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Abstract

Error-Corrected Quantum Metrology

Sisi Zhou

2021

Quantum metrology, which studies parameter estimation in quantum systems, has many

applications in science and technology ranging from frequency spectroscopy to gravitational

wave detection. Quantum mechanics imposes a fundamental limit on the estimation pre-

cision, called the Heisenberg limit (HL), which bears a quadratic enhancement over the

standard quantum limit (SQL) determined by classical statistics. The HL is achievable in

ideal quantum devices, but is not always achievable in presence of noise.

Quantum error correction (QEC), as a standard tool in quantum information science to

combat the effect of noise, was considered as a candidate to enhance quantum metrology

in noisy environment. This thesis studies metrological limits in noisy quantum systems

and proposes QEC protocols to achieve these limits. First, we consider Hamiltonian esti-

mation under Markovian noise and obtain a necessary and sufficient condition called the

“Hamiltonian-not-in-Lindblad-span” condition to achieve the HL. When it holds, we provide

ancilla-assisted QEC protocols achieving the HL; when it fails, the SQL is inevitable even

using arbitrary quantum controls, but approximate QEC protocols can achieve the optimal

SQL coefficient. We generalize the results to parameter estimation in quantum channels,

where we obtain the “Hamiltonian-not-in-Kraus-span” condition and find explicit formu-

las for asymptotic estimation precision by showing attainability of previously established

bounds using QEC protocols. All QEC protocols are optimized via semidefinite program-

ming. Finally, we show that reversely, metrological bounds also restrict the performance of

error-correcting codes by deriving a powerful bound in covariant QEC.
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Chapter 1

Introduction

1.1 Quantum metrology

Quantum mechanics is a fundamental theory in physics describing the physical properties

of microscopic systems at the atomic and subatomic scale. The Heisenberg’s uncertainty

principle [Heisenberg, 1949] is one of the best known theorems in quantum mechanics,

which asserts a fundamental limit to the estimation accuracies of a pair of non-commuting

physical observables, e.g. position and momentum operators. Namely, the more precisely

the position of some particle is determined, the less precisely its momentum can be predicted,

and vice versa. Such a feature of quantum physics is counterintuitive, which highlights a

significant difference between quantum measurements and classical measurements, and is

one of the motivations behind the study of quantum metrology [Giovannetti et al., 2004;

Blatt and Wineland, 2008; Paris, 2009; Giovannetti et al., 2011], the science of measurements

and estimation in quantum systems.

Quantum metrology has a broad range of applications in modern science and tech-

nology, including optical interferometry [Caves, 1981; Bondurant and Shapiro, 1984; Yurke

et al., 1986; Holland and Burnett, 1993; Sanders and Milburn, 1995; Dowling, 1998; Mitchell

et al., 2004; Walther et al., 2004; Nagata et al., 2007; Resch et al., 2007] (in particular,

gravitational-wave detection [LIGO Collaboration, 2011, 2013]), magnetic and electric field

spectroscopy [Wineland et al., 1992, 1994; Bollinger et al., 1996; Leibfried et al., 2004;

Roos et al., 2006; Schmidt et al., 2005; Koschorreck et al., 2010; Sewell et al., 2012], atomic

12



Figure 1.1: Schematic diagram of different components in quantum metrology. In this thesis, we
focus on optimization of input states, quantum controls and final measurements, while the system
dynamics (signal + noise) is fixed.

clocks [Rosenband et al., 2008; Appel et al., 2009; Leroux et al., 2010; Louchet-Chauvet

et al., 2010], etc. In quantum metrology, we usually consider the following generic parameter

estimation scenario (see Figure 1.1): The experimentalist first prepares an input quantum

state of a physical system, let it evolve under certain quantum dynamics which encodes

the relevant unknown parameter(s) and allows quantum controls in the middle, and then

measure the output quantum state to extract the information of the parameter(s). The goal

is to maximize the estimation precision of the parameter(s) while minimizing the resource,

such as the probing time, the number of probing particles or the energy consumption. For

example, in optical interferometry, an input laser beam passes through a beam splitter and

travels along two different paths where the relevant parameter is encoded in the optical

path difference. The final measurement step involves passing through the beam splitter

and entering the photodetectors. By squeezing the input vacuum states [Caves, 1981], the

shot-noise limited sensitivity in the GEO gravitational wave detector was enhanced by 3.5

dB [LIGO Collaboration, 2011]; in a proof-of-principle experiment in the LIGO gravitational

wave detector, the injection of 10 dB of squeezing lowered the shot noise in the interfer-

ometer output by approximately 2.15 dB, equivalent to an increase by more than 60% in

the power stored in the interferometer arm cavities [LIGO Collaboration, 2013]. This is an

example in quantum metrology where the sensitivity of a quantum sensor is improved by

choosing a non-classical quantum input state.

The experimental aspect of quantum metrology, usually called quantum sensing [Degen

et al., 2017], studies the real-world implementations of quantum sensors on different physi-

13



cal platforms, such as cold atoms, trapped ions, solid-state spins, superconducting qubits,

optical sensors and others. The type of physical platforms usually determines how the de-

sired physical quantity interacts with the system and how initialization and measurement

are performed. Building a highly sensitive quantum sensor then largely relies on balanc-

ing the trade-off between enhancing the sensitivity of the desired parameter and reducing

the initialization and readout noise. These experimental restrictions usually determine the

scope of applications of quantum sensors. For example, nitrogen-vacancy centers [Dutt

et al., 2007; Neumann et al., 2008; Hanson et al., 2008; Taylor et al., 2008] are electronic

spin defects in diamond that combine strong magnetic moment and efficient optical readout

of atoms with the high spin densities in the solid state, which find applications microscopy

of magnetic fields [Le Sage et al., 2013; Steinert et al., 2013; Fu et al., 2014], but still strong

environmental noise in high-density ensembles [Acosta et al., 2009] limits its application in

large-scale sensing of homogeneous fields.

Admittedly, for practical detection of physical quantities, it is important to find suitable

quantum sensors with high sensitivity and low initialization and readout noise. On the other

hand, given a fixed system dynamics with certain types of noise, it still remains a question

how to choose the most sensitive initialization, control and readout schemes to maximize

the capability of quantum sensors, as shown in Figure 1.1 where the gray blocks are fully

controlled by the experimentalists and the white blocks are fixed. Similar to the idea of

using squeezed states to enhance the sensitivity of optical interferometers, entanglement in

a multi-probe system [Horodecki et al., 2009] was found to provide substantial enhance-

ment in sensitivity [Wineland et al., 1992; Kitagawa and Ueda, 1993; Bollinger et al., 1996;

Giovannetti et al., 2001, 2004, 2006, 2011; Pezzè et al., 2018]. According to the central

limit theorem, assuming there is no more than classical correlations between each probes,

an N -probe system reduces the estimation error by a factor of
√
N , which is called the

standard quantum limit (SQL). The SQL can be overcome using entangled input states

in which case the ultimate estimation limit allowed by quantum mechanics scales as 1/N ,

known as the Heisenberg limit (HL). For example, when detecting a homogeneous magnetic

field in a noiseless spin system, the HL is achievable using the Greenberger-Horne-Zeilinger

(GHZ) state—an equal superposition of all spin up and all spin down states [Yurke et al.,
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1986; Holland and Burnett, 1993; Giovannetti et al., 2006].

Instead of focusing on specific physical quantities to be estimated, and real-world quan-

tum sensors on specific physical platforms, one could consider in general parameter estima-

tion on arbitrary quantum states in a Hilbert space with arbitrary signal and noise dynamics.

It brings us to the theoretical aspect of quantum metrology, usually called quantum estima-

tion theory [Helstrom, 1976; Holevo, 1982; Hayashi, 2005, 2016], where the subject under

study is a quantum state (density operator) ρθ or a quantum channel Eθ as a function of

unknown parameter(s) θ. Quantum estimation theory is a generalization of classical esti-

mation theory which is a branch of statistics that deals with parameter estimation based

on measured empirical data that has random components.

In classical estimation theory [Kay, 1993; Van der Vaart, 2000; Lehmann and Casella,

2006], we estimate a family of probability distributions belonging to a certain parameterized

subset {pθ(x)}θ∈Θ by obtaining a large set of independent and identically distributed (i.i.d.)

samples {x1, x2, . . . , xN} and infer the value of θ using an estimator θ̂(x) as a function

from the sample space to the estimate of θ (see Figure 1.2(a)). Usually, we evaluate the

estimation error by the square root of the mean square error (MSE). When N is large

enough (or “asymptotically”), the MSE is proportional to 1/N , matching the scaling 1/
√
N

of the estimation error in the SQL, and the optimal coefficient is equal to the inverse of a

statistical quantity called the Fisher information (FI). The inverse of the Fisher information

naturally forms a lower bound on the MSE, called the Cramér–Rao (CR) bound. In quantum

estimation theory, we examine parameter estimation based on i.i.d. samples obtained from

quantum measurements on a family of quantum states {ρθ}θ∈Θ (see Figure 1.2(b)). The

estimation process is divided into two parts: the quantum measurement process where we

perform a quantum measurement on the system and the data manipulation process where

we estimate the true parameter from the observed data. The latter is a problem in classical

estimation theory and the choice of quantum measurement is usually the main focus of

quantum estimation theory.

Quantum estimation theory was first studied from the middle of 1960s to 1980 by many

researchers [Helstrom, 1976; Holevo, 1982], where the lower bounds on the MSE for un-

biased estimators were derived which combines the mathematical formulation of quantum
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Figure 1.2: (a) Classical estimation theory. (b) Quantum estimation theory.

mechanics and mathematical statistics. This field was then developing rapidly, drawing a

lot attention from information theorists, statisticians and physicists. One prominent result

was that the quantum CR bound [Helstrom, 1976; Holevo, 1982], defined using the notion

of quantum Fisher information (QFI), is attainable asymptotically in single-parameter es-

timation [Helstrom, 1967; Nagaoka, 1989a; Braunstein and Caves, 1994]. A problem is the

optimal measurement attaining the quantum CR bound in general depends on the true value

of the parameter. However, when the number of samples are large, it is possible attain the

optimal estimation error asymptotically by adaptively choosing the measurement [Nagaoka,

1988, 1989b; Barndorff-Nielsen and Gill, 2000; Gill and Massar, 2000; Fujiwara, 2006]. For

multi-parameter estimation, similar quantum lower bounds on the estimation error were

derived [Helstrom, 1968; Yuen and Lax, 1973; Holevo, 1982; Nagaoka, 1989a; Matsumoto,

2002], though it remained open how to find the optimal measurement due to the non-

commutativity nature of quantum mechanics [Ragy et al., 2016; Demkowicz-Dobrzański

et al., 2020], except in a few special estimation models (mean-value estimation for Gaussian

states [Holevo, 1982], quantum two-level systems [Nagaoka, 1989a; Hayashi, 2005; Gill and

Massar, 2000], etc.). However, when collective measurements (measurements that might

be correlated among the i.i.d. copies of parameterized quantum states) are allowed, it is

proven that the Holevo bound [Holevo, 1982]—a more informative multi-parameter bound

compared to the QFI-based bound—is attainable using quantum local asymptotic normal-

ity [Hayashi and Matsumoto, 2008; Kahn and Guţă, 2009; Yamagata et al., 2013; Yang

et al., 2019], a useful asymptotic characterization of identically prepared states in terms of

Gaussian states.

Notably, though the asymptotic quantum estimation theory is well-established, no uni-
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fied treatment exists for the small sample case (the case where the number of samples is

small). Possible approaches include the Bayesian approach where the unknown parameter

is assumed to be random and the knowledge about the distribution is consecutively updated

after each data-collection step, the minimax approach where the maximal error is minimized

over all estimators, etc., all suffering from limited scopes of applications. For parameters

with group symmetries, however, covariant measurements are always optimal if we adopt

use Bayesian approach with an invariant prior and an invariant loss function [Helstrom,

1974; Holevo, 1979; Vidal et al., 1999; Buzek et al., 1999; Chiribella et al., 2005].

It was not until the late 1980s when people started to shift their attention from quan-

tum state estimation to quantum process estimation, and when the intersection between

practical quantum sensing and quantum estimation theory becomes clear. Instead of fo-

cusing on optimizing the quantum measurement on fixed parametrized quantum states, the

importance of choosing optimal input states for parametrized quantum processes was also

appreciated. Unitary quantum processes are the most fundamental dynamics in quantum

mechanics and it was proven, using quantum estimation theory, that GHZ-type states are

optimal, achieving a quadratic enhancement over classical states [Bollinger et al., 1996;

Giovannetti et al., 2004]. Similar to GHZ states in many body systems, NOON states in

optical interferometry (an equal superposition of |0, N〉 and |N, 0〉 Fock states) were also

known to achieve the HL [Yurke, 1986; Lee et al., 2002].

It was a remarkable discovery that by exploring entanglement in multi-probe systems, it

is possible to achieve a quadratic enhancement in sensing. However, the fact that practical

systems are noisy forbids direct applications of the result [Banaszek et al., 2009; Giovannetti

et al., 2011; Maccone and Giovannetti, 2011]. Moreover, entangled states such as GHZ states

are more fragile compared to product states because both quantum signal and quantum

noise accumulate coherently for highly entangled states. It is therefore imperative for us

to understand how quantum noise affects the quantum enhancement provided by entangled

states and whether quantum controls can overcome it. In the next section, I am going to

briefly review the history of studying quantum process estimation under the influence of

quantum noise.
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1.2 Noisy quantum metrology

The study of noise in quantum metrology was initiated 20 years ago due to experimental

motivations. For example, to estimate the Z-axis magnetic field under dephasing noise, it

was shown that for a long enough probing time, the SQL is inevitable and the spin-squeezed

states are optimal, providing a constant factor improvement over product states and GHZ

states [Huelga et al., 1997; Ulam-Orgikh and Kitagawa, 2001]. Though GHZ states still

have the advantage when the probing time is constrained for practical reasons [Wineland

et al., 1998; André et al., 2004; Borregaard and Sørensen, 2013; Chaves et al., 2013], it is one

of the first lines of evidence that the quantum advantages are conditioned in the presence

of noise. Similarly in optical interferometry, the quadratic advantage provided by NOON

states is not robust under photon loss [Demkowicz-Dobrzański et al., 2009; Dorner et al.,

2009] or phase diffusion [Genoni et al., 2011; Escher et al., 2012] and other types of states

such as squeezed states and two-mode states with definite photon numbers were explored

as candidates to achieve the optimal estimation precision.

It is of theoretical interest to explore the limit of quantum process estimation as well.

Using the language of quantum channels, definitions of the QFI for quantum channels were

first studied by [Fujiwara and Imai, 2008] and [Matsumoto, 2010]. The channel QFI is

usually defined to be the maximum QFI of the output state over all possible input states

and calculating the channel QFI is equivalent to optimizing the parameter estimation over

all possible inputs. The method in [Fujiwara and Imai, 2008] is usually called the channel-

extension method, where the QFI is computed by first purifying the probe states to a larger

Hilbert space and then minimizing the QFI over the freedom in purifications. Given many

copies of channels, the upper bounds of the QFI were derived using the channel-extension

method for typical noise channels such as depolarization, dephasing, spontaneous emission

and photon loss [Escher et al., 2011; Demkowicz-Dobrzański et al., 2012; Ko lodyński and

Demkowicz-Dobrzański, 2013; Demkowicz-Dobrzański and Maccone, 2014].

Another method to derive upper bounds on the QFI is the channel-simulation method

which works for programmable quantum channels [Ji et al., 2008; Demkowicz-Dobrzański

et al., 2012], i.e. channels that can be simulated by parameter-independent quantum chan-
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nels and parameterized quantum states. The upper bounds are directly related to the

QFI of the parameterized quantum states. The channel-simulation method is as general

as the channel-extension method, but is in particular useful for characterizing the QFI of

teleportation-simulable channels [Pirandola et al., 2017; Pirandola and Lupo, 2017; Piran-

dola et al., 2018; Takeoka and Wilde, 2016].

Importantly, the above methods demonstrated that an infinitesimal amount of generic

noise is enough to destroy the HL with respect to the number of probes and force the

scaling to be SQL-like, even with the assistance of arbitrary quantum controls [Escher et al.,

2011; Demkowicz-Dobrzański et al., 2012; Ko lodyński and Demkowicz-Dobrzański, 2013;

Demkowicz-Dobrzański and Maccone, 2014]. Thus, the optimal quantum enhancement is

then limited to at most a constant factor improvement over classical strategies for most types

of noise. Apart from quantum channels, a similar phenomenon occurs in open quantum

systems [Sekatski et al., 2017] where the HL with respect to the probing time is destroyed

under generic noise and the scaling of the QFI is at most proportional to the probing time.

Two important open questions remain in the study of noisy quantum metrology. First,

although it was established that for generic noise the HL is not achievable, there are still

possibilities for quantum systems to achieve the HL under some special types of noise and

we don’t know if there is such a protocol, except for unitary dynamics. Second, although

achieving the HL is the ultimate dream in quantum metrology, the constant-factor improve-

ment in the SQL is still practically relevant. Notably, when the noise rate in the system

is low, the constant-factor improvement could be significant. Therefore, it is intriguing to

understand how to achieve this significant enhancement in the SQL case. I will show in this

thesis that quantum error correction is an effective tool to solve these two open questions,

namely, achieving the HL for special types of noise and achieving the optimal SQL coefficient

for generic noise. In the next section, I am going briefly review on the concept of quantum

error correction and then discuss its application in quantum metrology in particular.
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1.3 Quantum error correction

Quantum information science is an extensive research field that combining information sci-

ence and quantum physics which includes both theoretical issues in information-theoretic

and computational models as well as experimental topics in quantum physics. The revolu-

tion in quantum information science began in the 1990s following the stunning discovery of

Peter Shor’s quantum factoring algorithm [Shor, 1999]. Since then, there have been rapid

developments in many topics, including quantum computation and quantum communica-

tion [Nielsen and Chuang, 2010; Wilde, 2013]. Immediate skepticism was also raised along

with the theoretical development because quantum systems were known to be fragile to

environmental noise (one famous example being Schrödinger’s cat) and it is a critical is-

sue how to overcome the unavoidable interactions with environment in the manufacturing

of quantum computers. Classically, error correction is a successful technique to combat

noise where a message is encoded with redundant information so that a limited number

of errors can be corrected to recover the original message [MacWilliams and Sloane, 1977;

Huffman and Pless, 2010]. Compared to classical systems, there are two apparent diffi-

culties for implementing quantum error correction (QEC): quantum information cannot be

reliably copied (the no-cloning theorem) and quantum measurement usually destroys the

information stored in quantum states.

Therefore, it came as a surprise and caused much excitement when powerful QEC meth-

ods were discovered to overcome these difficulties. The first QEC codes [Shor, 1995; Steane,

1996b] were discovered around 1995 which can correct arbitrary single-qubit error, followed

within a few years by general code constructions and frameworks of QEC [Calderbank and

Shor, 1996; Steane, 1996a; Bennett et al., 1996; Knill and Laflamme, 1997] and an important

concept called stabilizer codes [Gottesman, 1996; Calderbank et al., 1997] which permits

many new codes to be discovered. Quantum fault-tolerance theorems [Knill and Laflamme,

1996; Aharonov and Ben-Or, 1999] were also proven, showing that arbitrarily good quan-

tum computation can be achieved even with faulty quantum gates, provided only that the

error rate per gate is below a certain threshold. Besides its broad applications in quantum

computing [Gottesman, 2009; Lidar and Brun, 2013], QEC is also an important concept in
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quantum communication where the classical or quantum capacity of noisy quantum channels

are defined to be the maximum rate of reliable transmission of classical or quantum bits of

information through the channel using the optimal encoder and decoder [Bennett and Shor,

2004; Nielsen and Chuang, 2010; Wilde, 2013]. The code optimization is extremely diffi-

cult though—for example, the famous Holevo-Schumacher-Westmoreland theorem [Holevo,

1998; Schumacher and Westmoreland, 1997] which links the classical capacity to entropic

quantities was proven using the random coding method without explicit code construction.

It is natural to ask whether QEC is useful in quantum metrology. An apparent answer

would be “yes”: If QEC can combat the effect of noise in quantum computation and com-

munication, it must work in quantum metrology as well. However, in quantum metrology,

instead of studying fixed quantum states or channels, we study a family of parametrized

states or channels. Therefore, a useful QEC code in metrology must satisfy the follow-

ing two conditions simultaneously: correct the noise and protect the signal. The problem

was first raised in [Preskill, 2000], which considers the possibility of using QEC to improve

the robustness of clock synchronization. The answer was negative as the signal would in-

evitably be corrected along with the noise. Motivated by rapid development of quantum

sensors [Waldherr et al., 2014; Hirose and Cappellaro, 2016], the problem was revisited a

decade later by several groups independently [Ozeri, 2013; Dür et al., 2014; Arrad et al.,

2014; Kessler et al., 2014] where it was shown that QEC can improve the sensitivity for

probes sensing a signal in x-direction under dephasing noise. The protocol was later exper-

imentally demonstrated in nitrogen-vacancy centers which have highly suppressed bit-flip

noise and dominant dephasing noise [Unden et al., 2016].

The result was the beginning of the trip towards disclosing the full potential of QEC in

quantum metrology [Herrera-Mart́ı et al., 2015; Lu et al., 2015; Reiter et al., 2017; Matsuzaki

and Benjamin, 2017; Sekatski et al., 2017; Demkowicz-Dobrzański et al., 2017; Zhou et al.,

2018; Layden and Cappellaro, 2018; Layden et al., 2019; Górecki et al., 2020; Tan et al.,

2019; Kapourniotis and Datta, 2019; Zhuang et al., 2020; Layden et al., 2020; Zhou and

Jiang, 2020b,a; Chen et al., 2020; Rojkov et al., 2021]. Recall from Section 1.2, powerful

bounds that characterize the effect of noise in quantum metrology were discovered, though

the tightness of these bounds were never proven. Encouraged by the example of sensing a
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Figure 1.3: Covariant QEC. A covariant code is defined using an encoding channel such that the
diagram commutes for arbitrary θ, i.e. e−iHSθ acting after an encoding channel is equivalent to
e−iHLθ acting before it. HS is the transversal system Hamiltonian and HL is the logical Hamiltonian.

signal in x-direction under dephasing noise, we are now ready to explore the role of QEC

in general quantum process estimation. In this thesis, I will present our results on error-

corrected quantum metrology. In particular, I will show that using QEC, it is possible to

achieve the HL in noisy systems whenever allowed in principle, and to achieve the optimal

SQL coefficient in generic noisy systems, solving the two open questions raised at the end

of Section 1.2.

QEC is useful in quantum metrology; reversely, quantum metrology also provides pow-

erful bounds in QEC. The key idea of QEC is to encode the logical state into a large system

and correct certain types of noise using redundancy, so the structure of the noise must

also place restrictions on the QEC codes. This feature was beautifully captured by the

Eastin–Knill theorem [Eastin and Knill, 2009] (see also [Bravyi and König, 2013; Pastawski

and Yoshida, 2015; Jochym-O’Connor et al., 2018; Wang et al., 2020]), which states that if

we divide a system into several subsystems, for any QEC code that corrects local errors in

single subsystems, transversal gates (gates that do not couple different blocks) are not uni-

versal. Similarly, if we consider covariant codes (see Figure 1.3) whose logical Hamiltonian

is simulated by a transversal physical Hamiltonian [Hayden et al., 2017; Faist et al., 2020],

it cannot perfectly correct local errors. Covariant QEC is closely connected to many topics

in quantum physics including fault-tolerant computing [Eastin and Knill, 2009], quantum

clocks [Woods and Alhambra, 2020], quantum gravity [Harlow and Ooguri, 2019, 2018] and
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condensed matter physics [Brandão et al., 2019]. The QEC accuracy for covariant codes as

a function of noise and number of subsystems was recently lower bounded using complemen-

tary channel techniques in terms of erasure errors [Faist et al., 2020; Bény and Oreshkov,

2010; Hayden et al., 2008; Bény et al., 2018], producing a quantification of the Eastin–Knill

theorem. Surprisingly, it can also be bounded using metrology for more general types of

noise [Kubica and Demkowicz-Dobrzański, 2020; Zhou et al., 2020], based on the observa-

tion that a covariant code naturally induces a QEC protocol that estimates the Hamiltonian

parameter and is therefore subject to metrological bounds. I will explain our work on this

topic in this thesis as well.

1.4 Outline of the thesis

The main purpose of this thesis is to introduce novel QEC protocols that enhance quantum

metrology and a general criterion that determines whether a quantum process follows the

HL or the SQL. Moreover, by optimizing these QEC protocols using semidefinite programs,

the ultimate estimation precision is attainable asymptotically. Reversely, the metrological

bounds also restrict the QEC accuracy of covariant codes.

To proceed, I will present the preliminaries in Chapter 2 including the classical and

quatum CR bound, QFI, other multi-parameter bounds and quantum channel estimation

for quantum metrology and the QEC conditions and approximate QEC for quantum error

correction.

In Chapter 3, I will discuss our works on error-corrected metrology for Hamiltonian

estimation under Markovian noise, one of the most important sensing scenarios, where we

focus on estimating the Hamiltonian parameter(s) in open quantum systems using fast and

frequent ancilla-assisting quantum controls. We obtain a necessary and sufficient condition

determining the attainability of the HL with respect to the probing time in both the single-

parameter [Zhou et al., 2018] and the multi-parameter scenario [Górecki et al., 2020], where

we use QEC protocols to prove the sufficiency part, and present numerical tools for the

QEC optimization in both the HL [Zhou et al., 2018; Górecki et al., 2020] and SQL [Zhou

and Jiang, 2020b] cases. We also seek the possibility of alleviating the ancilla-assisting
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assumption in a special case where the Hamiltonian and noise commute [Layden et al.,

2019].

In Chapter 4, the results in Chapter 3 are generalized to quantum channel estimation,

where the channel is an arbitrary function of an unknown parameter [Zhou and Jiang,

2020a]. We consider the situation where we have a large number of channels and show that

the asymptotic channel QFI is attainable using ancilla-assisting QEC protocols. Both the

asymptotic QFI and the optimal QEC protocols are computable via semidefinite programs.

I will present our work on covariant QEC in Chapter 5, where we use quantum channel

estimation theory to derive a powerful lower bound on the QEC accuracy of covariant error-

correcting codes that is efficiently computable for general noise channels [Zhou and Jiang,

2020a].

Finally, I summarize and conclude the thesis in Chapter 6. I will discuss the open

problems and future directions in the field of error-corrected quantum metrology.
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Chapter 2

Preliminaries

2.1 Classical estimation theory

2.1.1 One-parameter estimation

In this thesis, we focus on local estimation of unknown parameters. In one-parameter

estimation of an unknown parameter θ, we consider the situation where θ is contained in

a sufficiently small neighborhood Θ of its true value and the estimators of θ will only be

optimized in the neighborhood of θ which may not be optimal globally. It is a reasonable

assumption when the number of samples are sufficiently large, and we can use a negligible

fraction of the samples to determine the small neighborhood in a pre-estimation step.

Given a family of probability distributions pθ(x) of a random variable X, we consider

estimation of θ by sampling from X. We will assume X ∈ Ω is discrete but the derivations

below work for continuous X as well. All theorems and proofs in Section 2.1 can be found

in standard textbooks, e.g. [Kay, 1993; Lehmann and Casella, 2006; Kobayashi et al., 2011].

In order to infer the value of θ from a set of data x = {x1, x2, . . . , xN} ∈ ΩN , we need an

estimator θ̂N : ΩN → Θ for each N . The mean square error (MSE) is defined by

∆2θ̂N = E[(θ̂N − θ)2] =
∑
x∈Ω

pθ(x)(θ̂N (x)− θ)2, (2.1)
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where pθ(x) = ∏N
i=1 pθ(xi). Usually, the estimator is assumed to be unbiased, i.e.

E[θ̂N ] =
∑
x∈ΩN

pθ(x)θ̂N (x) = θ, ∀θ ∈ Θ. (2.2)

In local estimation, we could relax it to the local unbiasedness condition (at some θ ∈ Θ),

i.e.

E[θ̂N ] =
∑
x∈ΩN

pθ(x)θ̂N (x) = θ, (2.3)

∂

∂θ
E[θ̂N ] =

∑
x∈ΩN

∂pθ(x)
∂θ

θ̂N (x) = 1, (2.4)

which means that the estimation of θ is precise at its true value and also precise up to the

first order approximation in the vicinity of it. Although in practice, biased estimators are

sometimes more accurate than unbiased estimators, we ignore these scenarios in the setting

of local estimation and N →∞ limit.

The Cramér–Rao (CR) bound is a key concept in classical estimation theory which

provide a lower bound on the MSE for all unbiased estimators. It states that

Theorem 2.1 (CR bound). For any locally unbiased estimator θ̂N , the MSE is lower

bounded by

∆2θ̂N ≥
1

NF (pθ)
, (2.5)

where F (pθ) is the (classical) Fisher information defined by

F (pθ) =
∑
x∈Ω

1
pθ(x)

(
∂pθ(x)
∂θ

)2
=
∑
x∈Ω

pθ(x)
(
∂ log pθ(x)

∂θ

)2
, (2.6)

where the summation over all terms such that pθ(x) 6= 0.

Proof. Since ∑x∈ΩN pθ(x) = 1 and its derivative is zero, according to the local unbiasedness

condition, ∑
x∈ΩN

∂pθ(x)
∂θ

(θ̂N (x)− θ) = 1 (2.7)
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Using the Cauchy–Schwarz inequality, we have

 ∑
x∈ΩN

1
pθ(x)

(
∂pθ(x)
∂θ

)2
 ∑

x∈ΩN
pθ(x)(θ̂N (x)− θ)2

 ≥ 1. (2.8)

Moreover,  ∑
x∈ΩN

1
pθ(x)

(
∂pθ(x)
∂θ

)2
 = NF (pθ), (2.9)

proving Eq. (2.5).

Certainly, the CR-bound only holds under certain regularity conditions, e.g.

∂ log pθ(x)/∂θ exists and the summation can be interchanged with the derivative. From

the proof above, we see that the CR bound at θ0 is saturated if and only if

1
pθ(x)

∂pθ(x)
∂θ

∣∣∣∣
θ=θ0

= NF (pθ0)(θ̂N (x)− θ0), ∀x ∈ ΩN , (2.10)

and any estimator satisfying this condition, i.e. saturating the CR bound, is called efficient.

Since we consider the case where the probability distribution pθ(x) is known, a reasonable

procedure to find the value of θ is to use the maximum-likelihood estimator (MLE):

θ̂ml
N (x) = arg max

θ
pθ(x). (2.11)

Although this value is not always unique, when we know it exists and is unique, we call it

the MLE. Now we show that the MLE is asymptotically (N → ∞) unbiased and efficient.

First, note that if the likelihood function pθ(x) is differentiable, the MLE must satisfy

`(x; θ̂ml
N ) := ∂ log pθ(x)

∂θ

∣∣∣∣
θ=θ̂ml

N

= 0, (2.12)

because the logarithmic function is monotonic. It in general has multiple solutions and we

must select the one which yields the largest value of pθ(x). Suppose the true value of θ is

θ0,

`(x; θ) = `(x; θ0) + ∂θ`(x; θ0)(θ − θ0) +O
(
(θ − θ0)2). (2.13)
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By setting the LHS to be zero, we find that

θ̂ml
N ≈ θ0 + 1

∂θ`(x; θ0)`(x; θ0). (2.14)

First, note that E[`(x; θ)] = 0, by the law of large numbers, the MLE is asymptotically

unbiased (therefore also locally unbiased) because

lim
N→∞

E[θ̂ml
N (x)] = θ0. (2.15)

Second, note that E[−∂θ`(x; θ0)] = NF (pθ0),

E[(θ̂ml
N − θ0)2] ≈ E

[( 1
∂θ`(x; θ0)`(x; θ0)

)2]
≈ 1
NF (pθ0) . (2.16)

Therefore, the CR bound is asymptotically saturated using the MLE estimator and repre-

sents the fundamental estimation limit in classical local estimation theory.

2.1.2 Multi-parameter estimation

The discussion above can be generalized to multi-parameter estimation. We are not go-

ing to provide detailed proofs, but only state the results. In multi-parameter estimation,

we consider a family of probability distributions pθ(x) which is a function of P unknown

parameters θ = (θ1, . . . , θP ). The MSE is not longer a real number. Instead, for locally

unbiased estimators θ̂N (x), we use the mean square matrix (or covariance matrix):

V[θ̂N ] = E
[
(θ̂N (x)− θ)(θ̂N (x)− θ)T

]
, (2.17)

i.e. V[θ̂N (x)]ij = E
[
(θ̂N,i(x)− θi)(θ̂N,j(x)− θj)

]
, to quantify the estimation error.

Theorem 2.2 (Multi-parameter CR bound). For any locally unbiased estimator θ̂N , the

MSE is lower bounded by

V[θ̂N ] ≥ F (pθ)−1

N
, (2.18)
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where F (pθ) is the (classical) Fisher information matrix defined by

F (pθ)ij =
∑
x∈Ω

1
pθ(x)

∂pθ(x)
∂θi

∂pθ(x)
∂θj

=
∑
x∈Ω

pθ(x)
(
∂ log pθ(x)

∂θi

)(
∂ log pθ(x)

∂θj

)
, (2.19)

where the summation over all terms such that pθ(x) 6= 0. Here A ≥ B means A − B is

positive semidefinite and −1 is matrix inverse.

Moreover, the MLE for multiple parameters θ̂ml
N = arg maxθ pθ(x) is also asymptotically

unbiased and efficient in the N →∞ limit.

2.2 Quantum estimation theory

In quantum metrology, instead of considering a family of parametrized probability distri-

butions, we consider a family of parametrized quantum state {ρθ}θ∈Θ ⊆ S (H) where ρθ

are density operators satisfying ρθ ≥ 0, ρ†θ = ρθ and Tr(ρθ) = 1. We will use S (H) to

denote the set of density operators on the Hilbert space H. As before, we will first focus

on one-parameter estimation and then discuss multi-parameter estimation.

2.2.1 Quantum Fisher information

Quantum measurements (or positive operator-valued measures) in a Hilbert space H are

described a set of operators {Mx}x∈Ω ⊆ L (H) (where L (H) denotes bounded linear oper-

ators on H), satisfying ∑
x∈Ω

Mx = I, Mx = M †x ≥ 0. (2.20)

Note that we will assume Ω is discrete, but for a general Ω equipped with a σ-algebra, we

could replace all summation with integration and consider measurements as a function from

the σ-algebra to L (H) which satisfies the countable additivity condition, and the discussion

still carries on.

Given a fixed quantum measurement, the probability of getting a measurement out-

come x is pθ(x) = Tr(ρθMx). In order to find the optimal measurement which minimizes

the MSE, we would like to maximize the classical Fisher information (FI) F (pθ) over all

measurements. Before we do so, we first introduce a useful Hermitian operator called the
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symmetric logarithmic derivative (SLD) defined by

1
2 (Lθρθ + ρLθ) = ∂θρθ (2.21)

Though the solution may not be unique when ρθ is not full-rank, all solutions will lead to

the same results and we do not distinguish among them. Note that Lθ classically reduces

to `(x; θ) (Eq. (2.12)).

We now calculate the maximum classical Fisher information [Braunstein and Caves,

1994]. We note that

F (pθ(x))

=
∑

x:Tr(Mxρθ)6=0

(
Tr(Mx∂θρθ)

)2
Tr(Mxρθ)

=
∑

x:Tr(Mxρθ) 6=0

(
Re[Tr(MxLθρθ)]

)2
Tr(Mxρθ)

≤
∑

x:Tr(Mxρθ)6=0

(
|Tr(MxLθρθ)|

)2
Tr(Mxρθ)

≤
∑

x:Tr(Mxρθ)6=0
Tr(MxLθρθLθ) ≤ Tr(L2

θρθ),

(2.22)

where the first equality holds true when

Im[Tr(MxLθρθ)] = 0, for all x, (2.23)

the second equality holds true when

M1/2
x ρ

1/2
θ = λxM

1/2
x Lθρ

1/2
θ , λx ∈ C, for all x, (2.24)

based on the use of the Cauchy–Schwarz inequality, and the third equality holds true when

∀x s.t. Tr(Mxρθ) = 0, Tr(MxLθρθLθ) = 0. (2.25)

The conditions Eq. (2.23) and Eq. (2.24) are simplified to

M1/2
x ρ

1/2
θ = λxM

1/2
x Lθρ

1/2
θ , λx ∈ R, for all x. (2.26)

Clearly, both conditions Eq. (2.26) and Eq. (2.25) are satisfied by choosing Mx to be rank-
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one projectors onto the eigenstates of Lθ. Therefore, the RHS of Eq. (2.22) is attainable and

we define it to be the quantum Fisher information (QFI) [Helstrom, 1976; Holevo, 1982],

F (ρθ) = max
{Mx}

F (pθ(x)) = Tr(ρθL2
θ). (2.27)

F (ρθ) can be directly computed when ρθ = ∑
k λθ,k |ψθ,k〉 〈ψθ,k| is diagonalized,

Lθ =
∑
j,k

λθ,j+λθ,k 6=0

2
λθ,j + λθ,k

〈ψθ,j | ∂θρθ |ψθ,k〉 |ψθ,j〉 〈ψθ,k| , (2.28)

F (ρθ) =
∑
j,k

pθ,j+pθ,k 6=0

2
λθ,j + λθ,k

|〈ψθ,j | ∂θρθ |ψθ,k〉|2 . (2.29)

There are other approaches to define the QFI, e.g. using quantum fidelity [Hübner,

1992]
1
4F (ρθ)dω2 = d2

B(ρω, ρω+dω) = 2− 2fB(ρω, ρω+dω), (2.30)

where dB(ρ, σ) =
√

2− 2fB(ρ, σ) is the Bures distance and the fidelity fB(ρ, σ) =

Tr
(√√

ρσ
√
ρ
)
. Though these two definitions will be different at singularity points if there

exists k such that λθ,k = 0 and ∂2
θλθ,k 6= 0 [Safranek, 2017; Zhou and Jiang, 2019]. To avoid

singularities, we assume in this thesis that for all λθ,k = 0, ∂2
θλθ,k = 0.

QFI is an information measure quantifying the amount of information ρθ carries about

θ with many nice properties:

1. (Non-negativity). F (ρθ) ≥ 0 and F (ρθ) = 0 only when ∂θρθ = 0.

2. (Monotonicity). F (N (ρθ)) < F (ρθ), where N is an arbitrary θ-independent quan-

tum channel (or CPTP map).

This is obvious from the fact that the QFI is the optimized classical Fisher information.

3. (Additivity). F (ρθ ⊗ σθ) = F (ρθ) + F (σθ).

This can be proven by noting that the SLD operator is local.

4. (Convexity). F (pρθ + (1− p)σθ) ≤ pF (ρθ) + (1− p)F (σθ).
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This can be proven by noting that F (pρθ ⊕ (1 − p)σθ) = F (pρθ) + F ((1 − p)σθ) and

that there is a channel mapping pρθ ⊕ (1− p)σθ to pρθ + (1− p)σθ.

There are also other types of QFI [Petz and Ghinea, 2010] which also satisfies the

properties above, e.g. the RLD QFI [Yuen and Lax, 1973], but the SLD QFI is the minimal

QFI among all definitions. We are going to focus only on the SLD QFI (Eq. (2.27)) in this

thesis, and we will always be referring to the SLD QFI when we talk about the QFI.

2.2.2 Quantum Cramér–Rao bound

For multi-parameter estimation, the QFI matrix will no longer necessarily be equal to the

classical FI matrix maximized over all measurements, because the optimal measurement

with respect to different parameters may not be compatible with each other and but it is

still possible to prove the SLD QFI matrix is an upper bound of the classical FI matrix

using the same technique. We will have the following multi-parameter quantum Cramér–

Rao bound based on the SLD QFI matrix [Helstrom, 1976; Holevo, 1982].

Theorem 2.3 (Quantum CR bound). For any (locally) unbiased estimate,

V[θ̂] ≥ F (ρθ)−1, (2.31)

where F (ρθ) is the QFI matrix defined by

F (ρθ)ij = Re[Tr (ρθLiLj)], (2.32)

and Li is the SLD operator satisfying ∂iρθ = 1
2(Liρθ+ρθLi). For one-parameter estimation,

the bound is saturable asymptotically.

Proof. This proof can be found in e.g. [Petz and Ghinea, 2010]. For any quantum measure-

ment {Mx} and estimators θ̂, according Theorem 2.2

V[θ̂] ≥ F (pθ)−1, (2.33)
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where

F (pθ)ij =
∑
x∈Ω

1
pθ(x)

∂pθ(x)
∂θi

∂pθ(x)
∂θj

(2.34)

and pθ(x) = Tr(Mxρθ). Let v ∈ RP be an arbitrary vector,

vTF (pθ)v =
∑

x:pθ(x) 6=0

1
pθ(x)

∂pθ(x)
∂θi

∂pθ(x)
∂θj

=
∑

x:pθ(x)6=0

1
pθ(x)

(
v · ∇pθ(x)

)2
=

∑
x:pθ(x) 6=0

(∑P
i=1 vi Re[Tr(MxLiρθ)]

)2
pθ(x)

≤
∑

x:pθ(x)6=0
Tr

Mx

(
P∑
i=1

viLi

)
ρθ

 P∑
j=1

vjLj


=

P∑
i,j=1

vivjTr(LiρθLj) =
P∑

i,j=1
vivjRe[Tr(LiρθLj)] = vTF (ρθ)v,

(2.35)

where we use the Cauchy–Schwarz inequality and the fact that ∑P
i,j=1 vivjTr(LiρθLj) is

real. For all v ∈ RP , vTF (pθ)v ≤ vTF (ρθ)v, then we must have F (pθ) ≤ F (ρθ) and

F (pθ)−1 ≥ F (ρθ)−1. Combing it with the classical CR bound gives the quantum CR

bound.

As in the classical case, we could consider the quantum CR bound of unbiased measure-

ments and estimators on N samples and get V[θ̂N ] ≥ F (ρθ)−1/N , using the additivity of

F (ρθ). Similar argument works for the bounds introduced later as well. Althouth the opti-

mal measurement depends on the true parameter, one could use adaptive measurements to

attain the lower bound [Barndorff-Nielsen and Gill, 2000; Gill and Massar, 2000; Hayashi,

2005].

2.2.3 Holevo bound and Matsumoto bound

The quantum CR bound based on the SLD QFI matrix is not saturable in general. We

will provide two more informative bounds in this section: the Holevo bound [Holevo, 1982]

and the Matsumoto bound [Matsumoto, 2002]. We already know from Section 2.2.1 that

individual measurements on i.i.d. copies are sufficient to achieve the QFI for one-parameter

estimation. The Holevo bound was proven to be asymptotically saturable using the experi-

mentally more challenging collective measurements (measurements that might be correlated
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Bounds Subject Asymptotic Attainability

Classical CR bound pθ(x) Yes

(SLD) Quantum CR bound ρθ

One-parameter: Yes (individual measurements)
Not always in general

Holevo bound ρθ Yes (collective measurements)
Matsumoto bound |ψθ〉 Yes (individual measurements)

Table 2.1: Summary of the MSE bounds under the local unbiasedness condition

among the i.i.d. copies of parameterized quantum states) [Hayashi and Matsumoto, 2008;

Kahn and Guţă, 2009; Yamagata et al., 2013; Yang et al., 2019]. The Matsumoto bound

is a reformulation of the Holevo bound in the case of pure states, but is asymptotically

saturable using individual measurements. It will be useful in Section 3.4.2 where we discuss

optimal QEC protocols for multi-parameter estimation.

In multi-parameter estimation, instead of having a mean square error ∆2θ̂, we have a

mean square matrix V[θ̂]. In order to find the optimal measurement, we will need a real

function as a figure of merit to minimize. Usually, one choose the weighted mean square

error

∆2
W θ̂ = Tr(WV[θ̂]), (2.36)

where W is a real positive matrix that determines the weight we associate with each pa-

rameter. The larger the weight is on a parameter, the more we care about its accuracy. For

simplcity, we will also call ∆2
W θ̂ the MSE in the multi-parameter case.

Theorem 2.4 (Holevo bound). For any (locally) unbiased estimate,

∆2
W θ̂ ≥ min

{Xi}
Tr(WRe[V ]) + ‖

√
W Im[V ]

√
W‖1, (2.37)

where Vij = Tr(XiXjρθ) for Hermitian Xi ∈ L (H), satisfying Tr(Xi∂jρθ) = δij. ‖·‖1
denotes the trace norm.

Proof. The proof can be found in e.g. [Hayashi, 2005, Chapter 8]. For unbiased estimation,
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let Xi = ∑
x∈Ω(θ̂i(x)− θi)Mx. Then the local unbiasedness condition reads

Tr(ρθXj) = 0, Tr(Xj∂iρθ) = δij , ∀i, j. (2.38)

For an arbitrary complex vector u ∈ RP , define function g: RP → C and the operator G

by

g(θ̂) =
P∑
i=1

vi(θ̂i − θi), G =
P∑
i=1

viXi. (2.39)

Clearly, ∑x∈Ω g(θ̂(x))Mx = G and

∑
x∈Ω

(
g(θ̂(x))−G

)
Mx

(
g(θ̂(x))−G

)† ≥ 0 ⇒
∑
x∈Ω

∣∣∣g(θ̂(x))
∣∣∣2Mx ≥ GG†. (2.40)

Then ∑
x∈Ω

∣∣∣g(θ̂(x))
∣∣∣2 Tr(ρθMx) ≥ Tr(ρθGG†) ⇒ u†V[θ̂]u ≥ u†V u. (2.41)

Note that V[θ̂] is a real symmetric matrix, then V[θ̂] ≥ V and V[θ̂] ≥ V T . This leads to

√
W (V[θ̂]− Re[V ])

√
W ≥ ±i

√
W Im[V ]

√
W, (2.42)

and for any v ∈ CP ,

v†
(√
W (V[θ̂]− Re[V ]

)√
W )v ≥ |v†

√
W Im[V ]

√
Wv| (2.43)

Taking v to be eigenvectors of
√
W Im[V ]

√
W and adding them up, we get

Tr(
√
W (V[θ̂]− Re[V ]

)√
W ) ≥ ‖

√
W Im[V ]

√
W‖1, (2.44)

proving the bound. Note that we don’t need the constraint Tr(ρθXi) = 0 because V is

always minimized at the point where Tr(ρθXi) = 0 for all i and this constraint is naturally

satisfied.

Note that if we drop the second term on the RHS of Eq. (2.37), it gives the SLD quantum

CR bound. Moreover, the SLD bound (Theorem 2.3) is equivalent to the Holevo bound if
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and only if if the weak commutation condition Im[Tr(ρθLiLj)] = 0 [Ragy et al., 2016] is

satisfied, and is thus saturable using collective measurements. The Holevo bound is recently

found to be computable via semidefinite programs (SDP) [Albarelli et al., 2019].

In the case of pure states ρθ = |ψθ〉 〈ψθ|, the Holevo bound is exactly equivalent to the

Matsumoto bound [Matsumoto, 2002]:

Theorem 2.5 (Matsumoto bound). For any (locally) unbiased estimate,

∆2
W θ̂ ≥ min

{|xi〉}
Tr(WV ), where Vij = 〈xi|xj〉 , (2.45)

where |xi〉 ∈ span{|ψθ〉 , ∂1 |ψθ〉 , ..., ∂P |ψθ〉}⊕CP satisfying 2Re[〈xi|∂j |ψθ〉] = δij, 〈xi|ψθ〉 =

0 and Im[V ] = 0. Moreover, the bound is saturable asymptotically using individual mea-

surements.

Proof. The proof can be found in [Matsumoto, 2002; Górecki et al., 2020]. According to

the Naimark’s theorem [Holevo, 1982], any general measurement {M`}`∈Ω on H there exists

a projective measurement {E`}`∈Ω on an extended space H′ (where H ⊆ H′) satisfying

M` = ΠHE`ΠH (where ΠH is the projection onto H), and

∑
`∈Ω

E` = 1, E`E`′ = δ``′E`. (2.46)

(Note that here we use ` instead of x to denote measurement outcomes to avoid confusion

with |xi〉.) We now define a set of vectors |xi〉 ∈ H′:

|xi〉 =
∑
`

(θ̂i(`)− θi)E` |ψθ〉 . (2.47)

One may see that, using E`E`′ = δ``′E`, inner products of vectors |xi〉 yield the mean square

matrix:

Vij = 〈xi|xj〉 =
∑
`,`′

〈ψθ| (θ̂i(`)− θi)E`E`′(θ̂j(`′)− θj) |ψθ〉 = V[θ̂]. (2.48)

Now, instead of minimizing Tr(WV[θ̂]) over the measurement {M`} on H, we can per-
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form the minimization directly over the vectors |xi〉 ∈ H′, imposing the following constraints:

〈xi|ψθ〉 = 0, 2Re[〈xi|∂j |ψθ〉] = δij , Im(〈xi|xj〉) = 0. (2.49)

The first two constraints are the local unbiasedness condition and the last is implied

by Eq. (2.48). At this point one may wonder how big the space H′ should be (as

for a general measurement it might be arbitrary large). However, we can always map

span{|ψθ〉 , {∂i |ψθ〉 , |xi〉}Pi=1} ⊆ H′ isometrically to a (2P + 1)-dimensional space. There-

fore when looking for the bound, under the constraint Eq. (2.49), it is enough to perform

the minimization over |xi〉 ∈ span{|ψθ〉 , ∂1 |ψθ〉 , · · · , ∂P |ψθ〉} ⊕ CP .

Finally, we show that indeed for any set of |xi〉 satisfying Eq. (2.49) there exists a proper

projective measurement on H⊕ CP and a locally unbiased estimator satisfying Eq. (2.47),

and consequently there exists a measurement on H saturating the bound. To see this, notice

that since ∀i, 〈ψθ|xi〉 = 0 and ∀i, j, 〈xi|xj〉 ∈ R, one may choose an orthonormal basis {|bi〉}

of span{|ψθ〉 , |x1〉 , . . . , |xP 〉} satisfying: ∀i, 〈ψθ|bi〉 ∈ R\{0} and ∀i, j, 〈xi|bj〉 ∈ R. Then

one can define a projective measurement:

E` = |b`〉 〈b`| (` = 1, . . . , P + 1), E0 = 1dim(H′) −
P+1∑
`=1
|b`〉 〈b`| , (2.50)

(we use 1d to denote identity operator on a d-dimensional Hilbert space) with the corre-

sponding estimator:

θ̂i(`) = 〈b`|xi〉
〈b`|ψθ〉

+ θi, ` ≥ 1, θ̂i(0) = 0, (2.51)

which is locally unbiased and satisfies

|xi〉 =
P+1∑
`=1

(θ̂i(`)− θi)E` |ψθ〉 . (2.52)

All the MSE lower bounds introduced in Section 2.1 and Section 2.2 are summarized in

Table 2.1 in terms of its scope of application and its asymptotic attainability.
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2.3 Quantum channel estimation

In Section 2.2, we introduced quantum estimation theory and presented several well-known

Cramér–Rao type bounds that will be useful in the thesis. However, we focused on quantum

state estimation where quantum measurements are optimized to minimize the estimation

error. In this section, we will focus on optimization of the input state of one-parameter

quantum channels such that the QFI of the output state is maximized. We will mostly

follow the discussion in [Fujiwara and Imai, 2008].

2.3.1 Channel QFI

Before we discuss channel QFI, we will first prove a useful lemma which represents the QFI

using the purification technique [Fujiwara and Imai, 2008, Theorem 1].

Lemma 2.1 (Purification-based QFI).

F (ρθ) = 4 min
|ψθ〉:TrE(|ψθ〉〈ψθ|)=ρθ

〈ψ̇θ|ψ̇θ〉 , (2.53)

where |ψθ〉 ∈ S (HS ⊗HE) are purifications of ρθ ∈ S (HS). ?̇ denotes ∂?
∂θ . The minimum

is attained at |ψ̇θ〉 = 1
2(Lθ ⊗ 1) |ψθ〉.

Proof. Assume dimHS = dimHE = d. We will use the vectorization of matrices |?〉〉 =∑
jk(?)jk |j〉 |k〉, satisfying A ⊗ C|B〉〉 = |ABCT 〉〉 = (ABCT ) ⊗ 1|1〉〉 = 1 ⊗ (CBTAT )|1〉〉,

〈〈A|B〉〉 = Tr(A†B), TrE(|A〉〉〈〈B|) = AB† for arbitrary A, B and C. Then every purification

of ρθ could be written as

|ψθ〉 = |Rθ〉〉 = |ρ1/2
θ Uθ〉〉, (2.54)

where Uθ is a unitary operator. When the rank of ρθ does not change in the neighborhood

of θ (as we have assumed), there is an operator Jθ such that ρ̇1/2
θ = 1

2Jθρ
1/2
θ , and

Ṙθ = 1
2JθRθ +RθU

†
θ U̇θ (2.55)
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On the other hand, Jθ is a logarithmic derivative in the sense that

ρ̇θ = ρ̇
1/2
θ ρ

1/2
θ + ρ̇

1/2
θ ρ

1/2
θ = 1

2(Jθρθ + ρθJ
†
θ ). (2.56)

Let Dθ = Jθ − Lθ, we have

〈ψ̇θ|ψ̇θ〉 = Tr(ṘθṘ†θ) =

1
4Tr(ρθL2

θ) + Tr
((1

2DθRθ +RθU
†
θ U̇θ

)(1
2DθRθ +RθU

†
θ U̇θ

)†)
, (2.57)

where we use Dθρθ + ρθD
†
θ = 0 and U †θ U̇θ + U̇ †θUθ = 0. Then clearly, the RHS is larger than

1
4F (ρθ) because the second term is non-negative. Moreover, the second term is zero if and

only if

1
2DθRθ +RθU

†
θ U̇θ = 0 ⇔ 1

2LθRθ = Ṙθ ⇔ |ψ̇θ〉 = 1
2(Lθ ⊗ 1) |ψθ〉 . (2.58)

The purification-based definition of QFI is especially useful in quantum channel esti-

mation. We consider a quantum channel Eθ(ρ) = ∑r
i=1KiρK

†
i , where r is the rank of the

channel. The entanglement-assisted QFI of Eθ (see Figure 2.1(a)) is defined by [Fujiwara

and Imai, 2008; Ko lodyński and Demkowicz-Dobrzański, 2013],

F1(Eθ) := max
ρ∈S (HS⊗HA)

F ((Eθ ⊗ 1)(ρ)). (2.59)

Here we utilize the entanglement between the probe and an arbitrarily large ancillary system

HA. We will usually omit the word “entanglement-assisted” in the definitions in this thesis

for simplicity. When Eθ satisfies certain regularity conditions, the channel QFI F1(Eθ) can

be calculated through the following theorem [Fujiwara and Imai, 2008]:
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Theorem 2.6 (Channel QFI).

F1(Eθ) = 4 min
{K′i}

r′
i=1:

Eθ(ρ)=
∑

i
K′iρK

′
i
†

∥∥∥K′†K′∥∥∥ , (2.60)

where the norm is minimized over all possible Kraus representation of Eθ. ‖·‖ denotes the

operator norm and K′ =



K ′1

K ′2

...

K ′r′


.

Proof. Because of the convexity of the QFI, we can assume the input state |ψ〉 ∈ HS ⊗HA

is pure without loss of generality.

(Eθ ⊗ 1)(|ψ〉 〈ψ|) =
r∑
i=1

(Ki ⊗ 1) |ψ〉 〈ψ| (Ki
† ⊗ 1). (2.61)

Its purifications in HSA ⊗HE where dimHE = r′ are

|Ψ〉 =
r∑
i=1

(Ki ⊗ 1) |ψ〉SA ⊗ U |i〉E =

r′∑
j=1

(
r∑
i=1

ujiKi ⊗ 1
)
|ψ〉SA ⊗ |j〉E =

r′∑
j=1

(
K ′j ⊗ 1

)
|ψ〉SA ⊗ |j〉E , (2.62)

where U is an arbitrary isometric operator satisfying U †U = 1 and 〈i|U |j〉 = uij , and

K′ = uK are the corresponding Kraus operators (we use u as a shorthand for u ⊗ 1 for

simplicity).

According Lemma 2.1,

F1((Eθ ⊗ 1)(|ψ〉 〈ψ|)) = 4 max
|ψ〉

min
U :U†U=1

〈Ψ̇|Ψ̇〉

= 4 max
|ψ〉

min
u:u†u=1

Tr
(
|ψ〉 〈ψ| (K′†K′ ⊗ 1)

)
= 4 max

σ∈S (HS)
min

u:u†u=1
Tr
(
σK′†K′

)
(2.63)
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= 4 max
σ∈S (HS)

min
h∈Hr

Tr
(
σ(K̇− ihK)†(K̇− ihK)

)
= 4 min

h∈Hr
max

σ∈S (HS)
Tr
(
σ(K̇− ihK)†(K̇− ihK)

)
,

where in the fourth line we introduce a new operator h = iu†u̇ ∈ Hr (we use Hr to denote

r × r Hermitian matrices) [Demkowicz-Dobrzański et al., 2012]. In the last step we in-

terchange the maximization and the minimization using Sion’s minimax theorem [Komiya,

1988; do Rosário Grossinho and Tersian, 2001]: for convex compact sets P ⊂ Rm and

Q ⊂ Rn and g : P ×Q→ R such that g(x, y) is a continuous convex (concave) function in

x (y) for every fixed y (x), then

max
y∈Q

min
x∈P

g(x, y) = min
x∈P

max
y∈Q

g(x, y). (2.64)

Here we could simply choose x = h ∈ Hr and y = TrA(|ψ〉 〈ψ|) ∈ S (HS). Although Hr is

not a compact set, we could always restrict it to a compact set as long as F1 is finite, using

the same argument in e.g. [Zhou and Jiang, 2020b, Appx. D].

It was later proven that the channel QFI F1(Eθ) is computable using SDP [Demkowicz-

Dobrzański et al., 2012; Ko lodyński and Demkowicz-Dobrzański, 2013] and that the optimal

input states are also solvable using SDP [Zhou and Jiang, 2020a] (see Section 4.4.3). We

will see the details in Chapter 4. In the following, we will always use the following formula

to calculate the channel QFI

F1(Eθ) = 4 min
h
‖α‖ , (2.65)

where h ∈ Hr and α = (K̇− ihK)†(K̇− ihK) is a Hermitian operator on HS .

2.3.2 HL vs. SQL

Consider N identical copies of the quantum channel Eθ (see Figure 2.1(b)), let

FN (Eθ) := F1(E⊗Nθ ) = max
ρ

F ((E⊗Nθ ⊗ 1)(ρ)). (2.66)
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Figure 2.1: (a) The channel QFI F1(Eθ) = maxρ F ((Eθ ⊗ 1)(ρ)). The ancillary system is as-
sumed to be at least as large as the probe system. (b) Parallel strategies. FN (Eθ) = F1(E⊗Nθ ) =
maxρ F ((E⊗Nθ ⊗ 1)(ρ)) for N identical copies of Eθ. (c) Sequential strategies. Let FN (Eθ,S) be
the QFI of the output state, given a sequential strategy S which contains both an input state and
quantum controls acting between Eθ. F

(seq)
N (Eθ) = maxS FN (Eθ,S) is the optimal QFI maximized

over all sequential strategies. F
(seq)
N (Eθ) ≥ FN (Eθ).

Clearly, FN (Eθ) ≥ NF1(Eθ) using the additivity of the QFI. The situation where FN = Θ(N)

is usually the standard quantum limit (SQL) in quantum metrology, which as achievable

using product states. In contrast, the Heisenberg limit (HL) FN (Eθ) = Θ(N2) is only

achievable using entangled states. For example, when Eθ is unitary, FN (Eθ) = Θ(N2) is

achievable using GHZ-type states [Giovannetti et al., 2006].

The key question in quantum channel estimation is to determine the scaling of the N -

channel QFI for a given parametrized quantum channel. An upper bound on FN (Eθ) could

be derived using Theorem 2.6 [Fujiwara and Imai, 2008; Demkowicz-Dobrzański et al., 2012]:

Theorem 2.7 (N -Channel QFI upper bound).

FN (Eθ) ≤ 4 min
h

(
N ‖α‖+N(N − 1) ‖β‖2

)
, (2.67)

where h ∈ Hr and β = iK†(K̇− ihK).
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Proof. Let K(1)
i = Ki for i ∈ [r], where [r] = {1, 2, . . . , r}. Inductively, let

K(n+1)
ι = K(n)

ι1 ⊗K
(1)
ι2 , ∀ι = (ι1, ι2) ∈ [r]n × [r]. (2.68)

{K(n)
ι }ι∈[r]n is a Kraus representation of E⊗nθ for all n. Then let αn = ∑

ι1 K̇
(n)†
ι1 K̇

(n)
ι1 , βn =

i
∑
ι1 K

(n)†
ι1 K̇

(n)
ι1 , we have

αn+1 =
∑
ι1,ι2

(
∂(K(n)

ι1 ⊗K
(1)
ι2 )

∂θ

)†(∂(K(n)
ι1 ⊗K

(1)
ι2 )

∂θ

)
= αn ⊗ I + 2βn ⊗ β1 + I ⊗ α1, (2.69)

βn+1 = i
∑
ι1,ι2

(
∂(K(n)

ι1 ⊗K
(1)
ι2 )

∂θ

)†
(K(n)

ι1 ⊗K
(1)
ι2 ) = βn ⊗ I + I ⊗ β1. (2.70)

The solution is βN = ∑N−1
k=0 I⊗k ⊗ β1 ⊗ I⊗N−1−k and

αN =
N−1∑
k=0

I⊗k⊗α1⊗I⊗N−1−k+2
N−2∑
k1=0

N−2−k1∑
k2=0

I⊗k1⊗β1⊗I⊗k2⊗β1⊗I⊗N−2−k1−k2 . (2.71)

Therefore, FN (Eθ) ≤ 4‖αN‖ ≤ 4N‖α1‖+ 4N(N − 1)‖β1‖2 and the inequality holds for any

Kraus representation of Eθ. We can choose K′ = uK, then

FN (Eθ) ≤ 4 min
h

(
N‖α‖+N(N − 1)‖β‖2

)
, (2.72)

where h = iu†u̇ is an arbitrary Hermitian matrix, α = K̇′†K̇′ = (K̇− ihK)†(K̇− ihK) and

β = iK′†K̇′ = iK†(K̇− ihK) .

If there is an h such that β = 0,

FN (Eθ) ≤ 4 min
h:β=0

N ‖α‖ , (2.73)

and FN (Eθ) follows the SQL asymptotically. Therefore, it is only possible to achieve the

HL if H /∈ S [Zhou and Jiang, 2020a], where

H = iK†K̇, S = spanH{K
†
iKj , ∀i, j}. (2.74)
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Here spanH{·} represents all Hermitian operators which are linear combinations of operators

in {·}. We call it the HNKS condition, an acronym for “Hamiltonian-not-in-Kraus-span”.

One can check that H and β are always Hermitian by taking the derivative of K†K = I.

Note that different Kraus representations may lead to different H, but it does not affect

the validity of H /∈ S. For a unitary channel r = 1 and K1 = Uθ = e−iHθ, H = iU †θ U̇θ

is exactly the Hamiltonian for θ, explaining its name. The HL is achievable for unitary

channels because S = spanH{I} and we always have H /∈ S for nontrivial H.

The metrological protocols we considered in Figure 2.1(b) are usually called par-

allel strategies where N identical quantum channels act in parallel on a quantum

state [Demkowicz-Dobrzański and Maccone, 2014]. Researchers also consider sequential

strategies where we allow quantum controls (arbitrary quantum operations) between each

of the quantum channels (see Figure 2.1(c)). Sequential strategies are more powerful than

parallel strategies because they can simulate parallel strategies using the same input states

and swap operators as quantum controls. The QFI optimized over all sequential strate-

gies, i.e. inputs and quantum controls, has the upper bound [Demkowicz-Dobrzański and

Maccone, 2014; Sekatski et al., 2017],

F
(seq)
N (Eθ) ≤ 4 min

h

(
N ‖α‖+N(N − 1) ‖β‖ (‖β‖+ 2

√
‖α‖)

)
. (2.75)

Therefore, HNKS is also a necessary condition to achieve the HL for sequential strategies.

When violated, there exists an h such that β = 0 and F
(seq)
N (Eθ) has the same upper bound

(Eq. (2.73)) as FN (Eθ).

To conclude, when H ∈ S,

FN (Eθ) ≤ F
(seq)
N (Eθ) ≤ 4 min

h:β=0
N ‖α‖ . (2.76)

Therefore, the HL is not achievable for many typical noise channels including depolariza-

tion, dephasing, spontaneous emission and photon loss [Escher et al., 2011; Demkowicz-

Dobrzański et al., 2012; Demkowicz-Dobrzański and Maccone, 2014], though it is still not

known for which channels the HL is achievable (besides unitary channels) and whether these
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bounds are achievable. We will discuss in Chapter 4 the asymptotic attainability of these

bounds, in particular, we will show H 6∈ S is in fact a necessary and sufficient condition to

achieve the HL.

2.4 Quantum error correction

Finally, we introduce the theory of quantum error correction (QEC) in this chapter. The

basic idea of QEC is to encode a logical system into some subspace HC of a large physical

system HS and correct noise using the redundancy in the encoding. Formally, let Π be the

projector onto the code subspace, N be the noise channel (CPTP map), then the code is

error-correcting if N is invertible inside the code subspace, i.e. if there exists a recovery

channel R such that

R ◦N (ρ) = ρ, ∀ρ = ΠρΠ. (2.77)

The study of QEC focuses on finding suitable encoding and recovery channels (Π,R) with

nice properties.

2.4.1 Knill–Laflamme condition

The Knill–Laflamme condition, proven independently by [Bennett et al., 1996] and [Knill

and Laflamme, 1997] is a simple set of equations which can be checked to determine whether

a quantum error-correcting code Π corrects a particular type of noise N .

Theorem 2.8 (Knill–Laflamme condition). Let Π be a projector onto a quantum code.

Suppose N is a noise channel discribed by N (·) = ∑r
i=1Ei(·)E

†
i . A necessary and sufficient

condition for the existence of a recovery channel R satisfying Eq. (2.77) is that

ΠE†iEjΠ = κijΠ, (2.78)

where κ ∈ Hr.

Proof. The proof can be found in e.g. [Nielsen and Chuang, 2010, Section 10.3].

(Sufficiency). We first prove sufficiency by showing that if Eq. (2.78) is satisfied, there

exists a recovery channel R such that R ◦N (ρ) = ρ, ∀ρ = ΠρΠ. Suppose κ is diagonalized
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by κ = uλu† where λ is a diagonal matrix in Cr×r and u is unitary. Moreover, Tr(κ) =

Tr(λ) = 1. Then F = uTE is also a set of Kraus operators for N .

ΠF †kF`Π =
∑
ij

u∗kiuj`ΠE
†
iEjΠ = (u†κu)k`Π = λkΠ. (2.79)

Using polar decomposition, FkΠ =
√
λkUkΠ for some unitary Uk, which allows us to define

orthogonal projectors Πk = UkΠU †k because when k 6= `, ΠkΠ` ∝ UkΠF †kF`ΠU
†
` = 0. In the

case where ∑k Πk 6= 1, we automatically add Πr+1 = 1−
∑r
k=1 Πk into the set. We could

take Ur+1 = 1 and λr+1 = 0. Then the recovery channel reads

R(σ) =
∑
k

U †kΠkσΠkUk. (2.80)

It satisfies for any ρ = ΠρΠ,

R(N (ρ)) =
∑
k`

U †kPkF`ρF
†
` PkUk =

∑
k

U †kPkFkρF
†
kPkUk =

∑
k

λkρ = ρ. (2.81)

(Necessity). To prove the necessity, suppose there exists R(·) = ∑
j Rj(·)R

†
j such that

R ◦N (ΠρΠ) = ΠρΠ, ∀ρ. (2.82)

Then Π and {RjEiΠ} are the Kraus operators for the same CP map. We must have

RjEiΠ = cjiΠ (2.83)

for some cij ∈ C. Then

ΠE†iEjΠ = ΠE†i
∑
k

R†kRkEjΠ =
∑
k

c∗kickjΠ = κijΠ. (2.84)

Moreover, κ = c†c is Hermitian.

The Knill–Laflamme condition will be especially useful in error-corrected metrology

when the HL is achievable. In that case, the Knill–Laflamme condition must be satisfied for
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the QEC codes and the effective channel after QEC is unitary. Moreover, in Section 3.4.2,

we formulate the Knill–Laflamme condition for ancilla-assisted error-correcting code using

a semidefinite constraint which might be of independent interest.

2.4.2 Approximate QEC

In certain scenarios, it might be difficult to obtain perfect QEC codes satisfying the Knill–

Laflamme condition and we might need to consider approximate error-correcting codes.

To characterize approximately error correcting codes, we first define the encoding chan-

nel ES←L(·) = V (·)V †, where V = ∑dL
i=1 |ci〉S 〈i|L is an isometry from the logical system HL

to the physical system HS and {|ci〉}dLi=1 is the codewords. The encoding channel in general

could be an arbitrary CPTP map (though CPTP maps are not always reversible), but we

usually consider only isometric channels. Then a quantum code is error-correcting under a

noise channel NS if there exists a CPTP map RL←S such that RL←S ◦ NS ◦ ES←L = 1L

and approximately error-correcting if RL←S ◦NS ◦ ES←L is close to 1L [Leung et al., 1997].

For example, one could use the (worst-case) entanglement fidelity fB(Φ1,Φ2) [Schumacher,

1996; Gilchrist et al., 2005] defined by

fB(Φ1,Φ2) = min
ρ
fB((Φ1 ⊗ 1)(ρ), (Φ2 ⊗ 1)(ρ)) (2.85)

for two quantum channels Φ1 and Φ2 to characterize the infidelity of an approximate QEC

code. After optimizing over recovery channelsRL←S , the infidelity of a code ES←L is defined

by

ε(NS , ES←L) = 1− max
RL←S

f2
B(RL←S ◦ NS ◦ ES←L,1L). (2.86)

We say a code is ε-correctable if ε ≥ ε(NS , ES←L). One could also consider the average

infidelity ε̄(NS , ES←L) by replacing fB(RL←S ◦ NS ◦ ES←L,1L) with the average entan-

glement fidelity f̄B(RL←S ◦ NS ◦ ES←L,1L) = fB(RL←S ◦ NS ◦ ES←L(|Ψ〉 〈Ψ|), |Ψ〉 〈Ψ|)

where |Ψ〉 = ∑dimHL
i=1 |i〉 |i〉 is the maximally entangled state. The (worst-case) infidelity

is clearly larger than the average infidelity and is also upper bounded by it through

ε ≤ dimHL · (ε̄)1/2 [Albert et al., 2018].
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The central problem for approximate QEC is to find the optimal recovery channel and

the code infidelity and there have been many research works on this topic (see e.g. [Barnum

and Knill, 2002; Schumacher and Westmoreland, 2002; Audenaert and De Moor, 2002; Reim-

pell and Werner, 2005; Fletcher et al., 2007; Kosut and Lidar, 2009; Bény and Oreshkov,

2010; Ng and Mandayam, 2010; Tyson, 2010]). The average infidelity can be efficiently com-

puted using convex optimization algorithms [Reimpell and Werner, 2005; Fletcher et al.,

2007; Kosut and Lidar, 2009], but there are no known efficient algorithms to compute the

worst-case infidelity. However, there are some constructions of analytical recovery channels

that are near-optimal [Barnum and Knill, 2002; Ng and Mandayam, 2010; Tyson, 2010].

Here we simply state a lemma from [Bény and Oreshkov, 2010] which will be useful later

to compute upper bounds on the code infidelity in Chapter 5:

Lemma 2.2 ([Bény and Oreshkov, 2010]). A code defined by its projector Π is ε-correctable

under a noise channel N (·) = ∑r
i=1Ei(·)E

†
i if and only if ΠE†iEjΠ = AijΠ + ΠδAijΠ for

some Aij and δAij where Aij are the components of a density operator, and 1 − f2
B(A +

δA,A) ≤ ε where A(ρ) = ∑
ij AijTr(ρ) |i〉 〈j| and (A+δA)(ρ) = A(ρ)+∑ij Tr(ρδAij) |i〉 〈j|.

This lemma does not guarantee an efficient method to compute the code infidelity, since

it does not specify how to find an optimal set of coefficients (A, δA). Still, in some cases,

a reasonable upper bound on the code infidelity can be found by choosing a good guess for

(A, δA).
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Chapter 3

Hamiltonian Estimation under
Markovian Noise

The HL is the ultimate parameter estimation limit allowed by quantum mechanics, charac-

terized by a precision scaling O(1/N2) where N is the number of probes, or O(1/t2) where

t is the total probing time, in contrast to the SQL O(1/N) (or O(1/t)) governed by the

central limit theorem. Here by “probes” we mean quantum systems which are subject to

the parametrized quantum dynamics (see Figure 2.1(b) and Figure 2.1(c)). The quest for

such a quadratic enhancement is of central importance in quantum metrology. However,

we often need an idealized (highly coherent and controllable) quantum device to achieve it

and it was not well understood how such a quantum enhancement was affected by quantum

noise, except in some specific cases.

In this chapter, we first study the estimation of one Hamiltonian parameter under general

Markovian noise [Ozeri, 2013; Dür et al., 2014; Arrad et al., 2014; Kessler et al., 2014;

Sekatski et al., 2017] and found a necessary and sufficient condition [Zhou et al., 2018;

Demkowicz-Dobrzański et al., 2017] such that when it is violated, the system is always

subject to the SQL, even if arbitrary quantum controls are allowed; when it is satisfied,

the HL is achievable using an explicit QEC protocol. It is a linear algebraic condition

between the signal Hamiltonian and the Lindblad operators describing the noise, called

the “Hamiltonian-not-in-Lindblad-span” (HNLS) condition. The HNLS condition rules out

the possibility of achieving the HL in many typical quantum systems, e.g. lossy optical
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interferometers; when satisfied, it also provides optimal error-correcting codes recovering

the HL, e.g. detecting the Kerr effect in lossy bosonic systems. The optimal QEC code is

solvable using SDP.

We then generalize the HNLS condition to multi-parameter cases Górecki et al. [2020],

which cover more general metrological problems such as vector field sensing [Imai and

Fujiwara, 2007], imaging [Tsang et al., 2016], multiple-arm interferometry [Humphreys et al.,

2013; Gessner et al., 2018], etc. Multi-parameter estimation is notoriously difficult to deal

with due to incompatibility of optimal measurements for different parameters, even in the

noiseless case [Ragy et al., 2016; Yuan, 2016; Kura and Ueda, 2018]. Therefore, to find the

optimal QEC protocol for multi-parameter estimation, we need to optimize not only the

code, but also the input state and the final measurement. Surprisingly, when the multi-

parameter HNLS is satisfied, we found a SDP solving the optimal QEC protocol which

includes the QEC sensing conditions as a semidefinite constraint and the Matsumoto bound

to optimize the final measurement. Moreover, while previous work dealt with specific types

of noiseless dynamics, our algorithm works for arbitrary dynamics with or without noise.

We have established that when the HNLS condition is violated, e.g. local Hamiltonians

under depolarizing noise, the HL is unachievable. Usually, when the noise is suppressed,

the signal must also be suppressed as well, and it seems that QEC would be useless in this

case. To address this issue, we study approximate QEC in quantum metrology and propose

a new coding technique called the perturbation coding and prove the optimal estimation

precision is always achievable using perturbation codes [Zhou and Jiang, 2020b]. Although

the quantum enhancement here is only a constant factor instead of quadratic, the protocol

works in a much wider range of scenarios.

Finally, we seek the possibility of alleviating the ancilla-assisting assumption for

QEC [Layden et al., 2019]. For one-parameter estimation, we show that when the sig-

nal Hamiltonian commutes with the noise, ancilla-free codes are sufficient. We also propose

new types of bosonic QEC codes called Chebyshev codes which are especially using in

sensing under photon loss.
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3.1 Sequential strategy

We assume that the probes used for parameter estimation are subject to noise described

by a Markovian master equation [Gorini et al., 1976; Lindblad, 1976; Breuer et al., 2002].

In addition to the probe system, the experimentalist also has noiseless ancilla qubits at

her disposal. She can apply fast, noiseless quantum gates which act jointly on the ancilla

and probe; she can also perform perfect ancilla measurements, and reset the ancillas after

measurement.

We endow the experimentalist with these powerful tools because we wish to address,

as a matter of principle, how effectively QEC can overcome the deficiencies of the noisy

probe system. Our scenario may be of practical interest as well, in hybrid quantum systems

where ancillas are available which have a much longer coherence time than the probe. For

example, sensing of a magnetic field with a probe electron spin can be enhanced by using

a quantum code which takes advantage of the long coherence time of a nearby (ancilla)

nuclear spin in diamond [Unden et al., 2016]. In cases where noise acting on the ancilla is

weak but not completely negligible, we may be able to use QEC to enhance the coherence

time of the ancilla, thus providing better justification for our idealized setting in which the

ancilla is effectively noiseless. Our assumption that quantum processing is much faster than

characteristic decoherence rates is necessary for QEC to succeed in quantum computing as

well as in quantum metrology, and recent experimental progress indicates that this assump-

tion is applicable in at least some realistic settings. For example, in superconducting devices

QEC has reached the break-even point where the lifetime of an encoded qubit exceeds the

natural lifetime of the constituents of the system [Ofek et al., 2016]; one- and two-qubit

logical operations have also been demonstrated [Heeres et al., 2017; Rosenblum et al., 2018].

Moreover, if sensing could be performed using a probe encoded within a noiseless subspace

or subsystem [Lidar et al., 1998], then active error correction would not be needed to protect

the probe, making the QEC scheme more feasible using near-term technology.

In accord with our assumptions, we adopt the sequential strategy for quantum metrol-

ogy [Demkowicz-Dobrzański and Maccone, 2014; Sekatski et al., 2017; Yuan, 2016] (see

Figure 3.1(a)). In this strategy, a single noisy probe senses the unknown parameter for
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Figure 3.1: (a) Sequential strategies. One probe sequentially senses the parameter for time T , with
arbitrary quantum controls applied every dt. (b) Parallel strategies. N probes sense the parameter
for time T/N in parallel.

many rounds, where each round lasts for a short time interval dt, and the total number of

rounds is T/dt, where T is the total sensing time. In between rounds, an arbitrary (noise-

less) quantum operation can be applied instantaneously, which acts jointly on the probe and

the noiseless ancillas. The rapid operations between rounds empower us to perform QEC,

suppressing the damaging effects of the noise on the probe. Note that sequential strategies

for a sensing time T can simulate parallel strategies (Figure 3.1(b)), in which N probes

simultaneously sense the parameter for time T/N using swap gates between the probe and

ancillas. Therefore, we will focus only on sequential strategies in this chapter.

3.2 “Hamiltonian-not-in-Lindblad-span” condition

In this section, we will present one of our key theorems—the necessary and sufficient con-

dition to achieve the HL using sequential strategies in terms of one-parameter Hamiltonian

estimation under Markovian noise.

We denote the d-dimensional Hilbert space of our probe by HS , and we assume a state

ρ ∈ HS of the probe evolves according to a time-homogeneous Lindblad master equation of

the form (with ~ = 1) [Gorini et al., 1976; Lindblad, 1976; Breuer et al., 2002],

dρ

dt
= −i[H(θ), ρ] +

r∑
k=1

(LkρL†k −
1
2{L

†
kLk, ρ}), (3.1)
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where H(θ) = θH is the probe’s Hamiltonian, {Lk} are the Lindblad operators, and r is the

“rank” of the noise channel acting on the probe (the smallest number of Lindblad operators

needed to describe the channel). We assume the Hamiltonian θH depends linearly on a

parameter θ, and our goal is to estimate θ. The discussion on multi-parameter estimation

will be delayed to Section 3.3. Note that our arguments may apply more generally when

the Hamiltonian is not a linear function of θ by intepreting the operator H as the derivative

of the Hamiltonian H(θ) with respect to θ and by including in the protocol an inverse

Hamiltonian evolution step exp
(
iH(θ̂)dt

)
applied to the probe, where θ̂ is the currently

estimated value of θ. We can justify the linear approximation when θ̂ is sufficiently accurate,

which works when we update θ̂ adaptively after each round of the estimation [Barndorff-

Nielsen and Gill, 2000; Gill and Massar, 2000; Hayashi, 2005; Fujiwara, 2006].

We denote by HA the d-dimensional Hilbert space of a noiseless ancilla system, whose

evolution is determined solely by our fast and accurate quantum controls. Over the small

time interval dt, during which no controls are applied, the ancilla evolves trivially, and the

joint state ρ ∈ HS ⊗HA of probe and ancilla evolves according to the quantum channel

Edt(ρ) = ρ− iθ[H, ρ]dt+
r∑

k=1
(LkρL†k −

1
2{L

†
kLk, ρ})dt+O(dt2), (3.2)

where H, Lk are shorthand for H ⊗ 1, Lk ⊗ 1 respectively. We assume that this time

interval dt is sufficiently small that corrections higher order in dt can be neglected. In

between rounds of sensing, each lasting for time dt, control operations acting on ρ are

applied instantaneously.

Our conclusions about the HL and the SQL of parameter estimation make use of an linear

algebraic condition on the master equation which we will refer to often, and it will therefore

be convenient to have a name for this condition. We will call it the HNLS condition, or

simply HNLS, an acronym for “Hamiltonian not in Lindblad span.” We denote by S the

linear span of Hermitian matrices generated by the operators 1, Lk, L†k, L
†
kLj (for all k and

j ranging from 1 to r), i.e.

S = spanH{1, Lk, L
†
k, L

†
kLj , ∀j, k}, (3.3)
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Here spanH{·} represents all Hermitian operators which are linear combinations of operators

in {·}. We say that the Hamiltonian H obeys the HNLS condition, or simply HNLS, if H

is not contained in the Lindblad span S. We will also use the HLS condition, or simply

HLS, to indicate the situation where H ∈ S. Now we can state our main conclusion about

parameter estimation using fast and accurate quantum controls as Theorem 3.1 [Demkowicz-

Dobrzański et al., 2017; Zhou et al., 2018].

Theorem 3.1 (HNLS). Consider a finite-dimensional probe with Hamiltonian H(θ) = θH,

subject to Markovian noise described by a Lindblad master equation with Lindblad operators

{Lk}. Then θ can be estimated with the HL using sequential strategies if and only if H and

{Lk} obey the HNLS (Hamiltonian-not-in-Lindblad-span) condition.

Theorem 3.1 applies if the ancilla is noiseless, and also for an ancilla subject to Markovian

noise obeying suitable conditions, as we discuss later in Section 3.2.3. We present an example

of the QEC protocol in Section 3.2.1, prove the necessity of HNLS in Section 3.2.2, and the

sufficiency of HNLS in Section 3.2.3 using an explicit QEC protocol.

3.2.1 Qubit probe

To illustrate how Theorem 3.1 works, let’s look at the case where the probe is a qubit,

which has been discussed in detail in [Sekatski et al., 2017]. Suppose one of the Lindblad

operators is L1 ∝ n · σ, where n = nr + ini is a normalized complex 3-vector and nr,

ni are its real and imaginary parts, so that L†1L1 ∝ (n∗ · σ)(n · σ) = 1 + 2(ni × nr) · σ.

We use ∗ to denote complex conjugate. If nr and ni are not parallel vectors, then nr, ni

and ni × nr are linearly independent, which means that 1, L1, L†1, and L†1L1 span the

four-dimensional space of linear operators acting on the qubit. Hence HNLS cannot be

satisfied by any qubit Hamiltonian, and therefore parameter estimation with the HL is not

possible according to Theorem 3.1. We conclude that for the HL to be achievable, nr and

ni must be parallel, which means that (after multiplying L1 by a phase factor if necessary)

we can choose L1 to be Hermitian [Sekatski et al., 2017]. Moreover, if L1 and L2 are two

linearly independent Hermitian traceless Lindblad operators, then {1, L1, L2, L1L2} span

the space of qubit linear operators and the HL cannot be achieved. In fact, for a qubit
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Figure 3.2: The relation between the Hamiltonian, the noise and the QEC code on the Bloch sphere
for a qubit probe.

probe, HNLS can be satisfied only if there is a single Hermitian (not necessarily traceless)

Lindblad operator L, and the Hamiltonian does not commute with L.

We will describe below how to achieve the HL for any master equation that satisfies

HNLS, by constructing a two-dimensional QEC code which protects the probe from the

Markovian noise. To see how the code works for a qubit probe, suppose H = 1
2m · σ and

L ∝ n · σ where m and n are unit vectors in R3 (see Figure 3.2). Then the basis vectors

for the QEC code may be chosen to be

|c0〉 = |m⊥,+〉S ⊗ |0〉A , |c1〉 = |m⊥,−〉S ⊗ |1〉A ; (3.4)

here |0〉A, |1〉A are basis states for the ancilla qubit, and |m⊥,±〉S are the eigenstates with

eigenvalues ±1 of m⊥ · σ where m⊥ is the (normalized) component of m perpendicular

to n. In particular, if m ⊥ n (perpendicular noise), then |c0〉 = |m,+〉S ⊗ |0〉A and

|c1〉 = |m,−〉S ⊗ |1〉A, the coding scheme was previously discussed in [Kessler et al., 2014;

Arrad et al., 2014; Dür et al., 2014; Ozeri, 2013].

In the case of perpendicular noise, we estimate θ by tracking the evolution in

the code space of a state initially prepared as (in a streamlined notation) |ψ(0)〉 =

(|+, 0〉+ |−, 1〉) /
√

2; neglecting the noise, this state evolves in time t to

|ψ(t)〉 = 1√
2

(
e−iθt/2|+, 0〉+ eiθt/2|−, 1〉

)
. (3.5)
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If a jump then occurs at time t, the state is transformed to

|ψ′(t)〉 = 1√
2

(
e−iθt/2|−, 0〉+ eiθt/2|+, 1〉

)
. (3.6)

Jumps are detected by performing a two-outcome measurement which projects onto either

the span of {|+, 0〉, |−, 1〉} (the code space) or the span of {|−, 0〉, |+, 1〉} (orthogonal to

the code space), and when detected they are immediately corrected by flipping the probe.

Because errors are immediately corrected, the error-corrected evolution matches perfectly

the ideal evolution (without noise), for which the HL is possible.

When the noise is not perpendicular to the signal, then not just the jumps but also the

Hamiltonian evolution can rotate the joint state of probe and ancilla away from the code

space. However, after evolution for the short time interval dt the overlap with the code

space remains large, so that the projection onto the code space succeeds with probability 1−

O(dt2). Neglecting O(dt2) corrections, then, the joint probe-ancilla state rotates noiselessly

in the code space, at a rate determined by the component of the Hamiltonian evolution

along the code space. As long as this component is nonzero, the HL can be achieved.

3.2.2 Proof of necessity

Here we show that the QFI of the final state F (ρ(T )) is at most asymptotically linear in T

when H ∈ S, which means that the SQL cannot be surpassed in this case and proves the

necessity part in Theorem 3.1 (see also [Demkowicz-Dobrzański et al., 2017]).

Suppose the quantum channel describing the joint evolution of probe and ancilla has a

Kraus operator representation Edt(ρ) = ∑r′
k=1KkρK

†
k, and in terms of these Kraus operators

define

αdt = (K̇− ihK)†(K̇− ihK), βdt = i(K̇− ihK)†K, (3.7)
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where we express the Kraus operators in vector notation

K :=



K1

K2

...

Kr′


(3.8)

and h is the shorthand for h⊗ 1 where h ∈ Cr′×r′ is a Hermitian operator.

Let ρin be the initial joint state of probe and ancilla at time t = 0, and ρ(T ) is the

corresponding state at time T , then the upper bound on the QFI

F (ρ(T )) ≤ 4 T
dt
‖αdt‖+ 4

(
T

dt

)2
‖βdt‖

(
(‖βdt‖+ 2

√
‖αdt‖

)
(3.9)

derived by the channel-extension method holds for any choice of ρin even when fast and

accurate quantum controls are applied during the evolution [Sekatski et al., 2017] (Theo-

rem 2.7). The upper bound on the QFI provides a lower bound on the estimation precision

according to the quantum Cramér–Rao bound (Theorem 2.3).

Here we prove that the QFI scales linearly with the evolution time T in the case where

the HNLS condition is violated. We follow the proof in [Sekatski et al., 2017], which applies

when the probe is a qubit, and generalize their proof to the case where the probe is d-

dimensional.

First, we approximate the quantum channel

Edt(ρ) = ρ− iθ[H, ρ]dt+
r∑

k=1
(LkρL†k −

1
2{L

†
kLk, ρ})dt+O(dt2) (3.10)

by the following one:

Ẽdt(ρ) =
r∑

k=0
KkρK

†
k, (3.11)

where K0 = I +
(
− iθH − 1

2
∑r
k=1 L

†
kLk

)
dt and Kk = Lk

√
dt for k ≥ 1. The approximation

is valid because the distance between Edt and Ẽdt is O(dt2) and the sensing time is divided

into T
dt segments, meaning the error O( Tdt · dt2) = O(Tdt) introduced by this approximation
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in calculating the QFI vanishes as dt → 0. Next we calculate the operators αdt = (K̇ −

ihK)†(K̇−ihK) and βdt = i(K̇−ihK)†K for the channel Ẽdt(ρ), and expand these operators

as a power series in
√
dt:

αdt = α(0) + α(1)√dt+ α(2)dt+O(dt3/2), (3.12)

βdt = β(0) + β(1)√dt+ β(2)dt+ β(3)dt3/2 +O(dt2). (3.13)

We will now search for a Hermitian matrix h that sets low-order terms in each power series

to zero.

Expanding h as h = h(0) + h(1)√dt + h(2)dt + h(3)dt3/2 + O(dt2) in
√
dt, and using the

notation K = K(0) + K(1)dt1/2 + K(2)dt, we find

α(0) = K(0)†h(0)h(0)K(0) =
r∑

k=0

∣∣∣h(0)
0k

∣∣∣2 1 = 0 =⇒ h
(0)
0k = 0, 0 ≤ k ≤ r. (3.14)

Therefore h(0)K(0) = 0 and α(1) = β(0) = 0 are automatically satisfied. Then,

β(1) = −K(0)†h(1)K(0) = −h(1)
00 1 = 0 =⇒ h

(1)
00 = 0. (3.15)

and

β(2) = iK̇(2)†K(0) −K(1)†h(0)K(1)

−K(0)†h(1)K(1) −K(1)†h(1)K(0) −K(0)†h(2)K(0)

= H −
r∑

k,j=1
h

(0)
jk L

†
kLj −

r∑
k=1

(h(1)
0k Lk + h

(1)
k0 L

†
k)− h

(2)
00 1,

(3.16)

which can be set to zero if and only if H is a linear combination of 1, Lk, L†k and L†kLj

(0 ≤ k, j ≤ r).
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In addition,

β(3) = −K(1)†h(1)K(1) −K(0)†h(2)K(1)

−K(1)†h(2)K(0) −K(0)†h(3)K(0)

= −
r∑

k,j=1
h

(1)
jk L

†
kLj −

r∑
k=1

(h(2)
0k Lk + h

(2)
k0 L

†
k)− h

(3)
00 1 = 0

(3.17)

can be satisfied by setting the above parameters (which do not appear in the expressions

for α(0,1) and β(0,1,2)) all to zero (other terms in β(3) are zero because of the constraints

on h(0) and h(1) in Eq. (3.14) and Eq. (3.15)). Therefore, when H is a linear combination

of 1, Lk, L†k and L†kLj , there exists an h such that αdt = O(dt) and βdt = O(dt2) for the

quantum channel Ẽdt; therefore the QFI obeys

F (ρ(T )) ≤ 4 T
dt
‖αdt‖+ 4

(
T

dt

)2
‖βdt‖ (‖βdt‖+ 2

√
‖αdt‖)

= 4‖α(2)‖T +O(
√
dt),

(3.18)

in which α(2) = (h(1)K(0) + h(0)K(1))†(h(1)K(0) + h(0)K(1)) under the constraint β(2) = 0.

We therefore have αdt = O(dt) and βdt = O(dt2), so that the second term in the RHL

of Eq. (3.9) vanishes as dt→ 0:

F (ρ(T )) ≤ 4‖α(2)‖T, (3.19)

proving that the SQL cannot be surpassed when HNLS is violated (the necessary condition in

Theorem 3.1). We require the probe to be finite dimensional in the statement of Theorem 3.1

because otherwise the norm of αdt or βdt could be infinite. The theorem can be applied to

the case of a probe with an infinite-dimensional Hilbert space if the state of the probe is

confined to a finite-dimensional subspace even for asymptotically large T .

3.2.3 Proof of sufficiency: Code construction

To prove that HNLS is a sufficient condition for achieving the HL, we show that a QEC

code achieving the HL can be explicitly constructed if H /∈ S [Zhou et al., 2018].
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The QEC sensing conditions

We first derive three QEC sensing conditions that our QEC code needs to satisfy in order

to achieve the HL. Our discussion of the qubit probe indicates how a QEC code can be used

to achieve the HL for estimating the parameter θ. The code allows us to correct quantum

jumps whenever they occur, and in addition the noiseless error-corrected evolution in the

code space depends nontrivially on θ. Similar considerations apply to higher-dimensional

probes. Let Πc denote the projection onto the code space. Jumps are correctable if the

code satisfies the error correction conditions [Knill and Laflamme, 1997; Gottesman, 2009;

Nielsen and Chuang, 2010], namely:

[[1]] ΠcLkΠc = λkΠc, ∀k, (3.20)

[[2]] ΠcL
†
kLjΠc = µkjΠc, ∀k, j, (3.21)

for some complex numbers λk and µkj . The error-corrected joint state of probe and ancilla

evolves according to the unitary channel (asymptotically)

dρ

dt
= −iθ[Heff , ρ] (3.22)

where Heff = ΠcHΠc. There is a code state for which the evolution depends nontrivially on

θ provided that

[[3]] ΠcHΠc 6= constant×Πc. (3.23)

For this noiseless evolution with effective Hamiltonian θHeff , the QFI of the encoded

state at time t is

F (ρ(T )) = 4t2
[
Tr(ρinH

2
eff)−

(
Tr(ρinHeff)

)2]
, (3.24)

where ρin is the initial state at time t = 0. The QFI is maximized by choosing the initial

pure state

|ψin〉 = 1√
2

(|λmin〉+ |λmax〉), (3.25)

where |λmin〉, |λmax〉 are the eigenstates of Heff with the minimum and maximal eigenvalues;
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with this choice the QFI is

F (ρ(T )) = T 2(λmax − λmin
)2
. (3.26)

By measuring in the appropriate basis at time T , we can estimate θ with a precision that

saturates the Cramér–Rao bound in the asymptotic limit of a large number of measurements,

hence realizing the HL.

Now we justify the above three conditions. Suppose that a QEC code obeys the condi-

tions [[1]] and [[2]] in Eq. (3.20) and Eq. (3.21), where Πc is the orthogonal projector onto the

code space. We will construct a recovery operator such that the error-corrected time evolu-

tion is unitary to linear order in dt, governed by the effective Hamiltonian θHeff = θΠcHΠc.

For a density operator ρ = ΠcρΠc in the code space, conditions [[1]] and [[2]] imply

ΠcEdt(ρ)Πc = ρ− iθ[ΠcHΠc, ρ]dt+
r∑

k=1
(|λk|2 − µkk)ρdt+O(dt2), (3.27)

Π⊥c Edt(ρ)Π⊥c =
r∑

k=1
(Lk − λk)ρ(L†k − λ

∗
k)dt+O(dt2), (3.28)

where Π⊥c = I −Πc. When acting on a state in the code space, Π⊥c Edt(·)Π⊥c is an operation

with Kraus operators Kk = (I −Πc)LkΠc

√
dt, which obey the normalization condition

r∑
k=1

K†kKk =
r∑

k=1
ΠcL

†
k (1−Πc)LkΠcdt =

r∑
k=1

(
µkk − |λk|2

)
dt, (3.29)

where we have used conditions [[1]] and [[2]]. Therefore, if ρ is in the code space, then a

recovery channel RE(·) such that

RE(Π⊥c Edt(ρ)Π⊥c ) = −
r∑

k=1
(|λk|2 − µkk)ρdt+O(dt2) (3.30)

can be constructed, provided that the operators {Lk − λk}rk=1 satisfy the Knill–Laflamme

conditions (Theorem 2.8). Indeed these conditions are satisfied because Πc(L†k − λ∗k)(Lj −
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λj)Πc = (µkj − λ∗kλj)Πc, for all k, j. Therefore, the quantum channel

R(σ) = ΠcσΠc +RE(Π⊥c σΠ⊥c ) (3.31)

completely reverses the effects of the noise. The channel describing time evolution for time

dt followed by an instantaneous recovery step is

R(Edt(ρ)) = ρ− iθ[ΠcHΠc, ρ]dt+O(dt2), (3.32)

a noiseless unitary channel with effective Hamiltonian θΠcHΠc if O(dt2) corrections are

neglected.

The dependence of the Hamiltonian on θ can be detected, for a suitable initial code

state ρin, if and only if ΠcHΠc has at least two distinct eigenvalues. Thus for nontrivial

error-corrected sensing we require condition [[3]]: ΠcHΠc 6= constant×Πc.

Error-correctable noisy ancillas

Above, we assume that a noiseless ancilla system is available for the purpose of constructing

the QEC code. Here we deviate a bit from the proof of sufficiency to relax the noiseless

ancilla assumption for experimental purpose. We suppose instead that the ancilla is subject

to Markovian noise, which is uncorrelated with noise acting on the probe. Hence the joint

evolution of probe and ancilla during the infinitesimal time interval dt is described by the

quantum channel

Edt(ρ) = ρ− iθ[H ⊗ 1, ρ]dt+
r∑

k=1

(
(Lk ⊗ 1)ρ(L†k ⊗ 1)− 1

2{L
†
kLk ⊗ 1, ρ}

)
dt

+
r′∑

k′=1

(
(1⊗ L′k)ρ(1⊗ L′†k)−

1
2{1⊗ L

′†
kL
′
k, ρ}

)
dt+O(dt2), (3.33)

where {Lk} are Lindblad operators acting on the probe, and {L′k} are Lindblad operators

acting on the ancilla.

In this case, we may be able to protect the probe using a code C̄ scheme with two layers

— an “inner code” C ′ and an “outer code” C. Assuming as before that arbitrarily fast and
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accurate quantum processing can be performed, and that the Markovian noise acting on the

ancilla obeys a suitable condition, an effectively noiseless encoded ancilla can be constructed

using the inner code. Then the QEC scheme that achieves the HL can be constructed using

the same method as in the main text, but with the encoded ancilla now playing the role of

the noiseless ancilla used in our previous construction.

Errors on the ancilla can be corrected if the projector Πc′ onto the inner code C ′ satisfies

the conditions.

[[1′]] Πc′L
′
kΠc′ = λ′kΠc′ , ∀k, (3.34)

[[2′]] Πc′L
′†
jL
′
kΠc′ = µ′jkΠc′ , ∀k, j. (3.35)

Eq. (3.34) and Eq. (3.35) resemble Eq. (3.20) and Eq. (3.21), except that the inner code C ′

is supported only on the ancilla system HA, while the code C in Eq. (3.20) and Eq. (3.21) is

supported on the joint system HS ⊗HA of probe and ancilla. To search for a suitable inner

code C ′ we may use standard QEC methods; namely we seek an encoding of the logical

ancilla with sufficient redundancy for Eq. (3.34) and Eq. (3.35) to be satisfied.

Given a code C that satisfies Eq. (3.20), Eq. (3.21) and Eq. (3.23) for the case of a

noiseless ancilla, and a code C ′ supported on a noisy ancilla that satisfies Eq. (3.34) and

Eq. (3.35), we construct the code C̄ which achieves the HL for a noisy ancilla system by

“concatenating” the inner code C ′ and the outer code C. That is, if the basis states for the

code C are {|c0〉, |c1〉}, where

|ci〉 =
d∑

j,k=1
Ai,jk |j〉S ⊗ |k〉A , (3.36)

then the corresponding basis states for the code C̄ are |̄c0〉, |̄c1〉, where

|̄ci〉 =
d∑

j,k=1
Ai,jk |j〉S ⊗ |c

′
k〉A , (3.37)

and |c′k〉 denotes the basis state of C ′ which encodes |k〉. Using our fast quantum controls,

the code C ′ protects the ancilla against the Markovian noise, and the code C̄ then protects

63



the probe, so that the HL is achievable.

In fact the code that achieves the HL need not have this concatenated structure; any

code that corrects both the noise acting on the probe and the noise acting on the ancilla

will do. For Markovian noise acting independently on probe and ancilla as in Eq. (3.33),

the conditions Eq. (3.20) and Eq. (3.21) on the QEC code should be generalized to

Πc̄(O ⊗O′)Πc̄ ∝ Πc̄, ∀O ∈ S and O′ ∈ S ′; (3.38)

here S = span{1, Lk, L†k, L
†
jLk, ∀k, j}, S ′ = span{1, L′k, L′

†
k, L

′†
jL
′
k, ∀k, j} and Πc̄ is the

projector onto the code C̄ supported on HS ⊗ HA. The condition Eq. (3.23) remains the

same as before, but now applied to the code C̄: Πc̄(H ⊗ 1)Πc̄ 6= constant Πc̄. When these

conditions are satisfied, the noise acting on probe and ancilla is correctable; rapidly applying

QEC makes the evolution of the probe effectively unitary (and nontrivial), to linear order

in dt.

A code satisfying the three QEC sensing conditions

To prove the sufficient condition in Theorem 3.1, we will now show that a code with condi-

tions [[1]]–[[3]] can be constructed whenever HNLS is satisfied. In this code construction we

make use of a noiseless ancilla system, but as we discuss in the previous part, the construc-

tion can be extended to the case where the ancilla system is subject to Markovian noise

obeying suitable conditions.

To see how the code is constructed, note that the d-dimensional Hermitian matrices

form a real Hilbert space where the inner product of two matrices A and B is defined to be

Tr(AB) (the Hilbert–Schmidt norm) and H has a unique decomposition into H = H +H⊥,

where H ∈ S and H⊥ ⊥ S.

If HNLS holds, then H⊥ is nonzero. It must also be traceless, in order to be orthogonal

to I, which is contained in S. Therefore, using the spectral decomposition, we can write

H⊥ = 1
2 ‖H⊥‖1 (ρ0 − ρ1), where ρ0 and ρ1 are trace-one positive matrices with orthogonal

support.Our QEC code is chosen to be the two-dimensional subspace ofHS⊗HA spanned by

|c0〉 and |c1〉, which are normalized purifications of ρ0 and ρ1 respectively, with orthogonal
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support in HA. (If the probe is d-dimensional, a d-dimensional ancilla can purify its state.)

Because the code basis states have orthogonal support on HA, it follows that, for any O

acting on HS ,

〈c0|O ⊗ 1|c1〉 = 0 = 〈c1|O ⊗ 1|c0〉, (3.39)

and furthermore

Tr
(
(|c0〉〈c0| − |c1〉〈c1|)(O ⊗ 1)

)
= Tr

(
(ρ0 − ρ1)O

)
= 2 Tr(H⊥O)

‖H⊥‖1
. (3.40)

In particular, for any O in the span S we have Tr(H⊥O) = 0, and therefore

〈c0| (O ⊗ 1) |c0〉 = 〈c1| (O ⊗ 1) |c1〉. (3.41)

Code conditions [[1]]–[[3]] now follow from Eq. (3.39) and Eq. (3.41). For this two-

dimensional code, the projector onto the code space is Πc = |c0〉〈c0|+ |c1〉〈c1|, and therefore

Πc (O ⊗ 1) Πc = 〈c0| (O ⊗ 1) |c0〉Πc (3.42)

for O ∈ S, which implies conditions [[1]] and [[2]] because Lk and L†kLj are in S. Condition

[[3]] is also satisfied by the code, because 〈c0|H|c0〉 − 〈c1|H|c1〉 = 2 Tr(H2
⊥)/ ‖H⊥‖1 > 0,

which means that the diagonal elements of ΠcHΠc are not equal when projected onto the

code space. Thus we have demonstrated the existence of a code with conditions [[1]]–[[3]].

3.3 Multi-parameter HNLS

We proceed in this section to generalize the HNLS condition to multi-parameter estimation.

Again, we assume the dynamics of a d-dimensional probe system HS is given by:

dρ

dt
= −i[H(θ), ρ] +

r∑
k=1

(LkρL†k −
1
2{L

†
kLk, ρ}), (3.43)
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where the parameters to be estimated θ = (θ1, . . . , θP ) enter linearly into the Hamiltonian

of the evolution via Hermitian generators H = (H1, . . . ,HP ) so that

H(θ) = θ ·H =
P∑
k=1

θkHk. (3.44)

We say that the HL in a multi-parameter estimation problem is achieved when there

exists an adaptive protocol such that for every W > 0, the weighted MSE (Eq. (2.36))

∆2
W θ̂ ∝ 1/T 2 in the limit T →∞. This is equivalent to a requirement that all parameters

(and any combination of parameters) are estimated with precision that scales like the HL.

The following theorem generalize the HNLS condition proven in Section 3.2 to the multi-

parameter case.

Theorem 3.2 (Multi-parameter HNLS). The HL can be achieved in a multi-parameter es-

timation problem using sequential strategies if and only if {(Hi)⊥, i = 1, . . . , P} are linearly

independent operators. Here (Hi)⊥ are orthogonal projections of Hi onto space S⊥ which

is the orthogonal complement of the Lindblad span S.

Proof. Recall that the necessary and sufficient condition to achieve the HL for one-

parameter estimation is H /∈ S, or in other words that H⊥ 6= 0. In particular, following

Section 3.2.3, an explicit construction of the optimal QEC code was provided, where the

code space HC ⊆ HS⊗HA is defined on the Hilbert space of the probe system HS extended

by an ancillary space HA ∼= HS . The code space satisfies the QEC sensing conditions [[1]]

and [[2]], i.e.

Πc(S ⊗ 1)Πc ∝ Πc, ∀S ∈ S, (3.45)

where the operator S acting on HS was tensored with identity on HA and now we use Πc to

denote the projection onto HC . Metrological sensitivity is guaranteed by the QEC sensing

condition condition [[3]]:

Heff = Πc(H ⊗ 1)Πc 6∝ Πc, (3.46)

where we obtain a noiseless unitary evolution generated by Heff leading to the HL in the

estimation precision of θ.

(Necessity). Suppose (Hi)⊥’s are linearly dependent. Then there exists a linear (invert-
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ible) transformation on the parameter space A ∈ RP×P : θ′ = θA−1, (where we also modify

accordingly the generators H ′ = AH and the cost matrix W ′ = AWAT , so that H and

∆2
W θ̂ remain unchanged), such that (H ′i)⊥ = 0 for some i. Then, from the one-parameter

result, θ′i cannot be estimated with precision better than ∆2θ̂′i ∼ 1/T which contradicts the

HL requirements.

(Sufficiency). Suppose (Hi)⊥’s are linearly independent. We assume the ancillary space

to be a direct sum of P subspaces HAi so that the whole Hilbert space is HS⊗ (HA1 ⊕· · ·⊕

HAP ). We may construct separate code spaces for each parameter using orthogonal ancillary

subspace HCi ⊆ HS ⊗HAi so that the QEC conditions Eq. (3.45) are satisfied within each

code space HCi separately (see Figure 3.4(a)). While constructing the code space for the

i-th parameter, we include all the remaining generators Hj (j 6= i) in the Lindblad span, so

effectively treating them as noise, i.e. Si = spanH{1, Lk, L
†
k, L

†
kLk′ ,∀k, k′, Hj ,∀j 6= i}. As

a result thanks to the QEC condition it follows that ∀i 6=jΠci (Hj ⊗ 1) Πci ∝ Πci and hence

within a given subspace only one parameter is being sensed via the effective generator

Heff,i = Πci(Hi ⊗ 1)Πci , while all other generators act trivially. If |ψi〉 ∈ HCi is the optimal

state for measuring θi, the state to be used in order to obtain HL for all parameters which

is not affected by noise reads ρin = 1
P

∑P
i=1 |ψi〉 〈ψi| ∈ HS ⊗

(⊕P
i=1HAi

)
—then the optimal

measurements with respect to different parameters are compatible (commute with each

other) because different parameters are encoded on orthogonal subspaces.

3.4 Optimal QEC protocol: HNLS

In this section, we consider optimization of the QEC protocols when the (multi-parameter)

HNLS condition is satisfied. As we will see below, in the one-parameter case, the code

optimization is straightforward: we only need to optimize the two-dimensional code HC =

span{|c0〉 , |c1〉} such that the Hamiltonian has the maximum gap between the minimum

and the maximum eigenvalues. In the multi-parameter case, the situation is much more

complicated as we will need to optimize not only the code itself but also the input state and

the final measurement, which even in noiseless systems does not have an efficient solution

before our work.
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3.4.1 One-parameter: Code optimization

When HNLS is satisfied, we can use our QEC code, along with fast and accurate quantum

control, to achieve noiseless evolution of the error-corrected probe, governed by the effective

Hamiltonian θΠcHΠc = θHeff where Πc is the orthogonal projection onto the code space

HC . Because the optimal initial state Eq. (3.25) is a superposition of just two eigenstates

of Heff , a two-dimensional QEC code suffices for achieving the best possible precision. For

a code with basis states {|c0〉, |c1〉},

Heff = |c0〉〈c0|H⊥|c0〉〈c0|+ |c1〉〈c1|H⊥|c1〉〈c1|. (3.47)

Here we have ignored the contribution due to H , which is an irrelevant additive constant

if the code satisfies condition [[1]] and [[2]]; moreover, we can ignore the off-diagonal terms

because we can always choose the basis freely such that Heff is diagonal. We have seen how

to construct a code for which

λmax − λmin = 2 Tr(H2
⊥)

‖H⊥‖1
. (3.48)

It is possible, though, that a larger value of this difference of eigenvalues could be achieved

using a different code, improving the precision by a constant factor (independent of the

time T ).

To search for a better code, with basis states {|c0〉, |c1〉}, define

ρ0 = TrA(|c0〉 〈c0|), ρ1 = TrA(|c1〉 〈c1|), (3.49)

where we use TrA to represent partial trace where the state in HA is traced out. Consider

C̃ = ρ0 − ρ1. Conditions [[1]]–[[2]] on the code imply

Tr(C̃O) = 0, ∀O ∈ S, (3.50)
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and we want to maximize

λmax − λmin = Tr(HeffC̃) = Tr(H⊥C̃), (3.51)

over matrices C̃ of the form C̃ = ρ0−ρ1 subject to Eq. (3.50). Note that C̃ is the difference

of two normalized density operators, and therefore satisfies ‖C̃‖1 ≤ 2. In fact, though, if

C̃ obeys the constraint Eq. (3.50), then the constraint is still satisfied if we rescale C̃ by a

real constant greater than one, which increases Tr(H⊥C̃); hence the maximum of Tr(H⊥C̃)

is achieved for ‖C̃‖1 = 2, which means that ρ0 and ρ1 have orthogonal support.

There is a description of the code optimization, with a pleasing geometrical interpreta-

tion. As we will see below, the optimization can be formulated as a SDP and the optimal

QFI is given by [Zhou et al., 2018]

F (ρ(T )) = 4T 2 min
S∈S
‖H⊥ − S‖2. (3.52)

In this sense, the QFI is determined by the minimum distance between H⊥ and S in terms

of spectral norm (see Figure 3.3(b)).

In the noiseless case (S = span{1}), the minimum in Eq. (3.52) occurs when the maxi-

mum and minimum eigenvalues H⊥−S have the same absolute value, and then the operator

norm is half the difference of the maximum and minimum eigenvalues of H⊥. Hence we

recover the result Eq. (3.26). When noise is introduced, S swells and the minimum distance

shrinks, lowering the QFI and reducing the precision of parameter estimation. If HNLS

fails, then the minimum distance is zero, and no QEC code can achieve the HL, in accord

with Theorem 3.1.

To obtain Eq. (3.52), we first note that the code optimization can be formulated as the

following optimization problem:

maximize Tr(C̃H⊥)

subject to ‖C̃‖1 ≤ 2 and Tr(C̃S) = 0, ∀S ∈ S.
(3.53)

This optimization problem is convex (because ‖·‖1 is convex) and satisfies the Slater’s
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Figure 3.3: Geometric illustration of HNLS and code optimization. (1) H⊥ is the projection of H
onto S in the Hilbert space of Hermitian matrices equipped with the Hilbert–Schmidt norm. H⊥ 6= 0
if and only if H /∈ S, which is the HNLS condition. (2) H̃� is the projection of H onto S in the
linear space of Hermitian matrices equipped with the operator norm. In general, the optimal QEC
code can be constructed from H̃� and H̃� is not necessarily equal to H⊥.

condition, so it can be solved by solving its Lagrange dual problem [Boyd and Vandenberghe,

2004]. The Lagrangian L(C̃, λ, ν) is defined for λ ≥ 0 and νk ∈ R:

L(C̃, λ, ν) = Tr(C̃H⊥)− λ(‖C̃‖1 − 2) +
∑
k

νkTr(EkC̃), (3.54)

where {Ek} is any basis of S. The optimal value is obtained by taking the minimum of the

dual

g(λ, ν) = max
C̃

L(C̃, λ, ν) = max
C̃

Tr
(
(H⊥ +

∑
k

νkEk)C̃ − λ|C̃|
)

+ 2λ

=


2λ λ ≥ ‖H⊥ +∑

k νkEk‖

∞ λ ≤ ‖H⊥ +∑
k νkEk‖

(3.55)

over λ and {νk}. Hence the optimal value of the primal problem is

min
λ,ν

g(λ, ν) = 2 min
νk
‖H⊥ +

∑
k

νkEk‖ = 2 min
S∈S
‖H⊥ − S‖. (3.56)

The optimization problem Eq. (3.56) is equivalent to the following SDP [Boyd and
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Vandenberghe, 2004]:

minimize s

subject to

 s1 H⊥ +∑
k νkEk

H⊥ +∑
k νkEk s1

≥ 0
(3.57)

for variables νk ∈ R and s ≥ 0. SDPs can be solved using the Matlab-based package

CVX [Grant and Boyd].

Once we have the solution to the dual problem we can use it to find the solution to the

primal problem. We denote by λ� and ν� the values of λ and ν where g(λ, ν) attains its

minimum, and define

H̃� = H⊥ +
∑
k

ν�kEk. (3.58)

The minimum g(λ�, ν�) matches the value of the Lagrangian L(C̃, λ�, ν�) when C̃ = C̃ is

the value of H̃ which maximizes Tr
(
H̃H⊥

)
subject to the constraints. This means that

Tr
(
C̃ H̃�

)
= 2‖H̃�‖. (3.59)

Since we require Tr(C̃ ) = 0 and ‖C̃ ‖1 = 2, and because minimizing g(λ, ν) enforces that

the maximum and minimum eigenvalues of H̃� have the same absolute value and opposite

sign, we conclude that

C̃ = ρ�0 − ρ�1, (3.60)

where ρ�0 is a density operator supported on the eigenspace of H̃� with the maximal eigen-

value, and ρ�1 is a density operator supported on the eigenspace of H̃� with the minimum

eigenvalue. An C̃ of this form which satisfies the constraints of the primal problem is

guaranteed to exist and provides the optimal QEC codes.

3.4.2 Multi-parameter: Input, encoding and measurement optimization

In Section 3.3, we provided a QEC code where each parameter is sensed separately in

different error-corrected subspaces (see Figure 3.4(a)). Such protocols will be referred as
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Figure 3.4: Schematic diagrams of relations between Hilbert spaces HS , HA, HC , HAi
, HCi

, Heff .
(a) In SEP-QEC, we use P mutually orthogonal ancillary subspaces HAi

to sense each parameter
θi. HA =

⊕P
i=1HAi

and HC =
⊕P

i=1HCi
. dim(HAi

) = dim(HS) = d and dim(HCi
) = 2. (b) In

JNT-QEC, we use a single code space HC ⊆ HS⊗HA to estimate all parameters jointly. dim(HA) =
(P +1)d and dim(HC) = P +1. (c) We use HL to represent the logical space span{|0〉 , |1〉 , . . . , |P 〉}
which is encoded into the physical space HC = span{|c0〉 , |c1〉 , . . . , |cP 〉}.

separate-QEC protocols (SEP-QEC). In contrast to this construction, we will now consider

QEC strategies which allow simultaneous estimation of all the parameters in a single coher-

ent protocol by utilizing states within a single protected code space, which we will call the

joint-parameter QEC protocol (JNT-QEC). In this section we provide a general method to

identify the optimal JNT-QEC, while its potential advantages over the optimal SEP-QEC

will be discussed at the end of this subsection.

From now on, we assume the multi-parameter HNLS condition is satisfied. Without loss

of generality, in this section, we also assume the generators {Hi}Pi=1 ⊆ S⊥ are orthonormal,

since the components in S do not contribute and there is always a linear transformation A

on parameters leading to orthonormality. The following theorem provides a recipe to find

the optimal JNT-QEC [Górecki et al., 2020].

Theorem 3.3 (Optimal JNT-QEC). Fix a cost matrix W . If the multi-parameter HNLS

condition is satisfied with generators {Hi}Pi=1 ⊆ S⊥, the minimum MSE ∆2
W θ̂ that can be

achieved in a JNT-QEC (asymptotically) reads

∆2
W θ̂ = P

4T 2 min
HL,i,Bi,νi,K,w

w, (3.61)
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subject to

1P+1 ⊗
1d

d
+

P∑
i=1

(HL,i)T ⊗Hi +
P ′∑

i=P+1
νi1P+1 ⊗ Si +

d2−1∑
i=P ′+1

Bi ⊗Ri ≥ 0, (3.62)

Γij = Im[HL,j ]i0,

w1P K

K 1P

 ≥ 0,

K 1P

1P Γ
√
W−1

 ≥ 0, (3.63)

where 1d/
√
d, {Hi}Pi=1, {Si}P

′
i=P+1, {Ri}d

2−1
i=P ′+1 form an orthonormal basis of Hermitian

operators acting on HS such that S = spanH{1d, (Si)P
′

i=P+1}. Moreover, HL,i, Bi are Her-

mitian (P + 1) × (P + 1) matrices (with matrix indices taking values from 0 to P ), and

νi ∈ R. Γ and K are real P × P matrices (with matrix indices from 1 to P ).

The solution yields an explicit form of the optimal input state, QEC codes and measure-

ments. No collective measurements are required on the output states. Our protocol goes

beyond the typically used QFI-based formalism and overcomes all the challenges related with

the multi-parameter aspect of the problem, including measurement incompatibility, input

state optimization and formulating the QEC conditions. Our work reveals the advantage of

QEC protocols in multi-parameter estimation and we expect that the SDP formulation of

our problem will also be an inspiration for other research areas in quantum error correction

and quantum metrology. The proof is divided into three parts. First, we tailor the Mat-

sumoto bound (Theorem 2.5) in our QEC setting using the advantage of noiseless ancillas.

Second, we formulate the optimization of ancilla-assisted code as a semidefinite constraint.

Finally, we incorporate the first two steps and add one more semidefinite constraint using

the symmetry in the objective function to obtain the SDP in Eq. (3.61).

Reformulation of the Matsumoto bound

Recall from Theorem 2.5 that for unbiased estimates on pure states |ψθ〉 〈ψθ| ∈ H,

∆2
W θ̂ ≥ min

{|xi〉}
Tr(WV ), where Vij = 〈xi|xj〉 , (3.64)
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where |xi〉 ∈ H′ = span{|ψθ〉 , ∂1 |ψθ〉 , ..., ∂P |ψθ〉} ⊕ CP satisfying

〈xi|ψθ〉 = 0, 2Re[〈xi|∂j |ψθ〉] = δij , Im(〈xi|xj〉) = 0. (3.65)

The bound is saturable asymptotically using independent measurements. Specifically, if

dim(H) ≥ 2P + 1 we may simply choose H′ ⊆ H and span{|ψθ〉 , ∂1 |ψθ〉 , ..., ∂P |ψθ〉} ⊕ CP

as a subspace of H and optimize over |xi〉 ∈ H.

In this case we may reformulate the Matsumoto bound in a slightly different form.

First, note that any vectors {|xi〉} satisfying Eq. (3.65) need to be linearly independent.

Let {|ci〉}Pi=1 be an orthonormal basis of span{|x1〉 , . . . , |xP 〉}, satisfying ∀i,jIm 〈xi|cj〉 = 0.

Such a set may be generated using the Gram-Schmidt orthonormalization procedure. (Note

that we haven’t related {|ci〉}Pi=1 to the codewords yet.) The local unbiasedness conditions

may now be rewritten as:

2Re[〈xi|∂j |ψθ〉] =
P∑
k=1

2Re[〈xi|ck〉 〈ck|∂j |ψθ〉] =
P∑
k=1
〈xi|ck〉 2Re[〈ck|∂j |ψθ〉] = δij , (3.66)

which (after introducing matrices Xki = 〈ck|xi〉, Ykj = 2Re[〈ck|∂j |ψθ〉] is equivalent to

the matrix equality X TY = 1P . From X TY = 1P we have X T = Y−1 ⇒ Tr(W · V ) =

Tr(W · X TX ) = Tr(W · (YTY)−1), which gives

min
|c1〉,...,|cP 〉∈H

Tr(W · (YTY)−1)),

where Yij = 2Re[〈ci|∂j |ψθ〉], subject to 〈ci|cj〉 = δij .

(3.67)

This formulation will be more convenient to use when we will formulate the QEC protocol

optimization problem as a SDP.

Error correction as a semidefinite constraint

Now we apply the reformulated Matsumoto bound to our task of identification of the optimal

JNT-QEC. Consider a given input state |ψin〉. Let HC be any code subspace of HS ⊗HA

containing |ψin〉 and satisfying the QEC conditions Eq. (3.45)—in order to be in accordance

with the reformulated Matsumoto bound, this space may be required to be at least 2P +
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1 dimensional, but as we show in the following it will always be possible to reduce its

dimensionality to P + 1 effectively. Using QEC, our goal is to preserve an effective unitary

evolution in the encoded space and coherently acquire the sensing signal. Therefore, we are

effectively dealing with pure state |ψθ〉, which allows us to utilize the reformulate Matsumoto

bound Eq. (3.67). The effective evolution after implementing QEC is given by

|ψθ〉 = exp

−iT P∑
j=1

θjΠc

(
Hj ⊗ 1dim(HA)

)
Πc

 |ψin〉 . (3.68)

We focus on the estimation around point θ = [0, . . . , 0] (which can always be achieved

by applying inverse Hamiltonian dynamics [Yuan, 2016]) and denote |c0〉 = |ψθ=0〉 for

notational simplicity. Then for any |ci〉 ∈ HC we have

2Re[〈ci|∂j |ψθ=0〉] = 2T Im[〈ci|(Hj ⊗ 1dim(HA))|c0〉], (3.69)

and according to Eq. (3.67) the minimum achievable MSE for a fixed code space HC is

given by:

min
|c1〉,...,|cP 〉∈HC

Tr(W · (YTY)−1)),

where Yij = 2T Im[〈ci|(Hj ⊗ 1dim(HA))|ψθ〉], subject to 〈ci|cj〉 = δij .

(3.70)

From the above formulation it is clear that we may always reduce the code space HC to

span{|ck〉}Pk=0 without increasing the MSE. Hence, the problem of optimization over both

probes and error-correction protocols is now equivalent to identification of the set {|ck〉}Pk=0

that minimizes the MSE with the constraint that HC = span{|ck〉}Pk=0 satisfies the QEC

conditions.

To solve this problem, it will be convenient to formally extend the Hilbert spaceHS⊗HA

by tensoring it with a (P + 1)-dimensional reference space HL = span{|0〉L , . . . , |P 〉L} (see

Figure 3.4(c)). This reference space will be representing the effective evolution of the probe

state that happens within the code space and it will allow us to encode QEC conditions in

a compact and numerically friendly way.

First, we introduce a matrix Q as a Hermitian operator in L (HL⊗HS) that represents
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a code

Q = TrA




|c0〉

...

|cP 〉


(
〈c0| · · · 〈cP |

)

. (3.71)

This matrix is proportional to the reduced density matrix of the maximum entangled state

between HL and HC . By its construction Q ≥ 0 and contains all relevant information on

the code states in HC .

Next, we introduce effective generators HL,i acting onHL so that they represent properly

the action of the physical generators on the code space (HL,i)kl = 〈ck|Hi ⊗ 1dim(HA)|cl〉. The

effective evolution generators are related with the Q matrix via:

(HL,i)T = TrS (Q(1P+1 ⊗Hi)) i = 1, . . . , P. (3.72)

Note that the identity operator here acts on the reference spaceHL, and not on the ancillary

spaceHA. Taking into account the orthonormality of |ck〉 and the QEC condition Eq. (3.45),

we obtain the following constraints on Q

TrS(Q) = 1P+1, ∀Si∈S TrS (Q(1P+1 ⊗ Si)) ∝ 1P+1. (3.73)

Let 1d/
√
d, {Hi}Pi=1, {Si}P

′
i=P+1, {Ri}d

2−1
i=P ′+1 form an orthonormal basis of Hermitian op-

erators in L (HS) such that S = spanH{1d, (Si)P
′

i=P+1}. Any non-negative Q satisfying

Eqs. (3.72)-(3.73) has the following form:

Q = 1P+1 ⊗
1d

d
+

P∑
i=1

(HL,i)T ⊗Hi +
P ′∑

i=P+1
νi1P+1 ⊗ Si +

d2−1∑
i=P ′+1

Bi ⊗Ri ≥ 0, (3.74)

where νi ∈ R and Bi are Hermitian. Conversely, for any nonnegative Q ≥ 0, we can consider

its purification |Q〉 ∈ HL⊗HS⊗HA, which when written as |Q〉 = ∑P
k=0 |k〉L⊗|ck〉SA yields

the code states |ck〉. Note that it implies that the rank of Q corresponding to the dimension

of the ancillary space. It is always sufficient to assume the dimension of the ancillary space

to be dimHA = (P + 1)d. Therefore {HL,i} is an achievable set of effective generators
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(satisfying the QEC condition Eq. (3.45)) if and only if there exist such νi ∈ R and Bi, for

which Q ≥ 0.

Finally, in order to have an explicit dependence of the MSE on the total time parameter

T , we introduce a matrix Γ = 1
2T Y, i.e. Γij = Im[〈ci|Hj ⊗ 1dim(HA)|c0〉] = Im[(HL,j)i0], and

we end up with:

1
4T 2 min

HL,i,Bi,νi
Tr
(
W (ΓTΓ)−1

)
, where Γij = Im[HL,j ]i0,

subject to 1P+1 ⊗
1d

d
+

P∑
i=1

(HL,i)T ⊗Hi +
P ′∑

i=P+1
νi1P+1 ⊗ Si +

d2−1∑
i=P ′+1

Bi ⊗Ri ≥ 0.

(3.75)

We also remark that our way of formulating the Knill–Laflamme conditions as a positive

semidefinite constraint is novel and may have applications beyond error-corrected quantum

metrology.

Reduction to a SDP

In order to reformulate Eq. (3.75) as a SDP, we first show that we may assume without loss of

generality that Γ
√
W−1 ≥ 0. Note that for any full rank matrix Γ, the polar decomposition

theorem implies that there always exists an orthonormal matrix O such that OΓ
√
W−1 ≥ 0.

Next, as Γij = Im[〈i|HL,j |0〉], multiplication Γ by O is equivalent to rotating the base in the

reference space HL. Since, according to Eq. (3.71) such a rotation cannot change the non-

negativity of Q and at the same time it does not affect the figure of merit Tr
(
W (ΓTΓ)−1

)
,

the statement is proven. To put Eq. (3.75) in the form of a SDP, we introduce a positive

matrix K ∈ RP×P and a positive real number w. Now, using the following two relations,

K 1P

1P Γ
√
W−1

 ≥ 0 ⇔ K ≥ (Γ
√
W−1)−1, (3.76)

w1P K

K 1P

 ≥ 0 ⇔ w1P ≥ K2, (3.77)
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we see that P minw = min Tr(K2) = min Tr
(
W (ΓTΓ)−1

)
in Eq. (3.61), making it equiva-

lent to Eq. (3.75). Hence the problem takes the form of a SDP.

JNT-QEC vs. SEP-QEC

It should be remarked that JNT-QEC do not contain SEP-QEC as a subclass. In SEP-QEC,

unlike in JNT-QEC, the noises are not fully corrected in the entire space, and the decoher-

ence is only avoided by choosing a properly mixed state input. However, in the noiseless

cases, JNT-QEC contains SEP-QEC and is indeed always optimal. In general, one could

combine both these approaches in a unified framework by dividing the set of all parameters

into smaller subsets and then applying JNT-QEC for each of these subset separately—in

this approach SEP-QEC case would correspond to the situation where JNT-QEC optimiza-

tion is applied to single parameter subsets. Such an optimization is in principle doable,

but will involve much large numerical effort and it is not clear that it will lead to better

protocols.

The advantage of SEP-QEC over JNT-QEC can be revealed through examples [Górecki

et al., 2020]. In SEP-QEC, the input probe state ρin = 1
P

∑P
i=1 |ψi〉 〈ψi| and each parameter

is estimated separately. As a consequence, we effectively measure each parameter only

once in every P repetitions of an experiment (corresponding to the 1/P factor in the ρin).

Therefore for a fixed total number of measurements, the uncertainty of estimating a given

parameter will grow proportionally to P . Intuitively, ∆2
W θ̂SEP will scale as Θ(P 2) in normal

circumstances. On the other hand, in JNT-QEC, it is possible to estimate all parameters

jointly. In fact, the largest possible advantage offered by JNT-QEC is Θ(P ), achievable

in a noiseless system example where ∆2
W θ̂SEP = Θ(P 2) and ∆2

W θ̂JNT = Θ(P ). In noisy

case, there is another example involving SU(d) estimation where ∆2
W θ̂SEP = Θ(P 2) and

∆2
W θ̂JNT = Θ(P 3/2).

It is also worth noting that, apart from the improved metrological performance provided

by QEC protocols when dealing with noisy systems, the above algorithm is also applicable

in the noiseless scenario when S = spanH{1d}. In such a situation no QEC is required (for

simplicity we may still use HC for span{|ck〉}Pk=0, but no recovery operation or projection

Πc is needed during evolution), but the condition θ = [0, . . . , 0] (which is achievable by
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applying inverse Hamiltonian dynamics [Yuan, 2016]) is still required, as otherwise the

derivatives of the state may not scale linearly with T . In such situations, the solution

of JNT-QEC yields an optimally ancilla-assisted sensing protcol under arbitrary system

dynamics (Hamiltonitans) that resolves the potential incompatibility issues between sensing

of different parameters. It should be stressed that our approach is universal and unlike

existing approaches [Imai and Fujiwara, 2007; Yuan, 2016; Kura and Ueda, 2018] does not

assume any specific structures of the Hamiltonians.

3.5 Optimal QEC protocol: HLS

In this section, we present the optimal QEC protocol when the HNLS condition is violated,

i.e. H ∈ S. Instead of achieving the HL, here our goal is to find the optimal QEC

protocol such that the QFI is maximized asymptotically. We prove that the optimal SQL

coefficient using sequential strategies is achievable using QEC by showing that the upper

bound obtained in Section 3.2.2 is attainable.

Recall from Section 3.2.2 that, when H ∈ S, there exists Hermitian matrices h(0), h(1)

and h(2) ∈ C(r+1)×(r+1) satisfying h(0)
0k = 0, 0 ≤ k ≤ r and h

(1)
00 = 0 such that

β(2) = H −
r∑

k,j=1
h

(0)
jk L

†
kLj −

r∑
k=1

(h(1)
0k Lk + h

(1)
k0 L

†
k)− h

(2)
00 1 = 0. (3.78)

Then the QFI has at most a linear scaling with respect to T : F (ρ(T )) ≤ 4T‖α(2)‖, where

α(2) = (h(1)K(0) + h(0)K(1))†(h(1)K(0) + h(0)K(1))

=
r∑
j=1

∣∣∣h(1)
0j

∣∣∣2 +
r∑

k,k′=1
h

(0)∗
jk h

(0)
jk′L

†
kLk′ .

(3.79)
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To simplify the notations, let α = α(2), β = β(2), g = h
(2)
00 ∈ R,

g =


h

(1)
11

...

h
(1)
1r


∈ Cr, and g =



h
(1)
11 h

(1)
12 · · · h

(1)
1r

h
(1)
21 h

(1)
22 · · · h

(1)
2r

...
... . . . ...

h
(1)
r1 · · · · · · h

(1)
rr


∈ Cr×r. (3.80)

Then we have

F (ρ(T )) ≤ 4T min
g,g,g|β=0

‖α‖ , (3.81)

where ‖·‖ is the operator norm of a matrix, g ∈ R, g ∈ Cr, g ∈ Cr×r is hermitian,

α = (g1 + gL)†(g1 + gL), (3.82)

β = H + g1 + g†L + L†g + L†gL, (3.83)

where

L :=



L1

L2

...

Lr


. (3.84)

Again, g, g are shorthand for g⊗ 1, g⊗ 1 and we omit the “⊗1” for simplicity.

We will introduce an approximate QEC strategy which (asymptotically) saturates the

QFI upper bound up to an arbitrarily small error under arbitrary Markovian noise, that

is [Zhou and Jiang, 2020b],

Theorem 3.4 (Optimal SQL). Consider a finite-dimensional probe with Hamiltonian

H(θ) = θH, subject to Markovian noise described by a Lindblad master equation with Lind-

blad operators {Lk}. Then

sup
sequential
strategies

lim
T→∞

F (ρ(T ))
T

= 4 min
g,g,g|β=0

‖α‖ . (3.85)
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In particular, for any small η > 0, there exists an approximate QEC strategy such that

lim
T→0

F (ρ(T ))
T

> 4 min
g,g,g|β=0

‖α‖ − η. (3.86)

The SQL coefficient

Fsql := lim
T→0

F (ρ(T ))
T

(3.87)

will be the objective function we maximize. Note that

lim
T→0

F (ρ(T ))
T

= sup
T>0

F (ρ(T ))
T

(3.88)

because for any T0 such that F (T0)/T0 ≈ supT>0 F (ρ(T ))/T , we can always find a sensing

strategy such that T = kT0 and F (kT0)/(kT0) = F (T0)/T0 for all integers k by measur-

ing and renewing the probing state every constant time T0. Then limT→∞ F (ρ(T ))/T ≥

limk→∞ F (kT0)/(kT0) ≈ supT>0 F (ρ(T ))/T .

Intuitively, the QEC protocol when the HNLS is violated must be fundamentally differ-

ent from the ones in the previous sections (Section 3.2.3 and Section 3.4), because if errors

in the Lindblad span are fully corrected as before, then the signal will be fully corrected as

well. Therefore, we must use approximate QEC strategies in which case the noise is only

partially corrected while the signal is also partially preserved and the optimization is not

only over the encoding but also the recovery as well. Normally, only suboptimal recovery

channels are available in approximate QEC [Barnum and Knill, 2002; Fletcher et al., 2007;

Bény and Oreshkov, 2010; Ng and Mandayam, 2010; Tyson, 2010; Albert et al., 2018]. In

our setting, however, taking the advantage of noiseless ancillas, the exact solution exist. Be-

low, we will first review the QFI upper bound in the SQL case, as derived in Section 3.2.2

using the channel-extension method, propose an approximate QEC protocol which achieves

this bound asymptotically and then provide an efficient algorithm to solve it.
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3.5.1 Attaining the upper bound

Approximate QEC

Let Πc = |c0〉 〈c0| + |c1〉 〈c1| is the projection on to the code space HC , where |c0〉 and |c1〉

are the logical zero and one states. Applying the approximate QEC quantum operation

P +R◦P⊥ infinitely fast, the effective evolution would be (up to the first order of dt [Zhou

et al., 2018; Layden et al., 2019])

dρ

dt
= −i[θP(H), ρ] +

r∑
i=1

(
P(LiρL†i ) +R(P⊥(LiρL†i ))−

1
2{P(L†iLi), ρ}

)
, (3.89)

where Π⊥c = 1 − Πc, P(·) = Πc(·)Πc, P⊥(·) = Π⊥c (·)Π⊥c and R is a CPTP map describing

the approximate QEC recovery channel. We define the following class of approximate QEC

codes

|c0/c1〉 =
∑
ij

A0/1,ij |i〉S |j, 0/1〉A , (3.90)

where A0, A1 ∈ Cd×d, A0,ij =
√

1− ε2Cij + εDij and A1,ij =
√

1− ε2Cij − εDij satisfy

Tr(A0A
†
0) = Tr(A1A

†
1) = 1 and Tr(C†D) = 0. Here C describes the part of the code which

|c0〉 and |c1〉 have in common and D describes the part distinguishing |c0〉 from |c1〉 which

generates non-zero signal and noise. In the special case where ε = 0, the effective signal

and noise are zero. Let HA = HA′ ⊗ H2 where dimHA′ = d and dimH2 = 2, the last

ancillary qubit in H2 makes the signal and noises both diagonal in the code space, i.e.

〈c0|H|c1〉 = 〈c0|S|c1〉 = 0 for all S ∈ S. Later on, we will assume ε is a small parameter and

consider the perturbation expansion of the effective dynamics around ε = 0. We consider

the recovery channel restricted to the structure (we will show that this type of recovery

channels is sufficient for our purpose)

R(·) =
∑
m

(|c0〉 〈Rm, 0|+ |c1〉 〈Qm, 1|) (·) (|Rm, 0〉 〈c0|+ |Qm, 1〉 〈c1|) , (3.91)

where {|Rm〉}, {|Qm〉} ⊆ HS ⊗ HA′ are two sets of orthonormal basis and R is CPTP. A

few lines of calculation shows the effective channel (Eq. (3.89)) under the approximate QEC
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code (Eq. (3.90)) and the recovery channel (Eq. (3.91)) is

dρ

dt
= −i

[
θTr(Hσz,c)

2 σz,c +Hshift, ρ

]
+ γ(R)

2 (σz,cρσz,c − ρ) , (3.92)

where σz,c = |c0〉 〈c0| − |c1〉 〈c1|, Hshift is independent of θ, and

γ(R) = −Re
[ r∑
i=1
〈c0|

(
R(P⊥(Li |c0〉 〈c1|L†i ))+

P(Li |c0〉 〈c1|L†i )−
1
2{P(L†iLi), |c0〉 〈c1|}

)
|c1〉

]
. (3.93)

We can remove the term Hshift in Eq. (3.92) by applying a reverse Hamiltonian con-

stantly [Sekatski et al., 2017]. For dephasing channels, the optimal Fsql is reached using a

special type of spin-squeezed state as the input [Kitagawa and Ueda, 1993; Huelga et al.,

1997; Ulam-Orgikh and Kitagawa, 2001; Escher et al., 2011; Demkowicz-Dobrzański and

Maccone, 2014], where we have

Fsql = Tr(Hσz,c)2

2γ(R) . (3.94)

To simulate the evolution of multipartite spin-squeezed states using the sequential strategy

where we have only a single probe, one could first prepare the desired spin-squeezed state in⊗N
i=1Hi by entangling the logical qubit in the effective dephasing channel (H1 = HS⊗HA)

with a large number of ancillas (⊗N
i=2Hi) where dimHi = dimH1 for 2 ≤ i ≤ N , and then

perform swap operations between H1 and Hi for i = 2, . . . , N successively every time T/N .

The optimal Fsql in Eq. (3.94) is asymptotically attainable at N → ∞ [Ulam-Orgikh and

Kitagawa, 2001]. On the other hand, if we used a single logical qubit state |c+〉 = |c0〉+|c1〉√
2

as the input, the SQL coefficient will be reduced by a factor of e, in which case one can still

achieve Fsql ≈ 4
e ming,g,g|β=0 ‖α‖ for arbitrary Markovian noise.

For simplicity in furture calculations, we perform a two-step gauge transformation on

the Lindblad operators {Li}ri=1 to simplify the dynamics: (1) Let Li ← Li−Tr(C†LiC) ·1,

such that Li satisfies Tr(C†LiC) = 0 for all Li. (2) Perform a unitary transformation

L ← uL (u ∈ Cr×r) such that Tr(C†L†iLjC) is a diagonal matrix. The transformations
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above only induce another parameter-independent shift Hs in the Hamiltonian which could

be eliminated by applying a reverse Hamiltonian. Now we have a new set of Lindblad

operators {Ji}ri=1, satisfying

Tr(C†JiC) = 0, Tr(C†J†i JjC) = λiδij , (3.95)

and we replace {Li}ri=1 with {Ji}ri=1 in Eq. (3.93).

Recovery optimization

First, we maximize Fsql over the recovery R, which is equivalent to minimizing γ(R) over

R. According to Eq. (3.93),

γ(R) = −Re
[ r∑
i=1
〈c0|

(
R(P⊥(Ji |c0〉 〈c1| J†i )) + P(Ji |c0〉 〈c1| J†i )

− 1
2{P(J†i Ji), |c0〉 〈c1|}

)
|c1〉

]
. (3.96)

In order to calculate γ = minR γ(R), we only need to calculate the first term minimized

over R:

−max
R

Re
[∑

i

〈c0|R(P⊥(Ji |c0〉 〈c1| J†i )) |c1〉
]

= − max
|Rm〉,|Qm〉

Re
[∑
i,m

〈Rm, 0|Πc⊥Ji |c0〉 〈c1| J†i Πc⊥ |Qm, 1〉
]

= −1
2 max
|Rm〉,|Qm〉

Tr
(∑

m

|Rm〉 〈Qm| ·
∑
i

〈0|Πc⊥Ji |c0〉 〈c1| J†i Πc⊥ |1〉+ h.c.
)

= −
∥∥∥∑

i

〈0|Πc⊥Ji |c0〉 〈c1| J†i Πc⊥ |1〉
∥∥∥

1
= −

∥∥∥∑
i

Πc⊥Ji |c0〉 〈c1| J†i Πc⊥

∥∥∥
1
,

(3.97)

where h.c. denotes Hermitian conjugate and we have used maxU :U†U=1 Tr(MU +M †U †) =

2 ‖M‖1 for arbitrary square matrices M and U , which could be proven easily using the

singular value decomposition of M .
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Then the minimum noise rate γ = minR γ(R) is

γ = −
∥∥∥ r∑
i=1
P⊥(Ji |c0〉 〈c1| J†i )

∥∥∥
1
−

Re
[ r∑
i=1
〈c0|

(
P(Ji |c0〉 〈c1| J†i )− 1

2{P(J†i Ji), |c0〉 〈c1|}
)
|c1〉

]
, (3.98)

Perturbative expansion

Next, we would like to maximize Fsql (Eq. (3.94)) over all possible approximate QEC codes

(Eq. (3.90)), which is mathematcially difficult because of the trace norm in the denominator.

To eliminate the trace norm, we further sacrifice the generality of our approximate QEC

code and assume ε � 1. We call it the “perturbation” code in the sense that the signal

and the noise are both infinitesimally small when ε → 0. Under the limit ε → 0, we have

Tr(Hσz,c) = 2εTr(HC̃) +O(ε2), where

C̃ = CD† +DC†, (3.99)

and ignoring all o(ε2) terms (where f(ε) = o(ε2) means limε→0 f(ε)/ε2 = 0), the noise rate

is

γ = ε2
(∑

i

2
∣∣Tr(JiC̃)

∣∣2 +
∑

ij:λi+λj 6=0

|Tr(J†i JjC̃)|2
(λi + λj)

)
. (3.100)

The detailed derivations are contained in Appendix A.

Then we have the following expression of the SQL coefficient (up to the lowest order of

ε)

Fsql(C, C̃) ≈ Tr(HC̃)2∑
i

∣∣Tr(JiC̃)
∣∣2 +∑

ij:λi+λj 6=0
|Tr(J†i JjC̃)|2

2(λi+λj)

, (3.101)

as a function of C̃ and C (implicitly through the choice of {Ji}ri=1). The effective dynamics

of the perturbation code has the feature that both the signal and the noises are equally

weak and only the ratio between them matters. Therefore the exact value of ε will not

influence the SQL coefficient Fsql as long as it is sufficiently small. On the other hand, it

does influence how fast F (ρ(T ))/T reaches its optimum Fsql, characterized by a coherence

time O(1/ε2).
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Code optimization

Now we maximize the SQL coefficient (up to the lowest order of ε) over C and C̃ and show

that the optimal Fsql is exactly equal to its upper bound in Eq. (3.81). The domain of C

is all complex matrices satisfying Tr(C†C) = 1. We assume the domain of C̃ is all traceless

Hermitian matrices satisfying Tr(J†i JjC̃) = 0 for all i, j ∈ n := {i|λi = 0}. When C is

full-rank, n is empty and for arbitrary traceless C̃, we could always take D† = 1
2C
−1C̃ such

that Eq. (3.99) is satisfied. When C is singular, we could replace it with an approximate

full-rank version (e.g. C ← C + δ1). In this case, Fsql will only be decreased by an

infinitesimal small amount when ε = o(δ2) because the numerator in Eq. (3.101) is only

slightly perturbed after the replacement.

Consider the following optimization problem over g,g, g and C,

max
C

min
g,g,g

4Tr(C†αC),

subject to β = 0, Tr(C†C) = 1,
(3.102)

Fixing C, we introduce a Hermitian matrix C̃ as the Lagrange multiplier associated with

the constraint β = 0 [Boyd and Vandenberghe, 2004]. Strong duality implies Eq. (3.102)

has the same solution as its dual program, which we claim is

max
C,C̃

Fsql(C, C̃), subject to Tr(C†C) = 1, Tr(C̃) = 0,

and Tr(J†i JjC̃) = 0,∀i, j ∈ n.

(3.103)

whose optimal value could be achieved using the perturbation code up to an infinitesimal

small error according to the discussion above.

Now we show the Lagrange dual program of Eq. (3.102) is indeed Eq. (3.103). From the

definition of α (Eq. (3.82)) and β (Eq. (3.83)), we see that the upper bound in Eq. (3.81)

is invariant under the transformation L→ J, that is, after the transformation L→ J there

is always another set of (g,g, g) such that β = 0 and α is the same. Therefore we let

α = (g1 + gJ)†(g1 + gJ), (3.104)
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β = H + g1 + g†J + J†g + J†gJ, (3.105)

where J = (J1, J2, . . . , Jr)T . To proceed, we simplify the notations by letting

ji = Tr(JiC̃)
Tr(HC̃)

, jij = Tr(J†i JjC̃)
Tr(HC̃)

. (3.106)

Note that the r-dimensional vector j is to be distinguished from the index j, then we have

Fsql(C, C̃) =
(
j†j +

∑
ij:λi+λj 6=0

|jij |2

2(λi + λj)

)−1
, (3.107)

and 4Tr(C†αC) = 4(g†g + Tr(Λg2)).

Fixing C, we introduce a Hermitian matrix C̃ as a Lagrange multiplier of β = 0 [Boyd

and Vandenberghe, 2004], the Lagrange function is

L(C̃, g,g, g) = 4(g†g + Tr(Λg2)) + Tr(C̃(H + g1 + J†g + g†J + J†gJ)). (3.108)

Then the dual program of Eq. (3.102) is

max
C̃

min
g,g,g

L(C̃, g,g, g)

= max
C̃

min
g,g,g

4(g†g + Tr(Λg2)) + Tr(C̃(H + g1 + J†g + g†J + J†gJ))

= max
C̃:Tr(C̃)=0,
Tr(C̃H)6=0

min
g,g

4(g†g + Tr(Λg2)) + Tr(C̃H)(1 + g†j + j†g + Tr(gT j))

= max
C̃:Tr(C̃)=0,

∀i,j∈nTr(C̃J†i Jj)=0,
Tr(C̃H)6=0

−1
4Tr(C̃H)2j†j − 1

8Tr(C̃H)2 ∑
ij:λi+λj 6=0

|jij |2

λi + λj
+ Tr(C̃H)

= max
C̃:Tr(C̃)=0,

∀i,j∈nTr(C̃J†i Jj)=0,

(
j†j +

∑
ij:λi+λj 6=0

|jij |2

2(λi + λj)

)−1
= max

C̃:Tr(C̃)=0,
∀i,j∈nTr(C̃J†i Jj)=0

Fsql(C, C̃),

(3.109)

as in Eq. (3.103).

On the other hand, thanks to Sion’s minimax theorem [Komiya, 1988; do Rosário Gross-

inho and Tersian, 2001], we can exchange the order of the maximization and minimization
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in Eq. (3.102). The minimax theorem [do Rosário Grossinho and Tersian, 2001] states that

for convex compact sets P ⊆ Rm and Q ⊆ Rn and f : P × Q → R such that f(x, y) is a

continuous convex (concave) function in x (y) for every fixed y (x), then

max
y∈Q

min
x∈P

f(x, y) = min
x∈P

max
y∈Q

f(x, y). (3.110)

In Eq. (3.102), the objective function 4Tr(C†αC) is concave (linear) with respect to CC†

and convex (quadratic) with respect to (g, g). The operator CC† satisfying Tr(CC†) =

1 is contained in a convex compact set, but the domain of (g,g, g) is not compact. In

fact, we could always confine (g, g) in a convex and compact set such that the solution

of Eq. (3.102) is not altered [Zhou and Jiang, 2020b, Appx. D]. As a result, the minimax

theorem is applicable and we can exchange the order of the maximization and minimization

in Eq. (3.102).

3.5.2 Efficient numerical algorithm

It is known that the upper bound in Eq. (3.81) could be calculated via a SDP [Demkowicz-

Dobrzański et al., 2017; Czajkowski et al., 2019]. Based on that, now we provide an efficient

numerical algorithm obtaining an optimal (C�, C̃�) in three steps. The algorithm runs as

follows:

(1) Solving ming,g,g|β=0 ‖α‖ using the SDP gives us an optimal α� (and corresponding

g�,g�, g�) satisfying ‖α�‖ = ming,g,g|β=0 ‖α‖.

(2) Suppose Π� is the projection onto the subspace spanned by all eigenstates cor-

responding to the largest eigenvalue of α�, we find an optimal C�C�† satisfying

Π�C�C�†Π� = C�C�† and

Re[Tr(C�C�†(∆g1 + ∆gL)†(g�1 + g�L))] = 0, (3.111)

for all (∆g,∆g) such that ∆g1+ ∆g†L+L†∆g +L†∆gL = 0 for some ∆g. Note that

this step is simply solving a system of linear equations.
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(3) Find {Ji}ri=1 via the gauge transformation. Let S0 = span{1, J†i Jj , ∀i, j ∈ n}. De-

compose M = Ji or Jij (:= J†i Jj) into M = MH + iMAH +MH
0 + iMAH

0 where MH,AH,

MH,AH
0 are Hermitian, MH,AH

0 ∈ S0 and MH,AH ⊥ S0 (in terms of the Hilbert-Schmidt

norm). Using the vectorization of matrices |·〉〉 = ∑
jk 〈j| (·) |k〉 |j〉 |k〉, let

B =
∑
i

|JH
i 〉〉〈〈JH

i |+ |JAH
i 〉〉〈〈JAH

i |+
∑

ij:λi+λj 6=0

|JH
ij 〉〉〈〈JH

ij |+ |JAH
ij 〉〉〈〈JAH

ij |
2(λi + λj)

. (3.112)

According to the Cauchy-Schwarz inequality,

max
C̃

Fsql(C�, C̃) = max
C̃

|〈〈H|C̃〉〉|2

〈〈C̃|B|C̃〉〉
= 〈〈HH|B−1|HH〉〉, (3.113)

and the optimal |C̃�〉〉 = B−1|HH〉〉. Here (·)−1 denotes the Moore-Penrose pseudoin-

verse.

The validity of the algorithm is shown in Appendix B.

3.6 Ancilla-free QEC protocol

In this section, we consider the possibility of removing the noiseless ancilla assumption

from the QEC protocols. In particular, we focus on one-parameter estimation when HNLS

is satisfied and found a sufficient condition where ancilla-free codes exist, achieving the HL

and even the same optimal HL coefficient when optimized over ancilla-assisted codes.

3.6.1 Commuting noise

Recall from Section 3.2.3 and Section 3.4.1, one can use noiseless ancillas to construct a

QEC code, described by the projector Πc = |c0〉 〈c0| + |c1〉 〈c1| onto the code space, which

asymptotically restores the unitary dynamics with non-vanishing signal

dρ

dt
= −i[θHeff , ρ], (3.114)
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where Heff = ΠcHΠc 6∝ Πc, if and only if HNLS is satisfied. The optimal QFI optimized

over all QEC protocols is

Fopt(T ) := 4T 2 min
S∈S
‖H − S‖2 := 4T 2 ‖H − S‖2 . (3.115)

We address here the following open questions: (1) Under what conditions the noiseless

sensing dynamics in Eq. (3.114) can be achieved with an ancilla-free QEC code. (2) Whether

such code can achieve the same optimal QFI in Eq. (3.115). We give a partial answer to

these questions in terms of a sufficient condition on the Hamiltonian and the Lindblad

operators [Layden et al., 2019].

Theorem 3.5 (Commuting noise). Suppose H /∈ S and [H,Li] = [Li, Lj ] = [L†i , Lj ] = 0,

∀i, j, i.e. every Hermitian operator in S commutes with each other. Then there exists a

QEC code without noiseless ancilla that achieves the HL. Moreover, it achieves the same

optimal asymptotic QFI [Eq. (3.115)] offered by noiseless ancilla.

Proof. Recall that a QEC sensing code recovering Eq. (3.114) should satisfy the following

three QEC sensing conditions:

ΠcHΠc 6∝ Πc, (3.116)

ΠcLiΠc ∝ Πc, ΠcL
†
iLjΠc ∝ Πc, (3.117)

We will say the code corrects the Lindblad span S if Eq. (3.117) satisfied. Without loss

of generality, we consider only a two-dimensional code |c0(1)〉 = ∑d
k=1

√
c

0(1)
k |k〉, where

{|k〉}dk=1 is an orthonormal basis under which H and Li’s are diagonal. Define d-dimensional

vectors 1,h, `i, and `ij such that (1)k = 1, (h)k = 〈k|H|k〉, (`i)k = 〈k|Li|k〉 and (`ij)k =

〈k|L†iLj |k〉. Define the real subspace Sdiag = span{1,Re[`i], Im[`i],Re[`ij ], Im[`ij ],∀i, j} ⊆

Rd. The optimal code can be identified from the optimal solution c̃ = c̃0 − c̃1 of the

following semidefinite program (SDP) [Boyd and Vandenberghe, 2004],

maximize 〈c,h〉 (3.118)

subject to ‖c‖1 ≤ 2, and 〈c, `〉 = 0, ∀` ∈ Sdiag. (3.119)
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Here ‖x‖1 = ∑d
i=1 |xi| denotes the one-norm in Rd and 〈x,y〉 = ∑d

i=1 xiyi the in-

ner product. Choosing the optimal input quantum state |ψ0〉 = 1√
2(|c0〉 + |c1〉), the

QFI is F (ρ(T )) = T 2 ∣∣〈c0 − c1,h〉
∣∣2. Moreover, the optimal value of Eq. (3.118) is

2 min`∈Sdiag ‖h+ `‖∞ with the argument of the minimum denoted by `�. Here ‖·‖∞ de-

notes the infinity/max norm, defined as the largest absolute value of elements in a vector.

The optimal solution c̃0(1) can be obtained from the constraint that it is in the span of

vectors v such that 〈v,h+ `�〉 is the largest (smallest) [Boyd and Vandenberghe, 2004].

In this case, F (ρ(T )) = 4T 2 ‖h− Sdiag‖2∞ is the same as Fopt in Eq. (3.115) for noiseless

ancilla. Therefore, we conclude that c̃0(1) gives the optimal code.

Theorem 3.5 reveals that the need for noiseless ancilla arises from the non-commuting

nature of the Hamiltonian and Lindblad operators. Indeed, we can find a non-trivial example

with [H,Li] 6= 0 (see Appendix C) for which there exist no ancilla-free QEC codes—even

when we can extend d to arbitrarily large. It is known that when the system dimension

(dimHS = d) is sufficiently large compared to the dimension of the noise space (dimS), a

QEC code satisfying the Knill–Laflamme condition always exists [Knill et al., 2000, Theorem

4]. Therefore, the role of noiseless ancilla in quantum sensing could not be replaced by a

simple extension of the system dimension, as in traditional QEC.

3.6.2 Chebyshev code for photon loss

We now consider an explicit example of quantum sensors dominated by commuting noise—

Hamiltonian estimation under photon loss, where the signal Hamiltonians are diagonal in

Fock basis. Although in principle, photon annihilation operator does not commute with

the Hamiltonian, they does when we restrict the code in a subspace whose photon numbers

of Fock basis are separated from each other with a distance at least 3 and therefore the

commuting noise result applies.

Kerr effect with photon loss

Before we delve into the details to general diagonal Hamiltonian estimation, we consider

an example, which is the most relevant in practice—Kerr Hamiltonian [Walls and Milburn,
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2007] estimation under photon loss [Chuang et al., 1997]:

dρ

dt
= −i

[
θ(a†a)2, ρ

]
+ κ

(
aρa† − 1

2{a
†a, ρ}

)
, (3.120)

where a is the photon annihilation operator. In this case the probe is infinite dimensional,

but suppose we assume that the occupation number n = a†a is bounded: n ≤ M , where

M is even. The noise source is photon loss, with Lindblad operator L ∝ a. Can we find a

QEC code that protects the probe against loss and achieves the HL for estimation of θ?

To solve the dual program, we find real parameters χ0, χ1, χ+, χ− which minimize the

operator norm of

ñ2 := n2 + χ1n+ χ−a+ χ+a
† + χ0, (3.121)

where n ≤ M . Since a and a† are off-diagonal in the occupation number basis, we should

set χ± to zero for the purpose of minimizing the difference between the largest and smallest

eigenvalue of ñ2. After choosing χ1 such that ñ2 is minimized at n = M/2, and choosing

χ0 so that the maximum and minimum eigenvalues of ñ2 are equal in absolute value and

opposite in sign, we have the optimal

(
ñ2
)�

=
(
n− 1

2M
)2
− 1

8M
2, (3.122)

which has operator norm
∥∥∥(ñ2)�∥∥∥ = M2/8; hence the optimal QFI after evolution time t

is Fopt(T ) = T 2M4/16, according to Eq. (3.115). For comparison, the minimum operator

norm is M2/2 for a noiseless bosonic mode with n ≤ M . We see that loss reduces the

precision of our estimate of θ, but only by a factor of 4 if we use the optimal QEC code. the

HL can still be maintained. The scaling δθ̂ ∼ 1/M2 of the optimal precision arises from the

nonlinear photon-photon interactions in the Hamiltonian Eq. (3.120) [Boixo et al., 2007].

To find the code states, we note that the eigenstate of
(
ñ2)� with the lowest eigenvalue

−M2/8 is |n = M/2〉, while the largest eigenvalue +M2/8 has the two degenerate eigen-

states |n = 0〉 and |n = M〉. The code condition [[2]] requires that both code vectors have
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the same expectation value of L†L ∝ n, and we therefore may choose

|c0〉 = |M/2〉S ⊗ |0〉A, |c1〉 = 1√
2

(|0〉S + |M〉S)⊗ |1〉A (3.123)

as the code achieving optimal precision. For M ≥ 4, the ancilla may be discarded, and we

can use the simpler code

|c0〉 = |M/2〉S , |c1〉 = 1√
2

(|0〉S + |M〉S) , (3.124)

which is easier to realize experimentally. Eq. (3.20) and Eq. (3.21) are still satisfied without

the ancilla, because the states {|c0〉 , |c1〉 , a |c0〉 , a |c1〉} are all mutually orthogonal. This

encoding Eq. (3.124) belongs to the family of “binomial quantum codes” which, as discussed

in [Michael et al., 2016], can protect against loss of bosonic excitations.

An experimental realization of this coding scheme can be achieved using tools from

circuit quantum electrodynamics, by coupling a single transmon qubit to two microwave

waveguide resonators. For example, when M is a multiple of 4, |c0〉 and |c1〉 both have

even photon parity while a |c0〉 and a |c1〉 both have odd parity. Then QEC can be carried

out by the following procedure [Sun et al., 2014; Ofek et al., 2016; Heeres et al., 2017; Hu

et al., 2019]: (1) A quantum non-demolition parity measurement is performed to check

whether photon loss has occurred. (2) If photon loss is detected, the initial logical encoding

is restored using optimal control pulses. (3) If there is no photon loss, the quantum state

is projected onto the code space span{|c0〉 , |c1〉} [Shen et al., 2017]. The probability of an

uncorrectable logical error becomes arbitrarily small if the QEC procedure is sufficiently

fast compared to the photon loss rate. Meanwhile, the Kerr signal accumulates coherently

in the relative phase of |c0〉 and |c1〉, so that the HL can be attained for arbitrarily fast

quantum control. For integer values of M which are not a multiple of 4, coding schemes

can still be constructed which protect against photon loss, as described in [Michael et al.,

2016].
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Chebyshev code

Consider the following general Hamiltonian estimation under photon loss:

dρ

dt
= −i

[ s∑
i=1

ζi(a†a)i, ρ
]

+ κ
(
aρa† − 1

2{a
†a, ρ}

)
. (3.125)

We only consider Hamiltonians that are a function of the photon number a†a, applying

a cutoff at the s-th power, where s > 1 is a positive integer. According to the HNLS

condition, while ζ1 cannot be sensed at the Heisenberg limit, θ = ζs asymptotically can,

with the optimal code for s = 2 provided above.

To sense θ, it is important to filter out all lower-order signals ∑s−1
i=1 ζi(a†a)i using the

QEC code (assuming we have no information of {ζi, 0 ≤ i ≤ s − 1}). We should use the

following modified Lindblad span:

S = spanH{1, a, a†, (a†a)i, 1 ≤ i ≤ s− 1}. (3.126)

Although the photon loss noise is not commuting because [a, (a†a)i] 6= 0. this type of off-

diagonal noise can be tackled by simply ensuring the distance of the supports (non-vanishing

Fock states) of |c0〉 and |c1〉 is at least 3.

To obtain the optimal code, we could solve the SDP in Eqs. (3.118)–(3.119). However,

when M is sufficiently large, we obtain a near-optimal solution analytically by observing

that for large M , minimizing ‖(a†a)s −∑s−1
i=0 χi(a†a)i‖ over all {χi}s−1

i=0 is equivalent to ap-

proximating a s-th degree polynomial using an (s−1)-degree polynomial. The optimal poly-

nomial is the Chebyshev polynomial [Mason and Handscomb, 2002] and the near-optimal

code, that we call the s-th order Chebyshev code [Layden et al., 2019], is supported by its

max/min points:

|c0〉 =
[0,s]∑
k even

c̃k
∣∣∣⌊M sin2 (kπ/2s)

⌋〉
, |c1〉 =

[0,s]∑
k odd

c̃k
∣∣∣⌊M sin2 (kπ/2s)

⌋〉
, (3.127)

where bxc denotes the largest integer ≤ x, and |c̃k|2 can be obtained from solving a linear

system of equations of size O(s2). |c̃k|2 is approximately equal to 2
s −

1
sδks −

1
sδk0 for
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Figure 3.5: The near-optimality of the Chebyshev code (s increases as the curve moves from left
to right). F∞opt(T ) is an upper bound of Fopt(T ) which is asymptotically tight as M → ∞. The
horizonal axis indicates M , the largest photon allowed in the bosonic channel and the vertical axis
indicates F (T )/F∞opt(t), a lower bound of F (T )/Fopt(T ). When M is sufficiently large, F (T ) is very
close to its optimal value Fopt(T ); and when s increases, we will need a larger M to achieve the
optimality. For example, when s ≤ 3, F (t) reaches 90% of the upper bound at M = 10.

sufficiently large M . Compared to binomial codes [Michael et al., 2016] another type of

bosonic codes whose codewords are superpositions of Fock states and which coincide with

Chebyshev codes at s = 2, Chebyshev codes have an almost uniform amplitude distribution

but unevenly separated photon numbers for Fock basis; while binomial codes have a binomial

amplitude distribution but evenly separated photon numbers for Fock basis.

In quantum sensing, the s-th order Chebyshev code corrects the Lindblad span

(Eq. (3.126)) and provides a near optimal asymptotic QFI for θ

F (ρ(T )) ≈ Fopt(T ) ≈ 16T 2
(
M

4

)2s
, (3.128)

for sufficiently large M , as illustrated in Figure 3.5. We provide the exact value of c̃k and

prove the near-optimality of it Appendix D.
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Chapter 4

Asymptotic Quantum Channel
Estimation

In Section 2.3, we introduced the channel QFI F1(Eθ) as the QFI optimized over all possible

input states that might be entangled over a probe and an ancilla, and the N -channel QFI

FN (Eθ) := F1(E⊗Nθ ) which is the channel QFI of N copies of the channel. In the chapter,

we study the behavior of FN (Eθ) asymptotically N →∞ and we will sometimes call FN (Eθ)

the asymptotic QFI to represent the context where N is large. In particular, the HL means

the situation where the asymptotic QFI is Θ(N2) and the SQL represents linear scaling.

In general, the asymptotic QFI of a quantum system, follows either the HL or the SQL

and there was not a unified approach to determine the scaling. For quantum channels where

the scalings are known, it is also crucial to understand how to achieve the asymptotic QFI.

For example, for unitary channels, the HL is achievable and a GHZ state in the multipartite

two-level systems consisting of the lowest and highest energy states is optimal [Giovannetti

et al., 2006]. Under the effect of noise, a variety of quantum strategies were also proposed

to enhance the QFI [Caves, 1981; Wineland et al., 1992; Huelga et al., 1997; Ulam-Orgikh

and Kitagawa, 2001; Demkowicz-Dobrzański et al., 2013; Chaves et al., 2013; Gefen et al.,

2016; Plenio and Huelga, 2016; Albarelli et al., 2017, 2018; Matsuzaki et al., 2011; Chin

et al., 2012; Smirne et al., 2016; Liu and Yuan, 2017b; Xu et al., 2019; Chabuda et al., 2020;

Zhou and Jiang, 2020b], but no conclusions for general quantum channels were drawn. One

natural question to ask is whether entanglement between probes can improve the QFI. For
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example, when estimating the noise parameter in the dissipative low-noise channels [Hotta

et al., 2005, 2006] or teleportation-covariant channels [Pirandola et al., 2017; Pirandola

and Lupo, 2017; Takeoka and Wilde, 2016; Laurenza et al., 2018] (e.g. Pauli or erasure

channels), the asymptotic QFI follows the SQL and is achievable using only product states.

However, when estimating the phase parameter in dephasing channels, although the HL is

still not achievable, product states are no longer optimal and the asymptotic QFI is then

achievable using spin-squeezed states [Huelga et al., 1997; Ulam-Orgikh and Kitagawa, 2001;

Demkowicz-Dobrzański and Maccone, 2014].

Given a quantum channel, we aim to answer the following two important questions: how

to determine whether the HL is achievable, and in both cases, how to find a metrological

protocol achieving the asymptotic QFI? In this chapter, we answer these two open problems

in the setting of ancilla-assisted channel estimation by providing an optimal QEC metro-

logical protocol which entangles both the probe and a clean ancillary system. In Chapter 3,

we introduced QEC protocols for Hamiltonian estimation under Markovian noise where we

assumed fast and frequent quantum operations which have limited practical applications

and the channel estimation framework partially solves this problem.

In this chapter, we construct a two-dimensional QEC protocol which reduces every

quantum channel to a single-qubit dephasing channel where both the phase and the noise

parameter could vary w.r.t. the unknown parameter. We first identify the asymptotic

QFI for all single-qubit dephasing channels and then show that the asymptotic QFI of

the logical dephasing channel is no smaller than the one of the original quantum channel

after optimizing over the encoding and the recovery channel, proving the sufficiency of

our QEC protocol. Using the above proof strategy, we obtain the asymptotic theory of

quantum channel estimation, closing a long-standing open question in theoretical quantum

metrology. We also push one step further towards achieving the ultimate estimation limit

in practical quantum sensing experiments by providing efficiently solvable asymptotic QFIs

and corresponding optimal estimation protocols.
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4.1 “Hamiltonian-not-in-Kraus-span” condition

Recall from Section 2.3.2, we established the HNKS condition as a necessary and sufficient

condition to achieve the HL for a given quantum channel using the following upper bounds

for parallel and sequential strategies respectively:

FN (Eθ) ≤ 4 min
h

(
N ‖α‖+N(N − 1) ‖β‖2

)
, (4.1)

F
(seq)
N (Eθ) ≤ 4 min

h

(
N ‖α‖+N(N − 1) ‖β‖ (‖β‖+ 2

√
‖α‖)

)
. (4.2)

If there is an h such that β = 0,

FN (Eθ) ≤ F
(seq)
N (Eθ) ≤ 4 min

h:β=0
N ‖α‖ , (4.3)

FN (Eθ) and F
(seq)
N (Eθ) follow the SQL asymptotically. Therefore, it is only possible to

achievable the HL if the HNKS condition holds, i.e. H /∈ S, where

H = iK†K̇, S = spanH{K
†
iKj , ∀i, j}. (4.4)

Note that the definitions of H and S are not exactly the same as the ones in Chapter 3 (differ

by constant factors) but we still use the same notations here because they are essentially

equivalent and have the same physical meaning.

We will show in this section that HNKS is also a sufficient condition to achieve the HL

for parallel strategies in Figure 2.1(b), and hence, sequential strategies in Figure 2.1(c) that

contain the former. We summarize this by the following theorem:

Theorem 4.1. FN (Eθ) = Θ(N2) if and only if H /∈ S. Otherwise, FN (Eθ) = Θ(N). The

statement is also true for F
(seq)
N (Eθ).

Furthermore, the QFI upper bound in Eq. (4.3) is achievable asymptotically when H ∈ S

for both parallel and sequential strategies:
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Theorem 4.2. When H ∈ S,

Fsql(Eθ) := lim
N→∞

FN (Eθ)/N = 4 min
h:β=0

‖α‖ . (4.5)

For any η > 0, there exists an input state |ψη,N 〉 solvable via a SDP such that

limN→∞ F ((E⊗Nθ ⊗ 1)(|ψη,N 〉))/N > Fsql(Eθ)− η. Furthermore, F(seq)
sql (Eθ) = Fsql(Eθ).

Note that Fsql(Eθ) is named “asymptotic channel QFI” in [Ko lodyński and Demkowicz-

Dobrzański, 2013]. The quadratic term of the QFI upper bound in Eq. (4.1) is also achiev-

able when H /∈ S for parallel strategies:

Theorem 4.3. When H /∈ S,

Fhl(Eθ) := lim
N→∞

FN (Eθ)/N2 = 4 min
h
‖β‖2 . (4.6)

There exists an input state |ψN 〉 solvable via a SDP such that F ((E⊗Nθ ⊗ 1)(|ψN 〉))/N2 =

Fhl(Eθ).

Note that without the help of the ancilla system, the QFI upper bound in Eq. (4.3) may

not be achievable asymptotically [Knysh et al., 2014; Layden et al., 2019]. For example, the

upper bound in Eq. (4.3) for phase estimation in amplitude damping channels is reduced by

a factor of four without ancilla [Knysh et al., 2014; Demkowicz-Dobrzański and Maccone,

2014].

Theorem 4.2 indicates that when HNKS is violated (which almost surely happens statis-

tically), there is no advantage of sequential strategies over parallel strategies asymptotically,

as conjectured in [Demkowicz-Dobrzański and Maccone, 2014]. Interestingly, similar results

were discovered quantum channel discrimination, a related field [Hayashi, 2002; Yuan and

Fung, 2017; Pirandola et al., 2019; Chen and Yuan, 2019; Katariya and Wilde, 2020a;

Chiribella et al., 2008; Yang, 2019]. It was recently proven that sequential strategies cannot

outperform parallel strategies asymptotically in asymmetric discrimination of two arbitrary

quantum channels [Hayashi, 2009; Wilde et al., 2020; Wang and Wilde, 2019; Fang et al.,

2020]. Our result is different, however, because the QFI cannot be characterized as the

limit of quantum relative entropy [Hayashi, 2002] and it is also unclear how to interpret
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Figure 4.1: The optimal metrological protocol. (a) The original physical system where we have N
noisy probes and N noiseless ancillas. Each pair of probe-ancilla subsystem (purple box) encodes
a logical qubit (see Section 4.2). (b,c) When H /∈ S, the logical qubits are noiseless. We choose
the GHZ state of N -logical qubits as the optimal input. (d,e) When H ∈ S, each logical qubit
is subject to an effective dephasing noise. We choose the spin-squeezed state of the N -logical
qubits with suitable parameters as the optimal input. We plot the quasiprobability distribution
Q(θ, ϕ) = |〈θ, ϕ|ψ〉|2 on a sphere using coordinates (x, y, z) = (sin θ cosϕ, sin θ sinϕ, cos θ) [Kitagawa
and Ueda, 1993], where |θ, ϕ〉 = (cos θ2 |0〉 + eiϕ sin θ

2 |1〉)⊗N and N = 50. (Darker colors indicate
larger values.)

the HNKS condition in terms of asymmetric channel discrimination. Moreover, we provide

a constructive proof with explicit and efficiently computable QEC metrological protocols,

which paves the way for practical implementation of error-corrected sensing schemes.

Based on the previous discussion, in order to prove the theorems, it is sufficient to provide

a QEC protocol using parallel strategies which achieves the QFI upper bound (Eq. (4.1))

asymptotically both when H ∈ S or H /∈ S. Thus we will focus only on parallel strategies

in the following. We first show Theorem 4.3 and Theorem 4.2 are true for the generalized

single-qubit dephasing channels in Section 4.2 where both the phase and the noise parameter

vary w.r.t. θ. Then we will generalized the results to arbitrary quantum channels Eθ using

a QEC protocol in Sections 4.3-4.4. The two steps are summarized in Figure 4.1.
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4.2 Reduction to dephasing channels

4.2.1 Asymptotic QFI of dephasing channels

According to Eq. (4.1), Fhl ≤ F
(u)
hl and Fsql ≤ F

(u)
sql, where F

(u)
hl := 4 minh ‖β‖2 and F

(u)
sql :=

4 minh:β=0 ‖α‖. (u) refers to the upper bounds here. In this section, we will show the above

equalities hold for any single-qubit dephasing channel

Dθ(ρ) = (1− p)e−
iφ
2 σzρe

iφ
2 σz + pσze

− iφ2 σzρe
iφ
2 σzσz, (4.7)

which is the composition of the conventional dephasing channel ρ 7→ (1 − p)ρ + pσzρσz

(0 ≤ p < 1) and the rotation in the z-direction ρ 7→ e−
iφ
2 σzρe

iφ
2 σz . Both p and φ are

functions of an unknown parameter θ. The HNKS condition is equivalent to p = 0 and the

QFI upper bounds for Dθ are

F
(u)
hl (Dθ) = |ξ̇|2, F

(u)
sql(Dθ) = |ξ̇|2

1− |ξ|2 , (4.8)

where ξ = 〈0| Dθ(|0〉 〈1|) |1〉 = (1− 2p)e−iφ.

To show Eq. (4.8), let Dθ(ρ) = ∑2
i=1KiρK

†
i , where K1 =

√
1− pe−

iφ
2 σz ,K2 =

√
pσze

− iφ2 σz . Assume p > 0, then

K =


√

1− pe−
iφ
2 σz

√
pσze

− iφ2 σz

 , K̇ =


( −ṗ

2
√

1−p −
√

1− p iφ̇2 σz
)
e−

iφ
2 σz

( ṗ
2√p −

√
p iφ̇2 σz

)
e−

iφ
2 σzσz

 , (4.9)

K̇− ihK =


( −ṗ

2
√

1−p − ih11
√

1− p−
√

1− p iφ̇2 σz − ih12
√
pσz

)
e−

iφ
2 σz

( ṗ
2√pσz − ih22

√
pσz −

√
p iφ̇2 − ih21

√
1− p

)
e−

iφ
2 σz

 , (4.10)

β = iK†(K̇− ihK) = φ̇

2σz + (1− p)h11 + ph22 +
√
p(1− p)(h12 + h21)σz, (4.11)

α = (K̇− ihK)†(K̇− ihK) = ṗ2

4p(1− p) + h2
11(1− p) + h2

22p+ φ̇2

4 + |h12|2 + 2
√
p(1− p)φ̇Re[h12]

+ 2Re
[
−

ṗ
√
p

√
1− p

ih12 + ((1− p)h11 + h22p)
φ̇

2 + (h11h12 + h22h21)
√
p(1− p)− i ṗ

√
1− p
√
p

h21

]
σz.

(4.12)

β = 0 is equivalent to (1 − p)h11 + ph22 = 0 and φ̇
2 +

√
p(1− p)(h12 + h21) = 0, which
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is achievable for any p > 0. When h11 = h22 = 0 and h12 = h21 = − φ̇

4
√
p(1−p)

, ‖α‖ =

minh:β=0 ‖α‖ = (1−2p)2φ̇2

16p(1−p) + ṗ2

4(1−p)p . Then

F
(u)
sql(Dθ) = 4 min

h:β=0
‖α‖ = (1− 2p)2φ̇2

4p(1− p) + ṗ2

(1− p)p = |ξ̇|2

1− |ξ|2
, (4.13)

where ξ = (1 − 2p)e−iφ = 〈0| Dθ(|0〉 〈1|) |1〉 is a complex number completely determining

the channel. When p = 0, we must also have ṗ = 0. Then β = φ̇
2σz + h11 and

F
(u)
hl (Dθ) = 4 min

h
‖β‖2 = |φ̇|2 = |ξ̇|2. (4.14)

We can also calculate the channel QFI

F1(Dθ) = 4 min
h
‖α‖ =


(1− 2p)2φ̇2 + ṗ2

(1−p)p , p > 0,

(1− 2p)2φ̇2, p = 0.
(4.15)

It could be achieved using |ψ0〉 = |0〉+|1〉√
2 .

Now we show that Fhl,sql(Dθ) = F
(u)
hl,sql(Dθ) and provide the optimal input states

in both cases. When HNKS is satisfied (p = 0), Dθ is unitary. Using the GHZ state

|ψ0〉 = 1√
2
(
|0〉⊗N + |1〉⊗N

)
as the input state, we could achieve

F (D⊗Nθ (|ψ0〉 〈ψ0|)) = |ξ̇|2N2, (4.16)

which implies Fhl(Dθ) = F
(u)
hl (Dθ).

To calculate the optimal QFI when HNKS is violated (p > 0), we will use the following

two useful formulas. For any pure state input |ψ0〉 and output ρθ = D⊗Nθ (|ψ0〉 〈ψ0|), we

have, for all N ,

F (ρθ) = Fp(ρθ) + Fφ(ρθ), (4.17)

where Fp(ρθ) = Tr(L2
pρθ) is the QFI w.r.t. θ when only the noise parameter p varies w.r.t.

θ, where the SLD Lp satisfies 1
2
∂ρθ
∂p ṗ = Lpρθ + ρθLp. Similarly, Fφ(ρθ) is the QFI w.r.t. θ

when only the phase parameter φ varies w.r.t. θ.
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To prove Eq. (4.17), |ψ〉 = e−iφJz |ψ0〉 and a subspace

Z = span
{ N∏
k=1

(σ(k)
z )jk |ψ〉 , (j1, . . . , jN ) ∈ {0, 1}N

}
. (4.18)

Assume dimZ = n. Z must have an orthonormal basis {|e`〉}n`=1 where |e`〉 =∑1
j1,...,jN=0 r`,(j1,...,jN )

∏N
k=1(σ(k)

z )jk |ψ〉 with real r`,(j1,...,jN ). For example, one can use

the Gram-Schmidt procedure to find {|e`〉}n`=1 because 〈ψ|∏N
k=1(σ(k)

z )jk |ψ〉 ∈ R for all

(j1, . . . , jN ) ∈ {0, 1}⊗N .

Then

ρθ = D⊗Nθ (|ψ0〉 〈ψ0|) = (Dθ|φ=0)⊗N (|ψ〉 〈ψ|)

=
1∑

j1,...,jN=0
(1− p)(N−

∑N

k=1 jk)p(
∑N

k=1 jk)
N∏
k=1

(σ(k)
z )jk |ψ〉 〈ψ|

N∏
k=1

(σ(k)
z )jk

=
n∑

`,`′=1
χ``′ |e`〉 〈e`′ |

(4.19)

where χ ∈ Rn×n is a symmetric matrix. χ = ∑n
i=1 µiviv

T
i where vi are real orthonormal

eigenvectors of χ. Then we can write ρθ = ∑n
`=1 µ` |ψ`〉 〈ψ`| where |ψ`〉 = ∑n

`′=1 v``′ |e`′〉.

Then according to the definition of QFI,

F (ρθ) = 2
∑

``′:µ`+µ`′ 6=0

|〈ψ`| ρ̇θ |ψ`′〉|2

µ` + µ`′
. (4.20)

Note that in principle Eq. (4.20) only holds true when {|ψ`〉} is a complete basis of H⊗NS ,

that is, span{|ψ`〉} = H⊗NS . However, we are allowed to restrict the summation in the RHS

of Eq. (4.20) to states in the subspace Z, i.e. span{|ψ`〉} = Z, because ΠZρθΠZ = ρθ and

ΠZ ρ̇θΠZ = ρ̇θ, i.e. any state perpendicular to Z does not contribute to the QFI.

The derivative of ρθ w.r.t. θ is

ρ̇θ = ∂ρθ
∂p

ṗ+ ∂ρθ
∂φ

φ̇ =
1∑

j1,...,jN=0

∂(1− p)(N−
∑N

k=1 jk)p(
∑N

k=1 jk)

∂θ

N∏
k=1

(σ(k)
z )jk |ψ〉 〈ψ|

N∏
k=1

(σ(k)
z )jk

+
1∑

j1,...,jN=0
(1− p)(N−

∑N

k=1 jk)p(
∑N

k=1 jk)
N∏
k=1

(σ(k)
z )jk ∂ |ψ〉 〈ψ|

∂θ

N∏
k=1

(σ(k)
z )jk . (4.21)

103



Then we have

〈ψ`| ρ̇θ |ψ`′〉 = a``′ + ib``′ , (4.22)

where a``′ = 〈ψ`| ∂ρθ∂p ṗ |ψ`′〉 ∈ R, b``′ = −i 〈ψ`| ∂ρθ∂φ φ̇ |φ`′〉 ∈ R. Therefore,

F (ρθ) = 2
∑

``′:µ`+µ`′ 6=0

|a``′ |2 + |b``′ |2

µ` + µ`′
= Fp(ρθ) + Fφ(ρθ), (4.23)

Another useful formula is the error propagation formula [Pezzé and Smerzi, 2009],

F (ρ) ≥ 1
〈∆J2〉ρ

(
∂ 〈J〉ρ
∂θ

)2

, (4.24)

for arbitrary ρ as a function of θ and arbitrary Hermitian operator J where 〈J〉ρ = Tr(Jρ)

and 〈∆J2〉ρ = 〈J2〉ρ − 〈J〉
2
ρ. The equality holds when J is equal to the SLD operator of ρ.

Consider an N -qubit spin-squeezed state [Kitagawa and Ueda, 1993; Ulam-Orgikh and

Kitagawa, 2001]:

|ψµ,ν〉 = e−iνJxe−
iµ
2 J

2
z e−i

π
2 Jy |0〉⊗N , (4.25)

where Jx,y,z = 1
2
∑N
k=1 σ

(k)
x,y,z with (k) denote operators on the k-th qubit. Let |ψ0〉 =

eiφJz |ψµ,ν〉. Using Eq. (4.17) and Eq. (4.24), we have for ρθ = D⊗Nθ (|ψ0〉 〈ψ0|),

F (ρθ) ≥
1

〈∆J2
x〉ρθ

(∂ 〈Jx〉ρθ
∂p

ṗ

)2
+ 1
〈∆J2

y 〉ρθ

(∂ 〈Jy〉ρθ
∂φ

φ̇

)2
, (4.26)

where

〈Jx,y〉ρθ = (1− 2p) 〈Jx,y〉|ψµ,ν〉 , (4.27)

〈J2
x,y〉ρθ = N

4 + (1− 2p)2
(
〈J2
x,y〉|ψµ,ν〉 −

N

4
)
, (4.28)

∂〈Jx〉ρθ
∂p

ṗ = −2ṗ 〈Jx〉|ψµ,ν〉 ,
∂〈Jy〉ρθ
∂φ

φ̇ = (1− 2p)φ̇ 〈Jx〉|ψµ,ν〉 . (4.29)

It was shown in [Kitagawa and Ueda, 1993] that choosing ν = π
2 −

1
2 arctan b

a ,

〈Jx〉|ψµ,ν〉 = N

2 cos(µ/2)N−1, 〈Jy〉|ψµ,ν〉 = 0, (4.30)
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〈∆J2
x〉|ψµ,ν〉 = N

4

(
N

(
1− cos2(N−1) µ

2

)
−
(
N − 1

2

)
a

)
, (4.31)

〈∆J2
y 〉|ψµ,ν〉 = N

4

(
1 + N − 1

4
(
a−

√
a2 + b2

))
, (4.32)

where a = 1− cosN−2 µ, b = 4 sin µ
2 cosN−2 µ

2 . Let N � 1, µ = Θ(N−5/6), then

〈Jx〉|ψµ,ν〉 ≈
N

2 , 〈∆J2
x〉|ψµ,ν〉 ≈ O(N2/3), 〈∆J2

y 〉|ψµ,ν〉 ≈ O(N2/3), (4.33)

and 〈∆J2
x〉ρθ ≈ 〈∆J

2
y 〉ρθ ≈ p(1 − p)N ,

∂〈Jx〉ρθ
∂p ṗ ≈ −ṗN and

∂〈Jy〉ρθ
∂φ φ̇ ≈ (1 − 2p)φ̇N/2.

Therefore,

F (ρθ) ≥
|ξ̇|2

1− |ξ|2N + o(N), (4.34)

which implies Fsql(Dθ) = F
(u)
sql(Dθ). Compared with F1(Dθ) (eq-4:single-dephasing),

Fsql(Dθ) has a factor of 1/(4p(1− p)) enhancement when we estimate the phase parameter

(ṗ = 0). When we estimate the noise parameter (φ̇ = 0), however, Fsql(Dθ) = F1(Dθ). In

general, Fsql/F1 is between 1 and 1/(4p(1− p)).

To sum up, we proved Theorem 4.3 and Theorem 4.2 are true for dephasing channels.

The ancilla is not required here. When the noise is non-zero, the QFI must follow the SQL

and there exists a spin-squeezed state achieving the QFI asymptotically. In particular, the

squeezing parameter should be tuned carefully such that both the Jx and Jy variance are

small such that both the noise and the phase parameter are estimated with the optimal

precision.

4.2.2 QEC protocol

Now we introduce a QEC protocol such that every quantum channel simulates the dephasing

channel introduced above. To be specific, we find the encoding channel Eenc and the recovery

channel R such that

R ◦ Eθ ◦ Eenc = DL,θ. (4.35)

The construction fully utilizes the advantage of the ancilla, which has the same dimen-

sion as the probe with an extra qubit. Let dimHS = d and dimHA = 2d. We pick a QEC
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code

|c0〉 =
d∑

i,j=1
A0,ij |i〉S |j, 0〉A , |c1〉 =

d∑
i,j=1

A1,ij |i〉S |j, 1〉A , (4.36)

with the encoding channel is Eenc(·) = V (·)V † where V = |c0〉 〈0L|+ |c1〉 〈1L|, and a recovery

channel

R(·) =
M∑
m=1

(|0L〉 〈Rm, 0|+ |1L〉 〈Qm, 1|) (·) (|Rm, 0〉 〈0L|+ |Qm, 1〉 〈1L|) . (4.37)

Here A0,1 are matrices in Cd×d satisfying Tr(A†0,1A0,1) = 1, R = (|R1〉 · · · |RM 〉) and Q =

(|Q1〉 · · · |QM 〉) are matrices satisfying RR† = QQ† = I. The last ancillary qubit in HA

guarantees the logical channel to be dephasing, which satisfies

ξ =
∑
i,m

〈Rm, 0|Ki |c0〉 〈c1|K†i |Qm, 1〉 , (4.38)

and Fhl,sql(DL,θ) could then be directly calculated using Eq. (4.8). Note that in the equation

above and in what follows we use Ki as a substitute for Ki⊗I for the simplicity of notations.

Below, we will show that by optimizing Fhl,sql(DL,θ) over both the recovery channel (R,Q)

and the QEC code (A0,1), the QFI upper bounds F
(u)
hl,sql(Eθ) are achievable.

4.3 Asymptotic channel QFI: HNKS

When H /∈ S, we construct a QEC code such that the HL upper bound F
(u)
hl (Eθ) is achieved.

For dephasing channels, the HL is achievable only if |ξ| = 1. Since any transformation

R ← eiϕR does not affect the QFI, without loss of generality (WLOG), we assume ξ = 1.

It means that the QEC has to be perfect, i.e. satisfies the Knill-Laflamme condition [Knill

and Laflamme, 1997]

ΠcK
†
iKjΠc ∝ Πc, ∀i, j, (4.39)

where Πc = |c0〉 〈c0|+ |c1〉 〈c1|. Moreover, there exists a Kraus representation {K ′i}r
′
i=1 such

that ΠcK
′†
i K

′
jΠc = µiδijΠc and K ′iΠc = Ui

√
µiΠc. The unitary Ui has the form

Ui = U0,i ⊗ |0〉 〈0|+ U1,i ⊗ |1〉 〈1| , (4.40)
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where U0,i and U1,i are also unitary. Let

|Ri〉 = 〈0|Ui |c0〉 , |Qi〉 = 〈0|Ui |c0〉 , (4.41)

for 1 ≤ i ≤ r′. We could also add some additional |Ri〉 and |Qi〉 to them to make sure they

are two complete and orthonormal bases. Then one could verify that ξ = 1 and

ξ̇ = −iTr((H ⊗ I)σz,c), (4.42)

where σz,c = |c0〉 〈c0| − |c1〉 〈c1|. Let C̃ = A0A
†
0 − A1A

†
1, ξ̇ = −iTr(HC̃) and the Knill-

Laflamme condition is equivalent to Tr(C̃S) = 0, ∀S ∈ S. The optimization of the QFI

over the QEC code becomes

maximize |ξ̇| = |Tr(HC̃)|, (4.43)

subject to ‖C̃‖1 ≤ 2, Tr(C̃S) = 0, ∀C̃ ∈ Hd, S ∈ S, (4.44)

A similar SDP problem was considered in Section 3.4.1. The optimal |ξ̇| is equal to

2 minS∈S ‖H − S‖ and the optimal C̃ could be found via a SDP. Any A0, A1 such that

C̃ is optimal would achieve the optimal QFI. It means there exists an encoding, and there-

fore an optimal input state |ψN 〉 which is the logical GHZ state, such that

lim
N→∞

F ((E⊗Nθ ⊗ 1)(|ψN 〉))
N2 = 4 min

S∈S
‖H − S‖2 . (4.45)

Clearly, 4 minS∈S ‖H − S‖2 = 4 minh ‖β‖2 = F
(u)
hl (Eθ), where we used the fact that for

any S ∈ S there exists an h ∈ Hr such that S = K†hK and vice versa. Theorem 4.3 is

then proven. Note that, given the optimal C̃, we can always choose A0A
†
0 and A1A

†
1 with

orthogonal supports and the last ancillary qubit in HA could be removed because |c0〉 and

|c1〉 in this case could be distinguished using projections onto the orthogonal supports in

HA. Therefore a d-dimensional ancillary system is sufficient.

We have demonstrated the QEC code achieving the optimal HL for arbitrary quantum

channels. The code is designed to satisfy the Knill-Laflamme condition and optimize the
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QFI. The logical dephasing channel is exactly the identity channel at the true value of θ

and any change in θ results in a detectable phase, allowing it to be estimated at the HL.

4.4 Asymptotic channel QFI: HKS

When H ∈ S, the situation is much more complicated because when |ξ| = 1 we must

also have |ξ̇| = 0 and no signal could be detected. Therefore we must consider the trade-off

between maximizing the signal and minimizing the noise. To be exact, we want to maximize

Fsql(DL,θ) = |ξ̇|2

1− |ξ|2 . (4.46)

We will show for any η > 0, there exists a near-optimal code and recovery such that

Fsql(DL,θ) > F
(u)
sql(Eθ)−η, proving Theorem 4.2. We only consider the case where Fsql(Eθ) >

F1(Eθ) > 0 because otherwise F1(Eθ) = Fsql(Eθ) and product states are sufficient to achieve

Fsql(Eθ).

To simplify the calculation, we consider a special type of code, the perturbation code,

as introduced in Section 3.5, where

A0 =
√

1− ε2C + εD, A1 =
√

1− ε2C − εD, (4.47)

satisfying Tr(C†D) = 0 and Tr(C†C) = Tr(D†D) = 1. In this section, we define C̃ =

CD† + DC† (differed by a factor of ε
√

1− ε2 from the C̃ defined in Section 4.3) and also

assume C is full rank so that C̃ could be an arbitrary Hermitian matrix. ε is a small

parameter and we will calculate Fsql(DL,θ) up to the lowest order of ε. We adopt the small

ε treatment because it allows us to mathematically simplify the optimization of Eq. (4.46),

though it is surprising that the optimal QFI is achievable in such a regime where both the

signal and the noise are small. Heuristically, it comes from an observation that sometimes

the absolute strengths of the signal and the noise are not important—they could cancel each

other out in the numerator and the denominator and only the ratio between them matters.

See [Zhou and Jiang, 2020b, Appx. G] for an example.

To proceed, we use the vectorization of matrices |?〉〉 = ∑
ij ?ij |i〉 |j〉 for all ? ∈ Cd×d to
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simplify the notations. We define E0,1, E, F ∈ Cd2×r in the following way:

E0,1 = (|K1A0,1〉〉 · · · |KrA0,1〉〉
)
, (4.48)

E = (|K1C〉〉 · · · |KrC〉〉
)
, F = (|K1D〉〉 · · · |KrD〉〉

)
, (4.49)

which satisfy E0,1 =
√

1− ε2 ± εF , Tr(E†F ) = 0 and Tr(E†E) = Tr(F †F ) = 1. Let the

recovery matrix T = QR† ∈ Cd2×d2 , then

ξ = Tr(TE0E
†
1), ξ̇ = Tr(TĖ0E

†
1) + Tr(TE0Ė

†
1). (4.50)

4.4.1 Optimizing the recovery channel

We consider the regime where both the signal and the noise are sufficiently small—both

the denominator and the numerator in Eq. (4.46) will be O(ε2). The recovery matrix T

should also be close to the identity operator. We assume T = eiεG where G is Hermitian

and let σ = EE†, σ̃ = i(FE† −EF †). Expanding T,E0, E1 around ε = 0, we first optimize

Fsql(DL,θ) over all possible G, which gives (up to the lowest order of ε),

Fsql(DL,ω) ≈ max
G

|Tr(Gσ̇)|2

4− 2Tr(Gσ̃) + Tr(G2σ)− |Tr(Gσ)|2
, (4.51)

The maximization could be calculated by taking the derivative w.r.t. G. We can show that

the optimal G is

Gopt = (4− Tr(Lσ[σ̃]σ̃))
Tr(Lσ[σ̇]σ̃) Lσ[σ̇] + Lσ[σ̃], (4.52)

and the corresponding optimal QFI is

Fsql(DL,θ) ≈ Tr(Lσ[σ̇]σ̇) + Tr(Lσ[σ̇]σ̃)2

4− Tr(Lσ[σ̃]σ̃) . (4.53)

Detailed derivations can be found in Appendix E.
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4.4.2 Attaining the upper bound

Now Fsql(DL,θ) is a function of the code (C and D) only. We can further simplify it by

writing it as a function of only C and C̃.

We express Tr(Lσ[σ̇]σ̇), Tr(Lσ[σ̇]σ̃) and Tr(Lσ[σ̃]σ̃) in Eq. (4.53) in terms of C and C̃.

Let τ = E†E, τ̃ = E†F + F †E, τ ′ = iE†Ė − iĖ†E such that

τij = Tr(C†K†iKjC), τ̃ij = Tr(C̃K†iKj), (4.54)

τ ′ij = iTr(C†K†i K̇jC)− iTr(C†K̇†iKjC). (4.55)

WLOG, assume τij = Tr(C†K†iKjC) = λiδij , which could always be achieved by performing

a unitary transformation on K. We also have λi > 0 for all i because C is full rank and

{|Ki〉〉}ri=1 are linearly independent.

From the detailed calculations in Appendix F, we see that

Fsql(DL,θ) ≈ f(C, C̃) = 4Tr(C†K̇†K̇C)− Tr(Lτ [τ ′]τ ′) + (−2Tr(C̃H) + Tr(Lτ [τ ′]τ̃))2

Tr(Lτ [τ̃ ]τ̃) .

(4.56)

At this stage, it is not obvious why the maximization of Fsql(DL,θ) over C and C̃ is

equal to F
(u)
sql(Eθ). To see that, we need to reformulate the SQL upper bound using its dual

program. First we note that

F
(u)
sql(Eθ) = max

C:Tr(C†C)=1
min
h:β=0

4Tr(C†αC), (4.57)

where we are allowed to exchange the order of maximization and minimization thanks to

Sion’s minimax theorem [Komiya, 1988; do Rosário Grossinho and Tersian, 2001]. Fixing

C, we consider the optimization problem minh:β=0 4Tr(C†αC). When C is full rank, we

can show that it is equivalent to maxC̃∈Hd f(C, C̃), where C̃ is introduced as the Lagrange

multiplier associated with the constraint β = 0 [Boyd and Vandenberghe, 2004] and the

optimal C̃ is traceless.
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To be specific, we first show

max
C̃∈Hd

f(C, C̃) = min
h:β=0

4Tr(C†αC) (4.58)

when C is full rank. C̃ is a Hermitian matrix as a Lagrange multiplier of β = 0. The

Lagrange function is

L(C̃, h) = 4Tr(C†(K̇− ihK)†(K̇− ihK)C) + Tr(C̃(H + K†hK)), (4.59)

then

min
h
L(C̃, h) = min

h
4Tr(C†(K̇− ihK)†(K̇− ihK)C) + Tr(C̃(H + K†hK))

= min
h

4Tr(C†K̇†K̇C) + 4Tr(τh2) + 4Tr(iC†K†hK̇C − iC†K̇†hKC) + Tr(C̃(H + K†hK))

= min
h

4Tr(C†K̇†K̇C) + 4Tr(τh2) + 4Tr(hT τ ′) + Tr(C̃H) + Tr(hT τ̃)

= 4Tr(C†K̇†K̇C) + Tr(C̃H)− 1
8

r∑
i,j=1

∣∣4τ ′ij + τ̃ij
∣∣2

λi + λj
. (4.60)

The dual program is

max
C̃

min
h
L(C̃, h) = max

C̃
4Tr(C†K̇†K̇C) + Tr(C̃H)− 1

8

r∑
i,j=1

16|τ ′ij |2 + |τ̃ij |2 + 4(τ̃ijτ ′ji + τ̃jiτ
′
ij)

λi + λj

= max
C̃,x

4Tr(C†K̇†K̇C) + xTr(C̃H)− 1
8

r∑
i,j=1

16|τ ′ij |2 + x2|τ̃ij |2 + 8xτ̃ijτ ′ji
λi + λj

= max
C̃

4Tr(C†K̇†K̇C)− 2
r∑

i,j=1

|τ ′ij |2

λi + λj
+

(
− Tr(C̃H) +

∑r
i,j=1

τ̃ijτ
′
ji

λi+λj

)2

1
2
∑r
i,j=1

|τ̃ij |2
λi+λj

= max
C̃

f(C, C̃),

(4.61)

where we used the fact that C̃ ← xC̃ does not change the result. Eq. (4.58) is then proved.

Moreover, the optimal C̃ in Eq. (4.58) must be traceless. Suppose C̃ is optimal in

Eq. (4.58), we will prove that Tr(C̃) = 0. Let z be a real number,

q(z) := f(C, C̃ + zCC†) = s(z)2

t(z) + const. (4.62)
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Since maxz q(z) = q(0), we have q′(0) = s(0)
t(0)2

(
2s′(0)t(0)− s(0)t′(0)

)
= 0.

s(z) = −Tr((C̃ + zCC†)H) +
r∑

i,j=1

(τ̃ij + zλiδij)τ ′ij
λi + λj

, (4.63)

s′(0) = −Tr(CC†H) +
r∑
i=1

1
2τ
′
ii = 0, (4.64)

t(z) = 1
2

r∑
i,j=1

|τ̃ij + zλiδij |2

λi + λj
= 1

2

r∑
i,j=1

|τ̃ij |2 + zλiδij(τ̃∗ij + τ̃ij) + z2λ2
i δij

λi + λj
, (4.65)

t′(0) = 1
2

r∑
i,j=1

λiδij(τ̃∗ij + τ̃ij)
λi + λj

= 1
2

r∑
i=1

τ̃ii = 1
2Tr(C̃). (4.66)

Then q′(0) = 0 implies Tr(C̃) = 0.

4.4.3 Efficient numerical algorithm

The procedure to find a near-optimal code such that Fsql(DL,θ) > F
(u)
sql(Eθ)−η for any η > 0

goes as follows:

(1) Find a full rank C� such that Tr(C�†C�) = 1 and minh:β=0 4Tr(C�†αC�) > F
(u)
sql(Eθ)−

η/2.

(2) Find a Hermitian C̃� such that f(C�, C̃) is maximized and let D� = 1
2C
�−1C̃�. Rescale

D� such that Tr(D�†D�) = 1.

(3) Calculate Fsql(DL,θ)|C=C�,D=D� using Eqs. (4.47)-(4.50) and Eq. (4.52). Find a small

ε� > 0 such that Fsql(DL,θ) > f(C�, C̃�)− η/2.

The numerical algorithms for step (1) and (2) are provided below, where the most compu-

tationally intensive part is a SDP. Note that in contrast to the HL case, here we require

2d-dimensional ancillas, twice as large as probes. In principle, however, d-dimensional an-

cillas are sufficient to achieve the asymptotic QFI, considering the Schmidt decomposition

on the input state, though we no longer have explicit encoding and decoding protocols when

using d-dimensional ancillas.
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Finding the optimal C

We first describe a numerical algorithm finding a full rank C� such that Tr(C�†C�) = 1 and

min
h:β=0

4Tr(C�†αC�) > F
(u)
sql(Eθ)− η/2. (4.67)

for any η > 0. We first note that F(u)
sql(Eθ) = minh:β=0 4 ‖α‖ could be solved via the following

SDP [Demkowicz-Dobrzański et al., 2012],

min
h
x, subject to



xId K̃†1 · · · K̃†r

K̃1 Id′ · · · 0
... 0 . . . ...

K̃r 0 · · · Id′


� 0, β = 0. (4.68)

where d and d′ are the input and output dimension of Eθ, In is a n× n identity matrix and

K̃ = K̇− ihK.

To find the full rank C�, we first find a density matrix ρ� such that

min
h:β=0

4Tr(ρ�α) = min
h:β=0

4 ‖α‖ . (4.69)

It could be done via the following two-step algorithm-4:

1) Find an h� using the SDP (Eq. (4.68)), such that α� = α|h=h� satisfies ‖α�‖ =

minh:β=0 ‖α‖.

2) Let Π� be the projection onto the subspace spanned by all eigenstates corresponding to

the largest eigenvalue of α�, we find an optimal density matrix ρ� satisfying Π�ρ�Π� = ρ�

and

Re[Tr(ρ�(iK†δh)(K̇− ih�K))] = 0, ∀δh ∈ Hr, s.t. K†δhK = 0. (4.70)

Then C� =
(
(1− η′)ρ� + η′ Id

)1/2 where η′ = η/(2F(u)
sql(Eθ)) is a full-rank matrix satisfying

min
h:β=0

4Tr(C�†αC�) ≥ (1− η′)F(u)
sql(Eθ) = F

(u)
sql(Eθ)− η/2. (4.71)
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The two-step algorithm above could also be used to find ρ whose purification is the

optimal input state of a single quantum channel Eθ achieving F1(Eθ):

1) Find an h using the SDP in Eq. (4.68) without the requirement β = 0, such that

α = α|h=h satisfies ‖α ‖ = minh ‖α‖.

2) Let Π be the projection onto the subspace spanned by all eigenstates corresponding to

the largest eigenvalue of α , we find an optimal density matrix ρ satisfying Π ρ Π = ρ

and

Re[Tr(ρ (iK†δh)(K̇− ih K))] = 0, ∀δh ∈ Hr. (4.72)

Validity of the algorithm to find the optimal C

For completeness, we prove the validity of the above two-step algorithm. According to

Sion’s minimax theorem [Komiya, 1988; do Rosário Grossinho and Tersian, 2001], for convex

compact sets P ⊂ Rm and Q ⊂ Rn and g : P × Q → R such that g(x, y) is a continuous

convex (concave) function in x (y) for every fixed y (x), then

max
y∈Q

min
x∈P

g(x, y) = min
x∈P

max
y∈Q

g(x, y). (4.73)

In particular, if (xN, y ) is a solution of maxy∈Q minx∈P g(x, y), then there must exists an

x such that (x , y ) is a saddle point. Let (x , yN) be a solution of minx∈P maxy∈Q g(x, y).

Then we must have

g(xN, y ) ≤ g(x , y ) ≤ g(x , yN). (4.74)

According to Eq. (4.73), g(xN, y ) = g(x , yN) and all equalities must hold for the above

equation. Moreover,

g(x , y) ≤ g(x , y ) ≤ g(x, y ), ∀(x, y) ∈ P×Q, (4.75)

which means (x , y ) is a saddle point. For example, we can take x = h ∈ Hr, y = CC† =

ρ ∈ S (HS) and g(x, y) = 4Tr(ρα). (We can also add the constraint β = 0 on h which does

not affect our discussion below). Then the solution of the above optimization problem is
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F1(Eθ) (or Fsql(Eθ) with the constraint β = 0). Note that we can always confine h in a

compact set such that the solutions are not altered and the minimax theorem is applicable.

Let (hN, ρ ) be any solution of the optimization problem maxρ minh 4Tr(ρα). Then there

exists an h such that (h , ρ ) is a saddle point. Similarly, if g(x , yN) is a solution of

minx∈P maxy∈Q g(x, y), which in our case is a SDP (Eq. (4.68)). There must exists a y

such that (x , y ) is a saddle point. Let (h , ρN) be any solution of the optimization problem

minh maxρ 4Tr(ρα). Then there exists an ρ such that (h , ρ ) is a saddle point. Moreover,

(h , ρ ) is a saddle point if and only if

(i) Tr(ρ α ) = ‖α ‖, ⇔ Tr(ρ α ) ≥ Tr(ρα ), ∀ρ.

(ii) Re[Tr(ρ (iK†δh)(K̇− ih K))] = 0, ∀δh ∈ Hr, ⇔ Tr(ρ α ) ≤ Tr(ρ α), ∀h.

It justifies the validity of the two-step algorithm we described above.

Finding the optimal C̃

Next, we describe how to find C̃� such that f(C�, C̃�) = maxC̃ f(C�, C̃) =

minh:β=0 4Tr(C�†αC�). According to Eq. (4.56),

f(C, C̃) = 4Tr(C†K̇†K̇C)− 2
r∑

i,j=1

|τ ′ij |2

λi + λj
+

(
− Tr(C̃H) +∑r

i,j=1
τ̃ijτ

′
ji

λi+λj

)2

1
2
∑r
i,j=1

|τ̃ij |2
λi+λj

, (4.76)

where we have assumed τij = Tr(C†K†iKjC) = λiδij . For a fixed C, τ̃ is a linear function

in C̃. We could always write

f(C, C̃) = f1(C) + |〈〈C̃|f2(C)〉〉|2

〈〈C̃|f3(C)|C̃〉〉
, (4.77)

where f1(C) ∈ R, f2(C) ∈ Cd×d is Hermitian and f3(C) ∈ Cd2×d2 is positive semidefinite.

Moreover, |f2(C)〉〉 is in the support of f3(C). f1,2,3(C) are functions of C only. According

to Cauchy-Schwarz inequality,

max
C̃

f(C, C̃) = f1(C) + 〈〈f2(C)|f3(C)−1|f2(C)〉〉, (4.78)
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where the maximum is attained when |C̃〉〉 = f3(C)−1|f2(C)〉〉 and −1 here means the Moore-

Penrose pseudoinverse. Therefore, we take

|C̃�〉〉 = f3(C�)−1|f2(C�)〉〉. (4.79)

To conclude, we proposed a perturbation code which could achieve the SQL upper bound

with an arbitrarily small error. We take the limit where the parameter ε which distinguishes

the logical zero and one states is sufficiently small. Note that if we take ε = 0, the probe

state will be a product state and we can only achieve F1(DL,θ). This discontinuity appears

because we must first take the limit N →∞ before taking the limit ε→ 0 and the impact

of a small ε becomes significant in the asymptotic limit.

4.5 Examples

In this section, we provide three applications of our theorems. We first compute the asymp-

totic QFI of single-qubit depolarizing channels, which were not fully explored before. It is

a case where Fsql > F1 whenever the HNKS condition is violated. Secondly, we consider

amplitude damping channels and obtain an analytical solution of a near-optimal QEC pro-

tocol. We will directly see how the gap between the attainable QFI and Fsql shrinks when

ε approaches 0. In the third example, we consider a special type of channel which always

satisfies Fsql = F1 and provide a new simple proof of it.

4.5.1 Qubit depolarizing channels

Here we calculate F1, Fsql and Fhl for depolarizing channels Nθ(ρ) = N (Uθ(ρ)) where

N (ρ) = (1− p)ρ+ pxσxρσx + pyσyρσy + pzσzρσz, (4.80)

px,y,z ≥ 0, p = px + py + pz < 1 and Uθ(·) = e−
iθ
2 σz(·)e iθ2 σz .

First, we notice that HNKS is satisfied if and only if px = pz = 0 or py = pz = 0.

When HNKS is satisfied, Fhl(Nθ) = 1. It is the same as the Fhl when there is no noise

(p = 0) because the Kraus operator (σx or σy) is perpendicular to the Hamiltonian (σz) and
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Figure 4.2: Plots of F1(Nθ) and Fsql(Nθ) as functions of px and py when pz = 0.1. The lower left
and upper right part are the plots of F1(Nθ) and Fsql(Nθ) respectively.

could be fully corrected. It is consistent with previous results for single-qubit Hamiltonian

estimation that the HL is achievable if and only if the Markovian noise is rank-one and not

parallel to the Hamiltonian [Kessler et al., 2014; Arrad et al., 2014; Dür et al., 2014; Ozeri,

2013; Unden et al., 2016; Reiter et al., 2017; Sekatski et al., 2017].

As calculated in Appendix G,

F1(Nθ) = 1− w, (4.81)

where w = 4
(
pxpy
px+py + (1−p)pz

1−p+pz

)
≤ 1. When HNKS is violated,

Fsql(Nθ) = (1− w)/w. (4.82)

In the equations above, when px = py = 0, we take pxpy
px+py = 0, in which case Nθ becomes

the dephasing channel introduced in Section 4.2 where φ = θ and p is independent of θ.

We observe that

Fsql(Nθ) = F1(Nθ)/w ≥ F1(Nθ), (4.83)

and the equality (w = 1) holds if and only if px = py and pz + px = 1/2, in which case

Fsql(Nθ) = F1(Nθ) = 0 and Nθ = N becomes a mixture of a completely dephasing channel

and a completely depolarizing channel [Watrous, 2018] where θ cannot be detected.

Fsql(Nθ) is in general non-additive. In particular, when p � 1, we have w � 1
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and Fsql(Nθ) � F1(Nθ). We also illustrate the difference between Fsql(Nθ) and F1(Nθ)

in Figure 4.2 by plotting Fsql(Nθ), F1(Nθ) as a function of px and py when pz = 0.1.

Fsql(Nθ) = F1(Nθ) = 0 at (px, py, pz) = (0.4, 0.4, 0.1). The ratio Fsql(Nθ)/F1(Nθ) increases

near the boundary of px + py < 0.9.

We remark here that when the dimension of the system is large, for example, a qudit

depolarizing channel or a collective dephasing channel [Dorner, 2012], although F1, Fsql

and the optimal input states can be found numerically via SDPs, analytical solutions may

not exist. In that case, it might be helpful to compute analytical upper bounds on the QFI

(Section 5.3.3) or consider the limit of large ensembles and use variational methods to solve

for the QFI [Knysh et al., 2014].

4.5.2 Amplitude damping channels

In the first example, we focus on computing the asymptotic QFIs for single-qubit depo-

larizing channels, but we do not provide explicit QEC protocols achieving the QFIs. Here

we present a second example, where we obtain an analytical solution of the optimal QEC

protocol and also analyze its performance when ε is not a small constant.

Here we consider amplitude damping channels N ad
ω (ρ) = N ad(Uω(ρ)) defined by

N ad(ρ) = Kad
1 ρKad†

1 +Kad
2 ρKad†

2 , (4.84)

where Kad
1 = |0〉 〈0| +

√
1− p |1〉 〈1| and Kad

2 = √p |0〉 〈1| and p represents the probability

of a particle switching from |1〉 to |0〉 which is independent of ω. Uω again is the Pauli-Z

rotation e−i
ω
2 σz . We will assume ω = 0 in this section for simplicity, because for non-zero

ω, the QFI is the same and we only need to rotate the code accordingly.

As before, amplitude damping channels follow the SQL as long as p > 0. Thus, we shall

only focus on the situation where HNKS is violated. As shown in Appendix H, Fsql(N ad
ω ) =

4(1− p)/p [Demkowicz-Dobrzański et al., 2012] and the near-optimal QEC protocol can be

obtained using our algorithm from Section 4.4.3. The QEC code is characterized by two

small but non-zero constants δ and ε, where δ is to make sure C� is full rank, originated

from step (1) in our algorithm from Section 4.4.3 and ε = o(δ) is the small constant in the
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perturbation code:

|c0〉 = sin(δ + ε) |0〉S |00〉A+cos(δ + ε) |1〉S |10〉A , (4.85)

|c1〉 = sin(δ − ε) |0〉S |01〉A+cos(δ − ε) |1〉S |11〉A . (4.86)

Note that we use trigonometric functions instead of ε and
√

1− ε2 as before just to simplify

the notations. We also need the optimal recovery channel which is determined by

Gopt = 2i√
1− p |00〉 〈11|+ −2i√

1− p |11〉 〈00| . (4.87)

The asymptotic channel QFI Fsql(DL,ω) attainable using the QEC protocol above is

Fsql(DL,ω) = |ξ̇|2/(1− |ξ|2), where

ξ = 1− 2p sin2(δ)
1− p ε2 +O(ε4), (4.88)

ξ̇ = −2i sin(2δ)ε+O(ε3), (4.89)

and

Fsql(DL,ω) = 4(1− p) cos2(δ)
p

+O(ε2). (4.90)

which approaches Fsql(N ad
ω ) for small δ. Note, however, that we cannot take δ = 0 because

then ξ̇ = 0. It means Fsql(N ad
ω ) is achievable with an arbitrarily small but non-zero error.

The exact values of ξ and ξ̇ as a function of δ and ε can be found in Appendix H.

To visualize the gap between Fsql(DL,ω) and Fsql(N ad
ω ), we plot it in Figure 4.3. We

take p = 0.5, 0.001 in Figure 4.3(a) and Figure 4.3(b), and ε = 0.9δ, 0.5δ, 0.1δ, ε → 0 in

each figure, and plot the ratio between the attainable QFI Fsql(DL,ω) and the optimal QFI

Fsql(N ad
ω ) as a function of δ. Figure 4.3(a) and Figure 4.3(b) are almost identical, showing

the robustness of our code against the change in noise rates. We also see that the curve

from ε = 0.1δ almost overlaps with the limiting one (Eq. (4.90)) as ε → 0. Moreover,

we compare our ancilla-assisted QEC protocol with ancilla-free ones which achieve at most

Fsql(N ad
ω )/4 [Knysh et al., 2014; Demkowicz-Dobrzański and Maccone, 2014]. It outper-

forms the optimal ancilla-free ones in a large range (of δ and ε), showing the power of noise-
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Figure 4.3: Plots of Fsql(DL,ω)/Fsql(N ad
ω ) as a function of δ. We take p = 0.5, 0.001 in (a) and

(b) and ε = 0.9δ, 0.5δ, 0.1δ, ε → 0 in each figure. The curves from ε = 0.1δ and ε → 0 are almost
indistinguishable from each other. The dashed lines are at 1 and 1/4 where the former represents the
upper bound Fsql(N ad

ω ) and the latter represents the optimal asymptotic QFI without the assistance
of ancillas Fsql(N ad

ω )/4 [Knysh et al., 2014; Demkowicz-Dobrzański and Maccone, 2014]. Our QEC
protocol outperforms the ancilla-free protocols even for large δ and ε.

less ancillas in phase estimation under amplitude damping noise. This type of phenomenon

does not occur in dephasing channels where ancilla-free protocols are optimal [Ulam-Orgikh

and Kitagawa, 2001; Knysh et al., 2014; Demkowicz-Dobrzański and Maccone, 2014].

4.5.3 U-covariant channels

Let U = {Ui}ni=1 ⊂ Cd×d be a set of unitary operators such that for some probability

distribution {pi}ni=1, {(pi, Ui)}ni=1 is a unitary 1-design [Dankert, 2005], satisfying

n∑
i=1

piUiAU
†
i = Tr(A)I

d
, ∀A ∈ Cd×d. (4.91)

For example, when U is a unitary orthonormal basis of Cd×d, {( 1
d2 , Ui)}d

2
i=1 is a unitary

1-design. In general, a unitary t-design is a set of unitary operators whose first t moments

are indistinguishable from the Haar random unitaries. Given a quantum channel Tθ(·) =∑r
i=1Ki(·)K†i , we call it U-covariant if for all U ∈ U, there is a unitary V such that

Tθ(UρU †) = V Tθ(ρ)V †. (4.92)

Note that here it is important that U and V are independent of θ, a feature called joint

covariance [Laurenza et al., 2018]. It could be shown that F1(Tθ) = Fsql(Tθ) when Tθ

is U-covariant, using the teleportation simulation technique [Pirandola and Lupo, 2017;
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Pirandola et al., 2017; Chiribella et al., 2009; Wilde et al., 2017]. Here we provide an

alternative proof using only the definitions of F1 and Fsql in the minimax formulation.

Let h be a solution of minh maxρ 4Tr(ρα). As explained in Section 4.4.3, for every ρ

which is a solution of maxρ minh 4Tr(ρα), (h , ρ ) is a saddle point, i.e.

4Tr(ρα ) ≤ 4Tr(ρ α ) ≤ 4Tr(ρ α), (4.93)

for all ρ and h, where α = α|h=h . Then |C 〉〉 ∈ HS ⊗ HA is an optimal input state of

a single quantum channel Tθ, if and only if ρ = C C † satisfies Eq. (4.93). According to

Eq. (4.92), if |C 〉〉 is an optimal input, |UC 〉〉 = (U⊗I)|C 〉〉 is also an optimal input for all

U ∈ U and satisfies Eq. (4.93). Then ∑n
i=1 piUiρ U

†
i = I

d also satisfies Eq. (4.93), implying

the maximally entangled state | Id〉〉 is an optimal input for Tθ. The discussion above also

works for T ⊗Nθ because T ⊗Nθ is U⊗N -covariant and {(Πkpik ,⊗kUik)} is a unitary 1-design

on CNd×Nd. Therefore | I
dN
〉〉 is an optimal input for T ⊗Nθ , which implies FN (Tθ) = NF1(Tθ).

4.5.4 Mach-Zehnder interferometer

Here we consider a two-arm Mach-Zehnder interferometer with one noisy arm and one

noiseless arm, where the input state is an M -photon state

|ψ0〉 =
M∑
m=0

γm |m〉 |M −m〉 . (4.94)

Here |m,M −m〉 represents a two-mode Fock state where m is the number of photons in

the first mode and M − m is the number of photons in the second. The noisy quantum

channel Mθ(·) acting on the first mode is described by the Kraus operators

Ki =

√
(1− η)i

i! e−iθa
†aη

1
2a
†aai, i = 0, 1, . . . ,M, (4.95)

where θ is the unknown phase to be estimated, a is the photon annihilation operator,

0 < η < 1 is the loss rate and Ki is associated with losing i photons. Note that we are

allowed to truncate the maximum photon number at M because of the restriction on the

input state (Eq. (4.94)).

121



We will show that the algorithm described in Section 4.4.3 naturally gives a SDP solv-

ing the optimal {γm}Mm=0. We emphasize here that it was already shown in [Demkowicz-

Dobrzański et al., 2009] that solving the optimal input state in an interferometer with two

noisy arms is a convex optimization problem. Here we provide an alternative algorithm

as a demonstration of our approach which also contains a proof that states of the form

Eq. (4.94) are optimal for Mθ.

Recall that givenMθ, we can find an optimal input state achieving F1(Mθ) by purifying

ρ which is a solution of

F1(Mθ) = max
ρ

min
h

4Tr(ρα) = min
h

4 ‖α‖ . (4.96)

We show that the optimization problem above has a diagonal solution of ρ. Note that

α =
M∑
i=0

K̇i − i
M∑
i,j=0

hijKj

†K̇i − i
M∑
j′=0

hij′Kj′


=

M∑
i=0

(
K̇i − ihiiKi

)† (
K̇i − ihiiKi

)
+

M∑
i=0

∑
j 6=i

K†jh
∗
ijhijKj + off-diagonal terms,

(4.97)

where we divided α into diagonal terms and off-diagonal terms (in the Fork basis). The

second term is always non-negative and the off-diagonal terms will only increase ‖α‖. It is

then clear that we can always assume the optimal h and the corresponding α are diagonal

because

‖α‖ ≥
∥∥∥ M∑
i=0

(
K̇i − ihiiKi

)†(
K̇i − ihiiKj

)∥∥∥. (4.98)

Choose a diagonal h and let Π be the projection onto the subspace spanned by all eigen-

states corresponding to the largest eigenvalue of α , ρ is optimal if it satisfies Π ρ Π = ρ

and

Re[Tr(ρ (iK†δh)(K̇− ih K))] = 0, ∀δh ∈ HM+1. (4.99)

We observe that when ρ is optimal, the equation above still holds by replacing ρ with its

diagonal part. Then any diagonal ρ which satisfies

Re[Tr(ρ iK†i δhii(K̇i − ihiiKi))] = 0, ∀{δhii}Mi=0 ∈ RM+1 (4.100)
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is optimal. Therefore, we can always assume the input state has the form Eq. (4.94).

Moreover, by assuming h and ρ are diagonal, we only need to deal with diagonal operators in

this algorithm and the problem is essentially a quadratically constrained quadratic program,

which might admit more efficient numerical methods than the SDP formulation.
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Chapter 5

Application: Covariant Quantum
Error Correction

The Eastin–Knill theorem [Eastin and Knill, 2009] (see also [Bravyi and König, 2013;

Pastawski and Yoshida, 2015; Jochym-O’Connor et al., 2018; Wang et al., 2020]) states that

any non-trivial local-error-correcting quantum code does not admit transversal implemen-

tations of a universal set of logical gates, ruling out the possibility of realizing fault-tolerant

quantum computation using only transversal gates. In particular, any finite-dimensional

local-error-correcting quantum code only admits a finite number of transversal logical oper-

ations, which forbids the existence of codes covariant with continuous symmetries (discrete

symmetries are allowed though [Hayden et al., 2017; Faist et al., 2020]). More generally,

quantum codes under symmetry constraints, namely covariant codes, are of great practical

and theoretical interest. In general, a quantum code is covariant with respect to a logical

Hamiltonian HL and a physical Hamiltonian HS if any symmetry transformation e−iHLθ is

encoded into a symmetry transformation e−iHSθ in the physical system.

Although covariant codes cannot be perfectly local-error-correcting, they can still ap-

proximately correct errors with infidelity depending on the number of subsystems, the

dimension of each subsystem, etc. The quantifications of such infidelity in covariant QEC

were explored recently, leading to an approximate, or robust, version of the Eastin–Knill

theorem [Faist et al., 2020; Woods and Alhambra, 2020], using complementary channel

techniques [Bény and Oreshkov, 2010; Hayden et al., 2008; Bény et al., 2018]. Note that
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these existing results only apply to erasure errors.

In this chapter, we investigate covariant QEC using quantum channel estimation theory

leading to a series of improved understandings and bounds on the performance of covariant

QEC. Covariant QEC is naturally a quantum metrological protocol—estimating the angle of

any rotation of the physical system is equivalent to estimating that of the logical system with

protection against noise. We already knew from Chapter 4 that perfectly error-correcting

codes admitting a non-trivial logical Hamiltonian does not exist if the physical Hamiltonian

fall into the Kraus span of the noise channel, also known as the HKS condition. It is also

a sufficient condition of the non-existence of perfectly covariant QEC codes. When the

HKS condition is satisfied, we establish a connection between the asymptotic channel QFI

and the performance (or infidelity) of covariant QEC, which gives rise to the desired lower

bound.

Our approach to covariant QEC is innovative and also advantageous compared to pre-

vious ones in many ways. The bounds generalize the no-go theorems of covariant QEC

from local Hamiltonians with erasure errors to generic Hamiltonian and noise structures.

In the special case of erasure noise, our lower bound improves the previous results in the

small infidelity limit [Faist et al., 2020]. Furthermore, we shall demonstrate that there is an

example of covariant codes called thermodynamic codes [Faist et al., 2020; Brandão et al.,

2019] that saturates the lower bound for erasure noise and matches the scaling of the lower

bound for depolarizing noise, while previous bounds only apply to the erasure noise setting

and were not known to be saturable [Faist et al., 2020].

5.1 Covariant codes

A quantum code is a subspace of a physical system S, usually defined by the image of an

(usually isometric) encoding channel ES←L from a logical system L. We call a code ES←L

covariant if there exists a logical Hamiltonian HL and a physical Hamiltonian HS such that

ES←L ◦ UL,θ = US,θ ◦ ES←L, ∀θ ∈ R, (5.1)
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where UL,θ(ρL) = e−iHLθρLe
iHLθ and US,θ(ρS) = e−iHSθρSe

iHSθ are the symmetry trans-

formations on the logical and physical systems, respectively. We assume the dimensions of

the physical and logical systems dS and dL are both finite and HL is non-trivial (HL 6∝ 1).

For simplicity, we also assume all Hamiltonians in this paper are traceless and we use ∆HL

and ∆HS to denote the difference between the maximum and minimum eigenvalues of the

operators.

As described in Section 2.4.2, we use the worse-case entanglement fidelity to quantify

the code infidelity

ε(NS , ES←L) = 1− max
RL←S

f2
B(RL←S ◦ NS ◦ ES←L,1L). (5.2)

We call a code ES←L ε-correctable under NS , if ε ≥ ε(NS , ES←L). We will use Ropt
L←S

to represent the optimal recovery channel and IL to denote the effective noise channel

RL←S ◦NS ◦ES←L in the logical system. We ignore highly inaccurate codes and will always

assume ε < 1/2 in this paper.

5.2 Lower bound on the code infidelity

A good approximately error-correcting covariant code naturally provides a good quantum

sensor to estimate an unknown parameter θ in the symmetry transformation e−iHSθ. Con-

sider a quantum signal e−iHSθ in a physical system, for example, the magnetic field in a

spin system with HS being the angular momentum. The optimal sensitivity is usually lim-

ited by the strength of noise in the system. Instead of using the entire system to probe

the signal, one could prepare an encoded probe state using covariant codes where HS is

mapped into HL in the logical system. For covariant codes with low infidelity, the noise

will be significantly reduced in the logical system and therefore provide a good sensitivity

of the signal.

Theorem 4.1 prevents the existence of perfectly error-correcting covariant codes in

the above scenario. In particular, it was known that given a noise channel NS(·) =∑r
i=1KS,i(·)K†S,i and a physical Hamiltonian e−iHSθ, there exist an encoding channel ES←L
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and a recovery channel RL←S such that

RL←S ◦ NS ◦ US,θ ◦ ES←L (5.3)

is a non-trivial unitary channel only if HS 6∈ spanH{K
†
S,iKS,j ,∀i, j}. However, the above

channel (Eq. (5.3)) with respect to any perfectly error-correcting covariant code is simply

UL,θ. Therefore, we conclude that perfectly error-correcting covariant codes does not exist

when

HS ∈ spanH{K
†
S,iKS,j ,∀i, j}, (5.4)

which we call the “Hamiltonian-in-Kraus-span” (HKS) condition. One could check that

local Hamiltonians with non-trivial local errors is a special case of the HKS condition. Note

that the no-go result might be circumvented when the system dimension is infinite [Hayden

et al., 2017; Faist et al., 2020].

To obtain a lower bound of the code infidelity using quantum channel estimation theory,

we will use Theorem 4.2, which provides a single-letter expression for Fsql(Nθ):

Fsql(Nθ) = lim
N→∞

F (N⊗Nθ )
N

=


4 minh:βθ=0 ‖αθ‖ (S),

+∞ otherwise,

(S): i
r∑
i=1

K†i,θ∂θKi,θ ∈ span{K†i,θKj,θ,∀i, j},

(5.5)

where Nθ(·) = ∑r
i=1Ki,θ(·)K†i,θ, h ∈ Hr and

αθ = (∂θKθ + ihKθ)†(∂θKθ + ihKθ), (5.6)

βθ = K†θhKθ − iK†θ∂θKθ. (5.7)

Note that when (S) is violated, Fsql(Nθ) =∞ because we will have F (N⊗Nθ ) ∝ N2. We will

call Fsql(Nθ) the regularized SLD QFI of Nθ in this chapter. It is by definition monotonic,

satisfying Fsql(Φ1 ◦ (Nθ ⊗ 1) ◦ Φ2) ≤ Fsql(Nθ) where Φ1,2 are any parameter-independent

channels, due to the monotonicity of the state QFI.
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In order to derive a lower bound on the infidelity of covariant codes using the channel

QFI, we note that the channel QFI provides upper limit to the sensitivity of θ for NS,θ =

NS ◦ US,θ, which cannot be broke using covariant QEC. For example, consider N logical

qubits each under a unitary evolution e−iθHL with a noise rate ε. It is known that the

SLD QFI of a noiseless N -qubit GHZ state is (∆HL)2N2 [Giovannetti et al., 2006]. Taking

N = Θ(1/ε), the total noise can be bounded by a small constant, and the state SLD QFI

per qubit is still roughly Θ((∆HL)2N) = Θ((∆HL)2/ε), which is always no greater than the

regularized channel SLD QFI Fsql(NS,θ) before QEC. Thus, ε must be lower bounded by

Θ((∆HL)2/Fsql(NS,θ)). In fact, using the regularized SLD QFI, we can prove the following

theorem:

Theorem 5.1. Suppose a covariant code ES←L is ε-correctable under a noise channel

NS(·) = ∑r
i=1KS,i(·)K†S,i. If the HKS condition is satisfied, i.e.

HS ∈ span{K†S,iKS,j , ∀i, j}, (5.8)

then ε is lower bounded as follows,

ε · 1− ε
(1− 2ε)2 ≥

(∆HL)2

4Fsql(NS , HS) , (5.9)

where Fsql(NS , HS) is the regularized SLD QFI of NS,θ.

Specifically, Fsql(NS , HS) = 4 minh:βS=0 ‖αS‖, h is a Hermitian operator in Cr×r. αS

and βS are Hermitian operators acting on S defined by

αS = K†Sh
2KS −H2

S , βS = K†ShKS −HS . (5.10)

We remark that Theorem 5.1 holds for non-isometric encoding channels, widening the

scope of Theorem 1 in [Faist et al., 2020].

5.2.1 Proof of Theorem 5.1

The main obstacle to proving Theorem 5.1 is to relate the infidelity of covariant codes to the

QFI of the effective quantum channel in the logical system. Here we overcome this obstacle
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(a)

(b)

Figure 5.1: Reduction of NS,θ = NS ◦ US,θ to dephasing channels using ancilla-assisted QEC.
(a) represents the quantum channel RB←SA ◦ (NS,θ ⊗ 1A) ◦ ESA←B with a channel QFI no larger
than F (NS,θ). Because of the covariance of the code, (a) is equivalent to (b) which consists of a
Pauli-Z rotation UB,θ and a θ-independent dephasing channel IB whose noise rate is smaller than
ε(NS , ES←L) (see Lemma 5.1).

and provide a proof of Theorem 5.1 by employing ancilla-assisted QEC to reduce NS,θ to

dephasing channels whose QFI has simple mathematical forms and then connecting the

noise rate of the dephasing channels to the infidelity of the covariant codes (see Figure 5.1).

We define single-qubit dephasing channels to be

Dp,φ(ρ) = (1− p)e−i
φ
2Zρei

φ
2Z + pe−i

φ
2ZZρZei

φ
2Z , (5.11)

where Z is the Pauli-Z operator, 0 < p < 1/2 and φ is real. When φ is a function of θ, we

could calculate the regularized SLD QFI of Dp,φθ (Section 4.2):

Fsql(Dp,φθ) = (1− 2p)2(∂θφθ)2

4p(1− p) , (5.12)

which are both inversely proportional to the noise rate p when p is small—a crucial feature

in deriving the lower bounds.

Next, we present an ancilla-assisted QEC protocol to reduce NS to dephasing channels

with a noise rate lower than ε(NS , ES←L). Let |0L〉 and |1L〉 be eigenstates respectively

corresponding to the largest and the smallest eigenvalues of HL. Consider the following
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two-dimensional ancilla-assisted code

Erep
LA←B(|0B〉) = |0L0A〉 , Erep

LA←B(|1B〉) = |1L1A〉 , (5.13)

where A is a noiseless ancillary qubit and the superscript rep means “repetition”. The

encoding channel from the two-level system C to SA will simply be ESA←B =
(
ES←L ⊗

1A

)
◦ Erep

LA←B. ESA←B is still a covariant code whose the logical and physical Hamiltonians

are

HB = ∆HL

2 · ZB, HSA = HS ⊗ 1A. (5.14)

The noiseless ancillary qubit will help us suppress off-diagonal noises in the system because

any single qubit bit-flip noise on L could be fully corrected by mapping |iLjA〉 to |jB〉 for all

i, j. In fact, NS will be reduced to a dephasing channel, as shown in the following lemma:

Lemma 5.1. Consider a noise channel NSA = NS ⊗ 1A. There exists a recovery channel

RB←SA such that the effective noise channel IB = RB←SA ◦ NSA ◦ ESA←B is a dephasing

channel, satisfying

IB = DB,ε′,φ′ , (5.15)

where ε′ ≤ ε(NS , ES←L).

Proof. To prove the lemma, we first calculate the worst-case entanglement fidelity for de-

phasing channels (Eq. (5.11)). We use the following formula for the worst-case entanglement

fidelity [Schumacher, 1996]:

f2(Dp,φ,1) = min
|ψ〉
〈ψ| (Dp,φ ⊗ 1)(|ψ〉 〈ψ|) |ψ〉 . (5.16)

Let |ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉, then
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(Dp,φ ⊗ 1)(|ψ〉 〈ψ|) =

α00α
∗
00 α00α

∗
01 (1− 2p)e−iφα00α

∗
10 (1− 2p)e−iφα00α

∗
11

α00α
∗
01 α01α

∗
01 (1− 2p)e−iφα01α

∗
10 (1− 2p)e−iφα01α

∗
11

(1− 2p)eiφα10α
∗
00 (1− 2p)eiφα10α

∗
01 α10α

∗
10 α10α

∗
11

(1− 2p)eiφα11α
∗
00 (1− 2p)eiφα11α

∗
01 α11α

∗
10 α11α

∗
11


. (5.17)

Then

1− f2(Dp,φ,1) = max
α00,01,10,11

2Re[(1− (1− 2p)e−iφ)](|α00|2 + |α01|2)(|α10|2 + |α11|2)

= 1
2(1− (1− 2p) cosφ) ≥ p.

(5.18)

Consider the following recovery channel

RB←SA = Rrep
B←LA ◦

(
Ropt
L←S ⊗ 1A

)
, (5.19)

where Rrep
B←LA(ρLA) = ∑dL−1

i=0
∑1
j=0RijρLAR

†
ij , where Rij = |jB〉 〈iLjA|. One could check

that

IB(|kB〉 〈jB|) =


|kB〉 〈jB| , k = j,

(1− 2ε′)eiφ′(k−j) |kB〉 〈jB| , k 6= j,

(5.20)

which indicates that IB = DB,ε′,φ′ (Eq. (5.15)). Here,

ε′ ≤ 1− f2(IB,1B) ≤ 1− f2(Iopt
L ,1L) = ε(NS , ES←L). (5.21)

where the first inequality follows from the worst-case entanglement fidelity for dephasing

channels, and the the second inequality follows from 1B = Rrep
B←LA ◦ E

rep
LA←B and the mono-

tonicity of the fidelity [Nielsen and Chuang, 2010].

Lemma 5.1 shows that NS could be reduced to a dephasing channel IB through ancilla-

assisted QEC. Consider parameter estimation of θ in the quantum channel NS,θ = NS ◦US,θ.
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We have the error-corrected quantum channel

NB,θ = RB←SA ◦
(
NS,θ ⊗ 1A

)
◦ ESA←B = IB ◦ UB,θ, (5.22)

equal to a dephasing channel with noise rate ε′ and phase φθ = φ′+∆HLθ. The monotonicity

of the regularized channel SLD QFI implies that

Fsql(NS,θ) ≥ Fsql(NB,θ), (5.23)

where

Fsql(NS,θ) =


Fsql(NS , HS) HS ∈ span{K†S,iKS,j ,∀i, j},

+∞ otherwise,
(5.24)

and

Fsql(NB,θ) = (1− 2ε′)2(∆HL)2

4ε′(1− ε′) . (5.25)

Theorem 5.1 then follows from Eq. (5.23) and ε′ ≤ ε < 1/2.

5.3 Local Hamiltonian and local noise

One of the most common scenarios where covariant codes is considered is when S is an

n-partite system, consisting of subsystems S1, S2, . . . , Sn. The physical Hamiltonian and

the noise channel are both local, given by

HS =
n∑
k=1

HSk , NS =
n⊗
k=1
NSk , NSk(·) =

rk∑
i=1

KSk,i(·)K
†
Sk,i

. (5.26)

In general, it takes time exponential in the number of subsystems to solve our lower

bounds on the code infidelity. However, when the Hamiltonians and the noises are local,

using the additivity of Fsql (proven later), we could directly calculate the lower bounds,

requiring only computation of the subsystem QFI. To be specific, for ε-correctable codes

under NS , Theorem 5.1 indicates that when
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HSk ∈ span{K†Sk,iKSk,j ,∀i, j}, ∀k, (5.27)

ε · 1− ε
(1− 2ε)2 ≥

(∆HL)2

4∑n
k=1 Fsql(NSk , HSk) . (5.28)

Instead of finding bounds for local noise channels NS with certain noise rates, we some-

times are more interested the capability of a code to correct single errors (each described

by MSk). Consider the single-error noise channel

MS =
n∑
k=1

qkMSk ,
n∑
k=1

qk = 1, (5.29)

where qk is the probability that an error MSk occurs on the k-th subsystem. In order to

obtain lower bounds on the code infidelity under noise channels MS , we use the following

local noise channel

NS(δ) =
n⊗
k=1
NSk(δ) =

n⊗
k=1

(
(1−δqk)1+δqkMSk

)
= (1−δ)1+δ

n∑
k=1

qkMSk +O(δ2), (5.30)

whose local noise rates are proportional to a small positive parameter δ. Using the concavity

of f2(Φ,1), we have

f2(RL←S ◦ NS(δ) ◦ ES←L,1L) ≥ (1− δ) + δf2(RL←S ◦MS ◦ ES←L,1L) +O(δ2). (5.31)

Taking the limit δ → 0+, we must have ε(MS , ES←L) ≥ lim infδ→0+
1
δ · ε(NS(δ), ES←L).

Therefore, for ε-correctable codes under single-error noise channelsMS , Theorem 5.1 indi-

cates that when Eq. (5.27) is satisfied,

ε · 1− ε
(1− 2ε)2 ≥ lim inf

δ→0+

(∆HL)2

4δ∑n
k=1 Fsql(NSk(δ), HSk) . (5.32)

5.3.1 Additivity of Fsql

Here we prove the additivity of the regularized SLD QFI.
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F reg(Nθ ⊗ Ñθ) = F reg(Nθ) + F reg(Ñθ), (5.33)

for arbitrary quantum channels Nθ and Ñθ.

First, according to the additivity of the state QFI, we must have

F reg(Nθ ⊗ Ñθ) ≥ F reg(Nθ) + F reg(Ñθ). (5.34)

Thus, we only need to prove

F reg(Nθ ⊗ Ñθ) ≤ F reg(Nθ) + F reg(Ñθ). (5.35)

We use the following definition of the regularized SLD QFI:

F reg(Nθ) =


4 minK′:β=0 ‖α‖ , i

∑r
i=1(∂θKi)†Ki ∈ span{K†iKj ,∀i, j},

+∞ otherwise,
(5.36)

where K′ is any set of Kraus operators representing Nθ, α = ∑r
i=1(∂θK ′i)†(∂θK ′i) and

β = i
∑r
i=1(∂θK ′i)†K ′i. Without loss of generality, assume both F reg(Nθ) and F reg(Ñθ) are

finite, i.e. i∑r
i=1(∂θKi)†Ki ∈ span{K†iKj , ∀i, j} and i∑r̃

i=1(∂θK̃i)†K̃i ∈ span{K̃†i K̃j , ∀i, j}.

We first note that F reg(Nθ ⊗ Ñθ) is also finite, because

i
r∑
i=1

r̃∑
j=1

(∂θ(Ki ⊗ K̃j))†(Ki ⊗ K̃j) = i
r∑
i=1

(∂θKi)†Ki ⊗ 1 + i
r̃∑
j=1

1⊗ (∂θK̃j)†K̃j (5.37)

∈ span{1⊗K†iKj , K̃
†
i K̃j ⊗ 1,∀i, j}. (5.38)

According to Eq. (5.36), there exists K′ and K̃′ such that β = β̃ = 0 and

Fsql(Nθ) = 4 ‖α‖ , Fsql(Ñθ) = 4 ‖α̃‖ . (5.39)

Then ˜̃K ′ij = K ′i ⊗ K̃ ′j is a set of Kraus operators representing Nθ ⊗ Ñθ.
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˜̃α =
r∑
i=1

r̃∑
j=1

∂θ( ˜̃Kij)†∂θ( ˜̃Kij) = α⊗ 1 + 1⊗ α̃+ 2β ⊗ β̃ = α⊗ 1 + 1⊗ α̃, (5.40)

˜̃β = β ⊗ 1 + 1⊗ β̃ = 0. (5.41)

Therefore Fsql(Nθ ⊗ Ñθ) ≤ 4
∥∥ ˜̃α
∥∥ = 4 ‖α‖+ 4 ‖α̃‖ = F reg(Nθ) + F reg(Ñθ).

5.3.2 Erasure noise

Now we present our bounds for the local erasure noise channelN e(ρ) = (1−p)ρ+p |vac〉 〈vac|

on each subsystem. Here p is the noise rate and we use the vacuum state |vac〉 to represent

the state of the erased subsystems. The Kraus operators for N e are

K1 =
√

1− p1, Ki+1 = √p |vac〉 〈i| , ∀1 ≤ i ≤ d. (5.42)

Different subsystems can have different noise rates pk and dimensions dk.

We first calculate Fsql(N e, H) where N e = (1 − p)ρ + p |vac〉 〈vac|. Using the Kraus

operators in Eq. (5.42),

β = K†hK−H ⇔ h =


h11
1−p 0

0 H−h111
p

 . (5.43)

Then

α = K†h2K−H2 = h2
11

1− p + (H − h111)2

p
−H2 = 1− p

p
H2 − 2h11

p
H + h2

11
p(1− p) , (5.44)

F reg
S (N e, H) = 4 min

h11
‖α‖ = 4 max

ρ
min
h11

Tr(ρα)

= 4 max
ρ

1− p
p

(
Tr(H2ρ)− Tr(ρH)2) = 1− p

p
(∆H)2,

(5.45)

where we use the minimax theorem [Komiya, 1988; do Rosário Grossinho and Tersian, 2001]

in the second step.

Therefore, the regularized SLD QFI for erasure noise is
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Fsql(N e, H) = (∆H)2 1− p
p

. (5.46)

For ε-correctable codes under local erasure noise channel N e
S = ⊗n

k=1N e
Sk

, we have

ε · 1− ε
(1− 2ε)2 ≥

(∆HL)2

4∑n
k=1

1−pk
pk

(∆HSk)2
, (5.47)

using Eq. (5.28). For ε-correctable codes under single-error erasure noise channel Me
S =∑n

k=1 qkMe
Sk

where Me
Sk

(ρSk) = |vac〉 〈vac|Sk ,

ε · 1− ε
(1− 2ε)2 ≥

(∆HL)2

4∑n
k=1

1
qk

(∆HSk)2 , (5.48)

using Eq. (5.32).

In particular, when the probability of erasure is uniform on each subsystem, i.e. qk = 1
n ,

we have

ε · 1− ε
(1− 2ε)2 ≥

(∆HL)2

4n∑n
k=1(∆HSk)2 . (5.49)

As a comparison, Theorem 1 in [Faist et al., 2020] showed that

ε ≥ (∆HL)2

4n2 maxk(∆HSk)2 . (5.50)

Our bound Eq. (5.49) has a clear advantage in the small infidelity limit by improving

the maximum of ∆HSk to their quadratic mean. A direct implication of Eq. (5.49) is an

improved approximate Eastin–Knill theorem which establishes the infidelity lower bound

for covariant codes with respect to special unitary groups. SU(dL)-covariant codes in an

n-partite system S are defined by the encoding channels ES←L which satisfy

ES←L
(
UL(g)(·)U †L(g)

)
=
( n⊗
k=1

USk(g)
)
ES←L(·)

( n⊗
k=1

U †Sk(g)
)
, ∀g ∈ SU(dL), (5.51)

where USk(g) and UL(g) are unitary representations of SU(dL). It was shown in Theorem

18 in the Supplemental Material of [Faist et al., 2020] that fixing HL = diag(1, 0, . . . ,−1)

and letting HSk be the corresponding generator acting on the subsystem k, we have
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dk ≥
(
dL − 1 + d‖HSk‖e

dL − 1

)
, (5.52)

where d‖HSk‖e denotes the closest integer no smaller than ‖HSk‖. Using the inequality(a+b
a

)
≥ (1 + b

a)a,

dk ≥
(
dL − 1 + d‖HSk‖e

dL − 1

)dL−1
, ⇒

(
exp

( ln dk
dL − 1

)
− 1

)
(dL − 1) ≥ ‖HSk‖ , (5.53)

⇒
n∑
k=1

(
exp

( ln dk
dL − 1

)
− 1

)2
(dL − 1)2 ≥ 1

4
∑
k

(∆HSk)2. (5.54)

Then using Eq. (5.49), we have for any ε ≥ ε(MS , ES←L),

ε · 1− ε
(1− 2ε)2 ≥

1
4n∑n

k=1
(

exp
( ln dk
dL−1

)
− 1

)2(dL − 1)2
. (5.55)

For large dL,

ε · 1− ε
(1− 2ε)2 ≥

1
4n∑n

k=1(ln dk)2 +O

( 1
n2dL

)
. (5.56)

Compared to Theorem 4 in [Faist et al., 2020]:

ε ≥
( 1

2nmaxk ln dk
+O

( 1
ndL

))2
, (5.57)

our bound improves the maximum of ln dk in the denominator to their quadratic mean.

Moreover, it works for not only single-error erasure noise channelMS = ∑n
k=1

1
nMSk where

MSk(·) = |vac〉 〈vac|Sk , but also single-error depolarizing noise channelMS = ∑n
k=1

1
nMSk

where MSk(·) = 1

dk
.

5.3.3 Depolarizing noise

Next, we present our bounds for local depolarizing noise channel N d(ρ) = (1− p)ρ+ p1d on

each subsystem, which has not been studied before. Again, we assume different subsystems

can have different noise rates pk and dimensions dk. The Kraus operators for N d are

K1 =

√
1− d2 − 1

d2 p1, Ki =
√
p

d2Ui−1, ∀2 ≤ i ≤ d2, (5.58)
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where {U0 = 1, U1, . . . , Ud2
k
−1} is a unitary orthonormal basis in Cd×d.

In order to apply Theorem 5.1, we need to solve the following SDP

Fsql(N d, H) = min
h:β=0

4 ‖α‖ , (5.59)

where β = K†hK−H and α = K†h2K−H2.

When d = 2, using Section 4.5.1, we have Fsql(N d, H) = (∆H)2 2(1−p)2

p(3−2p) . When all

subsystems are qubits, for ε-correctable codes under local depolarizing noise channels N d
S =⊗n

k=1N d
Sk

,

ε · 1− ε
(1− 2ε)2 ≥

(∆HL)2

4∑n
k=1

2(1−pk)2

pk(3−2pk)(∆HSk)2
, (5.60)

using Eq. (5.28) and for ε-correctable codes under single-error depolarizing noise channels

Md
S = ∑n

k=1 qkMd
Sk

where Md
Sk

(ρSk) = 1

2 ,

ε · 1− ε
(1− 2ε)2 ≥

3(∆HL)2

8∑n
k=1

1
qk

(∆HSk)2 , (5.61)

using Eq. (5.32).

The situation is more complicated when d > 2, because the regularized SLD QFI may

not have a closed-form expression. Instead, we can show that

Fsql(N d, H) ≤ (∆H)2 (1− p)2

p(1 + 2
d2 − p)

≤ (∆H)2 1− p
p

, (5.62)

by choosing a special h which satisfies β = 0 to calculate an upper bound on 4 minh:β=0 ‖α‖.

To prove Eq. (5.62), note that general depolarizing channels N d(ρ) = (1−p)ρ+p1d have

the Kraus operators

K1 =
√
x1, Ki = √yUi−1,∀2 ≤ i ≤ d2, (5.63)

where we define x = 1− d2−1
d2 p, y = 1

d2 p. Any h̃ satisfying β̃ = K†h̃K−H = 0 provides an

upper bound on Fsql(N d, H) through

Fsql(N d, H) = 4 min
h:β=0

‖α‖ ≤ 4 ‖α‖ |h=h̃. (5.64)
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To find a suitable h̃ which provides a good upper bound on Fsql(N d, H), we use h̃ which is

the solution of

4 min
h:β=0

Tr(α). (5.65)

The solution of Eq. (5.65) is

h̃ = 1
2zd



0
√
xy

x+yTr(HU †1U0) · · ·
√
xy

x+yTr(HU †d2−1U0)
√
xy

x+yTr(HU †0U1) 0 · · · 1
2Tr(HU †d2−1U1)

...
... . . . ...

√
xy

x+yTr(HU †0Ud2−1) 1
2Tr(HU †1Ud2−1) · · · 0


, (5.66)

where z = xy
x+y + y(d2−2)

4 and we used the assumption Tr(H) = 0 and

K†h̃2K =
( 1

4z −
y

4z2

(1
4 −

xy

(x+ y)2

)
− 1

)
H2 + y

4z2d

(
x

x+ y
− 1

2

)2
Tr(H2)1. (5.67)

Using ‖H2‖ = (∆H)2

4 and Tr(H2) ≤ d
4(∆H)2,

Fsql(N d, H) ≤ 4 ‖α‖ ≤ (∆H)2
( 1

4z − 1
)

= (∆H)2 d2(1− p)2

p(d2(1− p) + 2) , (5.68)

proving Eq. (5.62).

Note that the right-hand side of Eq. (5.62) is equal to the regularized SLD QFI for

erasure channels Eq. (5.46). We conclude that Eqs. (5.47)-(5.49) hold true for general

depolarizing channels as well, regardless of the dimensions of subsystems. We also remark

that the upper bound on the regularized SLD QFI for depolarizing channels we derived here

might be of independent interest in quantum metrology.

5.3.4 Example: Thermodynamic codes

Finally, we provide an example saturating the lower bound for single-error erasure noise

channels in the small infidelity limit and matching the scaling of the lower bound for single-

error depolarizing noise channels, while previously only the scaling optimality for erasure
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channels was demonstrated [Faist et al., 2020].

We consider the following two-dimensional thermodynamic code [Brandão et al., 2019;

Faist et al., 2020; Ouyang et al., 2019]

ES←L(|0L〉) = |c0〉 = |mn〉 , ES←L(|1L〉) = |c1〉 = |(−m)n〉 , (5.69)

where

|(±m)n〉 =
(

n
n±m

2

)− 1
2 ∑
j:
∑

k
jk=±m

|j〉 , (5.70)

and j = (j1, j2, . . . , jn) ∈ {−1, 1}n. The logical subspace is spanned by two Dicke states

with different values of the total angular momentum along the z-axis. We also assume

n+m is an even number and 3 ≤ m� N . It is a covariant code whose physical and logical

Hamiltonians are

HS =
n∑
k=1

(σz)Sk , HL = mZL, (5.71)

where σz = |1〉 〈1| − |−1〉 〈−1|.

Let |c(k)
0,±1〉 = |(m± 1)n−1〉S\Sk |vac〉Sk , |c(k)

1,±1〉 = |(−m± 1)n−1〉S\Sk |vac〉Sk , which rep-

resent the logical states after an erasure error occurs on Sk, and Π⊥ be the projector onto

the orthogonal subspace of span{|c(k)
0,±1〉 , |c

(k)
1,±1〉 ,∀k}. Consider the erasure noise channel

MS = 1
n

∑n
k=1MSk where MSk(ρSk) = |vac〉 〈vac|Sk and the recovery channel

RL←S(ρS) =
n∑
k=1

1∑
i,i′=0

∑
j=±1

|ci〉 〈c(k)
i,j | ρS |c

(k)
i′,j〉 〈ci′ |+ Tr(Π⊥ρSΠ⊥) |c0〉 〈c0| , (5.72)

which maps the state |c(k)
i,±1〉 to |ci〉 for all k. Then we could verify that RL←S ◦MS ◦ES←L =

Dp,0 with p = 1
2
(
1−

√
1− m2

n2
)
. Using the relation between the noise rate p and the worst-

case entanglement fidelity of a dephasing channel, we must have

ε(MS , ES←L) ≤ 1− f2(RL←S ◦MS ◦ ES←L,1L) (5.73)

= 1
2

(
1−

√
1− m2

n2

)
= m2

4n2 +O

(
m4

n4

)
. (5.74)
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On the other hand, the lower bound (Eq. (5.49)) for ε = ε(MS , ES←L) is given by

ε · 1− ε
(1− 2ε)2 ≥

m2

4n2 , (5.75)

which is saturated asymptotically when m/N → 0.

Next, we consider the single-error depolarizing noise channelMS = 1
n

∑n
k=1MSk where

MSk(ρSk) = 1

2 . It is in general difficult to write down the optimal recovery map explicitly.

Instead, in order to calculate ε(MS , ES←L), we apply Lemma 2.2 to calculate an upper

bound on the infidelity of thermodynamic codes in the limit m/N → 0.

Let Π = |c0〉 〈c0|+ |c1〉 〈c1|, M =MS with Kraus operators

Ek,i = 1
2
√
n

(Ui)Sk , i = 0, 1, 2, 3, (5.76)

where U0, U1, U2, U3 are respectively 1, σx = |1〉 〈−1|+ |−1〉 〈1| , σy = −i |1〉 〈−1|+i |−1〉 〈1| ,

and σz = |1〉 〈1| − |−1〉 〈−1|.

For m ≥ 3, 〈c0|E|c1〉 = 0 for any operator E acting on at most two qubits. Here we

consider δAij ∝ (|c0〉 〈c0| − |c1〉 〈c1|). That is, let δAij = Bij(|c0〉 〈c0| − |c1〉 〈c1|). A and B

are 4n× 4n matrices

A =



A(0,0) A(0,1) A(0,2) A(0,3)

A(1,0) A(1,1) A(1,2) A(1,3)

A(2,0) A(2,1) A(2,2) A(2,3)

A(3,0) A(3,1) A(3,2) A(3,3)


, B =



B(0,0) B(0,1) B(0,2) B(0,3)

B(1,0) B(1,1) B(1,2) B(1,3)

B(2,0) B(2,1) B(2,2) B(2,3)

B(3,0) B(3,1) B(3,2) B(3,3)


, (5.77)

where A
(i,j)
kk′ = 1

2(〈c0|E†k,iEk′,j |c0〉 + 〈c1|E†k,iEk′,j |c1〉), B
(i,j)
kk′ = 1

2(〈c0|E†k,iEk′,j |c0〉 −

〈c1|E†k,iEk′,j |c1〉), so that ΠE†iEjΠ = AijΠ + ΠδAijΠ holds. A detailed calculation shows

that A(i,j) = 0 when i 6= j, B(i,j) = 0 when i+ j 6= 3, and

A(0,0) = 1
4n



1 1 · · · 1

1 1 · · · 1
...

... . . . ...

1 1 · · · 1


, (5.78)
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A(1,1) = A(2,2) = 1
4n



1 n2−m2

2n(n−1) · · · n2−m2

2n(n−1)

n2−m2

2n(n−1) 1 · · · n2−m2

2n(n−1)
...

... . . . ...

n2−m2

2n(n−1)
n2−m2

2n(n−1) · · · 1


, (5.79)

A(3,3) = 1
4n



1 m2−n
n(n−1) · · · m2−n

n(n−1)

m2−n
n(n−1) 1 · · · m2−n

n(n−1)
...

... . . . ...

m2−n
n(n−1)

m2−n
n(n−1) · · · 1


, (5.80)

B(0,3) = B(3,0) = m

4n2



1 1 · · · 1

1 1 · · · 1
...

... . . . ...

1 1 · · · 1


, B(1,2) = −B(2,1) = i

m

4n21. (5.81)

Next we note that

fB(A,A+ δA) = min
|ψ〉

fB((A⊗ 1R)(|ψ〉 〈ψ|), ((A+ δA)⊗ 1R)(|ψ〉 〈ψ|))

= min
pi,ρi,i=0,1

fB(A⊗ (p0ρ0 + p1ρ1), p0(A+B)⊗ ρ0 + p1(A−B)⊗ ρ1)

≥ min
pi,ρi,i=0,1

p0fB(A,A+B) + p1fB(A,A−B) = fB(A,A+B),

(5.82)

where in the second step we define 〈ci|ψ〉 〈ψ|ci〉 = piρi for i = 0, 1, and in the third step

we use the joint concavity of fidelity and in the last step we use fB(A + B) = fB(A − B).

Therefore we must have

fB(A,A+ δA) = fB(A,A+B), (5.83)

by noticing that fB(A(|c0〉 〈c0|), (A+ δA)(|c0〉 〈c0|)) = fB(A,A+ B). First note that A(i,i)

and B(i,j) could be diagonalized in the following way:

A(0,0) = 1
4n(n |ψ1〉 〈ψ1|), B(0,3) = B(3,0) = m

4n |ψ1〉 〈ψ1| , (5.84)
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A(1,1) = A(2,2) = 1
4n

(
n2 + 2n−m2

2n |ψ1〉 〈ψ1|+
n2 − 2n+m2

2n(n− 1)

n∑
k=2
|ψk〉 〈ψk|

)
, (5.85)

A(3,3) = 1
4n

(
m2

n
|ψ1〉 〈ψ1|+

n2 −m2

n(n− 1)

n∑
k=2
|ψk〉 〈ψk|

)
, (5.86)

where |ψ1〉 = 1√
n

(1 1 · · · 1) and {|ψk〉}k>1 is an arbitrary orthonormal basis of the or-

thogonal subspace of |ψ1〉. Since A(i,j) = A(j,i) = B(i,j) = B(j,i) = 0 when i ∈ {1, 2} and

j ∈ {0, 3}, we have

fB(A,A+B) = fB(A(0), A(0) +B(0)) + fB(A(1), A(1) +B(1)), (5.87)

where

(·)(0) =

(·)(0,0) (·)(0,3)

(·)(3,0) (·)(3,3)

 , (·)(1) =

(·)(1,1) (·)(1,2)

(·)(2,1) (·)(2,2)

 . (5.88)

We first calculate fB(A(0), A(0) +B(0)). We have

(A(0))1/2(A(0) +B(0))(A(0))1/2 = 1
4

m2

4n2

( 1
4

m2

4n2

)
⊗ |ψ1〉 〈ψ1|+

0 0

0
(
n2−m2

4n2(n−1)
)2
⊗ n∑

k=2
|ψk〉 〈ψk| . (5.89)

Then

fB(A(0), A(0) +B(0)) = Tr
((

(A(0))1/2(A(0) +B(0))(A(0))1/2)1/2)
=

√
1
42 +

(m2

4n2

)2
+ n2 −m2

4n2 = 1
2 −

m2

4n2 +O
(m4

n4

)
.

(5.90)

In order to calculate fB(A(0), A(0) +B(0)), we first note that

(A(1))1/2(A(1) +B(1))(A(1))1/2 =

(A(1,1))2 0

0 (A(1,1))2

+

 0 i m4n2A
(1,1)

−i m4n2A
(1,1) 0

 . (5.91)

Then we use the Taylor expansion formula for square root of positive matrices:
√

Λ2 + Y =

Λ + χ[Y ] − χ(χ[Y ]2) + O(Y 3) for any positive diagonal matrix Λ and small Y [Del Moral
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and Niclas, 2018], where χ[(·)]ij = (·)ij
Λi+Λj . Let A(1) = Λ such that Λ1 = n2+2n−m2

8n2 and

Λk = n2−2n+m2

8n2(n−1) for k > 1, we find that

fB(A(1), A(1) +B(1)) = 1
2 −

( m
4n2

)2 n∑
k=1

1
4Λk

+O
(m3

n3

)
= 1

2 −
m2

8n2 +O
(m3

n3

)
. (5.92)

Therefore

1− fB(A,A+ δA)2 = 1− fB(A,A+B)2 = 3m2

4n2 +O
(m3

n3

)
, (5.93)

which serves as an upper bound on the infidelity of thermodynamic codes under depolarizing

noise due to Lemma 2.2. We obtain

ε(MS , ES←L) ≤ 3m2

4n2 + o

(
m2

n2

)
, (5.94)

which also matches the scaling of our lower bound for depolarizing noise channels

(Eq. (5.61)), i.e. ε(MS , ES←L) ≥ 3m2

8n2 .
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Chapter 6

Summary and Outlook

6.1 Summary

Noise limits the precision of quantum metrology. QEC can suppress the damaging effects

of noise, but whether QEC improves the efficacy of quantum metrology depends on the

structure of the Hamiltonian and the noise. Unless suitable conditions are met, the QEC

code that tames the noise might obscure the signal as well, nullifying the advantages of QEC.

In this thesis, we studied the interplay between quantum metrology and QEC, namely, how

quantum metrology is enhanced by QEC and how QEC is limited by metrological limits.

In Chapter 3, we focused on one-parameter Hamiltonian estimation under Markovian

noise where the experimentalist is assumed to have access to noiseless ancillas and fast

and frequent quantum controls. We found a necessary and sufficient condition, the HNLS

condition, for achieving the HL in terms of the probing time. When HNLS is satisfied, we

constructed a two-dimensional QEC code that achieves the HL and presented a geometrical

interpretation of the optimal estimation precision, and when HNLS is violated, then we

proved that the SQL cannot be surpassed.

We then generalized the HNLS condition to the multi-parameter regime. In scenarios

where multi-parameter HNLS is satisfied, we developed an efficient numerical algorithm

(SDP) to find the optimal QEC protocol, including the optimal input states, QEC codes

and measurements. In contrast to the one-parameter case, the code space has dimension

P +1, where P is the number of parameter. Our algorithm is applicable to arbitrary system

145



dynamics (including noiseless cases), which goes beyond previous works focusing on specific

quantum dynamics or quantum state estimation.

So far, the error-corrected metrological protocol has focused on optimizing the estima-

tion precision when the HNLS condition is satisfied. When it is slightly violated, it is still

possible to enhance metrology significantly in the finite time regime (see the discussion on

approximate QEC in [Zhou et al., 2018]). But little was known in general situations. To

address this issue systematically, we studied approximate QEC protocols and proposed a

new coding technique called the perturbation coding such that the optimal SQL coefficient

in one-parameter Hamiltonian estimation under Markovian noise could be achieved asymp-

totically. Instead of fully correcting noises in the HNLS case, the optimal code in the HLS

case achieves a balance between preserving the signal and suppressing the noise.

We also discussed the possibility of removing the noiseless ancilla assumption which is a

stringent requirement in experiments and also of theoretical interest. We found that when

the Hamiltonian and the noise commutes, it is possible to construct optimal ancilla-free

codes which not only recovers the HL but also reaches the optimal estimation precision in

one-parameter Hamiltonian estimation under Markovian noise. We provided an example

of sensing in lossy bosonic channels where a family of closed-form ancilla-free codes, called

Chebyshev codes, was proposed to optimizing the sensitivity.

Hamiltonian estimation under Markovian noise is an important sensing scenario, but

the fundamental question is whether the results above are applicable to general quantum

channel estimation. We studied the asymptotic theory of quantum channel estimation

in Chapter 4, aiming at identifying the asymptotic scaling of the QFI and achieving the

optimal QFI coefficients. The key challenges were to define the Hamiltonian and the noise

span for arbitrarily parametrized quantum channels and to devise QEC protocols to attain

the QFI upper bounds. For single-parameter estimation, we obtained a necessary and

sufficient condition, the HNKS condition, for achieving the HL in terms of the number

of channels and we also devised a three-step constructive proof to achieve the asymptotic

QFI coefficients: (1) we proved the asymptotic QFI for qubit dephasing channels with an

arbitrarily encoded parameter are achievable using spin-squeezed states when HNKS fails

(It was already known GHZ-type states are optimal when HNKS holds); (2) we showed that
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using a two-dimensional QEC protocol, every channel can be reduced to qubit dephasing

channels; (3) we proved that by optimizing the encoding and recovery channels, the QFI

upper bounds are attainable. The QEC protocols are solvable using SDP. Furthermore, our

results implied that sequential strategies provide no asymptotic advantages over parallel

strategies in the HKS case, answering another open problem in quantum metrology.

Finally, we established a close connection between covariant QEC and quantum metrol-

ogy in Chapter 5. We presented covariant QEC as a special type of metrological protocol

where parameter estimation limit is linked to the code infidelity. The HNKS condition,

as a necessary condition to achieve the HL, is therefore also a necessary condition of the

existence of exactly error-correcting covariant codes. Moreover, when HNKS fails, we lower

bounded the code infidelity using the inverse of the regularized channel QFI. The lower

bound we derived not only has a broader range of applications, but also improves compared

to previous lower bounds, leading to an improved approximate Eastin-Knill theorem. It

also opens doors to future applications of quantum metrology in other areas of quantum

information science.

6.2 Outlook

A lot of discoveries were made on error-corrected quantum metrology over the years and

here we comment on some related aspects which merit further exploration.

First, recall that in Chapter 4 we showed that sequential strategies cannot outperform

parallel strategies asymptotically when the HNKS condition is violated. It is left open,

however, whether the statement is still true when HNKS is satisfied. It was known to be

true only for unitary channels [Giovannetti et al., 2006], but there is still a gap between

the HL QFI coefficient Fhl(Eω) for parallel strategies and the state-of-the-art upper bounds

on F
(seq)
hl (Eω) for sequential strategies [Demkowicz-Dobrzański and Maccone, 2014; Sekatski

et al., 2017; Yuan and Fung, 2017; Katariya and Wilde, 2020a]. If Fhl < F
(seq)
hl , one con-

sequence is that for sensing in open quantum systems with the help of ancillas and fast

and frequent quantum controls, e.g. Hamiltonian estimation under Markovian noise, the

current QEC sensing protocols introduced in Chapter 3 which only reaches Fhl might be
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further improved using new types of (possibly time-dependent) quantum controls.

Another important question of interest is multi-parameter quantum channel estimation.

In Chapter 4, we consider optimization of QEC protocols for multi-parameter Hamiltonian

estimation under Markovian noise when HNLS holds. However, it is not clear yet if the

optimal precision obtained from the QEC protocol is in fact optimal among all possible

sequential strategies. Moreover, no results on error-corrected metrology were developed in

the case when HNLS fails, or in general quantum channel estimation. The study of multi-

parameter channel estimation is largely unexplored—for example, unlike the one-parameter

case where the expression for the one-shot QFI was founded more than a decade ago, it was

not clear how to minimize the weight MSE for an arbitrary quantum channel, let alone the

asymptotic case. Note, however, that a multi-parameter bound based on the RLD channel

QFI was recently derived [Katariya and Wilde, 2020b]. The extension from one-parameter to

multi-parameter estimation is usually highly non-trivial. For example, for multi-parameter

estimation, a gap between parallel strategies and sequential strategies exists even for unitary

channels [Yuan, 2016]. Another interesting feature in multi-parameter estimation to take

into account is the scaling of the MSE with respect to the number of parameters [Imai

and Fujiwara, 2007; Humphreys et al., 2013; Imai and Fujiwara, 2007; Yuan, 2016; Górecki

et al., 2020].

Lastly, we list some practical concerns on error-corrected quantum metrology. First,

similar to QEC in quantum information processing, in quantum metrology, noise in the

QEC procedure should not be ignored in practical applications, in which case fault-tolerant

QEC protocols [Kapourniotis and Datta, 2019] must be devised in order to improve the

estimation precision as expected. However, the error threshold which determines the point

where quantum strategies beats classical strategies in terms of estimation precision shall

depend on the structure of the signal and the noise as well. Second, the current optimal QEC

protocol suffers from to drawbacks: the requirement of noiseless ancilla and the perturbation

nature in the HKS case. One may consider removing the noiseless ancilla assumption by

consider special types of noise [Layden et al., 2019]; on the other hand, solving the code

optimization problem in the ancilla-free case is also of theoretical interest. The perturbation

coding grants us mathematical simplification in terms of proving the attainability of the
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SQL upper bounds, but requires a very long probing time until it reaches the asymptotic

limit (because the signal and the noise are both weak for perturbation codes). Therefore,

for practical applications one may need to consider other more resource efficient coding

probably through numerical optimization [Liu and Yuan, 2017b,a; Chabuda et al., 2020;

Koczor et al., 2020; Meyer et al., 2020; Beckey et al., 2020]. Finally, the two asymptotic

limits should be treated carefully in real-world quantum sensing: the limit where the number

of channels is infinitely large and the limit where the number of repeated experiments is

infinitely large. Both limits may not be reachable in practice and the QFI may not be

entirely meaningful in those cases. To tackle this problem, one may need to consider the

second-order asymptotics [Tomamichel and Hayashi, 2013; Li et al., 2014] or simply the

non-asymptotic sample complexity of quantum states [Haah et al., 2017; O’Donnell and

Wright, 2016; Aaronson, 2019; Huang et al., 2020].
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Appendix A

Perturbative expansion of the
noise rate

To obtain Eq. (3.100), we expand the minimum noise rate γ around ε = 0 using the

perturbation code. For simplicity, we ignoring all o(ε2) terms in the following equations in

this subsection and the equal sign “=” means approximate equality up to the second order

of ε. We will also use the following lemma:

Lemma A.1 ([Mirsky, 1960]). ‖X + εY ‖1 = ‖X‖1 +O(ε) for arbitrary X and Y .

To calculate Eq. (3.98), we first compute the second term,

− Re
[
r∑
i=1
〈c0|

(
P(Ji |c0〉 〈c1| J†i )− 1

2{P(J†i Ji), |c0〉 〈c1|}
)
|c1〉

]
=

∑
i

λi + ε2∣∣Tr(C̃Ji)
∣∣2 + ε2Tr(DD†J†i Ji). (A.1)

The remaining first term is equal to (thanks to Lemma 1) minus

∥∥∥∑
i

Π⊥c Ji |c0〉 〈c1| J
†
i Π⊥c

∥∥∥
1

=

∥∥∥∥∥∥∥∥

√

Λ̃−1(Λ + εX1 + ε2X ′1)

εX2 + ε2X ′2

((Λ− εX1 + ε2X ′1)†
√

Λ̃−1 −εX†2 + ε2X ′†2

)∥∥∥∥∥∥∥∥
1

, (A.2)

where Λ ∈ Rr×r is a diagonal matrix whose k-th diagonal element is λk and Λ̃ ∈ Rr×r is
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a diagonal matrix whose k-th diagonal element is λk if λk > 0 and 1 if λk = 0. Assume

{λk}rk=1 is arranged in a non-ascending order and r0 is the largest integer such that λr0 is

positive. X1, X
′
1 ∈ Cr×r satisfy

(Λ + εX1 + ε2X ′1)ji =
√
λj 〈J̃j,0|Π⊥c Ji |c0〉 = Tr(C†J†j JiA0)− Tr(C†J†jA0)Tr(A†0JiA0)

= λiδij + εTr(C†J†j JiD)− ε2Tr(C†J†jD)Tr(C̃Ji),

(A.3)

for 1 ≤ j ≤ r0 and

(Λ + εX1 + ε2X ′1)ji = 〈J̃j,0|Π⊥c Ji |c0〉 = Tr(J̃†j JiA0)− Tr(J̃†jA0)Tr(A†0JiA0)

= εTr(J̃†j JiD)− ε2Tr(J̃†jD)Tr(C̃Ji),
(A.4)

for r0 + 1 ≤ j ≤ r. X2, X
′
2 ∈ C(d2−r)×r satisfy

(Λ + εX2 + ε2X ′2)(j−r)i = 〈J̃j,0|Π⊥c Ji |c0〉 = Tr(J̃†j JiA0)− Tr(J̃†jA0)Tr(A†0JiA0)

= εTr(J̃†j JiD)− ε2Tr(J̃†jD)Tr(C̃Ji),
(A.5)

for r + 1 ≤ j ≤ d2 − 1 and

(Λ + εX2 + ε2X ′2)(d2−r)i = 〈J̃d2,0|Π⊥c Ji |c0〉 = Tr(J̃†d2JiA0)− Tr(J̃†d2A0)Tr(A†0JiA0)

= εTr(C†JiD)− εTr(C̃Ji).
(A.6)

Here

|J̃j,0/1〉 =



1√
λj

∑
ik CikJj |i〉 |k, 0/1〉 , j ≤ r0,∑

ik(J̃j)ik |i〉 |k, 0/1〉 , r0 < j ≤ d2,

∑
ik

Cik√
Tr(C†C)

|i〉 |k, 0/1〉 , j = d2,

(A.7)

are two sets of orthonormal basis of HS ⊗HA.

To calculate the first and second order expansion of Eq. (A.2), we consider the singular
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value decompositions


√

Λ̃−1(Λ + εX1 + ε2X ′1)

εX2 + ε2X ′2

 = U(ε)

Σ(ε)

0

V (ε)†,

(
(Λ− εX1 + ε2X ′1)†

√
Λ̃−1 −εX†2 + ε2X ′†2

)
= V (−ε)

(
Σ(−ε) 0

)
U(−ε)†,

(A.8)

Then

Eq. (A.2) =

∥∥∥∥∥∥∥∥U(ε)

Σ(ε)V (ε)†V (−ε)Σ(−ε) 0

0 0

U(−ε)†

∥∥∥∥∥∥∥∥
1

= Tr
(√√

Y (ε)Y (−ε)
√
Y (ε)

)
,

(A.9)

where

Y (ε) = V (ε)Σ(ε)2V (ε)†

= Λ + ε(X†1ΠΛ + ΠΛX1) + ε2(X†1Λ̃−1X1 +X ′1ΠΛ + ΠΛX
′†
1 +X†2X2),

(A.10)

and ΠΛ is the projector onto the support of Λ.

Using Theorem 2 in [Zhou and Jiang, 2019], we have

Tr
(√√

Y (ε)Y (−ε)
√
Y (ε)

)
= Tr(Λ)+

ε2Tr(X†1Λ̃−1X1 +X ′1ΠΛ + ΠΛX
′†
1 +X†2X2)− ε2

r∑
i,j:λi+λj 6=0

|X1,ij +X∗1,ji|2

λi + λj
. (A.11)

A few lines of calculation reveals:

γ = Eq. (A.1)− Eq. (A.2)

= 2ε2∑
i

∣∣Tr(JiC̃)
∣∣2 + ε2 ∑

ij:λi+λj 6=0

|Tr(J†i JjC̃)|2
(λi + λj)

,
(A.12)

where C̃ = CD† +DC†.
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Appendix B

Validity of the numerical algorithm
in Section 3.5.2

In this appendix, we show (C�, C̃�) is indeed a solution of the optimal code and the algorithm

in Section 3.5.2 is valid. Let (g , g , C ) be the saddle point of Eq. (3.102). Then

Tr(C †α C ) = ‖α ‖ = min
g,g,g|β=0

‖α‖ , (B.1)

which means that Π C = C where Π is the projection onto the subspace spanned by all

eigenstates corresponding to the largest eigenvalue of α .

Now assume we have a solution (g�, g�) of Eq. (3.81) such that α� = (g�1+g�L)†(g�1+

g�L) satisfies ‖α�‖ = ming,g,g|β=0 ‖α‖. We prove that (g�, g�, C ) is also a saddle point.

Choose p ∈ (0, 1) and let (g, g) = (pg� + (1− p)g , pg� + (1− p)g ). Then

Tr(C †αC ) = p2Tr(C †α�C ) + (1− p)2Tr(C †α C )

+ 2p(1− p)Re[Tr(C †(g�1 + g�L)†(g 1 + g L)C )]

≤ p2Tr(C †α�C ) + (1− p)2Tr(C †α C )

+ 2p(1− p)
√

Tr(C †α�C )Tr(C †α C ) ≤ ‖α ‖ . (B.2)

On the other hand, we know Tr(C †αC ) ≥ ‖α ‖. Therefore the equality in Eq. (B.2) must
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hold, which means

Tr(C †α�C ) = ‖α�‖ , (g 1 + g L)C = (g�1 + g�L)C . (B.3)

As a result, we have Tr(C†α�C) ≤ Tr(C †α�C ) for arbitrary C satisfying Tr(C†C) =

1. Moreover, Re[Tr(C †(∆g1 + ∆gL)†(g�1 + g�L)C )] = Re[Tr(C †(∆g1 + ∆gL)†(g 1 +

g L)C )] = 0, and Tr(C †α�C ) ≤ Tr(C †αC ), proving (g�, g�, C ) is also a saddle point.

Hence, step (2) in our algorithm will at least have one solution C , and the solution of step

(2) (g�, g�, C�) is also a saddle point satisfying

Tr(C�†αC�) ≤ Tr(C�†α�C�) ≤ Tr(C�†αC�), (B.4)

for all (g,g, g, C) satisfying β = 0 and Tr(C†C) = 1. Strong duality [Boyd and Vanden-

berghe, 2004] implies the optimal value of

max
C̃

Fsql(C�, C̃),

subject to Tr(C†C) = 1, Tr(C̃) = 0 and Tr(J†i JjC̃) = 0,∀i, j ∈ n,

(B.5)

is equal to that of ming,g,g|β=0 4Tr(C�†αC�) = ming,g,g|β=0 ‖α‖, proving the optimality of

(C�, C̃�).
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Appendix C

An example where noiseless ancilla
is necessary

Consider Gell-Mann matrices:

λ1 =


0 1 0

1 0 0

0 0 0


, λ2 =


0 −i 0

i 0 0

0 0 0


, λ3 =


1 0 0

0 −1 0

0 0 0


, (C.1)

λ4 =


0 0 1

0 0 0

1 0 0


, λ5 =


0 0 −i

0 0 0

i 0 0


, (C.2)

λ6 =


0 0 0

0 0 1

0 1 0


, λ7 =


0 0 0

0 0 −i

0 i 0


, λ8 = 1√

3


1 0 0

0 1 0

0 0 −2


. (C.3)

and λ0 is the identity matrix. The Hilbert space HS = H3 ⊕Hd−3 is the direct sum of a 3-

dimensional and a (d−3)-dimensional Hilbert space. Let H = λ5⊕0d−3 and Li = λi⊕0d−3
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with i = 1, 2, 4 where 0i means a i-dimensional zero matrix. One can check that

S = spanH{1, λi ⊕ 0d−3, i = 0, 1, 2, 3, 4, 6, 7, 8} (C.4)

then the HNLS condition H /∈ S is satisfied. Suppose we have a two-dimensional QEC

sensing code

|c0〉 = α0
3 |c30〉+ α0

d−3 |cd−3
0 〉 , |c1〉 = α1

3 |c31〉+ α1
d−3 |cd−3

1 〉 . (C.5)

where |c30(1)〉 ∈ H3 and |cd−3
0(1)〉 ∈ Hd−3. First of all, we note that α0

3 and α1
3 are not both

zero because ΠcHΠc 6∝ Πc. If α0
3 = 0, due to the error correction condition ΠcLiΠc ∝ Πc

and ΠcL
†
iLjΠc ∝ Πc, we must have

〈13|λi|13〉 = 0, i = 1, 2, 3, 4, 6, 7, 8, (C.6)

leading to |c31〉 = 0. Therefore, we conclude that α0
3 and α1

3 are both non-zero. In this case

we must have

〈03|λi|13〉 = 0, i = 1, 2, 3, 4, 6, 7, 8, (C.7)

which again could not be satisfied for non-zero |c30(1)〉. Therefore we conclude that a valid

QEC sensing that satisfies Eq. (3.116) and Eq. (3.117) does not exist, without noiseless

ancilla. The dimension d of the Hilbert space H could be arbitrary large compared to the

number of noise operators dimS = 9, yet there is no valid QEC code correcting noise and

preserving signal simultaneously.
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Appendix D

Exact coefficients and
near-optimality of Chebyshev
codes

In this appendix, we provide the exact value of c̃k and prove that the Chebyshev code

Eq. (3.127) indeed corrects the Lindblad span Eq. (3.126) and leads to a near-optimal QFI.

To do so, we will use the following Lemma:

Lemma D.1. Suppose s is an integer larger than one. Then we have

s∑
k=0

(−1)k |ck|2
(

sin kπ2s

)2i
= 0, ∀1 ≤ i ≤ s− 1, (D.1)

and
s∑

k=0
(−1)k |ck|2

(
sin kπ2s

)2s
= (−1)s

22s−2 , (D.2)

where |ck|2 = 2
s −

1
sδk0 − 1

sδks.

Proof. We first notice that for all 0 ≤ ` ≤ s− 1,

s−1∑
k=0

(−1)k cos k`π
s

= Re
[
s−1∑
k=0

ei
(
k`π
s

+kπ
)]

= Re
[

1− (−1)s+`

1 + ei
`π
s

]
= 1 + (−1)s+`+1

2 , (D.3)
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which only depends on the parity of `. Then we have

s−1∑
k=0

(−1)k
(

cos kπ
s

)`
= 1

2`
s−1∑
k=0

(−1)k
∑̀
j=0

(
`

j

)
cos (2j − `)kπ

s
= 1 + (−1)s+`+1

2 . (D.4)

When ` = s,

s−1∑
k=0

(−1)k
(

cos kπ
s

)s
= 1

2`
s−1∑
k=0

(−1)k
s∑
j=0

(
s

j

)
cos (2j − s)kπ

s
= s

22s−1 . (D.5)

Therefore,

1
2i

s−1∑
k=0

(−1)k
(

1− cos kπ
s

)i
= 1

2i
s−1∑
k=0

(−1)k
i∑

`=0

(
i

`

)
(−1)`

(
cos kπ

s

)`

= 1
2i

i∑
`=0

(
i

`

)
(−1)`

(
1 + (−1)s+`+1

2

)
= (−1)s+1

2 ,

(D.6)

and

1
2s

s−1∑
k=0

(−1)k
(

1− cos kπ
s

)s
= 1

2s
s−1∑
k=0

(−1)k
s∑
`=0

(
s

`

)
(−1)`

(
cos kπ

s

)`
= (−1)s+1

2 + s(−1)s
22s−1 .

(D.7)

As a result, when 1 ≤ i ≤ s− 1

s∑
k=0

(−1)k |ck|2
(

sin kπ2s

)2i
= 2
s

(
s−1∑
k=0

(−1)k
(

sin kπ2s

)2i
+ (−1)s

2

)
= 0; (D.8)

and when i = s,

s∑
k=0

(−1)k |ck|2
(

sin kπ2s

)2s
= 2
s

(
s−1∑
k=0

(−1)k
(

sin kπ2s

)2s
+ (−1)s

2

)
= 4

(−1
4

)s
. (D.9)

The s-th order Chebyshev code should be capable of correcting the Lindblad span S =

spanH{1, a, a†, (a†a)i, ∀1 ≤ i ≤ s − 1}. To correct the off-diagonal noise ai and (a†)i up to
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1 ≤ i ≤ t, we simply need the distance between |c0〉 and |c1〉 defined by

dist(|c0〉 , |c1〉) = min
m0,m1∈N,

〈m0|c0〉2>0, 〈m1|c1〉2>0

|m0 −m1| (D.10)

is larger than 2t+ 1. Note that

dist(|c0〉 , |c1〉) ≥M sin2
(
π

2s

)
− 1, (D.11)

so the off-diagonal noise can be corrected as long as M sin2 π
s ≥ 2(t+ 1). Particularly, when

t = 1, we only need dist(|c0〉 , |c1〉) ≥ 3, or M sin2 (π
s

)
≥ 4. In fact, from the point of view

of quantum memories [Michael et al., 2016], the s-th order Chebyshev code could correct

s− 1 dephasing events, L photon losses and G gains, when L+G =
⌊
M
2 sin2 (π

s

)
− 1

⌋
.

To correct the diagonal noise (a†a)i for 1 ≤ i ≤ s−1, we simply need to choose a suitbale

{|ck|2}sk=0 to satisfy the following s− 1 equations

〈c0|(a†a)i|c0〉 − 〈c1|(a†a)i|c1〉 =
s∑

k=0
(−1)k c̃2

k

⌊
M sin2

(
kπ

2s

)⌋2i
= 0, (D.12)

and
s∑

k=0
(−1)k |c̃k|2 = 0,

s∑
k=0
|c̃k|2 = 2. (D.13)

The linear system of equations could be written as Ã c̃ = e, where c̃ = (|c̃0|2 |c̃1|2 · · · |c̃s|2)T ,

e = (0 · · · 0 1)T , Ã is a s+1 by s+1 matrix Ãik = (−1)k
⌊
M sin2 kπ

2s

⌋i
/M i when 0 ≤ i ≤ s−1

(we assume 00 = 1) and Ãsk = 1. The linear equations are solvable since A is invertible,

which also proves the Chebyshev codes defined using its solution must correct the Lindblad

span Eq. (3.126) as required.

Next we show the near-optimality of the Chebyshev code. First we calculate an upper

bound of the optimal asymptotic QFI Eq. (3.115), since

∥∥∥(a†a)s − S
∥∥∥ = M s min

∀χi∈R
max
k∈Z,

k∈[0,M ]

∣∣∣∣( k

M

)s
−
s−1∑
i=0

χi

(
k

M

)i∣∣∣∣
≤
(
M

2

)s
min
∀χi∈R

max
x∈[−1,1]

∣∣∣xs − s−1∑
i=0

χix
i
∣∣∣ = 2

(
M

4

)s
,

(D.14)
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we have

Fopt(T ) = 4T 2 min
S∈S

∥∥∥(a†a)s − S
∥∥∥2

∞
≤ 16T 2

(
M

4

)2s
≡ F∞opt(t). (D.15)

According to Lemma D.1,

s∑
k=0

(−1)kc2
k

(
sin2 kπ

2s

)i
= 0 =⇒ A c = e, (D.16)

where c = (|c0|2 |c1|2 · · · |cs|2)T , Aik = (−1)k
(
sin2 kπ

2s

)i
when 0 ≤ i ≤ s − 1 and Ãsk = 1.

Note that

sin2 kπ

2s −
1
M
≤

⌊
M sin2

(
kπ
2s

)⌋
M

≤ sin2
(
kπ

2s

)
. (D.17)

As M becomes sufficiently large, we have

c̃ = Ã−1e = A+ (Ã−A)−1
e = (I +A−1(Ã−A))−1c = c+O

( 1
M

)
. (D.18)

Then

〈c0|(a†a)s|c0〉 − 〈c1|(a†a)s|c1〉

= (−M)s
22s−2 +

s∑
k=0

(−1)k
(
c̃2
k

⌊
M sin2 kπ

2s

⌋s
− c2

k

(
M sin2 kπ

2s

)s)

≥ (−M)s
22s−2 −M

s ‖c− c̃‖22 (D.19)

where ‖c− c̃‖22 = ∑s
k=0 |c̃k − ck|

2 is the two-norm. Therefore

Fopt(T )− F (T )
Fopt(T ) ≤ 1− F (T )

F∞opt(t)
= O

( 1
M2

)
, (D.20)

where F (T ) denotes the QFI obtained using the input state 1√
2(|c0〉 + |c1〉), proving its

near-optimality. The numerical value of F (T )/F∞opt(t) is plotted in Figure 3.5 as a lower

bound of F (T )/Fopt(T ).

Consider the (s−1, Ms −1) binomial code (suppose M is a multiple of s) [Michael et al.,
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2016]

|cbin
0 /cbin

1 〉 =
[0,s]∑

k even/odd

1√
2s−1

√√√√(s
k

) ∣∣∣∣ksM
〉
. (D.21)

We have

〈cbin
0 | (a†a)` |cbin

0 〉 − 〈cbin
1 | (a†a)` |cbin

1 〉

= M `

2s−1s`

s∑
k=0

(
s

k

)
k`(−1)k

= M `

2s−1s`

(
x
d

dx

)`
(1 + x)s

∣∣∣∣
x=−1

=


0, ` = 1, . . . , s− 1,

(−1)ss!Ms

2s−1ss , ` = s.

(D.22)

Clearly the (s− 1, Ms − 1) binomial code also corrects the Lindblad span, but the strength

of the signal is exponentially smaller with respect to s:

F bin(t)
Fopt(T ) ≈

(
2s−1s!
ss

)2

= O

(
s

(2
e

)2s
)
. (D.23)
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Appendix E

Optimizing the recovery channel
when HNKS fails

To derive Eqs. (4.51)-(4.53), we first expand T and E0E
†
1 around ε = 0

T = eiεG = 1 + iεG− ε2

2 G
2 +O(ε3), (E.1)

E0E
†
1 = σ − iεσ̃ − ε2(FF † + EE†) +O(ε3), (E.2)

where σ = EE† and σ̃ = i(FE† − EF †). Then

Tr(TE0E
†
1) = 1− 2ε2 − ε2

2 Tr(G2σ) + iεTr(Gσ) + ε2Tr(Gσ̃) +O(ε3), (E.3)

Tr(T (Ė0E
†
1 + E0Ė

†
1)) = iεTr(Gσ̇) +O(ε2), (E.4)

where we used Tr(F †F ) = 1 and Tr(σ̃) = 0 because Tr(E†F ) = 0. Then

Fsql(DL,θ) = max
G

|Tr(Gσ̇)|2

4− 2Tr(Gσ̃) + Tr(G2σ)− |Tr(Gσ)|2
+O(ε) (E.5)

= max
G,x

|Tr(Gσ̇)|2

4x2 + 2xTr(Gσ̃) + Tr(G2σ)− |Tr(Gσ)|2
+O(ε) (E.6)

= max
G

|Tr(Gσ̇)|2

− |Tr(Gσ̃)|2
4 +

(
Tr(G2σ)− |Tr(Gσ)|2

) +O(ε), (E.7)

where in the second step we used the fact that any rescaling of G (G← −G/x) should not

change the optimal QFI. Note that to obtain the solution of the original G in T , one need
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to rescale the final solution back using G← 4G/Tr(Gσ̃).

To find the optimal G, we first observe that Tr(σ̇) = Tr(σ̃) = 0. Therefore, WLOG, we

assume Tr(Gσ) = 0 because G← G−Tr(G) Ir does not change the target function. Let the

derivative of Eq. (E.7) be zero, we have

2σ̇
(
Tr(G2σ)− |Tr(Gσ̃)|2

4
)
− Tr(Gσ̇)

(
(σG+Gσ)− 2Tr(Gσ̃)σ̃

4
)

= 0, (E.8)

⇔ σ̇

Tr(Gσ̇)
(
Tr(G2σ)− |Tr(Gσ̃)|2

4
)

+ Tr(Gσ̃)σ̃
4 = 1

2(σG+Gσ), (E.9)

⇔ G = Lσ[xσ̇ + yσ̃], 4y = Tr(Gσ̃) = Tr(Lσ[xσ̇ + yσ̃]σ̃), (E.10)

⇐ x = 4− Tr(Lσ[σ̃]σ̃), y = Tr(Lσ[σ̇]σ̃). (E.11)

Note that in Eq. (E.10) we used xσ̇ + yσ̃ = 1
2(Gσ + σG) and Tr(G2σ) = Tr(G(xσ̇ + yσ̃)).

Plug the optimal G = Lσ[xσ̇ + yσ̃] into Eq. (E.7) where x, y satisfies Eq. (E.11), we get

Fsql(DL,θ) = Tr(Lσ[σ̇]σ̇) + Tr(Lσ[σ̇]σ̃)2

4− Tr(Lσ[σ̃]σ̃) +O(ε). (E.12)
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Appendix F

Fsql as a function of (C, C̃)

To derive Eq. (4.56), we use an orthonormal basis {|i〉〉}d2
i=1, where |i〉〉 = 1√

λi
|KiC〉〉 for

1 ≤ i ≤ r. We have

σ =

(λiδij) 0

0 0

 , σ̇ =


(
〈〈KiC|K̇jC〉〉

√
λj
λi

+
√

λi
λj
〈〈K̇iC|KjC〉〉

)
(〈〈K̇iC|j′〉〉

√
λi)

(〈〈i′|K̇jC〉〉
√
λj) 0

 ,
(F.1)

σ̃ =


(
i〈〈KiC|KjD〉〉

√
λj
λi
− i
√

λi
λj
〈〈KiD|KjC〉〉

)
(−i〈〈KiD|j′〉〉

√
λi)

(i〈〈i′|KjD〉〉
√
λj) 0

 , (F.2)

where 1 ≤ i, j ≤ r and r + 1 ≤ i′, j ≤ d2. Then

Tr(Lσ[σ̇]σ̇) = 2
∑

i,j:λi+λj>0

|(σ̇)ij |2
λi + λj

= 2
r∑

i,j=1

∣∣〈〈KiC|K̇jC〉〉
√

λj

λi
+
√

λi

λj
〈〈K̇iC|KjC〉〉

∣∣2
λi + λj

+ 4
d2∑

i′=r+1

r∑
j=1

|〈〈i′|K̇jC〉〉
√
λj |2

λj

= 4Tr(C†K̇†K̇C) + 2
r∑

i,j=1

∣∣〈〈KiC|K̇jC〉〉
√

λj

λi
+
√

λi

λj
〈〈K̇iC|KjC〉〉

∣∣2
λi + λj

− 2 |〈〈KiC|K̇jC〉〉|2

λi

= 4Tr(C†K̇†K̇C)− 2
r∑

i,j=1

|τ ′ij |2

λi + λj
= 4Tr(C†K̇†K̇C)− Tr(Lτ [τ ′]τ ′),

(F.3)
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Tr(Lσ[σ̃]σ̃) = 2
∑

i,j:λi+λj>0

|(σ̃)ij |2

λi + λj

= 2
r∑

i,j=1

∣∣i〈〈KiC|KjD〉〉
√

λj

λi
− i
√

λi

λj
〈〈KiD|KjC〉〉

∣∣2
λi + λj

+ 4
d2∑

i′=r+1

r∑
j=1

∣∣i〈〈i′|KjD〉〉
√
λj
∣∣2

λj

= 4 + 2
r∑

i,j=1

∣∣i〈〈KiC|KjD〉〉
√

λj

λi
− i
√

λi

λj
〈〈KiD|KjC〉〉

∣∣2
λi + λj

− 2 |〈〈KiC|KjD〉〉|2

λi

= 4− 2
∑
ij

|τ̃ij |2

λi + λj
= 4− Tr(Lτ [τ̃ ]τ̃),

(F.4)

and

Tr(Lσ[σ̇]σ̃) = 2
∑

i,j:λi+λj 6=0

σ̇ij σ̃ji
λi + λj

= 2
r∑

i,j=1

σ̇ij σ̃ji
λi + λj

+ 2
d2∑

i′=r+1

r∑
j=1

σ̇i′j σ̃ji′

λj
+ 2

d2∑
i′=r+1

r∑
j=1

σ̇ji′ σ̃i′j
λj

= −2Tr(C̃H) + 2
r∑

i,j=1

σ̇ij σ̃ji
λi + λj

+ 2i
r∑

i,j=1

〈〈KjD|KiC〉〉〈〈KiC|K̇jC〉〉
λi

− 〈〈K̇jC|KiC〉〉〈〈KiC|KjD〉〉
λi

= −2Tr(C̃H) + 2
r∑

i,j=1

τ ′ij τ̃ji

λi + λj
= −2Tr(C̃H) + Tr(Lτ [τ ′]τ̃). (F.5)
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Appendix G

QFIs for qubit depolarizing
channels

Now we calculate F1, Fsql and Fhl for general depolarizing channels Nθ(ρ) = ∑4
i=1KiρK

†
i ,

where

K =



√
1− p

√
pxσx

√
pyσy

√
pzσz


e−

iθ
2 σz , K̇ =



− i
2
√

1− pσz

−1
2
√
pxσy

1
2
√
pyσx

− i
2
√
pz


e−

iθ
2 σz , (G.1)

β = iK†(K̇− ihK) = 1
2σz + K†hK. (G.2)

β = 0 ⇒

(1− p)h11 + pxh22 + pyh33 + pzh44 = 0,√
(1− p)px(h12 + h21) + i

√
pypzh34 − i

√
pypzh43 = 0,√

(1− p)py(h13 + h31)− i√pxpzh24 + i
√
pxpzh42 = 0,

1
2 +

√
(1− p)pz(h14 + h41) + i

√
pxpyh23 − i

√
pxpyh32 = 0.

(G.3)

Clearly, HNKS is satisfied if and only if px = pz = 0 or py = pz = 0. It is easy to see that

when hij = 0 for all i, j except h23, h32, h14 and h41, α = ‖α‖ I, ‖α‖ takes its minimum
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and

‖α‖ = 1
4 +

√
(1− p)pz(h14 + h41) + i

√
pxpy(h23 − h32)

+ (1− p+ pz) |h14|2 + (px + py) |h23|2 (G.4)

Then

F1(Nω) = 4 min
h
‖α‖ = 1− 4

(
pxpy
px + py

+ (1− p)pz
1− p+ pz

)
. (G.5)

When HNKS is satisfied,

Fhl(Nω) = 4 min
h
‖β‖2 = 1, (G.6)

and when HNKS is violated,

Fsql(Nω) = 4 min
h:β=0

‖α‖ = −1 + 1
4

(
pxpy
px + py

+ (1− p)pz
1− p+ pz

)−1

. (G.7)
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Appendix H

Solving the optimal QEC code for
amplitude damping channels

In this appendix, we use the algorithm in Section 4.4.3 to solve for the optimal QEC protocol

analytically for amplitude damping channels with two Kraus operators:

K =

|0〉 〈0|+
√

1− p |1〉 〈1|

√
p |0〉 〈1|

 e−iω2 σz =

|0〉 〈0| e−i
ω
2 +
√

1− p |1〉 〈1| eiω2

√
p |0〉 〈1| eiω2

 . (H.1)

Clearly, H = iK†K̇ = σz/2.

H.1 Finding the optimal C

First, we want to find a full rank normalized C�, such that minh:β=0 4Tr(C�†αC�) is close

to F
(u)
sql(Eω) and we will follow the algorithm described in Section 4.4.3.

We first compute α and β. Note that

K̇ =

− i
2 |0〉 〈0|+

i
2
√

1− p |1〉 〈1|

i
2
√
p |0〉 〈1|

 e−iω2 σz . (H.2)

We first observe that in order to make β = iK†(K̇ − ihK) = 0, h has to be diagonal and
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then

K̇− ihK =

(− i
2 − ih11) |0〉 〈0|+ ( i2 − ih11)

√
1− p |1〉 〈1|

( i2 − ih22)√p |0〉 〈1|

 e−iω2 σz . (H.3)

We will also assume ω = 0 for simplicity.

β =
(1

2 + h11

)
|0〉 〈0|+

(
−1

2 + h11

)
(1− p) |1〉 〈1|+

(
−1

2 + h22

)
p |1〉 〈1| = 0, (H.4)

⇒ h11 = −1
2 , h22 = 2− p

2p . (H.5)

Therefore α = (K̇− ihK)†(K̇− ihK) =
(
(1− p) + (1−p)2

p

)
|1〉 〈1| = 1−p

p |1〉 〈1|.

Since there is only one solution of h such that β = 0, there is no need to solve

minh:β=0 ‖α‖ using a SDP and the only solution is: α� = 1−p
p |1〉 〈1| and Fsql(N ad

ω ) =

4(1 − p)/p. We could take C� = sin δ |0〉 〈0| + cos δ |1〉 〈1| where δ is small. Note that here

we use the small constant δ instead of η′ in Eq. (4.71) for simplicity. They are related by

η′/2 = sin2(δ).

H.2 Finding the optimal C̃

Next we find the optimal C̃� which minimizes

(
− Tr(C̃H) +∑r

i,j=1
τ̃ijτ

′
ji

λi+λj

)2

1
2
∑r
i,j=1

|τ̃ij |2
λi+λj

= |〈〈C̃|f2(C)〉〉|2

〈〈C̃|f3(C)|C̃〉〉
, (H.6)

and the solution is |C̃�〉〉 = f3(C�)−1|f2(C�)〉〉.

We first compute

τ =

sin2 δ + (1− p) cos2 δ 0

0 p cos2 δ

 ≈
1− p 0

0 p

 , (H.7)

τ ′ =

sin2 δ − (1− p) cos2 δ 0

0 −p cos2 δ

 ≈
−(1− p) 0

0 −p

 , (H.8)
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τ̃ =



Tr(C̃

1 0

0 1− p

) Tr(C̃

0 √
p

0 0

)

Tr(C̃

 0 0

√
p 0

) Tr(C̃

0 0

0 p

)


, (H.9)

where by “≈” we ignore the small contribution of O(δ). Then we have

f2(C�) ≈ − |00〉 , (H.10)

f3(C�)−1 ≈ p |01〉 〈01|+ p |10〉 〈10|+

(|00〉+ (1− p) |11〉)(〈00|+ (1− p) 〈11|) 1
2(1− p) + (p |11〉)(p 〈11|) 1

2p, (H.11)

f3(C�)−1 ≈ 1
p
|01〉 〈01|+ 1

p
|10〉 〈10|

+2
p

((1− p) |00〉 〈00|+ |11〉 〈11| − (1− p) |00〉 〈11| − (1− p) |11〉 〈00|). (H.12)

Then |C̃�〉〉 ≈ |00〉 − |11〉 and we could take D� = cos δ |0〉 〈0| − sin δ |1〉 〈1|.

H.3 Attaining the asymptotic QFI

Now we have the optimal code from the previous two steps:

|c0〉 = sin(δ + ε) |0〉S |00〉A + cos(δ + ε) |1〉S |10〉A , (H.13)

|c1〉 = sin(δ − ε) |0〉S |01〉A + cos(δ − ε) |1〉S |11〉A . (H.14)

where δ and ε = o(δ) are small values. The last step is to find the exact relation between δ

and ε and Fsql(N ad
ω )− Fsql(DL,ω).
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To do so, we need the near-optimal recovery channel computed using Eq. (4.52):

Gopt = 2i√
1− p |00〉 〈11|+ −2i√

1− p |11〉 〈00| :=



0 0 0 2i√
1−p

0 0 0 0

0 0 0 0

−2i√
1−p 0 0 0


, (H.15)

and

Topt = eiεGopt =



cos
(

2ε√
1−p

)
0 0 − sin

(
2ε√
1−p

)
0 1 0 0

0 0 1 0

sin
(

2ε√
1−p

)
0 0 cos

(
2ε√
1−p

)


. (H.16)

Then using Eq. (4.50), and

E0,1 =
(
|K1A0,1〉〉 |K2A0,1〉〉

)
=



sin(δ ± ε) 0

0 √
p cos(δ ± ε)

0 0
√

1− p cos(δ ± ε) 0


, (H.17)

we finally get

ξ = p(cos(2δ) + cos(2ε)) sin2
(

ε√
1− p

)
+
√

1− p sin(2ε) sin
( 2ε√

1− p

)
+ cos(2ε) cos

( 2ε√
1− p

)
= 1− 2p sin2 δ

1− p ε2 +O(ε4),
(H.18)

ξ̇ = −i
√

1− p sin(2δ) sin
( 2ε√

1− p

)
= −2i sin(2δ)ε+O(ε3). (H.19)

Clearly,

Fsql(DL,ω) = 4(1− p) cos2 δ

p
+O(ε2), (H.20)

as expected. When δ is small and ε = o(δ), we would have Fsql(DL,ω) ≈ Fsql(N ad
ω ).
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