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Abstract

Assisted Network Analysis in Cancer Genomics

Huangdi Yi

2021

Cancer is a molecular disease. In the past two decades, we have witnessed a surge of high-

throughput profiling in cancer research and corresponding development of high-dimensional

statistical techniques. In this dissertation, the focus is on gene expression, which has played

a uniquely important role in cancer research. Compared to some other types of molecular

measurements, for example DNA changes, gene expressions are “closer” to cancer outcomes.

In addition, processed gene expression data have good statistical properties, in particular,

continuity. In the “early” cancer gene expression data analysis, attention has been on

marginal properties such as mean and variance. Genes function in a coordinated way.

As such, techniques that take a system perspective have been developed to also take into

account the interconnections among genes. Among such techniques, graphical models, with

lucid biological interpretations and satisfactory statistical properties, have attracted special

attention. Graphical model-based analysis can not only lead to a deeper understanding of

genes’ properties but also serve as a basis for other analyses, for example, regression and

clustering. Cancer molecular studies usually have limited sizes. In the graphical model-

based analysis, the number of parameters to be estimated gets squared. Combined together,

they lead to a serious lack of information.

The overarching goal of this dissertation is to conduct more effective graphical model

analysis for cancer gene expression studies. One literature review and three methodological

projects have been conducted. The overall strategy is to borrow strength from additional

information so as to assist gene expression graphical model estimation. In the first chapter,

the literature review is conducted. The methods developed in Chapter 2 and Chapter 4

take advantage of information on regulators of gene expressions (such as methylation, copy

number variation, microRNA, and others). As they belong to the vertical data integration

framework, we first provide a review of such data integration for gene expression data in



Chapter 1. Additional, graphical model-based analysis for gene expression data is reviewed.

Research reported in this chapter has led to a paper published in Briefings in Bioinformat-

ics. In Chapters 2-4, to accommodate the extreme complexity of information-borrowing

for graphical models, three different approaches have been proposed. In Chapter 2, two

graphical models, with a gene-expression-only one and a gene-expression-regulator one, are

simultaneously considered. A biologically sensible hierarchy between the sparsity structures

of these two networks is developed, which is the first of its kind. This hierarchy is then used

to link the estimation of the two graphical models. This work has led to a paper published

in Genetic Epidemiology. In Chapter 3, additional information is mined from published

literature, for example, those deposited at PubMed. The consideration is that published

studies have been based on many independent experiments and can contain valuable in-

formation on genes’ interconnections. The challenge is to recognize that such information

can be partial or even wrong. A two-step approach, consisting of information-guided and

information-incorporated estimations, is developed. This work has led to a paper published

in Biometrics. In Chapter 4, we slightly shift attention and examine the difference in graphs,

which has important implications for understanding cancer development and progression.

Our strategy is to link changes in gene expression graphs with those in regulator graphs,

which means additional information for estimation. It is noted that to make individual

chapters standing-alone, there can be minor overlapping in descriptions.

All methodological developments in this research fit the advanced penalization paradigm,

which has been popular for cancer gene expression and other molecular data analysis. This

methodological coherence is highly desirable. For the methods described in Chapters 2-

4, we have developed new penalized estimations which have lucid interpretations and can

directly lead to variable selection (and so sparse and interpretable graphs). We have also

developed effective computational algorithms and R codes, which have been made publicly

available at Dr. Shuangge Ma’s Github software repository. For the methods described

in Chapters 2 and 3, statistical properties under ultrahigh dimensional settings and mild

regularity conditions have been established, providing the proposed methods a uniquely

strong ground. Statistical properties for the method developed in Chapter 4 are relatively

straightforward and hence are omitted. For all the proposed methods, we have conducted



extensive simulations, comparisons with the most relevant competitors, and data analysis.

The practical advantage is fully established.

Overall, this research has delivered a practically sensible information-incorporating

strategy for improving graphical model-based analysis for cancer gene expression data,

multiple highly competitive methods, R programs that can have broad utilization, and new

findings for multiple cancer types.
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Chapter 1

Introduction

Genomic data provides valuable insights into cancer biology. Many quantitative genomic

analyses have been done, among which network analysis has critical applications, enhancing

our understanding of cancer and other complex diseases, and assisting us on the way to

personalized medicine. Although the importance of network analysis has been broadly

recognized, the results of existing methods are often not sufficiently satisfactory because of

the high dimensionality of large-scale networks.

In recent decades, research has been extensively conducted, developing for statistical

network models that can more accurately describe how genes are associated with cancer

risk, progression, response to treatment, and other outcomes/phenotypes. Many genetic

networks have been constructed using various statistical methods, whose findings are valu-

able and inspiring. However, quite often, the results are far from satisfactory because,

compared to the dimensionality of human genome, information from one dataset with hun-

dreds of observations is too limited. With the extreme complexity of cancer, it has been well

recognized that a single source/type of data is insufficient, and utilizing additional informa-

tion from multiple sources/types of data is needed. With the spirit of utilizing additional

information, our group has taken a leading role in developing cancer modeling techniques

by integrating various types of omics (genetic, epigenetic, genomic, and proteomic) data.

In a series of studies, we have built integrated regression models for the prognosis and

biomarkers of lung cancer, melanoma, breast cancer, and leukemia, and assisted clustering

models. However, this idea has never been tested in network analysis. A critical and prac-

1



tically highly relevant question, which remains unanswered, is “can the usage of additional

information (e.g., contained in various types of omics data and prior information) lead to

more accurate network analysis.”

Our ultimate goal is to build more accurate statistical models for genetic network anal-

ysis and differential network analysis by taking advantage of additional information, so as

to more effectively identify gene interconnections and network changes. In this dissertation,

we significantly expand the network analysis paradigm developed for genetic data and test

the feasibility/necessity of using (multiple types of) regulator data and prior knowledge

for cancer genetic network modeling. Taking advantage of TCGA data, we also construct

network models for multiple types of cancer. This study lays the foundation for developing

more advanced network methods and systematically conducting assisted network analysis

in cancer genomics.

1.1 Review of vertical data integration for gene expression

analysis

Gene expression data has played an essentially important role in many biomedical studies.

This has been thoroughly established in a myriad of books, journal articles, and presen-

tations. In gene expression studies, especially those with whole-genome profiling, there is

usually “a large number of unknown parameters but a limited sample size” problem, leading

to a “lack of information” and low-quality findings such as a lack of reliability and subop-

timal modeling/prediction. One solution to this problem is data integration. The existing

data integration methods mostly belong to two categories [1]. Under horizontal integra-

tion, data from multiple independent studies with comparable designs are integrated [2–5].

Under vertical integration, data on multiple types of omics measurements collected on the

same subjects are integrated [6, 7]. Horizontal integration has been reviewed elsewhere [1],

and in this chapter, we focus on vertical integration. We note that when data are available

on multiple types of omics measurements collected on the same subjects and from multiple

independent studies, it is possible to integrate in both ways, for which analysis methods are

a “marriage” of those for one-way integration [8–10]. There are also studies that integrate

2



prior information. For example, pathway information from KEGG has been extensively uti-

lized to assist present data analysis [11–13]. Moreover, some studies [14] mine information

from published studies deposited at PubMed and use that in model estimation and variable

selection. However, they do not involve additionally collected data, and the methods are

significantly different. As such they deserve separate reviews.

The surge in vertical data integration studies has been made possible by the growing

popularity of multidimensional profiling. A representative example is TCGA (The Cancer

Genome Atlas), which is a collective effort organized by the NIH and involves multiple re-

search institutes and universities. In Table 1.1, we present the numbers of measurements

on gene expressions as well as their regulators, including point mutations, copy number

variations, methylation, and miRNAs, for four representative cancers including breast inva-

sive carcinoma (BRCA), colorectal adenocarcinoma (COADREAD), kidney renal clear cell

carcinoma (KIRC), and lung squamous cell carcinoma (LUSC).

Table 1.1: Numbers of measurements on gene expressions and their regulators in four TCGA
datasets.

BRCA COADREAD KIRC LUSC

Gene expression 17,268 17,518 17,243 17,268
Mutation 13,414 15,998 14,054 15,273
Copy number variation 20,871 20,871 21,526 20,871
Methylation 12,328 12,328 1,678 12,328
miRNA 398 299 353 366

Vertical data integration has been motivated by the overlapping as well as indepen-

dent information contained in gene expressions and their regulators. Gene expressions are

regulated by the aforementioned and other regulators, leading to overlapping information.

There have been extensive studies on the regulating mechanisms [15–18], although we note

that the “gene expressions ∼ regulators” modeling is still being explored. With overlap-

ping information, regulators can be used to “verify” findings made with gene expressions,

as such, motivating data integration. On the other hand, these regulators, for example

methylation, can “interact” with proteins without “passing through” gene expressions. As

such, in modeling, regulators can bring additional and useful information not contained in

gene expressions, thus bearing the potential of improving model fitting and prediction.
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Generically, gene expression data analysis can be classified as marginal and joint [19].

Under marginal analysis, one or a small number of genes are analyzed at a time, whereas

under joint analysis, a large number of genes are modeled simultaneously. It can also be clas-

sified as unsupervised and supervised. Under unsupervised analysis, no outcome/response

data is involved, whereas under supervised analysis, there is an outcome/response of inter-

est. We note that semi-supervised analysis, which is a “combination” of unsupervised and

supervised analysis, is also gaining popularity, but will not be reviewed here. For general

discussions, we refer to [20, 21]. Below we review data integration methods for marginal

and joint analysis as well as unsupervised and supervised analysis separately.

1.1.1 Marginal analysis

Unsupervised analysis

With just a single gene (at a time) and no outcome variable, analysis has been mostly

exploratory, for example examining distributional properties (mean, variance, shape, etc.).

To the best of our knowledge, there is still no data integration study for this type of analysis.

Our own assessment is that there is perhaps no need.

Supervised analysis

Denote Y as the outcome/response of interest, which can be continuous, categorical, or

survival (subject to censoring). Denote X as the vector of gene expressions and Z as

the vector of regulators. It is noted that the analysis described here and below does not

require the collection of all relevant regulators. When there are multiple types of regulators,

published studies [22,23] have recommended combining them and creating a “mega” vector

of regulators.

A “standard” marginal analysis proceeds as follows: (a) regress Y on one component of

X, and extract the corresponding p-value; (b) conduct (a) for all genes in a parallel manner;

and (c) apply the FDR (false discovery rate) or Bonferroni approach to all p-values, and

identify significant genes. When regulator data are present, analysis can be revised as

follows: (i) for each gene, identify its regulator(s) via analysis or from prior knowledge;
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and (ii) confirm findings from the above Step (c) using regulator data. For example, a

finding can be more “trustworthy” if the regulator(s) can also be significantly associated

with response.

Remarks A potential problem is that the relationship between gene expressions and reg-

ulators is “m-to-m”. That is, one gene expression can be regulated by multiple regulators,

and one regulator can regulate the expressions of multiple genes. This naturally demands

looking at multiple gene expressions/regulators at a time and may lead to invalid marginal

analysis results.

1.1.2 Joint analysis

1.1.2.1 Unsupervised analysis

Our limited literature review suggests that most analysis in this category conducts clus-

tering, which can be on samples or genes. The goal of sample clustering is to understand

population heterogeneity, identify disease subtypes, etc., whereas the goal of gene clustering

is to understand gene functionalities, reduce dimensionality for downstream analysis (e.g.,

regression), etc. It is also possible to conduct biclustering and cluster both samples and

genes. Biclustering with data integration can be potentially realized by combing methods

for one-way clustering. We will not review it as studies are still limited.

Clustering samples As illustrated in Figure 1.1, two main strategies have been devel-

oped. The first strategy has been developed with the overlapping information in gene

expressions and regulators in mind. Under this strategy, three categories of methods have

been developed, where the key is to reinforce the same (or similar) clustering by gene

expressions and regulators.

The first category contains the late integration methods mainly based on the consensus

clustering techniques, such as the assisted weighted normalized cut (AWNCut) approach

[23], multi-view genomic data integration (MVDA) approach [24], Bayesian consensus clus-

tering (BayesianCC) [25], integrative context-dependent clustering (Clusternomics) [26],

and Bayesian two-way latent structure model (BayesianTWL) [27]. These methods differ

in the base clustering techniques, ways for extracting useful gene expression/regulator in-
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Figure 1.1: Illustration of unsupervised joint vertical integration approaches taking ad-
vantage of overlapping and independent information, respectively. CNV stands for copy
number variation.
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formation, and some other aspects. Here we use the AWNCut as an example to provide

some insights into the strategy [23]. Denote n as the number of independent samples. First

consider the “standard” NCut analysis. Compute the n × n adjacency matrices U and V ,

which measure the “closeness” of any two samples based on gene expressions and regula-

tors, respectively. A simple choice is the inverse of the Euclidean distance. Denote K as

the number of sample clusters, and A1, · · · , AK as their index sets. Using gene expression

data only, the NCut approach maximizes the objective function:

NCut(A1, · · · , AK) =

K∑
k=1

cutvol(Ak;U)

cut(Ak, A
c
k;U)

,

where Ack is the complement of Ak, cutvol(·) measures the within-cluster similarity, and

cut(·) measures the across-cluster similarity. With the consideration that not all genes/regulators

are equally informative, the AWNCut approach first introduces weights – genes/regulators

with higher weights are more informative for clustering. Denote Uw and Vw as the weighted

counterparts of U and V , respectively. The AWNCut approach maximizes the objective

function:

K∑
k=1

 cutvol(Ak;Uw)

cut(Ak, Ack;Uw)
+ τ

cutvol(Ak;Vw)

cut(Ak, Ack;Vw)
+ λ

∑
j

wXj cor
(
XAk,j , ZAk,.

)
+
∑
j

wZj cor
(
ZAk,j , XAk,.

) ,

where τ and λ are two data-dependent tuning parameters and can be selected for example

using cross validation. wXj and wZj are the jth components of the unknown weights for X

and Z, respectively. cor
(
XAk,j , ZAk,.

)
measures the average correlation between the jth

component of X and Z, computed using samples in Ak, and cor
(
ZAk,j , XAk,.

)
is defined

similarly. It is noted that the clustering structure and weights are optimized simultaneously.

The following observations can be made with this approach and are also applicable to

several other consensus clustering methods. First, the key clustering strategy and most

important component – the objective function – are built on an existing single-data-type

approach (in this case NCut). Second, clusterings are conducted separately using gene

expressions and regulators, and consensus is fully reinforced or encouraged. Third, certain

mechanisms are needed to remove noises so as to conduct clustering using only informative

genes/regulators. With AWNCut, data-dependent weights are imposed, and thresholding
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can be employed to distinguish signals from noises. With some approaches, regularization

has been directly employed for such a purpose.

The second category contains the middle integration methods, which take advantage of

similarity based analysis, including the similarity network fusion (SNF) approach [28] and

some others [29–31]. In particular, these methods first build similarity matrices of samples

using gene expressions and regulators separately, which are often represented as graphs or

networks. Fusion techniques, from as simple as average for PINS [29] and NEMO [30] to

the more complex eigen-decomposition based for CoALa [31], are applied to these similarity

matrices to generate a single combined similarity matrix, which is then partitioned using

a conventional clustering method, such as the spectral or k-means clustering. Different

from the late integration methods which directly generate cluster memberships for gene

expressions and regulators separately, followed by a post hoc integration of these separate

clusterings, middle integration conducts integration for similarity matrices in an earlier step.

The third category contains the early integration methods, which first detect joint pat-

terns (overlapping information) across gene expressions and regulators, and then build a

single clustering model that accounts for the generated overlapping information. In a sense,

the integration is earlier than the aforementioned ones. These methods are mainly based

on the joint dimension reduction techniques, among which iCluster [44, 45] is perhaps the

most representative. The basic formulation of iCluster is:

X = WXH + εX , Z = WZH + εZ ,

where H is the latent component that connects gene expressions and regulators and induces

their dependencies, εX and εZ are independent “errors” for gene expressions and regula-

tors, respectively, and WX and WZ are the coefficient matrices. The objective function

is built on the Gaussian distribution assumption with H ∼ N(0, I), εX ∼ N(0,ΨX), and

εZ ∼ N (0,ΨZ). To accommodate high dimensionality and identify informative genes and

regulators, the Lasso penalty is imposed on WX and WZ . An EM algorithm is applied for

optimization, and cluster memberships are then assigned by applying a standard k-means

clustering on the posterior mean E(H|X,Z). Similar to in late integration, regulariza-
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tion is usually employed for sparse estimation. Other examples include iClusterPlus [32],

LRAcluster [33], moCluster [34], GST-iCluster [35], iClusterBayes [36], MOFA [37], and

others.

Complementary to the first strategy, the second strategy has been developed to take

advantage of the independent information in gene expressions and regulators [38–40]. As

a representative example, a recent approach DLMI [40] is based on modern deep learning

techniques and proceeds as follows: (a) gene expression and regulator data are stacked

together and then used as the input of an autoencoder which is an unsupervised, feed-

forward, and nonrecurrent neural network (NN); (b) the output of the NN produces new

features, which are nonlinear combinations of the original measurements; (c) to make the

analysis clinically more relevant, an outcome variable is used for supervised screening and

identify marginally important features from Step (b); and (d) the selected features are used

to cluster samples with the k-means approach. With this approach, gene expressions and

regulators are explicitly pooled in Step (a) to gain more information. This approach is also

a good showcase of data integration in the modern deep learning era.

Clustering gene expressions Our limited literature review suggests that, compared to

the analysis described in the above subsection, gene expression clustering that integrates

regulator data is limited. The graphical presentation is also provided in Figure 1.1.

To take advantage of the overlapping information, we conjecture that it is possible to

proceed as follows: (a) for each gene expression, identify its regulators; (b) for a partition

of gene expressions, compute the ordinary within-cluster and across-cluster distances; (c)

partition regulators based on their associations with gene expressions and the partition in

(b). Note that a regulator may belong to multiple clusters. Compute the within-cluster and

across-cluster distances; and (d) compute the (weighted) sums of within-cluster and across-

cluster distances from (b) and (c), and determine the clustering structure by minimizing

the within-cluster distance and maximizing the across-cluster distance. This conjectured

approach has been motivated by AWNCut, although we note that it has not been actually

executed. And we have not been able to identify a clustering approach motivated by the

overlapping information.
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To take advantage of the independent information, we consider the ANCut (assisted

NCut) approach [41], which is also built on the NCut technique and proceeds as follows.

First consider the model:

X = η Z + E,

where η is the matrix of unknown regression coefficients, and E is the vector of “random

errors” (which may also contain unmeasured or unknown regulating mechanisms). In [41],

the estimate of η̂ is obtained using the elastic net approach, which can accommodate the

sparsity of regulations. Denote X̂ = η̂Z and X̃ = X − X̂. Here a linear regression is

adopted to explicitly describe that gene expression data contain information overlapping

with regulator data (that is, X̂) as well as independent information (that is, X̃). Denote

Û and Ũ as the n× n sample adjacency matrices computed using X̂ and X̃, respectively.

Denote K as the number of gene clusters, and A1, · · · , AK as their index sets. The ANCut

objective function is:

K∑
k=1

cutvol(Ak; Û)

cut(Ak, A
c
k; Û)

+
K∑
k=1

cutvol(Ak; Ũ )

cut(Ak, A
c
k; Ũ )

.

A simplified version, which is suggested as equivalent, has also been developed [41]. The

essence of this approach is to first decompose gene expressions into two components and

then reinforce that they generate the same clustering results.

Remarks The aforementioned clustering techniques generate disjoint clusters. In the

clustering of samples, clustering of gene expressions, and biclustering, fuzzy techniques

[42–45] have been developed to allow samples/genes to belong to multiple clusters or not

be clustered. Data integration in fuzzy clustering remains limited and may warrant more

exploration.

1.1.2.2 Supervised analysis with sparsity

For a specific outcome/response, it is usually true that many or most genes are “noises”,

demanding certain sparsity in analysis. Sparse results are also more interpretable and more

actionable. The strategies of the supervised integration approaches are illustrated in Figure
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1.2.

Figure 1.2: Illustration of supervised joint vertical integration approaches taking advantage
of overlapping and independent information, respectively.

Analysis that takes advantage of the overlapping information A well-known rep-

resentative is collaborative regression (CollRe) [46], which is motivated by the unit-rank

canonical correlation analysis. Consider the case with a continuous Y and the model

Y = β>X + ε, where β is the vector of unknown regression coefficients and ε is the random

error. Use subscript i to denote the ith sample. With the Lasso estimation, the objective

function is:
n∑
i=1

(Yi − β>Xi)
2

+ λ|β|,
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where λ is the data-dependent tuning parameter and the l1 norm is defined as the sum

of component-wise absolute values. Following the same strategy, a model can be built

using the regulators, and denote the corresponding regression coefficient vector as γ. The

collaborative regression approach considers the objective function:

n∑
i=1

(Yi − β>Xi)
2

+ λ |β|+
n∑
i=1

(Yi − γ>Zi)
2

+ λ |γ|+ τ

n∑
i=1

(β>Xi − γ>Zi)
2
,

where τ is another data-dependent tuning parameter. This approach explicitly builds two

regression models. The key advancement is the last penalty term, which encourages gene

expressions and regulators to generate similar estimated effects.

Motivated by the successes of approaches that explicitly model the gene-regulator re-

lationship and possible long-tailed distribution/contamination of the response data, the

ARMI (assisted robust marker identification) approach is developed [47]. Specifically, still

consider the linear gene expression-regulator model as in Section 3.1.2. In [47], η̂ is obtained

using the Lasso approach. The ARMI approach has objective function:

n∑
i=1

∣∣∣Yi − β>Xi

∣∣∣+ λ |β|+
n∑
i=1

|Yi − γ>Zi|+ λ |γ|+ τ × |β>η̂ − γ>|.

Different from collaborative regression, it promotes the similarity of regression coefficients

for gene expressions and regulators, as opposed to the estimated effects. In addition, the

l1 loss functions are adopted, which leads to robustness and simplified computation (as all

terms are l1).

Remarks With both collaborative regression and ARMI, the goodness-of-fit functions can

be replaced by negative likelihood functions to accommodate other models and data distri-

butions. For example, a followup study [48] extends collaborative regression and develops

canonical variate regression (CVR) which can handle multivariate and non-continuous out-

comes and allows for multiple-rank modeling. For these two approaches and those described

below, the original publications have assumed homogeneity. We conjecture that they can

be extended and coupled with the FMR (finite mixture of regression) technique [49, 50] to

accommodate heterogeneity. In addition, they have been described with only the additive ef-
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fects of omics measurements. In practical data analysis, demographic/clinical/environmental

variables, which are usually low-dimensional, can be easily incorporated. We conjecture that

it is possible to extend the approaches aforementioned and below to accommodate gene-

environment interactions [51, 52], although our literature search shows that this has not

been pursued.

Analysis that takes advantage of the independent information Conceptually, the

most straightforward approach is to pool all omics measurements together and use as input

to, for example, penalization estimation and variable selection. As different types of omics

data have significantly different dimensionalities and distributional properties, this simple

approach barely works in practical data analysis. To tackle this problem, IPF-LASSO

proposes using different penalty parameters for different types of predictors [53]. As an

“upgrade”, the additive modeling approach first applies for example Lasso to each type

of omics data separately and identifies a small number of features [54, 55]. The selected

features, which have much lower dimensions, are pooled and modeled in an additive manner.

The most significant advantage of this approach is simplicity. On the other hand, there is

no distinction between gene expressions and regulators.

The conditioning-integration approach has been designed to account for the “order” of

omics measurements. That is, compared to regulators, gene expressions are “closer to”

outcome/response. This approach proceeds as follows: (a) conduct analysis with gene ex-

pression data only, using a “standard” high-dimensional sparse approach, for example Lasso.

With this step, the dimensionality of gene expressions is reduced to one; (b) conditional on

the one-dimensional gene expression effect, integrate one type of regulator data. This can

be achieved using the same approach as in (a); (c) conduct (b) with all types of regulator

data (if applicable), and select the type with, for example, the best prediction performance,

and integrate; (d) repeat (c) until there is no significant improvement in prediction or all

regulator data have been integrated. A significant advantage of this approach is that it

does not demand new methodological and computational development. It can also generate

a “ranking” of regulator data, facilitating biological interpretations. On the other hand, it

does not take full advantage of the regulation relationship.
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Overlapping information may be statistically manifested as correlation, which may chal-

lenge model estimation. The decomposition-integration approach explicitly exploits the reg-

ulation relationship and can effectively eliminate correlation. A representative example is

the LRM-SVD approach [22], which proceeds as follows: (a) consider the regulation model

X = η Z+E, and denote η̂ as the estimate of η. In [22], estimation is achieved using Lasso.

(b) Conduct sparse SVD (singular value decomposition) with η̂. Specifically, the first step

is conducted by minimizing the objective function:

||η̂ − λ× u>v||22 + τ (|u|+ |v|) ,

where λ is the first singular value, and u and v are singular vectors with the same dimensions

as X and Z, respectively. η̂ is then updated, and the subsequent steps can be conducted in

a similar manner. (c) With each sparse SVD, Step (b) leads to rank-one subspaces of X and

Z (which are linear combinations of a few components of X and Z, corresponding to the

nonzero components of the singular vectors). These rank-one subspaces have been referred

to as the “linear regulatory modules (LRMs)” and include co-expressed gene expressions and

their coordinated regulators. Denote the collection of such subspaces as XO. (d) Project

X and Z onto XO, and denote the “residuals” as X̃ and Z̃. This is realized using matrix

projection operations. (e) Consider the outcome model Y ∼ f(β>XO+α>X̃+γ>Z̃). In [22],

survival data and the accelerated failure time model are considered. Denote l(β, α, γ) as

the lack-of-fit function. The final estimation and variable selection can be achieved by

minimizing:

l (β, α, γ) + λ(|β|+ |α|+ |γ|).

The three decomposed components have lucid interpretations. The LRMs, besides serving

as the building blocks for model fitting, can also facilitate understanding biology. In ad-

dition, through projection, the three components are statistically independent, facilitating

estimation.
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1.1.2.3 Supervised analysis without sparsity

The approaches reviewed in Section 3.2 and those alike make the sparsity assumption. In

practical data analysis, they usually select only a few gene expressions (and regulators). It

has been proposed that there may be many weak signals, which cannot be accommodated by

sparse approaches. When biological interpretation is of secondary concern, dense approaches

that can accommodate many genes may be advantageous. Studies have suggested that some

“black-box” approaches may excel in prediction.

With the additive modeling and conditioning-integration techniques discussed in Section

3.2, dense dimension reduction approaches, such as PCA (principle component analysis),

PLS (partial least squares), ICA (independent component analysis), and SIR (slice inverse

regression), can be applied as building blocks to accommodate high dimensionality [6].

Examining the decomposition-integration technique suggests that it is designed to be sparse.

We have not identified a dense approach that adopts this technique.

In recent studies, deep learning techniques have also been adopted for supervised model

building and prediction. Here we note that for data with low-dimensional input and a

large number of training samples, the superiority of deep learning in prediction has been

well demonstrated. However, the message is less clear with high-dimensional omics data.

As a representative, a recent deep learning approach HI-DFNForest [56] proceeds as fol-

lows: (a) For gene expression and each type of regulator, data representations are learned

separately. This can be achieved using fully connected NNs, although our personal obser-

vation is that those with regularization (for example, Lasso) may be more reliable. (b)

All the learned representations are integrated into a layer of autoencoder to learn more

complex representations. (c) The learned representations from (b) are fed into another NN

for the outcome/phenotype. For continuous, categorical, and censored survival outcomes,

NNs with various complexity levels have been developed in the recent literature, including

MVFA [57], SALMON [58], MDNNMD [59], and others.

Remarks The line between sparse and dense approaches is becoming blurring. Hybrid

approaches have been developed, with the hope to “inherit” strengths from both families

of approaches. For example, in a study of the gene expression-regulator relationship [60], a
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sparse canonical correlation analysis approach is developed, which applies the Lasso penal-

ization to correlation analysis. Other examples include the joint and individual variation

explained method [61] and penalized co-inertia analysis [62]. In supervised model building,

the SPCA (sparse PCA) and SPLS (sparse PLS) techniques have been applied [55,63].

1.1.3 Discussion

Most of the reviewed approaches, for example AWNCut, collaborative regression, conditioning-

integration, and many alike in published literature, have roots deep in the existing methods

for gene expression only. There are only a few, such as the decomposition-integration ap-

proach, that directly take a system perspective. More developments are needed to directly

start with the gene expression-regulator system.

Most of the reviewed approaches have been based on penalized variable selection and

dimension reduction, which are arguably the most popular high-dimensional techniques.

There have also been developments using other techniques, especially including Bayesian,

thresholding, and boosting. For example, the iBAG approach [64], which adopts the

decomposition-integration strategy, has been developed using the Bayesian technique. With

the complexity of omics data, it is unlikely that one technique can beat all. It is of inter-

est to expand the aforementioned studies using alternative techniques and comprehensively

compare (for example, consensus clustering using the NCut technique against k-means).

It is indisputable that regulator data contain valuable information. However, in any

statistical analysis with a fixed sample size, regulator data contain both signals (which

are unknown and need to be identified data-dependently) and noises. Conceptually, if

signals overweigh noises, then data integration is worthwhile. However, theoretically, there

is still a lack of research on the sufficient (and possibly also necessary) conditions under

which data integration is beneficial. We conjecture that this is related to the level of

signals, number/ratio of signals, and analysis techniques. There have been a few studies

conducting numerical comparisons. For example, in [6], with survival data, the models

with gene expression only are compared against those integrating regulators including copy

number variation, methylation, and miRNA using C-statistics. Conflicting observations

are made across diseases/datasets, further demonstrating the necessity of more statistical
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investigations on the benefit of data integration.

The reviewed approaches and many in the literature focus on gene expressions and

their upstream regulators. In the whole molecular system, there are also proteomic and

metabolic measurements. It is possible to further expand the scope of data integration.

One possibility is to keep the central role of gene expressions and use downstream data

to assist gene expression analysis. For example, multiple studies have used protein-protein

interaction information in gene expression data analysis [65, 66]. The second possibility

is to consider gene expression as an intermediate step and directly model the whole sys-

tem. For example, in [67], clustering analysis (MuNCut) is conducted on the “protein-gene

expression-regulator” system and identify molecular channels.

Our review has been focused on bulk gene expression data, where, for a specific gene,

the measurement is the average of transcription levels within a cell population collected

from a biological sample. In the past few years, single cell RNA sequencing (scRNA-seq)

is getting increasingly popular. It advances from bulk RNA-seq by measuring mRNA ex-

pressions in individual cells and can provide more comprehensive understanding of complex

heterogeneous tissues, dynamic biological processes, and other aspects [68]. Parallel sin-

gle cell sequencing techniques have also been developed for the joint profiling of single cell

transcriptome and other molecular layers, such as genome [69], DNA methylation [70], and

chromatin accessibility [71], on the same cells, making it potentially possible to conduct

data integration at the single cell resolution [72]. Single cell data usually has the count

nature and exhibit strong amplification biases, dropouts, and batch effects due to unwanted

technical effects, tiny amount of RNA present in a single cell, and other reasons [73], posing

tremendous challenges to statistical analysis. The integration approaches reviewed above

do not account for these characteristics and cannot be applied to single cell data directly.

We conjecture that it is possible to build the single cell counterparts of the review meth-

ods. However, significant methodological developments will be needed. The limited existing

vertical integration approaches for single cell data include the coupled nonnegative matrix

factorization for the clustering of cells [74], multi-omics factor analysis v2 (MOFA+) [75]

which is the extension of the unsupervised sample clustering approach MOFA [37], and a

few others.
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In data integration, higher dimensionality inevitably brings computational challenges.

This is multi-faceted. First, it increases data storage and manipulation burden. This can be

especially true when, for example, genome-wide SNP data is present. In practical data anal-

ysis, pre-processing is usually conducted to significantly reduce dimensionality and hence

computational challenges. For example, SNP data can be aggregated to gene-level data [76],

or supervised screening can be applied to select the most relevant ones for downstream

analysis [6,22,55]. This way, the increase in storage and manipulation burden can be mod-

erate. Second, some methods demand the development of new computational algorithms.

For example, AWNCut introduces weights, which need to be optimized along with cluster

memberships. The decomposition-integration approach LRM-SVD demands a more effec-

tive way of conducting sparse SVD. Fortunately, in the reviewed studies, computational

algorithms have been developed by “combining” existing techniques. For example, with

AWNCut, the simulated annealing technique is repeatedly applied. Deep learning-based

integration approaches have taken advantage of the existing algorithms/tools, such as the

Keras library [40], TensorFlow [59], and others. Overall, the demand for new computational

algorithms has been “affordable”. Third, increased dimensionality reduces computational

stability. In some studies [23], random-splitting approaches have been applied to evaluate

stability. However, there is still a lack of study rigorously quantifying the loss of stability,

and whether that can be “compensated” by for example the improvement in prediction.

1.2 Review of network analysis

1.2.1 Significance of genetic network analysis

Omics data have brought valuable insights into quantitative research on many complex dis-

eases [77–79]. Although the associations between different outcomes and individual genes

have been widely studied, many individual interconnections studies lack a system prospec-

tive. Compared to gene-based research and individual interconnection analysis, genetic

network analysis provides an advanced means to illuminate how genes function systemati-

cally for complex diseases.

Genetic networks are a representation in which nodes represent genes and edges represent
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interconnections among genes. Genetic network analysis has attracted a lot of interest, and

many methods have been proposed for statistical inference from GE data since the advent

of high-throughput sequencing [80–82]. It has critical applications in biological and medical

sciences, enhancing our understanding of complex diseases, and assisting us on the way to

personalized medicine.

Genetic networks provide important information about gene-gene interconnections such

as regulatory associations between regulating genes and their potential targets, which can

help solve different biological and biomedical problems. An important application is that

genetic networks represent systematically statistical significance of molecular interconnec-

tions obtained from high-throughput data. Given a large number of potential gene intercon-

nections among approximately 25,000 genes, the construction of genetic networks largely

narrows down the number of connections and pinpoints these critical ones from noisy data.

For instance, Butte et al. constructed 202 relevant (sub-)networks from 11,692 genes in

60 cancer cell lines, and some of the network clusters/pathways were found related to dif-

ferent biological functions [83]. Another representative example is the weighted correlation

network analysis (WGCNA) [84], based on which many studies have been conducted to con-

struct gene co-expression networks, identify modules, and hub genes. For example, Clark

et al. built a genetic network using breast cancer samples from 13 microarray-based GE

studies and identified 11 coregulated gene clusters. Most of these transcriptional modules

were found to be correlated with tumor grade, survival endpoints for breast cancer, and

also its molecular subtypes [85]. Many other findings have also shown that genetic net-

work analysis can facilitate the identification of key biomarkers of cancer and various other

complex diseases [86–88].

Not only individual identified genes can be used as biomarkers, but it has been argued

that a network itself can also be considered as a biomarker for diagnostic, predictive, or

prognostic purposes [89, 90]. This is reasonable especially for complex diseases like cancer,

as the characteristics of cancer are represented by interconnected genes with complex “in-

teractions” [91]. For example, using GE data, Yang et al. analyzed the genetic networks

of four representative cancer types and showed that prognostic genes in genetic networks

have common system-level properties [92]. This study and those alike suggest that we can
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potentially conduct more accurate prognosis and other analysis if we can account for gene

network information in a comprehensive and effective manner. In another relevant study,

Dehmer et al. used eigenvalues and entropy-based network measures as biomarkers and

demonstrated that they outperform conventional biomarkers using GE data [90]. When

more and more established networks from different diseases become available, together with

clinical data and drug-dose response information, it will be possible to lead the charge to

more personalized medicine [93].

A beneficial concomitant of the increasing availability of genetic networks is the growing

possibility of differential network analysis comparing multiple networks from different pop-

ulations or groups. This will allow us to learn about how interconnections change across

various time courses or disease conditions and enrich our biomedical understanding [94]. For

example, Islam et al. conducted a computational analysis of published protein interaction

networks [95]. In their study, cancer protein interaction networks show a higher level of clus-

tering, or molecular complexes, than the normal ones for all tissues. These networks further

predicted some major molecular complexes that might act as the important regulators in

cancer progression and potential drug targets.

In conclusion, genetic network analysis is of great importance for solving many different

biological and biomedical problems. As the advent of the omics era, when GE and other

genetic variants data are becoming increasingly available, it is the appropriate time to

develop statistical methods for more advanced genetic network analysis.

1.2.2 Network methods

Compared to the methods mentioned in Section 1.1, genetic network analysis is timely

and more informative because it considers gene interconnections in a more systematical

way [96]. A distinction is made between undirected networks, where edges link two nodes

symmetrically, and directed networks, where edges can be directional [97]. In biomedical

studies, undirected networks are often adopted because many types of relationships between

two biological entities (e.g., gene co-expression and protein binding) are symmetrical [98].

A network is fully specified by its adjacency matrix, a symmetric matrix whose components

encode the network connection strength between nodes. For an unweighted network, each

20



entry in the adjacency matrix is either 1 or 0, representing there is an edge or not. Weighted

networks allow the adjacency to take on continuous values between 0 and 1, which are

defined by gene similarity.

Statistical methods for genetic network construction can be divided into two families,

for identifying unconditional associations and conditional associations. WGCNA and its

successors belong to the first category. The connection in a gene co-expression network is

often a measure of correlation, mostly commonly Pearson correlation coefficient [99, 100].

This measure describes marginal, linear relationships between genes, i.e., every pair of genes

is considered alone, ignoring the presence of all remaining genes. The resulting networks

are sometimes very dense, and the natural interpretation of the edges has had only limited

success in identifying therapeutic targets [101]. This is partly due to the fact that gene co-

expression networks focus only on marginal dependency, and can neither provide a systemic

perspective conditional on other genes nor incorporate valuable information from multi-

omics data [102,103].

Studies on network methods for revealing conditional dependence are promising and

prosperous. In recent years, there have been many conditional dependency network in-

ference methods [104–106], such as Gaussian graphical models (GGMs) [107], Bayesian

networks [108], and Boolean networks [109]. Among them, GGMs are especially attrac-

tive because the assumption is intuitive and simple, and they process superior statistical

properties. If GE profiles follow a multivariate Gaussian distribution, two genes have a non-

zero partial correlation if and only if they are conditionally dependent given other genes,

which is, if the corresponding element in the inverse of their covariance matrix, i.e., the

precision matrix, is non-zero [107]. GGM may produce a more parsimonious graph than

some co-expression networks [110]. This parsimonious graph, in other words, the sparse

precision matrix, can be estimated by maximizing a penalized log-likelihood function. For

the optimization problem, the desired properties of network can be enforced by restricting

the solution space or by constructing an appropriate penalty. Researchers have exploited

this flexibility, resulting in diverse literature on analyzing GE data using GGMs [111–113].

However, most GGMs are not comprehensive or informative enough because they cannot

incorporate regulator information.
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Relationships of genes are often affected by regulator variations, such as CNVs and

methylation. When additional information on regulators is available, there are studies on

identifying the dependency networks of genes after “removing” the effect of regulators. For

example, one may want to infer the gene network incorporating all external variables as

well, since the relationships of genes are often affected by external variables (e.g., genetic

variations), and gene regulatory relationships may be altered under different conditions such

as tissue types. The conditional Gaussian graphical models (cGGMs) have been introduced

to achieve this goal. In the studies of cGGMs, multivariate regression has been widely used.

Yin and Li proposed a sparse cGGM for studying the conditional dependent relationships

among a set of GEs adjusting for possible genetic effects [114]. Yuan and Zhang developed

a partial Gaussian graphical Model (pGGM) and showed that it is essentially a regularized

conditional maximum likelihood estimator for the regression model [115]. Different from

cGGMs, the pGGM approach directly estimates blocks of the full precision matrix via a

convex formulation, while the log-likelihood objective function of a cGGM is not convex but

biconvex. This significantly simplifies the computational procedure and statistical analysis.

For more related studies, we refer to [116–119]. All the aforementioned papers have been

focused on either the construction of one network or the construction of several similar

networks of the same type, but no comparison has been made between these related but

different genetic networks. More specifically, there is a hierarchical structure between the

network that is constructed based on GE only and that with both GE and regulators. In

particular, the interconnection of two genes can be caused by many reasons, one of which

is that these genes are regulated by the same regulators. So when we “remove” the effect

of regulators, the interconnection/edge between these genes should disappear if it is only

caused by these regulators. In other words, there is a monotone change in edges of the GE

network after removing the effects of regulators. However, none of the existing methods has

utilized this hierarchical structure. Our development in Chapter 2 will fill this knowledge

gap.

Another common limitation of the existing methods is that they fail to take into account

existing “prior information”. In statistical literature, prior information almost “automat-

ically” leads to Bayesian analysis. Our literature review suggests that Bayesian network
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analysis remains limited. One example is by Gevaert et al. [120], which developed several

Bayesian networks with expert information and used them to predict ectopic pregnancy.

Gaussian graphical models have also been estimated using Bayesian techniques [121, 122].

Bayesian techniques for network analysis have a few limitations. They are often difficult

to compute; The adopted priors can be somewhat subjective – this is especially true when

computation is a major concern; And it is difficult to “customize” priors for different edges

– imposing the same prior for all edges may not be sensible as we have extensive knowledge

on some edges but little to none on others. Our development in Chapter 3 will fill this

knowledge gap.

When there are two or more different conditions/groups (for example, disease stage),

differential analysis can be of significant interest. This is also true when the quantity

of interest is network. Differential network analysis can especially suffer from “a lack of

information” as at least two networks need to be estimated, which increases the number

of parameters even more. In Chapter 4, we will continue developing assisted analysis. We

will consider the scenario where the goal is to identify the key contributors (genes) to the

difference of two (or more) GE networks, when data is also available on regulators. Our

strategy is to take advantage of regulator information and GE-regulator relationship to

improve the accurate of GE identification. This strategy has been partly motivated by

early developments by Dr. Ma’s group [23] and also contains further development.

Taken together, although the significance of genetic network analysis has been broadly

recognized, the results are far from satisfactory. Part of the reason is that the sample size is

relatively small compared to the gene dimensionality. This gap can be partially filled if we

can take advantage of abundant information from regulators and existing studies. As such,

the purpose of this dissertation is to propose different techniques with different strategies

for using additional information to improve genetic network analysis.

1.3 Summary of Significance

GE data provides valuable insights into cancer biology. Many quantitative analyses have

been done, among which network analysis has critical applications, enhancing our under-
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standing of disease, and helping us on the way to personalized medicine. Although the

importance of network analysis has been broadly recognized, the results of existing meth-

ods are not fully satisfactory, mainly because of a “lack of information” caused by the high

data dimensionality and small sample size. We see a strong need for more effective methods

which can harness “additional information” in regulators and published studies to improve

genetic network analysis. In the following chapters, we conduct extensive statistical and

numerical studies, which significantly advances the assisted analysis paradigm developed by

our group and others to the more complex network analysis. Methodology developments

in genetic network analysis is fundamentally meaningful – it lays the foundation for future

network analysis and broader data analysis on other cancer types. Taking advantage of

TCGA data, this study also has a significant impact on cancer research.

Project 1: Using information on regulators to improve network construction.

The aforementioned hierarchical structure between the genetic network based only on GE

data and the network that also incorporates regulators of GEs has not yet been taken

full advantage of in the estimation of gene networks. Considered that more and more

information about regulators is available, we see a great potential of improving network

construction if we can develop a novel approach to effectively use the information.

Project 2: Using information from publications to improve network construc-

tion. Similar ideas have been brought to regression analyses in [123] and [14], but there is

not such a statistical method to comprehensively incorporate prior information in genetic

network analysis. Therefore, our second project is to improve the estimation of network

structures using additional information from prior knowledge especially by mining published

studies.

Project 3: Using information on regulators to improve differential network

analysis. Since there are regulations between GEs and regulators, it is meaningful to

incorporate regulator information when we look for genes that primarily contribute to the

change of networks. Regulator information has been exploited in regression analyses and

clustering, but has not been brought to differential network analysis. It is challenging and

of interest to adapt and advance this technique in the complex differential network analysis.
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Innovation

1. The framework of this dissertation is novel because it contains a series of strategies

aiming to take advantage of various information, leading to more accurate and de-

pendable findings in genetic networks, significantly advancing the network analysis

paradigm.

2. The first method innovatively uses a penalization model to jointly estimate a gene-

expression-only GGM and a gene-expression-regulator GGM, so that it can exploit

information on the hierarchical structure in genetic networks. The second method

brings forward an innovative way to incorporate prior knowledge in network construc-

tion. The third method creatively utilizes the change of regulatory network when

estimating the change of genetic network. All methods are biologically well motivated

while having a strong statistical ground.

3. The proposed methodological advances adequately tackle the limitations mentioned

above in current methods for genetic network analysis. Also, we prove the theoretical

properties of the proposed methods so that this study enjoys high statistical rigor.

4. Intensive numerical studies including simulations and real data analyses are con-

ducted. Extensive comparisons are made between our results and existing findings.

This dissertation has a high likelihood of success and significant practical impact.
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Chapter 2

Project 1: Assisted estimation of

gene expression graphical models

Abstract

In the study of gene expression data, network analysis has played a uniquely important role.

To accommodate the high dimensionality and low sample size and generate interpretable

results, regularized estimation is usually conducted in the construction of gene expres-

sion Gaussian Graphical Models. Here we use GeO-GGM to represent gene-expression-only

GGM. Gene expressions are regulated by regulators. GeR-GGMs (gene-expression-regulator

GGMs), which accommodate gene expressions as well as their regulators, have been con-

structed accordingly. In practical data analysis, with a “lack of information” caused by the

large number of model parameters, limited sample size, and weak signals, the construction

of both GeO-GGMs and GeR-GGMs is often unsatisfactory. In this article, we recognize

that with the regulation between gene expressions and regulators, the sparsity structures of

a GeO-GGM and its GeR-GGM counterpart can satisfy a hierarchy. Accordingly, we pro-

pose a joint estimation which reinforces the hierarchical structure and use the construction

of a GeO-GGM to assist that of its GeR-GGM counterpart and vice versa. Consistency

properties are rigorously established, and an effective computational algorithm is developed.

In simulation, the assisted construction outperforms the separation construction of GeO-

GGM and GeR-GGM. Two TCGA datasets are analyzed, leading to findings different from
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the direct competitors. Research reported in this chapter has been published in Genetic

Epidemiology.

2.1 Introduction

In biomedical research, gene expression data have been routinely generated. A long ar-

ray of analysis has been conducted, among which network analysis has played a uniquely

important role. Network analysis can not only lead to a deeper understanding of how

genes affect each other but also serve as the basis of other important analyses, for example

regression and clustering. There are two main families of gene expression network construc-

tion: unconditional and conditional. In an unconditional construction, when quantifying

whether two gene expressions are connected, information in other genes is not accounted

for. In contrast, a conditional construction quantifies whether two gene expressions are

connected conditional on the rest of the genes. In a sense, with a system perspective, con-

ditional construction can be more informative and more comprehensive. Statistically, it is

more challenging as the analysis of each gene interconnection involves a large number of

parameters.

In this study, we consider Gaussian Graphical Model (GGM), which is possibly the most

popular conditional network construction approach. It has been extensively applied to the

analysis of gene expression data and led to biologically useful findings. Representative

examples include Dobra et al. (2004) [124], Wang et al. (2016) [125], Zhao and Duan

(2019) [126], and others. We acknowledge that the GGM approach is not ideal in the

sense that it makes the multivariate normal distribution assumption, whereas practical

gene expression data may have distributions deviating from normal. In the literature,

there have been several works [127, 128] relaxing this assumption, and we note that the

proposed technique can be directly coupled with these works. However, these alternatives

are not as lucidly interpretable as the GGM. In addition, when gene expression data are

properly processed (possibly with transformations), our data examination suggests that

usually the distributions are bell-shaped and unimodal. Considering the lucid interpretation

and satisfactory performance observed in published data analysis, we choose the GGM for
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gene expression data while cautioning that exploratory analysis should be conducted in

practice (to examine deviation from normality) before applying the proposed approach. We

refer to Yuan and Zhang (2014) [115], Ravikumar et al. (2011) [129], and Suzuki (2013)

[130] for methodological developments, statistical properties, computational algorithms,

and applications of GGMs under high-dimensional settings. There are multiple ways for

estimating GGMs, in particular including probabilistic [110] and Bayesian [131]. In this

article, we focus on the probabilistic estimation, which may be more popular.

The levels of gene expressions are not “rootless” but instead highly regulated by regu-

lators including copy number variations (CNVs), methylation, microRNAs, and others. In

the past few years, we have witnessed a surge of multidimensional profiling studies, which

collect measurements on gene expressions as well as their regulators on the same subjects.

Such studies make it possible to jointly analyze gene expressions and their regulators, more

informatively describing the whole molecular picture. In the context of network analysis,

GeR-GGMs (gene-expression-regulator GGMs) have been constructed [119], under which

the analysis of interconnection for two gene expressions is conditional on the other gene

expressions as well as regulators. We refer to Chiquet et al. (2014) [119] and other pub-

lished studies for the rational and merit of GeR-GGM analysis. To differentiate the two

types of analysis, we use GeO-GGM to represent a gene-expression-only GGM analysis. We

note that such techniques are also applicable to other types of molecular data [118] and

other types of biological data, and refer to [116, 132], and others for additional relevant

discussions.

Gene expression data analysis is challenged by the “high dimensional variables, small

sample size” problem, which gets more serious in network analysis where the number of

unknown parameters gets squared – this is especially true in GeR-GGM constructions. To

accommodate the high dimensionality and generate sparse networks that match the under-

lying biology (that is, a specific gene is only connected to a few other genes), regularized

estimation has been extensively conducted. Among the existing approaches, the most fa-

mous is perhaps graphical Lasso [110], which applies Lasso penalization in GGM estimation.

Beyond Lasso, other penalization approaches and approaches based on other regularization

techniques have also been developed [132, 133]. Despite satisfactory theoretical properties
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of the graphical Lasso and other regularized estimation approaches, in practical data anal-

ysis, numerical results are still often unsatisfactory, which can be attributable to a “lack of

information” caused by the large number of unknown parameters, small sample size, and

weak signals. To overcome this problem, various “information borrowing” techniques have

been developed. For example, the horizontal data integration techniques pool multiple inde-

pendent datasets that share certain similarity and jointly estimate multiple GeO-GGMs (or

GeR-GGMs) [134]. There are also studies that borrow information from prior knowledge,

for example, functional annotations of genes or published findings [9].

Our goal is to conduct more effective GGM analysis of gene expression data, when

regulator data is available for at least some subjects (more detailed data setting described

below). The gene expression networks generated by our analysis have the same implications

and can be utilized in the same manner as in the literature [124–126]. This study has

been motivated by the importance of graphical models in the analysis of gene expression

data, still not fully satisfactory performance of the existing analysis, and hence demand for

new and more effective network construction. It has been made possible by the growing

popularity of multidimensional profiling. Significantly different from the existing studies,

a new analysis strategy is proposed to borrow information across a GeO-GGM and its

corresponding GeR-GGM, so that the estimation of the GeO-GGM can assist the estimation

of the GeR-GGM, and vice versa. Loosely speaking, this strategy shares some similar spirit

with the vertical data integration [14]. This study may advance from the existing literature

in the following aspects. The first is to propose a biologically sensible hierarchy between the

GeO-GGM and GeR-GGM, which motivates our methodological development and has not

been accounted for in the literature. Second, although the proposed penalized estimation

shares some similarity with published studies, its application to the present context is new

and novel. Third, statistical and numerical properties are rigorously established, providing

the proposed method a stronger ground than some of the existing studies that are limited

to numerical developments. Last but equally important, our study can provide new insights

into gene interconnections for cutaneous melanoma and lung cancer and showcase how to

extract more information from the TCGA data. Overall, this study can provide a practical

and useful new venue for gene expression network analysis.
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2.2 Methods

2.2.1 Strategy

Consider gene expressions G1, G2, and G3, and regulator R (which can be multi-dimensional).

In a gene-expression-only network analysis, the goal is to quantify, for example, (G1, G2)

| G3, that is, the interconnection between G1 and G2 conditional on G3. This intercon-

nection can be caused by multiple factors: (a) co-regulation by R. If G1 and G2 are both

regulated by R, then they can be interconnected; (b) co-regulation by regulators other than

R. Most if not all profiling studies are “incomplete”, in the sense that not all regulators

are measured; (c) direct effects such as gene interference; and (d) mechanisms yet to be

identified. In the analysis of (G1, G2) | G3, G1 and G2 are interconnected if any of the

above exists. In the analysis that accommodates regulators, the goal is to quantify (G1,

G2) | (G3, R), that is, the interconnection between G1 and G2 caused by (b)-(d), after

removing (accounting for) (a), and conditional on G3.

A gene-expression-only graphical model contains all-causes gene interconnections, whereas

a gene-expression-regulator graphical model contains only gene interconnections not ex-

plained by the analyzed regulators. Motivated by this consideration, we proposed the hier-

archy:

the edge set in the gene-expression-regulator graphical model is a subset of that in the

gene-expression-only graphical model.

This hierarchy connects a gene-expression-only graphical model and its gene-expression-

regulator counterpart. For a gene-expression-only graphical model, this hierarchy amounts

to additional information. That is, if we can effectively take advantage of this hierarchy

and “borrow strength” from its corresponding gene-expression-regulator graphical model,

we can potentially improve its identification and estimation of gene connections. The same

applies to the gene-expression-regulator graphical model. It is noted that this specific

biologically sensible hierarchy has not been considered in the literature and can provide a

way of information borrowing significantly different from the existing ones.

The above discussions are applicable to the scenario with gene co-regulations by reg-

ulators not measured. As such, the proposed analysis does not demand the collection of
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all regulators. It also does not demand the collected regulators all being informative. In

the worst-case scenario, R only contains unrelated noises. Then the proposed analysis will

basically reduce to a gene-expression-only network analysis, with no gain of information

from regulators but also no loss.

Remarks

Identifying biologically motivated hierarchy to assist data analysis is by no means new.

Examples include [135–137], and a few others. In a sense, they provide support to our gen-

eral strategy of improving estimation/selection with the assistance of the hierarchy. Our

literature review suggests that our study fundamentally differs from the existing hierar-

chies/approaches in one or more of the following aspects. First, the aforementioned and

some other hierarchy-incorporating studies address problems other than conditional net-

work analysis using the GGM technique. Second, although some of the existing studies also

deal with high-dimensional data, they conduct the analysis of a small number of variables

at a time and hence does not demand regularized estimation/selection. Third, hierarchy

is not reinforced with penalization, which is one of the state-of-the-art high-dimensional

techniques. Fourth, as shown below, the joint analysis of high-dimensional variables and

penalized estimation demand challenging methodological, computational, as well as theo-

retical developments, which are not present in the literature.

There are also other ways of jointly analyzing gene expression and regulator data related

to the network analysis paradigm. For example, in [16], the associations between gene

expressions and their regulators are analyzed, taking into account the interconnections

among genes/regulators. However, these studies do not focus on the construction of gene

networks, and there is no counterpart of the proposed hierarchy.

Strictly speaking, it is possible to design settings under which the proposed hierarchy

fails. With a slight abuse of notation, we use G1, G2, R1 and R2 to also denote the variables

representing gene expressions and regulators. Considering the linear regression models for

generating gene expressions:

G1 = R1 +R2 + ε1, G2 = R1−R2 + ε2,
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where R1, R2 are independent and N(0, 1) distributed, and ε1, ε2 are random errors. Here

G1 and G2 are independent. However, conditional on R1, they are not. Our preliminary

exploration suggests that it is possible to design more complicated settings, for example

involving more genes and regulators, however, they share the same spirit. Failure of the

hierarchy demands regulators with completely complementary effects and that only one part

of such regulators is measured. When R1 and R2 are two different types of regulators, our

extensive literature search suggests that, to date, regulators with such complementary effects

have not been identified. When R1 and R2 are the same type, studies have found regulators

with strongly negatively correlated effects – but they are correlated, not independent. Under

the worst-case scenario that independent and complementary R1, R2 do exist, a closer

examination of our methodology and theoretical development suggests that, because of

the existence of the interconnection conditional on the regulators (in the GeR-GGM), the

interconnection in the GeO-GGM will be identified. Thus, there will be a false positive

discovery. However, with the estimation consistency results described below, the estimate

of the edge will converge to zero. More discussions are provided below.

2.2.2 Assisted estimation

Let Y = (Y1, · · · , Yp)> denote p gene expressions and X = (X1, · · · , Xq)
> denote q reg-

ulators. With multiple types of regulators, their measurements can be stacked together.

Consider a dataset D1 = {y}n1
i=1 with n1 i.i.d. copies of Y and a dataset D2 = {(y,x)}n2

i=1

with n2 i.i.d. copies of (Y,X). The GeO-GGM and GeR-GGM analysis will be conducted

on D1 and D2, respectively. Our strategy is to simultaneously estimate the GeO-GGM and

GeR-GGM, borrow information across each other via the hierarchy, and improve perfor-

mance for both. The proposed analysis can flexibly accommodate multiple scenarios. The

first scenario is where the same samples have both gene expression and regulator measure-

ments. In this case, D1 contains only gene expression measurements, while D2 contains

both gene expression and regulator measurements on the same samples. This scenario is

considered in our simulation and data analysis. Under the second scenario, D1 and D2 are

generated by different studies, and there is no overlapping subject. This scenario is also

considered in our simulation. Under the third scenario, in a single study, some samples have
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only gene expression measurements, while others have both gene expression and regulator

measurements.

Under the GGM framework, it is assumed that Y and Y |X are Gaussian distributed.

The graph structures are fully determined by the precision matrices. Specifically, first

consider the GeO-GGM. Denote Σ̃Y Y and Ω̃Y Y as the covariance and precision matrices of

Y , respectively. Then Yi ⊥⊥ Yj |Y−(i,j) ⇔ Ω̃ij = 0, where Ω̃ij is the (i, j)th element of Ω̃ and

Y−(i,j) is Y with the ith and jth elements removed. Further consider the GeR-GGM. Denote

the precision matrix of (Y,X) as Ω =

ΩY Y ΩY X

Ω>Y X ΩXX

. Then (ΩY Y )ij = 0 is equivalent to

Yi ⊥⊥ Yj | Y−(i,j), X, where (ΩY Y )ij is the (i, j)th entry of ΩY Y .

We adopt penalization, a state-of-the-art high-dimensional technique, for the estimation

and identification of graph structures. To reinforce the hierarchy and realize information

borrowing, we propose jointly estimating the GeO-GGM and GeR-GGM. Denote S̃Y Y as

the empirical covariance matrix calculated using D1 ∪D2, SY Y as the empirical covariance

matrix calculated using D2, SY X as the empirical correlation matrix calculated using D2,

and SXX as the empirical correlation matrix calculated using D2. We propose the objective

function:

Q(Ω̃Y Y ,ΩY Y ,ΩY X) = L1(Ω̃Y Y ) + L2(ΩY Y ,ΩY X) + P1(Ω̃Y Y ,ΩY Y ) + P2(ΩY X), (2.1)

where

L1(Ω̃Y Y ) = − log det(Ω̃Y Y ) + tr(S̃Y Y Ω̃Y Y ),

L2(ΩY Y ,ΩY X) = − log det(ΩY Y ) + tr(SY Y ΩY Y ) + 2tr(S>Y XΩY X) + tr(SXXΩ>Y XΩ−1
Y Y ΩY X),

P1(Ω̃Y Y ,ΩY Y ) =
∑
i 6=j

ρ(
√

(Ω̃Y Y )2
ij + (ΩY Y )2

ij ;λ1, γ) +
∑
i 6=j

ρ(|(ΩY Y )ij |;λ2, γ),

P2(ΩY X) =

p∑
i=1

q∑
j=1

ρ(|(ΩY X)ij |;λ2, γ).

Here ρ(t;λ, γ) = λ
∫ |t|

0

(
1− x

λγ

)
+
dx is the MCP (minimax concave penalty [138]), λ1 and

λ2 are data-dependent tuning parameters, and γ is the regularization parameter. The
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estimate is defined as the minimizer of (2.1), and a nonzero element corresponds to an

interconnection.

Remarks Distributions of regulator data may further deviate from normality. With copy

number variation (which is analyzed in this study), although the raw measurements are

discrete, with proper processing as in TCGA, data distributions are continuous and mostly

bell-shaped. As such, it can be reasonable to analyze under the GGM framework. With

continuously distributed regulators such as methylation and miRNA, marginal transforma-

tions can be applied to get closer to normality. With for example SNP, gene-level data

aggregation and transformation may lead to distributions closer to continuous and normal.

However, if not, we propose following the literature and replacing the simple correlation

with robust, for example rank-based, correlations to accommodate non-normality. Then

the proposed approach can be applied.

Methodologically advancing from many of the existing studies, the proposed approach

jointly estimates the GeO-GGM and GeR-GGM. We note that this differs from the joint

analysis of multiple GeO-GGMs. There are two lack-of-fit functions. L1 is standard for the

GeO-GGM. In the GeR-GGM estimation, the interconnections among regulators are not of

interest. As such, we adopt a partial GGM approach (Yuan and Zhang 2014), which uses

a re-parametrization and effectively avoids the ΩXX term in L2. This is computationally

advantageous especially when the dimension of the regulators is high. In addition, this

avoids making additional assumptions on the interconnections among regulators. It is noted

that, when needed, the full GeR-GGM lack-of-fit function can be adopted. As described

above, the proposed approach can accommodate the scenario where some samples are used

for the construction of both L1 and L2. However, as can be seen from the theoretical

development below, there are no correlation or “double dipping” problems.

The proposed penalties have two components. The first, P1, is a sparse group penalty

built on MCP. It generates sparse estimates (graphs) and, equally importantly, reinforces

the hierarchy. Specifically, if the estimate of (ΩY Y )ij is nonzero, the estimate of (Ω̃Y Y )ij

is guaranteed to be nonzero [139]. This way, estimates in the GeO-GGM and those in the

GeR-GGM affect each other. For estimating one network, estimates of the other network

provide additional information through the hierarchy, realizing information borrowing. The
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second component, P2, is a “standard” sparse penalty. ΩY X , which describes the conditional

interconnections between gene expressions and regulators, is also expected to be sparse. As

such, P2 is imposed to generate sparsity and accommodate the high dimensionality. We

note that the above discussions are valid as long as a “GeO-GGM+GeR-GGM” estimation

problem is sensibly formulated. In particular, all the three different D1 +D2 data scenarios

described above can be accommodated.

Consider the scenario that the hierarchy is actually violated, that is, the true value of

(ΩY Y )ij is nonzero but that of (Ω̃Y Y )ij is zero. In this case, the proposed approach will

generate nonzero estimates for both, leading to a false discovery with respect to (Ω̃Y Y )ij .

With the estimation consistency established below, the estimate for the zero entry will be

very small. In practical data analysis, small estimates in (Ω̃Y Y ) can raise alarm, with which

one needs to more carefully examine data to identify potential violation of the hierarchy. If

found, separate estimation of the GeO-GGM and GeR-GGM will be needed.

2.2.3 A small example

To gain more intuition into the proposed analysis, we simulate one small dataset with

p = 20, q = 20, and n = n1 = 100. ΩY Y has a homogeneous structure with θ = 0.1. More

details on the simulation settings are provided in Section 2.3. The true data generating

model has a total of 36 nonzero off-diagonal entries in ΩY Y and 46 nonzero off-diagonal

entries in Ω̃Y Y (left panels of Figure 2.1). Beyond the proposed method, we also consider

the alternative that separately estimates the GeO-GGM and GeR-GGM using the MCP

technique, to explicitly demonstrate the benefit of joint estimation. The estimated network

structures are also shown in Figure 2.1.

For this specific example, the proposed method has more accurate identification. Specif-

ically, for the gene-expression-regulator network (ΩY Y ), it identifies 14 true positives and 5

false positives, whereas the alternative separate estimation identifies 11 true positives and 9

false positives. For the gene-expression-only network (Ω̃Y Y ), the proposed method identifies

16 true positives and 7 false positives, where the alternative identifies 13 true positives and

9 false positives. The alternative identification result violates the hierarchy. Specifically,

there are three edges that are identified in the gene-expression-regulator network but not
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Figure 2.1: Gene expression networks in the small example: true (left), proposed (middle),
and alternatives (right). Solid lines: true positives; Dashed lines: false positives; Green
lines: identifications that violate the hierarchy.

in the gene-expression-only one. We further examine estimation performance using RMSE

(details in Section 2.3). The RMSE values of ΩY Y are 14.48 (proposed) and 15.61 (alterna-

tive), and those of Ω̃Y Y are 7.65 (proposed) and 8.04 (alternative). More definitive results

based on larger scale simulations are presented in Section 2.3.

2.2.4 Statistical properties

Rigorously establishing statistical properties can provide the proposed approach a stronger

ground than those not properly supported. Suppose that gene expressions (Y1, · · · , Yp) are

associated with the vertex set V1 = {1, 2, · · · , p} of the undirected graph G1 = (V1, E1),

and that gene expressions plus regulators (Y1, · · · , Yp, X1, · · · , Xq) are associated with the

vertex set V2 = {1, 2, · · · , p + q} of the undirected graph G2 = (V2, E2). Here E1 and E2

are the sets of edges. We first define the following support sets and their complements. Let

ÃY Y = {(i, j)|(Ω̃∗Y Y )ij 6= 0; i, j = 1, · · · p}, AY Y = {(i, j)|(Ω∗Y Y )ij 6= 0; i, j = 1, · · · p}, and

AY X = {(i, j)|(Ω∗Y X)ij 6= 0; i = 1, · · · p; j = p, · · · p+ q} be the sets of indices of all nonzero

elements in Ω̃∗Y Y , Ω∗Y Y , and Ω∗Y X , respectively. Here and below, values with superscript

“*” denote the true values. Further denote A = AY Y ∪ AY X , Ac = {(i, j)|i = 1, . . . , p; j =
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1, . . . , p+ q}\A, A1 = AY Y ∪ ÃY Y , and Ac1 = {(i, j)|i = 1, . . . , p; j = 1, . . . , p}\A1.

Define the following estimates:

̂̃
ΩY Y = arg min

Ω̃Y Y �0,(Ω̃Y Y )Ac1
=0
L1(Ω̃Y Y ), Θ̂ = arg min

ΩY Y �0,ΘAc=0
L2(Θ),

where Θ = (ΩY Y ,ΩY X). We also denote the maximum degrees of the two graphs as

d̃ := maxi=1,··· ,p |{j ∈ V1|(Ω̃∗Y Y )ij 6= 0}| and d := maxi=1,··· ,p |{j ∈ V2|Ω∗ij 6= 0}|.

Consider the `1 and `∞ norms. Specifically, for a matrixA ∈ Rl×m, ‖A‖1 = max1≤j≤m
∑l

i=1 |Aij |,

and ‖A‖∞ = max1≤i≤l
∑m

j=1 |Aij |. Denote κ
Σ̃∗Y Y

:= ‖Σ̃∗Y Y ‖∞. With results on matrix

derivatives, it can be shown that the Hessian of log det(Ω̃Y Y ), evaluated at Ω̃∗Y Y , takes the

form Γ̃∗ := Ω̃∗−1
Y Y ⊗ Ω̃∗−1

Y Y , where ⊗ denotes the Kronecker product. Consequently, we define

Γ̃∗A1A1
:=
[
Ω̃∗−1
Y Y ⊗ Ω̃∗−1

Y Y

]
A1A1

, κ
Γ̃∗ := ‖(Γ̃∗A1A1

)−1‖∞, and κ̃ := maxe∈Ac1‖Γ̃
∗
eA1

(Γ̃∗A1A1
)−1‖1.

For the gene-expression-regulator graph, we denote its Hessian evaluated at the true values

as:

H∗ := H(Ω∗Y Y ,Ω
∗
Y X) =

Ω∗−1
Y Y ⊗ (Ω∗−1

Y Y + 2Ω∗−1
Y Y Ω∗Y XSXXΩ∗>Y XΩ∗−1

Y Y ) −2Ω∗−1
Y Y ⊗ SXXΩ∗>Y XΩ∗−1

Y Y

−2Ω∗−1
Y Y ⊗ Ω∗−1

Y Y Ω∗Y XSXX 2Ω∗−1
Y Y ⊗ SXX

 .

Similar to above, we define κ1 := maxe∈Ac1‖H
∗
eA(H∗AA)−1‖1, κ2 := max

e∈ÃY Y ∪AcY Y
‖H∗eA(H∗AA)−1‖1,

κ3 := maxe∈AcY X‖H
∗
eA(H∗AA)−1‖1, cΩ∗−1

Y Y
:= ‖Ω∗−1

Y Y ‖∞, cΩ∗YX
:= ‖Ω∗Y X‖1, and cH∗ :=

‖Ω∗−1
AA ‖∞.

The following conditions, which pertain the model, sample size, and edge signals, are

assumed. They are comparable to those in the existing GGM studies.

Condition 1. min(i,j)∈A1

(
|(Ω̃∗Y Y )ij |+ |(Ω∗Y Y )ij |

)
> {γ + κ

Γ̃∗/(κ̃+ 1)}λ1.

Condition 2. min(i,j)∈A\A1
(|(Ω∗Y Y )ij |, |(Ω∗Y X)ij |) > cH∗ min

{
λ1+λ2
κ1+1 ,

λ2
κ2+1 ,

λ2
κ3+1

}
+ (λ1 ∨

λ2)γ.

Condition 3. maxj‖Xj‖2/
√
n2 ≤ cX , where cX is a constant.

Under these conditions, we can establish the following consistency properties.
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Theorem 1. Suppose that the sample sizes satisfy: n1 > max
{

0, C1 log(4pτ )d̃2 − C2 log[4(p ∨ q)τ ]d2
}

,

n2 > C2 log[4(p ∨ q)τ ]d2, where C1 =

[
max{κ

Σ̃∗Y Y
κ

Γ̃∗ , κ
3
Σ̃∗Y Y

κ2
Γ̃∗
}
]2

and

C2 = c2
H∗

[
max{3cΩ∗−1

Y Y
, cΩ∗YX

, cΩ∗−1
Y Y

c2
Ω∗YX

c2
X}
]2
. In addition, the regularization and tuning

parameters satisfy λ1 > 2(κ̃+1)c∗

√
log(4pτ )
n1+n2

, and min
{
λ1+λ2
κ1+1 ,

λ2
κ2+1 ,

λ2
κ3+1

}
> 2c′∗

√
log(4(p∨q)τ )

n2
.

For some τ > 2 and probability at least 1− 1/pτ−2 − 2/(p ∨ q)τ−2:

(I) the estimates have nonzero entries that are the same as those of the true values;

(II) with c∗ = 40
√

2 maxi=1,··· ,p(Ω̃
∗−1
Y Y )ii and c′∗ = max

{
40
√

2 maxi(Ω
∗−1
Y Y )ii, 2

√
2cX

}
,

‖̂̃ΩY Y − Ω̃∗Y Y ‖∞ ≤ 2c∗κΓ̃∗

√
log(4pτ )

n1 + n2
, (2.2)

‖Ω̂Y Y − Ω∗Y Y , Ω̂Y X − Ω∗Y X‖∞ ≤ 2c′∗cH∗

√
log(4(p ∨ q)τ )

n2
. (2.3)

These results have the following theoretical implications in an asymptotic sense. Under mild

conditions, result (I) establishes that the important and unimportant edges can be correctly

distinguished. Result (II) further establishes that, asymptotically, the estimates can be very

close to the true values. As such, the proposed method is theoretically guaranteed to recover

the true GeO-GGM and GeR-GGM structures. Such a theoretical rigor is not presented in

many of the existing studies. With the two sets of estimates, complexity of graph models,

and differences in the imposed penalties, the proof differs significantly from the literature

and is highly nontrivial. It can also shed insights for other network analysis studies. Details

are presented in the Appendix (Section 2.6.

As for most theoretical studies, there is a “gap” between theoretical conclusions and

practical applications. For example, the consistency is in an asymptotic sense with sample

sizes go to infinity, while with any practical data, sample size is finite.

2.2.5 Computation

We optimize objective function (2.1) using the Proximal Gradient Decent (PGD) technique.

The proposed algorithm adopts the backtracking line search to determine the step size.

Specifically, it proceeds as follows:
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1. Initialize: t = 0, Ω
(t)
Y Y = Ω̂Y Y , Ω

(t)
Y X = Ω̂Y X , Ω̃

(t)
Y X = S−1

Y Y , where Ω̂ =

Ω̂Y Y Ω̂Y X

Ω̂>Y X Ω̂XX

 is

calculated from data. η(0) = 1.

2. Update:

(1) Calculate

a. For each (i, j)th off-diagonal element, minimize M1((ΩY Y )ij) with respect to (ΩY Y )ij ,

where

M1((ΩY Y )ij) =
1

2

[
(ΩY Y )ij −

(
(Ω

(t)
Y Y )ij − η(t)A

(t)
ij

)]2
+ η(t)ρ(

√
(ΩY Y )2

ij + (Ω̃
(t)
Y Y )2

ij ;λ1, γ)

+ η(t)ρ(|(ΩY Y )ij |;λ2, γ). (2.4)

Here A(t) = SY Y − (Ω
(t)
Y Y )−1 − (Ω

(t)
Y Y )−1Ω

(t)
Y XSXX(Ω

(t)
Y X)>(Ω

(t)
Y Y )−1.

b. For each (i, j)th off-diagonal element, minimize M2((Ω̃Y Y )ij) with respect to (Ω̃Y Y )ij ,

where

M2((Ω̃Y Y )ij) =
1

2

[
(Ω̃Y Y )ij −

(
(Ω̃

(t)
Y Y )ij − η(t)B

(t)
ij

)]2
+ η(t)ρ(

√
(Ω

(t)
Y Y )2

ij + (Ω̃Y Y )2
ij ;λ1, γ).

Here B(t) = SY Y − (Ω̃
(t)
Y Y )−1.

With γ > η(t), the solutions are

(Ω?Y Y )ij =


R

(t)
ij

1−η(t)/γ

(
1− λ1η

(t)√
(R

(t)
ij )2+((Ω̃

(t)
Y Y )ij−η(t)B(t)

ij )2

)
+

if
√

(R
(t)
ij )2 + ((Ω̃

(t)
Y Y )ij − η(t)B

(t)
ij )2 ≤ γλ1

R
(t)
ij if

√
(R

(t)
ij )2 + ((Ω̃

(t)
Y Y )ij − η(t)B

(t)
ij )2 > γλ1

(Ω̃?Y Y )ij =


(Ω̃

(t)
Y Y )ij−η(t)B(t)

ij

1−η(t)/γ

(
1− λ1η

(t)√
(R

(t)
ij )2+((Ω̃

(t)
Y Y )ij−η(t)B(t)

ij )2

)
+

if
√

(R
(t)
ij )2 + ((Ω̃

(t)
Y Y )ij − η(t)B

(t)
ij )2 ≤ γλ1

(Ω̃
(t)
Y Y )ij − η(t)B

(t)
ij if

√
(R

(t)
ij )2 + ((Ω̃

(t)
Y Y )ij − η(t)B

(t)
ij )2 > γλ1

where

R
(t)
ij =


S

(
(Ω

(t)
Y Y )ij−η(t)A(t)

ij ,λ2η
(t)

)
1−η(t)/γ if

∣∣∣(Ω(t)
Y Y )ij − η(t)A

(t)
ij

∣∣∣ ≤ γλ2

(Ω
(t)
Y Y )ij − η(t)A

(t)
ij if

∣∣∣(Ω(t)
Y Y )ij − η(t)A

(t)
ij

∣∣∣ > γλ2

.

Here S(z, λ) = (1− λ
|z| )+z.
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c. For each (i, j)th element, minimize M3((ΩY X)ij) with respect to (ΩY X)ij , where

M3((ΩY X)ij) =
1

2

[
(ΩY X)ij −

(
(Ω

(t)
Y X)ij − ηC(t)

ij

)]2
+ η(t)ρ(|(ΩY X)ij |;λ2, γ).

Here C(t) = 2
[
(Ω?Y Y )−1Ω

(t)
Y XSXX + SY X

]
.

With γ > η, the solution is

(Ω?Y X)ij =


S

(
(Ω

(t)
Y X)ij−η(t)C(t)

ij ,λ2η
(t)

)
1−η(t)/γ if

∣∣∣(Ω(t)
Y X)ij − η(t)C

(t)
ij

∣∣∣ ≤ γλ2

(Ω
(t)
Y X)ij − η(t)C

(t)
ij if

∣∣∣(Ω(t)
Y X)ij − η(t)C

(t)
ij

∣∣∣ > γλ2

.

(2) Determine the step size.

Calculate the quadratic approximations of L1(Ω̃?Y Y ) and L2(Ω?Y Y ,Ω
?
Y X):

L̃1(Ω̃?Y Y ) = L1(Ω̃
(t)
Y Y ) + tr

(
(B(t))>(Ω̃?Y Y − Ω̃

(t)
Y Y )

)
+

1

2η(t)
‖ Ω̃?Y Y − Ω̃

(t)
Y Y ‖

2
F

L̃2(Ω?Y Y ,Ω
?
Y X) = L2(Ω

(t)
Y Y ,Ω

(t)
Y X) + tr

(
(A(t))>(Ω?Y Y − Ω

(t)
Y Y )

)
+ tr

(
(C(t))>(Ω?Y X − Ω

(t)
Y X)

)
+

1

2η(t)

[
‖ Ω?Y Y − Ω

(t)
Y Y ‖

2
F + ‖ Ω?Y X − Ω

(t)
Y X ‖

2
F

]
. (2.5)

If L1(Ω̃?Y Y ) +L2(Ω?Y Y ,Ω
?
Y X) > L̃1(Ω̃?Y Y ) + L̃2(Ω?Y Y ,Ω

?
Y X), η(t) ← 0.5η(t), and return to Step

(1); else continue.

(3) Update the estimates of ΩY Y , Ω̃Y Y , and ΩY X as

(Ω
(t+1)
Y Y )ij ←


(Ω?Y Y )ij i 6= j

(Ω
(t)
Y Y )ij i = j

, (Ω̃
(t+1)
Y Y )ij ←


(Ω̃?Y Y )ij i 6= j

(Ω̃
(t)
Y Y )ij i = j

, (Ω
(t+1)
Y X )ij ← (Ω?Y X)ij .

3. Repeat Step 2 until convergence. In numerical study, we use

‖ Ω
(t+1)
Y Y − Ω

(t)
Y Y ‖F + ‖ Ω̃

(t+1)
Y Y − Ω̃

(t)
Y Y ‖F + ‖ Ω

(t+1)
Y X − Ω

(t)
Y X ‖F≤ 10−3

as the convergence criterion, where ‖A‖F ≡
√∑l

i=1

∑m
j=1 |aij |2 for matrix A ∈ Rl×m.

In all of our numerical analysis, convergence is satisfactorily achieved. The proposed

algorithm is computationally affordable. With fixed tunings, the analysis of one simulated

data (details described below) takes about 30 seconds on a regular laptop. The proposed

approach involves the MCP regularization parameter γ. As in published studies, we examine
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a few values and find that γ = 6 leads to the best performance for our numerical examples.

λ1 and λ2 are obtained using V -fold cross validation.

2.3 Simulation

The precision matrix Ω can be decomposed into four submatrices: ΩY Y , ΩY X , Ω>Y X and

ΩXX , which are generated as follows. Each entry of ΩY X is generated independently,

and equals 1 with probability θ and 0 with probability 1 − θ. For ΩY Y , we consider the

following structures: (a) a homogeneous structure, under which each off-diagonal entry of

ΩY Y is independently drawn from a Bernoulli distribution with a success probability of θ.

The diagonal elements of ΩY Y are zero; (b) a block structure, under which ΩY Y equals

A1 0 · · · 0

0 A2 · · · 0

...
...

. . .
...

0 0 · · · A5


. For each block Ak (k = 1, . . . , 5), the diagonal elements are zero,

and the off-diagonal elements are independently drawn from a Bernoulli distribution with

a success probability of θ. All elements of ΩXX are set as 0.5. To ensure the positive-

definiteness of Ω, we add a diagonal matrix σI, and σ is set as 10. Ω̃Y Y that follows this

data generation is sparse. For example, for the setting described in Table 2.1, about 13.0%

of its elements are nonzero. In addition, this data generation leads to graphs that satisfy the

hierarchy. We generate i.i.d. observations from N(0,Σ) with Σ = Ω−1. As shown in Table

2.1 in the main text and Tables 2.2-2.6 in the Appendix (Section 2.6), we consider θ = 0.1

and 0.05. For the (p, q) dual, we consider (50, 50), (50, 100), (50, 150), (100, 50), (100,

100), and (100, 150). To demonstrate the broad applicability of the proposed approach, we

consider two different scenarios for D1 and D2. More specifically, we first consider the first

scenario described in the “Assisted estimation” section, where D1 and D2 contain the same

subjects and n1 = n2 = 300. Here the subjects are “analyzed twice”, first with Y only and

then with both Y and X. Then we consider the second scenario, where D1 and D2 contain

no overlapping subjects. Here n1 = 200 and n2 = 300. Under all simulation settings, the

numbers of unknown parameters are much larger than the sample sizes.
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In our analysis, of the most interest is the estimation and identification of sparsity

structure for the precision matrices Ω̃Y Y and ΩY Y . Three measures are adopted to measure

identification accuracy, including recall (which measures the true positive rate), FPR (false

positive rate), and F-score (which is the harmonic mean of precision and recall). Estimation

accuracy is measured using the Frobenius norm of the difference between the estimated and

true precision matrices. The proposed approach has been motivated by the hierarchy. As

such, we also evaluate the count and proportion of the hierarchy being violated (meaning

(Ω̃Y Y )ij = 0 but (ΩY Y )ij 6= 0).

For comparison, we consider the separate estimation of GeO-GGM and GeR-GGM, for

which we adopt the MCP penalization. For the estimation of GeR-GGM, following the

reasonings described in Section 2.2, the partial GGM technique is adopted. Although there

are potentially other approaches for estimating the graphs, comparing with the separate

estimation can the most directly establish the merit of the proposed joint estimation. For

the separate estimation, the same regularization parameter is adopted, and the tuning

parameters are also chosen using V -fold cross validation.

Under each setting, 200 replicates are simulated. Summary statistics for the setting

with a homogeneous ΩY Y , D1 and D2 containing the same 300 subjects, and θ = 0.1 are

presented in Table 2.1. The rest of the results are presented in Tables 2.2-2.6 in the Appendix

(Section 2.6). It is observed that, across all simulation settings, the proposed analysis

outperforms the separate estimation. Consider for example the last setting in Table 2.1.

For the estimation of Ω̃Y Y , the proposed approach has (recall, FPR, Fscore)=(0.421, 0.024,

0.471), compared to (0.406, 0.038, 0.429) of the GeO-GGM. In the evaluation of estimation

accuracy, the proposed approach has the Frobenius norm of the difference between the

estimated and true precision matrices equal to 60.23, compared to 77.79 of the GeO-GGM.

For the estimation of ΩY Y , the proposed approach has (recall, FPR, Fscore)=(0.478, 0.024,

0.502), compared to (0.45, 0.112, 0.287) of the GeR-GGM. In the evaluation of estimation

accuracy, the Frobenius norms are 538.6 (proposed) and 696.9 (GeR-GGM), respectively.

With the separate estimation, 79.2% of the hierarchy are violated. Similar findings are

made with the other settings. We have also simulated data with similar structures but

different parameter values and made similar observations.
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Remarks As an experiment, we simulate data with some of the nonzero elements violating

the hierarchy, using the strategy described in Section 2.2.1. We observe that, for those

satisfying the hierarchy, estimation and identification results are similar to those above.

For those violating the hierarchy, estimation errors are slightly inflated, and higher false

positive rates are observed, as expected. The overall performance is reasonable. Here we

also note that, when all or the majority of the nonzero elements violate the hierarchy, the

proposed approach is expected to perform unsatisfactorily. However, as this is biologically

insensible as discussed in Section 2.2.1, we do not further examine this scenario. In the

second experiment, we dichotomize the simulated X at the medians and create 0/1 data.

The proposed approach can still be applied. However, the numerical results are much less

satisfactory. As discussed above, modifications are recommended with non-normal data.

2.4 Data analysis

We download TCGA data on two cancers from the cBioPortal (http://www.cbioportal.

org/).

2.4.1 Cutaneous melanoma (SKCM) data

Following the literature, we focus on the 395 White patients who had non-glabrous skin.

Beyond gene expressions, data is also available on copy number variations. Our goal is to

construct the GeO-GGM and GeR-GGM analysis (with a focus on gene expressions in the

latter analysis). Although in principle the proposed analysis can be conducted at a larger

scale, with considerations on the limited sample size and large number of parameters, we

conduct pathway-specific analysis. Specifically, we download the KEGG pathway database

“c2.cp.kegg.v6.2.symbols.gmt” from the Broad Institute. This database contains informa-

tion on 186 pathways, and we select the “KEGG-MELANOGENESIS” pathway, which has

a top relevance for melanoma, to conduct analysis. By matching with the pathway infor-

mation, we obtain 87 gene expressions and 101 copy number variations. We graphically

examine the marginal distributions of gene expressions and copy number variations. All

distributions are continuous, and the dominating majority are bell-shaped. We also con-
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duct marginal regressions of gene expressions on copy number variations. There are no copy

number variations seemingly with complementary effects. As such, the proposed approach

can be reasonably applied.

We apply the proposed approach and alternative separate estimation. Tuning and reg-

ularization parameters are selected in the same manner as in simulation. Summary com-

parison result is presented in Table 2.7 in the Appendix (Section 2.6). The estimated

graph structures using the proposed approach are presented in Figure 2.2. Results using

the alternative and comparison are presented in Figure 2.4 in the Appendix (Section 2.6).

For gene expressions, the proposed approach identifies 101 edges in the GeO-GGM and 97

edges in the GeR-GGM, and the hierarchy is satisfied. For the gene expression edges in

the GeR-GGM with moderate to large estimates, we examine the corresponding GeO-GGM

estimates and do not observe very small values, showing no alarm of hierarchy violation.

For gene expressions, the separate estimation identifies 119 edges in the GeO-GGM and 99

edges in the GeR-GGM, and the edge sets differ significantly from those of the proposed

approach. It identifies 76 edges in the GeR-GGM that are not identified in the GeO-GGM

(that is, violation of the hierarchy).

Figure 2.2: Analysis of TCGA SKCM data using the proposed approach: the GeO-GGM
(left) and GeR-GGM (right) gene expression networks. Four red edges are identified in the
GeO-GGM but not GeR-GGM.

In network analysis, a large number of edges are estimated. In addition, the conditional

connections among genes are still not fully understood. Our examination of published gene

expression network studies does not suggest a well-established way of evaluating the identi-

fication results. To gain some insights, we conduct literature search and find that some gene
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interconnections identified by the proposed but not alternative analysis may have important

biological implications. For example, genes FZD7 and CAMK2B both also belong to the

Proteoglycans in cancer pathway and have been suggested as having coordinated functions.

Profiling analysis has suggested that the oncogenic roles of CREB3L1/3 fusions in scleros-

ing epithelioid fibrosarcoma induction might be very similar. Studies have suggested the

coordinated down-regulations of Calm1 and Camk2b in the cTnTR141W transgenic model.

Genes CREBBP and GNAI3 both also belong to the molecular mechanisms of cancer path-

way and have related functions. Genes CREBBP and TCF7L1 both have been identified

in the pathways in cancer, which play a key role in multiple cancers. Genes GNAI3 and

MAP2K1 are both associated with multiple cancer types for specific populations. Gene

FZD2 is highly correlated with gene GNAI2 in the Wnt pathway. Such results, although

not meant to be conclusive, can provide some support to the proposed analysis.

We further adopt a random splitting-based approach for evaluation. Specifically, the

dataset is randomly split into a training and a testing set with sizes 4:1. We apply the

proposed and alternative approaches to the training set, and then evaluate the negative log-

likelihood functions L1 and L2 on the testing set. This process is repeated 100 times. The

average L1 values are 82.3 (proposed) and 87.5 (alternative), and the average L2 values are

503.7 (proposed) and 727.2 (alternative), respectively. With this random splitting approach,

we are also able to evaluate the stability of identification. For the edges identified using the

whole dataset, we compute their probabilities of being identified in the random splits. Such

probabilities have been referred to as the Observed Occurrence Index (OOI), with higher

values indicating more stable estimation. For gene expression edges, the average OOI values

are 0.89 (proposed) and 0.81 (alternative) for the GeO-GGM, and 0.80 (proposed) and 0.71

(alternative) for the GeR-GGM, respectively. Overall, the proposed approach has improved

estimation/prediction and stability.

2.4.2 Lung cancer data

We follow the literature and focus on patients who had no neoadjuvant therapy before tu-

mor sample collection. Data on the gene expressions and copy number variations of 519

samples are available for analysis. As above, we also conduct the analysis of one KEGG
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pathway. Specifically, the “KEGG-CELL-CYCLE-PATHWAY”, which contains genes play-

ing important roles in cell cycle and lung cancer prognosis, is analyzed. There are a total

of 102 gene expressions and 101 copy number variations analyzed. The same exploratory

analysis as for the melanoma data is conducted, again suggesting it is reasonable to apply

the proposed approach.

Figure 2.3: Analysis of TCGA lung cancer data using the proposed approach: the GeO-
GGM (left) and GeR-GGM (right) gene expression networks. Twenty-one red edges are
identified in the GeO-GGM but not GeR-GGM.

Data is analyzed using the proposed and alternative approaches. As in the previous

analysis, we focus on results for gene expressions. Summary comparison results are provided

in Table 2.8 in the Appendix (Section 2.6). The estimated graph structures are presented in

Figure 2.3 and Figure 2.5 in the Appendix (Section 2.6). The proposed approach identifies

285 edges in the GeO-GGM and 263 edges in the GeR-GGM, and the hierarchy is satisfied.

The separate estimation identifies 278 (GeO-GGM) and 258 (GeR-GGM) edges, with a

total of 148 edges violating the hierarchy. Examining the estimates also does not raise any

alarm on possible hierarchy violation. It is found that the proposed analysis can identify

biologically sensible gene interconnections missed by the alternative. For example, the

coordination of genes CCNH and CCNB1 has been observed in multiple studies. Genes

CDC6 and CHEK1 have been suggested as coordinated. The interconnection between

CCNE2 and E2F1 has been shown to play a vital role in aberrant coronary vascular smooth

muscle cell proliferation. The random splitting approach as described above is applied

for evaluation. The proposed approach has average L1 and L2 values 90.7 and 158.1,

respectively, which are lower than their alternative counterparts 94.9 and 169.6. In the
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stability evaluation, the OOI values of the proposed approach are 0.88 (GeO-GGM) and

0.88 (GeR-GGM), compared to 0.79 (GeO-GGM) and 0.76 (GeR-GGM) of the separate

estimation.

2.5 Discussion

In this article, we have developed a new approach that well fits the GGM framework for

gene expression data but can have improved estimation/identification performance. Al-

though loosely speaking there have been other works on information borrowing in gene

network analysis, the proposed strategy of borrowing information between gene-expression-

only and gene-expression-regulator networks is new and novel. A new hierarchy in the

sparsity structures of the two networks, which is biologically sensible, has been proposed.

It differs from the hierarchies identified for other omics problems [135–137]. Along with the

high dimensionality in a single model/estimation, it has led to a penalized estimation signifi-

cantly different from those in the literature. Extensive and highly nontrivial methodological,

theoretical, and computational developments have been conducted. The proposed analysis

can flexibly accommodate multiple scenarios. Overall, this study can expand the GGM

analysis paradigm and provide a practical and effective way of estimating gene expression

networks.

The proposed analysis demands multidimensional profiling data, which is getting in-

creasingly routine. It does not have strict requirements on the type and “quality” of col-

lected regulators. In particular, it does not demand the collection of all factors that may

affect gene expressions. As such, it can enjoy broad applicability. Graphical models have

also been constructed for omics data other than gene expression and non-omics data. As

long as there are underlying determinants for the variables of main interest, the proposed

analysis can be applied. It will be of interest to systematically examine graphical model-

ing for non-normal data using the proposed technique. However, literature indicates that

a significant amount of separate investigation may be needed. We postpone it to future

research. It may be of theoretical interest to study scenarios with regulators having com-

pletely complementary effects. However, without much practical value, it is not pursued.
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Although the sound biological implications and improved prediction/stability can support

the validity of our data analysis to a certain extent, it is of interest but beyond our scope

to independently validate the findings.

2.6 Appendix

2.6.1 Establishment of statistical properties

We first establish some auxiliary lemmas, which will be needed in proving the main the-

orem. The following additional notations are needed. Let W̃ = S̃Y Y − Σ̃∗Y Y ∈ Rp×p

denote the “effective noise” in the sample covariance matrix Σ̃∗Y Y , where Σ̃∗Y Y = Ω̃∗−1
Y Y .

The remainder of the difference ∆̃ between the estimator
̂̃
ΩY Y and its true value Ω̃∗Y Y

takes the form R̃(∆̃) =
̂̃
Ω
−1

Y Y − Ω̃∗−1
Y Y + Ω̃∗−1

Y Y ∆̃Ω̃∗−1
Y Y . Similarly, denote g(ΩY Y ,ΩY X) =

(g1(ΩY Y ,ΩY X), g2(ΩY Y ,ΩY X)) as the gradient, ∆ = Θ−Θ∗ as the difference, and R(∆) =

g(Ω∗Y Y ,Ω
∗
Y X)− g(ΩY Y ,ΩY X) +H(Ω∗Y Y ,Ω

∗
Y X)∆ as the remainder in the second part. The

following lemma relates R̃(∆̃) to ∆̃.

Lemma 1. Suppose that ‖∆̃‖∞ ≤ 1

3κ
Σ̃∗
Y Y

d̃
holds. Then ‖R̃(∆̃)‖∞ ≤ 3

2 d̃κ
3
Σ̃∗Y Y
‖∆̃‖2∞.

This lemma can be proved by following Lemma 5 of Ravikumar et al. (2011). Similarly,

following the proof of Lemma 6 in the same reference, we can establish the following lemma,

which provides a control of the deviation ∆̃, measured in the element-wise `∞ norm.

Lemma 2. Suppose that ‖W̃‖∞ ≤ 1

2κ
Γ̃∗ d̃

min{ 1
3κ

Σ̃∗
Y Y

, 1
3κ3

Σ̃∗
Y Y

κ
Γ̃∗}

holds. Then ‖∆̃‖∞ =

‖ ̂̃ΩY Y − Ω̃∗Y Y ‖∞ ≤ 2κ
Γ̃∗‖W̃‖∞.

For the GeR-GGM, we can establish the following lemmas to control the remainder and

difference as well.

Lemma 3. Suppose that ‖∆‖∞ ≤ 1
d min{ 1

3c
Ω∗−1
Y Y

,
cΩ∗
YX
2 } holds. Then ‖R(∆)‖∞ ≤ 206c4

Ω∗−1
Y Y

c2
Ω∗YX

c2
Xd‖∆‖2∞.

Lemma 4. Suppose that max{‖g∗1‖∞, ‖g∗2‖∞} ≤ 1
2cH∗d

min{ 1
3c

Ω∗−1
Y Y

,
cΩ∗
YX
2 , 1

412c4
Ω∗−1
Y Y

c2
Ω∗
YX

c2Xd‖∆‖2∞
}

holds. Then ‖∆‖∞ ≤ 2cH∗ max{‖g∗1‖∞, ‖g∗2‖∞}.

The proof of Lemmas 3 and 4 follows that of Lemmas 3 and 4 in Wytock and Kolter

(2013).
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Proof of Theorem 1. Take the partial derivatives of L1(Ω̃Y Y ), evaluate at
̂̃
ΩY Y , and denote

Z̃ := S̃Y Y −
̂̃
Ω
−1

Y Y . Here Z̃ is a member of the off-diagonal sub-differential ∂‖ ̂̃ΩY Y ‖1. Sim-

ilarly, we derive the analytic expressions for the gradient and Hessian of L2(ΩY Y ,ΩY X).

Taking the first- and second-order partial derivatives, we obtain

g1(ΩY Y ,ΩY X) = SY Y − Ω−1
Y Y − Ω−1

Y Y ΩY XSXXΩ>Y XΩ−1
Y Y , (2.6)

g2(ΩY Y ,ΩY X) = 2SY X + 2Ω−1
Y Y ΩY XSXX , (2.7)

H(ΩY Y ,ΩY X) =

Ω−1
Y Y ⊗ (Ω−1

Y Y + 2Ω−1
Y Y ΩY XSXXΩ>Y XΩ−1

Y Y ) −2Ω−1
Y Y ⊗ SXXΩ>Y XΩ−1

Y Y

−2Ω−1
Y Y ⊗ Ω−1

Y Y ΩY XSXX 2Ω−1
Y Y ⊗ SXX

 .

Taking a similar strategy as in published literature, we have Y = −XΩ∗>Y XΩ∗−1
Y Y + E,

where E ∈ Rn2×p, E(Ei) = 0, Var(Ei) = Ω∗−1
Y Y , and Ei’s are Gaussian. Define the dual

solution Z := (ZY Y , ZY X) by evaluating (2.6) and (2.7) at the estimator Θ̂ = (Ω̂Y Y , Ω̂Y X),

where ZY Y = SY Y − Ω̂−1
Y Y − Ω̂−1

Y Y Ω̂Y XSXXΩ̂>Y XΩ̂−1
Y Y and ZY X = 2SY X + 2Ω̂−1

Y Y Ω̂Y XSXX .

Now we prove that, under the assumed conditions, entries in Z̃, |ZY Y |, and |ZY X | satisfy

|Z̃ij | < λ1 for all (i, j) /∈ A1, (2.8)

|ZY Yij | < λ1 + λ2 for (i, j) ∈ Ac1,

|ZY Yij | < λ2 for (i, j) ∈ ÃY Y ∩ AcY Y , (2.9)

|ZY Xij | < λ2 for (i, j) ∈ AcY X .

We will first prove inequality (2.8), so as to facilitate the proof of (2) in Theorem 1. We

will then prove inequality (2.9).

Some calculations yield

Z̃ = S̃Y Y −
̂̃
Ω
−1

Y Y = Ω̃∗−1
Y Y ∆̃Ω̃∗−1

Y Y + W̃ − R̃(∆̃). (2.10)

Then, we vectorize the matrices

vec(Ω̃∗−1
Y Y ∆̃Ω̃∗−1

Y Y ) = (Ω̃∗−1
Y Y ⊗ Ω̃∗−1

Y Y )vec(∆̃) = Γ̃∗vec(∆̃). (2.11)
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Combining (2.10) and (2.11), and denoting ∆̃ = vec(∆̃), W̃ = vec(W̃ ), and R̃ = vec(R̃(∆̃)),

we obtain

Z̃Ac1 = Γ̃∗Ac1A1
∆̃A1 + W̃Ac1 − R̃Ac1

= −Γ̃∗Ac1A1

(
Γ̃∗A1A1

)−1 (
W̃A1 − R̃A1

)
+ W̃Ac1 − R̃Ac1 .

Recalling the definition of κ̃, we have

‖Z̃Ac1‖∞ ≤
[
max
e∈Ac1
‖Γ̃∗eA1

(Γ̃∗A1A1
)−1‖1 + 1

]
(‖W̃‖∞ + ‖R̃‖∞) < λ1, (2.12)

if

max
{
‖W̃‖∞, ‖R̃(∆̃)‖∞

}
<

λ1

2(κ̃+ 1)
. (2.13)

Next we prove that condition (2.13) holds. Consider event B1 =

{
‖W̃‖∞ ≤ c∗

√
log(4pτ )
n1+n2

}
with c∗ = 40

√
2 maxi=1,··· ,p(Ω̃

∗−1
Y Y )ii and τ > 2. Since the samples are independent, by

Lemma 1 of Ravikumar et al. (2011), we have

P
[∣∣∣(S̃Y Y )ij − (Σ̃∗Y Y )ij

∣∣∣ > δ1

]
≤ 4 exp

{
− (n1 + n2)δ2

1

3200 maxi=1,··· ,p(Ω̃
∗−1
Y Y )2

ii

}
(2.14)

for all δ1 ∈
(

0, 25 maxi(Ω̃
∗−1
Y Y )2

ii

)
. Consequently, it can be obtained that P(B1) ≥ 1 − p2−τ

according to Lemma 8 of Ravikumar et al. (2011). Thus, based on the condition on λ1,

half of the condition (2.13) is approved. Accordingly, the following proof is conditional on

event B1.

With the lower bound of sample size n1 + n2 > C1 log(4pτ )d̃2, we have

‖W̃‖∞ ≤ c∗

√
log(4pτ )

n1 + n2
≤ 1

2κ
Γ̃∗ d̃

min

 1

3κ
Σ̃∗Y Y

,
1

3κ3
Σ̃∗Y Y

κ
Γ̃∗

 , (2.15)

showing that the assumptions of Lemma 2 are satisfied. Applying this lemma, we conclude

that

‖∆̃‖∞ ≤ 2κ
Γ̃∗‖W̃‖∞. (2.16)
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Consider Lemma 1. We can see that its assumption ‖∆̃‖∞ ≤ 1

3κ
Σ̃∗
Y Y

d̃
holds by applying

equations (2.15) and (2.16). Consequently, we have

‖R̃(∆̃)‖∞ ≤
3

2
d̃‖∆̃‖2∞κ3

Σ̃∗Y Y
≤ 6κ3

Σ̃∗Y Y
κ2

Γ̃∗
d̃c2
∗ ·

log(4pτ )

n1 + n2

≤ c∗

√
log(4pτ )

n1 + n2
<

λ1

2(κ̃+ 1)
, (2.17)

where the last line follows from the condition on λ1 and control of sampling noise (2.15). As

such, we have proved that condition (2.13) holds, which completes the proof of ‖Z̃Ac1‖∞ < λ1.

Therefore, we have shown ‖∆̃‖∞ = ‖ ̂̃ΩY Y − Ω̃∗Y Y ‖∞ ≤ 2κ
Γ̃∗c∗

√
log(4pτ )
n1+n2

.

To briefly summarize the proof of Equation (2), we have shown that max
{
‖W̃‖∞, ‖R̃(∆̃)‖∞

}
<

λ1
2(κ̃+1) holds, allowing us to conclude that ‖Z̃Ac1‖∞ < λ1. In this way, Z̃ is an optimal solu-

tion to the corresponding dual problem, and the unimportant entries shrink to zero. Then,

we have proved that the `∞-bound of the difference between
̂̃
ΩY Y and Ω̃∗Y Y is bounded by

2κ
Γ̃∗c∗

√
log(4pτ )
n1+n2

, as claimed in Theorem 1. Since this is conditioned on event B, the above

statements hold with probability P(B1) ≥ 1−p2−τ . Moreover, we already have (
̂̃
ΩY Y )Ac1 = 0

by the construction with the MCP penalty.

Now consider the proof of Equation (3). For any Θ, define ∆ as the difference between

Θ and its true value Θ∗, that is,

∆ := Θ−Θ∗ =

ΩY Y − Ω∗Y Y

ΩY X − Ω∗Y X

 . (2.18)

Recall the definition of the remainder

R(∆) = g(Ω∗Y Y ,Ω
∗
Y X)− g(ΩY Y ,ΩY X) +H(Ω∗Y Y ,Ω

∗
Y X)∆, (2.19)

which consists of the residuals of the first order Taylor expansion of the gradient. By the

construction of the estimator (Ω̂Y Y , Ω̂Y X), we have ZAc = 0. Also, both ZAc = 0 and ZA

satisfy ZA

ZAc

 =

H∗AA H∗AAc

H∗AcA H∗AcAc


∆A

0

+

 g∗A

g∗Ac

−
RA(∆)

RAc(∆)

 . (2.20)
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Therefore, we have ∆A = H∗−1
AA [RA(∆)− g∗A]. Plugging this result into ZAc , we obtain

ZAc = H∗AcA∆A + g∗Ac −RAc(∆) = H∗AcAH
∗−1
AA [RA(∆)− g∗A] + g∗Ac −RAc(∆). (2.21)

Next, we prove that ZAc satisfies (2.9) under mild conditions with a high probability.

By (2.20) and (2.21), we have

ZAc1 = H∗Ac1AH
∗−1
AA [RA(∆)− g∗A] + g∗Ac1 −RAc1(∆). (2.22)

From the above equation, we have

‖ZAc1‖∞ ≤
[
max
e∈Ac
‖H∗eAH∗−1

AA ‖1 + 1

]
(‖g∗‖∞ + ‖R(∆)‖∞). (2.23)

Similarly, we have

‖ZÃY Y ∩AcY Y ‖∞ ≤

[
max

e∈ÃY Y ∩AcY Y
‖H∗eAH∗−1

AA ‖1 + 1

]
(‖g∗‖∞ + ‖R(∆)‖∞), (2.24)

‖ZAcY X‖∞ ≤
[

max
e∈AcY X

‖H∗eAH∗−1
AA ‖1 + 1

]
(‖g∗‖∞ + ‖R(∆)‖∞). (2.25)

With the definitions of κ1, κ2, and κ3 and condition on the regularization and tuning

parameters

max{‖g∗‖∞, ‖R(∆)‖∞} <
1

2
min

{
λ1 + λ2

κ1 + 1
,

λ2

κ2 + 1
,

λ2

κ3 + 1

}
, (2.26)

we can derive that ZAc satisfies (2.9).

Next, we prove that (2.26) holds with a high probability. Consider event

B2 =

{
max{‖g∗1‖∞, ‖g∗2‖∞} ≤ c′∗

√
log(4(p∨q)τ )

n2

}
, where c′∗ = max{40

√
2 maxi(Ω

∗−1
Y Y )ii, 2

√
2cX}

and τ > 2.

By the Bonferroni’s inequality and Gaussian assumption,

P (‖g∗1‖∞ > δ2) = P (‖n−1
2 E>E − Ω∗−1

Y Y ‖∞ > δ2)

≤ 4p2 exp

{
− n2δ

2
2

3200 maxi(Ω
∗−1
Y Y )2

ii

}
(2.27)
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for all δ2 ∈
(
0, 40
√

2 maxi(Ω
∗−1
Y Y )ii

)
, and

P (‖g∗2‖∞ > δ2) = P (‖2n−1
2 E>X‖∞ > δ2) ≤ 2pq exp

{
−n2δ

2
2

8c2
X

}
. (2.28)

Let δ2 = c′∗

√
log(4(p∨q)τ )

n2
. We have P (B2) ≥ 1 − 2(p ∨ q)2−τ . Thus, half of (2.26) is

established. We then proceed with the proof conditional on B2. With the bound on sample

size n2 > C2 log(4(p ∨ q)τ )d2, we have

‖g∗‖∞ ≤ c′∗

√
log(4(p ∨ q)τ )

n2
≤ 1

2cH∗d
min{ 1

3cΩ∗−1
Y Y

,
cΩ∗YX

2
,

1

412c4
Ω∗−1
Y Y

c2
Ω∗YX

c2
Xd‖∆‖2∞

}.

(2.29)

Thus, the condition for Lemma 4 holds, and ‖∆‖∞ ≤ 2cH∗‖g∗‖∞. By Lemma 3,

‖R(∆)‖∞ ≤ 206c4
Ω∗−1
Y Y

c2
Ω∗YX

c2
Xd‖∆‖2∞ ≤ 824c4

Ω∗−1
Y Y

c2
Ω∗YX

c2
Xdc

′2
∗
log(4(p ∨ q)τ )

n2

<
1

2
min

{
λ1 + λ2

κ1 + 1
,

λ2

κ2 + 1
,

λ2

κ3 + 1

}
. (2.30)

Combining ‖∆‖∞ ≤ 2cH∗‖g∗‖∞ and (2.29), together with (2.30), we have established con-

dition (2.26). Therefore, ‖∆‖∞ ≤ 2cH∗c
′
∗

√
log(4(p∨q)τ )

n2
.

To summarize the proof of Equation (3), we have started with the generic primal-dual

witness approach, showing that the condition max{‖g∗‖∞, ‖R(∆)‖∞} < 1
2 min

{
λ1+λ2
κ1+1 ,

λ2
κ2+1 ,

λ2
κ3+1

}
holds, which allows us to conclude that the nonzero entries of ‖Z‖∞ are bounded above

by the penalties. In this way, Z is an optimal solution to the corresponding dual problem,

and the estimates of the zero entries shrink to zero. Then, we have proved that the `∞-

bound of the difference between estimator Θ̂ and its true value Θ∗ is bounded above by

2cH∗c
′
∗

√
log(4(p∨q)τ )

n2
, as stated in Theorem 1. These above statements hold with probability

P(B2) ≥ 1− 2(p ∨ q)2−τ .

Together with the proof of Equation (2), we have shown that the results in Theorem 1

hold with probability 1− 1/pτ−2 − 2/(p ∨ q)τ−2.

54



2.6.2 Additional numerical results
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Figure 2.4: Analysis of TCGA SKCM data using the proposed and alternative approaches.
Left/right: GeO-GGM/GeR-GGM (only the gene expression network is presented). Up-
per/lower: proposed/alternative. Grey: edges shared by the two approaches; Orange: edges
unique to the proposed approach. Green: edges unique to the alternative approach.
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Figure 2.5: Analysis of TCGA lung cancer data using the proposed and alternative ap-
proaches. Left/right: GeO-GGM/GeR-GGM (only the gene expression network is pre-
sented). Upper/lower: proposed/alternative. Grey: edges shared by the two approaches;
Orange: edges unique to the proposed approach. Green: edges unique to the alternative
approach.
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Table 2.7: Analysis of TCGA SKCM data: numbers of overlapping. In each cell, gene-
expression-only/gene-expression-regulator analysis.

Proposed GeO-GGM GeR-GGM

Proposed 101/97 80/– –/29
GeO-GGM 119/– –/–
GeR-GGM –/99

Table 2.8: Analysis of TCGA lung cancer data: numbers of overlapping. In each cell,
gene-expression-only/gene-expression-regulator analysis.

Proposed GeO-GGM GeR-GGM

Proposed 284/263 150/– –/146
GeO-GGM 278/– –/–
GeR-GGM –/258
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Chapter 3

Project 2:

Information-incorporated Gaussian

graphical model for gene

expression data

Abstract

In the analysis of gene expression data, network approaches take a system perspective and

have played an irreplaceably important role. Gaussian graphical models (GGM) have been

popular in the network analysis of gene expression data. They investigate the conditional

dependence between genes and “transform” the problem of estimating network structures

into a sparse estimation of precision matrices. When there is a moderate to large number

of genes, the number of parameters to be estimated may overwhelm the limited sample

size, leading to unreliable estimation and selection. In this article, we propose incorporat-

ing information from previous studies (for example, those deposited at PubMed) to assist

estimating the network structure in the present data. It is recognized that such informa-

tion can be partial, biased, or even wrong. A penalization-based estimation approach is

developed, shown to have consistency properties, and realized using an effective compu-

tational algorithm. Simulation demonstrates its competitive performance under various
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information accuracy scenarios. The analysis of TCGA lung cancer prognostic genes leads

to network structures different from the alternatives. Research reported in this chapter has

been published in Biometrics.

3.1 Introduction

In the analysis of gene expression data, network approaches have played important roles.

They take a system perspective and examine the interconnections among genes as well

as their individual properties. There have been quite a few network analysis approaches

[140], among which Gaussian graphical model (GGM) has been popular because of its lucid

interpretations, satisfactory statistical properties, and computational advantages. GGM

assumes the multivariate normal distribution, under which the conditional independence

of two nodes is equivalent to a zero value of the corresponding element in the precision

matrix. As such, determining the network structure amounts to a sparse estimation of

the precision matrix, for which penalization and other techniques have been adopted. For

GGM estimation, we refer to reviews including [141,142]. Relevant works also include [107,

143, 144], and references therein. It is recognized that practical gene expression data may

have distributions deviated from normal. Nevertheless, with proper data processing, the

GGM technique has been extensively applied to gene expression data and led to interesting

findings.

With p genes, the number of conditional dependence to be estimated is p(p− 1)/2 and

may easily exceed the sample size, leading to unreliable estimation and selection. Multiple

remedies have been developed, including jointly analyzing multiple independent datasets to

increase power (which demands the availability of data from studies other than the present

one), jointly analyzing gene expressions and their regulators (which demands multidimen-

sional profiling and the availability of data on regulators), imposing structural constraints

(which demands additional information or assumptions on network structure), among oth-

ers.

Our goal is to improve gene expression GGM analysis via borrowing additional infor-

mation, which is similar to that of some existing studies [114, 118]. Different from these
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studies, we consider additional information contained in publications. To make the idea

clearer, we conduct a simple search of “gene TP53, gene MKI67, lung cancer” in PubMed

and get 23 hits. In comparison, the search of “gene TP53, gene CD68, lung cancer” leads

to zero hit. That is, at least 23 publications have simultaneously reported genes TP53 and

MKI67 as well as lung cancer, compared to none for genes TP53 and CD68. Published

articles represent a large number of past studies and contain valuable information. On the

other hand, we also note that information retrieved from a simple search may be crude

and not fully trustworthy. For example, although the article by [145] also comes up in

the search, the context does not seem to be related to lung cancer, and there is a lack

of direct suggestion on the interconnection between genes TP53 and MKI67. Further, it

is also unclear whether the interconnections between genes TP53 and MKI67 reported in

these publications are conditional or unconditional. Nevertheless, even with just this sim-

ple search, it may be “safe” to conclude that genes TP53 and MKI67 are more likely to be

interconnected compared to genes TP53 and CD68.

Figure 3.1: Small example. The first column: upper – true structure, lower – GGM; The
second to fourth columns: prior information, information-guided analysis, and information-
incorporated analysis. Upper and lower: two scenarios of prior information.
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A small example We use a small example to provide some insights into the proposed

approach. In Figure 3.1, we present a graph with 40 edges. Directly applying the GGM

leads to 22 TPs and 10 FPs, where TP/FP stand for true/false positive. We first consider a

set of high-quality information with 24 TPs and 8 FPs. The information-guided estimation

(defined below in Step II) retains all those TPs and FPs and also add 2 TPs and 1 FP. The

proposed information-incorporated estimation (defined below in Step III) further refines

and leads to 29 TPs and 8 FPs, improving over the GGM. We also consider an alternative

scenario with low-quality information (12 TPs and 20 FPs). In this case, the proposed

approach can data-dependently and effectively “disregard” incorrect information and leads

to 24 TPs and 11 FPs – an overall performance comparable to the GGM. Although small,

this example can already suggest that the proposed analysis has the potential for improving

performance by incorporating additional information.

This article is built on the existing GGM studies for gene expression data. To improve

the often-unsatisfactory performance caused by a lack of information, our proposal is to

incorporate additional information. Our goal is to develop an approach that not only has

satisfactory numerical performance but also is theoretically well-grounded. Compared to

that from other sources, additional information retrieved from publications can be advanta-

geous in multiple ways. For example, it is built on a large number of (mostly independent)

published studies and, in a sense, can be more reliable than that from a few additional

datasets. It is more cost-effective and does not involve collecting additional data. In exist-

ing works, information contained in published literature has been utilized in multiple ways.

Some draw conclusions based solely on such information [146,147]. They differ significantly

from our analysis by not having a present dataset to be analyzed. Some other works con-

duct qualitative and quantitative comparisons between the present data analysis results

with those in the literature, to verify the present findings. They also differ significantly

from our analysis by not considering the additional information in the estimation proce-

dure. Our analysis is more aligned with that of [123] and [14], both of which use information

in publications to assist the present penalized regression analysis. On the other hand, it

differs from these two studies by conducting GGM-based analysis, which has significantly

different data structures, analysis goals, and objective function. For GGM, there have been
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studies that improve the present analysis by shrinking the estimate towards a known tar-

get [148, 149]. They demand very detailed information (e.g., not only whether two nodes

are connected but also the strength of the edge), making it not feasible to accommodate

a large number of published findings. There are also information-incorporated studies in

other domains, for example Bayesian [150,151], whose strategies are fundamentally different

from the proposed. Overall, with the popularity of GGM for gene expression data, often-

unsatisfactory performance when directly applying GGM, and differences from the existing

information-incorporated analyses, this study is warranted beyond the existing works.

3.2 Methods

Let X = (X(1), · · · , X(p)) denote the p−dimensional gene expression measurements with

a multivariate normal distribution Np(µ,Σ). Discussions on alternative distributions are

provided below. Denote the precision matrix as Θ = Σ−1 and the corresponding graph as

G = (V,E), where V = {1, · · · , p} and the edges E = (eij)1≤i<j≤p describe the conditional

independence relationships among X(1), · · · , X(p). The edge between X(i) and X(j) is absent

if and only if X(i) and X(j) are independent conditional on the other variables, which

corresponds to θij = 0.

With n iid samples {X1, · · · , Xn}, up to a constant, the negative log-likelihood function

is

L(Θ;S) = − log |Θ|+ tr(SΘ),

where S = (sij) is the sample covariance matrix, and |Θ| is the determinant of Θ. To

regularize estimation and generate interpretable networks, penalized estimation has been

developed. Denote pλn(·) as the penalty function, where λn is a tuning parameter. The

objective function is

Lλn(Θ;S) = L(Θ;S) +
∑
i 6=j

pλn(|θij |).

To incorporate information contained in published literature to improve performance of

the penalized GGM, our approach consists of the following main steps:
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Step I: Information retrieval In our data analysis, we use PubMatrix [152], a publicly

available text mining tool, to mine PubMed. It conducts a search of the co-occurrence of

two lists of keywords, which in our case are two identical lists of genes. If desirable, the

context of analysis, for example “lung cancer”, can be further added. It delivers the number

of publications in PubMed that include a specific pair of genes. A simple demonstration of

the submit and result pages is provided in Figure 3.4 in Appendix, Section 3.6.2. Denote

Ep as the index set of retrieved gene connections. That is, if (i, j) ∈ Ep, then there are

suggestions that genes i and j are interconnected. Ep is symmetric: if (i, j) ∈ Ep, (j, i) ∈ Ep.

We acknowledge that not all publications are included in PubMed, and, as mentioned in

Section 3.1, the retrieved information may not be fully relevant. It can also be partial or even

wrong. With more recent and sophisticated text mining tools [153], it may be possible to

refine the mining and remove some irrelevant “findings”. Text mining is a moving field, and

more sophisticated tools can sometimes be harder to implement. In addition, text mining

usually cannot identify incorrect information contained in literature. As such, it may not be

possible to obtain fully accurate information. Information can also be manually scrutinized.

However, it is not practical with a large number of genes and relevant publications. Luckily,

as discussed below and shown in simulation, the proposed approach does not demand the

full accuracy of retrieved information and can “robustly” accommodate partial and incorrect

information.

Step II: Information-guided analysis Consider the penalized objective function:

Lγn,Ep(Θ;S) = L(Θ;S) +
∑

(i,j)/∈Ep
pγn(|θij |), (3.1)

where notations have similar implications as above. In this analysis, the retrieved infor-

mation is fully trusted. That is, if two genes have been suggested as interconnected in

the literature, we automatically include the corresponding edge via not imposing penalty.

Penalization is imposed on other parameters to search for additional signals. Denote the

estimator from (3.1) as Θ̂p
γn . Compute Σ̂p = (Θ̂p

γn)−1. For both (3.1) and this inversion,

if needed, a small ridge penalty can be imposed to stabilize estimation. Σ̂p is the artificial

covariance matrix when the network sparsity structure estimation is guided by the retrieved
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information.

It is noted that, in (3.1), we only account for whether there is any evidence but not the

amount of evidence. This is due to concerns on the potential “research bias” of published

studies, “selection bias” of PubMed, crudeness of our text mining, and other factors.

Step III: Information-incorporated analysis Consider the penalized objective function:

Lλn,η(Θ;S, Σ̂p) = L(Θ;S) + ηL(Θ; Σ̂p) +
∑
i 6=j

pλn(|θij |),

where η ≥ 0 is a tuning parameter, and the other notations have the same implications as

above. It can also be rewritten as:

Lλn,η(Θ;S, Σ̂p) = −(1 + η) log |Θ|+ tr
{

(S + ηΣ̂p)Θ
}

+
∑
i 6=j

pλn(|θij |),

= (1 + η)L λn
1+η

(Θ; S̃η), (3.2)

where S̃η = (S + ηΣ̂p)/(1 + η) is the weighted sum of the observed sample covariance

matrix and that obtained in Step II. Denote Θ̂λn,η = arg minLλn,η(Θ;S, Σ̂p) as the final

information-incorporated GGM estimate.

In this step of analysis, the penalty has the same implication as in a standard GGM.

The goodness-of-fit has two components: one from the observed data and the other from

the information-guided analysis. η is introduced to data-dependently balance them. In-

tuitively, when the additional information has higher quality, a larger η is preferred and

can lead to more utilization of such information. On the other hand, when the quality of

the additional information is poor, a small η value can lead to analysis basically relying

on the observed data. As such, the proposed approach has the potential to incorporating

additional information while flexibly allowing it to be not fully accurate.

Remarks We acknowledge that the proposed way of incorporating information is not suf-

ficiently refined. For example, it is possible that multiple publications report the same two

genes, but their conclusions contradict. That is, there is uncertainty in the available infor-

mation, which is also related to the irreproducibility of findings. The present text mining

cannot identify such conflicting/uncertain information. As such, it is not accommodated
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in the proposed analysis. This is the price paid for mining a large number of publications

and gene pairs. If an information uncertainty measure is available for each gene pair, we

conjecture that it is possible to revise Step II: instead of automatically including those

suggested in the literature, weighted penalization can be applied to make those with less

conflicting/uncertain information more easily selected.

3.2.1 Statistical properties

Denote λmin(A) and λmax(A) as the minimum and maximum eigenvalues of a symmetric

matrix A. For a matrix B, define the Frobenius norm as ‖B‖F = tr1/2(BTB). Denote A =

{(i, j) : θ0
ij 6= 0} and Ac = {(i, j) : θ0

ij = 0}. Further denote A− = {(i, j) : i 6= j, θ0
ij 6= 0},

and s = |A−| as the size of A−. Let an = max(i,j)∈A− p
′
λn

(|θ0
ij |), bn = max(i,j)∈A− p

′′
λn

(|θ0
ij |).

Assume the following conditions.

(C1) There are constants φ1 and φ2 such that 0 < φ1 < λmin(Σ0) ≤ λmax(Σ0) < φ2 <∞.

(C2) an = O
(

1
1+η

√
(p+s) log p

(s+1)n

)
, bn = o(1), and min(i,j)∈A |θ0

ij |/λn →∞ as n→∞.

(C3) pλn(·) is singular at the origin, with limt↓0 pλn(t)/(λnt) = k > 0.

(C4) There are constants C and D such that, when θ1, θ2 > Cλn, |p′′λn(θ1) − p′′λn(θ2)| ≤

D|θ1 − θ2|.

(C5) Σ̂p = (σ̂pij) satisfies that maxi,j |σ̂pij − σ0
ij | ≤

C0
η

√
log p
n with probability tending to 1,

where C0 is a large positive constant.

Conditions (C1)-(C4) have been commonly assumed in the literature [113]. Multiple

penalties satisfy the above assumptions, and the minimax concave penalty (MCP) is adopted

in our numerical study. (C5) concerns with the information-guided estimator. With linear

regression, a similar condition has been assumed in [123]. It shows the connection between

how reliable the information-guided estimator is and how much we should “trust” the ad-

ditional information. More specifically, more reliable additional information leads to more

reliable information-guided estimation, which in turn results in a larger η value. Lastly,

a larger η leads to a more accurate information-incorporated estimator. When η = 0,

Condition (C5) is automatically satisfied, and Theorem 1 reduces to the results in [113].
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Theorem 2. Suppose that Conditions (C1)-(C5) hold. If (p+s) log p
n(1+η)2 = o(1) and (p+s) log p

n =

O(λ2
n), then there exists a local minimizer Θ̂λn,η of Lλn,η(Θ;S, Σ̂p) such that

‖Θ̂λn,η −Θ0‖2F = Op

(
(p+ s) log p

n(1 + η)2

)
,

and with probability tending to 1,

sign(θ̂λn,ηij ) = sign(θ0
ij).

Remarks and proof are presented in the Supporting Information S1. With the GGM

framework, the result and proof differ significantly from those for linear regression [123].

With the additional information, they also differ considerably from those for an “ordinary”

GGM.

Alternatively, the objective function can be written as:

Lλn,τ (Θ;S, Σ̂p) = (1− τ)L(Θ;S) + τL(Θ; Σ̂p) +
∑
i 6=j

pλn(|θij |),

where τ ∈ [0, 1], and a larger value of τ corresponds to more reliable information. Then

Lλn,τ (Θ;S, Σ̂p) can be rewritten as

Lλn,τ (Θ;S, Σ̂p) = − log |Θ|+ (1− τ)tr(SΘ) + τtr(Σ̂pΘ) +
∑
i 6=j

pλn(|θij |)

= − log |Θ|+ tr
[
{(1− τ)S + τ Σ̂p}Θ

]
+
∑
i 6=j

pλn(|θij |)

= Lλn(Θ; S̃τ ), (3.3)

where S̃τ = (1 − τ)S + τ Σ̂p. Let Θ̂λn,τ = arg minLλn,τ (Θ;S, Θ̂p). We modify the assumed

conditions as:

(C2’) an = O
(

(1− τ)
√

(p+s) log p
(s+1)n

)
, bn = o(1), and min(i,j)∈A |θ0

ij |/λn →∞ as n→∞.

(C5’) maxi,j |σ̂pij − σ0
ij | ≤ 1−τ

τ C0

√
log p
n with probability tending to 1, where C0 is a large

positive constant.
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Then, under Conditions (C1), (C2’), (C3), (C4) and (C5’), if (1− τ)2 (p+s) log p
n = o(1) and

(p+s) log p
n = O(λ2

n), we can show that:

‖Θ̂λn,τ −Θ0‖2F = Op

(
(1− τ)2 (p+ s) log p

n

)
,

and θ̂λn,τij = 0 for all (i, j) ∈ Ac, with probability tending to 1.

3.2.2 Computation

A significant advantage of the proposed approach is that it does not demand new com-

putational development. Specifically, for computing the information-guided estimator,

the existing algorithms [154] can be applied by setting tunings as zero for components

of the precision matrix corresponding to edges in Ep. For computing the information-

incorporated estimator, with the rewritten function (3.2) (or (3.3)), the existing algorithms

can be directly applied. Convergence, computational complexity, and other results fol-

low the literature [155, 156]. For selecting γn, λn, and η, we conduct a three-dimensional

grid search and adopt cross validation-type techniques (more details below). In addition,

in simulation, we also consider the ROC (Receiver Operating Characteristic) and other

techniques, which can “reduce” the impact of tuning parameter selection. R programs

for implementing the proposed approach and a demonstrating example are available at

www.github.com/shuanggema.

3.3 Simulation

For the structure of the precision matrix, we consider four popular choices, namely the

Erdos-Renyi, scale-free, nearest-neighbor, and banded (positive and negative) structures.

Briefly, we generate the Erdos-Renyi network with two sub-networks that have probabilities

0.05 and 0.07 for drawing an edge between two arbitrary nodes. The scale-free network is

generated using the popular Barabasi-Albert algorithm. It starts with an initial connected

network with a small number of nodes. New nodes are added to the network one at a time,

and each new node is connected to a certain number of existing nodes with a probability that
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is proportional to the number of edges that the existing nodes already have. The nearest-

neighbor network is generated by modifying the data generating mechanism described in

[157]. Specifically, we generate p points randomly on a unit square, calculate all pairwise

distances, and find the k nearest neighbors of each point. The nearest-neighbor network is

obtained by linking any two points that are among the k-nearest neighbors of each other.

k controls the sparsity level of the network, and we set k = 4 in our simulation. With the

Banded(+) network, the precision matrix has a block-diagonal structure with 7 blocks (for

p = 50) and 13 blocks (for p = 100). Within each block, the band has width ranging from

two to four (on each side, and diagonal not included). All nonzero off-diagonal elements

are positive. With the Banded(-) network, the precision matrix is similar to that with the

Banded(+), except that the nonzero elements for adjacent nodes are negative. The average

numbers of total edges are presented in the simulation tables.

For the Erdos-Renyi, scale-free, and nearest-neighbor networks, the precision matrices

are determined based on the corresponding network structures. In particular, elements not

corresponding to edges are set as zero. For elements corresponding to edges, we generate

their values randomly from a uniform distribution with support [−0.4,−0.1] ∪ [0.1, 0.4] –

this setting is referred to as “strong signal”. In addition, we also consider the “weak signal”

setting, where elements are equal to 80% of those under the strong signal setting. To ensure

positive definiteness, we set θii =
∑

j 6=i θij + 0.1. For the banded networks, the precision

matrices are directly generated. Finally, the covariance matrix Σ = Θ−1. We consider

p = 50 and 100, with corresponding sample sizes 100 and 300.

As discussed above, additional information may not be fully correct. To examine this

aspect, we consider four scenarios. Under Scenario 1, information is 100% correct. That is,

it contains all TPs and no FPs. Under Scenarios 2-4, respectively, about 70%, 50%, and

30% of the information is correct. More detailed information on the numbers of TPs and

FPs in the additional information are provided in Table 3.2 (Section 3.6).

To better gauge performance of the proposed approach, we consider the following al-

ternatives. The first is the benchmark, which couples the GGM with MCP penalization

(referred to as “GGM”). This approach is based on the observed data only. The second

is the information-guided analysis, under which the additional information is fully trusted.
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The third is generalized gLasso [148,149], which is recent and has competitive performance.

It demands a target precision matrix, which is generated as follows. With the true precision

matrix, we compute the standard deviation (sd) of all nonzero elements. The target matrix

has elements that correspond to the additional information being nonzero (and the rest

being zero). For these nonzero elements, we add random “perturbations” generated from

N(0, sd) or N(0, sd/2) to the true values. The two settings are referred to as L and S,

standing for large and small perturbations, respectively. In this process, the symmetry and

positive definiteness need to be preserved. It is noted that, as the target sensibly differs

from the true, and also with the complexity of GGM, a larger perturbation not necessarily

corresponds to worse performance. We also note that there exist more remotely related

alternatives. Comparing with the above three approaches can the most directly establish

the merit of the proposed approach.

When evaluating the proposed and alternative approaches, of the most interest is edge

identification. For each generated dataset (training), we simulate an independent testing

dataset under the same settings. Estimates are generated using the training data, and

optimal tunings are selected based on the likelihood computed using the “testing data +

training data estimates”. The TP and FP rates are calculated under the optimal tunings.

This procedure closely mimics and is computationally simpler than cross validation, and has

been adopted in multiple studies. Under each setting, 100 replicates are simulated. Results

for p = 50 and 100 are summarized in Table 3.1 and Table 3.3 (Section 3.6.2), respectively.

Across the whole spectrum of simulation, the proposed analysis is observed to have compet-

itive performance. Consider for example Table 3.1, the ER network, weak signal, and addi-

tional information Scenario 1. The average (TP, FP) values are (41.8, 11.7) for GGM, (139.8,

0.0) for the information-guided analysis, (149.7, 0.4) for the information-incorporated anal-

ysis, (107.7, 57.9) for generalized gLasso-L, and (105.1, 56.8) for generalized gLasso-S. As

another example, consider Table 3.1, the Banded(-) network, strong signal, and additional

information Scenario 4. The (TP, FP) values are (175.2, 45.7) for GGM, (151.6, 50.9) for the

information-guided analysis, (178.9, 32.2) for the information-incorporated analysis, (174.5,

179.0) for generalized gLasso-L, and (175.7, 189.6) for generalized gLasso-S. In general,

performance of the proposed approach deteriorates as the quality of additional information
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deteriorates from Scenario 1 to 4, which is as expected. Performance can vary significantly

across network structures. As has been noted in the literature, the considered networks

have significantly different properties. It is unclear how such differences affect performance

under the proposed approach. We note that there is a lack of such research in the literature.

We expect it to be highly challenging and postpone to future research. It is also observed

that, under a handful of settings, generalized gLasso identifies a few more TPs, at the price

of many more FPs.

For the GGM and information-guided analysis, which have performance closer to that

of the proposed approach, we also conduct additional evaluations. Specifically, we consider

a sequence of tunings, evaluate identification accuracy at each tuning point, and summarize

the overall performance using pAUC (partial Area Under Curve) under the ROC framework.

Compared to AUC, pAUC can better describe performance when the FP rate is controlled

below a reasonable level. In addition, we also consider the number of TPs when a fixed

number of edges are identified. With p =50 and 100, respectively, we consider 300 and 600

identified edges, and refer to the numbers of TPs as Top300 and Top600, respectively. It

is noted that multiple tunings may lead to the numbers of identified edges equal to 300

(or 600). For all approaches, we choose the one with the best performance. This measure

may slightly favor the proposed approach, which has more tunings. For p = 50, the pAUC

and Top300 values are summarized in Tables 3.4 and 3.6 (Section 3.6.2), respectively. The

corresponding results for p = 100 are summarized in Tables 3.5 and 3.7 (Section 3.6.2),

respectively. It is observed that the information-incorporated analysis has performance

either being or close to the best. Consider for example the setting with p = 50, weak signal,

and ER network structure. GGM has pAUC*100 equal to 53.3. For the (information-

guided, information-incorporated) dual, the pAUC*100 values are (100, 96.8), (96.4, 92.9),

(83.8, 79.9), and (58.9, 61.8) under Scenario 1-4, respectively.

To further explore the proposed approach, with p = 50, we summarize the selected

τ values in Table 3.8 (Section 3.6.2). It is observed that, as the quality of additional

information deteriorates, the value of τ decreases, suggesting less information incorporation.

Under most settings, there is more information incorporation with weak signals. Significant

differences across network structures are again observed.
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3.4 Data analysis

TCGA (The Cancer Genome Atlas) is one of the largest and most comprehensive cancer

projects jointly organized by the NCI and NHGRI. For over thirty cancer types, it has pub-

lished comprehensive molecular and other types of data. We analyze TCGA data because

of its high quality, easy accessibility, and high scientific impact. In particular, we ana-

lyze the gene expression data on LUAD (lung adenocarcinoma) and LUSC (lung squamous

cell carcinoma), two subtypes of lung cancer. In TCGA, gene expressions were measured

using the Illumina Hiseq2000 RNA Sequencing Version 2 analysis platform and processed

and normalized using the RSEM software. More detailed information is available in the

literature [158]. We examine data graphically and observe that the processed data mostly

have unimodal and bell-shaped distributions, although some deviations from normality are

observed. One remedy is to replace the simple correlation with robust correlations that do

not rely on the normality assumption [159]. Then the proposed information-incorporated

approach can be directly applied. However, the alternative correlations may not be as easily

interpretable. In addition, quite a few published studies have used the simple correlation,

conducted network analysis, and generated useful findings. As such, we choose to use the

simple correlation. In principle, it is possible to conduct whole-genome analysis. However,

with limited sample sizes, the findings may be unreliable. In addition, only a small number

of genes are “interesting” in the context of lung cancer. As such, we take a “candidate gene”

approach. In particular, the 61 gene panel developed and validated in [160] is adopted. This

panel has been shown as having important biomedical implications, for example, for lung

cancer prognosis. Matching this panel with the gene names in TCGA leads to 50 genes for

analysis. Compared to the sample sizes (517 for LUAD and 501 for LUSC), the number

of parameters to be estimated is large. The correlation heatmaps are shown in Figures 3.5

and 3.6 (Appendix, Section 3.6.2), where we observe different patterns.

With PubMatrix, for a given gene pair, the number of PubMed publications ranges

from 1 to 1,486. More information is provided in Figure 3.2 (which contains the numbers

in the log scale) and Figure 3.7 (Appendix, Section 3.6.2, which shows the histogram of the

numbers).
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Figure 3.2: Data analysis: number of relevant publications (in log scale) for any gene pair.

The generalized gLasso approach demands a known precision matrix as target, which

is not available. As such, it is not applied. For the GGM, information-guided, and

information-incorporated approaches, tuning parameters are selected using 4-fold cross val-

idation. The estimated precision matrices are provided at https://github.com/DeniseYi.

The network structures are graphically presented in Figure 3.3 for the information-incorporated

approach and Figure 3.8 (Section 3.6.2) for the alternatives. Briefly, with the LUAD data,

they identify 530 (proposed), 526 (GGM), and 554 (information-guided) edges. The pro-

posed approach has 486 and 474 overlapping edges with the two alternatives. With the

LUSC data, they identify 534 (proposed), 520 (GGM), and 592 (information-guided) edges.

The proposed approach has 486 and 480 overlapping edges with the two alternatives. With

the proposed approach, the τ values are 0.57 (LUAD) and 0.64 (LUSC), suggesting that

there is considerable information incorporation. The identified network structures are sig-
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nificantly different, with p-values < 0.001 using a permutation test [161]. As noted in the

literature, with a large number of edges, it is not feasible to examine biological implica-

tions of the findings. In addition, in biological literature, research on genes’ conditional

interconnections remains limited. As such, we do not pursue biological implications of the

differences in findings.

(a) (b)

Figure 3.3: Gene networks constructed using the proposed approach: (a) LUAD, (b)
LUSC.

To gain further insights into the analysis results, we conduct a random splitting-based

evaluation. Specifically, data is randomly split into a training and a testing set with sizes

3 : 1. With the training set, the proposed and alternative approaches are applied. Then

the predicted likelihood is computed using the testing set. This process is repeated 100

times. In addition, for each edge identified using the whole dataset (without splitting), we

compute its probability of being identified in the random splits. Such a probability has been

referred to as the OOI (observed occurrence index) in the literature and reflects the stability

of finding, with a higher value indicating higher stability. The average predicted negative

log-likelihood values are 69.4 (proposed), 73.1 (GGM), and 73.6 (information-guided) for

the LUAD data, and 65.7 (proposed), 67.5 (GGM), and 67.5 (information-guided) for the

LUSC data. For all the edges identified using the whole dataset, their average OOI values

are 0.836 (proposed), 0.806 (GGM), and 0.822 (information-guided) for the LUAD data,
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and 0.839 (proposed), 0.814 (GGM), and 0.830 (information-guided) for the LUSC data.

3.5 Discussion

In the network analysis of gene expression and other molecular data, the “lack of informa-

tion” problem is likely to persist in the foreseeable future. We have developed a way of

improving gene expression network construction via incorporating additional information

contained in published articles. Carefully examining the proposed procedure suggests that

it can also accommodate some other sources of information on network edges (for example,

as contained in protein-protein interactions) and other types of molecular data. In terms

of methodology, it complements the existing literature and differs from the ordinary GGM,

generalized gLasso, regression-based works, and Bayesian approaches. The consistency re-

sults have provided a strong basis for the proposed approach and may also shed light into

other network analysis methods. Simulation has shown that the proposed approach has

competitive performance even when the additional information is only partially correct.

With two lung cancer datasets, findings different from the alternative approaches have been

made.

This study can be extended in multiple ways. It will be of interest to couple the

proposed information-incorporated strategy with network constructions that accommodate

non-normal data [159]. Estimation and selection can also be realized using other regular-

ization techniques. More refined text mining tools can be adopted to generate more reliable

information, which may further improve performance. It will also be of interest to associate

an uncertainty measure with the extracted information, which can describe the conflict of

published findings, and incorporate such a measure in estimation. It has been suggested

that incorrect information does not happen independently. Although this is not difficult to

comprehend, modeling and incorporating it in analysis demands significant future research.

We also defer bioinformatics examinations of the findings to future works.
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3.6 Appendix

3.6.1 Additional details on Theorem 1

Remarks Under the Frobenius norm, we establish the O(
√

(p+s) log p
n(1+η)2 ) convergence rate.

The term (p + s)/n is the optimal rate for the total squared errors with p + s nonzero

elements. The logarithmic factor log p is the price paid for high dimensionality. The term

1/(1 + η)2 with η ≥ 0 is the gain by incorporating additional information. When η = 0,

our result reduces to that in [113]. It requires (p + s) log p/{n(1 + η)2} = o(1), which

means p < n if η is bounded. As shown in some publications, if we change the Frobenius

norm to other norms, then the convergence rate result may change, with a possibility of

accommodating n < p. Significant additional developments will be needed to establish

consistency and convergence in other norms for the n < p case. We conjecture that rates

like O(
√

log p
n ) under the elementwise maximum-norm as in [129] may be possible. We note

that the Frobenius norm and accompanying convergence rate results are common in the

literature, and postpone investigation on other norms to future research.

Proof Define the operator norm of a matrix B as ‖B‖ = λ
1/2
max(BTB). We first prove that

there exists a local minimizer Θ̂λn,η satisfying:

‖Θ̂λn,η −Θ0‖2F = Op

(
(p+ s) log p

n(1 + η)2

)
.

Then we show that Θ̂λn,η also enjoys θ̂λn,ηij = 0 for all (i, j) ∈ Ac. The proof can be achieved

via the following steps.

Step 1. Denote ∆ = Θ−Θ0 = (δij) and

Q(∆) = Lλn,η(Θ0 + ∆;S, Σ̂p)− Lλn,η(Θ0;S, Σ̂p)

= −(1 + η) (log |Θ0 + ∆| − log |Θ0|) + tr
{

(S + ηΣ̂p)∆
}

+
∑
i 6=j

{
pλn(|θ0

ij + δij |)− pλn(|θ0
ij |)
}
.
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Applying Taylor’s expansion to f(t) = log |Θ + t∆| with the integral remainder, we have

log |Θ0 + ∆| − log |Θ0|

= tr(Σ0∆)− vec(∆)T
{∫ 1

0
(1− v)(Θ0 + v∆)−1 ⊗ (Θ0 + v∆)−1dv

}
vec(∆).

Then, we can rewrite Q(∆) as

Q(∆) = tr
{

(S − Σ0)∆ + η(Σ̂p − Σ0)∆
}

+(1 + η) · vec(∆)T
{∫ 1

0
(1− v)(Θ0 + v∆)−1 ⊗ (Θ0 + v∆)−1dv

}
vec(∆)

+
∑

(i,j)∈Ac

{
pλn(|θ0

ij + δij |)− pλn(|θ0
ij |)
}

+
∑

(i,j)∈A−

{
pλn(|θ0

ij + δij |)− pλn(|θ0
ij |)
}

=: I1 + I2 + I3 + I4. (3.4)

Consider the set N =
{

∆ : ∆ = ∆T , ‖∆‖F = Krn
}

with K being a large constant and

rn =

√
(p+ s) log p

n(1 + η)2
.

For ∆ ∈ N , we have

|I1| =
∣∣∣tr{(S − Σ0)∆ + η(Σ̂p − Σ0)∆

}∣∣∣
≤

∣∣∣∣∣∣
∑

(i,j)∈A

{
(sij − σ0

ij)δij + η(σ̂pij − σ
0
ij)δij

}∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

(i,j)∈Ac

{
(sij − σ0

ij)δij + η(σ̂pij − σ
0
ij)δij

}∣∣∣∣∣∣
=: I11 + I12. (3.5)

Note that

I11 ≤
√
p+ s

(
max

(i,j)∈A
|sij − σ0

ij |+ η max
(i,j)∈A

|σ̂pij − σ
0
ij |
)
‖∆‖F .

By Lemma A.3 of [162], with probability tending to 1,

max
i,j
|sij − σ0

ij | ≤ C1

√
log p

n
,
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where C1 is a large constant. Together with Condition (C5), we have

I11 ≤
√
p+ s(C0 + C1)

√
log p

n
Krn = (1 + η)(C0 + C1)Kr2

n, (3.6)

with probability tending to 1. Furthermore,

I12 ≤
∑

(i,j)∈Ac

∣∣∣{(sij − σ0
ij) + η(σ̂pij − σ

0
ij)
}
δij

∣∣∣ ≤ (C0 + C1)

√
log p

n

∑
(i,j)∈Ac

|δij |,

with probability tending to 1. For (i, j) ∈ Ac,, θ0
ij = 0. Thus, by Condition (C3), we can

find a constant k∗ > 0 such that

I3 =
∑

(i,j)∈Ac
pλn(|δij |) ≥ λnk∗

∑
(i,j)∈Ac

|δij |.

With the above arguments, we have, with probability tending to 1,

I3 − I12 ≥

{
λnk

∗ − (C0 + C1)

√
log p

n

} ∑
(i,j)∈Ac

|δij |.

With the assumption that (p+s) log p
n = O(λ2

n), we can see from the above that

I3 − I12 ≥ 0, (3.7)

with probability tending to 1. Using Condition (C1) and result (18) in [162], we can get

that

I2 ≥ (1 + η)‖vec(∆)‖2
∫ 1

0
(1− v)λ2

min(Θ0 + v∆)−1dv

≥ (1 + η)
1

2
‖vec(∆)‖2 min

0≤v≤1
λ2

min(Θ0 + v∆)−1

≥ (1 + η)
1

2
‖vec(∆)‖2 (‖Θ0‖+ ‖∆‖)−2

≥ (1 + η)
K2r2

n

4φ2
2

. (3.8)
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For I4, using Taylor’s expansion, we obtain

|I4| ≤
∑

(i,j)∈A−

{
p′λn(|θ0

ij |)|δij |+ p′′λn(|θ̃ij |)
δ2
ij

2

}
,

where θ̃ij is on the line segment jointing zero and θ0
ij . By Condition (C4) and the Cauchy-

Schwartz inequality, we can conclude

|I4| ≤
√
san‖∆‖F + bn‖∆‖2F ≤ C2Kr

2
n + o(K2r2

n), (3.9)

where C2 is a positive constant, and the second inequality follows from Condition (C2).

Combining (3.4)-(3.9), we have that Q(∆) > 0 with probability tending to 1, when K

is sufficiently large. Following arguments similar to [163], we can prove that

‖∆̂‖2F = ‖Θ̂λn,η −Θ0‖2F = Op
(
r2
n

)
.

Step 2. For (i, j) ∈ Ac, the derivative of Lλn,η(Θ;S, Σ̂p) with respect to θij is

∂Lλn,η(Θ;S, Σ̂p)

∂θij
= 2

{
(sij − σij) + η(σ̂pij − σij) + p′λn(|θij |)sign(θij)

}
. (3.10)

For Θ̂λn,η, a minimizer of Lλn,η(Θ;S, Σ̂p), it suffices to show that for all θ̂λn,ηij with (i, j) ∈ Ac,

the sign of
∂Lλn,τ (Θ;S,Σ̂p)

∂θij

∣∣∣
θij=θ̂

λn,η
ij

depends only on sign(θ̂λn,ηij ) with probability tending to

1, and the optimum is at zero, so that θ̂λn,ηij = 0 for all (i, j) ∈ Ac with probability tending

to 1.

Firstly, we have that ‖Θ̂λn,η −Θ0‖F = Op(rn) with rn → 0. Following the arguments in

the proof of Theorem 2 in [113], we have, with probability tending to 1,

max
i,j
|sij − σij | ≤ max

i,j
|sij − σ0

ij |+ max
i,j
|σ0
ij − σij | ≤ C1

√
log p

n
+ C3Krn,

and

max
i,j

η|σ̂pij − σij | ≤ max
i,j

η|σ̂pij − σ
0
ij |+ max

i,j
η|σ0

ij − σij | ≤ C0

√
log p

n
+ ηC3Krn,
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where C3 is a positive constant. Therefore, we have

max
i,j
|(sij − σij) + η(σ̂pij − σij)| ≤ (C0 + C1)

√
log p

n
+ (1 + η)C3Krn ≤ C4

√
(p+ s) log p

n
,

with probability tending to 1, where C4 is a positive constant.

Secondly, for any θ̂λn,ηij in a small neighborhood of 0 and some positive constant C5, we

have

p′λn(|θ̂λn,ηij |) ≥ C5λn,

by Conditions (C3) and (C4). Then by setting λn >
C4
C5

√
(p+s) log p

n , we have that p′λn(|θij |)sign(θij)

dominates the other part, which yields that the sign of
∂Lλn,τ (Θ;S,Σ̂p)

∂θij

∣∣∣
θij=θ̂

λn,η
ij

equals sign(θ̂λn,ηij )

with probability tending to 1. The theorem is proved. �

3.6.2 Additional numerical results
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Table 3.2: Simulation settings: numbers of TPs and FPs in the additional information.
(ER: Erdos-Renyi; SF: scale-free; NN: nearest-neighbor; and banded structure.)

ER SF NN Banded

p = 50

Scenario 1
TP 152 200 184 244
FP 0 0 0 0

Scenario 2
TP 140 140 140 140
FP 12 60 44 104

Scenario 3
TP 100 100 100 100
FP 52 100 84 144

Scenario 4
TP 40 40 40 40
FP 112 160 144 204

p = 100

Scenario 1
TP 556 600 630 516
FP 0 0 0 0

Scenario 2
TP 490 490 490 490
FP 66 110 140 26

Scenario 3
TP 350 350 350 350
FP 206 250 280 166

Scenario 4
TP 140 140 140 140
FP 416 460 490 376
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Table 3.4: Simulation results of pAUC: mean×100 (sd×100) for p = 50. (ER: Erdos-Renyi;
SF: scale-free; NN: nearest-neighbor; Banded(+): positive banded; and Banded(-): negative
banded.)

ER SF NN Banded(+) Banded(-)

Weak signal
GGM 53.3(2.4) 40.6(2.3) 64.6(2.9) 66.0(2.4) 69.2(2.7)

Scenario 1
Info-guided 100(0.0) 100(0.0) 100(0.0) 100(0.0) 100(0.0)
Info-incorporated 96.8(1.7) 90.2(1.9) 98.0(0.7) 97.5(3.2) 97.9(0.3)

Scenario 2
Info-guided 96.4(0.6) 79.7(1.1) 89.6(1.6) 83.9(1.0) 84.1(0.8)
Info-incorporated 92.9(1.4) 70.8(2.2) 87.1(3.2) 85.9(2.4) 86.8(2.3)

Scenario 3
Info-guided 83.8(1.5) 66.9(2.0) 78.8(2.3) 75.3(2.1) 77.7(1.8)
Info-incorporated 79.9(1.6) 58.2(3.4) 77.0(3.3) 78.9(2.3) 82.2(2.2)

Scenario 4
Info-guided 58.9(1.7) 44.4(2.2) 62.7(2.1) 60.4(1.9) 62.1(2.2)
Info-incorporated 61.8(2.7) 45.0(2.6) 68.1(3.3) 71.6(2.2) 73.6(3.0)

Strong signal
GGM 68.1(3.0) 52.2(2.5) 75.8(2.0) 72.0(2.2) 74.5(2.3)

Scenario 1
Info-guided 100(0.0) 100(0.0) 100(0.0) 100(0.0) 100(0.0)
Info-incorporated 98.1(1.2) 92.8(1.2) 99.2(0.8) 96.9(1.7) 97.9(1.1)

Scenario 2
Info-guided 97.4(0.7) 82.7(1.1) 91.9(1.3) 85.6(1.7) 85.9(1.0
Info-incorporated 96.0(1.1) 76.0(1.4) 91.0(2.0) 80.0(2.7) 83.2(2.7)

Scenario 3
Info-guided 88.4(1.1) 72.4(1.3) 83.9(1.8) 77.3(1.8) 79.7(1.6)
Info-incorporated 88.2(2.0) 67.1(2.8) 84.6(1.9) 78.2(3.1) 79.4(4.2)

Scenario 4
Info-guided 67.3(2.1) 52.8(2.2) 70.9(2.8) 66.5(3.2) 68.2(2.3)
Info-incorporated 73.5(2.7) 56.1(2.6) 78.7(2.1) 77.1(2.5) 77.7(2.1)
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Table 3.5: Simulation results of pAUC: mean×100 (sd×100) for p = 100. (ER: Erdos-Renyi;
SF: scale-free; NN: nearest-neighbor; Banded(+): positive banded; and Banded(-): negative
banded.)

ER SF NN Banded(+) Banded(-)

Weak signal
GGM 59.5(1.1) 43.4(1.5) 72.0(1.2) 75.7(1.5) 78.1(1.9)

Scenario 1
Info-guided 100(0.0) 100(0.0) 100(0.0) 100(0.0) 100(0.0)
Info-incorporated 93.1(2.4) 83.9(1.7) 96.3(0.9) 95.4(2.6) 96.0(2.9)

Scenario 2
Info-guided 93.5(0.7) 87.1(0.4) 88.1(0.8) 98.9(0.4) 98.9(2.4)
Info-incorporated 87.1(0.9 74.1(1.9) 89.8(0.9) 95.7(3.8) 96.2(0.8)

Scenario 3
Info-guided 78.0(0.7) 73.6(0.6) 78.8(1.5) 94.7(0.6) 94.5(0.4)
Info-incorporated 77.5(1.0) 65.1(1.7) 85.4(1.0) 94.1(0.9) 94.6(1.2)

Scenario 4
Info-guided 54.0(0.7) 47.9(0.6) 59.7(4.4) 78.7(1.4) 80.0(1.1)
Info-incorporated 65.0(1.2) 47.2(1.9) 77.4(0.8) 89.3(2.1) 89.8(1.7)

Strong signal
GGM 71.8(2.1) 53.9(1.9) 72.4(1.2) 87.0(1.1) 88.6(0.8)

Scenario 1
Info-guided 100(0.0) 100(0.0) 100(0.0) 100(0.0) 100(0.0)
Info-incorporated 95.7(3.3) 87.6(1.0) 96.2(0.5) 99.1(0.3) 99.0(0.3)

Scenario 2
Info-guided 95.0(0.4) 88.3(0.5) 88.0(0.4) 99.6(6.3) 99.7(7.3)
Info-incorporated 90.6(0.7) 78.5(0.8) 89.8(0.8) 95.8(3.4) 95.5(4.0)

Scenario 3
Info-guided 82.6(0.9) 77.5(0.9) 79.3(1.7) 95.4(0.5) 95.3(0.4)
Info-incorporated 82.4(1.3) 71.2(1.4) 85.5(0.9) 90.2(2.3) 91.2(1.9)

Scenario 4
Info-guided 64.0(1.6) 53.5(0.8) 60.1(1.8) 84.9(1.6) 85.7(0.9)
Info-incorporated 75.9(1.8) 57.0(1.8) 77.5(1.2) 88.8(1.3) 89.9(1.0)
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Table 3.6: Simulation results of Top300: mean (sd) TPs for p = 50. (ER: Erdos-Renyi; SF:
scale-free; NN: nearest-neighbor; Banded(+): positive banded; and Banded(-): negative
banded.)

ER SF NN Banded(+) Banded(-)
Total edges 152 200 184 244 244

Weak signal
GGM 58.0(8.9) 60.0(8.9) 90.0(11.9) 121.0(10.4) 125.0(7.4)

Scenario 1
Info-guided 152.0(0.0) 200.0(0.0) 184.0(0.0) 244.0(0.0) 244.0(0.0)
Info-incorporated 149.6(2.2) 142.1(7.3) 179.5(5.1) 241.5(2.2) 241.7(1.9)

Scenario 2
Info-guided 144.0(2.0) 146.9(2.7) 156.6(4.2) 178.6(5.8) 175.5(4.2)
Info-incorporated 141.3(2.8) 118.6(8.9) 155.5(5.7) 188.7(8.7) 186.6(7.0)

Scenario 3
Info-guided 118.5(4.3) 113.5(3.3) 132.5(6.9) 152.4(4.1) 155.9(4.7)
Info-incorporated 115.5(5.1) 106.4(3.7) 128.3(5.5) 159.3(6.7) 163.3(6.5)

Scenario 4
Info-guided 71.4(5.6) 66.3(5.0) 89.1(12.2 103.8(5.5) 103.5(4.9)
Info-incorporated 83.5(8.5) 75.4(7.4) 106.3(7.3) 140.3(7.3) 146.3(7.1)

Strong signal
GGM 58.0(8.9) 60.0(8.9) 90.0(11.9) 121.0(10.4) 125.0(7.4)

Scenario 1
Info-guided 152.0(0.0) 200.0(0.0) 184.0(0.0) 244.0(0.0) 244.0(0.0)
Info-incorporated 145.6(4.1) 161.3(7.2) 183.1(1.5) 238.0(15.8) 240.0(14.5)

Scenario 2
Info-guided 146.2(2.2) 154.5(3.8) 158.0(5.5) 177.7(5.1) 178.3(3.8)
Info-incorporated 141.9(3.3) 134.5(6.1) 164.4(4.1) 161.7(16.4) 170.4(14.4)

Scenario 3
Info-guided 125.7(3.7) 127.5(5.8) 132.5(6.8) 153.3(4.6) 158.0(2.7)
Info-incorporated 126.0(4.7) 119.9(5.0) 144.9(6.2) 151.6(12.1) 155.5(11.1)

Scenario 4
Info-guided 84.3(5.7) 85.6(9.1) 100.7(6.2) 112.5(3.5) 115.3(4.6)
Info-incorporated 100.6(5.5) 98.1(5.2) 130.1(5.6) 144.8(10.6) 144.2(10.0)
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Table 3.7: Simulation results of Top600: mean (sd) TPs for p = 100. (ER: Erdos-Renyi;
SF: scale-free; NN: nearest-neighbor; Banded(+): positive banded; and Banded(-): negative
banded.)

ER SF NN Banded(+) Banded(-)
Total edges 556 600 630 516 516

Weak signal
GGM 177.8(12.4) 145.3(9.7) 241.7(10.5) 289.0(12.1) 307.9(9.3)

Scenario 1
Info-guided 556.0(0.0) 600.0(0.0) 600.0(0.0) 516.0(0.0) 516.0(0.0)
Info-incorporated 354.5(12.0) 366.9(47.7) 443.6(49.0) 516.0(13.8) 516.0(19.7)

Scenario 2
Info-guided 495.6(1.4) 491.3(1.8) 493.6(5.3) 516.0(1.5) 516.0(2.1)
Info-incorporated 334.8(12.4) 421.3(30.6) 411.9(42.6) 491.9(47.2) 483.4(51.9)

Scenario 3
Info-guided 360.9(2.1) 368.5(4.6) 338.1(3.7) 470.0(6.3) 470.5(6.1)
Info-incorporated 404.7(35.2) 312.1(6.6) 381.1(9.8) 456.9(11.7) 350.8(24.9)

Scenario 4
Info-guided 169.8(4.4) 171.0(5.6) 160.5(6.8) 288.7(3.7) 289.9(7.1)
Info-incorporated 219.3(12.1) 173.0(10.6) 175.8(26.0) 370.9(23.8) 376.8(22.6)

Strong signal
GGM 288.0(13.2) 215.7(10.8) 245.2(14.5) 345.3(25.4) 353.8(21.8)

Scenario 1
Info-guided 556.0(0.0) 600.0(0.0) 600.0(0.0) 516.0(0.0) 516.0(0.0)
Info-incorporated 442.5(10.7) 352.3(11.5) 438.9(45.5) 516.0(5.2) 516.0(6.2)

Scenario 2
Info-guided 501.3(2.6) 498.7(2.8) 492.9(5.8) 516.0(1.3) 516.0(1.8)
Info-incorporated 421.9(11.0) 323.5(11.7) 426.2(47.8) 516.0(14.0) 516.0(20.1)

Scenario 3
Info-guided 381.1(5.1) 393.7(5.9) 342.8(21.4) 482.2(5.8) 480.3(6.3)
Info-incorporated 370.9(9.6) 294.1(16.3) 382.4(12.1) 462.7(11.6) 400.7(6.1)

Scenario 4
Info-guided 209.0(6.4) 212.5(6.4) 160.6(6.4) 284.2(3.7) 291.5(3.7)
Info-incorporated 313.6(10.3) 242.1(10.4) 169.5(8.6) 380.1(18.7) 383.6(17.1)
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Table 3.8: Simulation: average τ value for p = 50. (ER: Erdos-Renyi; SF: scale-free; NN:
nearest-neighbor; Banded(+): positive banded; and Banded(-): negative banded.)

ER SF NN Banded(+) Banded(-)

Weak signal
Scenario 1 0.98 0.97 0.97 0.95 0.96
Scenario 2 0.92 0.94 0.91 0.80 0.78
Scenario 3 0.80 0.76 0.56 0.76 0.70
Scenario 4 0.51 0.50 0.46 0.72 0.68
Strong signal
Scenario 1 0.94 0.92 0.89 0.65 0.71
Scenario 2 0.88 0.81 0.74 0.50 0.54
Scenario 3 0.62 0.54 0.56 0.47 0.45
Scenario 4 0.50 0.53 0.50 0.38 0.41
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(a)

(b)

Figure 3.4: Sample PubMatrix (a) submit and (b) result pages.
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Figure 3.5: Analysis of LUAD data: heatmap of correlation.
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Figure 3.6: Analysis of LUSC data: heatmap of correlation.
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Figure 3.7: Data analysis: distribution of the number of publications including a given pair
of genes.
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(a) (b)

(c) (d)

Figure 3.8: Gene networks constructed using the alternatives. (a) LUAD with GGM. (b)
LUAD with information-guided. (c) LUSC with GGM. (d) LUSC with information-guided.
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Chapter 4

Project 3: Assisted differential

network analysis for gene

expression data

Abstract

When there are two or more conditions/groups (for example, cancer and normal, deceased

and alive, and different stages/subtypes), differential analysis targets at identifying key dif-

ferences and has important implications. In network differential analysis, spectral clustering

and other techniques can identify key contributors and reveal important biological mecha-

nisms that lead to the differences. Network differential analysis involves the estimation of at

least two networks and can be more challenging with the significantly increased number of

parameters. In this chapter, we further develop the assisted analysis strategy, take advan-

tage of multidimensional profiling data, and propose incorporating regulator information

to improve the identification of key genes (that lead to differences in GE networks). An

effective computational algorithm is developed. Comprehensive simulation is conducted,

showing that the proposed approach can outperform benchmarks in terms of identification

accuracy. The analysis of TCGA lung adenocarcinoma (LUAD) data leads to findings with

sensible interpretations and different from the alternatives. Overall, this study can signifi-

cantly expand the scope of differential network analysis and assisted analysis. A manuscript
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based on this chapter will be submitted for publication soon.

4.1 Introduction

Gene expression data has been playing a uniquely important role in cancer research. The

analysis of gene expression data has led to a deeper elucidation of cancer etiology as well as

actionable targets for the development of treatment/prevention strategies. An important

type of analysis is to compare gene expression properties under different conditions, which

can be cancer and normal, deceased and alive, different subtypes, and others. For practical

examples of such analysis, we refer to [164–167], and others.

When comparing gene expression properties between conditions, the simplest way is

to compare (normalized) means (medians, etc.), which leads to the commonly conducted

differential gene identification analysis. It has been recognized that the first moment (of gene

expression distribution) does not contain all relevant information. Accordingly, variance

(second moment) based analysis has been conducted, motivated by the genetic principle

that higher variations indicate less stable gene expressions, which may increase disease

susceptibility and severity. Further advancing from such marginal analysis – which analyzes

one gene at a time, network-based analysis has been conducted. Such analysis takes a system

perspective and describes properties of not only individual gene expressions but also their

interconnections.

Gene expression network analysis can be mainly classified into two categories: uncondi-

tional analysis and conditional analysis. In unconditional analysis, the goal is to quantify

whether any two gene expressions are independent while “ignoring” other genes. A repre-

sentative example of unconditional analysis is the WGCNA (Weighted Gene Co-Expression

Network Analysis) pioneered by Peter Langfelder and Steve Horvath [84]. As demonstrated

in the WGCNA and other analyses, the variance-covariance matrix is often the simplest

starting point of unconditional analysis. Unconditional gene expression networks can be

both directional and undirectional, both weighted and unweighted, and both sparse and

dense [97]. In comparison, in conditional analysis, the goal is to quantify whether two

gene expressions are independent conditional on the rest of the genes. The “simplest” and
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most extensively conducted conditional analysis is perhaps the Gaussian Graphical Model

(GGM), under which it is assumed that gene expressions have joint normal distributions.

Under this specific assumption, determining conditional independence is equivalent to de-

termining whether the precision matrix (which is the inverse of the variance-covariance

matrix) has the corresponding element being zero. When the normality assumption is too

stringent, approaches have been developed to relax the normality assumption, replace Pear-

son’s correlation (in the variance-covariance matrix) with robust, for example Kendall’s tau,

correlations, and then proceed in the same way as under the GGM. In both unconditional

and conditional analysis, when sparsity is desirable (which is usually the case for gene ex-

pression analysis), regularization can be applied. It is noted that this may be routinely

needed in conditional analysis, which demands the joint estimation of a large number of

parameters. For example, for GGM, the graphical Lasso approach, which applies Lasso

penalization to GGM estimation, has been popular.

Consider comparing gene expressions between two conditions. Here we note that the

discussions and proposed approach are also applicable to the comparison of more than

two conditions. The first step, very naturally, is to determine whether the gene expression

networks under the two conditions are significantly different. This naturally poses a hypoth-

esis testing problem. A “straightforward” approach is to first take the difference between

two networks (variance-covariance matrices under unconditional analysis, precision matrices

under conditional analysis, etc.), and then take a certain norm of this difference. Norms

considered in the literature include the Frobenius norm, `∞ norm, and others [168, 169].

Some studies have derived the asymptotic distributions of such norms, which is often a very

challenging problem [170]. An alternative solution is to apply, for example, permutation-

based techniques [171,172].

For many “simple” problems, for example the comparison between subtypes or between

normal and cancer, significant differences are apparently expected – this has been con-

firmed by many published analyses. In this case, the natural next step is to identify which

genes lead to the differences. This corresponds to differential gene analysis [173,174], which

has been established as having important implications. For both unconditional and con-

ditional analysis, with the difference of networks, a simple approach is to examine which
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genes correspond to the large elements. A statistically more rigorous approach is via spec-

tral clustering [140, 175]. With the difference of networks, spectral clustering amounts to

conducting SVD (singular value decomposition). In our analysis, sparsity is assumed, un-

der which it is postulated that only a small number of genes contribute to the difference.

Then regularization is needed along with SVD to differentiate “signals” from “noises”. A

“straightforward” choice is the SSVD (sparse SVD) technique, with which some components

of the singular vectors can be estimated as exactly zero [176]. When the first sparse singular

vector is estimated, the nonzero components correspond to the first gene expression clus-

ter that causes the difference [175]. If desirable, the SSVD procedure can be continued to

identify the subsequent gene expression clusters that also contribute to the difference. This

analysis pipeline has been developed in the literature [175] and shown to have satisfactory

performance. Here we note that this analysis can be conducted in the same manner for

both unconditional and conditional networks.

As well recognized in the literature, network analysis is challenged by the high dimen-

sionality of parameters and limited sample size, which may lead to unsatisfactory estima-

tion and identification [177]. This can be especially true in the identification of difference,

where at least two networks need to be estimated. Gene expressions are heavily regulated.

We note that here we take a loose definition and generically refer to molecular mecha-

nisms that can affect gene expression levels, including but not limited to copy number

variation and other DNA mutations, methylation, and microRNA, as “regulators”. Under

other (possibly simpler) contexts, assisted analysis has been developed to take advantage

of regulator information and assist the analysis of gene expressions. One example is col-

laborative regression [46]. Here for a low-dimensional outcome, a regression model is built

using gene expressions only, and a separate model is built using regulators only. With the

gene-expression-regulator relationship, this approach promotes that the two models lead to

similar estimates for the outcome variable. This approach may be limited by not explicitly

accounting for the regulation relationship. To tackle this problem, the ARMI approach

is developed which includes the addition gene-expression-regulator modeling step [47]. In

addition, it also has built-in robustness to accommodate long-tailed outcome distributions.

Assisted analysis has also been conducted in clustering and other contexts. In a very recent
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study (Chapter 2), assisted analysis has also been conducted on gene expression networks.

The goal of that study is to more accurately estimate the conditional gene-expression-only

and gene-expression-regulator networks, through linking them via a hierarchy. It is noted

that this approach has been developed for conditional networks only. The aforementioned

studies have provided extensive evidence on the effectiveness of gene expression analysis

assisted by regulators.

In this study, we consider the comparison of gene expression networks between two (or

more) conditions. As mentioned above, multiple comparison scenarios can be accommo-

dated. For each subject (under all conditions), it is assumed that both gene expression and

regulator measurements are available. Here it is noted that, as in the published assisted

analysis, the proposed analysis does not demand all collected regulators are relevant, or all

relevant regulators are collected – as such, it can be sufficiently flexible. Our analysis goal,

as in some published studies, is to identify the subset of gene expressions that contribute

to the difference of gene expression networks, built on the regularized spectral clustering

technique. This study may advance from the existing literature in the following important

aspects. First, it advances from the differential analysis based on mean (median) and vari-

ance by examining the interconnections among genes. Second, it advances from the existing

difference-in-networks analysis by taking advantage of the information in regulators. It also

advances from the existing spectral clustering analysis by simultaneously analyzing gene

expressions and regulators. Third, its data settings are fundamentally different from those

in Chapter 2. In particular, in Chapter 2, the two networks have different formulating

components: one without regulators, and the other with regulators. In contrast, in the

present analysis, regulator data is available for all subjects under both conditions. This

study also advances by conducting both conditional and unconditional network analysis.

Fourth, this study also advances from the regression-based assisted analysis by conducting

more complex network analysis.
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4.2 Methods

4.2.1 Strategy

The first challenge of differential network analysis is to quantify network changes. A very

recent effort that tackles a related task uses the Generalized Hamming Distance (GHD)

to quantify the differences between two networks, and then adopts an iterative technique

to identify the set of genes that contribute most to the change [168]. Let Y1, Y2 be the

vectors of GE variables from two different groups or stages, and X1, X2 be the vectors

for corresponding regulator variables. Denote the GE networks constructed using Y1 and

Y2 as G1 ∈ Rp×p and G2 ∈ Rp×p, respectively, and the corresponding regulator networks

constructed using X1 and X2 as R1 ∈ Rq×q and R2 ∈ Rq×q. It is noted that here there is

a slight abuse of notation. The ”networks” describe the interconnections among variables.

Following the idea of GHD, a natural alternative measure of the GE network difference is

to form a matrix Gdiff ∈ Rp×p with elements (G1,ij − G2,ij), where G1,ij and G2,ij are the

(i, j)th elements in G1 and G2, respectively. Similarly, we also define/compute the network

difference for regulators, which is denoted as Rdiff ∈ Rq×q.

A “classic” method to detect the key contributors to network changes is sparse singular

value decomposition (SSVD), which has already been widely used in clustering and iden-

tifying interpretable row-column associations with high-dimensional data matrices [176].

In our case, the benchmark analysis is to apply SSVD to Gdiff, the network changes of

GEs. The singular value decomposition (SVD) of Gdiff can be written as Gdiff = V DW> =∑p
k=1 s

G
k vkw

>
k , where V = (v1, · · · , vp) and W = (w1, · · · , wp) are two matrices of orthonor-

mal singular vectors, and D = diag(sG1 , · · · , sGp ) is a diagonal matrix with positive singular

values sG1 ≥ · · · ≥ sGp on its diagonal. SVD decomposes Gdiff into a summation of rank-one

matrices sGk vkw
>
k . With the ordered singular values, the first term, Gdiff ≈ G

(1)
diff ≡ s

G
1 v1w

>
1

provides the best rank-one approximation to Gdiff. By using regularization, SSVD seeks a

sparse low-rank matrix approximation. It requires that the vector vk is sparse. Spectrum

analysis theory stipulates that genes identified in G
(1)
diff represents the key contributors to the

network differences. This is easy to comprehend with sG1 v1w
>
1 providing the best rank-one

approximation and containing the most information of Gdiff . It is noted that regulator infor-
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mation is not accommodated in the conventional SSVD analysis. Now consider the analysis

of regulator data. And similarly, we examine the differences in regulator networks. Similarly,

the rank-one approximation to Rdiff can be written as Rdiff = UD̃Z> ≈ R
(1)
diff ≡ sR1 u1z

>
1 ,

where U = (u1, · · · , uq) and Z = (z1, · · · , zp) are two matrices of orthonormal singu-

lar vectors, and D̃ = diag(sR1 , · · · , sRq ) is a diagonal matrix with positive singular values

sR1 ≥ · · · ≥ sRq on its diagonal.

The proposed assisted differential network analysis is motivated by the work of Li et

al. [23] and Lee et al. [176], whose strategies are to reinforce “concordance” between GE-

and regulator-based clustering analysis. As in the published SSVD and spectral clustering

analyses, we first focus on extracting the first layers of the GE and regulator matrices; the

subsequent layers can be extracted sequentially from the residual matrices after removing

the preceding layers. The strategy of assisted analysis has been developed in early studies

by Dr. Ma’s group [47]. And it has been found that, with the assistance of information

contained in regulators, assisted analysis can cost-effectively improve identification and

estimation over that limited to GE data only. Here, we adopt this strategy in our differential

network analysis with the intention to improve the identification of key contributors to

network changes. With a little abuse of notations, we propose the assisted differential

network analysis objective function as:

Q(v,w, sG,u, z, sR) =‖Gdiff − sGvw>‖2F + ‖Rdiff − sRuz>‖2F

+ Pv + Pw + Pu + Pz − Psimilarity (4.1)

where

Pv = ρ (|v|;λ1, a) , Pw = ρ (|w|;λ1, a) ,

Pu = ρ (|u|;λ2, a) , Pz = ρ (|z|;λ2, a) ,

Psimilarity = λ3I(v 6= 0) · [cor(Y1, X1) + cor(Y2, X2)] · I(u 6= 0).

where v and w are the first orthogonal singular vectors of Gdiff; sG is the first singular value

of Gdiff; u and z are the first orthogonal singular vectors of Rdiff; sR is the first singular
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value of Rdiff; ρ(| · |;λ, a) = λ
∫ |·|

0

(
1− x

λa

)
+
dx is the MCP (minimax concave penalty); λ1

is a tuning parameter controlling the penalty on singular values of GEs; λ2 is a tuning

parameter controlling the penalty on singular values of regulators; λ3 is a tuning parameter

controlling the promotion of correlation of GEs and regulators; and a is the regularization

parameter.

Rationale The proposed method has been motivated by the following considerations.

Similar to other assisted analyses, it involves the joint analysis of GEs and their regulators.

However, the detailed strategy differs significantly from that in Chapter 2 and others. More

specifically, in (4.1), if λ3 in Psimilarity reduces to 0, then the analysis simplifies to two dif-

ferential network analyses, with one on GEs and the other on regulators. More specifically,

the SSVD-based analyses can identify important GEs (that contribute to the differences

in GE networks) and regulators (that contributes to the differences in regulator networks).

The key advancement is the introduction of Psimilarity, which connects the two analyses.

This spirit is somewhat similar to that in Chapter 2, however, the strategy is significantly

different. Psimilarity encourages the set of important GEs and that of important regulators

to be correlated. The underlying assumption is that a set of important regulators cause

significant differences in the regulator networks; and they regulate a set of important GEs

that cause significant differences in the GE networks. It is noted that using correlations to

describe GE-regulator relationships may be too simplified. However, it has been adopted

in [23] and others and shown as effective. In principle, objective function (4.1) itself is

sufficient for numerical and theoretical investigation purposes. To simplify computation, in

the following section, an approximation is introduced, which does not change the key prop-

erties of the proposed approach but can facilitate the adoption of existing computational

techniques.

4.2.2 Computation

As discussed above, when λ3 = 0, objective function (4.1) simplifies to two SSVDs, for

which there are effective algorithms. To take advantage of such algorithms, our strategy

is to approximate the newly added penalty – which involves indicator functions and is
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not differentiable – and make it differentiable. With the approximation, the newly added

penalty can be combined with the goodness-of-fit measures. Specifically, we consider the

approximation:

I(vj 6= 0) ≈

(
1− exp (−

v2
j

τ
)

)
≈

[
1− exp (−

ṽ2
j

τ
)

]
+ exp (−

ṽ2
j

τ
) · 2ṽj

τ
· (vj − ṽj),

where ṽj is a point not “far away” from the last round of estimation. It is noted that similar

approximations have been adopted in the literature, and that other approximations to the

indicator function may work equally well. Then, the approximation of I(v 6= 0) in matrix

form is:

I(v 6= 0) ≈ C1(ṽ) + C2(ṽ)(v − ṽ),

where C1(ṽ) is a p× 1 vector, and C2(ṽ) is a diagonal matrix, both of which are constant

depending on ṽ. Similarly, we can approximate I(u 6= 0) at ũ as I(u 6= 0) ≈ C3(ũ) +

C4(ũ)(u− ũ).

As in “ordinary” coordinate descent computations, we alternately minimize objective

function 4.1 with respect to v, w, u, and z, after plugging in the approximations. To

simplify notation, we denote T = [cor(Y1, X1) + cor(Y2, X2)]. The algorithm is summarized

below.

Algorithm

Step 1. Initialization. Apply the standard SVD to Gdiff and Rdiff, respectively. Let {s̃G, ṽ, w̃; s̃R, ũ, z̃}

denote the first SVD triplets. It is noted that when dimensionality is high, SSVD can be

adopted to stabilize estimation and distinguish signals from noises.

Step 2. Update:

(a) Set vtemp = 1
2sign [2Gdiffw̃ + λ3C2(ṽ)TI(ũ 6= 0)]·[|2Gdiffw̃ + λ3C2(ṽ)TI(ũ 6= 0)| − ρ̇(|ṽ|;λ1, a)]+.

Let sG =
√
||vtemp||F · ||w̃||F and v = vtemp/s

G.

(b) Set wtemp = 1
2sign [Gdiffv] · [2Gdiffv − ρ̇(|w̃|;λ1, a)]+. Let sG =

√
||v||F · ||wtemp||F and

w = wtemp/s
G.

(c) Set utemp = 1
2sign

[
2Rdiffz̃ + λ3C4(ũ)>T>I(v 6= 0)

]
·
[
|2Rdiffz̃ + λ3C4(ũ)>T>I(v 6= 0)| − ρ̇(|ũ|;λ2, a)

]
+

.

Let sR =
√
||utemp||F · ||z̃||F and u = utemp/s

R.
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(d) Set ztemp = 1
2sign [Rdiffu] · [2Rdiffu− ρ̇(|z̃|;λ2, a)]+. Let sR =

√
||u||F · ||ztemp||F and

z = ztemp/s
R.

Step 3. Set ṽ = v, w̃ = w, ũ = u, and z̃ = z. Repeat Step 2 until convergence.

In data analysis, we conclude convergence when the difference between the estimates

from two consecutive steps is smaller than a prespecified cutoff. Convergence properties can

be established following those for SSVD, which is omitted here. In all of our simulation and

data analysis, convergence is achieved within 20 iterations. The proposed approach involves

three tuning parameters λ1, λ2, and λ3. λ1, λ2 controls sparsity, as in “regular” SSVD;

and λ3 controls the level of correlation between important GEs and important regulators.

In numerical analysis, we conduct a three-dimensional grid search. In simulation study,

considering that different approaches (the proposed and alternatives) have different numbers

of tuning parameters, we also consider a ROC (Receiver Operating Characteristic) based

approach for evaluation, which can “eliminate” the impact of tuning parameter selection. To

facilitate data analysis, we have developed R programs implementing the proposed approach

and made them publicly available at https://github.com/DeniseYi.

4.3 Simulation

For modeling the relationship between GEs and regulators, following [19], we consider

Y = XB +W, (4.2)

where X is the n × q data matrix of regulators; Y is the n × p data matrix of GEs; B is

the q × p matrix of unknown regression coefficients and represents the “transition” from

regulators to GEs; and W is an n× p matrix and accommodates both “random errors” as

well as regulation mechanisms not measured. The expression level of a specific gene is only

affected by a small number of regulators (that is, B is sparse). However, the set of regulators

and strengths of their effects are unknown in a real-world problem. For the structure of

the covariance matrix of the regulators, ΣX , we consider two different scenarios: A1) a

block diagonal structure with block size ten and each block is in the Erdos-Renyi structure.
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Briefly, we generate the Erdos-Renyi network that has probability 0.05 for drawing an edge

between two arbitrary nodes. Regulator changes between two different groups or stages are

constructed as the change of one block matrix. A2) on the basis of a), we change some

blocks to diagonal sub-matrices. Regulator changes are constructed as the change of some

grouped regulators in one block plus the change of several isolated regulators.

For the regression coefficient matrix, B, we consider four different structures. B1) Strong

effect block diagonal: A block diagonal structure with all elements in the blocks generated

from a uniform distribution U(0.9, 1). The dimensions of the blocks are matched with those

of the regulator covariance matrix. B2) Strong effect “milky way”: on the basis of structure

B1), a small portion (2%) of the off-block-diagonal elements are randomly generated from

the same uniform distribution U(0.9, 1). Their positions are randomly simulated. B3) Weak

effect block diagonal: Different from B1), all elements in the blocks are generated from a

uniform distribution U(0.27, 0.3). B4) Weak effect “milky way”: on the basis of structure

B3), a small portion (2%) of the off-block-diagonal elements are randomly generated from

the same uniform distribution U(0.27, 0.3).

For the structure of the covariance matrix of the noise, ΣW ,we consider both indepen-

dently errors and correlated errors. C1) Independent errors are generated from diagonal ma-

trix with diagonal elements from N(1, 0.1). C2) The covariance matrix of the correlated er-

rors has the same block structure as the GEs. Each block is generated from MVN(0,Σpi(ρ))

– a multivariate normal distribution with mean zero and covariance Σpi(ρ)) = ρ|i−j|, where

pi is the size of the block i and ρ = 0.3 in simulation. The data matrix of GEs are simulated

from the outcome generating model (4.2). Set n = 200 and (p, q) = (50, 100). Here we note

that, although smaller than n, the values of p and q are reasonable. Even though whole-

genome studies may have a much higher dimensionality, to improve analysis reliability, it is

a common practice to focus on a smaller set of genes, which can be screened biologically or

statistically. It is also noted that even with moderate p and q, the number of parameters

involved is still much larger than n.

Simulation is conducted to assess the performance of assisted SSVD in different scenar-

ios. In addition, as a reference, we consider the following alternatives.
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Alt.1 SVD. Consider the SVD estimate. Similarly, we obtain the rank-one approximation

to Gdiff and Rdiff, respectively. Then find the first group of significant genes/regulators

to the difference. This is the benchmark approach, involves GEs or regulators only.

Alt.2 IRLBA. Consider the SSVD estimate using the augmented implicitly restarted Lanc-

zos bidiagonalization approach [178]. This approach seeks the rank-one approxima-

tion to the difference matrices, but with the requirement that the singular vectors are

sparse. We directly use the ’irlba’ R package [179]. It conducts SSVD to GEs and

regulators separately.

Alt.3 BSSVD. Consider the biclustering SSVD estimate using Lasso penalty developed

in [176]. It is similar to Alt.2, but is optimized by a different algorithm. Again, we

consider both Gdiff and Rdiff, but apply SSVD to them separately.

The proposed assisted SSVD and alternative approaches all involve tuning parameters.

For Alt.1, we can apply a series of cutoffs to obtain the most significant genes/regulators,

and thus can be viewed as a tuning. For Alt.2, there is a tuning parameter controlling the

number of non-zero elements in the singular vector. Focusing on specific tuning parameter

values may not generate a comprehensive picture. To solve this problem, we adopt the ROC

(Receiver Operating Characteristic) approach, which considers a set of tuning parameter

values, evaluates identification at each value, and uses the ROC-based measures for eval-

uation. This evaluation approach has been extensively adopted in the literature. In our

simulation, the AUC (area under the ROC curve) is adopted as the overall identification

accuracy measure.

AUCs are computed based on 100 replicates. In each scenario, we compare estimations

of four matrices including Σ̂X , Σ̂Y , Ω̂X , and Ω̂Y among different approaches. Results

under strong association between X and Y are shown in Table 4.1, and those under weak

association are shown in Table 4.2. It is observed that the proposed assisted SSVD approach

has competitive performance across the whole spectrum of simulation. In general, the

proposed approach has the best performance, followed by two SSVD approaches. The

SVD approach has the least satisfactory performance. It is noticed that under strong

association when the covariance matrix of X is set as block-diagonal, the estimation Ω̂X
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usually has the largest AUCs across all approaches; whereas when the covariance matrix

of X is set to contain isolated variables, the estimation Σ̂Y usually has the best AUCs

across all approaches (See Table 4.1). For example in the first row of Table 4.1, when

the covariance matrix of X is block-diagonal, the coefficient matrix is block-diagonal, and

the error terms are independent, the AUC value of Ω̂X of the proposed method is 0.670

(sd = 0.130), it is the largest among all AUCs in this scenario. The three other alternatives

have the AUCs 0.623 (sd = 0.150), 0.658 (sd = 0.154), and 0.658 (sd = 0.150). In the fifth

row of Table 4.1, when the covariance matrix of X contains isolated variables, the coefficient

matrix is block-diagonal, and the error terms are independent, the AUC value of Σ̂Y of the

proposed method is 0.812 (sd = 0.171). The three other alternatives have the AUCs 0.737

(sd = 0.210), 0.801 (sd = 0.266), and 0.805 (sd = 0.267). The proposed approach has the

largest AUC with the smallest sd.

This pattern does not exist under weak association between X and Y . Under weak

association, the estimation Σ̂X has the most satisfactory AUCs across different approaches

in general (See Table 4.2). For example in the first row of Table 4.2, when the covariance

matrix of X is block-diagonal, the coefficient matrix is block-diagonal, and the error terms

are independent, the AUC value of Σ̂X of the proposed method is 0.703 (sd = 0.152). It is

the largest among all AUCs in this scenario, followed by Alt.3: 0.621 (sd = 0.175), Alt.2:

0.593 (sd = 0.181), and Alt.1: 0.554 (sd = 0.177). As expected, because the proposed

approach jointly analyze GEs and regulators and borrow information with accounting for

the regulation relationship, they have superior performance. As shown in Tables 4.3 and

4.4 in Appendix, we consider (p, q) = (50, 50) and n = 200 under different scenarios as

above. It is also observed that the proposed approach has competitive performance across

the whole spectrum of simulation.

4.4 Data Analysis

TCGA (The Cancer Genome Atlas) is one of the largest and most comprehensive cancer

projects jointly organized by the NCI and NHGRI. For over thirty cancer types, it has pub-

lished comprehensive molecular and other types of data. We analyze TCGA data because
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of its high quality, easy accessibility, and high scientific impact. In particular, we analyze

the TCGA data on LUAD (lung adenocarcinoma), a subtype of lung cancer. Data on

the gene expressions and copy number variations of 512 samples are available for analysis.

As above, we also conduct the analysis of one KEGG pathway. Specifically, the “KEGG-

CELL-CYCLE-PATHWAY”, which contains genes playing important roles in cell cycle and

lung cancer prognosis, is analyzed. There are a total of 224 gene expressions and 228 copy

number variations analyzed. Preparation has been done to obtain the difference networks

of GEs and CNV. First, samples have been dichotomized based on the pathologic tumor

stage. Specifically, Stage I, Stage IA, and Stage IB are in one group. The remaining stages

are considered as the other group. This dichotomy is biologically sensible. Second, we have

conducted marginal screening between Stage and GEs and obtained 57 relevant genes. Also,

we have added 23 least relevant genes to the subset genes we used, to mimic the “noise” in

a real-world problem. We have considered GEs for p = 80 as well as their corresponding

CNV. Both the covariance matrices in the unconditional analysis framework and the preci-

sion matrices in the conditional analysis framework have been constructed, followed by the

difference networks.

Data is analyzed using the proposed and alternative approaches. Tuning parameters

are selected using a BIC-type criterion. As in the previous analysis, we focus on results for

gene expressions. Genes identified using the proposed and alternative approaches and their

estimates for the unconditional and conditional differential network analyses are shown in

Tables 4.5 and 4.6 in Appendix, respectively. Summary comparison results are provided in

Figure 4.1. As we see, the proposed method and the alternatives have similar results. In

particular, for the differential analysis based on the covariance matrix in the unconditional

framework, the proposed method identifies 26 change contributors, among which, all genes

are identified by all approaches. For the differential analysis based on the precision ma-

trix in the conditional framework, the proposed method identifies 16 change contributors,

among which, 13 genes are identified by all approaches, 2 genes are uniquely identified by

Alt.1 and Alt.2, and 1 gene is identified by Alt.3 only. For the genes identified by the

proposed unconditional differential network analysis, we present the correlation heatmaps

for the groups in Figure 4.2 in Appendix. Simply eyeballing the plots suggests significant
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differences, which can provide support to the proposed analysis.

(a) (b)

Figure 4.1: Venn diagrams of differential analysis using the proposed method and the
alternatives. (a) based on the covariance matrix of GEs. (b) based on the precision matrix
of GEs.

It is found that the proposed analysis can identify biologically sensible change contrib-

utor genes. For example, genes CHUK, MET, PIK3CA, and ELK1 have been observed in

multiple studies. The loss of CHUK mRNA expression in lung adenomas has been con-

firmed by eRT-PCR analysis of CHUK exons 6 and 7; and two models were established

showing that CHUK is a major NSCLC tumor suppressor [180]. Paik et al. have found re-

sponses to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET

mutations causing exon 14 skipping [181]. Yamamoto et al. analyzed PIK3CA mutations

in exons 9 and 20 in lung cancer cell lines and tumors, and identified PIK3CA mutations

among all the major histologic subtypes [182]. Sheng et al. have found ELK1-induced up-

regulation of HOXA10-AS improved LUAD progression through increasing Wnt/β-catenin

signaling [183]. Differential network analysis in the conditional interconnection framework

has also identified biologically sensible change contributor genes including VEGFC and

RASSF1. Evidence has been provided in the literature that VEGFC/Flt-4-mediated inva-

sion and metastasis of lung cancer cells were found to require upregulation of the neural cell

adhesion molecule contactin-1 through activation of the Src-p38 MAPK-C/EBP-dependent
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pathway [184]. The RASSF1 gene is located in the chromosomal segment of 3p21.3. The

high allelic loss in a variety of cancers suggested a crucial role of this region in tumorige-

nesis. Re-expression of RASSF1A reduced the growth of human cancer cells supporting a

role for RASSF1 as a tumor suppressor gene. RASSF1A inactivation and K-ras activation

are mutually exclusive events in the development of certain carcinomas [185].

4.5 Discussion

In this chapter, we have somewhat switched gear and conducted network differential anal-

ysis. The strategy is consistent with one of those reviewed in Chapter 1. That is, the

identified “important” GEs should be connected with the important regulators. As dis-

cussed in Chapter 1, this has a strong biological ground and is related to that in [23], that

in the LRM study, and others. The “interconnections” in the identified GEs and regulators

can significantly facilitate interpretation. Building on the spectral clustering technique,

we have developed an approach that has lucid interpretations and a formulation that is

methodologically consistent with [23] and other penalized assisted estimations. An effective

computational algorithm has been developed. Simulation and data analysis have shown

competitive performance of the proposed approach.

As in some other assisted analyses, the proposed approach does not demand the col-

lection of all relevant regulators. However, it is easy to comprehend that, if the collected

regulators are not informative, promoting the correlations between important GEs and

noises may negatively impact performance. To simplify notation, in methodological devel-

opment, we have considered two groups. The situation gets complicated when there are

multiple groups. Say there are three ordered groups/conditions I, II, and III. One possibil-

ity will be to conduct pairwise analysis using the proposed approach. Another possibility

is that, considering the order of the three groups, analysis is conducted on group I-II and

also group II-III. And then, considering certain similarity between the two sets of analysis is

further promoted. This may demand more complex formulation and computation, however,

no fundamental change to the proposed strategy. We defer this to future research.

In this chapter, we have focused on methodological and computational development.
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Theoretical developments on SSVD have been conducted in the literature. It is conjectured

that consistency properties (on estimation and variable selection) can follow from that for

SSVD and the proof in [186]. We omit the proof here.
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Table 4.5: Unconditional differential network analysis: genes identified using different ap-
proaches and estimates.

Proposed Alt.1 Alt.2 Alt.3

CHUK -0.0105 -0.0139 -0.0023 -0.0026
ELK1 0.0124 0.0144 0.0028 0.0030
FGFR3 0.1645 0.0492 0.0382 0.0348
FGFR2 0.1270 0.0388 0.0277 0.0269
IKBKB 0.0245 0.0175 0.0060 0.0055
MET 0.0376 0.0195 0.0080 0.0082
MAP2K1 -0.0061 -0.0136 -0.0020 -0.0017
RGL2 0.0315 0.0195 0.0080 0.0070
RALA -0.0914 -0.0311 -0.0198 -0.0195
SHC1 0 0 0 0.0002
ZAP70 0 -0.0116 0 0
SYNGAP1 0.0109 0.0149 0.0034 0.0027
RAPGEF5 -0.0016 -0.0118 -0.0001 -0.0007
RASSF1 -0.0052 -0.0134 -0.0018 -0.0015
RRAS2 4.7801 0.9925 0.9977 0.9980
MRAS 0.0591 0.0244 0.0130 0.0127
PLA2G2D 0 -0.0127 -0.0011 0
PLCE1 0.1089 0.0356 0.0244 0.0232
GNG2 -0.0020 -0.0131 -0.0015 -0.0008
CALM2 -0.0125 -0.0163 -0.0047 -0.0031
RASA3 -0.0097 -0.0149 -0.0033 -0.0024
PLA2G4E 0.0362 0.0193 0.0078 0.0080
MAPK9 -0.0277 -0.0182 -0.0067 -0.0062
PDGFA 0.1216 0.0376 0.0264 0.0258
SHC4 0.0280 0.0177 0.0061 0.0062
GNG10 -0.0267 -0.0188 -0.0073 -0.0060
ETS1 -0.0054 -0.0139 -0.0023 -0.0015
NGF 0.0051 0.0130 0.0014 0.0015
PIK3CA 0.0089 0.0147 0.0031 0.0023
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Table 4.6: Conditional differential network analysis: genes identified using different ap-
proaches and estimates.

Proposed Alt.1 Alt.2 Alt.3

GNB3 -0.2295 -0.1049 -0.0481 -0.0510
GNG7 0 -0.0801 -0.0030 0
PIK3CD -0.0830 -0.1088 -0.0426 -0.0225
PLCG2 0 0.0777 0.0081 0
PRKCB 0.1364 0.1139 0.0565 0.0437
MAPK10 0.0899 0.1154 0.0503 0.0160
VEGFC 0.3392 0.1163 0.0545 0.0603
ZAP70 2.8513 0.6122 0.6990 0.7002
SYNGAP1 -0.0313 0 0 -0.0017
RASGRP2 0.0681 0.1220 0.0592 0.0145
RRAS2 -0.0241 -0.0787 -0.0110 0
PLA2G2D -0.3057 -0.1336 -0.0836 -0.0875
PAK7 -1.6813 -0.3232 -0.3174 -0.3874
RASAL3 -2.3769 -0.5322 -0.6173 -0.5813
RASSF5 0.0162 0.0729 0.0073 0
RASA3 -0.2541 -0.1370 -0.0738 -0.0685
FGF22 -0.0628 -0.0812 -0.0137 -0.0096
REL 0 -0.0724 0 0
NGF -0.1395 -0.0872 -0.0202 -0.0129
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(a) (b)

Figure 4.2: Heatmaps of correlation for the genes identified by the proposed assisted
differential network analysis. (a) Group 1. (b) Group 2.
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Chapter 5

Conclusion

In this dissertation, we have first conducted comprehensive literature review. This effort

has helped us better understand the ground for our methodological developments. Equally

importantly, with the publication in Briefings in Bioinformatics, it may also informative for

researchers interested in gene expression-centric vertical data integration. In Chapters 2-4,

we have conducted three somewhat “independent” methodological developments. This “in-

dependence” can be partly seen from our separate and parallel publications. On the other

hand, the three methods also have strong interconnections. Specifically, they have ad-

dressed assisting gene expression network analysis using complementary information, which

may suggest the possibility of “integrating” such methods into a “mega” one and more

effectively and comprehensively use additional information. In addition, they have all been

built on the effective penalization technique. Penalization has been the favorable choice in

GGM and other network analysis and has demonstrated superior statistical and numerical

performance. On the other hand, it is recognized that there are many other regularized es-

timation and variable selection techniques, including thresholding, boosting, Bayesian, and

others. It is conjectured that the proposed analysis strategies can be coupled with these

techniques. Numerically, new computational algorithms will need to be developed, and new

simulation and data analysis will need to be conducted and evaluated. Theoretically, they

may pose more challenges. Our limited literature review suggests that, with the fast and

extensive developments in the past two decades, the techniques for establishing estimation

and variable selection properties with penalization methods are relatively mature – however,

121



this is not true with other regularization methods. In our data analyses, we have focused

on the TCGA data. A quick examination suggests that there is no hurdle applying the

proposed methods to other data sources. The advantages of TCGA data (and hence our

reasoning for choosing such data) have been discussed in this dissertation and extensively

in the literature.

This dissertation has opened the door for much more extensive developments. Method-

ologically, as mentioned above, it is of interest to couple the proposed assisted strategies

with other regularization methods. Also, as mentioned in Chapter 1, the proposed analyses,

loosely speaking, belong to the vertical data integration paradigm. For improving network

analysis, horizontal data integration addresses from a different perspective, and has also

been highly successful. A more comprehensive (and practical) scenario includes multiple

independent gene expression datasets, and within each dataset, regulator data and/or prior

information are present. The analysis of such data will demand effectively combining the

proposed methods with the horizontal integration ones. Simply quickly thinking of this

analysis can already suggest significant challenges. In particular, different datasets may

measure different types/sets of regulators (for example, one dataset has methylation mea-

surements, while another dataset only has microRNA measurements). In this case, the

methods developed in Chapters 2 and 4 will need to be significantly revised and advanced.

In Chapter 3, the information extracted using PubMatrix has been “rough”. It is of in-

terest to rerun analysis once more refined text mining is conducted. In some published

studies, especially when the field/topic is narrow, manual information curation has been

done. Such information can still be partial, but less likely to be wrong. Our approach can

still be applied, however, with the new characteristics of information, it may not be optimal.

With such prior information, a new method may be demanded. A closer examination of

information suggests that different gene pairs differ not only in the amount of information

(number of publications) but also the level of certainty. That is, the interconnections be-

tween some gene pairs have been repeatedly established using not only analytic but also

functional approaches. In comparison, for some other gene pairs, there have been a large

number of studies (and hence a high amount of information), but the conclusions remain

not definitive, that is, the level of certainty is limited. Built on the proposed approach,
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new methodological development will be needed to accommodate the above and other more

complex scenarios.

Under all three projects, we have conducted careful data analysis and comparison. As

discussed in the three chapters, we have a reasonable level of confidence in our data analysis

results. However, as in many other biostatistical studies, such findings are not meant to

be final/decisive. The unconditional interconnections among genes can be established with

high confidence using functional experiments, although we do note that with a huge number

of gene pairs, this will be a long process. However, to the best of our knowledge, although the

conditional dependence among genes is statistically clearly and well defined, it is unclear

how that can be verified in functional studies. With the extensive network and other

conditional dependence analysis, we see a strong need for designing and conducting such

functional validation. However, this is far beyond this dissertation.

Overall, this dissertation has significantly advanced network analysis for gene expression

data and the assisted analysis strategy. The proposed methods can enjoy broad applicability,

and their routine applications will be significantly facilitated with the development and

publication of software. Our methodological developments can also enrich the family of

penalized techniques, and our theoretical developments can provide further insight into

high dimensional estimation theories. Our data analysis results have provided additional

insights for the biology of multiple important cancers. Also, as partly described above, this

dissertation has paved the road for extensive future developments.
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