obtained using a growth mixture model that clusters longitudinal data 

into discrete growth trajectory curves [26]. We fit a logistic model with a polynomial 

function of time. The number of groups was chosen based on the Bayesian information 

criterion (BIC). Each individual was then assigned to the trajectory with the highest 

probability of membership. Figure 2 shows the four cocaine use trajectory groups 

identified in the VACS sample. They were labeled as mostly never (0, 𝑛𝑛 = 1,682), 

moderate decrease (1, 𝑛𝑛 = 296), elevated chronic (2, 𝑛𝑛 = 86), and mostly frequent (3, 

𝑛𝑛 = 167). We used CARAT, a case-control retrospective association test [10], for the 

analysis of cocaine use at baseline, adjusted for sex, age at baseline, and HIV status. 

Cumulative logit model was used to test for association between the four ordered cocaine 

use trajectory groups and each of the SNPs, with adjustment for sex, age at baseline, HIV 

status, and the top ten PCs. 
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Figure 1.2. Group-based cocaine use trajectories in VACS. Dashed lines represent the 
estimated trajectories, solid lines represent the observed mean cocaine use for each trajectory 
group. Time is the number of years since the baseline visit. 

 

None of the retrospective tests exhibited evidence of inflation in the quantile-quantile 

(Q-Q) plot. The genomic control inflation factors were 0.993 and 0.991 for the L-BRAT 

genome scan under the independent and AR(1) working correlation, respectively, and 

0.984 for the RGMMAT analysis. The prospective GEE tests showed some evidence of 

deflation in the Q-Q plot. The genomic control factors were 0.938 and 0.937 for the GEE 

tests under the independent and AR(1) working correlation. The most conservative test 

was GMMAT, with a genomic control factor 0.802. 

Table 1.2 reports the results for SNPs for which at least one of the longitudinal tests 

gives a P-value < 2 × 10−7. Among them, the L-BRAT tests produced the smallest P-

values, RGMMAT and the trajectory-based analysis had comparable results, while GEE, 

GMMAT, and CARAT generated much larger P-values. Among the top SNPs listed in 
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Table 1.2, there are two SNPs, rs551879660 and rs150191017, located at 3p12 and 13q12 

respectively, that reach the genome-wide significance (P = 2.00 × 10−8 and 

3.77 × 10−8, respectively). Each of these SNPs was reported to have MAF < 1% in the 

1000 Genomes (MAF = 0.68% and 0.98%, respectively). The MAFs of the two SNPs 

were 1.2% and 1.1% in the entire VACS sample, respectively, and were slightly higher in 

the AA sample (MAF = 1.6% and 1.5%, respectively). Although both SNPs have MAF > 

1%, given the small sample size of VACS, there is limited information on them. SNP 

rs150191017 is located 31.5 kb from the gene AL161616.2 which was reported to be 

associated with venlafaxine treatment response in a generalized anxiety disorder GWAS 

[27]. A cluster of five SNPs in LD, rs76386683, rs114386843, rs186274502, 

rs376616438, and rs187855416, located at 9q33, showed association with longitudinal 

cocaine use (P = 1.85 × 10−7 −  1.93 × 10−7). They are near OR1L4, an olfactory 

receptor gene that was reported to be associated with major depressive disorder [28]. A 

cluster of olfactory receptor genes between OR3A1 and OR3A2 that belong to the 

olfactory receptor gene family were identified in a recent GWAS of cocaine dependence 

and related traits [24]. The other three SNPs, rs188222191, rs1014278, rs75132056, are 

located at 5q21 (P = 1.28 × 10−7, 1.43 × 10−7 and 8.92 × 10−8, respectively), close to 

the gene EFNA5, which was identified in several GWAS to be associated with bipolar 

disorder and schizophrenia [29]. There was also evidence of association with 

rs114629793 (P = 8.65 × 10−8). This SNP is in an intron of the gene encoding PSD3, 

located at 8p22. Recently, two schizophrenia GWAS have identified association between 

PSD3 and schizophrenia [30,31], and one study has shown that PSD3 is associated with 

paliperidone treatment response in schizophrenic patients [32]. Gene network analysis 
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revealed that PSD3 is one of the differentially expressed hub genes that involve 

dysfunction of brain reward circuitry in cocaine use disorder [33].  

Table 1.2. SNPs with P-value < 2×10−7 in at least one of the longitudinal tests in the entire VACS 
sample. The smallest P-value among all tests at the given SNPs are in bold. a CARAT applied to cocaine 
use at baseline, b Cumulative logit model applied to the four ordered cocaine use trajectory group. 

Chr. Gene Region SNP Position MAF GEE 
(ind) 

GEE 
(AR1) GMMAT L-BRAT 

(ind) 
L-BRAT 
(AR1) 

RGMMA
T 

CARATa 
(BL) 

CLb 
(traj) 

3 NIPA2P2 rs551879660 75,146,492 0.012 1.87 × 10
-4

 7.14 × 10
-4

 9.07 × 10
-4

 2.00 × 10
-8

 3.19 × 10
-6

 4.13 × 10
-5

 5.78 × 10
-4

 3.35 × 10
-5

 

5 EFNA5 rs188222191 105,411,547 0.042 6.86 × 10
-6

 1.65 × 10
-5

 8.87 × 10
-5

 1.28 × 10
-7

 4.17 × 10
-7

 2.69 × 10
-6

 8.95 × 10
-5

 2.72 × 10
-5

 

  rs1014278 105,471,506 0.057 1.02 × 10
-5

 1.10 × 10
-5

 1.24 × 10
-4

 1.50 × 10
-7

 1.43 × 10
-7

 4.88 × 10
-6

 5.94 × 10
-5

 3.00 × 10
-5

 

  rs75132056 105,480,442 0.05 1.05 × 10
-5

 2.42 × 10
-5

 1.89 × 10
-4

 8.92 × 10
-8

 2.89 × 10
-7

 8.55 × 10
-6

 2.59 × 10
-4

 2.31 × 10
-5

 

8 PSD3 rs114629793 18,403,754 0.012 3.12 × 10
-4

 4.73 ×10
-4

 1.44 × 10
-4

 8.65 × 10
-8

 3.60 × 10
-7

 2.82 × 10
-6

 5.12 × 10
-4

 3.06 × 10
-6

 

9 OR1L4 rs76386683 125,467,023 0.012 1.48 × 10
-4

 9.15 × 10
-5

 2.86 × 10
-4

 1.03 ×10
-6

 1.93 × 10
-7

 5.92 × 10
-6

 4.80 × 10
-4

 3.30 × 10
-6

 

  rs114386843 125,469,425 0.012 1.47 × 10
-4

 9.05 × 10
-5

 2.82 × 10
-4

 1.01 × 10
-6

 1.88 × 10
-7

 5.78 × 10
-6

 4.75 × 10
-4

 3.22 × 10
-6

 

  rs186274502 125,471,416 0.012 1.47 × 10
-4

 9.05 × 10
-5

 2.82 × 10
-4

 1.01 × 10
-6

 1.88 × 10
-7

 5.78 × 10
-6

 4.75 × 10
-4

 3.22 × 10
-6

 

  rs376616438 125,472,267 0.012 1.44 × 10
-4

 8.95 × 10
-5

 2.77 × 10
-4

 9.79 × 10
-7

 1.85 × 10
-7

 5.62 × 10
-6

 4.79 × 10
-4

 3.20 × 10
-6

 

  rs187855416 125,474,459 0.012 1.44 × 10
-4

 8.95 × 10
-5

 2.77 × 10
-4

 9.79 × 10
-7

 1.85 × 10
-7

 5.62 × 10
-6

 4.79 × 10
-4

 3.20 × 10
-6

 

11 AP000851.1 rs1397806
93 102,509,700 0.03 2.60 × 10

-5
 1.04 × 10

-5
 2.78 × 10

-4
 5.83 × 10

-7
 1.26 × 10

-7
 1.35 × 10

-5
 1.06 × 10

-4
 2.00 × 10

-6
 

13 AL161616.2 rs1501910
17 31,962,649 0.011 4.26 × 10

-5
 9.72 × 10

-5
 7.32 × 10

-5
 3.77 × 10

-8
 3.09 × 10

-7
 7.87 × 10

-7
 3.74 × 10

-4
 5.48 × 10

-7
 

 

We further analyzed the data separately in each population, adjusted for the top ten 

PCs obtained within the group, and then combined the results from the three groups by 

meta-analysis using the optimal weights for score statistics that have essentially the same 

power as the inverse variance weighting [34]. The results from the three groups (AAs, 
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EAs and other races) were combined by meta-analysis. The meta-analysis P-values were 

of the same order of magnitude as that obtained from the entire sample adjusted for 

population structure for each longitudinal test (Table 1.3). All the top twelve SNPs listed 

in Table 1.3 had a meta-analysis P-value < 8 × 10−7 in at least one of the longitudinal 

tests. Among them, the L-BRAT test with either an independent or AR(1) working 

correlation gave the smallest meta-analysis P-values. 

Table 1.3. Meta-analysis results of the top twelve SNPs from Table 1.2 in the VACS data. The smallest 
P-value among all tests at the given SNPs are in bold. 

Chr Gene Region SNP Position GEE 
(ind) 

GEE 
(AR1) GMMAT L-BRAT 

(ind) 
L-BRAT 
(AR1) RGMMAT 

3 NIPA2P2 rs551879660 75,146,492 1.81 × 10-4 5.86 × 10-4 8.98 × 10-4 5.26 × 10-8 6.41 × 10-6 6.49 × 10-5 

5 EFNA5 rs188222191 105,411,547 7.57 × 10-6 1.28 × 10-5 1.80 × 10-4 2.55 × 10-7 5.52 × 10-7 1.10 × 10-5 

  rs1014278 105,471,506 1.26 × 10-5 8.44 × 10-6 3.15 × 10-4 1.03 × 10-6 5.59 × 10-7 2.44 × 10-5 

  rs75132056 105,480,442 1.31 × 10-5 2.00 × 10-5 4.24 × 10-4 7.31 × 10-7 1.27 × 10-6 3.56 × 10-5 

8 PSD3 rs114629793 18,403,754 2.92 × 10-4 4.31 × 10-4 1.66 × 10-4 1.79 × 10-7 7.98 × 10-7 6.83 × 10-6 

9 OR1L4 rs76386683 125,467,023 1.44 × 10-4 8.78 × 10-5 3.75 × 10-4 2.32 × 10-6 5.12 × 10-7 1.46 × 10-5 

  rs114386843 125,469,425 1.42 × 10-4 8.62 × 10-5 3.68 × 10-4 2.25 × 10-6 4.97 × 10-7 1.41 × 10-5 

  rs186274502 125,471,416 1.42 × 10-4 8.62 × 10-5 3.68 × 10-4 2.25 × 10-6 4.97 × 10-7 1.41 × 10-5 

  rs376616438 125,472,267 1.39 × 10-4 8.51 × 10-5 3.60 × 10-4 2.18 × 10-6 4.86 × 10-7 1.37 × 10-5 

  rs187855416 125,474,459 1.39 × 10-4 8.51 × 10-5 3.60 × 10-4 2.18 × 10-6 4.86 × 10-7 1.37 × 10-5 

11 AP000851.1 rs139780693 102,509,700 1.15 × 10-5 4.16 × 10-6 1.07 × 10-4 4.04 × 10-7 6.05 × 10-8 4.41 × 10-6 

13 AL161616.2 rs150191017 31,962,649 3.55 × 10-5 6.77 × 10-5 1.26 × 10-4 6.68 × 10-8 5.80 × 10-7 3.12 × 10-6 

The smallest P-value among all tests at the given SNPs are in bold. 
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Pathway and enrichment analysis results 

We identified two significant canonical pathways that belong to the neurotransmitters 

and nervous system signaling. The first one is the opioid signaling pathway (P =

1.41 × 10−4, adjusted P = 0.010), which plays an important role in opioid tolerance and 

dependence. Studies have shown that chronic administration of cocaine and opioids are 

associated with changes in dopamine transporters and opioid receptors in various brain 

regions [35,36] . The second significant pathway is the axonal guidance signaling 

pathway (P = 2.54 × 10−4, adjusted P = 0.012), which is critical for neural development. 

The mRNA expression levels of axon guidance molecules have been found to be altered 

in some brain regions of cocaine-treated rats, which may contribute to drug abuse-

associated cognitive impairment [37,38]. Each of the two pathways remained significant 

when we performed pathway analysis, using the same P-value cutoff value to select top 

SNPs, based on the L-BRAT results generated under the independence and AR(1) 

working correlation, respectively. In contrast, only the opioid signaling pathway was 

significant based on the results from the GEE analysis using the independent working 

correlation, and only the axonal guidance signaling pathway was significant based on the 

RGMMAT results, whereas neither of them remained significant based on the GMMAT 

results and that from the GEE analysis with an AR(1) working correlation. These results 

demonstrate that L-BRAT provides more informative association results to help identify 

biological relevant pathways. 

Lastly, we performed an enrichment analysis to see whether the top SNPs in our 

analysis are more likely to regulate brain gene expression. We considered the local 

expression quantitative trait loci (cis-eQTLs) reported in 13 human brain regions from the 
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Genotype-Tissue Expression (GTEx) project [39,40], including amygdala, anterior 

cingulate cortex, caudate, cerebellar hemisphere, cerebellum, cortex, frontal cortex, 

hippocampus, hypothalamus, nucleus accumbens, putamen, spinal cord, and substantia 

nigra. Fisher’s exact test was used to assess the enrichment of eQTLs (FDR < 0.05) in 

the top 2,778 SNPs for which at least one of the longitudinal tests had a P-value < 10−4 

in the VACS sample. Among the 13 brain regions, amygdala is the only region in which 

eQTLs showed significant enrichment in our top SNP list (odds ratio = 2.06, P =

3.0 × 10−5). 

Replication of top findings 

Nevertheless, we performed pathway analysis using the SNP summary statistics of 

Yale-Penn to replicate the two pathways identified in the VACS sample. Among the top 

2,778 SNPs for which at least one of the longitudinal tests had a P-value < 10−4, we 

were able to retrieve 2,602 SNP summary statistics from Yale-Penn. Pathway analysis 

was conducted on the top 84 SNPs that had a P-value < 0.05. Although none of the top 

twelve SNPs in Table 1.2 had a P-value < 0.05 in the Yale-Penn AA sample, each of the 

two pathways remained significant: the opioid signaling pathways (P = 5.67 × 10−4, 

adjusted P = 3.77 × 10−3) and the axonal guidance signaling (P = 2.89 × 10−4, 

adjusted P = 2.97 × 10−3). 

1.4.4 Computation Time 

The computational burden of the two retrospective tests, L-BRAT and RGMMAT, 

mainly comes from the eigendecomposition of the GRM in calculating the retrospective 

variance of the score functions. However, its impact on run time is minimal because the 

decomposition needs to be done only once per genome scan. When fitting the null 
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models, the GLMM-based methods require extra time to obtain the estimates of random 

effects compared to the GEE-based methods. Once the null model is obtained, the 

transformed phenotypic residual vector, 𝚪𝚪�0
1/2𝚺𝚺�0−1𝚪𝚪�0

−1/2(𝒀𝒀 − 𝝁𝝁�0), in L-BRAT and the 

phenotypic residual vector, 𝒀𝒀 − 𝝁𝝁�0, in RGMMAT, need to be calculated just once per 

genome scan. Thus, the computational cost of the variance in the retrospective tests is 

much less than that in the prospective tests. We reported some example run times for 

analysis of simulated and real data. For a simulated dataset of phenotypes at five time 

points on 2,000 individuals, the GEE-based methods took 0.9 s while the GLMM-based 

methods took 37 s to fit the null model. Overall, L-BRAT took 2.4 s and GEE took 27.7 s 

to analyze 1,000 SNPs using a single processor on an Intel Xeon 2.6 GHz CPU machine. 

In the analysis of the VACS cocaine use data, L-BRAT and GEE took 1 s while 

RGMMAT and GMMAT took 2.5 min to fit the null model. Overall, L-BRAT, 

RGMMAT, GEE, and GMMAT took 0.8 hr, 0.7 hr, 24.8 hr, and 26.2 hr, respectively, to 

analyze a total of 10,215,072 genome-wide SNPs on Intel Xeon 2.6 GHz CPU computing 

clusters with 22 nodes. These results demonstrate that L-BRAT and RGMMAT are 

computationally feasible for large-scale whole-genome association studies. 

 

1.5 Discussion 

Longitudinal data can be used in GWAS to improve power for identification of 

genetic variants and environmental factors that influence complex traits over time. In this 

study, we have developed L-BRAT, a retrospective association testing method for 

longitudinal binary outcomes. L-BRAT is based on GEE, thus it requires assumptions on 
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the mean but not the full distribution of the outcome. Correct specification of the 

covariance of repeated measurements within each individual is not required, instead, a 

working covariance matrix is assumed. The significance of the L-BRAT association test 

is assessed retrospectively by considering the conditional distribution of the genotype at 

the variant of interest, given phenotype and covariate information, under the null 

hypothesis of no association. Features of L-BRAT include the following: (1) it is 

computationally feasible for genetic studies with millions of variants, (2) it allows both 

static and time-varying covariates to be included in the analysis, (3) it allows different 

individuals to have measurements at different time points, and (4) it has correct type I 

error in the presence of ascertainment and trait model misspecification. For comparison, 

we also propose a retrospective, logistic mixed model-based association test, RGMMAT, 

which requires specification of the full distribution of the outcome. Random effects are 

used to model dependence among observations for an individual. Like L-BRAT, 

RGMMAT is a retrospective analysis in which genotypes are treated as random 

conditional on the phenotype and covariates. As a result, RGMMAT is also more robust 

to misspecification of the model for the phenotype distribution than GMMAT test.  

Through simulation, we demonstrated that the type I error of L-BRAT was well 

calibrated under different trait models and ascertainment schemes, whereas the type I 

error of the prospective GEE method was inflated relative to nominal levels. In the 

GLMM-based methods, GMMAT, a prospective analysis, was overly conservative, 

whereas the retrospective version, RGMMAT, was able to maintain correct type I error. 

We further demonstrated that the two retrospective tests, L-BRAT and RGMMAT, 

provided higher power to detect association than the prospective GEE and GMMAT tests 
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under all the trait models and ascertainment schemes considered in the simulations. The 

choice of the working correlation matrix in L-BRAT resulted in little loss of power. We 

applied L-BRAT and RGMMAT to longitudinal association analysis of cocaine use in the 

VACS data, where we identified six novel genes that are associated with cocaine use. 

Moreover, our pathway analysis identified two significant pathways associated with 

longitudinal cocaine use: the opioid signaling pathway and the axonal guidance signaling 

pathway. We were able to replicate both pathways in a cocaine dependence case-control 

GWAS from the Yale-Penn study. Lastly, we illustrated that the top SNPs identified by 

our methods are more likely to be the amygdala eQTLs in the GTEx data. The amygdala 

plays an important role in the processing of memory, decision-making, and emotional 

responses, and contributes to drug craving that leads to addiction and relapse  [41,42]. 

These findings verify that L-BRAT is able to detect important loci in a genome scan and 

to provide novel insights into the disease mechanism in relevant tissues. Both simulation 

studies and the real data analysis suggest that, in general, L-BRAT is a more robust and at 

the same time, computationally more efficient test than RGMMAT.  

Although both L-BRAT and RGMMAT are proposed for population samples, they 

can be easily extended to related samples in family data for whom the pedigree structure 

is known. Use the similar strategy of CERAMIC, which extends the CARAT to related 

samples,  it would allow us to incorporate the partially missing data to enhance power. To 

extend L-BRAT to family design, we could include the kinship matrix into the correlation 

structure and also modify the genotypic model to incorporate the possibility that genotype 

being related to covariates. Also, we should consider a more robust variance estimator 

that incorporating kinship matrix into estimation.  
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The L-BRAT and RGMMAT methods are designed for single-variant association 

analysis of longitudinally measured binary outcomes. However, single-variant association 

tests in general have limited power to detect association for low-frequency or rare 

variants in sequencing studies. We have previously developed longitudinal burden test 

and sequence kernel association test, LBT and LSKAT, to analyze rare variants with 

longitudinal quantitative phenotypes [19]. Both tests are based on a prospective approach. 

To extend L-BRAT and RGMMAT to rare variant analysis with longitudinal binary data, 

we could consider either a linear statistic or a quadratic statistic that combines the 

retrospective score test at each variant in a gene region. In addition, the genetic effect in 

L-BRAT and RGMMAT is assumed to be constant. We could consider an extension to 

allow for time-varying genetic effect so that the fluctuation of genetic contributions to the 

trait value over time is well calibrated. 
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Chapter 2 

Variant-set Retrospective Association Tests 

for Longitudinal Traits 

2.1 Abstract 

Longitudinal repeated measures have been increasingly used in genome-wide 

association studies. The repeated measures provide an opportunity to study the temporal 

development of traits and also increase the statistical power in association tests. Most of 

the existing variants-set association tests are based on a population model in which 

ascertainment sampling is ignored. Prospective inference with longitudinal traits and rare 

variants can have inflated type I error when the trait model is misspecified. Here, we 

propose LSRAT (Longitudinal variant-Set Retrospective Association Tests) and 

RSMMAT (Retrospective variant-Set Mixed Model Association Tests), two groups of 

retrospective variant-set tests that are constructed based on the genotype model given the 

phenotype and covariates. RSMMAT can be viewed as a retrospective version of the 

recently proposed variant-set mixed model association tests (SMMAT) and the LSRAT 

tests are derived under the generalized estimation equation framework. These two 

retrospective tests are robust against trait model misspecification and are computationally 

more efficient than existing prospective approaches. Simulation studies showed that our 

proposed tests are robust to the trait model misspecification and gain power compared to 
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SMMAT. We illustrated our method in the Veterans Aging Cohort Study to evaluate the 

association of repeated measures of alcohol use disorder with rare variants.  

 

2.2 Introduction 

Longitudinally measured phenotypes where each individual has multiple follow-ups 

over the time are more available in genome-wide association studies (GWAS). With the 

emergence of electronic health record (EHR) in large long-term studies such as UK 

Biobank and Million Veteran Program, longitudinal measures are vastly being introduced 

to genomic studies and GWAS. Compared to analysis based on single-time-point 

measures or traits values averaged over time, longitudinal measures make full use of 

phenotype information which renders more powerful genetic association tests. Moreover, 

analyzing longitudinal measures enables the incorporation and adjusting for time-varying 

covariates into the model. It also delivers the opportunity to study temporal development 

of complex traits. Because of these merits, an increasing number of studies have 

developed association tests using longitudinally measured phenotypes in GWAS 

[3,4,14,43–45]. However, most studies have only focused on single variant tests.  

Regardless of the extensive discovery of the genetic common variants associated with 

complex traits, the identified genetic variants explain only a fraction of total heritability 

which is often termed “missing heritability”. Although many possible explanations have 

been proposed, one of the most widely accepted is that the additional heritability can be 

found by studying rare variants which have the minor allele frequency (MAF) of less than 

5% [46]. However, single variant tests for rare variants are underpowered due to the 
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extremely low MAF. In this regard, many various variant-set association tests have been 

developed to aggregate multiple rare variants within a region, for example, within a gene 

or a biological pathway, to increase the detection power. Among such tests, the most two 

popular approaches are burden tests and the Sequence Kernel Association Test 

(SKAT)[47]. Burden tests consider a weighted sum of multiple genetic variants into a 

single score and are powerful when the effects of those variants in a group are 

homogeneity in direction and magnitude [48]. However, when the genomic region of 

interest contains signal of both directions (e.g., both risk and protective effects), burden 

tests may lose power. By contrast, SKAT evaluates the variance of the genetic effects of 

a group of genetic variants by adopting a statistic of quadratic form. It is more robust to 

regions where variants’ effects are in opposite directions [49] and allows different 

directions and magnitudes of signals. There are several omnibus tests that unify both the 

burden and SKAT tests and borrow strength from both approaches, for example, the 

SKAT-O[47], MiST[50], aSPU[51], SMMAT-E[52], and ACAT-O [53]. Recently, an 

aggregated Cauchy association test (ACAT) has been proposed which efficiently 

combines Cauchy transformed p-values. The set-based ACAT (ACAT-V) which 

combines variant-level p-values has been shown to have strong power when the genetic 

association signal is sparse; and the omnibus ACAT (ACAT-O) which combines multiple 

set-based tests provides another strategy to combine SKAT and burden statistics. 

However, all these variant-set association tests were developed for single-time-point 

measures and are not directly applicable to longitudinal repeated measures. Thus, there is 

a pressing need to develop powerful and efficient variant-set tests for rare variants in 

longitudinal GWA studies. 
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There are some attempts to fill this need. For example, Wang et al. extended the 

burden and the SKAT statistics for longitudinal continuous phenotypes by introducing L-

Burden and L-SKAT[44]. The two tests were developed under the linear mixed model 

framework that takes into account interpersonal correlation. Similarly, He et al. extended 

the GEE-based SKAT test for longitudinal continuous traits[54]. However, these tests 

were derived from prospective models, and therefore rely on the correct specification of 

phenotype model to maintain correct type I errors. Yet for longitudinal dichotomous 

traits, especially for rare diseases and conditions, efficient sampling is widely used in 

which subjects are usually sampled based on their baseline measures. Prospective 

analysis in which a population-based model is used overlooks the ascertainment bias and 

may cause compromised statistical inference[10]. To overcome this limitation, several 

retrospective association methods have been proposed to analyze ascertained case-control 

studies [10,12]. Contrast to prospective analysis, retrospective approaches in which 

genotypes are treated as random conditional on phenotype and covariates are robust to 

phenotype model misspecification and ascertainment bias. Recently, we extended the 

retrospective tests to the study of longitudinal binary traits by proposing L-BRAT (GEE-

based) and RGMMAT (GLMM-based). However, both L-BRAT and RGMMAT are 

single-variant test designed for common genetic variant and thus there still lacks 

retrospective approaches for longitudinal variant-set association test.  

Here, we propose LSRAT (Longitudinal variant-Set Retrospective Association Tests) 

and RSMMAT (Retrospective variant-Set Mixed Model Association Tests), two groups 

of longitudinal retrospective variant-set tests that are constructed based on the genotype 

model given the phenotype and covariates. RSMMAT can be viewed as a retrospective 
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version of the recently proposed variant-set mixed model association tests (SMMAT) and 

the LSRAT tests are derived under the generalized estimation equation (GEE) 

framework. These tests have several advantages: (1) they are robust against trait model 

misspecification; (2) they are able to adjust both static and time-varying covariates; (3) 

they allow for related subjects and account for population structure; and (4) they are 

computationally more efficient than existing prospective approaches. Simulation studies 

showed that our proposed tests are robust to the trait model misspecification and gain 

power compared to SMMAT and GEE tests. We illustrated our method in the Veterans 

Aging Cohort Study to evaluate the association of repeated measures of alcohol use with 

rare variants. 

 

2.3 Methods 

We consider the problem of association testing between a set of variants in a genetic 

region and a longitudinal trait. Suppose genotype, phenotype, and covariate data on a 

sample of 𝑛𝑛 individuals are available. The genotype data consist of genotypes at the 𝑚𝑚 

variants to be tested. The phenotype data consist of repeated measurements of a 

continuous or binary trait. The covariates are allowed to have both static variables such as 

sex and dynamic variables such as age. We let 𝑛𝑛𝑖𝑖 denote the number of phenotype 

measures on individual 𝑖𝑖 and 𝑁𝑁 = ∑ 𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=1  denote the total number of observations. For 

the 𝑖𝑖th individual, let 𝑌𝑌𝑖𝑖𝑖𝑖 be the trait value, continuous or binary, and 𝑿𝑿𝑖𝑖𝑖𝑖 be the 𝑝𝑝-

dimensional covariate vector including an intercept, measured at time 𝑡𝑡𝑖𝑖𝑖𝑖. We define 𝒀𝒀 =

(𝑌𝑌1,1, … ,𝑌𝑌1,𝑛𝑛1 , … ,𝑌𝑌𝑛𝑛,1, … ,𝑌𝑌𝑛𝑛,𝑛𝑛𝑛𝑛)𝑇𝑇, the trait vector of length 𝑁𝑁, and 𝑿𝑿 =
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(𝑋𝑋1,1, … ,𝑋𝑋1,𝑛𝑛1 , … ,𝑋𝑋𝑛𝑛,1, … ,𝑋𝑋𝑛𝑛,𝑛𝑛𝑛𝑛)𝑇𝑇, the 𝑁𝑁 × 𝑝𝑝 covariate matrix. Let 𝑮𝑮 denote the 

𝑛𝑛 × 𝑚𝑚 matrix of genotypes, where 𝐺𝐺𝑖𝑖𝑖𝑖 = 0, 1, or 2 is the number of minor alleles of 

individual 𝑖𝑖 at the 𝑘𝑘th variant. Here the genotype matrix 𝑮𝑮 is indexed by individual rather 

than by measurement. In order to match the dimensions of 𝒀𝒀 and 𝑿𝑿, we consider a 

vertically expanded genotype matrix 𝑩𝑩𝑮𝑮 that maps the genotype data 𝑮𝑮 from the 

individual level to the measurement level, where 𝑩𝑩 is defined as an 𝑁𝑁 × 𝑛𝑛 design matrix 

representing the measurement clustering structure, and its (𝑙𝑙, 𝑖𝑖)th entry 𝐵𝐵𝑙𝑙𝑖𝑖 is an indicator 

that the 𝑙𝑙th entry of 𝒀𝒀 belongs to the measurements on individual 𝑖𝑖. 

In what follows, we introduce three groups of association testing methods for 

longitudinal traits: (1) GEE-based prospective association tests; (2) LSRAT 

(Longitudinal variant-Set Retrospective Association Tests); and (3) RSMMAT 

(Retrospective variant-Set Mixed Model Association Tests). Like the SMMAT tests [52], 

the GEE-based association tests are prospective analyses in which 𝒀𝒀 is treated as random 

conditional on 𝑮𝑮 and 𝑿𝑿, whereas LSRAT and RSMMAT are retrospective analyses in 

which 𝑮𝑮 is treated as random conditional on 𝒀𝒀 and 𝑿𝑿. 

2.3.1 Generalized Estimating Equations (GEEs) 

In the GEE-based analysis, we model the mean of the phenotype distribution, given 

the genotypes and covariates, as follows 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖 � 𝑮𝑮,𝑿𝑿� = 𝜇𝜇𝑖𝑖𝑖𝑖 ,   𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝑮𝑮𝑖𝑖𝑇𝑇𝜷𝜷,   𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 ,           (1) 

where 𝜶𝜶 is an unknown 𝑝𝑝-dimentional vector of covariate effects, 𝜷𝜷 is an unknown 

𝑚𝑚-dimensional vector of genotype effects, and 𝑔𝑔( ) is a link function, for example, 
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𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝜇𝜇𝑖𝑖𝑖𝑖 for continuous phenotypes, and 𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖� = logit(𝜇𝜇𝑖𝑖𝑖𝑖) for binary phenotypes. 

The covariance matrix of 𝒀𝒀, denoted by 𝛀𝛀, is specified as 

Var(𝒀𝒀 | 𝑮𝑮,𝑿𝑿) = 𝛀𝛀 = 𝜙𝜙𝚪𝚪1/2𝚺𝚺𝚪𝚪1/2, 

where 𝚪𝚪 = diag�𝑣𝑣�𝜇𝜇1,1�, … , 𝑣𝑣�𝜇𝜇1,𝑛𝑛1�, … , 𝑣𝑣�𝜇𝜇𝑛𝑛,1�, … , 𝑣𝑣�𝜇𝜇𝑛𝑛,𝑛𝑛𝑛𝑛�� is an 𝑁𝑁-dimentional 

diagonal matrix, 𝑣𝑣( ) is the variance function, with 𝑣𝑣�𝜇𝜇𝑖𝑖𝑖𝑖� = 1 for continuous traits and 

𝑣𝑣�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝜇𝜇𝑖𝑖𝑖𝑖�1 − 𝜇𝜇𝑖𝑖𝑖𝑖� for binary traits, 𝚺𝚺 is an 𝑁𝑁 × 𝑁𝑁 working correlation matrix which 

may depend on some parameter 𝛿𝛿, and 𝜙𝜙 > 0 is a dispersion parameter, with 𝜙𝜙 = 𝜎𝜎2 for 

continuous phenotypes and 𝜙𝜙 = 1 for binary phenotypes. The working correlation matrix 

𝚺𝚺 is allowed to be misspecified. In Model (1), the genotype effects 𝜷𝜷 are assumed to 

follow a distribution with mean 𝑾𝑾𝟏𝟏𝑚𝑚𝛽𝛽0 and covariance 𝜏𝜏𝑾𝑾𝑾𝑾, where 𝑾𝑾 =

diag(𝑤𝑤1, … ,𝑤𝑤𝑚𝑚) is a fixed, prespecified 𝑚𝑚-dimentional diagonal weight matrix, 𝟏𝟏𝑚𝑚 is an 

𝑚𝑚-vector of 1’s, and 𝜏𝜏 is the variance component of genotype effects. The weights 

𝑤𝑤1, … ,𝑤𝑤𝑚𝑚 specify how the genotype effects depend on particular features of the variants. 

Various weighting schemes are available, such as uniform weighting, weighting based on 

some function of the minor allele frequency (MAF) of the variants [49,55], and function 

or annotation-based weighting. 

The GEEs for the unknown parameters (𝜶𝜶,𝜷𝜷) are constructed as 

𝑼𝑼 = �
𝑼𝑼(𝜶𝜶)
𝑼𝑼(𝜷𝜷)� = � 𝑿𝑿𝑇𝑇𝚫𝚫𝛀𝛀−1(𝒀𝒀 − 𝝁𝝁)

(𝑩𝑩𝑮𝑮)𝑇𝑇𝚫𝚫𝛀𝛀−1(𝒀𝒀 − 𝝁𝝁)�, 

where 𝚫𝚫 = diag�𝑢𝑢�𝜇𝜇1,1�, … ,𝑢𝑢�𝜇𝜇1,𝑛𝑛1�, … ,𝑢𝑢�𝜇𝜇𝑛𝑛,1�, … ,𝑢𝑢�𝜇𝜇𝑛𝑛,𝑛𝑛𝑛𝑛�� is an 𝑁𝑁-dimentional 

diagonal matrix and 𝑢𝑢( ) is the first derivative of 𝑔𝑔−1( ). To detect association between 
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the trait and the genetic region of interest, we test 𝐻𝐻0:𝜷𝜷 = 𝟎𝟎 vs. 𝐻𝐻1:𝜷𝜷 ≠ 𝟎𝟎. The score 

function for the genotype effects 𝜷𝜷 under 𝐻𝐻0 can be written as 

𝑼𝑼0(𝜷𝜷) = 𝑼𝑼(𝜷𝜷)|𝜶𝜶�0,𝟎𝟎,𝛿𝛿�0 = (𝑩𝑩𝑮𝑮)𝑇𝑇𝚫𝚫�0𝛀𝛀�0−1(𝒀𝒀 − 𝝁𝝁�0). 

Here 𝝁𝝁�0, 𝚫𝚫�0 and 𝛀𝛀�0 are 𝝁𝝁, 𝚫𝚫 and 𝛀𝛀 evaluated at (𝜶𝜶,𝜷𝜷, 𝛿𝛿) = �𝜶𝜶�0,𝟎𝟎, �̂�𝛿0�, where 𝜶𝜶�0 and �̂�𝛿0 

are the null estimates of 𝜶𝜶 and 𝛿𝛿 under the constraint 𝜷𝜷 = 𝟎𝟎, which can be computed 

iteratively between a Fisher scoring algorithm for 𝜶𝜶 and the method of moments for 𝛿𝛿 

until convergence. 

Hypothesis Testing: GEE-B, GEE-S, GEE-O, GEE-E, GEE-C, and GEE-A 

In the GEE model of Eq. (1), our primary interest is to test the genotype effects 

𝐻𝐻0:𝜷𝜷 = 𝟎𝟎, which is equivalent to test the null hypothesis 𝐻𝐻0:𝛽𝛽0 = 0 and 𝜏𝜏 = 0. If we 

assume 𝜏𝜏 = 0 and test the null hypothesis 𝐻𝐻0:𝛽𝛽0 = 0, the GEE-based burden test GEE-B 

has the form 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝐵𝐵 = (𝒀𝒀 − 𝝁𝝁�0)𝑇𝑇𝛀𝛀�0−1𝚫𝚫�0𝑩𝑩𝑮𝑮𝑾𝑾𝟏𝟏𝑚𝑚𝟏𝟏𝑚𝑚𝑇𝑇 𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝚫𝚫�0𝛀𝛀�0−1(𝒀𝒀 − 𝝁𝝁�0).                (2) 

Under the null hypothesis, the statistic 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝐵𝐵 is asymptotically distributed as 𝜑𝜑𝐵𝐵𝜒𝜒12, 

where 𝜒𝜒12 is a chi-squared distribution with 1 df, the scalar 𝜑𝜑𝐵𝐵 = 𝟏𝟏𝑚𝑚𝑇𝑇 𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝑸𝑸𝑩𝑩𝑮𝑮𝑾𝑾𝟏𝟏𝑚𝑚 

and 𝑸𝑸 = 𝚲𝚲 − 𝚲𝚲𝑿𝑿(𝑿𝑿𝑇𝑇𝚲𝚲𝑿𝑿)−1𝑿𝑿𝑇𝑇𝚲𝚲, where 𝚲𝚲 = 𝚫𝚫�0𝛀𝛀�0−1Cov� (𝒀𝒀)𝛀𝛀�0−1𝚫𝚫�0 and the sample 

covariance of 𝒀𝒀, Cov� (𝒀𝒀), is estimated by (𝒀𝒀 − 𝝁𝝁�0)(𝒀𝒀 − 𝝁𝝁�0)𝑇𝑇. 

If we assume 𝛽𝛽0 = 0 and test 𝐻𝐻0: 𝜏𝜏 = 0, the GEE-based variance component SKAT 

test GEE-S has the form 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝑆𝑆 = (𝒀𝒀 − 𝝁𝝁�0)𝑇𝑇𝛀𝛀�0−1𝚫𝚫�0𝑩𝑩𝑮𝑮𝑾𝑾𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝚫𝚫�0𝛀𝛀�0−1(𝒀𝒀 − 𝝁𝝁�0).                    (3) 
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Under the null hypothesis, 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝑆𝑆 asymptotically follows ∑ 𝜑𝜑𝑆𝑆𝑘𝑘𝜒𝜒1,𝑘𝑘
2𝑚𝑚

𝑘𝑘=1 , where 𝜒𝜒1,𝑘𝑘
2  are 

independent chi-squared distributions with 1 df, and 𝜑𝜑𝑆𝑆𝑘𝑘 are the eigenvalues of the matrix 

𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝑸𝑸𝑩𝑩𝑮𝑮𝑾𝑾. 

Like SKAT-O, we can combine the SKAT and burden tests by considering 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝑂𝑂 = 𝜋𝜋𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝐵𝐵 + (1 − 𝜋𝜋)𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝑆𝑆. 

We can see that 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝑂𝑂 reduces to the GEE burden test when 𝜋𝜋 = 1 and to the GEE 

SKAT test when 𝜋𝜋 = 0. An optimal 𝜋𝜋 can be chosen from the data by minimizing the p 

value of 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝑂𝑂, following a similar approach to the SKAT-O method[47]. 

An alternative joint test, similar to MiST [50] and SMMAT-E [52] that were designed 

under the mixed effects models, for testing 𝐻𝐻0:𝛽𝛽0 = 0 and 𝜏𝜏 = 0 can be constructed as 

two independent tests: (1) a test for 𝐻𝐻0:𝛽𝛽0 = 0 under the constraint 𝜏𝜏 = 0, and (2) a test 

for 𝐻𝐻0: 𝜏𝜏 = 0 without any constraint on 𝛽𝛽0. The first test is the GEE burden statistic 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝐵𝐵, and the second test 𝑇𝑇𝜏𝜏 can be constructed as 

𝑇𝑇𝜏𝜏 = (𝒀𝒀 − 𝝁𝝁�)𝑇𝑇𝛀𝛀�−1𝚫𝚫�𝑩𝑩𝑮𝑮𝑾𝑾𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝚫𝚫�𝛀𝛀�−1(𝒀𝒀 − 𝝁𝝁�), 

where 𝝁𝝁�, 𝚫𝚫� and 𝛀𝛀�  are 𝝁𝝁, 𝚫𝚫 and 𝛀𝛀 evaluated at (𝜶𝜶,𝜷𝜷, 𝛿𝛿) = �𝜶𝜶�,𝑾𝑾𝟏𝟏𝑚𝑚𝛽𝛽�0, 𝛿𝛿�. Here 𝜶𝜶�, 𝛽𝛽�0 

and 𝛿𝛿 are the estimates of 𝜶𝜶, 𝛽𝛽0 and 𝛿𝛿 under a burden-type of mean model 

𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖 � 𝑮𝑮,𝑿𝑿� = 𝜇𝜇𝑖𝑖𝑖𝑖 ,   𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝑮𝑮𝑖𝑖𝑇𝑇𝑾𝑾𝟏𝟏𝑚𝑚𝛽𝛽0,   𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 .      (4) 

We can show that 
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𝑇𝑇𝜏𝜏 = (𝒀𝒀 − 𝝁𝝁�0)𝑇𝑇𝛀𝛀�0−1𝚫𝚫�0𝑩𝑩𝑮𝑮𝑾𝑾�𝐈𝐈𝑚𝑚

− 𝟏𝟏𝑚𝑚�𝟏𝟏𝑚𝑚𝑇𝑇 𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝑷𝑷�𝑩𝑩𝑮𝑮𝑾𝑾𝟏𝟏𝑚𝑚�
−1𝟏𝟏𝑚𝑚𝑇𝑇 𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝑷𝑷�𝑩𝑩𝑮𝑮𝑾𝑾� �𝐈𝐈𝑚𝑚

−𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝑷𝑷�𝑩𝑩𝑮𝑮𝑾𝑾𝟏𝟏𝑚𝑚�𝟏𝟏𝑚𝑚𝑇𝑇 𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝑷𝑷�𝑩𝑩𝑮𝑮𝑾𝑾𝟏𝟏𝑚𝑚�
−1𝟏𝟏𝑚𝑚𝑇𝑇 �𝑾𝑾𝑮𝑮𝑇𝑇𝑩𝑩𝑇𝑇𝚫𝚫�0𝛀𝛀�0−1(𝒀𝒀

− 𝝁𝝁�0), 

where 𝑷𝑷� = 𝚫𝚫�0𝛀𝛀�0−1𝚫𝚫�0 − 𝚫𝚫�0𝛀𝛀�0−1𝚫𝚫�0𝑿𝑿�𝑿𝑿𝑇𝑇𝚫𝚫�0𝛀𝛀�0−1𝚫𝚫�0𝑿𝑿�
−1𝑿𝑿𝑇𝑇𝚫𝚫�0𝛀𝛀�0−1𝚫𝚫�0. 

Some assumptions: Since the true value of 𝛽𝛽0 small, we assume including the 

genetic burden score in Eq. (4) doesn’t dramatically change the variance function matrix 

𝚫𝚫 and 𝛀𝛀. Independence holds when the working correlation matches the true correlation. 

Alternatively, one can apply ACAT approach to combine P values of individual tests. 

The variant-set ACAT test can be written as  

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶 = �𝑤𝑤𝑘𝑘′𝑓𝑓(𝑝𝑝𝑘𝑘)
𝑚𝑚

𝑘𝑘=1

 

where 𝑝𝑝𝑘𝑘 is the P-value of score test of the kth genetic variants; 𝑤𝑤𝑘𝑘′ =

𝑤𝑤𝑘𝑘�𝑀𝑀𝑀𝑀𝐹𝐹𝑘𝑘(1 −𝑀𝑀𝑀𝑀𝐹𝐹𝑘𝑘) specifies the weight for the P-value which depends on the minor 

allele frequency of genetic variant; 𝑓𝑓(𝑥𝑥) =  𝑡𝑡𝑡𝑡𝑛𝑛{(0.5 − 𝑥𝑥)𝜋𝜋} performs Cauchy 

transformation on each of the P-values. And the omnibus ACAT test can be used to 

combined the above three variant-level tests 

𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝐴𝐴 =
1
3

[𝑓𝑓(𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺−𝐵𝐵) + 𝑓𝑓(𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺−𝑆𝑆) + 𝑓𝑓(𝑝𝑝𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶)] 

Both 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝐶𝐶 and 𝑇𝑇𝐺𝐺𝐺𝐺𝐺𝐺−𝐴𝐴 P-values can be calculated via the Cauchy-distribution-based 

approximation.  



54 

 

In contrast to SMMAT [52] and the GEE-based association tests which are 

prospective analyses based on the phenotype given the genotypes and covariates, LSRAT 

and RSMMAT are retrospective analyses based on the genotypes given the phenotype 

and covariates. The advantage of the retrospective approach is that the inference is robust 

to misspecification of the phenotype model, i.e., the type I error of the association tests is 

still properly controlled given correct specification of the null conditional mean and 

variance of the genotype data, but not the phenotype model. Since LSRAT and 

RSMMAT have very similar forms, for clarity, we first present the retrospective model 

and the test statistics for LSRAT, and then briefly describe the RSMMAT statistics and 

emphasize the differences between the two retrospective analyses. 

 

2.3.2 LSRAT Model and test statistics 

In LSRAT, we specify a retrospective mean model of the genotype 

𝐸𝐸(𝑮𝑮𝑘𝑘 |𝒀𝒀,𝑿𝑿) = 2𝑝𝑝𝑘𝑘𝟏𝟏𝑛𝑛 + 𝛾𝛾𝑘𝑘𝚽𝚽𝑨𝑨,   𝑘𝑘 = 1, … ,𝑚𝑚,                                  (5) 

where 𝑮𝑮𝑘𝑘 is the genotype vector at the 𝑘𝑘th variant, 𝑝𝑝𝑘𝑘 is its MAF which is treated as an 

unknown nuisance parameter, 𝛾𝛾𝑘𝑘 is an unknown parameter of interest representing the 

strength and direction of association between the phenotype and the 𝑘𝑘th variant, 𝟏𝟏𝑛𝑛 is an 

𝑛𝑛-vector of 1’s, 𝚽𝚽 is an 𝑛𝑛 × 𝑛𝑛 genetic relationship matrix (GRM) representing the overall 

genetic similarity between individuals due to population structure, and 𝑨𝑨 is an individual-

level transformed phenotypic residual vector, where we let 𝑨𝑨 = 𝑩𝑩𝑇𝑇𝚫𝚫�0𝛀𝛀�0−1(𝒀𝒀 − 𝝁𝝁�0), 

obtained from the null GEE model 𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶, for 𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖. If we let 
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𝑮𝑮� = vec(𝑮𝑮) = (𝑮𝑮1𝑇𝑇 , … ,𝑮𝑮𝑚𝑚𝑇𝑇 )𝑇𝑇 be an 𝑛𝑛𝑚𝑚-dimentional vector denoting the vectorization of 

the genotype matrix 𝑮𝑮, Model (5) can be equivalently written as 

𝐸𝐸�𝑮𝑮� �𝒀𝒀,𝑿𝑿� = 2𝒑𝒑⊗ 𝟏𝟏𝑛𝑛 + 𝜸𝜸⊗𝚽𝚽𝑨𝑨,                                         (6) 

where 𝒑𝒑 = (𝑝𝑝1, … , 𝑝𝑝𝑚𝑚)𝑇𝑇 is a vector of the MAFs of the 𝑚𝑚 genetic variants, 𝜸𝜸 =

(𝛾𝛾1, … , 𝛾𝛾𝑚𝑚)𝑇𝑇 is an unknown vector of association parameters of interest, and ⊗ is 

Kronecker product. 

To form LSRAT, we require the null conditional covariance matrix of 𝑮𝑮�, which can 

be specified as 

Var0�𝑮𝑮� �𝒀𝒀,𝑿𝑿� = 𝚺𝚺𝐺𝐺 ⊗𝚽𝚽,                                               (7) 

where 𝚺𝚺𝐺𝐺 = 𝑫𝑫1/2𝑹𝑹𝑫𝑫1/2 is an 𝑚𝑚 × 𝑚𝑚 covariance matrix of the variants. Here 𝑫𝑫 =

diag(𝜎𝜎12, … ,𝜎𝜎𝑚𝑚2 ) is the marginal variance of the 𝑚𝑚 genetic variants, and 𝑹𝑹 is the 

correlation matrix that captures the linkage disequilibrium (LD) structure. In Model (6), 

the genotype-phenotype association parameters 𝜸𝜸 are assumed to follow a distribution 

with mean 𝑽𝑽𝟏𝟏𝑚𝑚𝛾𝛾0 and covariance 𝜃𝜃𝑽𝑽𝑽𝑽𝑇𝑇, where 𝑽𝑽 is a prespecified 𝑚𝑚 × 𝑚𝑚 weight matrix 

and 𝜃𝜃 is the variance component of the association parameters. Note that the weight 

matrix 𝑽𝑽 in the retrospective model of Eq. (6) plays a similar role as the weight matrix 𝑾𝑾 

in the prospective GEE model of Eq. (1) that is allowed to depend on features of the 

variants. However, we do not require 𝑽𝑽 to be a diagonal or symmetric matrix. In fact, the 

connection between 𝜸𝜸 of Eq. (6) and 𝜷𝜷 of Eq. (1) is that 𝜸𝜸 = 𝚺𝚺𝐺𝐺𝜷𝜷 when 𝜷𝜷 tends to zero. 

Therefore, one choice for the weight matrix 𝑽𝑽 in the retrospective model (6) is that 𝑽𝑽 =

𝚺𝚺𝐺𝐺𝑾𝑾. Then, the quasi-likelihood score function for 𝜸𝜸 is given by (see Supplementary 

Materials S 2.1) 
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𝑼𝑼(𝜸𝜸) = 𝚺𝚺𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨 − (𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝚺𝚺𝐺𝐺−1𝜸𝜸. 

 

Hypothesis Testing: LSRAT-B, LSRAT-S, LSRAT-O, LSRAT-E, LSRAT-C, and 

LSRAT-A 

To detect association between the trait and a genetic region of interest, we test 

𝐻𝐻0:𝜸𝜸 = 𝟎𝟎 vs. 𝐻𝐻1:𝜸𝜸 ≠ 𝟎𝟎 in the retrospective model for 𝑮𝑮 conditional on 𝒀𝒀 and 𝑿𝑿 given in 

Eq. (6), which is equivalent to test the null hypothesis 𝐻𝐻0: 𝛾𝛾0 = 0 and 𝜃𝜃 = 0. If we 

assume 𝜃𝜃 = 0 and test 𝐻𝐻0: 𝛾𝛾0 = 0, the LSRAT burden statistic LSRAT-B can be 

constructed as 

𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝐵𝐵 = 𝑼𝑼0
𝑇𝑇(𝜸𝜸)𝑽𝑽𝟏𝟏𝑚𝑚𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝑼𝑼0(𝜸𝜸) = 𝑨𝑨𝑇𝑇𝑮𝑮𝚺𝚺�𝐺𝐺−1𝑽𝑽𝟏𝟏𝑚𝑚𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨,            (8) 

where 𝑼𝑼0(𝜸𝜸) = 𝑼𝑼(𝜸𝜸)|𝜸𝜸=𝟎𝟎 = 𝚺𝚺�𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨. Under the null model, the covariance of 𝑮𝑮𝑇𝑇𝑨𝑨 is 

Cov(𝑮𝑮𝑇𝑇𝑨𝑨) = (𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝚺𝚺𝐺𝐺 (see Supplementary Materials S2.2 for details). Then, the 

statistic 𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝐵𝐵 asymptotically follows 𝜆𝜆𝐵𝐵𝜒𝜒12, where the scalar 𝜆𝜆𝐵𝐵 =

(𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑽𝑽𝟏𝟏𝑚𝑚 and 𝜒𝜒12 is a chi-squared distribution with 1 df. 

If we assume 𝛾𝛾0 = 0 and test 𝐻𝐻0:𝜃𝜃 = 0, the LSRAT variance component SKAT 

statistic LSRAT-S can be constructed as 

𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝑆𝑆 = 𝑼𝑼0
𝑇𝑇(𝜸𝜸)𝑽𝑽𝑽𝑽𝑇𝑇𝑼𝑼0(𝜸𝜸) = 𝑨𝑨𝑇𝑇𝑮𝑮𝚺𝚺�𝐺𝐺−1𝑽𝑽𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨.                        (9) 

Under the null hypothesis, 𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝑆𝑆 asymptotically follows ∑ 𝜆𝜆𝑆𝑆𝑘𝑘𝜒𝜒1,𝑘𝑘
2𝑚𝑚

𝑘𝑘=1 , where 𝜒𝜒1,𝑘𝑘
2  are 

independent chi-squared distributions with 1 df, and 𝜆𝜆𝑆𝑆𝑘𝑘 are the eigenvalues of the matrix 

(𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑽𝑽. 

The SKAT-O type of test for LSRAT can be formulated as a weighted average of the 

LSRAT-B and LSRAT-S statistics, given by 
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𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝑂𝑂 = 𝜋𝜋𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝐵𝐵 + (1 − 𝜋𝜋)𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝑆𝑆. 

An optimal 𝜋𝜋 is obtained through a grid search by minimizing the p value of 𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝑂𝑂. 

Analogous to the GEE-E and SMMAT-E tests in which two independent tests were 

constructed, we can modify the quasi-likelihood score statistics to perform a joint test of 

the null hypothesis 𝐻𝐻0: 𝛾𝛾0 = 0 and 𝜃𝜃 = 0. Specifically, we first test 𝐻𝐻0: 𝛾𝛾0 = 0 under the 

constraint 𝜃𝜃 = 0, which is the LSRAT burden statistic 𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝐵𝐵, and then test 𝐻𝐻0:𝜃𝜃 = 0 

without any constraint on 𝛾𝛾0. The second variance component test can be constructed 

from the null retrospective burden model 

𝐸𝐸�𝑮𝑮� �𝒀𝒀,𝑿𝑿� = 2𝒑𝒑⊗ 𝟏𝟏𝑛𝑛 + 𝑽𝑽𝟏𝟏𝑚𝑚𝛾𝛾0 ⊗𝚽𝚽𝑨𝑨.                                     (10) 

If we assume the mean of association effects 𝛾𝛾0 is small and including the second 

term in Eq. (10) does not change the conditional covariance of 𝑮𝑮�, we obtain the estimate 

of 𝛾𝛾0, denoted by 𝛾𝛾�0, by solving the quasi-likelihood score equation 

𝑈𝑈(𝛾𝛾0) = (𝑽𝑽𝟏𝟏𝑚𝑚)𝑇𝑇[𝚺𝚺𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨 − (𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝚺𝚺𝐺𝐺−1𝑽𝑽𝟏𝟏𝑚𝑚𝛾𝛾0] = 0, 

given by 

𝛾𝛾�0 =
𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨

(𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)(𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑽𝑽𝟏𝟏𝑚𝑚)
 . 

Then, the quasi-likelihood score function for 𝜸𝜸 under Model (9) is 

𝑼𝑼𝐵𝐵(𝜸𝜸) = 𝑼𝑼(𝜸𝜸)|𝛾𝛾�0 = 𝚺𝚺�𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨 − (𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝚺𝚺�𝐺𝐺−1𝑽𝑽𝟏𝟏𝑚𝑚𝛾𝛾�0

= �𝚺𝚺�𝐺𝐺−1 − 𝚺𝚺�𝐺𝐺−1𝑽𝑽𝟏𝟏𝑚𝑚�𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑽𝑽𝟏𝟏𝑚𝑚�
−1𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1� 𝑮𝑮𝑇𝑇𝑨𝑨 = 𝑷𝑷𝑮𝑮𝑇𝑇𝑨𝑨, 

where 𝑷𝑷 = 𝚺𝚺�𝐺𝐺−1 − 𝚺𝚺�𝐺𝐺−1𝑽𝑽𝟏𝟏𝑚𝑚�𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑽𝑽𝟏𝟏𝑚𝑚�
−1𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1. Finally, the variance 

component statistic 𝑇𝑇𝜃𝜃 can be written as 

𝑇𝑇𝜃𝜃 = 𝑼𝑼𝐵𝐵
𝑇𝑇(𝜸𝜸)𝑽𝑽𝑽𝑽𝑇𝑇𝑼𝑼𝐵𝐵(𝜸𝜸) = 𝑨𝑨𝑇𝑇𝑮𝑮𝑷𝑷𝑽𝑽𝑽𝑽𝑇𝑇𝑷𝑷𝑮𝑮𝑇𝑇𝑨𝑨. 
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Under the null hypothesis 𝐻𝐻0:𝜃𝜃 = 0, 𝑇𝑇𝜃𝜃 is asymptotically distributed as ∑ 𝜆𝜆𝜃𝜃𝑘𝑘𝜒𝜒1,𝑘𝑘
2𝑚𝑚

𝑘𝑘=1 , 

where 𝜒𝜒1,𝑘𝑘
2  are independent chi-squared distributions with 1 df, and 𝜆𝜆𝜃𝜃𝑘𝑘 are the 

eigenvalues of the matrix (𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝑽𝑽𝑇𝑇𝑷𝑷𝑽𝑽. By the central limit theorem, both 𝑽𝑽𝑇𝑇𝑷𝑷𝑮𝑮𝑇𝑇𝑨𝑨 

and 𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨 asymptotically follow normal distributions, and their covariance is 

Cov�𝑽𝑽𝑇𝑇𝑷𝑷𝑮𝑮𝑇𝑇𝑨𝑨,𝟏𝟏𝑚𝑚𝑇𝑇 𝑽𝑽𝑇𝑇𝚺𝚺�𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨� = (𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝑽𝑽𝑇𝑇𝑷𝑷𝑽𝑽𝟏𝟏𝑚𝑚 = 𝟎𝟎. 

Therefore, 𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝐵𝐵 and 𝑇𝑇𝜃𝜃 are asymptotically independent. We use Fisher’s method to 

combine the p values from the two tests. 

Note that all the above four LSRAT statistics involve 𝑮𝑮𝑇𝑇𝑨𝑨, the product of the column 

vectors in the genotype matrix 𝑮𝑮 and the phenotypic residual vector 𝑨𝑨, where 𝑨𝑨 is 

obtained from the null prospective GEE model of the phenotype. As we can alternatively 

generate the phenotypic residuals based on the GLMM model of the phenotype, we 

propose in the next section a group of retrospective association testing methods using the 

phenotypic residuals obtained from the GLMM. 

The retrospective version of variant-set ACAT test and omnibus ACAT test are 

proposed as follows:  

𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝐶𝐶 = �𝑤𝑤𝑘𝑘′𝑓𝑓(𝑝𝑝𝑘𝑘𝑟𝑟)
𝑚𝑚

𝑘𝑘=1

 

and  

𝑇𝑇𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝐴𝐴 =
1
3

[𝑓𝑓(𝑝𝑝𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝐵𝐵) + 𝑓𝑓(𝑝𝑝𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝑆𝑆) + 𝑓𝑓(𝑝𝑝𝐿𝐿𝑆𝑆𝐿𝐿𝐴𝐴𝑇𝑇−𝐶𝐶)] 

where 𝑝𝑝𝑘𝑘𝑟𝑟 is the L-BRAT P-value on the 𝑘𝑘𝑡𝑡ℎ genetic variant (e.g., retrospective single-

variant test).  
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2.3.3 RSMMAT Model and Test Statistics 

The SMMAT tests [52] were formulated from the GLMM 

𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝑮𝑮𝑖𝑖𝑇𝑇𝜷𝜷 + 𝑏𝑏𝑖𝑖𝑖𝑖 ,   𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖 , 

where 𝜇𝜇𝑖𝑖𝑖𝑖 = 𝐸𝐸�𝑌𝑌𝑖𝑖𝑖𝑖 � 𝑮𝑮𝒊𝒊,𝑿𝑿𝑖𝑖𝑖𝑖 , 𝑏𝑏𝑖𝑖𝑖𝑖� is the mean of a response at time 𝑡𝑡𝑖𝑖𝑖𝑖 for individual 𝑖𝑖, 

given his/her genotypes, covariates, and random effect, 𝜶𝜶 and 𝜷𝜷 are the same as defined 

in Model (1), the vector of random effects 𝒃𝒃 = (𝑏𝑏1,1, … , 𝑏𝑏1,𝑛𝑛1 , … , 𝑏𝑏𝑛𝑛,1, … , 𝑏𝑏𝑛𝑛,𝑛𝑛𝑛𝑛)𝑇𝑇 is 

assumed that 𝒃𝒃 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,∑ 𝜈𝜈𝑙𝑙𝐿𝐿
𝑙𝑙=1 𝚽𝚽𝑙𝑙) with 𝐿𝐿 variance component parameters 𝜈𝜈𝑙𝑙, and 

correlation matrices 𝚽𝚽𝑙𝑙. Here we allow for multiple random effects to capture the 

correlation among repeated measures from longitudinal studies. 

Fitting the null GLMM model 𝑔𝑔�𝜇𝜇𝑖𝑖𝑖𝑖� = 𝑿𝑿𝑖𝑖𝑖𝑖𝑇𝑇 𝜶𝜶 + 𝑏𝑏𝑖𝑖𝑖𝑖, for 𝑖𝑖 = 1, … ,𝑛𝑛;  𝑗𝑗 = 1, … ,𝑛𝑛𝑖𝑖, we 

generate an 𝑛𝑛-dimensional vector of phenotypic residuals 𝑪𝑪 at the individual level, 

defined by 𝑪𝑪 = 𝑩𝑩𝑇𝑇(𝒀𝒀 − 𝝁𝝁�0)/𝜙𝜙�, where 𝝁𝝁�0 = 𝑔𝑔−1(𝑿𝑿𝜶𝜶�0 + 𝒃𝒃�) is a vector of fitted values, 

and 𝜙𝜙� is an estimate of the dispersion parameter 𝜙𝜙. 

Different from LSRAT, the RSMMAT model specifies that 

𝐸𝐸�𝑮𝑮� �𝒀𝒀,𝑿𝑿� = 2𝒑𝒑⊗ 𝟏𝟏𝑛𝑛 + 𝜸𝜸⊗𝚽𝚽𝑪𝑪,                                         (11) 

and the null conditional covariance matrix of 𝑮𝑮� is the same as that in Eq. (7), then the 

quasi-likelihood score function for 𝜸𝜸 is written as 𝑼𝑼(𝜸𝜸) = 𝚺𝚺𝐺𝐺−1𝑮𝑮𝑇𝑇𝑪𝑪 − (𝑪𝑪𝑇𝑇𝚽𝚽𝑪𝑪)𝚺𝚺𝐺𝐺−1𝜸𝜸. 

Finally, we construct the four RSMMAT statistics RSMMAT-B, RSMMAT-S, 

RSMMAT-O, and RSMMAT-E by replacing the phenotypic residual vector 𝑨𝑨 in the 

corresponding LSRAT tests with the GLMM-based phenotypic residual vector 𝑪𝑪; 

RSMMAT-C and RSMMAT-A by replacing the GEE score tests with GLMM ones. 

Their distributions can be similarly obtained. 
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2.3.4 Connection between Retrospective and Prospective Tests 

To assume 𝜷𝜷 has mean 𝑾𝑾𝟏𝟏𝑚𝑚𝛽𝛽0 and variance 𝜏𝜏𝑾𝑾𝑾𝑾, it would be equivalent to assume 

𝜸𝜸 has mean 𝚺𝚺𝐺𝐺𝑾𝑾𝟏𝟏𝑚𝑚𝛽𝛽0 and variance 𝜏𝜏𝚺𝚺𝐺𝐺𝑾𝑾𝑾𝑾𝚺𝚺𝐺𝐺. If we define 𝑽𝑽 = 𝚺𝚺𝐺𝐺𝑾𝑾, 𝛾𝛾0 = 𝛽𝛽0 and 

𝜃𝜃 = 𝜏𝜏, then we will have 𝑇𝑇𝐵𝐵𝑟𝑟 = 𝑇𝑇𝐵𝐵 and 𝑇𝑇𝑆𝑆𝑟𝑟 = 𝑇𝑇𝑆𝑆. Hence, we show the connection between 

retrospective burden and SKAT statistics derived from retrospective mean model and the 

original burden and SKAT test statistics. Moreover, to perform retrospective burden and 

SKAT testing, it is equivalent to evaluating the distribution of burden and SKAT score 

statistics retrospectively. 

In this section, we introduce a retrospective model, and show the connection between 

prospective and retrospective statistics. 

 

2.4 Simulation Studies 

2.4.1 Simulation of Type I Error 

We performed extensive simulations to examine the type I error of LSRAT-B, S, C, 

O, E, A and RSMMAT-B, S, C, O, E, A, and compare their empirical power with that of 

GEE and the GLMM tests. For all the simulations, we generated 10,000 chromosomes 

over a 1Mb regions using a coalescent model and mimicking the LD structure, the 

recombination rate, and the population history of the European population. We generated 

sequence data with 100 genetic variants selected from 4kb region in each set and 

1000,000 independent sets for 7,500 individuals with seven repeated measures.  

For continuous traits, in each simulation replicate, we simulated the phenotype 𝑦𝑦𝑖𝑖𝑖𝑖 for 

subject 𝑖𝑖’s 𝑗𝑗th observation under the null hypothesis without genetic effects from  
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𝑦𝑦𝑖𝑖𝑖𝑖 = 1.0 + 0.5𝑋𝑋1,𝑖𝑖 + 0.5𝑋𝑋2,𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡(𝑗𝑗 − 1) + 𝑡𝑡𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 

𝑖𝑖 =  1, …𝑛𝑛; 𝑗𝑗 =  1, … 7 

where 𝑋𝑋1,𝑖𝑖 is a continuous time-varying covariate that is generated from independently 

from a standard normal distribution; 𝑋𝑋2,𝑖𝑖𝑖𝑖 is a binary time-invariant covariate with the 

probability of taking value 1 of 0.5; 𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 = 2.0 models time effects; 𝑡𝑡𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖 are the 

individual-level time-independent and time-dependent random effects, respectively. We 

assume 𝑡𝑡𝑖𝑖 ∼ 𝑀𝑀(0,𝜎𝜎𝑎𝑎2) and 𝑟𝑟𝑖𝑖 = (𝑟𝑟𝑖𝑖1, … 𝑟𝑟𝑖𝑖7) ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(0,𝜎𝜎𝑟𝑟2𝑹𝑹), where 𝑹𝑹 is a 7 × 7 

correlation matrix specified by the AR(1) structure with a correlation coefficient 𝜓𝜓. The 

parameters for the variance components are set 𝜎𝜎𝑎𝑎2 = 𝜎𝜎𝑟𝑟2 = 𝜎𝜎𝑡𝑡2 = 0.64 and correlation 

coefficient 𝜓𝜓 = 0.7. 

For the binary traits, in each simulation replicate, we simulated the phenotype 𝑦𝑦𝑖𝑖𝑖𝑖 for 

subject 𝑖𝑖’s 𝑗𝑗th observation under the null hypothesis without genetic effects from  

logit �𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�� = −2.5 + 0.5𝑋𝑋1,𝑖𝑖 + 0.5 𝑋𝑋2,𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡(𝑗𝑗 − 1) + 𝑡𝑡𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 

where 𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡 = 0.2 represents time effects on the probability of developing the disease. 

All other parameters are the same as those in the continuous traits. We consider a 

baseline ascertainment scheme for the longitudinal dichotomous trait where 3750 case 

and 3750 control subjects were sampled according to their outcome values at baseline. 

 

2.4.2 Simulation of Empirical Power 

To assess the power performance of comparing set-based tests, we randomly selected 

causal variants within each of the genetic regions to simulate phenotypes under the 

alternatives. Specifically, we generated continuous longitudinal phenotype by 
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𝑦𝑦𝑖𝑖𝑖𝑖 = 1.0 + 0.5𝑋𝑋1,𝑖𝑖 + 0.5𝑋𝑋2,𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡(𝑗𝑗 − 1) + �𝐺𝐺𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ 𝑡𝑡𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 

and dichotomous longitudinal measures by 

logit �𝑃𝑃�𝑦𝑦𝑖𝑖𝑖𝑖 = 1�� = −2.5 + 0.5𝑋𝑋1,𝑖𝑖 + 0.5 𝑋𝑋2,𝑖𝑖𝑖𝑖 +  𝛽𝛽𝑡𝑡𝑖𝑖𝑚𝑚𝑡𝑡(𝑗𝑗 − 1) + �𝐺𝐺𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖

𝑠𝑠

𝑖𝑖=1

+ 𝑡𝑡𝑖𝑖 + 𝑟𝑟𝑖𝑖𝑖𝑖 

where 𝐺𝐺1, …𝐺𝐺𝑠𝑠 are the genotypes of randomly selected causal variants 𝛽𝛽𝑖𝑖s are the effect 

sizes for the causal variants, and the other symbols are the same as defined in the 

simulation for type I error. 

To investigate the impact of causal proportion, effect direction and sample sizes on 

the power of different tests, we vary the above factors in our power simulation studies. 

The proportion of causal variants was set to be 5%, 20% and 50% which covers cases of 

sparse and dense signals. The causal effect directions of positive/negative directions were 

set to be 50/50%, 80%/20% and all positive to represent different mixture proportions of 

protective and deleterious causal variants. The effect size (|𝛽𝛽𝑖𝑖|s) was set to be 

𝑐𝑐| log10 𝑀𝑀𝑀𝑀𝐹𝐹𝑖𝑖 |, such that variants with a smaller MAF have a large effect size, where the 

𝑐𝑐 depends on the causal proportion. We examined three sample size designs: 2,500, 5,000 

and 7,500. Similar to the type I error simulation, we performed baseline ascertainment for 

each of the sample size designs for the longitudinal dichotomous traits. We repeated this 

procedure 1,000 times to obtain P-values for the power estimation for each test. 

2.4.3 Simulation Results 

Table 2.1 shows the empirical type I error rates of LSRAT- B, S, C, O, E, A and 

RGMMAT- B, S, C, O, E, A and their prospective GEE tests counterparts at significance 

levels of 0.01, 0.001, and 0.0001 in the variant set analysis of continuous traits. All 
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twenty-four tests have well-controlled type I error rates at these significance levels except 

GEE-C, which has slightly conservative type I error. Table 2.2 shows the empirical type I 

error rate of the above twenty-four tests in the variant set analysis of baseline ascertained 

dichotomous traits at significance level of 0.01, 0.001, and 0.0001. All twenty-four tests 

have well-controlled type I error rates at theses significance levels for dichotomous traits. 

Table 2.1. Type I Error Estimates for Each Tests Aimed that Testing the Association Between 
Randomly Selected Genetics Regions with a Continuous Longitudinal Traits. The sample size is 7,500 
subjects with seven repeated measure and type I error rate under the basis of 106 replicates.  

  
 alpha = 0.01 alpha = 0.001 alpha = 0.0001 

  
 GEE LSRAT GEE LSRAT GEE LSRAT 

GEE-based 

Burden(B) 1.0E-02 1.0E-02 1.0E-03 1.0E-03 1.1E-04 1.0E-04 

SKAT(S) 9.0E-03 1.0E-02 9.0E-04 1.0E-03 9.0E-05 1.0E-04 

ACAT-V(C) 8.0E-03 1.0E-02 6.0E-04 1.0E-03 6.0E-05 1.1E-04 

SKAT-O(O) 1.0E-02 1.1E-02 1.1E-03 1.2E-03 1.1E-04 1.2E-04 

SMMAT-E(E) 9.0E-03 1.0E-02 9.0E-04 1.0E-03 1.0E-04 1.1E-04 

ACAT-O(A) 9.0E-03 1.1E-02 8.0E-04 1.0E-03 8.0E-05 1.1E-04 

    GLMM RSMMAT GLMM RSMMAT GLMM RSMMAT 

GLMM-based 

Burden(B) 1.0E-02 1.0E-02 1.0E-03 1.0E-03 1.0E-04 1.0E-04 

SKAT(S) 1.0E-02 1.0E-02 1.0E-03 1.0E-03 9.0E-05 9.0E-05 

ACAT-V(C) 1.0E-02 1.0E-02 1.0E-03 1.0E-03 9.0E-05 1.0E-04 

SKAT-O(O) 1.1E-02 1.1E-02 1.2E-03 1.2E-03 1.1E-04 1.1E-04 

SMMAT-E(E) 1.0E-02 1.0E-02 1.0E-03 1.0E-03 1.1E-04 1.1E-04 

ACAT-O(A) 1.1E-02 1.1E-02 1.1E-03 1.1E-03 9.0E-05 9.0E-05 

 

Table 2.2. Type I Error Estimates for Each Tests Aimed that Testing the Association Between 
Randomly Selected Genetics Regions with a Baseline Ascertained Dichotomous Longitudinal Traits. 
The sample size is 7,500 subjects with seven repeated measure and type I error rate under the basis of 106 
replicates.  
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alpha = 0.01 alpha = 0.001 alpha = 0.0001 

   
GEE LSRAT GEE LSRAT GEE LSRAT 

GEE-based 

Burden(B) 
1.0E-02 1.0E-02 1.0E-03 1.0E-03 9.0E-05 1.0E-04 

SKAT(S) 
1.0E-02 1.0E-02 1.0E-03 1.0E-03 1.0E-04 1.1E-04 

ACAT-V(C) 
1.0E-02 1.0E-02 1.0E-03 1.1E-03 8.0E-05 1.2E-04 

SKAT-O(O) 
1.1E-02 1.1E-02 1.1E-03 1.2E-03 1.3E-04 1.4E-04 

SMMAT-E(E) 
1.0E-02 1.0E-02 1.0E-03 1.0E-03 1.0E-04 1.1E-04 

ACAT-O(A) 
1.0E-02 1.1E-02 1.0E-03 1.1E-03 9.0E-05 1.2E-04 

  
 GLMM RSMMAT GLMM RSMMAT GLMM RSMMAT 

GLMM-based 

Burden(B) 
1.0E-02 1.0E-02 9.0E-04 1.0E-03 7.0E-05 8.0E-05 

SKAT(S) 
1.0E-02 1.0E-02 9.0E-04 1.0E-03 8.0E-05 9.0E-05 

ACAT-V(C) 
9.0E-03 1.0E-02 9.0E-04 1.0E-03 1.1E-04 1.2E-04 

SKAT-O(O) 
1.0E-02 1.0E-02 9.0E-04 1.0E-03 9.0E-05 1.0E-04 

SMMAT-E(E) 
1.0E-02 1.1E-02 1.1E-03 1.1E-03 1.3E-04 1.4E-04 

ACAT-O(A) 
9.0E-03 1.0E-02 9.0E-04 9.0E-04 9.0E-05 1.0E-04 

 
We compare the power between LSRAT and GEE, RSMMAT and SMMAT, 

respectively under a variety of simulation conditions for both continuous and 

dichotomous traits. Figure 2.1 presents the empirical power of LSRAT- B, S, C, O, E, A 

for testing causal variant sets evaluated at the significance level of 2.5 × 10−6 for 

longitudinal continuous traits. Each LSRAT test was compared with GEE- B, S, C, O, E, 

A, respectively. Figure 2.2 presents the empirical power of LSRAT tests and GEE tests 

for longitudinal dichotomous traits evaluated at the same significance level. LSRAT tests 

have improved power compared to their corresponding GEE tests for longitudinal 
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continuous traits, especially for longitudinal dichotomous traits. Among them, LSRAT-

V, A, O has the most substantial power gain as compared with GEE-V, A, O.  

 

Figure 2.1. Power plots of variant-set tests(left panel) GEE-B, S, C and LSRAT-B, S, C; omnibus 
tests(right panel) GEE-O, E, A and LSRAT- O, E, A for continuous longitudinal traits. Each bar 
represents the empirical power estimated as the proportion of p values less than 𝛼𝛼 = 5 ×10 -6 of sample 
size 𝑛𝑛 =  2,500, 5,000, 7,500. The proportion of causal variants is set to be 5%, 20%, and 50% which were 
shown by three rows of each panel. The coefficients for the causal variants are 50% positive, 80% positive, 
and 100% positive which corresponds to the three columns of each panel. The effect size(|𝛽𝛽𝑖𝑖 | s) of the 
causal variants are set to be |𝛽𝛽𝑖𝑖| = 𝑐𝑐| log10 𝑀𝑀𝑀𝑀𝐹𝐹𝑖𝑖 |, where 𝑐𝑐 was set to 0.04 for 50% causal, 0.06 for 20% 
causal and 0.12 for 5% causal.  
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Figure 2.2. Power plots of variant-set tests(left panel) GEE-B, S, C and LSRAT-B, S, C; omnibus 
tests(right panel) GEE-O, E, A and LSRAT- O, E, A for dichotomous longitudinal traits. Each bar 
represents the empirical power estimated as the proportion of p values less than 𝛼𝛼 = 5 ×10 -6  of sample 
size 𝑛𝑛 =  2,500, 5,000, 7,500. The proportion of causal variants is set to be 5%, 20%, and 50% which were 
shown by three rows of each panel. The coefficients for the causal variants are 50% positive, 80% positive, 
and 100% positive which corresponds to the three columns of each panel. The effect size(|𝛽𝛽𝑖𝑖 | s) of the 
causal variants are set to be |𝛽𝛽𝑖𝑖| = 𝑐𝑐| log10 𝑀𝑀𝑀𝑀𝐹𝐹𝑖𝑖 |, where 𝑐𝑐 was set to 0.08 for 50% causal, 0.12 for 20% 
causal and 0.24 for 5% causal.  
 

Figure 2.3 and figure 2.4 present the empirical power of RSMMAT- B, S, C, O, E, A 

for testing causal variant sets evaluated at the significance level of 2.5 × 10−6 for 

longitudinal continuous and dichotomous traits. We compared their power with their 

prospective counterparts SMMAT B, S, C, O, E, A, respectively. For longitudinal 

continuous traits, because the prospective model is correctly specified, retrospective 

GLMM-based tests have similar power as prospective ones. For longitudinal 

dichotomous traits in which subjects were ascertained based on their baseline 

observations, the prospective modeling is misspecified. In this situation, RSMMAT tests 

have substantially increased power as compared with GLMM tests. The most notable 

increase of power is observed comparing the aggregated Cauchy association variant-set 
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test (RSMMAT-C and GLMM-C), where GLMM-C has substantially lesser power than 

RSMMAT-C. This is because the aggregated Cauchy association variant-set test is based 

on the P-values of each single variant test. And as was shown in the previous study[56], 

the GLMM-based single variant test is underpowered in ascertained phenotypes, which 

compromised the power of the aggregated test.  

 

Figure 2.3. Power plots of variant-set tests (left panel) GLMM-B, S, C and RSMMAT-B, S, C; 
omnibus tests (right panel) GLMM-O, E, A and RSMMAT- O, E, A for continuous longitudinal 
traits. Each bar represents the empirical power estimated as the proportion of p values less than 𝛼𝛼 = 5 ×10 
-6 of sample size 𝑛𝑛 =  2,500, 5,000, 7,500. The proportion of causal variants is set to be 5%, 20%, and 
50% which were shown by three rows of each panel. The coefficients for the causal variants are 50% 
positive, 80% positive, and 100% positive which corresponds to the three columns of each panel. The effect 
size(|𝛽𝛽𝑖𝑖 | s) of the causal variants are set to be |𝛽𝛽𝑖𝑖| = 𝑐𝑐| log10 𝑀𝑀𝑀𝑀𝐹𝐹𝑖𝑖where 𝑐𝑐 was set to 0.04 for 50% causal, 
0.06 for 20% causal and 0.12 for 5% causal.  
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Figure 2.4. Power plots of variant-set tests (left panel) GLMM-B, S, C and RSMMAT-B, S, C; 
omnibus tests(right panel) GLMM -O, E, A and RSMMAT- O, E, A for dichotomous longitudinal 
traits. Each bar represents the empirical power estimated as the proportion of p values less than 𝛼𝛼 = 5 ×10 
-6 of sample size 𝑛𝑛 =  2,500, 5,000, 7,500. The proportion of causal variants is set to be 5%, 20%, and 
50% which were shown by three rows of each panel. The coefficients for the causal variants are 50% 
positive, 80% positive, and 100% positive which corresponds to the three columns of each panel. The effect 
size(|𝛽𝛽𝑖𝑖 | s) of the causal variants are set to be |𝛽𝛽𝑖𝑖| = 𝑐𝑐| log10 𝑀𝑀𝑀𝑀𝐹𝐹𝑖𝑖 |, where 𝑐𝑐 was set to 0.08 for 50% 
causal, 0.12 for 20% causal and 0.24 for 5% causal.  

 

 

The power increases with the sample size and decreases when the proportion of 

causal signals of the same direction drops from 100% to 50% for all tests, but with the 

most considerable decrease observed for burden types of tests. Among the three types of 

variant-set tests, the ACAT-V tests are more powerful in the 5% causal scenario where 

the causal signal is sparse but less powerful when the signal is dense (20% and 50% 

causal). Burden tests are more powerful when the causal proportion is high (50%) and the 

signals are in the same direction (100% positive) for a small sample size (2.5k), but the 

advantage of burden tests diminishes as the sample size increases. For omnibus tests, all 

three types of the omnibus tests in general show similar power and robustness to the 
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direction and proportion of causal variants. SKAT-O has an advantage when the there is a 

large set of causal variants (50%) while ACAT-O gains advantage when the proportion of 

causal variants is small (5%). SKAT-E has slightly less powerful than SKAT-O but it is 

computationally more efficient. 

Comparing the performance of GEE-based tests and GLMM-based tests, the 

simulation results suggest that GLMM-based tests are slightly more powerful than GEE-

based tests for longitudinal continuous traits. This is due to the fact that the GLMM 

model fitted has correctly specified random components whereas GEE model used AR1 

correlation structure and sandwich estimator. On the other hand, GEE-based tests are 

much more powerful than GLMM-based tests for longitudinal dichotomous traits with 

efficient sampling. This suggests that GEE-based tests are more robust to ascertainment 

sampling than GLMM-based tests. Additionally, the retrospective analysis demonstrates 

more powerful gain than prospective tests in longitudinal dichotomous traits.  

 

2.5 Application: VACS Alcohol Use GWAS Data 

2.5.1 Association Analysis 

To illustrate the use of our proposed tests, we analyzed a GWAS data set of alcohol 

use disorder from VACS [57]. VACS is a longitudinal observational cohort study of both 

HIV-positive and uninfected veterans. It has the aim of understanding the role of 

psychiatric conditions including alcohol and other substance abuse in the clinical 

consequences of HIV infection. Our use of the VACS data was approved by both the 

Yale Human Research Protection Program and the Institutional Review Board of the 
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Veterans Affairs Connecticut Healthcare System. Our data source was alcohol use 

disorders identification test-consumption (AUDIT-C) questionnaire. This data is 

longitudinal as the questionnaire was collected over time for six clinic visits, on a total of 

2,470 patients. The AUDIT-C score is a reliable and valid measure to assess the risk of 

harmful alcohol use, which has been used in previous VACS studies. The score ranges 0 

to 12, where 0 reflects no alcohol use and evaluates three measures of alcohol 

consumption. These measures include the frequency of usual consumption, the quantity 

of usual consumption, and the frequency of binge drinking. The missing rate at each visit 

ranges from 3.0% to 58.3%. The average AUDIC-C score for HIV positive subjects is 

3.90 and for HIV negative subjects is 4.19.  

All samples were genotyped on the Illumina OmniExpress BeadChip and were 

imputed using 1000 Genome Phase 3 data as a reference panel using IMPUTE2[23]. We 

performed quality-control (QC) on the subjects and the genetic variants. A detailed 

description of the subject level QC process can be found in our previous study[56]. SNPs 

that satisfied all of the following QC conditions were included in this analysis: (1) call 

rate > 95%, (2) Hardy-Weinberg 𝜒𝜒 2 statistic P-value > 10-6. We annotated variants to 

genes using ANNOVAR [58].The resulting data set has 2,210 individuals who have both 

genotype and phenotype information and a total of 32,233 genes. Gender, age at baseline, 

HIV status, and top five principal components (PCs) were included as static covariates 

and the time of visit was included as a dynamic covariant. 

We performed genome-wide association gene-based testing for the longitudinal 

AUDIT-C score on 32,233 genes in a total of 2,210 subjects.  We considered GEE, 

LSRAT, GLMM and RSMMAT tests with adjustment for sex, baseline age, HIV status, 
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visit time and top five PCs. For each of the four types of tests (GEE, GLMM, LSRAT, 

RSMMAT), we consider three variant-set tests (B, S, C) and three omnibus tests (O, E, 

A). In total, we evaluated twenty-four tests. The genomic control inflation factors for the 

twelve tests ranges from 0.92 to 1.06.  

Table 2.3 summarizes genes identified by GEE model based prospective and 

retrospective variant-set and omnibus tests (GEE and LSRAT) with P-values less than 

5 × 10−5 in at least one longitudinal test. Table 2.4 summarizes genes identified by 

GLMM model based prospective and retrospective variant-set and omnibus tests (GLMM 

and RSMMAT) with P-values less than 10−4 in at least one longitudinal test. Gene 

UBE2L3 was identified as a top gene from both GEE model based tests and GLMM 

model based tests. This gene, encoding ubiquitin-conjugating enzyme E2, was recently 

reported in another GWA study to interact with alcohol consumption and was also 

significantly associated with lipid levels [59]. In a previous study, it was identified as an 

ethanol‐responsive gene in the prefrontal cortex in mice[60]. This suggests that UBE2L3 

could be implicated in alcoholism. Gene EFCAB10, located at 7q22.3, is another protein 

coding gene that was also identified among top genes in both models. An SNP located 

within this gene was formerly found in association with bipolar disorder [61], a 

commonly co-occurred disorder with alcoholism [62]. Gene NPIPB3 is a protein coding 

gene located at 16p12.2. This gene was reported to be associated with extremely 

impulsively violence and aggressive behavior in males. As was suggested in previous 

studies, the frequently observed comorbidity of alcohol use disorder and impulsive 

aggression implicate a shared genetic basis underlies these two disorders [63–65]. In 

another study, an intron variant (rs12923444) located in the promoter region of NPIPB3 
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was found significantly associated with depression in a Genome-wide meta-analysis[66]. 

Our tests found gens to be significantly associated with alcohol use disorder that have 

been previously shown to be associated with alcoholism or major psychiatric disorders 

that comorbid with alcoholism.  
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Table 2.3. Top genes with P-value < 5×10-5 in at least one of the GEE and LSRAT in the VACS 
sample. * denotes protein coding gene, bold denotes the minimum P-value for the given gene. The smallest 
P-value among all tests at the given genes are in bold. 

 
Prospective Retrospective 

Gene SNPs Chr GEE-B GEE-S GEE-C GEE-O GEE-E GEE-A 
LSRAT-
B 

LSRAT-
S 

LSRAT-
C 

LSRAT-
O 

LSRAT-
E 

LSRAT-
A 

MIR4454 10 4 4.49E-04 1.44E-05 4.65E-05 3.25E-05 6.95E-05 3.15E-05 1.28E-03 8.73E-05 3.32E-04 1.61E-04 3.48E-04 1.98E-04 

UBE2L3* 324 22 3.52E-05 2.63E-03 1.50E-02 6.11E-05 2.43E-04 7.52E-05 1.97E-05 4.08E-04 1.02E-02 5.46E-05 1.73E-04 5.89E-05 

C9orf40* 15 9 8.34E-02 7.90E-02 1.03E-03 1.30E-01 3.68E-02 4.57E-03 8.00E-02 6.81E-02 2.21E-05 1.28E-01 2.36E-02 7.70E-05 

LINC01455 136 5 7.31E-02 5.55E-03 6.10E-03 1.23E-02 1.89E-02 9.14E-03 7.18E-02 2.90E-03 4.29E-05 6.22E-03 3.09E-03 1.45E-04 

ZNF33A* 202 10 8.58E-02 9.30E-04 5.04E-05 2.16E-03 2.33E-03 2.54E-04 7.85E-02 4.71E-04 8.40E-04 1.09E-03 2.57E-03 9.24E-04 

ZNF25* 130 10 4.17E-01 6.41E-02 5.45E-05 9.97E-02 1.31E-02 3.07E-04 3.82E-01 4.79E-02 9.66E-04 7.71E-02 1.54E-02 3.17E-03 

TMEM198B 14 12 5.58E-04 3.83E-02 5.51E-02 9.62E-04 2.62E-03 1.31E-03 5.93E-05 1.06E-02 2.27E-02 1.72E-04 5.08E-04 1.87E-04 

NPIPB4* 8 16 6.85E-05 8.43E-03 1.38E-02 1.41E-04 5.64E-04 1.51E-04 8.65E-05 7.45E-03 2.14E-02 1.99E-04 8.78E-04 2.70E-04 

EGF* 483 4 5.86E-01 3.72E-04 6.98E-05 9.84E-04 7.40E-04 2.76E-04 6.13E-01 2.44E-04 7.82E-04 6.36E-04 5.21E-04 5.68E-04 

PROX1-AS1 233 1 6.63E-01 2.68E-02 1.02E-02 5.45E-02 4.07E-02 2.69E-02 6.66E-01 2.12E-02 8.64E-05 4.19E-02 2.43E-02 2.96E-04 

EFCAB10* 8 7 1.29E-01 5.20E-04 1.83E-03 1.40E-03 1.18E-03 1.21E-03 9.56E-02 8.86E-05 1.30E-04 2.47E-04 1.28E-04 1.62E-04 
 
Table 2.4. Top genes with P-value < 10-4 in at least one of the GLMM and RSMMAT in the VACS 
sample. * denotes protein coding gene, bold denotes the minimum P-value for the given gene. The smallest 
P-value among all tests at the given genes are in bold. 

 
Prospective Retrospective 

Gene SNPs Chr GEE-B GEE-S GEE-C GEE-O GEE-E GEE-A 
LSRAT-
B 

LSRAT-
S 

LSRAT-
C 

LSRAT-
O 

LSRAT-
E 

LSRAT-
A 

UBE2L3* 324 22 3.59E-05 1.32E-03 1.40E-02 9.44E-05 3.31E-04 1.13E-04 5.27E-05 1.09E-03 1.31E-02 1.41E-04 4.46E-04 1.58E-04 

LINC01455 136 5 9.13E-02 4.66E-03 6.55E-05 9.76E-03 7.27E-03 2.48E-04 9.80E-02 4.58E-03 3.84E-05 9.66E-03 6.04E-03 1.40E-04 

PROX1-AS1 233 1 6.86E-01 1.48E-02 8.44E-05 2.83E-02 1.53E-02 3.20E-04 6.81E-01 1.56E-02 4.55E-05 3.10E-02 1.83E-02 1.66E-04 

LINC00467 219 1 9.58E-05 3.11E-03 1.29E-02 2.57E-04 7.81E-04 2.95E-04 6.53E-05 3.03E-03 1.21E-02 1.78E-04 5.53E-04 2.02E-04 

C9orf40* 15 9 1.04E-01 1.00E-01 1.33E-04 1.66E-01 4.15E-02 4.98E-04 1.00E-01 1.01E-01 7.22E-05 1.64E-01 4.06E-02 2.63E-04 

EFCAB10* 8 7 1.81E-01 1.16E-04 5.59E-04 3.14E-04 2.34E-04 2.97E-04 1.69E-01 9.19E-05 3.99E-04 2.54E-04 1.66E-04 2.24E-04 
LOC101927
661 2 2 3.68E-02 2.98E-03 1.61E-04 5.43E-03 2.83E-04 5.65E-04 3.36E-02 2.55E-03 1.00E-04 4.60E-03 1.52E-04 3.42E-04 
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2.5.2 Pathway and eQTL Enrichment Analysis 

We performed pathway analysis on the SNPs contained in the top genes for which at 

least one of the longitudinal tests had a P-value < 5 × 10−5 using METACORE. Of the 

top ten significant pathways we found, four were particularly of interests. The first one is 

HTR2A (alias 5-HT2A) signaling, which belongs to neurophysiological process in the 

nervous system. HTR2A receptor agonist are emerging as a popular therapeutic treatment 

for alcohol dependence and other neuropsychiatric conditions, and it was studied to 

normalize dysregulated GABAergic signaling [67]. The second one is canonical WNT 

signaling pathway, which plays a vital role in neural cell proliferation during neural 

development. This pathway has been suggested by many studies to be associated with 

major psychiatric disorders, including bipolar disorder and schizophrenia [68,69]. The 

third and fourth pathways are adenosine A1 and adenosine A3 receptor signaling. 

Adenosine plays a crucial role in regulating neural activity in the central nervous system 

and it modulates many neurotransmitters. It has been found to be central to many 

pathophysiological processes including drug dependence and alcohol abuse [70,71]. 

Overall, these four significant pathways all have been shown previously to be associated 

with major psychiatric disorders and alcoholism, verifying our model is capable of 

identifying biologically relevant loci.  

Next, we performed an enrichment analysis to see if the top genes from our analysis 

are likely to regulate brain gene expression. Previous studies have shown that genes 

regulating brain tissue regulation are useful in understating the basis of psychiatric 

disorders [72]. The cis-eQTLs of 13 human brain regions reported from the GTEx project 

were considered in the analysis. We performed Fisher’s exact test to examine the 
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enrichment of brain region eQTLs (FDR < 0.05) in the SNPs contained in the top genes 

from GEE and LSRAT test. Among the brain regions, three brain regions showed 

significant enrichment: anterior cingulate cortex (odds ratio = 9.40, P-val < 2.20×10-16), 

cerebellar hemisphere (odds ratio = 5.53 , P-val = < 2.2×10-16), and cerebellum(odds 

ratio = 3.97 , P-val <  2.20×10-16These three brain regions were also significantly 

enriched in top genes identified from GLMM and RSMMAT tests: anterior cingulate 

cortex (odds ratio = 4.48, P-val < 2.20×10-16), cerebellar hemisphere (odds ratio = 2.26, 

P-val = 1.01×10-10) and cerebellum (odds ratio =1.76 , P-val =1.02×10-6 ).These results 

show that the top genes identified from our tests are likely to regulate gene expression in 

those two brain regions, which will be discussed more extensively in the discussion 

section.  

 

2.6 Discussion 

We have developed and implemented LSRAT and RSMMAT, two families of 

retrospective variant-set tests for longitudinally measured continuous and binary traits in 

large scale genome wide association studies. In particular, LSRAT is a family of GEE 

model based association tests which include three variant-set level tests: the burden test 

(LSRAT-B), SKAT (LSRAT-S), and ACAT (LSRAT-C), as well as three omnibus tests 

that combines burden and SKAT with different strategies: LSRAT-O, LSRAT-E, and 

LSRAT-A. For comparison we also proposed RSMMAT, the mixed model counterparts 

of LSRAT, which introduced retrospective analysis to the existing prospective variant-set 

tests (SMMAT). Both LSRAT and RSMMAT are retrospective tests that are constructed 
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based on the genotype model given the phenotype and covariates. LSRAT models the 

within subject dependence with working covariance matrix whereas RSMMAT captures 

it with random effects. These two families of retrospective tests for longitudinal traits 

have several advantages: (1) they are robust against trait model misspecification; (2) they 

are able to adjust both static and time-varying covariates; (3) they allow for related 

subjects and account for population structure; and (4) they are computationally more 

efficient than existing prospective approaches. They provide important tools for the study 

of the genetic mechanism of longitudinal phenotypes especially for the psychiatric 

disorders where the temporal course and developmental pattern of the traits are of 

valuable information and has been less studied.  

LSRAT also has limitations. As mentioned previously, SMMAT p values are 

computed based on asymptotic distributions, which may be violated in small samples, 

especially for binary traits. Additionally, the p value computed for SMMAT-E relies on 

the assumption that the working correlation specified is the true correlation structure. 

However, benefitting from the robustness of GEE estimators to correlation structure 

model misspecification, the simulation results showed that LSRAT-E p-value maintained 

a correct type I error rate even when the correlation structure is not correctly specified.  

We applied LSRAT and RSMMAT to longitudinal association analysis of alcohol use 

in the VACS data. Pathway analysis of the top genes identified four significant pathways 

associated with longitudinal alcohol use: the HTR2A signaling pathway, the canonical 

WNT signaling pathway, the adenosine A1 and adenosine A2 signaling pathways. 

Enrichment analysis of brain region eQTLs demonstrated that top genes comprised of 

SNPs are enriched with eQTLs from two brain regions: anterior cingulate cortex and 
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cerebellum. The anterior cingulate cortex which mediates willed control of actions, was 

previously found to contribute to drug addiction[73]. Recently, it was studied that the 

thickness of anterior cingulate cortex is associated with alcohol use patterns [74]. As the 

cerebellar dysfunction and degeneration are commonly observed in alcoholics, the 

function of which has long been considered to be associated with alcoholism [75]. There 

are accumulating evidence that connect cerebellum to genetic risk for developing alcohol 

use disorder. In a recent study, it was demonstrated the strong influence of cerebellar in 

the susceptibility to alcohol abuse and the cerebellar has been highlighted as a target for 

pharmacological treatment of alcohol use disorder [76].  

In summary, LSRAT and RSMMAT provide a retrospective association framework 

for variant-set tests in large-scale genome-wide association for longitudinal traits. As the 

electronic health records become more available, these two families of tests will serve as 

powerful tools to uncover the mechanism of genes that control the developmental 

trajectories of traits, especially for psychiatric traits where the progression and 

developmental trajectories convey more valuable and reliable information than single 

time points measures. We expect a future extension of the proposed methods towards 

functional modeling of the genetic temporal effects as well as separately testing gene-

environment interaction in longitudinal GWA studies to improve the discovery process of 

the genetic basis for complex traits.  
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Chapter 3 

Gene-graph based imputation method for 

single-cell RNA sequencing data 

3.1 Abstract 

Single-cell RNA sequencing technology provides an opportunity to study gene 

expression at single-cell resolution. However, prevalent dropout events result in high data 

sparsity and noise that may obscure downstream analyses in single-cell transcriptomic 

studies. We propose a novel method, G2S3, that imputes dropouts by borrowing 

information from adjacent genes in a sparse gene graph learned from gene expression 

profiles across cells. We applied G2S3 and ten existing imputation methods to eight 

single-cell transcriptomic datasets to compare their performance. Our results 

demonstrated that G2S3 is superior in recovering true expression levels, identifying cell 

subtypes, reconstructing cell trajectories, identifying differentially expressed genes, and 

recovering gene correlation relationships, especially for genes with relatively low 

expression levels. Moreover, G2S3 is computationally efficient for imputation in large-

scale single-cell transcriptomic datasets. 

 

3.2 Introduction 

Singe-cell RNA sequencing (scRNA-seq) has emerged as a state-of-the-art technique 

for transcriptome analysis. Compared to bulk RNA-seq that measures the average gene 
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expression profile of a mixed cell population, scRNA-seq measures expression profile of 

individual cells and thus describes cell-to-cell stochasticity in gene expression. 

Applications of this technology in humans have revealed rare and novel cell types [77–

79], cell population composition changes [80], and cell-type specific transcriptomic 

changes [79,81] that are associated with diseases. These findings have great potential to 

promote our understanding of cell function, disease pathogenesis, and treatment response 

for more precise therapeutic development [82,83]. However, analysis of scRNA-seq data 

can be challenging due to low library size, high noise level, and prevalent dropout events 

[84]. Particularly, dropouts lead to an excessive number of zeros or close to zero values 

in the data, especially for genes with low or moderate expression. These inaccurately 

measured gene expression levels may obscure downstream quantitative analyses such as 

cell clustering and differential expression analyses [82]. 

In the past few years, several imputation methods have been developed to recover 

dropout events in scRNA-seq data. A group of methods, including kNN-smoothing [85], 

MAGIC [86], scImpute [87], drImpute [88], and VIPER [89], assess between-cell 

similarity and impute dropouts in each cell using its similar cells. Specifically, kNN-

smoothing uses step-wise k-nearest neighbors to aggregate information from the 𝑘𝑘 closest 

neighboring cells of each cell for imputation. MAGIC constructs an affinity matrix of 

cells and aggregates gene expression across similar cells via data diffusion to impute 

gene expression for each cell [86]. scImpute infers dropout events based on the dropout 

probability estimated from a Gamma-Gaussian mixture model and only imputes these 

events by borrowing information from similar cells within cell clusters detected by 

spectral clustering [87]. drImpute identifies similar cells through K-means clustering and 
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performs imputation by averaging expression levels of cells within the same cluster [88]. 

While these imputation methods improved the quality of scRNA-seq data to some extent, 

they were found to eliminate natural cell-to-cell stochasticity which is an important piece 

of information available in scRNA-seq data compared to bulk RNA-seq data [89]. VIPER 

overcomes this limit by considering a sparse set of neighboring cells for imputation to 

preserve variation in gene expression across cells [89]. In general, imputation methods 

that borrow information across similar cells tend to intensify subject variation in scRNA-

seq datasets with multiple subjects, which causes cells from the same subject to be more 

similar than those from different subjects. To address this issue, SAVER borrows 

information across similar genes instead of cells to impute gene expression using a 

penalized regression model [90]. There are other methods that leverage information from 

both genes and cells. For example, ALRA imputes gene expression using low-rank 

matrix approximation [91], and scTSSR uses two-side sparse self-representation matrices 

to capture gene-to-gene and cell-to-cell similarities for imputation [92]. In addition, 

machine learning-based methods, such as autoImpute [93], DAC [94], deepImpute [95] 

and SAUCIE [96], use deep neural network to impute dropout events. While 

computationally more efficient, these methods were found to generate false-positive 

results in differential expression analyses [97]. Recently, an ensemble approach, 

EnImpute, was developed to integrate multiple imputation methods using weighted 

trimmed mean [98]. 

In this article, we develop G2S3, a sparse and smooth signal of gene graph-based 

method that imputes dropout events in scRNA-seq data by borrowing information across 

similar genes. G2S3 learns a sparse graph representation of gene-gene relationships from 
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the data, in which each node represents a gene and is associated with a vector of 

expression levels in all cells considered as a signal on the graph. The graph is then 

optimized under the assumption that signals change smoothly between connected genes. 

Based on this graph, a transition matrix for a random walk is constructed so that the 

transition probabilities between genes with similar expression levels across cells are 

higher. A random walk on this graph imputes the expression level of each gene using the 

weighted average of expression levels from itself and adjacent genes in the graph. In this 

way, G2S3, like SAVER, makes use of gene-gene relationships to recover the true 

expression levels. However, unlike SAVER which uses a penalized regression model for 

imputation, G2S3 optimizes the gene graph structure using graph signal processing that 

captures nonlinear correlations among genes and is robust to outliers in the data. The 

computational complexity of the G2S3 algorithm is a polynomial of the total number of 

genes in the graph, so it is computationally efficient, especially for large scRNA-seq 

datasets with hundreds of thousands of cells. 

 

3.3 Material and methods 

3.3.1 G2S3 algorithm 

To borrow information from similar genes for data imputation, G2S3 first builds a 

sparse graph representation of gene network under the assumption that expression levels 

change smoothly between closely connected genes. Let 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑚𝑚] ∈ ℝ𝑛𝑛×𝑚𝑚 

denote the observed transcript counts of 𝑚𝑚 genes in 𝑛𝑛 cells, where the column 𝑥𝑥𝑗𝑗 ∈ ℝ𝑛𝑛 

represents the expression vector of gene 𝑗𝑗, for 𝑗𝑗 = 1, … ,𝑚𝑚. We regard each gene 𝑗𝑗 as a 
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vertex 𝑉𝑉𝑗𝑗 in a weighted gene graph 𝐺𝐺 = (𝑉𝑉,𝐸𝐸), in which the edge between genes 𝑗𝑗 and 𝑘𝑘 

is associated with a weight 𝑊𝑊𝑗𝑗𝑗𝑗. 

The gene graph is then determined by the weighted adjacency matrix 𝑊𝑊 ∈ ℝ+
𝑚𝑚×𝑚𝑚 . 

G2S3 searches for a valid adjacency matrix 𝑊𝑊 from the space 

𝒲𝒲 = {𝑊𝑊 ∈ ℝ+
𝑚𝑚×𝑚𝑚:   𝑊𝑊 = 𝑊𝑊𝑇𝑇, diag(𝑊𝑊) = 0} 

that is optimal under the assumption of smoothness and sparsity on the graph. To achieve 

this, we use the objective function adapted from Kalofolias’s model [99]: 

min
𝑊𝑊∈𝒲𝒲

   ‖𝑊𝑊 ∘ 𝑍𝑍‖1,1 − 1𝑇𝑇 log(𝑊𝑊1) +
1
2
‖𝑊𝑊‖𝐹𝐹2 ,                                           (1) 

where 𝑍𝑍 ∈ ℝ+
𝑚𝑚×𝑚𝑚  is the pairwise Euclidean distance matrix of genes, defined as 𝑍𝑍𝑗𝑗𝑗𝑗 =

�𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗�
2
, ‖⋅‖1,1 is the elementwise L-1 norm, ∘ is the Hadamard product, and ‖⋅‖𝐹𝐹 is 

the Frobenius norm. The first term in Eq. (1) is equivalent to 2 tr(𝑋𝑋𝑇𝑇𝐿𝐿𝑋𝑋) that quantifies 

how smooth the signals are on the graph, where 𝐿𝐿 is the graph Laplacian and tr(. ) is the 

trace of a matrix. This term penalizes edges between distant genes, so it prefers to put a 

sparse set of edges between the nodes with a small distance in 𝑍𝑍. The second term in Eq. 

(1) represents the node degree which requires the degree of each gene to be positive to 

improve the overall connectivity of the gene graph. The third term in Eq. (1) controls 

sparsity to penalize the formation of large edges between genes. 

The optimization of Eq. (1) can be solved via primal dual techniques [100]. We rewrite 

Eq. (1) as 

min
𝑤𝑤∈𝜔𝜔

   1{𝑤𝑤≥0} + 2𝑤𝑤𝑇𝑇𝑧𝑧 − 1𝑇𝑇 log(𝑑𝑑) + ‖𝑤𝑤‖2, where 𝜔𝜔 = �𝑤𝑤 ∈ ℝ+

𝑚𝑚(𝑚𝑚−1)
2 � ,            (2) 
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where 𝑤𝑤  and 𝑧𝑧 are vector forms of 𝑊𝑊  and 𝑍𝑍 , respectively, 𝑑𝑑 = 𝐾𝐾𝑤𝑤 ∈ ℝ𝑚𝑚  and 𝐾𝐾  is the 

linear operator that satisfies 𝑊𝑊1 = 𝐾𝐾𝑤𝑤. After obtaining the optimal 𝑊𝑊, a lazy random walk 

matrix can be constructed on the graph: 

𝑀𝑀 = (𝐷𝐷−1𝑊𝑊 + 𝐼𝐼)/2,                                                                   (3) 

where 𝐷𝐷 is an 𝑚𝑚-dimensional diagonal matrix with 𝐷𝐷𝑗𝑗𝑗𝑗 = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗 , the degree of gene 

𝑗𝑗, and 𝐼𝐼 is the identity matrix. 

The imputed count matrix 𝑋𝑋imputed is then obtained by taking a 𝑡𝑡-step random walk on 

the graph which can be written as 

𝑋𝑋imputed𝑇𝑇 = 𝑀𝑀𝑡𝑡 × 𝑋𝑋𝑇𝑇.                                                                 (4) 

By default, G2S3 takes a one-step random walk (𝑡𝑡 = 1) to avoid over-smoothing. We 

also implement an option of tuning the hyperparameter 𝑡𝑡 based on an objective function 

that minimizes the MSE between the imputed and observed data, i.e. 

𝑡𝑡∗ = argmin
𝑡𝑡

 ‖𝑀𝑀𝑡𝑡𝑋𝑋𝑇𝑇 − 𝑋𝑋𝑇𝑇‖. 

Similar to other diffusion-based methods, G2S3 spreads out counts while keeping the 

sum constant in the random walk step. This results in the average value of non-zero matrix 

entry decreasing after imputation. To match the observed expression at the gene level, we 

rescale the values in 𝑋𝑋imputed so that the mean expression of each gene in the imputed data 

matches that of the observed data. The pseudo-code for G2S3 is given in Algorithm 1. 
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3.3.2 Real datasets 

We evaluated and compared the performance of G2S3 and ten existing imputation 

methods using datasets from eight scRNA-seq studies. Among them, four datasets were 

generated using the UMI techniques and four were generated by non-UMI-based 

techniques. 

Reyfman refers to the scRNA-seq dataset of human lung tissue from healthy transplant 

donors in Reyfman et al. [101]. The raw data include 33,694 genes and 5,437 cells. To 

generate the reference dataset, we selected cells with a total number of UMIs greater than 

10,000 and genes that have nonzero expression in more than 20% of cells. This ended up 

with 3,918 genes and 2,457 cells. 

PBMC refers to human peripheral blood mononuclear cells from a healthy donor 

stained with TotalSeq-B antibodies generated by the high-throughput droplet-based system 

[102]. This dataset was downloaded from 10x Genomics website 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets). The raw data 

https://support.10xgenomics.com/single-cell-gene-expression/datasets
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include 33,538 genes and 7,865 cells. To generate the reference dataset, we selected cells 

with a total number of UMIs greater than 5,000 and genes that have nonzero expression in 

more than 20% of cells. This ended up with 2,308 genes and 2,081 cells. 

Zeisel refers to the scRNA-seq dataset of mouse cortex and hippocampus in Zeisel et 

al. [103]. The raw data include 19,972 genes and 3,005 cells. To generate the reference 

dataset, we selected cells with a total number of UMIs greater than 10,000 and genes that 

have nonzero expression in more than 40% of cells. This ended up with 3,529 genes and 

1,800 cells. 

Chu refers to the dataset investigating the separation of cell subpopulations in Chu et 

al. [104]. It measured gene expression of 1,018 cells including undifferentiated H1 and H9 

human ES cell lines and the H1-derived progenitors. The cells were annotated with seven 

cell subtypes: neuronal progenitor cells (NP), definitive endoderm cells (DE), endothelial 

cells (EC), trophoblast-like cells (TB), human foreskin fibroblasts (HF), and 

undifferentiated H1 and H9 human ES cells. We performed preliminary filtering to remove 

genes expressed in less than 10% of cells, which resulted in 13,829 genes. 

Petropoulos refers to the dataset studying cell lineage in human embryo development 

in Petropoulos et al. [105]. It measured expression profiles of 26,178 genes in 1,529 cells 

from 88 human embryos. Cells were labeled as E3-E7 representing their embryonic day. 

We performed preliminary filtering to remove genes expressed in less than 5 cells and cells 

with less than 200 expressed genes. After the filtering, we ended up with 22,934 genes and 

1,529 cells. 

Trapnell refers to the dataset studying the transcriptional dynamics of human 

myoblasts in Trapnell et al. [106]. scRNA-seq data were collected on undifferentiated 
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primary human myoblasts at time 0 and differentiating myoblasts at 24, 48 and 72 hours. 

Most of the cells are mature myotubes 72 hours after inducing differentiation. The raw data 

include 47,192 genes and 372 cells. We performed preliminary filtering to remove genes 

expressed in less than 10% of cells, which resulted in 13,286 genes. 

Paul refers to the dataset from a study on the transcriptional differentiation landscape 

of myeloid progenitors [107]. This dataset includes 3,451 informative genes and 2,730 cells. 

We used this dataset to evaluate the performance of imputation methods in restoring gene 

regulatory relationships between well-known regulators. 

Buettner refers to the dataset in Buettner et al. [108]. This dataset includes mouse ES 

cells labeled by three cell cycle phases – G1, S, and G2/M via flow sorting. The raw data 

include 9,571 genes and 288 cells. We used this dataset to evaluate the performance of 

imputation methods in enhancing gene correlations between periodic marker genes of cell 

cycle phase. We performed preliminary filtering to remove genes expressed in less than 

20% of cells, which resulted in 13,355 genes. 

3.3.3 Performance evaluation 

Expression data recovery. 

 We first compared the method performance in recovering true expression levels using 

down-sampled datasets. Down-sampling was performed on three independent UMI-based 

scRNA-seq datasets (Reyfman, PBMC, and Zeisel) to generate benchmarking observed 

datasets in a similar framework to previous studies [90,95]. In each dataset, we selected a 

subset of genes and cells with high expression to be used as the reference dataset and treated 

them as the true expression. Details on the thresholds chosen to generate the reference 

datasets are described in the “Real datasets” section. However, unlike previous studies that 
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simulated down-sampled datasets from models with certain distributional assumptions [90] 

which may incur modeling bias, we performed random binary masking of UMIs in the 

reference datasets to mimic the inefficient capturing of transcripts in dropout events. The 

binary masking process masked out each UMI independently with a given probability. In 

each reference dataset, we randomly masked out 80% of UMIs to create the down-sampled 

observed dataset. 

All imputation methods were applied to each down-sampled dataset to generate 

imputed data separately. Because imputation methods such as SAVER and MAGIC output 

the normalized library size values, we performed library size normalization on all imputed 

data. We calculated the gene-wise Pearson correlation and cell-wise Spearman correlation 

between the reference data and the imputed data generated by each imputation method. 

The correlations were also calculated between the reference data and the observed data 

without imputation to provide a baseline for comparison. To investigate whether the 

performance depends on the true expression level, we stratified genes into three categories: 

widely, mildly, and rarely expressed genes, based on the proportion of cells expressing 

each gene in the down-sampled observed datasets. Specifically, widely expressed genes 

are those with non-zero expression in more than 80% of cells, rarely expressed genes are 

those with non-zero expression in less than 30% of cells, and mildly expressed genes are 

those that lie in between. The gene-wise and cell-wise correlations in each stratum were 

used to demonstrate the impact of expression level on the performance of imputation 

methods. 

 

Restoration of cell subtype separation.  
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We applied all imputation methods to the Chu dataset to evaluate their performance in 

separating different cell types. A good imputation method is expected to stabilize within 

cell-subtype variation (intra-subtype distance) while maintaining between cell-subtype 

variation (inter-subtype distance). Principal component analysis was conducted on the raw 

and imputed data for dimension reduction. We calculated the inter-subtype distance as the 

Euclidian distance between cells from different cell types, and the intra-subtype distance 

as the distance between cells of the same cell type, using the top 𝐾𝐾 PCs of the data, for 

𝐾𝐾 = 1, … ,50. The ratio of the average inter-subtype distance to the average intra-subtype 

distance was used to quantify the performance. The higher this ratio is, the better 

performance the method has. We also calculated silhouette coefficient, a composite index 

reflecting both the compactness and separation of different cell types, using the top PCs 

and the true cell subtype labels. The silhouette coefficient ranges from -1 to 1 with a higher 

value indicating a better matching with the cell subtypes and a value close to zero indicating 

random clustering [109]. To demonstrate the comparison using cell clustering results, we 

visualized the raw and imputed data with UMAP plots using the top three PCs and colored 

cells by the cell subtype labels. The normalized mutual information (MI) and adjusted rand 

index (RI) were used to measure the consistency between cell clustering results and true 

cell subtype labels. To demonstrate cell subtype separation based on cell subtype marker 

genes, we further displayed DE and H1/H9 cells by plotting the log-transformed counts 

using their marker genes [104]: GATA6, a marker gene of DE cells, and NANOG, a marker 

gene of H1/H9 cells. 

 

Improvement in cell trajectory inference.  
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We assessed the performance of imputation methods in restoring cell trajectory using 

human preimplantation embryos from different embryonic days in the Petropoulos dataset. 

We considered the actual embryonic days to represent the true cell differentiation stage or 

age. Monocle 2 was used to infer pseudo-time from the normalized raw and imputed data 

[110]. To measure the consistency between the actual embryonic days and the 

reconstructed pseudo-time, we calculated the pseudotemporal ordering score (POS) and 

Kendall rank correlation coefficient (Cor). Cell trajectories were visualized by embedding 

cells into two-dimensional space using reversed graph embedding, a recently developed 

machine learning method to reconstruct complex single-cell trajectories [110]. 

 

Improvement in differential expression analysis.  

To assess the performance in identifying differentially expressed genes, we compared 

gene expression between two cell subtypes: NP and H1 cells, using both imputed scRNA-

seq and bulk RNA-seq data from the Chu dataset. We also compared gene expression 

profiles of undifferentiated myoblasts to mature myotubes collected 72 hours after inducing 

differentiation from the Trapnell dataset. The raw and imputed data were normalized and 

log-transformed before evaluation. We used t-test in the bulk RNA-seq data to identify 

differentially expressed genes and selected the top 200 genes as ground truth. We then 

performed differential analysis in the scRNA-seq data using the same test. All the 

differential expression analysis in the scRNA-seq data was performed using the Seurat R 

package (version 3.0) with a default threshold to keep genes with at least 1.5-fold change. 

The predictive power of differentially expressed genes identified in the raw and imputed 

scRNA-seq data on the ground truth was measured by the area under an ROC curve. 
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Gene correlation relationship restoration.  

We finally evaluated the method performance by investigating the enhancement in gene 

regulatory relationships using the Paul dataset and the recovery of gene-gene correlations 

between periodic marker genes in the Buettner dataset. In the Paul dataset, we 

reconstructed GRN among a set of regulators with known inhibitory and activatory 

relationships in blood development [94] with the raw and imputed datasets by different 

methods, using two GRN inference algorithms, GENIE3 and PPCOR. The prediction 

accuracy of each method was evaluated by comparing the inferred GRN to the ground-

truth network using AUPRC. The AUPRC ratio was calculated by dividing AUPRC by 

that of a random predictor and the process was repeated for 50 times. The estimated 

pairwise correlations between genes using the raw unimputed and imputed data by each 

method were compared for performance evaluation. The Beuttner dataset contains 67 

periodic marker genes with peak expression in G1/S and G2/M phases established in a 

previous study [111]. As marker gene expression varies over cell cycle, we expect pairs of 

periodic genes whose expression peak during the same cell cycle phase to be positively 

correlated, and pairs of genes whose expression peak at different phases to be negatively 

correlated. Pairwise correlations were calculated in the raw and imputed data by each 

method. The proportion of gene pairs with correct direction of correlation was used to 

compare the method performance. 

3.4 Results 

3.4.1 Evaluation overview 
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We evaluated and compared the performance of G2S3 and ten existing imputation 

methods, SAVER, kNN-smoothing, MAGIC, scImpute, VIPER, ALRA, scTSSR, DCA, 

SAUCIE and EnImpute, in terms of (1) expression data recovery, (2) cell subtype 

separation, (3) cell trajectory inference, (4) differential gene identification, and (5) gene 

regulatory and correlation relationship recovery. We applied these methods to eight 

scRNA-seq datasets that can be classified into five categories corresponding to the five 

criteria described above. The first category includes three unique molecular identifier 

(UMI)-based datasets in which down-sampling was performed to assess the method 

performance in recovering true expression levels. These datasets are the Reyfman dataset 

from human lung tissue [101], the peripheral blood mononuclear cell (PBMC) dataset from 

human peripheral blood [102], and the Zeisel dataset from mouse cortex and hippocampus 

[103]. The second category was used to evaluate the method performance in separating 

different cell types. It includes the Chu dataset of human embryonic stem (ES) cell-derived 

lineage-specific progenitors from seven known cell subtypes [104]. The third category was 

used to reconstruct cell trajectory. It includes the Petropoulos dataset of cells from human 

preimplantation embryos collected on different embryonic days [105]. The fourth category 

was chosen to evaluate the method performance in identifying differentially expressed 

genes. It includes the Chu dataset which is also included in the second category and the 

Trapnell dataset of differentiating human myoblasts [106]. The last category includes two 

datasets to evaluate the method performance in recovering gene regulatory and correlation 

relationship among known regulators and marker genes. These datasets are the Paul dataset 

that contains a set of well-known transcriptional regulators of myeloid progenitor 

populations [107], and the Buettner dataset that contains 67 periodic marker genes whose 
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expression level varies over cell cycle [108]. Table 1 summarizes the main features of all 

eight datasets. A more detailed description of these datasets is provided in the “Real 

datasets” section. 

Table 3.1. Detailed information on the eight scRNA-seq datasets used to compare the performance of 
imputation methods. * URL to access the dataset: https://support.10xgenomics.com/single-cell-gene-
expression/datasets 

Experiment 
Category Dataset # Cells Sample Type Organism Technique UMI Accession 

Expression 
data recovery 

Reyfman [23] 5,437 Lung tissue Homo 
Sapiens Drop-seq Yes GEO 

(GSE122960) 

PBMC  [24] 7,865 Peripheral blood 
mononuclear cells 

Homo 
Sapiens Drop-seq  Yes 10x 

Genomics* 

Zeisel [25] 3,005 Brain tissue Mus 
Musculus Drop-seq  Yes Zeisel et al. 

Cell subtype 
separation Chu [26] 1,018 Embryonic stem 

cells 
Homo 
Sapiens Fluidigm C1 No GEO 

(GSE75748) 

Cell trajectory 
inference 

Petropoulos 
[27] 1,529 Preimplantation 

embryos 
Homo 
Sapiens Smart-seq2 No Petropoulos et 

al. 

Differential 
gene 
identification 

Chu [26] 1,018 Embryonic stem 
cells 

Homo 
Sapiens Fluidigm C1 No GEO 

(GSE75748) 

Trapnell [28] 372 Myoblasts Homo 
Sapiens Fluidigm C1 No 

GEO 

(GSE52529) 

Gene 
correlation 
relationship 
recovery 

Paul [29] 
 2,730 

Bone marrow 
myeloid 
progenitor 

Mus 
Musculus MARS-seq Yes Paul et al. 

Buettner [30] 288 Staged embryonic 
cells 

Mus 
Musculus Fluidigm C1 No 

ArrayExpress 
(E-MTAB-
2805) 

 

3.4.2 Hyperparameter tuning in G2S3 

The G2S3 algorithm used graph signal processing to learn a gene graph and performed 

a 𝑡𝑡-step random walk to borrow information from neighboring genes for imputation. The 
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optimal value of the hyperparameter 𝑡𝑡 was selected by minimizing the mean squared error 

(MSE) between the imputed and observed data, which was also used in a previous study 

on diffusion-based imputation method [112]. We performed down-sampling on each 

dataset from the first category (Reyfman, PBMC and Zeisel) and evaluated the MSE as 

well as the gene-wise and cell-wise correlations of the G2S3 imputed data with reference 

data, for 𝑡𝑡 = 1, … ,10. Fig S3.1 shows the coefficient of variation (CV) of gene expression 

before and after down-sampling. In all datasets, although the CV of gene expression 

increased slightly after down-sampling, the correlation between the CV before and after 

down-sampling was 0.79 or higher, demonstrating that the down-sampled data well 

preserved the mean-variance relationship in the reference data. Fig S3.2A shows that the 

optimal value of 𝑡𝑡 is 1 in all three datasets based on the minimization of MSE. In addition, 

the one-step random walk in G2S3 achieved the greatest gene-wise and cell-wise 

correlations with the reference data (Fig S3.2B). This optimal choice of 𝑡𝑡 was consistent 

with the hyperparameter selected by another diffusion-based imputation method [112]. 

 

3.4.3 Expression data recovery in down-sampled datasets 

We conducted down-sampling on datasets from the first category (Reyfman, PBMC 

and Zeisel) to assess the performance of all eleven imputation methods in recovering true 

expression levels. Fig S3.1 shows the coefficient of variation (CV) of gene expression 

before and after down-sampling. In all datasets, although the CV of gene expression 

increased slightly after down-sampling, the correlation between the CV before and after 

down-sampling was 0.79 or higher, demonstrating that the down-sampled data well 

preserved the mean-variance relationship in the reference data. Fig 3.1 shows the gene-
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wise Pearson correlation and cell-wise Spearman correlation between the imputed and 

reference data from each dataset. The correlation between the observed data without 

imputation and reference data was set as a benchmark. In all datasets, G2S3 consistently 

achieved the highest correlation with the reference data at both gene and cell levels, and 

SAVER and scTSSR had slightly worse performance. EnImpute had comparable 

performance to G2S3 based on the cell-wise correlation but performed worse than G2S3, 

SAVER and scTSSR based on the gene-wise correlation. VIPER performed well in the 

Reyfman and PBMC datasets but not in the Zeisel dataset based on the gene-wise 

correlation, although the cell-wise correlations were much lower than G2S3, SAVER, 

scTSSR and EnImpute in all datasets. The other methods, kNN-smoothing, MAGIC, 

scImpute, ALRA and DCA, did not have comparable performance, especially based on the 

gene-wise correlation. SAUCIE did not have comparable performance to the other methods 

in all datasets (Fig S3.2). Since genes with higher expression tend to have a lower dropout 

rate, they are usually easier to impute and have less imputation need than those with lower 

expression [84]. To demonstrate the impact of expression level on the method performance, 

we stratified genes into three subsets based on the proportion of cells expressing them in 

the down-sampled data: widely expressed (>80%, n = 155, 111, 110, respectively), mildly 

expressed (30%-80%, n = 615, 357, 1,902, respectively), and rarely expressed (<30%, n = 

3,148, 1,830, 1,617, respectively). Fig S3.3 shows the gene-wise and cell-wise correlations 

in each gene stratum. We can see that G2S3 improved both gene-wise and cell-wise 

correlations compared to the observed data for widely and mildly expressed genes. 

Moreover, G2S3 achieved the most superior recovery accuracy than the other methods for 

both widely and mildly expressed genes, although SAVER, scTSSR and EnImpute had 
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comparable accuracy for widely expressed genes, suggesting the advantage of borrowing 

information from similar genes over from similar cells. For rarely expressed genes, all 

imputation methods did not improve the correlations compared to the observed data using 

both gene-wise and cell-wise correlation, suggesting that there is insufficient information 

for these genes to be successfully imputed. Overall, G2S3 provided the most accurate 

recovery of true expression levels. 

 

 

 
Figure 3.1. Evaluation of expression data recovery of G2S3 by down-sampling. Performance of 
imputation methods measured by correlation with reference data from the first category of datasets, using 
gene-wise (top) and cell-wise (bottom) correlation. Box plots show the median (center line), interquartile 
range (hinges), and 1.5 times the interquartile (whiskers). Outlier data beyond this range are not shown. 
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3.4.4 Restoration of cell subtype separation 

The second category of datasets was used to assess the performance of imputation 

methods in restoring separation between different cell types. In the Chu dataset, there were 

7 cell types including two undifferentiated human ES cell lines (H1 and H9), human 

foreskin fibroblasts (HF), neuronal progenitor cells (NP), definitive endoderm cells (DE), 

endothelial cells (EC), and trophoblast-like cells (TB). To quantify the performance in 

separating these cell subtypes, we calculated the ratio of average inter-subtype distance to 

average intra-subtype distance using the top 𝐾𝐾 principal components (PCs) of the data 

before and after imputation, for 𝐾𝐾 = 1, … ,50. We also calculated the silhouette coefficient 

that measures how similar cells are to cells from the same cell type compared to other cell 

types. In Fig 3.2, G2S3 and EnImpute had the highest inter/intra-subtype distance ratio and 

silhouette coefficient. Both methods performed better than the raw unimputed data, while 

MAGIC, scImpute, ALRA and DCA performed worse than the raw data. SAUCIE 

performed the worst. These results suggest that G2S3 greatly improved the separation 

between different cell types by enhancing the biologically meaningful information in the 

top PCs. Its performance is comparable to EnImpute that takes advantage over several 

methods. 
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Figure 3.2. Evaluation of G2S3 in improving cell subtype separation. Average inter/intra-subtype 
distance ratio (top) and silhouette coefficient (bottom) to demonstrate cell subtype separation using the top 
principal components of the raw unimputed and imputed data by each method in the Chu dataset. 
 

To demonstrate the comparison using cell clustering results, we generated uniform 

manifold approximation and projection (UMAP) plots in which cells were colored to 

represent the seven cell types in the original dataset. The normalized mutual information 

(MI) and adjusted rand index (RI) were calculated to measure the consistency between cell 

clustering results and true cell subtype labels. Fig 3.3 shows that the imputed data by G2S3 

and EnImpute had a better separation of all cell subtypes than the raw unimputed data, 

except for H1 and H9 cells. Given that both H1 and H9 are undifferentiated human ES cell 

lines, it is expected that separating them is more difficult due to the relative homogeneity 

of human ES cells compared to the progenitors. In contrast, the other imputation methods 

did not have comparable improvement or even reduced the separation of different cell types. 
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Specifically, DE cells were mixed with EC and TB cells in the raw data and were not 

separated from the other cell subtypes by all methods except G2S3 and EnImpute. MAGIC 

was able to separate EC, HF and TB cells from each other and the rest of the cell subtypes, 

while SAVER was able to separate EC and HF cells from each other and the rest of the cell 

subtypes. VIPER, ALRA, scTSSR and DCA only separated HF cells from the rest, similar 

to the raw data. The imputed data by kNN-smoothing formed many small clusters. 

scImpute tended to mix different cell types into one cluster. SAUCIE overly smoothed the 

data and was not able to separate any cell types. Based on the two measures of consistency 

between cell clustering results and true cell subtype labels, EnImpute had the best 

separation of the cell subtypes (MI=0.77, RI=0.70) and G2S3 was the second best 

(MI=0.74, RI=0.64), while the other methods did not have comparable performance. 

Notice that EnImpute is an ensemble method that combines imputation results from 

multiple methods, and G2S3 is the only method that achieved comparable performance to 

EnImpute. 

 

Figure 3.3. Plots showing 2D-Visualization of the Chu dataset. UMAP plots of the raw unimputed and 
imputed data by all methods. Cells are colored by true cell subtype labels. The normalized mutual 
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information (MI) and adjusted rand index (RI) are calculated to measure the consistency between cell 
clustering results and true cell subtype labels. 
 

Fig S3.5 demonstrates the expression of two cell subtype marker genes GATA6, a 

marker gene of DE cells, and NANOG, a marker gene of H1/H9 cells [104] across all cells 

in the raw unimputed and imputed data by all methods. The normalized MI and adjusted 

RI that measure the consistency between cell clustering results based on these two marker 

genes and true cell labels for DE and H1/H9 cells were also calculated. We can see that 

G2S3 provided the best separation between H1/H9 cells, DE cells and other cell subtypes. 

Specifically, while the raw data mixed H1/H9 cells with other cell subtypes, G2S3 

successfully recovered the expression of GATA6 and NANOG to better separate DE and 

H1/H9 cell subtypes both from each other and from the other cell subtypes. The cell 

clustering results on the G2S3 imputed data achieved the highest consistency with true cell 

subtype labels, indicating its best performance. None of the other methods had comparable 

performance. DCA separated H1/H9 cells but had DE cells marginally overlapped with 

other cell types. We observed many small clusters of cells after imputation by kNN-

smoothing, similar to the pattern displayed in Fig 3.3. The other methods did not improve 

cell subtype separation compared to the raw data. In addition, the imputed data by VIPER, 

kNN-smoothing and ALRA still had a large proportion of dropout events. These results 

suggest that G2S3 had the best performance in restoring the separation of different cell 

types, preserving biological meaningful variations, and reducing technical noises. 

 

3.4.5 Improvement in cell trajectory inference 
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Reconstruction of cell trajectories using scRNA-seq data is important for investigating 

a dynamic process. However, dropout events may impair pseudo-time inference. We used 

the Petropoulos dataset to evaluate the performance of all imputation methods in cell 

trajectory inference. This dataset consists of human preimplantation embryonic cells from 

five embryonic days (E3-E7) that represent the differentiation stage or age of the 

embryonic cells. We used Monocle 2 to infer pseudo-time from the raw unimputed and 

imputed data by each method [110], and compared to the actual embryonic days of the cells 

for performance evaluation. The pseudotemporal ordering score (POS) and Kendall rank 

correlation coefficient (Cor) were calculated to measure the consistency. Fig 3.4 shows cell 

trajectories in the raw and imputed data by all methods. The cell trajectory plots showed 

the sequential layout of cells from earlier to later embryonic days. The imputed data by 

G2S3, scImpute, VIPER and EnImpute had the highest consistency with the actual 

embryonic days, indicating their best performance among all methods. SAVER, kNN-

smoothing, MAGIC, ALRA and DCA formed the second tier of methods with lower 

consistency. scTSSR performed worse than the raw data. SAUCIE had significantly lower 

consistency (POS=0.07, Cor=0.07) compared to all other methods in cell trajectory 

inference. Furthermore, the trajectory analysis showed an increased heterogeneity among 

cells from later embryonic days, especially starting from embryonic day 5. This was 

consistent with the observation of a significant embryonic cell differentiation event on 

embryonic day 5 [105]. 
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Figure 3.4. Visualization of cell trajectories in the raw and imputed data by all methods. Cells are projected into 
two-dimensional space using reversed graph embedding. Pseudotemporal ordering score (POS) and Kendall rank 
correlation coefficient (Cor) are used to measure the consistency between the actual 

 

3.4.6 Improvement in differential expression analysis 

One common analytical task for scRNA-seq studies is to identify genes differentially 

expressed between cells from two groups of subjects or two cell types. In this section, we 

used two datasets to evaluate and compare the improvement in downstream differential 

expression analysis before and after imputation by all methods: the Chu dataset of different 

cell types and the Trapnell dataset of differentiating human myoblasts. Besides the scRNA-

seq data, both datasets provide bulk RNA-seq data on the same samples. The differentially 

expressed genes identified from the bulk RNA-seq data were treated as ground truth. We 

assessed the predictive power of the scRNA-seq data imputed by different methods on the 

ground truth using receiver operating characteristic (ROC) curves. 

In the Chu dataset, we identified marker genes that differentiate the two cell types: NP 

and H1 cells. Fig 3.5A shows that G2S3 had the highest area under the curve (AUC) in 

detecting differentially expressed genes. kNN-smoothing, DCA and EnImpute had an AUC 

score lower than G2S3 but higher than the raw data. The other methods had comparable 

performance to the raw data except MAGIC, which had the lowest AUC. This is likely due 
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to the fact that a small cluster of NP cells were mixed with H1 cells after imputation by 

MAGIC (Fig 3.3), resulting in compromised performance in marker gene identification. 

Our results were largely consistent with a previous evaluation of imputation methods in 

identifying differentially expressed genes using Fluidigm C1 data [113]. No genes 

achieved significance in the imputed data by SAUCIE so the result of SAUCIE could not 

be shown. In the Trapnell dataset, we performed differential expression analysis between 

undifferentiated primary human myoblasts and mature myotubes captured 72 hours after 

inducing differentiation. Fig 3.5B shows that G2S3 achieved the highest AUC indicating 

its best performance, followed by VIPER. kNN-smoothing and DCA had much worse 

performance than the raw data. No genes achieved significance in the imputed data by 

MAGIC and SAUCIE so their results could not be shown. Altogether, the results from both 

datasets showed that G2S3 had the best improvement in the downstream differential 

expression analysis. 

 

Figure 3.5. Receiver operating characteristic (ROC) curves demonstrating improvement in 
differential expression analysis. ROC curves of the scRNA-seq differential expression results predicting 
differentially expressed genes identified in the bulk RNA-seq data on the same samples in the Chu (A) and 
Trapnell (B) datasets. 



103 

 

 
3.4.7 Gene correlation relationship recovery 

We compared the method performance in recovering gene correlation relationships 

using two scRNA-seq dastasets. In the Paul dataset, we examined the pairwise correlation 

between well-known transcription factors in the development of blood cells before and 

after imputation [111]. In the Buettner dataset, we investigated the relationships among a 

set of 67 periodic marker genes before and after imputation, in which 16 genes have peak 

expression in the G1/S phase and 51 genes have peak expression in the G2/M phase [108]. 

In the Paul dataset, the regulatory relationship among key regulators of the 

transcriptional differentiation of megakaryocyte/erythrocyte progenitors and 

granulocyte/macrophage progenitors in the raw data and the imputed data by each method 

were used for performance evaluation. The gene regulatory network (GRN) of these 

regulators was established in a previous study based on biological experiments [114–116] 

and served as the ground truth. We reconstructed GRNs by two methods, GENIE3 [117] 

and PPCOR [118], in the raw and imputed datasets. The inferred GRNs were compared to 

the ground-truth network using the area under the precision-recall curve (AUPRC). For 

each imputation method, we reported the AUPRC ratio (AUPRC divided by that of a 

random predictor) with 50 replications. Fig 3.6 demonstrates that G2S3 achieved the 

highest AUPRC ratio, followed by kNN-smoothing, using both GRN inference methods. 

The AUPRC ratios of GRNs inferred from the imputed data by either MAGIC or SAUCIE 

were much lower than that from a random predictor, suggesting that the gene regulatory 

relationships were distorted after imputation. 
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Figure 3.6. Performance of G2S3 in recovering gene regulatory relationship. Boxplots showing the 
area under the precision-recall curve (AUPRC) ratios that measure the accuracy of inferred GRNs using the 
imputed data by different imputation methods. Both GENIE3 (top) and PPCOR (bottom) were used to infer 
GRNs. Red line indicates the performance of a random predictor. 
 

We also examined the pairwise correlations between these key regulators. Based on 

previous studies [114–116],  inhibitory and activatory gene pairs were defined, among 

which inhibitory pairs were expected to have negative correlation while activatory pairs 

were expected to have positive correlation. The mutually inhibitory pairs of genes include 

Fli1 vs. Klf1, Egr1 vs. Gfi1, Cebpa vs. Gata1, and Sfpi1 vs. Gata1; and the mutually 

activatory pairs include Sfpi1 vs. Cebpa, Zfpm1 vs. Gata1, Klf1 vs. Gata1. Fig S3.6 shows 

that most of the methods were able to enhance the pairwise correlations after imputation in 

the correct direction. Overall, G2S3 and SAVER showed the greatest enhancement of 

pairwise correlation for both inhibitory and activatory pairs, followed by kNN-smoothing 

and EnImpute. Although MAGIC intensified the pairwise correlations, most activatory 

pairs had correlations close to 1 after imputation. ALRA and DCA strengthened the 
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pairwise correlation for activatory pairs but did not improve much for inhibitory pairs. 

Imputation by SAUCIE resulted in all gene pairs to be highly positively correlated.  

In the Buettner dataset, we expect pairs of periodic genes whose expression peak in the 

same phase of cell cycle to be positively correlated and those that peak during different 

phases to be negatively correlated. There are 67 marker genes for G1/S and G2/M phases 

[111]. We examined the correlation of all 2,211 marker gene pairs in the raw data and 

imputed data by each method. The proportion of gene pairs whose correlations are in the 

correct direction was used for performance comparison. Table 3.2 shows that all methods 

had comparable performance in maintaining a high proportion of positively correlated gene 

pairs, whereas their performance varies in restoring negatively correlated gene pairs. G2S3, 

SAVER and EnImpute were able to recover 28% or more of the negatively correlated gene 

pairs. All gene pairs became positively correlated after imputation by MAGIC, scImpute, 

VIPER, ALRA, DCA and SAUCIE, thus no negative correlation was observed after 

imputation. Similar observations were found in a previous study in which some of these 

methods introduced a large number of positive gene correlations after imputation, many of 

which may be spurious [90]. 

 
Table 3.2. Fraction of periodic gene pairs with correct direction of correlation in the raw and 
imputed data by each method 
Imputation Methods Positive Pairs Negative Pairs 
Raw 1.00 0.00 
G2S3 0.91 0.32 
SAVER 0.94 0.28 
kNN-smoothing 0.97 0.17 
MAGIC 1.00 0.00 
scImpute 1.00 0.00 
VIPER 1.00 0.00 
ALRA 1.00 0.00 
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scTSSR 0.98 0.11 
DCA 1.00 0.00 
SAUCIE 1.00 0.00 
EnImpute 0.91 0.46 

 

In summary, the results from both datasets suggested that G2S3 enhanced gene-gene 

relationships especially for negatively correlated gene pairs in which the expression of one 

gene is inhibited by the other. As lowly expressed genes are in general harder to impute, 

negatively correlated relationship is a harder task for imputation to restore the correlated 

relationship. 

3.4.8 Summary of method performance 

We evaluated and compared the performance of G2S3 and the other ten imputation 

methods using five evaluation criteria corresponding to five downstream analyses of 

scRNA-seq data. Fig 3.7 summarizes the overall performance of all methods. G2S3 was 

ranked first in three out of the five evaluation criteria, second in cell clustering, and third 

in cell trajectory inference. For those criteria under which G2S3 did not achieve the best 

performance, it had close or comparable performance to the best method. No other method 

achieved the best performance in as many criteria as that of G2S3. Overall, G2S3 

performed the best among all the methods, followed by EnImpute and VIPER. 
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Figure 3.7. Summary of performance of G2S3 and other imputation methods. A heatmap 
demonstrating the method performance based on the five evaluation criteria. The left five columns display 
performance rank using each of the five evaluation criteria. The rightmost column displays the overall 
performance rank based on the sum of all five ranks. 

 

 

3.4.9 Computation time 

While SAVER and EnImpute have comparable performance to G2S3 in some datasets, 

G2S3 is computationally more efficient (Table 3.3). Since both G2S3 and SAVER are gene 

network-based imputation methods, their computation time is expected to increase with the 

number of genes to be imputed. This makes gene network-based methods more suitable 

than those based on cell similarity for large scRNA-seq datasets with tens or even hundreds 

of thousands of cells. In real data analysis, G2S3 was on average about twenty times faster 
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than SAVER. EnImpute is an ensemble method that relies on imputation results from 

multiple methods and therefore takes longer time than SAVER. On the other hand, the 

computation time of imputation methods that borrow information from similar cells 

increases dramatically with the number of cells in the data. As demonstrated in a previous 

study, scImpute and VIPER were unable to scale beyond 10K cells within 24 hours [95]. 

In our assessment, VIPER takes about two days to impute the down-sampled datasets with 

several thousands of genes while other methods finish within several minutes. 

Table 3.3. Computational Time for Each Imputation Methods. Running time in minutes for each 
imputation task among imputation methods using a single processor on an 8-core, 50 GB RAM, Intel Xeon 
2.6 GHz CPU machine. *Derived computing time sum over five methods and ensemble computing time. 

 
G2S3 SAVER 

kNN- 
smoothi
ng 

MAGIC scImput
e VIPER ALRA scTSSR DCA SAUCI

E 
EnImpu
te* 

Reyfman 4.27 60.12 0.25 0.35 29.46 5289.17 0.16 9.80 5.40 0.86 102.23 

Zeisel 2.99 43.26 0.18 0.24 70.67 3618.86 0.10 4.26 4.27 0.74 121.84 

PBMC 1.09 25.91 0.15 0.17 17.77 524.37 0.08 3.48 2.78 0.98 50.84 
 

3.5 Discussion 

We have developed a novel method G2S3 to impute dropouts in scRNA-seq data. G2S3 

learns a sparse and smooth signals of gene graph from scRNA-seq data and borrows 

information from nearby genes in the graph for imputation. We evaluated and compared 

the performance of G2S3 and ten existing imputation methods in terms of recovering true 

expression levels, restoring cell subtype separation, reconstructing cell trajectory, 

identifying differentially expressed genes, and restoring gene correlation relationships 

using eight scRNA-seq datasets. The results demonstrated that G2S3 achieved superior 

performance or had comparable performance to other methods based on the five evaluation 
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criteria above, especially for genes with relatively low expression. Furthermore, G2S3 is 

the most computationally efficient method for large-scale scRNA-seq data imputation. 

Unlike imputation methods that borrow information across similar cells, G2S3 

harnesses the structural relationship among genes obtained through graph signal processing 

to perform imputation. Using eight real datasets, we showed that methods relying on cell 

similarity tend to remove biological variation among cells and intensify subject-level batch 

effects. In contrast, G2S3 enhances cell subtype separation and thus relatively reduces 

variations in cells from the same cell type and subject. The down-sampling and differential 

expression analysis results showed that G2S3 outperformed the other methods, especially 

for lowly expressed genes. Of note, imputation methods such as SAVER, scImpute and 

VIPER, used parametric models for gene expression. However, as the noise distribution 

varies across different scRNA-seq platforms, assumptions of the parametric models may 

be violated, particularly for new technologies. Graph signal processing extracts signals 

from data by optimizing a smoothness regulated objective function, so it is in principle less 

sensitive to the noise distribution. To our knowledge, there are two imputation methods 

that use gene graph/network for imputation in scRNA-seq data, published during the 

preparation of this manuscript: netNMF-sc [119] uses network-regularized non-negative 

matrix factorization to leverage gene-gene interactions for imputation; and netSmooth [120] 

incorporates protein-protein interaction networks to smooth gene expression values. Both 

methods require prior information on gene-gene interactions from RNA-seq or microarray 

studies of bulk tissue. In contrast, G2S3 learns gene network structure in an unbiased way 

from scRNA-seq data. In our experiments, G2S3 had comparable performance to EnImpute, 

an ensemble learning method that combines results from multiple imputation methods. 
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G2S3 learns gene-gene relationship by optimizing a sparse gene graph and at the same 

time allows expression levels to change smoothly between closely connected genes. Since 

many gene networks and biochemical networks are sparse [110,121,122], the sparsity 

property is important for inferring gene network. There are several methods available for 

constructing gene network, many of them are kernel-based, which result in full weight 

matrices where sparsity has to be imposed afterwards, for example, thresholding the 

adjacency weights. We found that top eigenvectors of graph Laplacian on the gene 

networks learned from Gaussian kernel were highly correlated with dropout rate, 

suggesting that dropout events tend to bias the construction of gene network in scRNA-seq 

data. G2S3 algorithm uses one step random walk to avoid over-smoothing because multiple 

steps of the random walk tended to overly smooth data and leaded to worse performance. 

Similar observations were reported in another manuscript discussing parameter tuning for 

diffusion-based imputation methods for scRNA-seq data [112]. It showed that for many 

diffusion-based methods including MAGIC, single step (t=1) yielded better performance 

than multiple steps or iterations until convergence. For UMI-based datasets, to account for 

the effect of varying sequencing depths, we recommend normalizing UMI counts before 

applying G2S3 for more accurate construction of gene graph and imputation of expression 

levels. 

Despite the advantages of G2S3 over the other imputation methods shown in this article, 

G2S3 can be improved in several directions. First, G2S3 uses a lazy random walk on the 

gene graph to recover dropout events, i.e., weighted average of the observed expression of 

the gene of interest and that from neighboring genes. The weights currently depend only 

on between gene similarity which can be improved by considering the reliability of 
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observed read counts, cell library size, and dispersion of gene expression, similar to the 

weights used in SAVER. Second, G2S3 does not consider dropout rate and therefore 

imputes all values at once. This can be improved by calculating the probability of being a 

dropout for each observed read count and only performing imputation on those with a high 

dropout probability. Third, the G2S3 model can be improved by adding two tuning 

parameters for the second and third terms in the objective function that control the degree 

of smoothness and sparsity of the resulting gene network. The tuning parameters can be 

chosen based on the complexity and structure of scRNA-seq data. Finally, G2S3 does not 

consider the potential subject effect in the data, which has been shown to be prevalent and 

dominant in certain cell types. One way to address this issue is to consider subject effect 

as “batch” effect and remove it using batch effect removal tools. This is effective only 

when there are no other effects of interest confounding the subject effect, for example, 

disease effect, because they will also be removed together with “batch” effect. When there 

are other effects that confound with subject effect and are the interest of study, G2S3 can 

be improved to consider subject effect and disease effect at the same time in imputation. 
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Supplementary Materials 

Supplementary methods 

S 2.1 Quasi-likelihood score of 𝜸𝜸 

The quasi-likelihood score function for 𝜸𝜸 can be written as 

𝑼𝑼(𝜸𝜸) = (𝐈𝐈𝑚𝑚 ⊗𝚽𝚽𝑨𝑨)𝑇𝑇(𝚺𝚺𝐺𝐺 ⊗𝚽𝚽)−1�𝑮𝑮� − 2𝒑𝒑⊗ 𝟏𝟏𝑛𝑛 − 𝜸𝜸⊗𝚽𝚽𝑨𝑨�

= (𝚺𝚺𝐺𝐺−1 ⊗ 𝑨𝑨)𝑇𝑇�𝑮𝑮� − 2𝒑𝒑⊗ 𝟏𝟏𝑛𝑛 − 𝜸𝜸⊗𝚽𝚽𝑨𝑨�

= 𝚺𝚺𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨 − (𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝚺𝚺𝐺𝐺−1𝜸𝜸. 

The last equation holds because 𝑨𝑨𝑇𝑇𝟏𝟏𝑛𝑛 = 0 and (𝚺𝚺𝐺𝐺−1 ⊗ 𝑨𝑨)𝑇𝑇𝑮𝑮� = 𝚺𝚺𝐺𝐺−1𝑮𝑮𝑇𝑇𝑨𝑨. 

 

S 2.2 Covariance of 𝑮𝑮𝑇𝑇𝑨𝑨 

Cov(𝑮𝑮𝑇𝑇𝑨𝑨) = Cov�(𝐈𝐈𝑚𝑚 ⊗ 𝑨𝑨)𝑇𝑇𝑮𝑮�� = (𝐈𝐈𝑚𝑚 ⊗ 𝑨𝑨)𝑇𝑇(𝚺𝚺𝐺𝐺 ⊗𝚽𝚽)(𝐈𝐈𝑚𝑚 ⊗ 𝑨𝑨)

= 𝚺𝚺𝐺𝐺 ⊗ (𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨) = (𝑨𝑨𝑇𝑇𝚽𝚽𝑨𝑨)𝚺𝚺𝐺𝐺 

 
 
Supplementary Figures 

Figure S3.1 Comparison of the mean-variance relationship in gene expression before and after down-
sampling. For each gene, the coefficient of variation (CV) across all cells after down-sampling (y-axis) is 
plotted against the CV of non-zero cells in the reference data (x-axis). 
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Figure S3.2 Optimal value of hyperparameter in G2S3. A. Mean squared error (MSE) at different 
diffusion steps in three down-sampled datasets. B. Gene-wise and cell-wise correlations of G2S3 imputed 
data at different diffusion steps and the reference data. 
 

 
 
Figure S3.3 Evaluation of expression data recovery of all imputation methods by down-sampling. 
Performance of imputation methods measured by correlation with reference data from the first category of 
datasets, using gene-wise (top) and cell-wise (bottom) correlation. Box plots show the median (center line), 
interquartile range (hinges), and 1.5 times the interquartile (whiskers). Outlier data beyond this range are 
not shown. 
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Figure S3.4 Evaluation of expression data recovery of all imputation methods by down-sampling in 
three gene strata. Performance of imputation methods measured by correlation with reference data from 
the first category of datasets, using gene-wise (top) and cell-wise (bottom) correlation. Genes are stratified 
into three groups: widely (>80%, left), mildly (30%-80%, middle), and rarely (<30%, right) expressed. 

 
 
Figure S3.5 Cell subtype marker gene expression in the Chu dataset. Scatter plot showing expression 
level of marker genes for DE cells (GATA6) and H1/H9 cells (NANOG). Cells are colored by the cell 
subtype labels. 
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Figure S3.6 Evaluation of recovering gene correlation relationship of all imputation methods in the 
Paul dataset. Heatmaps of pairwise correlations between well-known blood regulators. 
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