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Abstract

Latent Factor Analysis Of High-dimensional Brain Imaging Data

Siyuan Gao

2021

Recent advances in neuroimaging study, especially functional magnetic resonance imaging (fMRI),

has become an important tool in understanding the human brain. Human cognitive functions can be

mapped with the brain functional organization through the high-resolution fMRI scans. However,

the high-dimensional data with the increasing number of scanning tasks and subjects pose a chal-

lenge to existing methods that aren’t optimized for high-dimensional imaging data. In this thesis,

I develop advanced data-driven methods to help utilize more available sources of information in

order to reveal more robust brain-behavior relationship. In the first chapter, I provide an overview

of the current related research in fMRI and my contributions to the field. In the second chap-

ter, I propose two extensions to the connectome-based predictive modeling (CPM) method that is

able to combine multiple connectomes when building predictive models. The two extensions are

both able to generate higher prediction accuracy than using the single connectome or the simple

average of multiple connectomes, suggesting the advantage of incorporating multiple sources of

information in predictive modeling. In the third chapter, I improve CPM from the target behav-

ioral measure’s perspective. I propose another two extensions for CPM that are able to combine

multiple available behavioral measures into a composite measure for CPM to predict. The derived

composite measures are shown to be predicted more accurately than any other single behavioral

measure, suggesting a more robust brain-behavior relationship. In the fourth chapter, I propose a

nonlinear dimensionality reduction framework to embed fMRI data from multiple tasks into a low-

dimensional space. This framework helps reveal the common brain state in the multiple available

tasks while also help discover the differences among these tasks. The results also provide valuable

insights into the variable prediction performances based on connectomes from different tasks. In



the fifth chapter, I propose another hyerbolic geometry-based brain graph edge embedding frame-

work. The framework is based on Poincaré embedding and is able to more accurately represent

edges in the brain graph in a low-dimensional space than traditional Euclidean geometry-based

embedding. Utilizing the embedding, we are able to cluster edges of the brain graph into disjoint

clusters. The edge clusters can then be used to define overlapping brain networks and the derived

metrics like network overlapping number can be used to investigate functional flexibility of each

brain region. Overall, these work provide rich data-driven methods that help understand the brain-

behavioral relationship through predictive modeling and low-dimensional data representation.
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Chapter 1

Introduction

1.1 Modeling the brain as a network

The human brain is a complex biological system that is capable of performing various functions.

In order to successfully provide coherent control over the actions of human, hundred billions of

neurons across a range of spatial and temporal scales co-activate in complex patterns. To link

these large-scale neural activity patterns with the corresponding cognitive behaviors, proper data

summarization tool is needed to prevent practitioners from being overwhelmed by the sheer amount

of data.

Functional magnetic resonance imaging (fMRI) is a neuroimaging method to measure brain

activity by detecting changes associated with blood flow. It can non-invasively investigate the

function of the human brain in healthy and disease groups. Using fMRI under the resting state

or during tasks, neural connections of the brain can be represented by using brain connectomes.

As a mapping of the functional coherence of different brain regions, brain connectome measures

the cross-correlation of the brain regions’ time series. It has been used in revealing robust indi-

vidual differences in patterns of neural activity that predict continuous behavioral measures and

clinical symptoms (Yoshida et al. [2017], Shen et al. [2017], Poldrack et al. [2016c]). The predic-

tive features derived from these models have helped researchers better understand the underlying
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functional differences and thus hold great clinical values. While the majority of the literature has

focused on using functional connectivity (FC) from only a single scanning condition (e.g., resting-

state) to predict a single cognitive score of interest (e.g, the Penn Matrix Reasoning Test score),

more data are available and remain unused or only used independently. There is ample evidence

that different cognitive conditions amplify individual differences in FC in a distinct, complemen-

tary manner (Finn et al. [2017b], Geerligs et al. [2015]). Thus, methods that incorporate FC in-

formation from a spectrum of scanning conditions and cognitive measures into a single predictive

model may represent the best performing and most generalizable methods for prediction of behav-

ior from FC data.

As described above, the entire scan can be collapsed into a single FC that represents the av-

erage neural activity pattern. However, investigating the neural patterns in finer temporal scales

such as quantifying moment-to-moment changes in brain activation or connectivity is also gain-

ing attentions (Allen et al. [2014b], Monti et al. [2017b], Shine et al. [2019]). A main goal of

these works is to find representative brain states—or distinct, repeatable patterns of brain activity

or connectivity—as the reference to quantify these brain dynamics. Focusing on a few specific

states operationalizes the characterization of brain dynamics into computational tractable prob-

lems. However, a raw 3D fMRI volume contains hundreds of thousands of voxels (e.g., > 600k

for the Human Connectome Project data) and for a single task design, we often have multiple

different runs and participants as the fMRI Signal-To-Noise Ratio (SNR) can be limited. Com-

pared with the static FC analyses that collapse the temporal dimension, dynamic fMRI analyses

face more challenges in terms of the dimensionality as the temporal variation cannot be ignored.

Thus to analyze these high- and multi-dimensional data, proper data-driven approach that reduces

the data dimension is needed. To collapse information across different runs/participants, taking the

Euclidean mean of fMRI time series or FCs within the same task design is the simplest approach to

aggregate information. However, whether it is a proper approach is questionable due to the ‘curse

of dimensionality’ (e.g., high-dimensional points are more uniformly distant from each other in
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terms of Euclidean metrics). In order to reduce the dimensionality, linear dimensionality reduction

approaches like principal component analysis (PCA) are still the mainstream method possibly due

to its simplicity in both implementation and interpretation. Low-dimensional spaces built with

these linear methods have been observed in a variety of neural recordings and animal models (C.

elegans Ca2+ imaging (Nichols et al. [2017]), human electrophysiological FC (Stitt et al. [2017]),

human fMRI BOLD signals (Shine et al. [2019]). However, the rich repertoire of available fMRI

tasks probably lie on a bigger portion of the neural manifold, which can cause challenge for the

linear approximations (Cunningham and Byron [2014], Gallego et al. [2017]).

Instead of using dimensionality reduction methods to directly reduce the fMRI scan’s dimen-

sion, another way of organizing the high-dimensional data is through organizing the brain regions

into large-scale brain networks. There is ample evidence that certain areas form local hierarchical

relations and also large-scale circuits without clear hierarchical relations also exist (Selemon and

Goldman-Rakic [1988], Cavada and Goldman-Rakic [1989], Hubel and Wiesel [1962]). There are

also studies that explored the organization of large-scale distributed networks in the human cerebral

cortex using resting-state fMRI and various community detection methods (Power et al. [2011b],

Holmes et al. [2011], Garcia et al. [2018]). The identified brain networks are more densely con-

nected within-network compared with cross-network. Robust canonical brain networks are identi-

fied across different subjects and show distinct FC patterns. However, most of the studies are based

on non-overlapping node-based community detection methods and there are couple of limitations

that arise from this setting. Firstly, the non-overlapping constraint only allows each brain region

to be assigned to only one community and thus neglects the flexibility of our brain. It is unlikely

that our brain should be simply parcellated into a discrete number of non-overlapping networks

(Mesulam [1998]). To address the stringent network membership issue, multiple computational

approaches that allow each brain region to be associated with more than one network have been

proposed and adopted to discover overlapping network structures that are both meaningful and

replicable (Yeo et al. [2014], Lee et al. [2016], Yeo et al. [2015]). Moreover, these node-based

3



community detection methods neglected inter-community connections by nature and did not give

explicit network structures. A method that gives flexible brain region assignments and explicit

network structures is thus needed.

1.2 Summary and contributions of this thesis

In this thesis, I propose different methods to help better understand our brain-behavioral relation-

ship through fMRI data. The methods that I develop aim for several different research topics in

cognitive neuroscience: behavioral measure prediction, low-dimensional fMRI data representation

and brain network organization. And each of the topics can be related with one dimension of

the 3D fMRI tensor data: subject, time and region. The following chapters will cover the details

of the methods including related mathematical theories and the relevant experimental results that

demonstrate the application and advantage of each method.

Chapter 2-3 investigates the subject dimension. It focuses on methods that integrate multiple

sources of information in connectome-based predictive modeling (CPM) (Shen et al. [2017]) to im-

prove the overall prediction accuracy. Being able to predict behavioral measures from fMRI data,

especially FC, is meaningful as it assesses the ‘brain-behavior’ relationship and help determine

where in the brain or what in the behavior is relevant to each other. As a validated and widely-used

behavioral measure prediction framework, CPM takes the functional connectivity matrix from each

subject as the input feature and validates the brain-behavior relationship via cross-validation. It has

the advantage of generating accurate prediction with a simple model setup. However, the model

is not designed to aggregate multiple connectomes or behavioral measures from a single subject.

This has become more important as more and more fMRI datasets now include multiple scans and

behavioral measures to increase the robustness and flexibility of the experiment.

In Chapter 2, we propose two different extensions over the original CPM framework to incor-

porate multiple connectomes. The first extension is based on canonical correlation analysis (CCA)

where different connectomes are projected and merged together by CCA so that the combined con-

4



nectome is the mostly correlated with the target behavioral measure. This CCA merging step is

performed prior and independent to CPM so that it can be applied to any other prediction method.

By using the CCA-merged FC for prediction, it achieves higher accuracy than using any of the

single FC alone. However, as the added CCA step brings more flexibility to the framework, it is

also limited as the whole framework is optimized in two independent stages. Thus we propose

another holistic model that is able to incorporate multiple connectomes along with building the

prediction models. Through the use of regularized regression, we show that the model not only

achieves the highest prediction accuracy, but also requires less parameter-tuning. Overall, these

two extensions make CPM more flexible when considering the rapid speed of new datasets being

generated and also indicates that more FCs per subject will help push the brain data closer to the

observed behavior and improve the behavioral measure prediction if proper methods are used.

In Chapter 3, we investigate another side of CPM, the target behavioral measures. Two methods

are proposed to combine multiple behavioral measures in the CPM framework. Both of the two

methods are performed in an independent stage from CPM. We show that by finding the composite

behavioral measure that is more aligned with the FC, we can achieve higher prediction accuracy.

From a neuroscience perspective, this also enables us to find the composite measures that can be

better explained by the FC, which pushes the ‘brain-behavior’ relationship closer from another

side.

Chapter 4 focuses on the time dimension of the fMRI data tensor and calculates low-dimensional

representation of the brain dynamics. Instead of viewing the brain as a rather static graph, we in-

vestigate how the brain changes dynamically within and across different scanning conditions. As

the fMRI data is high-dimensional (number of voxels or brain regions is usually large), it is hard

to understand or represent the data without proper dimensionality reduction. However, most of the

current approaches used in fMRI data are linear dimensionality reduction methods, e.g., principal

component analysis (PCA). With the number of available tasks in each dataset increasing, jointly

embedding the fMRI time series from multiple tasks into a common space becomes necessary

5



and requires methods that can reveal the underlying manifold structure (Gao and Ganguli [2015]).

Moreover, as the fMRI scans normally include a wide-range of tasks (e.g., motor, working memory

and relational), the underlying structure is less likely to be linear. Thus, although PCA can provide

satisfying result when embedding fMRI data from only one task, it may not reveal a clear struc-

ture when multiple tasks of data are included (Cunningham and Byron [2014]). To overcome the

limitations of linear dimensionality reduction methods, we propose a novel non-linear manifold

learning framework for the 3-dimensional fMRI data. This framework is able to generate a low-

dimensional population-wise time series embedding. It is based on the diffusion maps algorithm

(Coifman and Lafon [2006b]) and operates in a two-stage way to integrate similarity information

from each subject. We apply this framework to data including over 300 subjects, each with 6 differ-

ent scanning tasks. The joint low-dimensional embedding of this dataset reveals four brain states

that are common to all the tasks. It is also able to reveal brain graph topological information that

was previously discovered only by explicitly forming the dynamic functional connectivity (Shine

et al. [2018]). These results indicate the advantage of using nonlinear methods when dealing with

the increasingly complicated fMRI data and also validate the possibility of using an end-to-end

framework that is able to reveal similar information as the hand-tuned framework.

Chapter 5 also focuses on the low-dimensional representation of the brain data. However,

instead of embedding the fMRI time series, it focuses on the region dimension of the 3D tensor

data and the edges between brain regions are embedded into the low-dimensional space. In terms

of embedding the brain graph, the graph nodes (brain regions) are often embedded. Downstream

tasks like clustering the brain regions into the functionally coherent clusters or brain networks

can then be performed in this low-dimensional space. However, clustering edges of the brain

graphs only starts to gain attention recently (Faskowitz et al. [2020]). Compared with clustering

the nodes, clustering the edges naturally allows each brain region to be associated with multiple

brain networks. Moreover, as the edge-level, instead of node-level, analyses are often performed

(e.g., CPM, test-retest reliability), defining brain networks based on edges may potentially lead
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to more accurate network definitions. However, when the popular linkage-clustering based edge

clustering algorithm (Ahn et al. [2010]) is applied to the brain graph data, it is hard to get satisfying

networks due to the inconvenience of controlling the cluster numbers, which inevitably leads to

shattered or composite brain networks that require additional merging or splitting steps. In order

to increase the flexibility of the edge clustering, we utilize the hierarchical structure of the brain

edges and propose a Poincaré embedding-based edge clustering algorithm. By first embedding all

the edges into a hyperbolic space, which is more capable of representing the tree-structured data, a

subsequent k-medoids algorithm can be followed to cluster edges into k networks. The algorithm

is applied on the resting-state FC and similar sets of networks (e.g., default mode network, motor

network) are obtained from the clustering, which validates that the edge-clustering can provide

similar node-level information. However, with the added flexibility of the framework, each nodes

can now be associated with multiple networks and the node’s number of associated networks can

potentially reflect its functional flexibility. This framework can also be used as a versatile approach

to investigate the edge-level information not only limited to clustering. By comparing it with

traditional embedding methods like multidimensional scaling, we show that Poincaré embedding

is more appropriate when representing edges of the graph.

1.3 Published components of this thesis and contributions

Chapter 2 and chapter 3 have been published. Chapter 4’s algorithm is published while the ex-

tended application of the algorithm is under review. Chapter 5’s algorithm is published and the

extended application of the algorithm is in preparation for publication. The following authors

contribute to each chapter:

Chapter 2: Abigail S. Greene, Dustin Scheinost, R. Todd Constable

Chapter 3: Xilin Shen, R. Todd Constable, Dustin Scheinost, Daniel S. Barron, Javid Dadashkarimi,

Abigail S. Greene, Marisa N. Spann, Stephanie Noble, Evelyn Lake, John Krystal

Chapter 4: Gal Mishne, Dustin Scheinost
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Chapter 5: Gal Mishne, Dustin Scheinost

8



Chapter 2

Combining Multiple Connectomes
Improves Predictive Modeling of

Phenotypic Measures

2.1 Introduction

Advanced functional magnetic resonance imaging (fMRI) techniques, particularly functional con-

nectivity analyses, are revealing robust individual differences in patterns of neural activity that pre-

dict continuous phenotypic measures (Dubois and Adolphs [2016b], Rosenberg et al. [2018]). Pre-

dictive modeling of the associations between phenotypic measures and the functional organization

of an individual’s brain improves generalization of results to novel individuals and increases their

eventual clinical utility. Recent work has used functional connectivity matrices, or connectomes,

to predict a wide range of phenotypic measures, including fluid intelligence (Finn et al. [2015b]),

brain maturity (Dosenbach et al. [2010]), and sustained attention (Rosenberg et al. [2016]). How-

ever, most of the current state-of-the-art algorithms only build predictive models based on a single

connectome for each individual (Dadi et al. [2019]). This approach neglects the complementary

information contained in connectomes from different sources and reduces prediction performance.

While functional connectivity is usually calculated from data acquired during rest, task condi-

tions better reveal individual differences (Finn et al. [2017b], Vanderwal et al. [2017]) and improve
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phenotypic prediction (Greene et al. [2018b], Rosenberg et al. [2016]). Further, the observed

improvement in predictive power appears to be task specific, suggesting that task conditions are

likely better at generating models of phenotypes related to the circuits they perturb (Greene et al.

[2018b], Rosenberg et al. [2016]). Overall, it is unlikely that a single task can be developed that is

optimal for all phenotypes. Instead, methods that incorporate functional connectivity information

from a spectrum of tasks into a single predictive model may yield the best performance and most

generalizable method for predicting phenotypic measures from connectomes.

In order to combine different task connectomes into a single predictive model in a principled

way, we propose a novel prediction framework, termed multidimensional connectome-based pre-

dictive modeling. Two algorithms, each with their own strengths and limitations, are provided

to illustrate the advantage of utilizing multiple connectomes. Both are based on the previously

validated connectome-based predictive modeling (CPM) method (Shen et al. [2017]). The first

utilizes canonical correlation analysis (CCA), while the second utilizes ridge regression. CCA

combines multiple task connectomes by finding the projection direction which maximizes corre-

lation between the combined connectomes and behavioral measure(s) to be predicted. In contrast,

ridge regression directly incorporates the large number of edges in multiple connectomes through

regularization.

Using two large open-source datasets with multiple tasks—the Human Connectome Project

(HCP) (Van Essen et al. [2013a]) and the Philadelphia Neurodevelopmental Cohort (PNC) (Sat-

terthwaite et al. [2016]), we validate and compare our two algorithms against performing CPM

on each task connectome independently, CPM on a general functional connectivity (GFC) (Elliott

et al. [2019]) matrix created by concatenating time series from all task conditions to create a sin-

gle connectome for an individual, ridge regression on GFC and CPM with a naı̈ve extension to

multiple connectomes where each edge for each task is selected independently.

In all, our contribution in this paper is two-fold. First, we propose the combination of multiple

connectomes from different task conditions in one predictive model. Second, we developed two
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algorithms for dealing with multiple connectomes and show that they outperformed the validated

single connectome predictive model.

2.2 Methods

2.2.1 Connectome-based Predictive Modeling (CPM)

CPM (Shen et al. [2017]) is a validated method for extracting and pooling the most relevant fea-

tures from connectivity data in order to construct linear models to predict phenotypic measures

(Figure 2.1a). Briefly, edges of connectivity matrices that are significantly correlated with the phe-

notypic measure of interest are selected. The selected features are then pooled (e.g. averaged)

and linear regression is used to predict the phenotypic measure in novel individuals. It is designed

for single connectome-based prediction, but can be easily extended to multiple-connectome sce-

narios as each edge is selected independently. However, this simple approach is not equipped to

efficiently incorporate the increasing number of features introduced by multiple connectomes.

2.2.2 Multidimensional Connectome-based Predictive Modeling

Although CPM can be extended to leverage multiple connectomes, a specially designed framework

will better utilize the complementary information in different brain connectivity patterns driven by

corresponding task conditions. Here, we present two realizations of this framework to illustrate

the feasibility and advantage of combining multiple connectomes for prediction.

CCA Connectome-based Predictive Modeling (cCPM)

Canonical Correlation Analysis (CCA): For two sets of observation matrices X and Y, assum-

ing that the variables are correlated, CCA seeks linear combinations of the columns of these two

matrices that maximize correlation between them. In other words, we want to find vectors a and b

such that the random variables Xa and Yb maximize the correlation. Assuming that X and Y are
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Figure 2.1: Algorithm flow chart for three major models mentioned. a) The original CPM
flow chart b) cCPM extends CPM to handle multiple connectomes per individual by replacing the
correlation step in CPM with a canonical correlation analysis (CCA) step. c) rCPM extends CPM
to handle multiple connectomes per individual by replacing the pooling (i.e. averaging) and linear
regression step with a ridge regression step.

centered such that each column of either matrix has mean zero, the correlation to be maximized

can be expressed by the following equation:

ρ =
((Xa)T (Yb))√

([(Xa)T (Xa)][(Yb)T (Yb)])

CCA Connectome-based Predictive Modeling: The cCPM (Gao et al. [2018b]) pipeline

consists of six steps (Figure 2.1b).

In the first step, individuals are divided into training and testing sets using 10-fold cross-

validation. We denote the number of individuals for training as N train and number of individuals

for testing as N test.

In the second step, edges are combined. For the k-th edge, we have a matrix Ek ∈ RNtrain∗M
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containing edge strength of the k-th edge for all the individuals in the training set. Each row of

the matrix Ek denotes each training individual’s k-th edge’s different strengths under M different

tasks. Using CCA, we can find the canonical coefficients wk ∈ RM for each edge. As each edge

matrix Ek corresponds to the observation matrix X in the above definition equation for CCA, these

coefficients wk correspond to the vector a, and the observation matrix Y will store the behavioral

measures. We then combine connectomes from all tasks into a total connectivity matrix using

different canonical correlations, Etotal
k =

∑M
m=1 Ek(:,m)wk(m), where the m-th column of Ek is

denoted as Ek(:,m). Within each single task, each edge is demeaned across different individuals

so that each column of Ek has mean 0.

In the third step, we assign the combined edges that are significantly correlated with the be-

havioral measures to the “correlated network” (CN). The significance of the correlation is found

from the CCA. Here, we assume that CCA always maximizes the positive correlation between

combined edge strength and behavioral measure as the sign of the canonical coefficients can triv-

ially be changed to maximize the positive correlation. Various significance thresholds for feature

selection can be used.

In the fourth step, we calculate “network strength” sCN by pooling (i.e. summing) the strength

of all CN edges in each individual’s total connectivity matrix, yielding a summary value sCN for

each individual:

sCN =
∑
k

(B(k)
∑
m

Ek(:,m)wk(m))

where sCN is the vector of summary values, B(k) is the indicator of whether the k-th edge passes

the thresholding for CN.

In the fifth step, we use linear regression y = β0 + β1s
CN to model the association between

“network strength” and the phenotypic measure in N train individuals.

In the sixth step, the “network strength” is calculated for the excluded N test individuals, and

is submitted to the corresponding regression model to generate phenotypic measure estimates for

those testing individuals. This process is repeated iteratively, with different individuals in the
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training and testing sets.

Ridge regression Connectome-based Predictive Modeling (rCPM)

Ridge regression: In ordinary least-squares (OLS) regression, a greater number of independent

variables compared to the number of observations leads to an ill-posed problem and overfitting. To

solve this ill-posed problem, regularization on regression coefficients can be applied to shrink the

coefficients. Ridge regression shrinks the regression coefficients by imposing a L2-norm penalty

on their size. Compared with OLS regression, the coefficients from ridge regression minimize a

penalized residual sum of squares,

β̂ridge = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

β2
j

where λ is the complexity parameter that controls the shrinkage strength: λ = 0 gives rise to

the unregularized OLS, while increasing λ shrinks the coefficients towards zero. If we write the

criterion in the above equation in matrix form,

RSS(λ) = (y −Xβ)T (y −Xβ) + λβTβ

the ridge regression solutions can be solved by

β̂ridge = (XTX + λI)−1XTy

where I is the identity matrix. Compared with the solution for OLS,

β̂OLS = (XTX)−1XTy

adding a positive constant to the diagonal of XTX before inversion makes the problem nonsingular,

even if XTX is not of full rank.
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Ridge regression CPM: Based on ridge regression, we modify the original CPM framework

to better suit the high-dimensional nature of connectivity data (Figure 2.1c) (Gao et al. [2019a]).

Specifically, due to the positive semi-definite nature of a functional connectivity matrix, the edges

are not independent. Ridge regression is more robust than OLS in this case.

Instead of summing selected edges and fitting a one-dimensional OLS model, we directly fit

a ridge regression model with training individuals using the selected edges from all the tasks and

apply the model to testing individuals in the cross-validation framework. λ parameter in the ridge

regression is chosen by another inner 10-fold cross-validation which uses only the training indi-

viduals. The largest λ value that has a mean squared error (MSE) within one standard error of the

minimum MSE is chosen. In the Results, we show that rCPM is not sensitive to λ.

2.2.3 Experiment setup

Datasets: We applied all algorithms (see Competing methods below) to the Human Connectome

Project (HCP) 900 Subject Release and the Philadelphia Neurodevelopmental Cohort (PNC) first

study release. These data releases were the only releases available at the time that this work began.

Phenotypic measure: In both datasets, a matrix reasoning test—a measure of fluid intelligence

(gF)—was used as the phenotypic measure for prediction. In the HCP dataset, a 24-item version of

the Penn Progressive Matrices test was used; this test is an abbreviated form of Raven’s standard

progressive matrices (Bilker et al. [2012]). In the PNC dataset, 24- and 18-item versions of the

Penn Matrix Reasoning Test were used (Bilker et al. [2012], Moore et al. [2015]). Integer scores

indicate number of correct responses (HCP: PMAT24 A CR, range=5–24, mean=17.53, s.d.=4.45,

median=19; PNC: PMAT CR (phv00194834.v1.p1.c1), range=0–23, mean=12.27, s.d.=4.04, me-

dian=12).

HCP participants: From this dataset, we restricted our analyses to those individuals who par-

ticipated in all nine fMRI conditions (seven task, two rest), whose mean frame-to-frame displace-

ment was less than 0.1 mm and whose maximum frame-to-frame displacement was less than 0.15
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mm (see HCP imaging parameters and preprocessing), and for whom gF measures were available

(n = 515; 241 males; ages 22-37). This conservative threshold for exclusion due to motion was

used to mitigate the substantial effects of motion on functional connectivity; following this exclu-

sion, there was no significant correlation between motion and gF for most conditions (all p > 0.05,

Bonferroni corrected) except the Social task, right-left (RL) phase encoding run (rs = −0.16(p =

0.00017)), the Relational task, left-right (LR) phase encoding run (rs = −0.15(p = 0.0008)), and

the Emotion task, RL phase encoding run (rs = −0.14(p = 0.0017)).

PNC participants: From this dataset, we used behavioral, structural imaging, and functional

imaging data. We restricted our analyses to those individuals who participated in all three fMRI

runs (two task, one rest), on whom registration was successful (nine individuals were excluded for

failed registrations), whose mean frame-to-frame displacement was less than 0.1 mm and whose

maximum frame-to-frame displacement was less than 0.15 mm (as for the HCP dataset, and with

the same motivation), and for whom gF measures were available (n = 571; 251 male, ages 8–21).

Following exclusion for motion, there was no significant correlation between motion and gF for

any condition (all p > 0.05, Bonferroni corrected).

fMRI processing: fMRI data were processed with standard methods and parcellated into 268

nodes using a whole-brain, functional atlas defined in a separate sample (see (Greene et al. [2018b])

for more details). Task functional connectivity was calculated based on the “raw” task timecourses,

with no regression of task-evoked activity: the mean timecourses of each node pair were correlated

and correlation coefficients were Fisher transformed. Matrices were generated for both the LR and

RL phase encoding runs in the HCP data, and these matrices were averaged for each condition,

thus generating one 268 × 268 connectivity matrix per individual per task condition. Nodes that

have missing coverage during any individual’s scan were excluded from all individuals (9 nodes in

HCP and 18 nodes in PNC were excluded). These matrices were used to generate cross-validated

predictive models of gF.

Competing methods: We compared cCPM and rCPM to four simpler CPM-based approaches.

16



For the first approach, we performed CPM on each task independently as previously demonstrated

(Greene et al. [2018b]). For the second approach, we performed CPM on a general functional con-

nectivity (GFC) matrix created by averaging brain connectivity information across all task condi-

tions (Elliott et al. [2019]). As time courses are z-score normalized before creating connectomes,

averaging connectomes is similar to first, concatenating time courses and, then, correlating them.

However, as the time length of each task is different, by concatenating time series first avoids

biasing FC estimates toward the shortest tasks. Here, we generated GFC as suggested in the orig-

inal paper by first concatenating and then correlating time courses. For the third approach, we

compared ridge regression with CPM on GFC matrices. This is similar to performing rCPM on

GFC matrices. However, we have chosen not to use the “rCPM” term here to avoid confusion

between using GFC and our more direct way of combining multiple connectomes. Finally, for the

fourth approach, we used a naı̈ve extension to CPM, where all task connectomes were vectorized

and concatenated to create a feature space that contained all task data for CPM. In contrast to the

cCPM and rCPM approaches, this naı̈ve implementation does not consider any shared or unique

information offered by each task. Corrected resampled t-tests (Bouckaert and Frank 2010) were

used to compare competing methods.

Internal validation: 10-fold cross-validation was used to train all models. In 10-fold cross-

validation, the sample was randomly divided into 10, approximately equal-sized groups; on each

fold, the model was trained on 9 groups and tested on the excluded 10th group. This process was

iteratively repeated 10 times, with each group excluded once. This procedure was repeated for 100

random divisions. CPM was performed with a range of p-value edge selection thresholds from

0.001 to 0.5. Model performance was evaluated by the cross-validated R2,

R2
CV = 1−

∑n
i=1(yi − ŷ)2∑n
i=1(yi − ȳ)2

R2
CV can be negative (Scheinost et al. [2019]) and negative values were set to 0. In this paper,√
R2
CV is reported as it is comparable to, but less biased than, the normally used Pearson corre-
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lation between observed and predicted measures when using cross-validation.
√
R2
CV is averaged

over the cross validation folds.

External validation: Additionally, we trained models using one of the datasets (either HCP or

PNC) and applied the model to the other dataset. For external validation, we only used the Emotion

and Working Memory tasks from HCP for consistency with the available task data from the PNC.

To fairly compare between models, CPM was performed with the 50%, 5% and 1% of edges with

lowest p-values. Model performance was evaluated by Pearson correlation coefficient (rPearson)

between the predicted and observed gF measures.

Quantification of task contribution: To quantify the contribution of each task to a given

predictive model, we calculated the m-th task’s average weight (labeled Wm) to the model as

Wm =
∑
k

B(k)βmk std(Ek(:,m))

where B(k) indexes whether the k-th edge is selected, std(Ek(:,m)) represents the standard de-

viation of the k-th edge in the m-th task and βmk represents the weight learned by cCPM or rCPM

for the k-th edge in the m-th task. To make the results more interpretable, Wm are then normalized

to have sum 1,
∑

mWm = 1, so that it represents each task’s contribution proportion in the whole

model.

Similarly, as certain tasks may contain redundant information for prediction, we adopted for-

ward feature selection to select the optimal combination of tasks. Forward feature selection finds

the optimal combination of tasks by adding each of the tasks in a stepwise way; in each step, the

task that improves prediction the most will be added to the selected task list. The optimal combina-

tion is found when any additional task won’t lead to further improvement in prediction. We found

the optimal task combination for HCP with both cCPM and rCPM. Both of the two algorithms are

performed with a p-value threshold of 0.1.

Sensitivity to hyperparameters: Although all of the tested approaches are relatively simple

in terms of choosing hyperparameters before training the model, all are dependent on the chosen
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p-value threshold for edge selection. To evaluate the sensitivity of each approach to this hyperpa-

rameter, we repeated analyses with p-value thresholds of 0.001, 0.005, 0.01, 0.05, 0.1, and 0.5. The

rCPM approach has an additional hyperparameter: the penalty weighting parameter λ. To show

that the rCPM models are also not sensitive to the choice of λ, we fixed λ at the average chosen

value in cross-validation and varied it in 10% steps to test whether fixing and perturbing λ changes

the prediction performance of rCPM.

Data and code availability statement: The HCP data used in this study are publicly avail-

able on the ConnectomeDB database (https://db.humanconnectome.org). The PNC data used

in this study are publicly available on the database of Genotypes and Phenotypes (dbGaP ac-

cession code phs000607.v1.p1); a data access request must be approved to protect the confi-

dentiality of individuals. MATLAB scripts to run the cCPM and rCPM analyses can be found

at (https://github.com/YaleMRRC/CPM). BioImage Suite tools used for analysis and

visualization can be accessed at (https://bioimagesuiteweb.github.io/webapp/

connviewer.html). MATLAB scripts written to perform additional post-hoc analyses are

available from the authors upon request.

2.3 Results

2.3.1 Combining multiple connectomes improves prediction accuracy com-

pared with single connectome-based prediction

As shown in Figure 2.2, all models that incorporate task data significantly predicted fluid intelli-

gence, whereas the models based only on rest did not predict fluid intelligence better than simply

predicting the population mean (i.e. R2
CV did not differ from zero). In both datasets, rCPM (HCP:

0.436 ± 0.0072, PNC: 0.356 ± 0.0078) outperformed (HCP: p = 7.37 ∗ 10−4, PNC: p = 0.0721,

corrected resampled t-test comparing rCPM to the next best performing method, GFC-ridge) all

competing approaches. GFC-ridge (HCP: 0.387± 0.0068, PNC: 0.329± 0.151) and cCPM (HCP:
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Figure 2.2: Comparison of the predictive modeling approaches’ ability to predict an individ-
ual’s gF. a) HCP dataset. b) PNC dataset. Purple box plots show results from CPM on a single
task. The orange, green, red, and blue box plots show results from combining multiple task con-
nectomes using GFC-CPM, GFC-ridge, CPM, cCPM, and rCPM, respectively. Box plots show
cross-validated

√
R2
CV with the error bars representing the 25th and 75th percentiles, respectively.

Values below (or above) the 25th (or 75th percentiles) are shown as *. The best results across
different edge selection thresholds are shown. Task acronyms: GAM: Gambling, LAN: Language,
MOT: Motor, REL: Relational, SOC: Social, WM: Working Memory, EMO: Emotion.

0.386 ± 0.0084, PNC: 0.301 ± 0.0122) performed similarly to each other (HCP: p = 0.43, PNC:

p = 0.18) in both the two datasets and outperformed the other competing methods. The naı̈ve

CPM implementation (HCP: 0.354± 0.0094, PNC: 0.293± 0.0130) and CPM using a GFC matrix

(HCP: 0.333 ± 0.0086, PNC: 0.263 ± 0.0151) had similar performance to models built from the

best-performing single task, working memory (HCP: 0.322 ± 0.0134, PNC: 0.288 ± 0.0144). We

also tested the performance of ridge regression on single task connectomes. While the overall pre-

diction performance increases when using ridge regression, rCPM still significantly outperforms

ridge regression on single task connectomes (HCP: p = 0.0012, PNC: p = 0.0146, comparing

rCPM to the next best performing single task with ridge regression).
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2.3.2 Different tasks contribute differentially to the model

a) b)

c)

7.5%0%

Figure 2.3: Different tasks’ contributions to the model. a) Visualization of the selected edges for
different tasks in the model. Top row represents 2% and bottom row represents 20% of total number
of selected edges. 81.7% and 99.8% of feature contribution (combined sum of each feature’s re-
gression coefficient times its standard deviation) in regression are possessed respectively by those
networks. Anatomical acronyms: PFC = Prefrontal, MOT = MotorStrip, INS = Insula, PAR =
Parietal, TEM = Temporal, OCC = Occipital, LIM = Limbic, CER = Cerebellum, SUB = Subcor-
tical, BSM = Brainstem. b) Different tasks’ average contribution fraction to the cCPM and rCPM
model. c) Different tasks’ contributions to the model, summarized at the network level. Network
acronyms: MF=Medial Frontal, FP=Frontoparietal, DMN=Default Mode Network, MOT=Motor
Cortex, V1=Visual I, V2=Visual II, VA=Visual Association, SA=Salience.

As shown in Figure 2.3, different tasks contribute different numbers of edges to the final model.

Tasks that are more predictive by themselves (e.g., Working Memory) tend to contribute more

edges to the model, while less predictive tasks (e.g., Emotion) contribute fewer edges (Figure

2.3a). Similarly, in terms of contribution Wm to the regression model, tasks that are predictive by

themselves contribute more to the overall predictive model while less-predictive tasks contribute

less (Figure 2.3b). Additionally, tasks appear to select different edges in different networks for

prediction (Figure 2.3c). In the figure, percentage of edges in each network pair that are selected

by the model are shown. While the presented results are mostly for rCPM (Figure 2.3ac), the same
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trend is observed for cCPM (Figure S2). As shown in Figure S3, the predictive utility of a task is

not dependent on the length of the task.

Figure 2.4: Forward task selection for cCPM and rCPM. a) shows the results for cCPM while
b) shows the results for rCPM. The optimal task combinations for the two algorithms are both
using 6 tasks, where cCPM excludes the Language task while rCPM excludes the Emotion task.
However, the algorithm performance of using all 7 available tasks is not significantly worse than
using 6 tasks (cCPM: p = 0.38, rCPM: p = 0.40), and overall, including more tasks significantly
improves prediction.

Finally, as shown in Figure 2.4, using stepwise forward task selection, the second-best-performing

individual task was not added to the combined model until step 5 or 6 (for rCPM and cCPM, re-

spectively). Similarly, the best-performing model did not use all tasks. Together, these results

suggest that certain tasks may contain redundant information for prediction and that an optimal

combination of tasks with complementary information is needed to maximize prediction perfor-

mance.
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Figure 2.5: Models’ performance with various hyperparameters. a) Varying edge selection
threshold for the HCP dataset. b) Varying edge selection threshold for the PNC dataset. c) Varying
penalty weighting parameter for rCPM. In a) and b) edge selection threshold=1.0 represents no
edge selection. Horizontal line indicates prediction accuracy with λ chosen by inner cross valida-
tion.

2.3.3 Evaluation of hyperparameters on model performance

As shown in Figure 2.5ab, the performance of all approaches varies as a function of the p-value

threshold in the edge-selection step. The p-value threshold controls the number of edges retained

in the models. A lower p-value threshold represents more stringent edge selection and fewer edges

will enter the final model. The GFC-CPM, GFC-ridge, the naı̈ve CPM and cCPM all exhibit a

decrease in performance as the p-value threshold is increased (i.e. more retained features), except
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for cCPM and GFC-ridge on the HCP dataset. In contrast, rCPM exhibits better performance as

the p-value threshold is increased. As a result, the improvement in prediction performance offered

by rCPM over the competing approaches is at its maximum at a higher p-value threshold (i.e.

p = 0.1 or p = 0.5). However, the extra computation cost induced by more features should also be

considered. As shown in Figure 2.5c, results from rCPM are insensitive to the choice of λ over the

tested range.

2.3.4 Models trained on one dataset can be generalized to another dataset

Figure 2.6: Different models’ generalizability to independent, external datasets. a) Trained on
HCP and applied to PNC. b) Trained on PNC and applied to HCP. b) Trained on PNC and applied
to HCP. The results are presented as Pearson correlation between predicted and actual measures.
Models trained on either HCP or PNC datasets can significantly predict gF in the other dataset.

Figure 2.6 shows that our models generalized to independent, external datasets. By showing

the results under different edge sparsity levels, we validate that model generalizability does not

decrease with more edges as more features often lead to overfitting. Actually, models based on

more edges still outperform models based on fewer edges. GFC’s generalizability is also tested

24



here as it can potentially utilize all the available task scans in HCP dataset and apply it to PNC,

which has fewer tasks. However, we didn’t see improvement in generalizability by including more

tasks.

2.3.5 Exploratory comparison of ridge regression to lasso (least absolute

shrinkage and selection operator) and elastic net

Given the improved performance of rCPM, we explored the performance of CPM approaches

based on two other regularized regression approaches, lasso and elastic net. Instead of imposing a

L2-norm penalty on regression coefficient β as in ridge regression, lasso uses a L1-norm penalty

as λ
∑p

j=1 |βj|. This encourages coefficients to be set to zero, while ridge regression only shrinks

the size of the coefficients. Thus, lasso is often preferred for feature selection when sparsity is

preferred. However, lasso tends to select only a small number of variables when the sample size is

small. To overcome this limitation, elastic net regularization combines both the L1-norm penalty

and L2-norm penalty. An α hyperparameter is used to balance between the weight of the two kinds

of penalty. So the overall objective function for elastic net can be written as,

β̂EN = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ(

p∑
j=1

1− α
2

β2
j + α

p∑
j=1

|βj|)

For this objective function, the bigger α is, the more lasso-type shrinkage will be put on the

coefficients. When α=1, it is the same as lasso; when α = 0, it is the same as ridge regres-

sion. Implementations of these approaches are identical to rCPM with the exception that the ridge

regression step is replaced with either lasso or elastic net.

In our experiments, neither elastic net nor lasso performed as well as ridge regression (HCP:

p = 4.4 ∗ 10−5, PNC: p = 0.0035). For both datasets, α = 0 always produces the best predic-

tion (Figure 2.7), suggesting—again—the importance of including a large number of edges in a

predictive model to best reflect distributed patterns of functional connectivity. In this chapter,
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Figure 2.7: Comparison of ridge regression with Elastic Net and Lasso. α, the weighting
parameter between ridge and lasso-type regularization, is varied across different values. α = 0 is
the same as ridge regression while α = 1 is the same as lasso. Ridge regression generates the most
accurate prediction in both the HCP and PNC datasets.

we proposed cCPM and rCPM, two general connectome-based prediction frameworks that uti-

lize complementary information in different task connectomes to improve phenotype prediction.

We tested the two algorithms on two open-source datasets, HCP and PNC, to predict fluid intelli-

gence using all the available task connectomes. rCPM shows superior performance in prediction

for within-sample prediction compared to the competing methods, including cCPM, though all

methods performed similarly for out-of-sample prediction. By looking at the contribution of spe-

cific tasks to the final prediction and the stepwise forward optimal task combination selection, we

found that different tasks contribute differentially to the final predictive model. In contrast to other

competing methods, rCPM performed better when the number of features included in the ridge

regression step was large and included features only weakly correlated with intelligence. Last but

not least, although the model takes in a large number of features, we validated its generalizability

and robustness by using a range of hyperparameters and testing models on external datasets. Over-

all, cCPM and rCPM provide a powerful framework to combine all available functional imaging

data into a single predictive model.

The major contribution of this chapter is showing that combining connectomes in an appro-

priate manner improves prediction. Although task-based connectomes improve prediction per-

formance compared to resting-state connectomes (Greene et al. [2018b]), approaches to combine

multiple task-based connectomes into a single predictive model are limited. The GFC method is
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one approach to combine task-based connectomes (Elliott et al. [2019]). However, by simply av-

eraging over all conditions, GFC loses a large amount of task-specific information, which can be

used to increase prediction performance, and performs worse than the other methods that combine

multiple connectomes for predictive modeling.

Several regression approaches exist to shrink regression coefficients in the case of highly cor-

related features, which is common in connectome-based predictive modeling. Two common ap-

proaches are principal components regression (PCR), and partial least squares (PLS). Ridge regres-

sion shrinks both the high- and low-variance directions of the features, but applies greater shrinkage

to the low-variance directions (Krishnan et al. [2011], Mwangi et al. [2014], Zhong et al. [2009]) In

contrast, PCR does not shrink the high-variance directions and simply discards the lower-variance

directions (Frank and Friedman [1993]). PLS also shrinks the low-variance directions, but may

inflate the higher variance directions (Frank and Friedman [1993]). Based on these theoretical

considerations and additional experimental observations (see for example (Dubois et al. [2018],

He et al. [2018]), ridge regression may be preferred for minimizing prediction error because of its

smooth shrinkage (Frank and Friedman [1993]), though we did not test these other approaches in

the context of connectome-based predictive modeling. Those related approaches will be tested in

future work.

Similarly, ridge regression generated better predictions than approaches that perform shrinkage

and feature selection, like lasso and elastic net. While popular in neuroimaging machine learning

(Dadi et al. [2019]), lasso has several limitations compared to ridge regression (Zou and Hastie

[2005]). When the number of features is greater than the sample size, lasso limits the number

of nonzero features to be the same as the sample size, even though additional features may be

associated with the phenotype of interest. Similarly, lasso tends to retain only one feature from

any set of highly correlated features, shrinking the other features to zero. In cCPM and rCPM (and

other connectome-based predictive modeling approaches), the number of features (i.e. edges) is

typically greater than the number of individuals and features are highly correlated. While elastic
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net regularization attempts to combine the strengths of ridge regression and lasso (Zou and Hastie

[2005]), we did not observe any improvements in prediction performance over ridge regression

with elastic net.

Despite both approaches incorporating complementary task information, rCPM significantly

outperformed cCPM. As only one phenotypic measure was used in these analyses, cCPM simplifies

to linear regression. Given this, we chose to follow the CPM design of pooling selected features,

rather than constructing a single large matrix with all selected features for linear regression. This

single matrix would be rank deficient, resulting in unstable solutions. Ridge regression is a natural

answer to this problem as the regularization term allows for stable solutions that minimize the

effect of noisy edges on model performance.

RCPM demonstrated improved prediction performance when more features were included in

the model. Although rCPM incorporates a modest feature selection step, retaining nearly 60%

of the edges (edge number retained with p < 0.5) during this step produced the best prediction

performance. We attribute these results to ridge regression’s ability to shrink noisy and corre-

lated features, thereby, reducing their influence on the model. Moreover, these results suggest that

even edges that are not strongly correlated with the behavioral measures still help with prediction,

phenotypic information is encoded in spatially distributed connectivity patterns, and (almost) all

available information should be used for prediction. These results also align with recent work

in “double descent” test risk of predictive models, which suggests a lower test risk when large

numbers of features—more than the number of samples—are included (Belkin et al. [2019]).

A natural question that arises is: if each task differentially contributes to the final predictive

model, what tasks should be included when designing a study? When using a single task, results

suggest that tasks and phenotypes of interest should be matched such that the selected task perturbs

brain circuits relevant to the phenotype (Greene et al. [2018b], Rosenberg et al. [2016]). Yet, when

combining multiple tasks, including tasks with complementary information appears to be the most

beneficial. For example, in the forward feature selection result (Figure 2.4), the second task added
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is the motor task, which by itself is a poorer predictor of fluid intelligence than either the gambling

or language task. However, the motor task likely provides more complementary information than

the gambling or language task and, thus, provides the maximum gain in prediction power when

added to the model. To generalize, we hypothesize that a battery of tasks that perturbs multiple

and complementary brain circuits will yield better predictive models than a battery of tasks that

perturbs a single brain circuit with different, subtle manipulations. While it may not be possible

to collect a single battery of tasks that is optimal for all phenotypic information, we suspect that

a standard battery could be developed that is good enough in most cases. Future work should

develop and compare different batteries of tasks in terms of predictive modeling.

This work has some limitations. First, currently for cCPM and rCPM, all individuals are re-

quired to have complete data from all the tasks. As such, using cCPM and rCPM increases the

likelihood of removing individuals from the analysis due to missing data. As the utility of predic-

tive models is often dependent on sample size (Cui and Gong [2018], Varoquaux et al. [2017]),

cCPM and rCPM may only be applicable to larger datasets that can support removing individuals

due to missing data. Future work includes extending cCPM and rCPM to support data imputation

methods to handle missing data. Second, cCPM and rCPM may make model interpretation and vi-

sualization more challenging. While cCPM and rCPM retain CPM’s ability to simply map features

back to the brain, the mappings from both of the two algorithms are task specific. Ultimately, the

task at hand will determine if the added task information reduces interpretability of the model (see

Rule #10 from (Scheinost et al. [2019]) for a greater discussion). RCPM exhibited increased pre-

diction performance when the number of features was larger, and while better prediction is good,

the large number of edges can be difficult to visualize and interpret. It should be noted however

that this may be a more accurate depiction of the complex systems involved in executing cognitive

functions, and our tendency to reduce findings to one or two brain regions is likely grossly over-

simplifying this complex system. In other words, the circuits involved in cognition may not lend

themselves to easy visualization. Third, cCPM and rCPM can make external validation harder.
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The external dataset needs to have similar tasks for the model to be applicable. For example, when

using external validation between the HCP and the PNC datasets, we limited the tasks from the

HCP to only two for compatibility with the PNC dataset. Fourth, cCPM and rCPM did not show

improvement for out-of-sample prediction. This result could suggest that cCPM and rCPM overfit

for within-sample prediction or that the HCP and PNC datasets differ in important aspects, such

as age, that limit generalizability of any model (see Rule #9 from (Scheinost et al. [2019])). Fifth,

similarly, due to the large number of edges (features) involved in the prediction models compared

with the sample size, overfitting is hard to eliminate completely (Whelan and Garavan [2014]) and

this causes the difference between our results with the previous works (Finn et al. [2015b]). How-

ever, with the use of both cross-validation and independent dataset generalization, our evaluation

results are less-prone to suffer from overestimation. Finally, while we focus on connectivity data

derived from multiple fMRI tasks, cCPM and rCPM are agnostic to the type of input data and can

easily incorporate structural connectivity data from DTI or from other functional modalities like

EEG. In future work, we will explore the inclusion of other measures to further improve prediction.

In summary, we present cCPM and rCPM, two extensions to CPM to handle connectomes from

multiple sources. Our results suggest that prediction of phenotypic measures can be improved by

including multiple task conditions in computational models, that different tasks provide comple-

mentary information for prediction, and that cCPM and rCPM provide two principled methods for

modeling such data.
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Chapter 3

Combining Multiple Behavioral Measures
Improves Predictive Modeling of

Phenotypic Measures

3.1 Introduction

Advanced functional magnetic resonance imaging (fMRI) techniques, especially functional con-

nectomics, are revealing robust differences between individuals (Dubois and Adolphs [2016a]).

While connectomes are usually calculated from resting-state data, task conditions improve phe-

notypic predictions (Greene et al. [2018b]). Further, models combining multiple connectomes

outperform models built from a single connectome (Gao et al. [2018a]). Whether using connec-

tomes from single or multiple sources, most predictive models only predict a single behavioral

measure. Yet, a single behavioral measure is not able to describe an individual’s cognitive abili-

ties. A set of similar behavioral measures that describe different aspects of the cognitive ability

are often available within the the same datasets. Inspired by the improvement we had by combin-

ing multiple connectomes, we aim to improve the prediction also from the other side: combining

multiple behavioral measures. To assess the improvement we can have by combining multiple be-

havioral measures, we propose and test two different frameworks: PCA-CPM and mCCA-CPM,

where mCCA stands for multipath-CCA, a novel CCA variant that is able to combine multiple
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sources, instead of only two sources.

In the PCA-CPM framework, principal component analysis (PCA) is used to combine multiple

behaviors and the first principal component of PCA will be used as the new composite measure

for prediction. This new composite measure is expected to be more representative of the overall

cognitive ability and more robust than any of the individual cognitive measures used. It is tested on

a dataset including different psychiatric disorder cohorts and a general memory related measure is

built and predicted by the PCA-CPM framework, which show improved prediction performance.

Moreover, this general memory measure can also be used in transdiagnostic prediction, which

illustrates the generalizability of the composite behavioral measure.

While the multiple behaviors can be combined by PCA, it is still a unsupervised approach, i.e.,

the PCA result won’t be influenced by the connectome. However, the goal of combining multiple

behavioral measures is to find a composite measure that can be better predicted from the functional

connectome, and thus reveal a more robust brain-behavior relationship. To this end, we propose

another supervised learning framework that combines both multiple behavioral measures and also

different connectomes. As mentioned in Chapter 2, multiple connectomes can be combined by

canonical correlation analysis (CCA) (Gao et al. [2018a]), separate CCA are performed for each

edge. When using a battery of behavioral measures, this procedure creates different latent behav-

iors for each edge, preventing results from each CCA being pooled. By designing a novel objective

function that maximizes all the pairwise edge-behavior correlation, our mCCA-CPM framework

simultaneously finds the optimal projection for both a battery of connectomes and a battery of

behavioral measures through mCCA, leading to improved prediction performance. We offer a

closed-form and an iterative solution for our mCPM framework. Both frameworks are evaluated

using data from the Human Connectome Project (HCP) (Van Essen et al. [2013a]). PCA-CPM

framework is additionally evaluated on the UCLA Consortium for Neuropsychiatric Phenomics

(CNP) dataset (Poldrack et al. [2016a]).
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3.2 Methods

3.2.1 Principal Component Analysis (PCA)-CPM

Connectome-based Predictive Modeling (CPM): As introduced in the Chapter 2, CPM (Shen

et al. [2017]) is a validated method for extracting and pooling the most relevant features from

connectivity data in order to construct linear models to predict behavioral measures. We use the

ridge-regression based CPM (Gao et al. [2019a]) in this chapter, i.e., the selected CPM features are

fit to learn the regression model coefficients via ridge regression.

PCA-CPM: Compared with the multidimensional-CPM prediction framework introduced in the

previous chapter, the only additional goal here is to combine multiple behavioral measures and it

is done in an independent step besides CPM. As CPM is normally evaluated by the 10-fold cross

validation (CV), in PCA-CPM, we apply PCA on the multiple behavioral measures in the training

dataset, get the first principal component along with the loadings for the first component. The

ridge-CPM model is then built to predict the first principal component using the FCs within the

training dataset. It is worth noting that when using the ridge-CPM model, multiple connectomes

can also be utilized to improve the prediction as described in the previous chapter.

3.2.2 multipath Canonical Correlation Analysis(mCCA)-CPM

Canonical Correlation Analysis (CCA): For two sets of random variables X = (x1, . . . ,xn) and

Y = (y1, . . . ,ym), assuming that the variables are correlated, CCA seeks linear combinations of

these two sets of random variables that maximize their correlation. In other words, CCA finds

vectors a∗ ∈ Rn and b∗ ∈ Rm such that the random variables Xa∗ and Yb∗ have maximum

correlation. Assuming that X and Y are demeaned, i.e., each column of either matrix has mean

zero, the procedure can be expressed by the following equation:
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(a∗,b∗) = argmax
a,b

(Xa)>(Yb)√
[(Xa)T (Xa)][(Yb)>(Yb)]

(3.1)

Multipath Canonical Correlation Analysis (mCCA): Although CCA is able to find projection

that maximizes correlation between two sets of variables, maximizing the cross-correlation be-

tween multiple datasets is of broader interest. A number of generalizations of CCA for this case

exist. However, all versions can be summarized by the specific combination of 5 different objective

functions and 4 different constraints (Asendorf [2015]), and almost all of the previous algorithms

aim to find solution that maximizes the sum of all the possible inter-dataset correlations. Suppose

we have in total M datasets, it will maximize the sum of all the possible M×(M−1)
2

correlations.

While in our problem, the aim is to maximize the sum of correlations between one and all the

other M − 1 datasets, or in total M − 1 correlations. Suppose that there are in total M edges for

each connectome, we can then denote the i-th edge’s data matrix by Xi ∈ RT×N , i = 1, 2, ...,M ,

where T represents the number of task functional connectivity matrices each individual has and

N is the total number of individuals. Similarly, we denote the behavior matrix by Y ∈ RB×N ,

where B represents the number of available behavioral measures. The objective function we are

maximizing then becomes:

J(a1, a2, ..., aM ,b) =
M∑
i=1

a>i RXiY b, (3.2)

where ai ∈ RT , b ∈ RB. RXiY ∈ RT×B is the cross-covariance matrices between Xi and Y:

RXiY =
N∑
i=1

(Xi −Xi)(Y −Y)>, (3.3)

Here, Xi = 1
N

∑N
j=1 Xi(:, j) and Y = 1

N

∑N
j=1 Y(:, j) are the sample-mean for edge data matrix

Xi and behavioral matrix Y. Proper constraint needs to be satisfied on the above objective function
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in order to prevent ai and b from increasing unboundedly. Denoting covariance matrix of Xi and

Y as ΣXi
and ΣY separately, we use the constraint:

(
M∑
i=1

a>i ΣXi
ai) + b>ΣY b = 1 (3.4)

We propose two types of solutions for the optimization (i) a closed-form solution using generalized

eigendecomposition, and (ii) an iterative solution.

Closed-form solution: To find the optimal parameter for objective function (3.2) under the con-

straint (3.4), we use a Lagrangian multiplier:

L(a1, a2, ..., aM ,b, λ) =
M∑
i=1

a>i RXiY b− λ(
M∑
i=1

a>i ΣXi
ai + b>ΣY b− 1) (3.5)

The optimal projection can then be found as the solution of δL/δai = 0 and δL/δb = 0, which

yields the following equations:

RXiY b = 2λΣXi
ai,

M∑
i=1

R>XiY
a = 2λΣY b.

(3.6)

By concatenating all the ai and b together into v = [a1
> · · · aM

>b>], we can rearrange equations

(3.6) into a matrix form: Rv = λDv where,

R =



0 0 · · · 0 RX1Y

0 0 RX2Y

... 0
...

0 RXMY

R>X1Y
R>X2Y

· · · R>XMY 0


,D =



ΣX1 0 · · · 0

0 ΣX2 0

...
... . . . ...

ΣXM

0 0 · · · 0 ΣY


When D is non-singular, the solution to (3.6) is the eigenvectors of

35



D−1R ∈ R(M×T+B)×(M×T+B), a sparse matrix with (2 × M × T × B) entries. The solution

to this sparse eigendecomposition problem is fast and accurate when the edge number M is large

(Stewart [2002]).

Iterative solution: To find the iterative solution for the objective function (3.2) under constraint

(3.4), combining the two equations produces a single objective function:

J(a1, a2, ..., aM ,b) =

∑M
i=1 a>i RXiY b

(
∑M

i=1 a>i ΣXi
ai) + b>ΣY b

. (3.7)

This objective function J’s value remains unchanged when the scale of ai and b is multiplied by

the same amount. When maximizing J , this prevents the function from only increasing the scale of

ai and b without actually increasing the correlation between the projected variables. To optimize

(3.7), we use the first-order condition, yielding equations similar to (3.6). We are able to use fixed-

point iteration method by moving ai and b alone to one side. The iterative solution is summarized

in Algorithm 1.

Algorithm 1 Iterative method for mCCA
Input: RXiY , ΣXi

, ΣY - cross-covariance/covariance matrix, i = 1, 2, ...,M
ε - convergence threshold.

Output: ai,b - projection variable, i = 1, 2, ...,M .
Initialize a

(0)
i , b(0) with uniformly distributed random vectors

while |b(t+1) − b(t)| > ε do
a

(t+1)
i = Σ−1

Xi
RXiY b(t);

b(t+1) = Σ−1
Y

∑M
i=1 R>XiY

a
(t)
i ;

a
(t+1)
i =

a
(t+1)
i

(
∑M

i=1 a
(t)>
i ΣXi

a(t))+b(t)>ΣY b(t)
; . rescaling

b(t+1) = b(t+1)

(
∑M

i=1 a
(t)>
i ΣXi

a(t))+b(t)>ΣY b(t)
; . rescaling

The projection variable ai and b are initialized with uniform random vectors and the objective

function J is calculated based on them. ai, b and J are then iteratively updated. Within each

iteration, ai and b are rescaled to keep the sum of variances of the transformed variables close to

1, i.e., concatenated vector of all ai and b is always on the ellipsoid. As mentioned above, this

prevents ai and b from increasing unboundedly and J’s value is not affected by the rescaling.
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mCCA-CPM: Based on the proposed mCCA method, we designed a prediction framework that

takes in multiple connectomes and predicts latent phenotypes from a battery of behavioral mea-

sures. The framework works in two steps:

Step 1: Combine multiple connectomes and multiple behavior measures. On the training data,

apply mCCA to find the optimal projection ai for edge Xi and b for behaviors Y. Then

use ai and b to combine the connectomes and behaviors. This reduces the 3D connectome

input X = [X>1 , . . . ,X
>
M ] ∈ RN×T×M to 2D matrix X̃ ∈ RN×M and 2D behavioral matrix

Y ∈ RN×B to composite behavior score vector Ỹ ∈ RN .

Step 2: Univariate feature selection. For each column in X̃, representing an individual edge,

compute its Pearson correlation coefficient and the corresponding p-value with the behav-

ior score. Select those informative edges by an predefined selection threshold (i.e. p < 0.1)

to choose edges that are more correlated with the behavior. This reduces the edge number

to K.

Step 3: Use ridge regression (RR) to train the prediction model. Now for each individual we

haveK edges as independent variables and one behavioral score as the dependent variable.

We then use RR to train the prediction model on the training data. ys = β0 + β1x̃s +

εs, s = 1, . . . , N., where β1 ∈ RK×1

3.2.3 Experiment setup

Two datasets were used: the UCLA Consortium for Neuropsychiatric Phenomics (CNP) dataset

(Poldrack et al. [2016a]) and the Human Connectome Project (HCP) dataset (Van Essen et al.

[2013a]).

CNP participants: The CNP data has been described in detail elsewhere (Poldrack et al. [2016a]).

From the CNP data, we selected behavioral and functional imaging data from 172 total de-identified

and anonymized participants (HC=73, SCZ=33, BPAD=34, ADHD=32). From the UCLA neu-
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ropsychological battery, working memory was measured using the Weschler Memory Scale (WMS)

symbol span, WMS digit span, and Weschler Adult Intelligence Scale (WAIS) letter-number se-

quencing; short-term memory was measured using the Verbal recall I, and California Verbal Learn-

ing Task (CVLT) short-delay free recall; and long-term memory was measured using Verbal recall

II, CVLT long delay free recall, and CVLT scene recognition overall accuracy. For predictive mod-

eling, fMRI acquisitions during the balloon analog risk task (BART), Paired Associative Memory

encoding (PAM-E), Paired Associative Memory retrieval (PAM-R), Spatial Working Memory Ca-

pacity (SCAP), Stop Signal (SS), and Task Switching (TS) were used.

HCP Dataset: In this dataset, each individual performed 7 tasks in the scanner: gambling (GAM),

language (LAN), motor (MOT), relational (REL), social (SOC), working memory (WM), and emo-

tion (EMO). Cognitive ability was assessed by tasks from the NIH toolbox and Penn computerized

neurocognitive battery (CNB). We used 9 cognitive tasks that are related with intelligence, divided

into 4 aspects of intelligence, as previously defined (Dubois et al. [2018]) (see Fig. 3.2). Among

the 9 cognitive measures, 3 memory-related ones were used for the general memory measure’s

generalization test. Unadjusted scores were used for all measures. We restricted our analyses to

those individuals who participated in all 9 fMRI conditions (7 task, 2 rest), whose mean frame-to-

frame displacement was less than 0.1 mm, whose maximum frame-to-frame displacement was less

than 0.15 mm, and for whom the 9 behavioral measures used were available (N = 514; 240 males;

ages 22-36+). This conservative threshold for exclusion due to motion was used to mitigate the

substantial effects of motion on functional connectivity.

FMRI processing: For both the two datasets, fMRI data were processed with standard methods

and parcellated into 268 nodes using a whole-brain, functional atlas defined previously in a separate

sample. Next, the mean timecourses of each node pair were correlated and Fisher transformed,

generating seven 268× 268 connectomes per individual. Task connectomes were calculated based

on the “raw” task timecourses, with no regression of task-evoked activity. These matrices were

used to generate cross-validated predictive models of general intelligence.
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Evaluation: All the experiments used 10-fold CV. PCA and mCCA were only performed on the

training fold to avoid data leakage. Model performance was evaluated by the cross-validated R2,

R2
CV = 1 −

∑n
i=1(yi−ŷ)∑n
i=1(yi−ȳ)

(Alexander et al. [2015]).
√
R2
CV was reported for comparability to the

normally-used Pearson correlation coefficient.
√
R2
CV was calculated within each fold separately

and averaged cross folds. The 10-fold CV was repeated 100 times to avoid cherry picking. Signif-

icance is assessed at p < 0.05 calculated as by paired t-test.

Comparison of the iterative and the closed-form solutions: We tested both the speed and accu-

racy of the two solutions with simulated and the HCP dataset. The test is ran on a machine with an

Intel Xeon Gold 6128 CPU @ 3.40GHz and 96GB of RAM, running Ubuntu 16.04.4 LTS. The al-

gorithm is implemented and tested on MATLAB R2018a 64-bit version. For the iterative solution,

a convergence threshold ε = 10−5 and a minimum number of steps n = 10 were used. For the sim-

ulated data, we generated random data matrix Xi ∈ R100×1000, i = 1, 2, ..., 100 and Y ∈ R20×1000.

Each item in Xi and Y is independently drawn from a standard normal distribution. For the HCP

dataset, different numbers of edges are tested to investigate if the preferred solution is dependent

on the number of edges. To choose the sets of edges, for each task, we first calculate its average

correlation with the set of behaviors and then for each edge the correlations are averaged again

over all the tasks to get an overall description. Edges are then ranked by this overall correlation

and the ones with higher correlation are chosen.

3.3 PCA-CPM predicts general memory measure

3.3.1 Transdiagnostic prediction of memory constructs

We were able to predict working, short-, and long-term memory constructs across diagnosis. The

6 task-based connectomes predict working memory (median q2 = 0.16, p < 0.001, permuta-

tion testing, 1,000 iterations, 1-tailed), short-term (median q2 = 0.22, p < 0.001, permutation

testing, 1,000 iterations, 1-tailed), and long-term (median q2 = 0.20, p =< 0.001, permutation
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testing, 1,000 iterations, 1-tailed). Similar prediction accuracy is observed if all memory mea-

sures—regardless of category—are included (median q2 = 0.27, p < 0.001, permutation testing,

1,000 iterations).

In line with previous CPM results, our models are complex with contributions from each task

and distributed across multiple brain areas. In general, each task-based connectome contributes to

prediction performance. For short-term and long-term memory, the PAM-RET and BART tasks

contributed the most to overall prediction. For working memory, task contributions are more uni-

form. For the short and long-term memory models, the top three contributing nodes to prediction

were located in the right prefrontal cortex, cerebellum (left crus I), and the right motor strip (Fig.

3.1C). For the working memory model, the top three contributing nodes in the left medial pre-

frontal, right temporal-parietal junction, and right temporal lobe (Fig. 3.1C).

3.3.2 Model validation on external datasets

The general memory model (including working, short- and long-term memory measures) trained

on the CNP dataset (n = 172) successfully generalized to the HCP dataset (r = 0.17, p < 0.01,

d.f. = 513). At the same time, a summary memory model trained on the HCP dataset (n = 514)

generalized back to the CNP dataset (r = 0.40, p < 0.01, d.f. = 170). We observe differences in

prediction performance when training with the CNP and HCP datasets. We suspect that this is due

to the fact that the sample size used to train our models is three times large for the HCP compare

to the CNP (i.e., 514 vs 172), allowing us to achieve higher prediction performance when training

with the HCP.
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Figure 3.1: Connectome-based predictive model performance for transdiagnostic 10-fold
cross-validation. The left column (A) shows a histogram of the model performance across 1,000
iterations of the actual (red) and randomly permuted (blue) data. The middle column (B) shows
how actual and predicted values compare for the median-performing model (green, SCZ; blue,
BPAD; red, ADHD). The right columns (C) show surface plots of each node’s degree, which is
defined as the number of edges per node that were weighted in 95% of iterations (the short-term
memory model includes 289 consistently weighted edges; long-term, 276 edges; working, 174; all,
362).

3.4 mCCA-CPM predicts general intelligence

3.4.1 mCCA-CPM better predicts intelligence

mCCA-CPM generates significantly better predictions of intelligence than the best performing

model for a single measure and the PCA model (Fig. 3.2a). While measures from the same category

are predicted with similar accuracy, each category from the battery of behavioral measure, except

visuospatial ability, has at least one score that contributes to the latent intelligence phenotype

found by mCCA-CPM, suggesting that the latent phenotype spans the whole battery of behavioral

measures.
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Figure 3.2: Prediction of behavioral measures. a) Predict single measure with ridge regression
and combined measure with PCA or mCCA. Boxes show 25th to 75th percentile and whiskers show
min and max values. b) Contribution of each measure in the mCCA-CPM model as defined by its
fraction in the latent factor. Cognitive tasks are colored by the factor analysis result from (Dubois
et al. [2018]).

3.4.2 Predictive edges are widely distributed across the brain

When we further look at the prediction model, we see that all the connectomes have significant

contribution in the final prediction (Fig. 3.3a). While WM is the most influential connectome

(> 20%), all the other connectomes have relatively similar contribution (∼10-15%). The edge

contribution (Fig. 3.3b-c) also shows a distributed pattern of the whole brain. Edge contribution

is defined as the weighted sum of the ridge regression coefficients multiplied by the edge strength

standard deviation and weighted by the task weights learned from mCCA-CPM.
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Figure 3.3: Visualization of the task and edge contribution in the general intelligence pre-
diction. a) Each task contributes—defined as the sum of coefficients of all the edges selected—
uniquely to the final prediction. b) Network and c) circle plot of the most influential edges.

3.5 Comparison of the mCCA’s iterative solution to the closed-

form solution

From the simulated data (Fig. 3.4), the closed-form solution performs better in both accuracy and

computational speed. The iterative solution suffers from the variable steps to converge due to

the randomness in the simulated data. However, for the result of real data, an opposite trend is

observed. Because of the higher correlation between edges, the iterative solution converges to the

ground truth in about 10 steps, which greatly reduces the total computation time compared with the

closed-form solution. Further, when the number of edges is low, the iterative solution converges

with the similar speed as solving for the closed-form solution. As the number of edges increases,

the iterative solution begins to converge faster than the closed-form solution. This results from

the more correlated edge structure (i.e. different Xis are more correlated) in the real data. From

Fig. 3.4b, the average step to reach convergence is also relatively small (< 20 steps).

3.6 Summary

We proposed two frameworks, labeled PCA-CPM and mCCA-CPM, for both generating and pre-

dicting latent phenotypes from a battery of behavioral measures. The PCA-CPM framework used

PCA to combine multiple behavioral measures and rCPM to predict the combined general mea-
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Figure 3.4: Comparison of mCCA’s closed-form solution to the iterative solution a) top row
shows within the 100 repeated experiments with different random data matrix, the one that iterative
solution generates the most accurate solution. Bottom row shows when iterative solution generates
the most inaccurate result. b) Each subplot shows the one fold that iterative solution gives the
most inaccurate result. c) Timing of the two algorithms. Shown in the format of mean±standard
deviation.

sure. The mCCA-CPM framework utilized a novel solution that generalizes the traditional CCA

problem and can serve as a special condition of the more general multiset CCA problem. A closed-

form and an iterative solution were proposed to solve the mCCA problem. The iterative solution is

fast and accurate when the number of edges are large and correlated. The PCA-CPM framework

was applied on the CNP to build and predict a general memory measure from a battery of memory-

related cognitive scores. Transdiagonstic prediction of this general memory can be performed with

4 different cohorts, suggesting that the same macroscale brain networks subserve memory across

diagnostic groups and that individual differences in memory performance are related to individ-

ual differences within this brain circuit. The score can be predicted, By predicting a composite

memory score, we had better accuracy compared with predicting the single scores. Moreover, the
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general memory prediction model was also generalized across datasets (between CNP and HCP

datasets), suggesting that the general memory measure was not limited within a specfic dataset and

can be generalized across datasets given the availability of multiple measures in the same cognitive

domain. As a supervised substitute of the PCA-CPM framework that aims to maximize correlation

between composite measures with the FCs, the mCCA-CPm framework was applied on the HCP

dataset and a latent intelligence phenotype was estimated from a battery of 9 behavioral measures.

This latent phenotype was predicted with greater accuracy than any single measure or a latent phe-

notype by PCA. Together, these results suggest that combining multiple measures of behaviors

and connectomes in a principled manner leads to more accurate predictive models. Overall, PCA-

CPM provides a unsupervised but easy-to-generalize tool for connectome-based predictions in this

scenario while mCCA-CPM is supervised and more accurate within the single dataset.
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Chapter 4

Non-linear manifold learning in fMRI
uncovers a low-dimensional space of brain

dynamics

4.1 Introduction

Understanding large-scale brain dynamics is a major goal of modern neuroscience (Jorgenson et al.

[2015]). However, due to the high-dimensional nature of brain patterns, how to best operationalize

and tackle this problem remains an open question. Nevertheless, the number of dimensions that

explain the observed dynamics is small compared with the number of measurements. Thus, there

is growing evidence to suggest that a low-dimensional space—hidden from direct observation,

learned from the data, and derived from many brain regions—may be a suitable model for studying

brain dynamics (Gao and Ganguli [2015]).

These low-dimensional spaces, also called brain or neural manifolds, have been observed using

a variety of neural recordings and animal models (Ahrens et al. [2012], Churchland et al. [2012],

Kobak et al. [2016], Mishne et al. [2016], Santhanam et al. [2009]). Research suggests that lin-

ear methods, such as principal component analysis (PCA), are appropriate when recorded neural

data comes from simple stimuli that project onto a limited area within a manifold (Cunningham

and Byron [2014]). However, data from richer tasks often project onto a larger portion of the
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manifold, violating linear approximations (Cunningham and Byron [2014], Gallego et al. [2017]).

Nonlinear dimensionality reduction methods, like diffusion maps (Coifman and Lafon [2006a]),

can overcome this limitation by integrating local similarities into a global representation, which

better reflect the underlying brain manifold.

Similar concepts have emerged in human functional magnetic resonance imaging (fMRI) stud-

ies to quantify moment-to-moment changes in activity and connectivity (Hutchison et al. [2013],

Preti et al. [2017]). As with related research on brain manifolds, dimensionality reduction methods

are used to project the fMRI time series onto a low-dimensional space (Allen et al. [2014a], Monti

et al. [2017a], Shine et al. [2016]). From the low-dimensional space, characteristic brain states—or

distinct, repeatable patterns of brain activity—are used quantify brain dynamics. Predominantly,

these studies have relied on linear methods (Allen et al. [2014a], Monti et al. [2017a], Shine et al.

[2016]). However, given the rich repertoire of tasks available in human fMRI, a manifold derived

from nonlinear methods may better capture the underlying geometry of the low-dimensional space.

To address this, we recently introduced 2-step Diffusion Maps (Gao et al. [2019b]), which are

a novel extension of diffusion maps. 2sDM extracts common variability between individuals by

performing dimensionality reduction of a 3rd-order tensor in a two-stage manner. In the first stage,

timeseries data from each individual are embedded into a low-dimensional Euclidean space. In

the second stage, embedding coordinates for the same time point from different individuals are

concatenated for use in another embedding. The second stage embeds similar time points across

subjects to obtain a low-dimensional group-wise representation of those time points. This two-

stage manner avoids directly comparing brain activation across subjects, which can be imprecise

without proper alignment (Haxby et al. [2011]). As 2sDM is an unsupervised learning method, no a

priori knowledge is needed to handcraft features, which are less robust, computationally intensive,

and generalize poorly when compared to learned features from unsupervised methods (Bengio

et al. [2013]). The data-driven nature of 2sDM offers complementary information, not only to

confirm previous results using handcrafted features, but also to generate new empirical results.
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We used 2sDM to embed timeseries from a rich repertoire of tasks onto a single low-dimensional

manifold in two fMRI datasets: the Human Connectome Project and the UCLA Consortium for

Neuropsychiatric Phenomics. By using multiple tasks spanning a range of cognitive functions and

loads, we obtain a more even sampling of the original high-dimensional space of recurring patterns

of brain dynamics (Cunningham and Byron [2014], Gallego et al. [2017]) to better project indi-

vidual time points onto a low-dimensional manifold. Additionally, we embed resting-state data

into the same task embedding to investigate differences in brain dynamics between resting-state

and task performance. These results suggest that manifold learning can uncover an interpretable

low-dimensional embedding for the study of brain dynamics in fMRI data.

4.2 Methods

4.2.1 Diffusion maps

Diffusion maps Coifman and Lafon [2006b] is part of a broad class of manifold learning algo-

rithms. Specifically, diffusion maps provides a global description of the data by considering only

local similarities and is robust to noise perturbation. The new nonlinear representation provided

by diffusion maps reveals underlying intrinsic parameters governing the data Nadler et al. [2006].

Here we develop a new framework utilizing diffusion maps to detect repeatable brain states in

fMRI data.

The diffusion maps algorithm is as follows. The input is a pairwise similarity matrix S, which

can be computed using the Gaussian kernel wε(x, y) = exp(−||x − y||2/ε) between pairs of data

points x and y. Then the rows of the similarity matrix are normalized by P = D−1S, where Dii =∑
j Sij . This creates a random walk matrix on the data with entries set to p(x, y) = wε(x, y)/d(x).

Taking powers of the matrix is equivalent to running the Markov chain forward. The kernel pt(·, ·)

can be interpreted as the transition probability between two points in t time steps. The matrix

P has a complete sequence of bi-orthogonal left and right eigenvectors φi, ψi, respectively, and

48



Algorithm 2 Diffusion Maps
Input: X ∈ RN×P - N instances with P features
d - number of dimensions to keep in the embedding
t - diffusion time parameter

Output: Ψ ∈ RN×d - d-dimensional embedding
function DM(X, d, t)

Step 1: Build similarity matrix L using Gaussian kernel wε(x, y) = e−||x−y||
2/ε

Step 2: Normalize the matrix L to approximate the Laplace–Beltrami operator L̃ =
D−1LD−1, where D is a diagonal matrix and Dii =

∑
j Lij

Step 3: Form the normalized random walk matrix M = D̃−1L̃, where D̃ is a diagonal
matrix and D̃ii =

∑
j L̃ij

Step 4: Compute the largest d eigenvalues λi of M and the corresponding eigenvectors ψi,
Ψ(X) = (λt1ψ1, λ

t
2ψ2, . . . , λ

t
dψd)

=0

a corresponding sequence of eigenvalues 1 = λ0 ≥ |λ1| ≥ |λ2| ≥ . . .. Diffusion maps is a

nonlinear embedding of the data points into a low-dimensional space, where the mapping is defined

as Ψ(x) = (λt1ψ1(x), λt2ψ2(x), . . . , λtkψk(x)), where t is the diffusion time. Note that ψ0 is

neglected because it is a constant vector.

A diffusion distance D2
t (x, y) between two data points x, y is defined as:

D2
t (x, y) =

∑
z

(pt(x, z)− pt(y, z))2

φ0(z)

where φ0 represents the stationary distribution. This measures the similarity of two points by the

evolution in the Markov chain. Two points are closer if there are more short paths connecting them.

It is thus robust to noise as it considers all the possible paths between two points.

Proposition 1 (Coifman & Lafon). Diffusion maps Ψ embeds data points into a Euclidean space

Rk where the Euclidean distance approximates the diffusion distance:

D2
t (x, y) = ||Ψ(x)−Ψ(y)||22

A detailed proof using the spectral theorem in Hilbert space can be found in Coifman and

Lafon [2006b]. In practice, eigenvalues of P typically exhibit a spectral gap such that the first
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few eigenvalues are close to one with all additional eigenvalues much smaller than one. Then the

diffusion distance can be well approximated by only these first few eigenvectors (Nadler et al.

[2006]). Thus, we obtain a low-dimensional representation of the data by considering only the first

few eigenvectors of the diffusion maps (See Algorithm 2). Intuitively, diffusion maps embeds data

points closer when it is hard for the points to escape the local region within time t.

To remove dependence on the density of the data, the Gaussian similarity weights wε(·, ·) are

renormalized by the estimated density. This renormalization step leads to an anisotropic diffusion

process and enables the algorithm to better recover the manifold structure so that it does not depend

on the distribution of the points. The eigenvectors of the new random walk matrix now approximate

the Laplace-Beltrami operator (Nadler et al. [2006]).

Diffusion maps is similar to the normalized cuts algorithm (Shi and Malik [2000]) which has

previously been used in fMRI analysis (Shen et al. [2013b]). Normalized cuts aims to find the

eigendecomposition of D−1L where L is the Laplacian matrix L = D − S. The eigendecompo-

sition of D−1L yields the same eigenvectors ψ as for diffusion maps, with corresponding eigen-

values 1− λ. Thus, performing k-means clustering on diffusion maps coordinates as we do below

is mathematically similar to spectral clustering. The key difference is that in diffusion maps the

coordinates are weighted by the corresponding eigenvalues.

4.2.2 2-step Diffusion maps

Based on diffusion maps, we propose a hierarchical manifold learning framework for multi-individual

fMRI BOLD time series. The framework is illustrated in Figure 4.1a. Under the assumption that

individuals’ fMRI responses are time-synchronized, we represent each individual’s fMRI data as

Xi,.,. ∈ RT×V , i = 1, . . . ,M . Here T is the number of repetition time (TR) in the scan, V is

the number of voxels or brain regions, and M is the total number of individuals. We label this

framework 2-step diffusion maps (2sDM). Note that 2sDM can be applied to either domains of the

data, resulting in a lower-dimensional representation of either time, individuals or brain regions.

50



Here we illustrate the framework by embedding time into a lower-dimensional space. Reducing

the other two domains just requires trivial adaptation.

First we apply diffusion maps to the fMRI time series of every single individual i to obtain

the embedding Ψi ∈ RT×d1 , thus reducing each individual’s V voxels or brain regions to a d1-

dimensional Euclidean space. Then, we concatenate the new representations of all individuals to

a single matrix Ψ(1) ∈ RT×(Md1). From this concatenated matrix, we can perform a second-step

diffusion maps to further reduce the dimensionality of every time-frame to d2. The final time-

frame representation matrix with multi-individual similarity is Ψ(2) ∈ RT×d2 . Our framework is

presented in Algorithm 3. As the first-step diffusion maps produces a cleaner representation of

the fMRI data, the reasoning of performing an embedding based on the results of the first-step

embedding can be seen from the following proposition,

Proposition 2. The distance between two frames u, v in Ψ(1) equals the total diffusion distance

for all individuals.

Proof. By Proposition 1, ||Ψ(x)−Ψ(y)||2 = Dt(x, y). Therefore

||Ψ(1)(u)−Ψ(1)(v)||22 =
M∑
i=1

||Ψi(u)−Ψi(v)||22 =
M∑
i=1

D2
t (Xi,u,·,Xi,v,·),

where D2
t (Xi,u,·,Xi,v,·) is the diffusion distance of time points u and v for individual i with

diffusion time t.

As such, if two concatenated vectors have relatively small Euclidean distance, it suggests that,

on average, for all of the individuals there is small diffusion distance between the two time points.

Additionally, no functional alignment between individuals is needed as the similarity between time

points is calculated in each individual’s own embedding space separately and aggregated through

the sum of diffusion distances.
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Algorithm 3 2-step Diffusion Maps
Input: X ∈ RM×T×V - M individuals’ fMRI time series with T TRs and V regions
d1 - number of dimensions to keep for each individual
d2 - number of dimensions to keep in the final embedding
t - diffusion time parameter

Output: Ψ(2) ∈ RT×d2 - lower-dimensional embedding for the second dimension
function 2SDM(X, d1, d2, t)

for each individual Xi,·,· do
Ψi=DM(Xi,·,·, d1, t)

Ψ(1)=(Ψ1,Ψ2, . . . ,ψM)
Ψ(2)=DM(Ψ(1), d2, t)

4.2.3 Out-of-sample extension framework

To embed new time points to the existing temporal manifold, we use out-of-sample extension

(OOSE) for new time series data. The reason to use OOSE here is twofold: (i) OOSE enables

to embed new data points without reapplying the eigendecomposition on the entire dataset, and

(ii) OOSE keeps the existing manifold structure unaffected and makes it easier to interpret new

time points in an unsupervised setting. Figure 4.1b. The OOSE framework for time-synchronized

fMRI data works in a similar hierarchical way, using two Nyström extension steps (Algorithm

4). Nyström extension was a nonparametric method to extend the embedding learned with training

dataset to unseen data points. It was based on Nyström method to extend eigenvector computed for

a set of sample points to an arbitrary point. Suppose we have a kernel function K(a, b) that gener-

ated a symmetric matrix M with entries Mij = K(xi, xj) upon a training dataset D = x1, . . . , xn.

Let (vk, λk) be an (eigenvector, eigenvalue) pair that solves Mvk = λkvk. The k-th coordinate of

diffusion maps embedding was then λkvk. Let yk(x) denote the k-th diffusion maps embedding

associated with a new point x, then yk(x) = 1
λk

∑n
i=1 vkiK(x, xi).

Given new time-synchronized fMRI data X′i,.,. ∈ RT ′×V , i = 1, ...,M for the same group of

individuals, we first approximate eigenvectors Ψ̂
(1)

i for each individual. Then we concatenate all

the individuals’ eigenvectors Ψ̂
(1)

i as the new data points and approximate its eigenvectors Ψ̂
(2)

as

the final representation. The 2-step OOSE framework is described in Algorithm 5.
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Algorithm 4 Nyström Out-of-sample Extension
Input: X ∈ RN×P - training data

Ψ ∈ RN×d - d-dimensional embedding result for X
X′ ∈ RN ′×P - N ′ new data points

Output: Ψ̂ ∈ RN ′×d - approximated low-dimensional embedding for X′

function OOSE(X′,X,Ψ)
ψ̂l(x

′) = 1
λl

∑m
j=1 p(x

′, xj)ψl(xj), l = 1, . . . , d

Ψ̂(X′) = (λt1ψ̂1, λ
t
2ψ̂2, . . . , λ

t
dψ̂d)

Algorithm 5 2-step Out-of-sample Extension
Input: X ∈ RM×T×V - M individuals’ fMRI time series with T TRs and V regions

Ψ(1) ∈ RT×M×d1 - first-step diffusion maps result for X
Ψ(2) ∈ RT×d2 - second-step diffusion maps result for Ψ(1)

X′ ∈ RM×T ′×V - M individuals’ new fMRI time series with T ′ TRs and V regions
Output: Ψ̂

(2) ∈ RT ′×d2 - approximated low-dimensional embedding for X′

function 2-STEP OOSE(X′,Ψ(1),Ψ(2),X)
for each individual X′i,·,· do

Ψ̂
(1)

i (X′i,·,·) =OOSE(X′i,·,·,Xi,·,·,Ψ
(1)
·,i,·)

Ψ̂
(1)

(X′) = (Ψ̂
(1)

1 (X′1,·,·), Ψ̂
(1)

2 (X′2,·,·), . . . , Ψ̂
(1)

M (X′M,·,·))

Ψ̂
(2)

(X′) =OOSE(Ψ̂
(1)
,Ψ(1),Ψ(2))

fMRI data that is not time-synchronized across individuals (e.g., rsfMRI) needs to be syn-

chronized across individuals before an out-of-sample application of the existing 2sDM embedding

can be used. We used Brainsync (Joshi et al. [2018]) to temporally synchronize the rsfMRI data.

Brainsync synchronizes one individual’s time series data Y ∈ RT×V to a reference individual’s

time series X ∈ RT×V by finding an optimal orthogonal transformation Os for Y to minimize

the squared error: Os = arg minO∈O(T ) ||X −OY||2. The problem can be solved by the Kabsch

algorithm (Kabsch [1976]). The T × T cross-correlation matrix XYt is first formed and its sin-

gular value decomposition can be calculated as XYt = UΣVt. The optimal Os can be found by

Os = UVt and Y can be synchronized to X by OsY.
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Figure 4.1: Schematic of 2sDM manifold learning framework a) 2sDM algorithm framework
for time-synchronized multi-individual fMRI time series. b) 2-step out-of-sample extension frame-
work with BrainSync for new fMRI time points. Mathematical notations in the figure are the same
as those used in the corresponding Methods section.
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4.2.4 Dynamic connectivity

To relate our task embedding to previously used handcrafted features (Shine et al. [2016]), we

calculated BT using sliding-window-based functional connectivity, as described in previous liter-

ature (Shine et al. [2016]). In this manuscript, handcrafted features referred to features that were

chosen manually like BT that was used here to character the integration and segregation pattern of

the brain graph. BT was averaged across all subjects. To compare our results with prior literature

(Shine et al. [2016]), we calculated the dynamic functional connectivity using the multiplication

of temporal derivatives (MTD; Shine et al. [2015]). MTD is calculated as the point-wise product

of the temporal derivatives of paired nodes’ time series:

MTDijt =
1

w

(t+w)∑
t

(dtit × dtjt)
σdtit × σdtjt

At each time point, the dynamic functional connectivity is calculated as the averaged MTD over a

sliding time window in order to reduce high-frequency noise. We chose the length of the sliding

window to be 15 time points, based on previous literature (Shine et al. [2016]). The participation

coefficient BT characterizes the extent to which a region connects across all modules, where mod-

ules were normally defined a priori from community detection methods that find a set of nodes as a

module that were strongly connected to each other than nodes from another set. The participation

coefficient for a region i at time T is calculated as:

BiT = 1−
NM∑
s=1

(
kisT
kiT

)2

where kisT is the number of links of node i to nodes in module s at time T , kiT is the total degree

of node i at time T and NM is the number of modules, or canonical networks in our setting.

The participation coefficient of a region is therefore close to 1 if its links are uniformly distributed

among all the modules and 0 if all its links are within its own module. The whole brain participation
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coefficient BT represents the average of BiT from each region and thus represents the integration

and segregation pattern of the brain. BT is closer to 1 if our whole brain is more integrated and

closer to 0 if our whole brain is more segregated.

4.2.5 Characterizing changes in brain states

By utilizing the temporal order of time points, we characterized the brain dynamics across the

four brain states by state transition probability and dwell time. State transition probabilities are

calculated based on the temporally adjacent time points’ brain states. From these state transition

probabilities, a stochastic matrix and the dwelling times (i.e. the stationary probability distribution

of the stochastic matrix) were calculated and visualized as Markov chain models. The station-

ary distribution of the Markov transition matrix is defined as the distribution that does not change

under application of the transition matrix π = πP, which is the left eigenvector of P. It repre-

sents the distribution to which the Markov process converges. It was used in our experiment to

represent the dwell-time distribution of discrete brain states. As tasks putatively put a participant

into certain states (as opposed to the unconstrained nature of the resting state), we investigated

differences in the temporal dynamics of state switching during task and rest. We calculated en-

tropy—a measure of the randomness—of the transition probability from one brain state to the other

states. Entropy of a discrete probability distribution measures the uncertainty of the outcome. It

is calculated as the negative expectation of the logarithm of the probability mass function’s value

S = −
∑

i pi log pi = −Ep[log p] In our experiment, entropy of the brain state transition probabil-

ity was used to assess the randomness of brain state transitioning with lower entropy representing

more easy-to-predict brain state transition dynamics. Greater entropy indicates a less predictable

transition from one state to another.
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4.2.6 Dataset and imaging parameters

Data was obtained from the Human Connectome Project (HCP) 900 Subject release (Van Essen

et al. [2013b]). We used fMRI data collected while 390 participants performed six tasks (gam-

bling, motor, relational, social, working memory—WM, and emotion). We restricted our analyses

to those subjects who participated in all nine fMRI conditions (seven task, two rest), whose mean

frame-to-frame displacement was less than 0.1mm and whose maximum frame-to-frame displace-

ment was less than 0.15mm, and for whom the task block order are the same as other subjects

(n=390). All fMRI data were acquired on a 3T Siemens Skyra using a slice-accelerated, multiband,

gradient-eco, echo planar imaging (EPI) sequence (TR=720ms, TE=33.1ms, flip angle=52◦, reso-

lution=2.0mm3, multiband factor=8). Images acquired for each subject include a structural scan

and eighteen fMRI scans (working memory (WM) task, incentive processing (gambling) task,

motor task, language processing task, social cognition task, relational processing task, emotion

processing task, and two resting-state scans; two runs per condition (one LR phase encoding and

one RL phase encoding run)) split between two sessions.

The UCLA Consortium for Neuropsychiatric Phenomics (Poldrack et al. [2016b]) dataset was

used for replication. Similar to the standards for the HCP dataset, we restricted our analyses to

those subjects who participated in all 5 fMRI conditions (four task, one rest), whose mean frame-

to-frame displacement was less than 0.1mm and whose maximum frame-to-frame displacement

was less than 0.15mm. 77 healthy controls were retained. These participants performed four

tasks (paired memory retrieval task—PAMRET, paired memory encoding task—PAMENC, spa-

tial working memory task—SCAP, task switching task—TASKSWITCH). Details of the image

acquisition parameters have been published elsewhere (Poldrack et al. [2016b]). In brief, all data

were acquired on one of two 3T Siemens Trio scanners at UCLA. Functional MRI data were col-

lected using a T2*-weighted EPI sequence with the following parameters: slice thickness=4mm,

34 slices, TR=2s, TE=30ms, flip angle=90◦, matrix 64 × 64, FOV=192mm, oblique slice orien-

tation. Images acquired for each subject include a structural scan and seven fMRI scans (balloon
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analog risk task (BART), paired-associate memory retrieval (PAMRET), paired-associate memory

encoding (PAMENC), spatial capacity task (SCAP), stop signal task (SST), task-switching task

(TASKSWITCH) and breath holding task).

As 2sDM requires time series to be synchronized across individuals (i.e., different individuals

encounter the same task condition at the same time point), the language task from the HCP and the

stop signal task, balloon analogue risk task, and breath hold task from the CNP were not included.

These tasks are self-paced. Participants finished blocks at different times, causing the task block

to be unsynchronized across participants.

4.2.7 fMRI processing

For the HCP dataset, the HCP minimal preprocessing pipeline was used (Glasser et al. [2013]),

which includes artifact removal, motion correction, and registration to standard space. For the CNP

dataset, structural scans were skull-stripped (Lutkenhoff et al. [2014]) and registered to the MNI

template using a validated algorithm Scheinost et al. [2017]. Slice time and motion correction were

performed in SPM8. For both datasets, all subsequent preprocessing was performed using image

analysis tools available in BioImage Suite (Joshi et al. [2011]) and included standard preprocessing

procedures (Finn et al. [2015a]). These procedures included removal of motion-related components

of the signal, regression of mean time courses in white matter, cerebrospinal fluid, and gray matter,

removal of the linear trend, and low-pass filtering. Mean frame-to-frame displacement yielded

seven motion values per subject, which were used for subject exclusion and motion analyses. We

restricted our analyses to subjects whose maximum frame-to-frame displacement was less than

0.15mm and mean frame-to-frame displacement was less than 0.1mm. This conservative threshold

for exclusion due to motion was used to mitigate the effect of motion on the embedding. We

used the Shen 268-node atlas to extract timeseries from the fMRI data for further analysis (Shen

et al. [2013a]). Timeseries used for the embedding were the average of the basis of the “raw” task

time courses, with no removal of task-evoked activity, for each node in the atlas. Finally, 2sDM
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was applied to embed a 3rd-order tensor of fMRI data (individual × region × time) onto a single

low-dimensional manifold.

4.3 Results

4.3.1 Brain dynamics during tasks embed onto a low-dimensional space

Although each task is different in many ways, individual time points in the fMRI data from all tasks

mapped onto a single low-dimensional manifold (Figure 4.2a). Compared with the common goal

of other low-dimensional embedding results, the advantage of our results was not in separating

different task scans apart. Instead, we aim to find a global representation across multiple tasks that

positioned tasks with similar cognitive loads together. By embedding multiple tasks together, rather

than in isolation, the closeness of different blocks and tasks in the manifold suggest that similar,

recurring patterns of brain dynamics exist across a variety of tasks. For example, in the manifold,

the 2-back blocks of the WM task were significantly (t = 201.9, p < 0.01, df = 175, 102) closer to

time points from the gambling task (Euclidean distance: 0.0258± 0.0096) than the 0-back blocks

of the WM task (Euclidean distance: 0.0355± 0.0100), despite the fact that the 2-back and 0-back

blocks were collected in the same fMRI run. The 2-back blocks of the WM task and the gambling

task both entail a higher cognitive load. In contrast, the 0-back blocks of WM task overlap with the

motor task. These tasks are simpler response tasks and less cognitively demanding. Overall, these

time points are positioned based on the similarity of the cognitive load at that time point, instead

of by task.

For all tasks, the average trajectories from each task are found to start near the corner where

cues (task cues preceding each task block) reside and end in the other corner where fixation blocks

reside (Figure 4.2b). These smooth trajectories indicate that the embedding preserves proper tem-

poral associations between blocks when arranging time points in discrete states. As can be ex-

pected, the paths of these temporal trajectories depend on the cognitive load of the task block. For
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example, the 2-back task traversed through the upper part of the manifold (higher value in terms

of Ψ3), and, in contrast, the 0-back task traversed through the lower part of the manifold (Figure

4.2c).

Moreover, as can be seen from the top 20 eigenvalues of the diffusion matrix the spectrum

decays rapidly, which suggests that the data is low-dimensional (Figure 4.3).

When projecting task fMRI time frames into 3D space using the 1st three coordinates of PCA,

no clear structure is shown from the embedding (Figure 4.4). The fact that 2sDM discovered the

manifold structure, while PCA could not, validates the usage of nonlinear manifold learning (more

detailed comparison between 2-step PCA and 2sDM embeddings are included in the supplemen-

tary materials).

4.3.2 Task embedding captures handcrafted features in an unsupervised

manner

In each time point in our task embedding is colored by its subject-averaged BT , showing a clear

pattern of decreasing BT starting from the top left corner of the embedding; higher BT at the top

of the embedding (i.e., high cognitive load tasks such as social, 2back, relational and gambling)

indicates time points of higher integration and lower BT at the tails of the embedding (i.e., cues

and fixations) indicates time points of higher segregation (r(z,BT ) = 0.610, df = 3018, p < 0.01,

where z is the projection coordinates of points onto the diagonal of the triangular embedding;

Figure 4.5b).

4.3.3 Operationalizing discrete, recurring brain states from task dynamics

When clustering the task embedding, k = 4 gave the largest Calinski-Harabasz score among a

range, suggesting that the embedding has a clear interpretable structure (Figure S6). Based on

the task contents of the temporal clusters, we labeled the four brain states as: fixation, transition,

lower-level cognition, and higher-level cognition. Functionally reasonable patterns of activation

60



!" !#

!$

cues

fixations

!"

!#

!"!#

!$

!"

!$

!#

!$

Social, WM_2back, 
Relational, Gambling

Cue

Fixation

Motor, Emotion,
WM_0back

a) top left

right 3D

b) c)
cue

fixation
!"

!#

!$

Higher-level 
cognition

Transition

Fixation

Lower-level
cognition

WM_0back

Emotion

Gambling

Motor

Social

Relational

WM_2back

Cue

Fixation

Figure 4.2: Nonlinear embedding of fMRI time series data a) 2sDM embedding of 6 tasks
(Relational, Social, Motor, Gambling, Emotion, Working Memory 2-back, and Working-Memory
0-back) from the HCP dataset. Four different views of the manifold are shown. Each point in
these subplots represents a single time point and is colored by the task type. b) Averaged temporal
trajectory of each task with the embedding colored by the corresponding brain state as the back-
ground. c) WM task’s 0-back and 2-back task blocks visualized separately with major cues and
fixations points annotated. Arrows show the progression direction of the trajectory. Trajectory in
b) and c) uses the same colormap as a).

during the different states are observed, e.g., canonical patterns of default mode network activity

for the fixation state (Figure 4.6a). To relate these brain states to previous handcrafted features, we

calculated the average BT for each brain state (Figure 4.6b). The four states followed the expected

patterns of integration and segregation, with the higher-level cognition state showing the greatest

integration (t = 3.01, p < 0.01, df = 1596) and the fixation state showing the greatest segregation
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Figure 4.4: 2-step PCA embedding from the HCP dataset. Unlike the nonlinear embeddings,
shown in Figure 2, no clear structure is seen for the linear embedding, which validates the usage
of nonlinear manifold learning.

(t = 2.39, p < 0.01, df = 1420). The clustering results are similar with an increased number of

clusters or of embedding dimensions.

With the help of the four brain states, the dynamic trajectories can further reveal each task’s

cognitive process (Figure 4.6c). For example, the motor task’s trajectory reveals a dynamic cogni-
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Figure 4.5: 2sDM embedding is related with global integration and segregation. a) 2sDM
embedding in HCP dataset colored by the time-resolved BT . b) Scatter plot of the BT with the
projection onto the diagonal of the embedding structure (z). Correlation of z with BT is shown
with a line of best fit. Projection direction z was determined manually as the approximate diagonal
direction of the embedding.

tive process as following: in the beginning, the individuals start from the cue state which was the

common starting state across the other tasks. Then the individuals briefly enter the high-cog state,

but not deep in the state and finally enter and stay in the low-cog state. Actually, it also reveals that

on average, individuals wander towards the fixation state in the middle of the task block, suggest-

ing a fatigue or practice effect. And towards the end of the task block, individuals return deep into

the low-cog state and moved towards the cue state for the next task block to start.

Even for tasks like relational and social tasks that both require a certain level of high-level

cognitive ability (Shine et al. [2016]), there are differences that can be revealed by the trajectories

(Figure 4.6c). The relational task starts from the transition cluster, then entered the higher-level

cognition cluster and ends in the low-cog state, which suggests a lack of high-level cognitive

ability involvement (adaptive to the task design) in the later stage of the relational task blocks. In

comparison, the social task starts near the transition cluster, goes deep into the high-cog state and

returns to the transition state near the end of the task which suggests a constant requirement of

higher-level cognitive ability. This trajectory view of each task enables a better understanding of

the cognitive process and can also help in the future task designs.
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The transitions between states were similar for all tasks except for the motor task (which had

a high probability of transiting into the lower-level cognition state and out of the higher-level

cognition state; Figure 4.7a). Except for the WM task, which contains an equal proportion of

high (2-back) and low (0-back) cognitive loads), dwell times for the four states exhibited a non-

uniform distribution (χ2 > 16.3, df = 3, p < 0.001; Figure 4.7b), indicating participants spent

most of their time in certain limited states in a task-specific manner. For example, the lower-level

cognition state occurred most frequently in the motor task, while the higher-level cognitive state

dominated in social task time points.
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Figure 4.6: Brain states during tasks. a) K-means clustering of the task manifold. Averaged brain
activation patterns across subjects in the circled representative time points are shown for each brain
state. b) BT averaged over all the time points in each brain state. c) Two-dimensional view of task
trajectories with the embedding points. Trajectories are colored by each task and data points are
colored by the brain states as in a).
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Stationary distribution probability visualized for each task and positioned by the proportion of
higher-level cognition and lower-level cognition brain states. Chi-square test result against the
uniform distribution is also shown.

4.3.4 Brain dynamics during rest embed onto the same recurring brain states

which appeared during tasks

Once embedded onto the task manifold, time points from the resting-state data spread across the

whole manifold, including parts of the manifold corresponding to higher cognitive loads (Figure
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4.8a). To quantify the distribution of states during rest, we assigned each resting-state time point

to one of the four previously identified brain states based on the brain state of the nearest task

time point. As with the task data, we next calculated the brain state dwell time distribution across

the entire resting-state scan (Figure 4.8b). A non-uniform dwell-time distribution was discovered,

with fixation and transition states having a higher proportion of time points than the cognitive states

(χ2 = 205, df = 3, p < 0.001). Except for the lower-level cognition and the transition states in

the social task (which have very few time points to robustly calculate entropy, see Figure 4.8c), all

states exhibited higher entropy in the resting state than during a given task.

In Figure 4.9, we plot the extension of the WM task. The 2-back and 0-back task blocks go

to the correct higher-level cognition or lower-level cognition state respectively, while the fixation

and cue time frames are also located in the correct brain states. The correlation between the

extended coordinates and the coordinates from the original embedding was highly significant (r =

0.939, p < 0.001). Holding out the other tasks produced similar results as the WM task.

4.3.5 Differences in brain dynamics in patients with schizophrenia

Notably, we replicated the dimensionality reduction result using participants from the CNP dataset.

A similar low-dimensional structure, brain states, and association with BT (r(ψ2, BT ) = 0.30, p <

0.01, df = 1007) were found, verifying the robustness of the observed embeddings (Figure 4.10).

Moreover, the same task scans from the schizophrenia cohorts were also embedded separately and

found to be similar to the embedding from the HCP dataset and healthy control cohorts in the CNP

dataset (Figure 4.10b). This laid foundation for the downstream brain dynamics analysis (resting-

state brain dynamics) that would be based on brain states as similar brain states could be identified

in both groups.
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Figure 4.8: Resting-state extended onto the task manifold. a) Representative task activation
patterns of each state and the neighboring resting-state activation pattern are visualized. Correla-
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accurate out-of-sample extension. b) Stationary probability distribution of the four brain states
during resting state. c) Entropy of each brain state’s transition probability in different tasks. Dots
are colored by tasks they represent, and the grey box plot shows the entropy values of resting state
with BrainSync (see Methods) referenced to different individuals.

4.3.6 Comparison of 2-step Diffusion maps and 2-step PCA

Although our 2sDM framework was not tight to only the diffusion maps algorithm, we compare

the 2sDM results with its linear comparison, 2-step PCA (2sPCA) in this subsection.

Low-dimensional embedding Unlike the low-dimensional embedding works that only involved

two or three tasks, in this work, as we tried to embed multiple different tasks (6 tasks in the HCP

dataset) together, our goal is no longer separating different tasks. Instead, to cluster different tasks
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together in a meaningful way becomes more interesting as it could reveal the common factor that

drives different tasks. Therefore, when we compared the embedding from 2sPCA vs 2sDM, we

tried to see whether 2sPCA could also reveal a meaningful embedding structure. However, as

shown in Figure 4.11, without the colors as prior, it was harder to infer the structure from the

2sPCA embedding. Although different tasks were separated (Figure 4.4), the cue and fixation time

points didn’t form two corners as in the 2sDM embedding, which could make the downstream

analysis less interpretable (illustrated in the following trajectory analysis). Moreover, it is obvi-

ous to analyze the three corners of the 2sDM embedding at first as they are the anchors of the

embeddings while harder to choose similar points in the 2sPCA embedding.

Temporal trajectory analysis As we illustrated in the main paper that the low-dimensional

temporal trajectories formed with each task conditions revealed the dynamic cognitive processes,

the 2sPCA trajectories was less informative. In the figure below (Figure 4.12b), we showed the

average trajectory for each task. As the 2sDM embedding clustered the cues and fixations in
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separate corners, the 2sDM trajectories were easier to interpret and compare across tasks. In

comparison, as the fixation and cues were more scattered in the 2-step PCA embedding, the cross-

task comparison was more difficult. For example, we can infer that for the Motor task, the 2sDM

trajectory revealed the cognitive process that in the beginning, the subjects started from the cue

state which was the common starting state across the other tasks. Then the individuals briefly

entered the high-cog state, but not deep in the state and finally entered and stayed in the low-cog
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state. Actually, it also revealed that on average, individuals wandered towards the fixation state in

the middle of the task block, suggesting a fatigue or practice effect. And towards the end of the

task block, individuals returned deep into the low-cog state and moved towards the cue state for

the next task block to start. However, none of these analyses would be obvious for the 2-step PCA

trajectory as the motor task trajectory was in different location and progression pattern as other

tasks.

Brain state clustering analysis As mentioned in the paper, the number of the clusters was

chosen based on the Calinski-Harabasz criterion and 4 cluster was chosen as Calinski-Harabasz

value was maximized (Figure 4.13b). In comparison, if we run k-mean clustering on the PCA

embedding, we could also get clusters like shown below (Figure 4.13a). However, as shown below

by the Calinski-Harabasz value (Figure 4.13b), there is no local maximum value as k increases,

thus suggesting a lack of clear clustering structure in the low-dimensional embedding of 2sPCA.

This validated that compared with our nonlinear embedding, PCA-based linear methods generates

less-structured embeddings for the multi-task fMRI data.

2sPCA embedding also reveals global integration and segregation In the paper, we have shown

that 2sDM embedding’s first 2 coordinates are highly correlated with the participation coefficient
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Figure 4.12: Trajectory comparison of 2sPCA and 2sDM.

(BT ), suggesting that the task embedding was able to capture handcrafted features like BT in an

unsupervised manner (Figure 4.5). It is also interesting that the 2sPCA embedding also revealed a

similar relationship (Figure 4.14), suggesting that the embedding was also related with the global

segregation and integration pattern. Thus, both 2sDM and 2sPCA’s embedding was related with

BT .

4.4 Discussion

Using a novel manifold learning framework, we demonstrate that fMRI data from different tasks

span the same low-dimensional embedding (i.e. brain states). In other words, moment-to-moment

dynamics from any of these tasks group into the same small number of representative patterns that
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are hidden from direct observation. To recover this embedding, we employed nonlinear methods

(e.g. 2-step Diffusion Maps—2sDM) to project the fMRI data onto a larger portion of the mani-

fold than would be possible using linear methods only. The embedding maintained proper temporal

progression of the tasks, revealing brain states and temporal dynamics of changes in network inte-

gration. Further, we demonstrate that resting-state data project onto the same task embedding using

a specially designed out-of-sample-extension method, indicating similar brain states are present.

Finally, we validate this embedding using an independent dataset.

Several other publications have organized the temporal dynamics of the brain into a low di-

mension space or into distinct brain states (Allen et al. [2014b], Vidaurre et al. [2017], Saggar

et al. [2018]) using data from resting-state or a single task to construct the embedding (Gallego

et al. [2017], Shine et al. [2019]). Together, this work suggests that a low-dimensional structure

exists; however, it is unclear how these structures adapt to diverse cognitive loads. By projecting a

rich repertoire of task data into a single manifold, we show that, across different tasks, parts of the

embedding (i.e. brain states) are well characterized by network segregation (i.e. communication

mainly within brain networks) and integration (i.e. communication mainly across diverse brain

networks) (Deco et al. [2015]). Overall, the discrete states and association with network segrega-

tion/integration suggest that our embedding finds an intrinsic, latent structure of brain dynamics.

These results are in line with the theory that the brain is able to reconfigure its large-scale

organization dynamically either between different cognitive tasks or within resting-state (Cohen

and D’Esposito [2016], Shine et al. [2016]). Further, they emphasize that this reconfiguration is

shared across different cognitive loads and, importantly, resting-state. In other words, the same

highly integrated state that characterizes a cognitively demanding task, such as a 2-back WM

task, can be observed during resting-states and less cognitively demanding tasks, just with less

frequency. These states can also be viewed from a dynamic system perspective (Taghia et al.

[2018]). As clustering based on the eigenvectors of the normalized graph Laplacian has been used

to find meta-stable state in the stochastic dynamical systems (Huisinga et al. [1999]), the four brain
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states defined from the task scan can also be viewed as four different metastable states. Further, the

temporal trajectories can separate different portions of tasks based on cognitive demand, suggesting

a potential utility of the embedding for other downstream analyses of brain dynamics.

In line with this, the dynamics between states, rather than within brain states themselves, ap-

pear to be the key distinguishing factor between task and rest. In support of this, how the brain

transitions between different states is dependent on the task being performed and is less predictable

in resting-state compared to tasks. Executing a task limits the transitions between states; while,

during resting-state, the brain can more liberally traverse through different states. Though spec-

ulative, these results offer an explanation as to why task connectivity data is better at identifying

individuals and subsequent predicting behaviors than resting-state connectivity data (Finn et al.

[2017a], Greene et al. [2018a]). Together, while the resting state may exhibit similar states as ob-

served during task, the temporal dynamics of switching states are less predictable in resting state

compared to task.

Previous work demonstrates that brain networks fluctuate between states of low and high global

integration during tasks as characterized by the participation coefficient (BT ) from sliding-window

functional connectivity. Tasks requiring higher cognitive loads, such as the 2-back condition in

the WM task, exhibit greater integration while less cognitive load, such as the motor task, exhibits

lower integration (Shine et al. [2016]). A key drawback of these results is that they rely on two

intermediate steps (e.g. the method used to construct dynamic functional connectivity and topo-

logical metrics to study), rather than the learned features from unsupervised methods. Together,

our results suggest that the task embedding reveals latent information about changes in network

topology without the need for handcrafted features. For example, each task can be effectively char-

acterized from the proportion of time spent in lower-level and higher-level cognition states creating

a similar ordering of task (see Figure 4.7b) as in (Shine et al. [2016]).

While resting-state fMRI is a powerful tool to map the functional organization of the brain,

inherent limitations exist. Resting-state is often conceptualized as a single task state. Though
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emerging data, including our results, suggest that resting-state is not one single, monolithic state,

but rather a collection of multiple states associated with different cognitive loads that also appear

during tasks (Vidaurre et al. [2017]). For example, while the majority of resting-state time points

cluster into a single part of the manifold (such as the fixation blocks, which putatively are the most

like “rest”), nearly a third of the time points more closely match cognitive states. Perhaps, more

importantly different groups may have differences in “performing” rest (Buckner et al. [2013]).

How best to interpret changes in resting-state connectivity in the presence of group differences in

dynamics is still an open question.

A key strength of our embedding framework is its data-driven nature. Although the only inputs

are time-courses from task fMRI data, we demonstrated that the embedding coordinates can reveal

topological information originally found using dynamic functional connectivity methods (Shine

et al. [2016]). This brain topology was found without specifying common modeling choices in dy-

namic functional connectivity or fMRI, in general, such as how to model the functional connectiv-

ity (i.e. statistical interdependence of signals) between brain regions, an underlying graph/network,

or even information about task stimuli (e.g. block lengths). As a multitude of methodological

choices have been proposed to analyses (Calhoun et al. [2014], Hutchison et al. [2013]) (e.g. ways

of estimating connectivity (Allen et al. [2014b], Chang and Glover [2010], Shine et al. [2015]),

constructing a weighted or unweighted graph (Rubinov and Sporns [2010]), specific graph theory

measures (Honey et al. [2007], Meunier et al. [2010], Shine et al. [2016], Sizemore and Bassett

[2018]), our embedding framework provides an end-to-end, data-driven approach without the need

for modeling choices to investigate brain dynamics. More generally, handcrafted features are being

substituted by more automatic feature learning-based nonlinear methods such as deep learning and

nonlinear embedding methods (Hamilton et al. [2017]). Our results show a specific scenario in

which “let the data speak for itself” is an achievable option for modeling fMRI data.

A limitation of this work is that the embedding can only “look under the light.” That is to say

that, while a rich amount of task data was needed to create the embedding, we could not include
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every possible task in creating the embedding. Indeed, it is highly likely that many more than

four brain states exist and that we cannot detect every single one. A finer grade delineation of

states, probably through further advancement in non-linear embedding methods, is a needed future

direction of work. Moreover, although here brain states are defined based on the k-means clustering

result, it doesn’t rule out other ways to define brain states. For example, at each time point, the

brain can also be modeled as being at different states with distinct possibilities (Vidaurre et al.

[2017]), which can be achieved by a fuzzy-clustering algorithm. Moreover, the brain state can also

be characterized by the temporal trajectory where trajectory clustering technique can be used to

cluster trajectories into trajectory-based brain states, which takes account the temporal information

of the embedding (Lee et al. [2007]). The k-means clustering way of defining brain state is only

one of the ways to summarize information of the embedding and serves as a proof-of-concept that

our embedding contains information that is relevant to brain dynamics. Nevertheless, the observed

task embedding was similar across two different input datasets with different tasks, suggesting that

embedding is general to factors such as scanner, task, processing, and sample size.

One of the assumptions of 2sDM is that the time frames from all individuals are temporally

aligned so that a group-average embedding of the time frames can be obtained. However, this

doesn’t rule out the applicability of the task scans that has different task block lengths/orders

across individuals (e.g., language task in the HCP dataset) or the resting-state scans, which we have

demonstrated in the paper by applying BrainSync. So, task scans with distinct block lengths/orders

can also be embedded with 2sDM by applying BrainSync first. It is worth noting that as BrainSync

requires a specific individual chosen as the reference, by aligning all the other individuals to the

same selected individual, the group-average embedding then will approximate a cleaner temporal

embedding of the selected individual, which can be used to investigate individual-level dynamics.

The ability to use data-driven methods to clearly identify a low-dimensional space of brain dy-

namics, regardless of how the brain is engaged during imaging, indicates that these brain dynamics

are robust and reliable across conditions in addition to being unique. Together, these advances
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suggest that analysis of individual fMRI data from multiple cognitive tasks in a low-dimensional

space is possible, and indeed, desirable.
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Chapter 5

Poincaré embedding reveals edge-based
functional networks of the brain

5.1 Introduction

Elucidating the functional organization of the human brain by grouping distinct brain regions into

functional networks is a major goal of current fMRI research (Eickhoff et al. [2018]). Using

measures of functional connectivity or spatiotemporal patterns of brain activity (Friston [2011]),

many approaches have been used to form ∼10 functional networks (e.g., motor and default mode

networks) (Power et al. [2011a], Damoiseaux et al. [2006], Salehi et al. [2018], Thomas Yeo et al.

[2011]).

An important problem with these approaches is the so-called “resolution limit” (Fortunato and

Barthélemy [2007]). As a system becomes larger, the expected number of connections between

regions decreases, eventually leading to situations where merging two distinct networks is better

than keeping them separated. Additionally, a region’s membership to a particular network is likely

fuzzy, such that two networks can overlap in a particular region (Wu et al. [2011], Salehi et al.

[2020]).

An alternative method for creating networks within a large system is the “link community”

paradigm, where the networks are redefined as sets of links (i.e., edges or connections) rather than
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regions (Ahn et al. [2010], Evans and Lambiotte [2010]). This framework provides a natural way

to allow regions to belong to multiple networks as edges originating from a particular node can

belong to many networks (Ahn et al. [2010], Evans and Lambiotte [2010, 2009]).

However, the large number of edges in fMRI data (e.g., O(N2)) poses challenges in terms

of computation and representation when finding link communities (Ahn et al. [2010], Evans and

Lambiotte [2010, 2009]). Here, we show that, while traditional approaches for finding link com-

munities fail to discover a valuable network representation of the human brain, a novel embedding

approach—based on the Poincaré embedding (Nickel and Kiela [2017])–offers a naturalistic ap-

proach to find link communities in high-dimensional fMRI space. An overview of our approach

and how it differs from region clustering and previous link community detection approaches is

shown in Figure 5.1.

5.2 Methods

Figure 5.1: Overview of using the Poincaré embedding to form edge-based networks. Starting
with functional connectivity matrices, or connectomes (blue box), functional brain networks can
be formed based on clustering nodes or edges. Previous approaches using fMRI data have focused
only on creating node-based networks (yellow box). Yet, approaches to create edge-based networks
exist. Here, we show that the link community detection methods proposed by Ahn et al. (Ahn et al.
[2010]) do not reveal interpretable functional networks (top row in red box) and that our novel
Poincaré embedding approach does (bottom row in red box).
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5.2.1 Link community detection

Let G = (V,E) be a graph with vertex set V and edge set E. Traditional community detection

methods define a community as a set of nodes that have more internal than external connections.

Link community detection methods work in a similar way, but define a set of interrelated edges

as the community. Each node then inherits all memberships of its edges and, thus, can belong to

multiple, overlapping communities. As edges—rather than nodes—are assigned to different com-

munities, similarities between edges need to be determined. One of the first methods, proposed

in Ahn et al. (Ahn et al. [2010]), calculates the similarity between edges eik and ejk that share a

common node k. The similarity is calculated as the Jaccard index between the sets of node neigh-

bors from the outer node i and j: S(eik, ejk) = |n(i) ∩ n(j)|/|n(i) ∪ n(j)|, where n(i) is the

set of neighboring nodes of node i. With the similarity defined, standard hierarchical clustering

is applied to group edges into link communities as it also allows to reveal hierarchy. This relies

on applying a threshold to the hierarchical clustering dendrogram to create distinct communities.

Partition density is a measure to determine the quality of the partitions and to find the optimal

threshold to cut the dendrogram. For a network with M links, the partition density is defined

as D = 2
M

∑
cmc

mc−nc−1
(nc−2)(nc−1)

, where the candidate partition creates c subsets with each subset

having mc links and nc nodes. Yet, even when determined through a systematic way (e.g., parti-

tion density), this thresholding may lose information between different tree levels, leading to an

uninterpretable number of communities.

5.2.2 Hyperbolic space for embedding tree structures

Embedding a tree structure, such as a dendrogram, in Euclidean space is difficult as the number of

child nodes grows exponentially with their distance from the root of the tree. Thus, the dimension-

ality of the Euclidean embedding rapidly grows to handle these increasingly complex hierarchies.

Increasing this dimensionality leads to increased computational complexity and overfitting. How-

ever, a hyperbolic space is more suitable for embedding tree structures as the area of a hyperbolic
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disc grows exponentially with its radius. Specifically, a hyperbolic space is a non-Euclidean space

with constant negative curvature. For a two-dimensional hyperbolic space H2
ζ with constant cur-

vature K = −ζ2 < 0, the length of a circle and the area of a disk with hyperbolic radius r, are

L(r) = 2π sinh ζr, A(r) = 2π(cosh ζr − 1), both growing exponentially as eζr with r (Figure.

5.2). With this property, hyperbolic spaces can be constructed as continuous versions of trees.

This is not possible in R2. Furthermore, given the existence of hierarchical structure in complex

systems Clauset et al. [2008], they have been modeled by hyperbolic spaces Krioukov et al. [2010].

Figure 5.2: Geodesics of Poincaré disk model.

5.2.3 Poincaré ball model and embedding

To take advantage of a hyperbolic space for embedding edge similarities, we use the Poincaré

embedding, an approach based on the Poincaré ball model (Nickel and Kiela [2017]). Let Bd =

{x ∈ Rd | ||x|| < 1} be the open d-dimensional unit ball where ||x|| is the Euclidean norm.

Then, the Poincaré ball model corresponds to a Riemannian manifold (Bd, gx). The Riemannian

metric tensor is gx = ( 2
1−||x||2 )2gE , where x ∈ Bd and gE represents the Euclidean metric tensor.

From the Riemannian metric tensor, the Poincaré distance between points u,v ∈ Bd is given as

d(u,v) = arcosh(1+2 ||u−v||2
(1−||u||2)(1−||v||2)

). Geodesics in Bd are circles perpendicular to the boundary

δB. Moreover, the model excludes the boundary δB.
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The goal of the Poincaré embedding is to find a representation Θ = {θi}ni=1, where θi ∈ Bd,

that minimizes the loss function L(Θ). Specifically, a soft ranking loss function is used:

L(Θ) =
∑

(u,v)∈D

log
e−d(θu,θv)∑

v′∈N (u) e
−d(θu,θv′ )

,

where the set D = {(u,v)} is the set containing input pairs that are similar, N (u) = {v|(u,v) /∈

D)}∪{u} is the set of negative examples for u. Ten negative examples are chosen during training.

This loss function encourages similar points (i.e., edges) to be close in the hyperbolic space with

regard to their Poincaré distance.

Since the Poincaré ball model has a Riemannian manifold structure, manifold optimization

methods such as Riemannian stochastic gradient descent (RSGD) (Bonnabel [2013]) can be used

to minimize the loss function, which requires to calculate the Riemannian gradient and apply the

retraction operator to map the gradient from the tangent space onto the manifold. The Riemannian

gradient can be obtained by scaling the Euclidean gradient ∇E by the inverse of the Poincaré ball

metric tensor g−1
θ = (1−||θt||2)2

4
. The retraction operation we use is <θ(v) = θ+v. The embedding

is further restricted within the Poincaré ball via the projection.

proj(θ) =


θ/||θ|| − ε, if ||θ|| ≥ 1

θ, otherwise
.

One full update of a single embedding is thus given by

θt+1 ← proj(θt − ηt
(1− ||θt||2)2

4
∇E),

where ηt is the learning rate. It is also worth mentioning that this combination of Riemannian

gradient with the simple retraction operation corresponds to the natural gradient method.
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5.2.4 Poincaré embedding of brain edge network

Functional connectivity represents the temporal correlation of time series between brain regions.

Let G = (V,E) be a functional connectivity with brain regions V and edge set E, a subset of

edges eij ∈ E is first selected as the objects to be embedded. Specifically, top x percent of edges

with the strongest edge weight (correlation value) are selected, resulting in a binary connectivity

matrix. Next, the similarities between edges that share a common node were calculated based on

the similarity measure described above S(eik, ejk) = |n(i) ∩ n(j)|/|n(i) ∪ n(j)|. Edges with no

common nodes will have similarity of 0. The Poincaré embedding of those edges is then calculated

based on this measure of similarities. As a result, in the embedding space, an edge will be closer

to edges for which they have higher similarity values than other unrelated edges.

5.3 Results

5.3.1 Datasets and processing

We applied our algorithm to the resting-state data from the Human Connectome Project dataset

(Van Essen et al. [2013a]). After excluding subjects for mean frame-to-frame displacement> 0.15mm,

514 (240 males) healthy subjects were used for analysis. This conservative threshold for exclusion

due to motion was used to mitigate the substantial effects of motion on functional connectivity.

fMRI data were processed with standard methods and parcellated into 268 nodes using a whole-

brain functional atlas defined previously in a separate sample (Shen et al. [2013b]). Next, the mean

timecourses of each node pair were correlated and Fisher transformed, generating a 268 × 268

functional connectivity matrix (also called a commectome) per individual. Connectomes were av-

eraged over all individuals and binarized by taking the top 5% (∼ 1800) edges based on previous

work (Power et al. [2011a]). For the proposed method based on the Poincaré embedding, half of

the subjects (257 subjects) were used to generate the embedding; while, the other half were used
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a)

b)

Figure 5.3: a) Dendrogram from linkage clustering method. Colors of adjacent links represent
the same cluster under the optimal cut threshold. In total, 84 clusters were found. Edges from
three disjoint clusters that together compromise the visual network are shown. b) Multidimen-
sional scaling embedding and K-means clustering result. Edges are densely located within the
embedding space (center); but, most networks—shown on the periphery—remain mostly uninter-
pretable

for replication of the embedding.

5.3.2 Traditional link community detection fails

The traditional link community detection framework, proposed by Ahn et al. (Ahn et al. [2010])

and described in 5.2.1, did not lead to meaningful results (Figure 5.3a). Specifically, 84 networks
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were found by cutting the dendrogram based on maximizing the partition density. This number of

clusters was significantly greater than the ∼10 networks from using node-based methods (Power

et al. [2011a], Damoiseaux et al. [2006], Salehi et al. [2018], Thomas Yeo et al. [2011]). Addition-

ally, these clusters identified disjoint functional networks that putatively should belong to the same

network. For example, the green and red clusters in Figure 5.3a are both part of the visual network

and should be combined into a single network. An additional post-hoc analysis is needed to merge

these and other clusters (i.e., the cyan cluster) to from a proper functional network.

Finally, as hierarchical clustering produced too many clusters, we attempted to generate func-

tional networks using K-means, which groups data into a specified number of clusters. In order to

perform K-means, first, we generated a 2-dimensional Multidimensional scaling (MDS) embed-

ding based on the same edge similarity as above. Edges are densely located within the embedding

space, but most networks remain uninterpretable (Figure 5.3b). For example, while the orange

network represents the motor network, the blue and green clusters consists of edges from all over

the brain and are difficult to interpret.

5.3.3 Poincaré embedding of edges

The Poincaré Embedding of the resting-state data is shown in Figure 5.4a. Edges that appeared

closer in the embedding had denser inter-connections (i.e., more common node neighbors). To

form functional networks, K-medoids clustering was applied to the Poincaré distance between

edges. Visualizing these edge-based networks on the brain (Figure 5.4b) verified that edges within

the same cluster form dense communities in different locations. The replication (see supplementary

material) showed similar embedding and clustering, demonstrating the robustness of the frame-

work.
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a) b)

Figure 5.4: a) Poincaré embedding of resting-state functional connectivity. Each node in the
embedding represents an edge in the function connectome, colored by the K-medoids clustering
result. Width of the black lines connecting nodes represent similarities between two edges. b)
Embedded edges visualized on the brain. Edges in the same cluster form densely inter-connected
networks.

5.3.4 Functional edges show a canonical network structure

Compared with the edge-based networks in Section 5.3.2, the edge-based networks derived from

clustering the Poincaré embedding showed a more interpretable structure. For example, in addition

to the clear motor network observed in Section 5.3.2, the visual, default mode, auditory, language,

and medial frontal networks were easily identified (Figure 5.5a). Next, we compared the nodes

covered by edges in each network to previously defined canonical node-based networks (Finn et al.

[2015b]) (Figure 5.5b). Visually the edge-based and the node-based networks were comprised of

similar nodes. Finally, each edge’s Poincaré distance from the origin (0, 0) represents its hierarchy

in the network structure. The closer an edge is with the origin; the higher in hierarchy that edge is

(see arrow in Figure 5.5a). Although networks formed with higher hierarchy edges were sparser,

the overall topological structure was preserved, suggesting the supporting role those edges had in

the overall network topology (see supplementary material).
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Figure 5.5: a) Edge-based networks using Poincaré embedding. Network labels were deter-
mined by matching the nodes in the edge-based network with predefined canonical networks.
Dashed circle in the embedding represents the average distance to the center. The arrow points
towards lower in the hierarchy of edges within a network. b) Comparison with node-based
networks Nodes belonging to the edge-based networks were similar to the nodes belonging to
canonical networks using node community detection approaches.

5.3.5 Overlapping edge-based networks for a node are meaningful

A major advantage of our edge-based networks is that each region of the brain can be associ-

ated with multiple canonical networks. For each region, we summed the number of edge-based

networks associated with that node. As shown in Figure 5.6, regions associated with cognitive

processing (posterior cingulate cortex, prefrontal cortex, and parietal lobe) showed the highest
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number of overlapping networks. In contrast, regions in the motor cortex or visual lobe showed

membership to the least number of networks. Overall, these results align with previous research,

suggesting functional specialization in those areas (Cole et al. [2013], Salehi et al. [2020]).

Figure 5.6: Overlapping networks. Nodes were color coded by the number of edge-based net-
works that edges from the node were part of. Regions with the highest number of overlapping
networks were in prefrontal and association cortices, while regions with the lowest number of
overlapping networks were in the visual and motor cortices.

5.4 Summary

In this paper, we propose a framework to find link communities from functional connectivity data.

The framework consists of: first, embedding edges into a Poincaré disk model and, then, using K-

medoids clustering to group the embedded edges into functional networks. These edge-based net-

works matched canonical brain networks, defined using conventional node-based approaches. Yet,

edge-based networks allow nodes the flexibility to belong to multiple networks, a major advantage

of this framework over standard community detection approaches. Although the Poincaré embed-

ding has only 2 dimensions, it provided a parsimonious representation that was able to partition

the brain into functionally meaningful networks. Future work includes using higher dimensional

embedding to test if more information can be preserved to improve network detection. Overall,

our framework provides a novel tool for characterizing the functional network organization of the

brain.
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Chapter 6

Conclusion

With the increasing size of the recent fMRI dataset, it has become more and more important to

have appropriate methods for the complex data. The ideal method would be able to aggregate

information from multiple available sources and extract those that are relevant to the behavior

of interest, with less human in the loop (e.g., parameter tuning). In this work, the methods we

propose fill some of the gaps between fMRI data and computational methods and demonstrates the

advantage of using those advanced methods.

In chapter 2, we propose two extensions of the CPM framework that are multidimensional in

terms of the connectomes. By incorporating more available connectomes in CPM, we are able to

achieve higher prediction accuracy than using any of the single connectome alone, suggesting the

advantage of having a holistic model that can utilize more information in prediction. Moreover, the

proposed methods also seem to be less sensitive to hyperparameter tuning, which increases both

the applicability and generalizability of the CPM framework.

In chapter 3, we propose another two multidimensional CPM framework, which are multi-

dimensional in the behavior dimension. The proposed frameworks can be used to derive new

composite behavioral measures (e.g., general intelligence) from multiple behavior measures (e.g.,

visuospatial processing score, working memory test score), and this new composite measure is

shown to be more accurately predicted than any of the single behavior measure, suggesting the
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increased robustness and brain-behavior relationship. Altogether with the chapter 2, we have come

up with a holistic CPM framework that is able to take in multiple available connectomes and be-

havioral measures, and output a brain-behavioral prediction model that utilizes all the available

information while providing optimized predictions.

In chapter 4, we take a step back from modeling the brain as a graph model to the time series. A

nonlinear dimensionality reduction method is proposed to embed each time frame of the fMRI data.

By this low-dimensional embedding, we are able to view the brain’s activity change more dynam-

ically and intuitively compared with the static FC. Moreover, we can summarize the whole fMRI

dynamics across multiple tasks with four common brain states, which can be used to investigate

cognitive differences across different tasks. Last but not least, we reveal brain graph topological in-

formation from the embedding even without explicitly modeling the brain as a graph, which again

suggests the holistic model’s advantage in revealing new insights with less human-in–the-loop.

In chapter 5, we look at the low-dimensional representation of the brain graph and propose a hy-

perbolic space based brain graph edge embedding framework. The framework is able to represent

o(N2) edges in the more powerful hyperbolic space and cluster edges into disjoint edge networks.

The formed edge networks not only provide a more accurate description of brain graphs (e.g.,

edges between node networks are explicitly associated with certain networks), but also provide a

natural definition of overlapping brain node networks, which also reveal the functional flexibility

of each brain node.

In all, these works provide solutions to some of the existing challenges due to the increasing

size of fMRI data and also shine light on new discoveries that can be made with less human efforts.

These results also suggest that there is room of improvement in terms of aggregating multi-source

information in fMRI research and the benefits of having a holistic model in incorporating these

information. The proposed methods only cover limited area of applications in fMRI data and most

of the results serve as a proof-of-concept that these methods are applicable and useful. Future

work will include more wide-range applications of the proposed methods (e.g., multi-modal scans
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integration) and use the existing results for other downstream analyses (e.g, utilization of the edge

networks).
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