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Abstract

Simple vs. Optimal Mechanism Design

Mingfei Zhao

2021

Mechanism design has found various applications in today’s economy, from ad auctions to online

marketplaces. The goal of mechanism design is to design a mechanism or system such that a group

of strategic agents are incentivized to choose actions that also help achieve the designer’s objective.

However, in many of the mechanism design problems, the theoretically optimal mechanisms are

hard to characterize. They are often too complex to implement in practice.

The focus of this thesis is to resolve the discrepancy between theory and practice by studying the

following questions: Are the mechanisms used in practice close to optimal? Can we design simple

mechanisms to approximate the optimal one? In this thesis we focus on two important mechanism

design settings: multi-item auctions and two-sided markets. We show that in both settings, there

are indeed simple and approximately-optimal mechanisms.

Following Myerson’s seminal result [Mye81], which provides a simple and revenue-optimal auc-

tion when a seller is selling a single item to multiple buyers, there has been extensive research effort

on maximizing revenue in multi-item auctions. However, the revenue-optimal mechanism is known

to be complex and randomized [HN13, DDT13]. We provide a unified framework to approximate

the optimal revenue in general multi-item multi-bidder auctions. Our result substantially improves

and extends existing results.

Another line of works in this thesis focuses on two-sided markets. The main difference between

two-sided markets and auctions is that mechanism in two-sided markets is designed by a third

party instead of the seller. The mechanism need to incentivize both buyers and sellers to report

their private information truthfully. The impossibility result by Myerson and Satterthwaite [MS83]

shows that even in the most basic bilateral trade setting (1 buyer, 1 seller, 1 item), the full efficiency

is not achievable by a truthful mechanism that does not run a deficit. In this thesis we focus on

approximating the efficiency in terms of the objective of gains from trade. We provide simple



mechanisms that approximate the optimal gains from trade, in bilateral trade and many other

two-sided market settings.
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Chapter 1

Introduction

Mechanism Design is a fairly classical field that lies in the intersection of Economics, Game Theory

and Optimization. Unlike most of existing directions in Economics and Game Theory, mechanism

design is referred to as “reverse game theory”: The core problem is how to design the right incentive

structure, so that the group of strategic participants of a system are motivated to take actions that

will help to realize the system designer’s goals.

With the growth of online markets and platforms, mechanism design has become increasingly

important and relevant as demonstrated by its abundant applications including auctioning ad slots

to advertisers on websites (e.g. Google), buying and selling goods in online marketplaces (e.g.

Amazon, eBay), routing internet traffic, scheduling tasks in the cloud, and more. In all these

applications, designing a good mechanism in favor of the designer’s goal is crucial, as it might

cause a difference of billions of dollars. Besides its practical importance, the area also has great

theoretical depth. Despite being a relatively young field, we have already witnessed an explosion

of new technical tools that lead to the resolution of many longstanding open problems in the last

15 years.

The major challenge in mechanism design comes from the misalignment of incentive between

the designer and participants. While the designer aims to implement an outcome in favor of her

objective, the participants pick their actions according to their own preferences (e.g. maximize their

utilities). To address this issue and make participants’ actions predictable, the designed mechanism
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is often required to be truthful, which means that the participants are willing to honestly report

her private preferences. As a seminal result of mechanism design, Vickrey [Vic61], Clarke [Cla71]

and Groves [Gro73] proposed a mechanism that is truthful and maximizes the social welfare - the

sum of the buyers’ values for the chosen outcome - in general mechanism design settings.

Simple vs. Optimal

Clearly, the quality of the solution with respect to the designer’s objective is crucial. However,

one should also pay equal attention to another criterion of a mechanism, that is, its simplicity.

Compared to complicated mechanisms, a simple mechanism has advantages for both the designer

and participants. For the designer, the mechanism with a simple format can be implemented by

people that are not only experts in mechanism design; For participants, when facing a complicated

mechanism, they may be confused by the rules and thus unable to optimize their actions and react

in unpredictable ways instead. This may lead to undesirable outcomes and poor performance of

the mechanism.

The mechanism design community has yet to converge to a single definition of simplicity. Mecha-

nisms designed in this thesis will satisfy the following two appealing properties: (i) The mechanisms

are deterministic, i.e. the outcome of the mechanism is completely determined by its input. In a

deterministic mechanism, participants can easily see their utilities without simulating the execution

of the mechanism with random bits, and thus it’s easier for them to optimize their actions. (ii)

The mechanisms are posted price mechanisms and their variations, i.e., there is a separate price

associated with each good on the market, and each participant can choose their favorite bundles

by paying the according price.

In mechanism design, an ideal mechanism would be both optimal and simple. However, in many

settings, the theoretically optimal mechanisms are complex and randomized. To move forward, one

has to compromise – either settle with optimal but somewhat complex mechanisms or turn to simple

but approximately optimal solutions. In this thesis, we focus on the latter approach. We discuss

two well-motivated mechanism design problems whose optimal solutions are complex: revenue (or

profit) maximization in multi-item auctions, and maximizing gains from trade in two-sided markets.
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We design simple and approximately optimal mechanisms for both problems.

1.1 Revenue Maximization

One fundamental question in mechanism design is how to maximize the revenue of the designer.

In particular, maximizing revenue in multi-item auctions, where a seller is selling multiple items to

a set of buyers, has attracted lots of attention from the mechanism design community.

When there is a single item to sale, the seminal result by Myerson [Mye81] shows that there

is a truthful mechanism of a simple format that maximizes the revenue. After Myerson’s result,

maximizing revenue in multi-item auctions has become one of the central problems over the past

decades. However, no general characterization has been found for the revenue-optimal mechanism.

Moreover, even in fairly basic settings, the revenue-optimal mechanism has been proved to be

complex and suffer many undesirable properties including randomization, non-monotonicity, and

others [RC98,Tha04,Pav11,HN13,HR12,BCKW10,DDT13,DDT14]. To facilitate this discussion,

we focus on the case of two items and a single additive buyer and present some examples. A buyer

is additive if her value for a bundle of items is equal to the sum of her value for each item.

Selling Items Separately is not Optimal: There is a single additive buyer whose value for

each item is drawn independently from the uniform distribution on {1, 2}. Since the items are

independent, the mechanism that sells both items separately becomes a natural candidate. The

optimal revenue by doing so is 2. However, consider the mechanism that offers a take-it-or-leave-it

price 3/2 for both items together. The buyer will accept the price with probability 3/4, which

generates expected revenue 9/4 > 2.

Hart and Nisan [HN13] then showed that when selling m independent items to a single additive

buyer, the optimal revenue by selling items separately can only achieve an O( 1
logm)-fraction of the

revenue by selling them together at a take-it-or-leave-it price. When m→∞, the mechanism that

sells items separately could be far from the optimal revenue.
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Randomization: [DDT13] Consider a single additive buyer with 2 items. Her value for item 1

is drawn uniformly from {1, 2} and her value for item 2 is drawn independently and uniformly

from {1, 3}. Then the unique optimal mechanism allows the buyer to choose from the following

three options: receive both items with price 4; or receive the first item and a lottery for the

second item, meaning that the second item is given to buyer with probability 1/2, by paying 2.5; or

receive nothing and pay nothing. Daskalakis, Deckelbaum, and Tzamos further provide an example

with a single additive buyer and two items where the unique optimal mechanism offers a menu of

uncountably many lotteries.

For the above examples, the revenue-optimal mechanism becomes significantly more complex

even when there is a single buyer and two items. There is a line of works characterizing the revenue-

optimal mechanisms for this special setting [DDT13,DDT14,TW17,GK14a,GK18,HH19]. But in

general, a simple and optimal solution is unlikely to exist.

To move forward, there has been extensive research effort studying the performance of simple

mechanisms in multi-item auctions through the lens of approximation. However, a constant factor

approximation for the optimal revenue was proved only when buyers’ valuations are unit-demand,

i.e. the buyer is interested in purchasing at most one item, due to a line of work initiated by

Chawla et al. [CHK07, CHMS10, CMS15, CDW16], or when buyers are additive due to a series

of work initiated by Hart and Nisan [HN12, CH13, LY13, BILW14, Yao15, CDW16]. Chawla and

Miller [CM16] considered a generalization of additive and unit-demand valuation, proving a constant

factor approximation to the optimal revenue via a variation of posted price mechanism.

Nonetheless, all results above only apply to the settings where buyers have linear valuations,

i.e. each buyer’s value for a bundle of items (which may be subject to some constraint) equals to

the sum of her value for each item in the bundle. On the other hand, buyers in real auctions and

markets often have more complex non-linear valuations. For example, a telecom company has a

certain number of target customers in each city, but also has a capacity on how many customers

its service can support. When the number of customers exceeds the capacity, extending service

to a new city will not increase the value for the company. However, when comes to non-linear

valuations, a constant factor approximation is known only for a single buyer [RW15]. It is a major
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open problem to extend this result to multiple buyers.

Question 1. Is there a simple and truthful mechanism that can approximate the optimal revenue

in multi-item auctions, with multiple buyers who have non-linear valuations?

In Chapter 3 of this thesis, we give an affirmative answer to this question:

Informal Theorem 1. There exists a simple and truthful mechanism that achieves a constant

fraction of the optimal revenue, even when there are multiple buyers with fractionally-subadditive1

valuation functions. For a more general subadditive2 valuations, our approximation ratio degrades

to O(logm), where m is the number of items in the auction.

We introduce a new class of mechanisms called sequential posted price with entry fee to approx-

imate the optimal revenue. Informally, the procedure of the mechanism is shown as follows:

Sequential Posted Price with Entry Fee Mechanism (informal)

0: Before the mechanism starts, the seller designs a posted price for every buyer and every item

in the auction.

1: Buyers will come to the auction and purchase items sequentially.

2: When a buyer comes, the seller shows her all remaining items as well as their posted price

dedicated to this buyer.

3: The buyer is asked to pay an entry fee. If she agrees, then she can enter the mechanism and

take any set of remaining items by paying the posted prices. If she refuses, she gets nothing

and pays 0.

Our mechanism is deterministic and truthful. Moreover, it has a simple format by using posted

prices for separate items and entry fees. In fact, mechanisms of this form have already found broad

real-world applications, for example in Costco and Amazon Prime, where the entry fee can be

viewed as a membership fee.

We prove our result via an extension of the duality framework proposed by Cai et al. [CDW16].

Their framework provided a unified treatment for approximating optimal revenue for additive and

1. Informally, it’s the maximum over linear functions. See Chapter 2 for a formal definition.

2. A buyer has subadditive valuations if the sum of her value for two bundles is at least her value for their union.
The result by Rubinstein and Weinberg [RW15] study this valuation but for a single buyer.
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unit-demand valuations. Roughly speaking, the framework generates a useful benchmark of the

optimal revenue and then designs mechanisms to approximate the benchmark. However, the original

approach by Cai et al. [CDW16] is inadequate to provide an analyzable benchmark, when buyers

have non-linear combinatorial valuations. In this paper, we show how to extend their duality

framework to accommodate general subadditive valuations. Another major contribution of our work

is a novel approach to analyze the benchmark. More specifically, we draw a connection between

approximating our benchmark using the sequential posted price with entry fee mechanisms and

approximating optimal welfare with posted price mechanisms.

Our results substantially improve the approximation ratios for many of the settings studied in

the literature, and in the meantime generalize the results to broader cases. See Chapter 3 for a

detailed comparison between the best ratios reported in the literature and the new ratios obtained

in this thesis.

1.2 A General and Practical Model: Profit Maximization

Most results in mechanism design assume that the seller has no cost to produce or own the items.

However, in real markets, the seller often has its own cost for each item. It may be a production

cost, or an opportunity cost, e.g., there is an outside option to sell the item at a certain price if

the item is unsold in this auction. Motivated by this phenomenon, we also study the multi-item

auctions where the seller has costs for obtaining the items in this thesis. As these costs usually

depend on private information that is only available to the seller, we assume that the costs are

private to the seller but are drawn from a distribution also known to the buyers. The goal is to

design a mechanism that maximizes the profit, that is, the total revenue minus the total cost. We

refer to this problem as Profit Maximization. Revenue maximization in multi-item auctions, one of

the most classical and widely studied problem in mechanism design, is clearly a special case of this

problem, where the seller always has cost 0 for each item.

Despite being realistic and widely applicable, the profit maximization problem is not well-

understood. To the best of our knowledge, the only case with non-zero and randomized costs that
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has been studied is in the context of ad auctions [BMS12, FJM+12, DIR14, EFG+14, DPT16]. In

ad auctions, the auctioneer is selling an ad displaying slot to an advertiser and aims to maximize

revenue. There are multiple types of viewers of the webpage. The advertiser has a different value

for displaying his ad to a viewer of different type. In an ad auction, only the auctioneer observes the

type of the viewer, and the advertiser only knows a prior distribution from which the viewer-type

is drawn from. In fact the problem can be easily cast as a special case of the profit maximization

problem by mapping each type of viewer to an item. We will give a more detailed comparison

between profit maximization and ad auctions in Chapter 4.

In revenue maximization, the optimal mechanism is known to be randomized and complex

in multi-item settings. As a more general model, it is clear that the profit-optimal mechanism

also requires complex allocation rules and randomization. Thus following the major and successful

research theme in designing simple and approximately revenue-optimal mechanisms, the thesis aims

to design simple and approximately-optimal mechanisms in profit maximization.

Question 2. In profit maximization, is there a simple and truthful mechanism that approximate

the optimal profit?

Before answering this question, it’s worth to discuss a natural but crucial question raised by

this general setting: Is profit maximization substantially harder than revenue maximization? To

facilitate the discussion, we examine two natural but unsuccessful attempts to solve the profit

maximization problem.

Two unsuccessful attempts: (i) Use a mechanism that (approximately) optimizes the revenue.

This is a terrible solution as some of the items sold by the mechanism may have extremely high

costs, and as a result the mechanism only generates low if any profit. (ii) After the seller sees the

costs, reveal them to the buyer, then use the (approximately) optimal mechanism that is tailored

to those particular costs. To see why this mechanism can be far away from optimal, let us consider

the following example adapted from [HN17].

Example 1.1. A random variable X with support [1,+∞) follows the equal revenue (ER) dis-

tribution if and only if Pr [X ≤ x] = 1 − 1
x . Consider a profit maximization problem with m
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heterogeneous items and a single additive buyer. The buyer’s value tj for each item j is drawn from

an ER distribution. Define δj to be the m-dimensional vector whose j-th entry is 0 and all the other

entries are ∞. The seller has a private and random cost vector ~c as follows: ~c = (c1, ..., cm) = δj

with probability 1/n for each j.

The expected profit of the mechanism in (ii) is 1, since for every j, after revealing cost δj , the

seller can only sell item j to the buyer, which can generate 1 expected profit.3 However, consider an

alternative mechanism which does not reveal the costs, but offers the buyer the following contract:

if the buyer pays logm/2 up front, the buyer can take any item that is available, e.g. has cost 0.

The chance that the buyer accepts the contract is Pr
[

1
m ·
∑

j∈[m] tj ≥
logm

2

]
, and due to [HN17],

it is at least 1/2. Hence, the mechanism has profit at least 1
4 · logm.

The two failed attempts highlight two major challenges of profit maximization compared to

revenue maximization: (i) how to balance the revenue and cost; (ii) how to capture the informational

rent of the buyer, leveraging the fact that the costs are private information to extract more revenue.

In Chapter 4, we overcome these two challenges and give an affirmative answer for Question 2:

Informal Theorem 2. In the profit maximization problem, there are simple and truthful mecha-

nisms that achieve a constant fraction of the optimal profit. Our result holds for arbitrary distri-

bution of the cost vector.

To prove our result, we propose a novel mechanism called permit-selling. For the single-buyer

case, an informal procedure of the mechanism is shown as follows:

Permit-Selling Mechanism (informal)

0: For each item, the mechanism creates a separate permit that allows the buyer to purchase the

item at its cost.

1: The mechanism first sells the permits without revealing any information about the actual costs.

2: Then the mechanism reveals all the costs. The buyer can buy each item by only paying the

cost, if the buyer has purchased the permit for this item in the first stage.

3. For every j, the profit of selling item j is maxp p · Pr[tj ≥ p] = 1, since the seller has 0 cost for this item.
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The permit-selling mechanisms can in fact help addressing the two challenges of profit maxi-

mization as mentioned. Since in the second stage, the price for each item is the same as the seller’s

cost, the profit of the permit-selling mechanisms is exactly the revenue from the first stage. So any

mechanism that achieves high revenue in the first stage also generates high profit. Moreover, the

buyer needs to make a decision on what permits to purchase without learning the costs, therefore,

the seller can extract the informational rent by pricing the permits appropriately. Indeed, we do not

even need to use any complex pricing scheme in the first stage. We sell the permits separately or sell

them as a grand bundle. To accommodate multiple buyers, we then generalize the permit-selling

mechanisms by selling the permits sequentially.

Similar to revenue maximization, in the proof we first come up with a benchmark of the optimal

profit using the Cai-Devanur-Weinberg duality framework [CDW16], which has become a standard

tool for analyzing the performance of simple mechanisms. In most of the results based on this

duality approach, a particular family of dual variables is used to provide a benchmark for the

objective function. However, this set of dual variables does not provide an appropriate benchmark

due to the existence of costs. We propose a new set of dual variables that is tailored to handle

the costs. Indeed, these dual variables are so informative that they inspired us to introduce the

permit-selling mechanisms.

1.3 Two-sided Markets

As discussed in previous sections, mechanism design for one-sided markets, where a single seller

owns all the items and designs the mechanism, has been extensively studied in Economics and more

recently investigated in Computer Science. In the past few years, there also has been increasing

interest in understanding how to design mechanisms for two-sided markets. In two-sided markets,

there are two distinct groups of selfish agents in a two-sided market – the sellers and buyers.

Sellers own the items and have costs for parting with the items that they own; buyers have values

for acquiring the items that are on the market. Both sides are assumed to act strategically in order

to maximize their own utilities. The goal is to design a mechanism to facilitate trade between the

9



two groups and optimize a certain objective, e.g., efficiency.

Two-sided markets are ubiquitous in today’s economy: take for example the New York Stock

Exchange, online ad exchange platforms (e.g., Google’s Doubleclick, Microsoft’s AdECN, etc.),

where advertisers try to purchase ad slots from websites who wish to sell the slots, crowdsourc-

ing platforms, FCC’s spectrum auctions where the telecommunication companies try to purchase

spectrum from television broadcasting companies, online market places (e.g., Amazon, eBay, etc.)

where buyers and sellers trade on the large-scaled trading platforms, or sharing economy platforms

such as Uber, Lyft, and Airbnb.

Mechanism design for two-sided markets, where both the buyer(s) and seller(s) are strategic, is

known to be substantially harder than for one-sided markets. The additional challenges stem from

the following requirements:

1. The mechanism must be truthful for both sides of the market;

2. The buyer and seller payments must satisfy budget balance, that is, the mechanism must not

run a deficit.

The limitations of these constraints are best illustrated by the seminal impossibility result of Myer-

son and Satterthwaite [MS83]. They show that even in the most basic two-sided market—bilateral

trade, when one seller is selling a single item to a buyer—no truthful and budget balanced mech-

anism can achieve full efficiency (the trade is made whenever the buyer’s value is higher than

the seller’s cost). In the same paper, Myerson and Satterthwaite also provided the mechanism

that maximizes the efficiency among all truthful and budget balanced mechanisms (known as the

second-best mechanism). Unfortunately, even in bilateral trade, it’s a non-trivial task to explicitly

describe the second-best mechanism as it requires to solve a system of differential equations that

depend on the buyer’s and seller’s distributions. Such a mechanism is difficult to implement in prac-

tice. Motivated by the aforementioned results, we aim to design simple and approximately-optimal

mechanisms in two-sided markets in this thesis.

Gains from Trade: A More Challenging Objective

There are two ways to measure the efficiency of a mechanism in two-sided markets. One is the
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standard notion of social welfare, which is the sum of the agents’ values/costs of the resulting

allocation. An alternative objective is gains from trade (GFT), which is the social welfare of

the final allocation minus the total cost of the sellers. In other words, the GFT captures how

much more social welfare the mechanism generates. Clearly, the two measures are equivalent when

they are maximized exactly. However, approximating the GFT is much more challenging than

approximating the social welfare. For example, if the buyer’s value is 10 and the seller’s cost is 9,

not trading the item is a 9/10-approximation to the optimal social welfare but an 0-approximation

to the optimal GFT. Obviously, any good approximation to the optimal GFT immediately gives a

good approximation to the optimal social welfare, but the opposite direction is rarely true.

Prior to our work, all results approximating the GFT study the bilateral trade setting, and

rely on assumptions that make the value/cost distributions nice [McA08,BM16,CBGdK+17]. One

natural question following their results is whether there are approximation results that work for

arbitrary distributions:

Question 3. In two-sided markets, is there a simple, truthful, and budget balanced mechanism that

achieves an unconditional approximation guarantee for the optimal Gains from Trade?

The last part of this thesis is devoted to approximating GFT in two-sided markets. Our result

gives an affirmative answer to Question 3, for bilateral trade and more general two-sided markets

with multiple agents and multiple items.

1.3.1 Result in Bilateral Trade and Its Generalization (Chapter 5)

For the bilateral trade setting, we consider the following two mechanisms and show that the better

of the two achieves 1
2 of the optimal GFT. The first mechanism is called Seller-Offering (SO),

proposed by Blumroson and Mizrahi [BM16]: The seller offers to sell the item at a take-it-or-leave-

it price. The buyer receives the item if she pays the offered price to the seller. Otherwise, the

seller keeps the item and no payment is transferred; The second mechanism Buyer-Offering (BO)

is essentially the same mechanism but with the roles of buyer and seller exchanged: Now the buyer

offers to buy the item at a take-it-or-leave-it price and the item is traded if the seller agrees to sell

at this price. The result is achieved by bounding the GFT of any truthful and budget balanced
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mechanism by the buyer’s utility plus the seller’s utility of this mechanism, and then proving that

both terms can be further upper-bounded by the GFT of the SO and BO mechanisms accordingly.

We extend our result to a more general setting with multiple buyers and sellers, which is known

as the double auction in the literature. In a double auction, each seller is endowed with precisely

one item, all items are identical, and each buyer is interested in buying one item. So, there is a

single number associated with each buyer’s value or seller’s cost. We prove a 2-approximation to

the optimal GFT via a generalization of the SO and BO mechanisms. In this thesis we only present

our result for double auctions. But the result can in fact accommodate any two-sided market where

agents’ type can be described as a scalar.

Informal Theorem 3. In bilateral trade and a more general double auction setting, there is a

simple, truthful and budget balanced mechanism that achieves at least half of the optimal GFT.

1.3.2 Approximating Gains from Trade with Asymptotically Efficient Mecha-

nisms (Chapter 6)

The mechanism proposed in Chapter 5 achieves (in expectation) a constant approximation to

the optimal GFT. However, one caveat of this mechanism is that its expected GFT does not

asymptotically converge to the optimal GFT as the market grows large. In fact, even when the

values (or costs) of all agents are sampled i.i.d. from the uniform distribution over [0, 1], the

mechanism will at most achieve a constant fraction (strictly smaller than 1) of the optimal GFT

(see Section 6.4). This caveat makes the mechanism less attractive in real-world applications with

large markets.

On the other hand, the famous Trade Reduction mechanism by McAfee [McA92] in double

auctions does not suffer from the above drawback. It is asymptotically efficient, i.e. the mechanism

gets close-to-optimal GFT when the market size goes large. Moreover, its asymptotically efficiency

guarantee holds for any agents’ profile, while our generalized SO and BO mechanisms in Chapter 5

only have GFT guarantee in expectation over agents’ distributions. However, the trade reduction

mechanism, while asymptotically efficient, fails to give any unconditional approximation to the

GFT in expectation.
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To achieve the best of both worlds, in Chapter 6, we aim to design mechanisms that are

asymptotically efficient, and also achieve a constant factor approximation to the optimal GFT in

expectation. We show that there is a truthful and budget balanced mechanism that achieves both

guarantees in double auctions, and a more general matching market setting, where trade between

some buyer-seller pairs are disallowed.

Informal Theorem 4. There is a simple, truthful and budget balanced mechanism that are asymp-

totically efficient, and also achieves a constant fraction of the optimal GFT, in double auctions and

matching markets.

Our mechanism combines the generalized offering mechanism presented in Chapter 5 with the

trade reduction mechanism. The major challenge here is truthfulness. Without the truthfulness

restriction, one can simply compare the GFT generated by both mechanisms for every agents’ input,

and then choose to run the mechanism with a higher GFT. However, an agent may misreport her

value (or cost) to make the designer choose the mechanism that gives her higher utility. In our

result, we properly adjust the scenario that items are traded in the offering mechanism, as well as

carefully design the payments to guarantee truthfulness.

1.3.3 Two-sided Markets with Heterogeneous Items (Chapter 7)

In the two-sided markets discussed in Chapter 5 and Chapter 6, all items are identical. In Chapter 7

we move on to the setting with heterogeneous items. We design a simple, truthful and budget

balanced mechanism and prove that it approximates the optimal GFT, with an approximation

ratio logarithmic in the number of items. To the best of our knowledge, this is the first result that

achieves a worst-case approximation guarantee in two-sided markets with heterogeneous items.

Informal Theorem 5. In two-sided markets with heterogeneous items, there is a simple, truthful

and budget balanced mechanism that achieves unconditional approximation to the optimal GFT.

More specifically, we focus on a setting with n heterogeneous items, where each item is owned

by a different seller, and there is a constrained-additive4 buyer. Under this setting, we prove an

4. It’s a natural generalization of unit-demand, additive, and matroid-rank valuations. Informally, the buyer is
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O(log2(n))-approximation using some simple mechanisms.5

To prove the result, we propose a new class of mechanisms called seller adjusted posted price

(SAPP). It is a variation of posted price mechanisms. Informally, the procedure of the mechanism

is shown as follows:

Seller Adjusted Posted Price Mechanism (informal)

1: Each seller reports her private cost of her item to the mechanism.

2: The mechanism designs a posted price for each item according to the reported cost profile.

3: The mechanism shows to the buyer all the items, together with their posted prices.

4: The buyer is only allowed to purchase at most one item by paying the posted price for this

item.

Comparing to a classic posted price mechanism where the prices are designed before the mech-

anism starts, the main advantage of using an SAPP mechanism is that it provides the flexibility to

set prices based on the sellers’ cost, which allows an SAPP mechanism to achieve a higher GFT.

An astute reader may have already realized that the amount of money that sellers gain are not yet

defined in the SAPP mechanism. In fact, it is the major technical challenge to carefully design the

adjusted prices as well as the sellers’ gains, to make the mechanism truthful and budget balanced.

We postpone a more detailed discussion in Chapter 7.

1.4 Thesis Organization

In Chapter 2, we introduce all mechanism design concepts, definitions and technical background

that are needed to read this thesis. Then we overview the related work on both lines of work:

multi-item auctions and two-sided markets.

In Chapter 3, we present our result for revenue maximization in multi-item auctions. We

first review the duality framework of [CDW16]. Then we derive an upper bound of the optimal

only interested in a set of items subject to some downward-closed constraint, and is additive over the items. See
Chapter 2 for a formal definition.

5. Our approximation ratio is O(log(n)) for a broad class of constraints (such as matroid, matching, knapsack, or
the intersection of these).
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revenue for subadditive buyers by combining the duality framework with our new techniques. To

familiarize the readers with some basic ideas and techniques used to bound the benchmark, we first

give our proof for the single buyer case. Then we show how to upper bound the optimal revenue

for multiple fractionally-subadditive (or subadditive) buyers with our sequential posted price with

entry fee mechanisms.

In Chapter 4, we present our results for profit maximization. We first introduce a benchmark of

the optimal profit by extending the duality framework of [CDW16] to our profit setting. And then

we show how to bound the benchmark with the permit-selling mechanisms. After that, we design

simple mechanisms to approximate the benchmark for both the single-buyer and multiple-buyer

case.

Starting from Chapter 5, we discuss approximating GFT in two-sided markets. In Chapter 5, we

first prove a 2-approximation in the bilateral trade setting. And then we generalize this result to the

double auction setting with an arbitrary trading constraint. In Chapter 6, we design asymptotically

efficient mechanisms to approximate GFT. We first show by an example that the GFT of the

mechanism we design in Chapter 5 does not converge to the optimal GFT when the market goes

large. Then we design a truthful and budget balanced mechanism that are both approximately-

optimal and asymptotically efficient in double auctions and a more general setting called matching

market.

In Chapter 7, we present the results for two-sided markets with heterogeneous items. We start

by proving a distribution-parameterized approximation to the optimal GFT. Then we prove an

unconditional O(log2 n)-approximation by using the first result. At the end of this chapter, we

draw a connection between a lower bound to our analysis and one of the major open problems in

a special matching market.

In Chapter 8, we give a conclusion of this thesis and list some open questions following from

our results.
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Chapter 2

Background

In this chapter we introduce some basic definitions and notations, as well as useful tools in the

literature that are needed to read this thesis. Then we overview the related work on both lines of

works that this thesis focuses on: multi-item auctions and two-sided markets.

2.1 Basic Concepts in Mechanism Design

In this section we give the definition of basic concepts in mechanism design.

Agent’s type: The type of an agent contains all of her private information in order to design

mechanisms. A type profile is a collection of types of all agents.

Single-Dimensional vs. Multi-Dimensional: A mechanism design problem is called single-

dimensional if the type of every agent can be described as a scalar. An example of the single-

dimensional setting is single-item auction, where a seller is selling a single item. On the other

hand, the problem is called multi-dimensional if the type is described as a vector of numbers.

Bayesian setting: Throughout this thesis, we consider mechanism design problems in a Bayesian

setting, i.e. the type of each agent is drawn from some distribution that is known to the public.
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(Direct) Mechanism: A mechanism takes inputs from all agents (called bid or report), decides

an outcome (called allocation rule), and then charges each agent some payment (called payment

rule).

Agent’s value: An agent’s value maps a tuple of her type and an outcome to a non-negative

real number, which represents how much happiness the buyer has for this outcome. The agent is

risk-neutral, meaning that her value for a randomized allocation equals to the expectation of her

value over the randomness of the allocation.

Agent’s utility: An agent’s utility maps a tuple of her type, an outcome and a payment to a

real number. An strategic agent aims to maximize her utility in any mechanism she joins. In this

thesis, we assume that every agent has quasi-linear utility, which means that her utility equals to

her value minus the payment.

Truthfulness/Incentive compatibility: A mechanism is truthful or incentive compatible (IC)

if for every agent, reporting her type truthfully maximizes her utility. There are two IC concepts

we consider in this thesis:

• Bayesian Incentive Compatible (BIC): For every agent, reporting her type truthfully maxi-

mizes her expected utility if other agents also report truthfully. The expectation is taken over

the distribution of other agents’ types and the randomness of the mechanism.

• Dominant Strategy Incentive Compatible (DSIC): For every agent, reporting her type truth-

fully maximizes her utility for any reported profile of other agents.

Individual Rationality (IR): A mechanism is individual rational (also called interim individual

rational or interim IR) if for every agent, reporting her type truthfully gives her non-negative utility

in expectation over other agents’ types. A mechanism is ex-post IR if for every agent, reporting

her type truthfully gives her non-negative utility for any reported profile of other agents.
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Revelation Principle: A mechanism can have a more complicated format than a direct mech-

anism that simply asks the buyers to submit their types. Myerson introduced the revelation prin-

ciple [Mye79], which states that every incomplete information game can be simulated by a direct

mechanism. Thus throughout this thesis, we will, without loss of generality, focus on direct and

truthful mechanisms.

2.2 Background of Multi-Item Auctions

In multi-item auctions, there are n buyers and m heterogenous items. For every buyer i, we denote

her type ti as 〈tij〉mj=1, where tij is buyer i’s private information about item j. For each i, j, we

assume tij is drawn independently from the distribution Dij . Let Di = ×mj=1Dij be the distribution

of buyer i’s type and D = ×ni=1Di be the distribution of the type profile. We use Tij (or Ti, T )

and fij (or fi, f) to denote the support and density function of Dij (or Di, D). For notational

convenience, we let t−i to be the types of all buyers except i and t<i (or t≤i) to be the types of the

first i− 1 (or i) buyers. Similarly, we define D−i, T−i and f−i for the corresponding distributions,

support sets and density functions.

Throughout this thesis, we use the notation [k] = {1, 2, ..., k} for any positive integer k.

Valuation Function: The buyer’s valuation is a function that maps each type t and a subset

of items S ∈ [m] to a positive number, which represents how much she values the bundle S when

her type is t. For every buyer i with type ti, her valuation for a subset of items S is denoted by

vi(ti, S).

Independent System and Matroid: Given a finite ground set I, a set system F ⊆ 2I is a

family of subsets of I. F is called downward-closed if for every S ∈ F , we have S′ ∈ F , ∀S′ ⊆ S.

The pair (I,F) is called a matroid if it satisfies all of the following properties:

1. ∅ ∈ F .

2. F is downward-closed.
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3. F has exchange property : For every S, S′ ∈ F and |S′| > |S|, there exists e ∈ S′\S such that

S ∪ {e} ∈ F .

In the thesis we say F is a matroid constraint with respect to I if (I,F) forms a matroid.

Hierarchy of the Valuation Functions: Throughout this thesis, every buyer in the auction

has a valuation that is subadditive over independent items:

Definition 2.1. [RW15] For every buyer, whose type t is drawn from a product distribution D

with support T , her valuation function v(t, ·) is subadditive over independent items if:

• v(·, ·) has no externalities, i.e., for each t ∈ T and S ⊆ [m], v(t, S) only depends on 〈tj〉j∈S,

formally, for any t′ ∈ T such that t′j = tj for all j ∈ S, v(t′, S) = v(t, S).

• v(·, ·) is monotone, i.e., for all t ∈ T and U ⊆ V ⊆ [m], v(t, U) ≤ v(t, V ).

• v(·, ·) is subadditive, i.e., for all t ∈ T and U, V ⊆ [m], v(t, U ∪ V ) ≤ v(t, U) + v(t, V ).

We give a formal definition of different classes of buyer’s valuation covered in this thesis.

Definition 2.2. Let t be the type and v(t, S) be the value for bundle S ∈ [m].

• Additive: v(t, S) =
∑

j∈S v(t, {j}).

• Unit-demand: v(t, S) = maxj∈S v(t, {j}).

• Constrained Additive: v(t, S) = maxR⊆S,R∈I
∑

j∈R v(t, {j}), where I ⊆ 2[m] is a downward-

closed set system over the items specifying the feasible bundles (called feasibility constraint).

The valuation function is called matroid-rank if I is a matroid. An equivalent way to represent

any constrained additive valuations is to view the function as additive but the bidder is only

allowed to receive bundles that are feasible, i.e., bundles in I.

• XOS/Fractionally Subadditive: v(t, S) = maxi∈[K] v
(i)(t, S), where K is some finite number

and v(i)(t, ·) is an additive function for any i ∈ [K].
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• Subadditive: v(t, S1 ∪ S2) ≤ v(t, S1) + v(t, S2) for any S1, S2 ⊆ [m].

Constrained additive valuation is a generalization of additive and unit-demand valuation by

choosing I = 2[m] and I = {{j} | j ∈ [m]} accordingly. We notice that since the valuation has

no externalities, vi(ti, {j}) only depends on tij for all buyer i. To ease notations, for constrained

additive valuations, we interpret ti as an m-dimensional vector (ti1, ti2, · · · , tim) such that tij =

vi(ti, {j}) is buyer i’s value for item j.

Mechanisms: A mechanism M in multi-item auctions can be described as a tuple (x, p). For

every type profile t, buyer i and bundle S ⊆ [m], xiS(t) is the probability of buyer i receiving

the exact bundle S at profile t, pi(t) is the payment for buyer i at the same type profile. To ease

notations, for every buyer i and types ti, we use pi(ti) = Et−i [pi(ti, t−i)] as the interim price paid

by buyer i and σiS(ti) = Et−i [xiS(ti, t−i)] as the interim probability of receiving the exact bundle

S.

IC and IR constraints: A mechanism M = (x, p) is BIC if:

∑
S⊆[m]

σiS(ti) · vi(ti, S)− pi(ti) ≥
∑
S⊆[m]

σiS(t′i) · vi(ti, S)− pi(t′i), ∀i, ti, t′i ∈ Ti.

The mechanism is DSIC if:

∑
S⊆[m]

xiS(ti, t−i)·vi(ti, S)−pi(ti, t−i) ≥
∑
S⊆[m]

xiS(t′i, t−i)·vi(ti, S)−pi(t′i, t−i), ∀i, ti, t′i ∈ Ti, t−i ∈ T−i.

The mechanism is (interim) IR if:

∑
S⊆[m]

σiS(ti) · vi(ti, S)− pi(ti) ≥ 0,∀i, ti ∈ Ti.

The mechanism is ex-post IR if:

∑
S⊆[m]

xiS(ti, t−i) · vi(ti, S)− pi(ti, t−i) ≥ 0, ∀i, ti ∈ Ti, t−i ∈ T−i.
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Designer’s Objectives: Given a BIC and IR mechanism, the social welfare of this mechanism

is the expected sum of buyers’ value over the distributions of buyers. Formally, the social welfare

of a mechanism M = (x, p) is

Et∈T

∑
i

∑
S⊆[m]

xiS(t)

 =
∑
i

Eti∈Ti

 ∑
S⊆[m]

σiS(ti)


The revenue of this mechanism is the expected sum of buyers’ payment over the distributions

of buyers. Formally,

Rev(M) = Et∈T

[∑
i

pi(t)

]
=
∑
i

Eti∈Ti [pi(ti)]

2.3 Myerson’s Result

In this section we present the celebrated result by Myerson [Mye81] in single-item auctions. Note

that the result also applies to any single-dimensional settings.

Mechanism in Single-Item Auction: Given any mechanism M = (x, p). For every buyer i,

xi(t) denote the probability that buyer i wins the item under type profile t, and pi(t) denote her

payment. Let xi(ti) = Et−i [xi(t)] be the interim probability that buyer i wins the item and let

pi(ti) = pi(t) be her interim payment.

Properties of Allocation Rule: An allocation rule x is implementable if there exists a payment

rule p such that M = (x, p) is DSIC and ex-post IR. An allocation rule x is monotone if for every

buyer i and t−i, xi(ti, t−i) is non-decreasing on ti.

Myerson’s result [Mye81] gives an exact characterization of implementable allocation rule in

single-item auction.

Lemma 2.1. [Mye81] An allocation rule x is implementable if and only if x is monotone. More-

over, the payment rule p such that M = (x, p) is DSIC and ex-post IR is defined as follows:

pi(ti, t−i) = ti · xi(ti, t−i)−
∫ ti

0
xi(y, t−i)dy − θ
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for any θ ≥ 0. We refer to it as Myerson’s payment identity.

Revenue vs. Virtual Welfare: For any BIC and IR mechanism M = (x, p), the expected

revenue equals to the expected “virtual welfare” for particular virtual value functions. Formally,

∑
i

Eti [pi(ti)] =
∑
i

Eti [xi(ti) · ϕi(ti)].

Myerson’s Virtual Value Function: ϕi(ti) = ti − 1−Fi(ti)
fi(ti)

is called Myerson’s virtual value

function with respect to distribution Di.

According to Lemma 2.1, the revenue-optimal mechanism in single-item auction (Myerson’s

auction) is defined as follows:

Myerson’s Mechanism in Single-item Auction

1: Each buyer i reports her value ti to the mechanism.

2: The mechanism calculates the Myerson’s virtual value ϕi(ti) for every buyer i.

3: The mechanism allocates the item to buyer i with the highest ϕi(ti) (break ties arbitrarily) if

maxj ϕj(tj) > 0. Otherwise, the mechanism don’t allocate the item.

4: The payment for each buyer follows from Lemma 2.1.

Given any distribution Di, we say Di is regular if ϕi(ti) is monotone non-decreasing. When Di

is regular for all i, the allocation rule defined above is indeed monotone. For general distributions,

the allocation may not be monotone, and thus not implementable. Instead, Myerson performed an

“ironing procedure” [Mye81] on the virtual value functions to get a monotone allocation rule.

Ironing: Consider a distribution D with cdf F and pdf f . Consider the quantile space for distri-

bution D: For any q ∈ [0, 1], let R(q) = q · F−1(1− q). By taking derivative, one can easily check

that R′(q) = ϕ(F−1(1 − q)) holds for every q. Thus ϕ(·) is non-decreasing if and only if R(·) is

concave. Let R̃(q) = maxq1,q2∈[0,1](δ · R(q1) + (1 − δ) · R(q2)), where δ ∈ [0, 1] is the unique value

such that q = δ · q1 + (1− δ) · q2. Now R̃(·) is a concave curve. The Myerson’s ironed virtual value

function is defined as ϕ̃(b) = R̃′(1− F (b)).
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2.4 Background of Two-sided Markets

Two-sided Markets: We use m to denote the number of sellers and n to denote the number of

buyers. For each seller j (or buyer i), her type sj (or type bi), is drawn independently from her

type distribution DS
j (or DB

i ). Let DS = ×mj=1D
S
j and DB = ×ni=1D

B
i be the product distribution

of sellers’ and buyers’ type profile respectively. For notational convenience, let DS
−j (or DB

−i) be

the distribution of types of all sellers (or buyers) except j (or i). We use TSj (or TS , TBi , TB,

TS−j , T
B
−i) and fSj (or fS , fBi , fB, fS−j , f

B
−i) to denote the support and density function of DS

j (or

DS , DS
i , D

B, DS
−j , D

B
−i). Let D = (DS , DB).

Double Auction: Double auction is a special case of two-sided markets, where sellers are unit-

supply with identical items and buyers are unit-demand. In other words, each seller only owns one

item, and each buyer only wishes to buy one item and treat all the items as the same. This is

a single-dimensional setting as every buyer’s type and each seller’s type can be represented as a

scalar. For each buyer i, bi is the value of buyer i if she gets an item. For each seller j, sj is her

value for the item she owns. To distinguish from buyer’s value, we refer to sj as seller j’s cost.

Let V = {(i, j) | i ∈ [n], j ∈ [m]} be the set of all possible trading pairs between the sellers and

buyers. We use F ⊆ 2V to denote the trading constraint. More specifically, F is a set system that

contains all of the feasible sets of seller-buyer pairs that can be traded simultaneously. We allow

any F that satisfies the following two properties:

• Every S ∈ F is a matching, in other words, for every buyer i there is at most one seller

j ∈ [m] such that (i, j) ∈ S. Same for the sellers.

• F is downward closed, i.e., if S ∈ F , and S′ ⊆ S, then S′ ∈ F .

We refer to this setting as double auction with trading constraint F . In the (classic) double auction,

any matching is in F , indicating that any buyer can trade with any seller.

Bilateral trade: It’s the simplest setting in two-sided markets, with a single buyer, a single

seller, and a single item. It’s a special case of double auction when n = m = 1.
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Mechanisms in Double Auctions: Any mechanism in double auctions (with trading constraint

F) can be specified as a tuple (A, pB, pS), where A represents the allocation rule, pB and pS are

the payment rule for buyers and sellers. Given a type profile s and b, A(b, s) ∈ F is a (random)

matching that contains all the pairs of sellers and buyers who trade with each other under this type

profile. In other words, for every pairs (i, j) ∈ A(b, s), buyer i receives the item from seller j and

pays pBi (b, s) to the mechanism. pSj (b, s) is the amount of money seller j gains from the mechanism.

For notational convenience, we slightly abuse notation to let pBi (bi) = Eb−i,s[pBi (bi, b−i, s)] be buyer

i’s expected payment when she reports type bi, over the randomness of mechanism and other agents’

types. Similarly, let pSj (sj) be seller j’s expected gains when she reports type sj .

In our analysis, we usually use an alternative representation of the allocation rule. For any type

profile b and s, for every i ∈ [n], we use xBi (b, s) to denote the probability that buyer i gets an item

under this type profile, i.e., the probability that (i, j) ∈ A(b, s) for some j. Similarly, for every

j ∈ [m], we use xSj (b, s) to denote the probability that seller j sells her item. Given a mechanism

(xB, xS , pB, pS), for every type profile (b, s), buyer i’s utility is her value minus payment, which is

bi · xBi (b, s)− pBi (b, s), and seller j’s utility is her gain minus cost, which is pSj (b, s)− sj · xSj (b, s).

We again slightly abuse notation to let xBi (bi) = Eb−i,s[xBi (bi, b−i, s)] be the interim probability

that buyer i gets an item when she reports type bi, over the randomness of mechanism and other

agents’ types. Similarly, let xSj (sj) be seller j’s interim probability to sell her item when she reports

type sj .

An allocation rule x = (xB, xS) is monotone if for every buyer i ∈ [n], xBi (bi, b−i, s) is non-

decreasing in bi for any fixed b−i and s, and for every seller j ∈ [m], xSj (b, sj , s−j) is non-increasing

in sj for any fixed b and s−j .

Budget Balance Constraints: We give formal definitions of variants of the budget balance

constraints. In Section 5.4, we discuss the connections between these variants.

• Strong Budget Balance (SBB): Under any type profile, the sum of all buyers’ (expected)

payment is equal to the sum of all sellers’ (expected) gains, over the randomness of mechanism.
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Formally, ∑
i

pBi (b, s) =
∑
j

pBj (b, s), ∀b, s

• Weak Budget Balance (WBB): Under any type profile, the sum of all buyers’ (expected)

payment is at least the sum of all sellers’ (expected) gains, over the randomness of mechanism.

Formally, ∑
i

pBi (b, s) ≥
∑
j

pBj (b, s), ∀b, s

• Ex-ante Strong Budget Balance (Ex-ante SBB): The sum of all buyers’ expected pay-

ment is equal to the sum of all sellers’ expected gains, over the randomness of mechanism

and the type profile of all agents. Formally,

Eb∼DB ,s∼DS

∑
i

pBi (b, s)−
∑
j

pBj (b, s)

 = 0

• Ex-ante Weak Budget Balance (Ex-ante WBB): The sum of all buyers’ expected pay-

ment is at least the sum of all sellers’ expected gains, over the randomness of mechanism and

the type profile of all agents. Formally,

Eb∼DB ,s∼DS

∑
i

pBi (b, s)−
∑
j

pBj (b, s)

 ≥ 0

Gains from Trade (GFT): Gains from trade describes the gains of social welfare induced by the

mechanism. Formally, given a mechanism M = (A, pB, pS), the expected GFT for the mechanism

is defined as

GFT(M) = Eb∼DB ,s∼TS

 ∑
(i,j)∈A(b,s)

(bi − sj)

 (2.1)

or using the definition of xB, xS ,

GFT(M) = Eb∼DB ,s∼TS

 n∑
i=1

xBi (b, s) · bi −
m∑
j=1

xSj (b, s) · sj

 (2.2)
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2.4.1 Impossibility Result by Myerson and Satterthwaite

In this section we overview the impossibility result by Myerson and Satterthwaite [MS83] in bi-

lateral trade. We will use b and s to represent the buyer and seller’s type accordingly. In any

mechanism M = (x, pB, pS) in bilateral trade, for every type profile (b, s), x(b, s) is the probability

that the item is traded. pB(b, s) and pS(b, s) are the payments. For simplicity, for every b let

xB(b) = Es[x(b, s)], pB(b) = Es[pB(b, s)] be the buyer’s interim allocation and payment. Similarly,

let xS(s) = Eb[x(b, s)], pS(s) = Eb[pS(b, s)] for every s.

Given any allocation rule x, we say x is implementable if there exists a payment rule p = pB =

pS , such that M = (x, p) is BIC, IR and SBB.

Theorem 2.1. [MS83] (Impossibility Result) In bilateral trade, consider the allocation rule x such

that x(b, s) = 1[b ≥ s] for all b and s. Then x is not implementable.

First-best vs. Second-best: The impossibility result distinguishes two maximum GFT in two-

sided markets. The first-best GFT (denoted as FB-GFT) is defined as the maximum expected

GFT without any constraint. In double auctions with trading constraint F , we have

FB-GFT = Eb∼DB ,s∼TS

max
A∈F

∑
(i,j)∈A

(bi − sj)


On the other hand, the second-best GFT (denoted as SB-GFT) is defined as the maximum expected

GFT obtainable by any IR, BIC, ex-ante WBB mechanism.

In the same paper, they also presented an exact characterization of implementable allocation

rules.

Theorem 2.2. [MS83] In bilateral trade, an allocation rule x is implementable if and only if

• xB(b) is non-decreasing on b. xS(s) is non-increasing on sj.

• Eb∼DB ,s∼DS [x(b, s) · (ϕ(b)− τ(s))] ≥ 0.

Here ϕ(·) is the Myerson’s virtual value function for DB, i.e. ϕ(b) = b − 1−FB(b)
fB(b)

,∀b. τ(·) is
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an analogous definition for the seller. We will refer to it as the Myerson’s virtual cost function for

DS. For every s, τ(s) = s+ FS(s)
fS(s)

.

Theorem 2.2 can be proved using the following lemma, which is known as the Myerson’s lemma

for two-sided markets.

Lemma 2.2. [MS83] For any BIC, IR mechanism M = (x, pB, pS) in bilateral trade, we have

1. xB(b) is non-decreasing on b. xS(s) is non-increasing on sj.

2. For every b,

pB(b) = b · xB(b)−
∫ b

0
xB(t)dt− θ, (2.3)

where θ is some non-negative constant.

3. For every s,

pS(s) = s · xS(s) +

∫ ∞
s

xS(t)dt+ η, (2.4)

where η is some non-negative constant.

Furthermore, if (pB, pS) satisfies Equation (5.2) and (5.3), then

Eb[pB(b)] = Eb
[
xB(b) · ϕ(b)

]
− θ

Es[pS(s)] = Es
[
xS(s) · τ(s)

]
+ η

(2.5)

2.5 Related Work

2.5.1 Revenue Maximization in Multi-item Auctions

In recent years, we have witnessed several breakthroughs in designing (approximately) optimal

mechanisms in multi-dimensional settings. The black-box reduction by Cai et al. [CDW12a,

CDW12b, CDW13a, CDW13b] shows that we can reduce any Bayesian mechanism design prob-

lem to a similar algorithm design problem via convex optimization. Through their reduction, it

is proved that all optimal mechanisms can be characterized as a distribution of virtual welfare

maximizers, where the virtual valuations are computed by an LP. Although this characterization
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provides important insights about the structure of the optimal mechanism, the optimal allocation

rule is unavoidably randomized and might still be complex as the virtual valuations are only a

solution of an LP.

Another line of work considers the “Simple vs. Optimal” auction design problem. For instance, a

sequence of results [CHK07,CHMS10,CMS10,CMS15] show that sequential posted price mechanism

can achieve 1
33.75 of the optimal revenue, whenever the buyers have unit-demand valuations over

independent items. Another series of results [HN12, CH13, LY13, BILW14, Yao15] show that the

better of selling the items separately and running the VCG mechanism with per bidder entry fee

achieves 1
69 of the optimal revenue, whenever the buyers’ valuations are additive over independent

items. Cai et al. [CDW16] unified the two lines of results and improved the approximation ratios

to 1
8 for the additive case and 1

24 for the unit-demand case using their duality framework.

Works in the literature have shown that simple mechanisms can approximate the optimal rev-

enue even when buyers have more sophisticated valuations. For instance, Chawla and Miller [CM16]

showed that the sequential two-part tariff mechanism can approximate the optimal revenue when

buyers have matroid rank valuation functions over independent items. Their mechanism requires

every buyer to pay an entry fee up front, and then run a sequential posted price mechanism on

buyers who have accepted the entry fee. Our sequential posted price with entry fee mechanism

is similar to their mechanism, but with the following major difference: since buyers are asked to

pay the entry fee before the seller visits them, the buyers have to make their decisions based on

the expected utility (assuming every other buyer behaves truthfully) they can receive. Hence, the

mechanism is only guaranteed to be BIC and interim IR. While in our mechanism, the buyers

can see what items are still available before paying the entry fee, therefore the decision making is

straightforward and our mechanism is DSIC and ex-post IR. For valuations beyond matroid rank

functions, Rubinstein and Weinberg [RW15] showed that for a single buyer whose valuation is sub-

additive over independent items, either grand bundling or selling the items separately achieves at

least 1
338 of the optimal revenue.

Our results in Chapter 3 draw a connection between approximating our benchmark using the

sequential posted price with entry fee mechanisms and approximating optimal welfare with posted
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price mechanisms. A great work by Feldman et al. [FGL15] proved an approximation ratio of

2 (or O(logm)) to the optimal welfare via posted price mechanisms, for fractionally-subadditive

(or subadditive) buyers. Their results help us to prove the desired approximation to the optimal

revenue. A recent breakthrough by Dutting et al. [DKL20] improved the approximating ratio for

welfare to O(log logm), when the buyer is subadditive. In the same paper, they also proved an

O(log logm)-approximation to the optimal revenue, following a similar approach to the conference

version of our work [CZ17].

The Cai-Devanur-Weinberg duality framework [CDW16] has been applied to other intriguing

Mechanism Design problems. For example, Eden et al. showed that the better of selling separately

and bundling together gets an O(d)-approximation for a single bidder with “complementarity-d

valuations over independent items” [EFF+16b]. The same authors also proved a Bulow-Klemperer

result for regular i.i.d. and constrained additive bidders [EFF+16a]. Liu and Psomas provided a

Bulow-Klemperer result for dynamic auctions [LP16]. Finally, Brustle et al. [BCWZ17] extended the

duality framework to two-sided markets and used it to design simple mechanisms for approximating

the Gains from Trade.

Strong duality frameworks have recently been developed for one additive buyer [DDT13,DDT15,

Gia14,GK14b,GK15]. These frameworks show that the dual problem of revenue maximization can

be viewed as an optimal transport/bipartite matching problem. Hartline and Haghpanah provided

an alternative duality framework in [HH15]. They showed that if certain paths exist, these paths

provide a witness of the optimality of a certain Myerson-type mechanism, but these paths are not

guaranteed to exist in general. Similar to the Cai-Devanur-Weinberg framework, Carroll [Car15] in-

dependently made use of a partial Lagrangian over incentive constraints. These duality frameworks

have been successfully provide conditions under which a certain type of mechanism is optimal when

there is a single unit-demand or additive bidder. However, none of these frameworks succeeds in

yielding any approximately optimal results in multi-buyer settings.
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2.5.2 Profit Maximization

The ad auction problem has been extensively studied in the literature [BMS12, FJM+12, DIR14,

EFG+14,DPT16]. Signaling mechanisms had been the focus. In a signaling mechanism, the seller

first sends a signal to the buyer based on the type of the viewer and according to a signaling scheme

known to the buyer. The buyer updates her posterior belief of the viewer type after observing the

signal. The seller then uses a mechanism tailored to the buyer’s updated posterior to sell the ad

displaying slot. Many results have been obtained regarding the revenue-optimal signaling scheme.

Overall, the optimal signaling scheme may be highly complex and hard to pin down. Interestingly,

Daskalakis et al. showed that even if we can find the optimal signaling scheme the corresponding

mechanism can still be bounded away from the optimum [DPT16]. They showed that the optimal

mechanism is direct and does not involve any signaling. Motivated by their result, we focus on

simple and direct mechanisms.

In [DPT16], they also showed how to use simple mechanisms to approximate the auctioneer’s

profit in an ad auction. They established the result by reducing the problem to revenue maximiza-

tion in multi-item auctions with an additive buyer. However, their reduction is ad-hoc and heavily

relies on a specific property of their cost distribution, that is, the cost is always one of the δis (see

Example 1.1 for the definition). When the cost distribution is general, their reduction no longer

holds, and thus is inapplicable to our problem.

Another result that is related to ours is [MSL15]. They consider the problem of maximizing

profit for the single additive buyer case, when the seller has a fixed production cost for each item.

They propose a mechanism called Pure Bundling with Disposal for Cost (PBDC), where after

buying the bundle, the customer is allowed to return any subset of goods for their production cost.

They prove that such a mechanism is almost optimal for a large number of independent goods,

and the better of a PBDC mechanism and the mechanism that sells items separately is a constant

factor approximation for the optimal profit. For the single buyer and fixed cost case, their PBDC

mechanism is identical to our permit-bundling mechanism. In our paper, we focus on a more general

setting with multiple buyers and non-fixed costs.
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2.5.3 Two-sided Markets

Gains from Trade: The main related works are on worst-case GFT approximation. Blumrosen

and Mizrahi [BM16] guarantee an e-approximation to the first-best GFT in the setting of bilateral

trade—one buyer, one seller, one item—when the buyer’s distribution satisfies the monotone hazard

rate condition. Colini-Baldeschi et al. [CBGdK+17] show that a simple fixed price mechanism

obtains an O(1
r )-approximation to GFT in the bilateral trade and double auction settings, but a

more careful setting of the fixed price gives an O(log 1
r )-approximation for bilateral trade. Our

result in Chapter 7 generalizes the O(log 1
r )-approximation of [CBGdK+17] to multi-dimensional

settings, while providing an unconditional O(log n)-approximation.

Other lines of work provide (1) asymptotic approximation guarantees in the number of items

optimally traded for settings as general as multi-unit buyers and sellers and k types of items

[McA92,SHA18b,SHA18a], (2) dual asymptotic and worst-case guarantees for double auctions and

matching markets [BCGZ18], and (3) Bulow-Klemperer-style guarantees of the number of additional

buyers (or sellers) needed in double auctions in order for the GFT of the new setting running a

simple mechanism to beat the first-best GFT of the original setting [BGG20].

Multi-Dimensional Revenue: In the setting where one seller owns all of the items, has no cost

for the items, and is the mechanism designer, much more is known. However, even when selling

to a single additive bidder (e.g. with no feasibility constraints), posted prices can achieve at best

an O(log n)-approximation [HN12, LY13]. In order to obtain a constant-factor approximation for

an additive buyer, Babaioff et al. [BILW14] use the better of posted prices and posting a price

on the grand bundle, and a variation works for a single subadditive (which includes constrained-

additive) buyer as well [RW15]. However, in a two-sided market where items are owned by separate

sellers, it is not clear how to implement bundling in an incentive-compatible way. The mechanisms

used to obtain constant-approximations for multiple constrained-additive, XOS, or subadditive

buyers [CM16,CZ17] are only more complex.
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Welfare in Two-Sided Markets: Colini-Baldeschi et al. [CdKLT16] consider welfare maximiza-

tion in the double auction setting with matroid feasibility constraints. They generalize sequential

posted price mechanisms (SPMs) to the two-sided market setting, guaranteeing a constant-factor

approximation to welfare. The mechanism posts prices for each buyer-seller combination (not just

for each item), visits the buyers and sellers simultaneously in the given order, and advances on

either side when the price is rejected. Trade occurs when both sides accept the trade. Follow up

work of Colini-Baldeschi et al. [CBGK+20] generalizes the idea to the setting where buyers are

XOS and sellers are additive. Here, there is a posted price for each item, but only “high welfare”

items are considered. The buyers visit and pick out the bundles they want among the high welfare

items. Then sellers are given the opportunity to sell their entire bundle of items demanded by the

buyers (but not any subset), and they are skipped with some probability. Like the previous work,

this mechanism is ex-post IR, DSIC, and strongly BB (buyer payments equal seller payments). As

only “high welfare” items are considered, it is possible for their mechanism to not trade any item

when the minimum trade probability r is a constant.

Blumrosen and Dobzinski [BD16] give an IR, BIC, and strongly BB mechanism for bilateral

trade that obtains in expectation a constant-fraction of the optimal welfare. Dütting et al. [DRT14]

study welfare maximization in the prior-free setting and present DSIC, IR, and weakly BB (buyer

payments exceed seller payments) mechanisms for double auctions with feasibility constraints on

either side.

2.6 Lagrangian Duality

In this section we give a brief introduction of the partial Lagrangian dual of a linear program. We

will use these definitions and properties in Chapter 3 and Chapter 4.
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We consider the following linear program (primal) with variable x.

max f(x)

s.t. Ax ≤ b

x ∈ P

Denote x∗ the optimal solution of the primal. We take the partial Lagrangian dual by using

the Lagrangian multiplier λi for each constraint (Ax)i ≤ bi:

Partial Lagrangian Dual: minλ≥0 maxx∈P L(x, λ), where L(x, λ) = f(x) + λT (b−Ax).

For every feasible dual solution λ ≥ 0, let D(λ) = maxx∈P L(x, λ). Denote λ∗ the optimal dual

solution: λ∗ ∈ minλ≥0D(λ).

Weak Duality: For any feasible dual solution λ, it holds that f(x∗) ≤ D(λ).

Proof.

D(λ) ≥ L(x∗, λ) = f(x∗) + λT (b−Ax∗) ≥ f(x∗)

Strong Duality: The value of the primal equals to the value of the partial Lagrangian dual. In

other words, f(x∗) = D(λ∗) = minλ≥0 maxx∈P L(x, λ).

2.7 Online Contention Resolution Scheme

In this section, we introduce a useful technique in mechanism design called online contention

resolution scheme (OCRS). It was first studied by Feldman et al. [FSZ16].

An OCRS is an algorithm defined for the following online selection problem: There is a ground

set I, and the elements are revealed one by one, with item i active with probability xi independent

of the other items. The algorithm is only allowed to accept active elements and has to irrevocably

make a decision whether to accept an element before the next one is revealed. Moreover, the
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algorithm can only accept a set of elements subject to a feasibility constraint F . We use the vector

x to denote active probabilities for the elements and R(x) to denote the random set of active

elements.

Definition 2.3 (relaxation). We say that a polytope P ⊆ [0, 1]|I| is a relaxation of PF if it contains

the same {0, 1}-points, i.e., P ∩ {0, 1}|I| = PF ∩ {0, 1}|I|.

Definition 2.4. An Online Contention Resolution Scheme (OCRS) for a polytope P ⊆ [0, 1]|I| and

feasibility constraint F is an online algorithm that selects a feasible and active set S ⊆ R(x) and

S ∈ F for any x ∈ P . A greedy OCRS π greedily decides whether or not to select an element

in each iteration: given the vector x ∈ P , it first determines a sub-constraint Fπ,x ⊆ F . When

element i is revealed, it accepts the element if and only if i is active and S ∪ {i} ∈ Fπ,x, where S

is the set of elements accepted so far. In most cases, we choose P to be PF , the convex hull of all

characteristic vectors of feasible sets in F : PF = conv(1S | S ∈ F).

Definition 2.5 ((δ, η)-selectability [FSZ16]). For any δ, η ∈ (0, 1), a greedy OCRS π for P and F

is (δ, η)-selectable if for every x ∈ δ · P and i ∈ I,

Pr[S ∪ {i} ∈ Fπ,x,∀S ⊆ R(x), S ∈ Fπ,x] ≥ η.

The probability is taken over the randomness of R(x) and the subconstraint Fπ,x. We slightly abuse

notation and say that F is (δ, η)-selectable if there exists a (δ, η)-selectable greedy OCRS for PF

and F .

Feldman et al. [FSZ16] proved that a broad class of downward-closed feasibility constraints,

such as matroids, matching constraints and knapsack constraints, are all (δ, η)-selectable for some

constant δ, η ∈ (0, 1). Moreover, they prove that (δ, η)-selectability has nice composability. In

further chapters, we will see how these results help us to prove that our mechanism achieves a

constant factor approximation.

Definition 2.6 (Matching, Knapsack Constraint). Given an undirected graph G = (V,E). F ⊆ 2E

is a matching constraint with respect to the ground set E if F = {M ⊆ E : M is a matching in G}.
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A knapsack constraint F with respect to the ground set I is defined as: F = {S ⊆ I :
∑

i∈S ci ≤ 1}.

Here ci ∈ [0, 1] is the weight of element i.

Lemma 2.3 (Selectability of Natural Constraints). [FSZ16]

• For any matroid constraint F and any δ ∈ (0, 1), there exists a (δ, 1 − δ)-selectable greedy

OCRS for PF . Moreover, for any ε ∈ (0, 1− δ), there exists a (δ, 1− δ − ε)-selectable greedy

OCRS π for PF , and the running time of π is polynomial on the input size and 1/ε.

• For any matching constraint F and any δ ∈ (0, 1), there exists an efficient (δ, e−2δ)-selectable

greedy OCRS for PF .

• For any knapsack constraint F and any δ ∈ (0, 1
2), there exists an efficient (δ, 1−2δ

2−2δ )-selectable

greedy OCRS for PF .

Lemma 2.4 (Composability of Selectability). [FSZ16] Given two downward-closed constraints F1

and F2 with respect to the same ground set I. Let F = F1 ∩ F2. Suppose there exist a (δ, η1)-

selectable greedy OCRS π1 for P1 and F1, and a (δ, η2)-selectable greedy OCRS π2 for P2 and F2.

Then there exists a (δ, η1 · η2)-selectable greedy OCRS π for P1 ∩ P2 and F . When P1 = PF1 and

P2 = PF2, as PF1 ∩PF2 ⊆ PF , π is also (δ, η1 ·η2)-selectable for PF and F . Moreover, π is efficient

computable given π1 and π2.
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Chapter 3

Revenue Maximization in Multi-item

Auctions

In this chapter we study the revenue maximization problem in multi-item auctions. We design sim-

ple and truthful mechanisms to approximate the optimal revenue for multiple subadditive buyers.

In Section 3.1 we give an overview of our results and techniques shown in this chapter. In

Section 3.2 we introduce some additional definitions and notations need to read this chapter. In

Section 3.3 and Section 3.4, we review the duality framework of [CDW16]. In Section 3.5, we derive

an upper bound of the optimal revenue for subadditive buyers by combining the duality framework

with our new techniques. In Section 3.6, we use the single buyer case to familiarize the readers

with some basic ideas and techniques used to bound the benchmark. In Section 3.7, we show how

to upper bound the optimal revenue for multiple XOS (or subadditive) buyers with our sequential

posted price with entry fee mechanisms. A buyer in the auction can also be called as a bidder. We

use both words interchangeably throughout this chapter.

3.1 Results and Techniques in This Chapter

In this chapter, we unify and strengthen all the results in the literature via an extension of the

duality framework proposed by Cai et al. [CDW16]. Moreover, we show that even when there are
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Additive or
Unit-

demand

Matroid-
Rank

Constrained
Additive

XOS Subadditive

Single
Buyer

Previous 6 [BILW14]
or
4 [CMS15]

31.1* 31.1 [CM16] 338* 338 [RW15]

This Paper - 11* 11 40* 40

Multiple
Buyer

Previous 8 [CDW16]
or
24 [CDW16]

133 [CM16] ? ? ?

This Paper - 70* 70 268 O(logm)†

* The result is implied by another result for a more general setting.
† The state-of-the-art result is an O(log logm)-approximation by Dutting et al. [DKL20].

Table 3.1: Comparison of approximation ratios between previous and current work.

multiple buyers with XOS valuation functions, there exists a simple, deterministic and Dominant

Strategy Incentive Compatible (DSIC) mechanism that achieves a constant fraction of the optimal

Bayesian Incentive Compatible (BIC) revenue. For subadditive valuations, our approximation ratio

degrades to O(logm).

Informal Theorem 6. There exists a simple, deterministic and DSIC mechanism that achieves

a constant fraction of the optimal BIC revenue in multi-item settings, when the buyers’ valuation

distributions are XOS over independent items. When the buyers’ valuation distributions are subad-

ditive over independent items, our mechanism achieves at least Ω( 1
logm) of the optimal BIC revenue,

where m is the number of items.

The original paper by Cai et al. [CDW16] provided a unified treatment for additive and unit-

demand valuations. However, it is inadequate to provide an analyzable benchmark for even a single

subadditive bidder. In this paper, we show how to extend their duality framework to accommo-

date general subadditive valuations. Using this extended framework, we substantially improve the

approximation ratios for many of the settings discussed above, and in the meantime generalize the

results to broader cases. See Table 3.1 for the comparison between the best ratios reported in the

literature and the new ratios obtained in this work.

Our mechanism is either a rationed sequential posted price mechanism (RSPM) or an anony-
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mous sequential posted price with entry fee mechanism (ASPE). In an RSPM, there is a price pij

for buyer i if she wants to buy item j, and she is allowed to purchase at most one item. We visit

the buyers in some arbitrary order and the buyer takes her favorite item among the available items

given the item prices for her. Here we allow personalized prices, that is, pij could be different from

pkj if i 6= k. In an ASPE, every buyer faces the same collection of item prices {pj}j∈[m]. Again, we

visit the buyers in some arbitrary order. For each buyer, we show her the available items and the

associated price for each item. Then we ask her to pay the entry fee to enter the mechanism, which

may depend on what items are still available and the identity of the buyer. If the buyer accepts

the entry fee, she can proceed to purchase any item at the given prices; if she rejects the entry fee,

then she will leave the mechanism without receiving anything. Given the entry fee and item prices,

the decision making for the buyer is straightforward, as she only accepts the entry fee when the

surplus for winning her favorite bundle is larger than the entry fee. Therefore, both RSPM and

ASPE are DSIC and ex-post Individually Rational (ex-post IR).

3.1.1 Our Contributions

To obtain the new generalizations, we provide important extensions to the duality framework

in [CDW16], as well as novel analytic techniques and new simple mechanisms.

1. Accommodating subadditive valuations: the original duality framework in [CDW16]

already unified the additive case and unit-demand case by providing an approximately tight upper

bound for the optimal revenue using a single dual solution. A trivial upper bound for the revenue is

the social welfare, which may be arbitrarily bad in the worst case. The duality based upper bound

in [CDW16] improves this trivial upper bound, the social welfare, by substituting the value of each

buyer’s favorite item with the corresponding Myerson’s virtual value. However, the substitution is

viable only when the following condition holds – the buyer’s marginal gain for adding an item solely

depends on her value for that item (assuming it’s feasible to add that item1), but not the set of

items she has already received. This applies to valuations that are additive, unit-demand and more

1. WLOG, we can reduce any constrained additive valuation to an additive valuation with a feasibility constraint
(see Definition 2.2)
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generally constrained additive, but breaks under more general valuation functions, e.g., submodular,

XOS or subadditive valuations. As a consequence, the original dual solution from [CDW16] fails

to provide a nice upper bound for more general valuations. To overcome this difficulty, we take a

different approach. Instead of directly studying the dual of the original problem, we first relax the

valuations and argue that the optimal revenue of the relaxed valuation is comparable to the original

one. Then, since we choose the relaxation in a particular way, by applying a dual solution similar

to the one in [CDW16] to the relaxed valuation, we recover an upper bound of the optimal revenue

for the relaxed valuation resembling the appealing format of the one in [CDW16]. Combining these

two steps, we obtain an upper bound for subadditive valuations that is easy to analyze. Indeed, we

use our new upper bound to improve the approximation ratio for a single subadditive buyer from

338 [RW15] to 40. See Section 3.5.1 for more details.

2. An adaptive dual: our second major change to the framework is that we choose the dual in an

adaptive manner. In [CDW16], a dual solution λ is chosen up front inducing a virtual value function

Φ(·), then the corresponding optimal virtual welfare is used as a benchmark for the optimal revenue.

Finally, it is shown that the revenue of some simple mechanism is within a constant factor of the

optimal virtual welfare. Unfortunately, when the valuations are beyond additive and unit-demand,

the optimal virtual welfare for this particular choice of virtual value function becomes extremely

complex and hard to analyze. Indeed, it is already challenging to bound when the buyers’ valuations

are k-demand. In this paper, we take a more flexible approach. For any particular allocation rule σ,

we tailor a special dual λ(σ) based on σ in a fashion that is inspired by Chawla and Miller’s ex-ante

relaxation [CM16]. Therefore, the induced virtual valuation Φ(σ) also depends on σ. By duality,

we can show that the optimal revenue obtainable by σ is still upper bounded by the virtual welfare

with respect to Φ(σ) under allocation rule σ. Since the virtual valuation is designed specifically for

allocation σ, the induced virtual welfare is much easier to analyze. Indeed, we manage to prove

that for any allocation σ the induced virtual welfare is within a constant factor of the revenue of

some simple mechanism, when bidders have XOS valuations. See Section 3.5.2 and 3.5.3 for more

details.

3. A novel analysis and new mechanism: with the two contributions above, we manage to
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derive an upper bound of the optimal revenue similar to the one in [CDW16] but for subadditive

bidders. The third major contribution of this paper is a novel approach to analyzing this upper

bound. The analysis in [CDW16] essentially breaks the upper bound into three different terms–

Single, Tail and Core, and bound them separately. All three terms are relatively simple to

bound for additive and unit-demand buyers, but for more general settings the Core becomes much

more challenging to handle. Indeed, the analysis in [CDW16] was insufficient to tackle the Core

even when the buyers have k-demand valuations2– a very special case of matroid rank valuations,

which itself is a special case of XOS or subadditive valuations. Rubinstein and Weinberg [RW15]

showed how to approximate the Core for a single subadditive bidder using grand bundling, but

their approach does not apply to multiple bidders. Yao [Yao15] showed how to approximate the

Core for multiple additive bidders using a VCG with per bidder entry fee mechanism, but again it is

unclear how his approach can be extended to multiple k-demand bidders. A recent paper by Chawla

and Miller [CM16] finally broke the barrier of analyzing the Core for multiple k-demand buyers.

They showed how to bound the Core for matroid rank valuations using a sequential posted price

mechanism by applying the online contention resolution scheme (OCRS) developed by Feldman

et al. [FSZ16]. The connection with OCRS is an elegant observation, and one might hope the

same technique applies to more general valuations. Unfortunately, OCRS is only known to exist

for special cases of downward closed constraints, and as we show in Section 3.7.2, the approach by

Chawla and Miller cannot yield any constant factor approximation for general constrained additive

valuations.

We take an entirely different approach to bound the Core. Here we provide some intuition

behind our mechanism and analysis. The Core is essentially the optimal social welfare induced by

some truncated valuation v′, and our goal is to design a mechanism that extracts a constant fraction

of the welfare as revenue. Let M be any sequential posted price mechanism. A key observation

is that when bidder i’s valuation is subadditive over independent items, her utility in M , which

is the largest surplus she can achieve from the unsold items, is also subadditive over independent

2. The class of k-demand valuations is a generalization of unit-demand valuations, where the buyer’s value is
additive up to k items.
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items. If we can argue that her utility function is a-Lipschitz (Definition 3.4) with some small a,

Talagrand’s concentration inequality [Tal95, Sch03] allows us to set an entry fee for the bidder so

that we can extract a constant fraction of her utility just through the entry fee. If we modify M

by introducing an entry fee for every bidder, according to Talagrand’s concentration inequality, the

new mechanism M ′ should intuitively have revenue that is a constant fraction of the social welfare

obtained by M 3. Therefore, if there exists a sequential posted price mechanism M that achieves

a constant fraction of the optimal social welfare under the truncated valuation v′, the modified

mechanism M ′ can obtain a constant fraction of Core as revenue. Surprisingly, when the bidders

have XOS valuations, Feldman et al. [FGL15] showed that there exists an anonymous sequential

posted price mechanism that always obtains at least half of the optimal social welfare. Hence, an

anonymous sequential posted price with per bidder entry fee mechanism should approximate the

Core well, and this is exactly the intuition behind our ASPE mechanism.

To turn the intuition into a theorem, there are two technical difficulties that we need to address:

(i) the Lipschitz constants of the bidders’ utility functions turn out to be too large (ii) we deliber-

ately neglected the difference in bidders’ behavior under M and M ′ in hope to keep our discussion

in the previous paragraph intuitive. However, due to the entry fee, bidders may end up purchasing

completely different items under M and M ′, so it is not straightforward to see how one can relate

the revenue of M ′ to the welfare obtained by M . See Section 3.7.2 for a more detailed discussion

on how we overcome these two difficulties.

3.2 Notation in This Chapter

In this chapter, we focus on revenue maximization in the combinatorial auction with n independent

bidders and m heterogenous items. The valuation of each bidder is subadditive over independent

items (see Definition 2.1). We denote bidder i’s type ti as 〈tij〉mj=1, where tij is bidder i’s private

information about item j. For each i, j, we assume tij is drawn independently from the distribution

Dij . Let Di = ×mj=1Dij be the distribution of bidder i’s type and D = ×ni=1Di be the distribution of

3. M ’s welfare is simply its revenue plus the sum of utilities of the bidders, and M ′ can extract some extra revenue
from the entry fee, which is a constant fraction of the total utility from the bidders.
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the type profile. We use Tij (or Ti, T ) and fij (or fi, f) to denote the support and density function

of Dij (or Di, D). For notational convenience, we let t−i to be the types of all bidders except i and

t<i (or t≤i) to be the types of the first i − 1 (or i) bidders. Similarly, we define D−i, T−i and f−i

for the corresponding distributions, support sets and density functions. When bidder i’s type is ti,

her valuation for a set of items S is denoted by vi(ti, S). For every item j, we use Vi(tij) to denote

vi(ti, {j}), as it only depends on tij .

Given D and v = {vi(·, ·)}i∈[n], we use Rev(M, v,D) to denote the expected revenue of a BIC

mechanism M . Throughout this chapter, we use the following notations for the simple mechanisms

we consider.

Single-Bidder Mechanisms:

- SRev(v,D) denotes the optimal expected revenue achievable by any posted price mechanism

that only allows the buyer to purchase at most one item, and we use SRev for short if there is no

confusion4.

- BRev(v,D) denotes the optimal expected revenue achievable by selling a grand bundle and we

use BRev for short if there is no confusion.

Multi-Bidder Mechanisms:

- PostRev(v,D) denotes the optimal expected revenue achievable by selling the items via an

RSPM to the bidders, and we use PostRev for short when there is no confusion.

- APostEnRev(v,D) denotes the optimal expected revenue achievable by selling the items via an

ASPE to the bidders, and we use APostEnRev for short when there is no confusion.

Single-Dimensional Copies Setting: In the analysis for unit-demand bidders in [CHMS10,

CDW16], the optimal revenue is upper bounded by the optimal revenue in the single-dimensional

copies setting defined in [CHMS10]. We use the same technique. We construct nm agents, where

agent (i, j) has value Vi(tij) of being served with tij ∼ Dij , and we are only allow to use matchings,

4. The mechanism is slightly different from selling separately, as we only allow the buyer to purchase at most one
item.
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that is, for each i at most one agent (i, k) is served and for each j at most one agent (k, j) is served5.

Notice that this is a single-dimensional setting, as each agent’s type is specified by a single number.

Let OPTCopies-UD be the optimal BIC revenue in this copies setting.

Continuous vs. Discrete Distributions: We explicitly assume that the input distributions are

discrete. Nevertheless, it is known that every D can be discretized into D+ such that the optimal

revenue for D and D+ are within (1 ± ε) of each other [CDW16]. So our results also apply to

continuous distributions.

3.2.1 Our Mechanisms

In this section, we introduce a class of mechanisms called Sequential Posted Price with Entry Fee.

For each bidder i, the mechanism first determines a posted price ξij for each item j and an entry

fee function δi(·) : 2[m] → R≥0 for each bidder i that maps the set of available items to a real value

entry fee. The seller visits the bidders sequentially in some arbitrary order. For simplicity, we

assume the bidders are visited in the lexicographical order. When bidder i is visited, let Si(t<i) be

the set of items that are still available. Clearly, this set only depends on the types of bidders who

are visited before i. The mechanism shows the set Si(t<i) to bidder i and asks her for an entry fee

δi(Si(t<i)). If she accepts the entry fee, she can enter the mechanism and take her favorite bundle

S∗i by paying
∑

j∈S∗i
ξij .

If there exist multiple bundles with the same maximum surplus, the bidder can break ties

arbitrarily. Sometimes, there is a feasibility constraint F on what items a buyer can purchase.

In particular, if we say the mechanism is rationed, then F = {∅} ∪ {{j} | j ∈ [m]}, i.e., a buyer

can purchase at most one item. Formally, the favorite bundle S∗i is defined as follows: S∗i =

argmaxS⊆Si(t<i)∧S∈Fvi(ti, S)−
∑

j∈S ξij .

See Algorithm 3.1 for the formal specification of the above mechanism. Notice that before the

bidder decides whether to pay the entry fee, she is aware of the set Si(t<i) which contains all

5. This is exactly the copies setting used in [CHMS10], if every bidder i is unit-demand and has value Vi(tij) with
type ti. Notice that this unit-demand multi-dimensional setting is equivalent as adding an extra constraint, each
buyer can purchase at most one item, to the original setting with subadditive bidders.
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Mechanism 3.1 Sequential Posted Price with Entry Fee Mechanism

Require: ξij is the price for bidder i to purchase item j and δi(·) is bidder i’s entry fee function.
1: S ← [m]
2: for i ∈ [n] do
3: Show bidder i the set of available items S, and define entry fee as δi(S).
4: if Bidder i pays the entry fee δi(S) then
5: i receives her favorite bundle S∗i , paying

∑
j∈S∗i

ξij .

6: S ← S\S∗i .
7: else
8: i gets nothing and pays 0.
9: end if

10: end for

available items. Thus, she can compute her favorite bundle S∗i and the corresponding utility if she

chooses to enter the mechanism. She can then compare that utility with the entry fee and accept

the entry fee if the former is greater than the latter. The mechanism described above is therefore

deterministic and DSIC. Throughout this paper, we focus on the following two special cases of this

class of mechanisms:

-Rationed Sequential Posted Price Mechanism (RSPM): Every buyer can purchase at most

one item and the mechanism always charges 0 entry fee, i.e., F = {∅}∪{{j} | j ∈ [m]} and δi(S) = 0

for all i and S.

-Anonymous Sequential Posted Price with Entry Fee Mechanism (ASPE): The mecha-

nism uses anonymous posted prices, i.e., ξij = ξkj for any item j and bidders i 6= k, but may charge

positive and personalized entry fee. Also, any buyer can purchase any bundle available once she

has paid the entry fee, i.e., F = 2[m].

3.3 Duality Framework

The focus of [CDW16] was on additive and unit-demand valuations and their respective dual was

derived from an LP that is only meaningful for constrained additive valuations. In order to tackle

general valuations, we need to apply the duality framework to an LP that is meaningful for general

valuations. Instead of using the “implicit forms” LP from [CDW13b,CDW16], we choose a slightly

different and more intuitive LP formulation (see Figure 3.1). For all bidders i and types ti ∈ Ti, we
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use pi(ti) as the interim price paid by bidder i and σiS(ti) as the interim probability of receiving

the exact bundle S. To ease the notation, we use a special type ∅ to represent the choice of not

participating in the mechanism. More specifically, σiS(∅) = 0 for any S and pi(∅) = 0. Now a

Bayesian IR (BIR) constraint is simply another BIC constraint: for any type ti, bidder i will not

want to lie to type ∅. We let T+
i = Ti ∪ {∅}.

Following the recipe provided by [CDW16], we take the partial Lagrangian dual of the LP in

Figure 3.1 by lagrangifying the BIC constraints. Let λi(ti, t
′
i) be the Lagrange multiplier associated

with the BIC constraint that if bidder i’s true type is ti she will not prefer to lie to type t′i (see

Figure 3.2 and Definition 3.1). As shown in [CDW16], the dual solution has finite value if and only

if the dual variables λi form a valid flow for every bidder i. The reason is that the payments pi(ti)

are unconstrained variables, therefore the corresponding coefficients must be 0 in order for the dual

solution to have finite value. It turns out when all these coefficients are 0, the dual variables λ can

be interpreted as a flow described in Lemma 3.1. We refer the readers to [CDW16] for a complete

proof. From now on, we only consider λ that corresponds to a flow.

Variables:

• pi(ti), for all bidders i and types ti ∈ Ti, denoting the expected price paid by bidder i when
reporting type ti over the randomness of the mechanism and the other bidders’ types.

• σiS(ti), for all bidders i, all bundles of items S ⊆ [m], and types ti ∈ Ti, denoting the probability
that bidder i receives exactly the bundle S when reporting type ti over the randomness of the
mechanism and the other bidders’ types.

Constraints:

•
∑

S⊆[m] σiS(ti) · vi(ti, S)− pi(ti) ≥
∑

S⊆[m] σiS(t′i) · vi(ti, S)− pi(t′i), for all bidders i, and types

ti ∈ Ti, t′i ∈ T
+
i , guaranteeing that the reduced form mechanism (σ, p) is BIC and Bayesian IR.

• σ ∈ P (D), guaranteeing σ is feasible.

Objective:

• max
n∑
i=1

∑
ti∈Ti

fi(ti) · pi(ti), the expected revenue.

Figure 3.1: A Linear Program (LP) for Revenue Optimization.
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Definition 3.1. Let L(λ, σ, p) be the partial Lagrangian defined as follows:

L(λ, σ, p)

=

n∑
i=1

∑
ti∈Ti

fi(ti) · pi(ti) +
∑

ti∈Ti,t′i∈T
+
i

λi(ti, t
′
i) ·

 ∑
S⊆[m]

vi(ti, S) ·
(
σiS(ti)− σiS(t′i)

)
−
(
(pi(ti)− pi(t′i)

)
(3.1)

=

n∑
i=1

∑
ti∈Ti

pi(ti) ·

fi(ti) +
∑
t′i∈Ti

λi(t
′
i, ti)−

∑
t′i∈T

+
i

λi(ti, t
′
i)


+

n∑
i=1

∑
ti∈Ti

∑
S⊆[m]

σiS(ti) ·

vi(ti, S) ·
∑
t′i∈T

+
i

λi(ti, t
′
i)−

∑
t′i∈Ti

(
vi(t
′
i, S) · λi(t′i, ti)

) (σi(∅) = 0, pi(∅) = 0)

(3.2)

Variables:

• λi(ti, t
′
i) for all i, ti ∈ Ti, t′i ∈ T

+
i , the Lagrangian multipliers for Bayesian IC and IR constraints.

Constraints:

• λi(ti, t
′
i) ≥ 0 for all i, ti ∈ Ti, t′i ∈ T

+
i , guaranteeing that the Lagrangian multipliers are non-

negative.

Objective:

• min
λ

max
σ∈P (D),p

L(λ, σ, p).

Figure 3.2: Partial Lagrangian of the Revenue Maximization LP.

Lemma 3.1 (Useful Dual Variables [CDW16]). A set of feasible duals λ is useful if maxσ∈P (D),p L(λ, σ, p) <

∞. λ is useful iff for each bidder i, λi forms a valid flow, i.e., iff the following satisfies flow con-

servation at all nodes except the source and the sink:

1. Nodes: A super source s and a super sink ∅, along with a node ti for every type ti ∈ Ti.

2. An edge from s to ti with flow fi(ti), for all ti ∈ Ti.

3. An edge from ti to t′i with flow λi(ti, t
′
i) for all ti ∈ Ti, and t′i ∈ T

+
i (including the sink).

Definition 3.2 (Virtual Value Function). For each flow λ, we define a corresponding virtual value
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function Φ(·), such that for every bidder i, every type ti ∈ Ti and every set S ⊆ [m],

Φi(ti, S) = vi(ti, S)− 1

fi(ti)

∑
t′i∈Ti

λi(t
′
i, ti)

(
vi(t
′
i, S)− vi(ti, S)

)
.

The proof of Theorem 3.1 is essentially the same as in [CDW16]. We include it in Appendix A.1

for completeness.

Theorem 3.1 (Virtual Welfare ≥ Revenue [CDW16]). For any flow λ and any BIC mechanism

M = (σ, p), the revenue of M is ≤ the virtual welfare of σ w.r.t. the virtual valuation Φ(·)

corresponding to λ.

n∑
i=1

∑
ti∈Ti

fi(ti) · pi(ti) ≤
n∑
i=1

∑
ti∈Ti

fi(ti)
∑
S⊆[m]

σiS(ti) · Φi(ti, S)

Let λ∗ be the optimal dual variables and M∗ = (σ∗, p∗) be the revenue optimal BIC mechanism,

then the expected virtual welfare with respect to Φ∗ (induced by λ∗) under σ∗ equals to the expected

revenue of M∗.

3.4 Recap: Flow for Additive Valuations

In this section, we give a recap of the flow for additive valuations in [CDW16] and the appealing

properties of the corresponding virtual valuation functions. When the valuations are additive, we

simply view tij as bidder i’s value for receiving item j. Although there are many possible ways to

define a flow, we focus on a class of simple ones. Every flow in this class λ(β) is parametrized by a

set of parameters β = {βij}i∈[n],j∈[m] ∈ Rnm. Based on βi = {βij}j∈[m], we first partition the type

space Ti for each bidder i into m+ 1 regions:

• R
(βi)
0 contains all types ti such that tij < βij for all j ∈ [m].

• R
(βi)
j contains all types ti such that tij−βij ≥ 0 and j is the smallest index in argmaxk{tik−βik}.

We use essentially the same flow as in [CDW16]. Here we provide a partial specification and

state some desirable properties of the flow. See Figure 3.4 for an example with 2 items and [CDW16]
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for a complete description of the flow.

Partial Specification of the flow λ(β):

1. For every type ti in region R
(βi)
0 , the flow goes directly to ∅ (the super sink).

2. For all j > 0, any flow entering R
(βi)
j is from s (the super source) and any flow leaving R

(βi)
j is

to ∅.

3. For all ti and t′i in R
(βi)
j (j > 0), λ

(β)
i (ti, t

′
i) > 0 only if ti and t′i only differ in the j-th coordinate.

Figure 3.3: Partial Specification of the flow λ(β).

Lemma 3.2 ( [CDW16]6). For any β, there exists a flow λ
(β)
i such that the corresponding virtual

value function Φi(ti, ·) satisfies the following properties:

• For any ti ∈ R(βi)
0 , Φi(ti, S) =

∑
k∈S tik.

• For any j > 0, ti ∈ R(βi)
j ,

Φi(ti, S) ≤
∑

k∈S∧k 6=j
tik + ϕ̃ij(tij) · 1[j ∈ S],

where ϕ̃ij(·) is Myerson’s ironed virtual value function for Dij.

The properties above are crucial for showing the approximation results for simple mechanisms

in [CDW16]. One of the key challenges in approximating the optimal revenue is how to provide a

tight upper bound. A trivial upper bound is the social welfare, which may be arbitrarily bad in the

worst case. By plugging the virtual value functions in Lemma 3.2 into the partial Lagrangian, we

obtain a new upper bound that replaces the value of the buyer’s favorite item with the corresponding

Myerson’s ironed virtual value. As demonstrated in [CDW16], this new upper bound is at most

8 times larger than the optimal revenue when the buyers are additive, and its appealing structure

allows the authors to compare the revenue of simple mechanisms to it. In Section 3.5, we identify

some difficulties in directly applying this flow to subadditive valuations. Then we show how to

overcome these difficulties by relaxing the subadditive valuations and obtain a similar upper bound.

6. Note that this Lemma is a special case of Lemma 3 in [CDW16] when the valuations are additive.
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Figure 3.4: An example of λ
(β)
i for additive bidders with two items.

3.5 Canonical Flow and Properties of the Virtual Valuations

In this section, we present a canonical way of setting the dual variables/flow that induces our

benchmarks.

Although any flow can provide a finite upper bound of the optimal revenue, we focus on a

particular class of flows, in which every flow λ(β) is parametrized by a set of parameters β =

{βij}i∈[n],j∈[m] ∈ Rnm≥0 . Based on β, we partition the type set Ti of each buyer i into m+ 1 regions:

(i) R
(βi)
0 contains all types ti such that Vi(tij) < βij for all j ∈ [m]. (ii) R

(βi)
j contains all types ti

such that Vi(tij)− βij ≥ 0 and j is the smallest index in argmaxk{Vi(tik)− βik}. Intuitively, if we

view βij as the price of item j for bidder i, then R
(βi)
0 contains all types in Ti that cannot afford

any item, and any R
(βi)
j with j > 0 contains all types in Ti whose “favorite” item is j. We first

provide a Partial Specification of the flow λ(β):

1. For every type ti in region R
(βi)
0 , the flow goes directly to ∅ (the super sink).

2. For all j > 0, any flow entering R
(βi)
j is from s (the super source) and any flow leaving R

(βi)
j is

to ∅.

3. For all ti and t′i in R
(βi)
j (j > 0), λ

(β)
i (ti, t

′
i) > 0 only if ti and t′i only differ in the j-th coordinate.
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For additive valuations and any type ti ∈ R
(βi)
j , the contribution to the virtual value func-

tion Φ(ti, S) from any type t′i ∈ R
(βi)
j is either 0 if j /∈ S, or λ

(β)
i (t′i, ti)(vi(t

′
i, S) − vi(ti, S)) =

λ
(β)
i (t′i, ti)(t

′
ij − tij) if ti, t

′
i only differs on the j-th coordinate and j ∈ S. In either case, the con-

tribution does not depend on tik for any k 6= j. This is the key property that allows [CDW16]

to choose a flow such that the value of the favorite item is replaced by the corresponding My-

erson’s ironed virtual value in the virtual value function Φi(ti, ·). Unfortunately, this property

no longer holds for subadditive valuations. When j ∈ S and λ
(β)
i (t′i, ti) > 0, the contribution

λ
(β)
i (t′i, ti)(vi(t

′
i, S) − vi(ti, S)) heavily depends on tik of all the other item k ∈ S. All we can con-

clude is that the contribution lies in the range [−λ(β)
i (t′i, ti) · Vi(tij), λ

(β)
i (t′i, ti) · Vi(t′ij)]7, but this is

not sufficient for us to convert the value of item j into the corresponding Myerson’s ironed virtual

value.

3.5.1 Valuation Relaxation

This is the first major barrier for extending the duality framework to accommodate subadditive

valuations. We overcome it by considering a relaxation of the valuation functions. More specifically,

for any β, we construct another function v
(βi)
i (·, ·) : Ti×2[m] 7→ R≥0 for every buyer i such that: (i)

for any ti, v
(βi)
i (ti, ·) is subadditive and monotone, and for every bundle S the new value v

(βi)
i (ti, S)

is no smaller than the original value vi(ti, S); (ii) for any BIC mechanism M with respect to the

original valuations, there exists another mechanism M (β) that is BIC with respect to the new

valuations and its revenue is comparable to the revenue of M ; (iii) for the new valuations v(β),

there exists a flow whose induced virtual value functions have properties similar to those in the

additive case. Property (ii) implies that the optimal revenue with respect to v(β) can serve as a

proxy for the original optimal revenue. Moreover, due to Theorem 3.1, the optimal revenue for

v(β) is upper bounded by the partial Lagrangian dual with respect to v(β), which has an appealing

format similar to the additive case by property (iii). Thus, we obtain a benchmark for subadditive

bidders that resembles the benchmark for additive bidders in [CDW16].

7. vi(t, ·) is subadditive and monotone for every type t ∈ Ti, therefore vi(ti, S) ∈ [vi(ti, S\{j}), vi(ti, S\{j})+Vi(tij)]
and vi(t

′
i, S) ∈ [vi(t

′
i, S\{j}), vi(t′i, S\{j}) + Vi(t

′
ij)].
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Definition 3.3 (Relaxed Valuation). Given β, for any buyer i, define v
(βi)
i (ti, S) = vi(ti, S\{j}) +

Vi(tij), if the “favorite” item is in S, i.e., ti ∈ R(βi)
j and j ∈ S. Otherwise, define v

(βi)
i (ti, S) =

vi(ti, S).

In the next lemma, we show that for any BIC mechanism M for v, there exists a BIC mechanism

M (β) for v(β) such that its revenue is comparable to the revenue of M (property (ii)). Moreover,

the ex-ante probability for any buyer i to receive any item j in M (β) is no greater than in M

(property (i)). We will see later that this is an important property for our analysis. The proof of

Lemma 3.3 is similar to the ε-BIC to BIC reduction in [HKM11,BH11,DW12] and can be found in

Appendix A.6.

Lemma 3.3. For any β and any BIC mechanism M for subadditive valuation {vi(ti, ·)}i∈[n] with

ti ∼ Di for all i, there exists a BIC mechanism M (β) for valuations {v(βi)
i (ti, ·)}i∈[n] with ti ∼ Di

for all i, such that

(i)
∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) ≤

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σiS(ti), for all i and j,

(ii) Rev(M,v,D) ≤ 2·Rev(M (β), v(β), D)+2·
∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti)·σ(β)
iS (ti)·

(
v

(βi)
i (ti, S)− vi(ti, S)

)
.

Rev(M,v,D) (or Rev(M (β), v(β), D)) is the revenue of the mechanism M (or M (β)) while the

buyers’ types are drawn from D and buyer i’s valuation is vi(ti, ·) (or v
(βi)
i (ti, ·)). σiS(ti) (or

σ
(β)
iS (ti)) is the probability of buyer i receiving exactly bundle S when her reported type is ti in

mechanism M (or M (β)).

3.5.2 Virtual Valuation for the Relaxed Valuation

For any β, based on the same partition of the type sets as in the beginning of Section 3.5, we

construct a flow λ(β) that respects the partial specification, such that the corresponding virtual

valuation function for v(β) has the same appealing properties as in the additive case. For the

relaxed valuation, as λ
(β)
i (ti, t

′
i) is only positive for types ti, t

′
i ∈ R

(βi)
j that only differ in the j-th

coordinate, the contribution from item j to the virtual valuation solely depends on tij and t′ij but

not tik for any other item k ∈ S . Notice that this property does not hold for the original valuation,
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and it is the main reason why we choose the relaxed valuation as in Definition 3.3. Moreover, we

can choose λ
(β)
i carefully so that the virtual valuation of v(β) has the following format:

Lemma 3.4. Let Fij be the distribution of Vi(tij) when tij is drawn from Dij. For any β, there

exists a flow λ
(β)
i such that the corresponding virtual value function Φ

(βi)
i (ti, ·) of valuation v

(βi)
i (ti, ·)

satisfies the following properties:

1. For any ti ∈ R(βi)
0 , Φ

(βi)
i (ti, S) = vi(ti, S).

2. For any j > 0, ti ∈ R(βi)
j , Φ

(βi)
i (ti, S) ≤ vi(ti, S)·1[j /∈ S]+(vi(ti, S\{j}) + ϕ̃ij(Vi(tij)))·1[j ∈ S],

where ϕ̃ij(Vi(tij)) is the Myerson’s ironed virtual value for Vi(tij) with respect to Fij.

The proof of Lemma 3.4 is postponed to Appendix A.2. Next, we use the virtual welfare of the

allocation σ(β) to bound the revenue of M (β).

Lemma 3.5. For any β,

Rev(M (β), v(β), D) ≤
∑
i

∑
ti∈Ti

fi(ti)
∑
S⊆[m]

σ
(β)
iS (ti) · Φ(βi)

i (ti, S)

≤
∑
i

∑
ti∈Ti

fi(ti) · 1
[
ti ∈ R(βi)

0

]
·
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S)

+
∑
i

∑
ti∈Ti

fi(ti) ·
∑
j∈[m]

1
[
ti ∈ R(βi)

j

]
·

∑
S:j∈S

σ
(β)
iS (ti) · vi(ti, S\{j}) +

∑
S:j /∈S

σ
(β)
iS (ti) · vi(ti, S)


+
∑
i

∑
ti∈Ti

fi(ti) ·
∑
j∈[m]

1
[
ti ∈ R(βi)

j

]
· π(β)

ij (ti) · ϕ̃ij(tij),

where π
(β)
ij (ti) =

∑
S:j∈S σ

(β)
iS (ti). Non-Favorite(M,β) denotes the sum of the first two terms.

Single(M,β) denotes the last term.

Proof. The Lemma follows easily from the properties in Lemma 3.4 and Theorem 3.1.

We obtain Theorem 3.2 by combining Lemma 3.3 and 3.5.

Theorem 3.2. For any mechanism M and any β,

Rev(M, v,D) ≤ 4 ·Non-Favorite(M,β) + 2 · Single(M,β).
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Proof of Theorem 3.2: First, let’s look at the value of v
(βi)
i (ti, S) − vi(ti, S). When ti ∈ R(βi)

j for

some j > 0 and j ∈ S, v
(βi)
i (ti, S) − vi(ti, S) = vi(ti, S\{j}) + Vi(tij) − vi(ti, S) ≤ vi(ti, S\{j}),

because Vi(tij) ≤ vi(ti, S). For the other cases, v
(βi)
i (ti, S)− vi(ti, S) = 0. Therefore,

∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)
iS (ti) ·

(
v

(βi)
i (ti, S)− vi(ti, S)

)
≤
∑
i

∑
ti

fi(ti)
∑
j

1[ti ∈ R(βi)
j ]

∑
S:j∈S

σ
(β)
iS (ti) · vi(ti, S\{j})

≤Non-Favorite(M,β) (Definition of Non-Favorite(M,β))

Our statement follows from combining Lemma 3.3, Lemma 3.5 with the inequality above. 2

3.5.3 Upper Bound for the Revenue of Subadditive Buyers

In Section 3.5.1, we have argued that for any β, there exists a mechanism M (β) such that its

revenue with respect to the relaxed valuation v(β) is comparable to the revenue of M with respect

to the original valuation. In Section 3.5.2, we have shown for any β how to choose a flow to obtain

an upper bound for Rev(M (β), v(β), D) and also an upper bound for Rev(M, v,D). Now we specify

our choice of β.

In [CDW16], the authors fixed a particular β, and shown that under any allocation rule, the

corresponding benchmark can be bounded by the sum of the revenue of a few simple mechanisms.

However, for valuations beyond additive and unit-demand, the benchmark becomes much more

challenging to analyze8. We adopt an alternative and more flexible approach to obtain a new

upper bound. Instead of fixing a single β for all mechanisms, we customize a different β for every

different mechanism M . Next, we relax the valuation and design the flow based on the chosen β as

specified in Section 3.5.1 and 3.5.2. Then we upper bound the revenue of M with the benchmark

in Theorem 3.2 and argue that for any mechanism M , the corresponding benchmark can be upper

bounded by the sum of the revenue of a few simple mechanisms. As we allow β, in other words the

8. Indeed, the difficulties already arise for valuations as simple as k-demand. A bidder’s valuation is k-demand if
her valuation is additive subject to a uniform matroid with rank k.

54



flow λ(β), to depend on the mechanism, our new approach may provide a better upper bound. As

it turns out, our new upper bound is indeed easier to analyze.

Lemma 3.6 specifies the two properties of our β that play the most crucial roles in our analysis.

We construct such a β in the proof of Lemma 3.6, however the construction is not necessarily

unique and any β satisfying these two properties suffices. Note that our construction heavily relies

on property (i) of Lemma 3.3.

Lemma 3.6. For any constant b ∈ (0, 1) and any mechanism M , there exists a β such that: for

the mechanism M (β) constructed in Lemma 3.3 according to β, any i ∈ [n] and j ∈ [m],

(i)
∑

k 6=i Prtkj [Vk(tkj) ≥ βkj ] ≤ b;

(ii)
∑

ti∈Ti fi(ti) · π
(β)
ij (ti) ≤ Prtij [Vi(tij) ≥ βij ] /b, where π

(β)
ij (ti) =

∑
S:j∈S σ

(β)
iS (ti).

Before proving Lemma 3.6, we provide some intuition behind the two required properties.

Property (i) is used to guarantee that if item j’s price for bidder i is higher than βij for all i and j

in an RSPM, for any item j′ and any bidder i′, j′ is still available with probability at least (1− b)

when i′ is visited. As for any bidder k 6= i′ to purchase item j′, Vk(tkj′) must be greater than her

price for item j′. By the union bound, the probability that there exists such a bidder is upper

bounded by the LHS of property (i), and therefore is at most b. With this guarantee, we can easily

show that the RSPM achieves good revenue (Lemma 3.19). Property (ii) states that the ex-ante

probability for bidder i to receive an item j in M (β) is not much bigger than the probability that

bidder i’s value is larger than item j. This is crucial for proving our key Lemma 3.26, in which we

argue that two different valuations provide comparable welfare under the same allocation rule σ(β).

With Lemma 3.26, we can show that the ASPE obtains good revenue.

Proof of Lemma 3.6: When there is only one buyer, we can simply set every βj to be 0 and both

conditions are satisfied. When there are multiple players, we let

βij := inf{x ≥ 0 : Pr
tij

[Vi(tij) ≥ x] ≤ b ·
∑
ti∈Ti

fi(ti) · πij(ti)},
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where πij(ti) =
∑

S:j∈S σiS(ti). Clearly, when the distribution of Vi(tij) is continuous, then

Pr
tij

[Vi(tij) ≥ βij ] = b ·
∑
ti∈Ti

fi(ti) · πij(ti), (3.3)

and therefore for any j,

∑
i

Pr
tij

[Vi(tij) ≥ βij ] = b ·
∑
i

∑
ti∈Ti

fi(ti) · πij(ti) ≤ b.

So the first condition is satisfied. The second condition holds because by the first property in

Lemma 3.3,
∑

ti∈Ti fi(ti) · π
(β)
ij (ti) ≤

∑
ti∈Ti fi(ti) · πij(ti).

When the distribution for Vi(tij) is discrete, it is possible that Equation 3.3 does not hold,

but this is essentially a tie breaking issue and not hard to fix. Let ε > 0 be an extremely small

constant that is smaller than
∣∣∣Vi(tij)− Vi(t′ij)∣∣∣ for any tij , t

′
ij ∈ Tij , any i and any j. Let ζij

be a random variable uniformly distributed on [0, ε], and think of it as a random rebate that

the seller gives to bidder i when she purchases item j. Now we modify the definition of βij as

βij := inf{x ≥ 0 : Prtij ,ζij [Vi(tij) + ζij ≥ x] ≤ b ·
∑

ti∈Ti fi(ti) · πij(ti)}.

Both of the two properties in Lemma 3.6 hold if we replace Vi(tij) with Vi(tij) + ζij . The only

change we need to make in the mechanism is to actually give the bidders ζij as the corresponding

rebate. Since we can choose ε to be arbitrarily small, the sum of the rebate is also arbitrarily

small. For the simplicity of the presentation, we will omit ζij and ε in the rest of the paper.

The random rebate indeed makes our mechanism randomized(according to the random variable

ζij ∼ [0, ε]). However, the randomized mechanism is a uniform distribution of deterministic DSIC

mechanisms (after determining all ζij), and the expected revenue of the randomized mechanism

is simply the average revenue of all these deterministic mechanisms. Therefore, there must be

one realization of the rebates such that the corresponding deterministic mechanism has revenue

above the expectation, i.e., the expected revenue of the randomized one. Thus if the randomized

mechanism is proved to achieve some approximation ratio, there must exist a deterministic one

that achieves the same ratio. The deterministic mechanism will use a fixed value zij ∈ [0, ε] as the
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rebate.

Similarly, the same issue about discrete distributions arises when we define some other crucial

parameters later, e.g., in the Definition of c, ci and τi. We can resolve all of them together using

the trick (adding a random rebate) described above, and we will not include a detailed proof for

those cases. 2

3.6 Warm Up: Single Buyer

To warm up, we first study the case where there is a single subadditive buyer and show how to

improve the approximation ratio from 338 to 40. Since there is only one buyer, we will drop

the subscript i in the notations. As specified in Section 3.5.3, we use a β that satisfies both

properties in Lemma 3.6. For a single buyer, we can simply set βj to be 0 for all j. We use

Single(M),Non-Favorite(M) in the following proof to denote the corresponding terms in The-

orem 3.2 for β = 0. Notice R
(0)
0 = ∅. Theorem 3.3 shows that the optimal revenue is within a

constant factor of the better of selling separately and grand bundling.

Theorem 3.3. For a single buyer whose valuation distribution is subadditive over independent

items,

Rev(M, v,D) ≤ 24 · SRev + 16 ·BRev

for any BIC mechanism M .

Recall that the revenue for mechanism M is upper bounded by 4 · Non-Favorite(M) + 2 ·

Single(M) (Theorem 3.2). We first upper bound Single(M) by OPTCopies-UD. Since σ
(β)
S (t) is

a feasible allocation in the original setting, 1[t ∈ R(β)
j ] · π(β)

j (t) with π
(β)
j (t) =

∑
S:j∈S σ

(β)
S (t) is a

feasible allocation in the copies setting, and therefore Single(M) is the Myerson Virtual Welfare of

a certain allocation in the copies setting, which is upper bounded by OPTCopies-UD. By [CHMS10],

OPTCopies-UD is at most 2 · SRev.

Lemma 3.7. For any BIC mechanism M , Single(M) ≤ OPTCopies-UD ≤ 2 · SRev.

For Non-Favorite(M), we will prove the following.
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Lemma 3.8. For any BIC mechanism M , Non-Favorite(M) ≤ 5 · SRev + 4 ·BRev.

We first bound it by the social welfare from all non-favorite items. Then we decompose the

latter into two terms Core(M) and Tail(M), and bound them separately. For every t ∈ T , define

C(t) = {j : V (tj) < c}, T (t) = [m]\C(t). Here the threshold c is chosen as

c := inf

x ≥ 0 :
∑
j

Pr
tj

[V (tj) ≥ x] ≤ 2

 . (3.4)

Since v(t, ·) is subadditive for all t ∈ T , we have for every S ⊆ [m], v(t, S) ≤ v (t, S ∩ C(t)) +∑
j∈S∩T (t) V (tj). We decompose Non-Favorite(M) based on the inequality above. Proof of

Lemma 3.9 can be found in Appendix A.3.

Lemma 3.9.

Non-Favorite(M) ≤
∑
t∈T

f(t) ·
∑
j

1[t ∈ R(β)
j ] · v(t, [m]\{j})

≤
∑
t∈T

f(t) · v(t, C(t)) (Core(M))

+
∑
j

∑
tj :V (tj)≥c

fj(tj) · V (tj) · Pr
t−j

[∃k 6= j, V (tk) ≥ V (tj)] (Tail(M))

Using the definition of c and SRev, we can upper bound Tail(M) with a similar argument as

in [CDW16].

Lemma 3.10. For any BIC mechanism M , Tail(M) ≤ 2 · SRev.

Proof. Since Tail(M) =
∑

j

∑
tj :V (tj)≥c fj(tj) · V (tj) · Prt−j [∃k 6= j, V (tk) ≥ V (tj)], for each type

tj ∈ Tj consider the mechanism that posts the same price V (tj) for each item but only allows

the buyer to purchase at most one. Notice if there exists k 6= j such that V (tk) ≥ V (tj), the

mechanism is guaranteed to sell one item obtaining revenue V (tj). Thus, the revenue obtained by

this mechanism is at least V (tj) · Prt−j [∃k 6= j, V (tk) ≥ V (tj)]. By definition, this is no more than

SRev.
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Tail(M) ≤
∑
j

∑
tj :V (tj)≥c

fj(tj) · SRev=2 · SRev (3.5)

The last equality is because by the definition of c,
∑

j Prtj [V (tj) ≥ c] = 2.9

The Core(M) is upper bounded by Et[v′(t, [m])] where v′(t, S) = v(t, S ∩ C(t)). We argue

that v′(t, ·) is drawn from a distribution that is subadditive over independent items and v′(·, ·)

is c-Lipschitz (see Definition 3.4). Using a concentration bound by Schechtman [Sch03], we show

Et[v′(t, [m])] is upper bounded by the median of random variable v′(t, [m]) and c, which are upper

bounded by BRev and SRev respectively.

Lemma 3.11. For any BIC mechanism M , Core(M) ≤ 3 · SRev + 4 ·BRev.

Recall that

Core(M) =
∑
t∈T

f(t) · v(t, C(t)) (3.6)

We will bound Core(M) with a concentration inequality from [Sch03]. It requires the following

definition:

Definition 3.4. A function v(·, ·) is a-Lipschitz if for any type t, t′ ∈ T , and set X,Y ⊆ [m],

∣∣v(t,X)− v(t′, Y )
∣∣ ≤ a · (|X∆Y |+

∣∣{j ∈ X ∩ Y : tj 6= t′j}
∣∣) ,

where X∆Y = (X\Y ) ∪ (Y \X) is the symmetric difference between X and Y .

Define a new valuation function for the bidder as v′(t, S) = v(t, S ∩ C(t)), for all t ∈ T and S ⊆

[m]. Then v′(·, ·) is c− Lipschitz, and when t is drawn from the product distribution D =
∏
j Dj ,

v′(t, ·) remains to be a valuation drawn from a distribution that is subadditive over independent

items. See Appendix A.3 for the proof of Lemma 3.12 and Lemma 3.13.

Lemma 3.12. For all t ∈ T , v′(t, ·) satisfies monotonicity, subadditivity and no externalities

defined in Definition 2.1.

9. This clearly holds if V (tj) is drawn from a continuous distribution. When V (tj) is drawn from a discrete
distribution, see the proof of Lemma 3.6 for a simple fix.
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Lemma 3.13. v′(·, ·) is c−Lipschitz.

Next, we apply the following concentration inequality to derive Corollary 3.1, which is useful

to analyze the Core(M).

Lemma 3.14. [Sch03] Let g(t, ·) with t ∼ D =
∏
j Dj be a function drawn from a distribution

that is subadditive over independent items of ground set I. If g(·, ·) is c-Lipschitz, then for all

a > 0, k ∈ {1, 2, ..., |I|}, q ∈ N,

Pr
t

[g(t, I) ≥ (q + 1)a+ k · c] ≤ Pr
t

[g(t, I) ≤ a]−qq−k.

Corollary 3.1. Let g(t, ·) with t ∼ D =
∏
j Dj be a function drawn from a distribution that is

subadditive over independent items of ground set I. If g(·, ·) is c-Lipschitz, then if we let a be the

median of the value of the grand bundle g(t, I), i.e. a = inf
{
x ≥ 0 : Prt[g(t, I) ≤ x] ≥ 1

2

}
,

Et[g(t, I)] ≤ 2a+
5c

2
.

Proof. Let Y be g(t, I). If we apply Lemma 3.14 to the case where a is the median and q = 2, we

have

Pr
t

[Y ≥ 3a] · Et[Y |Y ≥ 3a] = 3a · Pr
t

[Y ≥ 3a] +

∫ ∞
y=0

Pr
t

[Y ≥ 3a+ y]dy

≤ 3a · Pr
t

[Y ≥ 3a] + c ·
|I|∑
k=0

Pr
t

[Y ≥ 3a+ k · c] (Y ≤ |I| · c)

≤ 3a · Pr
t

[Y ≥ 3a] + c ·
2∑

k=0

Pr
t

[Y > a] + c ·
|I|∑
k=3

4 · 2−k (Lemma 3.14)

≤ 3a · Pr
t

[Y ≥ 3a] +
5

2
c
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With the inequality above, we can upper bound the expected value of Y .

Et[Y ] ≤ a · Pr
t

[Y ≤ a] + 3a · Pr
t

[Y ∈ (a, 3a)] + Pr
t

[Y ≥ 3a] · Et[Y |Y ≥ 3a]

≤ a · Pr
t

[Y ≤ a] + 3a · Pr
t

[Y ∈ (a, 3a)] + 3a · Pr
t

[Y ≥ 3a] +
5

2
c

= a+ 2a · Pr
t

[Y > a] +
5

2
c

≤ 2a+
5

2
c

Now, we are ready to prove Lemma 3.11.

Proof of Lemma 3.11: Let δ be the median of v′(t, [m]) when t is sampled from distribution D.

Now consider the mechanism that sells the grand bundle with price δ. Notice that the bidder’s

valuation for the grand bundle is v(t, [m]) ≥ v′(t, [m]). Thus with probability at least 1
2 , the bidder

purchases the bundle. Thus, BRev ≥ 1
2δ.

According to Corollary 3.1,

Core(M) = Et∼D[v′(t, [m])] ≤ 2δ +
5c

2
(3.7)

It remains to argue that the Lipchitz constant c can be upper bounded using SRev. Notice

that by AM-GM Inequality,

Pr
t

[∃j ∈ [m], V (tj) ≥ c] = 1−
∏
j

Pr
tj

[V (tj) < c]

≥1− (

∑
j Prtj [V (tj) < c]

m
)m = 1− (1− 2

m
)m ≥ 1− e−2

Consider the mechanism that posts price c for each item but only allow the buyer to purchase

one item. Then with probability at least 1− e−2, the mechanism sells one item obtaining expected

revenue (1− e−2) · c. Thus c ≤ 1
1−e−2 · SRev. Inequality (3.7) becomes
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Core(M) ≤ 2δ +
5c

2
< 4 ·BRev + 3 · SRev (3.8)

2

Proof of Theorem 3.3: Since OPTCopies-UD ≤ 2SRev (Lemma 3.7) and Non-Favorite(M) ≤

5SRev + 4BRev (Lemma 3.10 and 3.11), Rev(M,v,D) ≤ 24 · SRev + 16 · BRev according to

Theorem 3.2. 2

3.7 Multiple Buyers

In this section, we prove our main result – simple mechanisms can approximate the optimal BIC

revenue even when there are multiple XOS/subadditive bidders. First, we need the definition of

supporting prices.

Definition 3.5 (Supporting Prices [DNS05]). For any α ≥ 1, a type t and a subset S ⊆ [m],

prices {pj}j∈S are α-supporting prices for v(t, S) if (i) v(t, S′) ≥
∑

j∈S′ pj for all S′ ⊆ S and (ii)∑
j∈S pj ≥

v(t,S)
α .

Theorem 3.4. If for any buyer i, any type ti ∈ Ti and any bundle S ∈ [m], vi(ti, S) has a set of

α-supporting prices {θSj (ti)}j∈S, then for any BIC mechanism M and any constant b ∈ (0, 1),

Rev(M, v,D) ≤ 32α ·APostEnRev +

(
12 +

8

1− b
+ α ·

(
16

b(1− b)
+

96

1− b

))
·PostRev

If vi(ti, ·) is an XOS valuation for all i and ti ∈ Ti, then α = 1. By setting b to 1
4 , we have

Rev(M,v,D) ≤ 236 ·PostRev + 32 ·APostEnRev.

For general subadditive valuations, α = O(log(m)) by [BR11], hence

Rev(M,v,D) ≤ O(log(m)) ·max{PostRev,APostEnRev}.
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Here is a sketch of the proof for Theorem 3.4. We show how to upper bound Single(M,β)

in Lemma 3.15. Then, we decompose Non-Favorite(M,β) into Tail(M,β) and Core(M,β)

in Lemma 3.16. We show how to construct a simple mechanism to approximate Tail(M,β) in

Section 3.7.1 and how to approximate Core(M,β) in Section 3.7.2.

Analysis of Single(M,β):

Lemma 3.15. For any mechanism M ,

Single(M,β) ≤ OPTCopies-UD ≤ 6 ·PostRev.

Proof. We construct a new mechanism M ′ in the copies setting based on M (β). Whenever M (β)

allocates item j to buyer i and ti ∈ R(β)
j , M ′ serves the agent (i, j). Since there is at most one R

(β)
j

that ti belongs to, M ′ serves at most one agent (i, j) for each of buyer i. Hence, M ′ is feasible in

the copies setting, and Single(M,β) is the expected Myerson’s ironed virtual welfare of M ′. Since

every agent’s value is drawn independently, the optimal revenue in the copies setting is the same

as the maximum Myerson’s ironed virtual welfare in the same setting. Therefore, OPTCopies-UD is

no less than Single(M,β).

As showed in [CHMS10,KW12], a simple posted-price mechanism with the constraint that every

buyer can only purchase one item, i.e., an RSPM, achieves revenue at least OPTCopies-UD/6 in the

original setting. Hence, OPTCopies-UD ≤ 6 ·PostRev.

Core-Tail Decomposition of Non-Favorite(M,β): we decompose Non-Favorite(M,β) into

two terms Tail(M,β) and Core(M,β)10. First, we need the following definition.

Definition 3.6. For every buyer i, let ci := inf
{
x ≥ 0 :

∑
j Prtij [Vi(tij) ≥ βij + x] ≤ 1

2

}
. For

every ti ∈ Ti, let Ti(ti) = {j | Vi(tij) ≥ βij + ci} and Ci(ti) = [m]\Ti(ti).

Since vi(ti, ·) is subadditive for all i and ti ∈ Ti, we have vi(ti, S) ≤ vi (ti, S ∩ Ci(ti)) +∑
j∈S∩Ti(ti) Vi(tij). The term Non-Favorite(M,β) can be decomposed into Tail(M,β) and

10. In [CDW16], Non-Favorite is decomposed into four different terms Under, Over, Core and Tail. We
essentially merge the first three terms into Core(M,β) in our decomposition.
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Core(M,β) based on the inequality above. The complete proof of Lemma 3.16 can be found

in Appendix A.4.

Lemma 3.16.

Non-Favorite(M,β)

≤
∑
i

∑
ti

fi(ti)
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S ∩ Ci(ti)) (Core(M,β))

+
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · Vi(tij) ·
∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] (Tail(M,β))

3.7.1 Analyzing Tail(M,β) in the Multi-Bidder Case

In this section we show how to bound Tail(M,β) with the revenue of an RSPM.

Lemma 3.17. For any BIC mechanism M , Tail(M,β) ≤ 2
1−b ·PostRev.

We first fix a few notations. Let

Pij ∈ argmaxx≥ci(x+ βij) · Pr
tij

[Vi(tij)− βij ≥ x],

rij = (Pij + βij) · Pr[Vi(tij)− βij ≥ Pij ] = max
x≥ci

(x+ βij) · Pr
tij

[Vi(tij)− βij ≥ x],

ri =
∑

j rij , and r =
∑

i ri. We show in the following Lemma that r is an upper bound of

Tail(M,β).

Lemma 3.18. For any BIC mechanism M , Tail(M,β) ≤ r.
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Proof.

Tail(M,β) ≤
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · (βij + ci) ·
∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ]

+
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · (Vi(tij)− βij) ·
∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ]

≤1

2
·
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · (βij + ci) (Definition of ci and Vi(tij) ≥ βij + ci)

+
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) ·
∑
k 6=j

rik (Definition of rik and Vi(tij) ≥ βij + ci)

≤1

2
·
∑
i

∑
j

Pr
tij

[Vi(tij) ≥ βij + ci] · (βij + ci) +
∑
i

ri ·
∑
j

Pr
tij

[Vi(tij) ≥ βij + ci]

≤1

2
·
∑
i

∑
j

rij +
1

2
·
∑
i

ri (Definition of rij and ci)

=r

In the second inequality, the first term is because Vi(tij)− βij ≥ ci, so

∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] ≤
∑
k

Pr
tik

[Vi(tik)− βik ≥ ci] ≤ 1/2.

The second term is because for any tij such that Vi(tij) ≥ βij + ci,

(Vi(tij)− βij)·Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] ≤ (βik + Vi(tij)− βij)·Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] ≤ rik.

Next, we argue that r can be approximated by an RSPM. Indeed, we prove a stronger lemma,

which is also useful for analyzing Core(M,β).

Lemma 3.19. Let {xij}i∈[n],j∈[m] be a collection of non-negative numbers, such that for any buyer

i ∑
j∈[m]

Pr
tij

[Vi(tij) ≥ xij + βij ] ≤ 1/2,
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then ∑
i

∑
j

(xij + βij) · Pr
tij

[Vi(tij) ≥ xij + βij ] ≤
2

1− b
·PostRev.

Proof. Consider a RSPM that sells item j to buyer i at price ξij = xij +βij . The mechanism visits

the buyers in some arbitrary order. Notice that when it is buyer i’s turn, she purchases exactly

item j and pays xij + βij if all of the following three conditions hold: (i) j is still available, (ii)

Vi(tij) ≥ xij + βij and (iii) ∀k 6= j, Vi(tik) < xik + βik. The second condition means buyer i can

afford item j. The third condition means she cannot afford any other item k 6= j. Therefore, buyer

i’s purchases exactly item j.

Now let us compute the probability that all three conditions hold. Since every buyer’s valuation

is subadditive over the items, item j is purchased by someone else only if there exists a buyer k 6= i

who has Vk(tkj) ≥ ξkj . Because xkj ≥ 0 for all k, by the union bound, the event described above

happens with probability at most
∑

k 6=i Prtkj [Vk(tkj) ≥ βkj ], which is less than b by property (i) of

Lemma 3.6. Therefore, condition (i) holds with probability at least (1− b). Clearly, condition (ii)

holds with probability Prtij [Vi(tij) ≥ xij + βij ]. Finally, condition (iii) holds with at least probabil-

ity 1/2, because according to our assumption of the xijs, the probability that there exists any item

k 6= j such that Vi(tik) ≥ xik+βik is no more than 1/2. Since the three conditions are independent,

buyer i purchases exactly item j with probability at least (1−b)
2 · Prtij [Vi(tij) ≥ xij + βij ]. So the

expected revenue of this mechanism is at least (1−b)
2 ·

∑
i

∑
j(βij+xij) ·Prtij [Vi(tij) ≥ xij + βij ].

Proof of Lemma 3.17: Since Pij ≥ ci, it satisfies the assumption in Lemma 3.19 due to the choice

of ci . Therefore,

r =
∑
i,j

(βij + Pij) · Pr
tij

[Vi(tij) ≥ Pij + βij ] ≤
2

1− b
·PostRev. (3.9)

Our statement follows from the above inequality and Lemma 3.18.2

We have done the analysis for Tail(M,β). Before starting the analysis for Core(M,β), we

show that ri is within a constant factor of ci. This Lemma is useful for bounding Core(M,β).

Lemma 3.20. For all i ∈ [n], ri ≥ 1
2 · ci and

∑
i ci/2 ≤

2
1−b ·PostRev.
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Proof. By the definition of Pij ,

ri =
∑
j

(βij + Pij) · Pr[Vi(tij)− βij ≥ Pij ] ≥
∑
j

(βij + ci) · Pr[Vi(tij)− βij ≥ ci]

≥
∑
j

ci · Pr[Vi(tij)− βij ≥ ci] ≥
1

2
· ci

The last inequality is because when ci > 0,
∑

j Prtij [Vi(tij) ≥ βij + ci] is at least 1
2 . As

∑
i ci/2 ≤ r,

by Inequality (3.9),
∑

i ci/2 ≤
2

1−b ·PostRev.

3.7.2 Analyzing Core(M,β) in the Multi-Bidder Case

In this section we upper bound Core(M,β). Recall that

Core(M,β) =
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S ∩ Ci(ti))

We can view it as the welfare of another valuation function v′ under allocation σ(β) where v′i(ti, S) =

vi(ti, S ∩ Ci(ti)). In other words, we “truncate” the function at some threshold, i.e., only evaluate

the items whose value on its own is less than that threshold. The new function still satisfies

monotonicity, subadditivity and no externalities.

We first compare existing methods for analyzing the Core with our approach before jumping

into the proofs.

Comparison between the Existing Methods and Our Approach

As all results in the literature [CHMS10, Yao15, CDW16, CM16] only study special cases of con-

strained additive valuations, we restrict our attention to constrained additive valuations in the

comparison, but our approach also applies to XOS and subadditive valuations.

We compare our approach to the state of the art result by Chawla and Miller [CM16]. They

separate Core(M,β) into two parts: (i) the welfare obtained from values below β, and (ii) the

welfare obtained from values between β and β + c11. It is not hard to show that the latter can be

11. In particular, if bidder i is awarded a bundle S that is feasible for her, the contribution for the first part is
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upper bounded by the revenue of a sequential posted price with per bidder entry fee mechanism.

Due to their choice of β (similar to the second property of Lemma 3.6), the former is upper bounded

by
∑

i,j βij ·Prtij [tij ≥ βij ]. It turns out when every bidder’s feasibility constraint is a matroid, one

can use the OCRS from [FSZ16] to design a sequential posted price mechanism to approximate this

expression. However, as we show in Example 3.1,
∑

i,j βij ·Prtij [tij ≥ βij ] could be Ω
( √

m
logm

)
times

larger than the optimal social welfare when the bidders have general downward closed feasibility

constraints. Hence, such approach cannot yield any constant factor approximation for general

constrained additive valuations.

As explained in the intro, we take an entirely different approach. We first construct the posted

prices {Qj}j∈[m] for our ASPE (Definition 3.7), Feldman et al. [FGL15] showed that the anonymous

posted price mechanism with these prices achieves welfare Ω (Core(M,β)). If all bidders have val-

uations that are subadditive over independent items, for any bidder i and any set of available items

S, i’s surplus for S under valuation v′i(ti, ·) (maxS′⊆S v
′
i(ti, S

′)−
∑

j∈S′ Qj) is also subadditive over

independent items. According to Talagrand’s concentration inequality, the surplus concentrates

and its expectation is upper bounded by its median and its Lipschitz constant a. One can extract

at least half of the median by setting the median of the surplus as the entry fee. How about the

Lipschitz constant a? Unfortunately, a could be as large as 1
2 maxj∈[m]{βij + ci}, which is too large

to be bounded.

Here is how we overcome this difficulty. Instead of considering v′, we construct a new valuation

v̂ that is always dominated by the true valuation v. We consider the social welfare induced by

σ(β) under v̂ and define it as Ĉore(M,β). In Section 3.7.2, we show that Ĉore(M,β) is not too

far away from Core(M,β), so it suffices to approximate Ĉore(M,β) (Lemma 3.26). But why

is Ĉore(M,β) easier to approximate? The reason is two-fold. (i) For any bidder i and any set

of available items S, bidder i’s surplus for S under v̂i(ti, ·) (defined as µi(ti, S) in Definition 3.10,

which is maxS′⊆S v̂i(ti, S
′) −

∑
j∈S′ Qj), is not only subadditive over independent items, but also

has a small Lipschitz constant τi (Lemma 3.27). Indeed, these Lipschitz constants are so small

that
∑

i τi and can be upper bounded by PostRev (Lemma 4.24). (ii) If we set the entry fee∑
j∈S min {βij , tij} · 1 [tij < βij + ci] and the contribution to the second part is

∑
j∈S (tij − βij)+ · 1 [tij < βij + ci]
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of our ASPE to be the median of µi(ti, S) when ti is drawn from Di, using a proof inspired by

Feldman et al. [FGL15], we can show that our ASPE’s revenue collected from the posted prices

plus the expected surplus of the bidders (over the randomness of all bidders’ types) approximates

Ĉore(M,β) (implied by Lemma 3.28). Again by Talagrand’s concentration inequality, we can

bound bidder i’s expected surplus by our entry fee and τi (Lemma 3.30). As v̂ is always smaller

than the true valuation v, thus for any type ti of bidder i and any available items S, the surplus

for S under vi(ti, ·) must be larger than µi(ti, S), and the entry fee is accepted with probability

at least 1/2. Putting everything together, we demonstrate that we can approximate Core(M,β)

with an ASPE or an RSPM (Lemma 3.31).

Construction of Ĉore(M,β)

We first show that if for any i and ti ∈ Ti there is a set of α-supporting prices for vi(ti, ·), then

there is a set of α-supporting prices for v′i(ti, ·).

Lemma 3.21. If for any type ti and any set S, there exists a set of α-supporting prices {θSj (ti)}j∈S

for vi(ti, ·), then for any ti and S there also exists a set of α-supporting prices {γSj (ti)}j∈S for

v′i(ti, ·). In particular, γSj (ti) = θ
S∩Ci(ti)
j (ti) if j ∈ S ∩ Ci(ti) and γSj (ti) = 0 otherwise. Moreover,

γSj (ti) ≤ Vi(tij) · 1[Vi(tij) < βij + ci] for all i, ti, j and S.

Proof. It suffices to verify that {γSj (ti)}j∈S satisfies the two properties of α-supporting prices. For

any S′ ⊆ S, S′ ∩ Ci(ti) ⊆ S ∩ Ci(ti). Therefore,

v′i(ti, S
′) = vi(ti, S

′ ∩ Ci(ti)) ≥
∑

j∈S′∩Ci(ti)

θ
S∩Ci(ti)
j (ti) =

∑
j∈S′∩Ci(ti)

γSj (ti) =
∑
j∈S′

γSj (ti)

The last equality is because γSj (ti) = 0 for j ∈ S\Ci(ti). Also, we have

∑
j∈S

γSj (ti) =
∑

j∈S∩Ci(ti)

θ
S∩Ci(ti)
j (ti) ≥

vi(ti, S ∩ Ci(ti))
α

=
v′i(ti, S)

α

Thus, {γSj (ti)}j∈S defined above is a set of α-supporting prices for v′i(ti, ·). Next, we argue

that γSj (ti) ≤ Vi(tij) · 1[Vi(tij) < βij + ci] for all i, ti, j ∈ S. If Vi(tij) ≥ βij + ci, j 6∈ Ci(ti), by
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definition γSj (ti) = 0. Otherwise if Vi(tij) < βij + ci, then {j} ⊆ S ∩ Ci(ti), by the first property of

α-supporting prices, γSj (ti) ≤ v′i(ti, {j}) = Vi(tij).

Next, we define the prices of our ASPE.

Definition 3.7. We define a price Qj for each item j as follows,

Qj =
1

2
·
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) · γSj (ti),

where {γSj (ti)}j∈S are the α-supporting prices of v′i(ti, ·) and set S for any bidder i and type ti ∈ Ti.

Core(M,β) can be upper bounded by
∑

j∈[m]Qj . The proof follows from the definition of

α-supporting prices (Definition 3.5) and the definition of Qj (Definition 3.7).

Lemma 3.22. 2α ·
∑

j∈[m]Qj ≥ Core(M,β).

Proof.

Core(M,β) =
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) · v′i(ti, S)

≤ α ·
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) ·

∑
j∈S

γSj (ti)

= α ·
∑
j∈[m]

∑
i

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) · γSj (ti)

= 2α ·
∑
j∈[m]

Qj

In the following definitions, we define Ĉore(M,β) which is the welfare of another function v̂

under the same allocation σ(β).

Definition 3.8. Let

τi := inf{x ≥ 0 :
∑
j

Pr
tij

[Vi(tij) ≥ max{βij , Qj + x}] ≤ 1

2
}.

and define Ai to be {j | βij ≤ Qj + τi}.
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Definition 3.9. For every buyer i and type ti ∈ Ti, let Yi(ti) = {j | Vi(tij) < Qj + τi},

v̂i(ti, S) = vi (ti, S ∩ Yi(ti))

and

γ̂Sj (ti) = γSj (ti) · 1[Vi(tij) < Qj + τi]

for any set S ∈ [m]. Moreover, let

Ĉore(M,β) =
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) · v̂i(ti, S).

In the next two Lemmas, we prove some useful properties of τi. In particular, we argue that∑
i∈[n] τi can be upper bounded by 4

1−b ·PostRev (Lemma 4.24).

Lemma 3.23.

∑
i

∑
j

max {βij , Qj + τi} · Pr
tij

[Vi(tij) ≥ max {βij , Qj + τi}] ≤
2

1− b
·PostRev

Proof. According to the definition of τi, for every buyer i,
∑

j Prtij [Vi(tij) ≥ max{βij , Qj + τi}] =

1
2 , and max{βij , Qj + τi} ≥ βij . Our statement follows directly from Lemma 3.19.

Lemma 3.24. ∑
i∈[n]

τi ≤
4

1− b
·PostRev.

Proof. Since Qj is nonnegative,

∑
i

∑
j

max {βij , Qj + τi} · Pr [Vi(tij) ≥ max{βij , Qj + τi}] ≥
∑
i

τi ·
∑
j

Pr [Vi(tij) ≥ max{βij , Qj + τi}] .

According to the definition of τi, when τi > 0,

∑
j

Pr [Vi(tij) ≥ max{βij , Qj + τi}] =
1

2
.
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Therefore,
∑

i∈[n] τi ≤
4

1−b ·PostRev due to Lemma 3.23.

In the following two Lemmas, we compare Ĉore(M,β) with Core(M,β). The proof of

Lemma 3.25 is postponed to Appendix A.4.

Lemma 3.25. For every buyer i, type ti ∈ Ti, v̂i(ti, ·) satisfies monotonicity, subadditivity and no

externalities. Furthermore, for every set S ⊆ [m] and every subset S′ of S, v̂i(ti, S
′) ≥

∑
j∈S′ γ̂

S
j (ti).

Lemma 3.26. Let

Q̂j =
1

2
·
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) · γ̂Sj (ti).

Then,

Qj ≥ Q̂j , for all j ∈ [m] and

∑
j∈[m]

Qj ≤
∑
j∈[m]

Q̂j +
(b+ 1)

b · (1− b)
·PostRev.

Proof. From the definition of Q̂j , it is easy to see that Qj ≥ Q̂j for every j. So we only need to

argue that
∑

j∈[m]Qj ≤
∑

j∈[m] Q̂j + (b+1)
b·(1−b) ·PostRev.

∑
j

(
Qj − Q̂j

)
=

1

2
·
∑
i

∑
j

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) ·

(
γSj (ti)− γ̂Sj (ti)

)
≤1

2
·
∑
i

∑
j

∑
ti∈Ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) · (βij · 1 [Vi(tij) ≥ Qj + τi] + ci · 1 [Vi(tij) ≥ max{Qj + τi, βij}])

=
1

2
·
∑
i

∑
j

∑
ti∈Ti

fi(ti) · π(β)
ij (ti) · (βij · 1 [Vi(tij) ≥ Qj + τi] + ci · 1 [Vi(tij) ≥ max{Qj + τi, βij}])

(3.10)

This first inequality is because γSj (ti) − γ̂Sj (ti) is non-zero only when Vi(tij) ≥ Qj + τi, and

the difference is upper bounded by βij when Vi(tij) ≤ βij and upper bounded by βij + ci when

Vi(tij) > βij .
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We first bound
∑

i

∑
j

∑
ti∈Ti fi(ti) · π

(β)
ij (ti) · βij · 1[Vi(tij) ≥ Qj + τi].

∑
i

∑
j

∑
ti∈Ti

fi(ti) · π(β)
ij (ti) · βij · 1[Vi(tij) ≥ Qj + τi]

≤
∑
i

∑
j∈Ai

βij ·
∑
ti∈Ti

fi(ti) · 1[Vi(tij) ≥ Qj + τi] +
∑
i

∑
j /∈Ai

βij ·
∑
ti∈Ti

fi(ti) · π(β)
ij (ti)

≤
∑
i

∑
j∈Ai

βij · Pr
tij

[Vi(tij) ≥ Qj + τi] +
∑
i

∑
j /∈Ai

βij · Pr
tij

[Vi(tij) ≥ βij ]/b

≤(1/b) ·
∑
i

∑
j

max{βij , Qj + τi} · Pr
tij

[Vi(tij) ≥ max{βij , Qj + τi}]

≤ 2

b · (1− b)
·PostRev

(3.11)

The set Ai in the first inequality is defined in Definition 3.8. The second inequality is due to

property (ii) in Lemma 3.6. The third inequality is due to Definition 3.8 and the last inequality is

due to Lemma 3.23.

Next, we bound
∑

i

∑
j

∑
ti∈Ti fi(ti) · π

(β)
ij (ti) · ci · 1[Vi(tij) ≥ max{Qj + τi, βij}].

∑
i

∑
j

∑
ti∈Ti

fi(ti) · π(β)
ij (ti) · ci · 1[Vi(tij) ≥ max{Qj + τi, βij}]

≤
∑
i

ci
∑
j

∑
ti

fi(ti) · 1[Vi(tij) ≥ max{Qj + τi, βij}]

≤
∑
i

ci
∑
j

Pr
tij

[Vi(tij) ≥ max{Qj + τi, βij}]

≤
∑
i

ci/2

≤ 2

(1− b)
·PostRev

(3.12)

The last inequality is due to Lemma 3.20. Combining Inequality (3.10), (3.11) and (3.12), we

have proved our claim.

By Lemma 3.22,
∑

j∈[m]Qj ≤ Core(M,β)/2α. Hence, Lemma 3.26 shows that to approximate

Core(M,β), it suffices to approximate Ĉore(M,β). Indeed, we will use
∑

j∈[m] Q̂j as an proxy

for Core(M,β) in our analysis of the ASPE.
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Design and Analysis of Our ASPE

Consider the sequential post-price mechanism with anonymous posted price Qj for item j. We visit

the buyers in the alphabetical order12 and charge every bidder an entry fee. We define the entry

fee here.

Definition 3.10 (Entry Fee). For any bidder i, any type ti ∈ Ti and any set S, let

µi(ti, S) = max
S′⊆S

(
v̂i(ti, S

′)−
∑
j∈S′

Qj
)
.

For any type profile t ∈ T and any bidder i, let the entry fee for bidder i be

δi(Si(t<i)) = Medianti [µi (ti, Si(t<i))]
13,

where S1(t<1) = [m] and Si(t<i) is the set of items that are not purchased by the first i− 1 buyers

in the ASPE, when buyer `’s valuation is v`(t`, ·) for all ` < i. Notice that even though the seller

does not know t<i, she can compute the entry fee δi(Si(t<i)), as she observes Si(t<i) after visiting

the first i− 1 bidders.

In Lemma 3.27, we show that τi is the Lipschitz constant for µi(·, ·) and the proof is postponed

to Appendix A.4. Moreover,
∑

i τi is upper bounded by 4
1−b ·PostRev due to Lemma 4.24.

Lemma 3.27. For any i, the function µi(·, ·) is τi-Lipschitz. Moreover, for any type ti ∈ Ti,

µi(ti, ·) satisfies monotonicity, subadditivity and no externalities.

The following Lemma is crucial for our proof. We show that in expectation over all type profiles,

we can lower bound of the sum of µi(ti, Si(t<i)) for all bidders. In particular, this lower bound

plus our ASPE’s revenue from the posted prices already approximates Ĉore(M,β). The proof is

inspired by Feldman et al. [FGL15]. Note that µi(ti, Si(t<i)) is a lower bound of the real surplus

12. We can visit the buyers in an arbitrary order. We use the the alphabetical order here just to ease the notations
in the proof.

13. Here Medianx[h(x)] denotes the median of a non-negative function h(x) on random variable x, i.e.
Medianx[h(x)] = inf{a ≥ 0 : Prx[h(x) ≤ a] ≥ 1

2
}.
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of buyer i for set Si(t<i). We choose to analyze the sum of µi(ti, Si(t<i)) because µi(·, ·) has a

small Lipschitz constant, which allows us to approximate µi(ti, Si(t<i)) with buyer i’s entry fee

µi(Si(t<i)) and τi.

Lemma 3.28. For all j, let Qj (Definition 3.7) be the price for item j and every bidder’s entry

fee be described as in Definition 3.10. For every type profile t ∈ T , let SOLD(t) be the set of items

sold in the corresponding ASPE when buyer i’s valuation is vi(ti, ·). Then

Et

∑
i∈[n]

µi (ti, Si(t<i))

 ≥∑
j

Pr
t

[j /∈ SOLD(t)] · (2Q̂j −Qj)

≥
∑
j∈[m]

Pr
t

[j /∈ SOLD(t)] ·Qj −
(2b+ 2)

b · (1− b)
·PostRev
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Proof.

Et

[∑
i

µi (ti, Si(t<i))

]

≥
∑
i

Eti,t−i,t′−i
[
µi

(
ti, Si(t<i) ∩M (β)

i (ti, t
′
−i)
)]

≥
∑
i

Eti,t−i,t′−i

 ∑
j∈M(β)

i (ti,t′−i)

1 [j ∈ Si(t<i)] ·
(
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj
)+


=
∑
i

Eti,t′−i

 ∑
j∈M(β)

i (ti,t′−i)

Pr
t<i

[j ∈ Si(t<i)] ·
(
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj
)+


=
∑
i

Eti

 ∑
S⊆[m]

σ
(β)
iS (ti) ·

∑
j∈S

Pr
t<i

[j ∈ Si(t<i)] ·
(
γ̂Sj (ti)−Qj

)+
=
∑
i

Eti

∑
j∈[m]

Pr
t<i

[j ∈ Si(t<i)] ·
∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)+
=
∑
i

∑
j

Pr
t<i

[j ∈ Si(t<i)] · Eti

 ∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)+
≥
∑
i

∑
j

Pr
t

[j /∈ SOLD(t)] · Eti

 ∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)+
≥
∑
j

Pr
t

[j /∈ SOLD(t)]
∑
i

∑
ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)

t′−i are fresh samples drawn from D−i. The first inequality is because the µi(ti, S) function

is monotone in set S for any i and type ti ∈ Ti. We use

(
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj
)+

to denote

max

{
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj , 0
}

. If we let S be the set of items that are in Si(t<i)∩M (β)
i (ti, t

′
−i) and

satisfy that γ̂
M

(β)
i (ti,t

′
−i)

j (ti) − Qj ≥ 0, then µi

(
ti, Si(t<i) ∩M (β)

i (ti, t
′
−i)
)
≥ v̂i(ti, S) −

∑
j∈S Qj ≥∑

j∈S

(
γ̂
M

(β)
i (ti,t

′
−i)

j (ti)−Qj
)

due to the definition of µi(ti, ·) and Lemma 3.25. This inequality is

exactly the second inequality above. The next equality is because Si(t<i) only depends on the types

of bidders other than i. The second last inequality is because Prt<i [j ∈ Si(t<i)] ≥ Prt[j /∈ SOLD(t)]

for all j and i, as the LHS is the probability that the item is not sold after the seller has visited the
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first i− 1 bidders and the RHS is the probability that the item remains unsold till the end of the

mechanism. Now, observe that
∑

i

∑
ti
fi(ti) ·

∑
S:j∈S σ

(β)
iS (ti) · γ̂Sj (ti) = 2Q̂j for any j according to

the definition in Lemma 3.26. Therefore,

∑
j

Pr
t

[j /∈ SOLD(t)]
∑
i

∑
ti

fi(ti) ·
∑
S:j∈S

σ
(β)
iS (ti) ·

(
γ̂Sj (ti)−Qj

)
≥
∑
j

Pr
t

[j /∈ SOLD(t)] · (2Q̂j −Qj)

=
∑
j

Pr
t

[j /∈ SOLD(t)] ·Qj −
∑
j

Pr
t

[j /∈ SOLD(t)] · 2(Qj − Q̂j)

≥
∑
j

Pr
t

[j /∈ SOLD(t)] ·Qj −
∑
j

2(Qj − Q̂j) (Due to Lemma 3.26, Qj − Q̂j ≥ 0 for all j)

≥
∑
j

Pr
t

[j /∈ SOLD(t)] ·Qj −
(2b+ 2)

b · (1− b)
·PostRev (Lemma 3.26)

Since entry fee in the ASPE for every bidder as the median of her utility over the available items

under v̂. Clearly, bidders accept the entry fee with probability at least 1/2, as their true utilities

(under v) are always higher than their utilities under v̂. Combining the concentration property

of the utility under v̂ and Lemma 3.28, we can argue that the total revenue from our ASPE is

comparable to Ĉore(M,β), and therefore is comparable to Core(M,β).

Lemma 3.29. For all i and t<i, bidder i accepts δi(t<i) with probability at least 1/2 when ti is

drawn from Di. Moreover,

APostEnRev ≥ 1

4
·
∑
j

Qj −
(

5

2(1− b)
+

(b+ 1)

2b · (1− b)

)
·PostRev.

Proof. For any bidder i, type ti ∈ Ti and any set S, define bidder i’s utility as ui(ti, S) =

maxS′⊆S
(
vi(ti, S

′)−
∑

j∈S′ Qj
)
. Clearly, ui(ti, S) ≥ µi(ti, S) for any type ti and set S. For any t<i,

as long as ui(ti, Si(t<i)) ≥ δi(Si(t<i)), buyer i accepts the entry fee. Since δi(Si(t<i)) is the median
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of µi(ti, t<i), ui(ti, Si(t<i)) ≥ δi(Si(t<i)) with probability at least 1/2 when ti is drawn from Di.

So the revenue from entry fee is at least 1
2 ·
∑

i Et<i [δi (Si(t<i))] .

For any i and t<i, by Lemma 3.27 and Corollary 3.1, we are able to derive a lower bound for

δi (Si(t<i)), as shown in Lemma 3.30.

Lemma 3.30. For all i and t<i,

2δi (Si(t<i)) +
5τi
2
≥ Eti [µi (ti, Si(t<i))] .

Proof. It directly follows from Lemma 3.27 and Corollary 3.1. For any i and t<i, let Si(t<i)

be the ground set I. Therefore, µi(ti, ·) with ti ∼ Di is a function drawn from a distribu-

tion that is subadditive over independent items. Since, µi(·, ·) is τi-Lipschitz and δi(Si(t<i)) =

Medianti [µi (ti, Si(t<i))],

2δi (Si(t<i)) +
5τi
2
≥ Eti [µi (ti, Si(t<i))] .

Back to the proof of Lemma 3.29. According to Lemma 3.30, the revenue from the entry fee is

at least 1
4 ·
∑

i Et<i,ti [µi(ti, Si(t<i))]− 5
8 ·
∑

i τi, which is equal to 1
4 ·
∑

i Et [µi(ti, Si(t<i))]− 5
8 ·
∑

i τi.

Combining Lemma 4.24 and Lemma 3.28, we can further show that the revenue from the entry

fee is at least 1
4

∑
j Prt[j /∈ SOLD(t)] · Qj − ( 5

2(1−b) + (b+1)
2b(1−b))PostRev. Since the revenue from

the posted prices is exactly
∑

j Prt[j ∈ SOLD(t)] · Qj , the total revenue of the ASPE is at least

1
4 ·
∑

j Qj −
(

5
2(1−b) + (b+1)

2b·(1−b)

)
·PostRev.

Combining everything together, we have the main result of Section 3.7.2.

Lemma 3.31. For any BIC mechanism M ,

Core(M,β) ≤ 8α ·APostEnRev + 4α

(
6

1− b
+

1

b(1− b)

)
PostRev.

Proof. It follows directly from Lemma 3.22 and 3.29.
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Now, we have upper bounded Single(M,β), Tail(M,β) and Core(M,β) using the sum of

the revenue of simple mechanisms (RSPM and ASPE). Combining these bounds, we complete the

proof of Theorem 3.4.

Proof of Theorem 3.4: The proof follows from combining Theorem 3.2, Lemma 3.15, 3.16, 3.17

and 3.31. 2

3.7.3 Bad Example for Chawla and Miller’s Approach

Let bidders be constrained additive and Fi be bidder i feasibility constraint. We use PFi =

conv({1S |S ∈ Fi}) to denote the feasibility polytope of bidder i. Let {qij}i∈[n],j∈[m] be a collection

of probabilities that satisfy
∑

i qij ≤ 1/2 for all item j and qi = (qi1, . . . , qim) ∈ b · PFi . Let

βij = F−1
ij (qij). The analysis by Chawla and Miller [CM16] needs to upper bound

∑
i,j βij · qij

using the revenue of some BIC mechanism. When Fi is a matroid for every bidder i, this expression

can be upper bounded by the revenue of a sequential posted price mechanism constructed using

OCRS from [FSZ16]. Here we show that if the bidders have general downward closed feasibility

constraints, this expression is gigantic. More specifically, we prove that even when there is only

one bidder, the expression could be Ω
( √

m
logm

)
times larger than the optimal social welfare.

Consider the following example.

Example 3.1. The seller is selling m = k2 items to a single bidder. The bidder’s value for each

item is drawn i.i.d. from distribution F , which is the equal revenue distribution truncated at k, i.e.,

F (x) =


1− 1

x , if x < k

1, if x = k

Items are divided into k disjoint sets A1, ..., Ak, each with size k. The bidder is additive subject to

feasibility constraint F = {S ⊆ [m]|∃i ∈ [k], S ⊆ Ai}.

Lemma 3.32. Let PF = conv({1S |S ∈ F}) be the feasibility polytope for the bidder in Example 3.1.

Let SW be the optimal social welfare. Then for any constant b > 0, there exists q ∈ b · PF such
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that for sufficiently large k,

∑
j∈[m]

qj · F−1(1− qj) = Θ(
k

log k
) · SW

Proof. For any b > 0, consider the following feasible allocation rule: w.p. (1 − b), don’t allocate

anything, and w.p. b, give the buyer one of the sets Ai uniformly at random. The corresponding

ex-ante probability vector q satisfies qj = b
k , ∀j ∈ [m]. Thus q ∈ b·PF . Since qj <

1
k , F−1(1−qj) = k

for all j ∈ [m]. We have
∑

j∈[m] qj ·F−1(1− qj) = k2 · bk ·k = b ·k2. We use Vi to denote the random

variable of the bidder’s value for set Ai. It is not hard to see that SW = E[maxi∈[k] Vi].

Lemma 3.33. For any i ∈ [k],

Pr [Vi > 3 · k log(k)] ≤ k−3

Proof. Let X be random variable with cdf F . Notice E[X] = log(k), E[X2] = 2k, and |X| ≤ k.

For every i, by the Bernstein concentration inequality, for any t > 0,

Pr [Vi − k log(k) > t] ≤ exp

(
−

1
2 t

2

2k2 + 1
3kt

)

Choose t = 2k log(k), we have

Pr [Vi > 3k log(k)] ≤ exp(−3 log(k)) = k−3

By the union bound, Pr[maxi∈[k] Vi > 3 · k log(k)] ≤ k−2. Therefore, E[maxi∈[k] Vi] ≤ 3k log k +

k2 · k−2 ≤ 4k log k.
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3.8 Improved Analysis for Constrained Additive Valuation

In this section, we show that for constrained additive bidders, we do not need to relax the valuations,

as applying directly the flow in Section 3.5 already gives an upper bound with the right format.

So we can take M (β) to simply be M . In particular, we can derive the following improved upper

bound for Rev(M, v,D) using essentially the same proof as in Section 3.5.

Theorem 3.5. If for any bidder i any type ti ∈ T , vi(ti, ·) is a constrained additive valuation, then

for any mechanism M and any β = {βij}i∈[n],j∈[m],

Rev(M,v,D) ≤ Non-Favorite(M,β) + Single(M,β).

Combining the same upper bounds we obtained for Non-Favorite(M,β) and Single(M,β)

and the improved upper bound in Theorem 3.5, we can improve the approximation ratio when the

bidder(s) have constrained additive valuations.

Theorem 3.6. For a single buyer whose valuation is constrained additive,

Rev(M,v,D) ≤ 7 · SRev + 4 ·BRev,

for any BIC mechanism M .

Theorem 3.7. For multiple buyers whose valuations are constrained additive,

Rev(M, v,D) ≤ 8 ·APostEnRev

+

(
6 +

22

1− b
+

4(b+ 1)

(1− b)b

)
·PostRev

(3.13)

for any BIC mechanism M . In particular, if we set b to be 1
4 , then

Rev(M,v,D) ≤ 8 ·APostEnRev + 62 ·PostRev.
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Chapter 4

Profit Maximization

In this chapter we study the profit maximization problem in multi-item auctions, where the seller

has private costs associated with her items. We design simple and truthful mechanisms and prove

that they achieve a constant factor approximation to the optimal profit.

In Section 4.1 we give an overview of our results and techniques shown in this chapter. In

Section 4.2 we introduce some additional definitions and notations need to read this chapter. In

Section 4.3, we introduce a benchmark of the optimal profit using the CDW duality framework. We

formulate the maximization problem as an LP, take the Lagrangian dual (Section 4.3.1), and then

define a new set of dual variables (a flow) to derive our benchmark (Section 4.3.2). In Section 4.4,

we prove our result for the single constraint-additive buyer case. In Section 4.5 we study the case

with multiple buyers.

4.1 Results in This Chapter

To state our result, we will first focus on the single buyer case. In our model, there are m items

for sale, and the seller has cost cj for parting with item j. The costs (c1, . . . , cm) are drawn from

a distribution C that is known to both the seller and the buyer. We allow the seller’s costs to be

correlated across items. Consider constrained-additive buyers, that is, the buyer has a downward-

closed feasibility constraint F ⊆ 2[m] that specifies what bundles of items are allowed. The buyer
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has value tj for item j, and her value for a bundle S is defined as maxA∈F ,A⊆S
∑

i∈A tj . Similar to

most results in the simple vs. optimal literature, we assume tj to be drawn from Dj independently

across items.

We propose a new class of mechanisms called permit-selling. These mechanisms have two stages.

For each item j, we create a separate permit that allows the buyer to purchase the item at its cost.

In the first stage, we sell the permits without revealing any information about the actual costs. In

the second stage, the seller reveals all the costs, and the buyer can buy item j by only paying the

cost cj if the buyer has purchased the permit for item j in the first stage. How does the buyer

make a decision in such a mechanism? In the first stage, the buyer needs to choose her favorite

bundle of permits to purchase. Since she knows the distribution C, she can compute her utility

for each bundle of permits. In the second stage, the buyer simply picks her favorite set of items

based on the permits she own, the costs of the items, and her valuation function. Why do the

permit-selling mechanisms help addressing the two challenges? Note that the profit of the permit-

selling mechanisms is exactly the revenue from the first stage, so any mechanism that achieves

high revenue in the first stage also generates high profit. Moreover, the buyer needs to make a

decision on what permits to purchase without learning the costs, therefore, the seller can extract

the informational rent by pricing the permits appropriately.

Indeed, we do not even need to use any complex pricing scheme in the first stage. We sell the

permits separately or sell them as a grand bundle. In our proof we need one more mechanism,

which simply sells the items separately, and the prices change according to the seller’s costs. The

reason why this class of mechanism is required is more subtle and we only sketch the intuition

here. In the permit-selling mechanism, for a fixed buyer type profile t, the buyer purchases a set of

permits P and thus the seller can only extract revenue from items in P , no matter what realized

costs she has. However, for different cost vectors, the seller may have different items from which

she can extract more revenue. By posting item prices that depend on her cost, the seller is able to

target the profitable items based on her realized cost vector. This approach does not capture the

informational rent but may generate high profit in certain cases.

Here are the mechanisms we use.
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• sell-items-separately (IS): for each possible cost vector c = (c1, · · · , cm), sell the items

separately, and the price pj(c) for item j depends on c.

• sell-permits-separately (PS): sell the permits separately, and the price pj for the j-th

permit is independent from the seller’s costs.

• permit-bundling (PB): sell all the permits as a grand bundle at a price p that is independent

from the seller’s costs.

Since in all these mechanisms, the seller does not even ask the buyer to report her valuation,

the mechanism is clear incentive compatible (IC) and individually rational (IR). We show that the

best mechanism among these three classes of mechanisms can already achieve a constant fraction

of the optimal profit.

Theorem 4.1. For any valuation distribution D = D1 × . . . × Dm, cost distribution C, and any

downward-closed feasibility constraint F , the best mechanism among all sell-items-separately, sell-

permits-separately, and permit-bundling mechanisms is an 11-approximation to the optimal profit.

When the buyer’s valuation is additive, we can improve the approximation factor to 6.

Theorem 4.2. If the buyer has additive valuation, for any valuation distribution D = D1×. . .×Dm

and cost distribution C, the best mechanism among all sell-items-separately, sell-permits-separately,

and permit-bundling mechanisms is a 6-approximation to the optimal profit.

We then generalize the result to accommodate multiple buyers. With multiple buyers, we sell

the permits with a sequential mechanism: buyers arrive in some arbitrary order. When a buyer

arrives, we first offer the buyer the permits without revealing any information about the seller’s

cost or other buyers’ types. Next, the buyer is given the remaining item set as well as an item price

for each item. For single buyer case the item price is always chosen as the seller’s cost for this item.

Now we allow any prices that may depend on the cost vector.1 Again the buyer can purchase any

item from the remaining item set by paying the corresponding item price, if she has the permit

1. In the proof, the item prices is always chosen to be no less than the seller’s cost.
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for it. The mechanism is BIC and interim IR as the buyer needs to purchase the permit without

knowing the seller’s cost or what items are still available. In the proof, we use Sequential Permit

Posted Price (SPP) mechanisms that sell permits separately and Sequential Permit Bundling (SPB)

mechanisms that sell permits as a whole bundle. Similar to the single buyer case, we need another

mechanism called Constrained Sequential Item Posted Price mechanism (CSIP). It resembles the

Sequential Posted Price mechanism from [CHMS10]: the items are sold sequentially with posted

prices that depend on the seller’s cost vector. The mechanism also imposes a constraint on the set

of items a buyer can purchase. See Section 4.2 for more details.

We prove that the best of three classes of mechanisms can already achieve a constant fraction

of the optimal profit, if every buyer has matroid-rank valuation.

Theorem 4.3. For any cost distribution and buyers’ valuation distributions, if every buyer has a

matroid-rank valuation, the best mechanism among all CSIP, restricted SPP2, and SPB mechanisms

is a 44-approximation to the optimal profit.

4.1.1 Proof Sketch and Techniques

Since the costs are private, it is a priori not clear that it is sufficient to consider only direct

mechanisms. Indeed, signaling mechanisms, a class of indirect mechanisms, are widely studied in the

ad auction setting [BMS12,FJM+12,DIR14,EFG+14,DPT16]. We first prove a revelation principle

for our problem similar to the one proved in [DPT16] for ad auctions. Our revelation principle states

that w.l.o.g. we can restrict our attention to direct, BIC, and interim IR mechanisms. Moreover,

we can formulate the profit maximization problem as an LP. We next apply the Cai-Devanur-

Weinberg duality framework [CDW16]. The framework has become a standard tool for analyzing

the performance of simple mechanisms. In most of the results based on this duality approach, a

particular family of dual variables, called the “canonical dual” [CDW16,CZ17], is used to provide

a benchmark for the objective function. However, this set of dual variables does not provide an

appropriate benchmark due to the existence of costs. We propose a new set of dual variables that is

2. It’s closed to the Sequential Permit Posted Price mechanism, except that the mechanism may hide some items
randomly, preventing the buyer from buying some item even she has permit. See Section 4.2 for more details.
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tailored to handle the costs. Indeed, these dual variables are so informative that they inspired us to

introduce the permit-selling mechanisms. In the multi-buyer case, the choice of the dual variables

is also inspired by the ex-ante relaxation technique from [CM16]. A similar set of dual variables

are used in [CZ17] to provided a benchmark for the optimal revenue.

The benchmark induced by our dual variables can be easily decomposed into three components

– Single, Prophet and Non-Favorite. Single can be bounded by the profit of the CSIP

mechanism using relatively standard analysis. For Prophet, we bound the term using the same

class of mechanisms, with the help of the Online Contention Resolution Scheme [FSZ16].

For Non-Favorite, in order to establish a connection between profit maximization and rev-

enue maximization, we provide a separate and clean proof for the single buyer case. Instead of

directly analyzing the term, we construct an auxiliary revenue maximization problem for selling

m items to help approximate Non-Favorite. Intuitively, each item in the auxiliary problem cor-

responds to a permit. We first show that any mechanism in the auxiliary problem can be turned

into a permit-selling mechanism in the original problem, such that the revenue in the auxiliary

problem is the same as the profit of the permit-selling mechanism. Next, we argue that the buyer

has subadditive valuation in the auxiliary problem whenever the buyer has constrained additive

valuation in the original problem. Note that the better of selling the items separately and grand

bundling is a constant factor approximation of the optimal revenue when the buyer has subaddi-

tive valuation [RW15, CZ17]. Unfortunately, we cannot use this approximation as a black-box, as

it is not yet clear how the revenue in the auxiliary problem relates to the Non-Favorite term.

Luckily, Cai and Zhao obtain their result via the CDW duality framework, and in their analysis,

they show that a term identical to Non-Favorite can be approximated by the revenue of selling

the items separately or grand bundling. Putting everything together, we prove that the profit of

a sell-permits-separately or permit-bundling mechanism approximates Non-Favorite, and that

completes our proof. For general case, it’s not straightforward build such a connection. We use the

standard Core-Tail Decomposition technique [LY13,CDW16], dividing Non-Favorite further into

two terms Tail and Core. Tail can be approximated using RSPP. For Core, it can be viewed

as all buyers’ truncated welfare with respect to a related fractionally-subadditive valuation and we
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can bound it using SPB and RSPP, by applying the Talagrand’s concentration inequality [Sch03].

4.2 Additional Notations

We consider the auction where a seller is selling m heterogeneous items to n buyers. Each buyer

has a constrained-additive valuation. Following the notations from Chapter 2, we denote buyer

i’s type ti as 〈tij〉mj=1, where tij is buyer i’s value for item j. For every buyer i, denote Fi the

downward-closed feasibility constraint of buyer i’s valuation. On the other hand, the seller has a

private cost cj for producing each item j. Denote c the cost vector and c is drawn from distribution

C. Let TS be the support of C. We allow correlated costs in our problem.

For any direct3 mechanism M and any t, c, denote xij(t, c) the probability that buyer i is receiv-

ing item j, when the buyers has type profile t and seller has cost c. Let πij(ti, c) = Et−i [xij(t, c)]

be the interim allocation probability. Similarly, use pi(t, c) to denote the payment for buyer i. For

any t and c, buyer i’s utility ui(t, c) = ti · xi(t, c) − pi(t, c). The seller has profit (revenue minus

cost)
∑

i(pi(t, c)− c · xi(t, c)).

In our setting where the seller has a cost vector drawn from some distribution, the IC and IR

concepts of the mechanism takes the expectation over the seller’s cost vector. A formal definition

can be found as follows:

• Bayesian Incentive Compatible (BIC): reporting the true value maximizes the buyer’s ex-

pected utility Et−i,c[ui(ti, t−i, c)].

• Dominant Strategy Incentive Compatible (DSIC): for every c and every t−i, reporting the

true value maximizes the buyer’s utility ui(ti, t−i, c).

• interim Individual Rational (interim IR): reporting the true value induces non-negative ex-

pected utility. Et−i,c[ui(ti, t−i, c)] ≥ 0.

• ex-post Individual Rational (ex-post IR): for every c and t−i, reporting the true value induces

3. By Lemma 4.1, the revelation principle holds in the profit maximization problem. It suffices to consider direct,
BIC, and interim IR mechanisms.
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non-negative utility. ui(ti, t−i, c) ≥ 0.

If the mechanism allocates set S to some buyer, and the buyer is only interested in a feasible

subset of items U ⊂ S, the mechanism can simply allocate set U instead. This does not affect

the truthfulness for all buyers and increases the seller’s profit. In this paper, we will only consider

mechanisms that always allocate a feasible set of items U ∈ Fi to each buyer i. Denote P({Fi}ni=1)

the region for all feasible allocations x.

For every mechanism M , denote Profit(D, C, {Fi}ni=1,M) the seller’s expected profit in M .

We use Profit(M) for short when (D, C, {Fi}ni=1) is clear and fixed.

Profit(M) =
∑
i

Et,c[pi(t, c)− c · xi(t, c)]

As we will explain in Lemma 4.1, it is w.l.o.g. to only consider direct, BIC, and interim IR

mechanisms. Let OPTProfit(D, C, {Fi}ni=1) be the optimal profit among all BIC and interim IR

mechanisms (use OPTProfit for short when (D, C, {Fi}ni=1) is clear and fixed). Our goal is to use

a simple mechanism to approximate OPTProfit.

4.3 Benchmark for the Maximum Profit

In this section, we construct a benchmark for the optimal profit using the Cai-Devanur-Weinberg

duality framework. Before getting into the framework and benchmark, we first show that the

revelation principle holds in the profit maximization problem. Therefore, it suffices to find a

benchmark for the optimal profit attainable by any direct, BIC, and interim IR mechanisms. The

proof is postponed to Appendix B.2.

Lemma 4.1. Any ex-post implementable mechanism in the profit maximization problem can be

implemented by a direct, BIC, and interim IR mechanism.
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4.3.1 Duality Framework

The framework is first developed in [CDW16] and is widely used in mechanism design. Here we

apply the framework to our profit maximization problem. We obtain an upper bound of the optimal

profit similar to the upper bound of the optimal revenue obtained in [CDW16]. More specifically,

the profit of any BIC, interim IR mechanism is upper bounded by the sum of all buyers’ virtual

welfare minus the seller’s total cost for the same allocation, with respect to some virtual value

function. We will only show a sketch of the framework in the main body and refer the readers to

Appendix B.1 for a complete description.

In the framework, we first formulate the profit maximization problem as an LP. Then take the

partial Lagrangian dual of the LP by lagrangifying the BIC and interim IR constraints. Since the

buyer’s payment is unconstrained in the partial Lagrangian, one can argue that to obtain any finite

benchmark, the corresponding dual variables must form a flow. The virtual value function in the

benchmark is then defined according to the choice of the dual variables/flow.

Lemma 4.2. For any dual solution λ that induces a finite benchmark of the optimal profit and any

BIC, interim IR mechanism M = (x, p),

Profit(M) ≤ Et,c

[∑
i

πi(ti, c) · (Φ(λ)
i (ti)− c)

]

where

Φ
(λ)
i (ti) = ti −

1

fi(ti)
·
∑
t′i∈Ti

λi(t
′
i, ti)(t

′
i − ti)

can be viewed as buyer i’s virtual value function. Here πi(ti, c) = Et−i [xi(ti, t−i, c)] is the interim

allocation. λ(t′i, ti) is the Lagrangian dual variable for the BIC/IR constraint that says when the

buyer has true type t′i she does not want to misreport ti.
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4.3.2 Our Flow

Now we choose the dual variables λ carefully to induce a useful benchmark. First, let us use the

single buyer case to provide some intuition behind our flow.

Single Buyer

In [CDW16] and [CZ17], they cleverly choose the canonical flow in the revenue maximization setting.

They divide the type space T into m regions R1, ..., Rm by finding the largest value tj among all

items (called “favorite” item). It is the item that contributes the most to the buyer’s welfare. Then

they let the flow go between two nodes t, t′ ∈ Rj only if they differs only on the j-th coordinate.

However, the same flow does not give us a useful benchmark in our setting, as the way to divide

the type space does not even depend on the information of the seller’s costs (i.e. the realized cost

c or the cost distribution C). In [CDW16], they also analyze another flow that is considered as

a distribution of several canonical flows. We could define our flow similar to theirs: first for any

fixed cost vector c′, divide the region by which item has the largest value ti − c′i and use the above

flow. Next, define our flow as a distribution of the flow for c′, over the randomness of c′. This

attempt does take the cost distribution into account. Unfortunately, this flow does not work as

the mechanism constructed based on the sampled cost c′ will not represent the seller’s true profit

based on c.

For single buyer, we introduce the following flow. For every j ∈ [m], let v̄j(tj) = Ec[(tj − cj)+].

Define every Rj as follows: Rj contains all types t ∈ T such that j is the smallest index among

argmaxk v̄k(tk). We route the flow in a similar manner, that is, there is a flow between two nodes

t, t′ ∈ Rj if they only differ on the j-th coordinate (see Definition 4.3). Here is the intuition behind

our division. Inspired by the canonical flow, we again want to identify the favorite item for the

buyer and divide the regions accordingly. However, the favorite item now should be defined as

the one that contributes the most to the buyer’s utility instead of the overall welfare. Note that

v̄j(tj) = Ec[(tj−cj)+] is exactly the expected utility from item j when the item price is cj , which is

the lowest price that the seller is willing to sell the item. That is why we choose v̄j(tj) to represent

the contribution of item j to the buyer’s utility. Interestingly, the SPS mechanisms are inspired by
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our flow, because when there is only one buyer, v̄j(tj) can also be viewed as the buyer’s “value”

for the j-th permit when the item price pj(c) = cj . If we can design a mechanism to extract high

revenue from selling the permits, then we have a mechanism that generates high profit. We will

make this intuitive connection more concrete in Section 4.4.3.

Multiple Buyers

Inspired by the single buyer case, we again aim to extract high revenue from selling the permits to

make sure our mechanism generates high profit. When there are multiple buyers in the auction, we

sell items sequentially to the buyers and our mechanism should satisfy the following two properties:

• The item price should be carefully chosen as the item can not be over-allocated. Usually in

the sequential mechanism, the item price should be large enough, to make sure that the item

is available to every buyer when she comes to the auction, with certain probability.

• The item price should be at least the seller’s cost, to make sure the revenue extracted from

selling the items is enough to cover the cost.

Intuitively, how the flow is chosen should also depend on the format of the mechanism we aim

to use. To satisfy both properties, we combine our flow in Section 4.3.2 with the ex-ante relaxation

technique purposed in [CM16]. [CZ17] uses the same technique to construct the flow. They divide

the type space by comparing the difference between value and the quantile induced from ex-ante

allocation probability. Here we involve different quantile thresholds for different cost realization.

Furthermore, in order to satisfy the second property, we choose our threshold as the maximum

between the quantile and seller’s cost.

Definition 4.1. (Ex-ante relaxation) Fix mechanism M(π, p). For every i ∈ [n], j ∈ [m] and

c ∈ TS, define qij(c) = 1
2 · Et[πij(ti, c)], and let

βij(c) = inf {a ≥ 0 : Pr[tij ≥ max{a, cj}] ≤ qij(c)}

βij(c) = 0 if Pr[tij ≥ cj ] ≤ qij(c). If not, for simplicity we assume that there exists βij(c)
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such that Pr[tij ≥ βij(c)] = qij(c). This is true for continuous distribution Dij . For discrete

distributions, our results will hold by dealing with a tie-breaking issue. We refer the readers to

Section 5.3 of [CZ17] for more details. In the further proof we will focus on continuous distributions

and a same fix will apply for discrete distributions.

We denote β the mappings from c to βij(c) for all i, j. Before defining the flow, we need the

following definition.

Definition 4.2. Fix β. For every i, ti and set P ⊆ [m], define

v̄
(β)
i (ti, P ) = Ec

 max
S⊆P,S∈Fi

∑
j∈S

(tj −max{βij(c), cj})


Remark: v̄

(β)
i (ti, P ) is equal to ūpi (ti, P ) by choosing pij(c) = max{βij(c), cj}.

For notational convenience, let v̄
(β)
ij (tij) = v̄

(β)
i (ti, {j}) = Ec[(tij − max{βij(c), cj})+]4, which

only depends on tij . It coincides with the definition in Section 4.3.2 with β = 0.

Now we are ready to define our flow for multiple buyer case.

Definition 4.3. (Our flow) Fix β. For every i ∈ [n], j ∈ [m], R
(β)
ij contains all types ti ∈ Ti

such that j is the smallest index among argmaxk v̄
(β)
ik (tik). Define the flow as follows: Each node

ti receives flow of weight fi(ti) from the source. For every node ti, t
′
i ∈ R

(β)
ij , λi(t

′
i, ti) > 0 only if

t′ik = tik for all k 6= j, and t′ij is the predecessor type of tij
5. For node ti = (tij , ti,−j) ∈ R(β)

ij , if

there does not exist a successor type t′ij of tij such that (t′ij , ti,−j) ∈ R
(β)
ij , all flow entering node ti

goes to the sink ∅. Figure 4.1 shows an example of our flow for some buyer i when m = 2. The

curve in the graph contains all (ti1, ti2) such that v̄
(β)
i1 (ti1) = v̄

(β)
i2 (ti2).

Since for all β, i, j, v̄
(β)
ij (·) is non-decreasing, each region R

(β)
ij is upward-closed: for every ti =

(tij , ti,−j) ∈ R(β)
ij and t′ij > tij , (t′ij , ti,−j) ∈ R

(β)
ij . With this property, we have the following Lemma

from [CDW16].

4. For any value x, denote x+ = max{x, 0}

5. In other words, t′ij is the smallest value in the support set Tij that is greater than tij .
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Figure 4.1: An example of our flow for two items.

Lemma 4.3. [CDW16] Fix any β. There exists a flow λ such that for every i ∈ [n], ti ∈ R(β)
ij ,

Φ
(λ)
ik (ti) =


tik, if k 6= j

ϕ̃ij(tij), if k = j

where ϕ̃ij(·) is the Myerson’s ironed virtual value function w.r.t. Dij.

With Lemma 4.2 and 4.3, we have obtained a benchmark for any BIC, interim IR mechanism

and divide it into three terms. Note that the benchmark may differ for different mechanisms. The

proof of Theorem 4.4 can be found in Appendix B.2.

Theorem 4.4. For any BIC, interim IR mechanism M , let β be the mapping associated with M

in Definition 4.1, then

Profit(M) ≤
∑
i

Eti,c
[∑

j

1[ti ∈ R(β)
ij ] · πij(ti, c) · (ϕ̃ij(tij)− cj)

]
+ 2 ·

∑
i

∑
j

Ec

[
qij(c) · (max{βij(c), cj} − cj)

]
+
∑
i

Eti
[∑

j

1[ti ∈ R(β)
ij ] · v̄(β)

i (ti, [m]\{j})
]
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We use Single(β), Prophet(β) and Non-Favorite(β) to denote the three terms accordingly.

Note that all three terms depend on β. For the rest of the paper we show that these three terms can

be bounded by the profit of simple mechanisms for any β induced by a BIC, interim IR mechanism

M . In fact, to prove an approximation of the optimal profit, it is sufficient to consider one specific

β induced by the optimal mechanism. In the proof, we fix β and omit it in the notation.

4.4 Warm-up: Single, Constrained-Additive Buyer

In this section, we bound the benchmark for single, constrained-additive buyer. In this case, all βs

are set to 0 and thus Prophet = 0. We first introduce the class of mechanisms used in our proof.

4.4.1 Our Mechanisms for Single Buyer

We bound the optimal profit by the following three classes of mechanisms. The first mechanism is

sell-items-separately (IS) mechanism. The mechanism is similar to the posted price mechanism in

the revenue maximization problem, except that the seller may decide the posted price according

to her cost vector. Before the auction starts, the seller will decide a posted price pi(c) for each i

based on her cost vector c. Then the posted prices are revealed to the buyer and she will choose her

favorite bundle and pay the posted prices. Clearly the mechanism is ex-post IC and ex-post IR. We

use IS-Profit to denote the optimal seller’s profit among all sell-items-separately mechanisms.

Next, we define the two permit-selling mechanisms that we need. We first need the following

definition.

Definition 4.4. For every t and set P ⊆ [n], define

v̄(t, P ) = Ec

[
max

S⊆P,S∈F

∑
i∈S

(ti − ci)

]

This is the expected surplus of the buyer given a set of permits P in the second stage of a

permit-selling mechanism. In the first stage of the permit-selling mechanism, the buyer is required

to find her favorite set of permits by calculating v̄(t, P ) for all P , which is computationally hard.

However, we show that as long as the buyer can make the right decision in scenarios where she
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can only derive positive utility from a single permit, our mechanism is already a constant factor

approximation to the optimal profit. See Footnote 3 for more details.

The second class of mechanism is called sell-permits-separately (PS). There are two stages in

the mechanism. In the first stage, instead of selling the items, the seller sells a permit for each item.

She decides a price pi for permit i independent from the seller’s cost vector c. The buyer is allowed

to purchase any permit i by paying pi. In the second stage, the seller reveals her cost vector c to the

buyer, and the buyer can purchase any item i at a price of ci if the buyer has permit i. The buyer is

not allowed to purchase item i if she does not have the corresponding permit. The buyer chooses her

favorite bundle among the items that she is allowed to purchase. Notice that in the second stage,

the buyer with set of permits P ⊆ [n] will choose the bundle S∗ = argmaxS⊆P,S∈F
∑

i∈S(ti − ci).

Thus, in the first stage, by knowing her valuation t, all the permit prices pjs, as well as the cost

distribution C, the buyer is able to calculate her expected surplus in the second stage v̄(t, P ) (see

Definition 4.4) for any P ⊆ [n]. She will hence choose the best set P ∗ that maximizes her expected

utility in the whole auction and buy all the permits in set P ∗6. Thus the mechanism is IC and IR.

See Mechanism 4.4 for details.

Mechanism 4.1 Sell-permits-separately

Require: pi, the price for permit i, for all i ∈ [n].
1: Show all the permit prices to the buyer.
2: The buyer chooses a set of permits P ∗ = argmaxP⊆[n] v̄(t, P ) and pays

∑
i∈P ∗ pi.

3: Reveal c to the buyer.
4: The buyer chooses a set of items S∗ = argmaxS⊆P ∗,S∈F

∑
i∈S(ti − ci) and pays

∑
i∈S∗ ci.

Here is a quick remark: the sell-items-separately mechanism may look similar to the sell-permits-

separately mechanism. However, there is a major difference between the two mechanisms. In the

IS mechanism, by posting a item price that depends on her cost vector, the seller is revealing

information about her costs (the private information) to the buyer before the buyer makes any

6. The readers may wonder how can the buyer find the best set P ∗. To explain this, we consider any type profile
t where there exists i such that v̄(t, {i}) > pi and v̄(t, {k}) < pk, ∀k 6= i. In this scenario buying the permit i only is
the unique way to derive positive utility (v̄ is subadditive by Lemma 4.6) and the buyer will buy permit i for sure.
We point out that only counting the profit from these types suffices to to bound Single. Please see footnote 8 for
more details. Thus, our result holds even if the buyer cannot find the best set in all scenarios. As long as she can
make the right decision in the above scenarios, enough profit is generated by our mechanism.
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decision. That’s why the mechanism is ex-post truthful. While in the PS mechanism, the buyer has

no information about the costs in the first stage, and the mechanism is only truthful in expectation

over the seller’s costs. We use PS-Profit to denote the optimal profit among all PS mechanisms.

The third mechanism is permit-bundling (PB). The seller bundles all permits together and sell

them as a grand bundle in the first stage. The seller decides a price p for the permit bundle

independent from c. The buyer refuses to pay p, then she get no permit and therefore cannot

purchase anything in the second stage. If the buyer buys the permit bundle, the seller reveals

her cost vector c to the buyer and asks for an item price ci for item i. The buyer then chooses

her favorite bundle and pays the item prices. The mechanism is also IC and IR due to a similar

argument as for the PS mechanisms. We use PB-Profit to denote the optimal profit for the PB

mechanisms. See Mechanism 4.5 for details.

Mechanism 4.2 Permit-bundling

Require: p, the price for the grand permit-bundle
1: Show p to the buyer.
2: if The buyer pays p then
3: Reveal c to the buyer.
4: The buyer chooses a set of items S∗ = argmaxS⊆[n],S∈F

∑
i∈S(ti − ci) and pays

∑
i∈S∗ ci.

5: else
6: The buyer pays nothing and receives nothing.
7: end if

In the rest of this section, we will prove the following theorem.

Theorem 4.5. When n = 1, for any valuation distribution D, cost distribution C and any downward-

closed feasibility constraint F ,

OPTProfit ≤ 2 · IS-Profit + 5 ·PS-Profit + 4 ·PB-Profit

When the buyer’s valuation is additive,

OPTProfit ≤ IS-Profit + 3 ·PS-Profit + 2 ·PB-Profit

Theorem 4.5 implies that a simple randomization among the three mechanisms achieves at least
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1
11 the optimal profit for any downward-closed F . And for additive valuations, a randomization

among the three mechanisms is a 6-approximation to the optimal profit.

4.4.2 Bounding Single

To bound Single, we will consider the Copies Setting from [CHMS10], which is a single-dimensional

setting in the revenue maximization problem. Here is a sketch of the proof. For any fixed cost vector

c, we first focus on a related revenue maximization problem with a single buyer and multiple items,

by simply subtracting the fixed cost c from the buyer’s value t. Next, we show that the optimal

revenue in the copies setting of the related revenue maximization problem is an upper bound of

Single. According to [CHMS10], there exists a posted price mechanism in the multi-item setting

whose revenue approximates the optimal revenue in its copies setting. Finally, we show an Item

Posted Pricing mechanism whose expected profit is the same as to the expected revenue of the

posted price mechanism.

For any fixed c, we will first focus on the following revenue maximization problem with a single

buyer and m items. Buyer has value tj − cj for each item j, where tj is drawn independently

from Dj . Since c is a fixed vector, the buyer’s values are independent across items. The buyer is

constraint-additive with respect to the feasibility constraint F .

The Copies Setting of the above problem is as follows: there are m buyers in the auction and m

copies to sell. Buyer j only interests in the j-th copy and has value tj − cj for it, where tj is drawn

independently from Dj . Since c is a fixed vector, all buyers’ values are also independent. The seller

has no cost for the copies but has a downward-closed constraint F that specifies which copies can

simultaneously be sold. Denote OPTCopies-UD(c) the optimal revenue for the copies setting. Since

it is a single dimensional setting, Myerson’s auction achieves the optimal revenue, which equals to

the maximum ironed virtual welfare

OPTCopies-UD(c) = Et[max
S∈F

∑
j∈S

(ϕ̃j(tj)− cj)+].7

7. Notice that the ironed Myerson’s virtual value for buyer j is ϕ̃j(tj)− cj .
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Moreover, let OPT-RevCopies-UD(c) be the optimal revenue if we further restrict the seller to

sell at most one copy. Similarly OPT-RevCopies-UD(c) = Et[maxj(ϕ̃j(tj) − cj)+]. We have the

following lemma.

Lemma 4.4. Single ≤ Evc[OPT-RevCopies-UD(c)] ≤ 2 · IS-Profit. When the buyer is additive,

we further have Single ≤ IS-Profit. Moreover, there exists an IP mechanism M where pj(c)

only depends on cj for every j ∈ [m], such that Single ≤ Profit(M).

Proof. We first prove the result for arbitrary downward-closed constraint F . Notice that for every

t, the indicator 1[t ∈ Rj ] is 1 for only one j. Since πj(t, c) ∈ [0, 1], we have

Single = Et,c

[∑
j

1[t ∈ Rj ] · πj(t, c) · (ϕ̃j(tj)− cj)
]

≤ Et,c

[
max
j

(ϕ̃j(tj)− cj)+
]

= Ec

[
OPT-RevCopies-UD(c)

]

By [CHMS10], there exists a posted price mechanismM(c) in the revenue maximization problem

whose revenue is at least 1
2OPT-RevCopies-UD(c). Let p̂j(c) be the posted price for item j.

Now we move back to our profit maximization setting and define the IP mechanism M ′ as

follows: For every cost vector c, define the posted price for item j as p̂j(c) + cj . Notice that for

every t and c, the buyer in M ′ will purchase the same bundle B∗(t, c) as the one in M(c). Here

B∗(t, c) = argmaxS∈F
∑

j∈S(tj − cj − p̂j(c)). Thus the seller’s profit of M ′ is

Et,c

[ ∑
j∈B∗(t,c)

(p̂j(c) + cj − cj)
]

= Et,c

[ ∑
j∈B∗(t,c)

p̂j(c)
]

≥ 1

2
Ec

[
OPT-RevCopies-UD(c)

]
≥ 1

2
· Single

When the buyer is additive, for any fixed c, it is not hard to realize that OPTCopies-UD(c)

equals to the revenue of selling each item separately using the monopoly reserve in the revenue

maximization problem. Let p̂j(c) be the monopoly reserve for item j in the revenue maximization
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problem. Following the same proof as above, the IP mechanism M ′ with price p̂j(c) + cj achieves

expected profit at least

Ec[OPTCopies-UD(c)] = Et,c

[∑
j

(ϕ̃j(tj)− cj)+
]

≥ Et,c

[∑
j

1[t ∈ Rj ] · πj(t, c) · (ϕ̃j(tj)− cj)
]

= Single

4.4.3 Bounding Non-Favorite

Before bounding Non-Favorite, we will first prove a crucial lemma of this section. Consider the

revenue maximization problem with a single buyer and m items. The buyer’s type t ∼ D. She has

valuation function v̄(t, ·) when her type is t. For simplicity, we will call this revenue maximization

problem the revenue setting, and the original profit maximization problem the profit setting. Recall

that in the single buyer case,

v̄(t, P ) = Ec

[
max

S⊆P,S∈F

∑
j∈S

(tj − cj)
]

The following lemma converts any truthful mechanism in the revenue setting into a BIC and

interim IR mechanism in the profit setting, without changing the value of the objective (revenue

and profit accordingly). The intuition behind the lemma is as follows. For any mechanism in

the profit setting that sells the permit before revealing her true cost, the buyer with type t has

expected “value” v̄(t, P ), that is, how much the buyer can make from the second stage if given a

set of permits P , for all set of permits P . Thus, the mechanism can be viewed as a corresponding

mechanism in the revenue setting where the permits are being sold and the buyer has valuation v̄

over the permits.

Lemma 4.5. For any truthful mechanism M in the revenue setting, there exists an IC and IR

mechanism M ′ in the profit setting such that, the revenue of M equals to the seller’s profit of M ′.
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Proof. For any t, let X(t) be the (possibly random) set of items that the buyer is allocated in

mechanism M , when the buyer reports t. Let p(t) be the payment for the buyer in M . Define M ′

as follows: in the first stage, the buyer reports her type t and the seller gives the set of permits

X(t) to the buyer and charge p(t). In the second stage, the seller reveals the cost vector c and

the buyer can buy any item that she has a permit by paying item price cj . To prove M ′ is an IC

and IR mechanism, it suffices to show that the buyer has no incentive to lie in the first stage. If

the buyer with type t reports t′ in M ′, she will receive the set of permits X(t′) and purchase her

favorite bundle of items under item prices c. Her expected utility is

Ec,X(t′)

[
max

S∈F ,S⊆X(t′)

∑
j∈S

(tj − cj)
]
− p(t′) = EX(t′)[v̄(t, X(t′))]− p(t′)

Here the expectation is taken over the randomness of X(t′). Since M is truthful, for any

t ∈ T, t′ ∈ T+ 8, EX(t)[v̄(t, X(t))]−p(t) ≥ EX(t′)[v̄(t, X(t′))]−p(t′). It states that when the buyer

has type t, reporting t in the first stage maximizes her expected utility. Thus M ′ is IC and IR.

Notice that in the second stage of M ′, the total item prices paid by the buyer is equal to the seller’s

total cost. Thus the seller’s profit is exactly the payment in the first stage. Since M ′ use p(t) as

the payment rule, the seller’s profit of M ′ equals to the revenue of M .

Now we are ready to bound the term Non-Favorite. Recall that

Non-Favorite = Et

[∑
j

1[t ∈ Rj ] · v̄(t, [n]\{j})
]
.

Consider the revenue setting where the buyer has valuation function v̄ and let OPTRev(v̄) be

the optimal revenue among all truthful mechanisms. Here we omit D and C in the notation as

they are fixed. Given Lemma 4.5, it is tempting to find a simple mechanism that approximates

OPTRev(v̄) and convert it into a permit-selling mechanism. However, since we do not know what

class of valuation v̄ belongs to, it not a priori clear any simple vs. optimal result applies here.

8. Recall that T+ = T ∪ {∅} contains the choice of not attending the auction.
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As the original valuation in the profit setting is constrained additive, it is natural to think that v̄

is also constrained additive. Unfortunately, we are not able to prove such a claim as there is no

clear feasibility that is associated with v̄. The good news is that we are able to relax the class of

valuations and show that v̄ is indeed a subadditive function, which allows us to leverage the result

in Chapter 3 (also in [RW15]).

To remind the readers, let us first review the results. In Chapter 3 we bound OPTRev(v̄)

when v̄ is subadditive over independent items (see Definition 2.1). In the proof, we separate the

benchmark of the optimal revenue into two terms (called “single” and “non-favorite”). We then

bound the two terms by the optimal revenue of the Selling Separately mechanism (SRev(v̄)) and

Bundling mechanism (BRev(v̄)) respectively. The second term “non-favorite” is defined as the

expected welfare from all non-favorite items. Here for any fixed t, the favorite item is defined as

the j that maximizes v̄(t, {j}). Interestingly, this is how we divide the region into Rjs and the

term “non-favorite” is exactly the same as Non-Favorite. We will use Non-FavRev(v̄) to denote

“non-favorite” here to emphasize that it is from the revenue setting.

In order to apply the result in the revenue setting, we first show that the function v̄(·, ·) in

Definition 4.2 is indeed subadditive over independent items (Definition 2.1). The proof of Lemma 4.6

is postponed to Appendix B.3.

Lemma 4.6. v̄(·, ·) is monotone, subadditive and has no externalities.

Lemma 4.7. (Restatement of Lemma 3.8) Suppose v̄ is subadditive over independent items, then

Non-FavRev(v̄) = Et

[∑
j

1[t ∈ Rj ] · v̄(t, [n]\{j})
]
≤ 5 · SRev(v̄) + 4 ·BRev(v̄)

When the buyer is additive, [CDW16] has an improved bound for Non-FavRev(v̄) using SRev(v̄)

and BRev(v̄).

Lemma 4.8. [CDW16] If v̄ is an additive function, then

Non-FavRev(v̄) ≤ 2 · SRev(v̄) + 3 ·BRev(v̄)
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By Lemma 4.5, the Selling Separately mechanism in the revenue setting can be converted to

the PP mechanism in the profit setting and has profit equals to SRev(v̄). Also the Bundling

mechanism can be converted to PB and obtains profit BRev(v̄). Furthermore, when the buyer is

additive, there is no constraint F and for every t ∈ T, P ⊆ [m],

v̄(t, P ) = Ec

[
max
S⊆P

∑
j∈S

(tj − cj)
]

= Ec

[∑
j∈P

(tj − cj)+
]

=
∑
j∈P

v̄(t, {j}).

Thus, v̄ is an additive function. We have the following Corollary:

Corollary 4.1. Non-Favorite ≤ 5 · PS-Profit + 4 · PB-Profit. When the buyer is additive,

Non-Favorite ≤ 2 ·PS-Profit + 3 ·PB-Profit.

Proof of Theorem 4.5: It follows from Theorem 4.4, Lemma 4.4 and Corollary 4.1. 2

When the buyer is additive, according to [HN17], BRev(v̄), the revenue of the optimal bundling

mechanism, is bounded byO(log(m))·SRev(v̄). Thus Corollary 4.1 implies anO(log(m))-approximation

to the optimal profit with only IP and PP mechanisms. Both mechanisms sell the items separately.

Thus the optimal profit for m items is bounded by O(log(m)) times the sum of the optimal profit

for every single item.

Theorem 4.6. When the buyer is additive,

OPTProfit ≤ IS-Profit +O(log(m)) ·PS-Profit

Moreover,

OPTProfit ≤ O(log(m)) ·
∑
j∈[m]

OPTProfit({j}) = log(m) ·
∑
j∈[m]

Etj ,cj [(ϕ̃j(tj)− cj)+]

where ϕ̃j(·) is the Myerson’s ironed virtual value function for Dj.

Proof. According to [HN17], BRev(v̄) ≤ O(log(m))·SRev(v̄). Combining this result with Lemma 4.4

and Corollary 4.1, we have the following: there exists an IP mechanism M where the posted price

102



pj(cj) only depends on cj for every j ∈ [m], such that

OPTProfit ≤ Profit(M) +O(log(m)) ·PS-Profit

Since the buyer is additive, Profit(M) is equivalent to the sum (over all j) of the profit that

sells a single item j with price pj(cj). Note that for any PP mechanism with permit prices {`j}j∈[m],

the profit is equivalent to the sum (over all j) of the profit that sells a single item j with permit

price `j . Thus

OPTProfit ≤ Profit(M) +O(log(m)) ·PS-Profit ≤ O(log(m)) ·
∑
j∈[m]

OPTProfit({j})

It remains to prove that for every j, the optimal profit when selling a single item j, is at most

Etj ,cj [(ϕ̃j(tj)− cj)+]. In the auction with a single item j, by Lemma 4.2, we have following for any

dual variable λ:

OPTProfit({j}) ≤ max
π

Etj ,cj
[
π(tj , cj) · (Φ(λ)(tj)− cj)

]
where Φ(λ)(tj) = tj− 1

fj(tj)
·
∑

t′j∈Tj
λ(t′j , tj)(t

′
j− tj). Note that in the auction for selling a single

item j, both the buyer’s value and seller’s cost are scalar. By Corollary 18 of [CDW19], when the

optimal dual variable λ is chosen, Φ(λ)(tj) = ϕ̃j(tj). Thus

OPTProfit({j}) = max
π

Etj ,cj [π(tj , cj) · (ϕ̃j(tj)− cj)] = Etj ,cj [(ϕ̃j(tj)− cj)+],

where the last equality follows from π(tj , cj) ∈ [0, 1],∀tj , cj .

At the last of this section, we will prove the following lemma that connects the profit maximiza-

tion problem to the revenue maximization problem. We show that any truthful mechanism in the

revenue setting that is an α-approximation to the optimal revenue can be converted to a BIC and

interim IR mechanism in the profit setting that is a (9α+ 2)-approximation to the optimal profit.

Lemma 4.9. Recall that the revenue setting is the revenue maximization problem where the buyer
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has valuation v̄. Then any truthful mechanism in the revenue setting that is an α-approximation to

the optimal revenue OPTRev(v̄) can be converted to an IC and IR mechanism in the profit setting

that is a (9α+ 2)-approximation to the optimal profit OPTProfit.

Proof. By Lemma 3.8,

Non-FavRev(v̄) ≤ 5 · SRev(v̄) + 4 ·BRev(v̄) ≤ 9 ·OPTRev(v̄)

Let M be the α-approximation mechanism in the revenue setting. Then the revenue of M

satisfies:

Rev(M) ≥ 1

α
·OPTRev(v̄) ≥ 1

9α
·Non-FavRev(v̄)

By Lemma 4.5, there exists a BIC and interim IR mechanism M ′ in the profit setting such that

Profit(M ′) = Rev(M). Notice that Non-Favorite = Non-FavRev(v̄). By Theorem 4.4,

OPTProfit ≤ Single + Non-Favorite ≤ 2 · IS-Profit + 9α ·Profit(M ′)

Thus a randomization between M ′ and the optimal Item Posted Pricing mechanism is a (9α+2)-

approximation.

4.5 Multiple, Matroid-Rank Buyers

In this section, we will bound the benchmark in Theorem 4.4 for multiple, matroid-rank buyers. We

remark that although in this thesis we only consider the setting where each buyer has a matroid-

rank valuation, our result applies to any constrained additive buyer, where the feasibility constraint

Fi is an intersection of constant number of matroid, polytope and knapsack constraints, by using

the online contention resolution scheme (Section 2.7).
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4.5.1 Our Mechanisms

We bound the optimal profit by the following three classes of mechanisms. The first mechanism is a

variant of the Sequential Item Posted Price (SIP) mechanism, which is first purposed by [CHMS10]

in the revenue maximization problem. Here we allow the seller to decide posted prices according

to her cost vector. Before the auction starts, the seller decides a posted price pij(c) for each

buyer i and item j, based on her cost vector c. Then buyers come one by one in an arbitrary

order. Each buyer can choose her favorite bundle among all remaining items by paying the posted

prices. The mechanism is DSIC and ex-post IR. We call the mechanism Constrained Sequential

Item Posted Price (CSIP) if it further adds a sub-constraint on the set of items the buyer can

purchase. The mechanism first decides a constraint J ′(c) on the ground set of all buyer-item pairs

J = {(i, j) | i ∈ [n], j ∈ [m]}, based on her true cost c. A (possibly random) set A ⊆ J represents

a way of allocating the items. It’s feasible if

• Each item is allocated to at most one buyer: ∀j,Oj = {i : (i, j) ∈ A}, |Oj | ≤ 1.

• Each buyer is allocated a feasible set of items: ∀i, Pi = {j : (i, j) ∈ A}, Pi ∈ Fi.

Let J be the family of all feasible sets. J ′(c) must satisfy J ′(c) ⊆ J . When each buyer comes,

she is only allowed to take the item that doesn’t ruin the constraint J ′(c). See Mechanism 4.3 for

details.

Mechanism 4.3 Constrained Sequential Item Posted Price Mechanism

Require: pij(c), the item price for i ∈ [n], j ∈ [m]; the constraint J ′ ⊆ J .
1: A← ∅.
2: for i ∈ [n] do
3: Reveal item prices {pij(c)}mj=1 to the buyer.
4: i can choose a bundle Si such that A ∪ {(i, j)}j∈Si ∈ J ′.
5: i receives her favorite bundle S∗i , paying

∑
j∈S∗i

pij(c).

6: A← A ∪ {(i, j)}j∈S∗i .
7: end for

For the CSIP used in our proof, the corresponding sub-constraint J ′(c) can be computed

efficiently. See Section 4.5.3 for more details. We use CSIP-Profit to denote the optimal seller’s

profit among all CSIP mechanisms.
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Next, we define the two Sequential Permit Selling mechanisms used in the proof. The second

class of mechanism is called Sequential Permit Posted Price(SPP). Before the auction starts, the

seller decides a posted price pij(c) for each buyer i and item j, based on her cost vector c. Then

buyers come one by one in an arbitrary order. For each buyer i there are two stages: the permit-

purchasing stage and item-purchasing stage. In the permit-purchasing stage, instead of selling the

items, the seller sells a permit for each item. She decides a price lij for permit j independent

from the seller’s cost vector c and buyer type profile t. The buyer is allowed to purchase any

permit j ∈ [m] by paying lij . The decision must be made before she sees the remaining item

set Si(t<i, c). In the item-purchasing stage, the seller reveals Si(t<i, c) and her cost vector c to

the buyer, and the buyer can purchase any remaining item j at a price of pij(c) if the buyer has

permit j. The buyer is not allowed to purchase item j if she does not have the corresponding

permit. The buyer chooses her favorite bundle among the items that she is allowed to purchase.

Notice that in the second stage, the buyer with set of permits P ⊆ [m] will choose the bundle

S∗ = argmaxS⊆P∩Si(t<i,c),S∈Fi
∑

j∈S(tij − pij(c)). Thus, in the first stage, by knowing her type

ti, all the permit prices lijs, as well as the cost distribution C, the buyer is able to calculate her

expected surplus in the second stage for any P ⊆ Si(t<i). She will hence choose the best set

P ∗ that maximizes her expected utility in the whole auction and buy all the permits in set P ∗.

The mechanism is only BIC and Interim IR as buyers have to make decisions before getting any

information about other buyers’ types and the seller’s costs. See Mechanism 4.4 for details.

Mechanism 4.4 Sequential Permit Posted Price

Require: lij , pij(c), the permit and item price for i ∈ [n], j ∈ [m].
1: S ← [m]
2: for i ∈ [n] do
3: Show buyer i the permit price lij for every j.
4: i chooses a set of permits P ∗ ⊆ [m] and pays

∑
j∈P ∗ lij .

5: Reveal S and item prices {pij}mj=1 to the buyer.
6: i receives her favorite bundle S∗i ⊆ S, paying

∑
j∈S∗i

pij(c).

7: S ← S\S∗i .
8: end for

In our proof we will use restricted Sequential Permit Posted Price mechanisms (RSPP) by

adding the following two changes to the mechanism: Firstly, the buyer is only allowed to purchase
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at most one permit on the permit-purchasing stage. Secondly, we will further allow the mechanism

to hide some items from the buyer on the item-purchasing stage. Formally, the mechanism will

choose a (possibly random) set S′i(t<i, c) ⊆ Si(t<i, c) and the buyer is only allowed to purchase

item in S′i(t<i, c). We will now briefly explain how our mechanism used in the proof chooses this

set. Fix some parameter b ∈ (0, 1) which is determined later. In the proof, the item price pij(c) are

chosen such that for every i, j, c, Prt<i [j ∈ Si(t<i, c)] ≥ 1− b. We define the random set S′i(t<i, c)

as follows: for any j ∈ Si(t<i, c), put j in S′i(t<i, c) with probability (1 − b)/Prt<i [j ∈ Si(t<i, c)],

independently. Now we have Prt<i [j ∈ S′i(t<i, c)] = 1 − b. For every buyer i, she has to make the

choice whether to purchase each permit j before knowing if the corresponding item is still available

or not. The above equation guarantees that for every cost profile c, in expectation over the type

profile of buyers coming before her, each item j is available with probability exactly 1 − b. That

probability is independent of c. Thus the expected value for purchasing every permit j is exactly

(1− b) times the utility she could get from this item. This is a crucial property in our proof. See

Lemma 4.17) for more details. In the rest of the paper, when we mention RSPP, we refer to the

mechanism that hides the item as above. We denote RSPP-Profit the optimal profit of these

mechanisms.

The third mechanism is Sequential Permit Bundling(SPB). When every buyer i comes, the

seller bundles the permit of all items together and sell them as a grand bundle at some price δi in

the first stage. δi is independent from c. If the buyer refuses to pay the price, then she gets no

permit and therefore cannot purchase anything in the second stage. If the buyer buys the permit

bundle, the seller then reveals the remaining item set Si(t<i, c) and the item prices {pij(c)}mj=1 to

the buyer. The buyer then chooses her favorite bundle and pays the item prices. The mechanism

is also BIC and interim IR due to a similar argument as for SPP. We use SPB-Profit to denote

the optimal profit for all SPB mechanisms. See Mechanism 4.5 for details.

In the rest of this section, we prove the following theorem.

Theorem 4.7. For any valuation distribution D, cost distribution C and any matroid feasibility
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Mechanism 4.5 Sequential Permit Bundling

Require: pij(c), item price for i ∈ [n], j ∈ [m]; δi, the price for the permit bundle.
1: S ← [m]
2: for i ∈ [n] do
3: Show buyer i the permit bundle price δi.
4: if buyer i pays price δi then
5: Reveal S and item prices {pij}mj=1 to the buyer.
6: i receives her favorite bundle S∗i ⊆ S, paying

∑
j∈S∗i

pij(c).

7: S ← S\S∗i .
8: else
9: The buyer pays nothing and receives nothing.

10: end if
11: end for

constraints {Fi}mi=1,

OPTProfit ≤ 14 ·CSIP-Profit + 22 ·RSPP-Profit + 8 · SPB-Profit

Again a simple randomization among the three mechanisms achieves at least 1
44 the optimal

profit.

4.5.2 Bounding Single

Similar to the single buyer case, for every fixed vector c, we consider the related revenue maximiza-

tion problem where every buyer i has value tij − cj for item j. The corresponding Copies Setting is

a revenue maximization problem with mn buyers and m items. Every buyer (i, j) only interests in

item j and has value tij−cj on it. For every i, at most one (i, j) can be served in the mechanism. We

denote OPT-RevCopies-UD(c) the optimal revenue of this setting. In Lemma 4.10 we first bound

Single by Ec[OPT-RevCopies-UD(c)]. Then according to [CHMS10], OPT-RevCopies-UD(c) can

be approximated by the revenue of the optimal sequential posted price mechanism in the related

revenue maximization setting. Assume the posted price for buyer i and item j is p̂ij(c). We show

that in our setting, an SIP mechanism with pij(c) = p̂ij(c) + cj has profit the same as the expected

(over the randomness of c) revenue of the above sequential posted price mechanism.

Lemma 4.10. Single ≤ Ec[OPT-RevCopies-UD(c)] ≤ 6 ·CSIP-Profit.

108



Proof. Recall that

Single =
∑
i

Eti,c
[∑

j

1[ti ∈ R(β)
ij ] · πij(ti, c) · (ϕ̃ij(tij)− cj)

]

For every BIC, interim IR mechanism M = (π, p) and every c, consider the following mechanism

M ′ in the Copies Setting: M ′ serves agent (i, j) if and only if M allocates item j to buyer i and

ti ∈ R
(β)
ij . Since M is feasible, for every j there exist at most one i such that (i, j) is served

in M ′. Also since every ti stays in one region, for every i there exists at most one j such that

(i, j) is served in M ′. Thus M ′ is feasible and the expected revenue equals to
∑

i Eti
[∑

j 1[ti ∈

R
(β)
ij ] · πij(ti, c) · (ϕ̃ij(tij)− cj)

]
. Thus we have

Single ≤ Ec[OPT-RevCopies-UD(c)]

By [CHMS10], for every c there exists a sequential posted price mechanism M(c) in the related

revenue maximization setting9, where every buyer can purchase at most one item, such that its

revenue is at least OPT-RevCopies-UD(c)/6. Suppose the posted price for buyer i and item j is

p̂ij(c). Now let’s consider the Constrained Sequential Item Posted Price mechanism with pij(c) =

p̂ij(c) + cj in our profit maximization setting, where every buyer is only allowed to purchase at

most one item. For every t, c, let Ai(t<i, c) be the remaining item sets when buyer i comes to

the auction. Then she will choose her favorite item argmaxj∈Ai(t<i,c)(tij − cj − p̂ij(c)) (or choose

not to purchase anything). Notice that this is also buyer i’s favorite item in M(c) under the same

scenario. Thus the allocation rule for CSIP under c is the same as the one for M(c). Then profit

of the constructed CSIP is equal to the expected revenue of M(c) over the randomness of c, as

the extra item prices just cover the seller’s costs. According to [CHMS10], the profit is at least

Ec[OPT-RevCopies-UD(c)]/6. The proof is done.

9. Recall that in this setting every buyer i has value tij − cj for item j.
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4.5.3 Bounding Prophet

In this section we will bound Prophet with a Constrained Sequential Item Posted Price mechanism.

The proof uses the Online Contention Resolution Scheme (OCRS) developed by Feldman et al.

[FSZ16]. See Section 2.7 for details.

Lemma 4.11. ( [FSZ16]) Consider the online selection setting. If there exists a (b, c)-selectable

greedy OCRS Π for PJ , then for every y ∈ b·PJ , consider the strategy that the agent takes elements

greedily subject to the sub-constraint JΠ,y. Then the agent will select each element e with probability

at least c · ye. The result applies for any almighty adversary10.

Before getting to the proof, let’s first discuss the connection between OCRS and bounding

Prophet. Recall that

Prophet = 2 ·
∑
i

∑
j

Ec

[
qij(c) · (max{βij(c), cj} − cj)

]
Fix c. For every (i, j) ∈ J , let y(i,j) = qij(c). Since qij(c) is half the ex-ante probability that a

feasible mechanism M serves the pair (i, j) when the true cost is c, thus y = (y(i,j))(i,j)∈J ∈ 1
2 · J .

Now consider the CSIP with item prices max{βij(c), cj}. Then by Definition 4.1, each buyer i

can afford item j with probability qij(c)11, i.e. the element (i, j) is active with probability qij(c).

In Lemma 4.12 we show that for one specific almighty adversary, the set of element (i, j) chosen

by the agent following the greedy OCRS is exactly same as the set of buyer-item pair served in

the mechanism, for every type profile. Then (b, c)-selectability guarantees that every buyer i will

purchase every item j in the mechanism with probability at least c given the fact that she can

afford this item. This gives a lower bound of CSIP-Profit.

Lemma 4.12. Fix seller’s cost vector c. Suppose there exists a (b, c)-selectable greedy OCRS Π

for polytope P (J ), for some constant c ∈ (0, 1). For every lijs such that l ∈ b · P (J ), consider the

10. The adversary can determine the order of elements shown to the agent. An almighty adversary has all the
information it needs to decide the order, including the agent’s type and strategies, and the realization of all possible
randomness. In other words, the adversary will choose the worst order for the agent.

11. It’s true when βij(c) ≥ cj . For those (i, j) such that βij(c) < cj , the corresponding term in Prophet is 0. We
could simply never serve those pairs.
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CSIP under the specific cost profile c, with posted price pij(c) = F−1
ij (1 − lij) and sub-constraint

JΠ,l. Then the mechanism will gain profit at least

c ·
∑
i,j

lij · (pij(c)− cj)

under cost c.

Proof. Under cost c, consider the CSIP with posted price pij(c), associated with the constraint

JΠ,y. When every buyer i comes, let Ai be the set of buyer-item pairs that have already been

served. And let B∗i be her favorite bundle among the remaining items, such that after taking those

items, the sub-constraint JΠ,y is not violated. Now consider the online selection setting with the

following almighty adversary: Ground set is J . The agent has value tij for each element (i, j). Each

element (i, j) is active if ti ≥ pij(c), i.e. is active with probability lij . The adversary divides the

whole item-revealing process into n stages. For each stage i, let Bi be the set of elements that have

been selected in the past. The adversary first reveals all (i, j)s where j ∈ B∗i , one after another.

Then it reveals the remaining (i, j)s.

Notice that by following the greedy OCRS Π, the agent will follow the constraint JΠ,l and

choose all the element (i, j) where j ∈ B∗i on each stage, as taking those elements won’t violate

the constraint by the definition of B∗i . It’s equivalent to the buyer-item pair selection process in

the CSIP. Thus under the above adversary, the set of element (i, j) chosen by the agent is exactly

same as the set of buyer-item pair served in the mechanism. Since each element (i, j) is active

with probability lij and l ∈ b · P (J ), by Lemma 4.11, each element is chosen by the agent with

probability at least c · lij . In other words, in CSIP, each buyer i purchases item j with probability

at least c · lij , under cost c. Thus the obtained profit is at least

c ·
∑
i,j

lij · (pij − cj)

Now it’s sufficient to show that there exists a (1
2 , c)-selectable greedy OCRS Π for PJ . Recall
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that every A ∈ J satisfies:

• Each item is allocated to at most one buyer: ∀j,Oj = {i : (i, j) ∈ A}, |Oj | ≤ 1.

• Each buyer is allocated a feasible set of items: ∀i, Pi = {j : (i, j) ∈ A}, Pi ∈ Fi.

Let J1(or J2) be the subfamily that contains all set A that satisfies the first(or second) bullet

point. It’s straightforward to see that J1 forms a partition matroid. We will show that J2 is also

a matroid, given the fact that every Fi is a matroid.

Lemma 4.13. J2 is a matroid.

Proof. Consider any A,A′ ∈ J2 such that |A| > |A′|. For every i, let Pi = {j : (i, j) ∈ A} and

P ′i = {j : (i, j) ∈ A′}. We have Pi ∈ P ′i ∈ Fi. Notice that |A| =
∑

i |Pi| > |A′| =
∑

i |P ′i |, there

must exist i0 such that |Pi0 | > |P ′i0 |. Since Fi0 is a matroid, there exists some j0 ∈ Pi0\P ′i0 such

that P ′i0 ∪ {j0} ∈ Fi0 . By definition of J2, we also have (i0, j0) ∈ A\A′ and A′ ∪ (i0, j0) ∈ J2. Thus

J2 is a matroid.

Note that J = J1 ∩ J2. J is an intersection of two matroids. We can show that there exists a

(1
2 ,

1
4)-selectable greedy OCRS for P (J ) by Lemma 2.3 and Lemma 2.4.

Put everything together, we are able to bound Prophet using CSIP-Profit.

Lemma 4.14. Prophet ≤ 8 ·CSIP-Profit.

Proof. First for those (i, j) such that βij(c) < cj , the corresponding term in Prophet is 0. We

could simply never serve those pairs. Thus without loss of generality, we assume that βij(c) ≥ cj

for every (i, j). For every c, since qij(c) is half the ex-ante probability that a feasible mechanism

M serves the pair (i, j) when the true cost is c, thus q(c) = (qij(c))(i,j)∈J ∈ 1
2 · J . By Lemma 2.3

and 2.4, there exists a (1
2 ,

1
4)-selectable greedy OCRS Π for P (J ). We thus consider the CSIP with

posted price pij(c) = max{βij(c), cj}, associated with the constraint JΠ,q(c). By Lemma 4.12, the

profit of the mechanism is at least

1

4
·
∑
i

∑
j

Ec

[
qij(c) · (max{βij(c), cj} − cj)

]
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4.5.4 Bounding Non-Favorite

In this section we will bound Non-Favorite. As discussed in Section 4.3, we will fix β and omit

it in the notation. We first give an informal proof by reducing the multiple buyer problem to single

buyer problems with a new valuation v̄i in Definition 4.2. This shows a connection to the single

buyer setting as well as the ex-ante relaxation by Chawla and Miller [CM16]. In their paper they

solve the revenue maximization problem for multiple matroid-rank buyers, bounding the benchmark

by the sum of optimal revenue for the single buyer problem under an ex-ante constraint.

Recall that

Non-Favorite =
∑
i

Eti
[∑

j

1[ti ∈ Rij ] · v̄i(ti, [m]\{j})
]

This is the sum of all buyer’s welfare contributed by those non-favorite “items”12, under a

new valuation v̄i. Consider the Sequential Permit Selling mechanism with posted price pij(c) =

max{βij(c), cj}. Since pij(c) ≥ cj for every c, the profit of the mechanism will be at least the

revenue extracted from the permit copies.

Notice that for every i, j, c, buyer i can afford the item price for j with probability qij(c).

Thus by union bound, each item j is still available when buyer i comes with probability at least

1−
∑

j qij(c) ≥ 1
2 . By Lemma 4.21, buyer i’s expected utility in the second stage after purchasing

a set of permit copies P , is at least 1
2 · v̄i(ti, P ). Now we have reduced the multiple buyer problem

to n single buyer problems where buyer i has valuation v̄i(·, ·) for the set of permit copies. Thus

from Section 4.4, the term Eti
[∑

j 1[ti ∈ Rij ] · v̄i(ti, [m]\{j})
]

can be extracted from selling the

permit copies separately and as a whole bundle.

The above argument doesn’t give a formal proof because the buyer’s expected utility on the

copies does not exactly equal to 1
2 · v̄i(ti, P ) and thus a reduction like Lemma 4.5 cannot be di-

rectly obtained. Now we provide a formal and separate proof, bounding Non-Favorite with

RSPP and SPB mechanisms. First we decompose the term using a standard Core-Tail decompo-

sition technique [LY13, CDW16], according to v̄ij(tij). For every i ∈ [n], define τi = inf{a ≥ 0 :

12. Here we use quotations on the word ‘item’ as in the corresponding single buyer problem, the goods sold to the
buyers are permits, not real items.

113



∑
j Prtij [v̄ij(tij) ≥ a] ≤ 1

2}. For every ti, let Ci(ti) = {j ∈ [m] : v̄ij(tij) ≤ τi}.

Lemma 4.15.

Non-Favorite ≤
∑
i

∑
j

Etij :v̄ij(tij)>τi [v̄ij(tij) · Pr
ti,−j

[∃k 6= j s.t. v̄ik(tik) ≥ v̄ij(tij)]] (Tail)

+
∑
i

Eti [v̄i(ti, Ci(ti))] (Core)

Proof.

Non-Favorite =
∑
i

Eti
[∑

j

1[ti ∈ Rij ] · v̄i(ti, [m]\{j})
]

≤
∑
i

Eti
[∑

j

1[ti ∈ Rij ] · (v̄i(ti, Ci(ti)\{j}) + v̄i(ti, [m]\{j}\Ci(ti)))
]

≤
∑
i

Eti [v̄i(ti, Ci(ti))] +
∑
i

Eti
[∑

j

1[ti ∈ Rij ] ·
∑

k∈[m]\{j}\Ci(ti)

v̄ik(tik)
]

=
∑
i

Eti [v̄i(ti, Ci(ti))] +
∑
i

∑
k

Etik:v̄ik(tik)>τi [v̄ik(tik) · Pr
ti,−k

[(tik, ti,−k) 6∈ Rij ]]

= Core + Tail

Bounding Tail

We will bound Tail using RSPP mechanisms. For every i, j, let rij = maxa≥τi a ·Prtij [v̄ij(tij) ≥ a],

which is the optimal revenue from selling permit j to buyer i. Let r =
∑

i

∑
j rij . We first show

that Tail ≤ 1
2 · r and then bound r using a RSPP.

Lemma 4.16. Tail ≤ 1
2 · r.
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Proof.

Tail =
∑
i

∑
j

Etij :v̄ij(tij)>τi [v̄ij(tij) · Pr
ti,−j

[∃k 6= j s.t. v̄ik(tik) ≥ v̄ij(tij)]]

≤
∑
i

∑
j

Etij :v̄ij(tij)>τi
[
v̄ij(tij) ·

∑
k 6=j

Pr
tik

[v̄ik(tik) ≥ v̄ij(tij)]
]

≤
∑
i

∑
j

Etij :v̄ij(tij)>τi
[∑
k 6=j

rik
]

≤
∑
i

∑
j

Pr
tij

[v̄ij(tij) > τi] · ri

=
1

2
· r

The following lemma bounds r using the RSPP.

Lemma 4.17. For any positive {ξij}i,j such that
∑

j Prtij [v̄ij(tij) ≥ ξij ] ≤ 1
2 , we have

∑
i

∑
j

ξij · Pr
tij

[v̄ij(tij) ≥ ξij ] ≤ 4 ·RSPP-Profit

Proof. Consider the RSPP mechanism with permit price 1
2ξij and item price max{βij(c), cj}. Notice

that for every buyer i, her expected utility for purchasing each permit j is 1
2 · v̄ij(tij). She will

purchase every permit j for sure if both of the events happen:

1. She is willing to purchase permit j, i.e., v̄ij(tij) ≥ ξij .

2. She is not willing to purchase other permits, i.e., v̄ik(tik) < ξik, ∀k 6= j.

(1) happens with probability Pr[v̄ij(tij) ≥ ξij ]; By union bound, (2) happens with probability at

least 1
2 as

∑
j Prtij [v̄ij(tij) ≥ ξij ] ≤ 1

2 . Furthermore, both events are independent and thus buyer i

will purchase permit j and pay the permit price with probability at least 1
2 ·Prtij [v̄ij(tij) ≥ ξij ].

We point out that in the above lemma, it’s necessary to make every buyer i’s expected utility

for purchasing each permit j to be exactly 1
2 · v̄ij(tij). This is the reason the RSPP mechanism

115



needs to hide each item randomly to make each item available with probability exactly 1
2 (See

Section 4.5.1). If the mechanism doesn’t hide the item, we only know that her expected utility for

each permit is at least that much. We are not able to lower bound the probability that (2) happens

using union bound.

Lemma 4.18. Tail ≤ 2 ·RSPP-Profit.

Proof. It directly follows from Lemma 4.16 and 4.17 by applying argmaxa≥τi a · Prtij [v̄ij(tij) ≥ a]

as ξij (Notice that it satisfies the constraint in Lemma 4.17 by the definition of τi).

Bounding Core

Now we bound Core using RSPP and SPB.

Theorem 4.8. Core ≤ 8 · SPB-Profit + 20 ·RSPP-Profit.

Recall that Core =
∑

i Eti [v̄i(ti, Ci(ti))]. In the proof we will consider the SPB mechanism

with item prices max{βij(c), cj} and permit bundle price δi = 1
2 ·medianti(v̄i(ti, Ci(ti))). In order

to show that each buyer will accept this bundle price with at least half probability, we will prove

the expected utility for the item-purchasing stage is at least 1
2 · v̄i(ti, [m]). We need the following

definition.

Definition 4.5. Consider the above SPB mechanism. For every i, ti, c and P ⊆ [m], let

ui(ti, c, P ) = max
S⊆P,S∈Fi

∑
j∈S

(tij −max{βij(c), cj})

By Definition 4.5, buyer i’s expected utility for the item purchasing stage is Et<i,c[ui(ti, c, Si(t<i, c))].

Recall that Si(t<i, c) is the set of available items in the above SPB mechanism. We notice that for

every i, j, c, buyer i can afford the item price for j with probability qij(c). Thus by union bound,

each item j is still available when buyer i comes with probability at least 1 −
∑

j qij(c) ≥ 1
2 , i.e.

Prt<i [j ∈ Si(t<i, c)] ≥ 1
2 . Then by showing that all uis are XOS valuations, we prove that every

buyer has expected utility at least 1
2 · v̄i(ti, [m]) to enter the auction.
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Lemma 4.19. ( [DNS05]) A function v(·) is XOS if and only if for every S ⊆ [m], there exist

prices {pj}j∈S (called supporting prices) such that

• v(S′) ≥
∑

j∈S′ pj for all S′ ⊆ S.

•
∑

j∈S pj ≥ v(S).

Lemma 4.20. For every i, ti, c, ui(ti, c, ·) is an XOS function.

Proof. Fix i, ti, c. For every P ⊆ [m], let S∗ = argmaxS⊆P,S∈Fi
∑

j∈S(tij−max{βij(c), cj}). Define

supporting prices for set P as follows: pPj = (tij −max{βij(c), cj}) · 1[j ∈ S∗]. It’s easy to check

that pPj s satisfy both constraints in Lemma 4.19. Thus ui(ti, c, ·) is an XOS function.

Lemma 4.21. Consider the above SPB mechanism. For every i, buyer i will accept the bundle

price δi with at least 1
2 probability.

Proof. As stated above, for every buyer i with type ti, her expected utility on the item-purchasing

stage is Et<i,c[ui(ti, c, Si(t<i, c))]. For every i, j, c, buyer i can afford the item price for j with

probability qij(c). Thus by union bound, Prt<i [j ∈ Si(t<i, c)] ≥ 1−
∑

j qij(c) ≥ 1
2 .

By Lemma 4.19 and 4.20, let pPj (ti, c) be the supporting price for ui(ti, c, ·) and set P . We have

Et<i,c[ui(ti, c, Si(t<i, c))] ≥ Et<i,c
[ ∑
j∈Si(t<i,c)

p
[m]
j (ti, c)

]

= Ec

[ ∑
j∈[m]

p
[m]
j (ti, c) · Pr

t<i
[j ∈ Si(t<i, c)]

]
≥ 1

2
· Ec[ui(ti, c, [m])] =

1

2
v̄i(ti, [m]) ≥ 1

2
· v̄i(ti, Ci(ti))

Thus buyer i will pay δi = 1
2 ·medianti(v̄i(ti, Ci(ti))) with probability at least 1

2 .

Now it’s sufficient to show that Eti [v̄i(ti, Ci(ti))] is comparable to δi for every i. This is obtained

by applying the Talagrand’s concentration inequality on v̄i(ti, Ci(ti)). Let µi(ti, S) = v̄i(ti, Ci(ti)∩

S). We show that µi is subadditive and has small Lipschitz constant (Definition 3.4). The proof is

Lemma 4.22 is postponed to Appendix B.4.
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Lemma 4.22. µi(ti, ·) is monotone, subadditive, no exteralities and has Lipschitz constant τi.

The following lemma is a restatement of Corollary 3.1. It shows that for every i, Eti [v̄i(ti, Ci(ti))]

is bounded by δi and the Lipschitz constant τi.

Lemma 4.23. (Restatement of Corollary 3.1)

Eti [v̄i(ti, Ci(ti))] = Eti [µi(ti, [m]) ≤ 4 · δi +
5

2
· τi

For the last step,
∑

i τi can be bounded using the RSPP.

Lemma 4.24.
∑

i τi ≤ 8 ·RSPP-Profit.

Proof. By definition,
∑

j Prtij [v̄ij(tij) ≥ τi] = 1
2 for every i. By Lemma 4.17,

RSPP-Profit ≥ 1

4

∑
i

τi ·
∑
j

Pr
tij

[v̄ij(tij) ≥ τi] =
1

8
·
∑
i

τi

Proof of Theorem 4.8: Consider the SPB mechanism with item prices max{βij(c), cj} and per-

mit bundle price δi = 1
2 · medianti(v̄i(ti, Ci(ti))). According to Lemma 4.21, Lemma 4.24 and

Lemma 4.23,

SPB-Profit ≥ 1

2
·
∑
i

δi ≥
1

8
(
∑
i

Eti [v̄i(ti, Ci(ti))]−
5

2
τi) ≥

1

8
· (Core− 20 ·RSPP-Profit)

2
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Chapter 5

Single-Dimensional Two-sided

Markets

Starting from this chapter, we consider the problem of approximating gains from trade (GFT) in

two-sided markets. In this chapter, we will focus on single-dimensional settings, or more specifically,

bilateral trade and double auctions associated with any downward-closed trading constraints F (see

Section 2.4). We will design a simple, truthful and budget balanced mechanism and prove that the

GFT of this mechanism is at least half of the second-best GFT.

In Section 5.1, we characterize the set of allocation rules that are implementable by an IR,

BIC, SBB mechanism in double auctions. In Section 5.2, we study the bilateral trade setting,

proving a 2-approximation to the second-best GFT using some simple, IR, BIC, SBB mechanisms.

In Section 5.3, we generalize the 2-approximation result to any double auction with arbitrary

downward-closed feasibility constraint. In Section 5.4, we discuss the relationship of mechanisms

with different budget balanced constraints.
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5.1 Characterizing the Implementable Allocation Rules in Double

Auctions

In this section, we characterize the set of allocation rules that are implementable by an IR, BIC,

SBB mechanism in Theorem 5.1. It generalizes Myerson and Satterthwaite’s result [Mye81] (see

Section 2.4) to double auctions. In particular, their result is a special case of ours when n = m = 1.

For simplicity, in the proof of Theorem 5.1 we assume all agents have continuous distributions.

In other words, for every buyer i (or seller j), fBi (·) (of fSj (·)) is a continuous function and positive

in its domain [bi, bi] (or [sj , sj ]). Both bi and sj can be ∞. For discrete distributions, the theorem

follows from a similar argument.

Theorem 5.1. Given an allocation rule x = (xB, xS), there exists payment rule (pB, pS) such that

the mechanism M = (xB, xS , pB, pS) is IR, BIC and SBB if and only if

• For every i, xBi (bi) is non-decreasing on bi. For every j, xSj (sj) is non-increasing on sj.

•

Eb,s

 n∑
i=1

xBi (b, s) · ϕi(bi)−
m∑
j=1

xSj (b, s) · τj(sj)

 ≥ 0 (5.1)

The following lemma characterizes the payments in an IR, BIC mechanism. The proof is similar

to the analysis for bilateral trade in [MS83].

Lemma 5.1. Suppose a mechanism M = (xB, xS , pB, pS) is IR and BIC, then

• For every i, xBi (bi) is non-decreasing on bi. For every j, xSj (sj) is non-increasing on sj.

• For every buyer i and any of her type bi,

pBi (bi) = bi · xBi (bi)−
∫ bi

bi

xBi (t)dt− θi, (5.2)

θi is some non-negative constant.
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• For every seller j and any of her type sj,

pSj (sj) = sj · xSj (sj) +

∫ sj

sj

xSj (t)dt+ ηj , (5.3)

ηj is some non-negative constant.

Furthermore, if (pB, pS) satisfies Equation (5.2) and (5.3), then

n∑
i=1

Ebi [p
B
i (bi)] = Eb,s

[
n∑
i=1

xBi (b, s) · ϕi(bi)

]
−

n∑
i=1

θi (5.4)

m∑
j=1

Esj [p
S
j (sj)] = Eb,s

 m∑
j=1

xSj (b, s) · τj(sj)

− m∑
j=1

ηj (5.5)

Proof. For every i and bi, let UBi (bi) be buyer i’s expected utility when she reports her true type

bi. Since M is BIC, for every buyer i, and two types bi, b
′
i ∈ [bi, bi],

UBi (bi) = bi · xBi (bi)− pBi (bi) ≥ bi · xBi (b′i)− pBi (b′i)

UBi (b′i) = b′i · xBi (b′i)− pBi (b′i) ≥ b′i · xBi (bi)− pBi (bi)

The two inequalities imply

(b′i − bi) · xBi (bi) ≤ UBi (b′i)− UBi (bi) ≤ (b′i − bi) · xBi (b′i)

when b′i > bi, x
B
i (b′i) ≥ xBi (bi). x

B
i (bi) is non-decreasing on bi and thus Riemann integrable. Let

b′i = bi + ε,

ε · xBi (bi) ≤ UBi (bi + ε)− UBi (bi) ≤ ε · xBi (bi + ε) (5.6)

For any value z, taking integral of bi on [bi, z] and let ε→ 0, we have

UBi (z) = UBi (bi) +

∫ z

bi

xBi (bi)dbi (5.7)
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pBi (z) = z · xBi (z)−
∫ z

bi

xBi (bi)dbi − UBi (bi) (5.8)

Clearly, UBi (bi) ≥ 0, as M is interim IR. Equation (5.2) follows from setting θi = UBi (bi).

Similarly, we can show that Equation (5.3) holds for every j.

Furthermore, for every i, by Equation (5.2),

Ebi [p
B
i (bi)] =

∫ bi

bi

bix
B
i (bi)f

B
i (bi)dbi −

∫ bi

bi

∫ bi

bi

xBi (t)fBi (bi)dtdbi − θi

=

∫ bi

bi

bix
B
i (bi)f

B
i (bi)dbi −

∫ bi

bi

xBi (t)

∫ bi

t
fBi (bi)dbidt− θi

=

∫ bi

bi

bix
B
i (bi)f

B
i (bi)dbi −

∫ bi

bi

xBi (bi)
(
1− FBi (bi)

)
dbi − θi

=

∫ bi

bi

ϕi(bi)x
B
i (bi)f

B
i (bi)dbi − θi

(5.9)

Similarly, for every seller j, by Equation (5.3),

Esj [p
S
j (sj)] =

∫ sj

sj

sjx
S
j (sj)f

S
j (sj)dsj +

∫ sj

sj

∫ sj

sj

xSj (t)fSj (sj)dtdsj + ηj

=

∫ sj

sj

sjx
S
j (sj)f

S
j (sj)dsj

∫ sj

sj

xSj (t)

∫ t

sj

fSj (sj)dsjdt+ ηj

=

∫ sj

sj

sjx
S
j (sj)f

S
j (sj)dsj

∫ sj

sj

xSj (sj)F
S
j (sj)dsj + ηj

=

∫ sj

sj

τj(sj)x
S
j (sj)f

S
j (sj)dsj + θj

(5.10)

Equations (5.4) and (5.5) directly follows from the two equations above.

Proof of Theorem 5.1: If there exists a payment rule (pB, pS) such that the mechanism M =

(xB, xS , pB, pS) is IR, BIC and SBB, by Lemma 5.1, x is monotone and there exists non-negative
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θi’s and ηj ’s such that Equations (5.4) and (5.5) hold. Since M is SBB,

Eb,s

 n∑
i=1

xBi (b, s) · ϕi(bi)−
m∑
j=1

xSj (b, s) · τj(sj)

 =

n∑
i=1

θi +

m∑
j=1

ηj ≥ 0 (5.11)

If the given allocation rule x is monotone, and satisfies Inequality (5.1), define payment rule

p = (pB, pS) as follows:

pBi (b, s) = bi · xBi (b, s)−
∫ bi

bi

xBi (t, b−i, s)dt (5.12)

pSj (b, s) = sj · xSj (b, s) +

∫ sj

sj

xSj (b, t, s−j)dt (5.13)

This is a threshold payment and thus M = (x, p) is DSIC and IR. According to Equations (5.4),

(5.5) and Inequality (5.1), M is ex-ante WBB. By Lemma 5.11 and Theorem 5.12, there exists

payment rule (pB
′
, pS

′
) such that M ′ = (xB, xS , pB

′
, pS

′
) is IR, BIC, and SBB. 2

5.2 Bilateral Trade

To warm up, we first study the classic bilateral trade setting, when there is only one buyer, one

seller and a single item. Throughout this section, we will use b and s to represent the buyer and

seller’s type accordingly. In any mechanism M = (x, pB, pS), for every type profile (b, s), x(b, s) is

the probability that the item is traded. pB(b, s) and pS(b, s) are the payments. For simplicity, for

every b let xB(b) = Es[x(b, s)], pB(b) = Es[pB(b, s)] be the buyer’s interim allocation and payment.

Similarly, let xS(s) = Eb[x(b, s)], pS(s) = Eb[pS(b, s)] for every s.

We will present two simple IR, BIC, SBB mechanisms and prove that the better one obtains at

least half of the optimal GFT.

1. Seller-Offering Mechanism (SO): The seller posts a take-it or leave-it price qB(s) for

the item to the buyer. The item price depends on her true type s and the buyer’s value

distribution. The buyer has to pay qB(s) to the seller if she chooses to take the item.
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2. Buyer-Offering Mechanism (BO): The buyer posts a take-it or leave-it price qS(b) for

the item to the seller. The item price depends on her true type b and the seller’s value

distribution. The seller can get qS(b) from the buyer if she chooses to sell the item.

Since the item is sold through a posted price, both mechanisms are clearly SBB. For SO, the

seller has the information of her true type s and the buyer’s type distribution DB. She will choose

qB(s) to maximize her expected utility and thus the mechanism is BIC and IR for the seller. The

buyer sees the posted price and will buy if and only if her value b is greater than qB(s), no matter

what s is. Hence the mechanism is DSIC and IR for the buyer. Similarly, BO is BIC for the buyer,

DSIC for the seller, and IR for both agents.

Let GFTSO and GFTBO be the expected GFT for SO and BO. We will prove that the second-

best GFT (SB-GFT) is bounded by GFTSO plus GFTBO. Hence a simple randomization between

the two mechanisms achieves a 2-approximation.

Theorem 5.2. SB-GFT ≤ GFTSO + GFTBO

To prove Theorem 5.2, we first focus on the left hand side of the inequality - the optimal GFT.

In [MS83], the authors give an exact characterization of the optimal mechanism, yet its GFT is

not easy to analyze. Thus it’s necessary to provide an upper bound of the optimal GFT that has

a simple form.

5.2.1 Upper Bound for OPT

Notice that the GFT of any two-sided market mechanism equals to the buyer’s expected utility of

this mechanism, plus the seller’s expected utility, plus the difference between buyer’s and seller’s

expected payment. Denote OPTBU (or OPTSU) the optimal buyer’s (or seller’s) utility attainable

by any IR, BIC and ex-ante WBB mechanism. Note that in any ex-ante WBB mechanism, the

buyer’s expected payment is at least the seller’s expected gains. Thus OPT is upper bounded by

OPTBU plus OPTSU.

Now it remains to bound OPTSU and OPTBU. By Lemma 5.1, for any BIC and IR mechanism

M = (x, p), x(b, s) is non-decreasing on b and non-increasing on s. The seller’s expected utility for
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the mechanism is Eb,s[pB(b, s)−x(b, s)·s] = Eb,s[x(b, s)·(ϕ(b)−s)]. When DB is regular, it is at most

Eb,s[(ϕ(b)− s)+] when x(b, s) = 1[ϕ(b) ≥ s].1 For irregular DB, ϕ(b) might not be non-decreasing

and thus 1[ϕ(b) ≥ s] might not be a monotone allocation rule. To get an achievable bound, we

will follow the ironing procedure on the virtual value function [Mye81] and bound OPTSU by

Eb,s[(ϕ̃(b)− s)+], where ϕ̃(·) is the Myerson’s ironed virtual value function.

Lemma 5.2. [Har13] For any non-decreasing function xB(·) : TB → [0, 1],

Eb[xB(b) · ϕ(b)] ≤ Eb[xB(b) · ϕ̃(b)].

The inequality holds with equality if xB(b) = xB(b′) for every two values b, b′ in the same ironed

interval (or formally, ϕ̃(b) = ϕ̃(b′)).

For the seller’s virtual cost function, we will perform a similar ironing procedure if DS is

irregular2. A formal definition of the ironing procedure can be found in Definition 5.1. Lemma 5.3

is analogous to Lemma 5.2, which states that the seller’s expected virtual cost is at least the

expected ironed virtual cost, under any monotone allocation rule.

Definition 5.1. (ironing for seller’s distribution) Let G(·), g(·) be the cdf and pdf of DS. Consider

the quantile space for the distribution. For any r ∈ [0, 1], let R(r) = r · G−1(r).3 Let R̃(r) =

minr1,r2∈[0,1](δ ·R(r1)+(1−δ) ·R(r2)), where δ ∈ [0, 1] is the unique value such that r = δ ·r1 +(1−

δ) · r2. Now R̃(·) is a convex curve. The ironed virtual cost function is defined as τ̃(s) = R̃′(G(s)).

Lemma 5.3. For any non-increasing function xS(·) : TS → [0, 1],

Es[xS(s) · τ(s)] ≥ Es[xS(s) · τ̃(s)].

The inequality holds with equality if xS(s) = xS(s′) for every two values s, s′ in the same ironed

1. x+ = max{x, 0}

2. A seller’s distribution DS is regular if and only if τ(·) is monotone non-decreasing.

3. By taking derivative, one can easily check that R′(r) = τ(G−1(r)) holds for every r. Thus τ(·) is non-decreasing
if and only if R(·) is convex.
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interval (or formally, τ̃(s) = τ̃(s′)).

Proof. Notice that R′(FS(s)) = fS(s)τ(s) for every s. By integration by parts, for monotone

allocation rule xS(·) we have,

Es[xS(s) · τ(s)] = −Es[(xS)′(s) ·R(FS(s))]

Similarly,

Es[xS(s) · τ̃(s)] = −Es[(xS)′(s) · R̃(FS(s))]

By definition, for every r ∈ [0, 1], R̃(r) ≤ R(r). Moreover, since xS(·) is non-increasing, we have

Es[xS(s) · τ(s)] = −Es[(xS)′(s) ·R(FS(s))] ≥ −Es[(xS)′(s) · R̃(FS(s))] = Es[xS(s) · τ̃(s)]

The inequality holds with equality if (xS)′(s) = 0 for every s such that R(FS(s)) > R̃(FS(s)).

The proof is done by noticing that whenever R(FS(s)) > R̃(FS(s)), s must be in the interior of

the some ironed interval.

Lemma 5.4. OPTSU ≤ Eb,s[(ϕ̃(b)− s)+],OPTBU ≤ Eb,s[(b− τ̃(s))+].

Proof. By Lemma 5.1, for any BIC, IR, and ex-ante WBB mechanism M = (x, p), x(b, s) is non-

decreasing on b and non-increasing on s. The seller’s expected utility for the mechanism is

Eb,s[pS(b, s)− x(b, s) · s] ≤Eb,s[pB(b, s)− x(b, s) · s] (M is ex-ante WBB)

=Eb,s[x(b, s) · (ϕ(b)− s)]− θ (by Lemma 5.1)

≤Eb,s[x(b, s) · (ϕ̃(b)− s)]− θ (by Lemma 5.2)

≤Eb,s[(ϕ̃(b)− s)+]

Similarly, for any mechanism that is BIC and IR for the seller, the buyer’s expected utility for
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the mechanism is

Eb,s[x(b, s) · b− pB(b, s)] ≤ Eb,s[x(b, s) · b− pS(b, s)]

= Eb,s[x(b, s) · (b− τ(s))]− η ≤ Eb,s[x(b, s) · (b− τ̃(s))]− η ≤ Eb,s[(b− τ̃(s))+]

where the second inequality follows from Lemma 5.3. The proof is done.

We remark that according to Lemma 5.5 in Section 5.2.2, both of the inequalities in Lemma 5.4

hold with equality as the bound is achieved by SO (and BO). In the rest of this section we will first

characterize the value of GFTSO and GFTBO, and then prove Theorem 5.2.

5.2.2 GFT of the SO and BO Mechanism

Lemma 5.5.

GFTSO = Eb,s[(b− s) · 1[ϕ̃(b) ≥ s]]

GFTBO = Eb,s[(b− s) · 1[b ≥ τ̃(s)]]

Proof. First consider SO. For every seller’s type s, if the seller uses q as the posted price in the

SO, the seller’s expected utility is uS(s, q) = (q − s) · Prb∼DB [b ≥ q] = Eb[(ϕ(b) − s) · 1[b ≥ q]]

according to Myerson’s lemma. By Lemma 5.2, this is at most Eb[(ϕ̃(b)− s) · 1[b ≥ q]]. Since ϕ̃(·)

is monotone, b ≥ q if and only if ϕ̃(b) ≥ ϕ̃(q). Thus choosing q∗ = min{q|ϕ̃(q) = s}4 maximizes

the term Eb[(ϕ̃(b) − s) · 1[b ≥ q]]. Moreover, since q∗ is not in the interior of any ironed interval,

uS(s, q∗) = Eb[(ϕ̃(b)− s) ·1[b ≥ q∗]]. Thus q∗ also maximizes the seller’s utility. In SOM, the trade

happens whenever ϕ̃(b) ≥ s.

The proof for BO is analogous: In BO, the buyer with type b will choose max{q|τ̃(q) = b} as

the posted price, and the trade happens whenever τ̃(s) ≤ b.

Now we are ready to prove Theorem 5.2. If both of the distributions are regular, Theorem 5.2

4. In fact if there are multiple values of q that satisfy ϕ̃(q) = s, choosing q∗ = max{q|ϕ̃(q) = s} derives the same
maximum expected utility. In other words, the seller can choose either the start-point or the end-point of that ironed
interval as her posted price. Here we pick the one that allows more trade.
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directly follows from OPT ≤ OPTSU + OPTBU and the fact that the buyer’s virtual value is

always less than the true value and the seller’s virtual cost is always greater than her true cost.

For general distributions, we will apply Lemma 5.2 to prove the theorem.

Proof of Theorem 5.2: By Lemma 5.4, we have

SB-GFT ≤ OPTBU + OPTSU ≤ Eb,s[(ϕ̃(b)− s)+] + Eb,s[(b− τ̃(s))+]

For every s, note that 1[ϕ̃(b) ≥ s] is a monotone function and the jump from 0 to 1 happens

at the minimum value of b such that ϕ̃(b) = s, which is not in the interior of any ironed interval.

Thus

Eb,s[(ϕ̃(b)− s)+] = Eb,s[(ϕ(b)− s) · 1[ϕ̃(b) ≥ s]] ≤ Eb,s[(b− s) · 1[ϕ̃(b) ≥ s]] = GFTSO

Similarly we have Eb,s[(b− τ̃(s))+] ≤ GFTBO. Thus ≤GFTSO + GFTBO. 2

5.3 Double Auction Setting

In this section, we consider the double auction setting. In Section 5.2, we proposed two simple

mechanisms approximating the optimal GFT for bilateral trade. Both of the mechanisms are IR,

BIC and SBB. However in double auctions, such a mechanism appears to be hard to design directly.

One significant barrier is to find a payment rule that simultaneously satisfies all three conditions

mentioned above. Indeed, given an allocation rule, even monotone, such a payment rule is not

guaranteed to exist (Theorem 5.1).

However, even knowing there exists a payment rule that makes the mechanism IR, BIC and

SBB, it is still not easy to explicitly describe these payments. We circumvent this difficulty by

first proposing ex-ante WBB mechanisms whose GFT is at least OPT
2 . Then the mechanism can

be transformed into an SBB mechanism, while maintaining the same GFT. See Theorem 5.4 in

Section 5.4 for more details about the transformation.

Theorem 5.3. In any double auction, there exists an IR, DSIC and ex-ante WBB mechanism
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whose GFT is at least OPT
2 .

To prove Theorem 5.3, we first bound the optimal GFT using a similar argument as in Sec-

tion 5.2. Denote OPTBU (or OPTSU) the maximum value for the sum of all buyers’ (or sellers’)

utility attainable by any IR, BIC and ex-ante WBB mechanism. Lemma 5.6 gives an upper bound

of the optimal GFT. Before stating the lemma, we need the following definition.

Definition 5.2. Given type profile (b, s), build a complete bipartite graph between the buyers and

the sellers with edge weight wij(bi, sj) equal to ϕ̃i(bi)− sj for the edge between buyer i and seller j.

Then find a matching A(b, s) ∈ F that maximizes the total weight
∑

(i,j)∈A(b,s)wij(bi, sj). Denote

A1(b, s) the maximum weight matching. For the other side, denote A2(b, s) the maximum weight

matching when the edge weight wij(bi, sj) equal to bi − τ̃j(sj).

Lemma 5.6.

SB-GFT ≤ OPTSU + OPTBU ≤ Eb,s

 ∑
(i,j)∈A1(b,s)

(ϕ̃i(bi)− sj)

+ Eb,s

 ∑
(i,j)∈A2(b,s)

(bi − τ̃j(sj))

 .
Proof. By Lemma 5.1, for any BIC, IR and ex-ante WBB mechanism M = (x, p), for every b, s,

xBi (b, s) is non-decreasing on bi for every i. And for every j, xSj (b, s) is non-increasing on sj .

Denote xij(b, s) the probability that buyer i trades with seller j under profile (b, s). Clearly

xBi (b, s) =
∑

j∈[m] xij(b, s), xSj (b, s) =
∑

i∈[n] xij(b, s).
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The sum of all sellers’ expected utility for the mechanism is

∑
j

Eb,s[p
S
j (b, s)− xSj (b, s) · sj ] ≤ Eb,s[

∑
i

pBi (b, s)−
∑
j

xSj (b, s) · sj ] (M is ex-ante WBB)

= Eb,s[
∑
i

xBi (b, s) · ϕi(bi)−
∑
j

xSj (b, s) · sj ]−
∑
j

θj (Lemma 5.1)

≤ Eb,s[
∑
i

xBi (b, s) · ϕ̃i(bi)−
∑
j

xSj (b, s) · sj ]−
∑
j

θj (Lemma 5.2)

= Eb,s[
∑
i,j

xij(b, s) · (ϕ̃i(bi)− sj)]−
∑
j

θj

≤ Eb,s

[ ∑
(i,j)∈A1(b,s)

(ϕ̃i(bi)− sj)
]

where the first inequality follows from Lemma 5.2.

Similarly, for any mechanism that is BIC, IR and ex-ante WBB, the sum of all buyers’ expected

utility for the mechanism is

∑
i

Eb,s[x
B
i (b, s) · bi − pBi (b, s)] ≤ Eb,s[

∑
i

xBi (b, s) · bi −
∑
j

pSi (b, s)] (M is ex-ante WBB)

= Eb,s[
∑
i

xBi (b, s) · bi −
∑
j

xSj (b, s) · τj(sj)]−
∑
i

ηi (Lemma 5.1)

≤ Eb,s[
∑
i

xBi (b, s) · bi −
∑
j

xSj (b, s) · τ̃j(sj)]−
∑
i

ηi (Lemma 5.2)

= Eb,s[
∑
i,j

xij(b, s) · (bi − τ̃j(sj))]−
∑
i

ηi

≤ Eb,s

[ ∑
(i,j)∈A2(b,s)

(bi − τ̃j(sj))
]

5.3.1 Generalized BO and SO

We propose two mechanisms and show that the better one has GFT at least 1
2OPT. The allocation

and payment rule are defined as follows:
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Definition 5.3. We consider the following two mechanisms which are the generalizations of SO

and BO in double auctions.

• Generalized Seller-Offering Mechanism (GSO): Given type profile b, s, buyer i trades

with seller j if and only if (i, j) ∈ A1(b, s) (see Definition 5.2). According to Lemma 5.7,

this allocation rule is monotone, and the buyer (or the seller) pays (or receives) the threshold

payment. See below for more details about the payment rule.

• Generalized Buyer-Offering Mechanism (GBO): Given type profile b, s, buyer i trades

with seller j if and only if (i, j) ∈ A2(b, s) (see Definition 5.2). According to Lemma 5.7,

this allocation rule is monotone, and the buyer (or the seller) pays (or receives) the threshold

payment.

Lemma 5.7. Suppose wij(bi, sj) is non-decreasing in bi and non-increasing in sj for every buyer i

and seller j. For any type profile b, s, if edge (i, j) is in the maximum weight matchingM, this edge

is in the maximum weight matching under type profile (b′i, b−i, s) (or (b, s′j , s−j)) for any b′i > bi

(or any s′j < sj).

Proof. We prove that for any b′i > bi, M is still a maximum weight matching under type profile

(b′i, b−i, s). For convenience, we use wij(b, s) to represent the weight of edge (i, j) under type profile

(b, s). wij(b, s) = wij(bi, sj). For every matching M′ ∈ F , notice that wi′j′(b, s) = wi′j′(b
′
i, b−i, s)

for all i′ 6= i and all j′ ∈ [m]. Hence,

∑
(i′,j′)∈M

wi′j′(b
′
i, b−i, s) =

∑
(i′,j′)∈M

wi′j′(b, s) +
(
wij(b

′
i, sj)− wij(bi, sj)

)
≥

∑
(i′,j′)∈M′

wi′j′(b, s) + (wij(b
′
i, sj)− wij(bi, sj)) (Optimality of M)

≥
∑

(i′,j′)∈M′
wi′j′(b

′
i, b−i, s)

(5.14)

The last inequality is an equality if (i, j) ∈ M′. If (i, j) /∈ M′, the inequality is because

wij(b
′
i, sj) − wij(bi, sj) ≥ 0 and

∑
(i′,j′)∈M′ wi′,j′(b, s) =

∑
(i′,j′)∈M′ wi′j′(b

′
i, b−i, s). Thus, M is
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a maximum weight matching under type profile (b′i, b−i, s). Similarly, we can show that M is a

maximum weight matching under type profile (b, sj , sj′) for all s′j < sj .

By Lemma 5.7, the allocation rules for GSO and GBO are both monotone due to the mono-

tonicity of functions ϕ̃i(·) and τ̃j(·) for all i, j. We use the threshold payment, that is, given any

type profile b, s, for every buyer i, if xBi (b, s) = 0, pBi (b, s) is also 0, and if xBi (b, s) = 1, pBi (b, s)

equals the smallest b′i such that xBi (b′i, b−i, s) = 1. Similarly, for every seller j, if xSj (b, s) = 0,

pSj (b, s) is also 0, and if xSj (b, s) = 1, pSj (b, s) equals to the largest s′j such that xSj (b, s′j , s−j) = 1.

As the allocation rule is monotone and the threshold payment is used, the mechanism is IR and

DSIC for every agent.

5.3.2 GSO and GBO in Bilateral Trade

To get a better understanding of the two mechanisms, we will first compare GSO with SO in the

bilateral trade setting (the buyer side is analogous). For GSO, the pair is selected in the optimal

matching if and only if the weight ϕ̃(b)− s ≥ 0. Notice that this is exactly same as the allocation

rule used in SO. Thus the two mechanisms have the same GFT, yet the different payment rule.

Different from SO which is SBB simply by the definition of the mechanism, it’s not straightforward

that GSO satisfies any budget balance criteria: By applying the threshold payment on both agents,

any monotone allocation rule can be used to construct a DSIC and IR mechanism. However,

Myerson and Satterthwaite’s impossibility result [MS83] implies that not all allocation rule can

induce a budget balanced mechanism. In Lemma 5.8, we show that with the specific allocation rule

in Definition 5.3, GSO is indeed ex-ante SBB.

Lemma 5.8. In the Bilateral Trade setting, GSO is an IR, DSIC and ex-ante SBB mechanism.

Proof. We only need to prove that the mechanism is ex-ante SBB in bilateral trade. By the

definition of the mechanism, if x(b, s) = 1, pB(b, s) = b′(s) where b′(s) = min{b0 : ϕ̃(b0) ≥ s},

pS(b, s) = ϕ̃(b). For any s,

Eb[pB(b, s)] = b′(s) · Pr
b

[ϕ̃(b) ≥ s]

Eb[pS(b, s)] = Eb[ϕ̃(b) · 1[ϕ̃(b) ≥ s]]
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According to the definition of b′(s), b′(s) does not lie in the interior of any ironed interval. Thus

by Lemma 5.2,

Eb[ϕ̃(b) · 1[ϕ̃(b) ≥ s]] = Eb[ϕ(b) · 1[ϕ̃(b) ≥ s]] =

∫ b̄

b′(s)
ϕ(b)fB(b)db = b′(s) · Pr

b
[ϕ̃(b) ≥ s]

Thus we have Eb[pB(b, s)] = Eb[pS(b, s)].

Similarly, we can prove that GBO is ex-ante SBB. The trade happens if and only if the weight

b− τ̃(s) ≥ 0 in GBO, which is exactly the same allocation rule with BO. Using a similar argument

as in Lemma 5.8, we can prove that GBO is also ex-ante SBB.

Lemma 5.9. In the Bilateral Trade setting, GBO is an IR, DSIC and ex-ante SBB mechanism.

5.3.3 Finishing the Proof

In this section, we consider the double auction setting and give the proof of Theorem 5.3. We first

need to prove that both GSO and GBO are ex-ante WBB. The idea is to consider each pair (i, j)

separately and show that the expected payment of buyer i for trading with seller j is greater than

the expected gains of seller j for trading with buyer i.

Lemma 5.10. Both GSO and GBO are IR, DSIC and ex-ante WBB mechanisms.

Proof. We will give the proof for GSO and a similar argument applies to GBO. Let (xB, xS , pB, pS)

be the allocation and payment rule for GSO. For every i, j and type profile b, s, let xij(b, s) =

1[(i, j) ∈ A1(b, s)] representing whether buyer i is trading with seller j. Clearly xBi (b, s) =∑
j∈[m] xij(b, s), xSj (b, s) =

∑
i∈[n] xij(b, s). We notice that with threshold payments, pBi (b, s)

(or pSj (b, s)) is non-zero only if xBi (b, s) (or xSj (b, s)) is 1. Then the difference between all buyers’

133



expected payments and sellers’ expected gains can be written as

Eb,s

[ n∑
i=1

xBi (b, s)pBi (b, s)−
m∑
j=1

xSj (b, s)pSj (b, s)

]

=Eb,s

[ ∑
(i,j)∈A1(b,s)

xij(b, s) ·
(
pBi (b, s)− pSj (b, s)

) ]

=Eb,s

[∑
i,j

xij(b, s) ·
(
pBi (b, s)− pSj (b, s)

) ]

=
n∑
i=1

m∑
j=1

Eb,s

[
xij(b, s) ·

(
pBi (b, s)− pSj (b, s)

)]
(5.15)

Now we fix i, j, b−i and s−j . Lemma 5.7 states that if a pair (i, j) is in the max weight

matching, then increasing the value of bi or decreasing the value of sj will not remove this pair

from the maximum weight matching. In other words, xij(bi, b−i, sj , s−j) is non-decreasing in bi

and non-increasing in sj . Next, we characterize the threshold payments of i and j. For every

bi ∈ TBi , define s′j(bi) to be the largest value of sj such that xij(bi, b−i, sj , s−j) = 1. Notice

that when (i, j) ∈ A1(b, s), ϕ̃i(bi) − sj must be non-negative, as the feasibility constraint F is

downward-closed, so removing a pair with negative weight gives a strictly better matching. Thus,

s′j(bi) ≤ ϕ̃i(bi).

Similarly, for every sj ∈ TSj , define b′i(sj) to be the smallest value of bi such that xij(bi, b−i, sj , s−j) =

1. By the definition of threshold payments, given bi, sj , if xij(b, s) = 1, pSj (b, s) = s′j(bi). As for

the buyer, pBi (b, s) = b′i(sj). The reason is that when sj ≥ s′j(bi) (or bi ≤ b′i(sj)) then xSj (b, s) (or

xBi (b, s)) must be 0. Imagine this is not the case, and j (or i) is in the maximum matching with

some other buyer i′ (or seller j′) under profile (b, s), then clearly if we decrease the value of sj (or

increase the value of bi), (i′, j) (or (i, j′)) should remain in the maximum matching according to

Lemma 5.7. Contradiction.

Now fix sj . xij(b, s) = 1 if and only if bi ≥ b′i(sj). We have

Ebi
[
xij(b, s)pBi (b, s)

]
= b′i(sj) · Pr[bi ≥ b′i(sj)] (5.16)

Ebi
[
xij(b, s)pSi (b, s)

]
= Ebi [s

′
j(bi) · 1[bi ≥ b′i(sj)]] ≤ Ebi [ϕ̃i(bi) · 1[bi ≥ b′i(sj)]] (5.17)
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Again notice that b′i(sj) does not lie in the interior of any ironed interval for all sj . So

Ebi [ϕ̃i(bi) · 1[bi ≥ b′i(sj)]] = Ebi [ϕi(bi) · 1[bi ≥ b′i(sj)]] = b′i(sj) · Pr[bi ≥ b′i(sj)]

Hence,

Ebi
[
xij(b, s)pBi (b, s)

]
≥ Ebi

[
xij(b, s)pSi (b, s)

]
.

Take expectation over sj , b−i, s−j , and sum over all i, j:

n∑
i=1

m∑
j=1

Eb,s

[
xij(b, s)(pBi (b, s)− pSj (b, s))

]
≥ 0 (5.18)

Hence GSO is ex-ante WBB.

Now we are ready to prove Theorem 5.3.

Proof of Theorem 5.3: We use GFTGSO (or GFTGBO) to denote the expected GFT of GSO (or

GBO). According to Lemma 5.10, both GSO and GBO are IR, BIC and ex-ante WBB, so we only

need to prove that GFTGSO + GFTGBO ≥ SB-GFT. By Lemma 5.6,

≤Eb,s

 ∑
(i,j)∈A1(b,s)

(ϕ̃i(bi)− sj)

+ Eb,s

 ∑
(i,j)∈A2(b,s)

(bi − τ̃j(sj))

 (5.19)

For every i, j, fix b−i, s. As in Lemma 5.10, we will continue to use b′i(sj) to denote the smallest

value of bi such that xij(bi, b−i, sj , s−j) = 1 in GSO, and use xij(b, s) = 1[(i, j) ∈ A1(b, s)] to

denote whether buyer i trades with seller j in GSO. Since b′i(sj) does not lie in the interior of any

ironed interval, we have

Ebi [(ϕ̃i(bi)− sj) · xij(b, s)]

=Ebi [ϕ̃i(bi) · 1[bi ≥ b′i(sj)]]− sj · Ebi [xij(b, s)]

=Ebi [ϕi(bi) · 1[bi ≥ b′i(sj)]]− sj · Pr[bi ≥ b′i(sj)] (Lemma 5.2)

≤Ebi
[
(bi − sj) · 1[bi ≥ b′i(sj)]

]
(ϕi(bi) < bi)

=Ebi [(bi − sj) · xij(b, s)]

(5.20)

135



Take expectation on b−i, s, and then sum up over all i, j:

Eb,s

 ∑
(i,j)∈A1(b,s)

(ϕ̃i(bi)− sj)

 =
∑
i,j

Eb,s [(ϕ̃(bi)− sj) · xij(b, s)]

≤
∑
i,j

Eb,s [(bi − sj) · xij(b, s)] = GFTGSO

(5.21)

Similarly, we have Eb,s

[∑
(i,j)∈A2(b,s) (bi − τ̃j(sj))

]
≤ GFTGBO. Combining this with Inequal-

ity (5.19), we have SB-GFT ≤ GFTGSO + GFTGBO. 2

5.4 Transformation between Mechanisms with Different Budget-

Balanced Constraints

In this section, we argue how to transform an IR, BIC and ex-ante WBB mechanism to an IR, BIC

and SBB mechanism without changing the allocation rule. Clearly, the GFT remains the same after

the transformation. The result applies to general two-sided markets and we will use the notations

from Section 2.4 throughout this section.

Theorem 5.4. Given an IR, BIC, ex-ante WBB mechanism M = (xB, xS , pB, pS) with non-

negative payment rule, there exists another non-negative payment rule (pB
′
, pS

′
) such that the

mechanism M ′ = (xB, xS , pB
′
, pS

′
) is IR, BIC and SBB.

As a SBB mechanism is clearly ex-ante WBB, thus with Theorem 5.4 we will have an equiv-

alence among the ex-ante WBB constraint and the SBB constraint for IR and BIC mechanisms.

The intuition behind Theorem 5.4 is that if our mechanism has positive surplus, we can simply

divide the surplus to the agents evenly and independently from their reported types (Lemma 5.11).

Now we have an ex-ante SBB mechanism. Next, we massage the payments so that all interim

payments remain unchanged, while under every type profile the sum of buyers’ payments equal the

sum of sellers’ gains. This is achieved via an interesting linear transformation on the payments

(Lemma 5.12).
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Lemma 5.11. Given an IR, BIC, ex-ante WBB mechanism M = (xB, xS , pB, pS) with non-

negative payment rule, there exists another non-negative payment rule (pB
′
, pS

′
) such that mecha-

nism M ′ = (xB, xS , pB
′
, pS

′
) is IR, BIC and ex-ante SBB.

Proof. Let δ = Eb,s

[∑n
i=1 p

B
i (b, s)−

∑m
j=1 p

S
j (b, s)

]
≥ 0. Define (pB

′
, pS

′
) as follows: for every

b, s, pB
′
(b, s) = pB(b, s) ≥ 0, pS

′
(b, s) = pS(b, s) + δ

m ≥ 0. Then

Eb,s

 n∑
i=1

pB
′

i (b, s)−
m∑
j=1

pS
′

j (b, s)

 = Eb,s

 n∑
i=1

pBi (b, s)−
m∑
j=1

pSj (b, s)

−m · δ
m

= 0 (5.22)

M ′ is ex-ante SBB. In mechanism M ′, it first gives δ
m to each seller and then follows the allocation

rule and payment of mechanism M . Since each seller receives a fixed amount of money at the

beginning of the mechanism, M ′ will still be IR and BIC.

The next lemma provides a transformation for turning an IR, BIC, ex-ante SBB mechanism to

a SBB mechanism without modifying the allocation rule.

Lemma 5.12. Given an IR, BIC and ex-ante SBB mechanism M = (xB, xS , pB, pS) with non-

negative payment rule, there exists another non-negative payment rule (pB
′
, pS

′
) such that the mech-

anism M ′ = (xB, xS , pB
′
, pS

′
) is IR, BIC and SBB.

Proof. We will construct pB
′

such that for every buyer i and her type bi, the expected payment for

buyer i to report type bi in M ′ is the same as her payment in M . Formally,

Eb−i,s
[
pB
′

i (bi, b−i, s)
]

= Eb−i,s
[
pBi (bi, b−i, s)

]
.

Similarly, for each seller j and her type sj , the expected gains for seller j to report type sj in M ′

is the same as her gains in M , that is,

Eb,s−j

[
pS
′

j (b, sj , s−j)
]

= Eb,s−j

[
pSj (b, sj , s−j)

]
.

This property guarantees that the expected utility for buyer i (or seller j) when reporting type

bi (or type sj) stays unchanged. Since M is BIC and IR, M ′ is also BIC and IR.
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Suppose we are given an IR, BIC and ex-ante SBB mechanism M = (xB, xS , pB, pS). Define

the payment rule (pB
′
, pS

′
) as follows. Let ΩB =

{
i ∈ [n] : Eb′,s′ [p

B
i (b′, s′)] > 0

}
and ΩS = {j ∈

[m] : Eb′,s′ [p
S
j (b′, s′)] > 0}.

For i 6∈ ΩB, since all payments pBi (b′, s′) are non-negative, we must have pBi (b′, s′) = 0 for all

b′, s′. We define pB
′

i (b, s) = 0 for all i 6∈ ΩB and every type profile (b, s). Similarly, for all j 6∈ ΩS ,

let pS
′

j (b, s) = 0 for every type profile (b, s). For simplicity, we will slightly abuse the notation,

using pBi (bi) (or pSj (sj)) to denote Eb−i,s
[
pBi (bi, b−i, s)

]
(or Es−j ,b

[
pSj (b, sj , s−j)

]
), and pBi (or pSj )

to denote Eb′,s′ [p
B
i (b′, s′)] (or Eb′,s′ [p

S
j (b′, s′)]).

For i ∈ ΩB and j ∈ ΩS , define

pB
′

i (b, s) =
∏
i′∈ΩB

pBi′ (bi′)

pBi′
·
∏
j′∈ΩS

pSj′(sj′)

pSj′
· pBi (5.23)

pS
′

j (b, s) =
∏
i′∈ΩB

pBi′ (bi′)

pBi′
·
∏
j′∈ΩS

pSj′(sj′)

pSj′
· pSj (5.24)

For every b, s, sinceM is ex-ante SBB,
∑

i∈ΩB p
B
i =

∑
j∈ΩS p

S
j , which implies that

∑
i∈ΩB p

B′
i (b, s) =∑

j∈ΩS p
S′
j (b, s). Since the payments of buyers (or sellers) that are not in ΩB (or ΩS) are 0, Mech-

anism M ′ is SBB. Moreover, for every i ∈ ΩB and type bi, if we take expectation of pB
′

i (b, s) over

all b−i, s, we have

Eb−i,s[p
B′
i (b, s)] =

pBi (bi) ·
∏

i′ 6=i,i′∈ΩB

Ebi′∼DBi′ [p
B
i′ (bi′)] ·

∏
j′∈ΩS

Esj′∼DSj′ [p
S
j′(sj′)] · pBi∏

i′∈ΩB

pBi′ ·
∏
j′∈ΩS

pSj′

= pBi (bi)

(5.25)

If i 6∈ ΩB, Eb−i,s[pB
′

i (b, s)] = 0 = pBi (bi). Similarly, for every seller j and any of her type sj ,

Eb,s−j [p
S′
j (b, s)] = pSj (sj). Thus, M ′ is an IR, BIC and SBB mechanism.

Proof of Theorem 5.4: It directly follows from Lemma 5.11 and Lemma 5.12. 2

With Lemma 5.11 and Lemma 5.12, one can show that under IR and BIC constraints, mecha-
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Figure 5.1: Transformation between Mechanisms with Different BB Constraints

nisms with all variants of the Budget-Balance constraint can be transformed to one another, without

changing the allocation rule (and thus not affecting the GFT).

Figure 5.1 describes the transformation between mechanisms with different budget balance

constraints. In the figure, all the simple arrows are directed from a stronger constraint to a weaker

one.
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Chapter 6

Approximating GFT with

Asymptotically Efficient Mechanisms

The mechanism proposed in Chapter 5 achieves a constant approximation to the second-best GFT

in bilateral trade and double auction with arbitrary downward-closed trading constraint. However,

one caveat of this mechanism is that its expected GFT does not asymptotically converge to the

optimal GFT as the market grows large (see Example 6.1). In this chapter, we aim to design

mechanisms that are asymptotically efficient, and also achieve a constant factor approximation to

the second-best GFT in expectation.

In Section 6.1, we give an introduction of the results and techniques covered in this chapter. In

Section 6.2 and Section 6.3 we introduce our setting and go through mechanisms in the literature

that is useful in this chapter. In Section 6.4 we present our results for double auctions. In Section 6.5

and Section 6.6, we present our results for a more general setting matching market. In Section 6.7

we give some discussion about our results in this chapter.

6.1 Results in This Chapter

In light of the seminal impossibility result of Myerson–Satterthwaite [MS83], follow-up work in the

two-sided market literature has looked at IR, BIC, and BB mechanisms that are approximately
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efficient, rather than precisely efficient. The current state-of-the-art mechanisms in the literature

can be categorized as giving one of two guarantees:

1. A constant ex-ante guarantee, measured with respect to the second-best GFT, that is, the

(possibly very complex) mechanism obtaining the highest expected GFT of any IR and BIC

mechanism that is weakly budget balanced, or

2. An asymptotically optimal ex-post guarantee, measured with respect to the first-best GFT,

that is, the mechanism obtaining full efficiency (VCG).

In this chapter, we aim to construct simple mechanisms that simultaneously achieve both guar-

antees. We study settings in which each seller is endowed with precisely one item, all items are

identical, and each buyer is interested in buying one item. In the double-auction setting, any seller

can trade with any buyer, while in the more general matching market setting, trade between some

buyer-seller pairs is disallowed. Before describing our results, we first survey the state-of-the-art

mechanisms giving each guarantee in more depth.

Ex-Ante Guarantees [BCWZ17] (henceforth BCWZ, presented in Chapter 5) present a simple

mechanism that is IR, BIC, and weakly BB, and obtains, in expectation, at least half of the

expected GFT of the second-best GFT, in any double auction with arbitrary downward-closed

trading constraint.

While the mechanism obtains at least half of the second-best GFT in expectation, we observe

that it does not give any ex-post efficiency guarantees, and moreover, even its expected GFT does

not asymptotically converge to the GFT of the second-best (let alone the first-best) mechanism as

the market grows large. This holds even for the very simple double-auction market with n sellers,

each selling an identical item, and n buyers, each interested in buying a single item, with the values

(or costs) of the agents sampled i.i.d. from the uniform distribution over [0, 1]. Even when n is large,

the mechanism of BCWZ will only give in expectation a constant fraction (strictly smaller than 1)

of the second-best GFT, and no more than that (see Example 6.1 in Section 6.4). In particular,

even in a large market, the efficiency of their mechanism does not converge to full efficiency.
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Ex-Post Guarantees The Trade Reduction mechanism1 of McAfee [McA92], which is defined for

the double-auction setting, does not suffer from the above drawback and is asymptotically efficient.

The mechanism circumvents the impossibility result [MS83] for bilateral trade, by providing an ex-

post efficiency guarantee only when more than one trade is possible in the double-auction market.

The mechanism works as follows: it first finds the efficient trade — the allocation that maximizes

the GFT for the particular input profile. Denote the size (number of pairs) of this trade by q.

It then removes the least efficient trade (one buyer-seller pair), and only allows for the remaining

trades (the q−1 most efficient trades) to realize, charging the winning buyers the value of the

removed buyer, and paying the winning sellers the cost of the removed seller. This creates an IR

and ex-post IC mechanism. As the value of the removed buyer is at least the cost of the removed

seller, each trade is weakly budget-balanced. The mechanism obtains at least a 1−1/q fraction2 of

the realized optimal (first-best) GFT. In the double-auction example above, as n grows q will also

grow, and this fraction will tend to 1. Unfortunately, when q = 1 this mechanism performs no trade

and provides no guarantees at all. (Failing to provide an ex-post guarantee unconditionally is of

course inevitable in light of the impossibility result of Myerson–Satterthwaite [MS83].3) We note

that the Trade Reduction mechanism, while asymptotically efficient, fails to give any unconditional

approximation to the GFT, even with respect to the GFT of the second-best mechanism (as the

mechanism of BCWZ does give).

The Best of Both Worlds In this work we aim to design simple mechanisms that are IR, BIC,

and weakly BB, and simultaneously provide both types of efficiency guarantees discussed above.

First, in the spirit of the guarantee of BCWZ, we aim to guarantee for the expected GFT to be at

least a constant fraction of the expected GFT of the second-best mechanism. Second, in the spirit

of the guarantee of [McA92], we aim to guarantee for the ex-post GFT to be at least a realization-

1. McAfee’s original mechanism is slightly more involved. We use a simplified version that provides the same
worst-case guarantees.

2. Recall that q is a function of the valuation profile.

3. Ex-post approximation to the GFT requires the mechanism to trade whenever there is positive gain, but the
impossibility result implies that for some of these profiles trade will not occur.
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dependent fraction of the realized optimal GFT (first-best), such that this fraction tends to 1 “as

the market grows large” and the efficient trade size grows4 to infinity.

6.1.1 Our Results

We present results both for the double-auction setting and for the more involved matching-market

setting.Providing a result for this more involved scenario is considerably more challenging than for

the double-auction setting, and is the main result of this paper.

Double Auctions

We first present our result for double auctions.

Theorem 6.1. For the double-auction setting, there exists a simple mechanism that is ex-post IR,

BIC and ex-post weakly budget balanced, and satisfies both of the following.

• The expected GFT of this mechanism is at least 1/4 of the expected GFT of the second-best

mechanism.

• This mechanism guarantees at least 1−1/q of the realized optimal (first-best) GFT, where q is

the size of the most efficient trade. Thus the mechanisms is asymptotically efficient (converges

to full efficiency as the trade size q grows large).

Note that the asymptotic efficiency that is obtained is with respect to the most demanding

benchmark of the realized optimal GFT (the first-best and not only the second-best), providing the

same guarantee as the one provided by the Trade Reduction mechanism [McA92]. The concurrent

ex-ante guarantee is with respect to the second-best, similarly to the result of BCWZ.

Before examining the problem thoroughly, one might be tempted to think that it is trivial to

come up with such a mechanism for double auctions. Here is a natural näıve candidate for such

a mechanism: first, the mechanism computes the efficient trade size q. If q > 1, it runs McAfee’s

4. The condition on the efficient trade size ensures that the growth in the market size does not, for example, come
from adding agents that are “irrelevant,” such as buyers with 0 value and sellers with very high costs, since in such
a case it would not be possible to provide any guarantee that is better for large markets than for small ones (such as
bilateral trade markets).
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Trade Reduction mechanism. Otherwise, it runs the mechanism of BCWZ. This näıve approach

turns out to fail miserably as the allocation is not even monotone: it may well be the case that the

two agents that trade when q = 1 (i.e., those that trade according to the mechanism of BCWZ) are

not the highest-value buyer and the lowest-cost seller, and so in certain scenarios an agent that is

reduced in the q > 1 case (by the Trade Reduction mechanism) may be able to reduce her bid to

move to the q = 1 case and trade (for more details see Section 6.4).

To present our mechanism, let us first very roughly review the behavior of the mechanism of

BCWZ in the bilateral-trade case: in this special case, the mechanism flips a coin; with proba-

bility 50%, the seller offers a take-it-or-leave-it price to the buyer (calculated so as to maximize

the expected utility of the seller), and with probability 50%, the buyer offers a take-it-or-leave-

it price to the seller (calculated so as to maximize the expected utility of the buyer). In order

to obtain the mechanism that we seek, we carefully make two main modifications to the näıve

“compound” mechanism described above: first, in order to address the above-discussed source of

non-monotonicity, instead of running the mechanism of BCWZ on the entire market, we run their

bilateral-trade mechanism only on the (unique) pair in the efficient trade. To make the resulting

mechanism truthful, we need to make an additional adjustment: in the seller-offering case (the

adjustment to the buyer-offering case is analogous), we on the one hand force the seller to set a

price that is at most the threshold bid that puts her in the efficient (first-best) trade, and on the

other hand notify her of the values of all buyers except the one that she is facing, and calculate

the price that she offers to maximize her expected utility conditioned upon the fact that the buyer

that she is facing has value larger than all of these values. Both adjustments, and in particular the

first one, make the proof of the ex-ante guarantee, as well as the proof that the mechanism is BIC,

quite subtle.

The main challenge in obtaining the approximation guarantee for the case where q = 1 is

to reconcile the fact that the pair that our mechanism attempts to trade on is determined by

maximizing the realized GFT (first-best) and might not be the same as the pair that would have

traded according to the mechanism of BCWZ. The main hurdle to obtaining the approximation

guarantee for this case is therefore that for some valuation profiles, an offer between the unique
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pair in the efficient trade will be rejected, resulting in no trade in our hybrid mechanism, while in

the mechanism of BCWZ an offer will be made — and accepted — between a different pair. To

overcome this, we have to carefully charge such losses in GFT to gains in GFT by other parts of

our hybrid mechanism.

Matching Markets

As stated above, the mechanism of BCWZ does not converge to the efficient outcome in large

double-auction markets, and thus will clearly not do so in the more general matching market

setting. Our goal is to present a mechanism for matching market that is IR, BIC and ex-post

weakly BB, but also provide ex-ante guarantees for the GFT as well as ex-post guarantees that

converges to full efficiency “as the market grows large”. While in the double auction setting, every

buyer can trade with every seller, this is no longer the case in a matching market. Our notion of

a large matching market aims to generalize the fact that in a large market there are many agents

that are “equivalent” up to their values. The sense of agents being equivalent in a matching market

is that they can trade with exactly the same set of agents. So, we can naturally partition agents to

equivalence classes, with every two agents of the same class being interchangeable in any matching

(up to their valuations). We consider matching markets with a fixed set of such classes, and think

about a large market as a market in which the number of agents of each class is growing large, yet

the number of different classes that any agent can trade with remains bounded by some constant

d.

Recall that the Trade Reduction mechanism [McA92] is defined for a double-auction setting. We

first present a generalization for matching markets of the Trade Reduction mechanism (section 6.5.1)

and prove that it is ex-post asymptotically efficient “as the market grows large” in the above sense.

To our knowledge, this nontrivial generalization of the Trade Reduction mechanism, which may

also be of separate interest, is novel. Similarly to the Trade Reduction mechanism [McA92] for

double-auction settings, this mechanism does not give any ex-ante approximation guarantee.

As with the double-auction case, we cannot directly combine our Trade Reduction mechanism

for matching markets with the mechanism of BCWZ while maintaining truthfulness. Therefore,
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we present a novel mechanism (section 6.5.2), which we call the Offering Mechanism for Matching

Markets. Like the mechanism of BCWZ, this mechanism does not provide the ex-post guarantee

we are after, but we manage to carefully define it in a way that allows us to combine it with the

Trade Reduction mechanism for matching markets to obtain a truthful mechanism that provides

both types of guarantees that we are after. The precise definition of the Offering Mechanism that

allows for both the truthfulness and the efficiency guarantees of the hybrid mechanism has been

quite elusive to pin down, and the proofs of truthfulness, and in particular of the ex-ante guarantee,

are considerably more subtle than in the double-auction setting. To prove the ex-ante guarantee

of the Offering Mechanism, we compare it to the mechanism of BCWZ, showing that it attains

at least half of the GFT of their mechanism, resulting in an ex-ante guarantee of at least 1/4 of

the expected GFT of the second best mechanism. Proving the ex-ante guarantee of the Offering

Mechanism is the most technically challenging part of our analysis. To prove this guarantee, we

show that it is possible to carefully “charge” every edge of the matching of BCWZ to edges of

the first-best matching that will be traded in our Offering Mechanism, proving that the expected

GFT of our Offering Mechanism is at least half the expected GFT of the mechanism of BCWZ. The

combination of the Offering Mechanism for matching markets with the Trade Reduction mechanism

for matching markets creates the Hybrid Mechanism for Matching Markets (section 6.5.3), giving

us our main result.

Theorem 6.2. For the matching market setting, there exists a simple mechanism that is ex-post

IR, BIC and ex-post weakly budget balanced, and satisfies both of the following.

• The expected GFT of this mechanism is at least 1/4 of the expected GFT of the second-best

mechanism.

• When 1−d/q ≥ 1/2, this mechanism guarantees at least 1−d/q of the realized optimal (first-

best) GFT where d denotes the maximum number of classes that any agent can trade with,

and q denotes the minimal positive number of trading agents of the same class in the welfare

maximizing outcome. Thus the mechanism is asymptotically efficient in the sense that it

converges to full efficiency as the number of trading agents in every class grows large, as long
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as d is fixed.

We remark that while our mechanism ex-ante guarantees a quantitatively smaller fraction of

the second-best GFT than the 1/2 fraction guaranteed by the mechanism of BCWZ in Chapter 5,

the mechanism presented in this chapter has two qualitative advantages over the other mechanism:

first we obtain asymptotic efficiency and an ex-post guarantee, and moreover, our mechanism is

ex-post weakly BB, while the mechanism in Chapter 5 is only ex-ante weakly BB.

6.2 Definitions and Notations

6.2.1 Model and Definitions

Agents and Utilities We focus on double auctions in this chapter. To remind the readers, in a

double-auction market for identical goods, there is a finite set S of sellers with one good each, and

a finite set B of unit-demand buyers, with |S| ≥ 2 and |B| ≥ 2. Each seller j ∈ S has a cost sj > 0

that she incurs if she sells her item, and each buyer i ∈ B has a value bi > 0 that she derives if

she purchases an item. We assume that an agent who does not trade does not incur any cost or

derive utility from this. Let s be the vector of sellers’ costs and b be the vector of buyers’ values.

The costs and values are sampled from agent-specific (but not necessarily identical) distributions

DB
i for each buyer i ∈ B and DS

j for each seller j ∈ S, each independent of all other distributions.

Agents have quasi-linear utilities and are risk neutral.

Trading Constraints In this chapter, we consider a special class of downward-closed trading

constraint where the set of trading buyer-seller pairs must form a matching in the bipartite graph

between buyers and sellers. Such a special case is called matching market. In a matching market

setting, an undirected bipartite graph G = (S,B,E) with the sellers on one side and the buyers

on the other constraints transactions. A set of trading agents K is a set of buyers and of sellers

that can be partitioned into pairs, each of one buyer and one seller that are neighbors in G (this

is equivalent to a matching of the set K in G) — the set K corresponds to each seller selling her

item, and each buyer buying one of the items sold from one of its neighbors in G. The size of trade
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of K is defined to be |K ∩ S| = |K ∩B|.

Gains from Trade The gains from trade (GFT) when the set K (of trading agents) is trading

is defined to be
∑

i∈K∩B bi−
∑

j∈K∩S sj . Given a valuation profile (b, s), a set of trading agents is

efficient if it maximizes the gains from trade from (b, s) among all sets of trading agents.

Benchmarks Given a valuation profile (b, s), let M(b, s) be the first-best matching, or the

maximum-weight matching in G, where ties between agents are broken by the “lexicographic order

by IDs” formally defined in Definition C.1 in appendix C.5.2.5 Slightly abusing notation, we use

M(b, s) to also denote the set of agents in the matching M(b, s). Let FB-GFT(b, s) be the GFT

of the “first-best” M(b, s), that is FB-GFT(b, s) =
∑

(i,j)∈M(b,s)(bi − sj). Note that the VCG

mechanism (which is not budget balanced) attains a GFT of FB-GFT(b, s) on every valuation

profile (b, s).

A mechanism is called second-best if it maximizes the expected gains from trade among all BIC,

interim IR and ex-ante weakly budget balanced mechanisms.

Special Cases The case where G is the complete bipartite graph (i.e., any seller can trade with

any buyer) is called the double-auction setting. In the double-auction setting, for every valuation

profile (b, s) we denote the size of the efficient set of trading agents by q(b, s). The case where

|S| = |B| = 1 and the buyer and the seller are connected by an edge in G (so this is also a special

case of double-auction) is called the bilateral-trade setting.

6.2.2 The Trade Reduction Mechanism

In the double-auction setting, the Trade Reduction (TR) mechanism [McA92] is a mechanism that

finds the most efficient trade of only q(b, s)− 1 items,6 and charges each agent his critical value for

winning. That is, the q(b, s)−1 highest-value buyers trade and pay the bid of the reduced buyer

5. This tie breaking rule satisfies two properties we use extensively: 1) it does not depend on weights, and 2) it is
subset consistent in the sense that when removing an edge (i, j) from some matching M and picking a matching on
the remaining nodes M \ {i, j}, it will pick the matching of M on these nodes.

6. If q(b, s) = 0 there is no trade in the TR mechanism, and no payments are made.
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(the q(b, s)-highest buyer); they trade with the q(b, s)−1 lowest-cost sellers, each seller getting

paid the cost of the reduced seller (the q(b, s)-lowest seller).

Theorem 6.3 ( [McA92]). In the double-auction setting, the TR mechanism is ex-post IC, ex-post

IR, and ex-post (direct trade) weakly budget balanced. For every valuation profile (b, s), the gains

from trade of this mechanism are at least an 1− 1
q(b,s) fraction of FB-GFT(b, s).

Note that if q(b, s) = 1, then no ex-ante approximation to the GFT is achieved by the TR

mechanism, while for q(b, s) ≥ 2, Theorem 6.3 guarantees at least half the efficient GFT for (b, s),

ex-post.

6.2.3 The Random Virtual-Welfare Maximizing Mechanism

Here we recap the mechanism in Chapter 5 (see Definition 5.3) for double auctions with downward-

closed constraints (which subsume matching constraints), which we will refer to throughout this

chapter as the Random Virtual-Welfare Maximizing (RVWM) mechanism.

Observation 6.1. Let (b, s) be a valuation profile. If trade occurs with some positive probability

on a given edge (i, j) in the RVWM mechanism, then trade would occur on the same edge with at

least the same probability in the mechanism that runs one of the following, with probability 50%

each:

• Seller j offers a price to buyer i that maximizes the utility of seller j in expectation over the

distribution DB
i from which buyer i’s valuation was drawn, and trade occurs if and only if

this price is at most buyer i’s valuation bi.

• Buyer i offers a price to seller j that maximizes the utility of buyer i in expectation over the

distribution DS
j from which seller j’s valuation was drawn, and trade occurs if and only if

this price is at least seller j’s cost sj.

Theorem 6.4. (Restatement of Theorem 5.3 and Lemma 5.10) The RVWM mechanism is BIC,

ex-post IR, and ex-ante weakly budget balanced, and in expectation gets a 1/2-fraction of the gains

from trade of the second-best mechanism.
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Note that while the ex-ante guarantee of BCWZ is with respect to the second-best mechanism,

the ex-post guarantee of McAfee [McA92] is with respect to the more demanding benchmark of the

realized optimal first-best gains from trade.

6.3 The Seller-Offering, Buyer-Offering, and Randomized-Offerer

Mechanisms

Before we turn to our main results, in this section we present a slightly modified version of the

bilateral-trade construction of the SO and BO mechanism shown in Section 5.2, which we will use

as a building block in the construction of our hybrid mechanisms, and prove several properties

thereof.

Definition 6.1 (SO, BO, RO Mechanisms). Fix Ds and Db to be nonnegative-valued distributions,

and fix s̄ ≥ sup SupportDs and b̄ ≤ inf SupportDb s.t. s̄ ≥ b̄. We define three mechanisms for

trade between a seller with cost s ∼ Ds and a buyer with value b ∼ Db.

• The Seller-Offering (SO) mechanism with offer constraint s̄ and target distribution Db is the

mechanism in which a seller with cost s offers to the buyer the lowest price p among the prices

that maximize the utility of the seller in expectation over b ∼ Db, under the constraint p ≤ s̄.

That is, the offered price is min
{
p
∣∣ p ∈ arg maxp≤s̄(p− s) ·

(
1−Db(p)

)}
. The buyer accepts

this price if it is no greater than the realized value b of the buyer. If the buyer accepts this

price, then trade occurs at this price; otherwise, no trade occurs.

• The Buyer-Offering (BO) mechanism with offer constraint b̄ and target distribution Ds is the

mechanism in which a buyer with value b offers to the seller the highest price p among the

prices that maximize the utility of the buyer in expectation over s ∼ Ds, under the constraint

p ≥ b̄. That is, the offered price is max
{
p
∣∣ p ∈ arg maxp≥b̄(b− p) ·

(
1−Ds(p)

)}
. The seller

accepts this price if it is no less than the realized cost s of the seller. If the seller accepts this

price, then trade occurs at this price; otherwise, no trade occurs.

• The (Bilateral) Randomized Offerer (RO) mechanism with SO parameters s̄ and Db and BO

150



parameters b̄ and Ds is the mechanism that flips a coin, with probability 1/2 it runs the SO

mechanism with offer constraint s̄ and target distribution Db, and otherwise it runs the BO

mechanism with offer constraint b̄ and target distribution Ds.

We slightly strengthen the special case of the incentive and budget guarantees of Theorem 6.4 for

bilateral trade, and prove that they still hold even with offer constraints as in the RO mechanism.7

We furthermore show that whenever trade occurs, the trading happens at a price that indeed lies

between the seller’s and the buyer’s constraint.

Lemma 6.1. Fix Ds and Db to be nonnegative-valued distributions and fix s̄ ≥ sup SupportDs and

b̄ ≤ inf SupportDb s.t. s̄ ≥ b̄ ≥ 0. Consider the RO mechanism with SO parameters s̄ and Db and

BO parameters b̄ and Ds.

1. When valuations are drawn from Ds ×Db, this mechanism is a BIC, ex-post IR, and ex-post

(direct trade) strongly budget balanced mechanism.

2. Whenever trade occurs in this mechanism, it holds that the price p that the seller pays the

buyer satisfies b̄ ≤ p ≤ s̄.

The proof of lemma 6.1 is given in appendix C.2. To conclude this section, we will prove two

more properties of the RO mechanisms that will allow us to lower-bound its GFT guarantee: the

first will allow us to compare its GFT to that of the first-best, and the second will allow us to

compare its GFT to that of the RVWM mechanism.

Lemma 6.2. Let Ds and Db be distributions and let s̄ ≥ b̄ ≥ 0. Let s ≤ s̄ be a cost for the seller

and let b ≥ b̄ be a value for the buyer. Consider the RO mechanism with SO parameters s̄ and

Db|≥b̄ and BO parameters b̄ and Ds|≤s̄.8

1. If b̄ ≥ s or s̄ ≤ b, then the probability that trade occurs in this mechanism is at least 1/2.

7. We note that each of the SO and BO mechanisms is a deterministic and ex-post monotone mechanism, and so can
be made ex-post IC (and ex-post IR) by charging the threshold winning prices. The resulting modified mechanisms,
however, are not ex-post (even weakly) budget balanced, but only ex-ante (strongly) budget balanced.

8. For a distribution D and a value c, we use D|≤c to denote this distribution conditioned upon the drawn value
being at most c, and use D|≥c to denote this distribution conditioned upon the drawn value being at least c.

151



2. If b̄ ≤ s and s̄ ≥ b, then the probability that trade occurs in this mechanism is at least as high

as the probability that trade occurs in the RO mechanism with SO parameters ∞ and Db and

BO parameters 0 and Ds.

The proof of Lemma 6.2 is given in Appendix C.2. In a nutshell, part 1 holds since if, e.g., b̄ ≥ s,

then an offer by the buyer will always be accepted by the seller, and part 2 holds since under the

given assumptions, if trade occurs in the unconstrained and unconditioned RO mechanism, then

the price offered there also satisfies all of the extra restrictions of the constrained and conditioned

RO mechanism, and therefore the same price will be offered in that mechanism as well, resulting

in trade there as well.

6.4 Double Auctions

In this section, we present our results for the double-auction setting, in which there are no con-

straints on which seller can trade with which buyer (i.e., the graph G is the full bipartite graph).

We first show that the RVWM mechanism is not asymptotically efficient, even ex-ante, and then

present our hybrid mechanism for double auctions, which is an ex-post IR, BIC, ex-post weakly

budget balanced mechanism, which ex-ante guarantees a constant fraction of the second-best, and

is ex-post asymptotically efficient.

6.4.1 Asymptotic Inefficiency of the RVWM Mechanism

We first observe that the the RVWM mechanism is not asymptotically efficient for double auctions,

even ex-ante and compared to the second-best.

Example 6.1. Consider a double-auction market with n seller and n buyers, with agents’ values

and costs sampled i.i.d. from the uniform distribution over [0, 1]. We claim that even when n is

large, the RVWM mechanism will only give in expectation a constant fraction (strictly smaller than

1) of the expected GFT of the second-best mechanism. In particular, even in a large market, and

even in expectation, the efficiency of the RVWM mechanism with respect to the second best (and

thus also with respect to the first-best) does not converge to full efficiency.
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Proof sketch. We prove Example 6.1 in Appendix C.1, and here we give some intuition. When n is

large, it is easy to observe that in an efficient trade roughly the n/2 lowest-cost sellers (essentially

distributed uniformly in [0, 1/2]) will sell their items to roughly the n/2 highest-value buyers (essen-

tially distributed uniformly in [1/2, 1]), increasing the welfare by about 1/2 in expectation in each

trade, resulting in the first-best having asymptotic expected GFT of about n/4. The second-best

mechanism gets GFT that is in expectation at least the expected GFT of the Trade Reduction

mechanism, so it has asymptotic expected GFT of about n/4 − 1, asymptotically the same as the

first-best mechanism. On the other hand, when a buyer offers an optimized price facing a uni-

form distribution as in the RVWM mechanism, she offers only half of her value (and similarly, a

seller offers a price that is half-way between her cost and 1). This results in only roughly the n/3

lowest-cost sellers (essentially distributed uniformly in [0, 1/3]) selling their items to roughly the n/3

highest-value buyers (essentially distributed uniformly in [2/3, 1]), increasing the welfare by about

2/3 in expectation in each trade, resulting with asymptotic expected GFT of about 2n/9 < n/4.

6.4.2 A Hybrid Mechanism for Double Auctions

While the RVWM mechanism is not asymptotically efficient, the Trade Reduction (TR) mech-

anism [McA92] is asymptotically efficient as it guarantees, ex-post, an 1− 1
q(b,s) fraction of the

first-best GFT, where q(b, s) is the size of the most efficient trade (Theorem 6.3).9 As this mech-

anism gives no ex-ante guarantee (when q(b, s) = 1), we create a hybrid mechanism that runs the

TR mechanism when q(b, s) > 1 and run the RO mechanism with some constraints and conditional

distributions otherwise. We now present this mechanism.

Definition 6.2 (Hybrid Mechanism for Double Auctions). Our hybrid mechanism for double auc-

tions is a direct revelation mechanism. Given the reports b and s (that are assumed to be truthful),

we use b(1) to denote the buyer10 with maximum value (when breaking ties lexicographically by IDs),

i.e., b(1) ≥ bi for every i ∈ B, and use b(2) to denote the buyer with maximum value after removing

9. If there is a trade with GFT of 0, then there are efficient trades with different sizes. In this case trading according
to the largest size will give full efficiency.

10. Somewhat abusing notation, we use b(1) to refer both to this buyer and to his value, and similarly for other
agents.
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buyer b(1). Similarly, we use s(1) to denote the seller with minimal cost, and s(2) to denote the

seller with the second-minimal cost.11 The mechanism computes q(b, s) and runs as follows.

• If q(b, s) ≤ 1,12 the mechanism computes the set of trading agents and payments by running

the RO mechanism with SO parameters s̄ = s(2) and DB
b(1)
|≥b(2) and BO parameters b̄ = b(2)

and DS
s(1)
|≤s(2).13

• If q(b, s) ≥ 2, the mechanism computes the set of trading agents and payments by running

the TR mechanism on b and s.

We will now sketch the intuition behind our choice, in the case where q(b, s) = 1, of the

constraints s̄, b̄ and the conditioned distributions DS
s(1)
|≤s(2) and DB

b(1)
|≥b(2) for which the offered

prices are optimized. First, we would never want to allow b(1) to pay a price p such that if b(1) had

valuation p then she would not be in the first-best. This is since such a possibility would create

an incentive for her to manipulate her bid if her valuation really were slightly higher than p but

still not high enough for her to be in the first-best: in this case, raising her bid would place her

in the first-best, and she may end up paying p, which would give her positive utility. So, we have

to make sure that b(1) never offers, nor is ever offered, such a p that is lower than b̄ = b(2). (In

fact, the threshold bid of b(1) to be in the first-best is max{b(2), s(1)}, but by definition of the RO

mechanism, she would never pay less than s(1) as this would result in negative GFT, so we only

need to make sure that she never pays less than b̄ = b(2).) To make sure that b(1) never offers such

a price p, we constrain her to offer at least b̄ in the BO mechanism. To make sure that she is never

offered such a price p in the SO mechanism, we have s(1) optimize her offer under the assumption

that the value of b(1) is drawn from DB
b(1)
|≥b̄, which is equivalent to disclosing to s(1) that she has

no point in offering a price lower than b̄ since an offer of b̄ will always be accepted. To see why

the mechanism is truthful once we have set b̄ (and s̄) this way, consider the following hypothetical

11. Note that the maximal efficient set of trading agents is
{
s(1), . . . , sq(b,s), b(1), . . . , bq(b,s)

}
.

12. Recall that in this case, if there is any trade with positive gains, then the maximal efficient set of trading agents
is
{
s(1), b(1)

}
.

13. We note that in this case since q(b, s) = 1, we have that b̄ = b(2) < s(2) = s̄ and therefore indeed also
s̄ ≥ sup Support

(
DS
s(1)
|≤s(2)

)
and b̄ ≤ inf Support

(
DB
b(1)
|≥b(2)

)
.
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scenario. Say that after calculating that q(b, s) = 1, the mechanism notifies s(1) and b(1) that

they are the lowest-cost seller and highest-cost bidder, and furthermore notifies each of them of the

values (and costs) of all other agents except the one that they are facing. In this case, the posterior

distribution of s(1) regarding b(1) is DB
b(1)
|≥max{b(2),s(1)}, so her best action is to optimize the price

that she offers under this assumption, which is equivalent to optimizing the price that she offers for

the distribution DB
b(1)
|≥b(2) (but optimizing for the latter is easier to analyze, as it does not depend

on the cost of s(1)).

Theorem 6.5. For the double auction setting the above simple hybrid mechanism for double auc-

tions is ex-post individually rational, Bayesian incentive compatible, ex-post (direct trade) weakly

budget balanced, and has both of the following efficiency guarantees:

• It gets at least a 1/4-fraction of the efficient gains from trade ex-ante (second-best).

• It gets at least a q(b,s)−1
q(b,s) -fraction of the efficient gains from trade ex-post (first-best) . Note

that the mechanism is asymptotically efficient: as the trade size q(b, s) goes to infinity, the

fraction of the efficient gains from trade that it gets ex-post (first-best) goes to 1.

6.4.3 Proof of Theorem 6.5

Proof of theorem 6.5. Recall that by Theorem 6.3 and Lemma 6.1, both the TR and the RO mech-

anisms are each ex-post IR, BIC, and ex-post (direct trade) weakly budget balanced.

Ex-post IR Ex-post IR holds since both the TR and the RO mechanisms are ex-post IR.

Bayesian IC We will show that our hybrid mechanism is BIC for any buyer.14 A similar argument

holds for truthfulness of the sellers.

We first claim that if a manipulation by a buyer does not change the choice of the mechanism

that is run (TR or an instance of RO, where we consider each such instance to be a separate

14. In fact, when our hybrid mechanism runs TR, then it is ex-post IC for every agent, and when a price p is offered
by an agent in the RO mechanism, then our hybrid mechanism is Bayesian IC for the agent making the offer, and
ex-post IC for all other agents including the agent who receives the offer.
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mechanism) by our hybrid mechanism, then it is nonbeneficial in expectation. For TR this follows

since TR is ex-post IC. In Appendix C.3.1, we show that this holds also for each instance of the

RO mechanism, by conditioning over the bids and identities of all agents except s(1) and b(1), and

using both properties of Lemma 6.1.

We now claim that a buyer who is in the efficient trading set cannot change the efficient trading

set while remaining in this set. Indeed, to see that this is the case, suppose a buyer in the efficient

trading misreports by adding x (positive or negative) to his bid. The gains from trade from any

trading set that includes this buyer therefore increase by x (while the gains from trade of any other

trading set remains the same); therefore, since we break ties in the same manner without and with

the deviation, no other trading set that includes this buyer other than the true efficient trading set

can “become” (as a result of the misreport) the new efficient trading set.

Since (1) agents outside the efficient trading set never win, (2) a buyer in the efficient trading

set cannot change the efficient trading set while remaining in this set, (3) the choice of the mech-

anism to run is completely determined by the efficient trading set and by the values/costs of the

agents outside the efficient trading set, and (4) a manipulation that does not change the choice

of the mechanism to run is nonbeneficial in expectation, we conclude that there are no strategic

opportunities (in expectation) for any buyer who is in the efficient trading set.

To complete the proof that our hybrid mechanism is BIC, it is therefore enough to show that

there is no beneficial manipulation by a buyer who is not in the efficient trading set. We will in

fact show that the mechanism is ex-post IC for such agents; we do so by considering several cases.

• If q(b, s) ≥ 2, then a buyer who is not in the efficient trading set cannot cause a move

to q(b, s) < 2. Any manipulation by such a buyer is therefore nonbeneficial since the TR

mechanism (which is run prior to, and following, the manipulation) is ex-post IC.

• If q(b, s) = 1, then we consider two possible manipulations by some buyer b(j) who is not in

the efficient trading set (and is therefore not the true b(1)):

– First, consider a manipulation by b(j) that causes a move to q(b, s) ≥ 2 and causes her

to win. We claim that in this case, this buyer, who was previously not in the efficient
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trading set, must pay at least her true value whenever she wins. Indeed, by definition

of TR and since truly q(b, s) = 1, since this buyer wins following the manipulation (and

so is not reduced by the TR mechanism), she pays at least the original b(1), which is at

least her true value. Therefore, she incurs non-positive utility.

– We next consider a manipulation by b(j) that maintains q(b, s) = 1 and causes her to

win (with some positive probability). We will show that whenever this buyer wins, she

incurs non-positive utility. Since q(b, s) = 1 is maintained following the manipulation,

we must have that b(j) raised her bid to be higher than the original b(1), who is now in

the role of b(2). By Lemma 6.1, if the manipulating buyer wins, then she pays at least

the new b(2), i.e., the original b(1), which is at least her true value, and so she incurs

non-positive utility.

• Finally, consider the case q(b, s) = 0 and consider a manipulation by any buyer that causes

her to win. Such a manipulation can only result in q(b, s) = 1, so the manipulator, if she

wins, trades with s(1), and by definition of RO and since this mechanism is ex-post IR for

this seller, this buyer pays at least s(1). Since q(b, s) = 0, we have that s(1) is larger than the

true valuation of all buyers (including the manipulator), so the manipulator incurs negative

utility whenever she wins.

Ex-post (direct trade) weak budget balance Our hybrid mechanism is ex-post (direct trade)

weakly budget balanced since the two mechanisms TR and RO are both ex-post (direct trade)

weakly budget balanced (the one is in fact ex-post (direct trade) strongly budget balanced).

Ex-post efficiency guarantee When q(b, s) = 1, then the guarantee vacuously holds, while

when q(b, s) ≥ 2, the guarantee follows from the same guarantee by the TR mechanism.

Ex-ante efficiency guarantee We will show that for each valuation profile (b, s), our hybrid

mechanism achieves at least half of the gains from trade of the RVWM mechanism for the same

valuation profile. Fix a valuation profile (b, s). We consider several cases.
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• Consider the case where s(2) ≤ b(2). Note that this is precisely the case where q(b, s) ≥ 2. In

this case, our hybrid mechanism runs the TR mechanism, which by theorem 6.3 guarantees

at least a q(b,s)−1
q(b,s) ≥ 1/2 fraction of the realized optimal gains from trade ex-post, and so at

least a 1/2 fraction of the gains from trade of the RVWM mechanism.

• Consider the case where s(1) > b(1). Note that this is precisely the case where q(b, s) = 0. In

this case, it is efficient to have no trade for (b, s), and this is what both our hybrid mechanism

and the RVWM mechanism do, so our hybrid mechanism has the same gains from trade as

the RVWM mechanism.

• Consider the case where b(2) < s(2), and in addition either b(2) ≥ s(1) or s(2) ≤ b(1). In this

case, since q(b, s) = 1, we run the RO mechanism. By Lemma 6.2, in this case s(1) and b(1)

trade with probability at least 1/2, so our hybrid mechanism achieves at least a 1/2 fraction of

the realized optimal gains from trade, and so at least a 1/2 fraction of the gains from trade of

the RVWM mechanism.

• Finally, consider the case where b(2) < s(1) ≤ b(1) < s(2). In this case, the only possible trading

pair with positive gains is of s(1) with b(1), so if the RVWM mechanism achieves positive gains

from trade, then it trades this pair with positive probability. By observation 6.1, in this case

the GFT of the RVWM mechanism are therefore at least those of the RO mechanism with

SO parameters∞ (no constraint) and DB
b(1) (unconditioned distribution) and BO parameters

0 (no constraint) and DS
s(1)

(unconditioned distribution) on that edge. Since s(1) > b(2) = b̄

and b(1) < s(2) = s̄, we have by Lemma 6.2 that the probability that trade occurs between

s(1) and b(1) is at least as high in our hybrid mechanism (which runs the appropriate RO

mechanism, constrained and conditioned) as it is in the unconstrained and unconditioned

RO mechanism (that upper-bounds RVWM in this case). Therefore, in this case our hybrid

mechanism achieves at least the gains from trade of the RVWM mechanism.

Combining all of the above, we have that the expected gains from trade of our hybrid mechanism

are at least a 1/2-fraction of those of the RVWM mechanism, and so by theorem 6.4 at least a

1/4-fraction of the expected optimal gains from trade ex-ante (second-best).
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6.5 Main Results for Matching Markets

In this section we will generalize the results of Section 6.4 to matching markets. Recall that a

matching market is given by an undirected bipartite graph G = (S,B,E) with nodes on one side

representing the sellers and nodes on the other side representing the buyers, with edges indicating

possible trades. Recall that a profile (b, s) assigns a value bi for each buyer i ∈ B and a cost sj for

each seller j ∈ S.

6.5.1 A Trade Reduction Mechanism for Matching Markets

We first present a generalized Trade Reduction mechanism for matching markets. Like the Trade

Reduction mechanism [McA92] for double-auctions, the Trade Reduction Mechanism for matching

markets that we define below picks a subset of the “first-best” trade, and determines the payments

based on the values and costs of the agents that it removed from the first-best. The details are,

however, more subtle than in the double-auction setting.

Recall from Theorem 6.3 that for every valuation profile (b, s), the TR mechanism for double

auctions attains GFT of at least a 1 − 1
q(b,s) fraction of FB-GFT(b, s). We note that giving the

same guarantee for matching markets, with q(b, s) remaining total the size of trade in the market, is

not possible — just consider a matching market that consists of two connected components, each a

double auction. So, to phrase our TR mechanism for matching markets, we will first have to define

some notation that will eventually help us phrase its GFT guarantee (which will still generalize the

1− 1
q(b,s) of TR for double auctions, but in a slightly different way).

We say that the classes of buyer i and i′ are the same if for any seller j it holds that (i, j) ∈ E if

and only if (i′, j) ∈ E. Similarly, we define classes for sellers.15 That is, two agents are of the same

class if in any case that one of them can trade with some agent x, it also holds that the other agent

can trade with agent x. Thus, nodes in the graph can be partitioned into equivalent classes, where

each equivalent class consists of all agents of some fixed class. Each such class either includes only

buyers, or only sellers, but never both. Let Tt denote the set of agents of class t. For each class t

15. Note that the classes that we define depend neither on the values of the buyers nor on the costs of the sellers
(nor on the distributions from which these values/costs are drawn).
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we denote by qt = qt(M(b, s)) the number of agents of class t that are matched in M(b, s), that is

qt = |Tt ∩M(b, s)|. Additionally, we denote by dt = dt(M(b, s)) the number of distinct classes t′

such that there is an edge in M(b, s) between an agent of class t and an agent of class t′.

Definition 6.3 (Trade Reduction Mechanism for Matching Markets). Fix a matching market

G = (S,B,E). The Trade Reduction mechanism for G gets as input a profile (b, s) and outputs an

allocation and payments as follows.

• Given profile (b, s), let M(b, s) be the “first-best” matching. Any agent not in M(b, s) is

marked as a loser and does not trade, paying 0.

• For each class t, recall that qt is the number of agent of class t that are matched in M(b, s)

and dt is the number of different classes that trade with agents of class t in M(b, s).

– For each buyer class t, the set of trading buyers will be the set of qt − dt highest-value

buyers of class t (breaking ties lexicographically by IDs).16 We say that dt buyers of class

t were reduced. Each buyer of class t pays the highest value reported by any reduced buyer

of class t.

– For each seller class t, the set of trading sellers will be the set of qt−dt lowest-cost sellers

of class t (breaking ties lexicographically by IDs).17 We say that dt sellers of class t were

reduced. Each buyer of class t is paid the lowest cost reported by any reduced seller of

class t.

We denote the set of agents that are trading under this mechanism by TR(b, s).

The following theorem presents the properties of the Trade Reduction Mechanism for matching

markets. In particular, it shows that the mechanism provides some ex-post GFT guarantees which

is a function of the maximum weight matching M(b, s). As with the TR mechanism for double

auctions, this mechanism does not provide any ex-ante guarantees, though, even with respect to

16. Note that the number of trading buyers is non-negative, as for every class t it holds that qt ≥ dt.

17. Note that the number of trading sellers is non-negative, as for every class t it holds that qt ≥ dt.
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the second-best mechanism. In particular, with a single trade in FB-GFT(b, s), there will be no

trade in this mechanism.

Theorem 6.6. The Trade Reduction Mechanism for matching markets is ex-post IR, ex-post IC,

ex-post (direct trade) weakly budget balanced, and for any (b, s) the fraction of the gains from trade

of FB-GFT(b, s) that it attains is at least min
{

1− dt
qt

∣∣ class t s.t. qt > 0
}

.18

We note that guarantee from Theorem 6.6 of the TR mechanism attaining a fraction-of-

FB-GFT(b, s) of at least α(b, s) = min
{

1 − dt
qt

∣∣ class t s.t. qt > 0
}

coincides in the double-

auction setting with the guarantee of at least 1 − 1
q(b,s) from Theorem 6.3, and naturally gen-

eralizes it. Another generalization for matching markets of the fraction 1 − 1
q(b,s) that one may

find natural, which also coincides with it in the double-auction setting, is β(b, s) = min
{

1 −
1
rt,t′

∣∣ classes (t, t′) s.t. rt,t′ > 0
}
, where for any buyers’ class t and sellers’ class t′, we use rt,t′ to

denote the number of buyers of class t that are matched with sellers of class t′ in M(b, s). While

this alternative generalization is conceptually interesting in its own right, we in fact show that for

every valuation profile it holds that β(b, s) ≤ α(b, s), and so a GFT guarantee of β(b, s) follows

from the GFT guarantee of α(b, s) from theorem 6.6:

Corollary 6.1. For any (b, s), the fraction of the GFT of FB-GFT(b, s) that the TR mechanism

for matching markets attains is at least min
{

1− 1
rt,t′

∣∣ classes (t, t′) s.t. rt,t′ > 0
}
.

The proofs of Theorem 6.6 and corollary 6.1 are given in Appendix C.4.

6.5.2 Offering Mechanism for Matching Markets

Before defining our hybrid mechanism for matching markets, we first define an offering mechanism

for matching markets, analogous to the specific instance of the RO mechanism (including the specific

offer constraints and conditioned distributions) that our hybrid mechanism for double auctions runs

whenever q(b, s) = 1 in that setting. In this mechanism, agents not in M(b, s) never trade, and

18. Note that dt, qt and rt,t′ are all function of M(b, s), so they are functions of the profile (b, s). This is similar
to q(b, s) being a function of (b, s) for Trade Reduction in double auctions.
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agent in a pair (i, j) ∈M(b, s) either trades in that pair or does not trade at all. This mechanism

is defined as follows.

Definition 6.4 (Offering Mechanism for Matching Markets). The mechanism iterates over all

edges (i, j) ∈M(b, s), and for each such edge acts as follows.

• Let s̄ = s̄(i,j)(b, s) be the minimal bid of buyer i such that any higher bid causes i to be in the

first-best in the market (S \ {j}, B), i.e., the market without seller j. We set s̄ = ∞ if no

such bid exists.

• Let b̄ = b̄(i,j)(b, s) be the maximal bid (reported cost) of seller j that causes j to be in the

first-best in the market (S,B \ {i}), i.e., the market without buyer i. We set b̄ = 0 if no such

bid exists.

Now, to decide whether trade occurs between i and j and at which price, run the RO mechanism

on this edge with SO parameters s̄ and DB
i |≥b̄ and BO parameters b̄ and DS

j |≤s̄.

We note that the above offer constraints s̄ and b̄ precisely generalize the offer constraints from

our hybrid mechanism for double auctions from section 6.4. Indeed, in a double auction, the minimal

bid of buyer b(1) that causes her to be in the first-best in the market (S \ {s(1)}, B) without s(1)

is max{b(2), s(2)}, and when q(s, b) = 1 in the double-auctions setting (this is the case where we

run the RO mechanism) it must be that b(2) < s(2) and so max{b(2), s(2)} = s(2), which how we set

the constraint s̄ in that mechanism. The choice of b̄ is similar. The careful definition of s̄ and b̄

above guarantees the two properties of these thresholds that our double-auction constraints readily

satisfied: first, both b̄ and s̄ are completely independent of bi and of sj , and second, as we will see in

our analysis, b̄ coincides with the minimal winning bid of buyer i in the original market whenever

this constraint is binding. (And similarly for s̄ and seller j.)

To show that the Offering Mechanism is well-defined, we have to make sure that the SO and BO

parameters that we specify for the RO mechanism meet the conditions imposed in the definition of

that mechanism. The following lemma does precisely this.

Lemma 6.3. For every (i, j) ∈M(b, s), it holds that (1) s̄ ≥ sj, (2) b̄ ≤ bi, and (3) s̄ ≥ b̄.
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We next prove that the Offering Mechanism is truthful, budget balanced, and has an ex-ante

guarantee.

Theorem 6.7. The Offering Mechanism is BIC, ex-post IR, ex-post (direct trade) strongly budget

balanced, and ex-ante guarantees at least a 1/4 of the expected GFT of the second-best mechanism.

The proofs of Lemma 6.3 and Theorem 6.7 is given in Appendix C.6. As noted in the intro-

duction, proving the ex-ante guarantee of the Offering Mechanism for matching markets is the

most technically challenging part of our analysis. The main ideas behind this proof are surveyed

in Section 6.6.

6.5.3 Hybrid Mechanism for Matching Markets

We are now ready to define our hybrid mechanism for matching markets. It combines the TR

mechanism and the Offering Mechanism in a proper way. We note that for double auctions, the

mechanism defined below reduces precisely to our hybrid mechanism for double auctions from

Section 6.4.

Definition 6.5 (Hybrid Mechanism for Matching Markets). Let G = (S,B,E) be the constraints

graph. Our hybrid mechanism is a direct revelation mechanism. Given the the reports (b, s) (which

is assumed to be truthful), the mechanism computes M(b, s) and α(b, s) = min
{

1−dt
qt

∣∣∣ class t s.t. qt > 0
}

and runs as follows.

• If α(b, s) ≥ 1/2, the mechanism computes the set of trading agents and payments by running

the Trade Reduction Mechanism for matching markets defined above.

• Otherwise, the mechanism computes the set of trading agents and payments by running the

Offering Mechanism for matching markets defined above.

We are now ready to formally state the main result of this paper.

Theorem 6.8. The Hybrid Mechanism for matching markets is ex-post IR, BIC and ex-post (direct

trade) weakly budget balanced, which satisfies both of the following.
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• The expected GFT of this mechanism are at least 1/4 of those of the second-best mechanism.

• For any (b, s) with α(b, s) ≥ 1/2, the fraction of the gains from trade of FB-GFT(b, s) that

this mechanism attains is at least α(b, s) ≥ 1/2.

The hybrid mechanism for matching markets inherits from the Trade Reduction mechanism for

matching markets also the ex-post guarantee of Corollary 6.1:

Corollary 6.2. Let β(b, s) = min
{

1 − 1
rt,t′

∣∣ classes (t, t′) s.t. rt,t′ > 0
}

. For any (b, s) with

β(b, s) ≥ 1/2, the fraction of the gains from trade of FB-GFT(b, s) that the Hybrid Mechanism

for matching markets attains is at least β(b, s) ≥ 1/2.

The proofs of theorem 6.8 and corollary 6.2 are given in Appendix C.7.

6.6 Sketch of the Proof of Ex-Ante Guarantee of the Offering

Mechanism for Matching Markets

In this section, we sketch the proof of the ex-ante guarantee of the Offering Mechanism, which

has been stated in Theorem 6.7. The full proof is relegated to Appendix C.6. To prove that

the Offering Mechanism ex-ante guarantees at least a 1/4-fraction of the gains from trade of the

second-best mechanism, we compare the Offering Mechanism to the RVWM mechanism. Due to

Theorem 6.4, it suffices to show the following lemma.

Lemma 6.4. For any valuation profile (b, s), the gains from trade of the Offering Mechanism for

matching markets is at least half of the gains from trade of the RVWM mechanism for that profile.

We first provide the intuition behind Lemma 6.4. Fix a valuation profile (b, s). Let M∗1 =

M∗1 (b, s) be the maximum-weight matching of G when edge weight is ϕ̃i(bi) − sj for (i, j) ∈ E

and M∗2 = M∗2 (b, s) be the maximum-weight matching of G when edge weight is bi − τ̃j(sj) for

(i, j) ∈ E.19 The RVWM mechanism runs the Generalized Seller Offering Mechanism (GSO) with

probability 1/2 and in that case obtains the GFT of the matching M∗1 , and it runs the Generalized

19. ϕ̃i and τ̃j are the ironed virtual value functions of buyer i and seller j, respectively.
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Buyer Offering Mechanism (GBO) with probability 1/2 and in that case obtains the GFT of the

matching M∗2 . See Definition 5.3 for the formal definition of GSO and GBO. It suffices to show

that the GFT of each of the two matchings M∗1 and M∗2 can be bounded by twice the GFT of the

Offering Mechanism for the valuation profile (b, s). We will show how to bound the GFT of M∗1 .

A similar argument can bound the GFT of M∗2 .

Consider the first-best matching M = M(b, s) together with the matching M∗1 . Each connected

component of the union of the two matchings M ∪M∗1 is either a maximal alternating path20 or

an alternating cycle21. We will show that all alternating cycles consist of two edges between the

same seller and buyer (see Figure 6.1 (a) ) due to our tie-breaking rules (proved in Corollary C.2)

and that the GFT of the Offering Mechanism from that buyer-seller pair is at least the GFT of

the RVWM mechanism from that pair. For an alternating path, we will consider the cases of an

even or an odd number of edges of the alternating path separately, and show that in either case,

the GFT of our Offering Mechanism from the path is at least half of the GFT of the matching

M∗1 from that path. Given the fact that M and M∗1 are each a maximum-weight matching w.r.t.

the edge weights bi − sj and ϕ̃i(bi)− sj respectively, we prove that any maximal alternating path

that is not a cycle, starts with a buyer and an edge from M . See Corollary C.3 for more details.

Figure 6.1 illustrates the three different cases in our proof.

The following lemma plays a central role in our proof of Lemma 6.4. It provides a sufficient

condition for a buyer-seller pair to trade in that mechanism.

Lemma 6.5. Fix valuation profile (b, s). For every (i, j) ∈M(b, s), if j is in M−i(b, s) then buyer

i will trade with seller j in the BO Mechanism, and if i is in M−j(b, s) then buyer i will trade with

seller j in the SO Mechanism. Thus, in either case i and j will trade with probability at least 1/2

in the Offering Mechanism.

The next lemma shows that any seller who is not at the end of any alternating path, must still

be in the first-best matching if we remove the buyer that is matched to her.

20. A path is called an alternating path if the edges of the path alternate between the two matchings. A path is
maximal if it is not a subpath of any other path.

21. An alternating cycle is an alternating path whose two endpoints coincide.
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(a) (b) (c)

Figure 6.1: Example of the three different cases considered in the proof of the ex-ante guarantee: (a)
alternating cycle; (b) maximal alternating path with even number of edges; (c) maximal alternating
path with odd number of edges.

Lemma 6.6. Let A be an acyclic maximal alternating path of M(b, s)∪M∗1 (b, s). For every seller

j ∈ A who is not at the end of the path, it holds that j ∈M−i(b, s), where i is the buyer such that

(i, j) ∈M(b, s).

Combining Lemma 6.6 and Lemma 6.5, we show that all sellers in a maximal alternating path

of even length will trade in the BO mechanism with the buyers that are matched to them in the

first-best matching.

Next, we consider maximal alternating paths with odd length and present another useful char-

acterization. We assume w.l.o.g. that any maximal alternating path of M ∪M∗1 starts with a buyer

and an edge in M (by Corollary C.3). Let GFTM ′(U) be the GFT of all edges of M ′ that are

contained in U .

Lemma 6.7. For K > 3, let A = (i1j1i2j2...iL−1jL−1iLjL), be a maximal alternating path of odd

number of edges of M ∪M∗1 with il denoting buyers and jl denoting sellers, and with (i1, j1) ∈M .

It holds that

• if biL > bi1 then iL ∈M−jL.

• if biL ≤ bi1 then GFTM (A \ {iL, jL}) ≥ GFTM∗1 (A).

Proof of Lemma 6.4. By Corollary C.2, any alternating cycle of M and M∗1 has only two (identical)

undirected edges (i, j) ∈ M ∩M∗1 . If j ∈ M−i(b, s) or i ∈ M−j(b, s), by Lemma 6.5 buyer i will

166



trade with seller j in the Offering Mechanism with probability at least 1/2, which obtains at least

half of the GFT that the RVWM mechanism obtains on (i, j) ∈ M∗1 when the profile is (b, s).

Otherwise, since i /∈ M−j we have that s̄ ≥ bi, and since j /∈ M−i we have that b̄ ≤ sj . Since

trade occurs with positive probability on (i, j) in the RVWM mechanism, then similarly to the

double-auction case, by Observation 6.1, our Offering Mechanism achieves at least the gains from

trade of the RVWM mechanism on this edge (and therefore, on any alternating cycle).

Consider any maximal alternating path of even number of edges. By Lemma 6.5 and Lemma 6.6,

every pair (i, j) ∈ M trades in the BO mechanism, so whenever the BO mechanism runs, the

maximal GFT (first-best) of the agents in the alternating path, which is at least the GFT of M∗1

from these agents, is obtained. The Offering Mechanism runs the BO mechanism is probability 1/2,

so in expectation it obtains at least 1/2 the GFT of M∗1 from this path.

Now consider any maximal alternating path (i1j1i2j2...iL−1jL−1iLjL) of odd number of (at

least 3)22 edges, which starts with buyer i1 and an edge from M . Here L ≥ 2. By Lemma 6.5 and

Lemma 6.6, for every l = 1, 2, . . . , L− 1, buyer il will trade with seller jl in the BO mechanism. If

bi1 ≥ biL , the claim holds since by Lemma 6.7 the GFT of M∗1 from this path is at most the GFT

of the first L−1 pairs in the first-best matching M , and all these L−1 pairs will be traded in the

BO mechanism, which happens with probability 1/2.

If bi1 < biL , by Lemma 6.5 and Lemma 6.7, buyer iL will trade with seller jL in the SO

mechanism, which happens with probability 1/2. Therefore, every pair (i, j) ∈ M is traded with

probability at least 1/2. This obtains half the maximal GFT (first-best) of this path, which is at

least half the GFT of M∗1 in this path.

Similarly, we can show that the Offering Mechanisms obtains at least 1/2 of the GFT of M∗2 .

Since the expected GFT of the RVWM mechanism is the average GFT of M∗1 and M∗2 , we conclude

that the Offering Mechanisms obtains at least 1/2 the GFT of the RVWM mechanism.

22. If there is a single edge, then it is only in M . We only need to cover edges in M∗1 .
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6.7 Discussion

One of the biggest pushbacks against constant-approximation mechanisms is that while they pro-

vide some worst-case guarantee, they often do not provide any guarantee for significantly better

performance “when the instances are easy to handle”. We believe that a mechanism that not only

provides a worst-case guarantee, but also provides a guarantee of performing very well on “easy

instances” is much more appealing and more likely to be used. In our setting, we implement this

agenda by postulating that “nice instances” are large-market instances (for some formal sense of

“large”), and we are able to achieve the best of both worlds: a guaranteed constant approximation

on one hand, and asymptotic optimality when the markets are large on the other hand. We believe

that presenting similar results in other settings is an interesting research direction.

Mechanisms with such “worse-case and best-case guarantees” are of particular appeal when the

social planner needs to fix the mechanism well before the exact market characteristics are known,

for example, when the mechanism is defined by some laws or regulations (e.g., FCC auctions) that

are fixed well in advance.
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Chapter 7

Multi-Dimensional Two-sided

Markets

In this chapter we move on to multi-dimensional settings in two-sided markets. We focus on a

special setting with multiple unit-supply sellers and a single constrained-additive buyer. We design

simple, truthful and budget balanced mechanism to achieve an unconditional approximation to the

second-best GFT.

In Section 7.1, we give an overview of the results and techniques covered in this chapter. In

Section 7.2 we introduce the notations used in this chapter. In Section 7.3 we present a distribution-

parameterized approximation to the first-best GFT. In Section 7.4, we prove an unconditional

approximation to the second-best GFT, using results from Section 7.3. In Section 7.5 we draw a

connection between a lower bound to our analysis and one of the major open problems in a special

matching market. In Section 7.6 we present some examples toward the lower bound of our analysis.

7.1 Overview of Results and Techniques

We focus on a setting with n heterogeneous items, where each item is owned by a different seller i,

and there is a constrained-additive buyer with feasibility constraint F . The first main result is a

distribution-parameterized approximation to the first-best GFT.
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Result 1. There is a fixed posted price mechanism whose GFT is an O( log(1/r)
δη )-approximation to

the first-best GFT when the buyer’s feasibility constraint F is (δ, η)-selectable (Definition 2.5), and

an O(log(n) · log(1/r))-approximation for a general constrained-additive buyer. r is a distributional

parameter: the minimum trade probability over all items. We define the trade probability of item

i as the probability that the buyer’s value for i exceeds the seller’s cost.

As shown in Section 2.7, many familiar feasibility constraints such as matroid, matching, knap-

sack, and the compositions of each, are known to be (δ, η)-selectable with constant δ and η [FSZ16],

so our result provides an O(log(1/r))-approximation for all of these environments. The main take-

away from Result 1 is that there is an O(log(1/r))-approximation to the first-best GFT for the

feasibility constraints stated above. Next we introduce the class of fixed posted price mechanisms.

Fixed Posted Price (FPP): In a fixed posted price mechanism, there is a collection of fixed

prices
{

(θBi , θ
S
i )
}
i∈[n]

, where θBi ≥ θSi for each item i. Let R be the set of sellers that are willing to

sell their item at price θSi . The buyer can purchase any item i in R at price θBi . Trade only occurs

when the buyer wants to buy the item and the seller is willing to sell it.

Our result is a generalization of the result by Colini-Baldeschi et al. [CBGdK+17], where they

provide the same approximation using a fixed posted price mechanism for bilateral trade. Impor-

tantly, our approximation ratio has the optimal dependence on r up to a constant factor. Exam-

ple 7.1 (adapted from an example by Blumrosen and Dobzinski [BD16]) in Section 7.6 shows that,

for any r > 0, there is an instance of our problem with minimum trade probability r such that

no fixed posted price mechanism can achieve more than a c
log(1/r) -fraction of even the second-best

GFT for some absolute constant c. In our fixed posted price mechanism, we allow θBi to be strictly

greater than θSi . This is crucial for our analysis, but makes the mechanism only ex-post weakly

budget balanced. We leave it as an interesting open question as to whether our approximation

ratio can be achieved by an ex-post strongly budget balanced fixed posted price mechanism.

When the trade probability of each item is not too low, our first result provides a good ap-

proximation to the first-best GFT using a simple fixed posted price mechanism. However, r can

be arbitrarily small in the worst-case, making our approximation too large to be useful. Is it pos-
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sible to produce an unconditional worst-case approximation guarantee? We provide an affirmative

answer to this question with an unconditional O(log n)-approximation to the second-best GFT.

Result 2. There is a dominant strategy incentive compatible (DSIC), ex-post IR, and BB mech-

anism whose GFT is at least Ω( δη
logn)-fraction of the second-best GFT when the buyer’s feasibility

constraint F is (δ, η)-selectable, and at least Ω( 1
log2(n)

)-fraction of the second-best GFT when the

buyer is general constrained-additive.

As we show in Example 7.1, no fixed posted price mechanism can provide such a guarantee. We

develop two new mechanisms. The first one is a multi-dimensional extension of the Generalized

Buyer Offering Mechanism (Definition 5.3). We provide a full description of the mechanism in

Section 7.4.2. The second mechanism is a generalization of the fixed posted price mechanism that

we call the Seller Adjusted Posted Price Mechanism.

Seller Adjusted Posted Price (SAPP): The sellers report their costs s. The mechanism maps

the cost profile to a collection of posted prices {θi(s)}i∈[n] for the buyer. The buyer can purchase

at most one item, and pays price θi(s) if she buys item i. An item trades if the buyer decides to

purchase that item.

The main advantage of using a SAPP mechanism is that it provides the flexibility to set

prices based on the sellers’ costs, which allows a SAPP mechanism to achieve GFT that can be

unboundedly higher than the GFT attainable by even the best fixed posted price mechanism (see

Example 7.2). Example 7.3 in Section 7.6 shows that the class of SAPP mechanisms is necessary

to obtain any finite approximation ratio to the second-best: both the best FPP mechanisms and

the Generalized Buyer Offering Mechanism have an unbounded gap compared to the second-best

GFT, even in the bilateral trade setting.

An astute reader may have already realized that the payments to the sellers are not yet defined in

the SAPP mechanism. This is because the allocation rule of a SAPP mechanism is not necessarily

monotone in the sellers’ costs if the mappings {θi(·)}i∈[n] are not chosen carefully. Interestingly,

we show that if the mappings {θi(·)}i∈[n] satisfy a strong type of monotonicity that we call bi-

monotonicity (Definition 7.1), then the allocation rule is indeed monotone in each seller’s reported
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cost. Since the sellers are single-dimensional, we can apply Myerson’s payment identity to design

an incentive compatible payment rule. The final property we need to establish is budget balance,

which turns out to be the major technical challenge for us. We provide more details and intuition

about our solution to this challenge in the discussion of the techniques.

In Section 7.5, we draw a connection between a lower bound to our analysis and one of the major

open problems in single dimensional two-sided markets. We prove a reduction from approximating

the first-best GFT in the unit-demand setting to bounding the gap between the first-best and

second-best GFT in a related single-dimensional setting (Theorem 7.4). If in the latter market, the

gap between first-best and second-best GFT is at most c, then our mechanism is a 2c-approximation

to the first-best GFT in the former market.

7.1.1 Our Approach and Techniques

1. log(1/r)-Approximation (Section 7.3): Our starting point is similar to Colini-Baldeschi et

al. [CBGdK+17]. We first argue that the probability space of each item i can be partitioned into

O(log(1/r)) events {Eij}j∈[log(2/r)], such that in each event Eij , the median of the buyer’s value bi

for item i dominates the median of the i-th seller’s cost si. The first-best GFT is upper bounded

by the sum of the contribution to GFT from each of these events. In bilateral trade, simply setting

the posted price to be the median of the buyer’s value is sufficient to obtain 1/2 of the optimal

GFT from Eij as shown by McAfee [McA08]. The log(1/r)-approximation by Colini-Baldeschi et

al. [CBGdK+17] essentially follows from this argument.

To illustrate the added difficulty from multiple items, it suffices to consider a unit-demand

buyer. Setting the posted price on each item to be the median of the buyer’s value does not provide

a good approximation, because the buyer will purchase the item that gives her the highest surplus,

which could be very different from the item that generates the most GFT. Similar scenarios are

not uncommon in multi-dimensional auction design, and prophet inequalities [KW12, KS78] have

been proven to be effective in addressing similar challenges. The main barrier for applying the

prophet inequality to two-sided markets is choosing the appropriate random variable as the reward

for the prophet/gambler. It is not obvious how to choose a random variable that will translate to a

172



two-sided market mechanism, and in fact, for some choices, no translation between the thresholding

policy for the gambler and a two-sided market mechanism is possible.1 Our key insight is to replace

event Eij with a related but different event Eij where there is a fixed number θij such that si and

bi are always separated by θij (si ≤ θij ≤ bi). We further show that the GFT contribution from

event Eij is at least half of the GFT contribution from Eij . Importantly, the GFT contributed by

item i in event Eij : (bi − si)+ 2 = (bi − θij)+ · 1[si ≤ θij ] + (θij − si)+ · 1[bi ≥ θij ]. Note that if

we replace Eij with Eij , the LHS can exceed the RHS when θij > bi > si. The decomposition of

(bi− si)+ using θij is critical for us to apply the prophet inequality. We can now choose the reward

for the gambler to be vi = (θij − si)+ · 1[bi ≥ θij ], and the thresholding policy with a threshold T

can be implemented with a posted price mechanism where the price for the buyer is θij and the

price for the seller is θij − T .3

When the buyer’s feasibility constraint is general downward-closed, the only known prophet

inequalities are due to Rubinstein [Rub16] and areO(log n)-competitive. Unfortunately, the prophet

inequalities in [Rub16] are highly adaptive, and thus cannot translate into prices for a single buyer.

Further, an almost matching lower bound of O(log n/ log log n) is shown by Babaioff et al. [BIK07],

precluding much possible improvement for this approach. Instead, we use a constrained fixed posted

price mechanism that forces the buyer to buy at least h items (at their posted prices) if she wants

to buy any; otherwise, she must leave with nothing. We divide the same variables vi into O(logm)

buckets based on their contribution to seller surplus. Within each bucket k, all variables vi lie in

[Lk, 2Lk] for some Lk. We prove a concentration inequality for the maximum size of a feasible and

affordable set. It guarantees that with constant probability, the buyer will be willing to purchase

at least h items (for an appropriate choice of h), generating sufficient GFT.

1. For example, one can choose the GFT from the ith item (bi − si)+ as the reward of the ith round, but no fixed
posted price mechanism corresponds to the policy that only accepts items whose GFT is above a certain threshold.
Indeed, no BIC, IR, and BB mechanism can implement a thresholding policy with threshold 0 due to the impossibility
result by Myerson and Satterthwaite [MS83].

2. x+ = max{x, 0}.

3. A similar fixed posted price mechanism can take care of (bi − θij)+ · 1[si ≤ θij ].
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2. Benchmark of the Second-Best GFT (Section 7.4.1): As our goal is to obtain a bench-

mark of the second-best GFT that is unconditional, the benchmark from the previous (distribution-

parameterized) result cannot be used here. We derive a novel benchmark in two steps. Step (i): we

create two imaginary one-sided markets: the super seller auction and the super buyer procurement

auction. We show that the second-best GFT of the two-sided market is upper bounded by the opti-

mal profit from the super seller auction and the optimal buyer utility from the super buyer procure-

ment auction. Step (ii): we provide an extension of the marginal mechanism lemma [HN12,CH13]

to the optimal profit. We show that the optimal profit for selling all items in [m] is upper bounded

by the first-best GFT from items in T and the optimal profit for selling items in [n]\T , where T is

an arbitrary subset of [n]. Our key insight is to choose T to be the “likely to trade” items, which

are the ones with trade probability at least 1/n, and apply the marginal mechanism lemma. This

partition allows us to use our first result to provide an O(log n)-approximation to the first-best

GFT of the “likely to trade” items using a fixed posted price mechanism. Moreover, we prove

that the optimal buyer utility from the super buyer procurement auction is upper bounded by the

GFT of an extension of the “generalized buyer offering mechanism” [BCWZ17]. Finally, we provide

an O(log n)-approximation to the optimal profit for selling the “unlikely to trade” items using a

SAPP mechanism. Note that the approximation crucially relies on the fact that in expectation at

most one item can trade among the “unlikely to trade” items.

3. Budget Balance of Seller Adjusted Posted Price Mechanisms (Section 7.4.3): As

mentioned earlier, we restrict our attention to bi-monotonic mappings from cost profiles to buyer

prices {θi(·)}i∈[n] to guarantee incentive-compatibility. However, budget balance does not fol-

low from bi-monotonic mappings. We extend the definition of bi-monotonicity to allocation rules

and show that all bi-monotonic allocation rules can be transformed into a DSIC, IR, and BB

SAPP mechanism. In our proof of the budget balance property, we identify an auxiliary allocation

rule q, which may not be implementable by a BB mechanism. We then show that the allocation

rule of our SAPP mechanism is “coupled” with q. In particular, our allocation probability is al-

ways between q/4 and q/2. The upper bound q/2 allows us to upper bound the payment to the
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seller, and the lower bound q/4 allows us to lower bound the payment we collect from the buyer.

Surprisingly, we can prove that the upper bound of the payment to the seller is no more than the

lower bound of the buyer’s payment. We suspect this type of allocation coupling argument may

also be useful in other problems.

7.2 Notations in This Chapter

Two-sided Markets. We focus on two-sided markets between a single buyer and n unit-supply

sellers. Every seller i sells a heterogeneous item. For simplicity we denote the item sold by seller

i as item i. Each seller i has cost si for producing item i, where si is drawn independently from

distribution DSi . The buyer has value bi for every item i where bi is drawn independently from

distribution DBi . DSi and DBi are public knowledge. Let DB = ×ni=1DBi be the distribution of

the buyer’s value profile and DS = ×ni=1DSi be the distribution of the cost profile for all sellers.

Let b = (b1, ..., bn) and s = (s1, ..., sn) denote the value (or cost) profile for the buyer and all

sellers. For notational convenience, for every i we denote b−i (or s−i) to be the value (or cost)

profile without item i. For every i, Fi, fi (or Gi, gi) denote the cumulative distribution function

and density function of DBi (or DSi ). Throughout this chapter we assume that all distributions

are continuous over their support, and so the inverse cumulative functions F−1
i and G−1

i exist.4

Throughout this chapter, we assume that the buyer has a constrained-additive valuation over the

items (Definition 2.1). We denote F the downward-closed feasibility constraint of her valuation.

Mechanism and Constraints. Any mechanism in the two-sided market defined above is spec-

ified by the tuple (x, pB, pS) where x is the allocation rule of the mechanism and pB, pS are the

payment rules. For every profile (b, s) and every i, xi(b, s) is the probability that the buyer trades

with seller i under profile (b, s). pB(b, s) is the payment from the buyer and pSi (b, s) is the gains

4. Any discrete distribution can be made continuous by replacing each point mass a with a uniform distribution
on [a− ε, a+ ε], for arbitrarily small ε. Thus our result applies to discrete distributions as well by losing arbitrarily
small GFT.
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for (or payment to) seller i. All agents in the market have linear utility functions.5

Gains from Trade. We aim to maximize the Gains from Trade (GFT), i.e. the gains of social

welfare induced by the mechanism. Formally, given a mechanism M = (x, pB, pS), the expected

GFT of M is

GFT(M) = Eb∼DB ,s∼DS [
∑n

i=1 xi(b, s) · (bi − si)] .

We use SB-GFT to denote the optimal GFT attainable by any BIC, IR, ex-ante WBB mech-

anism (also known as the “second-best” mechanism). Let FB-GFT denote the maximum possible

gains of social welfare among all feasible allocations (known as the “first-best”). Formally

FB-GFT = Eb∼DB ,s∼DS
[
maxS∈F

∑
i∈S(bi − si)

]
.

In Section 7.3, the distribution-parameterized approximation uses the parameter r, the mini-

mum probability over all items i that the buyer’s value for item i is at least seller i’s cost. Formally,

for every item i ∈ [m], let ri = Prbi∼DBi ,si∼DSi
[bi ≥ si] denote the probability that the buyer’s value

for item i exceeds seller i’s cost. Without loss of generality, assume that ri > 0 for all i ∈ [n].6 Let

r = mini∈[n] ri > 0.

7.3 A Distribution-Parameterized Approximation

In this section, we present an O( log(1/r)
δη )-approximation to FB-GFT when the buyer’s feasibility

constraint F is (δ, η)-selectable, and an O(log(n) · log(1
r ))-approximation for a general constrained-

additive buyer. In Section 7.3.1, we show that FB-GFT can be bounded by the sum of four

separate terms. In Section 7.3.2 we show that two of the terms (“buyer surplus”) are relatively

5. Without loss of generality we can assume that the mechanism will only allow the buyer to trade with a (possibly
randomized) set S of sellers where S ∈ F . For any trading set T , let S∗ denote the utility-maximizing feasible subset,
S∗ = argmaxS∈F,S⊆T

∑
i∈S bi. If we only allow the buyer to trade with the sellers in S∗ instead of all of T , the gains

from trade of the mechanism will not decrease.

6. If ri = 0 the mechanism should never trade between the buyer and seller i, and so it can remove seller i from
the market. This will not decrease the GFT of the mechanism as bi < si with probability 1.
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easy to bound using fixed posted price (FPP) mechanisms with the same prices posted on both sides.

In Section 7.3.3, we consider the special case of a unit-demand buyer and bound the other two terms

(“seller surplus”) using FPP mechanisms combined with the prophet inequality. In Section 7.3.4,

we bound the seller surplus for any selectable feasibility constraint by using a constrained FPP

mechanism. In Section 7.3.5, we present our result for a general constrained-additive buyer.

7.3.1 Upper Bound of FB-GFT.

For every i, let Fi = 1−Fi denote the complementary CDF of bi. Let xi and yi be the ri
2 -quantile of

the buyer’s and seller’s distribution for item i, respectively. Formally, xi = Fi
−1

( ri2 ), yi = G−1
i ( ri2 ).

We first prove that xi ≥ yi.

Lemma 7.1. For every i ∈ [n], xi ≥ yi.

Proof. Note that for every i ∈ [n], bi < xi ∧ si > xi implies that bi < si. We have

1− ri = Pr
bi∼DBi ,si∼DSi

[bi < si] ≥ Pr
bi,si

[bi < xi ∧ si > xi]

= (1− ri
2

) · (1− Pr
si

[si ≤ xi]).

Suppose xi < yi. Then (1− ri
2 ) · (1−Prsi [si ≤ xi]) ≥ (1− ri

2 )2 > 1− ri. This is a contradiction.

Thus xi ≥ yi.

In the following upper bound, we will separate the probability space for each item i into

2dlog(2/r)e events, and then divide the GFT into buyer surplus and seller surplus terms accord-

ing to the cutoff for each event. For every b, s, define the feasible set that maximizes the GFT

as S∗(b, s) = argmaxS∈F
∑

k∈S(bk − sk), and break ties arbitrarily. Observe the following upper
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bound for the first-best GFT:

FB-GFT = Eb,s[max
S∈F

∑
i∈S

(bi − si)+]

≤Eb,s [
∑

i(bi − si) · 1[i ∈ S∗(b, s)] · 1[bi ≥ si ∧ si < xi]]

+Eb,s [
∑

i(bi − si) · 1[i ∈ S∗(b, s)] · 1[bi ≥ si ≥ yi]] ,

where the inequality holds because xi ≥ yi for all i. We refer to the two terms of RHS as 1 and 2

accordingly. We first consider term 1 . For every i ∈ [n], j ∈ 1, 2, . . . , dlog(2
r )e, let θij = Fi

−1
( 1

2j
).

Let Eij be the event that Fi
−1

( 1
2j−1 ) ≤ si ≤ Fi

−1
( 1

2j
) ∧ bi ≥ Fi

−1
( 1

2j−1 ). Then we have

1 ≤
dlog( 2

r
)e∑

j=1
Eb,s [

∑
i(bi − si)+ · 1[i ∈ S∗(b, s) ∧ Eij ]].

As discussed in Section 7.1.1, in order to bound the benchmark with fixed posted price mech-

anisms, we will consider a more restrictive event Eij and show that the GFT contribution from

event Eij is at least half of the GFT contribution from Eij .

Lemma 7.2. For every i, j, let Eij be the event that Fi
−1

( 1
2j−1 ) ≤ si ≤ Fi

−1
( 1

2j
) ∧ bi ≥ Fi

−1
( 1

2j
).

Then the following inequality holds for every j = 1, . . . , dlog(2/r)e:

Eb,s [
∑

i(bi − si)+ · 1[i ∈ S∗(b, s) ∧ Eij ]]

≤2 · Eb,s

[∑
i(bi − si)+ · 1[i ∈ S∗(b, s) ∧ Eij ]

]
.

Moreover,

1 ≤ 2 ·
dlog(2/r)e∑

j=1

Eb,s

[
max
S∈F

∑
i∈S

{
(bi − θij)+ · 1[si ≤ θij ]

}]

+ 2 ·
dlog(2/r)e∑

j=1

Eb,s

[
max
S∈F

∑
i∈S

{
(θij − si)+ · 1[bi ≥ θij ]

}]
.

We will refer to the two terms of RHS as 3 and 4 accordingly.

Readers may notice that Pr[Eij ] = 1
2 · Pr[Eij ]. However, this alone does not prove the first
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statement of Lemma 7.2, since both the indicator 1[Eij ] and the contributed GFT (bi− si)+ ·1[i ∈

S∗(b, s)] depend on the realization of bi, si. In Lemma 7.2 we show that the two random variables

are positively correlated with respect to bi, which allows us to prove the first statement. The second

statement follows from the fact that (bi − si)+ ≤ (bi − θij)+ + (θij − si)+ for every bi, si, and that

S∗(b, s) ∈ F for every b, s.

In Lemma 7.3, we bound term 2 in a similar way. The proof of Lemmas 7.2 and 7.3 can be

found in Appendix D.1.

Lemma 7.3. For every i ∈ [n] and j = 1, . . . , dlog(2/r)e, let θ′ij = G−1
i ( 1

2j
). Then

2 ≤ 2 ·
dlog(2/r)e∑

j=1

Eb,s

[
max
S∈F

∑
i∈S

{
(bi − θ′ij)+ · 1[si ≤ θ′ij ]

}]

+ 2 ·
dlog(2/r)e∑

j=1

Eb,s

[
max
S∈F

∑
i∈S

{
(θ′ij − si)+ · 1[bi ≥ θ′ij ]

}]
.

We will refer to the two terms of RHS as 5 and 6 accordingly.

We refer to terms 3 and 5 as buyer surplus, and 4 and 6 as seller surplus. In the rest of

this section we will bound each term separately.

7.3.2 Bounding Buyer Surplus.

We bound terms 3 and 5 using fixed posted price mechanisms. Let GFTFPP denote the opti-

mal GFT among all fixed posted price mechanisms. Recall that our market is not symmetric: a

single multi-dimensional buyer with a feasibility constraint faces multiple single-dimensional sell-

ers. As a result, even for the general constrained-additive buyer, bounding buyer surplus is fairly

straightforward using fixed price mechanisms that set θSi = θBi = θij (or θSi = θBi = θ′ij) for each

term.

Lemma 7.4. For any {pi}i∈[n] ∈ Rn+,

Eb,s

[
max
S∈F

∑
i∈S
{(bi − pi)+ · 1[si ≤ pi]}

]
≤ GFTFPP.
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Thus both 3 and 5 are upper bounded by O(log(1
r )) ·GFTFPP.

Proof. Consider the fixed posted price mechanism M with θSi = θBi = pi. For every s, let A(s) =

{i ∈ [n] | si ≤ pi} be the set of available items. Then the buyer will choose the best set S ⊆

A(s), S ∈ F that maximizes
∑

i∈S(bi − pi)+ (and not buy any item if bi − pi ≤ 0 for all i). Thus

the gains from trade
∑

i∈S(bi − si) is at least
∑

i∈S(bi − pi)+ ≥ 0. We have

GFT(M) ≥Eb,s

[
max

S⊆A(s),S∈F

∑
i∈S

(bi − pi)+

]

=Eb,s

[
max
S∈F

∑
i∈S

{
(bi − pi)+ · 1[si ≤ pi]

}]
.

To bound terms 3 and 5 , just apply the above inequality with pi = θij (or θ′ij).

7.3.3 Bounding Seller Surplus for One Unit-Demand Buyer.

In the remainder of this section, we will bound the seller surplus terms ( 4 and 6 ). As a warm-up,

we first focus on the case where the buyer is unit-demand, i.e. the buyer is only interested in at

most one item. Here, the prophet inequality suffices for our bound.

Lemma 7.5. When the buyer is unit-demand, for any {pi}i∈[n] ∈ Rn+, we have

Eb,s [maxi{(pi − si)+ · 1[bi ≥ pi]}] ≤ 2 ·GFTFPP.

Hence terms 4 and 6 are both upper-bounded by O(log(1
r )) ·GFTFPP.

Proof. For every i, let vi = (pi − si)+ · 1[bi ≥ pi] be a random variable that depends on bi and

si. Let v = {vi}i∈[n]. Let Vi be the distribution of vi where bi ∼ DBi , si ∼ DSi , and V = ×ni=1Vi

be the distribution of v. Then the LHS of the inequality in the Lemma statement is equal to

Ev∼V [maxi vi].

Consider any threshold ξ > 0. Observe that vi ≥ ξ if and only if bi ≥ pi ∧ pi − si ≥ ξ. Consider

the fixed posted price mechanism M with θBi = pi and θSi = pi − ξ for every i ∈ [n]. Whenever

the buyer purchases some item i, we must have bi ≥ pi (the buyer buys) and si ≤ pi − ξ (the seller
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sells), and the contributed GFT satisfies bi − si ≥ pi − si ≥ ξ. In addition, the buyer will purchase

some item if and only if there exists some i such that vi ≥ ξ. Therefore we can apply the prophet

inequality [KW12, KS78, SC+84] with threshold ξ = 1
2 · Ev∼V [maxi vi] to ensure that the GFT of

mechanism M is at least 1
2Ev∼V [maxi vi].

7.3.4 Bounding Seller Surplus with Selectability.

In this subsection we bound terms 4 and 6 for a more general class of constraints F using a

variant of a fixed posted price (FPP) mechanism which we call constrained FPP. In the variant,

the mechanism determines a (randomized) subconstraint F ′ ⊆ F upfront. Then the buyer is only

allowed to take a feasible set in F ′ (among all items that the sellers agree to sell at prices {θSi }i∈[n])

and pays the price θBi for each item she takes.7 Let GFTCFPP denote the the optimal GFT

among all constrained FPP mechanisms.8 Since all of the posted prices as well as the subconstraint

are independent from the agents’ reported profiles, the mechanism is DSIC and ex-post IR. The

mechanism is also ex-post WBB since θBi ≥ θSi for all i ∈ [n].

To prove our result, we prove the following lemma that is adapted from [FSZ16] and connects

(δ, η)-selectability to constrained FPP mechanisms. Once again, the OCRS gives us both a GFT

guarantee and a mechanism: variables vi correspond to the bound on seller surplus, buyer item

prices are {pi}i∈[n], seller prices are {pi− ξi}i∈[n], and the subconstraint is suggested by the OCRS.

Lemma 7.6. Suppose there exists a (δ, η)-selectable greedy OCRS π for the polytope PF , for some

δ, η ∈ (0, 1). Fix any {pi}i∈[n] ∈ Rn+. For every i ∈ [n], let vi = (pi − si)+ · 1[bi ≥ pi]. For any

q ∈ PF that satisfies qi ≤ Prbi,si [bi ≥ pi > si] ∀i, let ξi = pi −G−1
i (qi/Pr[bi ≥ pi]).9 We have

∑
i Ebi,si [vi · 1[vi ≥ ξi]] ≤ 1

δη ·GFTCFPP.

7. Throughout this paper, we assume for simplicity that the buyer will purchase item i when bi = θBi as long as the
bundle remains feasible after including i. Without this tie-breaking rule, one can simply decrease the posted price
for each item by an arbitrarily small value ε, and the loss of GFT will be arbitrarily small.

8. Note that FPP is a subclass of constrained FPP, and therefore GFTFPP ≤ GFTCFPP.

9. When qi ≤ Prbi,si [bi ≥ pi > si], qi/Pr[bi ≥ pi] ≤ 1. Thus ξi is well-defined.
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Moreover, there exists a choice of q such that

Eb,s

[
maxS∈F

∑
i∈S {(pi − si)+ · 1[bi ≥ pi]}

]
≤
∑

i Ebi,si [vi · 1[vi ≥ ξi]] ≤ 1
δη ·GFTCFPP.

Proof of Lemma 7.6: Let Vi denote the distribution of vi when bi ∼ DBi , si ∼ DSi . Let v = {vi}i∈[n].

Let q̂ be a scaled-down vector of q such that q̂i = δ ·qi for every i ∈ [n] and ξ̂i = pi−G−1
i (q̂i/Pr[bi ≥

pi]). This is also well-defined since q̂i < qi ≤ Pr[bi ≥ pi]. As q ∈ PF , then q̂ ∈ δ · PF . Consider the

constrained FPP mechanismM with buyer posted prices {pi}i∈[n], seller posted prices {pi− ξ̂i}i∈[n],

and subconstraint Fπ,q̂ ∈ F stated in Definition 2.5.

Fix any item i ∈ [n]. We say item i as active if vi ≥ ξ̂i. Similarly to Section 7.3.3, vi ≥ ξ̂i if

and only if bi ≥ pi ∧ si ≤ pi − ξ̂i. That is, i is active if and only if item i is on the market and

the buyer can afford it, which by choice of ξ̂i happens independently across all i with probability

Prvi [vi ≥ ξ̂i] = Prbi,si [pi − si ≥ ξ̂i ∧ bi ≥ pi] = q̂i.

Then for any v, the set of active items is R(v) = {j ∈ [n] : vj ≥ ξ̂j}. By (δ, η)-selectability

(Definition 2.5) and the fact that q̂ ∈ δ · PF , we have

Pr
π,v

[S ∪ {i} ∈ Fπ,q̂, ∀S ⊆ R(v), S ∈ Fπ,q̂] ≥ η. (7.1)

Note that for the sets S ∈ Fπ,q̂ that have i ∈ S, then S ∪ {i} ∈ Fπ,q̂ with probability 1. Thus,

if we require S ⊆ R(v)\{i} instead, it can not be that i ∈ S, and so the following LHS occurs with

equal probability, allowing us to rewrite inequality (7.1) as follows:

Pr
π,v

[S ∪ {i} ∈ Fπ,q̂, ∀S ⊆ R(v)\{i}, S ∈ Fπ,q̂] ≥ η. (7.2)

For any v−i, let Ri(v−i) = {j 6= i : vj ≥ ξ̂j}. Then inequality (7.2) is equivalent to

Pr
π,v−i

[S ∪ {i} ∈ Fπ,q̂,∀S ⊆ Ri(v−i), S ∈ Fπ,q̂] ≥ η.

Define event Ai = {v−i : S ∪ {i} ∈ Fπ,q̂,∀S ⊆ Ri(v−i), S ∈ Fπ,q̂}. We will argue that item i
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must be in the buyer’s favorite bundle S∗ when both of the following conditions are satisfied: (i)

vi ≥ ξ̂i, and (ii) event Ai happens. Note that inM, the set of items in the market is T = {j : sj ≤

pj − ξ̂j}, thus S∗ = argmaxS⊆T,S∈Fπ,q̂
∑

j∈S(bj − pj). Suppose by way of contradiction that both

conditions are satisfied but i 6∈ S∗. Clearly, for every j ∈ S∗, we have bj ≥ pj , otherwise removing

j from S∗ will give the buyer greater utility. In addition, we have sj ≤ pj − ξ̂j , so S∗ ⊆ R(v). By

definition, S∗ must lie in Fπ,q̂. Since event Ai occurs, then S∗ ∪ {i} ∈ Fπ,q̂. As vi ≥ ξ̂i, this implies

that bi ≥ pi. Thus adding i to S∗ keeps the set feasible and does not decrease the buyer’s utility∑
j∈S∗(bj − pj). Thus i ∈ S∗ (see footnote 5). This is a contradiction.

Note that condition (i) and (ii) are independent. Thus for every bi and si such that bi ≥ pi∧si ≤

pi − ξ̂i (or equivalently vi ≥ ξ̂i), the expected GFT of item i over b−i, s−i is at least

Pr[Ai] · (bi − si) ≥ η · (pi − si) = η · vi.

Thus

GFT(M) ≥ η ·
∑
i

Evi∼Vi [vi · 1[vi ≥ ξ̂i]] ≥ δη ·
∑
i

Evi∼Vi [vi · 1[vi ≥ ξi]],

where the last inequality is because for every i, we have E[vi|vi ≥ ξ̂i] ≥ E[vi|vi ≥ ξi] and

Pr[vi ≥ ξ̂i] = q̂i = δ · Pr[vi ≥ ξi].

For the second inequality stated in the lemma, note that

Eb,s

[
max
S∈F

∑
i∈S

{
(pi − si)+ · 1[bi ≥ pi]

}]
= Ev

[
max
S∈F

∑
i∈S

vi

]
.

For every v, let Ŝ(v) = argmaxS∈F
∑

i∈S vi, and break ties in favor of the set with smaller size. For

every i, let qi = Prv[i ∈ Ŝ(v)] be the probability that i is in the maximum weight feasible set. We

have that q = {qi}i∈[n] ∈ PF . Also for every i, qi = Prv[i ∈ Ŝ(v)] ≤ Pr[vi > 0] = Pr[bi ≥ pi > si].

Moreover,
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Ev

[
max
S∈F

∑
i∈S

vi

]
=
∑
i∈[n]

Ev

[
vi · 1[i ∈ Ŝ(v)]

]
≤
∑
i∈[n]

Evi∼Vi [vi · 1[vi ≥ ξi]]

The inequality follows from the fact that for every i, both sides integrate the random variable

vi with a total probability mass qi, while the right hand side integrates vi at the top qi-quantile. 2

For each j in the summation, choose pi from Lemma 7.6 to be θij (or θ′ij). Then both terms

4 and 6 are bounded by log(1/r)
δη · GFTCFPP. Theorem 7.1 then follows directly from Lem-

mas 7.2, 7.3, 7.4, and 7.6.

Theorem 7.1. Suppose the buyer’s feasibility constraint F is (δ, η)-selectable for some δ, η ∈ (0, 1).

Then FB-GFT ≤ O( log(1/r)
δη ) ·GFTCFPP.

Feldman et al. [FSZ16] show that many natural constraints—including matroids, matchings,

knapsack, and their compositions—are (δ, η)-selectable for some constants δ and η (see Section 2.7).

For all of these, Theorem 7.1 implies that GFTCFPP is an O(log(1/r))-approximation to FB-GFT.

Corollary 7.1. Suppose the buyer’s feasibility constraint is F =
⋂d
t=1Ft for some constant d, where

each Ft is a matroid, matching constraint, or knapsack constraint. Then FB-GFT ≤ O(log(1
r )) ·

GFTCFPP.

Proof of Corollary 7.1: Pick any constant δ ∈ (0, 1
2). By Lemma 2.3 and 2.4, there exists some

constant η ∈ (0, 1) such that there exists an efficient, (δ, η)-selectable greedy OCRS for PF . Then

the result follows from Theorem 7.1.2

7.3.5 General Constrained-Additive Buyer.

In this section, we consider the case of a general constrained-additive buyer, and prove an O(log(n)·

log(1/r))−approximation to FB-GFT using constrained FPP mechanisms. Note that Lemmas 7.2, 7.3,

and 7.4 still hold in this setting. It is sufficient to bound the seller surplus term with GFTCFPP.

Throughout this section, we will use the following variant of FPP mechanisms: Other than

posted prices, the mechanism also determines an integer h > 0 upfront. The buyer can purchase

any set of items of size at least h by paying the posted prices for each item in the set; otherwise,
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she leaves with nothing. This is a subclass of constrained FPP, with subconstraint F ′ = {S | S ∈

F ∧ |S| ≥ h} ⊆ F .10

Lemma 7.7. For any {pi}i∈[n] ∈ Rn+,

A =Eb,s

[
maxT∈F

∑
i∈T {(pi − si)+ · 1[bi ≥ pi]}

]
≤O(log(n)) ·GFTCFPP.

Hence terms 4 and 6 are both upper-bounded by O(log(n) · log(1
r )) ·GFTCFPP.

For every i ∈ [n], again construct random variables vi = (pi − si)
+ · 1[bi ≥ pi]. The main

issue here is that in an FPP mechanism, say with posted prices θBi = θSi = pi, the buyer will

pick the maximum weight feasible set (among all items that sellers are willing to sell) according

to weight bi − pi (her utility). However, this might be far from the set used in the benchmark,

i.e. the maximum weight feasible set according to weight pi − si. In the previous section (when

the constraint F had selectability), by setting different prices for both sides and adding a more

restrictive constraint, we guaranteed that if both the buyer and seller accept the posted prices for

some item, then the buyer would purchase this item with at least constant probability. For general

downward-closed F , it is unclear how to achieve this property with a constrained FPP mechanism.

For every b, s, let T ∗(b, s) = argmaxT∈F
∑

i∈T vi be the optimal set used in the bench-

mark. We divide A into three terms according to the value of vi when i is in this optimal

set: vi < A/2n, vi ∈ [A/2n, 2nA] and vi > 2nA. Denote the three terms AS ,AM ,AL ac-

cordingly. First we notice that the contribution of AS is at most a constant fraction of A, as

AS = Eb,s

[∑
i vi · 1[i ∈ T ∗(b, s) ∧ vi < A

2n ]
]
< Eb,s

[ A
2n · n

]
= A

2 .

For AL, in Lemma 7.9, we first prove that Prbi,si [bi ≥ pi ∧ pi − si ≥ 2nA] ≤ 1
2n holds for every

i. This implies that in a standard FPP mechanism (where h = 1) with θBi = pi, θ
S
i = (pi − 2nA)+

for all i, the buyer purchases each item i with probability at least 1
2 if both the buyer and seller i

accept the posted prices. First, we will need Lemma 7.8.

10. If h = 1, the mechanism becomes a standard FPP mechanism without any subconstraint F ′.
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Lemma 7.8. Given any constrained FPP mechanism M with posted prices {θBi }i∈[n], {θSi }i∈[n]

and h = 1, suppose
∑

i Pr[bi ≥ θBi ∧ si ≤ θSi ] ≤ 1
2 . Then

GFT(M) ≥ 1
2

∑
i Ebi,si

[
(bi − si) · 1[bi ≥ θBi ∧ si ≤ θSi ]

]
.

Proof. For any item i, the buyer will purchase item i if both of the following events happen:

1. bi ≥ θBi and si ≤ θSi ;

2. For all items k 6= i, either sk > θSk or bk < θBk .

By the union bound, the second event happens with probability at least 1 −
∑

k 6=i Pr[bi ≥

θBi ∧ si ≤ θSi ] ≥ 1
2 . Since both events are independent, we have

GFT(M) ≥ 1

2

∑
i

Ebi,si
[
(bi − si) · 1[bi ≥ θBi ∧ si ≤ θSi ]

]
.

Lemma 7.9.

AL = Eb,s

[∑
i

vi1[i ∈ T ∗(b, s) ∧ vi > 2nA]

]
≤ 2 ·GFTFPP.

Proof. Consider the FPP mechanism with θBi = pi, θ
S
i = (pi − 2nA)+ for all i (and h = 1).

Note that for every i ∈ [n], it must hold that Prbi,si [bi ≥ pi ∧ pi − si ≥ 2nA] ≤ 1
2n . In fact,

A ≥ Ebi,si [(pi − si)
+ · 1[bi ≥ pi]] ≥ 2nA · Pr

bi,si
[bi ≥ pi ∧ pi − si ≥ 2nA].

Thus by Lemma 7.8 and the fact that bi − si ≥ pi − si when bi ≥ pi, we have

GFTFPP ≥
1

2

∑
i

E [(pi − si) · 1[bi ≥ pi ∧ pi − si ≥ 2nA]] ≥ 1

2
· AL.

In Lemma 7.10 we bound AM , which is the primary challenge for this approximation.
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Lemma 7.10. AM ≤ O(log(n)) ·GFTCFPP.

Proof. We further divide the interval [A/2n, 2nA] into O(log(n)) buckets, where in each bucket

k, vi falls in the range [Lk, 2Lk] for some Lk. Formally, for any k ∈ {1, 2, ..., d2 log(n) + 2e}, let

Lk = 2k · A4n . We have

AM ≤
d2 log(n)+2e∑

k=1

Eb,s

[∑
i

vi1[i ∈ T ∗(b, s) ∧ vi ∈ [Lk, 2Lk]]

]
.

In the rest of the proof, we will show that for any k, there exists some constant c > 0 such that

Eb,s

[∑
i

vi1[i ∈ T ∗(b, s) ∧ vi ∈ [Lk, 2Lk]]

]
≤ c ·GFTCFPP.

Fix any k. For every i ∈ [n], let t
(k)
i = vi

2Lk
· 1[Lk ≤ vi ≤ 2Lk]. This is a random variable in

[1
2 , 1]. Note that all random variables t = {t(k)

i }i∈[n] are independent. Let Z(t) = maxT∈F
∑

i∈T t
(k)
i .

Then the contribution to AL from values in this range is bounded by the expectation of the random

variable Z(t):

Eb,s

[∑
i

vi · 1[i ∈ T ∗(b, s) ∧ vi ∈ [Lk, 2Lk]]

]
≤ Eb,s

[
max
S∈F

∑
i∈S

vi · 1[Lk ≤ vi ≤ 2Lk]

]
= 2LkEt[Z(t)].

Now consider the constrained FPP mechanism with θBi = pi and θSi = (pi − Lk)+ for every

i (the threshold h is determined later). Then in the mechanism, whenever the buyer purchases

an item, the contributed GFT is at least Lk. Thus it is sufficient to show that the expected

size of the purchasing set is at least a constant factor of E[Z(t)]. Note that Z(t) is a random

variable on t, which is the maximum weight feasible set over n independent random variables in

[0, 1]. In Lemma 7.11, we prove that Z(t) concentrates near its mean. The proof is postponed to

Section 7.3.6.

Lemma 7.11. For any c ∈ (0, 1),

Pr
t

[Z(t) ≥ c · E[Z(t)]] ≥ (1− c)2

1 + 1/E[Z(t)]
.
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We first suppose that E[Z(t)] ≥ 1
4 . By applying Lemma 7.11 with c = 1

2 , we get

Pr
t

[
Z(t) ≥ E[Z(t)]

2

]
≥ 1

20
.

Let h = max
{
bE[Z(t)]

2 c, 1
}

. In mechanism Mk, note that for every i, t
(k)
i > 0 implies that item i

is on the market and that the buyer can afford it. With probability at least 1
20 , Z(t) ≥ h, which

implies that the item set {i | i ∈ argmaxS∈F
∑

i∈S t
(k)
i ∧ t

(k)
i > 0} is a feasible set of size at least

h. (Recall that all t
(k)
i are in [1

2 , 1]). In this scenario, the buyer will purchase a set of items of

size at least h. For every item i she purchases, the contributed GFT is bi − si ≥ θBi − θSi = Lk.

Thus, GFT(Mk) ≥ 1
20 · h · Lk. Readers who are familiar with mechanism design may notice

that the role of the size threshold h is similar to an “entry fee” in the posted price mechanism in

auctions [BILW14,CDW16,CZ17,CM16,RW15,Yao15], though the buyer doesn’t have to pay extra

money to attend the auction. It guarantees that the buyer will purchase at least h items when she

can afford it, as otherwise she gets no utility.

When E[Z(t)] ≥ 1
4 , we have h ≥ E[Z(t)]

4 . Thus

Eb,s

[∑
i

vi1[i ∈ T ∗(b, s) ∧ vi ∈ [Lk, 2Lk]]

]
≤ 160 ·GFTCFPP.

Now we consider the case where E[Z(t)] < 1
4 . For every i, let qi = Pr[t

(k)
i > 0] = Prbi,si [bi ≥

pi ∧ pi − si ∈ [Lk, 2Lk]]. Then it holds that Pr[∀i, t(k)
i = 0] =

∏n
i=1(1 − qi) > 1

2 . This is because

if there exists i such that t
(k)
i > 0, then Z(t) = maxT∈F

∑
i∈T t

(k)
i ≥ 1

2 as t
(k)
i ∈ [1

2 , 1] for every i.

Thus if Pr[∀i, t(k)
i = 0] ≤ 1

2 , then E[Z(t)] ≥ 1
4 , which leads to a contradiction.

Consider the constrained FPP mechanism M with θBi = pi, θ
S
i = (pi − Lk)+, and h = 1. For

every i, define event Ei = {t | t(k)
i > 0 ∧ t(k)

j = 0, ∀j 6= i}. Note that t
(k)
i > 0 implies that seller i

accepts price θSi and the buyer can afford item i. Under event Ei, there is at least one item on the

market that the buyer can afford, i.e. item i. Thus the buyer must purchase some item j on the

market that she can afford (possibly item i). For this item j, we have bj ≥ θBj and sj ≤ θSj . Thus

the contributed GFT is at least bj − sj ≥ pj − sj ≥ Lk. Since all Eis are disjoint events, we have
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GFT(M) ≥
∑

i Pr[Ei] ·Lk = Lk ·
∑

i qi ·
∏
j 6=i(1− qj) ≥ Lk ·

∑
i qi ·

∏
j(1− qj) >

1
2Lk ·

∑
i qi, where

the equality uses the fact that all t
(k)
i s are independent. On the other hand, since t

(k)
i ≤ 1 for any

i, E[Z(t)] ≤ E
[∑

i t
(k)
i · 1[t

(k)
i > 0]

]
≤
∑

i qi. Thus

Eb,s

[∑
i

vi · 1[i ∈ T ∗(b, s) ∧ vi ∈ [Lk, 2Lk]]

]
≤ 2Lk · E[Z(t)] ≤ 4 ·GFTCFPP.

Summing the inequality over all k finishes the proof.

Proof of Lemma 7.7: By Lemmas 7.9, 7.10, and the fact that AS ≤ A2 , we have that

A ≤ 2(AM +AL) ≤ O(log(n)) ·GFTCFPP.

2

Theorem 7.2 summarizes our result for a general constrained-additive buyer. It directly follows

from Lemmas 7.2, 7.3, 7.4, and 7.7.

Theorem 7.2. For any downward-closed constraint F , FB-GFT ≤ O(log(n) · log(1
r )) ·GFTCFPP.

7.3.6 Proof of Lemma 7.11

We recall the statement of Lemma 7.11: For any c ∈ (0, 1),

Pr
t

[Z(t) ≥ c · E[Z(t)]] ≥ (1− c)2

1 + 1/E[Z(t)]
.

Recall that Z(t) = maxT∈F
∑

i∈T t
(k)
i . In the proof we will omit the superscript k as it is fixed.

The random seed t is also omitted if clear from context.

Lemma 7.12. (Paley-Zygmund Inequality [PZ32]) For any random variable Z ≥ 0 with finite

variance, for any c ∈ [0, 1],

Pr[Z ≥ c · E[Z]] ≥ (1− c)2 · E[Z]2

Var[Z] + E[Z]2
.
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To use Lemma 7.12, we only need to show an upper bound on Var[Z(t)].

Lemma 7.13. Var[Z(t)] ≤ E[Z(t)].

Proof. By the Efron-Stein Inequality [ES81],

Var[Z(t)] ≤ 1

2

∑
i

Eti,t′i,t−i [(Z(ti, t−i)− Z(t′i, t−i))
2] =

∑
i

Et−i [Var[Z(t)|t−i]].

Here t′i shares the same distribution with ti (a fresh sample). Note that for every fixed t−i,

Varti [Z(ti, t−i)] ≤ Eti [(Z(ti, t−i)− a)2] for any real constant a. For every i, let

Zi(t−i) = max
T∈F ,i 6=T

∑
j∈T

tj

, which only depends on t−i. We have

Var[Z(t)] ≤
∑
i

Et−i [Var[Z(t)|t−i]] ≤
∑
i

E[(Z(t)− Zi(t−i))2] ≤
∑
i

E[Z(t)− Zi(t−i)],

where the last inequality follows from the fact that Zi(t−i) ≤ Z(t) ≤ Zi(t−i) + 1, as every random

variable tj ∈ [1
2 , 1].

Now fix any t. Let T ∗ = argmaxT∈F
∑

j∈T tj . Then for every i, by the definition of Zi,∑
j∈T ∗\{i} tj ≤ Zi(t−i). Thus

∑
i Zi(t−i) ≥

∑
i

∑
j∈T ∗\{i} tj = (n − 1) ·

∑
j∈T ∗ tj = (n − 1) · Z(t).

Hence,

Var[Z(t)] ≤
∑
i

E[Z(t)− Zi(t−i)] ≤ E[Z(t)].

7.4 An Unconditional Approximation for a Single Constrained-

Additive Buyer

In this section, we prove Theorem 7.3, an unconditional O(log n)-approximation when the buyer’s

feasibility constraint is selectable, and an unconditional O(log2(n))-approximation for a general
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constrained-additive buyer—without dependence on distributional parameters. The result combines

the log(1/r)-approximation and a novel mechanism—the seller adjusted posted price mechanism.

Theorem 7.3. Suppose the buyer’s feasibility constraint F is (δ, η)-selectable for some δ, η ∈ (0, 1).

Then there exists a DSIC, ex-post IR, ex-ante WBB mechanism M such that OPT ≤ O( logn
δ·η ) ·

GFT(M). Moreover, for a general constrained-additive buyer, there exists a DSIC, ex-post IR,

ex-ante WBB mechanism M such that OPT ≤ O(log2(n)) ·GFT(M).

7.4.1 An Upper Bound of the Second-Best GFT.

Formally, we use OPT to denote the optimal GFT attainable by any BIC, IR, ex-ante WBB

mechanism. Notice that the GFT of any two-sided market mechanism can be broken down into

the buyer’s expected utility of this mechanism, plus the sum of all sellers’ expected utilities (or

profit), plus the difference between buyer’s and sellers’ expected payment. We show that the OPT

is upper bounded by the sum of the designers’ utilities in two related one-sided markets: the

super seller auction and the super buyer procurement auction.

Super Seller Auction. Consider a one-sided market, where the designer is the super seller

who owns all the items, and replaces all the original sellers. The buyer is the same as in our

two-sided market setting. The super seller designs a mechanism to sell the items to the buyer.

The main difference between the super seller auction and the original two-sided market is that the

mechanism only needs to be BIC and IR for the buyer and does not have any incentive compatibility

constraints for the super seller. We use OPT-S to denote the maximum profit (revenue minus her

cost) achievable by any BIC and IR mechanism in the super seller auction.

To avoid ambiguity in further proofs, for every subset T ⊆ [n] and downward-closed feasibility

constraint J with respect to T , we let OPT-S(T,J ) denote the optimal profit in the following

super seller auction: the super seller owns the set of items in T and has cost si ∼ DSi for every

item i ∈ T . The buyer has value bi ∼ DBi for every item i ∈ T and is additive subject to constraint

J . We slightly abuse notation and write OPT-S(T,ADD) if the buyer is additive (J = 2T )

and OPT-S(T,UD) if the buyer is unit-demand (J = {{i} : i ∈ T}). Clearly, OPT-S =
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OPT-S([n],F).

Super Buyer Procurement Auction. Similarly, let the super buyer procurement auction be

the one-sided market where the super buyer (same as the real buyer) designs the mechanism to

procure items from the sellers. Here the mechanism only needs to be BIC and IR for all of the

sellers, but not the buyer. We use OPT-B to denote the maximum utility (value minus payment) of

the super buyer attainable by any BIC and IR mechanism in the super buyer procurement auction.

First, we prove that the GFT of any IR, BIC, ex-ante WBB mechanism M = (x, pB, pS) is

upper bounded by OPT-S + OPT-B.

Lemma 7.14. OPT ≤ OPT-S + OPT-B.

Proof. Take any BIC, IR, ex-ante WBB mechanism M = (x, pB, pS). Since every seller i is BIC

and IR, we have for any si, s
′
i,

Eb,s−i

[
pSi (b, s)− si · xi(b, s)

]
≥ max

{
Eb,s−i [p

S
i (b, s′i, s−i)]− si · xi(b, s′i, s−i), 0

}
.

Observe that M′ = (x, pS) is a valid super buyer procurement auction. The above inequalities

are exactly the BIC and IR constraints for seller i. ThusM′ is BIC and IR. Similarly,M′′ = (x, pB)

is BIC and IR, so it is a valid super seller auction. Since M is ex-ante WBB, Eb,s[p
B(b, s) −∑

i p
S(b, s)] ≥ 0. Thus we have

GFT(M) = Eb,s[
∑
i∈[n]

xi(b, s)(bi − si)]

≤ Eb,s[p
B(b, s)−

∑
i

xi(b, s) · si] + Eb,s[
∑
i

(xi(b, s) · bi − pSi (b, s))]

≤ OPT-S + OPT-B.

Taking M to be the GFT-maximizing mechanism completes the proof.

Next we prove an analog of the “Marginal Mechanism Lemma” [CH13, HN12] for the optimal

profit. Namely, let (T,R) be a partition of the items in [n]. Then the optimal profit in a super
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seller auction with items in [n] is upper bounded by the first-best GFT for items in T plus the

optimal profit in a super seller auction with items in R.

Lemma 7.15 (Marginal Mechanism for Profit). For any subset T ∈ [n], we let F
∣∣
T

= {S ⊆ T :

S ∈ F} denote the restriction of F to T . We use FB-GFT(T,F
∣∣
T

) to denote the first-best GFT

obtainable between sellers in T and the F
∣∣
T

-constrained additive buyer, that is,

FB-GFT(T,F
∣∣
T

) = EbT ,sT [maxS∈F|T
∑

i∈S(bi − si)+],

where bT = {bi}i∈T , sT = {si}i∈T . Let (R, T ) be any partition of the items in [n]. Then

OPT-S([n],F) ≤ OPT-S(R,F
∣∣
R

) + FB-GFT(T,F
∣∣
T

).

Proof. Consider the optimal BIC and IR mechanism M = (x, p) in the super seller auction with

item set [n]. We will construct a BIC and IR mechanism M′ = (x′, p′) in the super seller auction

with item set R as follows. The mechanism only sells items in R using the same allocation x. The

payment for the buyer is defined as the payment p in M minus the buyer’s expected total value

for all items in T . Formally, for every bR = {bj}j∈R, sR = {sj}j∈R and i ∈ R, let

x′i(bR, sR) = EbT ,sT [xi(b, s)]

p′(bR, sR) = EbT ,sT

[
p(b, s)−

∑
j∈T bj · xj(b, s)

]
.

Notice that in M′, the expected utility of the buyer with type bR when reporting b′R is

EsR [
∑
i∈T

bi · x′i(b′R, sR)− p′(b′R, sR)] = EbT ,s[
∑
i∈[n]

bi · xi(b′R,bT , s)− p(b′R,bT , s)],
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Since M is BIC and IR, M′ is also BIC and IR. Thus

OPT-S([n],F) = Eb,s[p(b, s)−
∑
i∈[n]

si · xi(b, s)]

= EbR,sR [p′(bR, sR)−
∑
i∈R

si · x′i(bR, sR)] + Eb,s[
∑
i∈T

(bi − si) · xi(b, s)]

≤ OPT-S(R,F
∣∣
R

) + FB-GFT(T,F
∣∣
T

).

We partition the items into the set of “likely to trade” items, that is, items with trade probability

ri = Prbi,si [bi ≥ si] ≥ 1/n, and the “unlikely to trade” items. We can bound the OPT-S by the

first-best GFT of the “likely to trade” items and the optimal profit of the super seller auction

with the “unlikely to trade” items. We can further replace the first-best GFT of the “likely to

trade” by O(log n) ·GFTCFPP according to Theorem 7.1 or by O(log2(n)) ·GFTCFPP according

to Theorem 7.2 depending on the buyer’s feasibility constraint. Formally,

Lemma 7.16. Define H = {i ∈ [n] : ri ≥ 1
n} and L = [n]\H = {i ∈ [n] : ri <

1
n}. Suppose

the buyer’s feasibility constraint F is (δ, η)-selectable for some δ, η ∈ (0, 1). Then OPT is upper

bounded by

OPT-B + OPT-S(L,F
∣∣
L

) + FB-GFT(H,F
∣∣
H

)

≤OPT-B + OPT-S(L,F
∣∣
L

) +O

(
log n

δ · η

)
·GFTCFPP.

For a general constrained-additive buyer, OPT is upper bounded by

OPT-B + OPT-S(L,F
∣∣
L

) +O
(
log2(n)

)
·GFTCFPP.

Proof. The first inequality follows from Lemma 7.14 and 7.15. Since F is (δ, η)-selectable, F
∣∣
H

is

also (δ, η)-selectable. We derive the second inequality by applying Theorem 7.1 on the items in H.

For a general constrained-additive buyer, we derive the inequality by applying Theorem 7.2 on the

194



items in H.

It is well known that in multi-item auctions, the revenue of selling the items separately is

an O(log n)-approximation to the optimal revenue when there is a single additive buyer [LY13].

Cai and Zhao [CZ19] provide an extension of this O(log n)-approximation to profit maximization

(Chapter 4). We build on this in Section 7.4.4 to upper bound the OPT-S(L,F
∣∣
L

) term, where

with |L| items, we get a log(|L|) factor (Lemma 7.23).

All together, this gives the following upper bound on the second-best GFT.

Lemma 7.17 (Upper Bound on Second-Best GFT). Define H = {i ∈ [n] : ri ≥ 1
n} and L =

[n]\H = {i ∈ [n] : ri <
1
n}. Suppose the buyer’s feasibility constraint F is (δ, η)-selectable for some

δ, η ∈ (0, 1). Then

OPT ≤OPT-B +O

(
log n

δ · η

)
·GFTCFPP

+O

(
log(|L|) ·

∑
i∈L

Ebi,si
[
(ϕ̃i(bi)− si)+

])
.

For a general constrained-additive buyer, the O
(

logn
δ·η

)
factor above becomes O

(
log2(n)

)
.

Next, Section 7.4.2 gives details on constructing a mechanism for a two-sided market whose

GFT is at least OPT-B. In Section 7.4.3, we show how to use a generalization of posted price

mechanisms to approximate the second term in the upper bound by the GFT of the Seller Adjusted

Posted Price mechanism. The approximation heavily relies on the fact that in expectation, only

one item can trade, so it is crucial that L only contains the “unlikely to trade” items.

7.4.2 Bounding the Optimal Buyer Utility in the Super Buyer Procurement

Auction.

In this section, we construct a two-sided market to bound OPT-B for any constrained additive

buyer.

Lemma 7.18. Consider the mechanism M∗ = (x, pB, pS) where for every item i, buyer profile

b, and seller profile s, xi(b, s) = 1[bi − τ̃i(si) ≥ 0 ∧ i ∈ argmaxS∈F
∑

i∈S(bi − τ̃i(si))
+]. Here
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τ̃i(si) is Myerson’s ironed virtual value function11 for seller i’s distribution DSi . For every seller i,

since τ̃i(si) is non-decreasing in si, xi(b, s) is non-increasing in si. Define pSi (b, s) as the threshold

payment for seller i, i.e., the largest cost si such that xi(b, si, s−i) = 1. Define the buyer’s payment

pB(b, s) =
∑

i xi(b, s) · τ̃i(si). M∗ is DSIC, ex-post IR, ex-ante SBB 12 and

GFT(M∗) ≥ OPT-B = Eb,s[max
S∈F

∑
i∈S

(bi − τ̃j(sj))+].

Proof. Since the seller’s allocation rule is monotone and we use the threshold payment,M∗ is DSIC

and ex-post IR for each seller.

Note that for any seller profile s, when the buyer has true type b, her expected utility from

reporting b′ is
∑

i xi(b
′, s) · (bi − τ̃i(si)). According to the definition of x, the buyer’s utility is

maximized when b′ = b. Hence, M is DSIC for the buyer. Moreover we have ex-post IR, as the

buyer’s expected utility when reporting truthfully is maxS∈F
∑

i∈S(bi − τ̃i(si))+ ≥ 0.

It only remains to prove that the mechanism is ex-ante SBB and to lower bound its GFT. By

Myerson’s lemma, for every b we have

Es

[∑
i

pSi (b, s)

]
= Es

[∑
i

xi(b, s) · τ̃i(si)

]
= Es[p

B(b, s)].

Thus the mechanism is ex-ante SBB.

Why is OPT-B = Eb,s[maxS∈F
∑

i∈S(bi− τ̃j(sj))+]? Notice that only the sellers are strategic in

a super buyer procurement auction, and their types are all single-dimensional. One can apply the

standard Myersonian analysis to the super buyer procurement auction and show that the optimal

buyer utility is exactly Eb,s[maxS∈F
∑

i∈S(bi − τ̃j(sj))+].

Note that the buyer’s expected utility in M∗ is exactly OPT-B. As M∗ is an ex-ante SBB

mechanism, the expected GFT of M∗ is equal to the buyer’s expected utility plus the sum of all

11. The seller’s unironed virtual value function is τi(si) = si + Gi(si)
gi(si)

.

12. One can make the mechanism IR and ex-post SBB by defining pB(b, s) =
∑
i p
S
i (b, s). The mechanism is still

DSIC for all sellers. It is only BIC for the buyer, as the sellers’ gains only equal the virtual welfare when taking
expectation over sellers’ profile.

196



sellers’ expected utility, and the latter is non-negative since M∗ is ex-post IR for every seller.

7.4.3 The Seller Adjusted Posted Price Mechanism.

In this section, we introduce a new mechanism—the Seller Adjusted Posted Price (SAPP) Mecha-

nism. We define an adjusted price mechanism to first elicit each seller’s cost si, and then produce

posted prices {θi(s)}i∈[n] as a function of the reported profile s; thus the mechanism is a collection

of posted prices depending on the reported seller cost profile. The items are offered to the buyer

at each posted price θi(s), with the buyer only allowed to purchase at most one item by paying

the posted price. See Mechanism 7.1 for a complete description of the SAPP mechanism. We show

that for a properly selected mapping {θi(·)}i∈[n], the SAPP mechanism is DSIC, ex-post IR, and

ex-ante WBB. Moreover, its GFT is at least Θ
(∑

i∈L Ebi,si [(ϕ̃i(bi)− si)+]
)
.

Since the posted prices depend on the reported seller cost profile, we need to be careful to ensure

that there is no incentive for any seller to misreport the cost. We identify a sufficient condition for

the posted prices, called bi-monotonicity, to make sure the corresponding mechanism is DSIC and

ex-post IR.

Definition 7.1 (Bi-monotonic Prices). We say the posted prices {θi(s)}i∈[n] are bi-monotonic, if

(i) θi(s) ≥ si for all seller profile s and seller i; (ii) θi(s) is non-decreasing in si and non-increasing

in sj for all j 6= i.

In Lemma 7.19, we prove that bi-monotonic posted prices induce a monotone allocation rule

for every seller, enabling threshold payments [Mye81,MS83]. Formally, for every seller i let x̂i(b, s)

denote the probability that the buyer trades with seller i under profile (b, s). This is either 0 or 1

since all θi(s) are fixed values when s is fixed. If x̂i(b, s) = 1, pSi (b, s) is defined as the maximum

value s′i such that x̂i(b, s
′
i, s−i) = 1. Otherwise pSi (b, s) = 0. This makes the SAPP mechanism

DSIC and ex-post IR.

Lemma 7.19. Let M be an SAPP mechanism with bi-monotonic posted prices {θi(s)}i∈[n]. Then

the allocation of the mechanism x̂i(b, s) is non-increasing in si for all sellers i, and M is DSIC

and ex-post IR for the buyer and the sellers.
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Proof. Notice that for every type b, the buyer chooses the item that maximizes bi−θi(s) (and does

not choose any item if she cannot afford any of the items). For every i, by bi-monotonicity, when

si decreases, bi− θi(s) does not decrease while bj − θj(s) does not increase for all j 6= i. Thus if the

buyer chooses item i under the original si, she must continue to choose item i for smaller reports

s′i. Thus x̂i(b, s) is non-increasing in si. Since every seller receives the threshold payment, she is

DSIC and ex-post IR. As the buyer simply faces a posted price mechanism, the mechanism is DSIC

and ex-post IR for the buyer.

Mechanism 7.1 Seller Adjusted Posted Price Mechanism

Require: ∀i ∈ [n], function θi(·) that maps each seller cost profile to a price for item i. Input
(b, s).

1: Given the sellers’ reported cost profile s, offer each item i to the buyer at price θi(s).
2: The buyer is allowed to purchase at most one item by paying the corresponding posted price.
3: If no item is picked, then no trade happens and payment is 0 for every agent. Otherwise, if

the buyer chooses item i, she receives item i and pays θi(s). Seller i sells her item and receives
threshold payment.

The main challenge we face here is establishing the budget balance condition. Unfortunately,

having bi-monotonic posted prices is not sufficient. Consider the n = 1 case: the posted price

p(s) = s is trivially bi-monotonic. Clearly, the corresponding SAPP mechanism achieves FB-

GFT. However, due to the impossibility result by Myerson and Satterthwaite [MS83], no BIC,

IR, and ex-ante WBB mechanism can always achieve FB-GFT, so the SAPP mechanism must

sometimes violate the budget balance constraint. In Lemma 7.20, we show that even though bi-

monotonic posted prices do not imply budget balance, there is indeed a wide range of bi-monotonic

posted prices that induce budget balanced SAPP mechanisms. Our budget balance proof heavily

relies on an allocation coupling argument (Lemma 7.21) that simultaneously provides a lower bound

on the buyer’s payment, as well as an upper bound on the payment to the seller.

Lemma 7.20. Let x = {xi(b, s)}i∈[n] be an arbitrary allocation rule that satisfies (i) the buyer never

purchases more than one item in expectation under each profile (b, s), i.e.,
∑

i∈[n] xi(b, s) ≤ 1, and

(ii) for every buyer type b and seller i, xi(b, s) is non-increasing in si, and non-decreasing in sj

for all j 6= i. We define qi(s) = Eb[xi(b, s) · 1[ϕ̃i(bi) ≥ si]], where ϕ̃i(bi) is Myerson’s ironed
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virtual value for DBi , and θi(s) = F−1
i (1 − qi(s)

2 ). The posted prices {θi(s)}i∈[n] are bi-monotonic,

and the corresponding SAPP mechanism M is DSIC, ex-post IR, and ex-ante WBB. Moreover,

GFT(M) ≥ 1
4Eb,s [

∑
i(ϕ̃i(bi)− si) · xi(b, s)].

Proof. It is not hard to verify that {θi(s) = F−1
i (1− qi(s)

2 )}i∈[n] is bi-monotonic. Now we proceed

to prove that the SAPP mechanism M is ex-ante WBB. We require the following lemma.

Lemma 7.21. For every seller i and every seller profile s, x̂i(s) ∈
[
qi(s)+qi(s)2

4 , qi(s)
2

]
.

Proof. Note that the buyer will purchase item i if both of the following conditions are satisfied:

1. The buyer can afford item i, i.e., bi ≥ θi(s).

2. The buyer cannot afford any other items, i.e., bj < θj(s),∀j 6= i.

By choice of θi(s), the first event happens with probability Pr[bi ≥ θi(s)] = qi(s)/2.

Note that
∑

i∈[n] qi(s) ≤ Eb[
∑

i∈[n] xi(b, s)] ≤ 1. For each j 6= i, Pr[bj < θj(s)] = 1− qj(s)
2 . Thus∑

j 6=i

(
1− qj(s)

2

)
≥ n − 3

2 + qi(s)
2 . The second event happens with probability

∏
j 6=i

(
1− qj(s)

2

)
≥

1
2 + qi(s)

2 . The equality holds when one out of the n− 1 qj(s)’s equals 1− qi(s) and the rest are all

equal to 0. Notice that the two events are independent, so we have the upper and lower bound on

x̂i(s).

We return to the proof of Lemma 7.20. For easy reference, we list our notation again:

• x = {xi(b, s)}i∈[n] is an arbitrary allocation.

• x̂i(b, s) is the probability that item i trades in M under profile (b, s).

• x̂i(s) = Eb[x̂i(b, s)] is the probability that item i trades over the randomness of buyer valua-

tions, i.e. the interim trade probability.

• qi(s) = Eb[xi(b, s) · 1[ϕ̃i(bi) ≥ si]] is the probability that item i trades in allocation x and

the buyer’s ironed virtual value for item i is above the seller’s cost.

• θi(s) = F−1
i (1− qi(s)

2 ) is the buyer’s posted price set such that Pr[bi ≥ θi(s)] = qi(s)/2.
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Fix any seller profile s. For simplicity, we slightly abuse notation and use x̂i(z) and qi(z) to

denote x̂i(z, s−i) and qi(z, s−i). The expected payment from the buyer under cost profile s is∑
i∈[n] x̂i(si) · θi(s). For every seller i, denote pSi (s) = Eb[pSi (b, s)] as her expected payment under

cost profile s.

Note that for every b, s, the threshold payment pSi (b, s) can be rewritten as the quantity∫∞
si
x̂i(b, t, s−i)dt+si · x̂i(b, si, s−i): When x̂i(b, s) = 0, then x̂i(b, t, s−i) for all t ≥ si since x̂i(b, s)

is non-increasing in si. Thus the above quantity is 0. When x̂i(b, s) = 1, let s′i be the maximum

value such that x̂i(b, s
′
i, si) = 1. Then the above quantity is equal to

∫ s′i
si

1dt + si = s′i = pSi (b, s).

Thus pSi (s) = Eb[pSi (b, s)] =
∫∞
si
x̂i(z, s−i)dz+si ·x̂i(si, s−i). We will show that pSi (s) ≤ x̂i(si)·θi(s).

By definition,

pSi (s) =

∫ ∞
si

x̂i(z)dz + si · x̂i(si)

=

∫ ∞
si

∫ ∞
0
1[x̂i(z) ≥ t]dtdz + si · x̂i(si)

=

∫ ∞
si

∫ x̂i(si)

0
1[x̂i(z) ≥ t]dtdz + si · x̂i(si)

=

∫ x̂i(si)

0

∫ ∞
si

1[x̂i(z) ≥ t]dzdt+ si · x̂i(si).

The second inequality follows from x̂i(z) =
∫∞

0 1[x̂i(z) ≥ t]dt,∀z. The third inequality is due

to 1[x̂i(z) ≥ t] = 0,∀z ≥ si and t > x̂i(si). The last equality follows from Fubini’s Theorem, as the

integral is finite due to the monotonicity of x̂i(·).

Moreover, since x̂i(·) is non-increasing, for every z ≤ si, t ≤ x̂i(si), we have x̂i(z) ≥ x̂i(si) ≥ t.

Thus
∫ x̂i(si)

0

∫ si
0 1[x̂i(z) ≥ t]dzdt =

∫ x̂i(si)
0

∫ si
0 1dzdt = si · x̂i(si).
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Combining the two equations, we have

pSi (s) =

∫ x̂i(si)

0

∫ ∞
0
1[x̂i(z) ≥ t]dzdt

≤
∫ x̂i(si)

0

∫ ∞
0
1[qi(z) ≥ 2t]dzdt

≤
∫ x̂i(si)

0

∫ ∞
0
1

[
Pr
bi

[ϕ̃i(bi) ≥ z] ≥ 2t

]
dzdt

The first inequality follows from Lemma 7.21 and the second inequality follows from the defi-

nition of qi(·). For every t, we prove that
∫∞

0 1 [Prbi [ϕ̃i(bi) ≥ z] ≥ 2t] dz ≤ ϕ̃i(F
−1
i (1− 2t+ ε)) for

any ε > 0. In fact, let z∗ = ϕ̃i(F
−1
i (1 − 2t + ε)). For every z > z∗, Pr[ϕ̃i(bi) ≥ z] ≤ Pr[ϕ̃i(bi) >

z∗] = Pr[bi > F−1
i (1− 2t+ ε)] ≤ 2t− ε. So 1 [Pr[ϕ̃i(bi) ≥ z] ≥ 2t] = 0 for all z > z∗.

Therefore, for any ε > 0, we have the following. In the second line, we change the variable by

denoting y = F−1
i (1− 2t+ ε).

pSi (s) ≤
∫ x̂i(si)

0
ϕ̃i(F

−1
i (1− 2t+ ε))dt

=

∫ F−1
i (1−2x̂i(si)+ε)

∞
ϕ̃i(y)d

1 + ε− Fi(y)

2

=− 1

2

∫ F−1
i (1−2x̂i(si)+ε)

∞
ϕ̃i(y)fi(y)dy

=
1

2

∫ ∞
F−1
i (1−2x̂i(si)+ε)

ϕ̃i(y)fi(y)dy

=
1

2
F−1
i (1− 2x̂i(si) + ε) · [1− Fi(F−1

i (1− 2x̂i(si) + ε))]

=F−1
i (1− 2x̂i(si) + ε) · (x̂i(si)− ε/2)

≤x̂i(si) · F−1
i (1− 2x̂i(si) + ε)

If qi(si) = 0, then x̂i(si) · F−1
i (1 − 2x̂i(si) + ε) = 0 = x̂i(si) · θi(s). Otherwise, choose ε to be
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any number in (0, qi(si)
2

4 ). Then, according to Lemma 7.21 and our choice of ε,

1− 2x̂i(si) + ε ≤ 1− qi(si)

2
− qi(si)

2

4
< 1− qi(si)

2
.

Hence, F−1
i (1− 2x̂i(si) + ε) < θi(s). Thus pSi (s) ≤ x̂i(s) · θi(s) for every i and s, which implies that

Es [
∑

i θi(s) · x̂i(s)] ≥ Es

[∑
i p
S
i (si, s−i)

]
. Hence M is ex-ante WBB.

We now need to lower bound the GFT from mechanism M.

GFT(M) =Eb,s

[∑
i

(bi − si) · x̂i(b, s)

]

≥Es

[∑
i

(θi(s)− si) · x̂i(s)

]

≥1

2
Es

[∑
i

(
F−1
i

(
1− qi(s)

2

)
− si

)
· qi(s)

2

]

=
1

2
Eb,s

[∑
i

(ϕ̃i(bi)− si) · 1
[
bi ≥ F−1

i

(
1− qi(s)

2

)]]

≥1

4
Eb,s

[∑
i

(ϕ̃i(bi)− si) · xi(b, s) · 1[ϕ̃i(bi) ≥ si]]]

]

≥1

4
Eb,s

[∑
i

(ϕ̃i(bi)− si) · xi(b, s)]

]

Here the second inequality uses the definition of θi(s), qi(s) and Lemma 7.21. The third in-

equality follows from Myerson’s lemma. The second-to-last inequality uses the fact that

Ebi

[
ϕ̃i(bi) · 1[bi ≥ F−1

i

(
1− qi(s)

2

)]
≥ 1

2
· Eb [ϕ̃i(bi) · xi(b, s) · 1[ϕ̃i(bi) ≥ si]]

holds for every s and i.

This is because the right hand side

1

2
· Eb[ϕ̃i(bi) · xi(b, s) · 1[ϕ̃i(bi) ≥ si]] = Ebi [ϕ̃i(bi) ·

1

2
Eb−i [xi(b, s) · 1[ϕ̃i(bi) ≥ si]]]
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can be viewed as the expectation of ϕ̃i(bi) on an event of bi with a total probability mass Ebi [1
2Eb−i [xi(b, s)·

1[ϕ̃i(bi) ≥ si]]] = qi(s)
2 , while the left hand side is the maximum expectation of ϕ̃i(bi) on any event

of bi with total probability mass qi(s)
2 , as ϕ̃i(bi) is non-decreasing on bi.

Lemma 7.22 shows how to choose an allocation rule x so that the induced SAPP mechanism

(using Lemma 7.20) has GFT at least Ω
(∑

i∈L Ebi,si [(ϕ̃i(bi)− si)+]
)
. Note that the existence of

such an x heavily relies on the fact that in expectation there is only one item that can trade among

the “unlikely to trade” items.

Lemma 7.22. We let GFTSAPP(S) denote the optimal GFT attainable by any DSIC, ex-post IR,

and ex-ante WBB SAPP mechanism over items in S for any subset S ⊆ [n]. GFTSAPP(L) ≥
1
4e ·
∑

i∈L Ebi,si [(ϕ̃i(bi)− si)+].

Proof. Let bL = {bi}i∈L and sL = {si}i∈L. For every i ∈ L, define the event that only i is tradeable:

Ai = {(bL, sL) : bi ≥ si ∧ bj < sj , ∀j ∈ L\{i}} .

We consider the following allocation rule:

xi(bL, sL) =


1[ϕ̃i(bi) ≥ si] , if (b, s) ∈ Ai

0 , otherwise

Notice that (bL, sL) ∈ Ai implies that (bL, s
′
i, sL\{i}) ∈ Ai for any s′i ≤ si. Thus, xi(bL, sL)

is non-increasing in si. Similarly, it is easy to verify that xi(bL, sL) is non-decreasing in all sj

where j ∈ L\{i}. Furthermore,
∑

i∈L xi(bL, sL) ≤ 1 for all bL, sL. If we choose the posted

prices according to Lemma 7.20, then the corresponding mechanism has GFT that is at least

1
4Eb,s [

∑
i(ϕ̃i(bi)− si) · xi(b, s)].
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Moreover, by the definition of xi(b, s),

Eb,s

[∑
i∈L

(ϕ̃i(bi)− si) · xi(b, s)

]
=
∑
i∈L

Ebi,si [(ϕ̃i(bi)− si)
+)] ·

∏
j∈L\{i}

Pr
bj ,sj

[bj < sj ]

≥
∑
i∈L

Ebi,si [(ϕ̃i(bi)− si)
+)] · (1− 1

n
)|L|

≥1

e
·
∑
i∈L

Ebi,si [(ϕ̃i(bi)− si)
+)]

The first inequality holds because for each item j ∈ L, Prbj ,sj [bj < sj ] ≥ 1− 1/n. Hence,

GFTSAPP(L) ≥ 1

4e
·
∑
i∈L

Ebi,si [(ϕ̃i(bi)− si)
+].

7.4.4 Bounding the Optimal Profit from the Unlikely to Trade Items.

In this section, we provide an upper bound for the optimal super seller profit from items in L. It

is well known that in multi-item auctions the revenue of selling the items separately is a O(log n)-

approximation to the optimal revenue when there is a single additive buyer [LY13]. In Chapter 4

we have provided a extension of this O(log n)-approximation to profit maximization. Combin-

ing this approximation with some basic observations based on the Cai-Devanur-Weinberg duality

framework [CDW16], we derive the following upper bound of OPT-S(L,F
∣∣
L

).

Lemma 7.23. OPT-S(L,F
∣∣
L

) ≤ O
(
log(|L|) ·

∑
i∈L Ebi,si [(ϕ̃i(bi)− si)+]

)
. Here ϕ̃i(bi) is Myer-

son’s ironed virtual value function13 for the buyer’s distribution for item i, DBi .

We need the following lemma proved in Chapter 4.

Lemma 7.24. (Restatement of Lemma 4.2) For any T ⊆ [n] and feasibility constraint J with

respect to T , consider the super seller auction with item set T and a J -constrained buyer. Any

flow λT induces a finite benchmark for the optimal profit, that is,

13. The buyer’s unironed virtual value function is ϕi(bi) = bi − 1−Fi(bi)
fi(bi)

. These values are averaged to make the

function monotonic in quantile space, which creates ϕ̃i(bi).
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OPT-S(T,J ) ≤ max
x∈PJ

Eb,s

[∑
i∈T

xi(b, s) · (ΦT
i (b)− si)

]

where ΦT
i (b) = bi− 1

fi(bi)

∑
b′ λT (b′, b) ·(b′i−bi) can be viewed as buyer i’s virtual value function,

and PJ is the set of all feasible allocation rules. More specifically, λT (b′, b) is the Lagrangian

multiplier for the BIC/IR constraint that states that when the buyer has true type b, she does not

want to misreport b′. The equality sign is achieved when the optimal dual λ∗T is chosen.

Next, we show that OPT-S(L,F
∣∣
L

) is no more than OPT-S(L,ADD) using Lemma 7.24.

Lemma 7.25. OPT-S(L,F
∣∣
L

) ≤ OPT-S(L,ADD).

Proof. Let λ̂L be the optimal dual in Lemma 7.24 when the buyer is additive without any feasibility

constraint, and Φ̂L
i (·) be the induced virtual value function. We have that

OPT-S(L,F
∣∣
L

) ≤ max
x∈PF|L

Eb,s

[∑
i∈L

xi(b, s) · (Φ̂L
i (b)− si)

]

≤ max
xi(b,s)∈[0,1]

Eb,s

[∑
i

xi(b, s)(Φ̂L
i (b)− si)

]

= OPT-S(L,ADD).

Theorem 4.6 in Chapter 4 gives a logarithmic upper bound of the optimal profit for a single

additive buyer, using the sum of optimal profit for each individual item.

Lemma 7.26. (Restatement of Theorem 4.6)

OPT-S(L,ADD) ≤ log(|L|) ·
∑
i∈L

OPT-S({i}) = log(|L|) ·
∑
i∈L

Ebi,si [(ϕi(bi)− si)
+].

Together, Lemmas 7.25 and 7.26 conclude the proof of Lemma 7.23:

OPT-S(L,F
∣∣
L

) ≤ O

(
log(|L|) ·

∑
i∈L

Ebi,si
[
(ϕ̃i(bi)− si)+

])
.
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Proof of Lemma 7.17: It directly follows from Lemmas 7.16 and 7.23. 2

Proof of Theorem 7.3: The theorem follows directly from Lemmas 7.17, 7.18, 7.20, and 7.22. 2

7.5 Lower Bounds and the First-Best–Second-Best Gap

In the unconditional approximation results stated in Section 7.4, we compare the GFT of our

mechanism to OPT. Readers may be interested in whether our mechanism is also an approximation

to FB-GFT. In fact, this question is related to one of the major open problems in two-sided

markets: How large is the gap between the second-best and the first-best GFT? In this section, we

consider a unit-demand buyer and present a reduction from achieving a FB-GFT approximation in

our multi-dimensional setting to the open problem regarding the gap in single-dimensional two-sided

markets.

Matching Markets. This setting has a two-sided market with n buyers, n sellers, and n identical

items. Each seller owns one item and each buyer is interested in buying at most one item. Thus the

value (or cost) for every agent is a scalar. Here we consider a special case where for every i ∈ [n],

buyer i and seller i can only trade with each other, and at most one pair of agents in the market

can trade. This is bilateral trade when n = 1.

Theorem 7.4. Suppose the buyer is unit-demand in the multi-dimensional setting, and define

FB-GFT,OPT-B, GFTSAPP as in the previous section. Also consider the following matching

market with n buyers and n sellers: for every i ∈ [n], buyer i has value drawn from DBi and seller i

has cost drawn from DSi . Let FB-GFTSD = Eb,s[maxi(bi−si)] be the first-best GFT of the matching

market defined above (which is the same as FB-GFT in the multi-dimensional unit-demand setting)

and SB-GFTSD be the second-best GFT. For any c > 1, suppose SB-GFTSD ≥ 1/c ·FB-GFTSD,

then

max{OPT-B,GFTSAPP} ≥
1

2c
· FB-GFT.
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Proof. We construct the following allocation rule x = {xi(b, s)}i∈[n]. For every i and b, s, let

xi(b, s) = 1 [i = argmaxk(ϕ̃k(bk)− sk) ∧ ϕ̃i(bi) ≥ si] .

Then x satisfies both properties in Lemma 7.20. By Lemma 7.20,

GFTSAPP ≥ Eb,s

[∑
i

(ϕ̃i(bi)− si) · xi(b, s)

]
= Eb,s

[
max
i

(ϕ̃i(bi)− si)+

]
.

Moreover, by Lemma 5.4, we have that

SB-GFTSD ≤ Eb,s

[
max
i

(ϕ̃i(bi)− si)+

]
+ Eb,s

[
max
i

(bi − τ̃i(si))+

]
.

Thus by Lemma 7.18, we have

max{OPT-B,GFTSAPP} ≥
1

2
·
(
Eb,s

[
max
i

(ϕ̃i(bi)− si)+

]
+ Eb,s

[
max
i

(bi − τ̃i(si))+

])
≥1

2
· SB-GFTSD ≥ 1

2c
· FB-GFTSD.

The main takeaway of Theorem 7.4 is that, if the largest gap between FB-GFTSD and SB-GFTSD

is at most (i.e. a constant) c for matching markets, then our mechanism is a 2c-approximation to

FB-GFT. Note that if the buyer is additive, such a reduction clearly exists: In the additive case,

items can be treated separately without impacting the IC constraint. Then performing a Buyer

(or Seller) Offering mechanism for every item separately obtains GFT at least SB-GFTSD, thus

approximating FB-GFT by the assumption. Theorem 7.4 shows that for a unit-demand buyer, a

similar reduction also exists using the SAPP mechanism.

On the other hand, finding a lower bound for our result (compared to OPT) is at least as hard

as finding a lower bound for the approximation ratio w.r.t. FB-GFT, and thus is at least as hard

as finding an instance in the matching market that separates FB-GFTSD from SB-GFTSD—a

problem that has long remained open. Indeed, even in bilateral trade, deciding whether the gap is
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finite or not is still open.

7.6 Some Lower-Bound Examples

Tight Example of the log
(

1
r

)
-Approximation. Consider the case when n = 1 (bilateral

trade). We introduce an example provided by Blumrosen and Dobzinski [BD16]. They prove that

in this example, no fixed posted price mechanisms can achieve an approximation ratio better than

Ω(log(1/r)) compared to the first-best GFT. In addition, we will verify that the statement also

holds for the second-best GFT for the same example. It implies that our log(1
r )-approximation is

tight even compared to the second-best GFT.

Example 7.1 (Example in Bilateral Trading [BD16]). For any t > 0, consider a buyer and a seller

with values on the support [0, t]. Let λ = 1
1−e−t . Let F (b) = λ(1 − e−b) with f(b) = λe−b and

G(s) = λ(es−t − e−t) with g(s) = λes−t. Then

r = Pr[b ≥ s] =

∫ t

0

∫ b

0
λe−b · λes−tdsdb = λ2 · e−t(t− 1 + e−t) =

t− 1

et − 1
+

t

(et − 1)2

FB-GFT =

∫ t

0

∫ b

0
(b− s)λe−b · λes−tdsdb = λ2 · ( t− 2

et
+
t+ 2

e2t
)

In any fixed posted price mechanism, note that the mechanism always achieves a larger GFT by

choosing the same price for both agents. The gains from trade from posting at price p:

GFT(p) =

∫ p

0

∫ v

p
(b− s)λe−b ·λes−tdbds = λ2(

t+ 2

e2t
+

2

et
− p+ 2

ep+t
− e

p(t+ 2− p)
e2t

) < λ2(
t+ 2

e2t
+

2

et
)

When t is sufficiently large, FB-GFT is about λ2 · t−2
et while GFT(p) is at most λ2 · 2

et , as

t+2
e2t

is negligible. Thus GFT(p) = O(1/t) · FB-GFT. On the other hand, r = Θ( tet ) for large t,

log(1
r ) = Θ(t). Thus GFT(p) = O(1/ log(1

r )) · FB-GFT.

We now verify that GFT(p) = O(1/ log(1
r )) · OPT for any p ∈ [0, t] and sufficiently large t.

By [BCWZ17],

OPT ≥ Eb,s[(b− s) · 1[ϕ̃(b)− s ≥ 0]]

208



For the above distribution, ϕ(b) = b− 1−F (b)
f(b) = b− 1 + eb−t is monotonic increasing in b. Thus

ϕ̃(b) = ϕ(b).

1

λ2
· Eb,s[(b− s) · 1[ϕ̃(b)− s ≥ 0]] =

∫ t

0

∫ b−1+eb−t

0
(b− s) · es−b−tdsdb

≥
∫ t

0

∫ b−1

0
(b− s) · es−b−tdsdb

= e−t ·
∫ t

0

∫ b

1
k · e−kdkdb (k = b− s)

= e−t ·
∫ t

0
(−e−k(k + 1)

∣∣b
1
)ds

= e−t ·
∫ t

0

[
2

e
− e−b(b+ 1)

]
ds

= e−t · (2t

e
+
t+ 2

et
− 2)

Thus when t is sufficiently large, OPT = Ω(λ2 · tet ) and we have GFT(p) = O(1/t) ·OPT =

O(1/ log(1
r )) ·OPT.

Example 7.2 (GFTSAPP is unboundedly higher than GFTFPP). For any fixed n, consider the

following instance for an additive buyer. DB1 and DS1 are distributions in Example 7.1 some suf-

ficiently large t. Pick any C > 0. For every i = 2, ldots, n, DBi is a degenerate distribution at C,

i.e. the value is C with probability 1. Distribution DSi takes value C + ε with probability 1 − 1
2n

and C with probability 1
2n , for some small ε > 0. As shown in Example 7.2, when t is large,

r1 = Θ( tet ) <
1
n . For i ≥ 2, ri = 1

2n . Thus all items are “unlikely to trade” items (ri <
1
n).

Note that for i ≥ 2, bi is always no more than si. By Lemma 7.22,

GFTSAPP = Ω

(∑
i

Ebi,si [(ϕ̃i(bi)− si)
+]

)
= Ω(Eb1,s1 [(ϕ̃1(b1)− s1)+])

In Example 7.1, when t is sufficiently large, Eb1,s1 [(ϕ̃1(b1)−s1)+] = Ω(λ2· tet ). On the other hand,

any fixed price mechanism can only gain positive GFT from item 1. Thus GFTFPP = O(λ2 · 2
et ),

which can be arbitrarily far from GFTSAPP as t goes to infinity.
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Dependence on r is Necessary. We show that the dependence on r = mini ri is necessary for

the approximation result of fixed posted price mechanisms. More formally, suppose fixed posted

price mechanisms achieves an approximation ratio of f(r1, . . . , rn), for some n-ary function f . We

will show that f(r1, . . . , rn) = Ω(log(1/r)). Consider the instance shown in Example 7.2. Clearly

FB-GFT = E [(b1 − s1)+]. Since all items other than item 1 always contribute 0 gains from trade,

no fixed posted price mechanism can achieve better than Ω(log(1/r1))-approximation to the first-

best. Thus f(r1, . . . , rn) = Ω(log(1/r1)). Similarly we have f(r1, . . . , rn) = Ω(log(1/ri)) for all

i = 1, . . . , n. Thus f(r1, . . . , rn) = Ω(log(1/r)).

SAPP Mechanism is Necessary. We provide the following example (Example 7.3) to show

that the class of SAPP mechanisms defined in Mechanism 7.4.3 is necessary to obtain any finite

approximation ratio to OPT. More specifically, we show that in bilateral trading, the best FPP

mechanism and the mechanism used in Lemma 7.18 can both be arbitrarily far from OPT.

Example 7.3. For every positive integer m ≥ 2, consider the bilateral trading instance where the

seller’s and buyer’s (discrete) distributions are shown in the following tables. In the table, g(s) (or

f(b)) represents the density of the corresponding value in the support.

s 0 2m − 2m−1 . . . 2m − 2k . . . 2m − 1

g(s) 1
2m

1
2m . . . 1

2k+1 . . . 1
2

τ(s) 0 2m . . . 2m . . . 2m

Table 7.1: Seller’s Distribution

b 2m − 2L . . . 2m − 2k . . . 2m − 1

f(b) pL . . . pk . . . p0

Table 7.2: Buyer’s Distribution

For the seller’s distribution, one can verify that the virtual value τ(s) is 0 if s = 0 and 2m

elsewhere.14

14. For discrete distributions, the virtual value for the seller’s distribution is defined as τ(s) = s+
∑

t<s g(t)·(s−s
′)

g(s)
,

where s′ is the largest type in the support that is smaller than s.
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For the buyer’s distribution, choose L = bm − log(m)c. Then define the sequence {pk}Lk=0

as follows: Construct the sequence {qk}Lk=0 with q0 = 1, q1 = 1
m−1 , and for every k = 2, . . . , L,

qk = m−k+2
m−k · qk−1. Then for every k = 0, . . . , L define pk = qk/

∑L
j=0 qj for every k.

By induction, we have
∑k

j=0 qj = qk+1 · (m− k − 1). Thus

k∑
j=0

pj = pk+1 · (m− k − 1). (7.3)

Lemma 7.27. For any sufficiently large integer m, letM be the mechanism used in Lemma 7.18.15

Then in Example 7.3 we have

max{GFTFPP,GFT(M)} ≤ O(
1

log(m)
) ·OPT.

Proof. In mechanism M (see Lemma 7.18), the buyer only trades with the seller when b ≥ τ(s).

Thus in Example 7.3, the item trades only when s = 0.

GFT(M) =
L∑
k=0

(2m − 2k) · pk ·
1

2m
≤

L∑
k=0

pk.

For FB-GFT, we have

FB-GFT =

L∑
k=0

 m−1∑
j=k+1

(2j − 2k) · pk ·
1

2j+1
+

(2m − 2k)pk
2m


≥

L∑
k=0

pk ·

 m−1∑
j=k+1

2j−1

2j+1
+

2m−1

2m

 ≥ 1

4
·
L∑
k=0

pk · (m− k),

where the first inequality follows from the fact that 2j − 2k ≥ 2j−1 for any j > k.

Now consider any fixed posted price mechanism. Clearly the largest GFT is achieved when the

posted prices are same for both the buyer and the seller. Without loss of generality we can assume

the posted price p lies in the support of distributions, i.e., p = 2m− 2k for k = 0, . . . , L. For any k,

15. In bilateral trading, the mechanism is essentially the Buyer Offering mechanism [BCWZ17]: The buyer picks a
take-it or leave-it price according to her value and the seller can choose whether to sell at that price.
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the mechanism with posted price p = 2m − 2k achieves GFT

k∑
j=0

(
m−1∑
i=k+1

(2i − 2j) · pj ·
1

2i+1
+

(2m − 2j)pj
2m

)
≤

k∑
j=0

pj

(
m−1∑
i=k+1

2i

2i+1
+ 1

)
≤

k∑
j=0

pj · (m− k).

Let Qk =
∑k

j=0 pj · (m − k). Note that by the choice of sequence {pk}Lk=0 in Example 7.3, we

have for any k = 0, . . . , L− 1 that

Qk+1 −Qk =
k+1∑
j=0

pj · (m− k − 1)−
k∑
j=0

pj · (m− k) = pk+1 · (m− k − 1)−
k∑
j=0

pj = 0.

Thus each Qk is the same value. Let this value be Q. Then Q = QL =
∑L

j=0 pj ·(m−L) = m−L.

Moreover, GFTFPP ≤ maxkQk = Q. GFT(M) ≤
∑L

k=0 pk = QL
m−L ≤

1
log(m) · Q. On the other

hand,

FB-GFT ≥ 1

4
·
L∑
k=0

pk · (m− k) =
1

4
·
L∑
k=0

k−1∑
j=0

pj (Equation 7.3)

=
1

4

L∑
k=0

Qk−1

m− k + 1
≥ Q ·

∫ m+1

m−L+1

1

x
dx =

Q

4
· log

(
m+ 1

m− L+ 1

)
.

When m is sufficiently large, we have FB-GFT ≥ Q
5 · log(m). Thus

log(m)

5
·max{GFTFPP,GFT(M)} ≤ FB-GFT.

It remains to verify that OPT is a constant factor of FB-GFT. By Lemma 5.5,

OPT ≥ Eb,s[(b− s) · 1[ϕ̃(b)− s ≥ 0]].

Now we calculate the buyer’s virtual value.16 We have that ϕ(2m − 1) = 2m − 1, and for every

16. For discrete distributions, the buyer’s virtual value is defined as ϕ(b) = b −
∑

t>b f(t)·(b
′−b)

f(b)
, where b′ is the

smallest type in the support that is larger than b.
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k = 1, . . . , L,

ϕ(2m − 2k) = (2m − 2k)−
∑k−1

j=0 pj · 2k−1

pk
= 2m − 2k − 2k−1(m− k) ≥ 2m − 2k ·m,

thus ϕ(·) is monotone increasing and ϕ̃(b) = ϕ(b) for every b. Note that when b = 2m − 2k and

s ≤ 2m − 2k+log(m), it holds that ϕ(b) ≥ s. We have

OPT ≥
L∑
k=0

 m−1∑
j=k+dlog(m)e

(2j − 2k) · pk ·
1

2j+1
+

(2m − 2k)pk
2m


= FB-GFT−

L∑
k=0

k+dlog(m)e−1∑
j=k+1

(2j − 2k) · pk ·
1

2j+1

≥ FB-GFT−
L∑
k=0

k+dlog(m)e−1∑
j=k+1

pk ·
2j

2j+1

≥ FB-GFT− log(m)

2

L∑
k=0

pk = FB-GFT− log(m)

2
.

Note that FB-GFT ≥ Q
5 · log(m) = m−L

5 · log(m) ≥ 1
5 · log2(m). Thus when m→∞, OPT

FB-GFT → 1.

We finish the proof.
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Chapter 8

Conclusion and Open Problems

In many of the mechanism design problems, there is a discrepancy between theory and practice:

The mechanism that achieves the theoretically optimal objective and mechanisms used in practice,

are often quite different. Motivated by the existence of this discrepancy, in this thesis we addressed

the following question: Can we design simple mechanisms to approximate the optimal

mechanism?

In this thesis, we addressed three central mechanism design problems. The first follows from

Myerson’s seminal result on the revenue-optimal auction in the single-item case, as well as the

existence of many undesirable properties of the revenue-optimal auction in multi-item case. There

has been extensive research effort on designing simple and approximately-optimal mechanisms, but

no result has been found beyond a single buyer, or multiple buyers with linear valuations. Our

work presents a unified approach to approximate the optimal revenue in multi-item auctions, with

multiple buyers with non-linear (subadditive) valuations. We improve the approximate ratio for

many of the results in the literature, and generalize the result to broader case, when the buyer is

XOS or subadditive. The main open question following our results is:

Open Question 1. Can we design simple mechanisms that obtain a constant fraction of the optimal

revenue, for multiple buyers with valuations that are subadditive over independent items?

A large fraction of the proof in this work already applies to subadditive valuations. More

specifically, our upper bound for the optimal revenue from Theorem 3.2 holds for all subadditive
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valuations, and we have used it to obtain a constant factor approximation for a single subadditive

buyer and a O(logm)-approximation for multiple subadditive buyers. Our analysis for the term

Single and Tail also applies to subadditive valuations.

The only component that does not extend to subadditive valuations is the analysis of the Core.

Our proof is inspired by Feldman et al. [FGL15], who showed that there exists a sequential posted-

price mechanism that is an O(1)-approximation to the optimal social welfare for bidders with XOS

valuations. Their proof makes heavy use of the supporting prices for XOS valuations, and the

approximation ratio degrades to O(logm) for subadditive valuations.

A recent breakthrough by Dutting et al. [DKL20] managed to improved the approximation

ratio of Feldman et al. for subadditive valuations. They proved an O(log logm)-approximation

to the optimal social welfare for buyers with subadditive valuations, using sequential posted-price

mechanisms. In the same paper, they also uses this result to achieve the same approximation

ratio to the optimal revenue, following a similar approach to our work. Thus to resolve the open

question above, it is worthwhile to further improve the approximation ratio proved in [DKL20]. In

particular,

Open Question 2. Can sequential posted-price mechanisms obtain a constant fraction of the

optimal social welfare when buyers have subadditive valuations?

An astute reader may have noticed that our approximation results are only existential. Luckily,

the only nonconstructive part of our argument is finding the right β, which is essentially the

same as finding the ex-ante allocation probabilities of the optimal or an approximately optimal

mechanism. In Appendix A.5, we show how to find the right β when the buyers are symmetric,

but the asymmetric case remains open.

Open Question 3. Can we design a polynomial time algorithm to compute these simple and

approximately revenue-optimal mechanisms for constrained additive and XOS valuations?

As the second mechanism design problem, we studied profit maximization in multi-item auc-

tions, which is considered as a more general model of revenue maximization. We proposed a novel

permit-selling mechanism, and showed a constant factor approximation to the optimal profit. Our
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result applies to a single constrained-additive buyer and multiple buyers with selectable feasibility

constraints (such as Matroid). The main open question following this result is whether we can

generalize the result to more general settings.

Open Question 4. In the profit maximization problem, can we design simple mechanisms that ob-

tain a constant fraction of the optimal profit, for a single subadditive buyer, or multiple constrained-

additive buyers?

The last but not least mechanism design problem discussed in this thesis is approximating

gains from trade in two-sided markets. While the impossibility result by Myerson and Satterth-

waite [MS83] shows that no truthful and budget balanced mechanisms can achieve full GFT and

the optimal mechanism is rather complex even in the simplist bilateral trade setting, our work

provide simple mechanisms that approximate the optimal GFT, in bilateral trade and more general

two-sided markets.

The main open question in two-sided markets follows from the Myerson-Satterthwaite impos-

sibility result. It shows that even in bilateral trade, the unconstrained first-best GFT is strictly

larger than the second-best GFT, the maximum GFT attainable by truthful and budget balanced

mechanisms. However, it remains open whether the two has a finite gap.

Open Question 5. How big is the gap between the first-best GFT and second-best GFT in two-sided

markets?

We remark that our unconditional approximation proved in this thesis are all compared to the

second-best GFT, while all other results in the literature compares to the first-best GFT. If the

gap between the first-best GFT and second-best GFT is shown to be infinite, then our proposed

framework to approximate the second-best GFT becomes an essential step of this problem.

In the thesis we made a first step on studying GFT approximation in multi-dimensional two-

sided markets. We considered a special setting with a single buyer and multiple unit-supply sellers

and proved an unconditional O(logm)-approximation. The open questions following this result is

whether the result can be improved or generalized.

216



Open Question 6. Can we design a truthful and budget balanced mechanism that approximates

the second-best GFT, in two-sided markets with multiple buyers or multi-dimensional sellers?
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Appendix A

Missing Details from Chapter 3

A.1 Proof of Theorem 3.1

Proof of Theorem 3.1: When λ is useful, we can simplify function L(λ, σ, p) by removing the term

associated with p and replacing
∑

t′i∈T
+
i
λ(ti, t

′
i) with fi(ti)+

∑
t′i∈Ti

λ(t′i, ti). After the simplification,

we have

L(λ, σ, p) =
n∑
i=1

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σiS(ti)·vi(ti, S)− 1

fi(ti)

∑
t′i∈Ti

λi(t
′
i, ti)

(
vi(t
′
i, S)− vi(ti, S)

)
=

n∑
i=1

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σiS(ti) · Φi(ti, S),

which is exactly the virtual welfare of σ with respect to λ. Now, we only need to prove that

L(λ, σ, p) is greater than the revenue of M . Let us think of L(λ, σ, p) using Expression (3.1). Since

M is a BIC mechanism,

∑
S⊆[m]

vi(ti, S) ·
(
σiS(ti)− σiS(t′i)

)
−
(
(pi(ti)− pi(t′i)

)
≥ 0
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for any i, ti ∈ Ti and t′i ∈ T
+
i . Also, all the dual variables λ are nonnegative. Therefore, it is clear

that L(λ, σ, p) is at least as large as the revenue of M .

When λ∗ is the optimal dual variable, by strong duality, we know maxσ∈P (D),p L(λ∗, σ, p) equals

to the revenue of M∗ = (σ∗, p∗). But we also know that L(λ∗, σ∗, p∗) is at least as large as the

revenue of M∗, therefore σ∗ maximizes the virtual welfare. 2

A.2 Proof of Lemma 3.4

Lemma A.1. For any flow λ
(β)
i that respects the partial specification in Figure 3.3, the correspond-

ing virtual valuation function Φ
(βi)
i of v

(βi)
i for any buyer i is:

• vi(ti, S\{j}) + Vi(tij)− 1
fi(ti)

∑
t′i∈Ti

λ(t′i, ti) ·
(
Vi(t

′
ij)− Vi(tij)

)
, if ti ∈ R(βi)

j and j ∈ S.

• vi(ti, S), otherwise.

Proof of Lemma A.1: The proof follows the definitions of the virtual valuation function (Defi-

nition 3.2) and relaxed valuation (Definition 3.3). We use ti,−j = 〈tij′〉j′ 6=j to denote bidder i’s

information for all items except item j. If ti ∈ R(βi)
j and j ∈ S, v

(βi)
i (ti, S) = vi(ti, S\{j}) + Vi(tij).

Since λ(ti, t
′
i) > 0 only when ti,−j = t′i,−j and t′i ∈ R

(βi)
j , v

(βi)
i (t′i, S) = vi(t

′
i, S\{j}) + Vi(t

′
ij) =

vi(ti, S\{j}) + Vi(t
′
ij). Therefore,

Φ
(βi)
i (ti, S) = vi(ti, S\{j}) + Vi(tij)−

1

fi(ti)

∑
t′i∈Ti

λ(t′i, ti) ·
(
Vi(t

′
ij)− Vi(tij)

)

If ti ∈ R(βi)
j and j /∈ S or ti ∈ R(βi)

0 , then v
(βi)
i (ti, S) = vi(ti, S). If ti ∈ R(βi)

0 , there is no flow

entering ti except from the source, so clearly Φ
(βi)
i (ti, S) = vi(ti, S). If ti ∈ R(βi)

j , then for any t′i

that only differs from ti in the j-th coordinate, we have vi(t
′
i, S) = vi(ti, S), because j 6∈ S. Hence,

Φ
(βi)
i (ti, S) = vi(ti, S). 2

Proof of Lemma 3.4:

Let Ψ
(βi)
ij (ti) = Vi(tij) − 1

fi(ti)

∑
t′i∈Ti

λ(t′i, ti) ·
(
Vi(t

′
ij)− Vi(tij)

)
. According to Lemma A.1, it

suffices to prove that for any j > 0, any ti ∈ R(βi)
j , Ψ

(βi)
ij (ti) ≤ ϕ̃ij(Vi(tij)).
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Claim A.1. For any type ti ∈ R(βi)
j , if we only allow flow from type t′i to ti, where tik = t′ik for all

k 6= j and t′ij ∈ argmins∈Tij∧Vi(s)>Vi(tij) Vi(s), and the flow λ(t′i, ti) equals
fij(tij)

Prv∼Fij [v=Vi(tij)]
fraction

of the total in flow to t′i, then there exists a flow λ such that

Ψ
(βi)
ij (ti) = ϕij(Vi(tij)) = Vi(tij)−

(
Vi(t

′
ij)− Vi(tij)

)
· Prv∼Fij [v > Vi(tij)]

Prv∼Fij [v = Vi(tij)]
,

where ϕij(Vi(tij)) is the Myerson virtual value for Vi(tij) with respect to Fij.

Proof. As the flow only goes from t′i and ti, where t′i and ti only differs in the j-th coordinate, and

tij ∈ argmaxs∈Tij∧Vi(s)<Vi(t′ij) Vi(s). If tij is a type with the largest Vi(tij) value in Tij , then there is

no flow coming into it except the one from the source, so Ψ
(βi)
ij (ti) = Vi(tij). For every other value

of tij , the in flow is exactly

fij(tij)

Prv∼Fij [v = Vi(tij)]

∏
k 6=j

fik(tik) ·
∑

x∈Tij :Vi(x)>Vi(tij)

fij(x) =
∏
k

fik(tik) ·
Prv∼Fij [v > Vi(tij)]

Prv∼Fij [v = Vi(tij)]
.

This is because each type of the form (x, ti,−j) with Vi(x) > Vi(tij) is also inR
(βi)
j . So

fij(tij)
Prv∼Fij [v=Vi(tij)]

of all flow that enters these types will be passed down to ti (and possibly further, before going to

the sink), and the total amount of flow entering all of these types from the source is exactly∏
k 6=j fik(tik) ·

∑
x∈Tij :Vi(x)>Vi(tij)

fij(x). Therefore, Ψ
(βi)
ij (ti) = ϕij(Vi(tij)). Whenever there is no

more type ti ∈ R(βi)
j with smaller Vi(tij) value, we push all the flow to the sink.

If Fij is regular, this completes our proof. When Fij is not regular, we can iron the virtual value

function in the same way as in [CDW16]. Basically, for two types ti, t
′
i ∈ R

(βi)
j that only differ in

the j-th coordinate, if Ψ
(βi)
ij (ti) > Ψ

(βi)
ij (t′i) but Vi(tij) < Vi(t

′
ij), add a loop between ti and t′i with

a proper weight to make Ψ
(βi)
ij (ti) = Ψ

(βi)
ij (t′i).

Lemma A.2. [CDW16] For any β and i, there exists a flow λi(β) such that for any ti ∈ R(βi)
j ,

Ψ
(βi)
ij (ti) ≤ ϕ̃ij(Vi(tij)).

2
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A.3 Analysis for the Single-Bidder Case

Proof of lemma 3.9: In Non-Favorite, since Rβ0 = ∅, the corresponding term is simply 0. Notice

v(t, ·) is a monotone valuation for every t ∈ T ,

Non-Favorite(M) =
∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]
·

∑
S:j∈S

σ
(β)
S (t) · v(t, S\{j}) +

∑
S:j /∈S

σ
(β)
S (t) · v(t, S)


≤
∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]∑
S

σ
(β)
S (t) · v(t, [m]\{j})

≤
∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]
· v(t, [m]\{j}) (

∑
S

σ
(β)
S (t) ≤ 1)

Recall that for all t ∈ T and S ⊆ [m], v(t, S) ≤ v (t, S ∩ C(t))+
∑

j∈S∩T (t) V (tj). We will replace

v(t, [m]\{j}) above with v (t, ([m]\{j}) ∩ C(t)) +
∑

k∈([m]\{j})∩T (t) V (tk). First, the contribution

from v (t, ([m]\{j}) ∩ C(t)) is upper bounded by the Core(M).

∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]
· v (t, ([m]\{j}) ∩ C(t))

≤
∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]
· v (t, C(t)) =

∑
t∈T

f(t) · v (t, C(t)) (Core(M))

The inequality comes from the monotonicity of v(t, ·) and the fact that for every t only stays

in one region R
(β)
j .
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Next, we upper bound the contribution from
∑

k∈([m]\{j})∩T (t) V (tk) by the Tail(M).

∑
t∈T

f(t) ·
∑
j∈[m]

1
[
t ∈ R(β)

j

]
·

∑
k∈([m]\{j})∩T (t)

V (tk)

=
∑
t∈T

f(t) ·
∑
j∈T (t)

V (tj) · 1
[
t 6∈ R(β)

j

]
≤
∑
t∈T

f(t) ·
∑
j∈T (t)

V (tj) · 1 [∃k 6= j, V (tk) ≥ V (tj)] (Definition of R
(β)
j )

=
∑
j

∑
tj :V (tj)≥c

fj(tj) · V (tj) · Pr
t−j

[∃k 6= j, V (tk) ≥ V (tj)] (Tail(M))

2

Proof of Lemma 3.12: We argue the three properties one by one.

• Monotonicity: For all t ∈ T and U ⊆ V ⊆ [m], U ∩ C(t) ⊆ V ∩ C(t). Since v(t, ·) is monotone,

v′(t, U) = v (t, U ∩ C(t)) ≤ v (t, V ∩ C(t)) = v′(t, V ).

Thus, v′(t, ·) is monotone.

• Subadditivity: For all t ∈ T and U, V ⊆ [m], notice (U ∪ V ) ∩ C(t) = (U ∩ C(t)) ∪ (V ∩ C(t)),

we have

v′(t, U∪V ) = v ((t, (U ∩ C(t)) ∪ (V ∩ C(t))) ≤ v (t, U ∩ C(t))+v (t, V ∩ C(t)) = v′(t, U)+v′(t, V ).

• No externalities: For any t ∈ T , S ⊆ [m], and any t′ ∈ T such that tj = t′j for all j ∈ S, to

prove v′(t, S) = v′(t′, S), it is enough to show S ∩C(t) = S ∩C(t′). Since V (tj) = V (t′j) for any

j ∈ S, j ∈ S ∩ C(t) if and only if j ∈ S ∩ C(t′).

2

Proof of Lemma 3.13: For any t, t′ ∈ T , and set X,Y ⊆ [m], define set H =
{
j ∈ X ∩ Y : tj = t′j

}
.
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Since v′(·, ·) has no externalities, v′(t′, H) = v′(t,H). Therefore,

|v′(t,X)− v′(t′, Y )| = max
{
v′(t,X)− v′(t′, Y ), v′(t′, Y )− v′(t,X)

}
≤ max

{
v′(t,X)− v′(t′, H), v′(t′, Y )− v′(t,H)

}
(Monotonicity)

≤ max
{
v′(t,X\H), v′(t′, Y \H)

}
(Subadditivity)

= max
{
v (t, (X\H) ∩ C(t)) , v

(
t′, (Y \H) ∩ C(t)

)}
(Definition of v′(·, ·))

≤ c ·max {|X\H|, |Y \H|}

≤ c · (|X∆Y |+ |X ∩ Y | − |H|)

The second last inequality is because both v(t, ·) and v(t′, ·) are subadditive and for any item

j ∈ C(t) (C(t′)) the single-item valuation V (tj) (V (t′j)) is less than c. 2

A.4 Missing Proofs for the Multi-Bidder Case

Proof of Lemma 3.16: We replace every vi(ti, S) in Non-Favorite(M,β) with vi (ti, S ∩ Ci(ti)) +∑
j∈S∩Ti(ti) Vi(tij). Let the contribution from vi (ti, S ∩ Ci(ti)) be the first term and the contribution

from
∑

j∈S∩Ti(ti) Vi(tij) be the second term.

∑
i

∑
ti∈Ti

fi(ti) · 1
[
ti ∈ R(βi)

0

]
·
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S ∩ Ci(ti))+

∑
i

∑
ti∈Ti

fi(ti) ·
∑
j∈[m]

1
[
ti ∈ R(βi)

j

]
·

∑
S:j∈S

σ
(β)
iS (ti) · vi (ti, (S\{j}) ∩ Ci(ti)) +

∑
S:j 6∈S

σ
(β)
iS (ti) · vi (ti, S ∩ Ci(ti))


≤
∑
i

∑
ti∈Ti

fi(ti) ·
∑
S⊆[m]

σ
(β)
iS (ti) · vi(ti, S ∩ Ci(ti)) (Core(M,β))

The inequality comes from the Monotonicity of vi(ti, ·) by replacing vi (ti, (S\{j}) ∩ Ci(ti)) with

vi(ti, S ∩ Ci(ti)).
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For the second term, notice that when ti ∈ R(βi)
0 , Ti(ti) = ∅. It can be rewritten as:

∑
i

∑
ti∈Ti

fi(ti) ·
∑
j∈[m]

1
[
ti ∈ R(βi)

j

]
·

∑
S:j∈S

σ
(β)
iS (ti) ·

∑
k∈(S\{j})∩Ti(ti)

Vi(tik) +
∑
S:j 6∈S

σ
(β)
iS (ti) ·

∑
k∈S∩Ti(ti)

Vi(tik)


=
∑
i

∑
ti∈Ti

fi(ti) ·
∑

j∈Ti(ti)

Vi(tij) · 1
[
ti 6∈ R(βi)

j

]
· π(β)

ij (ti) (Recall π
(β)
ij (ti) =

∑
S:j∈S

σ
(β)
iS (ti))

≤
∑
i

∑
ti∈Ti

fi(ti) ·
∑

j∈Ti(ti)

Vi(tij) · 1
[
ti 6∈ R(βi)

j

]
(πβij(ti) ≤ 1)

=
∑
i

∑
ti∈Ti

fi(ti) ·
∑

j∈Ti(ti)

Vi(tij) ·
∑
k 6=j

1
[
ti ∈ R(βi)

k

]
(ti /∈ R(βi)

0 )

≤
∑
i

∑
j

∑
tij :Vi(tij)≥βij+ci

fij(tij) · Vi(tij) ·
∑
k 6=j

Pr
tik

[Vi(tik)− βik ≥ Vi(tij)− βij ] (Tail(M,β))

2

Lemma A.3. Let {xij}i∈[n],j∈[m] be a set of nonnegative numbers. For any buyer i, any type

ti ∈ Ti, let Xi(ti) = {j | Vi(tij) < xij}, and let

v̄i(ti, S) = vi(ti, S ∩Xi(ti)),

for any set S ⊆ [m]. Then for any bidder i, any type ti ∈ Ti, v̄i(ti, ·), satisfies monotonicity,

subadditivity and no externalities.

Proof of Lemma A.3: We will argue these three properties one by one.

• Monotonicity: For all ti ∈ Ti and U ⊆ V ⊆ [m], since vi(ti, ·) is monotone,

v̄i(ti, U) = vi(ti, U ∩Xi(ti)) ≤ vi(ti, V ∩Xi(ti)) = v̄(ti, V )

Thus v̄i(ti, ·) is monotone.

• Subadditivity: For all ti ∈ Ti and U, V ⊆ [m], (U ∪ V ) ∩Xi(ti) = (U ∩Xi(ti)) ∪ (V ∩Xi(ti)).
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Since vi(ti, ·) is subadditive, we have

v̄i(ti, U ∪ V ) = vi(ti, (U ∩Xi(ti)) ∪ (V ∩Xi(ti)))

≤ vi(ti, U ∩Xi(ti)) + vi(ti, V ∩Xi(ti)) = v̄i(ti, U) + v̄i(ti, V ).

• No externalities: For any ti ∈ Ti, S ⊆ [m], and any t′i ∈ Ti such that tij = t′ij for all j ∈ S, to

prove v̄i(ti, S) = v̄i(t
′
i, S), it suffices to show S ∩Xi(ti) = S ∩Xi(t

′
i). Since Vi(tij) = Vi(t

′
ij),

for any item j ∈ S, j ∈ S ∩Xi(ti) if and only if j ∈ S ∩Xi(t
′
i).

2

Proof of Lemma 3.25: By Lemma A.3 and Definition 3.9, v̂i(ti, ·) satisfies monotonicity, subaddi-

tivity and no externalities.

v̂i(ti, S
′) = vi

(
ti, S

′ ∩ Yi(ti)
)
≥ vi

(
ti,
(
S′ ∩ Yi(ti)

)
∩ Ci(ti)

)
= v′i

(
ti, S

′ ∩ Yi(ti)
)
.

Since S′ ∩ Yi(ti) ⊆ S,

v′i
(
ti, S

′ ∩ Yi(ti)
)
≥

∑
j∈S′∩Yi(ti)

γSj (ti) =
∑
j∈S′

γ̂Sj (ti).

for all j ∈ S, we have min{t(k)
ij , Qj + τi} ≥ γ̂Sj (ti). Therefore, v̂i(ti, S) ≥

∑
j∈S γ̂

S
j (ti). 2

Proof of Lemma 3.27: We first prove that µi(·, ·) is τi-Lipschitz. For any ti, t
′
i ∈ Ti and set

X,Y ∈ [m], let X∗ ∈ argmaxS⊆X

(
v̂i(ti, S)−

∑
j∈S Qj

)
, Y ∗ ∈ argmaxS⊆Y

(
v̂i(t
′
i, S)−

∑
j∈S Qj

)
.

Recall that v̂i(ti, X
∗) = vi (ti, {j | (j ∈ X∗) ∧ (Vi(tij) < Qj + τi)}). This means that for every k ∈

X∗, Vi(tik) must be less than Qk + τi, because otherwise µi(ti, X
∗) < µi(ti, X

∗\{k}). Therefore,

v̂i(ti, S) = vi(ti, S) for all S ⊆ X∗. Since vi(ti, ·) is subadditive, vi(ti, X
∗) ≤ vi(ti, X∗\{k})+Vi(tik).

So by the optimality of X∗, it must be that Vi(tik) ≥ Qk for all k ∈ X∗. Similarly, we can show

that for every k ∈ Y ∗, Vi(t′ik) ∈ [Qk, Qk + τi].

Now let set H = {j | j ∈ X ∩ Y ∧ tij = t′ij}, if µi(ti, X) > µi(t
′
i, Y ).
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∣∣µi(ti, X)− µi(t′i, Y )
∣∣ =

v̂i(ti, X∗)− ∑
j∈X∗

Qj

−
v̂i(t′i, Y ∗)− ∑

j∈Y ∗
Qj


≤

v̂i(ti, X∗)− ∑
j∈X∗

Qj

−
v̂i(t′i, X∗ ∩H)−

∑
j∈X∗∩H

Qj

 (Optimality of Y ∗ and X∗ ∩H ⊆ Y )

≤v̂i(ti, X∗)− v̂i(ti, X∗ ∩H)−
∑

j∈X∗\H

Qj (No externalities of v̂i(ti, ·))

≤v̂i(ti, X∗\H)−
∑

j∈X∗\H

Qj (Subadditivity of v̂i(ti, ·))

≤τi · |X∗\H| (Vi(tij) ∈ [Qj , Qj + τi] for all j ∈ X∗)

≤τi · |X\H|

Similarly, if µi(ti, X) ≤ µi(t′i, Y ), |µi(ti, X)− µi(t′i, Y )| ≤ τi · |Y \H|. Thus, µi(·, ·) is τi-Lipschitz

as ∣∣µi(ti, X)− µi(t′i, Y )
∣∣ ≤ τi ·max {|X\H|, |Y \H|} ≤ τi · (|X∆Y |+ |X ∩ Y | − |H|).

Monotonicity follows directly from the definition of µi(ti, ·). Next, we argue subadditivity. For

all U, V ⊆ [m], let S∗ ∈ argmaxS⊆U∪V

(
v̂i(ti, S)−

∑
j∈S Qj

)
, X = S∗ ∩ U ⊆ U , Y = S∗\X ⊆ V .

Since v̂i(ti, ·) is a subadditive valuation,

µi(ti, U∪V ) = v̂i(ti, S
∗)−

∑
j∈S∗

Qj ≤

v̂i(ti, X)−
∑
j∈X

Qj

+

v̂i(ti, Y )−
∑
j∈Y

Qj

 ≤ µi(ti, U)+µi(ti, V )

Finally, we argue that µi(ti, ·) has no externalities. Consider a set S, and types ti, t
′
i ∈ Ti such

that t′ij = tij for all j ∈ S. For any S′ ⊆ S, since v̂i(ti, ·) has no externalities, v̂i(ti, S
′)−

∑
j∈S′ Qj =

v̂i(t
′
i, S
′)−

∑
j∈S′ Qj . Thus, µi(ti, S) = µi(t

′
i, S). 2
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A.5 Efficient Approximation for Symmetric Bidders

In this section, we sketch how to compute the RSPM and ASPE to approximate the optimal revenue

in polynomial time for symmetric bidders1. For any given BIC mechanism M , one can follow our

proof to construct in polynomial time an RSPM and an ASPE such that the better of the two

achieves a constant fraction of M ’s revenue. We will describe the construction of the RSPM and

the ASPE separately in this section. The difficulty of applying the method described above to

construct the desired simple mechanisms is that we need to know an (approximately) revenue-

maximizing mechanism M∗. We will show how to circumvent this difficulty when the bidders are

symmetric.

Indeed, we can directly construct an RSPM that approximates the PostRev. As we have

restricted the buyers to purchase at most one item in an RSPM, the PostRev is upper bounded

by the optimal revenue of the unit-demand setting where buyer i has value Vi(tij) for item j when

her type is ti. By [CDW16], we know that the optimal revenue in this unit-demand setting is upper

bounded by 4OPTCopies-UD, so one can simply use the RSPM constructed in [CHMS10] to extract

revenue at least PostRev
24 . Note that the construction is independent of M .

Unlike the RSPM, our construction for the ASPE heavily relies on β which depends on M

(Lemma 3.6). Given β, we first compute cis according to Definition 3.6. Next, we compute the

Qjs (Definition 3.7). Finally, we compute the τis (Defintion 3.8) and use them to compute the

entry fee (Definition 3.10). A few steps of the algorithm above requires sampling from the type

distributions, but it is not hard to argue that a polynomial number of samples suffices. The main

reason that the information about M is necessary is because our construction crucially relies on the

choice of β. Next, we argue that for symmetric bidders, we can essentially choose a β that satisfies

all requirements in Lemma 3.6 for all mechanisms.

When bidders are symmetric, the important observation is that the optimal mechanism must

also be symmetric, and for any symmetric mechanism we can directly construct a β that satisfies all

the requirements in Lemma 3.6. For every i ∈ [n], j ∈ [m], choose βij such that Prtij [Vi(tij) ≥ βij ] =

1. Bidders are symmetric if for any two bidders i and i′, we have vi(·, ·) = vi′(·, ·) and Dij = Di′j for all j.

227



b
n . Clearly, this choice satisfies property (i) in Lemma 3.6. Furthermore, the ex-ante probability for

any bidder i to win item j is the same in any symmetric mechanism, and therefore is no more than

1/n. Hence, property (ii) in Lemma 3.6 is also satisfied. Given this β, we can essentially follow the

algorithm mentioned above to construct the ASPE. The only difference is that we no longer know

the σ, which is required when computing the Qjs. This can be resolved by considering the welfare

maximizing mechanism M ′ with respect to v′. We compute the prices Qj using the allocation

rule of M ′ and construct our ASPE. As M ′ is also symmetric, our β satisfies all requirements

in Lemma 3.6 with respect to M ′. Therefore, Lemma 3.31 implies that either this ASPE or the

RSPM constructed above has at least a constant fraction of Core(M ′, β) as revenue. Since M ′ is

welfare maximizing, Core(M ′, β) ≥ Core(M∗, β), where M∗ is the revenue optimal mechanism.

Therefore, we construct in polynomial time a simple mechanism whose revenue is a constant fraction

of the optimal BIC revenue.

A.6 Proof of Lemma 3.3

We first prove some properties of v(β), which will be useful for proving Lemma 3.3.

Lemma A.4. For any βi, ti ∈ Ti and S ∈ [m], v
(βi)
i (ti, S) ≥ vi(ti, S).

Proof. This follows from the fact that vi(ti, ·) is a subadditive function over bundles of items for

all ti.

Lemma A.5. For any βi and ti ∈ Ti, v(βi)
i (ti, ·) is a monotone, subadditive function over the items.

Proof. Monotonicity follows directly from the monotonicity of vi(ti, ·). We only argue subadditivity

here. If ti belongs to R
(βi)
0 , v

(βi)
i (ti, ·) = vi(ti, ·). So it is clearly a subadditive function. If ti

belongs to R
(βi)
j for some j > 0 and j is not in either U or V , then clearly v

(βi)
i (ti, U ∪ V ) ≤

v
(βi)
i (ti, U) + v

(βi)
i (ti, V ). If j is in one of the two sets, without loss of generality let’s assume it is in

U . Then v
(βi)
i (ti, U)+v

(βi)
i (ti, V ) = vi(ti, U\{j})+Vi(tij)+vi(ti, V ) ≥ vi(ti, V ∪(U\{j}))+Vi(tij) =

v
(βi)
i (ti, U ∪ V ).

Here we prove a stronger version of Lemma 3.3.
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Lemma A.6. For any β, any absolute constant η ∈ (0, 1) and any BIC mechanism M for sub-

additive valuations {vi(ti, ·)}i∈[n] with ti ∼ Di for all i, there exists a BIC mechanism M (β) for

valuations {v(βi)
i (ti, ·)}i∈[n] with ti ∼ Di for all i, such that

1.
∑

ti∈Ti fi(ti) ·
∑

S:j∈S σ
(β)
iS (ti) ≤

∑
ti∈Ti fi(ti) ·

∑
S:j∈S σiS(ti), for all i and j,

2. Rev(M,v,D) ≤
1

1−η ·Rev(M (β), v(β), D) + 1
η ·
∑

i

∑
ti∈Ti

∑
S⊆[m] fi(ti) · σ

(β)
iS (ti) ·

(
v

(βi)
i (ti, S)− vi(ti, S)

)
.

Rev(M,v,D) (or Rev(M (β), v(β), D)) is the revenue of the mechanism M (or M (β)) while the

buyers’ types are drawn from D and buyer i’s valuation is vi(ti, ·) (or v
(βi)
i (ti, ·)). σiS(ti) (or

σ
(β)
iS (ti)) is the probability of buyer i receiving exactly bundle S when her reported type is ti in

mechanism M (or M (β)).

Proof of lemma A.6: Readers who are familiar with the ε-BIC to BIC reduction [HKM11, BH11,

DW12] might have already realized that the problem here is quite similar. Our proof will follow

essentially the same approach.

First, we construct mechanism M (β), which has two phases:

Phase 1: Surrogate Sale

1. For each buyer i, create `− 1 replicas and ` surrogates sampled i.i.d. from Di. The value of

` will be specified later.

2. Ask each buyer to report her type ti.

3. For each buyer i, create a weighted bipartite graph with the replicas and the buyer i on

the left and the surrogates on the right. The edge weight between a replica (or buyer i)

with type ri and a surrogate with type si is the expected value for a bidder with valuation

v
(βi)
i (ri, ·) to receive buyer i’s interim allocation in M when she reported si as her type

subtract the interim payment of buyer i multiplied by (1 − η). Formally, the weight is∑
S σiS(si) · v(βi)

i (ri, S)− (1− η)pi(si), where pi(si) is the interim payment for buyer i if she

reported si.
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4. Compute the VCG matching and prices on the bipartite graph created for each buyer i. If a

replica (or bidder i) is unmatched in the VCG matching, match her to a random unmatched

surrogate. The surrogate selected for buyer i is whoever she is matched to.

Phase 2: Surrogate Competition

1. Apply mechanism M on the type profiles of the selected surrogates ~s. Let Mi(~s) and Pi(~s)

be the corresponding allocated bundle and payment of buyer i.

2. If buyer i is matched to her surrogate in the VCG matching, give her bundle Mi(~s) and charge

her (1− η) ·Pi(~s) plus the VCG price. If buyer i is not matched in the VCG matching, award

them nothing and charge them nothing.

Lemma A.7 ( [HKM11]). If all buyers play M (β) truthfully, then the distribution of types of the

surrogate chosen by buyer i is exactly Di.

Proof. In the mechanism, first the buyer i’s type is sampled from the distribution, then we sampled

`− 1 replicas and ` surrogates i.i.d. from the same distribution. Now, imagine a different order of

sampling. We first sample the ` replicas and ` surrogates, then we pick one replica to be buyer i

uniformly at random. The two different orders above provide exactly the same joint distribution

over the replicas, surrogates and buyer i. So we only need to argue that in the second order

of sampling, the distribution of types of the surrogate chosen by buyer i is exactly Di. Note

that the perfect matching (VCG matching plus the uniform random matching with the leftover

replicas/surrogates) only depends on the types but not the identity of the node (replica or buyer

i). So we can decide who is buyer i after we have decided the perfect matching. Since buyer i is

chosen uniformly at random among the replicas, the chosen surrogate is also uniformly at random.

Clearly, the distribution of the types of a surrogate chosen uniformly at random is also Di. The

assumption that buyer i is reporting truthfully is crucial, because otherwise the distribution of

buyer i’s reported type will be different from the type of a replica, and in that case, we cannot use

the second sampling order.

Lemma A.8. M (β) is a BIC mechanism with respect to valuation v(β).
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Proof. We need to argue that for every buyer i reporting truthfully is a best response, if every

other buyer is truthful. In the VCG mechanism, buyer i faces a competition with the replicas to

win a surrogate. If buyer i has type ti, then her value for winning a surrogate with type si in the

VCG mechanism is
∑

S σiS(si) · v(βi)
i (ti, S) − (1 − η)pi(si) due to Lemma A.7. Clearly, if buyer i

reports truthfully, the weights on the edges between her and all the surrogates will be exactly her

value for winning those surrogates. Since buyer i is in a VCG mechanism, reporting the true edge

weights is a dominant strategy for her, therefore reporting truthfully is also a best response for her

assuming the other buyers are truthful. It is critical that the other buyers are reporting truthfully,

otherwise we cannot invoke Lemma A.7 and buyer i’s value for winning a surrogate with type si

may be different from the weight on the corresponding edge.

Lemma A.9. For any i and j,
∑

ti∈Ti fi(ti) ·
∑

S:j∈S σ
(β)
iS (ti) ≤

∑
ti∈Ti fi(ti) ·

∑
S:j∈S σiS(ti).

Proof. The LHS is the ex-ante probability for buyer i to win item j in M (β), and the RHS is the

corresponding probability in M . By Lemma A.7, we know the surrogate selected by buyer i is

participating in M against all other surrogates whose types are drawn from D−i. Therefore, the

ex-ante probability for the surrogate chosen by buyer i to win item j is the same as RHS. Clearly,

the chosen surrogate’s ex-ante probability for winning any item should be at least as large as the

ex-ante probability for buyer i to win the item in M (β).

Next, we want to compare Rev(M (β), v(β), D) with Rev(M, v,D). The following simple Lemma

relates both quantities to the expected prices charged to the surrogates by mechanism M . As in

the proof of Lemma A.7, we change the order of the sampling. We first sample ` replicas and `

surrogates then select a replica uniformly at random to be buyer i. Let ski and rki be the type of

the k-th surrogate and replica, s = (s1
i , . . . , s

`
i), ri = (r1

i , . . . , r
`
i ) and V (s, ri) be the VCG matching

between surrogates and replicas with types s and ri. We will slightly abuse notation by using ski

(or rji ) ∈ V (s, ri) to denote that ski (or rji ) is matched in the VCG matching V (s, ri).
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Lemma A.10. For every buyer i, her expected payments in M (β) is at least

(1− η) · Es,ri

 ∑
ski ∈V (s,ri)

pi(s
k
i )

`

 ,
and her expected payments in M is

Es

∑
k∈[`]

pi(s
k
i )

`

 .
Proof. The revenue of M (β) contains two parts – the prices paid by the chosen surrogates and the

revenue of the VCG mechanism. Let’s compute the first part. For buyer i and each realization

of ri and s only when the buyer i’s chosen surrogate is in V (s, ri), she pays the surrogate price.

Since each surrogate is selected with probability 1/`, the expected surrogate price paid by buyer

i is exactly (1 − η) · Es,ri

[∑
ski ∈V (s,ri)

pi(s
k
i )
`

]
. Since the VCG payments are nonnegative, we have

proved our first statement.

The expected payment from buyer i in M is Eti∼Di [pi(ti)]. Since all ski is drawn from Di, this

is exactly the same as Es

[∑
k∈[`]

pi(s
k
i )
`

]
.

If the VCG matching is always perfect, then Lemma A.10 already shows that the revenue of

M (β) is at least (1 − η) fraction of the revenue of M . But since the VCG matching may not be

perfect, we need to show that the total expected price from surrogates who are not in the VCG

matching is small. We prove this in two steps. First, we consider another matching X(s, ri) – a

maximal matching that only matches replicas and surrogates that have the same type, and show

that the expected cardinality of X(s, ri) is close to `. Then we argue that for any realization ri

and s the total payments from surrogates that are in X(s, ri) but not in V (s, ri) is small.

Lemma A.11 ( [HKM11]). For every buyer i, the expected cardinality of a maximal matching that

only matches replicas and surrogates with the same type is at least `−
√
|Ti| · `.

The proof can be found in Hartline et al. [HKM11].
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Corollary A.1. Let R = maxi,ti∈Ti maxS∈[m] vi(ti, S), then

Es,ri

 ∑
ski ∈X(s,ri)

pi(s
k
i )

`

 ≥ Es

∑
k∈[`]

pi(s
k
i )

`

−√ |Ti|
`
· R.

Proof. Since M is a IR mechanism when the buyers’ valuations are v, R ≥ pi(ti) for any buyer i

and any type ti of i. Our claim follows from Lemma A.11.

Now we implement the second step of our argument. The plan is to show the total prices from

surrogates that are unmatched by going from X(s, ri) to V (s, ri). For any s, ri, V (s, ri) ∪X(s, ri)

can be decompose into a disjoint collection augmenting paths and cycles. If a surrogate is matched

in X(s, ri) but not in V (s, ri), then it must be the starting point of an augmenting path. The

following Lemma upper bounds the price of this surrogate.

Lemma A.12 (Adapted from [DW12]). For any buyer i and any realization of s and ri, let P be

an augmenting path that starts with a surrogate that is matched in X(s, ri) but not in V (s, ri). It

has the form of either (a)
(
s
ρ(1)
i , r

θ(1)
i , s

ρ(2)
i , r

θ(2)
i , . . . , s

ρ(k)
i

)
when the path ends with a surrogate,

or

(b)
(
s
ρ(1)
i , r

θ(1)
i , s

ρ(2)
i , r

θ(2)
i , . . . , s

ρ(k)
i , r

θ(k)
i

)
when the path ends with a replica, where r

θ(j)
i is matched

to s
ρ(j)
i in X(s, ri) and matched to s

ρ(j+1)
i in V (s, ri) (whenever s

ρ(j+1)
i exists) for any j.

∑
s
ρ(j)
i ∈P∩X(s,ri)

pi

(
s
ρ(j)
i

)
−

∑
s
ρ(j)
i ∈P∩V (s,ri)

pi

(
s
ρ(j)
i

)
≤

1

η
·
k−1∑
j=1

∑
S

σiS

(
s
ρ(j+1)
i

)
·
(
v

(βi)
i (r

θ(j)
i , S)− vi(rθ(j)i , S)

)
.

Proof. Since r
θ(j)
i is matched to s

ρ(j)
i in X(s, ri), r

θ(j)
i must be equal to s

ρ(j)
i . M is a BIC mechanism

when buyers valuations are v, therefore the expected utility for reporting the true type is better

than lying. Hence, the following holds for all j:

∑
S

σiS

(
s
ρ(j)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j)
i

)
≥
∑
S

σiS

(
s
ρ(j+1)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j+1)
i

)
(A.1)
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The VCG matching finds the maximum weight matching, so the total edge weights in path

P ∩ V (s, ri) is at least as large as the total edge weights in path P ∩X(s, ri). Mathematically, it

is the following inequalities.

• If P has format (a):

k−1∑
j=1

(∑
S

σiS

(
s
ρ(j+1)
i

)
· v(βi)
i

(
r
θ(j)
i , S

)
− (1− η) · pi

(
s
ρ(j+1)
i

))
≥ (A.2)

k−1∑
j=1

(∑
S

σiS

(
s
ρ(j)
i

)
· v(βi)
i

(
r
θ(j)
i , S

)
− (1− η) · pi

(
s
ρ(j)
i

))

• If P has format (b):

k−1∑
j=1

(∑
S

σiS

(
s
ρ(j+1)
i

)
· v(βi)
i

(
r
θ(j)
i , S

)
− (1− η) · pi

(
s
ρ(j+1)
i

))
≥ (A.3)

k∑
j=1

(∑
S

σiS

(
s
ρ(j)
i

)
· v(βi)
i

(
r
θ(j)
i , S

)
− (1− η) · pi

(
s
ρ(j)
i

))

Next, we further relax the RHS of inequality (A.2) using inequality (A.1).

RHS of inequality (A.2)

≥
k−1∑
j=1

(∑
S

σiS

(
s
ρ(j)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j)
i

))
+ η ·

k−1∑
j=1

pi

(
s
ρ(j)
i

)
(Lemma A.4)

≥
k−1∑
j=1

(∑
S

σiS

(
s
ρ(j+1)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j+1)
i

))
+ η ·

k−1∑
j=1

pi

(
s
ρ(j)
i

)
(Inequality A.1)

We can obtain the following inequality by combining the relaxation above with the LHS of inequal-

ity (A.2) and rearrange the terms.

1

η
·
k−1∑
j=1

∑
S

σiS

(
s
ρ(j+1)
i

)
·
(
v

(βi)
i

(
r
θ(j)
i , S

)
− vi

(
r
θ(j)
i , S

))
≥ pi

(
s
ρ(1)
i

)
− pi

(
s
ρ(k)
i

)
.
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The inequality above is exactly the inequality in the statement of this Lemma when P has format

(a).

Similarly, we have the following relaxation when P has format (b):

RHS of inequality (A.3)

≥
k∑
j=1

(∑
S

σiS

(
s
ρ(j)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j)
i

))
+ η ·

k∑
j=1

pi

(
s
ρ(j)
i

)
(Lemma A.4)

≥
k−1∑
j=1

(∑
S

σiS

(
s
ρ(j+1)
i

)
· vi
(
r
θ(j)
i , S

)
− pi

(
s
ρ(j+1)
i

))
+ η ·

k∑
j=1

pi

(
s
ρ(j)
i

)
(Inequality A.1 and M is IR)

Again, by combining the relaxation with the LHS of inequality (A.3), we can prove our claim when

P has format (b).

1

η
·
k−1∑
j=1

∑
S

σiS

(
s
ρ(j+1)
i

)
·
(
v

(βi)
i

(
r
θ(j)
i , S

)
− vi

(
r
θ(j)
i , S

))
≥ pi

(
s
ρ(1)
i

)
.

Lemma A.13. For any β,

Es,ri

 ∑
ski ∈X(s,ri)

pi(s
k
i )

`

 ≤
Es,ri

 ∑
ski ∈V (s,ri)

pi(s
k
i )

`

+
1

η
·
∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)
iS (ti) ·

(
v

(βi)
i (ti, S)− vi(ti, S)

)
.

Proof. Due to Lemma A.12, for any buyer i and any realization of ri and s, we have

∑
ski ∈X(s,ri)

pi(s
k
i )

`
−

∑
ski ∈V (s,ri)

pi(s
k
i )

`
≤ 1

η · `
·

∑
ski ∈V (s,ri)

∑
S

σiS

(
ski

)
·
(
v

(βi)
i (r

ω(k)
i , S)− vi(rω(k)

i , S)
)
,

where r
ω(k)
i is the replica that is matched to ski in V (s, ri). If we take expectation over ri and s on
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the RHS, the expectation means whenever mechanism M (β) awards buyer i (with type ti) bundle

S, 1
η ·
(
v

(βi)
i (ti, S)− vi(ti, S)

)
is contributed to the expectation. Therefore, the expectation of the

RHS is the same as

1

η
·

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)
iS (ti) ·

(
v

(βi)
i (ti, S)− vi(ti, S)

) .

This completes the proof of the Lemma.

Now, we are ready to prove Lemma A.6.

Rev(M,v,D)

=
∑
i

Es

∑
k∈[`]

pi(s
k
i )

`

 (Lemma A.10)

≤
∑
i

Es,ri

 ∑
ski ∈X(s,ri)

pi(s
k
i )

`

+

√
|Ti|
`
· R

 (Corollary A.1)

≤
∑
i

Es,ri

 ∑
ski ∈V (s,ri)

pi(s
k
i )

`


+

1

η
·
∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)
iS (ti) ·

(
v

(βi)
i (ti, S)− vi(ti, S)

)
+
∑
i

√
|Ti|
`
· R (Lemma A.13)

≤ 1

1− η
·Rev(M (β), v(β), D)

+
1

η
·
∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)
iS (ti) ·

(
v

(βi)
i (ti, S)− vi(ti, S)

)
+
∑
i

√
|Ti|
`
· R (Lemma A.10)

Since |Ti| and R are finite numbers, we can take ` to be sufficiently large, so that
∑

i

√
|Ti|
` ·

R < ε for any ε. Let P (β) be the set of all BIC mechanisms that satisfy the first condition in

Lemma A.6. Clearly, P (β) is a compact set and contains all M (β) we constructed (by choosing

different values for `). Notice that both Rev(M (β), v(β), D) and
∑

i

∑
ti∈Ti

∑
S⊆[m] fi(ti) · σ

(β)
iS (ti) ·(

v
(βi)
i (ti, S)− vi(ti, S)

)
are linear functions over the allocation/price rules of mechanism M (β).
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Therefore,

Rev(M,v,D)

≤ max
M(β)∈P (β)

 1

1− η
·Rev(M (β), v(β), D) +

1

η
·
∑
i

∑
ti∈Ti

∑
S⊆[m]

fi(ti) · σ(β)
iS (ti) ·

(
v

(βi)
i (ti, S)− vi(ti, S)

) .

This completes the proof of Lemma A.6. 2
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Appendix B

Missing Details from Chapter 4

B.1 Duality Framework

The seller aims to maximize her profit among all direct, BIC, and interim IR mechanisms. This

maximization problem can be captured by the following LP (see Figure B.1). Here we use type

∅ to represent the choice of not participating in the mechanism. Now the IR constraint can be

described as another BIC constraint that the buyer won’t report type ∅. Let T+
i = Ti ∪ {∅}.

Variables:

• πi(ti, c), for all i ∈ [n], ti ∈ Ti, c ∈ TS , denotes the interim probability vector that buyer i
with type ti receives each item, when the seller has cost c.

• pi(ti, c), for all i ∈ [n], ti ∈ Ti, c ∈ TS , denoting the buyer i’s interim payment when she has
type ti and the seller has cost c.

Constraints:

• Ec[ti·πi(ti, c)−pi(ti, c)] ≥ Ec[ti·πi(t′i, c)−pi(t′i, c)], for all i ∈ [n], ti ∈ Ti, t′i ∈ T
+
i , guaranteeing

that the mechanism is BIC and interim IR.

• π ∈ P ({Fi}ni=1), guaranteeing the allocation is implementable.

Objective:

• max
∑

i Eti,c[pi(ti, c)− c · πi(ti, c)], the expected seller’s profit.

Figure B.1: A Linear Program (LP) for Maximizing Profit.
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We then take the partial Lagrangian dual of the LP in Figure B.1 by lagrangifying the BIC and

interim IR constraints. Let λi(t, t
′) be the Lagrangian multiplier. The dual problem is described

in Figure B.2.

Variables:

• πi(ti, c) and pi(ti, c).

• λi(t, t
′) for all i ∈ [n], ti ∈ Ti, t′i ∈ T

+
i , the Lagrangian multiplier for buyer i’s BIC and interim

IR constraints.

Constraints:

• λi(t, t
′) ≥ 0 for all i ∈ [n], ti ∈ Ti, t′i ∈ T

+
i .

• π ∈ P ({Fi}ni=1).

Objective:

• minλ maxπ,p L(λ, π, p).

Figure B.2: Partial Lagrangian of the LP for Maximizing Profit.

L(λ, π, p)

=
∑
i

Eti,c[pi(ti, c)− c · πi(ti, c)]

+
∑
i

∑
ti,t′i

λi(ti, t
′
i) · Ec[(ti · πi(ti, c)− pi(ti, c))− (ti · πi(t′i, c)− pi(t′i, c))]

=
∑
i

∑
ti

Ec[pi(ti, c)] ·

fi(ti) +
∑
t′i∈Ti

λi(t
′
i, ti)−

∑
t′i∈T

+
i

λi(ti, t
′
i)


+
∑
i

∑
ti

Ec

πi(ti, c) ·

 ∑
t′i∈T

+
i

ti · λi(ti, t′i)−
∑
t′i∈Ti

t′i · λi(t′i, ti)− fi(ti) · c



(B.1)

Definition B.1. A feasible dual solution λ is useful if maxπ∈P ({Fi}ni=1),p L(λ, π, p) <∞.

Similar to [CDW16], we show that every useful dual solution forms a flow.

Lemma B.1. A dual solution λ is useful if and only if it forms the following flow:

239



• Nodes: For every i ∈ [n] and ti ∈ Ti a node ti. A source s and a sink ∅.

• For every i ∈ [n] and ti ∈ Ti, a flow of weight fi(ti) from s to ti.

• For every i ∈ [n] and ti ∈ Ti, t′i ∈ T
+
i , a flow of weight λi(ti, t

′
i) from ti to t′i.

Proof. Suppose there exists i ∈ [n], ti ∈ Ti, t′i ∈ T
+
i such that

fi(ti) +
∑
t′i∈Ti

λi(t
′
i, ti)−

∑
t′i∈T

+
i

λi(ti, t
′
i) 6= 0

Without loss of generality, suppose it’s positive. Notice that pi(ti, c) is unconstrained. Thus

when Ec[pi(ti, c)] → +∞, the Lagrangian also goes to +∞ (see Equation B.1). Hence for every

i ∈ [n], ti ∈ Ti, t′i ∈ T
+
i ,

fi(ti) +
∑
t′i∈Ti

λi(t
′
i, ti)−

∑
t′i∈T

+
i

λi(ti, t
′
i) = 0

It’s essentially the flow conservation equation for node ti. Thus λ forms a flow. On the other

hand, if λ forms a flow, the Lagrangian only depends on π and thus bounded since π is bounded.

For any useful dual solution λ, by Lemma B.1, we can replace
∑

t′i∈T
+
i
λi(ti, t

′
i) by fi(ti) +∑

t′i∈Ti
λi(t

′
i, ti) in Equation (B.1) and simplify L(λ, π, p). For any BIC and interim IR mechanism

M = (π, p), both λi(ti, t
′
i) and Ec[(ti ·πi(ti, c)− pi(ti, c))− (ti ·πi(t′i, c)− pi(t′i, c))] are non-negative

for all i ∈ [n], ti ∈ Ti, t′i ∈ T
+
i . Thus by Equation (B.1), L(λ, π, p) ≥ Profit(M). We have the

following lemma.

Lemma B.2. (Restatement of Lemma 4.2) For any useful dual solution λ and any BIC, interim

IR mechanism M = (x, p),

Profit(M) ≤ Et,c

[∑
i

πi(ti, c) · (Φ(λ)
i (ti)− c)

]

where
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Φ
(λ)
i (ti) = ti −

1

fi(ti)
·
∑
t′i∈Ti

λ(t′i, ti)(t
′
i − ti)

can be viewed as buyer i’s virtual value function.

B.2 Missing Proofs from Section 4.3

Proof of Lemma 4.1: Consider a mechanism M that is ex-post implementable. For every i, ti, let

Ai(ti) be buyer i’s (possibly randomized) equilibrium strategy, when her type is ti. It specifies all

the actions that the buyer takes in mechanism M . For every c, let Xi( ~A, c) be the vector of (possibly

randomized) indicator variables that indicate whether buyer i gets each item j when buyers choose

strategies ~A = (A1, ..., An) and the seller’s realized cost vector is c; let Pi( ~A, c) be the payment for

the buyer. For every i and t−i, denote A−i(t−i) = (A1(t1), ..., Ai−1(ti−1), Ai+1(ti+1), ..., An(tn)).

Since A is an equilibrium strategy for the buyers, for every i, ti, t
′
i ∈ Ti, acting as Ai(ti) induces

more utility than Ai(ti), when the buyer’s type is ti and other buyers follow strategy A−i. We have

Ec,t−i [ti ·Xi(Ai(ti), A−i(t−i), c)− Pi(Ai(ti), A−i(t−i), c)] ≥

Ec,t−i [ti ·Xi(Ai(t
′
i), A−i(t−i), c)− Pi(Ai(t′i), A−i(t−i), c)]

(B.2)

We now define the direct mechanism M ′ = (x, p) as follows: for every profile (t, c), let xi(t, c) =

Xi(A(t), c) and pi(t, c) = Pi(A(t), c) for all i. It’s the allocation and payment rule when the

reported type profile is t and the seller’s realized cost vector is c. Then Inequality (B.2) is equivalent

to: for every i, ti, t
′
i ∈ Ti

Ec,t−i [ti · xi(ti, t−i, c)− pi(ti, t−i, c)] ≥ Ec,t−i [ti · xi(t′i, t−i, c)− pi(t′i, t−i, c)]

It’s exactly the BIC constraint for M ′. Thus, M ′ is BIC.

Moreover, each buyer can choose not to participate in M , so Ec,t−i [ti ·Xi(Ai(ti), A−i(t−i), c)−

Pi(Ai(ti), A−i(t−i), c)] ≥ 0, which implies that Ec,t−i [ti · xi(ti, t−i, c)− pi(ti, t−i, c)] ≥ 0. Hence, M ′
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is also interim IR. 2

Proof of Theorem 4.4: Let Φ(λ)(·) be the virtual value function induced by the above canonical

flow λ. By Lemma 4.2 and Lemma 4.3,

Profit(M) ≤
∑
i

Eti,c

∑
j

πij(ti, c) · (Φ(λ)
ij (tij)− cj)


=
∑
i

Eti,c

∑
j

1[ti ∈ R(β)
ij ] · πij(ti, c) · (ϕ̃ij(tij)− cj)


+
∑
i

Eti,c

∑
j

1[ti 6∈ R(β)
ij ] · πij(ti, c) · (max{βij(c), cj} − cj)


+
∑
i

Eti,c

∑
j

1[ti 6∈ R(β)
ij ] · πij(ti, c) · (tij −max{βij(c), cj})


≤
∑
i

Eti,c

∑
j

1[ti ∈ R(β)
ij ] · πij(ti, c) · (ϕ̃ij(tij)− cj)

 (Single)

+ 2 ·
∑
i

∑
j

Ec [qij(c) · (max{βij(c), cj} − cj)] (Prophet)

+
∑
i

Eti

∑
j

1[ti ∈ R(β)
ij ] · v̄(β)

i (ti, [m]\{j})

 (Non-Favorite)

The first inequality is due to Lemma 4.2, and the first equality is due to Lemma 4.3. The second

inequality is because: For the second term, notice that max{βij(c), cj} − cj ≥ 0, we bound the

indicator by 1 and use the fact that Eti [πij(ti, c)] = 2 · qij(c) for every c; For the third term, notice

that for every i, ti ∈ R(β)
ij and c, since π is feasible, we have

∑
k 6=j

πij(ti, c) · (tik −max{βij(c), cj}) ≤ max
S∈Fi,j 6∈S

∑
k∈S

(tik −max{βij(c), cj}).

Taking expectation over c, the RHS equals to v̄
(β)
i (ti, [m]\{j}). Thus the inequality holds. 2
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B.3 Missing Proofs from Section 4.4

Proof of Lemma 4.6:

Monotonicity: Fix any t ∈ T , U ⊆ V ⊆ [m]. For all c we have

maxS⊆U,S∈F
∑

j∈S(tj − cj) ≤ maxS⊆V,S∈F
∑

j∈S(tj − cj). Taking expectation over c on both sides

proves the monotonicity.

Subadditivity:

Fix any t ∈ T and U, V ⊆ [m]. For every c, let S∗(c) = argmaxS⊆U∪V,S∈F
∑

j∈S(tj − cj). Clearly,

tj − cj ≥ 0 for all j ∈ S∗(c). Notice that S∗(c) ∩ U ⊆ U and S∗(c) ∩ U ∈ F ; also S∗(c) ∩ V ⊆ V

and S∗(c) ∩ V ∈ F . We have

max
S⊆U∪V,S∈F

∑
j∈S

(tj − cj) ≤
∑

j∈S∗(c)∩U

(tj − cj) +
∑

j∈S∗(c)∩V

(tj − cj)

≤ max
S⊆U,S∈F

∑
j∈S

(tj − cj) + max
S⊆V,S∈F

∑
j∈S

(tj − cj)

Taking expectation over c on both sides, we have v̄(t, U ∪ V ) ≤ v̄(t, U) + v̄(t, V ).

No externalities: fix any t ∈ T , S ⊆ [m] and any t′ ∈ T such that t′j = tj for all j ∈ S. To

prove v̄(t′, S) = v̄(t, S), it suffices to show that for any c,

max
U⊆S,U∈F

∑
j∈U

(tj − cj) = max
U⊆S,U∈F

∑
j∈U

(t′j − cj)

It follows directly from the fact that t′j = tj for all j ∈ S. 2

B.4 Missing Proofs from Section 4.5

Proof of Lemma 4.22:

Monotonicity: Fix any ti, U ⊆ V ⊆ [m]. For all c we have

maxS⊆U∩Ci(ti),S∈Fi
∑

j∈S(tij −max{βij(c), cj}) ≤ maxS⊆V ∩Ci(ti),S∈Fi
∑

j∈S(tij −max{βij(c), cj}).

Taking expectation over c on both sides proves the monotonicity.
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Subadditivity:

Fix any ti and U, V ⊆ [m]. For every c, let S∗(c) = argmaxS⊆(U∪V )∩Ci(ti),S∈Fi
∑

j∈S(tij −

max{βij(c), cj}). Clearly, tij − max{βij(c), cj} ≥ 0 for all j ∈ S∗(c). Notice that S∗(c) ∩ U ⊆

U ∩ Ci(ti) and S∗(c) ∩ U ∈ Fi; also S∗(c) ∩ V ⊆ V ∩ Ci(ti) and S∗(c) ∩ V ∈ Fi. We have

max
S⊆(U∪V )∩Ci(ti),S∈Fi

∑
j∈S

(tij −max{βij(c), cj})

≤
∑

j∈S∗(c)∩U

(tij −max{βij(c), cj}) +
∑

j∈S∗(c)∩V

(tij −max{βij(c), cj})

≤ max
S⊆U∩Ci(ti),S∈Fi

∑
j∈S

(tij −max{βij(c), cj}) + max
S⊆V ∩Ci(ti),S∈Fi

∑
j∈S

(tij −max{βij(c), cj})

Taking expectation over c on both sides, we have µi(ti, U ∪ V ) ≤ µi(ti, U) + µi(ti, V ).

No externalities: fix any ti, S ⊆ [m] and any ti such that t′ij = tij for all j ∈ S. To prove

µi(t
′
i, S) = µi(ti, S), it suffices to show that for any c,

max
U⊆S∩Ci(ti),U∈Fi

∑
j∈U

(tij −max{βij(c), cj}) = max
U⊆S∩Ci(ti),U∈Fi

∑
j∈U

(t′ij −max{βij(c), cj})

It follows directly from the fact that t′ij = tij for all j ∈ S.

Now we prove that µi(ti, ·) has Lipschitz constant τi. For any ti, t
′
i, and set X,Y ⊆ [m], define

set H =
{
j ∈ X ∩ Y : tij = t′ij

}
. Since µi(·, ·) has no externalities, µi(ti, H) = µi(t

′
i, H). Therefore,

|µi(ti, X)− µi(t′i, Y )| = max
{
µi(ti, X)− µi(t′i, Y ), µi(t

′
i, Y )− µi(ti, X)

}
≤ max

{
µi(ti, X)− µi(t′i, H), µi(t

′
i, Y )− µi(ti, H)

}
(Monotonicity)

≤ max
{
µi(ti, X\H), µi(t

′
i, Y \H)

}
(Subadditivity)

≤ τi ·max {|X\H|, |Y \H|}

≤ τi · (|X∆Y |+ |X ∩ Y | − |H|)

The second last inequality is because µi(ti, ·) is subadditive and for any item j ∈ C〉(ti) (C〉(t′i)) the
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single-item valuation v̄ij(tij) (v̄ij(t
′
ij)) is less than τi.

2
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Appendix C

Missing Details from Chapter 6

C.1 Proof of Example 6.1

Proof of Example 6.1. First consider the first-best mechanism. Fix buyer i. We’ll prove that if her

value bi > 1/2 + ε for some small ε that will be determined later, she will trade in the first-best

mechanism with high probability. Let S be the number of sellers whose cost is smaller than 1/2 + ε,

and let B be the number of buyers whose value is larger than 1/2 + ε. Notice that there are at most

B buyers with value larger than i. Thus if B < S, all buyers with value > 1/2 + ε, including i, must

have traded with a seller whose cost is smaller than 1/2 + ε in the first-best mechanism.

Both S and B are the sum of independent Bernoulli random variables, with expectation (1/2+ε)n

and (1/2− ε)(n− 1) respectively. By Chernoff bound,

Pr

[
S < (1− ε)

(
1

2
+ ε

)
n

]
≤ exp

(
−ε

2

2
·
(

1

2
+ ε

)
n

)
≤ exp

(
− 1

12
ε2n

)
,

Pr

[
B > (1 + ε)

(
1

2
− ε
)

(n− 1)

]
≤ exp

(
−ε

2

3
·
(

1

2
− ε
)

(n− 1)

)
≤ exp

(
− 1

12
ε2n

)
.

With probability at least
(
1− exp

(
− 1

12ε
2n
))2

,

S ≥ (1− ε)
(

1

2
+ ε

)
n > (1 + ε)

(
1

2
− ε
)

(n− 1) ≥ B.
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In other words, if bi > 1/2 + ε, buyer i will trade in the first-best mechanism with probability at

least
(
1− exp

(
− 1

12ε
2n
))2

, taking expectation over all other agents’ types.

Choose ε = n−1/3. The expected GFT contributed by buyer i is at least

∫ 1

1
2

+n−
1
3

bidbi ·
(

1− exp
(
− 1

12
n

1
3

))2

=
3

8
+ o(1).

By linearity of expectation and the fact that all buyers are i.i.d., the expected GFT contributed

by all buyers is at most 3n/8 + o(n).

Similarly for every seller j, if her cost sj > 1/2+ε for some small ε, she can only trade in the first-

best mechanism with small probability. The expected GFT contributed by all sellers (a negative

term) is at least −n/8 + o(n). Thus the first-best mechanism obtains GFT at least n/4 + o(n). The

second-best mechanism gets GFT that is in expectation at least the expected GFT of the Trade

Reduction mechanism, and as the GFT of the TR mechanism is at least the GFT of the first best

minus 1, the second-best mechanism obtains GFT at least n/4 + o(n) as well.

In the mechanism of BCWZ, with probability a half, the mechanism implements GSOM that

finds all the efficient trade based on buyers’ virtual value and sellers’ cost. And probability a half,

it implements GBOM that finds all the efficient trade based on buyers’ value and seller’ virtual

cost. We will only give the proof that the expected GFT of GSOM is at most 2n/9 + o(n). An

analogous proof shows that the expected GFT of GBOM is at most 2n/9 + o(n).

For each buyer whose value is drawn from uniform distribution [0, 1], her virtual value follows

the uniform distribution [−1, 1]. Fix buyer i, we’ll show that if her value bi < 2/3 − ε (which

means her virtual value ϕi(bi) < 1/3 − 2ε) for some small ε she can only trade in the GSOM with

exponentially small probability. Notice that buyer i can only trade in GSOM with a seller whose

cost is smaller than 1/3 − 2ε. Let S be the number of sellers whose cost is smaller than 1/3 − 2ε,

and let B be the number of buyers whose value is at least 2/3− ε. Then if buyer i trades in GSOM,

B ≤ S. This is because there are at least B buyers with value larger than i (and thus have a larger

virtual value since since all buyers are i.i.d.). If B > S, those buyers will take away all the sellers

with cost < 1/3 − 2ε. It contradicts with the fact that buyer i must trade with a seller with cost
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< 1/3 − 2ε in GSOM. Notice that again S and B are the sum of independent Bernoulli random

variables. And the expectation of S (1/3−2ε)n is smaller than the expectation of B, (1/3 + ε)(n−1)

when ε = n−
1
3 and n sufficiently large. By Chernoff bound (and a similar calculation as above),

B ≤ S happens with exponentially small probability. The expected GFT contributed by each buyer

i is at most ∫ 1

2
3
−n−

1
3

bidbi + o(1) =
5

18
+ o(1).

Similarly, for each seller j whose value sj < 1/3 − ε for some small ε, she will trade in GSOM

with high probability. The expected GFT contributed by each seller (a negative term) is at most

−1/18 + o(1). Thus GSOM obtains GFT at most 2n/9 + o(n).

We conclude that the expected GFT the mechanism of BCWZ obtains is at most 2n/9 + o(n),

which is only a constant fraction of the second-best mechanism.

C.2 Proofs of Lemmas 6.1 and 6.2

Proof of lemma 6.1. We start by proving part 1. We will show all of these properties for the SO

mechanism with the given parameters. Similar arguments show them for the BO mechanism, and

therefore for the RO mechanism. That the SO mechanism with the given parameters is BIC for the

seller is immediate since the the seller chooses a price that maximizes her expected utility over the

distribution from which the buyer is drawn. That SO is ex-post IC and ex-post IR for the buyer is

immediate from the buyer choosing whether to accept or reject the offer in a way that maximizes

her utility. Strong budget balance is also immediate from definition. Finally, to show that that the

SO mechanism with the given parameters is ex-post IR for the seller, we note that since the seller’s

cost is drawn from Ds, and since s̄ ≥ sup SupportDs, we have that s̄ is at least the seller’s cost.

Therefore, seller j can always ask for a price equal to his cost (without violating the constraint

s̄), which will result in zero utility for her (regardless of whether the buyer accepts or rejects this

price), and in particular guarantees nonnegative utility for her.

We move on to prove part 2. We will show that any offered price is at least b̄. An analogous

proof shows it to be at most s̄. In case of the BO mechanism, this holds by definition since
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any offer by the buyer is constrained to be at least b̄. We note that any offer by the seller will

also be at least b̄, since this seller knows that the buyer will buy at this price with probability 1

since b̄ ≤ inf SupportDb (and since this price is at least s̄, offering it does not violate this seller’s

constraint), and therefore the seller will never make a lower offer, and the proof is complete.

Proof of lemma 6.2. We start by proving part 1. If s̄ ≤ b, then any price offered by the seller in

the SO part of the RO mechanism with the given parameters will be accepted by the buyer (as it

will be at most s̄ and therefore at most b). Similarly, if b̄ ≥ s, then any price offered by the buyer

in the BO part of the RO mechanism with the given parameters will be accepted by the seller (as

it will be at least b̄ and therefore at least s). Either way, trade will occur in the RO mechanism

with probability at least 1/2.

We move on to prove part 2. It is enough to show that if trade occurs in the SO part of the

latter mechanism, then trade occurs also in the SO part of the former mechanism. (The BO part

is handled analogously.) If trade occurs in the SO part of the latter mechanism (unconstrained

and unconditioned), then it means that in that mechanism, the price p that maximizes the revenue

of the seller from Db (unconstrained and unconditioned), which is the price that was offered, is

at most b (since the offered price is accepted) and at least s (since the mechanism is ex-post IR).

Therefore, since b ≤ s̄ and s ≥ b̄, we have s̄ ≥ b ≥ p ≥ s ≥ b̄, and so p is also the price that

maximizes the revenue of the seller from Db|≥b̄ constrained upon the price being at most s̄, and

so this is also (at most, in case of multiple utility-maximizing prices) the price offered in the SO

mechanism with parameters s̄ and Db|≥b̄, and so the price offered by the seller is accepted in this

mechanism as well.
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C.3 Details Omitted from the Proof of Theorem 6.5 and Com-

mentary

C.3.1 Details Omitted from the Proof of Theorem 6.5

We will show that that the region of the space of valuation/cost profiles where our hybrid mechanism

for double auctions runs each instance of the RO mechanism can be partitioned into disjoint subsets

where our hybrid mechanism is BIC on each such subset under the profile distribution conditioned

upon being in that subset.

Fix a choice of the identity (but not the cost) of seller s(1) and the identity (but not the value) of

bidder b(1), and fix a profile of costs and valuations for all other sellers and buyers (so in particular

the cost s(2) and value b(2) are fixed). We first claim that either our hybrid mechanism runs the

same instance of RO on all possible profiles b, s that agree with these fixed choices, or does not run

any instance of RO on any of these profiles. Indeed, if s(2) ≤ b(s) (a conditioned fully determined

by these fixed choices) then TR is run on all such profiles, and otherwise the RO mechanism with

SO parameters s̄ = s(2) and DB
b(1)
|≥b(2) and BO parameters b̄ = b(2) and DS

s(1)
|≤s(2) (note that all

of these parameters are fully determined by the above fixed choices and do not depend on the cost

s(1) or the value b(1)) is run on all such profiles.

We will next show that our hybrid mechanism is BIC on the subset of all profiles that agree with

these fixed choices. Note that when conditioning the distribution of all profiles to those that agree

with such fixed choices, the cost of the seller s(1) (conditioned to agree with these fixed choices) is

distributed precisely according to s(1) ∼ DS
s(1)
|≤s(2) and the value of the buyer b(1) (conditioned to

agree with these fixed choices) is distributed precisely according to b(1) ∼ DB
b(1)
|≥b(2) . By Lemma 6.1,

we therefore have that our hybrid mechanism is BIC for the offering agent (and ex-post IC for any

other agent) over all profiles that agree with these choices. We have therefore shown that if a

manipulation by a buyer does not change the choice of the mechanism that is run by our hybrid

mechanism, then it is nonbeneficial in expectation.
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C.3.2 Why The Proof of the Ex-Ante Guarantee Gives a Factor of 1/4 and Not

1/2

Having read the proof of the ex-ante guarantee of theorem 6.5, we note that at first glance, one may

be tempted to consider the following näıve adaptation of this proof into a “proof” of an ex-ante

guarantee of 1/2 (rather than 1/4) of the second-best:

In each case analyzed above, the hybrid mechanism attains either at least the GFT of

the RVWM mechanism, or at least half of the GFT of the first-best, which in turn is at

least half of the GFT of the second-best. Since the GFT of the RVWM mechanism is

in turn also at least half of the GFT of the second-best, we get that in either case our

hybrid mechanism attains half of the GFT of the second-best.

The problem with this “proof” is that it mixes ex-ante and ex-post guarantees. While indeed the

hybrid mechanism attains, on each profile (b, s), either at least the GFT of the RVWM mechanism

or at least half of the GFT of the (first-best and therefore of the) second-best, it is wrong to assume

that on each profile (b, s) the GFT of the RVWM mechanism is at least half of the GFT of the

second-best, as we only know that the expected GFT of the RVWM mechanism, over all profiles,

is at least half of the expected GFT, over all profiles, of the second-best. In other words, it may

hypothetically be that the RVWM mechanism performs poorly on the profiles on which our hybrid

mechanism attains at least the GFT of the RVWM mechanism, and that the RVWM mechanism

performs very well, surpassing half of the GFT of the second-best, and even half of the GFT of the

first-best, on the profiles on which our hybrid mechanism attains at least half of the GFT of the

first-best (so on average, the RVWM mechanism would indeed attain its guarantee), and in such a

case, the above “proof” obviously fails.

C.4 The Trade Reduction Mechanism for Matching Markets: Proofs

Proof of theorem 6.6. We first observe that the allocation is indeed feasible, that is, that we can

perfectly match all winning buyers and sellers. Indeed, the set of winners can be obtained by

taking the matching M(b, s) and then removing the agents that correspond to one edge between
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any two classes t and t′ that are trading (have rt,t′ > 0), and then switching agents of the same

class (removing every agent in the leftover matching that has value lower than a removed agent

of the same class, and adding the removed agent in her stead), maintaining a perfect matching of

TR(b, s). Thus, there is a matching of the winners TR(b, s) such that there are exactly rt,t′ − 1

trades of agents of classes t and t′ whenever rt,t′ > 0. The reduced agents can be perfectly matched

with exactly a single edge between agents of classes t and t′ whenever rt,t′ > 0.

Now, the theorem will directly follow from the following sequence of claims.

Claim C.1. The Trade Reduction Mechanism for matching markets is ex-post IR and ex-post IC.

Proof. We first observe that the TR mechanism for matching markets is monotone. It is enough to

show this for the buyers. Assume that the value of a winning buyer i increases by δ. We show that

she still wins after the increase. Every matching that includes this buyer improves by the same

amount δ, while the value of any other matching did not change, so the same matching M(b, s) will

be picked after the value increase (ties are broken the same way, independent of values). Finally,

the reduction will also not change as for any class t, the values of qt and dt did not change, and

if buyer i is of class t, she will still not be in the set of dt lowest-value buyers after her value has

increased, so she will not be reduced.

To complete the proof that the mechanism is ex-post IR and ex-post IC, we need to show that

payments are by critical values. Indeed, assume that for a winning buyer i of class t, the value of

the highest reduced buyer of class t (if i bids truthfully) is x. If buyer i of class t changes her bid

but keeps it above x, she wins. Now assume that she drops her bid below x. If she is not in M(b, s)

she loses. If she is in M(b, s) and bids below x, then the matching M(b, s) will contain the exact

same set of agents, and will be the same (due to the tie breaking rule which is independent of the

actual bids), so she will lose while the agent with bid x will win instead of her, as both qt and dt are

the same but now i is no longer one of the qt − dt highest-bidding agents of class t. Thus, bidding

above x implies winning for i, while bidding below x implies losing, so x is indeed the critical value

for buyer i to win. Similar arguments prove the Claim for sellers.
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Claim C.2. The Trade Reduction Mechanism for matching markets is ex-post (direct trade) weakly

budget balanced.

Proof. To see that the mechanism is ex-post (direct trade) weakly BB we prove that every trade

is ex-post weakly BB. Indeed, consider a trade between two agents of respective classes t and t′ in

the matching of TR(b, s) that contains exactly rt,t′ −1 trades of agents of classes t and t′ whenever

rt,t′ > 0, and consider the reduced edge between these two classes. The buyer pays at least the value

of the reduced buyer of the same class on the reduced edge between classes t and t′, while the seller

receives at most the cost of the reduced seller on that edge. As that reduced edge has non-negative

gain (otherwise removing it will increase the welfare of the first-best matching M(b, s)), the trade

is ex-post weakly BB.

Claim C.3. For any profile (b, s), the fraction of the realized gains from trade (first-best) that the

Trade Reduction Mechanism for matching markets obtains ex-post is at least min
{

1−dt
qt

∣∣ class t s.t. qt > 0
}

.

Proof. Recall that Tt is the set of agents of class t. Let α(b, s) = min
{

1− dt
qt

∣∣ class t s.t. qt > 0
}

.

To prove the claim that the mechanism guarantees an α fraction of the welfare of FB-GFT(b, s),

we let vk be the value of agent k (vk = bi for a buyer k = i, and vk = −sj for seller k = j), and

assuming W is the set of agents in M(b, s) we observe that

FB-GFT(b, s) =
∑

(i,j)∈M(b,s)

(bi − sj) =
∑
t:qt>0

∑
k∈W∩Tt

vk

.

As for each class t with qt > 0 we remove dt agents each with value at most the value of any

winner, we obtain at least a qt−dt
qt

fraction of the value of agent of class t. Thus,

α(b, s) ·OPT (b, s) ≤
∑
t:qt>0

qt − dt
qt

∑
k∈W∩Tt

vk ≤ TR(b, s),

as needed.

Theorem 6.6 follows from Claim C.1, Claim C.2 and Claim C.3.
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Proof of corollary 6.1. Let β(b, s) = min
{

1− 1
rt,t′

∣∣ classes (t, t′) s.t. rt,t′ > 0
}

. By the guarantee of

theorem 6.6 with respect to α(b, s), it is enough to show that β(b, s) ≤ α(b, s). Indeed, for every

class t such that qt > 0, since qt =
∑

t′ rt,t′ :

qt − dt
qt

=
∑

t′:rt,t′>0

rt,t′ − 1

qt
=

∑
t′:rt,t′>0

rt,t′ − 1

rt,t′
·
rt,t′

qt
≥ min

t′:rt,t′>0

rt,t′ − 1

rt,t′
,

where the inequality is since a weighted average of values is always at least the minimal value.

Taking the minimum of both sides of the obtained inequality over all classes t s.t. qt > 0, we obtain

that α(b, s) ≥ β(b, s), as required.

C.5 Additional Preliminaries for Appendices C.6 and C.7

C.5.1 Notation

First we give some notations specialized in this setting. Given profile (b, s), let M(b, s) be the

first-best matching, or the maximum weight matching1, under graph G with edge weight bi − sj

on each edge (i, j) ∈ E. For each agent a, denote M−a(b, s) the maximum weight matching2 after

removing a and its related edges. For each buyer i such that (i, j) ∈ M(b, s), let Pi(b, s) be the

VCG payment of buyer i. Formally,

Pi(b, s) =
∑

(i′,j′)∈M−i(b,s)

(bi′ − sj′)−
∑

(i′,j′)∈M(b,s)

(bi′ − sj′) + bi

Similarly, let Pj(b, s) be the VCG payment received by seller j:

Pj(b, s) =
∑

(i′,j′)∈M(b,s)

(bi′ − sj′)−
∑

(i′,j′)∈M−j(b,s)

(bi′ − sj′) + sj

For simplicity, when the valuation profile (b, s) is fixed, we will abuse the notation and use M

1. We break ties lexicographically by IDs.

2. Follow the same breaking tie rules as the first-best matching.
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(or M−a, Pi, Pj) instead in the proof, without writing the valuation profile.

C.5.2 Lexicographic Tie-Breaking by ID

In this section, we define the tie-breaking rule that we use whenever we have to choose between

multiple maximum weight matchings when picking a matching with maximum weight anywhere

throughout this paper. We first define a strict total order over matchings, which we call the

Lexicographic order by IDs.

Definition C.1 (Lexicographic order by IDs). Fix a bipartite graph, and let M ′ and M ′′ be two

matchings in this graph. The Lexicographic order by IDs decides which of M ′ and M ′′ is ranked

higher as follows. It first sorts the edges of the matching by the index of the buyer. For each k, let

(i′k, j
′
k) and (i

′′
k , j

′′
k ) be the kth sorted edges (according to the index of the buyer) in M ′ and in M ′′,

respectively. Let k be the lowest index such that it is not the case that the two edges (i′k, j
′
k) and

(i
′′
k , j

′′
k ) are both defined and are the same edge.

• If one matching has a kth edge while the other does not, then the matching with more edges

is ranked higher.

• Otherwise, the matching with the lower buyer index in the kth edge is ranked higher.

• Otherwise, the matching with the lower seller index in the kth edge is ranked higher.

As noted above, throughout this paper when two matchings have the same weight, we use the

Lexicographic by IDs order to break ties when choosing a maximum weight matching, so we in fact

choose the lexicographically-by-IDs-highest matching among those with maximum weight. We will

refer to this practice as using the Lexicographic by IDs tie-breaking rule. We will now formalize the

two properties of this tie-breaking rule, which we will use in our analysis:3

Lemma C.1. The Lexicographic by IDs tie-breaking rule satisfies the following two properties:

• The tie-breaking is weight independent: ties between maximum weight matchings are broken

independently of any weight function. That is, if W and W ′ are two weight functions, if M
3. Indeed, our results would still hold for any other tie-breaking rule that satisfies these two properties.
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and M′ are the respective corresponding sets of maximum weight matchings, and if M and

M ′ are the respective corresponding chosen matchings, then if M ⊆M′ and M ′ ∈ M, then

M = M ′. So, the set of matched nodes that this tie-breaking rule picks (among all possible

maximum weight options), as well as the matching that this rule picks within that set, does

not depend on the weight function.

• The choice function is subset consistent: if the chosen maximum weight matching among all

matchings of the vertices U is the matching M , then for any (i, j) ∈M , the chosen maximum

weight matching among all matchings of the vertices U \ {i, j} is the matching M \ {(i, j)}.

Proof. Weight-independence is by definition of the Lexicographic order by IDs. For subset consis-

tency, let M ′ 6= M \ {(i, j)} be another maximum weight matching of U \ {(i, j)}, and note that

when adding the edge (i, j) to M ′, one obtains a maximum weight matching of U . By definition of

M , it is ranked higher than M ′ ∪ {(i, j)} by the Lexicographic by IDs order, and since the shared

edge makes no difference in the tie breaking, we have that after its removal M \ {(i, j)} is (still)

ranked higher than M ′ by the Lexicographic by IDs order (so the tie is be broken in the same

way).

C.6 The Offering Mechanism for Matching Markets: Proofs

We will now prove theorem 6.7, which states that the Offering Mechanism for matching markets is

BIC, ex-post IR, ex-post (direct trade) strongly budget balanced, and ex-ante guarantees at least a

1/4-fraction of the optimal GFT (second-best). The Offering Mechanism is ex-post strongly (direct

trade) budget balanced as the RO mechanism is ex-post (direct trade) strongly budget balanced.

To show the remaining properties, we first develop some machinery.

C.6.1 Supporting Machinery

Lemma C.2. In the offering mechanism when run on a profile (b, s), for every (i, j) ∈ M(b, s)

the following hold:

• If i ∈M−j(b, s), then s̄ = Pj(b, s).
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• If j ∈M−i(b, s), then b̄ = Pi(b, s).

Proof. We will prove the first statement (the second is analogous). Since i ∈ M−j(b, s), the VCG

price of buyer i in the market without seller j is the minimal bid that causes her to be in the

first-best in that market, and so s̄ = Pi(b, s−j). Now observe that:

Pj(b, s) =
∑

(i′,j′)∈M

(bi′ − sj′)−
∑

(i′,j′)∈M−j

(bi′ − sj′) + sj =

∑
(i′,j′)∈M\{(i,j)}

(bi′ − sj′)−
∑

(i′,j′)∈M−j

(bi′ − sj′) + bi = Pi(b, s−j) = s̄

We are now ready to prove the first two parts of lemma 6.3:

Claim C.4. For every (i, j) ∈M(b, s), it holds that s̄ ≥ sj and b̄ ≤ bi.

Proof. We will show the former; the latter is analogous. If s̄ = ∞ the the claim immediately

holds, so we assume that s̄ < ∞. Consider the profile ((b−i, b
′
i), s) for b′i = max{s̄ + 1, bi}. Since

we have only increased the bid of i, we still have that (i, j) ∈ M((b−i, b
′
i), s). By definition, s̄ is

the same for the profile ((b−i, b
′
i), s) as it is for (b, s). By definition of s̄, we have by b′i > s̄ that

i ∈ M−j((b−i, b′i), s). Therefore, by lemma C.2, s̄ = Pj((b−i, b
′
i), s). Since (i, j) ∈ M((b−i, b

′
i), s),

we have that sj ≤ Pj((b−i, b′i), s), and so sj ≤ s̄, as required.

Claim C.5. For every (b, s) and (i, j) ∈M(b, s), it is the case that Pj(b, s) ≥ Pi(b, s).

Proof. by the Second Welfare Theorem, there exist prices p = (pj′)j′∈S (where pj′ denotes a price

for the good of seller j) such that (M(b, s); p) is a Walrasian equilibrium. Therefore, pj is a price

received by sj and paid by bi in some Walrasian equilibrium. By Theorem 8 of [GS99], we therefore

have that Pj(b, s) ≥ pj ≥ Pi(b, s), completing the proof.

We are now ready to prove the third and final part of lemma 6.3:

Claim C.6. For every (i, j) ∈M(b, s), it holds that s̄ ≥ b̄.

Proof. Assume for contradiction that there exists a profile (b, s) and a pair (i, j) ∈ M(b, s) such

that s̄ < b̄. By claim C.4 we have that bi ≥ b̄ > s̄ and sj ≤ s̄ < b̄. Therefore, we have by definition
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of s̄ and b̄ that both i ∈ M−j(b, s) and j ∈ M−i(b, s). Therefore, by lemma C.2, s̄ = Pj(b, s) and

b̄ = Pi(b, s), and so Pj(b, s) < Pi(b, s) — a contradiction to claim C.5.

Proof of Lemma 6.3. Follows from Claim C.4 and Claim C.6.

Lemma C.3. Fix valuation profile (b, s) and a pair (i, j) ∈ M . If j 6∈ M−i, then Pi(b, s) = sj.

Similarly if i 6∈M−j, then Pj(b, s) = bi.

Proof. We only give the proof for Pi = Pi(b, s) and similar argument holds for seller’s VCG payment

Pj = Pj(b, s). If j 6∈M−i, it holds that M−i = M \{(i, j)} by subset consistency of the tie breaking

rule. Now, by definition of Pi, we have Pi = sj .

C.6.2 Incentive Guarantees

Claim C.7. The Offering Mechanism is ex-post IR.

Proof. That the Offering Mechanism is ex-post IR follows from claim C.4 and lemma 6.1.

Claim C.8. The Offering Mechanism is BIC.

Proof. We will prove that the Offering Mechanism is BIC for the seller. A similar argument holds

for the buyer. For each seller j with cost sj , suppose she misreports her cost to be s′j 6= sj . We

will show that taking expectation over other agents’ valuation profile b, s−j , the expected utility

of sj when reporting truthfully is at least the expected utility of seller j with true cost sj when

reporting s′j .

We first consider b, s−j such that j is not in the first-best M(b, s−j , sj). It is sufficient to

consider manipulations s′j that cause j to become part of the first-best M(b, s−j , s
′
j). Let s′j be

such a manipulation, and note that in this case, sj ≥ Pj(b, s−j , s
′
j) ≥ s′j (since Pj(b, s−j , s

′
j)

is the threshold bid of seller j to become part of the first-best). Let i be the agent such that

(i, j) ∈ M(b, s−j , s
′
j). We will complete the proof of this case by considering two cases. First, if

i ∈ M−j(b, s−j , s′j), then s̄ = Pj(b, s−j , s
′
j) by lemma C.2. Therefore, by lemma 6.1, seller j with

reported cost s′j can only trade with i in the RO mechanism at a price p ≤ s̄ = Pj(b, s−j , s
′
j) ≤ sj ,

which derives non-positive utility for seller j. Second, if i /∈ Mj(b, s−j , s
′
j), then by lemma C.3,
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Pj(b, s−j , s
′
j) = bi. Since the mechanism is ex-post IR for buyer i, seller j can only trade with i

(who has value bi) in the RO mechanism at a price at most bi = Pj(b, s−j , sj) ≤ sj , which again

derives non-positive utility for seller j.

Now for every buyer i, consider those b, s−j such that (i, j) ∈ M(b, s−j , sj). In this case, we

note that if seller j misreports to s′j , then either the first-best is unchanged (and so j participates

in the same RO mechanism with the same buyer i) or seller j is no longer in the first-best, receiving

utility 0. Either way, she cannot change the RO mechanism that is run, or the buyer that she is

facing. When the BO mechanism is processed, if seller j is in the first-best, she will be asked to

accept a price. This is ex-post truthful.

When the SO mechanism is processed, then it is enough to show that for every i and fixed

b−i, s−j , sj , in expectation over all bi such that (i, j) ∈M(b−i, bi, s−j , sj), the utility of j when she

reports s′j 6= sj (denoted as uj(s
′
j)) is at most the utility of j when she reports sj (denoted as

uj(sj)) truthfully. Notice that either i can never connect to j in the first-best M(b−i, bi, s−j , sj),

or Pi(b, s−j , sj) (which does not depend on bi) is the threshold bid of buyer i to connect to j in

the first-best. Thus it is enough to prove the claim that when there exists a bid for i such that

i connects to j in the first-best, in expectation over bi ≥ Pi(b, s−j , sj), the utility of j when she

reports s′j is at most the utility of j when she reports sj .

Note that fixed b−i, s−j , sj , when bi ≥ Pi(b, s−j , sj), the outcome of the Offering Mechanism

for j is as if the SO mechanism with parameters s̄ and DB
i |≥b̄ had been run between j and i. Notice

that the parameters s̄ and b̄ do not depend on sj or on bi. By lemma 6.1, the SO mechanism with

parameters s̄ and DB
i |≥b̄ is BIC when the buyer’s valuation is drawn from DB

i |≥b̄. In other words,

Ebi≥b̄[uj(s
′
j)] ≤ Ebi≥b̄[uj(sj)]. (C.1)

Note that Pi(b, s−j , sj) ≥ b̄ by claim C.4. If Pi(b, s−j , sj) = b̄, then the above claim trivially

holds. Otherwise we have to reason about the case Pi(b, b−j , sj) > bi ≥ b̄, which is included in the

expectation in eq. (C.1) but not in the expectation in the above claim.

In this case, since Pi(b, s−j , sj) > b̄, then lemmas C.2 and C.3, Pi(b, s−j , sj) = sj . We notice
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that when sj > bi ≥ b̄, seller j won’t trade with buyer i in the Offering Mechanism when j reports

sj , as (i, j) can’t be in the first-best M(b, s). The utility of j (contributed by buyer i) is thus 0

in this case. When sj > bi ≥ b̄ and j reports s′j , since the payment goes directly from buyer i to

seller j when they trade, they do so at price at most bj < sj (since we assume that buyer i reports

truthfully, and since the mechanism is ex-post IR for her), so seller j’s utility (contributed by buyer

i) in this case is negative if they trade, and 0 otherwise, so it is nonpositive. Combined this with

eq. (C.1), we obtain

Ebi≥sj [uj(s
′
j)] ≤ Ebi≥sj [uj(sj)]

which finishes the proof as sj = Pi(b, s−j , sj).

C.6.3 Efficiency Guarantee

Given a bipartite graph (B,S,E) and two matchings M and M ′ over the graph, a path is called

an alternating path of M ∪M ′ if the edges on the path alternate between edges of M and M ′. If

aK = a1, we call it an alternating cycle. A path is maximal if it is not a sub-path of any other

path.

It is well-known that the union of two matchings in a bipartite graph can be divided into disjoint

maximal alternating paths and cycles.

Observation C.1. Given any set of nodes V and two undirected graphs G1 = (V,E1) and G2 =

(V,E2) such that in both graphs the degree of any node is at most 1 (i.e., each is a matching), it

holds that in G1,2 = (V,E1 ∪E2) every node has degree at most 2 and thus G1,2 is a disjoint union

of maximal alternating paths and maximal alternating cycles.

Given a bipartite graph (V1, V2, E), a set U ⊆ V1 ∪ V2 of nodes is matchable if it is possible

to find a perfect matching of all of the nodes in U using edges in E. Note that if U is matchable

then |U ∩ V1| = |U ∩ V2|. A node weight function is a function W that assigns a weight W (i) to

any node i ∈ V1 ∪ V2. A node-based weighted matching problem is a matching problem in which

for some node weight function W , the weight of every edge (i, j) ∈ E is the sum of the weights of

the two nodes incident on the edge, that is, W (i, j) = W (i) + W (j). The weight of a matchable
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set of nodes U is W (U) =
∑

u∈U W (u). For a weighted matching problem, a weight-maximizing

set is a matchable set of nodes that has maximum weight, over all matchable sets. Clearly, for

any node-based weighted matching problem, the weight of any matching over the same matchable

set of nodes U is the same. Moreover, if U is a weight maximizing set, then any perfect matching

of it does not include any edge of negative weight. For our mechanisms to work, we will need to

carefully define the tie-breaking rule that will be used to choose the weight-maximizing set, as well

as the perfect matching of its elements.

Observation C.2. Fix a bipartite graph. Let WV and W ′V be two node-based weight functions for

the graph, and let M and M ′ be the two maximum weight matchings picked by the tie-breaking rule

for these two weight functions, respectively. If the sets of matched nodes of M and M ′ are the

same, then M and M ′ must be the same.

We also observe that if an agent is in the first best, by changing his bid he cannot influence the

picked matching while staying in the first best.

Observation C.3. Fix a bipartite graph. Assume that with node-based weight function W , the

maximum weight matching M is picked by the tie-breaking rule. Fix any i and let W ′ be a node-

based weight function such that W ′(k) = W (k) for any k 6= i. Let M ′ be the the maximum weight

matching picked for W ′. Then if i ∈M ′ it holds that M = M ′.

We prove the following two lemmas about VCG prices which are both useful in our proofs.

Corollary C.1. Consider the VCG mechanism with lexicographic by IDs tie-breaking rule.

If (i, j) ∈M(b, s) for some (b, s) then for any b′i such that i trades when the bids are ((b−i, b
′
i), s),

it holds that buyer i trades with j and pays Pi(b, s). Moreover, for any such b′i it holds that

b′i ≥ Pi(b, s) ≥ sj.

Similarly, if (i, j) ∈ M(b, s) for some (b, s) then for any s′j such that seller j trades when the

bids are (b, (s−j , sj)), it holds that j trades with i and pays Pj(b, s). Moreover, for any such s′j it

holds that s′j ≤ Pj(b, s) ≤ bi.

Proof. The inequality b′i ≥ Pi(b, s) holds by VCG being ex-post IR. It holds that Pi(b, s) ≥ sj as

261



otherwise, if Pi(b, s) < sj then for bi s.t. Pi(b, s) < bi < sj there is an inefficient trade in M , a

contradiction. Similar arguments prove imply the claim for seller j.

Observe that M = M(b, s), M∗1 = M∗1 (b, s) and M∗2 = M∗2 (b, s) are each a maximum weighted

matching for some node based weight function, all defined over the same undirected bipartite graph

G = (S,B,E) and chosen using the same tie-breaking rule. M(b, s) is derived from the node-based

function W that assigns weight bi to any node i ∈ B and weight −sj to any node j ∈ S. Similarly,

M∗1 (b, s) is derived from the node-based function W1 that assigns weight ϕ̃i(bi) to any node i ∈ B

and weight −sj to any node j ∈ S, where ϕ̃i(bi) is the ironed virtual value of i when his value is bi.

Finally, M∗2 (b, s) is derived from the node-based function W2 that assigns weight bi to any node

i ∈ B and weight −τ̃j(sj) to any node j ∈ S, where τ̃j(sj) is the ironed virtual cost of j when his

cost is sj .

A direct corollary of Observation C.2, is that any alternating cycle in M ∪M∗1 cannot include

more than two distinct nodes, as any such alternating cycle is actually two different matchings over

the same matchable set of nodes. We state the claim for M∗1 ; the same claim holds also for M∗2 .

Corollary C.2. Let (a1a2...aK), be an alternating cycle of M ∪M∗1 . Then K = 3. In other words,

a1 = a3 and the undirected edge (a1, a2) is in both M and in M∗1 .

For a bipartite graph (V1, V2, E), we say that the node-based weight function W is a V1-weak-

improvement of W ′ if for any node i ∈ V1 it holds that W (i) ≥ W ′(i) and for any j ∈ V2 it holds

that W (j) = W ′(j). By definition of ϕ̃ and τ̃ , we have that the node-based weight function W

used to derive M is a B-weak improvement to the node-based weight function W1 used to derive

M∗1 (and similarly, W is an S-weak improvement to the node-based weight function W2 used to

derive M∗2 ).

Lemma C.4. Fix a bipartite graph (B,S,E), and assume that the node-based weight function W

is a B-weak-improvement of W ′. Let M and M ′ be the maximum weight matchings that are picked

by the tie-breaking rule for W and W ′ respectively. Consider a maximal alternating path of M ∪M ′

that is not a cycle. It holds that path cannot both start and end with an edge from M ′. Moreover,

it holds that the path (or its inverse) starts with a node in B and that the first edge belongs to M .
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Proof. Let A = (a1a2...aK) be a maximal alternating path in M ∪M ′ that is not a cycle, and let

U be the set of nodes in the path A. W.l.o.g., if there is a a node in B on any end of the path,

it is the first in the path. Assume that the path starts and ends with an edge from M ′. In this

case the path must have an odd number of edges (as any edge from M ′ is followed by an edge from

M), and it starts with a node a1 ∈ B and ends with a node ak ∈ S. If W ′(a1) + W ′(ak) < 0,

then U ′ = U \ {a1, ak} is matchable and has higher weight than U for W ′, a contradiction to the

maximality of M ′. If W ′(a1) +W ′(ak) ≥ 0 then since W is a V1-weak-improvement of W ′ it holds

that W (a1) +W (ak) ≥W ′(a1) +W ′(ak) ≥ 0. If W (a1) +W (ak) > 0 then the matchable set U ′ has

higher weight than U with respect to W , contradicting the maximality of M . If on the other hand

W (a1) +W (ak) = W ′(a1) +W ′(ak) = 0 both U and U ′ are matchable sets of the same weight with

respect to both W and W ′, so by set consistency of the tie breaking, both M and M ′ must have

matched the same set, a contradiction.

Now, if the path starts and ends with an edge in M , it has an odd number of edges, so it has a

node in B on one end and a node in S on the other, and as we can assume w.l.o.g. that the node

in B is first, this completes the proof.

We are left with the case that the path has an edge from M on one end, and an edge from M ′

on the other. In this case it has an even number of edges and thus either both ends are in B, or

both are in S. We prove that both are in B, completing the proof of the claim. Assume by way of

contradiction that both a1 and ak are in S. Since W is a B-weak-improvement of W ′, for any node

j ∈ S we have W (j) = W ′(j) and thus W (a1) = W ′(a1) and W (ak) = W ′(ak). If W (a1) < W (ak)

then U \ {ak} is a matchable set with higher weight than the set U \ {a1} with respect to W ,

contradicting the optimality of M . Similarly if W ′(a1) = W (a1) > W (ak) = W ′(ak) then U \ {a1}

is a matchable set with higher weight than the set U \ {ak} with respect to W ′, contradicting the

optimality of M ′. Thus it must be the case that W ′(a1) = W ′(ak). So both matchable sets U \{a1}

and U \{ak} have exactly the same weight with respect to both W and W ′, and as the tie breaking

is weight-independent, both should have picked the same set, a contradiction.

From Lemma C.4 and Corollary C.2 we immediately get the following corollary.
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Corollary C.3. Let (a1a2...aK), be a maximal alternating path of M ∪M∗1 . Precisely one of the

following holds:

• K = 3, a1 = a3 and the undirected edge (a1, a2) ∈M ∩M∗1 , or

• (w.l.o.g.) the path starts with a buyer and an edge from M .

lemma 6.5, which plays a central role in our proof of the ex-ante guarantee of the Offering

Mechanism, provides a sufficient condition for a buyer-seller pair to trade in that mechanism. Here

we restate and prove the lemma.

Lemma C.5 (Restatement of lemma 6.5). Fix valuation profile (b, s). For every (i, j) ∈M(b, s), if

j is in M−i(b, s) then buyer i will trade with seller j in the BO Mechanism, and if i is in M−j(b, s)

then buyer i will trade with seller j in the SO Mechanism. Thus, in each such case the edge (i, j)

will be traded with probability at least 1/2 in the Offering Mechanism.

Proof. For every pair (i, j) ∈M(b, s), if j ∈M−i(b, s), we have by lemma C.2 that b̄ = Pi(b, s) ≥

sj , where the inequality is by lemma C.3. Similarly, if i ∈ M−j(b, s), then s̄ = Pj(b, s) ≤ bi.

Therefore, in either case, by lemma 6.2 the edge (i, j) will be traded with probability at least 1/2

in the Offering Mechanism.

Consider a maximal alternating path that is not a cycle. lemma 6.6 shows that for every seller

j ∈ A that is not at one of the ends such a path, it holds that j ∈ M−i, where i is the buyer that

is matched to j in M . Here we restate and give the proof of the lemma.

Lemma C.6 (Restatement of lemma 6.6). Let A be a maximal alternating path of M ∪M∗1 that is

not a cycle. For every seller j ∈ A who is not at one of the ends of the path, it holds that j ∈M−i,

where i is the buyer such that (i, j) ∈M .

Proof. By corollary C.3 we can assume w.l.o.g. that A starts with a buyer and an edge in M . So,

if the path has an even number of edges, then A = (i1j1i2j2...iL−1jL−1iL) and if it is odd then

A = (i1j1i2j2...iL−1jL−1iLjL), where in either case each agent il denotes a buyer and each agent

jl denotes a seller, such that for every l ∈ {1, 2, ..., L − 1} it holds that (il, jl) ∈ M . If the path is

odd, it furthermore holds that (iL, jL) ∈M .
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We need to show that for every l ∈ {1, 2, ..., L − 1} it holds that jl ∈ M−il . Assume for

contradiction that jl /∈ M−il for some l ∈ {1, 2, ..., L − 1}. Then M−il = M \ {(il, jl)} by subset

consistency of the tie-breaking rule, and in A the matching M−il matches the set of agents4 A′ =

M ∩ (A \ {il, jl}).

If the path has an even number of edges, then iL /∈ A′. To derive a contradiction we observe

that the set A′′ = A′ ∪ {jl, iL} = A \ {il} is matchable (using the edges of M on the path A up to

jl−1, and the edges of M∗1 on the path A starting from jl), and moreover, has weight with respect

to W that is at least the weight of A′. This holds as M∗1 matched A′′ ∩ R and not A′ ∩ R for

R = {jl, il+1, jl+1, . . . , iL}, and the weight of iL is not lower in W than in W1 (and the weight of

jl is the same in both). So we get an contradiction as either A′′ is matchable and with a higher

weight than A′ with respect to W , or they have the same weight with regard to W and the same

weight with regard to W1, and ties were broken differently.

Next we consider the case that the path has an odd number of edges, in which case also

(iL, jL) ∈ M . It must hold that sjl ≤ sjL as M∗1 matches A \ {i1, jL} and not the matchable

set A \ {i1, jl}. Recall that since jl /∈ M−il , then M−il = M \ {(il, jl)}, but the matchable set

A′′ = A \ {il, jL} ⊆ A \ {il} has at least the weight of A′ = A \ {il, jl} with respect to W (since

sellers have the same weight in W and W1), so we get an contradiction as either A′′ is matchable

and with a higher weight than A′ with respect to W , or they have the same weight with regard to

W and the same weight with regard to W1, and ties were broken differently in M−il and in M∗1 .

lemma 6.7 considers such paths with an odd number of edges and present some additional

characterization that will help us in bounding the GFT of our mechanism. By Corollary C.3 we

can assume w.l.o.g. that any maximal alternating path of M ∪M∗1 starts with a buyer and an edge

in M . Let GFTM ′(U) be the GFT of all edges of M ′ that are contained in U . We now restate and

prove this lemma.

Lemma C.7 (Restatement of lemma 6.7). For K > 3, let A = (i1j1i2j2...iL−1jL−1iLjL), be a

maximal alternating path of odd number of edges of M ∪M∗1 with any agent il denoting a buyer

4. We slightly abuse notation by using A to also denote the set of agents in the path A.
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and any agent jl denoting a seller, and the first edge in M ((i1, j1) ∈M). It holds that

• if biL > bi1 then iL ∈M−jL.

• if biL ≤ bi1 then GFTM (A \ {iL, jL}) ≥ GFTM∗1 (A).

Proof. We prove that if biL > bi1 then iL ∈M−jL . Assume for contradiction that iL /∈M−jL . Since

the tie breaking is subset consistent, the matching picked on A \ {iL, jL} will be the same as the

one in M . Yet, the set A \ {i1, jL} is matchable (by the edges of M∗1 ) and has higher weight than

the weight that M gets on A \ {iL, jL}, a contradiction.

We next consider the case that biL ≤ bi1 . Let w = GFTM (A) =
∑L

l=1(bil − sil). Notice that:

GFTM (A \ {iL, jL}) = w− (biL − siL) ≥ w− (bi1 − siL) = GFTM∗1 (A \ {i1, jL}) = GFTM∗1 (A).

We are now ready to complete the proof of lemma 6.4, which states that for any valuation

profile (b, s), the gains from trade of the Offering Mechanism for matching markets is at least half

of the from trade of the RVWM mechanism for that profile.

Fix a valuation profile (b, s). To prove the claim we consider the connected components of

M(b, s)∪M∗1 (b, s) and show that in each connected component separately the GFT of the Offering

Mechanism in expectation (over the randomness of the mechanism), is at least half the GFT of the

RVWM mechanism on (b, s).

By observation C.1 each connected component is either a maximal alternating path or a cycle.

By corollary C.2 any cycle has only two (identical) undirected edges, denote it by (i, j) ∈M(b, s)∩

M∗1 (b, s). That is, the unique edge (i, j) of M∗1 = M∗1 (b, s) in this cycle is the same as the unique

edge (i, j) of M = M(b, s) in that cycle. If j ∈ M−i(b, s) or i ∈ M−j(b, s), by lemma 6.5 buyer

i will trade with seller j in the Offering Mechanism with probability at least 1/2, which obtains at

least half the GFT that the RVWM mechanism obtains on (i, j) ∈ M∗1 (b, s) when the profile is

(b, s). Otherwise, since i /∈M−j we have that s̄ ≥ bi, and since j /∈M−i we have that b̄ ≤ sj . Since

trade occurs with positive probability on (i, j) in the RVWM mechanism, then by observation 6.1,

in this case the GFT of the RVWM mechanism on this edge are therefore at least those of the

RO mechanism with SO parameters ∞ (no constraint) and DB
bi

(unconditioned distribution) and
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BO parameters 0 (no constraint) and DS
sj (unconditioned distribution) on (i, j). Since s̄ ≥ bi and

b̄ ≤ sj , we have by lemma 6.2 that the probability that trade occurs between i and j is at least

as high in our Offering Mechanism (which runs the appropriate RO mechanism, constrained and

conditioned) as it is in the unconstrained and unconditioned RO mechanism (that upper-bounds

the GFT of RVWM on this edge). Therefore, in this case our Offering Mechanism achieves at least

the gains from trade of the RVWM mechanism on this edge (and therefore, on any alternating

cycle).

By corollary C.3, any other maximal alternating path of is not a cycle, and is a path starts or

ends with a buyer and an edge from M . We will assume w.l.o.g. that it start with a buyer and an

edge from M , and we consider such paths of even and odd numbers of edges separately. Note that

Corollary C.3 implies that there is no connected component that does not include at least one edge

from M , so by going over all connected components with at least two edges, we cover all the edges

of M∗1 .

If the number of edges in the path is even, by lemma 6.6, M matches every seller j in the

path to some buyer i, and for any such pair (i, j) it holds that j ∈ M−i. By lemma 6.5 buyer i

will trade with seller j in the BO Mechanism, so whenever the BO mechanism runs, the maximal

GFT (first best) of that connected component, which is at least the GFT of the M∗1 mechanism for

that connected component, will be obtained. The Offering Mechanism runs the BO mechanism is

probability 1/2, so in expectation it obtains at least 1/2 the GFT of M∗1 for this path.

We next consider the case that the number of edges in the path is odd and at least 3.5 Let the

path be A = (i1j1i2j2...iL−1jL−1iLjL) for some L ≥ 2. By lemma 6.6, for any l ∈ {1, 2, ..., L − 1}

it holds that jl ∈M−il . Next, we use lemma 6.5 again. We consider two cases, using lemma 6.7.

• If biL > bi1 then iL ∈M−jL . In this case all edges of M will each be traded with probability

at least 1/2 in the Offering Mechanisms, so in expectation it obtains at least 1/2 the GFT of

M in this path and thus also at least 1/2 the GFT of M∗1 in this path A.

• If on the other hand biL ≤ bi1 then GFTM (A\{iL, jL}) ≥ GFTM∗1 (A). Therefore, since every

5. As noted, if there is a single edge, it is only in M . We only need to cover edges in M∗1 .
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edge (il, jl) for l ∈ {1, 2, ..., L− 1} is traded with probability 1/2 in the Offering Mechanisms,

we have that in expectation the Offering Mechanism obtains in this path A at least 1/2 of the

GFT of M∗1 in this path A.

We conclude that the Offering Mechanisms obtains at least 1/2 the GFT that the RVWM

mechanism gets on M∗1 . Similar arguments show that the Offering Mechanisms obtains at least 1/2

the GFT of the RVWM mechanism gets on M∗2 . Thus the Offering Mechanisms, obtains at least

1/4 the total GFT of M∗1 and M∗2 . The expected GFT of the RVWM mechanism is the average

GFT of M∗1 and of M∗2 . We conclude that the Offering Mechanisms obtains at least 1/2 the GFT

of the RVWM mechanism.

C.7 The Hybrid Mechanism for Matching Markets: Proofs

In this section, we prove theorem 6.8.

Ex-post IR, ex-post (direct trade) weakly budget balanced They directly come from the

fact that both the TR mechanism and Offering Mechanism are ex-post IR and ex-post (direct trade)

weakly budget balanced.

Bayesian IC Lemma C.8 proves that after combining the two mechanisms, the hybrid mechanism

is still a BIC mechanism.

Lemma C.8. The hybrid mechanism for matching markets is BIC.

Proof. We will prove that the Hybrid Mechanism is BIC for the seller. A similar argument holds

for the buyer. For each seller j with cost sj , suppose she misreports her cost to be s′j 6= sj . We

will show that taking expectation over other agents’ valuation profile b, s−j , the expected utility

of sj when reporting truthfully is at least the expected utility of seller j with true cost sj when

reporting s′j . We consider three cases:

• First, consider the case where when seller j reports sj , then she is in the first-best and the

TR Mechanism is run. In this case, we note that if seller j misreports to s′j , then either the
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first-best is unchanged (and so the TR is still run) or j is no longer in the first-best. In the

former case, seller j does not profit since by theorem 6.6 the TR Mechanism is ex-post IC,

and in the latter case seller j does not profit as she gets utility 0.

• Now, consider the case where when seller j reports sj , then she is in the first-best and the

Offering Mechanism is run with an offer on the edge (i, j). Similarly to above, we note that

if j misreports to s′j , then either the first-best is unchanged (and so the Offering Mechanism

is still run) or j is no longer in the first-best, and has 0 utility. In particular, j cannot cause

the TR mechanism to run without getting 0 utility. Also note that for the same reason, for

every report of buyer i that keeps (i, j) in the first best, the Offering Mechanism is still run,

and so it is enough to show truthfulness of j in expectation over all such reports of buyer i,

and we have shown precisely that in claim C.8 using lemma 6.1. So, we have that when j has

cost sj such that there exists b, s−j such that the Offering Mechanism is run with an offer

on the edge (i, j), then in expectation over all such b, s−j , it is the case that sj cannot gain

from misreporting.

• Finally, consider the case where when seller j reports sj , then she is not in the first-best. In

this case, regardless of the mechanism that is actually run when j reports sj , her outcome

reporting sj would have been the same under both mechanisms. So, since we have shown

that when j is not in the first-best, truthtelling is ex-post IC in both mechanisms, we have

that this implies that truthfulness is ex-post IC for seller j in the hybrid mechanism in this

case.

Ex-post efficiency guarantee Whenever α(b, s) ≥ 1/2, the hybrid mechanism run TR mecha-

nism. The ex-post guarantee directly comes from Claim C.3.

Ex-ante efficiency guarantee Let (b, s) be a profile. If α(b, s) ≥ 1
2 , the hybrid mechanism runs

the Trading Reduction mechanism, which achieves at least 1/2-fraction of the first-best gains from

trade. This is at least 1/2-fraction the gains from trade of the RVWM mechanism. If α(b, s) < 1
2 ,

the hybrid mechanism runs the Offering Mechanism, which by lemma 6.4 achieves at least a 1/2-
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fraction of the GFT of the RVWM mechanism for this profile. So, for any profile the hybrid

mechanism achieves at least a 1/2-fraction of the GFT of the RVWM mechanism for this profile,

and so by theorem 6.4, it achieves at least a 1/4-fraction of the GFT of the second-best mechanism,

as required.

Proof of corollary 6.2. Since β(b, s) ≤ α(b, s) (see the proof of corollary 6.1), we have that in this

case also α(b, s) ≥ 1/2, and so the hybrid mechanism runs the TR mechanism for matching markets,

and so the claim following via corollary 6.1.
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Appendix D

Missing Details from Chapter 7

D.1 Missing Details from Section 7.3

Proof of Lemma 7.2:

For every i, s, bi, define

qi(bi, s) = (bi − si)+ · Pr
b−i

[i ∈ S∗(b, s)] · 1
[
Fi
−1

(
1

2j−1
) ≤ si ≤ Fi

−1
(

1

2j
)

]
.

Then we have that qi(bi, s) ≥ 0 is non-decreasing in bi, as both bi− si and the probability Prb−i [i ∈

S∗(b, s)] is non-decreasing in bi.

Since θij = Fi
−1

( 1
2j

) and Prbi

[
bi ≥ Fi

−1
( 1

2j
)
]

= 1
2 Prbi

[
bi ≥ Fi

−1
( 1

2j−1 )
]
, we have

Ebi [qi(bi, s) · 1 [bi ≥ θij ]] ≥qi(θij , s) · Pr
bi

[bi ≥ θij ]

=qi(θij , s) · Pr
bi

[
Fi
−1

(
1

2j−1
) ≤ bi < θij

]
≥Ebi

[
qi(bi, s) · 1

[
Fi
−1

(
1

2j−1
) ≤ bi < θij

]]
.

(D.1)

Thus we have
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Eb,s

[∑
i

(bi − si)+ · 1[i ∈ S∗(b, s) ∧ Eij ]

]

=
∑
i

Ebi,s
[
qi(bi, s) · 1[bi ≥ Fi

−1
(

1

2j−1
)]

]
≤2 ·

∑
i

Ebi,s [qi(bi, s) · 1[bi ≥ θij ]] (Inequality (D.1))

=2 · Eb,s

[∑
i

(bi − si)+ · 1[i ∈ S∗(b, s) ∧ Eij ]

]

≤2 · Eb,s

[∑
i

(bi − θij)+ · 1[i ∈ S∗(b, s) ∧ Eij ]

]
+ 2 · Eb,s

[∑
i

(θij − si)+ · 1[i ∈ S∗(b, s) ∧ Eij ]

]

Moreover, we have

Eb,s

[∑
i

(bi − θij)+ · 1[i ∈ S∗(b, s)] · 1[Eij ]

]

≤Eb,s

[∑
i

(bi − θij)+ · 1[si ≤ θij ] · 1[i ∈ S∗(b, s)]

]

≤Eb,s

[
max
S∈F

∑
i∈S

{
(bi − θij)+ · 1[si ≤ θij ]

}]
(D.2)

Similarly,

Eb,s

[∑
i

(θij − si)+ · 1[i ∈ S∗(b, s) ∧ Eij ]

]
≤ Eb,s

[
max
S∈F

∑
i∈S

{
(θij − si)+ · 1[bi ≥ θij ]

}]

2

Proof of Lemma 7.3: For every i ∈ [n] and j = 1, ..., dlog(2/r)e, let E′ij be the event that G−1
i ( 1

2j
) ≤

bi ≤ G−1
i ( 1

2j−1 ) ∧ si ≤ G−1
i ( 1

2j−1 ) and E
′
ij be the event that G−1

i ( 1
2j

) ≤ bi ≤ G−1
i ( 1

2j−1 ) ∧ si ≤

G−1
i ( 1

2j
). We have

2 ≤
dlog( 2

r
)e∑

j=1
Eb,s

[∑
i(bi − si)+ · 1[i ∈ S∗(b, s) ∧ E′ij ]

]
.
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Fix any j. For every i,b, si, define

qi(b, si) = (bi − si)+ · Pr
s−i

[i ∈ S∗(b, s)] · 1
[
G−1
i (

1

2j
) ≤ bi ≤ G−1

i (
1

2j−1
)

]
.

Then we have that qi(b, si) > 0 is non-increasing in si. Since θ′ij = G−1
i ( 1

2j
) and Prsi

[
si ≤ G−1

i ( 1
2j

)
]

=

1
2 Prsi

[
si ≤ G−1

i ( 1
2j−1 )

]
, we have

Esi
[
qi(b, si) · 1

[
si ≤ θ′ij

]]
≥qi(b, θ′ij) · Pr

si

[
si ≤ θ′ij

]
=

1

2
qi(b, θ

′
ij) · Pr

si

[
si ≤ G−1

i (
1

2j−1
)

]
≥1

2
Esi
[
qi(b, si) · 1

[
si ≤ G−1

i (
1

2j−1
)

]]
.

(D.3)

Thus we have

Eb,s

[∑
i

(bi − si)+ · 1[i ∈ S∗(b, s) ∧ E′ij ]

]

=
∑
i

Eb,si

[
qi(b, si) · 1[si ≤ G−1

i (
1

2j−1
)]

]
≤2 ·

∑
i

Eb,si

[
qi(b, si) · 1[si ≤ θ′ij ]

]
(Inequality D.3)

=2 · Eb,s

[∑
i

(bi − si)+ · 1[i ∈ S∗(b, s) ∧ E′ij ]

]

≤2 · Eb,s

[∑
i

(bi − θ′ij)+ · 1[i ∈ S∗(b, s) ∧ E′ij ]

]
+ 2 · Eb,s

[∑
i

(θ′ij − si)+ · 1[i ∈ S∗(b, s) ∧ E′ij ]

]

Moreover, we have

Eb,s

[∑
i

(bi − θ′ij)+ · 1[i ∈ S∗(b, s)] · 1[E
′
ij ]

]

≤Eb,s

[∑
i

(bi − θ′ij)+ · 1[si ≤ θ′ij ] · 1[i ∈ S∗(b, s)]

]

≤Eb,s

[
max
S∈F

∑
i∈S

{
(bi − θ′ij)+ · 1[si ≤ θ′ij ]

}]
(D.4)
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Similarly,

Eb,s

[∑
i

(θ′ij − si)+ · 1[i ∈ S∗(b, s) ∧ E′ij ]

]
≤ Eb,s

[
max
S∈F

∑
i∈S

{
(θ′ij − si)+ · 1[bi ≥ θ′ij ]

}]

2
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