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Abstract

Statistical Methods for Gene-Environment Interactions

Yaqing Xu

2021

Despite significant main effects of genetic and environmental risk factors have been found,

the interactions between them can play critical roles and demonstrate important implica-

tions in medical genetics and epidemiology. Although many important gene-environment

(G-E) interactions have been identified, the existing findings are still insufficient and there

exists a strong need to develop statistical methods for analyzing G-E interactions. In this

dissertation, we propose four statistical methodologies and computational algorithms for

detecting G-E interactions and one application to imaging data. Extensive simulation stud-

ies are conducted in comparison with multiple advanced alternatives. In the analyses of

The Cancer Genome Atlas datasets on multiple cancers, biologically meaningful findings

are obtained.

First, we develop two robust interaction analysis methods for prognostic outcomes.

Compared to continuous and categorical outcomes, prognosis has been less investigated,

with additional challenges brought by the unique characteristics of survival times. Most of

the existing G-E interaction approaches for prognosis data share the limitation that they

cannot accommodate long-tailed or contaminated outcomes. In the first method, we adopt

the censored quantile regression and partial correlation for survival outcomes. Under a

marginal modeling framework, this proposed approach is robust to long-tailed prognosis

and is computationally straightforward to apply. Furthermore, outliers and contaminations

among predictors are observed in real data. In the second method, we propose a joint model

using the penalized trimmed regression that is robust to leverage points and vertical outliers.

The proposed method respects the hierarchical structure of main effects and interactions

and has an effective computational algorithm based on coordinate descent optimization and

stability selection.

Second, we propose a penalized approach to incorporate additional information for iden-

tifying important hierarchical interactions. Due to the high dimensionality and low signal



levels, it is challenging to analyze interactions so that incorporating additional information

is desired. We adopt the minimax concave penalty for regularized estimation and the Lapla-

cian quadratic penalty for additional information. Under a unified formulation, multiple

types of additional information and genetic measurements can be effectively utilized and

improved identification accuracy can be achieved.

Third, we develop a three-step procedure using multidimensional molecular data to

identify G-E interactions. Recent studies have shown that collectively analyzing multiple

types of molecular changes is not only biologically sensible but also leads to improved

estimation and prediction. In this proposed method, we first estimate the relationship

between gene expressions and their regulators by a multivariate penalized regression, and

then identify regulatory modules via sparse biclustering. Next, we establish integrative

covariates by principal components extracted from the identified regulatory modules. Last

but not least, we construct a joint model for disease outcomes and employ Lasso-based

penalization to select important main effects and hierarchical interactions. The proposed

method expands the scope of interaction analysis to multidimensional molecular data.

Last, we present an application using both marginal and joint models to analyze histopatho-

logical imaging-environment interactions. In cancer diagnosis, histopathological imaging has

been routinely conducted and can be processed to generate high-dimensional features. To

explore potential interactions, we conduct marginal and joint analyses, which have been

extensively examined in the context of G-E interactions. This application extends the prac-

tical applicability of interaction analysis to imaging data and provides an alternative venue

that combines histopathological imaging and environmental data in cancer modeling.

Motivated by the important implications of G-E interactions and to overcome the limi-

tations of the existing methods, the goal of this dissertation is to advance in methodological

development for G-E interaction analysis and to provide practically useful tools for identify-

ing important interactions. The proposed methods emerge from practical issues observed in

real data and have solid statistical properties. With a balance between theory, computation,

and data analysis, this dissertation provide four novel approaches for analyzing interactions

to achieve more robust and accurate identification of biologically meaningful interactions.
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Chapter 1

Introduction

1.1 Importance of G-E interactions

Gene-environment (G-E) interactions can contribute to the development of complex dis-

eases, together with the significant main effects of genetic and environmental risk factors

(Hunter, 2005). Identifying G-E interactions has important implications for understanding

etiology and for describing prognosis and response to treatment (Thomas, 2010). One exten-

sively studied G-E interaction is between smoking and gene NAT2 for bladder cancer. In the

Spanish Bladder Cancer Study of 1150 cases and 1149 controls, Garćıa-Closas et al. (2005)

showed an increased risk of bladder cancer among smokers with NAT2 slow acetylation

genotype than that for never smokers, compared to those with NAT2 rapid/intermediate

acetylators. Other environmental exposures of the chemical arylamines, which are widely

used in hair dyes and other consumer products, were also found to be interacting with

NAT2 in multiple studies of cancer risk (Skipper et al., 2003). Substantial evidence of the

existence of NAT2-arylamine exposure interaction associated with bladder cancer risk has

been extensively investigated and supported by the fact that this gene encodes an enzyme

that functions to both activate and deactivate arylamine and hydrazine drugs. These in-

teractions were also confirmed to be biologically reasonable because aromatic amines can

be detoxified by NAT2 and are one of the most important bladder carcinogens in tobacco

smoke (Green et al., 2000; Hein, 2002).

Beyond the better understanding of complex diseases, G-E interactions can also be infor-
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mative for predicting disease risk before diagnosis and for providing personalized preventive

advice based on the genetic profiles of patients. In this sense, we consider the interaction to

be both the effect of genotypes on disease modified by the environmental exposures, and the

environmental exposures on disease risk interacting with different genotypes. For example,

red meat consumption is associated with the risk of colorectal cancer, and studies have

shown the effect of red meat intake was modified by NAT2 polymorphisms (Chen et al.,

1998). Specifically, among carriers of the rapid NAT2 alleles, the association between red

meat intake and the risk of colorectal cancer was stronger (Nöthlings et al., 2009). This G-E

interaction shows that the polymorphisms in gene NAT2 convey differential susceptibilities

to the effect of red meat intake on colorectal cancer risk, providing valuable information for

individualized prevention and risk prediction.

Identifying G-E interactions can help to discover important genes that are associated

with the disease through interacting effects with no significant marginal effects (McAllister

et al., 2017). Similarly, searching for G-E interactions can also reveal the environmental risk

factors that influence the etiology of disease among genetically susceptible populations. In

addition, when we consider a drug as the environmental exposure of interest, pharmacoge-

netics is a special case of G-E interactions. It has demonstrated significant applications and

potential impact on public health and clinical care (Dempfle et al., 2008). For instance, war-

farin is commonly used in anticoagulation therapy, but Higashi et al. (2002) demonstrated

patients possessing CYP2C9 polymorphisms have an increased risk of over anticoagulation

and of bleeding complications so that a lower dose of warfarin is required. Hence, the exis-

tence of such interactions can be applied to personalized treatment in clinical practice, by

tailoring the therapy for patients who are at risk of adverse side effects or treatment failure.

From simple dichotomous genotypes and environmental exposures in the examples, both

genetic and environmental risk factors can take other forms. For genetic measurements,

SNPs, genotypes as categorical, and gene expression levels as continuous are available.

Similar to environmental exposures, a variety of measurements are of interest given the

category of potential risk factors, which include the chemical environment as in aforemen-

tioned NAT2 interactions, physical environment such as sun exposure and air pollution,

and clinical risk factors described as physiological attributes related to certain diseases.
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For instance, clinically relevant factors such as weight and height are usually measured as

continuous ones. The response associated with G-E interactions can be disease status such

as diagnosis, continuous disease outcomes such as surrogate biomarker measurements, and

survival time with censorship.

1.2 Current methods

Though the importance of G-E interactions has been recognized, existing studies barely

scratch the surface of the massive data that have been collected and are readily available

for analysis and research. Current findings remain insufficient considering the sophisti-

cated mechanisms of complex diseases (Khoury and Wacholder, 2009). Many statistical

approaches have been proposed for detecting G-E interactions, especially for categorical

responses such as disease status. Consider the disease outcome or phenotype as Y , and

p single nucleotide polymorphisms (SNPs) as G = [G1, G2, . . . , Gp] with a single binary

environmental risk factor as E.

1.2.1 Hypothesis testing-based approaches

The simplest approach employs a 3× 2 contingency table to test if the relative risk for each

SNP is significantly different comparing the exposed to the unexposed subjects. Chi-square

tests can be conducted as well as Fisher’s exact tests. The importance of potential G-E

interactions is evaluated by p-values with multiple testing correction. For example, Travis

et al. (2010) studied the effects of 12 polymorphisms among 7610 women with breast cancer

and 10196 controls. The per-allele relative risk was calculated using logistic regressions to

describe the main effect of each of the 12 SNPs, and then compared across two levels of

each of the ten environmental risk factors, including age at menarche, height, and others.

ANOVA was applied for comparing the means of continuous variables and conventional

chi-square tests were used for the proportions of categorical variables. Given a total of 120

tests, the threshold of p-values for statistical significance was corrected to be 0.0004 and no

significant evidence of any G-E interaction was concluded in this analysis. Other examples

of hypothesis testing-based analysis include Higashi et al. (2002), Lake and Laird (2004),
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and many others. Among the existing hypothesis testing analysis methods, the majority

have been designed for case-control data. We omit further discussions and refer Garćıa-

Closas and Lubin (1999), Albert et al. (2001), and Gauderman (2002) for comprehensive

discussions about sample size and power calculation in specific study designs for detecting

G-E interactions.

One obvious drawback is that the hypothesis testing-based approaches evaluate the

relative risks or odds ratios across different levels of genetic and environmental factors

(Chatterjee and Wacholder, 2009). When it comes to continuous genetic measurements

such as gene expression data, categorizing expression levels would cause a considerable loss

of information. Dependent upon the strength of the association and the magnitude of the

interaction, statistical methods with increased power are desired. With low-dimensional co-

variates, robust methods have demonstrated to be powerful and efficient (Wilcox, 2011). For

example, Ritchie et al. (2001) developed the multifactor dimensionality reduction (MDR)

method based on hypothesis testing and Ritchie et al. (2003) showed the MDR method

retains high power in the presence of genotyping error. Yet, these methods usually have

limited applicability and demand certain study designs.

1.2.2 Marginal modeling framework

As a result, the most commonly used marginal model when testing for the existence of G-E

interactions between certain genes and environmental risk factors is defined as

Y ∼ φ(βkGk + γE + θkGk × E), for k = 1, 2, . . . , p,

where βk and γ are the main effects of Gk and E respectively, θk is the interaction effect

between Gk and E, and φ(·) is a known link function. Gk×E represents a two-way product

interaction where × is element-wise multiplication. Note that we omit other covariates to

avoid unnecessary notation but they may be added to the above model. Standard estima-

tion, especially likelihood-based techniques, is conducted. Under such a marginal modeling

framework, this model fitting is cycled through all genes and environmental factors. Impor-

tant interactions are selected based on p-values. For instance, we can use the logit link for
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a binary Y such as disease diagnosis. The example of gene NAT2 and smoking interaction

discussed in Garćıa-Closas et al. (2005) was examined by logistic regression with adjustment

for relevant covariates, and the odds ratios were assessed for the effect on bladder cancer

risk.

Many methods have been proposed to enhance the power and can be broadly summarized

into two categories. One is adding a preliminary screening process to reduce the number of

tests. For example, Murcray et al. (2009) proposed to screen the associations between SNPs

and the environmental exposures using likelihood ratio tests based on the logistic model.

Alternatively, Kooperberg and LeBlanc (2008) suggested screening on marginal genetic

effects. In both methods, only for SNPs that were selected by a pre-specified significance

level, their corresponding G-E interactions were tested for association of disease status in the

second step. Combining these two screening approaches, Murcray et al. (2011) developed

a hybrid method and Hsu et al. (2012) introduced a cocktail method. The other category

for improving the power aims to combine a group of genetic variants and then to perform a

set-based test to reduce the multiple-testing burden. Tzeng et al. (2011) proposed a marker-

set approach to detect G-E interactions where the genetic similarity and interaction were

regressed on the trait similarity between individuals, and the genetic similarity was used to

integrate information from multiple polymorphic sites so that the power was increased by

reducing the total number of tests.

In fact, marginal models for identifying G-E interactions discussed above are also based

on hypothesis testing. The candidate interactions are described by two-way products and

the estimates of their coefficients are obtained. With the null hypotheses that the effect of

each interaction equals zero, p-values are produced. Meanwhile, hypothesis testing-based

approaches summarized in Section 1.2.1 are built under the marginal analysis category,

where one interaction is considered at a time and marginal effects on the outcomes are

investigated. We separate hypothesis testing-based methods from Section 1.2.2 for those

that do not explicitly denote G-E interactions by element-wise multiplication of genetic and

environmental risk factors.
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1.2.3 Joint modeling framework

Besides marginal effect modeling for identifying G-E interactions, other approaches assume

a joint model of the main and interaction effects as

Y ∼ φ(

p∑
k=1

βkGk + γE +

p∑
k=1

θkGk × E).

Joint modeling framework for analyzing G-E interaction is more challenging mainly for two

reasons. First, high dimensionality is problematic due to the number of genetic factors and

interactions. For instance, given 1000 genes and 5 environmental risk factors, the number of

potential interactions is 5000 and the total number of the covariates in joint analysis adds to

6005. To handle such high-dimensional data, regularized estimation is often adopted and in-

creased computational cost is required (Wu and Ma, 2015). For instance, Lasso (Tibshirani,

1996) and the minimax concave penalty (Zhang et al., 2010), two popular penalization tech-

niques, both demand developed computational algorithms for model fitting. More details

about coordinate descent algorithms are discussed in Friedman et al. (2010) and Breheny

and Huang (2011). Second, the hierarchical structure of main effects and interactions needs

to be accommodated under joint modeling. That is, when an interaction is identified, the

corresponding main effect of genetic factor should be simultaneously included in the model.

The need to respect the “main effects, interactions” hierarchy has been widely recognized to

deliver biologically meaningful findings in the literature (Bien et al., 2013; Hao et al., 2018).

Yet, directly imposing regular penalization in the joint analysis that does not guarantee the

hierarchical structure, important interactions may be identified without their corresponding

main effects. Such identification of G-E interactions can lead to false discovery and difficult

interpretation.

Several published studies address these challenges by statistical approaches. For exam-

ple, Liu et al. (2013) proposed a joint model and adopted the group MCP for penalized

estimation and hierarchical structure. Simulation study showed that it outperforms alterna-

tives by identifying more true positives and fewer false positives. Zhu et al. (2014) developed

a stagewise strategy and employed `1 penalization to identify G-E interactions. A coordi-

nate descent method was utilized in computation to produce regularized estimation. Given
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the massive amount of data collected and the sophisticated mechanisms of interactions, the

existing findings remain insufficient and there is a lack of methodology development for G-E

interaction analysis.

We note that other analysis frameworks exist (Cordell, 2009; McKinney et al., 2006).

One example category arises from a Bayesian standpoint for selecting G-E interactions.

For instance, Mukherjee and Chatterjee (2008) proposed an empirical Bayes-type estimator

for case-control data, Mukherjee et al. (2010) introduced a proper full Bayesian approach

with sample size determination criteria for both estimation and hypothesis testing for G-E

interactions, and Yu et al. (2012) developed a resampling-based test derived from a Bayesian

model. We refer Simonds et al. (2016) and Wu and Ma (2019) for further reviews.

1.3 Application

We conduct data analysis on publicly available data collected by The Cancer Genome Atlas

(TCGA), which provides comprehensive profiling on more than 30 cancer types with high

quality for cancer studies. It serves as benchmark data for conducting and comparing

different statistical approaches and is ideal for demonstrating the practical applicability of

our proposed methods. More information about TCGA can be found online at http://

cancergenome.nih.gov/. Here, we use lung adenocarcinoma (LUAD) data as an example

to introduce the characteristics of the TCGA data and several performance assessments for

comparing different methods.

Lung cancer is the leading cause of cancer death globally, and adenocarcinoma of the

lung is its most common histological type. From molecular profiling, many genetic muta-

tions have been identified as the driver in certain tumors, for example, ALK (Kwak et al.,

2010) and EGFR (Paez et al., 2004). However, the additional unexplained mechanisms of

pathway activation, suggesting potential G-E interactions may exist (Network et al., 2014).

For data analysis, we download the level 3 data from TCGA Provisional using the R package

cgdsr (Jacobsen, 2017). There is a total of 544 tumor samples, 230 of which have mRNA,

copy number variation (CNV) and sequencing data. For example, mRNA gene expression

data is collected using the IlluminaHiseq RNAseq V2 platform, containing a total of 20189
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measurements. CNV data is obtained using the Genome-Wide Human SNP Array 6.0 plat-

form with 18342 measurements. DNA methylation is obtained using the Illumina Infinium

Human DNA Methylation 450 platform with 21231 measurements. For clinical information,

67 measurements about the participants are available and can be regarded as environmen-

tal risk factors. For instance, smoking status is recorded for 353 subjects, which is known

as a major cause of lung cancer. Age of 516 participants is included, ranging from 33 to

88 with a mean of 65. In this dissertation, we select environmental factors based on the

existing findings in biomedical literature and include them in the model for data analysis.

For example, age, gender, tumor pathological stage, and smoking status have been found

to be associated with lung cancer prognosis (Westcott et al., 2015), and can be used as

environmental risk factors for data analysis. In addition, survival times and censoring in-

dicators, as the prognosis outcomes for the proposed methods, are also reported as clinical

information with 262 complete cases. It ranges from 0.13 to 238.11 months with 93 deaths

during the follow-up period.

Using the proposed methods, identified interactions are confirmed and validated by

searching the current literature for biological implications. We expect that some, if not all,

of the selected G-E interactions have already been detected and explained in the existing

studies, which can be found by their main genetic effects, as well as interactive effects with

other environmental risk factors. We also apply the alternative approaches to analyze the

TCGA data. Though analytical methods are different, the actual effects contained in the

data should produce similar discoveries, which means the identified G-E interactions may

be distinct but the information of those identifications can largely overlap. In this sense, we

assess how much the identifications from different methods are overlapped by the modified

matrix correlation coefficient (RV-coefficient), which describes the common information of

two high-dimensional matrices (Smilde et al., 2009). Moreover, we evaluate and compare

the stability performance by the observed occurrence index (OOI), which examines the

probability of an interaction being identified in random samples and with a larger value

indicating higher stability (Huang and Ma, 2010).
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1.4 Summary

Motivated by the importance of G-E interactions and the limitations of the existing interac-

tion analysis methods, in this dissertation, we propose two marginal and two joint modeling

approaches for analyzing G-E interactions and extend the applicability to histopathological

imaging data. For each proposed method, we investigate numerical results using simulated

data under various settings in comparison with multiple alternative approaches. We also

conduct analysis on publicly available data collected by The Cancer Genome Atlas (TCGA).

The proposed methods are intertwined in serval aspects. All of the proposed methods,

except Chapter 2.2, assumes a linear relationship to model the association between the

interactions and outcomes. This modeling strategy of using linear regressions is in accor-

dance with the current statistical theories and applications for analyzing main genetic and

interaction effects on disease outcomes. Several benefits of using linear regressions that

describe the additive effects on disease outcomes are carried out and magnified in the pro-

posed methods. First, the regression coefficients of main genetic and interactions directly

represent their effects on the outcomes. We hence enforce the hierarchical structure of main

effects and interactions in this dissertation by decomposing the coefficients. In this way, an

interaction can be included in the model only if the corresponding main genetic effect is also

included, leading to reasonable interpretability and accurate identification. Consequently,

the unified modeling scheme also brings advantages to the estimation and selection process.

To fit the regression models, the objective functions proposed in this dissertation consist of

the loss function and penalty terms. Since the coefficients of interactions are decomposed

as multiplications, it is intuitive to apply separate penalty terms for the main effects and

interaction respectively. Without further complication in calculating the regularized solu-

tion, we adopt the coordinate descent algorithms that are computationally efficient with

well-established convergence properties.

The rest of the dissertation is organized as follows. In Chapter 2, we develop two G-E

interaction analysis methods with robustness properties to accommodate outlying observa-

tions. In Chapter 3, we propose to incorporate additional information into G-E interaction

analysis using penalization. In Chapter 4, we extend to multidimensional molecular data
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and develop a three-step strategy for analyzing molecular changes-environment interac-

tions. In Chapter 5, we present an application of interaction analysis using histopathologi-

cal imaging features for cancer modeling. In the following studies, we demonstrate that the

methodological advancement of the proposed methods can effectively overcome the limita-

tions of the existing methods and expand the current scope of interaction analysis. Multiple

recently collected data are analyzed using the proposed methods and compared with bench-

mark alternative approaches, which can provide biologically meaningful identifications and

potentially reveal important G-E interactions missed by existing studies. In Chapter 6, we

summarize the achievements and limitations of this dissertation and discuss potential future

work for analyzing G-E interactions.
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Chapter 2

Robust Interaction Analysis

Methods for Prognostic Outcomes

2.1 Overview

In practical biomedical studies, the presence of irregular noise caused by various sources

is commonly observed. For example, in cancer research, observed survival data is often

heterogeneous with many possible reasons (Aalen, 1988). The natural course of a disease can

be distinct from person to person, which could be affected by the clinical treatment and the

influence of risk factors. Also, individual frailty varies and patients who are more frail will

die sooner. Even with strict patient selection as in clinical trials, the natural heterogeneity in

study populations requires robust methods to deliver accurate identifications. Additionally,

complex diseases like cancer and diabetes may have various subtypes and mechanisms,

which can result in heterogeneity in survival times as well. The Cancer Genome Atlas

Research Network (2014) stated The Cancer Genome Atlas data on lung adenocarcinoma

demonstrated diverse patterns of survival outcomes under different molecular subtypes.

Finally, potential data contamination such as human error may contribute to the presence

of noise. Relevant discussions can be found in Osborne and Overbay (2004) and Shieh

and Hung (2009). For example, medical records are vulnerable to entry errors during data

collection, and even diagnostic errors may happen: 10-30% of breast cancers are missed on
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mammography and 1-2% of cancers are misread on biopsy samples (Graber, 2013). Together

with biological variation among the population over time, the heterogeneity and possible

contamination in the observed data is not simply a nuisance, but an important characteristic

of the data itself, demonstrating the necessity of developing robust methods for identifying

G-E interactions.

Given the biological variation and potential contamination in real data, the popular

procedures using non-robust methods for identifying G-E interactions have the following is-

sues. (1) The specified model may not be consistent for all subjects due to the heterogeneity

among patients. It is possible that the subgroups of patients demonstrate distinct associ-

ations so that robust methods are necessary to retain accurate estimates across dissimilar

patterns. Considering the large number of genes, chances are that the estimated signifi-

cance level will be invalid because the strict model assumptions may not be met for every

marginal model. For example, some genes exhibit distinctive expression signatures, and

the corresponding residuals do not satisfy the strict assumption of the error distribution.

Consequently, the regression coefficients can be misleading, resulting in false positive de-

tections of interactions. (2) Different sets of covariates may correlate with different disease

subtypes. In this case, since the traditional methods assume that the same set of covariates

in the model, the estimated coefficients may not describe the association properly. Including

irrelevant variables or omitting significant ones can result in misleading identifications of

interactions. Thus, robustness is required given potentially ambiguous disease subtypes. (3)

With insufficient prior knowledge, the regression model can even be misspecified, especially

when the biological findings are too limited to validate the specified model across subtypes.

In contrast, robust models are less sensitive to model misspecification, and accommodate

the complexity of the disease by using weaker model assumptions. (4) Additionally, ex-

treme values could easily disturb the non-robust model, leading to biased estimates and

misleading inference. A small proportion of data contamination can skew regression esti-

mates dramatically even with the prescreening step combined with non-robust methods,

whereas the robust models remain stable and can still provide accurate identifications.

Considering the common presence of noise introduced by the nature of complex diseases,

heterogeneous populations, and even human errors, we propose two robust methods for iden-
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tifying G-E interactions to discover new interaction effects and to advance in methodological

development. In Chapter 2.2, we propose a robust censored quantile partial correlation ap-

proach to identify important interactions while properly controlling for the main genetic and

environmental effects under a marginal modeling framework. In Chapter 2.3, we develop a

robust penalization approach using the trimmed regression technique under joint modeling.

Both of the proposed robust methods can accommodate prognostic response.

2.2 Censored Quantile Partial Correlation for Cancer Prog-

nosis

2.2.1 Introduction

Recent studies have shown that G-E interactions play a critical role for the prognosis of

many diseases. For instance, it has been suggested that the interaction between gene TP53

and age affects the prognosis of glioblastoma (Batchelor et al., 2004). Literature review

suggests that there is less research on G-E interactions for prognosis, which may be caused

by the challenging characteristics of prognosis data (non-negative distributions, censoring,

etc.). Recent methodological developments for identifying G-E interactions for prognosis

include Shi et al. (2014), Sharafeldin et al. (2015), and a few others.

In practical genetic studies, the long-tailed distributions and contaminations in prog-

nostic response are not uncommon. These studies usually cannot afford conducting strict

subject selection, and as such, the subjects are less homogeneous than in for example clin-

ical trials. Sometimes there are some extremely good or bad survivals, which has been

observed in quite a few studies. In addition, human errors (for example, mistakes in death

records) can also cause long-tailed distributions and contaminations. As the demonstrative

examples, consider the LUAD and SKCM (cutaneous melanoma) data collected by TCGA.

More information on these data can be found in the data analysis section of this article as

well as the TCGA website. For the 262 LUAD subjects analyzed in this section, one has

survival time 238.11 months, while the rest 261 have survival times ranging from 0.13 to

129.43 months. In addition, for the 225 SKCM subjects, three have survival times 241.20,
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Figure 2.1: Analysis of the LUAD and SKCM data: the empirical distribution of log(survival
time) (solid line) and best-fitted normal distribution (dashed line).

268.53, and 339.88 months, while the rest 222 have survival times ranging from 2.04 to

228.42 months. In Figure 2.1, we present the empirical density function of the log survival

time as well as the best-fitted Normal density for both datasets. Compared to Normal, we

observe the longer left tails (p-values for LUAD and SKCM from the Kolmogorov-Smirnov

test are 0.001 and 0.002, suggesting a significant difference from Normal). In “classic”

statistical analysis, it has been noted that data with long-tails/contamination cannot be

appropriately accommodated by non-robust estimations: even a single extreme value can

lead to biased estimation and misleading inference.

For low-dimensional biomedical studies, robust methods have been extensively developed

and implemented. For example, Wang and Wang (2009) have proposed the robust censored

quantile regression (CQR) approach which is a recursive weighting approach and generalizes

the Kaplan-Merier (KM) estimator introduced in published studies. Huang et al. (2007)

have developed the robust least absolute deviation estimation based on the AFT model and

KM weights (KMW-LAD). Other examples include the rank-based regression (Wang and

Zhu, 2006), S-estimation (Tharmaratnam et al., 2010), and others. However, development

and implementation in G-E interaction analysis with prognosis data are still much limited.

In this Section, we conduct G-E interaction analysis for data with prognosis responses.

To accommodate long-tailed distributions/contamination in the response, we develop a ro-

bust censored quantile partial correlation (CQPCorr) approach, which can be applied to
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analyze both continuous and categorical variables. This study advances from the existing

literature in the following aspects. First, we specifically consider the scenario with long-

tailed distributions/contamination in the prognosis response, which is not uncommon but

has been little investigated. Second, the proposed approach is built on the quantile regres-

sion technique and may have a more solid statistical basis than some alternatives. Quantile

regression has been first developed for low-dimensional data (Koenker and Bassett Jr, 1978)

and its joint asymptotic distribution, robustness, and statistical inference have been well

established (Koenker and Machado, 1999). Compared to least squares regression, quantile

regression has been demonstrated to have comparable efficiency for Normal error distribu-

tion and perform much better for a wide class of non-Normal error distributions. It has

been more recently developed for high-dimensional main effect analysis, and also shown

to have good properties, including the consistency and asymptotic normality (Lee et al.,

2018; Wang et al., 2012a).Although quantile regression has been a popular tool in statisti-

cal analysis, its applications to genetic interaction analysis are still limited. Different from

the standard quantile regression technique, the proposed approach adopts data-dependent

weights to accommodate censoring. In addition, tailored to interaction analysis, the partial

correlation technique is adopted. Third, compared to some alternative robust techniques,

the quantile-based is computationally more feasible, making the proposed approach suit-

able for high-dimensional analysis. It is noted that although components of the proposed

approach have roots in existing techniques, development and implementation in the present

context are new and innovative. In addition, our extensive numerical study shows that the

proposed approach can outperform multiple direct competitors. Overall, this study provides

a useful new venue for identifying G-E interactions with prognosis responses.

2.2.2 Methods

Consider a dataset with n independent subjects. For subject i, let Ti be the transformed

(e.g., log) survival time of interest, and Xi = (Xi1, · · · , Xiq)
′ and Zi = (Zi1, · · · , Zip)′ be

the q- and p-vectors of E and G variables, respectively. To study the interaction between
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the kth E factor and jth gene, consider the model

Ti = akj + αkjXik + βkjZij + θkjXikZij + εi, (2.1)

where akj is the intercept, αkj , βkj , and θkj are unknown coefficients, and εi is the random

error with P (εi < 0|Xik, Zij) = τ . Note that here a very weak assumption is made on the

error distribution, whereas with non-robust estimations, usually very stringent assumptions

(for example, normal distribution) are needed. In the above model, one E factor and

one G factor are considered. This strategy has been commonly adopted in the literature.

See for example Frost et al. (2016) and Zhang et al. (2016). The proposed approach can

straightforwardly accommodate multiple E factors and one G factor in a single model. In

practice, right censoring is usually present. For subject i, denote Ci as the censoring time

which is transferred as the survival time, then we observe Yi = min(Ti, Ci) and δi = I(Ti ≤

Ci).

The CQPCorr approach

Denote Xk, Zj and T as the random variables corresponding to the kth E factor, jth gene

and transformed survival time. In most of the existing studies, the importance of interaction

XkZj on T is quantified by the magnitude or p-value of θkj (Shi et al., 2014). Significantly

different from the existing studies, we propose quantifying the importance of interaction

XkZj using the quantile partial correlation defined as

qpcorrτ (k, j) =
cov{ψτ (T − η0

0 − η0
1Xk − η0

2Zj), XkZj − γ0
0 − γ0

1Xk − γ0
2Zj}√

var{ψτ (T − η0
0 − η0

1Xk − η0
2Zj)}var(XkZj − γ0

0 − γ0
1Xk − γ0

2Zj)
. (2.2)

Here for a quantile 0 < τ < 1, ψτ (u) = τ − 1(u < 0) and ρτ (u) = uψτ (u). (η0
0, η

0
1, η

0
2) =

argmin E[ρτ (T−η0−η1Xk−η2Zj)] and (γ0
0 , γ

0
1 , γ

0
2) = argmin E[(XkZj−γ0−γ1Xk−γ2Zj)

2].

E is the expectation function with respect to the random variables Xk, Zj and T . Note

that η0, η1, η2, γ0, γ1 and γ2 take possibly different values for different k and j. We omit the

dependence on (k, j) to simplify notations.

The adopted quantile partial correlation measure has multiple desirable properties. The
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same as the classic Pearson correlation coefficient, it lies between -1 and 1, and is scale-free

and easy to compare across variables. Unlike the simple correlation coefficient, it is defined

based on quantile and hence is robust to long-tailed distributions/contamination. In the

definition, the main effects of G and E variables are first removed from T and XkZj , and

then the correlation is computed. Thus, the main effects are removed in a more explicit

manner. In the literature, the quantile partial correlation has been used for screening

predictors under high-dimensional settings (Ma et al., 2017). However, there is a lack of

application in the context of G-E interaction analysis. In our analysis, there is one additional

significant complication: T is subject to right censoring and not always observable. To tackle

this problem, we propose the censored quantile partial correlation (CQPCorr) technique,

which advances from the quantile partial correlation by adopting weights to accommodate

censoring. Overall, the proposed approach consists of the following steps.

Step I Conduct the censored quantile regression of the prognosis response on the main

effects, which corresponds to the first term in the numerator of (2.2). Specifically, (η0
0, η

0
1, η

0
2)

is estimated as

(η̂0, η̂1, η̂2) = argmin
n∑
i=1

wiρτ (Yi − η0 − η1Xik − η2Zij)

+ (1− wi)ρτ (Y +∞ − η0 − η1Xik − η2Zij). (2.3)

Y +∞ is a fixed value that is large enough.

Here we adopt the weights wi’s to accommodate censoring. The basic strategy is to

redistribute the mass of a censored observation to the non-censored observations to the

right. This is achieved by creating pseudo-observations with weights wi’s for censored

observations and complementary weights 1 − wi’s at a point large enough. Motivated by

the literature (Wang and Wang, 2009), wi is defined for a censored observations as

wi =
τ − F (Ci|Xik, Zij)

1− F (Ci|Xik, Zij)
(2.4)

if F (Ci|Xik, Zij) < τ , where F (·|Xik, Zij) is the conditional cumulative distribution func-

tion of the survival time given the covariates. For better computational feasibility, we ap-
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proximate F (t|Xik, Zij) using the Kaplan-Meier (KM) estimator and calculate the weight

function at the τth quantile as

wi =


τ−F̂ (Ci)

1−F̂ (Ci)
, if δi = 0 and F̂ (Ci) < τ,

1, otherwise,

for i = 1, . . . , n. Here F̂ (t) = 1−
∏
i:t(i)≤t[1−(n−i+1)−1]δ(i) , where the subscript “(i)” refers

to the ith subject in the sorted data (according to the observed times, from the smallest to

the largest).

Step II Remove the main G and E effects from the interaction, and obtain the “net” G-E

interaction effect. Specifically, estimate (γ0
0 , γ

0
1 , γ

0
2) using the simple least squared approach,

where

(γ̂0, γ̂1, γ̂2) = argmin

n∑
i=1

(XikZij − γ0 − γ1Xik − γ2Zij)
2.

Step III Results from the above two steps are combined to assess whether the interaction

has an effect on prognosis after accounting for the main effects. Specifically, for interaction

XkZj , the censored quantile partial correlation is defined as

cqpcorrτ (k, j) =
n−1

∑n
i=1

[
τ − wi1

(
r

(1)
i (k, j) < 0

)]
r

(2)
i (k, j)√

(w2τ − w2τ2)

√
1
n

∑n
i=1

(
r

(2)
i (k, j)

)2
, (2.5)

where

r
(1)
i (k, j) = Yi − η̂0 − η̂1Xik − η̂2Zij , r

(2)
i (k, j) = XikZij − γ̂0 − γ̂1Xik − γ̂2Zij ,

w = n−1
∑
i

wi, and w2 = n−1
∑
i

w2
i .

As in Step I, the weights are introduced to accommodate censoring.

Remarks Advancing from the existing quantile partial correlation studies, the proposed

approach introduces weights to accommodate censoring. In survival analysis, there are many

ways to estimate F (t|Xik, Zij) in (2.4) to accommodate censoring. Popular examples include

the semi-parametric Cox model, accelerated failure time model and transformation model,
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nonparametric KM estimator, and others. We adopt KM estimator as it is computationally

simpler and has been a common choice in the literature. It also has the advantage of

making no assumption on the underlying data distributions and models, leading to more

robust results. It is noted that, although may seem “straightforward”, coupling the KM

weights with quantile partial correlation to achieve robustness with censored data has not

been pursued in the literature. Examining the procedures described above suggests that the

proposed approach can be directly applied to analysis with multiple E factors. Setting all

weights equal to one, the proposed approach can directly accommodate continuous responses

without censoring.

2.2.3 Simulation

Simulation is conducted to gauge performance of the proposed method and compare with

direct competitors. For all simulated data, we set n = 200, p = 1000, and q = 5. There are

thus a total of 5,000 candidate interactions and 1,005 candidate main effects. Other settings

are as follows. (a) The G factors are generated from a multivariate Normal distribution

with marginal mean 0 and variance 1. The continuous distribution mimics gene expression

data analyzed below. The Normal distribution, although somewhat simpler than practi-

cally encountered, has been extensively adopted in published studies. Following published

literature, we consider the AR (auto-regressive) structure with different parameters, where

the jth and lth G variables have correlation coefficient ρ|j−l|. We consider two levels of

correlation with ρ = 0.5 and 0.3. (b) There are five continuous E factors (E1) that are gen-

erated from a multivariate Normal distribution with marginal mean 0, marginal variance

1, and AR correlation (ρ = 0.5). (c) The log event time Y is computed from the following

accelerated failure time (AFT) model,

Y =

q∑
k=1

αkXk +

p∑
j=1

βjZj +

q∑
k=1

p∑
j=1

θkjXkZj + ε, (2.6)

where ε is the random error. Note that this is a joint model, under which prognosis is deter-

mined by the joint effects of multiple main effects and interactions. We choose this model as

it may better describe “biological reality”. Thus, it is sensible to conduct marginal analysis
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and compare results to the data generating mechanisms described above. Additionally, the

log censoring times are generated from uniform distributions and conditionally independent

of the event times (conditional on covariates). The parameters are adjusted so that the

censoring rates are around 20%. (d) Consider three error distributions: N(0, 1) (Error 1),

90%N(0, 1) + 10%N(±50, 1) (Error 2) and 80%N(0, 1) + 20%N(0, 50) (Error 3). The last

two scenarios represent different types/levels of long-tailed distributions/contamination. (e)

There are 16 G-E interactions together with two main E effects and five main G effects.

Although the proposed method focuses on interaction identification, the main effects are

assumed to make the simulated dataset closer to practical data. Five different coefficient

settings are considered.

C1 has θkj = 2 for k = 1, 2 and j = 1, · · · , 5, and α1 = α2 = β1 = · · · = β5 = 1.

Under this setting, the main effects are weaker than the corresponding interactions.

In addition, θkj = 1 for k = 3, 4, 5 and j = 6, 7. All other coefficients are 0.

C2 has θkj = 1.5 for k = 1, 2 and j = 1, · · · , 5, and α1 = α2 = β1 = · · · = β5 = 1.5.

Under this setting, the main effects and interactions have the same level. In addition,

θkj = 1 for k = 3, 4, 5 and j = 6, 7. All other coefficients are 0.

C3 is the same as C1 except that the magnitudes of the main effects are larger, that is

α1 = α2 = β1 = · · · = β5 = 3.

C4 is the same as C1 except that the magnitudes of the interactions are smaller, that is

θkj = 0.5 for k = 1, 2 and j = 1, · · · , 5, and θkj = 0.5 for k = 3, 4, 5 and j = 6, 7.

C5 is the same as C1 except that the interactions with main effects have negative coeffi-

cients, that is θkj = −2 for k = 1, 2 and j = 1, · · · , 5.

Under all five settings, there are two types of interactions. The first one includes ten

interactions (θkj , k = 1, 2 and j = 1, · · · , 5) with main effects and the second one includes

six interactions (θkj , k = 3, 4, 5 and j = 6, 7) without main effects. Thus, the hierarchy of

the second type is violated. There are a total of 21 simulation scenarios, covering a wide

spectrum of settings.
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Comparison with the alternative methods

Besides the proposed approach, we also consider four alternatives with the same covariate

effects as in (2.1), including the AFT model, Cox model, censored quantile regression ap-

proach (CQR), the least absolute deviation estimation with KM weights (KMW-LAD). As

introduced in Section 1, AFT and Cox models are perhaps the most popular methods for

analyzing prognosis data, but without the property of accommodating long-tailed distri-

butions and contamination. Note that under our simulation settings which are based on

AFT model, the Cox model is mis-specified. However, due to its popularity, it has been

also adopted as the alternative method in many published studies without sufficient model

diagnostics (Liang et al., 2016; Song et al., 2014) and is a suitable benchmark for compar-

ison. The CQR and KMW-LAD approaches are also robust. Different from the proposed

approach, they consider one interaction and its corresponding main effects in one regres-

sion model. For all the proposed method and four alternatives, p-values are computed and

used to rank/identify interactions. We note that there are other G-E interaction analysis

methods that are potentially applicable to the simulated data. The above four methods are

chosen because their analysis frameworks are the closest to the proposed and also because of

their popularity and competitive performance demonstrated in published studies. With the

proposed approach and CQR, we set the quantile τ = 0.5. Choosing this specific quantile

makes the proposed approach more comparable to KMW-LAD (which is a special case of

quantile regression with τ = 0.5).

The main goal of our analysis is to accurately identify important interactions. Identi-

fication accuracy is evaluated using multiple measures, including: (a) TP20, which is the

number of true positives when 20 interactions are selected; (b) TP40, which is defined in a

similar way as TP20; (c) pAUC, which is the standardized partial area under the ROC curve

when the number of false positives are restricted to 150 (Robin et al., 2011); (d) TP.FDR,

which is the number of true positives when the number of important interactions is selected

using the FDR (false discovery rate) approach with target FDR 0.1; (e) FP.FDR, which

is the corresponding number of false positives; and (f) E.FDR, which is the corresponding

estimated FDR. All five measures have been adopted in multiple publications.
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Under each setting, we simulate 200 replicates. Summary results for scenarios C1 and

C2 are presented in Tables 2.1 and 2.2, respectively. It is observed that the proposed

approach has similar or better performance than the alternatives. When there is no con-

tamination (Error 1), the proposed approach may be slightly inferior to the non-robust

alternatives. This is reasonable as the non-robust alternatives can be more efficient for

data with no contamination. Although the true model is not Cox, the Cox-model-based

approach is observed to have satisfactory performance. Both the Cox and AFT models are

transformation models. The “robustness” of the Cox model (to model mis-specification) has

also been observed in the literature. The proposed approach can more accurately identify

important interactions than the robust alternatives. For example in Table 2.2 with ρ = 0.3

and Error 1, the proposed approach selects on average 10.3 true nonzero interactions when

the model size is 40, while CQR and KMW-LAD select 4.9 and 8.8 on average, respectively.

When there is a stronger correlation which is common in practice, the advantage of the

proposed approach over the alternatives gets more prominent, even over AFT and Cox for

data without contamination. For example in Table 2.1 with ρ = 0.5 and Error 1, the pro-

posed approach has pAUC=0.94, compared to 0.84 (AFT), 0.90 (Cox), 0.74 (CQR), and

0.90 (KMW-LAD). When data have contamination, the proposed approach has significant

advantages. For example in Table 2.1 with ρ = 0.3 and Error 3, the proposed approach has

pAUC=0.77, compared to 0.65 (AFT), 0.72 (Cox), 0.62 (CQR), and 0.71 (KMW-LAD).

Across all settings, the proposed approach performs moderately or slightly better than the

KMW-LAD approach. It is reasonable that the improvement over the KMW-LAD is not

dramatic: this approach has a strategy similar to the proposed, with the loss function being

a special case of quantile regression, and using the KM weights to accommodate censor-

ing. However, we can still observe improvement which supports the proposed three-steps

strategy. We also examine an example of the partial ROC curves in Figure A.1 (Appendix)

under setting C1 with ρ = 0.3 and Error 3. It is shown that the solid line representing the

proposed approach is superior to the others.
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Table 2.1: Simulation results for setting C1 with the AR correlation structure. In each cell,
mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
ρ = 0.3 1 AFT 9.8(1.2) 10.7(0.9) 0.79(0.05) 10.9(1.2) 69.0(57.0) 0.78(0.17)

Cox 9.6(1.6) 10.5(1.7) 0.83(0.05) 9.0(2.0) 16.2(27.8) 0.49(0.22)
CQR 3.1(1.4) 4.9(1.8) 0.67(0.04) 7.9(2.0) 116.1(31.3) 0.93(0.02)
KMW-LAD 7.1(2.3) 8.8(2.4) 0.81(0.06) 3.2(2.3) 0.8(1.3) 0.12(0.16)
CQPCorr 8.6(1.8) 10.2(2.0) 0.84(0.06) 4.8(2.2) 0.8(0.9) 0.11(0.11)

2 AFT 4.8(1.8) 5.8(1.7) 0.71(0.05) 3.2(2.3) 4.9(6.0) 0.38(0.34)
Cox 6.9(2.0) 8.3(2.1) 0.78(0.06) 4.1(2.4) 2.2(2.6) 0.32(0.24)
CQR 2.9(1.3) 4.1(1.8) 0.65(0.05) 6.3(2.5) 94.4(36.4) 0.94(0.02)
KMW-LAD 6.4(1.7) 8.3(1.7) 0.79(0.05) 1.2(1.1) 0.3(0.6) 0.08(0.17)
CQPCorr 7.7(1.9) 8.8(2.1) 0.81(0.05) 3.3(1.7) 0.4(0.6) 0.07(0.11)

3 AFT 3.2(2.4) 4.3(2.8) 0.65(0.08) 1.8(2.3) 5.7(9.0) 0.43(0.41)
Cox 5.0(2.9) 6.4(2.9) 0.72(0.09) 2.3(2.5) 1.7(1.8) 0.30(0.30)
CQR 1.8(1.4) 3.0(1.7) 0.62(0.06) 5.8(2.5) 105.0(39.2) 0.94(0.02)
KMW-LAD 4.0(1.3) 5.4(1.6) 0.71(0.05) 0.9(1.0) 0.2(0.4) 0.11(0.21)
CQPCorr 6.0(2.4) 7.7(2.6) 0.77(0.07) 2.4(1.9) 0.5(0.8) 0.09(0.15)

ρ = 0.5 1 AFT 11.2(1.4) 12.5(1.7) 0.84(0.06) 14.1(1.3) 142.9(165.7) 0.84(0.11)
Cox 11.6(1.2) 13.2(1.2) 0.90(0.04) 12.9(1.7) 29.8(29.6) 0.60(0.17)
CQR 4.7(1.6) 6.9(1.8) 0.74(0.06) 11.5(2.0) 133.0(33.1) 0.92(0.02)
KMW-LAD 10.6(1.8) 12.3(1.7) 0.90(0.05) 7.9(2.3) 2.3(1.6) 0.21(0.13)
CQPCorr 12.2(1.6) 13.8(1.5) 0.94(0.03) 10.9(2.0) 3.3(2.5) 0.21(0.12)

2 AFT 9.3(1.7) 10.2(1.5) 0.81(0.04) 9.4(2.7) 22.1(29.6) 0.50(0.29)
Cox 10.4(1.3) 11.4(1.7) 0.86(0.04) 9.9(1.9) 6.3(4.1) 0.35(0.13)
CQR 5.2(1.4) 7.1(1.5) 0.73(0.04) 9.6(2.1) 108.4(23.8) 0.91(0.02)
KMW-LAD 9.0(2.0) 9.9(1.8) 0.84(0.05) 5.6(2.5) 1.2(1.3) 0.17(0.17)
CQPCorr 10.4(1.7) 12.0(2.0) 0.89(0.05) 8.0(2.4) 1.6(1.2) 0.16(0.09)

3 AFT 7.0(2.1) 8.1(2.1) 0.77(0.06) 5.9(2.9) 17.1(20.7) 0.56(0.28)
Cox 9.3(1.5) 10.2(1.6) 0.84(0.05) 8.4(2.1) 8.0(13.2) 0.35(0.22)
CQR 4.5(1.6) 6.3(1.7) 0.70(0.05) 9.0(1.9) 105.8(44.7) 0.92(0.03)
KMW-LAD 8.7(1.9) 10.7(1.9) 0.86(0.06) 4.0(2.0) 0.8(1.0) 0.13(0.16)
CQPCorr 10.7(1.7) 12.2(1.9) 0.90(0.06) 7.5(2.4) 1.3(1.4) 0.14(0.11)
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Table 2.2: Simulation results for setting C2 with the AR correlation structure. In each cell,
mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
ρ = 0.3 1 AFT 9.5(1.6) 11.1(2.0) 0.82(0.06) 11.3(3.1) 67.6(64.0) 0.73(0.21)

Cox 8.8(1.6) 10.5(2.0) 0.85(0.05) 7.2(2.6) 5.1(7.6) 0.29(0.20)
CQR 3.0(1.6) 4.4(1.9) 0.67(0.05) 8.4(2.3) 122.4(44.7) 0.93(0.02)
KMW-LAD 6.2(1.8) 8.2(2.0) 0.80(0.06) 2.0(1.5) 1.0(1.2) 0.26(0.30)
CQPCorr 8.1(2.0) 9.8(2.0) 0.84(0.06) 3.9(2.3) 1.2(1.3) 0.17(0.19)

2 AFT 3.2(1.8) 4.8(2.4) 0.66(0.07) 1.4(1.9) 4.3(6.6) 0.45(0.43)
Cox 5.4(2.2) 6.9(2.5) 0.73(0.07) 2.3(2.3) 2.8(4.8) 0.36(0.38)
CQR 2.3(1.3) 3.5(1.6) 0.63(0.04) 6.1(2.1) 111.3(32.9) 0.94(0.02)
KMW-LAD 5.7(2.0) 7.4(2.4) 0.77(0.06) 1.5(2.3) 0.2(0.5) 0.04(0.12)
CQPCorr 7.2(2.4) 9.0(2.2) 0.81(0.06) 2.4(1.9) 0.1(0.4) 0.03(0.07)

3 AFT 1.5(1.4) 2.2(1.4) 0.58(0.06) 0.4(1.0) 2.7(6.2) 0.47(0.48)
Cox 3.9(2.3) 4.9(2.8) 0.69(0.09) 1.0(1.6) 1.5(2.6) 0.26(0.39)
CQR 2.2(1.2) 3.2(1.5) 0.62(0.04) 5.4(2.1) 105.2(38.0) 0.95(0.02)
KMW-LAD 4.2(1.4) 5.7(1.8) 0.73(0.06) 0.3(0.5) 0.1(0.2) 0.03(0.12)
CQPCorr 5.4(2.2) 7.2(2.3) 0.76(0.07) 1.2(1.4) 0.1(0.2) 0.01(0.06)

ρ = 0.5 1 AFT 11.9(1.4) 13.4(1.4) 0.88(0.05) 14.1(1.5) 86.6(100.4) 0.75(0.14)
Cox 12.4(1.5) 13.6(1.8) 0.92(0.04) 12.6(2.0) 11.6(13.6) 0.38(0.20)
CQR 5.0(2.0) 7.0(2.1) 0.73(0.06) 11.0(2.0) 138.2(40.5) 0.92(0.03)
KMW-LAD 10.9(1.8) 12.5(1.8) 0.91(0.05) 7.4(2.4) 1.9(1.8) 0.18(0.15)
CQPCorr 12.0(1.5) 13.8(1.5) 0.95(0.03) 10.1(2.5) 2.5(2.0) 0.17(0.12)

2 AFT 7.7(1.9) 9.1(2.0) 0.79(0.06) 7.3(3.4) 27.8(49.0) 0.53(0.27)
Cox 10.1(2.1) 11.3(2.1) 0.86(0.06) 8.1(3.4) 3.2(4.8) 0.20(0.20)
CQR 4.8(1.5) 6.4(2.0) 0.72(0.05) 9.9(2.0) 112.1(39.1) 0.91(0.03)
KMW-LAD 9.5(2.1) 11.6(2.1) 0.88(0.06) 5.8(2.3) 1.1(1.2) 0.14(0.15)
CQPCorr 11.2(2.0) 12.8(2.0) 0.91(0.05) 8.2(2.5) 1.4(1.3) 0.13(0.10)

3 AFT 5.0(3.1) 6.3(3.3) 0.72(0.10) 4.3(4.4) 12.1(17.4) 0.56(0.38)
Cox 6.9(2.7) 8.7(3.0) 0.80(0.08) 5.0(4.0) 5.0(11.3) 0.26(0.28)
CQR 3.9(1.5) 5.5(1.5) 0.70(0.04) 8.8(2.0) 110.5(36.4) 0.92(0.02)
KMW-LAD 8.5(2.0) 10.7(1.9) 0.85(0.05) 4.0(2.5) 1.0(1.3) 0.15(0.18)
CQPCorr 9.6(1.8) 11.2(2.3) 0.87(0.06) 5.8(3.0) 1.4(1.5) 0.15(0.13)

With target FDR 0.1, it can be seen that the proposed method performs better in

achieving the nominal FDR control and has the smallest estimated FDR under most settings.

Except KMW-LAD, the alternatives cannot control the FDR. For example, in Table 2.1

with ρ = 0.3 and Error 1, the proposed method has the estimated FDR 0.11, compared

to 0.78 (AFT), 0.49 (Cox), 0.93 (CQR), and 0.12 (KMW-LAD). Under the settings with a

weak correlation, the values of TP.FDR with the proposed method are relatively small due

to the limited sample size. We further examine the results for scenario C1 with ρ = 0.3
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and various values of sample size in Tables A.1-A.3 (Appendix). With a large enough

sample size, the proposed method is able to identify majority of the true positives with the

estimated FDR approximately being 0.1. The improvement of TP.FDR is also observed

when there is a stronger correlation (ρ = 0.5) even with a small sample size.

In addition, we conduct analysis on the simulated datasets under coefficient scenarios

C3-C5 with ρ = 0.5. Summary results are provided in A.4-A.6 (Appendix). It it can be seen

that all methods perform slightly worse under these three scenarios compared to scenario

C1. This may due to that the relative magnitudes of the interactions to main effects under

scenarios C3 and C4 are smaller, and the interaction and its corresponding main effects have

different directions under scenario C5. Similar to under the previous simulation scenarios,

the proposed method performs better than or comparable to the alternatives. For example

in Table A5 with Error 2 (Scenarios C4), the proposed method has TP20=7.6, compared

to 1.2 (AFT), 4.2 (Cox), 3.4 (CQR), and 7.2 (KMW-LAD). For settings C1 and C2, we

also examine other scenarios with G factors with banded correlation structure, E factors

with binary measurements, and higher censoring rate (35%). Detailed results are provided

in Appendix. Similar conclusions can be drawn for the G factors with banded correlation

structure. The performance of all methods decay when the datasets are with binary E

factors or a higher censoring rate, which is as expected. However, the proposed CQPCorr

still has superior or comparable performance. An advantage of quantile-based approaches

is that multiple quantiles can be potentially examined to generate a more comprehensive

picture. We analyze the simulated datasets under coefficient scenarios C1 with ρ = 0.5

using the proposed method and CQR with various values of τ , and present the summary

results in Table A.15 (Appendix). Slight differences across the results are observed. The

proposed method can achieve favorable performance with multiple quantiles.

Computational cost Simulation suggests that the proposed analysis is computationally

feasible. The analysis of 5000 interactions (along with the corresponding main effects) can

be accomplished within ten seconds using a laptop with standard configurations. Although

a large number of permutations may need to be computed, as they can be analyzed in a

highly parallel manner, the overall computational cost is still much affordable. For example,

for the 10,000 permutations, the analysis can be accomplished within 10 minutes using 100
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parallel jobs on our cluster. More parallel jobs can be conducted if less computational time

is desirable.

2.2.4 Data analysis

In the following, we analyze the TCGA data on lung adenocarcinoma (LUAD) and cuta-

neous melanoma (SKCM). With a high quality, TCGA provides an ideal testbed for new

analysis approaches. Although TCGA data have been analyzed in multiple published stud-

ies, as described in the first section, it is worthwhile re-examining data using the new robust

approach. We refer to the TCGA website for more information on the study design. Data

analyzed are downloaded from TCGA Provisional using the R package cgdsr.

Analysis of LUAD data

Lung cancer is the leading cause of cancer death globally, and adenocarcinoma of lung is

its most common histological type. In analysis, we focus on primary tumor samples of the

Whites. The prognosis response of interest is overall survival. Data are available for 262

subjects, among whom 93 died during followup. The survival times range from 0.13 to

238.11 months with median 20.65 months. The E factors analyzed include smoking pack

years (smoking), age, American Joint Committee on Cancer (AJCC) tumor pathologic stage

(stage), and gender, all of which have been suggested as potentially associated with lung

cancer prognosis (Westcott et al., 2015). Following the literature, here we take a loose

definition of E factors to also include clinical variables. For G factors, we analyze mRNA

gene expressions, which have been collected using the IlluminaHiseq RNAseq V2 platform.

A total of 20,189 measurements are available. As the number of relevant genes is not

expected to be large, we conduct a simple prescreening and select the top 2,000 genes with

the largest variances across all the samples for downstream analyses.

When applying the proposed approach, we compute p-values based on 10,000 permuta-

tions and use the FDR (false discovery rate) approach to identify important interactions.

With a target FDR of 0.1, 48 G-E interactions are identified, and the CQPCorr values are

shown in Table 2.3. Literature search suggests that the identified genes and interactions

may have important biological implications. For example, a negative correlation between
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survival and the AP3D1-Gender interaction is observed. Gene AP3D1 has been reported as

involved in fusions in lung cancer and overexpressed in lung adenocarcinoma in women com-

pared with men. Gene BPIFB1 (LPLUNC1) is a secretory protein that is predominantly

present in lung tissues and has been shown to be potentially relevant to lung carcinogenesis.

Gene CHEK2 is a cell cycle-control gene encoding a pluripotent kinase that can cause arrest

or apoptosis in response to DNA damage, and its mutations have been shown to be associ-

ated with an increased risk of lung cancer. CPSF4 has been found to play an important role

in regulating lung cancer cell proliferation and survival, and has been suggested as a po-

tential prognostic biomarker and therapeutic target for lung adenocarcinoma. Gene DKK1

has been observed to increase the migratory activity of mammalian cells and suggested as

a novel serologic and histochemical biomarker for lung adenocarcinoma. Published analysis

has also suggested that inhibition of gene PCSK9 induces apoptosis and inhibits prolif-

eration of lung adenocarcinoma cells via endoplasmic reticulum stress and mitochondrial

signaling pathways. WFS1 protein is expressed in various tissues but at higher levels in the

lung and has been found to probably contribute to the relationship of cigarette smoking

and lung cancer.

Data are also analyzed using the alternatives. The summary of comparison is presented

in the upper sub-table of Table A.16 (Appendix). When evaluating the differences in find-

ings, we use both the simple numbers of findings as well as the RV-coefficients (Smilde et al.,

2009), which measure the common information of two matrices of interactions, with a larger

value indicating a higher degree of similarity. The RV-coefficient can effectively account for

correlations of different genes and is a more objective and rigorous measure of overlap. More

detailed identification results of the alternative approaches are available from the authors.

Table A16 suggests that although there are overlapping identifications, the proposed ap-

proach identifies a different set of interactions. As the numbers of identifications identified

by different approaches are quite different, we also consider the top 40 interactions and

evaluate overlap. Note that because of ties, the numbers can be slightly off. The results are

shown in the lower sub-table of Table A.16 (Appendix). Again it is observed that although

there are overlaps, the proposed approach makes different findings. With practical data, it

is difficult to objectively evaluate identification accuracy. Here we evaluate the stability of
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findings, which may provide some insight into the analysis. Specifically, we compute the

observed occurrence index (OOI) (Huang and Ma, 2010), which lies between 0 and 1 and

can be roughly interpreted as the probability of an interaction being identified in random

samples and with a larger value indicating higher stability. For the interactions identified

using the FDR controlling procedure, we compute the OOI values. The proposed approach

has mean OOI (across the identified interactions) 0.41, compared to 0.26 (AFT), 0.34 (Cox),

0.18 (CQR), and 0.14 (KMW-LAD). The OOI values with proposed and alternative meth-

ods are all moderate, which has been also observed in the literature. This may due to the

more complex correlation structures, lower signal-to-noise ratios, higher censoring rates,

small sample size, and other factors in real datasets. However, the proposed method still

has slightly better stability, which provide support to a large extent to the superiority of

the proposed approach. More results and discussions on stability with simulated datasets

are provided in Appendix.

Analysis of SKCM data

The occurrence of skin cancer is rapidly increasing over the last decade, and cutaneous

melanoma is responsible for approximately 75% of all deaths from skin cancer. In anal-

ysis, we focus on metastatic samples of the Whites. Data are available for 225 subjects.

The prognosis response of interest is overall survival. Among the subjects, 93 died during

followup, with survival times ranging from 2.04 to 339.88 months (median 56.31 months).

For E variables, we consider Breslow thickness at diagnosis, Clark level, age, AJCC tumor

pathologic stage, and gender, all of which have been suggested in the literature. For G

variables, we consider gene expressions, for which 20,189 measurements are available. With

the same processing as above, 2,000 gene expressions are selected for downstream analysis.

The proposed approach identifies 80 G-E interactions with the FDR control. Details are

presented in Table 2.4. Most of the identified interactions are with Breslow thickness and

Clark level, which are the most important prognostic parameters in evaluating the primary

tumors (Dickson and Gershenwald, 2011). Published studies suggest potentially important
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Table 2.3: Analysis of the LUAD data using CQPCorr: identified G-E interactions.

Smoking Age Stage Gender

ABI2 -0.178
ABR -0.200
AKR1D1 0.186
AP3D1 -0.197
BPIFB1 0.133
BRE.AS1 0.206
C19ORF57 0.200
C1ORF229 0.188
C1RL 0.193
C3ORF38 -0.185
C6ORF163 0.187
CAPN7 -0.175
CHEK2 0.185
CST5 0.188
CSTF2 -0.197
DAGLA -0.210
DKK1 -0.184
EIF2B5 0.197
ETV5 -0.188
FAF2 -0.214
FAM114A2 -0.260
HABP4 -0.204
HIST2H2AC -0.222
LINC01547 0.209
LINGO1 0.183
MFAP3 -0.187
MMP25 -0.222
MRFAP1L1 0.214
MTF2 0.197
MZF1.AS1 0.212
NCAPD2 -0.182
PAXIP1.AS1 0.172
PCDHA11 -0.207
PCSK9 0.181
PIGR 0.176
RAET1L 0.192
RCOR2 0.196
RNF14 -0.207
SNX4 0.236
SP2 -0.197
TAPT1 0.191
TTTY14 0.197
UBE2S -0.191
UBLCP1 -0.212
UGT1A3 0.185
WFS1 0.185
ZNF174 -0.199
ZNF721 0.211
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implications of the findings. For example, gene GSN has been shown to be crucial for mi-

gration and invasion of melanoma cell lines, indicating its potential effects on cutaneous

melanoma. Gene NFKBIE has been suggested as a candidate oncogene in melanomas,

of which recurrent mutations have been found at several nearby hotspots in melanomas.

The expression levels of gene PEBP1 (RKIP) in melanoma cancer cell lines have been

found to be low relative to primary melanocytes, indicating its important role in melanoma

turmorgenesis. Gene PLD1 has been observed to be strongly expressed in primary and

metastatic melanomas, enhancing the activity of basal phospholipase D enzyme in a pro-

tein phosphorylation-independent manner in melanoma cells. Gene RNF144A has been

found to be specifically upregulated in melanocytes, which function to avoid uncontrolled

proliferation and to be a part of embryonic development, acting as cancer development mod-

ulators. Gene SSR2 exerts a prosurvival functionality in human melanoma cells, and high

expression levels of SSR2 have been observed to be associated with an unfavorable disease

outcome in primary melanoma patients. Gene TRPM2 is capable of inducing melanoma

apoptosis and necrosis and has been suggested as an important diagnostic and prognostic

marker for primary cutaneous melanoma.

Data are also analyzed using the alternatives. The summary comparison results are

shown in Table A.16 (Appendix). Both the FDR control results and (roughly) top forty lists

suggests that the proposed approach identifies interactions different from the alternatives.

Stability is also evaluated. For the proposed approach, the average OOI is 0.37, compared

to 0.26 (AFT), 0.28 (Cox), 0.19 (CQR), and 0.22 (KMW-LAD).

2.2.5 Discussion

The identification of G-E interactions is an important task in genetic epidemiology studies.

In this article, we focus on prognosis data. Prognosis is an essential endpoint in the study

of cancer, cardiovascular diseases, and many others. Different from most of the existing

studies, we have developed a novel approach which can accommodate long-tailed distribu-

tions/contamination in the prognosis response. The proposed approach has an intuitive
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Table 2.4: Analysis of the SKCM data using CQPCorr: identified G-E interactions.
Breslow thickness Clark level Age Stage Gender

ABCA8 -0.198
ADGRD1 -0.197
AGPAT2 -0.211
ANAPC2 -0.194
ATAD3A -0.211
ATP5G2 -0.223
ATP5SL 0.217
AURKAIP1 -0.217
BOLA2 -0.205
C15ORF41 0.222
C19ORF53 -0.251
C1ORF204 0.220
C1ORF226 0.231
C4A -0.200
C9ORF85 -0.220
CASP7 0.205
CD164 0.240
CECR1 -0.198
CEP57L1 0.211
CHMP1A 0.197
CHRD -0.215
COX6A1 -0.219
CTXN2 0.222
DDT -0.210
DERL3 -0.204
DPPA3 -0.211
DUSP26 -0.222
E2F6 0.212
ECSIT -0.212
EIF3G -0.226
FATE1 -0.221
FGFR1OP 0.208 0.241
GADD45GIP1 -0.223
GSN -0.208
KCNE3 -0.213
KCNK17 -0.195
KIAA2013 -0.194
KLK4 -0.203
LHB -0.192 -0.200
LRSAM1 -0.209
LYRM5 0.221
MAF1 -0.191
MAGOHB 0.218
MAPK4 -0.207
MZB1 -0.202
NCKAP1 0.214
NDUFA11 -0.206
NDUFB7 -0.221
NFKBIE -0.222
NKX2.4 -0.197
NOS1AP 0.221
NTMT1 -0.222
NUDT19 0.235
PARVB -0.191
PDSS1 0.219
PEBP1 -0.199
PLD1 0.197
PRSS37 0.232
RNF144A 0.236
SMYD4 0.235
SRR 0.233
SSR2 -0.216
SURF2 -0.215
TBC1D10A -0.218
TCTA -0.215
TCTE1 -0.220
THEM6 -0.203
TMEM159 0.217
TPRN -0.208
TRPM2 -0.206
UQCRQ -0.216
VAMP4 0.207
VCAN -0.199
VSTM5 0.231
WDR4 -0.209
ZFP41 -0.213
ZNF671 -0.239
ZUFSP 0.198

31



formulation and solid statistical basis and can more explicitly remove main G and E effects

so as to facilitate the analysis of interactions. By examining a wide spectrum of simulation

settings, we have shown that the proposed approach can outperform direct competitors. It

is interesting to note that it has more accurate identification than two robust approaches.

In the analysis of TCGA lung and skin cancer data, interactions different from using the

alternatives are identified. Literature search shows that the identified genes and interactions

have sound biological interpretations. In addition, the proposed approach has more stable

identifications.

The proposed approach conducts marginal analysis, which is more popular than joint

analysis in the current literature. The proposed approach can be potentially extended to

joint analysis. The formulations in the three steps may directly hold. However, with the

high dimensionality of joint analysis, the estimation demands regularization. This extension

is expected to be highly nontrivial and warrants a separate investigation. The proposed

method may not respect the “main effects, interactions” hierarchical constraint, which is

often explored in recent G-E interaction analysis (Liu et al., 2013; Wu et al., 2018). Under

this constraint, an interaction can be selected only if the corresponding main effects are also

selected. In (2.5), when the main E and G factors are not associated with the response,

the estimated η0, η1 and η2 in r
(1)
i can be approximately zero. Then no information is

removed from the response and the proposed CQPCorr can still work. Thus the identified

interactions are not necessary to have corresponding main effects. As our main interest is

to identify interactions, no specific attention is paid to the selection of main effects. More

studies on the identification of main effects and “main effects, interactions” hierarchy are

deferred to future investigation. In Step II, we adopt least square as it is computational

simpler. Data analysis demonstrates that the proposed method identifies biological sensi-

ble interactions with better stability. If needed, robust regression, such as quantile-based

method, can be adopted as in Step I. Besides KM estimator, it can be of interest to estimate

the conditional cumulative distribution function F (t|Xik, Zij) using other approaches, for

example the Cox model or AFT model. The weights so estimated may generate differ-

ent results. The details will be studied in the future. The proposed method can be also

extended to accommodate non-linear or nonparametric gene-environment interactions. In
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Steps I and II, the nonparametric models, such as the varying coefficients model, can be

adopted. In Step III, the censored quantile partial correlation can be developed based on

some correlations measuring nonlinear dependence, for example distance correlation. In

the study, we have focused on methodological development and numerical examination.

Theoretical study for robust methods under high-dimensional settings is still much limited

and will be postponed to future research.n numerical study, we set τ = 0.5 which is one of

the most popular choices in the literature, and generate satisfactory results. More exten-

sive numerical analysis with multiple τ may be of interest. For example, we can compare

the identified interactions across different τ to explore some interesting findings, such as

that some interactions are important across all τ , while some variables may be important

only for certain τ . In data analysis, significant differences across approaches are observed.

High-dimensional interaction identification can be more challenging than the identification

of main effects. Even in simulation (which has simpler settings), a few false positives are

observed. The significant differences observed in Table A.16 (Appendix) are at least partly

attributable to the potential false positives. In the literature, G-E interaction analysis for

lung and skin cancers is still limited. The sound biological implications of the identified

genes provides at least partial support to the validity of our analysis. This is further sup-

ported by the improved stability measured using OOI. More functional studies are needed

to confirm the findings.

2.3 Penalized Trimmed Estimation and Selection for Joint

Interaction Analysis

2.3.1 Introduction

Among successful approaches developed for detecting important G-E interactions associated

with the etiology, diagnosis and prognosis of many complex diseases, joint analysis has

attracted increasing interest. It can accommodate all genetic and environmental risk factors,

and their interactions in a single model, given that the biological processes are usually

dominated by the joint effects of multiple genetic changes. To facilitate the estimation and

33



interpretation, the “main effects, interactions” hierarchical constraint is often imposed (Bien

et al., 2013; Wu et al., 2018), where an interaction can be identified only if its corresponding

main effects are also identified. Compared to marginal analysis, there are more challenges

in joint analysis due to the high dimensionality of genomic measurements and hierarchical

constraint (Chai et al., 2017).

Despite many advantages, most of the existing interaction analysis approaches have the

limitation of nonrobustness. They usually assume that data have no outliers/contaminations.

However, in practice, outliers/data contaminations are not uncommon in both predictor

and response spaces (Osborne and Overbay, 2004), which are known as leverage points and

vertical outliers. More specifically, for some types of G factors, such as gene expression,

outliers/contaminations may occur because of technical problems in profiling, human errors

and genetic abnormalities (Li and Wong, 2001). For the disease-related clinical response

(for example, Breslow’s depth for skin cutaneous melanoma), outliers/contaminations can

be caused by errors in data collection and recording and inadvertently incorrect sampling.

In addition, sometimes there are extremely long or short survivals in prognosis studies due

to the mistakes in death records as well as misclassification in the cause of death. In Figure

2.2, we show the distributions of some G factors and Breslow’s depth for the SKCM (skin

cutaneous melanoma) data collected by TCGA (The Cancer Genome Atlas), where both

leverage points and vertical outliers are clearly observed. More information on this data is

available in the data analysis section of this article. For nonrobust approaches, it has been

shown that these outliers can lead to biased estimation and false marker identification. Re-

cently, a few approaches have been developed for robust G-E interaction analysis, including

those based on quantile regression (Wang et al., 2017) or correlation (Xu et al., 2019), least

absolute deviation (LAD) loss (Wu et al., 2018), rank-based loss function (Wu et al., 2015),

and others. However, these approaches are only robust to outliers in response but cannot

accommodate leverage points in predictor space. The interaction studies on both vertical

outliers and leverage points are still much limited (Wu and Ma, 2019).

In this Section, we develop a joint model respecting the “main effects, interactions”

hierarchical structure for G-E interaction analysis. The unique characteristic of this study

is accommodating outliers/contaminations in both predictor and response spaces. The
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Figure 2.2: Analysis of SKCM data: the distributions of some G factors and the Breslow’s
depth.

proposed approach is built on the robust trimmed regression technique, which can accom-

modate many types of data, such as continuous biomarkers and censored survival times.

It significantly differs from least absolute deviation regression and other robust approaches

which only have robustness property towards vertical outliers. Our study extends the

traditional trimmed regression to interaction analysis and develops the “coefficient decom-

position+penalization” framework for hierarchical selection, which may have independent

methodological value. Advanced from the existing trimmed regression approaches which

are usually built with the predefined size of trimmed set, we propose a more flexible data-

driven process to determine the number of outliers, leading to satisfactory efficiency and

robustness. In addition, a stability selection strategy is adopted to more accurately select

the trimmed subject set. Overall, this study provides a practically useful new venue for

G-E interaction analysis.

2.3.2 Methods

For a subject, let y be the response of interest, which can be a continuous marker, categor-

ical disease status, or survival time. Let z = (z1, · · · , zq) be the q environmental/clinical

variables and x = (x1, · · · , xp) be the p genetic variables. We consider the joint regression
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model with all G and E effects and their interactions,

E(y; z,x) = φ

(
α0 + zα+ xβ +

q∑
k=1

w(k)ηk

)
, (2.7)

where φ is the known link function, E(·) denotes expectation, α0 is the intercept, α =

(α1, · · · , αq)′, β = (β1, · · · , βp)′ and ηk = (ηk1, · · · , ηkp)′ , k = 1, · · · , q are the regression

coefficients for main E factors, main G factors and their interactions, respectively, and

w(k) = (zkx1, · · · , zkxp).

We assume n independent subjects and use the subscript “i” to denote the ith subject.

Denote the design matrices of E and G variables as Zn×q andXn×p, and the response vector

as yn×1. Under model (2.7), the unknown parameters θ =
(
α0,α

′,β′,η′1, · · · ,η′q
)′

can be

estimated by minimizing the negative log-likelihood function,

L (θ;Z,X,y) =
1

n

n∑
i=1

li (θ) ,

with the deviance li (θ), which are usually not robust to vertical outliers or leverage points.

Robust trimmed estimation and selection

Instead of using the negative log-likelihood function directly, we propose the following robust

objective function based on trimming technique,

L(θ;Z,X,y,S) =
1

|S|
∑
i∈S

li (θ) , (2.8)

where S is an outlier-free subset of {1, 2, · · · , n} and |S| denotes the cardinality of set S.

We first consider the most popular linear regression model,

yi = α0 + ziα+ xiβ +

q∑
k=1

w
(k)
i ηk + εi, (2.9)

with

li (θ) =

(
yi − α0 − ziα− xiβ −

q∑
k=1

w
(k)
i ηk

)2

, r2
i ,
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where εi is the random error.

Let r = (r1, · · · , rn)′, then S is defined as

S = {1 ≤ i ≤ n : |ri −median(r)| < µ MAD(r)}, (2.10)

where median(r) and MAD(r) are the median and median absolute deviation of vector r

adjusted by a factor 1.4826, and µ > 0 is a tuning parameter.

The penalization is adopted for regularized estimation and variable selection, which has

been a popular choice in several recent studies. For respecting “main effects, interactions”

hierarchy, the coefficient for the interaction term ηk is decomposed as ηk = β � γk, where

� represents the component-wise multiplication. Then, the following robust penalized ob-

jective function is proposed,

Lp(θ;Z,X,y,S) =
1

|S|
∑
i∈S

(
yi − α0 − ziα− xiβ −

q∑
k=1

w
(k)
i (β � γk)

)2

+

p∑
j=1

ρ(|βj |;λ1, ξ) +

q∑
k=1

p∑
j=1

ρ(|γkj |;λ2, ξ), (2.11)

where ρ(|ν|;λ1, ξ) = λ1

∫ |ν|
0

(
1− x

λ1ξ

)
+
dx is the minimax concave penalty (MCP) (Zhang

et al., 2010), λ1 and λ2 are data-dependent tuning parameters, and ξ is the regularization

parameter. The proposed estimate θ̂ is defined as the minimizer of (2.11) with the optimal

subset Ŝ. The nonzero components of β̂ and β̂ � γ̂k(k = 1, · · · q) are regarded as the

important main G effects and interactions that are associated with the response.

The proposed approach is motivated by the following considerations. As opposed to the

nonrobust squared loss, the robust trimmed squared loss is adopted in (2.11) based on a

subset S of subjects. The definition of S in (2.10) can exclude those subjects with extreme

absolute residuals due to the deviated values in the spaces of predictors and/or response.

It significantly advances from the existing robust G-E interaction analyses (Wang et al.,

2017; Wu et al., 2018, 2015) which can only accommodate outliers in response but not in

predictors. Besides, the robust measures of central location (median) and scale (MAD) are

adopted in S, leading to more accurate detection of the number of outliers. Different from
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the existing studies on the least trimmed squares estimator (Alfons et al., 2013; Kurnaz

et al., 2018) where the size of S is predefined, the proposed approach determines the value

of |S| based on the residuals themselves and data-driven parameter µ. The identification of

S becomes more flexible to achieve sufficiently high efficiency for the dataset without out-

liers and satisfactory robustness against data contamination. When µ is large enough, the

proposed approach is reduced to the squared loss. In addition, motivated by the pairwise

interaction analysis with strong hierarchal constraint developed in Choi et al. (2010), we

adopt the decomposition ηk = β� γk so that if an interaction term is selected (βjγkj 6= 0),

the corresponding main genetic effect must also be selected (βj 6= 0). The MCP penalty is

then imposed on βj and γkj for variable selection given its satisfactory statistical and numer-

ical properties. Here, E factors are not subject to penalized selection and always included in

the model as they are usually pre-selected by clinical evidences and with low dimensionality.

This decomposition framework for respecting hierarchical G-E interaction structure has the

advantage of lucid interpretation and a less complex computational algorithm.

We also modify li (θ) to accommodate other types of response variables. For example, for

the right-censored survival response with observed logarithm survival time y and censoring

indicator δ, we consider the weighted squared loss under the accelerated failure time (AFT)

model,

li (θ) = wi

(
yi − α0 − ziα− xiβ −

q∑
k=1

w
(k)
i ηk

)2

,
(
r

(w)
i

)2
,

where the data {(xi, zi, yi, δi), i = 1, . . . , n} have been sorted by yi in ascending order, and

the weight wi is the Kaplan-Meier (KM) estimator defined as w1 = δ1
n , wi = δi

n−i+1

i−1∏
j=1

(
n−j
n−j+1

)δj
,

i = 2, · · · , n. This weighted approach has been adopted in many published studies due

to its considerably low computational cost and good statistical properties (Huang et al.,

2006). Using the subjects with nonzero weights and their corresponding r
(w)
i , the proposed

approach can then proceed in the same manner. For categorical and count data under

generalized linear model, a similar weighted squared loss can be conducted based on the

Taylor series expansion. In numerical study, we examine both continuous data under the

linear regression model and survival data under the AFT model.
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Algorithm

A modified C-steps algorithm is developed to obtain the optimal subset Ŝ and corresponding

estimation θ̂, which is motivated by the stability selection (Meinshausen and Bühlmann,

2010). We present the proposed algorithm in Algorithm 1. In this algorithm, the most

challenging step is the optimization of the objective function (2.11) given the outlier-free

subset S. In Algorithm 2, we adopt an iterative coordinate descent (CD) algorithm, which

optimizes Lp (θ;Z,X,y,S) with respect to one parameter at a time and iteratively cycles

through all parameters until convergence. Denote yS as the components of y indexed by S

and XS as the rows of X indexed by S.

Algorithm 1: Robust trimmed estimation and selection

Step 1: For t = 1, · · · , T ,

Step 1.1 Set m = 0. Draw q + 10 observations from the dataset at random as the

elemental subset S(t,0). Compute

θ(t,0) = argminθLp

(
θ;Z,X,y,S(t,0)

)

Step 1.2 Set m = m+ 1. Compute

r(t,m) = y − α(t,m−1)
0 −Zα(t,m−1) −Xβ(t,m−1) −

q∑
k=1

W (k)
(
β(t,m−1) � γ(t,m−1)

k

)
,

S(t,m) =
{

1 ≤ i ≤ n :
∣∣∣r(t,m)
i −median

(
r(t,m)

)∣∣∣ < µ MAD
(
r(t,m)

)}
,

and

θ(t,m) = argminθLp

(
θ;Z,X,y,S(t,m)

)
Step 1.3 Repeat Step 1.2 until convergence, where the convergence criterion is taken

as

|Lp
(
θ(t,m);Z,X,y,S(t,m)

)
− Lp

(
θ(t,m−1);Z,X,y,S(t,m−1)

)
|

|Lp
(
θ(t,m−1);Z,X,y,S(t,m−1)

)
|

< 10−4.
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Step 1.4 Return the subset S(t,mstop) of the subjects selected at the stopping iteration

mstop.

Step 2: Compute the final set Ŝ of the selected subjects,

Ŝ =

{
i :

1

T

T∑
t=1

I
(
i ∈ S(t,mstop)

)
> τ

}
,

where I(·) is the indicator function and τ ∈ (0, 1) is a tuning parameter.

Step 3: Compute the final estimation θ̂ of the unknown parameters,

θ̂ = argminθLp

(
θ;Z,X,y, Ŝ

)
.

Algorithm 2: Iterative coordinate descent (CD) algorithm

Step 1 Initialize b = 0,
(
α

(b)
0 ,
(
α(b)

)′)′
= (Z̃ ′SZ̃S)−1Z̃ ′SyS with Z̃ = (1n×1,Z), β(b) = 0,

and γ
(b)
k = 0, where we denote b as the index of iteration.

Step 2 Set b = b + 1. With α0, α and γk fixed at α
(b−1)
0 , α(b−1) and γ

(b−1)
k , optimize

(2.11) with respect to β. Let ỹ(b) = y − Zα(b−1) − α(b−1)
0 and X̃(b) = X +

∑q
k=1W

(k) �(
1n×1γ

(t−1)
k

)′
, then

β(b) = argmin
1

|S|

∥∥∥ỹ(b)
S − X̃

(b)
S β

∥∥∥2

2
+

p∑
j=1

ρ(|βj |;λ1, ξ). (2.12)

For j = 1, · · · , p, conduct the following steps sequentially,

Step 2.1 Compute

r
(b)
(−j) = ỹ

(b)
S −

∑
l<j

x̃
(b)
S,lβ

(b)
l −

∑
l>j

x̃
(b)
S,lβ

(b−1)
l , χ

(b)
j =

1

n

(
x̃

(b)
S,j

)′
x̃

(b)
S,j , ϕ

(b)
j =

1

n
(x̃

(b)
S,j)
′r

(b)
(−j),

Step 2.2 Update the estimate of βj as

β
(b)
j =

 ST
(
ϕ

(b)
j , λ1

)
/
(
χ

(b)
j −

1
ξ

) ∣∣∣ϕ(b)
j /χ

(b)
j

∣∣∣ ≤ λ1ξ,

ϕ
(b)
j /χ

(b)
j else ,
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where ST(ν, λ1) = sgn(ν)(|ν| − λ1)+ is the soft-thresholding operator.

Step 3 With α0, α and β fixed at α
(b−1)
0 , α(b−1) and β(b), optimize (2.11) with respect

to γk, k = 1, · · · , q. Let y̆(b) = y − Zα(b−1) −Xβ(b) − α(b−1)
0 and

(
W̃ (k)

)(b)
= W (k) �(

1n×1β
(b)
)′

, then

(
(γ

(b)
1 )′, · · · , (γ(b)

q )′
)′

= argmin
1

|S|

∥∥∥∥∥y̆(b)
S −

q∑
k=1

(
W̃

(k)
S

)(b)
γk

∥∥∥∥∥
2

2

+

q∑
k=1

p∑
j=1

ρ(|γkj |;λ2, ξ),(2.13)

For k = 1, · · · , q and j ∈
{
j : β

(b)
j 6= 0

}
, conduct the two steps similar to Step 2.1 and Step

2.2 sequentially.

Step 4 Compute

(
α

(b)
0 ,
(
α(b)

)′)′
= (Z̃ ′SZ̃S)−1Z̃ ′S

(
yS −XSβ(b) −

q∑
k=1

W
(k)
S

(
β(b) � γ(b)

k

))
.

Step 5 Repeat Steps 2-4 until convergence, where the convergence criterion is taken as

|Lp
(
θ(b);Z,X,y,S

)
− Lp

(
θ(b−1);Z,X,y,S

)
|

|Lp
(
θ(b−1);Z,X,y,S

)
|

< 10−4.

Different from the original C-steps algorithm which conducts a sufficiently large number

of initial subsampling (500 adopted in Alfons et al. (2013); Kurnaz et al. (2018)) and

returns the results with the smallest objective function, the proposed algorithm identifies the

optimal outlier-free subset based on the stability selection. With stability selection, we do

not simply select one model which may not be optimal with insufficient initializations. The

subset selection depends on the whole process where the outliers have smaller probability to

be included, leading to more accurate detection and the lower requirement for a large number

of initializations. In our numerical study, we set T = 50, which generates satisfactory result.

Another advantage of the proposed algorithm is in Step 3 of Algorithm 2. Due to the

decomposition ηkj = βjγkj , we only need to update γkj when βj 6= 0, dramatically reducing

the searching space and computational cost. Both algorithms are guaranteed to converge

as the value of the objective function (2.11) decreases at each step. It is observed that

convergence is achieved in a small to moderate number of iterations in both simulation and
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case study. For a simulated dataset with q = 5, p = 1000 and n = 250, the analysis with

T = 50 takes about five minutes using a laptop with standard configurations.

Tuning parameters We set µ = 2.5 in our numerical studies based on the 99.5% quantile

of the standard normal distribution, motivated by that 1% of the observations are expected

to be outliers for the normal distribution. For simulation scenarios with continuous G

factors and AR structure under linear model (see the next section for details), we further

examine the outlier detection results (as a function of µ) to better comprehend the effects

of µ. In Table A.17, two specific measures are considered, including true positive (TP) and

false positive outliers (FP). For the five different error distributions, a larger µ detects fewer

false positives but also fewer true positives. On the other hand, a smaller µ produces more

true positives as well as more false positives. When µ = 2.5, it is observed to be able to

effectively control the false positives and have satisfactory performance on the detection of

true positives. As suggested by Meinshausen and Bühlmann (2010), the stability selection

results are not sensitive to the threshold value τ in a range of (0.6, 0.9). In our numerical

studies, we set τ = 0.6. For the regularization parameter ξ in the MCP penalties, we

follow the published studies (Shi et al., 2014) and set ξ = 6. A grid search is conducted to

choose the values of (λ1, λ2) of the MCP penalties using BIC criterion with model size as

the degrees of freedom.

2.3.3 Simulation

We assess the performance of the proposed analysis with extensive simulations. A total of

forty simulation scenarios are considered. Under all scenarios, we set q = 5 and p = 1, 000.

There are thus a total of 1,005 main effects and 5,000 interactions. (a) Two types of G

factors are considered, mimicking continuous gene expression and categorical SNP data,

respectively. The continuous G variables are generated from a multivariate normal dis-

tribution with marginal means 0 and marginal variances 1. We consider two correlation

structures. The first is an AR (auto-regressive) structure where the correlation between

the jth and kth G variables is 0.3|j−k|. The second is a Band (banded) structure where

the correlation between jth and kth G variables is 0.33 if |j − k| = 1 and 0 otherwise.

For the discrete G variables, we further dichotomize the above continuous variables at the
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1st and 3rd quartiles and generate 3-level measurements (0, 1, 2). (b) There are three con-

tinuous and two binary E factors, where the three continuous ones are simulated from a

multivariate normal distribution with marginal means 0 and the AR structure as mentioned

above, and the two binary ones are simulated from a binomial distribution with a success

probability of 0.6. (c) All E factors, eight main G factors and fourteen G-E interactions are

assumed to have nonzero coefficients randomly generated from Uniform(0.6, 1), where the

strong hierarchy is satisfied. The rest coefficients are zero. (d) We consider two types of

response variables and models. The first is a continuous response under the linear model

(2.9). The second is the censored survival data under the AFT model, where the observed

logarithm survival times are generated based on model (2.9), and the censoring times gen-

erated from an exponential distribution with the parameter adjusted so that the censoring

rate is around 20%. (e) Five types of data contaminations are considered. The first three

ones have no outliers in predictors. The first one (D1) has error distribution N(0, 1) which

is also without outliers in response. The second (D2) and third (D3) ones have error distri-

bution 90%N(0, 1) + 10%Cauchy(0, 5) and 90%N(0, 1) + 10%N(20, 1), where outliers exist

in response. The fourth (D4) and fifth (D5) ones are assumed to contain leverage points.

Specifically, for dataset with continuous G factors, 2% and 8% of the subjects have G fac-

tor measurements added by 20 and N(0, 2), respectively. For dataset with categorical G

factors, 10% of the subjects are re-generated from a multinomial distribution with prob-

ability (0.5, 0.3, 0.2) for (0, 1, 2). The error distributions for D4 and D5 are N(0, 1) and

90%N(0, 1) + 10%Cauchy(0, 5). Thus, D4 only has outliers in predictors, while D5 has

outliers in both predictor and response spaces. (f) We set the sample size n = 250 and

n = 300 for the continuous and survival responses, respectively.

Besides the proposed approach (referred to as “LTS-MCP-Hier”), the following alter-

natives for joint analysis are also considered. The first four approaches conduct variable

selection on all G factors and G-E interactions directly, without considering the hierarchical

structure. LS-MCP is based on the nonrobust squared loss function and MCP penalty,

implemented by the R package ncvreg. LAD-LASSO consists of the robust least absolute

deviations and LASSO penalty which has robustness property towards vertical outliers. It

is realized using the R package quantreg. RLARS is the robust least angle regression with
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robust correlation measure for variable selection (Khan et al., 2007) and is realized using

the R package robustHD. It has been demonstrated to be robust to both vertical outliers

and leverage points. LTS-MCP is similar to the proposed, except that the hierarchical

structure is not reinforced and the original C-steps algorithm is used instead of stability

selection. The last one is LS-MCP-Hier, which has the same modeling framework as the

proposed, except that the nonrobust squared loss function is adopted. The above alterna-

tive approaches cover different types of G-E interaction analyses and can comprehensively

evaluate the merits of the proposed approach. They are chosen due to their popularity and

competitive performance among the existing approaches.

For each approach, we evaluate the identification performance for main effects (M) and

interactions (I) separately, by the number of true positives M:TP and I:TP and the number

of false positives M:FP and I:FP. In addition, the root of the sum squared error ||θ̂ − θ0||2

(RSSE) is used to assess the estimation accuracy, where θ̂ and θ0 are the estimated and

true values of θ. We also examine the prediction performance using an independent testing

set with 100 subjects under the same simulation scenarios. We adopt the prediction mean

squared error (PMSE) for continuous outcome and C-statistic (Cstat) for survival outcome.

The C-statistic quantifies the overall adequacy of risk prediction for censored survival data

based on the time-integrated AUC (area under curve), where a larger value indicates better

prediction (Uno et al., 2011).

For each scenario, 200 replicates are simulated, and summary statistics (mean and stan-

dard deviation) are computed. Summary results for the scenarios with continuous G factors

and AR structure under linear and AFT models are shown in Tables 2.5 and 2.6, respec-

tively. The rest of the results are provided in Appendix. The proposed LTS-MCP-Hier is

observed to have competitive performance under all simulation scenarios. For the dataset

without contamination (D1), the proposed approach can achieve satisfactory efficiency that

is comparable to the nonrobust LS-MCP-Hier, and outperforms the robust alternatives and

even nonrobust LS-MCP. The majority of true positives are identified by the proposed

approach while with a small number of false positives. The advantage of the proposed

approach over the alternatives becomes prominent for the datasets with different types of

contaminations. For example, for the scenario with outliers in predictors (D4) under lin-
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ear model (Table 2.5), the proposed approach has (M:TP, M:FP, I:TP, I:FP)=(7.4, 3.8,

11.1, 2.7), compared to (1.4, 22.6, 3.1, 68.0), (4.1, 4.0, 4.2, 13.4), (7.2, 0.7, 6.9, 11.6), (6.2,

7.9, 10.0, 30.1), and (5.4, 54.5, 3.9, 5.4) for LS-MCP, LAD-LASSO, RLARS, LTS-MCP

and LS-MCP-Hier, respectively. The superior identification performance of the proposed

approach over LAD-LASSO and RLARS provides a strong support to the proposed trim-

ming strategy for accommodating outliers. In addition, it performs better than LTS-MCP,

which suggests that the “coefficient decomposition” and stability selection framework can

improve the identification of both main effects and interactions. The proposed approach

also behaves better in terms of estimation and prediction. For example, for the scenario

with contamination type D2 under AFT model (Table 2.6), the proposed approach has

(ESSE, Cstat)=(2.71, 0.89), compared to (46.11, 0.55), (4.11, 0.74), (4.83,0.73), (3.71,0.82),

and (59.00,0.58) for LS-MCP, LAD-LASSO, RLARS, LTS-MCP and LS-MCP-Hier, respec-

tively. For the datasets with categorical G variables, the similar pattern is observed that

the proposed approach demonstrates superior or comparable performance compared to five

alternatives in identification, estimation and prediction accuracy.

In practical genetic interaction analyses, the important interactions may have different

magnitude of signals, including those with weak but nonzero effects (Gao et al., 2017). To

be thorough, we also examine the scenarios with both moderately large and weak effects.

Specifically, we consider data with continuously distributed G factors and AR correlation

structure, and with a continuous outcome under the linear regression model. The simulation

settings for coefficients are similar to those in (c) as mentioned above. One different is that

seven of the fourteen important interactions are with weaker signals equal to 0.2. Results

with five types of data contaminations are shown in Table A.24. It can be seen that the

performance of all approaches decay compared to those in Table 2.5. However, the proposed

approach is again observed to have favorable performance. For example, under the scenario

with D4, the values of (I:TP, I:FP) for interactions are (7.7, 1.4) (proposed), (2.3, 69.4)

(LS-MCP), (3.2, 14.2) (LAD-LASSO), (5.0, 10.1) (RLARS), (7.2, 27.0) (LTS-MCP), and

(3.7, 5.1) (LS-MCP-Hier).

In the interaction analysis literature, it has been suggested that there may exist im-

portant interactions in the absence of the corresponding main effects (Thomas, 2010). For
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Table 2.5: Summary results under simulation scenarios with continuous G factors and AR
structure under linear model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0, 1)
LTS-MCP-Hier 7.8(0.4) 0.6(1.6) 12.7(1.9) 0.7(0.8) 2.15(0.49) 0.99(0.43)
LS-MCP 5.7(0.9) 3.0(3.5) 10.8(0.9) 10.7(10.7) 2.80(0.41) 1.29(0.56)
LAD-Lasso 8.0(0.0) 10.6(5.6) 13.3(1.2) 28.0(11.4) 1.68(0.33) 1.35(0.45)
RLARS 7.5(0.6) 0.5(0.8) 7.3(1.9) 12.5(8.2) 3.27(0.42) 2.51(0.91)
LTS-MCP 6.4(0.9) 6.9(2.8) 11.0(1.1) 26.4(7.4) 2.39(0.53) 1.23(0.28)
LS-MCP-Hier 8.0(0.0) 0.3(1.2) 13.0(1.0) 0.4(0.6) 1.70(0.30) 0.80(0.18)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 7.9(0.3) 0.6(1.8) 12.0(1.5) 0.9(0.9) 2.12(0.38) 1.12(0.34)
LS-MCP 2.2(1.8) 18.0(8.0) 2.7(2.6) 71.0(10.6) 30.42(40.46) 555.38(1853.39)
LAD-Lasso 7.8(0.5) 2.2(1.5) 7.6(2.3) 7.0(3.3) 3.01(0.36) 3.85(1.23)
RLARS 7.2(0.7) 0.7(1.0) 5.7(1.8) 11.0(5.7) 3.68(0.41) 3.55(1.24)
LTS-MCP 6.2(1.1) 7.8(3.3) 10.6(1.3) 30.9(9.7) 2.55(0.55) 1.18(0.32)
LS-MCP-Hier 5.8(1.5) 151.3(125.9) 2.6(3.4) 25.6(59.8) 28.80(42.28) 1351.47(5973.38)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 7.9(0.3) 0.6(1.8) 12.0(1.6) 0.9(0.8) 2.01(0.41) 1.03(0.40)
LS-MCP 2.9(1.2) 24.3(4.7) 3.1(1.4) 66.2(5.5) 9.82(0.68) 32.66(6.95)
LAD-Lasso 7.5(0.7) 2.6(1.7) 6.1(2.3) 8.2(3.2) 3.29(0.33) 4.68(1.46)
RLARS 6.3(1.0) 1.4(1.5) 3.8(1.7) 11.7(5.8) 4.25(0.48) 5.23(1.79)
LTS-MCP 6.4(1.0) 7.6(3.0) 10.9(1.1) 28.3(6.2) 2.44(0.53) 1.09(0.27)
LS-MCP-Hier 6.5(0.9) 94.1(5.9) 2.4(1.5) 5.8(5.6) 8.81(0.64) 33.23(7.21)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 7.4(1.0) 3.8(8.0) 11.1(3.1) 2.7(2.1) 2.12(0.79) 1.08(2.02)
LS-MCP 1.4(0.9) 22.6(5.1) 3.1(2.0) 68.0(6.4) 7.38(1.03) 19.15(6.64)
LAD-Lasso 4.1(1.3) 4.0(2.4) 4.2(2.2) 13.4(3.6) 3.99(0.35) 9.27(2.47)
RLARS 7.2(0.8) 0.7(1.2) 6.9(2.0) 11.6(7.1) 3.42(0.34) 2.92(0.91)
LTS-MCP 6.2(1.2) 7.9(3.6) 10.0(1.3) 30.1(9.2) 2.47(0.60) 2.43(0.40)
LS-MCP-Hier 5.4(1.5) 54.5(37.3) 3.9(3.2) 5.4(3.1) 5.52(1.39) 14.61(9.16)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.7(0.7) 3.4(8.4) 10.6(2.6) 2.3(2.3) 2.20(0.75) 1.02(1.77)
LS-MCP 0.7(0.7) 18.0(8.9) 1.5(1.4) 69.3(17.5) 25.80(32.38) 271.98(796.53)
LAD-Lasso 3.8(1.4) 4.0(1.9) 4.0(2.0) 12.5(3.5) 4.02(0.36) 9.20(2.59)
RLARS 6.8(0.9) 0.9(1.2) 5.6(2.0) 11.4(6.8) 3.79(0.42) 3.77(1.04)
LTS-MCP 6.3(1.1) 8.6(3.9) 10.8(1.2) 31.9(10.1) 2.47(0.57) 2.05(0.32)
LS-MCP-Hier 4.5(1.5) 152.6(99.4) 1.0(1.6) 24.6(62.0) 27.97(39.71) 1088.91(4898.79)
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Table 2.6: Summary results under simulation scenarios with continuous G factors and AR
structure under AFT model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE Cstat

D1: N(0, 1)
LTS-MCP-Hier 7.8(0.5) 5.6(9.6) 11.0(2.7) 0.9(1.1) 2.48(0.52) 0.90(0.03)
LS-MCP 6.3(1.1) 12.3(4.8) 11.3(1.2) 38.3(9.6) 2.39(0.66) 0.92(0.02)
LAD-Lasso 7.5(0.8) 15.5(8.1) 8.4(3.9) 36.5(15.7) 3.06(0.59) 0.85(0.05)
RLARS 7.3(0.7) 10.3(3.8) 3.2(1.6) 21.8(4.3) 4.22(0.35) 0.78(0.04)
LTS-MCP 6.0(1.0) 14.8(4.9) 6.4(1.8) 57.4(10.4) 3.37(0.34) 0.85(0.04)
LS-MCP-Hier 8.0(0.2) 1.0(1.9) 12.1(1.5) 0.6(0.8) 1.94(0.34) 0.92(0.02)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 7.7(0.5) 5.5(4.1) 9.1(2.8) 1.3(1.1) 2.71(0.58) 0.89(0.03)
LS-MCP 1.2(1.4) 13.9(8.6) 1.1(1.4) 59.6(10.7) 46.11(87.78) 0.55(0.07)
LAD-Lasso 5.8(1.7) 4.6(2.1) 1.7(1.3) 12.0(3.4) 4.11(0.40) 0.74(0.07)
RLARS 6.3(1.6) 7.6(4.9) 1.6(1.3) 22.9(6.3) 4.83(0.68) 0.73(0.06)
LTS-MCP 6.0(1.0) 15.4(4.0) 5.5(1.8) 59.7(5.5) 3.71(0.33) 0.82(0.03)
LS-MCP-Hier 5.4(1.5) 196.6(162.2) 2.0(2.4) 70.9(223.4) 59.00(119.77) 0.58(0.07)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 8.0(0.2) 2.2(4.8) 11.9(1.6) 0.9(0.9) 2.01(0.38) 0.92(0.01)
LS-MCP 2.5(1.1) 24.6(4.9) 2.4(1.4) 72.2(6.1) 10.72(0.71) 0.64(0.04)
LAD-Lasso 6.6(1.2) 3.9(2.2) 2.7(1.6) 11.1(3.3) 3.79(0.28) 0.78(0.04)
RLARS 6.4(1.0) 4.2(3.2) 1.4(1.1) 12.4(6.3) 4.41(0.42) 0.78(0.04)
LTS-MCP 6.1(1.0) 11.4(4.1) 9.0(1.7) 48.9(10.3) 2.95(0.49) 0.89(0.02)
LS-MCP-Hier 5.8(1.1) 100.5(7.8) 2.5(1.5) 8.3(7.2) 9.75(0.56) 0.66(0.03)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 7.1(1.0) 10.9(14.7) 9.0(4.0) 1.2(1.2) 3.18(0.83) 0.84(0.07)
LS-MCP 3.4(1.1) 14.7(4.5) 4.9(2.1) 52.7(6.5) 4.89(0.60) 0.75(0.05)
LAD-Lasso 6.1(1.2) 7.2(5.0) 3.4(2.0) 17.8(11.8) 3.88(0.31) 0.77(0.04)
RLARS 7.0(0.8) 11.9(3.6) 2.6(1.4) 21.5(4.5) 4.37(0.36) 0.77(0.04)
LTS-MCP 5.5(1.3) 17.0(4.0) 5.2(1.8) 61.4(6.0) 3.77(0.42) 0.81(0.04)
LS-MCP-Hier 6.4(1.0) 42.4(24.3) 4.6(2.5) 2.9(2.1) 4.08(0.66) 0.78(0.05)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.1(1.1) 12.9(14.1) 9.3(3.9) 1.5(1.4) 3.08(0.81) 0.85(0.07)
LS-MCP 1.1(1.1) 12.6(7.8) 1.3(1.3) 56.3(9.8) 35.96(69.84) 0.56(0.06)
LAD-Lasso 5.7(1.5) 4.3(2.3) 2.0(1.5) 12.2(3.4) 4.12(0.36) 0.74(0.06)
RLARS 6.5(1.4) 8.8(4.6) 2.2(1.5) 21.6(6.4) 4.79(1.30) 0.74(0.06)
LTS-MCP 5.7(1.1) 16.1(4.2) 5.1(2.0) 60.4(4.6) 3.77(0.37) 0.81(0.04)
LS-MCP-Hier 5.1(1.6) 174.4(158.2) 2.4(2.6) 67.4(229.7) 54.36(131.61) 0.57(0.07)
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comprehensive consideration, we conduct another analysis on scenarios where the “main

effects, interactions” hierarchy is violated for some interactions. Specifically, data with

continuous G factors, AR correlation structure, and a continuous response are generated.

Besides the fourteen nonzero G-E interactions as described above, six additional nonzero

interactions are considered without the corresponding main G effects. As shown in Table

A.25, the proposed approach performs slightly worse than LTS-MCP which is similar to

the proposed but does not reinforce the hierarchy. However, it still outperforms other alter-

natives, including two nonrobust approaches LS-MCP and LS-MCP-Hier, and two robust

ones LAD-Lasso and RLARS which do not respect the hierarchy and may be favored here.

2.3.4 Data Analysis

The Cancer Genome Altas provides comprehensive profiling data in various cancer types.

With high quality and public availability, the TCGA data have contributed to thousands of

genetic studies and serve us as an ideal testbed. In this section, we analyze TCGA data on

skin cutaneous melanoma (SKCM) and breast invasive carcinoma (BRCA). The processed

level 3 data are considered which can be downloaded from TCGA Provisional using the R

package cgdsr.

Skin Cutaneous Melanoma (SKCM) Data

Cutaneous melanoma, the most dangerous type of skin cancer, has been demonstrated to

account for approximately 75% of all deaths from skin cancer. The response of interest is

the continuous (log2-transformed) Breslow’s depth, which is analyzed using a linear model.

It describes the thickness of the tumor, which is considered as one of the most significant

factors in predicting progression of melanoma (Breslow, 1970). For E variables, we include

age, American Joint Committee on Cancer (AJCC) tumor pathologic stage, gender, and

Clark level. For G variables, we consider mRNA gene expressions, which are collected using

the IlluminaHiseq RNAseq V2 platform and have been lowess-normalized, log-transformed,

and median centered. There are 298 subjects available with 18,355 measurements of gene

expressions. We conduct a simple prescreening as the number of cancer-related genes is not

expected to be large, which selects the top 2,000 genes with the largest variances across all
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the samples for downstream analyses.

The estimated coefficients with the proposed approach are listed in Table 2.7. Compared

to age and gender, stage and Clark level are more relevant to the Breslow’s depth, which

is consistent with the literature. The proposed approach identifies a total of 43 important

genes and 26 G-E interactions associated with Breslow’s depth. Existing literature shows

potentially useful implications of our findings. For instance, gene FGFR3 has been shown

to deactivate the malignant transformation as a tumor suppressor in melanoma cancer

cells. An increased expression of antigen from gene FMR1NB has been found in melanoma

stem cells, which may be a cause of treatment failure. Gene LAMP1 has been observed to

express on the surface of metastatic melanoma cells, and its downregulation could reduce

lung metastasis. Gene SPRR1A has been found to express dramatically higher levels in thin

melanomas. In addition, gene SPRR2G has been characterized as keratinocyte-associated

and has been found to have decreased expression in the primary melanoma. Gene S100A7,

known as psoriasin, has been observed to significantly over-express in human epithelial skin

tumors, as well as in breast and bladder cancer.

We also analyze the data using the alternatives, and the comparison results are sum-

marized in Table A.26. The numbers of overlapping identifications of main effects and in-

teractions are presented, respectively, along with the corresponding RV-coefficients (Smilde

et al., 2009). The RV-coefficient evaluates the similarity of two data matrices with a larger

value indicating a higher degree of similarity. It is observed that significantly different

sets of main effects and interactions are found by different approaches with moderate RV-

coefficients. LS-MCP, LAD-LASSO, RLARS and LTS-MCP, which do not reinforce the

hierarchical structure, identify much smaller number of main effects compared to that of

interactions. Both LTS-MCP-Hier and LS-MCP-Hier identify a moderate number of main

effects and interactions.

To provide an indirect support to the identification analysis, we evaluate the prediction

accuracy using PMSE based on 200 times resampling (9/10 training subjects and 1/10

testing subjects), which has also been adopted in the literature. The proposed approach

is observed to have the best prediction performance with PMSE=0.26, compared to 1.01

(LS-MCP), 0.32 (LAD-LASSO), 0.49 (RLARS), 0.87 (LTS-MCP) and 0.58 (LS-MCP-Hier).
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We also examine the selection stability by calculating the observed occurrence index (OOI)

(Huang et al., 2006). Using the same resampling strategy, the OOI measures the identified

probability for each main effect or interaction, where a larger value indicates better stability

in identification among random samples. The mean OOI of the identified main effect and

interactions using the proposed approach is 0.85, compared to 0.32 (LS-MCP), 0.81 (LAD-

LASSO), 0.50 (RLARS), 0.10 (LTS-MCP) and 0.81 (LS-MCP-Hier), suggesting satisfactory

stability of the proposed approach.

Breast Invasive Carcinoma (BRCA) Data

Breast cancer is the second cause of cancer death among female, which can be influenced

by a number of environmental and genetic factors (Shipitsin et al., 2007). The response

of interest is the censored survival time, which is analyzed based on AFT model. In this

section, we focus on the female Whites with primary tumor. Data are available on 353

subjects, with 60 deaths during the follow-up period. For E variables, we include age,

AJCC tumor pathologic stage, ER status (positive/negative) and weight. For G variables,

there are 16,277 measurements of mRNA expressions and the top 2,000 genes are selected for

the downstream analyses using the same prescreening as described in the previous section.

The coefficients estimated from the proposed approach are provided in Table 2.8. The

three E variables age, stage and weight have negative coefficients, indicating that higher

levels are associated with shorter survival, and the positive coefficient of ER status suggests

that the subjects with negative ER status tend to have better prognosis. In addition, there

are 32 important main effects along with 43 interactions. These findings are validated

by the literature search. For example, gene ASH2L has been shown to be over-expressed

in human breast cancer among other candidate oncogenes. Gene ATAD1 has been found

to be down-regulated in different subtypes of breast tumors in gene expression profiling,

whose interactions with age, tumor stage and ER status are identified using the proposed

approach. Abnormal expression of gene FGF4 has been found in human breast cancer cells,

and the up-regulation of endogenous FGF4 expression indicates its biological significance

in tumorigenesis. Gene KAT6A has been suggested to be a novel oncogene in breast cancer

as a chromatin modifier. Gene MED1 has been demonstrated a key role in tamoxifen
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Table 2.7: Analysis of SKCM data using the proposed approach: coefficients of identified
main effects and interactions

Main:G Age Stage Gender Clark level
Main:E -0.0100 1.2197 -0.0587 0.3307
AADACL3 0.0004
AMBN 0.0005
ATP1A2 -0.0011
BCAR4 0.0004
BPIFA2 0.0001
C7ORF69 0.0038 0.0046
C8ORF34 0.0056 0.0101
CALCA 0.0029 0.0010 0.0008
CLNS1A 0.0066 0.0118 0.0020
CNBD2 0.0011
CYP1A2 0.0008
CYP7A1 0.0031 0.0025
DEFA5 0.0056 0.0100
DEFB4A 0.0023 0.0016
DGKB -0.0029 0.0027
DGKK 0.0029 0.0018
DPRX 0.0018 0.0004
FAM131B -0.0025 -0.0014
FAM9B 0.0028 0.0020
FGF4 0.0006
FGFR3 0.0026 0.0015
FMR1NB 0.0038 0.0042
GLYATL3 -0.0006
IFNA14 -0.0004
IL17A 0.0012
KRT16 0.0065 0.0124
LAMP1 0.0010
LCE3C 0.0002
LPO 0.0001
MEP1A 0.0029 0.0019
NPS -0.0006
OR2V2 -0.0002
OR5M8 0.0011
PHOX2B -0.0026 -0.0018
RETNLB -0.0028 -0.0004
RIIAD1 0.0079 0.0103 0.0111
S100A7 -0.0006
S100A7A -0.0003
SEMG2 0.0002
SPINK9 -0.0049 -0.0046
SPRR1A -0.0026 -0.0003
SPRR2G 0.0011 0.0003
TRIM55 -0.0019 -0.0010

51



resistance of human breast cancer cells, suggesting its potential as a therapeutic target

in cancer treatment. Over-expression of gene MTBP has been observed to be strongly

correlated with reduced breast cancer patient survival. Gene NSD3 has been showed to

be amplification in primary breast carcinomas, suggesting a possible involvement in human

tumorigenesis. Gene PHB2 has been demonstrated to play a crucial role in modulation of

ER status in breast cancer cells.

Data are also analyzed using the alternatives. The summary results of comparison are

shown in Table A.27. Small numbers of overlapping main effects and interactions are found

across different approaches, whereas moderate common information is contained among

different identifications given the values of RV-coefficients. We also compute C-statistics to

evaluate the prediction accuracy of survival response using the same resampling process.

The proposed approach demonstrates improved prediction ability with a C-statistic value

of 0.55, compared to 0.49 (LS-MCP), 0.49 (LAD-LASSO), 0.47 (RLARS), 0.51 (LTS-MCP)

and 0.47 (LS-MCP-Hier). In addition, the proposed approach has better stability with the

average OOI as 0.49, compared to 0.09 (LS-MCP), 0.43 (LAD-LASSO), 0.27 (RLARS),

0.08 (LTS-MCP) and 0.4 (LS-MCP-Hier). The improved prediction and stability confirm

the validity of the proposed analysis.

2.3.5 Discussion

Identifying important G-E interactions associated with complex multifactorial human dis-

eases is an important goal of high-dimensional cancer studies. In this Chapter, we propose

a novel effective interaction analysis approach based on the least trimmed regression. The

proposed approach can accommodate the vertical outliers as well as the leverage points,

which are not uncommon in practice but have not been well studied. It differs significantly

from the existing robust interaction analyses that usually focus on model mis-specification

or outliers/contaminations in response. A robust criterion based on the (weighted) resid-

uals is developed for choosing the optimal number of outliers, which can accommodate

multiple types of responses, such as continuous biomarkers and censored survival time. The

coefficient of each interaction is decomposed as the product of the corresponding main ef-

fect and interaction-specific coefficient, which has an intuitive formulation to automatically
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Table 2.8: Analysis of BRCA data using the proposed approach: coefficients of identified
main effects and interactions

Main:G Age Stage ER status Weight
Main:E -0.1594 -0.1089 0.2705 -0.1219
AASDHPPT 0.0885 0.0347 -0.0069
ASH2L 0.0006
ATAD1 0.1274 0.0058 0.0016 -0.0078
AXDND1 -0.1061 -0.0094
BRD1 0.0293
CCT6A -0.0701 -0.0076
CD5L -0.0776
FGF4 0.0292
ITLN2 -0.1221 -0.0113 0.0069
KAT6A 0.0123
MAEA 0.0453
MED1 -0.0649 -0.0226 -0.0254 -0.0013 -0.0058
MRPL45 0.0512 -0.0013
MTBP 0.0127
NARS2 0.0197
NSD3 0.0112
NUFIP2 -0.0297
PHB 0.0984 0.0015 0.0008 0.0005
PHB2 0.0832 -0.0032 0.0025
PMVK 0.1227 0.0064 -0.0016 -0.0216 -0.0564
RAD21 -0.0555 -0.0311
SEZ6 -0.1450 -0.0320 -0.0017
SMIM19 0.0950 0.0379 0.0127 0.0022 -0.0136
SUPT4H1 -0.1278 0.0127 0.0027
SUPT5H -0.0240
TBC1D21 -0.0571
TBC1D23 -0.0526
TRIM11 -0.1352 -0.0314 0.0071
UBE2Z 0.0895 -0.0003 -0.0031 0.0002
UBE4A -0.0055
ZNF572 0.0053
ZNF597 0.0932 0.0065 0.0205
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respect the strong hierarchical structure. The modified stability selection-based C-steps

algorithm and iterative coordinate descent algorithm are adopted to optimize the objective

function, which leads to the estimation of main effects and interactions as well as the optimal

outlier-free subject set. Extensive simulations are conducted, including various scenarios

without data contamination, with vertical outliers, and with leverage points. The results

demonstrate the competitive performance of the proposed analysis in terms of identifica-

tion, estimation and prediction. In the data analysis of cutaneous melanoma and breast

invasive carcinoma with gene expression measurements, the proposed approach identifies

biologically sensible markers with better prediction performance and stability.

In this Section, we have considered a continuous response under the linear model and

a censored survival time under the AFT model. For the categorical and count data un-

der generalized linear models, the iterated weighted squared loss can be adopted as an

approximation to the negative log-likelihood. Thus, with minor modifications, the pro-

posed approach can be extended to accommodate other types of responses. The proposed

approach is built on the trimmed regression which has been demonstrated to have solid

statistical properties for the analysis of low-dimensional data and high-dimensional main

effects. Thus it may be reasonable to conjecture that the proposed approach also has good

theoretical properties. The detailed study is postponed to future research. In simulation,

we focus on the leverage points in G factors, more extensive numerical studies with out-

liers in E factors are deferred to future investigation. In data analysis, more biological and

functional analyses are needed to provide more evidence of the identified interactions.
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Chapter 3

Incorporating Additional

Information Using Marginal

Penalized Regression for

Interaction Identification

3.1 Introduction

Many statistical methods have been proposed for identifying G-E interactions, among which

marginal modeling framework becomes more popular due to less computation and simpler

interpretation (Sun et al., 2018b; Xu et al., 2019; Zhang et al., 2019). Though marginal

analysis is computationally simpler, the “main effects, interactions” hierarchy is not auto-

matically guaranteed, leading to difficult interpretation. That is, an interaction term may

be identified due to a significant p-value, but the corresponding main effects are not. Com-

paratively, the joint analysis that models a large number of genetic factors and interactions

in a single model, the importance of respecting such hierarchical structure for producing

statistically and biologically meaningful findings have been demonstrated (Bien et al., 2013;

Hao and Zhang, 2017) and a few approaches have been developed such as Shi et al. (2014)

and Zhu et al. (2014). In the current literature, the hierarchy structure in marginal analysis
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shares equal importance yet has been less studied Bien et al. (2015).

Considering the high dimensionality and low signal levels, it becomes more challenging

to identify important G-E interactions beyond the main effects without sufficient infor-

mation. In recent literature, incorporating additional information for main effect analysis

have been adopted to facilitate effective and biologically meaningful discoveries for complex

diseases. For example, consider the adjacency structure of SNPs. Due to linkage disequilib-

rium, SNPs that are physically close can demonstrate similar associations with the disease

outcomes (Ardlie et al., 2002). Multiple statistical methods using penalization have been

proposed that account for high correlations among closely located markers, including fused

lasso (Tibshirani et al., 2005), smooth lasso (Hebiri et al., 2011), spline lasso (Guo et al.,

2016), and so on. Extensive research has shown that combining biological knowledge as

a priori can lead to more accurate and interpretable estimation and identification. Yet,

almost all of the existing G-E interaction analyses omit such biological knowledge. An-

other example of additional information arises from published studies. Literature review

suggests that, for many common problems in the field of biology and biomedicine, multiple

relevant investigations were conducted and published, which may provide valuable and com-

prehensive input for the current study. To incorporate existing studies, meta-analysis or

integrative analysis can be conducted. We refer Zeggini et al. (2008), Guerra and Goldstein

(2009), and Ma et al. (2011) for further discussion. Despite the great achievement, such

analysis procedure requires highly comparable design across available studies and datasets.

Excluding partially relevant ones may cause a waste of information, and it is desired to

include as many related studies as possible to add to G-E interaction analysis.

In this Chapter, our goal is to incorporate additional information for G-E interaction

analysis. Motivated by the lack of information in G-E interaction analysis and the suc-

cess of utilizing available information in the main effect analysis, we propose a new G-E

interaction analysis method under a marginal modeling framework. Using penalized regres-

sion, the proposed method respects the ’main effects, interactions’ hierarchical structure.

That is, when an interaction is identified, the corresponding main effect of the genetic fac-

tor is simultaneously included in the model. In addition, significantly advancing from the

existing G-E interaction analysis, the proposed method can incorporate additional infor-
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mation, especially including the adjacency structure of SNPs and mined data extracted

from relevant literature. We propose using penalization to address the lack of information

problem, which provides a coherent formulation for multiple types of additional informa-

tion and genetic measurements. Different from the meta-analysis and integrative analysis

framework, strict comparability across studies is not required, which allows more compre-

hensive information to be included. This advancement of utilizing additional information

enables improved performance in identification and interpretation for G-E interaction anal-

ysis. Our numerical study shows that the proposed method can outperform multiple direct

alternatives. Overall, this study provides an effective and practically meaningful way to

incorporate additional information for G-E interaction analysis.

3.2 Methods

Assume N iid subjects. Let X = (X1, X2, . . . , Xp) and Z = (Z1, Z2, . . . , Zq) be N × p

and N × q matrix of gene expressions and environmental factors. Denote Y as a length

N vector of continuous disease outcome. We consider the regression model for jth gene,

j = 1, 2, . . . , p, Y =
∑q

k=1 αkjZk + βjXj +
∑q

k=1 ηkjZkXj + ε, where αk, βj , and ηkj are

the coefficients for environmental factors, gene expressions, and their interactions. ε is the

random errors. We decompose ηkj to impose the hierarchical structure of main effects and

interactions by using ηkj = βjγkj . Then, the marginal model for jth gene can be written as

Y =

q∑
k=1

αkjZk + βjXj +

q∑
k=1

βjγkjZkXj + ε.

Consider the following objective function

Q(θ) =
1

p

p∑
j=1

1

2N
||Y−

q∑
k=1

αkjZk − βjXj −
q∑

k=1

βjγkjZkXj ||22

+

p∑
j=1

ρ(|βj |;λ1, r) +

p∑
j=1

q∑
k=1

ρ(|γkj |;λ1, r) +
1

2
λ2β

′Jβ +
1

2
λ2

q∑
k=1

γ ′kJγk,

(3.1)

where θ = (α11, . . . , αqp,β
′,γ ′1, . . . ,γ

′
q), β = (β1, β2, . . . , βp)

′, γk = (γk1, γk2, . . . , γkp)
′ for
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k = 1, 2, . . . , q. || · ||2 is the Euclidean norm, ρ(|v|;λ1, r) = λ1

∫ |v|
0

(
1− x

λ1r

)
+
dx is the

minimax concave penalty, λ1, λ2 ≥ 0 are tuning parameters, r > 0 is the regularization

parameter. J is a p×p matrix for Laplacian quadratic penalty, which is tailored for different

types of additional information. More details are discussed below. We obtain the proposed

estimates that minimizes equation (3.1) as θ̂ = arg minQ(θ), and important main genetic

effects and interactions are identified by non-zero estimated coefficients.

The proposed objective function is designed under a marginal analysis framework. For

each genetic measurement, one regression model is assumed. Decomposing the coefficient

of interactions as βjγkj , the ’main effects, interactions’ hierarchical structure is ensured.

Note that environmental factors are pre-selected and have a low dimensionality so that

their coefficients are not subject to penalized selection. The proposed method thus differs

from the pairwise interaction analysis such as (Choi et al., 2010). The first two minimax

concave penalty (MCP) terms in 3.1 is applied, which guarantees that interaction and its

corresponding main effects can be selected simultaneously. Without further computational

burden, we impose the same tuning parameter across different genes using λ1 to ensure

comparability. In the literature, the MCP-based penalty has been extensively adopted

(Kim et al., 2017; Zhang et al., 2010), and many other ways exist for achieving hierarchy,

such as the sparse group MCP (Liu et al., 2013). Our investigation suggests the proposed

method has computational advantages and satisfactory performance.

We adopt the Laplacian quadratic penalty to incorporate additional information as the

last two terms. In this Chapter, we consider two specific examples. (1) Consider the ad-

jacency structure of SNPs as additional information, and assume that SNP measurements

are ordered by their physical locations. We adopt the spline type penalty for main ge-

netic effects and interactions as
∑p−1

j=2[(βj+1 − βj) − (βj − βj−1)]
2 and

∑p−1
j=2[(γk(j+1) −

γkj) − (γjk − γk(j−1))]
2. Then, for SNP data, we have J = H′(p−2)×pH(p−2)×p where

Hjj = Hj(j+2) = 1, Hj(j+1) = −2, and 0 otherwise. This penalty encourages smooth-

ness and is analogous to penalize second-order derivatives in spline-based nonparametric

estimation. Consequently, the main effects and interactions of physically adjacent SNPs

associated with the response are promoted to be similar. Other alternative penalties, such
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as the fused lasso and smooth lasso are available. We choose the spline type penalty in

this Chapter due to its demonstrated superior performance and computational feasibility

(Guo et al., 2016). (2) Consider text-based literature mining data of PubMed as additional

information. We adopt PubMatrix (https://pubmatrix.irp.nia.nih.gov), which is a

web-based tool that allows simple text-based mining of PubMed and has been used in the

studies of Wang et al. (2019), Minafra et al. (2018), and many others. PubMatrix uses two

lists of keywords and produces a frequency matrix of term co-occurrence as results (Becker

et al., 2003). Consider gene expression data and we utilize gene names as keywords. The

pairwise frequency matrix is generated by PubMatrix, each element of which suggests not

only whether an association exists but also its amount of evidence. Given the fact that the

majority of the frequency counts are zero, we construct the adjacency matrix A = {ajl}p×p

using quantiles at 0.2, 0.4, 0.6, and 0.8 of the nonzero frequencies. In this way, the magni-

tude in A is managed as extreme values are excluded. Then, consider J = I−D−1/2AD−1/2

where I is the p × p identity matrix and D = diag(
∑p

l=1 a1l,
∑p

l=1 a2l, . . . ,
∑p

l=1 apl). This

penalty promotes similar main genetic effects and interactions for those genes that have

demonstrated more co-occurrences as pairs in the existing publications.

We also note that other designs of constructing J can be tailored given the type of data

and additional information. For instance, for gene expression levels, the adjacency matrix

can be calculated based on Pearson correlation coefficients, similarity measure such as the

Euclidean distance, and others alternative approaches. Recent studies have established the

improved performance and effectiveness of the Laplacian quadratic penalty in main effect

analysis. However, limited adoption for analyzing G-E interaction exists. We refer Huang

et al. (2011a), Shi et al. (2015), and Wu et al. (2019b) for further discussion of construction

of Laplacian quadratics.

3.2.1 Computation

To compute the proposed estimates, we adopt an iterative coordinate descent algorithm with

fixed tuning parameters. This algorithm minimizes the objective function with respect to

one coefficient at each step until convergence. We summarize the algorithm as follows.
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1. Start with α
(0)
kj = β

(0)
j = γ

(0)
kj = 0 for k = 1, 2, . . . , q, and j = 1, 2, . . . , p.

2. Let t = t+1. Updateα
(t)
j = (α

(t)
1j , . . . , α

(t)
qj )′. Let Ỹj = Y−β(t−1)

j Xj−
∑q

k=1 β
(t−1)
j γ

(t−1)
kj ZkXj ,

X̃ = Z, then for j = 1, 2, . . . , p,

α
(t)
j = (X̃ ′X̃)−1X̃ ′Ỹj .

3. Update β(t). Let Ỹj = Y −
∑q

k=1 α
(t)
kjZk, X̃j = Xj +

∑q
k=1 γ

(t−1)
kj ZkXj , then

β(t) = arg min
1

p

p∑
j=1

1

2N
||Ỹj − βjX̃j ||22 +

p∑
j=1

ρ(|βj |;λ1, r) +
1

2
λ2β

′Jβ.

For j = 1, 2, . . . , p, write δ
(t)
j =

∑j−1
l=1 β

(t)
l Jjl +

∑p
l=j+1 β

(t−1)
l Jjl, χ

(t)
j = 1

N X̃
′
jX̃j , and

φ
(t)
j = 1

N X̃
′
j Ỹj ,

β
(t)
j =


ST

(
φ
(t)
j −λ2δ

(t)
j ,λ1

)
χ
(t)
j −

1
r

+λ2Jjj
, if

∣∣∣φ(t)
j − λ2δ

(t)
j

∣∣∣ ≤ λ1

(
χ

(t)
j + λ2Jjj

)
φ
(t)
j −λ2δ

(t)
j

χ
(t)
j +λ2Jjj

, if
∣∣∣φ(t)
j − λ2δ

(t)
j

∣∣∣ > λ1

(
χ

(t)
j + λ2Jjj

) (3.2)

where ST (a, b) = sign(a)(|a| − b)+ is the soft-thresholding operator.

4. Update γ
(t)
k . Let Ỹj = Y −

∑q
k=1 α

(t)
kjZk − β

(t)
j Xj , X̃kj = β

(t)
j ZkXj , then

(γ
(t)
1 , . . . ,γ

(t)
q ) = arg min

1

p

p∑
j=1

1

2N
||Ỹj−

q∑
k=1

γkjX̃kj ||22+

p∑
j=1

q∑
k=1

ρ(|γkj |;λ1, r)+
1

2
λ2

q∑
k=1

γ ′kJγk.

For k = 1, 2, . . . , q, γk = (γk1, γk2, . . . , γkp)
′ are calculated similar to (3.2), where

δ
(t)
kj =

∑j−1
l=1 γ

(t)
kl Jjl +

∑p
l=j+1 γ

(t−1)
kl Jjl, χ

(t)
kj = 1

N X̃
′
kjX̃kj , and φ

(t)
kj = 1

N X̃
′
kj(Ỹj −∑k−1

h=1 γ
(t)
hj X̃hj −

∑q
h=k+1 γ

(t−1)
hj X̃hj).

5. Compute the relative difference as ∆(t) = |Q(θ(t))−Q(θ(t−1))|
|Q(θ(t−1))| . Repeat Step 2-4 until

∆(t) < 10−4.

For model selection, we set r as 3 to reduce computational cost and adopt the extended

Bayesian information criterion to choose the values of (λ1, λ2) (Chen and Chen, 2008). In

the literature, convergence properties of coordinate descent have been well established and
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we observe convergence in all of our numerical studies. The computational cost of the

proposed method is moderate. We have developed R code and made it publicly available

on GitHub.

3.3 Simulation

We set N = 200, p = 1000, and q = 5 for all simulated data. (a) For genetic data, we

consider two types. (S1) We generate SNP data with adjacency structure to mimic densely

positioned SNPs. Two approaches are adopted to simulate SNP data coded as (0, 1, 2) for

genotypes (aa, Aa, AA). For the first approach, we first generate p continuous variables

using a multivariate normal distribution with mean 0 and covariance matrix Σ = {σjl}p×p

and then categorize them at q1 and q2 quantiles. We consider two correlation structures

for Σ. The first one is auto-regressive structure (AR) with ρ = 0.3 and 0.5. The second

is the banded correlation structure where two scenarios are considered. One has σjl = 1

if j = l, 0.3 if |j − l| = 1, and 0 otherwise (Band1). The other one is σjl = 1 if j = l,

0.5 if |j − l| = 1, 0.3 if |j − l| = 2, and 0 otherwise (Band2). We adjust q1 and q2 for

minor allele frequency (MAF) values and conducer two scenarios. The first one (M1) has

MAF = 0.05 with q1 = 0.91 and q2 = 0.99. The second scenario (M2) has MAF = 0.15

with q1 = 0.73 and q2 = 0.97. For the second approach of generating SNP data, we use

pairwise LD structure with pairwise correlation rLD = 0.3 and 0.5. Specifically, denote pA

and pB as the MAFs of alleles A and B for two adjacent SNPs. Four haplotypes ab, aB,

Ab, and AB have frequencies (1 − pA)(1 − pB) − φ, (1 − pA)pB − φ, pA(1 − pB) − φ, and

pApB−φ respectively, with φ = rLD
√
pA(1− pA)pB(1− pB) and two scenarios of MAFs as

in the first approach. (S2) We also simulate gene expression data. Among p expressions, C1

setting has 50 clusters with size 20 and C2 has 10 clusters with size 100. Genes in different

clusters are independent whereas within each cluster, gene expressions are generated from a

multivariate normal distribution using AR and banded correlation structures. We use same

parameter settings for generating covariances. (b) Environmental risk are generated from

a multivariate normal distribution with marginal mean 0, variances 1, and AR correlation

(ρ = 0.3). (c) We set 20 main genetic factors and 40 hierarchical G-E interactions with
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nonzero effects, generated from Uniform (0.75, 1.25). The coefficients of environmental risk

factors are generated from Uniform (0.8, 1.2). (d) To simulate the response, we assume a

joint model as Y =
∑q

k=1 αkjZk +
∑p

j=1 βjXj +
∑q

k=1

∑p
j=1 βjγkjZkXj + ε, where ε follows

a standard normal distribution.

We analyze the simulated data using the proposed method. For S1, we consider the

spline type penalty. For S2, two types of additional information are considered with differ-

ent Laplacian quadratics. The first type (J1) is literature mining information. We select top

1000 genes in TCGA SKCM data based on marginal p-values and unitize the pairwise fre-

quency matrix generated by PubMatrix as J. The second type (J2) is the correlation struc-

ture of gene expressions, for which we construct J based Pearson correlation coefficients.

We also consider the following alternative approaches for comparison. (1) HierMCP, which

excludes the Laplacian quadratic penalty from the proposed objective function. (2)MCP-

LP, which uses Y =
∑q

k=1 αkjZk + βjXj +
∑q

k=1 ηkjZkXj + ε without decomposition. To

estimate coefficients, MCP and Laplacian quadratics are applied to βj and ηkj as the same

as the proposed method. (3) Lasso, which imposes the Lasso penalty under a marginal

modeling framework. The tuning parameter is selected by cross-validated mean squared

error. (4) MA, which is the benchmark marginal analysis that analyzes one genetic factor

at a time. P-values are adjusted by the false discovery rate (FDR) approach and important

interactions are selected at FDR=0.1. To assess the identification accuracy of the proposed

method in comparison with alternatives, we evaluate the numbers of true positives and

false positives for main effects (M:TP and M:FP) and G-E interactions (I:TP and I:FP)

respectively. In addition, we report the true positive counts when a total of 60 effects are

identified as TP60. These measurements do not take environmental risk factors into account

since they are not subject to selection.

Under each setting, we produce 200 datasets. The advantage of the proposed method is

obvious in continuous genetic data settings. Summary results for gene expressions are pre-

sented in Table 3.1 and 3.2 that incorporates literature mining information J1. For example

in Table 3.1 with correlation setting C1, the proposed method has (18.5, 9.2, 36.2, 7.6), com-

pared to (14.9, 3.0, 19.0, 29.5) for HierMCP, (5.2, 1.9, 18.3, 39.4) for MCP-LP, (2.3, 0, 7.8, 9.8)

for Lasso, and (1.5, 0.1, 3.0, 4.6) for MA. Compared to HierMCP, the proposed method
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yields superior results in identification, which provides strong and direct support to the

estimation strategy that incorporates additional information using the Laplacian quadratic

penalty. The proposed method also outperforms MCP-LP, which suggests the effectiveness

of respecting the hierarchical structure of main effects and interactions by coefficient de-

composition. Lasso and MA serve as benchmark analysis that both identify much fewer

effects. This indicates that given high-dimensionality and low signal level, traditional ap-

proaches that do not address the“main effect, interaction” hierarchy structure nor addi-

tional information can lead to misleading discovery. In addition, we uses correlation as

additional information and present summary results in Table B.1 and B.2 (Appendix).

When zero and nonzero effects are correlated as C2, we also observe the satisfactory perfor-

mance of the proposed method. Under correlation setting C1, it has TP60= 58.7 compared

to 34.4 for HierMCP, 28.2 for MCP-LP, 8.8 for Lasso, and 4.1 for MA. The proposed

method remains favorable for SNP data compared to alternative approaches. Summary

results for SNP data are presented in Table 3.3 and 3.4. We observe that the proposed

method has better or competitive performance in identification accuracy across different.

For instance in Table 3.3 with MAF = 0.05 (M1) and AR(0.3), the proposed method has

(M:TP, M:FP, I:TP, I:FP)= (18.9, 9.4, 34.1, 40.5), compared to (13.1, 48.5, 3.0, 7.9) for Hi-

erMCP, (10.8, 0.2, 5.4, 30.6) for MCP-LP, (0.1, 0, 3.5, 14.9) for Lasso, and (0.1, 0.5, 1.5, 11.8)

for MA. Across various settings, the superiority in identification performance of the pro-

posed method demonstrates solid evidence that incorporating additional information using

Laplacian quadratics improves accurate selection in the G-E interaction analysis.

3.4 Data analysis

We analyze data on cutaneous melanoma. Data are downloaded from TCGA Provisional

using the R package cgdsr. The response of interest is the Breslow’s depth, which mea-

sures the thickness of the tumor and has been extensively studied for the relationship with

development and prognosis in melanoma patients (Dickson and Gershenwald, 2011). For

environmental risk factors, we include age, sex, Clark level, and American Joint Committee

on Cancer (AJCC) nodes pathologic stage (PN), all of which have been shown to be asso-
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Table 3.1: Simulation results of S2 under correlation setting C1 and additional information
J1. In each cell, mean(sd) based on 200 replicates.

M:TP M:FP I:TP I:FP TP60

AR(0.3)
Proposed 18.5(1.3) 9.2(7.7) 36.2(2.7) 7.6(6.3) 52.7(4.2)
HierMCP 14.9(1.8) 3.0(2.6) 19.0(1.9) 29.5(2.6) 33.7(5.2)
MCP-LP 5.2(4.7) 1.8(1.5) 18.3(5.3) 39.4(9.5) 21.5(3.7)
Lasso 2.3(1.0) 0(0) 7.8(1.7) 9.8(3.9) 6.5(4.0)
MA 1.5(2.0) 0.1(0.3) 3.0(2.7) 4.6(8.3) 5.2(1.7)

Band2
Proposed 19.4(1.0) 2.3(2.6) 37.2(3.1) 5.3(6.3) 57.6(1.3)
HierMCP 15.3(1.6) 0(0) 20.7(2.7) 30.8(4.3) 34.5(1.8)
MCP-LP 5.2(3.9) 0.4(0.8) 22.3(4.3) 21.9(9.7) 38.4(3.9)
Lasso 2(1.0) 0(0) 11.8(2.9) 4.6(2.3) 8.8(4.5)
MA 4.4(3.7) 0.5(0.7) 9.4(4.6) 9.8(8.8) 7.4(1.3)

LD(0.3)
Proposed 19.3(1) 10.9(8.1) 37.8(2.6) 5.7(7.5) 52.3(4.7)
HierMCP 14.7(1.7) 4.6(2.7) 17.6(3.3) 30(2.7) 31.8(3.3)
MCP-LP 2.7(2.4) 1.8(2.2) 13.6(4.4) 49.8(25.2) 21.7(4.8)
Lasso 2.2(1.6) 0.4(0.5) 9.8(6.1) 17.6(13.7) 6.8(8.0)
MA 0.8(0.9) 0.1(0.3) 4.3(3.7) 16(25.8) 4.1(1.6)

LD(0.5)
Proposed 19.2(1.2) 4(6.0) 37.4(2.4) 5.7(6.8) 56.1(1.5)
HierMCP 15.7(1.4) 0.3(0.6) 20.9(2.0) 30.4(2.4) 35.4(4.3)
MCP-LP 4.7(4.2) 0.7(1.3) 19.1(4.5) 30.3(12.3) 30.8(4.1)
Lasso 3.8(1.5) 0.2(0.4) 11.3(3.1) 4.5(1.9) 8.2(4.8)
MA 4.2(3.6) 0.3(0.6) 7.1(3.5) 9.3(11.4) 7.1(2.1)
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Table 3.2: Simulation results of S2 under correlation setting C2 and additional information
J1. In each cell, mean(sd) based on 200 replicates.

M:TP M:FP I:TP I:FP TP60

AR(0.3)
Proposed 19.6(1.0) 7.9(6.5) 37.3(3.1) 5.1(5.7) 53.8(4.0)
HierMCP 15.3(1.8) 1.6(1.8) 19.2(1.9) 30.3(2.3) 35.1(4.9)
MCP-LP 3.1(2.6) 1.4(1.2) 16.6(3.6) 36.7(10.2) 23.2(3.9)
Lasso 1.4(1.1) 0.6(0.5) 12.8(4.0) 19.2(4.1) 7.3(3.7)
MA 1.5(1.6) 0.5(0.8) 5.5(4.9) 14.1(4.2) 4.4(1.8)

Band2
Proposed 19.7(1.1) 2.4(3.2) 38(2.5) 4.2(4.7) 56.5(1.7)
HierMCP 15.3(1.2) 0.2(0.4) 19.9(1.6) 29.5(2.8) 35.5(4.6)
MCP-LP 6.4(4.6) 1.2(1.3) 23.7(3.2) 26.2(14.2) 39.4(7.2)
Lasso 3.4(2.3) 0(0) 11(2.9) 2.6(3.6) 9.3(4.6)
MA 4.3(4.1) 0.4(0.9) 9(3.5) 8.2(7.4) 7.4(1.9)

LD(0.3)
Proposed 19.1(0.9) 10.2(5.9) 36.8(2.8) 4.5(3.4) 52.9(4.0)
HierMCP 14.5(1.8) 7.5(4.6) 16.1(2.7) 29.3(3.6) 30(4.0)
MCP-LP 3.2(2.9) 2.2(2.1) 13.9(4.3) 49.2(27.2) 20.9(4.1)
Lasso 2(1.6) 1.6(1.5) 6.6(1.1) 23.8(15.3) 4.9(3.1)
MA 0.6(1.2) 0.4(0.7) 2.9(2.8) 10(18.4) 3.7(1.7)

LD(0.5)
Proposed 19.6(0.8) 5.9(8.6) 38.6(2.2) 2.6(3.3) 57.7(1.7)
HierMCP 15.6(1.5) 0.2(0.4) 20.7(1.9) 30.7(2.9) 36.3(4.4)
MCP-LP 4.2(3.8) 0.6(1) 20.1(3.2) 30.7(11.4) 31.9(3.2)
Lasso 4(2.9) 0(0) 11.8(3.1) 6.4(3.6) 9.3(4.1)
MA 2.7(3.3) 0.2(0.4) 6.2(5.3) 7.7(10.7) 6.5(2.3)
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Table 3.3: Simulation results of S1 under MAF setting M1. In each cell, mean(sd) based
on 200 replicates.

M:TP M:FP I:TP I:FP TP60

AR(0.3)
Proposed 18.9(1.0) 9.4(9.8) 34.1(1.1) 34.7(11.8) 40.5(5.8)
HierMCP 13.1(2.1) 48.5(19.1) 3.0(2.9) 7.9(13.5) 15.2(2.2)
MCP-LP 10.8(4.4) 0.2(0.7) 5.4(4.0) 30.6(5.4) 21.3(4.5)
Lasso 0.1(0.2) 0(0) 3.5(2.6) 14.9(19.2) 3.5(2.6)
MA 0.1(0.2) 0.5(1.1) 1.5(1.7) 11.8(15.3) 5.8(3)

AR(0.5)
Proposed 19.0(1.2) 3.6(3.6) 34.6(1.5) 32.9(8.5) 41.4(4.4)
HierMCP 13.9(2.5) 34.6(22.7) 12.9(6.9) 46(32.9) 19.3(3.8)
MCP-LP 14.3(4.3) 0.5(0.5) 5.4(3.4) 27.4(3.9) 26.4(3.9)
Lasso 0.5(0.8) 0.1(0.2) 6.0(3.8) 15.4(13) 6.5(4)
MA 0.2(0.4) 1.7(2.9) 2.4(2.1) 18.7(16.5) 5.7(3.1)

Band1
Proposed 18.3(2.1) 6.4(4.9) 32.9(3.5) 30.5(8.6) 39.5(6.6)
HierMCP 12.3(3.3) 51.7(33.3) 8.1(4.1) 30.5(20.8) 17.0(2.8)
MCP-LP 11.7(6.2) 0.4(0.5) 4.5(4.1) 30.8(5.6) 21.9(4)
Lasso 0.1(0.3) 0(0) 2.4(2.3) 7.3(6.4) 2.5(2.3)
MA 0(0) 0.9(1.3) 1.2(1.5) 14.2(15.1) 5.6(2.8)

Band2
Proposed 18.9(1) 3.6(4.1) 35.3(1.7) 30.9(12.3) 39.1(5.3)
HierMCP 14.2(2.1) 39.9(24.7) 4.8(3.8) 12.0(15.7) 19.6(3)
MCP-LP 11.4(5.1) 0.5(0.8) 6.1(4.6) 28.7(5.5) 24.5(5.1)
Lasso 0.4(0.6) 0.1(0.2) 5.5(3.3) 20.9(23.7) 5.7(3.1)
MA 0(0) 0.8(1.5) 2.3(2.5) 18.4(22.1) 5.7(3)

LD(0.3)
Proposed 19.1(1.1) 2.7(5.8) 33.8(2.2) 30.2(12.3) 42.7(7.1)
HierMCP 14.3(2.1) 52.7(31.7) 2.2(2.7) 4.0(5.2) 19.9(2.5)
MCP-LP 12.5(4.6) 0.3(0.6) 9.0(4.4) 26.5(5.6) 27.1(5.2)
Lasso 0.3(0.6) 0(0) 4.9(3.3) 11.4(14.5) 5.1(3.3)
MA 0(0) 0.4(0.7) 2.7(2.6) 11.8(15.8) 5.6(2.8)

LD(0.5)
Proposed 19.2(1.0) 2.6(4.0) 34.0(1.4) 32.8(11.3) 41.2(7.3)
HierMCP 15.4(2.1) 68.8(27.8) 5.3(4.8) 15.9(22) 18.0(1.7)
MCP-LP 13.3(5.7) 0.6(1.1) 7.1(4.4) 25.3(5.7) 27.9(6.6)
Lasso 0.2(0.7) 0(0) 6.7(3.6) 22.3(28.4) 6.6(3.6)
MA 0.3(1.3) 2.4(7.2) 2.9(3) 17.6(22.5) 5.6(2.9)

ciated with melanoma. For genetic factors, we consider the mRNA gene expressions. The

level 3 data in TCGA are collected using the IlluminaHiseq RNAseq V2 platform and have
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Table 3.4: Simulation results of S1 under MAF setting M2. In each cell, mean(sd) based
on 200 replicates.

M:TP M:FP I:TP I:FP TP60

AR(0.3)
Proposed 18.1(2.3) 22.1(10.9) 32.4(4.4) 30.6(9.6) 34.5(6.4)
HierMCP 12.3(2.1) 19(9.3) 1.6(1.5) 2.2(2.2) 16.5(3.0)
MCP-LP 5.7(4.3) 1(1.4) 4.4(3.3) 39.5(8.7) 13.2(4.4)
Lasso 0(0) 0(0) 1.8(1.7) 6.8(5.4) 1.8(1.7)
MA 0.1(0.2) 0.4(0.7) 1.2(1.3) 11.3(17.9) 4.8(2.9)

AR(0.5)
Proposed 18.4(2.3) 13.2(12.9) 33.3(3.5) 31.9(14.1) 37.7(6.8)
HierMCP 13.9(3.0) 16.2(9.1) 4.0(3.0) 7.0(5.4) 20.5(3.3)
MCP-LP 8.7(4.7) 0.4(0.6) 3.3(4.1) 36.8(8) 18.3(6.6)
Lasso 0.4(0.8) 0(0) 5.4(3.2) 20.3(12.8) 5.8(3.2)
MA 0.3(0.7) 2.3(4.9) 1.3(1.7) 11.6(14.2) 4.9(3.1)

Band1
Proposed 17.4(2.3) 22(11.4) 30.8(4.2) 30.8(12.3) 35.8(6.2)
HierMCP 11.2(2.0) 19.4(11.7) 2.4(3.9) 5.2(9.9) 17.3(2.8)
MCP-LP 3.8(3.3) 1.9(2.8) 4.7(3.7) 51.2(25.2) 13.9(4.2)
Lasso 0(0) 0(0) 0.8(1.4) 2.8(4.7) 0.8(1.4)
MA 0(0) 0.2(0.4) 1.8(2.5) 13.8(18.6) 5.2(3.0)

Band2
Proposed 18.1(1.3) 10.3(7.8) 33.7(2.9) 29.7(14.1) 41.1(6.6)
HierMCP 13.9(1.9) 18.5(11.6) 5.4(4.5) 12.7(16.3) 21.6(4)
MCP-LP 8.5(5.6) 0.9(1.6) 2.3(2.6) 40.3(9.3) 18(4.2)
Lasso 0.1(0.2) 0(0) 2.7(3.0) 9.5(13.4) 2.7(3.1)
MA 0.1(0.2) 1.1(2.9) 2.7(3.2) 19.2(27.3) 4.9(3.0)

LD(0.3)
Proposed 18.2(1.2) 12.8(10.8) 33.2(2.2) 29.3(13.5) 42.3(7.4)
HierMCP 14(1.8) 19.1(10.8) 5.9(4.9) 12.9(15.4) 22.8(3.8)
MCP-LP 8.9(5.5) 1.2(2.5) 3.2(3.3) 38.7(9.9) 16.0(4.3)
Lasso 0.1(0.2) 0(0) 2.5(3.1) 9.2(14.2) 2.6(3.1)
MA 0.1(0.2) 0.5(0.9) 2.6(2.7) 17.8(24.1) 4.9(3.0)

LD(0.5)
Proposed 18.2(1.2) 12.8(10.8) 32.7(2.1) 29.8(13.4) 41.9(8.1)
HierMCP 13.8(1.7) 18.3(11.2) 6.2(5.0) 13.8(16.0) 23.1(3.8)
MCP-LP 8.9(5.5) 1.2(2.5) 3.2(3.3) 38.7(9.9) 16.1(4.3)
Lasso 0.1(0.2) 0(0) 2.7(3.1) 10.0(14.8) 2.5(3.1)
MA 0.1(0.2) 0.5(0.9) 2.8(2.7) 19.7(24.7) 4.7(3.0)

been lowest-normalized, log-transformed, and median centered. A total of 361 subjects are

available with 18,355 measurements of gene expressions. We conduct a prescreening proce-
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dure using marginal regression and select the top 1000 genes with the smallest p-values for

downstream analysis.

The proposed method identifies 33 main genetic effects and 12 G-E interactions. Details

are presented in Table 3.5. Published studies suggest potentially important implications

of the findings. For instance, the proposed method identifies the interaction between the

pathologic stage with gene TCTEX1D1, and it has been found as one of the differently

methylated genes among metastatic melanoma patients. Gene MS4A14 has been found

to be consistently altered in expression in cutaneous malignant melanoma patients with

multiple in-transit metastases on the limbs. Expressions of LAMP2 cell-surface have been

found in different human tumor cell lines. were correlated with better overall survival

among gastric cancer patients, Gene MS4A14 has been showed positive expression in gastric

cancer and correlated with better overall survival. Gene PLCB4 has been considered to be

one of the plausible candidate driver genes of uveal melanoma and a tumor suppressor

in cutaneous melanoma. A recurrent mutation in gene PLCB4 has been found to promote

uveal melanoma tumorigenesis. We also confirm the identified genes are biologically sensible

by enrichment analysis. The selected genes by main effects and interactions are used for

enrichment analysis of pathways and diseases by DAVID version 6.8 (Sherman et al., 2009).

We entered the identified genes from Table 3.5 into the web application david.ncifcrf.gov,

with “OFFICIAL GENE SYMBOL” as gene identifier and Homo sapiens as species. The

identified genes using the proposed approach are also significantly enriched into several GO

terms. For example, seven identified genes (ISL1, SFI1, TAF9B, WWC2, CREG1, LPA,

PON1) are enriched into negative regulation of cellular metabolic process (GO:0031324,

p-value=0.0083). This has been selected to be one of the optimal features of the final

characterization of skin cancer-related genes.

3.5 Discussion

In this Chapter, we have developed a new marginal G-E interaction analysis, which adopts a

combination of penalization to respect the “main effects, interaction” hierarchical structure

and to incorporate additional information. The advantage of the proposed method that
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Table 3.5: Analysis of the SKCM data using the proposed method: identified G-E interac-
tions.

Age Sex Clark level PN

ADK 0.0034
AMER1 0.0019
ARHGEF15 -0.0077
CAMK1 -0.0120
CDHR5 -0.0102
COL6A4P2 -0.1560 0.2685 -0.3209 0.4746 -0.5368
CREG1 0.0043
CYP51A1 -0.0090
ENOSF1 -0.0102
FAM107A -0.0013
FMC1 -0.0018
FMO3 -0.0076
HBS1L 0.0105
HNRNPA0 0.0003
HSP90AB2P 0.1462
ISL1 0.0013
ITGBL1 -0.0003
LAMP2 0.0124
LINC00908 -0.0070
LPA -0.0181
MS4A14 -0.0033
PLAC9 -0.0029
PLCB4 -0.0042
PON1 -0.0077
REXO1L1P -0.1557 -0.2845 -0.3137 0.3015
SFI1 -0.0061
TAF9B 0.0014
TCTEX1D1 -0.2992 0.1487 0.6563
USHBP1 -0.0163
USP32P2 -0.1476 0.1439 -0.2570 0.2564
WWC2 0.0062
YBX3P1 0.0074
ZSWIM5 -0.0032

utilizes the additional Laplacian quadratic penalty leads to more accurate identification

and efficient computational algorithm. With the goal of improving the identification of

G-E interaction, we have transformed the additional information by the adjacency matrix

and then Laplacian quadratics. In main effect analysis, the sparse Laplacian shrinkage

estimator has been comprehensively investigated and its theoretical properties including

statistical inference are well established. Our proposed method adapts this penalization to

conduct G-E interaction analysis. We have demonstrated considerable superiority can be

achieved over multiple closely related alternatives using simulation under various settings.
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In data analysis, biologically sensible findings are made.

Through penalization is more coherent under a joint modeling framework, it is still

worth exploring and extending its applicability and performance to marginal models in the

interaction analysis. We have witnessed great success in the joint analysis of G-E interaction.

It can be of interest to migrate and to advance some of these analysis strategies to marginal

models. It can also be of interest to extend our simulation to other types of responses, for

example, survival outcomes. In the example of using texted-based mining data, we adopted

PubMatrix and other software tools are also available including VxInsight, MedMiner, and

others. Although bioinformatics and statistical evaluations have been conducted with the

data analysis results, it is crucial to further validate the findings in functional studies of

gene annotations.
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Chapter 4

Integrating Multidimensional

Molecular Data Into Interaction

Analysis Using Sparse Biclustering

and Lasso-Based Penalization

4.1 Introduction

For the outcomes and phenotypes of cancer, cardiovascular diseases, asthma, mental disor-

ders, and other complex diseases, accumulating evidences have shown that multiple types of

molecular changes, environmental risk factors, and their interactions play important roles.

For example, the expression of gene IL9 is found to interact with environmental dust mite

to increase severe asthma exacerbations in children (Sordillo et al., 2015). In the study of

lung cancer genetics, it has been suggested that smoking can act through increasing the

CNV (copy number variation) of gene IGF1 to induce its oncogenesis (Huang et al., 2011b).

Epigenetic changes have also been investigated. For example, Teschendorff et al. (2015)

finds that smoking-associated DNA methylation changes in buccal cells are associated with

epithelial cancers. It is observed that in each of the aforementioned and other published

studies, only the interactions between a single type of molecular changes and environmental
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risk factors have been analyzed.

In recent biomedical studies, multidimensional profiling is becoming popular. In such

studies, data on multiple types of molecular changes is collected on the same subjects.

Such studies make it possible to not only more deeply understand disease biology but also

construct more effective models for disease outcomes and phenotypes. A myriad of novel

statistical methods has been developed. For example, Wang et al. (2012b) proposes an

integrative Bayesian analysis to identify gene expression and methylation measurements

that are associated with clinical outcomes such as survival. Gross and Tibshirani (2015)

develops collaborative regression which applies penalization to explicitly accommodate the

correlations (overlapping information) as well as independent information between gene

expressions and CNVs for marker identification. Zhu et al. (2016a) develops a linear reg-

ulatory module-based method using the sparse SVD (singular value decomposition) and

penalization techniques to integrate gene expressions and their regulators for cancer out-

comes. We refer to Kristensen et al. (2014) and Wu et al. (2019a) for more discussions.

The aforementioned and other published studies have convincingly shown that integrating

multidimensional molecular data not only is biologically sensible but also improves estima-

tion, marker identification, and prediction. It is noted that these studies have focused on

the main effects of molecular changes.

Analyzing multidimensional molecular data as the main effects have provided rich and

valuable information in cancer research. However, G-E interaction analysis of multidi-

mensional molecular changes is lacking and relevant statistical methodologies are much

underdeveloped (McAllister et al., 2017). In fact, incorporating distinct molecular levels of

measurements to select important interactions is not trivial. Rather than immediately ap-

pending additional measurements to the existing methods for identifying G-E interactions,

genomic regulations among different types of measurements need to be properly accom-

modated to the model of disease outcomes. Various frameworks have been proposed for

analyzing genomic regulations, such as correlation analysis (Langfelder and Horvath, 2008)

and network-based analysis (Breitling et al., 2004). Accumulative evidence suggests that it

is limited to include only single type data such as gene expression levels as genetic factors

in the interaction analysis. Those “one-dimensional” cancer-genomic studies may not be
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comprehensive enough in exploiting interactions associated with cancer outcomes.

Motivated by the successes as well as limitations of the existing studies, here we conduct

M-E interaction analysis, where M stands for multidimensional molecular changes and E

stands for environmental risk factors. The objective is to collectively accommodate mul-

tiple types of high-dimensional molecular changes, environmental risk factors, and their

interactions in modeling disease outcomes and phenotypes. This analysis is the natural

next step of the integrated analysis of the main effects of multidimensional molecular data

and studies that conduct the interaction analysis of a single type of molecular changes and

environmental risk factors. Beyond the “ordinary” high dimensionality and noisy nature of

molecular data, the analysis faces other challenges. Specifically, multiple types of molecular

measurements are interconnected, which leads to overlapping information. For example,

gene expression levels are regulated by genetic and epigenetic changes. On the other hand,

they can also have independent information for disease outcomes (Risch and Plass, 2008).

Several techniques, for example built on canonical correlation analysis (Meng et al., 2016)

and matrix factorization (Zhang and Zhang, 2019), have been developed to accommodate

such overlapping and independent information. In addition, interaction analysis demands

respecting the unique “main effects, interactions” hierarchy (Bien et al., 2013; Wu et al.,

2019b), for which multiple regularization techniques have been developed.

This study has the potential to significantly expand the gene-environment interaction

analysis and multidimensional molecular data analysis paradigms. The proposed approach

is designed tailored to the M-E analysis and will significantly advance from the aforemen-

tioned ones. With the growing popularity of multidimensional profiling, this study can open

a new venue for modeling complex diseases.

4.2 Methods

The proposed approach can accommodate multiples types/combinations of molecular mea-

surements. Without loss of generality and to avoid confusion with terminologies, we use

gene expressions and their regulators (for example, genetic and epigenetic changes) as an

example in description. Such a combination has been quite popular in published studies
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(Wang et al., 2012b; Zhu et al., 2016a). Other combinations, for example proteins and

gene expressions, can be analyzed in the same manner. Assume n iid subjects. Denote

G = (G1, · · · ,Gp) and R = (R1, · · · ,Rq) as the n × p and n × q design matrices of p

gene expression and q regulator measurements. Denote E = (E1, · · · ,EM ) as the n ×M

design matrix of environmental risk factors, and Y as the length n vector of outcome. We

first consider continuous outcomes and will discuss accommodating other types of outcomes

later. Assume Y has been properly centered, and E,G, and R have been standardized.

4.2.1 M-E interaction analysis

Our goal is to identify important M-E interactions (as well as main effects) and construct

a comprehensive outcome model. Overall, the proposed approach consists of the following

main steps: (i) identification of the gene expression-regulator regulatory modules, which de-

scribe the regulation relationships (overlapping information), (ii) integration of multidimen-

sional molecular measurements within the regulatory modules, and (iii) joint modeling and

estimation that respect the “main effects, interactions” hierarchy. The analysis flowchart is

provided in Figure 4.1.

Step I We employ a penalized regression to estimate the gene expression-regulator reg-

ulations and then sequentially conduct biclustering to identify the regulatory modules.

Consider the model G = RΘ + ε, where ε is the n × p matrix of random errors and

Θ = (θ1, · · · ,θp) is the q × p unknown coefficient matrix. For estimating Θ, consider

Θ̂ = arg min
Θ

1

2
||G−RΘ||2F + λ

p∑
j=1

||θj ||1, (4.1)

where || · ||F and || · ||1 denote the Frobenius norm of a matrix and L1 norm of a vector, and

λ ≥ 0 is the tuning parameter.

To identify the regulatory modules, we propose conducting biclustering with Θ̂. Here a

regulatory module corresponds to a bicluster, which contains a small number of co-expressed

gene expressions and their regulators. Specifically, for estimation, we adopt the sparse

clustering technique developed in Helgeson et al. (2019), which first introduces weights for

gene expressions and then maximizes the weighted between-cluster distance for regulators.
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Figure 4.1: Flowchart of the proposed M-E interaction analysis.

The objective function is

max
C,C̄,w

p∑
j=1

wj

1

q

q∑
l=1

q∑
l′=1

dl,l′,j −
1

q1

∑
l,l′∈C

dl,l′,j −
1

q2

∑
l,l′∈C̄

dl,l′,j

 , (4.2)

subject to ||w||2 ≤ 1, ||w||1 ≤
√
p, and wj ≥ 0 for j = 1, · · · , p,

where θ̂lj is the (l, j)th component of Θ̂, dl,l′,j =
(
θ̂lj − θ̂l′j

)2
measures the distance between

the lth and l′th regulators, C and C̄ are the disjoint index sets of regulator clusters, q1 = |C|

and q2 = |C̄| are the cardinalities of C and C̄ with q1 < q2 and q1 + q2 = q, and w =

(w1, · · · , wp)′ is the weight vector for gene expressions, with a larger weight indicating higher

importance for clustering. With the constraints for w, each wj has a nonzero value between

0 and 1. With the estimated weight ŵ, a two-sample permutation-based Kolmogorov-

Smirnov test is conducted to test the significance of the difference between two clusters

and select the gene expression set D with significantly large weights. This process leads to
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one regulatory module {C,D} with regulators in C and gene expressions in D. To obtain

subsequent modules, we update Θ̂ by subtracting the module just identified and repeat the

above procedure. This process is iterated until the Kolmogorov-Smirnov test fails to reject

the null hypothesis of no clusters. With the sparsity of Θ̂, it is expected that only a subset

of gene expressions and regulators can form modules. Suppose that there are S identified

modules {C1,D1} , · · · , {CS ,DS}.

Rationale Linear regression is used to describe the regulations between two types of molec-

ular measurements. Multiple published studies (Shi et al., 2015; Zhu et al., 2016a) have

shown that it is a sensible choice, especially considering the high dimensionality. One gene

expression is regulated by only a few regulators, and one regulator affects the expressions of

only a few genes. As such, Θ is assumed to be sparse, and the Lasso penalization is applied

for estimation and identification of important regulations.

The concept of regulatory module has been developed in Zhu et al. (2016a) and other

studies. A regulatory module consists of a small number of gene expressions and regulators

that behave in a coordinated manner. The construction in Zhu et al. (2016a), which is

based on sparse SVD, limits each regulatory module to have rank one. Here we lift this

inconvenient constraint via biclustering. By construction, each bicluster (regulatory mod-

ule) consists of gene expressions and regulators sharing similar patterns in Θ. We adopt

the sparse biclustering method developed in Helgeson et al. (2019) because of its favorable

numerical performance. Note that here we cluster regulators into two disjoint groups with

weighted gene expressions. It is also possible to reverse the roles of gene expressions and

regulators, and this leads to similar clustering results in our numerical investigations. With

the sequential cluster construction strategy, different regulatory modules may have overlaps.

This is desirable as one gene/regulator can participate in multiple biological processes.

Step II We integrates information within each regulatory module {Cs,Ds} , s = 1, · · · , S,

using the PCA (principal component analysis) technique. Given a matrix A and index set

I, denote AI as the columns of A indexed by I. For the sth module, we apply PCA to the

stacked matrix (GDs ,RCs) and select the top PCs with the cumulative variance contribution

rate ≥ 80%. Denote the resulted matrix composed of the ps PCs asXs = (Xs,1, · · · ,Xs,ps).

In addition, for gene expressions and regulators not involved in any identified modules,
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we collect and combine them as Z = (Z1, · · · ,Zpz) = (GDc ,RCc), where Dc = {j ∈

{1, · · · , p} : j /∈ Ds, s = 1, · · · , S} and Cc = {j ∈ {1, · · · , q} : j /∈ Cs, s = 1, · · · , S}.

X = (X1, · · · ,XS) and Z form input for downstream analysis.

Rationale The previous step of analysis does not directly limit the sizes of the modules.

Thus, it is possible some modules have moderate to large sizes. In addition, with regulations,

measurements within the same modules often times have strong correlations. To reduce

dimensionality, remove collinearity, and simplify computation, we apply PCA, which can

be replaced by other dimension reduction techniques. Overall, the input for the next step

consists of the PCs (representing overlapping information) and the gene expressions and

regulators that do not form patterns (representing independent information).

Step III Here we conduct interaction analysis, that respects the “main effects, interactions”

hierarchy (Bien et al., 2013). For the continuous outcome, consider the regression model

Y = Eα+
S∑
s=1

Xsβs +Zγ +
M∑
m=1

S∑
s=1

(E′m �X ′s)′(βs ∗ ηsm) +
M∑
m=1

(E′m �Z ′)(γ ∗ τm) + ξ,

= g(X,Z,E) + ξ. (4.3)

Here α = (α1, · · · , αM )′, β = (β′1, · · · ,β′S), and γ = (γ1, · · · , γpz)′ correspond to the

main effects of the environmental factors, regulatory modules, and individual molecular

measurements (that do note belong to any module), respectively. For themth environmental

factor, βs ∗ ηsm and γ ∗ τm correspond to the interactions with the sth regulatory module

and all individual molecular measurements, respectively, with ∗ being the component-wise

product. � is the “matching column-wise” Khatri-Rao product. ξ is the random error

vector. Here, following the literature (Choi et al., 2010), we use the products EimXij and

EimZij to describe the interactions for the ith subject. To accommodate the hierarchical

structure of interaction analysis, the interaction effects βsjηsmj and γjτmj are decomposed

into two components, the first for the corresponding main effects (βsj and γj) and the other

for the interaction-specific effects (ηsmj and τmj).

For the estimation and identification of important interactions (and main effects), we
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propose the penalized objective function

Q(Φ) =
1

2
||Y − g(X,Z,E)||22

+ λ1

S∑
s=1

√
ps

(
||βs||2 +

M∑
m=1

||ηsm||2

)
+ λ2

(
||γ||1 +

M∑
m=1

||τm||1

)
, (4.4)

where Φ = (α′,β′1, · · · ,β′S ,γ ′,η′11, · · · ,η′MS , τ
′
1, · · · , τ ′M )′, || · ||2 is the L2 norm of a vector,

and λ1, λ2 ≥ 0 are tuning parameters. Gene expressions and regulators that are involved in

modules with nonzero estimated βs and βs ∗ ηsm are identified as having important main

effects and M-E interactions, respectively. In addition, for individual molecular measure-

ments, the nonzero components of γ and γ ∗ τm correspond to important main effects and

interactions, respectively.

Rationale A joint model is developed to accommodate all molecular and environmental ef-

fects and their interactions. As to be described below, the linear regression model can be

replaced by other models. For estimation and selection, we adopt penalization, which has

been the choice of quite a few recent interaction studies (Bien et al., 2013; Wu et al., 2019b).

For many datasets including those analyzed in this article, the environmental factors are

pre-selected based on existing knowledge and usually considered as important, so that their

coefficients are not subject to penalized selection. As such, the “main effects, interactions”

hierarchy postulates that an identified interaction corresponds to an identified main molec-

ular effect. To achieve this, we decompose the interaction effects into two components and

have that βsjηsmj 6= 0 only if βsj 6= 0 and γjτmj 6= 0 only if γj 6= 0 (Choi et al., 2010).

In (4.4), we employ group Lasso for regulatory modules (where PCs corresponding to the

same module form a group) and Lasso for individual molecular measurements to identify

M-E interactions and main effects. Here, all PCs corresponding to the same module are

in or out simultaneously, which is motivated by the coordinated nature of the molecular

measurements in the same module.

Accommodating other types of outcomes With a different type of outcome variable,

the lack-of-fit in (4.4) can be replaced by the negative log-likelihood function or an estimat-

ing equation-based measure. As an example, consider survival data, which is analyzed be-
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low. Denote T as the length n vector of survival times. Consider the AFT (accelerate failure

time) model log(T ) = g(X,Z,E) + ξ, where notations have similar implications as above.

Denote C as the length n vector of censoring times, then we observe Y = log(min(T ,C))

and δ = I(T ≤ C) with I(·) being the indicator function. Assume that data has been

sorted according to the observed times from the smallest to the largest. Compute the

Kaplan-Meier weights: ρ1 = δ1
n , ρi = δi

n−i+1

i−1∏
i′=1

( n−i′
n−i′+1)δi′ , i = 2, . . . , n. Then, we have the

weighted penalized objective function

1

2
||√ρ∗(Y −g(X,Z,E))||22+λ1

S∑
s=1

√
ps

(
||βs||2 +

M∑
m=1

||ηsm||2

)
+λ2

(
||γ||1 +

M∑
m=1

||τm||1

)
.

4.2.2 Computation

The detailed computational algorithms for Steps I and III are provided in Algorithms 1 and

2 (Appendix), respectively. Step II can be realized using existing algorithms and R function

prcomp. In computation, effort has been made to take advantage of the existing algorithms

and software. When not possible, optimization has been based on the CD (coordinate de-

scent) techniques. In the literature, convergence properties of the CD and other techniques

used in computation have been well established. Convergence is observed in all of our numer-

ical studies. The two tuning parameters in (4.4) are selected using the extended Bayesian

information criterion (Chen and Chen, 2008). The proposed algorithm is computationally

feasible. For example, under a standard laptop configuration, it takes less than five min-

utes for a simulated dataset with 250 subjects, 500 gene expression measurements, and 500

regulator measurements. We have developed R code implementing the proposed approach

and made it publicly available at https://github.com/shuanggema/omics_interaction.

4.2.3 Heuristic theoretical justifications

Consider the scenario where the number of molecular factors (gene expressions and their

regulators) increases and the number of environmental factors is finite as the sample size

increases. There are several key estimation procedures and conditions. First, in the step

of identifying regulatory modules, the consistency of Lasso estimator Θ̂ is needed. For
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each gene expression, with probability at least 1 − 2√
π
qu−1

n e−u
2
n/2, θj can satisfy the weak

oracle property, under mild regularity conditions on the design matrix R, signal strengths,

Gaussian random error, and q = o(une
u2n/2). Here, the order of un can be o(na) with

a ∈ (0, 1
2 ], leading to log(q) = o(n2a). Thus, with a total of p gene expressions, to ensure

the overall consistency of Θ̂, it is required that 1− 2√
π
qpu−1

n e−u
2
n/2 → 1 with the Bonferroni

approach. Assume that p and q are of the same order, then we have log(q) = log(p) = o(na).

Second, the adopted biclustering strategy is an “upgrade” of the sparse K-means clustering

with an L2/L1 penalty. For the sparse K-means with an L∞/L0 penalty, it has been shown

in Chang et al. (2018) that under certain regularity conditions, the estimated weight w has

feature selection consistency. Consistency under an L2/L1 penalty is expected to hold with

revised norm assumptions, which will lead to consistency of the estimated gene expression

clusters. Consistency of the estimated cluster centers of K-means has been well established

in Pollard (1981), which can support the consistency of the estimated regulator clusters.

Combining such results is expected to lead to the consistency of biclustering. Third, for

each regulatory module, PCA is conducted to extract integrated information. With the

ratio n/(|Cs| + |Ds|) → 0, Jung et al. (2009) shows that if the first few eigenvalues are

large enough compared to the others, then the corresponding estimated PC directions are

consistent or converge to the appropriate subspace (subspace consistency). Finally, for

estimators in interaction analysis with hierarchy, consistency has been established in Choi

et al. (2010) and Wu et al. (2019b). As shown in Wu et al. (2019b), under mild regularity

conditions on the design matrix, smallest signal, and tuning parameters, the estimator has

consistency properties, where the dimensionality p+ q is allowed to grow up exponentially

faster than the sample size.

4.3 Simulation

We set p = q = 500, M = 5, and n = 250, and generate environmental factors from inde-

pendent standard normal distributions. In addition, (a) we consider two settings for Θ to

represent different regulation patterns. The first (Θ1) contains 15 regulatory modules with

one overlapping. The corresponding elements are independently generated from normal
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distributions with mean ranging from −0.7 to 1.5 and standard deviation 0.1, covering dif-

ferent levels and directions of regulations on average. Each regulatory module contains 12.3

gene expressions and 16.6 regulators. The rest elements of Θ1 are zero. The second (Θ2)

contains 20 nonzero regulatory modules with one overlapping, and the nonzero values are

generated similarly as Θ1. Those modules consist of 6.0 gene expressions and 8.1 regulators

on average. Compared to Θ1, Θ2 contains more modules with smaller sizes, representing

a different type of regulations. (b) The values of regulators R involved in each regulatory

module are generated from a multivariate normal distribution with marginal means 0 and

variances 1. We consider three correlation structures. The first (R1) is an auto-regressive

structure where the correlation between the jth and lth variables is (−0.5)|j−l|. The second

(R2) is a banded structure where the correlation between the jth and lth variables is −0.5

if |j− l| = 1 and 0 otherwise. The third (R3) has a structure where the correlation between

the jth and lth variables is (−1)|j−l|/(|Cs|+ |Ds|). Among them, R1 and R2 are “diagonally

dominant”, while R3 has all correlations at the same level. The individual regulators that

are not involved in any regulatory modules are independently generated from the standard

normal distribution. As such, regulators in different modules are independent of each other

and also independent of the individual regulators. (c) Gene expression measurements are

generated by G = RΘ+ε, where the elements of ε follow independent standard normal dis-

tributions. (d) GivenG, R, and Θ, generate the integrated informationXs for each module

using the top PCs and Z for the individual molecular units. (e) With Xs, s = 1, · · · , S and

Z, consider the continuous response under model (5.2). Two types of nonzero coefficient

settings are considered, leading to a total of 100 (P1) and 70 (P2) important main molec-

ular effects and M-E interactions, respectively. These nonzero coefficients are generated

uniformly from (0.5, 0.8) (B1) or (0.8, 1.2) (B2), representing two signal levels, with the

“main effects, interactions” hierarchical structure satisfied. The molecular factors with im-

portant effects include gene expressions and regulators involved in the regulatory modules

as well as individual molecular measurements. Additional information is provided in the

Appendix. Random errors ξ are generated from independent standard normal distributions.

To better appreciate operating characteristics of the proposed module detection proce-

dure, we simulate one dataset under setting Θ1 and correlation structure R1. We present
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Figure 4.2: Simulation. Left: true values of regulation under setting Θ1 and R1; Middle:
estimated values; Right: identified regulatory modules.

the true regulation relationships between gene expressions and regulators in Figure 4.2,

together with their estimated values and identified regulatory modules. We observe that

with moderate associations between small sets of molecular measurements, the estimated Θ̂

based on Lasso closely reflects the true regulation relationships. Furthermore, biclustering

is able to properly identify the regulatory modules based on the estimated regulations.

To be more informative, besides the proposed approach, we also consider the following

alternatives which have closely related frameworks. Comparing with these alternatives can

directly establish the necessity of the considerations on gene expression-regulator regula-

tions, correlations within regulatory modules, and hierarchical interactions. Specifically,

Alt.1 excludes Step II of integration and builds the hierarchical interaction model using

gene expressions and regulators directly combined as groups based on the identified reg-

ulatory modules. Alt.2 excludes the decomposition of interaction coefficients in Step III,

and so the “main effects, interactions” hierarchical structure may be violated. Alt.3 builds

the hierarchical joint model directly using the original stacked gene expression and regula-

tor measurements without accounting for the regulations. Alt.4 incorporates the original

stacked gene expression and regulator measurements directly in the interaction model. It

ignores the regulation relationships and interaction hierarchy. For evaluation, we consider

the numbers of true positives (TP) and false positives (FP) for main effects and interactions

together.

For each scenario, 200 replicates are simulated. Summary results under settings P1 and

P2 are presented in Tables 4.1 and 4.2 respectively. We observe that the proposed ap-
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proach achieves better or comparable performance in identification accuracy. For example

in Table 4.1 with weak effects (B1), regulation pattern Θ1, and correlation structure R1,

the proposed approach selects on average 95.94 true positives, compared to 71.90 (Alt.1),

65.20 (Alt.2), 23.15 (Alt.3), and 16.80 (Alt.4). When there are more correlated molecular

measurements, the proposed approach remains superior in identification. For instance in

Table 4.1 with weak effects (B1), regulation pattern Θ1, and correlation structure R3, the

proposed approach selects on average 99.70 true positives with 8.50 false positives. In com-

parison, Alt.1, Alt.2, Alt.3, and Alt.4 select fewer true positives and more false positives

with (TP,FP)=(83.68,12.26), (95.90,54.75), (27.30,14.70), and (20.75,136.65), respectively.

With a higher signal level under setting B2, all approaches behave better, while with more

regulation modules under setting Θ2, performance of all approaches decays. Under both

settings, the proposed approach still has advantage. It is observed that Alt.1 generally

achieves the second best identification performance, and under some scenarios it is compet-

itive in true positive identification compared to the proposed approach, at the cost of larger

numbers of false positives. This is because the integration procedure of the proposed ap-

proach that uses PCs for the joint interaction model can effectively remove collinearity and

reduce false discovery. The proposed approach performs better than Alt.2, suggesting that

the hierarchical interaction modeling can lead to more accurate identification. The superior

performance of the proposed approach over Alt.3 and Alt.4 provides a direct support to the

integrated analysis strategy that accommodating the regulations among multidimensional

molecular data in interaction analysis substantially improves identification performance.

4.4 Data analysis

TCGA is one of the largest data resources with multidimensional profiling. TCGA data

have been analyzed in interaction analysis with one type of molecular measurements as well

as integrated modeling with the main effects of multiple types of molecular measurements.

This study is the first to conduct the integrated M-E interaction analysis. We analyze data

on lung adenocarcinoma (LUAD) and cutaneous melanoma (SKCM). Data are downloaded

from TCGA Provisional using the R package cgdsr.
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Table 4.1: Summary results for simulation under setting P1 with a total of 100 true positives:
mean (sd) from 200 replicates.

Θ1 Θ2

Approach TP FP TP FP
B1 R1 Proposed 95.94(4.63) 11.39(13.83) 80.06(5.37) 6.31(6.02)

Alt.1 71.90(35.35) 20.45(24.20) 27.06(19.83) 1.94(1.12)
Alt.2 65.20(28.39) 28.75(14.03) 31.69(15.05) 7.94(18.32)
Alt.3 23.15(3.47) 7.45(3.90) 20.35(9.10) 19.85(8.43)
Alt.4 16.80(2.09) 122.20(38.35) 29.85(5.73) 127.40(40.31)

R2 Proposed 97.30(1.75) 5.70(10.99) 80.72(4.64) 20.89(25.90)
Alt.1 86.60(30.13) 13.00(16.06) 47.00(16.82) 6.11(4.92)
Alt.2 85.15(16.11) 39.95(6.87) 33.61(11.44) 19.06(21.78)
Alt.3 23.35(4.18) 7.65(2.89) 21.05(5.77) 25.79(6.27)
Alt.4 16.95(2.86) 126.05(46.47) 16.00(9.56) 71.15(65.52)

R3 Proposed 99.70(0.57) 8.50(14.60) 79.40(3.22) 36.13(38.10)
Alt.1 83.68(27.69) 12.26(18.29) 51.14(25.72) 8.71(11.69)
Alt.2 95.90(8.09) 54.75(12.48) 30.50(14.39) 4.50(7.60)
Alt.3 27.30(1.63) 14.70(17.41) 20.21(7.79) 22.11(8.46)
Alt.4 20.75(2.65) 136.65(37.06) 20.00(8.55) 103.05(63.77)

B2 R1 Proposed 99.80(0.41) 14.25(18.95) 83.90(4.43) 12.60(10.56)
Alt.1 99.80(0.41) 57.80(22.75) 32.00(23.43) 14.35(13.92)
Alt.2 85.80(14.06) 55.55(27.20) 34.75(13.98) 18.25(9.48)
Alt.3 27.17(2.46) 5.28(1.02) 27.15(8.67) 35.15(11.45)
Alt.4 21.45(2.98) 142.05(31.31) 30.30(10.98) 110.10(66.72)

R2 Proposed 99.82(0.39) 4.12(14.69) 77.88(3.67) 20.81(12.93)
Alt.1 90.80 (27.98) 38.65(21.69) 42.69(22.46) 12.06(8.73)
Alt.2 77.85(19.63) 47.05(16.62) 21.75(19.49) 19.05(22.55)
Alt.3 27.37(2.29) 7.79(3.31) 17.45(5.84) 18.95(11.87)
Alt.4 19.60(2.19) 135.35(36.02) 14.95(9.74) 52.40(47.98)

R3 Proposed 99.35(0.67) 12.05(17.72) 77.77(2.95) 9.85(6.67)
Alt.1 96.45(13.77) 50.45(17.38) 35.65(19.45) 21.95(13.06)
Alt.2 86.45(12.17) 46.45(11.91) 16.50(16.99) 10.00(13.13)
Alt.3 28.88(3.14) 7.71(2.52) 14.35(4.89) 16.35(7.19)
Alt.4 21.25(2.71) 140.65(30.84) 14.95(10.79) 65.15(62.45)

4.4.1 Analysis of LUAD data

The response of interest is the reference value for the pre-bronchodilator forced expiratory

volume in one second in percent (FEV1). It is an important biomarker for lung capacity,

with a lower value suggesting the potentially functional disorder of the lung, and has been

shown to be a powerful marker for future morbidity and mortality (Young et al., 2007).

It is continuously distributed and ranges from 1.95 to 156 with mean 80.58 and standard

deviation 23.55. We focus on the primary tumor samples of the Whites. For environmental
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Table 4.2: Summary results for simulation under setting P2 with a total of 70 true positives:
mean (sd) from 200 replicates.

Θ1 Θ2

Approach TP FP TP FP
B1 R1 Proposed 68.85(0.88) 0.40(0.50) 67.30(3.26) 2.30(5.65)

Alt.1 63.30(15.69) 34.80(23.26) 33.95(20.68) 6.68(10.37)
Alt.2 65.25(4.27) 31.85(8.55) 52.15(10.98) 38.30(36.79)
Alt.3 22.25(4.46) 7.85(4.49) 20.95(4.32) 23.85(9.28)
Alt.4 15.30(2.75) 129.45(42.29) 28.10(4.10) 127.65(43.63)

R3 Proposed 57.15(18.43) 10.50(6.36) 53.90(12.49) 2.65(2.21)
Alt.1 42.55(28.65) 18.00(25.46) 38.25(15.21) 4.40(8.18)
Alt.2 42.50(21.19) 24.05(14.57) 28.00(17.26) 3.70(6.14)
Alt.3 24.50(2.50) 10.90(8.42) 18.00(11.31) 23.00(24.04)
Alt.4 14.30(1.95) 107.05(30.44) 16.95(5.31) 83.85(51.99)

R3 Proposed 67.15(6.71) 1.40(3.98) 51.90(13.63) 2.55(2.74)
Alt.1 61.00(19.74) 27.80(17.56) 34.25(6.54) 8.10(14.49)
Alt.2 65.35(5.05) 36.35(11.94) 44.45(15.43) 47.00(43.04)
Alt.3 22.75(2.90) 9.95(7.49) 15.75(4.88) 18.85(12.33)
Alt.4 15.40(2.26) 117.65(30.91) 19.20(5.69) 105.85(61.27)

B2 R2 Proposed 69.75(0.55) 1.70(6.67) 67.05(5.88) 10.50(11.00)
Alt.1 69.75(0.44) 32.30(11.68) 65.40(7.38) 28.65(30.47)
Alt.2 66.40(5.23) 38.15(30.67) 46.00(12.02) 2.30(5.25)
Alt.3 25.79(5.54) 11.05(17.48) 20.95(4.32) 23.85(9.28)
Alt.4 16.65(2.21) 136.00(36.41) 36.25(4.27) 150.50(45.17)

R2 Proposed 67.15(11.35) 1.15(3.77) 57.10(11.11) 4.55(4.08)
Alt.1 69.80(0.52) 33.70(12.69) 41.85(15.79) 16.35(9.42)
Alt.2 58.15(9.91) 36.55(11.76) 43.55(15.74) 11.50(13.61)
Alt.3 26.85(2.89) 6.85(2.13) 18.00(11.31) 23.00(24.04)
Alt.4 17.50(2.65) 148.40(45.18) 18.90(6.21) 91.40(53.36)

R3 Proposed 69.85(0.37) 2.80(7.25) 56.77(8.12) 3.69(6.32)
Alt.1 68.90(4.46) 32.95(9.29) 39.35(12.57) 19.35(18.79)
Alt.2 66.35(6.67) 35.45(7.99) 50.05(11.98) 7.15(14.18)
Alt.3 26.70(3.37) 7.40(3.42) 15.75(4.88) 18.85(12.33)
Alt.4 16.75(1.97) 133.65(32.08) 16.20(6.05) 63.40(43.57)

risk factors, we consider age, American Joint Committee on Cancer (AJCC) tumor patho-

logic stage (Stage), tobacco smoking history indicator (Smoking), and gender, which have

been extensively investigated in the literature. We analyze mRNA gene expression mea-

surements which were collected using the Illumina HiSeq 2000 RNA Sequencing Version 2

analysis platform. For regulators, we include CNV measurements that were collected using

the Genome-Wide Human SNP Array 6.0 platform and DNA methylation measurements

that were collected using the Illumina Infinium HumanMethylation450 platform. A total of
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18,345 gene expression, 23,321 CNV, and 15,288 methylation measurements are available.

In principle, the proposed approach can be directly applied. However, considering that only

a small number of molecular measurements are potentially associated with the outcome and

the analysis may be unstable with the high dimensionality and small sample size, we con-

duct a prescreening. Specifically, we select the top 1,000 molecular measurements with the

smallest p-values using marginal regression. This leads to 164 subjects with 467 gene ex-

pression and 533 regulator (316 CNV and 217 methylation) measurements for downstream

analysis.

The proposed analysis identifies 20 regulatory modules in Step I, and each module on

average contains 11.70 gene expression and 7.35 regulator measurements. The graphical

presentation of the modules is provided in Figure C.1 (Appendix), where some overlappings

between modules are observed. In interaction analysis, the proposed approach identifies

62 main molecular effects and 29 M-E interactions, among which 50 main effects and 27

interactions belong to six regulatory modules. The identified main effects consist of 41

gene expression, 9 CNV, and 12 methylation measurements, and the identified interactions

consist of 20 with gene expressions and 9 with methylations. Detailed estimation results

are presented in Table 4.3, where a “group” corresponds to a module or an individual

measurement. Literature search suggests that the findings are biologically sensible. For

example, Stage and Smoking are shown to be negatively associated with FEV1, which has

also been suggested in previous studies. Gene AFF3 is identified along with its interactions

with Smoking and gender. A decreased methylation of gene AFF3 in non-small cell lung

tumors has been found as one of the key epigenetic changes associated with lung cancer

development. Gene PWRN1 has been reported to be involved in the process of spermato-

genesis, and its expression level has been shown to be related to tumor size in lung cancer

patients. Gene CACNG3 has been identified as an oncogene from a pan-cancer study with

somatic mutation data, suggesting its potentially important role for lung adenocarcinoma.

Gene PRH1 has been identified as one of the candidate exosomal protein biomarkers for the

detection of lung cancer using human saliva and serum. In addition, published studies have

shown that gene CACNG6 is significantly upregulated in lung squamous cell carcinoma

compared to normal lung tissues. Gene PABPC5 has been found to be hypermethylated
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among early-stage non-small cell lung cancer patients compared to controls. Gene MAP4K4

has been demonstrated to be frequently overexpressed in many types of human cancers, re-

lating to transformation, invasiveness, adhesion, and cell migration. Patients with lung

adenocarcinoma and high MAP4K4 expressions have been found to have a shorter overall

survival. The lower expression levels of gene DRD3 have been found among patients with

non-small cell lung cancer.

We take a closer look at the functional and biological connections of genes involved in

each identified regulatory module. Specifically, the gene ontology (GO) enrichment analysis

is conducted using DAVID version 6.8 (Sherman et al., 2009). It is observed that the

identified modules are biologically meaningful with certain significantly enriched GO terms.

For example, in regulatory module #1, genes CACNG6 and RYR3 are enriched with calcium

channel activity (GO:0005262, p-value= 0.0042) and calcium ion transport (GO:0006816,

p-value=0.0072). Biological studies have found calcium controls cell death and proliferation

that are relevant to tumorigenesis, and up or down regulations of specific calcium channels

and pumps are associated with cancers. As another example, genes ATP8A2 and DGUOK

in regulatory module #20 are enriched with purine nucleoside triphosphate (GO:0009144,

p-value=0.0053) and purine nucleoside metabolic process (GO:0006163, p-value=0.008),

suggesting the functional and biological connections within the identified module.

Analysis is also conducted using the alternative approaches. In Table C.1 (Appendix),

we provide the comparison results, including the numbers of identified main effects and

interactions, and numbers of overlapping and RV coefficients between the identifications us-

ing different approaches. The RV coefficient measures the common information of two data

matrices. It lies between 0 and 1, and a larger value indicates a higher degree of overlapping.

We observe that different approaches select significantly different sets of main effects and

interactions, with moderate overlapping as measured by the RV coefficients. In practical

data analysis, it is difficult to objectively evaluate identification performance. To provide

an indirect support, we evaluate prediction performance and selection stability. Specifically,

for prediction evaluation, we consider the prediction mean squared error (PMSE) based on

200 random resamplings (9/10 training and 1/10 testing samples). The proposed approach

demonstrates competitive performance with the average PMSE= 1.02, compared to 1.25
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(Alt.1), 1.16 (Alt.2), 1.05 (Alt.3), and 1.02 (Alt.4). We also assess selection stability using

the observed occurrence index (OOI) (Huang et al., 2006). For each identified main effect

(interaction), OOI computes its selection frequency in the 200 resamplings, and a larger

value suggests higher stability. The proposed approach is observed to have much satisfac-

tory stability with the average OOI value being 0.77, compared to 0.53 (Alt.1), 0.45 (Alt.2),

0.26 (Alt.3), and 0.21 (Alt.4).

4.4.2 Analysis of SKCM data

The response of interest is overall survival, which is subject to censoring. We focus on the

primary tumor samples of the Whites. We consider age, AJCC tumor pathologic stage

(Stage), gender, and Clark level at diagnosis (Clark), all of which have been suggested as

associated with melanoma in the literature. A total of 18,925 gene expression, 23,287 CNV,

and 15,616 methylation measurements are available. With the same prescreening as in the

previous analysis, the data used for downstream analysis contains 314 gene expression and

686 regulator (397 CNV and 289 methylation) measurements on 231 subjects, of which 139

died during follow-up. The observed times range from 2.04 to 357.10 months with median

56.31.

The proposed analysis identifies 17 regulatory modules, which contain on average 7.60

gene expressions and 6.45 regulators. The graphical presentation is provided in Figure C.1

(Appendix). The AFT model is assumed for modeling survival. A total of 28 main effects

and 12 interactions are selected by the proposed approach, among which 14 main effects

belong to one identified regulatory module and the remaining are related to the individual

molecular units. The identified main effects consist of 15 gene expression and 13 methyla-

tion measurements, and the identified interactions consist of 9 with gene expressions and 3

with methylations. The estimated coefficients are presented in Table 4.4. Examining the

estimated coefficients suggests that melanoma patients with higher levels of age, Stage, and

Clark have a shorter survival. Findings on the molecular variables are also sensible. For

instance, gene IMP3 has been found to be associated with cell proliferation and considered

as an oncofetal protein-related gene. Its expression level has been used as a diagnostic

and prognostic marker from surgical pathology in malignant melanoma. TBC1D7 is one

88



Table 4.3: Analysis of the LUAD data using the proposed method: identified main effects
and interactions.

Group Type Gene Main Age Stage Smoking Gender
0.010 -0.031 -0.201 -0.067

1 GE VIT 0.006
1 GE PRH1 0.007
1 GE NOXRED1 0.006
1 GE RYR3 0.007
1 GE SERPINB11 0.007
1 GE ZNF273 0.004
1 GE WRAP53 0.003
1 GE SNORA7B 0.006
1 GE GUCY2F 0.007
1 GE STATH 0.007
1 GE CACNG6 0.007
1 DM WIPI2 -0.005
3 GE LINC00922 -0.059 0.009 0.001 0.004
3 GE NDP -0.059 0.008 0.001 0.004
3 GE TNMD -0.055 0.008 0.001 0.004
3 GE IBSP -0.055 0.008 0.001 0.004
3 GE PWRN1 -0.053 0.008 0.001 0.004
3 GE CACNG3 -0.053 0.008 0.001 0.004
3 DM MIS18A -0.045 0.007 0.001 0.003
3 DM RRP1 -0.036 0.005 0.001 0.002
3 DM ZDHHC2 -0.044 0.006 0.001 0.003
9 GE ZXDA -0.014
9 GE EXOSC8 0.022
9 GE EPSTI1 0.020
9 GE UGT2B4 -0.012
9 CNV SLC22A10 0.009
9 CNV PABPC5 0.018
9 DM ATP8A2 0.010
9 DM DHX32 0.013
15 GE KL -0.016
15 CNV MAP4K4 -0.013
15 CNV KCMF1 -0.016
15 DM SATB2 -0.013
16 GE HIST1H2AA -0.009
16 GE KCNIP3 -0.008
16 GE LRRTM3 -0.011
16 GE DCLRE1A -0.012
16 GE PPP1R3D -0.007
16 GE NHLRC2 -0.009
16 GE NPAP1 -0.010
16 CNV MAP4K4 -0.011

Continued on the next page

of the down-regulated genes that are potentially causal for the induction of loss of prolif-

erative capacity and terminal differentiation in human melanoma cells. The lack of gene

A2M expression provides a growth advantage to melanoma cells by interfering with effec-
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Table 4.3: Continued from the previous page.
Group Type Gene Main Age Stage Smoking Gender
20 GE FTSJ1 0.013
20 GE DGUOK 0.012
20 GE SESN3 -0.008
20 GE CAPZB 0.009
20 CNV PABPC5 0.005
20 CNV MRGPRD 0.008
20 DM IL17D 0.008
20 DM ATP8A2 0.006
20 DM DHX32 0.004
21 GE AFF3 -0.106 0.147 -0.013
27 GE SGPP2 -0.009
47 GE FNIP2 -0.027
50 GE C11orf65 0.005
68 GE DRD3 0.012
102 GE DPRX 0.026
124 GE PRIMA1 -0.016
178 GE FAM217B -0.013
304 CNV AK4 0.014
319 CNV MIR582 -0.024
423 DM HOXA1 -0.027
520 DM SDE2 0.014

tive antigen presentation. IL24 is a novel tumor suppressor gene with tumor-apoptotic

and immune-activating properties, and one of several genes that are upregulated during

terminal differentiation of melanoma cells. The high expression level of gene ZDHHC4 has

been observed in NRAS mutant melanoma cell lines. Published studies have also found a

statistically significant overexpression of gene BRF2 in cutaneous melanoma compared to

normal skin, and suggested it as a potential marker for patients at risk for metastasis. Gene

RBP2 has been shown to directly regulate gene transcription in a reporter assay system as

a transcriptional regulator with a tumor suppressive potential in melanoma cells. For the

identified module, we further conduct the GO enrichment analysis. It is observed that the

involved genes share common GO terms. For example, genes A2M, ENOX1, and IL24 are

enriched with extracellular space (GO:0005615, p-value=0.0097), for which published stud-

ies have suggested that extracellular vesicles released to extracellular space are correlated

with genetic tumor progression in human cancer.

We conduct analysis using the alternatives and summarize the comparison results in

Table C.1 (Appendix). Similar patterns as in the previous analysis are observed, where

different approaches have small numbers of overlapping identifications and moderate RV
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coefficients. We also conduct the prediction and selection stability evaluation. With the

censored survival response, we adopt the C statistic to measure prediction accuracy (Uno

et al., 2011). A larger value of C statistic indicates better prediction. The proposed approach

has an average C statistic 0.60, compared to 0.57 (Alt.1), 0.48 (Alt.2), 0.47 (Alt.3), and

0.59 (Alt.4). In addition, it has superior selection stability with an average OOI of 0.74,

compared to 0.56 (Alt.1), 0.50 (Alt.2), 0.38 (Alt.3), and 0.26 (Alt.4). These results provide

a strong support to the proposed M-E interaction analysis.

Table 4.4: Analysis of the SKCM data using the proposed method: identified main effects
and interactions.

Group Type Gene Main Age Stage Gender Clark

-0.176 -0.099 0.150 -0.042
14 GE MYCNOS 0.003
14 GE MRGPRX3 0.004
14 GE MFSD6L 0.005
14 GE IMP3 0.005
14 GE TBC1D7 0.003
14 GE A2M 0.004
14 GE NEURL2 0.005
14 GE IL24 0.004
14 DM MAU2 0.004
14 DM ZDHHC4 0.004
14 DM ENOX1 0.002
14 DM PTPN12 0.005
14 DM BRF2 0.002
14 DM SYT6 0.002
70 GE DSTYK -0.054 0.123 -0.164
71 GE GLDN 0.044 -0.058 0.012
82 GE RBP2 -0.029 -0.026
124 GE SATB2 -0.057 -0.032 0.034
153 GE RPL36AL 0.003
204 GE RNPS1 -0.057 0.112 0.084
214 GE ARL6IP1 -0.014
573 DM DPY19L3 0.006
640 DM RABEP1 -0.080 -0.071 0.010
647 DM SLU7 -0.004
654 DM KLHL31 -0.023
696 DM GLMP -0.016
714 DM BNIP1 -0.025
759 DM MS4A15 0.055 -0.045
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4.5 Discussion

Modeling the outcomes and phenotypes of cancer and other complex diseases is an “old”

but still widely open problem. In this Chapter, we have developed the M-E interaction

analysis, which is the natural next step of the existing literature. In particular, it is built

on but advances from the existing gene-environment interaction analysis by incorporating

multiple types of molecular measurements (which have overlapping but more importantly

independent information in a single analysis). It also advances from the existing multidimen-

sional molecular data analysis by incorporating interactions and respecting the hierarchical

structure. The proposed approach has sound biological and statistical basis. Its working

characteristics are carefully examined, and simulation and data analysis have demonstrated

its satisfactory performance.

It remains an open question how to best accommodate multidimensional molecular data

in modeling. The proposed analysis Step I has been motivated by Wang et al. (2012b), Zhu

et al. (2016a), and several other studies. Similar to the literature, linear modeling and

regularized estimation have been applied for estimating the regulations. Different from

the literature, biclustering has been conducted to identify local regulations, where a small

number of co-expressed genes are regulated by a small number of regulators in a coordinated

manner. It advances from Zhu et al. (2016a) and others by relaxing the rank-one constraint.

The Step II of dimension reduction can be conducted by other techniques such as partial

least squares, can effectively reduce dimensionality and remove collinearity, and has been

shown as effective in numerical study. There are alternative techniques for interaction

analysis in Step III. We have chosen penalization for the consistency of analysis framework.

It will be of interest to extend by adopting other estimation/selection techniques. We have

used gene expressions and their regulators for description. The proposed approach can be

directly applied to other and potentially more complex data structures, thus enjoying broad

applicability.
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Chapter 5

Application of Interaction Analysis

for Histopathological Imaging Data

5.1 Introduction

Cancer is extremely complex. Extensive statistical investigations have been conducted,

modeling various cancer outcomes/phenotypes. A long array of measurements from differ-

ent domains have been used in cancer modeling, including clinical/environmental factors,

socioeconomic factors, omics (genetic, genomic, epigenetic, proteomic, etc.) measurements,

histopathological imaging features, and others. Yet, none of the existing models is com-

pletely satisfactory, and it remains a challenging task to develop new ways of cancer mod-

eling.

Imaging has been playing an irreplaceable role in cancer practice and research (Fass,

2008). It is routine for radiologists to use CT, MRI, PET, and other techniques to gener-

ate radiological images, which can inform the size, location, and other “macro” features of

tumors (Benzaquen et al., 2019). Biopsies are ordered, and pathologists review the slides

of representative sections of tissues to make definitive diagnosis. This procedure generates

histopathological (diagnostic) images (Gurcan et al., 2009). Through microscopically exam-

ining small pieces of tissues, more “micro” features of tumors are obtained. Histopatholog-

ical images have been used as the gold standard for diagnosis. More recently, histopatho-
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logical imaging features have also been used to model other cancer outcomes/phenotypes.

For example, in Yuan et al. (2012), they were used for predicting the prognosis of estrogen

receptor-negative breast cancer, and a multivariate Cox regression was adopted. In Tabesh

et al. (2007), histopathological imaging features were used in a k-nearest neighbor classifier

to assign images into different groups of Gleason tumor grading for prostate cancer patients.

With the complexity of cancer, a single domain of measurement is insufficient, and mea-

surements from multiple sources are needed in modeling (Zhong et al., 2019). In the liter-

ature, histopathological imaging features and clinical/environmental risk factors have been

combined in an additive manner for modeling cancer outcomes. In Wang et al. (2014), for

modeling lung cancer prognosis, clinical factors (including age, gender, cancer type, smok-

ing history, and tumor stage) were combined with imaging features in a multivariate Cox

regression model. This study and those alike have shown that combining the two sources of

information are more informative than a single source. Our literature review suggests that

most if not all of the existing studies have considered the additive effects of histopatho-

logical imaging features and clinical/environmental factors, and studies that accommodate

their interactions (referred to as “I-E” interactions, with “I” and “E” standing for imag-

ing and clinical/environmental factors, in this Chapter) are lacking. Statistically, adding

interactions when the main-effect models are not fully satisfactory is “normal”. Biologi-

cally speaking, incorporating such interactions have been partly motivated by the success

of gene-environment interactions. Specifically, in the literature, the biological rationale and

practical success of G-E interactions have been well established (Hunter, 2005). Cancer is

a genetic disease. Histopathological images reflect essential information on the histological

organization and morphological characteristics of tumor cells and their surrounding tumor

microenvironment, which are heavily regulated by tumors’ molecular features. As such,

from G-E interactions, we may naturally derive I-E interactions. It is noted that I-E and

G-E interaction analyses cannot replace each other. More specifically, not all genetic in-

formation is contained in imaging features, and histopathological features, as reflected in

imaging data, are also affected by factors other than molecular changes.

This study has also been partly motivated by the ineffectiveness of techniques adopted in

the existing studies. Histopathological images contain rich information, and the number of
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extracted features can be quite large, posing analytic challenges. This dimension problem

is “brutally” handled in some studies. For example, in Luo et al. (2017), the univariate

Cox model was fit to each imaging feature, and those with the strongest marginal effects

were selected. Such features were then used along with clinical characteristics, including

age, gender, smoking status, and tumor stage, to construct the final prognostic model.

When joint modeling is the ultimate goal, the aforementioned approach may miss truly

important signals in the first step of screening. To accommodate the high dimensionality

in joint modeling, penalization and other regularization techniques have been adopted. For

example, in Yu et al. (2016), the elastic net approach, which combines the Lasso and ridge

penalties, was used along with Cox regression. With the differences between interactions

and main effects, such methods cannot be directly applied to analysis that accommodates

I-E interactions. There are also studies that use advanced deep learning techniques. For

example, Bychkov et al. (2018) used the CNN (convolutional neural network) technique

to predict colorectal cancer prognosis based on images of tumor tissue samples. Other

examples also include Zhu et al. (2017) and Coudray et al. (2018). Such deep learning

techniques may excel in prediction, however, usually lack interpretations and also suffer

from a lack of stability when sample size is small.

The main objective of this article is to explore accommodating I-E interactions in cancer

modeling. Although the concept may seem simple, such an interaction analysis has not been

conducted in the literature. The adopted statistical methods have been “borrowed” from

G-E interaction analysis. With the connectedness between genetic and histopathological

imaging features and parallelization of G-E and I-E interaction analysis, such a strategy is

sensible. The proposed interaction analysis strategy and methods are demonstrated using

the TCGA lung adenocarcinoma data. Overall, this study may suggest an alternative way

of utilizing histopathological imaging data and modeling cancer more accurately.

5.2 Data

We demonstrate I-E interaction analysis using the TCGA lung cancer data. TCGA is a

collective effort organized by NCI and has published comprehensive data, especially on
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outcomes/phenotypes, clinical/environmental measures, and histopathological images, for

lung and other cancer types. Lung cancer is the leading cause of cancer death globally

(Boolell et al., 2015), and lung adenocarcinoma (LUAD) is the most common histological

subtype and has posed increasing public concerns (Network et al., 2014). The TCGA LUAD

data has been analyzed in multiple published studies, including Wang et al. (2014) and Luo

et al. (2017) that analyzed histopathological images, and Karlsson et al. (2014) and Li et al.

(2014) that conducted analysis on clinical/environmental factors. Thus, it is of interest

to “continue” these studies on main additive effects and further examine potential I-E

interactions with the TCGA LUAD data. It also has the advantage of having a relatively

larger sample size, which is critical to achieve meaningful findings. It is noted that the

proposed analysis can be directly applied to data on other cancer types.

We acquire 541 whole slide histopathology images from the TCGA data portal (https:

//portal.gdc.cancer.gov/projects/TCGA-LUAD). To extract imaging features, we adopt

the following pipeline developed by Luo et al. (2017). First, as the size of the whole slide

images, which is from 300Mb up to 2Gb with 110,000×70,000 pixels, is too huge to be

analyzed directly, each image is cropped into sub-images with 500×500 pixels and saved as

tiff image files using the Openslide Python library. Analyzing all the sub-images (more than

10 million image tiles in total) is still computationally unfeasible. Thus, twenty represen-

tative tiff sub-images that contain mostly (>50%) regions of interest are randomly selected

as input for the following process. It is expected that the randomly selected sub-images

are representative samples for the overall “population” of sub-images. Such cropping and

random selection are common steps in whole slide image processing and widely adopted

in published imaging studies (Sun et al., 2018a; Yu et al., 2017, 2016; Zhu et al., 2016b).

It is noted that randomly selecting sub-images may lead to imaging features with very

small differences (and so affect downstream analysis). However, as our main goal is cancer

model building, as opposed to feature selection, such small differences may not be of major

concern.

Second, we adopt CellProfiler (Soliman, 2015), a platform designed for cell image pro-

cessing and used in quite a few recent publications, to extract quantitative features from

each sub-image. Specifically, image colors are separated based on hematoxylin and eosin
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staining, and converted to grayscale for extracting regional features. Next, cell nuclei are

detected and segmented so that cell-level features can be specifically measured. Other

features such as regional occupation, area fraction, and neighboring architecture are also

captured. Irrelevant features such as file size and execution information are excluded from

analysis. This procedure results in a total of 772 features which are categorized into the

texture, geometry, and holistic groups. Specifically, the texture group contains Haralick,

Gabor “wavelet”, and Granularity features, which are classic image processing features,

measure the texture properties of cells and tissues, and have been examined in a large num-

ber of imaging studies. The geometry group contains features that describe the geometry

properties (such as area, perimeter, and so on), and those extracted by Zernike moments.

The holistic group contains holistic statistics that describe overall information, such as the

total area, perimeter and number of nuclei, and nuclear staining area fraction.

Third, for each patient, the features of images are normalized using sample mean at

the patient level. Missing values (with a missing rate lower than 20%) are imputed using

sample medians.

For clinical/environmental risk factors, we consider age, American Joint Committee

on Cancer tumor pathologic stage, tobacco smoking history indicator, and sex. These

variables have been suggested as associated with multiple lung cancer outcomes/phenotypes,

including those analyzed in this article (Westcott et al., 2015). In particular, Nordquist et al.

(2004) found that the mean age at diagnosis of lung adenocarcinoma among never-smokers

was significantly higher than that among current smokers, and the never-smokers with lung

adenocarcinoma were predominantly female. Studies have shown that tobacco smoking is

responsible for 90% of lung cancer (Bryant and Cerfolio, 2007), and has been identified as a

negative prognostic factor for lung adenocarcinoma (Landi et al., 2008). In addition, these

factors have also been considered in G-E interaction analysis (Wu et al., 2017).

Multiple outcome variables have been analyzed in the literature (Wang et al., 2014).

In this article, we consider two important response variables: (a) FEV1: the reference

value for the pre-bronchodilator forced expiratory volume in one second in percent. It is an

important biomarker for lung capacity. It is continuously distributed, with mean 80.28 and

interquartile range [67.00, 96.25]. Data is available for 132 subjects; and (b) overall survival,
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which is subject to right censoring. Data is available for 271 subjects, among whom 102

died during follow-up. The mean observed time is 27.47 months, with interquartile range

[14.06, 35.00].

Remarks The adopted feature extraction process follows Luo et al. (2017), where the

extracted imaging features were used to predict lung cancer prognosis. Similar processes

have also been adopted in other publications (Yu et al., 2017, 2016). Different from lim-

ited histopathological features recognized visually by pathologists, CellProfiler extracted

features are morphological features of tissue texture, cells, nuclei, and neighboring architec-

ture. These features are extracted and measured by comprehensive computer algorithms,

and are impossible to be assessed by human eyes. As demonstrated in Luo et al. (2017),

quantitative imaging features provide objective and rich information contained in images

that can reveal hidden information to decode tumor development and progression in lung

cancer. Following the literature (Luo et al., 2017; Sun et al., 2018a; Zhu et al., 2016b),

we adopt feature names automatically assigned by CellProfiler, as can be partly seen in

Tables 5.1-5.4. These names provide a brief description of the extracted information with

the general form “Compartment FeatureGroup Feature Channel Parameters”. For exam-

ple, features “AreaShape MedianRadius” and “AreaShape MaximumRadius” measure the

median and maximum radius of the identified tissue, respectively. As in some recent stud-

ies (Luo et al., 2017; Sun et al., 2018a; Zhu et al., 2016b), in this Chapter, our goal is

not to identify specific imaging features as markers and make biological interpretations.

Instead, we aim to conduct better cancer modeling by incorporating I-E interactions. As

such, although they may not have simple, explicit biological interpretations, these features

are sensible for our analysis.

5.3 Methods

In parallel to G-E interaction analysis (Wu and Ma, 2019), we conduct two types of I-E inter-

action analysis, namely marginal and joint analysis. The overall flowchart of analysis is pro-

vided in Figure 5.1. In marginal analysis, one imaging feature, one clinical/environmental

variable (or multiple such variables), and their interaction are analyzed at a time. In joint
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analysis, all imaging features, all clinical/environmental variables, and their interactions are

analyzed in a single model. The two types of analysis have their own pros and cons and

cannot replace each other. We refer to the literature (Witten and Tibshirani, 2010; Zhang

et al., 2011) for more detailed discussions on the two types of analysis.

Figure 5.1: Flowchart of the I-E interaction analysis of TCGA LUAD data.
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First consider a continuous cancer outcome, which matches the FEV1 analysis. Denote

Y as the length N vector of outcome, where N is the sample size. Denote E = [E1, · · · , EJ ]

as the N × J matrix of clinical/environmental variables, and X = [X1, · · · , XK ] as the

N × K matrix of imaging features. As represented by the LUAD data, usually clini-

cal/environmental variables are pre-selected and low-dimensional, and imaging features are

high-dimensional.

5.3.1 Marginal analysis

Detailed discussions of marginal G-E interaction analysis are available in Xu et al. (2019)

and other recent literature. The marginal I-E interaction analysis proceeds as follows. First

assume that Y , E, and X have been properly centered.

(a) For j = 1, . . . , J and k = 1, . . . ,K, consider the linear regression model

Y = αjEj + βkXk + γjkEjXk + ε, (5.1)

where αj and βk respectively represent the main effects of the jth clinical/environmental

factor and the kth imaging feature, γjk is the interactive effect, and ε is the random

error. A total of J ×K models are built.

(b) As each model has a low dimension, estimates can be obtained using standard likeli-

hood based approaches and existing software. P-values can be obtained accordingly.

(c) Interactions (and main effects) with small P-values are identified as important. When

more definitive conclusions are needed, the FDR (false discovery rate) or Bonferroni

approach can be applied.

It is noted that in Step (a), one clinical/environmental variable is analyzed in each model,

which follows Xu et al. (2019). It is also possible to accommodate all clinical/environmental

variables in each model. In Step (c), discoveries can be made on interactions only or in-

teractions and main effects combined. Advantages of marginal analysis include its com-

putational simplicity and stability. On the negative side, with the complexity of can-

cer, an outcome/phenotype is usually associated with multiple imaging features and clini-
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cal/environmental variables. As such, each marginal model can be “mis-specified” or “sub-

optimal”. In addition, there is a lack of attention to the differences between interactions

and main effects.

5.3.2 Joint analysis

Joint analysis can tackle some limitations of marginal analysis, and is getting increasingly

popular in statistical and bioinformatics literature. It proceeds as follows.

(a) Consider the joint model

Y =

J∑
j=1

τjEj +

K∑
k=1

ηkXk +
J∑
j=1

K∑
k=1

ηkθjkEjXk + ε, (5.2)

where τj and ηk are the main effects of the jth environmental factor and the kth imaging

feature, respectively, and the product of ηk and θjk corresponds to the interaction.

(b) For estimation, consider the Lasso penalization

min
ηk,θjk

||Y − f(E,X)||2 + λ1

∑
k

|ηk|+ λ2

∑
j

∑
k

|θjk|, (5.3)

where f(E,X) =
∑

j τjEj +
∑

k ηkXk +
∑

j

∑
k ηkθjkEjXk, and λ1, λ2 > 0 are tuning

parameters. In numerical study, we select the tuning parameters using the extended

Bayesian information criterion (Chen and Chen, 2008).

(c) Interactions (and main effects) with nonzero estimates are identified as being associ-

ated with the outcome.

5.3.3 Accommodating survival outcomes

Consider cancer survival. Denote T as the N -vector of survival times. Below we describe

joint analysis, and marginal analysis can be conducted accordingly. We adopt the AFT

(accelerated failure time) model, under which

log(T ) =

J∑
j=1

τjEj +

K∑
k=1

ηkXk +

J∑
j=1

K∑
k=1

ηkθjkEjXk + ε, (5.4)
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where notations have similar implications as in the above section. With high-dimensional

data, the AFT model has been widely adopted because of its lucid interpretation and

more importantly computational simplicity (Huang et al., 2006). Under right censor-

ing, denote C as the N -vector of censoring times, Y = log(min(T,C)), and δ = I(T ≤

C), where operations are taken component-wise. To accommodate censoring, a weighted

approach is adopted. Assume that data have been sorted according to Yi’s from the

smallest to the largest. The Kaplan-Meier weights can be computed as w1 = δ1
N , wi =

δi
N−i+1

i−1∏
j=1

(
N−j
N−j+1

)δj
, i = 2, . . . , N . Similar to (5.3), consider the penalized estimation

min
ηk,θjk

||
√
w × (Y − f(E,X))||2 + λ1

∑
k

|ηk|+ λ2

∑
j

∑
k

|θjk|, (5.5)

where the square root and multiplication are taken component-wise. Interpretations and

other operations are the same as for continuous outcomes.

In joint analysis, the most prominent challenge is the high dimensionality. Here the

penalization technique is adopted, which can simultaneously accommodate high dimension-

ality and identify relevant interactions/main effects. Another feature of this analysis that

is worth highlighting is that it respects the “main effects, interactions” hierarchy. That is,

if an I-E interaction is identified, the corresponding main imaging feature effect is auto-

matically identified. It has been suggested that, statistically and biologically, it is critical

to respect this hierarchy (Choi et al., 2010). We refer to the literature (Bien et al., 2013;

Liu et al., 2013) for alternative penalization and other joint interaction analysis methods.

Compared to marginal analysis, joint analysis can be computationally more challenging,

and well-developed software packages are still limited. In addition, the analysis results can

be less stable.

The proposed analysis can be effectively realized. To facilitate data analysis within and

beyond this study, we have developed R code and made it publicly available at www.github.

com/shuanggema.
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Table 5.1: Marginal analysis of FEV1: identified main effects and interactions, with raw
P-values Pr.

Feature group Feature name Estimate Pr

Geometry AreaShape Zernike 2 2 Main 0.270 0.002
Geometry AreaShape Zernike 5 3 Main -0.319 0.001
Geometry Mean Identifyhemasub2 AreaShape Zernike 9 9 Main -0.259 0.004
Geometry Median Identifyhemasub2 AreaShape Zernike 7 1 Main -0.249 0.005
Geometry Median Identifyhemasub2 AreaShape Zernike 8 6 Main -0.272 0.003
Texture StDev Identifyeosinprimarycytoplasm Texture Correlation maskosingray 3 01 Main 0.280 0.002
Geometry StDev Identifyhemasub2 AreaShape Zernike 8 8 Main -0.251 0.005
Geometry StDev Identifyhemasub2 AreaShape Zernike 9 1 Main -0.259 0.004
Geometry StDev Identifyhemasub2 AreaShape Center Y Sex 0.291 0.002
Geometry StDev Identifyhemasub2 AreaShape Zernike 8 2 Sex 0.304 0.001
Geometry StDev Identifyhemasub2 Location Center Y Sex 0.294 0.002

Table 5.2: Joint analysis of FEV1: identified main effects and interactions.

Feature group Feature name Main Age Stage Smoking Sex

-0.049 -0.052 -0.002 0.006
Geometry AreaShape Zernike 2 2 0.163 0.040 -0.014 -0.185
Geometry AreaShape Zernike 5 3 -0.053
Geometry AreaShape Zernike 6 0 -0.034
Texture Granularity 10 ImageAfterMath 0.137 0.110 -0.020 0.064
Geometry Location Center X 0.002
Geometry Mean Identifyeosinprimarycytoplasm Location Center X 0.005
Geometry Median Identifyhemasub2 AreaShape Zernike 7 1 -0.127 -0.073 0.072 0.003
Geometry StDev Identifyhemasub2 AreaShape Zernike 8 2 -0.170 -0.083 0.188
Texture StDev Identifyhemasub2 Granularity 6 ImageAfterMath -0.029
Texture Texture AngularSecondMoment ImageAfterMath 3 00 -0.044
Texture Texture AngularSecondMoment ImageAfterMath 3 03 -0.010

5.4 Results

5.4.1 Analysis of FEV1

Marginal analysis After the FDR adjustment, none of the main effects or interactions is

statistically significant. In Table 5.1, we present the main effects and interactions with the

smallest (unadjusted) P-values. The top ranked main effects are from the Geometry and

Texture groups, and the top ranked interactions are from the Geometry group and with

sex.

Based on the analysis results, we conduct a power calculation. First assume the current

levels of estimated effects and their variations. Then with a sample size of 224, the top

ranked I-E interactions can be identified as significant with target FDR 0.1. Second, consider

the current sample size and levels of variations. Then an effect of -0.35 can be identified as

significant with target FDR 0.1.

For comparison, we conduct the analysis of main effects (without interactions). The top
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eight main effects (with the smallest P-values) have four overlaps with those in Table 5.1,

suggesting that accommodating interactions can lead to different findings.

Joint analysis The analysis results are provided in Table 5.2. A total of 11 imaging features

are identified, representing the Geometry and Texture groups. A total of 11 interactions

are identified, with all four clinical/environmental variables.

For comparison, we consider the joint model with all clinical/environmental variables

and imaging features but no interactions. Lasso penalization is applied for selection and

estimation. A total of eight imaging features are identified, with one overlapping with those

in Table 5.2. We further compute the RV coefficient, which may more objectively quantify

the amount of “overlapping information” between two analyses. Specifically, it measures

the “correlation” between two data matrices of important effects identified by two different

approaches, with a larger value indicating higher similarity. The RV coefficient is 0.24,

suggesting a mild level of overlapping.

A significant advantage of joint analysis is that it can lead to a predictive model for

the outcome variable. We conduct the evaluation of prediction based on a resampling

procedure, which may provide support to the validity of analysis. Specifically, we split data

into a training and a testing set, generate estimates using the training data, and make

prediction for the testing set subjects. The PMSE (prediction mean squared error) is then

computed. This procedure is repeated 100 times, and the mean PMSE is computed. The

I-E interaction model has a mean PMSE of 0.84, whereas the main-effect-only model has a

mean PMSE of 1.12. This significant improvement suggests the benefit of accommodating

interactions.

5.4.2 Analysis of overall survival

Marginal analysis The analysis results are provided in Table 5.3, where we present estimates,

raw P-values, as well as the FDR adjusted P-values. Three imaging features from the

Holistic group have the FDR adjusted P-values < 0.1. And 36 imaging features from the

Geometry group and 24 features from the Texture group are identified as having interactions

with Smoking, the most important environmental factor for lung cancer. Compared to the

above analysis, more “signals” are identified. Note that the effective sample size is smaller
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Figure 5.2: Kaplan-Meier curves of high and low risk groups identified by the approach that
accommodates interactions (left; logrank test P-value 0.007) and the one with main effects
only (right; logrank test P-value 0.320).

than that above. As such, the smaller P-values are likely to be caused by stronger signals.

For comparison, we conduct the analysis of main effects. One imaging feature is identi-

fied as having FDR adjusted P-value <0.1, which is also identified in Table 5.3. With the

complexity of lung cancer prognosis, the interaction analysis, which identifies more effects,

can be more sensible.

Joint analysis The analysis results are provided in Table 5.4. A total of 31 imaging features

are identified, representing the three feature groups. Two imaging features are identified as

interacting with two and four clinical/environmental variables, respectively.

The analysis of main effects is conducted using the Lasso penalization. A total of two

imaging features are identified, with one overlapping with those in Table 5.4. The RV co-

efficient is computed as 0.40, representing a moderate level of overlapping. As with FEV1,

prediction evaluation is also conducted based on resampling. For the testing set, subjects

are classified into low and high risk groups with equal sizes based on the predicted survival

times, where subjects with predicted survival times larger than the median are classified into

the low risk group. For one resampling of training and testing sets, in Figure 2, we plot the

Kaplan-Meier curves estimated using the observed survival times for the predicted low and

high risk groups, along with those generated under the additive main-effect model. Com-
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Table 5.3: Marginal analysis of overall survival: identified main effects and interactions,
with raw P-values Pr and FDR adjusted P-values Pa.

Feature group Feature name Estimate Pr Pa

Holistic Threshold FinalThreshold Identifyeosinprimarycytoplasm Main -0.301 0 0.095
Holistic Threshold OrigThreshold Identifyeosinprimarycytoplasm Main -0.301 0 0.095
Holistic Threshold WeightedVariance identifyhemaprimarynuclei Main -0.360 0 0.077
Geometry AreaShape Area Smoking 0.253 0.004 0.078
Geometry AreaShape MaximumRadius Smoking 0.266 0.004 0.074
Geometry AreaShape MeanRadius Smoking 0.265 0.005 0.079
Geometry AreaShape MedianRadius Smoking 0.266 0.005 0.079
Geometry AreaShape MinFeretDiameter Smoking 0.257 0.003 0.073
Geometry AreaShape MinorAxisLength Smoking 0.264 0.002 0.07
Geometry AreaShape Zernike 4 4 Smoking -0.241 0.005 0.079
Geometry AreaShape Zernike 7 3 Smoking -0.308 0 0.027
Geometry AreaShape Zernike 8 4 Smoking -0.242 0.007 0.096
Geometry AreaShape Zernike 8 6 Smoking -0.252 0.005 0.079
Geometry AreaShape Zernike 9 1 Smoking -0.303 0 0.027
Texture Granularity 13 ImageAfterMath.1 Smoking -0.317 0.001 0.054
Texture Mean Identifyeosinprimarycytoplasm Texture Correlation maskosingray 3 03 Smoking 0.232 0.005 0.079
Geometry Mean Identifyhemasub2 AreaShape Area Smoking 0.297 0.001 0.049
Geometry Mean Identifyhemasub2 AreaShape MaximumRadius Smoking 0.318 0.001 0.049
Geometry Mean Identifyhemasub2 AreaShape MeanRadius Smoking 0.318 0.001 0.049
Geometry Mean Identifyhemasub2 AreaShape MedianRadius Smoking 0.308 0.002 0.054
Geometry Mean Identifyhemasub2 AreaShape MinFeretDiameter Smoking 0.299 0.001 0.049
Geometry Mean Identifyhemasub2 AreaShape MinorAxisLength Smoking 0.310 0.001 0.045
Geometry Mean Identifyhemasub2 AreaShape Zernike 4 4 Smoking -0.263 0.003 0.07
Geometry Mean Identifyhemasub2 AreaShape Zernike 5 1 Smoking -0.268 0.002 0.07
Geometry Mean Identifyhemasub2 AreaShape Zernike 8 2 Smoking -0.277 0.003 0.073
Geometry Mean Identifyhemasub2 AreaShape Zernike 8 8 Smoking -0.290 0.003 0.073
Geometry Mean Identifyhemasub2 AreaShape Zernike 9 1 Smoking -0.226 0.004 0.074
Texture Mean Identifyhemasub2 Granularity 13 ImageAfterMath Smoking -0.325 0.001 0.054
Texture Mean Identifyhemasub2 Texture Correlation ImageAfterMath 3 01 Smoking 0.330 0 0.039
Texture Mean Identifyhemasub2 Texture Correlation ImageAfterMath 3 02 Smoking 0.297 0.002 0.07
Texture Mean Identifyhemasub2 Texture Correlation ImageAfterMath 3 03 Smoking 0.397 0 0.01
Texture Mean Identifyhemasub2 Texture SumVariance ImageAfterMath 3 02 Smoking 0.258 0.007 0.093
Texture Median Identifyeosinprimarycytoplasm Texture Correlation maskosingray 3 03 Smoking 0.233 0.004 0.079
Geometry Median Identifyhemasub2 AreaShape Area Smoking 0.344 0 0.027
Geometry Median Identifyhemasub2 AreaShape MaxFeretDiameter Smoking 0.242 0.005 0.079
Geometry Median Identifyhemasub2 AreaShape MaximumRadius Smoking 0.323 0.001 0.049
Geometry Median Identifyhemasub2 AreaShape MeanRadius Smoking 0.323 0.001 0.049
Geometry Median Identifyhemasub2 AreaShape MedianRadius Smoking 0.266 0.005 0.079
Geometry Median Identifyhemasub2 AreaShape MinFeretDiameter Smoking 0.346 0 0.027
Geometry Median Identifyhemasub2 AreaShape MinorAxisLength Smoking 0.342 0 0.027
Geometry Median Identifyhemasub2 AreaShape Perimeter Smoking 0.247 0.006 0.085
Geometry Median Identifyhemasub2 AreaShape Zernike 4 4 Smoking -0.242 0.002 0.059
Geometry Median Identifyhemasub2 AreaShape Zernike 5 1 Smoking -0.256 0.003 0.073
Texture Median Identifyhemasub2 Granularity 13 ImageAfterMath Smoking -0.311 0.001 0.049
Texture Median Identifyhemasub2 Texture Correlation ImageAfterMath 3 01 Smoking 0.319 0.001 0.049
Texture Median Identifyhemasub2 Texture Correlation ImageAfterMath 3 02 Smoking 0.274 0.005 0.081
Texture Median Identifyhemasub2 Texture Correlation ImageAfterMath 3 03 Smoking 0.394 0 0.01
Texture StDev Identifyeosinprimarycytoplasm Texture SumAverage maskosingray 3 00 Smoking 0.272 0.003 0.073
Texture StDev Identifyeosinprimarycytoplasm Texture SumAverage maskosingray 3 01 Smoking 0.273 0.003 0.073
Texture StDev Identifyeosinprimarycytoplasm Texture SumAverage maskosingray 3 02 Smoking 0.270 0.004 0.074
Texture StDev Identifyeosinprimarycytoplasm Texture SumAverage maskosingray 3 03 Smoking 0.275 0.003 0.073
Geometry StDev identifyhemaprimarynuclei Location Center Y Smoking -0.245 0.007 0.093
Geometry StDev Identifyhemasub2 AreaShape Zernike 8 4 Smoking -0.280 0.001 0.045
Geometry StDev Identifyhemasub2 AreaShape Zernike 8 8 Smoking -0.236 0.007 0.094
Texture StDev Identifyhemasub2 Texture SumVariance ImageAfterMath 3 01 Smoking 0.266 0.007 0.096
Texture StDev Identifyhemasub2 Texture SumVariance ImageAfterMath 3 02 Smoking 0.283 0.005 0.079
Texture StDev Identifyhemasub2 Texture SumVariance ImageAfterMath 3 03 Smoking 0.283 0.006 0.084
Geometry StDev identifytissueregion Location Center Y Smoking -0.289 0.002 0.059
Texture Texture Correlation ImageAfterMath 3 01 Smoking 0.252 0.004 0.078
Texture Texture Correlation ImageAfterMath 3 03 Smoking 0.329 0 0.027
Texture Texture Correlation maskosingray 3 03 Smoking 0.237 0.004 0.074
Texture Texture Entropy ImageAfterMath 3 01 Smoking 0.220 0.007 0.093
Texture Texture Entropy ImageAfterMath 3 03 Smoking 0.233 0.004 0.074
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pared to the main-effect model, it is obvious that the two risk groups identified by the I-E

interaction model have a much clearer separation of the survival functions, indicating better

prediction performance. To be more rigorous, we further conduct a logrank test, which is a

nonparametric test for comparing the survival distributions of two subject groups. With 100

resamplings, the average logrank statistics are 7.28 (I-E interaction model, P-value=0.007)

and 0.99 (main-effect model, P-value=0.320), respectively. The superior prediction perfor-

mance of the I-E interaction models suggests that incorporating interactions can lead to

clinically more powerful models, justifying the value of the proposed analysis.

Table 5.4: Joint analysis of overall survival: identified main effects and interactions.

Feature group Feature name Main Age Stage Smoking Sex

-0.024 -0.317 -0.038 -0.088
Geometry AreaShape Zernike 6 0 -0.038
Geometry AreaShape Zernike 6 4 -0.019
Geometry AreaShape Zernike 6 6 0.052
Geometry AreaShape Zernike 9 3 0.027
Geometry AreaShape Zernike 9 5 0.153
Texture Granularity 10 ImageAfterMath.1 -0.033
Texture Granularity 9 ImageAfterMath 0.081
Geometry Mean Identifyhemasub2 AreaShape Center X 0.002
Geometry Mean Identifyhemasub2 AreaShape Zernike 5 1 0.013
Geometry Mean Identifyhemasub2 AreaShape Zernike 6 2 -0.002
Geometry Mean Identifyhemasub2 AreaShape Zernike 6 4 -0.010
Geometry Mean Identifyhemasub2 AreaShape Zernike 9 9 -0.146
Geometry Mean Identifyhemasub2 Location Center X 0.002
Geometry Mean identifytissueregion Location Center X 0.056
Geometry Median Identifyeosinprimarycytoplasm Location Center X -0.071
Geometry Median Identifyhemasub2 AreaShape Zernike 4 0 0.023
Geometry Median Identifyhemasub2 AreaShape Zernike 7 3 0.083
Geometry Median Identifyhemasub2 AreaShape Zernike 8 4 -0.120
Geometry Median Identifyhemasub2 AreaShape Zernike 8 6 -0.098
Geometry Median Identifyhemasub2 AreaShape Zernike 9 1 -0.044
Geometry Median identifytissueregion Location Center Y -0.063
Holistic Neighbors SecondClosestDistance Adjacent -0.170 -0.072 0.002
Geometry StDev Identifyeosinprimarycytoplasm Location Center Y 0.095

Texture
StDev Identifyeosinprimarycytoplasm Texture
DifferenceVariance maskosingray 3 00

0.036

Geometry StDev Identifyhemasub2 AreaShape Orientation -0.159
Geometry StDev Identifyhemasub2 AreaShape Zernike 8 8 -0.146
Texture StDev Identifyhemasub2 Granularity 12 ImageAfterMath -0.101
Texture StDev Identifyhemasub2 Granularity 13 ImageAfterMath 0.327 0.130 0.072 -0.189 0.174
Texture StDev Identifyhemasub2 Granularity 9 ImageAfterMath 0.003

Texture
StDev Identifyhemasub2 Texture SumVariance
ImageAfterMath 3 01

-0.034

Geometry StDev identifytissueregion Location Center Y 0.016

5.4.3 Simulation

Comparatively, joint analysis is newer and has been less conducted. To gain more insights

into the validity of findings from our joint interaction analysis, we conduct a set of data-
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based simulation. Specifically, the observed imaging features and clinical/environmental

factors are used. To generate variations across simulation replicates, we use resampling,

with sample sizes set as 200. The “signals” and their levels are set as those in Tables 5.2 and

5.4, respectively. For both the continuous and (log) survival outcomes, we generate random

errors from N(0, 1). For the survival setting, we generate the censoring times from randomly

sampling the observed. The Lasso-based penalization approach is then applied, with tuning

parameters selected using the extended BIC approach. To evaluate identification, TP (true

positive) and FP (false positive) values are computed. Summary statistics are computed

based on 100 replicates. Under the continuous outcome setting, there are 11 true main effects

and 11 I-E interactions. For main effects, the TP and FP values are 9.75 (1.65) and 3.15

(1.39), respectively, where numbers in “()” are standard deviations. For interactions, the

TP and FP values are 7.35 (0.99) and 0.05 (0.22), respectively. Under the censored survival

outcome setting, there are 31 true main effects and 6 I-E interactions. For main effects,

the TP and FP values are 24.41 (3.98) and 13.90 (2.47), respectively. For interactions, the

TP and FP values are 3.24 (0.21) and 0.24 (0.12), respectively. Overall, at the estimated

signal levels and with the observed feature distributions, the joint analysis is capable of

identifying the majority of true interactions and main effects, with a moderate number of

false discoveries. This provides a high level of confidence to the joint interaction analysis.

5.5 Discussion

Histopathological imaging analysis has been routine in cancer diagnosis, and recently, its

application in the analysis of cancer biomarkers, outcomes, and phenotypes has been ex-

plored. This study has taken a natural next step and conducted the imaging-environment

interaction analysis. Statistically and biologically speaking, the analysis has been partly

motivated by G-E interaction analysis. It is noted that the statistical methods themselves

have been almost fully “translated” from G-E interaction analysis. As I-E interaction analy-

sis has not been conducted in published cancer modeling studies, it is sensible to first employ

well-developed methods, and in the future, methods that are more tailored to imaging data

may be developed. We also note that in cancer modeling and other biomedical fields, it
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is not uncommon to apply methods well developed in one field to other new fields. The

proposed I-E interaction analysis, especially joint analysis, may seem considerably more

complex than some cancer modeling approaches. With the complexity of cancer, models

with a few variables and simple statistical analysis are getting increasingly insufficient. Pub-

lished studies have suggested that advanced statistical techniques and complex models are

needed. Recent developments for lung cancer, including the elastic net-Cox analysis (Yu

et al., 2016), deep convolutional neural network (Coudray et al., 2018), and deep network

based on convolutional and recurrent architectures (Bychkov et al., 2018), have comparable

or higher levels of complexity compared to the proposed analysis. Artificial intelligence (AI)

techniques, which have been recently used for cancer modeling in particular including the

radiomics analysis of non-small-cell lung cancer (Hosny et al., 2018; Thrall et al., 2018), have

even higher levels of complexity. We conjecture that such complexity will also be needed

for future developments in cancer modeling using imaging data. The increasing complexity

in cancer modeling seems to be an inevitable trend, and domain specific expertise is a must

for such analysis.

We have analyzed the TCGA LUAD data with a continuous and a censored survival

outcome. This choice has been motivated by the clinical importance of lung adenocarcinoma

as well as data availability (a larger sample size). It is noted that the proposed analysis

and R program will be directly applicable to the analysis of data on other cancer types. I-E

interactions have been identified in both marginal and joint analysis, for both FEV1 and

overall survival. There is one prominent difference between imaging and genetic/clinical

data. With extensive investigations and functional experiments, the biological and biomed-

ical implications of most clinical/environmental factors and genes are at least partially

known. It is thus possible to evaluate whether G-E interactions are biologically sensible.

The circumstance is significantly different for histopathological imaging features. The ra-

tionale and algorithms for feature extraction have been made clear in the developments of

CellProfiler and other software. However, the identified features do not have lucid biological

interpretations. As such, we are not able to objectively assess the biological implications of

the findings in Table 5.1 -5.4. It is noted that this limitation is also shared by recently pub-

lished imaging studies Luo et al. (2017); Sun et al. (2018a); Zhu et al. (2016b), which have
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unambiguously demonstrated the great value of such imaging features in cancer modeling.

It is also noted that imaging features derived from computer-aided pathological analysis

have the unique advantage of being objective and comprehensive, and can reveal hidden

information contained in histopathological images that cannot be recognized or assessed by

pathologists. Our statistical evaluations, including the prediction evaluation and data-based

simulation, can provide support to the analysis results to a great extent. In general, more

investigations into the biological implications of the computer-program-extracted imaging

features will be needed.

This study has suggested a new venue for cancer modeling. Although findings made on

LUAD may not be applicable to other cancers, the analysis technique and R program will be

broadly applicable. Following the flowchart in Figure 5.1 and detailed steps described in this

article, and using the publicly available R program, cancer biostatisticians and clinicians

should be able to carry out the proposed analysis with their own data. More specifically,

with their own clinical/environmental and imaging data, they will be able to construct

models for prognosis and other outcomes/phenotypes. Such models, as other cancer models

(for example those using omics data), can be used to assist clinical decision making. Overall,

this study may help advance the challenging field of cancer modeling.
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Chapter 6

Concluding Remarks

In sum, we proposed four statistical methods for analyzing G-E interactions and presented

one application using both marginal and joint models for imaging data. In simulation

studies, improved identification and prediction performance was produced in comparison

with multiple alternatives. Besides numerical studies of the proposed methods, we also

conducted data analyses using TCGA data on multiple cancer types. Sensible findings of

important G-E interactions with superior stability and prediction were made and interpreted

using the published literature. In addition, we developed R code for the proposed methods

and made it publicly available for researchers.

Two generic paradigms of marginal and joint modeling frameworks in G-E interaction

analysis are extensively explored and compared. On the one hand, marginal models en-

joy computational simplicity and are straightforward to understand. Most of the existing

studies are based on a marginal framework, yet marginal models are not able to predict the

outcomes, limited to marker identifications. On the other hand, joint modeling that requires

penalized estimation becomes increasingly popular in the literature. Though computational

cost is relatively higher compared to marginal models, interpretable selection and accurate

prediction can be achieved by the joint modeling. In this dissertation, we do not reach a

definitive conclusion in the competition of marginal and joint modeling frameworks for G-E

interaction analysis.

The first approach in Chapter 2.2 was built on the quantile regression technique, used

weights to easily accommodate censoring, and adopted partial correlation to identify impor-
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tant interactions while properly controlling for the main genetic and environmental effects.

The second approach in Chapter 2.3 employed the trimmed regression under joint modeling,

applied penalization and stability selection to identify important G-E interactions, and re-

spected the “main effects, interactions” hierarchical structure. These two proposed methods

can accommodate prognostic outcomes and demonstrated that robust methods are capable

of improving identification accuracy. The third approach in Chapter 3 utilized penalization

under a marginal analysis framework. We constructed the penalty terms for incorporating

multiple types of additional information and for selecting hierarchal interactions. The hier-

archical structure was enforced by coefficient decomposition and tailored penalization. The

last proposed approach in Chapter 4 integrated multidimensional molecular measurements

and sufficiently accounted for their overlapping as well as independent information. The

proposed joint estimation was based on the penalization technique and had solid statistical

properties, leading to improved estimation and prediction.

6.1 Limitations

Though methodological advancement was made by the proposed novel and useful ap-

proaches, this dissertation of G-E interaction analysis inevitably has limitations. Following

linear regression, the effects of G-E interactions were uniformly described by their coef-

ficients. Many advantages were introduced by this regression framework, including the

coefficient decomposition strategy that enforces the hierarchical structure. Nonetheless,

there exist several other schemes for analyzing interactions. For instance, Ren et al. (2019)

proposed a semiparametric Bayesian model that includes linear and non-linear G-E inter-

actions simultaneously. A partially linear varying coefficient model was adopted where a

smoothing varying coefficient function of the environmental risk factor was used for de-

scribing the non-linear interactions. Other penalization techniques for selecting hierarchical

interactions include the hierarchical Lasso (Bien et al., 2013), the sparse group Lasso (Si-

mon et al., 2013), and many others (Hao and Zhang, 2017). In this study, the simplicity

and interpretability brought by the linear regression framework were well appreciated and

we note its potential for extending to more complex models in future work.
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Another limitation of this dissertation is that statistical inference was not comprehen-

sively discussed. The proposed methods focused more on methodological development and

numerical examinations. Theoretical derivation for the proposed methods under high-

dimensional settings was much limited to draw more definitive conclusions. In the dis-

sertation, theoretical justifications were made in a heuristic manner. In fact, the statistical

techniques that we adopted in these studies have been extensively investigated and the

relevant statistical properties has already been examined in the literature. Although more

rigorous justifications were not readily available for more sophisticated approaches, we note

that the building blocks of the proposed methods have established grounds in statistical

properties to well support this dissertation.

This study is also limited to the TCGA data in real data analysis. As one of the largest

publicly available and high-quality data sources for cancer genomic studies, we chose the

TCGA data and focused mainly on lung adenocarcinoma and cutaneous melanoma datasets.

Additionally, our proposed methods included different sets of environmental risk factors,

for example, Breslow’s depth in Chapter 2.2 as one of the E factors whereas in Chapter 2.3

as the response of interest. Such intensive investigation of the TCGA datasets is widely

accepted and especially common among the publications for demonstrating methodological

advancement. We also note that different results were made across the proposed methods.

Due to the scope of the dissertation, an explicit comparison between those findings was not

discussed.

6.2 Future work

Overall, we recognized the limitations of the existing methodologies for G-E interaction

analysis, conducted comprehensive investigations for novel and useful methods to tackle

practical problems and to advance in methodological development, and analyzed simulated

and real datasets to validate the superiority and applicability of the proposed approaches.

It is challenging to identify important G-E interactions for complex diseases. The proposed

methods presented in this dissertation suggest new venues of interaction analysis and allow

future advancements to build on. For example, one can extend the goodness-of-fit term
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in the proposed objective functions to other loss functions, such as the absolute-value-

based ones. All of the proposed methods assume linear regression models, which can be

replaced by non-linear and nonparametric models. As the most fundamental elements in

G-E interaction analysis were thoroughly addressed in this dissertation, future advancement

in methodology that can be added to the proposed methods becomes natural.

Besides, several analysis strategies, such as coefficient decomposition, which tackled the

essential complications in interaction analysis, can be further adapted and extended to

other research fields. Inspired by our application to histopathological imaging data, the

proposed methods are generally applicable to interaction analysis for high-dimensional data

and can be regarded as statistical methods for interaction selection. In fact, the analysis

of the TCGA data can serve as a prototype and applications to data on complex diseases

other than cancer are desired. Future work in analyzing data on various cancer types and

other complex diseases will potentially contribute to better understanding of the underlying

biological mechanisms of disease development. Extension from genetic factors to other high-

dimensional measurements is flexible and will also add value to the dissertation.
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Appendix A

Chapter 2

A.1 Censored Quantile Partial Correlation for Cancer Prog-

nosis

Figure A.1: Plot of pROC under setting C1 with ρ = 0.3 and Error 3.
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Table A.1: Simulation results for setting C1 with the AR correlation structure (ρ = 0.3),
Error 1 and various values of sample size. In each cell, mean (sd) based on 200 replicates.
n Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR

250 AFT 10.8(1.5) 11.8(1.4) 0.83(0.06) 12.6(1.7) 83.0(79.4) 0.78(0.15)
Cox 11.1(1.7) 12.3(1.7) 0.88(0.05) 11.0(1.8) 12.5(18.5) 0.41(0.23)
CQR 3.8(1.5) 5.6(1.6) 0.69(0.04) 9.3(1.8) 125.1(34.1) 0.93(0.02)
KMW-LAD 8.4(1.7) 10.4(2.1) 0.86(0.05) 3.9(2.0) 1.3(1.5) 0.21(0.19)
CQPCorr 10.8(1.6) 12.4(1.7) 0.91(0.04) 8.1(2.4) 1.9(1.8) 0.17(0.14)

300 AFT 11.2(1.4) 12.5(1.5) 0.85(0.05) 13.1(1.6) 67.1(48.0) 0.79(0.11)
Cox 11.5(1.6) 12.8(1.5) 0.89(0.04) 12.0(1.9) 14.9(14.8) 0.46(0.21)
CQR 4.6(1.5) 6.4(1.7) 0.72(0.04) 10.7(1.9) 123.8(29.7) 0.92(0.02)
KMW-LAD 9.8(1.7) 11.5(1.5) 0.88(0.04) 6.4(3.0) 1.6(1.9) 0.19(0.19)
CQPCorr 11.9(1.6) 13.2(1.6) 0.93(0.04) 10.0(2.1) 2.3(2.4) 0.16(0.12)

350 AFT 11.7(1.6) 12.9(1.7) 0.86(0.05) 13.4(1.8) 57.8(37.4) 0.76(0.12)
Cox 11.8(1.4) 13.3(1.6) 0.91(0.04) 12.3(1.9) 13.4(9.9) 0.46(0.16)
CQR 5.8(2.0) 7.7(2.2) 0.75(0.04) 11.6(1.4) 130.5(39.0) 0.91(0.02)
KMW-LAD 11.2(1.4) 12.7(1.4) 0.92(0.04) 8.9(2.1) 2.3(2.6) 0.18(0.15)
CQPCorr 12.9(1.6) 14.1(1.5) 0.95(0.03) 11.5(2.0) 2.3(1.5) 0.16(0.09)

400 AFT 12.4(1.6) 13.7(1.6) 0.88(0.04) 14.2(1.5) 61.4(33.4) 0.78(0.09)
Cox 12.8(1.5) 14.2(1.5) 0.93(0.04) 13.3(1.7) 14.0(10.7) 0.46(0.15)
CQR 6.6(2.0) 8.8(2.2) 0.77(0.05) 12.6(1.9) 130.4(39.9) 0.91(0.03)
KMW-LAD 12.1(1.2) 13.9(1.3) 0.95(0.03) 10.0(2.0) 2.4(2.0) 0.17(0.12)
CQPCorr 13.8(1.3) 14.9(1.0) 0.97(0.02) 12.8(1.7) 2.4(2.0) 0.14(0.11)
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Table A.2: Simulation results for setting C1 with the AR correlation structure (ρ = 0.3),
Error 2 and various values of sample size. In each cell, mean (sd) based on 200 replicates.
n Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR

250 AFT 6.2(1.9) 7.5(2.0) 0.75(0.06) 4.6(2.6) 6.7(9.8) 0.42(0.25)
Cox 8.1(1.9) 9.4(2.2) 0.82(0.06) 6.0(2.5) 3.7(4.6) 0.30(0.22)
CQR 3.2(1.6) 4.7(1.9) 0.66(0.05) 8.2(2.6) 124.2(36.6) 0.94(0.02)
KMW-LAD 7.3(1.7) 9.2(1.8) 0.82(0.05) 2.4(1.9) 0.8(1.1) 0.20(0.26)
CQPCorr 9.2(2.0) 10.9(2.0) 0.87(0.05) 5.6(2.5) 1.5(1.5) 0.19(0.16)

300 AFT 7.8(1.8) 9.1(1.7) 0.80(0.05) 6.2(2.5) 6.1(8.8) 0.34(0.23)
Cox 9.3(1.9) 10.6(2.0) 0.85(0.06) 8.0(2.3) 3.8(5.4) 0.24(0.19)
CQR 4.3(1.5) 6.1(1.8) 0.71(0.05) 9.3(2.2) 112.5(36.1) 0.92(0.03)
KMW-LAD 8.8(1.8) 10.5(2.2) 0.86(0.05) 4.5(2.8) 0.9(1.2) 0.11(0.13)
CQPCorr 10.7(1.7) 12.0(1.8) 0.90(0.05) 7.6(2.5) 1.2(1.3) 0.11(0.11)

350 AFT 8.1(1.5) 9.2(1.5) 0.80(0.04) 6.4(2.5) 6.6(7.9) 0.38(0.24)
Cox 9.8(1.7) 11.1(1.6) 0.87(0.05) 8.3(1.9) 3.2(3.7) 0.23(0.18)
CQR 4.8(1.3) 6.7(1.4) 0.71(0.04) 10.0(1.8) 119.9(40.3) 0.92(0.03)
KMW-LAD 9.6(1.5) 11.6(1.6) 0.88(0.04) 6.0(2.2) 1.8(2.2) 0.18(0.15)
CQPCorr 11.2(1.4) 12.7(1.7) 0.92(0.04) 8.9(2.2) 1.7(1.7) 0.14(0.11)

400 AFT 8.8(1.6) 10.0(1.7) 0.83(0.05) 7.3(2.4) 6.6(9.4) 0.33(0.22)
Cox 10.9(1.8) 12.3(1.8) 0.89(0.05) 9.6(2.2) 3.5(3.7) 0.23(0.14)
CQR 5.6(2.0) 7.6(2.2) 0.75(0.05) 11.7(2.1) 122.3(39.0) 0.91(0.02)
KMW-LAD 10.7(1.5) 12.4(1.6) 0.91(0.04) 7.1(2.3) 1.7(1.9) 0.16(0.17)
CQPCorr 12.4(1.6) 13.7(1.5) 0.94(0.04) 10.4(2.4) 2.1(1.4) 0.16(0.09)
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Table A.3: Simulation results for setting C1 with the AR correlation structure (ρ = 0.3),
Error 3 and various values of sample size. In each cell, mean (sd) based on 200 replicates.
n Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR

250 AFT 4.3(2.2) 5.5(2.3) 0.69(0.07) 2.0(2.3) 5.1(9.8) 0.43(0.39)
Cox 7.1(1.9) 8.5(2.1) 0.79(0.06) 4.7(2.2) 2.7(5.0) 0.24(0.23)
CQR 3.0(1.4) 4.5(1.8) 0.65(0.05) 7.1(2.6) 108.4(37.8) 0.93(0.03)
KMW-LAD 6.5(1.8) 8.5(2.0) 0.80(0.06) 2.0(1.6) 0.4(0.6) 0.17(0.28)
CQPCorr 8.3(1.8) 9.9(2.1) 0.84(0.06) 4.3(2.0) 1.1(1.3) 0.16(0.15)

300 AFT 4.5(2.3) 5.7(2.3) 0.70(0.06) 2.5(2.1) 4.9(9.1) 0.39(0.36)
Cox 7.4(2.2) 8.7(1.8) 0.79(0.06) 5.0(2.6) 2.5(4.2) 0.24(0.23)
CQR 3.7(1.5) 5.2(1.5) 0.69(0.04) 8.3(2.1) 104.0(29.9) 0.92(0.02)
KMW-LAD 8.0(1.8) 9.6(2.0) 0.83(0.05) 3.0(2.5) 0.7(1.1) 0.18(0.25)
CQPCorr 9.2(1.8) 10.8(1.9) 0.87(0.05) 6.0(2.2) 1.3(1.9) 0.14(0.16)

350 AFT 5.4(2.0) 6.7(2.2) 0.73(0.06) 3.0(2.7) 4.1(6.8) 0.35(0.33)
Cox 8.7(1.5) 9.9(1.5) 0.83(0.05) 6.1(1.9) 1.7(2.1) 0.17(0.16)
CQR 4.5(1.2) 5.9(1.1) 0.70(0.04) 9.2(2.0) 106.8(27.8) 0.92(0.02)
KMW-LAD 9.9(1.8) 11.3(1.9) 0.88(0.05) 4.4(2.4) 0.6(1.0) 0.10(0.20)
CQPCorr 10.9(1.5) 12.4(1.3) 0.91(0.04) 8.0(2.0) 1.0(0.8) 0.10(0.07)

400 AFT 6.4(1.9) 7.9(2.0) 0.76(0.06) 3.8(2.7) 3.8(6.9) 0.36(0.31)
Cox 9.6(1.5) 10.9(1.6) 0.86(0.05) 7.4(2.3) 2.1(1.9) 0.19(0.14)
CQR 5.1(2.0) 7.1(2.1) 0.74(0.04) 10.7(1.9) 111.6(33.2) 0.91(0.02)
KMW-LAD 10.2(1.8) 11.9(1.7) 0.90(0.05) 5.8(3.2) 0.9(1.1) 0.10(0.11)
CQPCorr 11.7(1.5) 12.9(1.7) 0.92(0.04) 9.2(2.0) 1.2(1.2) 0.10(0.09)
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Table A.4: Simulation results for setting C3 with the AR correlation structure (ρ = 0.5).
In each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
1 AFT 10.8(1.5) 12.0(1.8) 0.86(0.05) 12.0(2.0) 52.5(76.5) 0.64(0.22)

Cox 9.3(1.8) 11.1(1.7) 0.86(0.05) 7.2(3.3) 3.3(3.1) 0.25(0.18)
CQR 4.2(1.8) 6.2(1.9) 0.71(0.06) 10.8(2.0) 141.9(45.9) 0.92(0.02)
KMW-LAD 9.1(1.7) 10.8(1.9) 0.86(0.05) 6.0(3.1) 1.0(1.7) 0.13(0.19)
CQPCorr 9.9(1.8) 11.4(2.0) 0.89(0.04) 6.8(2.8) 1.1(1.0) 0.12(0.09)

2 AFT 5.6(2.5) 7.0(2.6) 0.74(0.07) 3.8(2.7) 8.1(19.9) 0.45(0.29)
Cox 4.7(2.3) 6.1(2.5) 0.71(0.08) 2.5(2.7) 2.0(3.7) 0.18(0.26)
CQR 3.6(1.8) 5.4(1.8) 0.69(0.07) 8.5(2.8) 107.9(25.7) 0.92(0.03)
KMW-LAD 7.5(2.4) 9.0(2.3) 0.81(0.07) 3.2(2.2) 0.4(0.7) 0.10(0.22)
CQPCorr 7.6(2.2) 9.2(2.2) 0.82(0.06) 4.0(2.5) 0.7(0.8) 0.11(0.11)

3 AFT 3.9(2.0) 5.2(2.1) 0.69(0.07) 1.2(2.4) 4.1(12.7) 0.31(0.41)
Cox 3.5(2.0) 4.5(2.3) 0.67(0.08) 0.8(1.3) 1.0(2.6) 0.16(0.28)
CQR 3.0(1.5) 4.5(1.8) 0.66(0.04) 7.5(2.0) 112.0(33.6) 0.93(0.02)
KMW-LAD 6.8(1.9) 8.5(1.8) 0.80(0.05) 2.2(1.8) 0.7(1.5) 0.11(0.23)
CQPCorr 7.1(1.8) 8.8(1.8) 0.80(0.06) 3.5(2.4) 0.7(0.9) 0.12(0.14)
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Table A.5: Simulation results for setting C4 with the AR correlation structure (ρ = 0.5).
In each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
1 AFT 12.1(2.0) 13.8(1.6) 0.90(0.07) 13.6(2.3) 41.6(59.2) 0.61(0.19)

Cox 10.0(2.3) 11.6(2.2) 0.88(0.05) 7.4(4.0) 3.4(3.9) 0.25(0.18)
CQR 4.3(1.7) 6.1(2.0) 0.71(0.06) 9.8(3.0) 130.8(38.4) 0.93(0.02)
KMW-LAD 9.2(1.6) 11.8(1.2) 0.90(0.03) 5.9(2.6) 2.3(2.8) 0.21(0.19)
CQPCorr 10.1(2.3) 12.0(1.8) 0.91(0.05) 7.5(3.7) 2.9(2.9) 0.20(0.15)

2 AFT 1.2(1.6) 1.6(1.7) 0.56(0.06) 0.6(1.1) 1.6(2.4) 0.33(0.43)
Cox 4.2(2.1) 5.7(3.0) 0.70(0.10) 1.6(1.8) 1.2(2.7) 0.21(0.33)
CQR 3.4(1.5) 4.8(2.3) 0.67(0.06) 7.9(2.1) 123.2(30.0) 0.94(0.02)
KMW-LAD 7.2(3.3) 9.8(2.8) 0.83(0.08) 2.8(1.8) 0.8(1.3) 0.15(0.19)
CQPCorr 7.6(1.9) 10.4(2.0) 0.85(0.06) 3.8(2.7) 1.1(0.9) 0.14(0.13)

3 AFT 0.4(1.4) 0.6(1.5) 0.52(0.05) 0.2(1.0) 4.5(14.9) 0.28(0.45)
Cox 2.0(2.1) 2.9(2.7) 0.60(0.09) 0.4(0.7) 0.5(0.8) 0.24(0.38)
CQR 2.6(2.0) 4.4(2.1) 0.65(0.07) 7.2(2.7) 106.5(41.3) 0.93(0.03)
KMW-LAD 6.0(2.3) 7.8(2.4) 0.79(0.06) 1.1(1.1) 0.4(0.7) 0.11(0.21)
CQPCorr 6.2(2.8) 8.2(2.8) 0.83(0.08) 2.0(1.9) 0.5(0.8) 0.10(0.15)
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Table A.6: Simulation results for setting C5 with the AR correlation structure (ρ = 0.5).
In each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
1 AFT 10.0(0.2) 10.0(0.2) 0.77(0.03) 10.0(0.0) 62.2(66.0) 0.76(0.15)

Cox 9.9(0.3) 10.0(0.4) 0.79(0.02) 9.9(0.4) 18.4(16.6) 0.56(0.20)
CQR 5.0(1.7) 6.4(1.9) 0.69(0.04) 8.5(1.7) 112.4(35.3) 0.93(0.02)
KMW-LAD 8.8(0.9) 9.6(0.8) 0.80(0.02) 6.8(2.0) 1.2(1.7) 0.12(0.12)
CQPCorr 9.8(0.5) 10.1(0.7) 0.81(0.02) 8.9(1.0) 1.4(1.0) 0.12(0.08)

2 AFT 7.9(1.6) 8.4(1.7) 0.76(0.04) 7.3(2.1) 9.3(10.2) 0.44(0.24)
Cox 8.6(1.4) 8.9(1.5) 0.77(0.04) 7.5(1.6) 4.3(7.2) 0.26(0.20)
CQR 3.6(1.7) 5.0(1.5) 0.67(0.03) 7.7(1.8) 112.1(35.7) 0.93(0.02)
KMW-LAD 7.8(1.6) 8.5(1.5) 0.77(0.04) 4.4(2.2) 1.0(1.8) 0.11(0.18)
CQPCorr 8.6(1.1) 9.1(1.0) 0.80(0.02) 7.2(1.6) 1.0(1.0) 0.11(0.10)

3 AFT 6.0(2.2) 7.2(2.3) 0.74(0.06) 4.3(3.2) 8.0(18.3) 0.28(0.30)
Cox 7.6(1.9) 8.3(1.8) 0.77(0.05) 5.8(2.5) 2.4(3.0) 0.23(0.20)
CQR 3.4(1.4) 4.9(1.5) 0.67(0.05) 7.0(1.6) 102.6(34.2) 0.93(0.02)
KMW-LAD 6.9(1.4) 8.3(1.5) 0.77(0.05) 3.1(2.2) 0.6(1.0) 0.12(0.16)
CQPCorr 8.2(1.6) 9.2(1.2) 0.80(0.04) 5.4(2.1) 0.9(1.0) 0.11(0.10)
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Settings with banded correlation structure and binary E factors

Under coefficient settings C1 and C2, the following additional scenarios are examined.

For G factors, besides the AR correlation structure, we also consider the banded correlation

structure. Here two scenarios are considered. Under the first scenario (Band 1), the jth and

lth G variables have correlation coefficient 0.5 if |j−l| = 1 and 0 otherwise. Under the second

scenario (Band 2), the jth and lth G variables have correlation coefficient 0.7 if |j − l| = 1,

0.4 if |j − l| = 2, 0.1 if |j − l| = 3, and 0 otherwise. For E factors, the other scenario (E2)

dichotomizes two of the continuous E factors at 0 and create two binary variables. Under

coefficient settings C1 and C2 with the AR correlation structure (ρ = 0.5), we examine

another datasets with a higher censoring rate (35%). Summary results are provided in

Tables A.7-A.14.

122



Table A.7: Simulation results for setting C1 with the AR correlation structure and E2. In
each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
ρ = 0.3 1 AFT 8.5(1.0) 9.4(1.1) 0.74(0.04) 9.5(1.2) 73.0(58.7) 0.83(0.11)

Cox 8.6(1.4) 9.4(1.3) 0.79(0.04) 7.9(1.5) 7.0(5.1) 0.41(0.19)
CQR 3.1(1.5) 4.1(1.5) 0.65(0.04) 6.0(1.7) 81.4(20.7) 0.93(0.02)
KMW-LAD 5.9(1.7) 7.1(1.7) 0.75(0.04) 3.1(1.6) 0.6(0.9) 0.15(0.23)
CQPCorr 7.9(1.3) 8.8(1.5) 0.80(0.04) 5.2(2.0) 1.1(0.9) 0.14(0.11)

2 AFT 5.2(1.9) 5.8(2.0) 0.70(0.05) 3.6(2.5) 6.0(9.0) 0.43(0.32)
Cox 6.5(1.4) 7.6(1.5) 0.75(0.03) 4.2(2.4) 1.5(1.8) 0.20(0.18)
CQR 3.0(1.5) 4.5(1.4) 0.65(0.04) 6.0(1.7) 87.5(26.9) 0.93(0.03)
KMW-LAD 5.8(1.6) 7.1(1.7) 0.74(0.05) 2.5(1.9) 0.4(0.7) 0.09(0.18)
CQPCorr 6.8(1.8) 8.1(2.0) 0.77(0.05) 2.8(1.9) 0.4(0.7) 0.09(0.13)

3 AFT 1.6(1.8) 2.0(2.1) 0.60(0.07) 1.0(1.2) 2.3(4.3) 0.48(0.48)
Cox 4.6(1.8) 6.1(1.2) 0.70(0.04) 1.9(2.0) 1.9(3.0) 0.30(0.41)
CQR 2.3(1.8) 3.0(1.6) 0.62(0.03) 4.6(1.3) 86.4(32.0) 0.94(0.03)
KMW-LAD 4.4(1.7) 6.0(1.5) 0.70(0.03) 1.3(1.7) 0.4(0.5) 0.21(0.37)
CQPCorr 5.7(2.4) 7.0(1.9) 0.74(0.05) 1.7(1.5) 0.7(1.3) 0.20(0.39)

ρ = 0.5 1 AFT 10.0(0.6) 10.3(0.8) 0.78(0.04) 10.4(0.8) 47.2(35.1) 0.75(0.15)
Cox 9.8(0.7) 10.4(0.8) 0.82(0.03) 9.8(0.7) 13.7(16.8) 0.46(0.24)
CQR 5.1(1.8) 6.3(1.9) 0.72(0.05) 8.6(1.7) 81.7(24.6) 0.90(0.03)
KMW-LAD 9.4(1.2) 10.3(1.4) 0.83(0.04) 7.1(2.0) 1.3(1.5) 0.12(0.13)
CQPCorr 9.8(0.9) 10.6(1.0) 0.85(0.03) 8.9(1.0) 1.3(1.4) 0.11(0.11)

2 AFT 8.4(1.2) 9.2(1.1) 0.78(0.03) 7.5(2.4) 13.8(26.8) 0.48(0.20)
Cox 8.6(1.4) 9.4(1.0) 0.79(0.02) 8.0(2.0) 5.6(4.4) 0.34(0.18)
CQR 4.7(1.5) 6.1(1.6) 0.71(0.06) 8.1(2.5) 83.2(30.3) 0.90(0.03)
KMW-LAD 8.0(1.8) 9.3(1.8) 0.81(0.05) 5.1(2.5) 0.9(1.1) 0.15(0.22)
CQPCorr 9.3(1.6) 10.3(1.7) 0.84(0.04) 7.5(2.1) 1.5(1.5) 0.15(0.12)

3 AFT 7.2(1.9) 8.4(1.5) 0.76(0.04) 6.4(3.1) 9.6(14.9) 0.39(0.26)
Cox 8.9(1.1) 9.4(0.9) 0.79(0.03) 7.5(2.2) 3.8(4.9) 0.25(0.20)
CQR 4.6(2.1) 6.2(1.8) 0.70(0.05) 7.2(1.7) 69.5(24.7) 0.89(0.05)
KMW-LAD 7.6(1.5) 8.6(1.6) 0.79(0.05) 3.9(2.3) 0.5(0.7) 0.10(0.15)
CQPCorr 8.6(1.5) 9.7(1.3) 0.82(0.04) 7.0(1.9) 0.9(0.8) 0.10(0.09)
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Table A.8: Simulation results for setting C1 with the banded correlation structure and E1.
In each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
Band1 1 AFT 10.8(1.7) 11.8(2.1) 0.81(0.06) 12.8(1.8) 103.9(96.1) 0.83(0.11)

Cox 11.1(1.8) 12.2(1.8) 0.88(0.05) 11.6(1.8) 14.4(11.8) 0.49(0.16)
CQR 4.0(1.6) 6.0(1.7) 0.70(0.05) 9.8(2.0) 130.0(39.0) 0.93(0.02)
KMW-LAD 9.2(1.6) 10.9(1.9) 0.86(0.05) 5.9(2.7) 1.7(1.9) 0.20(0.17)
CQPCorr 11.0(1.5) 12.3(1.5) 0.91(0.04) 8.6(2.0) 2.0(1.7) 0.16(0.12)

2 AFT 6.8(2.2) 8.2(1.9) 0.76(0.06) 5.9(2.6) 16.4(21.1) 0.52(0.28)
Cox 8.2(2.1) 9.5(1.8) 0.81(0.05) 6.6(2.7) 4.9(4.7) 0.35(0.20)
CQR 3.3(1.9) 4.5(1.9) 0.67(0.05) 8.2(2.0) 125.6(50.2) 0.93(0.02)
KMW-LAD 7.5(1.8) 9.0(2.1) 0.80(0.05) 3.8(2.8) 1.4(1.4) 0.22(0.19)
CQPCorr 9.0(1.8) 10.4(2.1) 0.85(0.05) 5.6(2.3) 1.1(1.2) 0.15(0.15)

3 AFT 4.9(2.6) 6.3(2.4) 0.71(0.07) 3.3(2.7) 11.0(15.9) 0.46(0.39)
Cox 7.4(1.8) 8.6(2.0) 0.79(0.06) 5.0(2.3) 3.8(3.8) 0.34(0.25)
CQR 4.0(1.2) 5.3(1.6) 0.67(0.05) 7.7(2.5) 112.3(43.6) 0.93(0.03)
KMW-LAD 7.2(2.1) 9.2(2.2) 0.82(0.06) 3.7(2.2) 0.5(0.7) 0.11(0.14)
CQPCorr 8.9(2.0) 10.4(2.2) 0.85(0.06) 5.4(2.5) 0.7(0.9) 0.10(0.11)

Band2 1 AFT 12.0(1.0) 14.0(1.7) 0.85(0.08) 15.3(1.2) 109.7(67.6) 0.85(0.08)
Cox 12.3(0.6) 15.0(0.0) 0.95(0.03) 14.7(0.6) 37.0(32.1) 0.65(0.16)
CQR 7.3(3.1) 10.3(2.5) 0.84(0.04) 15.3(1.2) 136.0(9.5) 0.90(0.01)
KMW-LAD 12.7(0.6) 15.0(1.0) 0.97(0.01) 12.0(1.0) 4.0(1.7) 0.25(0.08)
CQPCorr 14.0(1.0) 15.3(1.2) 0.97(0.02) 13.3(0.6) 4.3(1.2) 0.24(0.05)

2 AFT 10.1(1.4) 11.4(1.8) 0.85(0.06) 11.9(2.0) 53.5(55.0) 0.73(0.15)
Cox 11.2(2.0) 12.7(2.0) 0.90(0.05) 11.9(2.3) 16.0(10.3) 0.52(0.16)
CQR 6.2(1.8) 8.5(2.1) 0.77(0.06) 11.7(2.1) 126.3(53.0) 0.90(0.05)
KMW-LAD 11.1(1.6) 12.8(2.0) 0.92(0.05) 9.3(2.7) 3.9(3.3) 0.25(0.15)
CQPCorr 12.5(1.9) 14.0(1.7) 0.94(0.05) 11.5(2.5) 4.0(2.2) 0.24(0.10)

3 AFT 9.1(1.2) 10.5(1.8) 0.82(0.07) 10.0(1.9) 38.5(61.8) 0.63(0.21)
Cox 11.2(1.8) 12.4(2.1) 0.89(0.07) 11.1(1.7) 11.5(9.3) 0.45(0.18)
CQR 6.0(1.8) 8.1(1.9) 0.77(0.04) 11.8(1.4) 120.1(36.9) 0.90(0.03)
KMW-LAD 10.4(1.5) 12.2(2.1) 0.90(0.06) 8.1(2.2) 3.0(2.2) 0.25(0.13)
CQPCorr 11.8(1.7) 13.4(1.8) 0.93(0.05) 10.4(2.2) 3.4(1.8) 0.24(0.09)
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Table A.9: Simulation results for setting C1 with the banded correlation structure and E2.
In each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
Band1 1 AFT 9.5(0.5) 9.8(0.4) 0.75(0.03) 9.9(0.5) 96.3(84.4) 0.85(0.10)

Cox 9.4(0.7) 9.9(0.7) 0.79(0.02) 9.4(0.9) 14.8(12.2) 0.54(0.16)
CQR 4.2(1.7) 6.1(1.8) 0.70(0.05) 7.5(1.9) 69.9(18.8) 0.90(0.03)
KMW-LAD 8.1(1.2) 9.1(1.1) 0.80(0.04) 4.8(1.7) 1.2(1.6) 0.15(0.16)
CQPCorr 9.1(1.2) 10.2(1.0) 0.83(0.03) 7.6(1.7) 1.4(1.0) 0.14(0.08)

2 AFT 6.5(1.8) 7.8(1.8) 0.74(0.05) 5.6(2.8) 10.5(12.1) 0.50(0.28)
Cox 7.4(1.4) 8.4(1.5) 0.76(0.03) 6.3(1.8) 4.0(4.4) 0.30(0.24)
CQR 3.5(1.2) 4.8(1.3) 0.66(0.04) 6.2(2.3) 79.8(30.2) 0.92(0.02)
KMW-LAD 7.1(1.7) 8.2(1.6) 0.78(0.04) 3.2(1.8) 0.9(0.9) 0.20(0.23)
CQPCorr 8.1(1.5) 9.2(1.4) 0.80(0.04) 5.6(2.3) 1.4(1.6) 0.17(0.17)

3 AFT 4.4(2.2) 5.1(2.5) 0.68(0.07) 2.2(2.4) 4.9(9.3) 0.42(0.40)
Cox 6.8(2.0) 7.4(2.1) 0.74(0.05) 4.0(2.9) 1.5(2.9) 0.16(0.22)
CQR 3.4(1.4) 4.3(1.1) 0.65(0.04) 5.8(2.1) 79.8(22.5) 0.93(0.02)
KMW-LAD 5.5(1.4) 6.7(1.3) 0.73(0.05) 2.1(2.0) 0.4(1.3) 0.04(0.12)
CQPCorr 7.4(1.1) 8.3(1.2) 0.78(0.03) 4.1(2.0) 0.3(0.5) 0.04(0.07)

Band2 1 AFT 10.1(0.5) 10.4(1.0) 0.76(0.07) 10.9(1.0) 126.6(113.8) 0.86(0.12)
Cox 10.2(0.6) 10.5(0.8) 0.82(0.04) 10.4(0.7) 24.9(16.6) 0.64(0.17)
CQR 6.6(1.7) 8.4(1.7) 0.77(0.05) 10.5(1.6) 99.4(25.3) 0.90(0.02)
KMW-LAD 10.1(1.6) 10.9(1.5) 0.85(0.05) 8.5(1.2) 2.4(1.8) 0.21(0.13)
CQPCorr 10.8(1.5) 11.3(1.5) 0.86(0.04) 10.1(1.3) 2.8(1.7) 0.20(0.10)

2 AFT 9.5(0.8) 9.8(0.7) 0.79(0.03) 9.6(0.8) 23.2(21.1) 0.60(0.23)
Cox 9.8(0.6) 10.5(1.1) 0.82(0.04) 9.4(0.7) 10.7(13.7) 0.42(0.22)
CQR 6.4(1.1) 8.2(1.5) 0.77(0.04) 10.2(1.8) 79.1(26.2) 0.88(0.05)
KMW-LAD 9.5(1.2) 10.0(1.1) 0.84(0.04) 7.7(2.0) 1.5(1.3) 0.15(0.12)
CQPCorr 10.2(1.0) 10.8(0.9) 0.86(0.04) 9.1(0.9) 1.6(1.3) 0.14(0.10)

3 AFT 8.5(1.1) 9.1(0.9) 0.76(0.02) 8.2(1.5) 26.9(37.1) 0.52(0.30)
Cox 9.4(0.8) 9.8(0.4) 0.80(0.02) 9.3(0.9) 9.1(14.4) 0.30(0.29)
CQR 5.9(1.6) 7.4(1.6) 0.75(0.03) 9.4(1.3) 69.9(15.7) 0.88(0.03)
KMW-LAD 9.6(1.3) 10.6(1.2) 0.84(0.05) 7.0(1.6) 0.8(1.1) 0.08(0.10)
CQPCorr 9.8(0.8) 10.8(1.2) 0.84(0.03) 8.4(1.1) 0.6(0.5) 0.07(0.06)
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Table A.10: Simulation results for setting C2 with the AR correlation structure and E2. In
each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
ρ = 0.3 1 AFT 8.5(1.4) 9.5(1.4) 0.78(0.04) 8.6(2.2) 31.9(37.2) 0.61(0.24)

Cox 7.6(1.6) 8.5(1.6) 0.77(0.05) 5.7(2.6) 3.2(3.5) 0.25(0.20)
CQR 3.0(1.5) 4.1(1.6) 0.65(0.04) 5.9(1.9) 82.2(33.0) 0.93(0.02)
KMW-LAD 5.7(1.8) 7.0(1.8) 0.74(0.05) 2.5(2.0) 0.9(1.3) 0.20(0.25)
CQPCorr 6.8(1.5) 8.0(1.6) 0.77(0.04) 3.8(2.2) 1.2(1.4) 0.19(0.18)

2 AFT 2.6(1.2) 3.6(1.3) 0.62(0.04) 0.5(0.7) 1.7(3.0) 0.42(0.43)
Cox 4.0(1.7) 5.0(2.0) 0.68(0.06) 1.6(2.0) 0.8(1.4) 0.15(0.24)
CQR 2.1(1.0) 3.3(1.6) 0.62(0.05) 4.4(2.3) 72.9(20.7) 0.94(0.03)
KMW-LAD 4.4(1.4) 5.7(1.4) 0.71(0.04) 1.0(1.1) 0.1(0.3) 0.03(0.08)
CQPCorr 5.1(1.5) 6.5(1.3) 0.73(0.04) 1.6(1.3) 0.1(0.4) 0.04(0.09)

3 AFT 1.4(1.5) 1.9(1.5) 0.57(0.05) 0.2(0.5) 1.1(2.0) 0.37(0.47)
Cox 3.1(2.1) 3.7(2.6) 0.63(0.08) 0.8(1.4) 0.3(0.7) 0.12(0.28)
CQR 2.1(1.3) 3.3(1.7) 0.62(0.05) 4.4(1.7) 62.7(27.1) 0.93(0.03)
KMW-LAD 3.9(1.4) 5.0(1.9) 0.67(0.06) 0.3(0.6) 0.1(0.2) 0.03(0.11)
CQPCorr 3.8(1.8) 5.2(2.1) 0.69(0.07) 1.3(1.4) 0.2(0.4) 0.07(0.15)

ρ = 0.5 1 AFT 9.7(0.8) 10.4(1.0) 0.78(0.06) 10.3(1.3) 55.8(65.9) 0.69(0.25)
Cox 9.4(0.9) 10.0(1.1) 0.81(0.04) 8.8(1.3) 7.9(13.9) 0.28(0.26)
CQR 5.1(1.8) 6.5(2.1) 0.72(0.06) 8.8(1.7) 91.3(24.0) 0.91(0.03)
KMW-LAD 8.8(1.7) 10.0(1.9) 0.84(0.06) 6.4(1.8) 1.0(1.3) 0.11(0.13)
CQPCorr 9.7(2.1) 10.4(2.1) 0.84(0.06) 7.3(2.7) 1.1(1.1) 0.10(0.09)

2 AFT 6.5(2.0) 7.9(1.8) 0.75(0.05) 4.1(3.2) 3.9(6.8) 0.29(0.28)
Cox 7.9(2.1) 8.6(2.0) 0.78(0.06) 5.7(3.3) 2.7(3.5) 0.22(0.22)
CQR 4.5(2.3) 6.5(2.2) 0.73(0.06) 8.0(2.1) 69.2(29.3) 0.88(0.05)
KMW-LAD 8.7(1.3) 9.9(1.9) 0.82(0.06) 3.9(2.0) 0.3(0.5) 0.08(0.12)
CQPCorr 9.4(1.7) 10.5(1.9) 0.85(0.05) 6.8(2.4) 0.7(0.8) 0.07(0.08)

3 AFT 5.5(3.0) 6.2(3.2) 0.71(0.09) 3.4(3.5) 3.5(7.1) 0.30(0.37)
Cox 6.3(3.0) 7.0(2.9) 0.73(0.09) 4.7(3.8) 2.0(2.8) 0.25(0.28)
CQR 4.3(1.6) 6.0(1.8) 0.71(0.05) 7.8(2.4) 67.0(20.3) 0.89(0.03)
KMW-LAD 8.6(1.8) 9.5(1.5) 0.82(0.05) 3.1(2.1) 0.2(0.4) 0.05(0.11)
CQPCorr 8.8(1.8) 9.6(1.7) 0.83(0.05) 5.5(2.3) 0.3(0.5) 0.04(0.06)
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Table A.11: Simulation results for setting C2 with the banded correlation structure and E1.
In each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
Band1 1 AFT 10.9(1.5) 12.2(1.9) 0.85(0.06) 12.8(2.1) 62.8(58.3) 0.74(0.17)

Cox 10.8(2.1) 11.8(2.0) 0.88(0.06) 10.1(2.8) 8.9(9.0) 0.38(0.20)
CQR 4.3(1.9) 5.9(2.0) 0.70(0.05) 10.4(2.4) 142.5(38.4) 0.93(0.02)
KMW-LAD 8.7(2.1) 10.5(2.2) 0.86(0.05) 5.1(2.4) 1.3(1.3) 0.18(0.15)
CQPCorr 10.2(2.2) 11.8(1.9) 0.89(0.05) 6.6(2.5) 1.7(1.7) 0.17(0.14)

2 AFT 4.7(2.0) 6.0(2.0) 0.71(0.06) 3.4(3.0) 16.2(32.7) 0.55(0.35)
Cox 7.3(2.1) 8.6(2.3) 0.79(0.08) 5.2(2.5) 4.2(5.3) 0.32(0.26)
CQR 3.8(1.8) 5.0(1.9) 0.68(0.05) 8.6(2.3) 120.0(32.0) 0.93(0.02)
KMW-LAD 7.7(1.4) 9.4(1.7) 0.83(0.05) 3.5(2.0) 0.8(1.3) 0.15(0.23)
CQPCorr 8.5(1.7) 10.6(2.0) 0.86(0.06) 5.1(2.1) 1.0(1.1) 0.15(0.14)

3 AFT 2.7(1.4) 3.8(2.0) 0.65(0.07) 1.1(1.2) 5.2(9.7) 0.50(0.44)
Cox 5.5(2.1) 6.9(2.7) 0.73(0.09) 3.0(2.7) 1.7(2.4) 0.27(0.30)
CQR 3.0(1.6) 4.3(1.5) 0.65(0.05) 7.5(2.0) 119.5(32.4) 0.94(0.03)
KMW-LAD 6.9(1.8) 8.4(1.9) 0.80(0.05) 2.2(2.2) 0.6(1.4) 0.10(0.16)
CQPCorr 7.5(1.9) 8.8(2.2) 0.81(0.07) 3.3(2.2) 0.5(0.7) 0.09(0.12)

Band2 1 AFT 12.7(1.2) 14.3(1.5) 0.87(0.07) 15.2(1.2) 106.3(97.0) 0.80(0.12)
Cox 13.1(1.3) 14.7(1.2) 0.94(0.04) 14.5(1.7) 36.0(43.7) 0.60(0.17)
CQR 6.8(2.0) 9.2(2.3) 0.80(0.04) 13.3(1.8) 151.4(55.7) 0.91(0.03)
KMW-LAD 12.5(1.1) 14.1(1.2) 0.95(0.03) 11.5(1.6) 5.5(3.4) 0.29(0.15)
CQPCorr 13.4(1.1) 14.9(1.3) 0.97(0.02) 13.1(1.6) 5.3(2.3) 0.28(0.09)

2 AFT 10.4(1.6) 11.9(1.3) 0.87(0.04) 11.0(2.5) 26.1(31.7) 0.60(0.17)
Cox 11.6(1.9) 13.1(2.2) 0.91(0.06) 11.6(2.4) 16.8(22.6) 0.43(0.24)
CQR 6.7(1.4) 8.6(1.3) 0.76(0.05) 12.7(1.8) 142.9(40.0) 0.91(0.03)
KMW-LAD 11.2(1.3) 13.2(1.3) 0.92(0.04) 8.7(2.5) 3.2(2.7) 0.22(0.15)
CQPCorr 12.8(1.3) 14.2(1.2) 0.96(0.03) 11.1(2.2) 3.1(1.9) 0.20(0.10)

3 AFT 8.2(2.7) 9.6(2.7) 0.82(0.09) 6.3(4.4) 11.9(17.9) 0.45(0.32)
Cox 9.5(2.7) 11.4(2.8) 0.88(0.08) 7.8(3.7) 5.3(5.6) 0.38(0.25)
CQR 5.4(1.9) 7.4(2.3) 0.74(0.06) 11.4(2.6) 132.8(35.5) 0.92(0.02)
KMW-LAD 10.9(2.0) 12.9(2.4) 0.92(0.05) 8.3(2.9) 3.0(2.7) 0.23(0.14)
CQPCorr 11.8(1.5) 13.3(1.7) 0.94(0.05) 9.9(2.9) 3.1(1.8) 0.22(0.09)
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Table A.12: Simulation results for setting C2 with the banded correlation structure and E2.
In each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
Band1 1 AFT 9.0(1.2) 9.4(1.3) 0.76(0.04) 9.4(1.6) 45.8(52.2) 0.69(0.23)

Cox 8.7(1.6) 9.4(1.4) 0.78(0.04) 8.2(2.0) 8.9(21.2) 0.30(0.26)
CQR 4.5(1.7) 5.8(2.0) 0.69(0.06) 7.9(2.3) 83.6(29.5) 0.91(0.04)
KMW-LAD 7.4(2.0) 8.6(2.1) 0.79(0.07) 4.5(2.3) 1.0(1.1) 0.15(0.15)
CQPCorr 8.1(1.9) 9.2(2.2) 0.81(0.07) 5.8(2.0) 1.1(1.0) 0.14(0.12)

2 AFT 4.7(1.8) 5.6(1.9) 0.69(0.05) 2.6(2.6) 13.7(33.9) 0.49(0.40)
Cox 5.7(2.1) 6.6(2.2) 0.71(0.06) 3.7(2.6) 2.3(3.5) 0.27(0.22)
CQR 3.3(1.9) 4.8(2.1) 0.67(0.06) 6.5(2.3) 77.3(22.1) 0.92(0.03)
KMW-LAD 6.2(2.0) 7.7(2.3) 0.76(0.07) 2.9(1.8) 0.8(1.4) 0.15(0.24)
CQPCorr 7.2(2.2) 7.9(2.4) 0.78(0.07) 4.2(2.4) 0.8(1.0) 0.14(0.16)

3 AFT 2.9(2.0) 3.6(2.1) 0.63(0.07) 0.9(1.4) 2.6(5.9) 0.44(0.44)
Cox 5.1(1.7) 5.9(1.7) 0.70(0.05) 2.4(2.3) 1.3(2.4) 0.14(0.24)
CQR 2.8(1.4) 4.1(1.7) 0.64(0.04) 5.3(1.4) 75.1(28.9) 0.93(0.03)
KMW-LAD 5.6(1.7) 7.1(2.1) 0.74(0.06) 1.6(1.4) 0.3(0.5) 0.09(0.18)
CQPCorr 6.0(1.6) 7.1(1.8) 0.75(0.05) 2.9(1.6) 0.4(1.1) 0.08(0.15)

Band2 1 AFT 10.1(0.6) 10.3(0.5) 0.80(0.05) 10.2(0.4) 35.7(31.5) 0.64(0.29)
Cox 10.0(0.9) 10.4(1.0) 0.81(0.04) 10.1(0.3) 31.7(53.5) 0.52(0.25)
CQR 6.7(1.7) 8.2(1.8) 0.75(0.05) 10.0(1.8) 101.8(37.0) 0.90(0.03)
KMW-LAD 9.7(1.2) 10.8(1.4) 0.86(0.05) 8.6(1.6) 2.5(1.9) 0.21(0.11)
CQPCorr 9.9(0.6) 11.2(0.8) 0.88(0.04) 9.2(1.4) 2.4(1.0) 0.20(0.05)

2 AFT 9.3(0.9) 9.9(0.6) 0.80(0.02) 8.6(1.7) 8.0(9.3) 0.33(0.27)
Cox 9.4(1.3) 10.2(1.3) 0.82(0.04) 8.9(1.4) 4.9(4.9) 0.29(0.19)
CQR 6.3(1.6) 7.6(1.5) 0.75(0.05) 9.4(1.7) 78.2(26.2) 0.88(0.04)
KMW-LAD 9.9(1.4) 11.4(1.9) 0.87(0.05) 7.7(1.4) 1.2(2.1) 0.09(0.14)
CQPCorr 10.2(1.2) 11.2(1.6) 0.87(0.04) 8.4(1.6) 1.8(1.1) 0.17(0.10)

3 AFT 7.0(2.2) 8.2(2.3) 0.77(0.07) 5.0(3.5) 5.2(8.1) 0.29(0.26)
Cox 8.9(1.4) 9.8(1.4) 0.80(0.05) 6.9(2.7) 4.0(3.9) 0.32(0.25)
CQR 5.5(1.4) 7.4(1.4) 0.74(0.05) 9.2(1.9) 77.8(35.2) 0.88(0.04)
KMW-LAD 9.0(1.5) 10.5(1.5) 0.85(0.05) 6.4(2.5) 1.5(2.2) 0.12(0.14)
CQPCorr 9.8(1.3) 10.9(1.4) 0.86(0.04) 7.4(2.2) 1.2(1.2) 0.12(0.10)
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Table A.13: Simulation results for setting C1 with the AR correlation structure (ρ = 0.5)
and 35% censoring rate. In each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
1 AFT 10.0(0.2) 10.0(0.2) 0.77(0.03) 10.0(0.0) 62.2(66.0) 0.76(0.15)

Cox 9.9(0.3) 10.0(0.4) 0.79(0.02) 9.9(0.4) 18.4(16.6) 0.56(0.20)
CQR 5.0(1.7) 6.4(1.9) 0.69(0.04) 8.5(1.7) 112.4(35.3) 0.93(0.02)
KMW-LAD 8.8(0.9) 9.6(0.8) 0.80(0.02) 6.8(2.0) 1.2(1.7) 0.12(0.12)
CQPCorr 9.8(0.5) 10.1(0.7) 0.81(0.02) 8.9(1.0) 1.4(1.0) 0.12(0.08)

2 AFT 7.9(1.6) 8.4(1.7) 0.76(0.04) 7.3(2.1) 9.3(10.2) 0.44(0.24)
Cox 8.6(1.4) 8.9(1.5) 0.77(0.04) 7.5(1.6) 4.3(7.2) 0.26(0.20)
CQR 3.6(1.7) 5.0(1.5) 0.67(0.03) 7.7(1.8) 112.1(35.7) 0.93(0.02)
KMW-LAD 7.8(1.6) 8.5(1.5) 0.77(0.04) 4.4(2.2) 1.0(1.8) 0.11(0.18)
CQPCorr 8.6(1.1) 9.1(1.0) 0.80(0.02) 7.2(1.6) 1.0(1.0) 0.11(0.10)

3 AFT 6.0(2.2) 7.2(2.3) 0.74(0.06) 4.3(3.2) 8.0(18.3) 0.28(0.30)
Cox 7.6(1.9) 8.3(1.8) 0.77(0.05) 5.8(2.5) 2.4(3.0) 0.23(0.20)
CQR 3.4(1.4) 4.9(1.5) 0.67(0.05) 7.0(1.6) 102.6(34.2) 0.93(0.02)
KMW-LAD 6.9(1.4) 8.3(1.5) 0.77(0.05) 3.1(2.2) 0.6(1.0) 0.12(0.16)
CQPCorr 8.2(1.6) 9.2(1.2) 0.80(0.04) 5.4(2.1) 0.9(1.0) 0.11(0.10)
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Table A.14: Simulation results for setting C2 with the AR correlation structure (ρ = 0.5)
and 35% censoring rate. In each cell, mean (sd) based on 200 replicates.

Error Method TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
1 AFT 9.7(1.0) 10.2(1.2) 0.79(0.05) 10.6(1.7) 64.6(82.3) 0.72(0.20)

Cox 9.6(1.3) 10.3(1.4) 0.82(0.04) 9.2(1.6) 7.3(7.3) 0.37(0.17)
CQR 4.0(1.8) 5.6(2.1) 0.69(0.06) 8.7(2.0) 121.3(36.7) 0.93(0.03)
KMW-LAD 7.9(1.7) 9.3(2.1) 0.80(0.06) 3.7(2.0) 0.9(1.0) 0.19(0.22)
CQPCorr 8.8(1.2) 9.7(1.4) 0.82(0.04) 7.3(1.8) 2.0(2.0) 0.18(0.15)

2 AFT 5.1(2.8) 6.1(2.8) 0.71(0.08) 2.8(3.1) 4.7(8.3) 0.46(0.41)
Cox 6.6(2.2) 7.5(1.8) 0.75(0.06) 4.0(2.0) 2.2(2.5) 0.25(0.21)
CQR 3.0(1.1) 4.6(1.4) 0.67(0.04) 7.2(1.6) 102.7(37.7) 0.93(0.03)
KMW-LAD 5.8(1.6) 6.6(2.3) 0.73(0.07) 1.6(1.6) 0.1(0.3) 0.03(0.09)
CQPCorr 6.8(2.1) 7.8(2.4) 0.76(0.07) 2.9(2.6) 0.4(0.8) 0.04(0.08)

3 AFT 2.6(2.1) 3.7(2.4) 0.63(0.06) 0.9(1.7) 2.0(3.8) 0.47(0.47)
Cox 4.8(2.0) 6.2(2.0) 0.71(0.07) 2.4(2.2) 1.3(1.9) 0.33(0.35)
CQR 2.1(1.1) 3.1(1.5) 0.62(0.04) 5.5(1.7) 110.7(28.8) 0.95(0.02)
KMW-LAD 5.2(1.6) 6.0(1.4) 0.70(0.05) 0.8(1.2) 0.2(0.6) 0.13(0.29)
CQPCorr 6.3(2.1) 7.2(1.9) 0.75(0.06) 3.1(2.1) 0.9(1.3) 0.15(0.16)
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Table A.15: Simulation results for setting C1 with the AR correlation structure (ρ = 0.5)
and various values of τ . In each cell, mean (sd) based on 200 replicates.

Error Method τ TP20 TP40 pAUC TP.FDR FP.FDR E.FDR
1 CQR 0.2 4.9(1.7) 7.1(2.0) 0.73(0.04) 11.5(2.0) 140.9(48.5) 0.92(0.03)

0.35 4.9(1.6) 6.8(1.9) 0.72(0.05) 11.2(2.0) 141.1(44.8) 0.92(0.03)
0.5 4.7(1.6) 6.9(1.8) 0.74(0.06) 11.5(2.0) 133.0(33.1) 0.92(0.02)
0.65 5.3(1.9) 7.2(1.9) 0.72(0.04) 11.1(1.9) 137.8(43.0) 0.92(0.02)
0.8 4.7(1.6) 6.8(1.9) 0.72(0.04) 11.2(1.8) 140.2(44.8) 0.92(0.02)

CQPCorr 0.2 9.6(1.7) 10.8(1.8) 0.86(0.05) 11.5(2.5) 4.3(2.7) 0.30(0.13)
0.35 11.4(2.0) 12.8(1.6) 0.92(0.04) 9.8(2.1) 3.6(2.7) 0.24(0.15)
0.5 12.2(1.6) 13.8(1.5) 0.94(0.03) 10.9(2.0) 3.3(2.5) 0.21(0.12)
0.65 10.5(1.5) 12.4(1.5) 0.91(0.03) 8.9(1.8) 3.3(2.4) 0.24(0.15)
0.8 9.2(1.4) 10.3(1.4) 0.85(0.05) 8.4(1.7) 4.0(3.3) 0.28(0.17)

2 CQR 0.2 5.6(1.7) 7.1(1.9) 0.73(0.06) 9.7(1.9) 110.1(39.9) 0.91(0.03)
0.35 5.3(1.4) 7.3(1.8) 0.72(0.06) 9.5(1.8) 107.3(42.3) 0.91(0.04)
0.5 5.2(1.4) 7.1(1.5) 0.73(0.04) 9.6(2.1) 108.4(23.8) 0.91(0.02)
0.65 5.3(1.7) 7.3(1.9) 0.73(0.05) 9.9(2.0) 108.4(40.6) 0.91(0.03)
0.8 5.1(1.8) 7.1(2.2) 0.73(0.06) 10.2(1.6) 110.2(40.3) 0.91(0.03)

CQPCorr 0.2 7.2(1.5) 8.0(1.6) 0.77(0.03) 9.7(1.9) 2.6(1.7) 0.32(0.15)
0.35 10.3(1.4) 11.4(1.8) 0.88(0.05) 8.3(1.7) 1.7(1.8) 0.15(0.13)
0.5 10.4(1.7) 12.0(2.0) 0.89(0.05) 8.0(2.4) 1.6(1.2) 0.16(0.09)
0.65 10.1(1.9) 11.6(1.6) 0.88(0.04) 8.0(2.8) 2.1(2.1) 0.18(0.14)
0.8 7.9(1.8) 9.2(2.0) 0.81(0.05) 5.9(2.5) 2.3(2.1) 0.24(0.15)

3 CQR 0.2 4.8(1.6) 6.4(1.8) 0.71(0.04) 9.0(2.0) 99.6(36.7) 0.91(0.03)
0.35 4.6(1.6) 6.3(1.5) 0.71(0.05) 8.8(2.4) 97.7(37.3) 0.91(0.04)
0.5 4.5(1.6) 6.3(1.7) 0.70(0.05) 9.0(1.9) 105.8(44.7) 0.92(0.03)
0.65 4.8(1.6) 6.1(2.0) 0.70(0.05) 8.6(2.2) 97.6(36.3) 0.91(0.03)
0.8 4.9(1.6) 6.3(1.8) 0.71(0.05) 9.0(2.2) 101.6(38.1) 0.91(0.03)

CQPCorr 0.2 6.1(2.1) 7.5(2.2) 0.75(0.06) 9.0(2.5) 1.3(1.6) 0.19(0.18)
0.35 9.2(1.8) 10.6(1.6) 0.85(0.05) 6.8(2.1) 1.4(1.3) 0.16(0.12)
0.5 10.7(1.7) 12.2(1.9) 0.90(0.06) 7.5(2.4) 1.3(1.4) 0.14(0.11)
0.65 9.6(1.5) 11.0(1.6) 0.87(0.04) 6.4(2.2) 1.4(1.3) 0.16(0.13)
0.8 6.8(1.7) 8.1(2.0) 0.77(0.06) 3.7(2.0) 1.5(1.9) 0.22(0.20)
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Table A.16: Data analysis: numbers of overlapping interactions (RV-coefficients) identified
by different methods. Upper panel: results based on FDR control. Lower panel: results
based on (roughly) top forty lists.

LUAD AFT Cox CQR KMW-LAD CQPCorr

AFT 8(1.00) 2(0.71) 4(0.77) 0(0.41) 2(0.85)

Cox 29(1.00) 16(0.87) 0(0.47) 13(0.84)

CQR 620(1.00) 2(0.64) 15(0.89)

KMW-LAD 4(1.00) 0(0.50)

CQPCorr 48(1.00)

SKCM AFT Cox CQR KMW-LAD CQPCorr

AFT 17(1.00) 16(0.74) 11(0.60) 0(0.00) 6(0.77)

Cox 573(1.00) 101(0.53) 1(0.00) 44(0.72)

CQR 741(1.00) 5(0.02) 20(0.81)

KMW-LAD 20(1.00) 0(0.00)

CQPCorr 80(1.00)

LUAD AFT Cox CQR KMW-LAD CQPCorr

AFT 40(1.00) 14(1.00) 1(0.40) 1(0.27) 4(0.20)

Cox 40(1.00) 1(0.39) 0(0.25) 5(0.19)

CQR 40(1.00) 1(0.71) 1(0.44)

KMW-LAD 40(1.00) 3(0.40)

CQPCorr 46(1.00)

SKCM AFT Cox CQR KMW-LAD CQPCorr

AFT 40(1.00) 12(0.87) 5(0.14) 0(0.01) 7(0.53)

Cox 40(1.00) 0(0.10) 0(0.00) 7(0.48)

CQR 47(1.00) 2(0.02) 3(0.14)

KMW-LAD 45(1.00) 0(0.01)

CQPCorr 43(1.00)

A.2 Penalized Trimmed Estimation and Selection for Joint

Interaction Analysis
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Table A.18: Summary results under simulation scenarios with continuous G factors and
Band structure under linear model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0, 1)
LTS-MCP-Hier 7.8(0.4) 0.8(1.9) 12.0(2.0) 1.0(1.1) 2.34(0.53) 0.99(0.53)
LS-MCP 5.5(0.9) 3.9(4.4) 10.9(0.9) 12.9(11.1) 2.92(0.45) 1.31(0.62)
LAD-Lasso 8.0(0.1) 11.4(5.6) 13.1(1.5) 30.4(11.6) 1.78(0.39) 1.47(0.56)
RLARS 7.4(0.7) 0.7(1.1) 7.5(1.8) 11.4(7.2) 3.25(0.44) 2.29(0.80)
LTS-MCP 6.0(1.0) 6.5(3.3) 10.7(1.0) 25.8(8.9) 2.63(0.49) 1.34(0.25)
LS-MCP-Hier 8.0(0.1) 0.5(1.7) 12.7(1.1) 0.5(0.7) 1.79(0.35) 0.81(0.19)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 7.8(0.4) 0.9(2.9) 11.4(2.0) 1.1(1.0) 2.28(0.50) 1.14(0.60)
LS-MCP 2.1(1.8) 18.2(8.0) 2.3(2.4) 71.9(11.6) 30.32(40.12) 547.58(2145.90)
LAD-Lasso 7.5(0.6) 2.8(2.2) 7.0(2.4) 7.5(3.4) 3.13(0.35) 4.11(1.22)
RLARS 7.1(0.8) 0.8(1.1) 6.0(1.8) 11.4(6.8) 3.67(0.50) 3.33(1.23)
LTS-MCP 5.8(0.9) 8.4(3.9) 10.4(1.1) 29.5(10.3) 2.80(0.43) 1.37(0.36)
LS-MCP-Hier 5.8(1.4) 150.7(118.1) 2.4(3.2) 27.2(74.9) 28.76(42.09) 1181.23(5245.02)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 7.8(0.4) 0.9(2.3) 11.7(1.8) 1.0(1.1) 2.15(0.47) 1.05(0.50)
LS-MCP 2.7(1.0) 24.1(5.2) 2.7(1.4) 67.9(5.2) 9.96(0.68) 33.43(7.57)
LAD-Lasso 7.3(0.8) 3.0(1.8) 5.4(2.1) 8.0(2.7) 3.39(0.34) 5.09(1.51)
RLARS 5.8(1.2) 1.4(1.4) 3.7(1.8) 11.4(4.9) 4.31(0.48) 5.55(2.15)
LTS-MCP 6.0(0.9) 7.3(3.7) 10.7(1.0) 26.4(8.9) 2.67(0.49) 1.20(0.28)
LS-MCP-Hier 6.1(0.9) 94.6(7.1) 2.4(1.5) 5.3(5.2) 8.79(0.62) 33.32(6.65)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 7.0(1.3) 6.8(13.7) 9.9(3.5) 2.8(2.2) 2.91(0.90) 1.26(2.64)
LS-MCP 1.3(0.9) 22.2(5.2) 3.1(1.9) 69.0(6.5) 7.21(0.86) 18.85(6.15)
LAD-Lasso 3.9(1.2) 4.1(2.3) 4.0(1.6) 12.8(3.5) 4.05(0.33) 9.23(2.16)
RLARS 7.1(0.8) 0.8(1.1) 6.9(1.9) 12.1(7.9) 3.42(0.43) 2.88(0.96)
LTS-MCP 5.8(1.2) 8.9(4.4) 10.4(1.3) 31.7(11.1) 2.78(0.58) 3.12(0.68)
LS-MCP-Hier 5.2(1.2) 56.4(35.5) 3.4(2.7) 5.0(3.3) 5.44(1.27) 14.17(8.50)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.2(1.2) 5.6(12.7) 9.8(2.9) 2.7(2.2) 2.75(0.87) 1.09(2.28)
LS-MCP 0.5(0.7) 18.0(9.6) 1.5(1.5) 69.0(16.7) 25.10(32.12) 258.07(680.53)
LAD-Lasso 3.6(1.4) 4.4(2.1) 4.0(2.1) 12.4(3.4) 4.06(0.36) 9.17(2.26)
RLARS 6.7(0.9) 1.1(1.3) 5.9(1.6) 13.3(7.4) 3.77(0.43) 3.65(1.24)
LTS-MCP 6.0(1.0) 9.3(4.0) 10.7(1.2) 32.7(8.5) 2.67(0.52) 2.55(0.35)
LS-MCP-Hier 4.3(1.6) 154.0(110.7) 1.0(1.8) 26.0(61.5) 27.86(39.79) 1019.76(4540.05)
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Table A.19: Summary results under simulation scenarios with continuous G factors and
Band structure under AFT model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE Cstat

D1: N(0, 1)
LTS-MCP-Hier 7.8(0.5) 8.0(9.5) 10.1(2.7) 0.8(1.0) 2.67(0.50) 0.90(0.03)
LS-MCP 6.2(1.0) 13.0(5.4) 11.0(0.9) 38.9(10.2) 2.59(0.54) 0.92(0.02)
LAD-Lasso 7.4(0.9) 13.8(7.9) 6.6(4.0) 31.1(16.6) 3.32(0.61) 0.83(0.06)
RLARS 7.2(0.8) 10.5(2.8) 3.1(1.4) 22.2(4.4) 4.22(0.35) 0.78(0.05)
LTS-MCP 5.8(1.0) 14.8(4.6) 6.6(1.7) 57.8(7.4) 3.36(0.31) 0.85(0.03)
LS-MCP-Hier 8.0(0.2) 2.6(4.4) 11.7(1.3) 0.8(1.1) 2.04(0.35) 0.92(0.02)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 7.7(0.6) 7.5(7.6) 9.2(2.7) 1.2(1.1) 2.88(0.58) 0.88(0.03)
LS-MCP 1.1(1.2) 12.9(7.8) 1.2(1.5) 61.1(8.9) 46.82(93.14) 0.56(0.07)
LAD-Lasso 5.8(1.5) 4.9(2.4) 1.8(1.5) 12.4(3.4) 4.08(0.35) 0.74(0.06)
RLARS 6.1(1.6) 7.3(3.9) 1.5(1.1) 24.1(5.9) 5.42(5.41) 0.72(0.06)
LTS-MCP 5.7(1.2) 16.0(4.1) 5.7(1.7) 58.5(6.1) 3.66(0.35) 0.83(0.03)
LS-MCP-Hier 5.5(1.4) 193.2(160.4) 2.1(2.4) 73.5(236.8) 57.08(118.64) 0.58(0.07)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 8.0(0.1) 3.8(6.7) 11.4(1.7) 0.9(1.0) 2.12(0.42) 0.92(0.01)
LS-MCP 2.5(1.0) 26.6(5.4) 2.6(1.3) 70.5(6.3) 10.76(0.69) 0.63(0.04)
LAD-Lasso 6.6(1.1) 4.3(2.2) 2.9(1.9) 11.0(3.0) 3.77(0.33) 0.78(0.05)
RLARS 6.3(1.1) 4.2(2.9) 1.4(1.2) 12.0(5.7) 4.40(0.39) 0.77(0.04)
LTS-MCP 6.0(1.1) 11.2(4.0) 9.2(1.8) 47.4(9.4) 2.93(0.50) 0.89(0.02)
LS-MCP-Hier 5.9(1.1) 101.8(7.3) 2.5(1.6) 7.0(6.3) 9.68(0.59) 0.66(0.04)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 6.8(1.2) 10.3(9.7) 9.1(3.4) 1.7(1.5) 3.46(0.71) 0.84(0.07)
LS-MCP 3.1(1.1) 15.2(4.5) 4.9(2.1) 53.2(6.0) 4.98(0.62) 0.74(0.05)
LAD-Lasso 6.0(1.3) 7.2(5.8) 3.4(2.5) 18.8(10.2) 3.92(0.38) 0.76(0.05)
RLARS 6.8(1.0) 12.1(4.0) 2.8(1.6) 21.8(4.7) 4.41(0.39) 0.76(0.04)
LTS-MCP 5.4(1.3) 15.8(3.9) 5.5(1.9) 61.7(5.9) 3.73(0.41) 0.81(0.04)
LS-MCP-Hier 5.8(1.1) 42.5(23.6) 4.5(2.4) 2.9(2.1) 4.18(0.64) 0.77(0.05)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.1(1.1) 10.1(12.0) 9.5(3.2) 1.8(1.3) 3.30(0.75) 0.84(0.06)
LS-MCP 0.9(1.0) 13.1(7.1) 1.1(1.3) 57.1(10.2) 36.77(71.77) 0.56(0.06)
LAD-Lasso 5.2(1.7) 4.6(2.3) 1.8(1.5) 12.9(3.7) 4.16(0.33) 0.73(0.06)
RLARS 6.2(1.3) 8.5(4.6) 2.5(1.5) 22.6(6.7) 6.82(16.01) 0.73(0.06)
LTS-MCP 5.8(1.1) 15.9(4.3) 5.1(1.6) 61.1(5.2) 3.74(0.42) 0.81(0.04)
LS-MCP-Hier 5.0(1.7) 173.4(152.1) 2.0(2.3) 66.5(240.4) 52.85(129.70) 0.57(0.06)
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Table A.20: Summary results under simulation scenarios with categorical G factors and AR
structure under linear model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0, 1)
LTS-MCP-Hier 7.9(0.3) 0.3(1.0) 12.3(1.5) 0.6(0.9) 2.03(0.42) 0.95(0.44)
LS-MCP 6.2(1.1) 4.5(4.2) 11.3(1.3) 14.3(11.5) 2.48(0.54) 1.13(0.37)
LAD-Lasso 8.0(0.0) 10.7(5.7) 13.4(1.0) 27.9(10.1) 1.68(0.31) 1.37(0.41)
RLARS 4.1(1.2) 13.2(5.8) 2.3(1.6) 8.4(5.0) 4.73(0.44) 8.87(3.01)
LTS-MCP 6.7(0.9) 7.0(3.3) 11.3(1.1) 27.6(8.1) 2.19(0.49) 1.19(0.25)
LS-MCP-Hier 8.0(0.0) 0.3(0.8) 13.1(0.9) 0.5(0.7) 1.66(0.27) 0.80(0.17)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 8.0(0.2) 1.0(2.8) 11.8(2.0) 0.9(1.1) 2.13(0.47) 1.07(0.45)
LS-MCP 1.9(1.8) 21.1(8.4) 2.2(2.4) 74.7(11.4) 35.47(49.17) 712.17(2635.35)
LAD-Lasso 7.8(0.4) 2.4(1.7) 7.8(2.3) 7.2(3.5) 3.02(0.34) 4.05(1.16)
RLARS 4.0(1.1) 11.4(5.3) 1.9(1.4) 7.8(4.4) 4.85(0.41) 9.86(3.38)
LTS-MCP 6.5(1.0) 8.5(3.5) 11.1(1.2) 32.1(7.9) 2.35(0.52) 1.24(0.28)
LS-MCP-Hier 6.0(1.5) 153.5(116.8) 2.4(3.2) 24.5(72.4) 28.86(41.92) 1214.97(5318.06)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 8.0(0.2) 0.5(1.4) 12.3(1.6) 0.8(0.9) 1.94(0.41) 0.93(0.41)
LS-MCP 2.8(1.1) 25.0(5.4) 2.7(1.4) 67.2(6.0) 9.90(0.71) 34.37(7.31)
LAD-Lasso 7.5(0.6) 2.8(1.9) 5.6(2.2) 8.4(2.6) 3.33(0.33) 5.04(1.54)
RLARS 3.8(1.1) 10.1(3.8) 0.9(0.9) 6.3(3.2) 5.14(0.50) 11.87(3.95)
LTS-MCP 6.7(1.1) 7.6(3.5) 11.4(1.1) 28.0(7.5) 2.21(0.52) 1.03(0.22)
LS-MCP-Hier 6.4(1.0) 94.4(7.5) 2.2(1.5) 5.1(5.6) 8.64(0.53) 31.64(6.01)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 7.7(0.6) 7.7(12.3) 10.1(3.0) 1.3(1.1) 2.50(0.61) 1.71(1.08)
LS-MCP 4.4(1.3) 21.5(5.7) 6.8(1.9) 55.4(7.3) 4.95(0.79) 6.95(2.98)
LAD-Lasso 7.0(0.9) 7.6(4.0) 4.7(2.4) 9.0(4.1) 3.51(0.37) 6.35(1.97)
RLARS 5.7(1.1) 13.7(6.6) 2.7(1.7) 8.7(4.8) 4.46(0.42) 7.11(2.26)
LTS-MCP 6.2(1.1) 11.9(5.1) 10.5(1.6) 34.4(7.0) 2.67(0.59) 2.17(0.56)
LS-MCP-Hier 7.7(0.6) 52.4(20.8) 6.5(2.2) 2.4(2.4) 3.61(0.67) 4.38(1.90)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.9(0.4) 1.7(4.7) 11.2(2.3) 1.0(1.1) 2.27(0.53) 1.56(0.78)
LS-MCP 1.4(1.4) 22.2(7.7) 1.6(2.0) 76.1(10.6) 39.92(54.72) 771.74(2428.31)
LAD-Lasso 7.2(0.9) 4.5(2.6) 4.6(2.2) 8.0(2.9) 3.51(0.31) 6.12(1.65)
RLARS 5.6(1.1) 11.0(5.6) 2.7(1.8) 9.3(5.8) 4.50(0.40) 7.18(2.21)
LTS-MCP 6.4(0.9) 10.1(4.2) 11.1(1.4) 32.8(7.5) 2.43(0.55) 1.86(0.38)
LS-MCP-Hier 5.4(1.5) 164.5(117.5) 1.7(2.4) 29.5(75.9) 31.75(42.57) 1196.18(4354.42)
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Table A.21: Summary results under simulation scenarios with categorical G factors and AR
structure under AFT model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE Cstat

D1: N(0, 1)
LTS-MCP-Hier 7.8(0.4) 6.4(10.0) 10.1(2.7) 0.8(1.0) 2.43(0.53) 0.90(0.03)
LS-MCP 7.0(1.0) 12.3(4.6) 12.1(1.2) 38.1(8.7) 1.92(0.67) 0.92(0.01)
LAD-Lasso 7.5(0.7) 14.6(8.2) 8.0(4.1) 33.2(16.6) 3.16(0.60) 0.85(0.05)
RLARS 2.6(1.3) 3.5(2.8) 0.7(0.9) 34.4(6.8) 5.65(0.54) 0.61(0.07)
LTS-MCP 6.1(1.0) 15.2(4.3) 6.7(1.7) 57.4(8.5) 3.27(0.32) 0.85(0.03)
LS-MCP-Hier 7.9(0.3) 1.3(3.0) 12.3(1.2) 0.5(0.8) 1.89(0.36) 0.92(0.02)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 7.8(0.4) 6.2(5.4) 9.3(3.3) 1.1(1.1) 2.64(0.59) 0.88(0.04)
LS-MCP 1.1(1.4) 16.5(8.8) 1.2(1.5) 63.9(9.9) 58.01(114.22) 0.55(0.07)
LAD-Lasso 5.8(1.6) 4.7(2.4) 1.9(1.3) 12.1(3.4) 4.09(0.33) 0.74(0.06)
RLARS 1.0(1.1) 2.8(2.3) 0.5(0.8) 32.4(8.8) 232.54(898.65) 0.55(0.05)
LTS-MCP 6.2(0.9) 15.5(4.3) 5.6(1.7) 59.7(4.9) 3.57(0.33) 0.83(0.03)
LS-MCP-Hier 5.4(1.5) 198.8(160.5) 2.0(2.7) 70.5(239.0) 59.85(123.92) 0.58(0.08)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 8.0(0.2) 1.2(3.0) 12.4(1.3) 0.6(0.8) 1.90(0.34) 0.92(0.01)
LS-MCP 2.5(1.1) 26.5(5.0) 2.5(1.5) 71.4(5.6) 10.67(0.75) 0.63(0.04)
LAD-Lasso 6.5(1.1) 4.3(2.5) 2.8(1.7) 10.8(3.5) 3.79(0.29) 0.78(0.04)
RLARS 1.2(1.0) 1.6(1.7) 0.5(0.7) 25.7(9.8) 5.75(0.75) 0.60(0.06)
LTS-MCP 6.3(0.8) 12.2(4.0) 9.4(1.7) 48.6(9.6) 2.77(0.52) 0.90(0.02)
LS-MCP-Hier 5.9(1.2) 101.6(7.2) 2.2(1.7) 7.6(6.1) 9.60(0.61) 0.66(0.04)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 7.2(0.8) 15.4(10.4) 8.7(2.4) 1.2(1.1) 3.67(0.44) 0.85(0.05)
LS-MCP 3.3(1.3) 18.8(4.1) 3.0(1.7) 53.8(5.1) 6.07(0.70) 0.67(0.05)
LAD-Lasso 2.3(1.6) 11.5(4.9) 0.3(0.7) 14.5(6.7) 4.48(0.29) 0.63(0.05)
RLARS 3.9(1.2) 21.4(6.0) 0.3(0.5) 17.4(6.3) 5.38(0.40) 0.64(0.04)
LTS-MCP 5.6(1.1) 19.2(5.3) 4.2(1.6) 59.4(5.9) 4.00(0.35) 0.78(0.04)
LS-MCP-Hier 5.9(1.1) 66.0(8.2) 1.7(1.3) 2.9(2.7) 5.03(0.67) 0.71(0.05)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.5(0.7) 13.6(19.0) 9.1(3.4) 1.0(1.1) 3.28(0.62) 0.84(0.05)
LS-MCP 0.5(0.8) 16.2(7.7) 0.4(0.7) 64.4(9.4) 63.10(119.35) 0.52(0.03)
LAD-Lasso 1.6(1.6) 12.9(5.6) 0.2(0.5) 10.1(5.0) 4.60(0.27) 0.60(0.05)
RLARS 3.4(1.6) 15.4(8.1) 0.4(0.7) 18.8(6.2) 63.57(153.77) 0.61(0.06)
LTS-MCP 6.0(1.0) 16.8(4.2) 5.0(2.0) 59.0(5.1) 3.82(0.37) 0.81(0.03)
LS-MCP-Hier 4.6(2.2) 201.0(155.2) 1.6(2.8) 87.9(263.4) 63.33(132.06) 0.51(0.05)
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Table A.22: Summary results under simulation scenarios with categorical G factors and
Band structure under linear model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0, 1)
LTS-MCP-Hier 7.9(0.3) 0.4(1.1) 11.6(1.9) 0.8(1.0) 2.18(0.49) 0.98(0.45)
LS-MCP 5.9(1.2) 4.8(5.0) 11.1(1.0) 15.4(13.4) 2.64(0.59) 1.19(0.52)
LAD-Lasso 8.0(0.1) 12.7(5.5) 13.2(1.3) 31.8(11.8) 1.72(0.34) 1.42(0.48)
RLARS 4.1(1.4) 13.4(6.1) 2.3(1.4) 9.0(4.8) 4.72(0.46) 9.01(3.04)
LTS-MCP 6.2(1.1) 6.5(3.9) 11.0(1.1) 25.7(8.3) 2.40(0.59) 1.26(0.26)
LS-MCP-Hier 8.0(0.0) 0.4(1.1) 13.1(1.0) 0.5(0.7) 1.67(0.33) 0.79(0.18)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 7.9(0.3) 0.6(1.8) 11.8(1.5) 0.9(1.0) 2.14(0.40) 1.10(0.43)
LS-MCP 1.8(1.8) 21.8(8.9) 2.2(2.4) 74.2(10.9) 35.32(48.40) 673.99(2547.57)
LAD-Lasso 7.6(0.6) 2.7(2.0) 7.2(2.3) 7.3(3.2) 3.12(0.40) 4.32(1.44)
RLARS 4.0(1.4) 11.5(5.4) 1.8(1.4) 8.2(4.0) 4.81(0.41) 9.70(3.17)
LTS-MCP 6.3(1.0) 8.4(3.7) 10.8(1.3) 31.8(8.1) 2.52(0.51) 1.28(0.29)
LS-MCP-Hier 5.9(1.6) 152.2(118.4) 2.4(3.3) 25.3(74.6) 28.95(42.00) 1126.17(4531.24)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 7.9(0.2) 0.6(1.5) 12.0(1.4) 0.7(0.8) 2.07(0.41) 0.99(0.43)
LS-MCP 2.6(1.1) 25.3(5.3) 2.6(1.5) 68.3(5.4) 9.98(0.74) 33.57(6.78)
LAD-Lasso 7.2(0.8) 2.9(1.8) 5.6(2.2) 8.3(2.9) 3.41(0.33) 5.31(1.51)
RLARS 3.7(1.3) 9.6(3.9) 0.9(1.0) 6.4(3.0) 5.06(0.52) 11.42(4.16)
LTS-MCP 6.4(1.1) 7.8(3.3) 11.0(1.1) 27.5(7.3) 2.41(0.58) 1.16(0.23)
LS-MCP-Hier 6.1(1.1) 93.7(6.3) 2.4(1.4) 5.7(5.4) 8.57(0.49) 30.92(5.83)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 7.5(0.6) 7.5(8.7) 9.3(2.8) 1.2(1.2) 2.72(0.56) 1.82(1.11)
LS-MCP 4.1(1.2) 21.6(4.9) 6.7(1.7) 55.9(5.9) 5.00(0.69) 7.12(2.55)
LAD-Lasso 6.6(0.9) 7.0(3.9) 4.5(2.2) 9.1(3.5) 3.61(0.36) 6.63(1.89)
RLARS 5.3(1.3) 13.1(7.1) 2.7(1.6) 8.7(5.4) 4.52(0.37) 7.49(1.89)
LTS-MCP 6.0(1.1) 13.3(6.4) 10.0(2.0) 34.8(8.3) 2.85(0.55) 2.54(0.79)
LS-MCP-Hier 7.3(0.6) 49.5(21.6) 6.2(2.1) 2.1(2.2) 3.66(0.67) 4.63(1.97)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.7(0.6) 2.3(6.9) 10.9(2.6) 0.9(1.0) 2.33(0.57) 1.55(0.81)
LS-MCP 1.4(1.5) 22.0(7.8) 1.6(1.8) 77.6(10.0) 39.63(52.58) 743.55(2252.92)
LAD-Lasso 6.8(0.9) 4.4(2.9) 4.5(1.9) 8.9(3.3) 3.60(0.31) 6.35(1.59)
RLARS 5.3(1.3) 10.0(5.2) 2.6(1.6) 9.3(5.7) 4.50(0.37) 7.29(2.12)
LTS-MCP 6.2(1.1) 9.6(3.8) 10.8(1.0) 32.7(7.3) 2.64(0.49) 1.93(0.37)
LS-MCP-Hier 5.3(1.6) 160.8(108.0) 1.6(1.6) 32.8(78.2) 31.77(42.35) 1097.13(4234.09)
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Table A.23: Summary results under simulation scenarios with categorical G factors and
Band structure under AFT model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE Cstat

D1: N(0, 1)
LTS-MCP-Hier 7.9(0.4) 7.0(11.8) 11.8(2.8) 0.9(1.2) 2.52(0.56) 0.89(0.03)
LS-MCP 6.8(1.1) 14.4(5.1) 11.7(1.2) 41.4(7.5) 2.15(0.66) 0.92(0.02)
LAD-Lasso 7.3(1.0) 14.1(7.8) 6.8(4.2) 32.0(15.9) 3.36(0.58) 0.82(0.06)
RLARS 2.3(1.3) 2.9(1.9) 0.7(0.8) 34.7(7.6) 5.51(0.55) 0.61(0.06)
LTS-MCP 6.2(1.0) 14.8(4.0) 7.0(2.0) 56.1(7.2) 3.24(0.36) 0.85(0.04)
LS-MCP-Hier 7.9(0.2) 1.5(3.6) 12.2(1.3) 0.6(0.8) 1.92(0.36) 0.92(0.02)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 7.7(0.5) 8.9(7.4) 9.6(3.1) 1.1(1.1) 2.75(0.58) 0.88(0.04)
LS-MCP 1.0(1.3) 16.5(8.9) 0.8(1.1) 64.9(10.7) 56.73(108.19) 0.54(0.06)
LAD-Lasso 5.8(1.3) 4.9(2.4) 1.7(1.3) 12.9(3.5) 4.11(0.32) 0.74(0.05)
RLARS 0.9(0.9) 2.7(2.4) 0.4(0.6) 32.2(8.6) 198.16(1027.54) 0.54(0.05)
LTS-MCP 6.1(1.1) 15.9(3.9) 5.9(1.9) 59.1(5.8) 3.58(0.39) 0.82(0.03)
LS-MCP-Hier 5.5(1.6) 196.3(157.2) 1.9(2.4) 66.8(224.0) 57.70(118.80) 0.58(0.08)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 8.0(0.1) 1.8(3.4) 12.2(1.2) 0.6(0.7) 1.96(0.36) 0.92(0.01)
LS-MCP 2.5(1.0) 26.4(5.9) 2.2(1.2) 72.3(5.5) 10.74(0.70) 0.62(0.04)
LAD-Lasso 6.5(1.0) 4.6(1.8) 2.7(1.8) 11.1(3.0) 3.78(0.31) 0.77(0.04)
RLARS 1.2(0.9) 1.4(1.2) 0.4(0.6) 25.3(9.1) 81.94(762.49) 0.59(0.06)
LTS-MCP 6.2(1.1) 11.4(4.0) 9.5(1.6) 47.3(8.5) 2.81(0.41) 0.90(0.02)
LS-MCP-Hier 5.9(1.1) 101.8(8.3) 2.3(1.5) 7.4(6.8) 9.60(0.58) 0.66(0.04)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 7.0(1.0) 18.7(9.7) 8.5(2.3) 0.9(1.0) 3.85(0.42) 0.85(0.05)
LS-MCP 3.0(1.3) 18.7(4.0) 2.6(1.5) 54.4(4.6) 6.12(0.59) 0.65(0.04)
LAD-Lasso 2.2(1.4) 11.9(4.9) 0.3(0.5) 15.4(7.8) 4.52(0.25) 0.62(0.04)
RLARS 3.6(1.2) 21.3(4.4) 0.4(0.6) 18.0(5.5) 5.34(0.43) 0.63(0.05)
LTS-MCP 5.4(1.1) 20.1(4.8) 4.3(1.7) 58.0(4.9) 4.04(0.39) 0.78(0.04)
LS-MCP-Hier 5.5(1.2) 67.6(9.0) 1.7(1.4) 2.5(2.1) 5.06(0.60) 0.70(0.06)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.4(0.7) 12.1(10.4) 9.0(3.0) 1.2(1.1) 3.35(0.59) 0.84(0.05)
LS-MCP 0.5(0.9) 15.3(7.7) 0.5(0.7) 65.6(9.7) 64.24(125.79) 0.52(0.03)
LAD-Lasso 1.6(1.7) 12.9(5.4) 0.3(0.5) 9.7(4.9) 4.62(0.30) 0.60(0.05)
RLARS 3.0(1.6) 15.2(8.2) 0.4(0.7) 19.5(6.6) 104.31(331.36) 0.60(0.06)
LTS-MCP 5.8(1.1) 18.0(4.9) 5.3(1.9) 57.6(5.9) 3.76(0.39) 0.81(0.04)
LS-MCP-Hier 4.3(2.2) 204.0(159.3) 1.4(2.6) 81.3(250.6) 60.77(122.85) 0.51(0.05)
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Table A.24: Summary results under simulation scenarios with some weak signals. In each
cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0, 1)
LTS-MCP-Hier 8.0(0.2) 0.4(1.2) 8.0(1.4) 0.6(0.7) 1.54(0.32) 0.92(0.25)
LS-MCP 6.7(0.9) 2.3(3.0) 7.7(1.3) 9.5(10.2) 2.14(0.45) 1.07(0.39)
LAD-Lasso 8.0(0.0) 5.7(3.2) 8.6(1.3) 16.5(8.3) 1.44(0.26) 1.21(0.32)
RLARS 7.8(0.4) 0.2(0.6) 5.0(1.5) 8.2(5.6) 2.43(0.41) 1.45(0.41)
LTS-MCP 6.8(0.8) 6.9(3.7) 7.2(1.4) 25.3(9.1) 2.03(0.46) 0.97(0.22)
LS-MCP-Hier 8.0(0.0) 0.5(1.0) 9.0(1.2) 0.7(0.7) 1.38(0.21) 0.76(0.14)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 8.0(0.1) 0.6(1.4) 8.3(1.4) 0.8(0.9) 1.56(0.26) 0.89(0.20)
LS-MCP 1.8(1.7) 18.9(8.0) 1.5(1.5) 73.9(10.1) 38.28(56.15) 761.65(2767.61)
LAD-Lasso 8.0(0.2) 2.3(1.5) 5.8(1.6) 7.3(2.4) 2.03(0.30) 1.96(0.58)
RLARS 7.6(0.6) 0.8(1.1) 4.3(1.4) 10.3(6.8) 2.71(0.39) 1.82(0.58)
LTS-MCP 6.7(0.9) 8.2(3.8) 7.1(1.4) 31.1(10.3) 2.12(0.49) 1.00(0.27)
LS-MCP-Hier 5.5(1.5) 166.6(124.1) 1.3(1.6) 31.3(79.7) 32.79(45.78) 1446.11(5735.58)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 8.0(0.1) 0.4(1.2) 8.6(1.4) 0.7(0.9) 1.48(0.24) 0.82(0.18)
LS-MCP 2.9(1.1) 25.2(5.4) 2.0(1.0) 67.4(5.0) 9.44(0.63) 31.63(6.25)
LAD-Lasso 7.9(0.3) 2.6(1.7) 5.1(1.7) 7.8(2.4) 2.18(0.36) 2.29(0.77)
RLARS 6.5(1.1) 1.4(1.4) 3.0(1.4) 11.6(5.7) 3.31(0.40) 3.04(1.08)
LTS-MCP 6.8(0.9) 6.5(3.2) 7.4(1.2) 28.2(9.1) 2.01(0.48) 0.93(0.20)
LS-MCP-Hier 5.9(1.0) 93.1(6.0) 1.7(1.4) 5.4(4.6) 8.07(0.52) 28.15(5.19)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 7.8(0.6) 1.4(2.7) 7.7(2.0) 1.4(1.8) 1.75(0.54) 1.01(0.93)
LS-MCP 1.5(0.9) 22.1(4.8) 2.3(1.4) 69.4(6.4) 6.41(0.85) 14.50(4.92)
LAD-Lasso 4.5(1.2) 4.0(2.2) 3.2(1.8) 14.2(3.5) 3.27(0.32) 6.70(1.77)
RLARS 7.6(0.6) 0.5(0.7) 5.0(1.4) 10.1(6.3) 2.53(0.38) 1.65(0.59)
LTS-MCP 6.5(1.2) 6.7(4.3) 7.2(1.4) 27.0(12.7) 2.12(0.58) 1.30(0.35)
LS-MCP-Hier 5.5(1.3) 27.1(29.1) 3.7(2.4) 5.1(2.7) 3.99(0.85) 7.47(4.51)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.7(0.9) 1.5(2.8) 8.0(2.1) 1.3(1.3) 1.76(0.53) 1.04(1.04)
LS-MCP 0.5(0.8) 17.1(8.9) 1.1(1.1) 69.2(18.5) 32.48(44.17) 600.83(2389.98)
LAD-Lasso 4.5(1.4) 4.0(2.1) 3.5(1.8) 12.6(3.4) 3.28(0.32) 6.54(1.70)
RLARS 7.3(0.7) 1.0(1.1) 4.3(1.7) 11.3(6.7) 2.81(0.39) 1.98(0.63)
LTS-MCP 6.7(0.9) 8.4(3.9) 7.0(1.4) 32.0(10.5) 2.17(0.51) 1.31(0.29)
LS-MCP-Hier 4.4(1.5) 168.7(117.3) 1.0(1.5) 27.6(71.1) 31.14(43.24) 1186.95(4305.08)
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Table A.25: Summary results under simulation scenarios where the hierarchy is violated for
some interactions. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0, 1)
LTS-MCP-Hier 7.8(0.4) 4.0(4.4) 10.5(2.0) 2.5(1.7) 3.46(0.35) 3.90(0.95)
LS-MCP 5.5(1.0) 5.0(4.4) 16.8(1.0) 17.8(9.8) 2.95(0.44) 1.51(0.60)
LAD-Lasso 7.9(0.4) 15.0(7.4) 17.9(2.9) 36.0(12.1) 2.23(0.59) 2.25(1.17)
RLARS 7.3(0.7) 1.0(1.5) 8.9(2.2) 14.4(7.9) 4.02(0.38) 4.29(1.08)
LTS-MCP 6.2(1.1) 7.0(3.0) 16.8(1.3) 26.8(6.9) 2.48(0.57) 1.11(0.35)
LS-MCP-Hier 7.8(0.4) 6.0(5.9) 11.3(1.9) 2.9(1.6) 3.40(0.45) 3.78(1.28)

D2: 0.9N(0, 1) + 0.1Cauchy(0, 5)
LTS-MCP-Hier 7.7(0.5) 6.0(5.9) 10.1(2.0) 2.9(1.6) 3.58(0.34) 4.19(1.02)
LS-MCP 2.2(1.8) 17.0(7.4) 3.5(3.2) 71.4(10.6) 38.37(84.37) 2057.01(11618.56)
LAD-Lasso 7.2(0.7) 2.0(1.5) 8.2(2.7) 7.7(3.1) 3.88(0.36) 6.93(1.99)
RLARS 7.0(0.9) 1.0(1.5) 7.1(2.3) 12.4(7.2) 4.44(0.43) 5.43(1.59)
LTS-MCP 6.1(1.0) 8.0(3.0) 16.2(1.6) 33.2(6.8) 2.78(0.53) 1.39(0.48)
LS-MCP-Hier 5.8(1.4) 110.0(32.6) 2.4(2.6) 34.2(95.9) 29.73(50.07) 1510.65(6857.39)

D3: 0.9N(0, 1) + 0.1N(20, 1)
LTS-MCP-Hier 7.6(0.6) 5.0(4.4) 10.2(2.2) 2.8(1.6) 3.60(0.47) 4.32(1.49)
LS-MCP 2.6(1.1) 22.0(5.2) 4.0(1.6) 66.9(5.3) 10.47(0.68) 38.04(6.53)
LAD-Lasso 6.9(0.9) 2.5(2.2) 6.4(2.2) 8.7(3.1) 4.13(0.34) 8.07(2.19)
RLARS 5.8(1.1) 1.0(1.5) 4.4(1.9) 11.9(5.8) 5.12(0.49) 8.10(2.43)
LTS-MCP 6.2(1.0) 8.0(3.0) 16.6(1.4) 29.2(6.1) 2.61(0.54) 1.18(0.37)
LS-MCP-Hier 6.2(1.0) 96.5(8.2) 2.7(1.6) 7.3(5.7) 9.76(0.64) 42.01(9.31)

D4: N(0, 1) and with leverage points
LTS-MCP-Hier 7.3(1.1) 7.5(8.2) 9.4(3.2) 2.8(1.8) 3.78(0.76) 5.35(3.54)
LS-MCP 1.1(0.9) 21.0(4.4) 4.9(2.5) 67.0(6.2) 7.90(0.91) 22.21(7.30)
LAD-Lasso 3.8(1.2) 4.0(3.0) 6.0(2.4) 13.0(4.3) 4.56(0.35) 11.86(2.85)
RLARS 6.8(1.0) 0.0(0.0) 8.1(1.9) 12.8(6.6) 4.27(0.42) 4.78(1.44)
LTS-MCP 6.2(1.1) 9.0(3.0) 16.5(1.5) 32.4(6.6) 2.64(0.57) 1.24(0.43)
LS-MCP-Hier 4.8(1.3) 91.0(7.4) 2.2(2.1) 5.0(4.1) 7.55(1.16) 28.00(10.44)

D5: 0.9N(0, 1) + 0.1Cauchy(0, 5) and with leverage points
LTS-MCP-Hier 7.5(0.9) 8.0(4.4) 9.5(2.5) 3.0(2.0) 3.77(0.71) 5.32(3.72)
LS-MCP 0.6(0.7) 19.0(5.9) 2.0(1.8) 68.5(17.0) 32.80(78.33) 1370.28(8180.45)
LAD-Lasso 3.9(1.3) 4.0(1.5) 5.5(2.1) 12.2(3.5) 4.57(0.33) 12.16(3.24)
RLARS 6.6(1.0) 1.0(1.5) 6.8(2.2) 12.2(6.5) 4.57(0.40) 5.88(1.67)
LTS-MCP 6.2(1.1) 10.0(3.0) 16.4(1.5) 34.4(7.1) 2.68(0.57) 1.28(0.44)
LS-MCP-Hier 4.4(1.6) 113.0(25.2) 1.4(2.1) 31.8(88.0) 28.25(46.51) 1477.08(7265.55)
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Table A.26: Analysis of SKCM data: numbers of overlapping interactions (RV-coefficients)
identified by different approaches.

Main: G LTS-MCP-Hier LS-MCP LAD-Lasso RLARS LTS-MCP LS-MCP-Hier

LTS-MCP-Hier 43 0(0.58) 1(0.00) 0(0.00) 12(0.33) 22(0.48)
LS-MCP 13 0(0.00) 0(0.00) 0(0.03) 0(0.03)
LAD-Lasso 1 0(0.00) 0(0.00) 1(0.00)
RLARS 0 0(0.00) 0(0.00)
LTS-MCP 50 15(0.98)
LS-MCP-Hier 47

Interaction LTS-MCP-Hier LS-MCP LAD-Lasso RLARS LTS-MCP LS-MCP-Hier

LTS-MCP-Hier 26 0(0.02) 0(0.73) 0(0.28) 3(0.00) 4(0.58)
LS-MCP 72 0(0.02) 1(0.03) 6(0.00) 1(0.02)
LAD-Lasso 25 0(0.48) 2(0.01) 3(0.41)
RLARS 31 1(0.00) 0(0.20)
LTS-MCP 110 4(0.03)
LS-MCP-Hier 24

Table A.27: Analysis of BRCA data: numbers of overlapping interactions (RV-coefficients)
identified by different approaches.

Main: G LTS-MCP-Hier LS-MCP LAD-Lasso RLARS LTS-MCP LS-MCP-Hier
LTS-MCP-Hier 32 1(0.27) 5(0.41) 0(0.22) 2(0.37) 14(0.73)
LS-MCP 6 1(0.27) 0(0.16) 0(0.11) 1(0.23)
LAD-Lasso 27 0(0.21) 0(0.33) 3(0.43)
RLARS 12 1(0.22) 0(0.27)
LTS-MCP 17 2(0.47)
LS-MCP-Hier 51
Interaction LTS-MCP-Hier LS-MCP LAD-Lasso RLARS LTS-MCP LS-MCP-Hier
LTS-MCP-Hier 39 1(0.09) 0(0.20) 0(0.15) 0(0.20) 6(0.33)
LS-MCP 17 2(0.19) 0(0.17) 0(0.12) 1(0.15)
LAD-Lasso 36 3(0.26) 0(0.21) 1(0.32)
RLARS 35 0(0.24) 0(0.09)
LTS-MCP 60 0(0.15)
LS-MCP-Hier 21
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Appendix B

Chapter 3

Table B.1: Simulation results of S2 under correlation setting C1 and additional information
J2. In each cell, mean(sd) based on 200 replicates.

M:TP M:FP I:TP I:FP TP60

AR(0.3)
Proposed 19.3(1.1) 1.3(1.4) 36.3(2.7) 6.5(7.5) 58.7(2.2)
HierMCP 15.2(1.7) 2.7(2.4) 18.8(2.0) 29.6(2.6) 34.4(1.2)
MCP-LP 7.5(1.8) 0.1(0.3) 17.3(2.8) 28.3(7) 28.2(3.6)
Lasso 1.2(1.6) 0(0) 7.7(3.4) 2.9(2.7) 8.8(3.5)
MA 0(0) 0(0) 0.5(1.1) 3.3(4.5) 4.1(3.0)

AR(0.5)
Proposed 19.7(0.7) 0.4(1.3) 37.7(2.7) 4(5) 58.3(3.7)
HierMCP 15(1.6) 0.1(0.2) 20.7(2.4) 30.8(3.8) 34.7(1.2)
MCP-LP 11.4(4) 0(0) 20.3(0.7) 16.7(5.2) 37.3(3.8)
Lasso 0.9(1.3) 0(0) 8.7(3.7) 1.3(1.5) 9.6(3.7)
MA 0(0) 0(0) 0.9(2) 3.2(6.2) 4.0(3.7)

Band1
Proposed 18.7(1.1) 2.4(3.9) 34.3(1.4) 9.1(7.3) 56.2(3.9)
HierMCP 14.7(2.1) 4.6(2.5) 17.3(2.8) 29.6(3.3) 31.9(2.1)
MCP-LP 6.5(1.8) 0.1(0.2) 16.4(3.1) 27.5(5.0) 25(4.4)
Lasso 0.9(1.4) 0(0) 5.9(2.9) 2.6(3.2) 6.8(3.2)
MA 0(0) 0(0) 0.9(1.4) 4.5(5.6) 3.1(2.3)

Band2
Proposed 19.6(0.8) 0.4(1.0) 37.2(2.6) 5(6.8) 58.6(2.8)
HierMCP 15.5(1.5) 0.4(0.8) 20.8(1.8) 30.8(2.2) 35.3(1.8)
MCP-LP 11.6(3.9) 0(0) 19.9(1.2) 19.1(5.4) 36(4.0)
Lasso 0.9(1.3) 0(0) 8.9(3.1) 1.0(1.0) 9.7(3.6)
MA 0(0) 0.1(0.2) 0.8(1.3) 4.6(8.2) 4.2(3.6)
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Table B.2: Simulation results of S2 under correlation setting C2 and additional information
J2. In each cell, mean(sd) based on 200 replicates.

M:TP M:FP I:TP I:FP TP60

AR(0.3)
Proposed 19.1(0.9) 1.4(2.0) 36(2.2) 10.1(12.9) 55.8(5.9)
HierMCP 15.8(1.7) 2(2.2) 19.1(2.7) 30.3(3.3) 34.8(1.9)
MCP-LP 7.3(2.7) 0(0) 18.7(1.6) 26.2(7.1) 30.4(3.1)
Lasso 0.9(1.2) 0(0) 7.9(3.8) 2.6(1.9) 8.8(4.0)
MA 0(0) 0.1(0.3) 0.7(1.4) 3.9(5.1) 4(3.3)

AR(0.5)
Proposed 19.8(1.0) 0.3(0.7) 36.5(2.3) 8.4(8.8) 57.1(4.9)
HierMCP 15.1(1.1) 0.2(0.4) 20.5(1.9) 30.4(3.1) 35.5(1.5)
MCP-LP 10(4.6) 0(0) 20.4(0.9) 17.6(4) 37.9(2.5)
Lasso 1.4(1.8) 0(0) 9.7(3.4) 2.4(2.2) 11.1(3.9)
MA 0(0) 0.2(0.7) 1.1(2) 3.5(4.1) 5.3(4.5)

Band1
Proposed 18.4(1.1) 1.9(2) 34.6(1.5) 14.4(9.9) 52.5(4.0)
HierMCP 14.7(1.8) 7(4.3) 16.4(3.1) 28.7(3.7) 30.8(3.1)
MCP-LP 5.8(2.4) 0.1(0.3) 14.9(3.4) 32.9(8.3) 25.5(3.8)
Lasso 1.5(1.3) 0(0) 5.5(2.9) 3.7(2.7) 7(3.4)
MA 0(0) 0(0) 0.7(1.1) 3.4(7.1) 3.3(2.6)

Band2
Proposed 19.5(1.0) 0.6(1.3) 36.7(2.4) 6.9(6.2) 57.6(3.4)
HierMCP 15.2(1.6) 0.2(0.5) 20.5(1.9) 30.6(2.7) 35.8(1.8)
MCP-LP 8.6(3.2) 0(0) 19.5(1.3) 19.6(4.0) 34.7(2.8)
Lasso 1.3(1.5) 0(0) 6.1(2.5) 1.8(2.4) 7.4(2.7)
MA 0(0) 0(0) 1.4(3.0) 6.8(12.0) 5.5(4.0)
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Appendix C

Chapter 4

Identified regulatory modules in LUAD
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Figure C.1: Data analysis: identified regulatory modules.
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Detailed simulation settings

In Step (e) of simulation, the important main molecular effects and M-E interactions are

set as follows.

• P1 with a total of 100 important effects under the regulation pattern Θ1: The impor-

tant main molecular effects consist of 15 gene expressions and 20 regulators, among

which 30 are involved in one regulatory module and the remaining five are molecular

units with individual effects. There are 25 interactions with gene expressions and

40 interactions with regulators, relating to one regulatory module and five individual

molecular units.

• P1 with a total of 100 important effects under the regulation pattern Θ2: The impor-

tant main molecular effects consist of 25 gene expressions and 21 regulators, among

which 33 are involved in two regulatory modules and the remaining 13 are molecular

units with individual effects. There are 36 interactions with gene expressions and 18

interactions with regulators, relating to one regulatory module and nine individual

molecular units.

• P2 with a total of 70 important effects under the regulation pattern Θ1: The impor-

tant main molecular effects consist of 15 gene expressions and 20 regulators, among

which 30 are involved in one regulatory module and the remaining five are molecular

units with individual effects. There are 15 interactions with gene expressions and

20 interactions with regulators, relating to one regulatory module and five individual

molecular units.

• P2 with a total of 70 important effects under the regulation pattern Θ2: The impor-

tant main molecular effects consist of 17 gene expressions and 21 regulators, among

which 33 are involved in two regulatory modules and the remaining five are molecular

units with individual effects. There are 20 interactions with gene expressions and 12

interactions with regulators, relating to one regulatory module and four individual

molecular units.
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Table C.1: Data analysis: numbers of overlapping main molecular effects and M-E interac-
tions (RV-coefficients) identified by different methods.

LUAD Proposed Alt.1 Alt.2 Alt.3 Alt.4
Proposed 62(1) 7(0.32) 57(0.65) 4(0.24) 9(0.3)
Alt.1 90(1) 3(0.31) 2(0.08) 33(0.58)

Main effects Alt.2 140(1) 6(0.24) 11(0.36)
Alt.3 11(1) 2(0.08)
Alt.4 66(1)

Proposed Alt.1 Alt.2 Alt.3 Alt.4
Proposed 35(1) 0(0) 4(0.10) 1(0.11) 3(0.08)
Alt.1 8(1) 1(0.03) 2(0.28) 1(0.12)

Interactions Alt.2 30(1) 1(0.1) 1(0.07)
Alt.3 11(1) 6(0.27)
Alt.4 122(1)

SKCM Proposed Alt.1 Alt.2 Alt.3 Alt.4
Proposed 28(1) 9(0.47) 18(0.62) 9(0.52) 4(0.39)
Alt.1 22(1) 7(0.39) 12(0.72) 6(0.53)

Main effects Alt.2 35(1) 7(0.39) 4(0.37)
Alt.3 13(1) 4(0.51)
Alt.4 10(1)

Proposed Alt.1 Alt.2 Alt.3 Alt.4
Proposed 12(1) 2(0.36) 0(0.00) 2(0.32) 1(0.11)
Alt.1 4(1) 0(0.01) 3(0.66) 1(0.19)

Interactions Alt.2 2(1) 0(0.00) 0(0.01)
Alt.3 14(1) 1(0.20)
Alt.4 8(1)

147



Algorithm 1 Identifying regulatory module

1. Estimate Θ̂ with objective function (4.1) using R package glmnet.

2. Initialize s = 0 U (s) as the normalized matrix of Θ̂, where U (s) denotes the remaining
regulation relationships at iteration s.

3. s = s + 1. Apply the sparse 2-means clustering to U (s) based on objective function
(4.2), and obtain two clusters Cs and C̄s for regulators as well as the weight vector ws

for gene expressions, using R package sparcl.

4. Fix Cs and C̄s, and permute the rows of U (s) to calculate weight w∗s,j = bj/
√∑

j′ b
2
j′

with bj =
(

1
q

∑q
l=1

∑q
l′=1 dl,l′,j −

1
q1

∑
l,l′∈Cs dl,l′,j −

1
q2

∑
l,l′∈C̄s dl,l′,j

)
, under the null

hypothesis of no clusters.

5. Repeat Step 4 B times, and then compute w0
s,(j) =

∑B
k=1w

∗
s,(j),k/B with w∗s,(j),k being

the jth order statistic of the weights at iteration k of Step 4.

6. Conduct a two-sample Kolmogorov-Smirnov test to compare ws and w0
s.

7. If the test at Step 6 rejects the null hypothesis at significance level 0.05,
then j∗ gene expressions with the largest weights are selected, where j∗ =

arg maxj

(
w(p−j+1) − w0

(p−j+1)

)
−
(
w(p−j) − w0

(p−j)

)
. Denote the corresponding in-

dex set as Ds. Update U (s+1) by excluding the information of the identified module
{Cs,Ds} as

U
(s+1)
lj =

{
U

(s)
lj − (Ū

(s)
Cs,j − Ū

(s)

C̄s,j
), if l ∈ Cs and j ∈ Ds

U
(s)
lj , otherwise,

where Ū
(s)
Cs,j = 1

q1

∑
i∈Cs U

(s)
ij and Ū

(s)

C̄s,j
= 1

q2

∑
i∈C̄s U

(s)
ij .

8. Repeat Steps 3-7 until the test at Step 6 fails to reject the null hypothesis, and return
the final regulatory modules {C1,D1} , · · · , {CS ,DS} with S+ 1 being the termination
iteration.
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Algorithm 2 M-E interaction analysis with integrated molecular data

1. Initialize t = 0, Φ(0) = 0, and res(0) = Y , where Φ(t) and res(t) denote the estimates
of Φ and residual res at iteration t.

2. Update t = t+ 1. Optimize Q(Φ) by cycling through α, βs, γ, ηsm and τm.

(a) Update α with the least squared solution. Let Ỹ = res(t−1) + Eα(t−1), then
α(t) = (E′E)−1E′Ỹ . Update res(t−1) = Ỹ −Eα(t).

(b) For s = 1, . . . , S, update βs sequentially. Let Ỹ = res(t−1) + Xsβ
(t−1)
s +∑M

m=1(E′m � X ′s)
′
(
β

(t−1)
s ∗ η(t−1)

sm

)
and W̃ s = (W̃s1, . . . , W̃s,ps) = Xs +∑

m(E′m�X ′s)′�
(
η

(t−1)
sm

)′
. Then, if ||W̃ ′

sỸ ||2 < λ1
√
ps, update β

(t)
s = 0; Other-

wise, update β
(t)
sj = arg min

βsj

1
2 ||Ỹ −

∑
j′ 6=j W̃sj′ β̂

(t)
sj′−W̃sjβsj ||22 +λ1

√
ps||βsj ||2, for

j = 1, . . . , ps, using the R function optimize. Update res(t−1) = Ỹ − W̃ sβ
(t)
s .

(c) For d = 1, . . . , pz, update γd sequentially. Let Ỹ = res(t−1) + Zdγ
(t−1)
d +

M∑
m=1

(Em ∗ Zd)
(
γ

(t−1)
d τ

(t−1)
md

)
and W̃ d = Zd +

∑
m(Em ∗ Zd)τ

(t−1)
md , update

γ
(t)
d = ST

(
(W̃

′
dW̃ d)

−1W̃
′
dỸ , (W̃

′
dW̃ )−1λ2

)
, where ST (a, b) = sign(a)(|a|−b)+

is the soft-thresholding operator. Update res(t−1) = Ỹ − W̃ dγ
(t)
d .

(d) For m = 1, . . . ,M and s ∈
{
s : β

(t)
s 6= 0, s = 1, · · · , S

}
, update ηsm se-

quentially. Let Ỹ = res(t−1) + (E′m � X ′s)′
(
β

(t−1)
s ∗ η(t−1)

sm

)
and W̃ sm =

(W̃sm,1, . . . , W̃sm,ps) = (E′m �X ′s)′ �
(
β

(t−1)
s

)′
. Then, if ||W̃ ′

msỸ || < λ1
√
ps,

update η
(t)
sm = 0; otherwise, update η

(t)
sm,j = arg min

ηsm,j

1
2 ||Ỹ −

∑
j′ 6=j W̃ sm,j′η

(t)
sm,j′ −

W̃ sm,jηsm,j ||22 + λ1
√
ps||ηmsj ||2 for j = 1, . . . , ps. Update res(t−1) = Ỹ −

W̃ smη
(t)
sm.

(e) For m = 1, . . . ,M and d ∈
{
d : γ

(t)
d 6= 0, d = 1, . . . , pz

}
, update τ̂md sequentially.

Let Ỹ = res(t−1) + (Em ∗ Zd)
(
γ

(t−1)
d τ

(t−1)
md

)
and W̃md = (E′m � Z ′d)′γ

(t−1)
d ,

then τ
(t)
md = ST

(
(W̃

′
mdW̃md)

−1W̃
′
mdỸ , (W̃

′
mdW̃md)

−1λ2

)
. Update res(t) =

Ỹ − W̃mdτ
(t)
md.

3. Repeat Step 2 until convergence. In our numerical study, convergence is concluded if
|Q(Φ̂(t−1))−Q(Φ̂(t))|

|Q(Φ̂(t−1))|
< 10−4.
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