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Abstract

Driving Emissions Down: Whole–Supply–Chain Mitigation of Greenhouse Gases from

Passenger Vehicles

Paul Wolfram

2021

Greenhouse–gas emitting human activities have caused the warming of the earth surface

temperature by 0.97◦C relative to pre–industrial levels. In order to prevent the most

catastrophic consequences of climate change, most countries are committed to pursue

action to limit global warming to well below 2◦C under the Paris Agreement. Global

transportation is the single largest user of energy as well as the largest carbon–dioxide

emitting end–use sector, chiefly driven by passenger vehicles. Emissions caused by

vehicles do not only occur at the vehicle tailpipe though. Pollutants are released along

the entire vehicle supply chain, ranging from electric power plant discharges for electric

vehicle charging, to industrial emissions from vehicle manufacturing and fuel processing.

Detailed process models are used in this work in order to quantify the environmental

burden of vehicle emissions along the entire supply chain. It is further investigated how

these emissions can be mitigated, focusing on material efficiency and fueling behavior.

These and other polluting processes are usually insufficiently considered in aggregate

models of climate change mitigation. Therefore, it is also explored how the representation

of vehicle supply chain emissions can be improved in these models. Finally, an integration

of supply chain emissions with a climate change mitigation model of the US economy

is achieved and several insights are gained from that exercise. It is shown that these

emissions can significantly affect the composition of the US vehicle fleet and thus, the

optimal climate change mitigation pathway of the US vehicle sector. In summary, this

work contributes to a better understanding of future emissions of low–carbon vehicle

systems. The results can guide future transport policy and investment decisions regarding

low–carbon vehicle technology portfolios and their supporting infrastructure.
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1 Introduction

1.1 Whole–supply–chain mitigation of greenhouse gases from passen-

ger vehicles

Greenhouse–gas emitting human activities have caused the warming of the earth surface

temperature by 0.97◦C (based on 2006–2015 mean compared to 1850–1900).1 This

man–made climate change has severe and irreversible impacts on the environment such

as the melting of the Greenland ice sheet, loss of the arctic sea–ice and change in El

Niño-Southern Oscillation amplitude and frequency. Key consequences that are already

apparent today include ecosystem changes, sea level rise, droughts, biodiversity loss, and

in turn, forced human migration, social conflicts, and economic losses.2,3 In order to

avoid the most catastrophic consequences, most nations have made commitments to

substantially reduce emissions from vehicles and other sectors, in order to keep global

warming to well below 2◦C.1

Globally, passenger vehicles are responsible for more than one tenth of energy–related

carbon dioxide emissions, released directly through tailpipes,4–6 therefore significantly

contributing to climate change. But emissions can also occur off–site, along the entire

vehicle supply chain, for example due to manufacturing vehicles and batteries, generating

electricity to charge electric vehicles, and producing liquid and gaseous fuels.7–9 In order

to curb growing tailpipe emissions from vehicle fleets, national governments increasingly

promote alternative fuel vehicles. However, there is concern that it can come at the cost

of increased supply chain emissions,10–12 which are insufficiently if at all regulated by

current transport policies. Therefore, it remains unclear to date to what extent potential

growth in supply chain emissions might counteract gains in tailpipe emission reductions

and therefore jeopardize effective mitigation.

In addition, the transition to a low–carbon economy, including electrified vehicles and

renewable electricity generators, could be hampered by the long lifetime of the current

stock of mostly fossil–fuelled vehicles and power plants, which is typically around 10+ and

40+ years.13–15 Therefore, additional measures may be needed in the short and medium

term in order to accelerate effective emission reduction. One promising measure could be
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material efficiency.16–18 While emission reductions due to fuel economy improvements or

alternative powertrains have been studied extensively, material efficiency in vehicles has

received relatively little attention to date. Therefore, it is still unclear to what extent

different individual and bundled material efficiency measures could reduce pollution.

Another question is how these measures compare to, and interact with, above mentioned

measures, such as fuel economy improvements, alternative powertrain deployment, or

low–carbon energy supply.

Large–scale deployment of battery electric vehicles is further challenged by high

battery costs, and in some regions, a lack of charging infrastructure, high electricity

prices and load shedding.11 Therefore, plug–in hybrid vehicles, that can be driven on

both electricity and fuel, are a popular alternative. The smaller batteries of plug–in

hybrids also incur considerably lower upfront costs. However, in order to maximize

emissions abatement, it is important that plug–in hybrids are primarily charged by

low–carbon electricity, while fuel–powered driving is minimized. Convenience of charging

and electric range are important determinants for environmentally favorable fueling

behavior. However, it is unknown so far how the fueling behavior of individual owners

of plug–in hybrids perpetuates at the fleet level and to what extent favorable fueling

behavior could contribute to reaching climate targets.

Computer models are needed in order to assess these problems. Different modelling

communities however evaluate these from different angles (see left side of Figure 1.1). The

integrated assessment community uses climate change mitigation models to analyze cost–

effective transition pathways of different regions and sectors, such as the vehicle sector,

compatible with a global warming of 1.5 to 2◦C. The industrial ecology community uses

life cycle assessment in order to trace the environmental impacts that occur throughout

the lifetime of individual products, such as vehicles. Both model families have their own

advantages and shortcomings. Climate change mitigation models have a comprehensive

regional, temporal and sectoral character, usually modelling national or global mitigation

pathways of relevant economic sectors with time frames to 2050 or even 2100. However,

in order to keep the complexity of these models in check, they often do not capture

2



the consequences of changes in demand or output in one sector on the emissions of

other sectors.19–21 Furthermore, specific processes that influence or cause emissions are

often modelled in an aggregated way.7 Life cycle assessment models, on the other hand,

are usually more geographically and temporally confined, and trace the environmental

impacts of individual products through different sectors with great process–specific

detail. While life cycle models are unable to evaluate systemic climate change mitigation,

models of climate change mitigation can only illustrate a limited range of mitigation

pathways. Therefore, linking both modeling schools could help to overcome their

inherent weaknesses and combine their strengths19,20,22 for evaluating not yet explored

climate change mitigation pathways of vehicle systems that consider emission reduction

opportunities along the whole supply chain.7 To date it is unknown what insights

may be gained from this integration and how it might influence optimal scenarios of

climate change mitigation of vehicle fleets. These insights would in turn improve our

understanding of future emissions of low–carbon vehicle systems.

1.2 Scope and content of this thesis

In order to address the above described problems, this thesis investigates several specific

questions:

1. How large is the contribution of vehicle production to total vehicle life–cycle

emissions and how can it be mitigated (Chapter 2)?

2. What is the impact of fueling plug–in hybrid vehicles and how can it help in

meeting climate targets (Chapter 3)?

3. To what extent are the above (and other) processes captured in models of climate

change mitigation (Chapter 4)?

4. What insights can be gained from integrating detailed processes with models of

climate change mitigation? More specifically, how would pricing of these process

emissions affect optimal scenarios of climate change mitigation of the US vehicle

fleet (Chapter 5)?

3



These questions are answered in Chapters 2 to 5 of this thesis (Figure 1.1), while

Chapter 6 discusses the findings and concludes this thesis. Three of these chapters have

been published as peer–reviewed articles, and one is in the process of being submitted.
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Chapter 2: Climate change 
mitigation potential of material 

efficient vehicles

Chapter 3: Potential variations in 
climate impacts due to multi-fuel 

use

Chapter 5: Influence of supply-
chain emissions on optimal climate 

change mitigation pathways

Figure 1.1: Overview of the thesis. The text boxes represent the different chapters of
this thesis. The color of the text boxes indicates the level of assessment, with green
indicating individual–technology scale and yellow indicating systemic scale.

The first paper is presented in Chapter 2 and investigates the environmental impacts

of material production and vehicle assembly. It is further assessed to what extent

these impacts can be mediated by material efficiency. This mitigation potential is then

compared to that of renewable energy supplied to the vehicle sector. I find that material

efficiency can reduce life–cycle emissions of individual vehicles considerably, by up to

57%. This is comparable to the pollution reduction potential of sourcing renewable

energy of up to 83% per vehicle. The most promising material efficiency measures are the

ones that not only reduce virgin material needs but also on–board energy requirements.

Further, material efficiency can cut in half the emissions footprint of already highly

efficient vehicles sourcing low–carbon electricity. This makes material efficiency both

an important short– to medium–term measure until stronger deployment of renewable–

energy sourcing vehicles is achieved, but also a suitable long–term strategy for achieving

deep decarbonization of vehicle systems.
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Chapter 3 takes a closer look on the fueling behavior of drivers of plug–in hybrid

electric vehicles. Plug–in hybrids can be driven both on electricity and liquid fuels. For

effective climate change mitigation it is however important that fuel use is minimized,

while low–carbon electricity use is maximized. Fueling behavior depends on convenience

of charging, electric range, and consumer education among other factors. I illustrate

twenty–one scenarios of different combinations of technological progress, cost development,

electricity carbon intensity, policy intervention and fueling behavior under three socio–

economic settings. It is found that fueling behavior of hybrid drivers can substantially

influence energy–related emissions of the US vehicle fleet, on average by 21% in 2050,

with a range of 5 to 43% across scenarios. This behavior can therefore be decisive in

meeting climate targets. Several options for nudging consumers toward environmentally

favorable fueling behavior are discussed.

In Chapter 4, I am investigating how various processes, including the ones analyzed

above (vehicle production and fueling behavior), are included in models of climate change

mitigation. In particular, I review about 400+ items of fourteen popular climate change

mitigation models in order to find out how passenger vehicles, their supply–chain emissions

and mitigation options are considered and in what detail. I find that their representation

can be enhanced by explicitly linking physical outputs from different economic sectors

directly to the passenger vehicle sector. Furthermore, processes that strongly influence

vehicle life–cycle emissions should be modelled in more detail. Specifically, processes

related to vehicle production and assembly are often not considered at all, or modelled

in the industry sector, simply following GDP growth, without an established link to the

private vehicle sector. Another area that requires attention is the simplified modelling

of fueling behavior of drivers of multi–fuel vehicles, i.e. vehicles that can be driven on

more than one energy source. Establishing the mentioned linkages and paying more

attention to process detail would allow for a more complete internalization of emissions

in technology mix optimization procedures. This in turn could reveal technology mixes

that incur lower costs and/or lower emissions, and thus help identify not yet explored

climate change mitigation pathways for the passenger vehicle sector. This comprehensive
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review establishes an important theoretical basis for the final chapter.

Chapter 5 integrates the detailed vehicle life–cycle model developed in Chapter 2

with a climate change mitigation model for the US energy–economy system. I analyze

different scenarios towards very high shares of electrified vehicles and renewable energy

generation that are required to meet the US nationally determined contribution under the

Paris Agreement. In these scenarios a carbon tax is raised on emissions from passenger

vehicles. The scenarios however differ in terms of the scope of the carbon tax. Different

cases in which emissions along the entire vehicle supply chain are priced are compared

to a counterfactual scenario in which only direct tailpipe emissions are priced. It is

found that whole–supply chain pricing leads to both, lower tailpipe emissions as well

as lower supply–chain emissions, compared to pricing tailpipe emissions only. These

scenarios also exhibit higher shares of electric vehicles. Given the current debate about

‘dirty’ batteries and electricity, this finding is surprising and indicates that very high

electric vehicle penetration leads to a win–win situation for climate change mitigation,

assuming a gradual decarbonization of electricity supply. The results further indicate

that the US government should concentrate investments towards pure battery electric

vehicles and largely disregard competing technologies. Hydrogen fuel cell vehicles could

offer a suitable alternative if costs of producing fuel cells and hydrogen from renewable

feedstocks would fall significantly.
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2 Material efficiency and climate change mitigation of pas-

senger vehicles

Please cite as: Wolfram, P., Q. Tu, N. Heeren, S. Pauliuk, E. Hertwich. Material

efficiency and climate change mitigation of passenger vehicles. J. Ind. Ecol., 1–17, 2020.

URL https: // doi. org/ 10. 1111/ jiec. 13067 .

Abstract

A transition to electric vehicles and renewable energy is currently underway but may

not be rapid enough in order to reach ambitious climate change mitigation targets.

Therefore, additional, preferably instantaneous, measures are needed for quick emissions

reductions, which is where material efficiency (ME) could constitute a promising solution.

ME strategies include but are not limited to vehicle lightweighting through material

substitution, increased recycling of materials, reuse and remanufacturing of vehicle

components, vehicle downsizing (switching to a smaller vehicle) and more intensive

use by means of increased vehicle occupancy through sharing practices. While recent

analyses have focused on a narrow subset of these, we find striking differences in the overall

potential of different strategies to decrease vehicular carbon footprints. Downsizing and

more intensive use offer the largest mitigation potential but strongly depend on consumer

behavior and are highly sensitive to modeling assumptions. Combined, the analyzed

strategies can achieve emission reductions of up to 57% over the life cycle of a single

vehicle, which is comparable to up to 83% achieved through a shift to low–carbon energy

supply. ME can cut carbon footprints of already efficient vehicles charging renewable

electricity by half again. This makes ME both an excellent short–term solution for climate

change mitigation targeting the light vehicle sector but also an important complementary

strategy to the long–term transition towards electric vehicles and renewable energy

supply.
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2.1 Introduction

Climate change mitigation requires a rapid transition towards low–carbon energy supply

and demand.23,24 The shift to electric vehicles and renewable energy supply is already

underway in many regions of the world and can potentially lead to significant emissions

reductions.25 However, vehicles and power plants have long lifetimes, typically around

10+ and 40+ years,13 causing considerable lag in the turnover of the current stock of

equipment.14,15 In addition, alternative vehicle technologies face several barriers, such

as lacking infrastructure, high battery cost, and consumer skepticism.26 As a result,

sizeable reductions in GHG emissions may not be achieved for decades to come27,28 which

could threaten compliance with the 1.5◦C and 2◦C global warming targets. Therefore,

additional measures are needed that can accelerate reductions in GHG emissions, which

is where ME promises to be a viable solution. Measures, such as lightweighting or

downsizing, can be more easily integrated with existing automotive supply chains29 and

their implementation often requires short lead times.30 We therefore analyze to what

extent ME strategies could decrease emissions from conventional and electrified light

vehicles and compare these to possible emissions cuts from renewable energy supplied to

the light vehicle sector.

2.1.1 Material efficiency for vehicles

ME strategies are broadly defined as a set of technical measures and/or policy interven-

tions that can lead to a significant reduction in the use of materials.16,17,31 Common ME

strategies described in the literature include lightweighting, recycling, remanufacturing,

downsizing and more intensive use.31 There can be synergies or trade–offs between GHG

emissions from materials and from operational energy use. On the one hand, vehicle

downsizing can reduce material use and simultaneously improve fuel economy. On the

other hand, materials used for lightweighting usually require more energy to produce

than steel. The potential effects of ME strategies can be described at a more detailed

technology scale, or at a broader economy–environment scale.7 Below we define each

strategy and discuss some of the existing literature on each measure starting from the
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lowest scale (individual technology) and ending at the highest (systemic) level:

• Lightweighting usually refers to a substitution of heavier materials, such as steel,

with lighter materials, such as aluminum, increasing a vehicle’s fuel economy.

However, this often entails increasing emissions from vehicle production.32 Yet,

higher production impacts can be mediated by powertrain resizing for performance

equivalency32 and by deploying recycled materials.33 Life cycle assessments (LCAs)

of individual vehicles and entire fleets have focused on the effects of electrification

and lightweighting under regional conditions.34–36 Economy–wide studies recently

incorporated the effects of lightweighting on fuel economy improvements of the

vehicle fleet, often in combination with other strategies, such as fuel economy or

biofuel targets, but have not taken into account the increase in emissions from

materials production.37,38

• Recycling is defined here as the use of recycled materials in the production of

vehicles. Recycling of end–of–life vehicles is quite common in many countries

around the world39 but recovered materials often are not functionally recycled,

meaning that they are used for lower–quality applications. Kim et al.33 assessed

to what degree open– and closed–loop recycling could offset increased vehicle

production emissions from lightweigting an individual vehicle. Employing a global

fleet–model, Modaresi et al.40 capture the effects of vehicle lightweighting and

recycling on total industrial emissions. Oda et al.41 estimate the future global

availability of secondary steel for construction and transport equipment. Certain

whole–system models represent recycling technologies albeit not specific to vehicles.

For example, the AIM/Enduse model considers recycling of paper and electronics.42

• Remanufacturing commonly requires disassembling, refurbishing, repairing, cleaning

and reassembling of used vehicle components, such as engines or tires, to produce

a ‘like–new’ product. This can reduce the life–cycle energy embodied in a diesel

engine by about 70–90% compared to a newly manufactured one.43,44 However,

remanufactured components may not benefit from efficiency improvements in the

same way as new ones do, if at all, causing a trade–off between savings in embodied
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energy and higher use–phase energy needs.43 Sato et al.45 estimate the energy

and emission benefits from reuse and recycling in the Japanese automotive sector

and find a potential reduction of 2.8 kg CO2 per kg of vehicle. McKenna et al.46

estimate the overall potential for energy savings from reuse practices in the German

automotive sector to be 2.5–5% of the sector’s total energy use in 2010. The effects

of increased recycling and reuse at a global scale are demonstrated in IEA’s Energy

Technology Perspectives.47

• More intensive use is defined here as an increasing vehicle occupancy. Chester et

al.48 demonstrate the sensitivity of life–cycle emissions per passenger kilometer

due to changes in vehicle occupancy. Based on an integrated transport land–use

model, Yin et al.49 find that ridesharing could lead to a 25–75% increase in vehicle

occupancy in the Paris region. Integrated and economic models impose fuel and/or

carbon taxes onto the vehicle sector,50,51 which can reduce demand of personal

motorized transport. This demand reduction in turn can be an implicit result of

more intensive use (carpooling or ridesharing) or mode switching, or trip avoidance.

• Downsizing in a broader sense can be defined as a switch from a larger vehicle

segment to a smaller one, e.g. from a light truck to a sports utility vehicle (SUV).

Dhingra and Das52 apply the downsizing concept in a narrower sense to study the

effects of reduced size on efficiency and life–cycle emissions of an individual engine.

The U.S. Annual Energy Outlook is based on an integrated energy model which

captures the effects of taxes and fuel economy standards on segment switching

within the US vehicle fleet.38

In conclusion, the engineering–type literature has focused on a narrow portfolio of

ME strategies and vehicle types and is often conducted at an individual–technology level,

and sometimes at fleet level. Integrated models often take a national or global perspective

at the expense of resolution and thus, apart from downsizing and lightweighting, do

not explicitly consider ME, and do not establish the link between service demand,

material demand and emissions embodied in materials. Here we set out to bridge the

two perspectives by analyzing an extensive set of ME strategies applied to a broad array
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of vehicle types available in the global market and by explicitly considering emissions

embodied in material production under different energy supply scenarios.

2.1.2 Carbon emissions return on investment

The oil crises during the 1970s required highly economical usage of energy sources and

thus popularized the use of the energy return on investment (EROI) indicator. EROI

measures the amount of energy delivered by a technology (‘energy out’) per unit of

life–cycle energy required to deliver that energy (‘energy in’), and is therefore useful for

comparing the ‘energy pay–off’ of technological alternatives.53–55 EROI has been used

ambiguously in the past due to the many different ways of measuring energy, such as

primary versus final energy.54,55 In addition, EROI counts every unit of energy input

and output equally, be it sourced from renewable or fossil fuel energy carriers.

However, the pressing challenge of climate change mitigation56 calls for a novel

unambiguous indicator that accounts for the carbon intensity of energy sources. Carbon

emissions return on investment (CEROI) measures the life–cycle GHG emissions benefit

during vehicle operation (‘∆ carbon out’) per unit of additional life–cycle GHG emission

burden during vehicle production (‘∆ carbon in’). To the best of our knowledge this

indicator has not yet been described or tested in the literature. Only Kim et al.33

and Patterson et al.57 presented a related indicator, emissions payback time (EPBT),

investigating after how many years additional vehicle supply chain emissions from

lightweighting and electrification would pay off through reduced operational emissions.

Shanmugam et al.29 developed a sustainable return on investment (SROI) indicator for

vehicle lightweighting, analyzing the trade–off between external costs to society and costs

to manufacturers.

By introducing the concept of CEROI and providing a first application of the concept,

we aim at filling another gap identified in the literature. Specifically, we analyze the

CEROI of vehicle lightweighting under both current and low–carbon electricity supply.
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2.2 Methods and data

2.2.1 Life cycle assessment

For our analysis we choose four common vehicle segments (microcars, passenger cars, mini-

vans/SUVs, and light trucks) as well as six mature and emerging powertrain technologies

(internal combustion engine vehicles running on either gasoline or diesel (ICEV–g/–d),

hybrid electric vehicles (HEV), plug–in hybrid electric vehicles (PHEV), battery electric

vehicles (BEV), and hydrogen fuel cell electric vehicles (HFCEV)), representing a good

approximation of both existing and potentially popular future vehicles types in the

global market. While today there is also a considerable number of ICEVs running on

compressed natural gas, these vehicles may not play a prominent role in the future

according to IEA scenarios.47

As shown in Equation 2.1, vehicle carbon footprints (from hereon ‘footprint’, E) are

evaluated on a life–cycle basis considering embodied emissions from vehicle production,

i.e. vehicle supply chain emissions (Fvc), and emissions from production and use of

energy carriers, i.e. energy cycle emissions (Fec).

E = Fvc + Fec (2.1)

Vehicle supply chain impacts are calculated using a detailed and comprehensive LCA

model, largely based on data points from the GREET2 model58–60 and the ecoinvent

life cycle inventory database v3.5, model ‘allocation, cut–off by classification’61 (see

Section A.1.1 for details). The vehicle supply chain is divided into two phases: (1) material

production, Fmat, and (2) vehicle assembly, Fass (Equation 2.2). The former includes all

processes from raw material mining to the finished material in the form of metal sheets,

ingots and billets, or plastic pellets, resins and slabs. The second phase includes all

material transformation processes needed to produce the final vehicle, including battery

assembly, metal and plastic forming, welding, gluing, painting and other processes. As

shown in Equation 2.3, emissions from material production equate to the Hadamard

product (indicated by the ◦ symbol) of Xmat, a matrix that contains the material
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composition of vehicle archetypes, and fmat, a matrix containing life–cycle emission

factors of material production (cf. Table 2.1). Material emission intensities under

low–carbon energy supply are based on the work by Vandepaer et al.62 and have been

provided by the authors on request. Vandepaer et al. derived emission factors of virgin

low–carbon materials by integrating future low–carbon energy mixes from integrated

assessment modeling into the respective life cycle inventories of these virgin materials.1

Similarly, emissions from vehicle assembly are derived as the Hadamard product of

energy spent on vehicle assembly, Xass, and the life–cycle emission factors of the energy

mix used for the assembly stage, fen (cf. Table 2.2, Equation 2.4).

Fvc = Fmat + Fass (2.2)

Fmat = Xmat ◦ fmat (2.3)

Fass = Xass ◦ fen (2.4)

Energy cycle emissions include emissions from vehicle operation as well as upstream

processes, such as oil drilling, fuel transportation, electricity generation and transmission

and are derived following Equation 2.5. Operational energy use factors, Xen, are based

on drive–cycle simulations using FASTSim (Future Automotive Systems Technology

Simulator, cf. Section 2.2.3).66,67 Life–cycle emission factors of the energy carriers used

during the operational phase are specified in Table 2.2. We assume an average vehicle

lifetime mileage, parameter α, of about 180,000 km.

Fec = Xen ◦ fen × α (2.5)

Our functional unit is one person driving a vehicle over its entire lifetime of 180,000

km. Impact results are therefore presented as footprints per passenger over the vehicle
1For further information on the integration of energy mixes from integrated assessment models into

LCA, please refer to the work by Cox et al.,63 Beltran et al.,64 and Knobloch and colleagues.65
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lifetime, Epp, in t CO2e person−1 (Equation 2.6). This means that our results present

the footprint of each passenger over the entire vehicle lifetime, having the advantage

of capturing the reductions in footprints from increased vehicle occupancy. Footprints

can also be expressed as emission intensities per vehicle–kilometer (cf. section A.3). We

estimate an average global occupancy of 1.5 passengers per vehicle.68 Therefore, vehicle

footprints derived from Equations 2.1–2.5, are divided by the amount of passengers per

vehicle, parameter β (1.5 in the default case and 2.0 in the more intensive use scenario).

Epp = E

β
(2.6)

Table 2.1: Life–cycle emission factors of average global production processes of materials
under current and future low–carbon energy supply per unit material. The last column
indicates the reduction in GHG emissions due to low–carbon energy.33,58,60,62,69,70

Current Low–carbon Unit Reduction
Automotive steel virgin 2.46 2.04 kg CO2e kg−1 17%

recycled 0.98 0.82
Stainless steel virgin 4.67 3.22 kg CO2e kg−1 31%

recycled 1.87 1.29
Cast iron virgin 1.85 1.73 kg CO2e kg−1 7%

recycled 0.61 0.57
Wrought aluminum virgin 11.90 4.80 kg CO2e kg−1 60%

recycled 1.79 0.72
Cast aluminum virgin 11.90 4.80 kg CO2e kg−1 60%

recycled 1.79 0.72
Copper, elec. grade virgin 5.22 2.67 kg CO2e kg−1 49%

recycled 1.00 0.51
Plastics virgin 2.13 2.11 kg CO2e kg−1 1%

recycled 1.40 1.39

2.2.2 Definition of vehicle archetypes

Vehicle archetypes represent differences in vehicle segment, technology and production

design. We model four vehicle segments (microcar, passenger car, minivan/SUV, light

truck), six technologies (ICEV–g, ICEV–d, HEV, PHEV, BEV, HFCEV), and two

production designs (conventional and lightweight). The conventional ICEV–g light truck

and passenger car are modelled off of the Ford F–150 and the Toyota Corolla, each being
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Table 2.2: Life–cycle emission factors of average global energy supply under current and
future low–carbon energy supply.7,60,61,71–73

Current Low–carbon Unit Reduction
Electricity grid mix 750 60 g CO2e kWh−1 92%
Assembly energy mix 503 151 g CO2e kWh−1 70%
Heat, coal 659 659 g CO2e kWh−1 0%
Heat, natural gas 218 218 g CO2e kWh−1 0%
Hydrogen 460 460 g CO2e kWh−1 0%
Gasoline 328 328 g CO2e kWh−1 0%
Diesel 304 304 g CO2e kWh−1 0%

the worldwide highest–sold vehicle in their segment in 2018.2 The microcar is modelled

off of the Suzuki Alto, the highest–selling car in India between 2004 and 2018.3 The

minivan/SUV has been modelled off of the Wuling Hongguang, which is the most popular

vehicle in China.4 Several data points on performance, weight and dimensions of each of

these vehicles have been collected from manufacturer homepages and additional online

sources. When different options exist, we average their characteristics. For example, the

Ford F–150 is sold as a two– and a four–wheel–drive option, considerably differing in

curb weight, fuel tank capacity, driving range, fuel consumption and vehicle dimensions.

Since sales shares between the two options are unknown, we average between them. The

selected vehicles, which are all ICEVs, serve as the foundation for other powertrains. To

model alternative powertrains off of ICEVs, components are added, removed or scaled

as needed.74 The masses of individual components are determined using variable and

fixed masses from Bauer et al.75 The resulting component and total vehicle masses are

illustrated in Figure 2.1b. The vehicle mass breakdown by material is derived from the

GREET2 model58,60 and illustrated in Figure 2.1c and d. For more details, please refer

to Section A.1.2 and a technical documentation by Wolfram et al.68

2.2.3 Drive–cycle simulations

Vehicle characteristics are used as input data for drive–cycle simulations in FASTSim.67

Specific inputs include vehicle mass, motorization, energy storage, vehicle dimensions,
2

https://www.best-selling-cars.com/global/2018-full-year-international-global-top-selling-car-models/
3

https://economictimes.indiatimes.com/industry/auto/cars-uvs/maruti-suzuki-alto-crosses-35-lakh-cumulative-sales-mark/
articleshow/63171749.cms

4
https://www.goodwood.com/grr/road/news/2018/4/axons-automotive-anorak-chinas-best-selling-cars/
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Figure 2.1: Characteristics of vehicle archetypes. a) Drive–cycle energy consumption of
baseline and lightweight vehicles. A PHEV utility factor of 0.5 is assumed. b) Baseline
vehicle weight by component. Circles indicate total weights of lightweight vehicles.
c) Material composition of baseline vehicles. d) Material composition of lightweight
vehicles. Underlying data used to create this figure can be found in a data repository at
http://doi.org/10.5281/zenodo.3896664.

and drag coefficient for each vehicle segment and powertrain. Operational energy use

is determined over EPA’s US06 drive cycle. While various drive cycles are used across

different countries, they all exhibit some divergence between official and real–world fuel

consumption.76 FASTSim however automatically corrects any drive cycle for real–world

conditions.77 This built–in correction increases energy consumption by about 30–40%

depending on technology. For lightweighted vehicle archetypes, we assume that power

components are resized for performance equivalency in accordance with the literature.

Specifically, peak power is reduced incrementally until the acceleration of conventional

and lightweighted vehicle archetypes match.66 Additional weight reduction can be

achieved through downsizing of components, which is a consequence of primary weight

savings by material substitution. For the powertrain, we assume an additional 50%

weight reduction compared to the 100% initial reduction.32
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2.2.4 Modelling of ambitious material efficiency strategies

Analyzed strategies include (1) vehicle lightweighting through material substitution,

(2) material recycling, (3) components remanufacturing, (4) more intensive use, and

(5) downsizing. In addition, we analyze the effects of a simultaneous implementation

of all ME strategies (6) as well as a combined implementation of all strategies but

lightweighting (7). The implementation levels of these measures should be regarded as

ambitious, yet plausible, and are roughly in line with the storylines of very optimistic

climate change mitigation scenarios, such as SSP178 and LED (low energy demand).79

• Lightweighting: Compared to the baseline material composition, we assume an

increase in the content of aluminum by 10–28% and a reduction in the steel content

by 25–31%, depending on powertrain. These assumptions are largely based on the

aggressive lightweighting scenario in Burnham et al.60 (refer to Section A.1.2 for

details). We further investigate the trade–offs of lightweighting, i.e. the relationship

of additional carbon invested upfront (in the vehicle supply chain), and carbon

saved in the energy cycle, which we term ‘carbon emissions return on investment’

(CEROI).

• Recycling: The recycled content is assumed to amount to about 11–85% by weight

depending on material (refer to Section A.1.2 for details), thereby reducing material–

related energy expenditures. These rates are already high and can be seen as upper

boundaries as materials in end–of–life vehicles are usually downcycled for use in less

demanding applications.17,80 Emission factors of recycled materials are illustrated

in Table 2.1.

• Remanufacturing: We infer from Liu et al.44 that each kg of remanufactured

equipment reduces energy needs of material production by 98% and assembly

energy needs by about 40%. We assume that the share of recovered materials

through remanufacturing amounts to roughly 9–19% by weight depending on

powertrain and component. These rates are based on current practices in Japan

where the combined rate of remanufacturing and recycling is already very high,
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about 82% by weight45 (see Section A.1.2 for details).

• Downsizing is defined as customers switching to a smaller vehicle segment, i.e.

light truck→van/SUV; van/SUV→passenger car; passenger car→micro car. No

further downsizing is available for micro cars in our model. Downsizing reduces

vehicle weight by 16–44% and fuel consumption by 9–37%, depending on vehicle

segment and powertrain (cf. Figure 2.1). Nudging consumers to drive smaller cars

would require an immense effort to reverse the current trend of vehicles becoming

increasingly bigger.77

• More intensive use implies an increase in vehicle occupancy from 1.5 to 2.0 pas-

sengers, lowering vehicle– and energy–cycle emissions per passenger by a constant

25%, regardless of energy mix, powertrain or vehicle segment. Such increase in

vehicle occupancy is in line with the LED scenario79 and would require very high

usage rates of ridesharing services.

2.2.5 Carbon emissions return on investment

Among all of the ME strategies analyzed in this work, only lightweighting is suited for

a CEROI analysis because of the trade–off between inputs (increased vehicle supply

chain emissions) and outputs (reduced energy cycle emissions). All other measures

either yield reduced vehicle supply chain emissions at constant energy cycle emissions

(remanufacturing and recycling) or complementary emission reductions in both the

energy cycle and the vehicle supply chain (downsizing and more intensive use), which

mathematically does not allow for a CEROI calculation. We therefore define CEROI

as the fraction of additional vehicle supply chain emissions, ∆Fvc, and reduced energy

cycle emissions, ∆Fec, due to vehicle lightweighting (LW ) compared to the baseline (BL)

vehicle (Equation 2.7).

CEROI = −∆Fout

∆Fin
= −∆Fec

∆Fvc
= −F

BL
ec − FLW

ec

FBL
vc − FLW

vc

(2.7)
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2.3 Results

2.3.1 Vehicle carbon footprints

Under current energy supply, the ICEV–g light truck has the highest total footprint with

46.7 t CO2e person−1 (Figure 2.2a). With 10.6 t CO2e person−1, the PHEV micro car

can achieve the lowest footprint when applying all ME strategies, and is closely followed

by its ICEV–d and HEV counterparts. PHEVs, despite their higher weight, achieve a

higher fuel economy than HEVs due to their more efficient powertrain (larger electric

motor and smaller combustion engine). Due to the ‘dirty’ electricity mix (global average

of 750 g CO2e/kWh), the BEV only achieves 11.6 t CO2e person−1.

Assuming a low–carbon energy supply mix, the footprint of the ICEV–g light truck

falls from 46.7 to 44.6 t CO2e person−1 (Figure 2.2b), as the vehicle supply chain benefits

from the lower–carbon energy supply. An increasing share of renewable electricity is

used to produce materials and assemble vehicles (Section A.1.1). Meanwhile, production

of gasoline is left unchanged, meaning that the carbon intensity of gasoline remains

constant. In contrast, BEVs fully capitalize on the low–carbon energy supply, cleaning

up both the energy cycle and the vehicle supply chain. Hence, the lower end of the range

of footprints shown in Figure 2.2b is fully dominated by BEVs. For example, the BEV

micro car reaches a footprint of 2.9 t CO2e person−1, which further falls to 1.7 t CO2e

person−1 after applying all ME strategies.

2.3.2 Contribution of energy cycles and vehicle supply chains

The relative contribution of vehicle supply chains and energy cycles to total footprints

strongly varies, depending on powertrain, vehicle segment, energy supply and implemented

ME strategies. Under current energy supply, the vehicle supply chain can contribute

as little as 9% (‘ICEV–g micro all but lightweighting’) or as much as 34% (‘BEV car

lightweighting’, compare Figure 2.3a and 2.3e). Assuming low–carbon energy, these two

extreme points become even more extreme with a 5% contribution from the vehicle supply

chain to the ICEV–g footprint, and a 73% contribution to the BEV. The decreasing

energy cycle contribution to the footprint of the ICEV–g is due to the assumption that
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Figure 2.2: Vehicle carbon footprints in ascending order under current global energy supply mix
(a) and low–carbon energy supply mix (b). Labels are shown for micro cars and trucks only, and
for no ME and all ME strategies. Underlying data used to create this figure can be found in a
data repository at http://doi.org/10.5281/zenodo.3896664.
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Figure 2.3: Share of vehicle supply chain (= material production + vehicle assembly) emissions
to total vehicle carbon footprints (= vehicle supply chain + energy cycle). Left: Under current
global energy supply mix. Right: Under low–carbon energy supply mix. Whiskers indicate the
range of results across vehicle segments. Underlying data used to create this figure can be found
in a data repository at http://doi.org/10.5281/zenodo.3896664.
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the carbon intensity of crude oil remains unchanged. Therefore, mitigation of energy

cycle emissions cannot be achieved for gasoline or diesel, whereas the vehicle supply

chain can still source low–carbon energy and therefore reduce impacts. As a result, for

ICEVs and HEVs the emissions share of the vehicle supply chain decreases while the

energy cycle share grows (compare pairs a–g, b–h, and c–i of Figure 2.3). Fully relying

on electricity as a power source, only BEVs can truly capitalize on the ‘cleaner’ grid

so that energy cycle emissions strongly shrink. As a result, mitigation of the energy

cycle is even greater than that of the vehicle supply chain, which still depends on fossil

fuels to a much larger degree. Hence, the share of vehicle supply chain emissions further

increases for BEVs, while the energy cycle share grows smaller (compare Figure 2.3e

and k). The changes for PHEVs and HFCEVs can go in either direction but are minor

since reductions in vehicle supply chain and energy cycle emissions are about equal under

low–carbon energy (compare pairs d–j, and f–l of Figure 2.3).

2.3.3 Mitigation through material efficiency

We find striking differences in the overall potential of different ME strategies to reduce

footprints (vehicle supply chain + energy cycle emissions). Under current energy supply,

lightweighting achieves modest, and sometimes slightly negative, footprint reductions

ranging from – 3 to + 4% (– 0.8 to + 2.0 t CO2e person−1). Reductions are particularly

high for ICEV–g, ICEV–d, BEV and HFCEV vans, SUVs and light trucks. Reductions

for micro and passenger cars are typically found at the other end of the range and can be

slightly negative, which indicates a small increase in footprints (more in Section 2.3.4).

Although lightweighting can reduce energy chain emissions (by 5–12% or 0.7–4.6 t CO2e

person−1), vehicle production impacts can simultaneously increase (by 21–49% or 0.6–

2.6 t CO2e person−1), which explains the small or sometimes negative reductions in total

footprints. Figure 2.4 shows the absolute mitigation potential of ME for vans/SUVs

while Figures A.1–A.4 show absolute and relative mitigation results for all powertrains.

Recycling and remanufacturing can mitigate vehicle supply chain impacts by about

6–20% or 0.2–1.3 t CO2e person−1, whereas energy cycle discharges are not affected. As

a result, total footprints are only marginally reduced, by about 1–4%. The benefit of
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recycling is constrained by the limited recycled content in vehicles, which is a result of the

high performance required of materials in this application. As a result, most materials

from end–of–life vehicles are downcycled. Remanufacturing components, such as engines,

also prevents the deployment of new, more efficient ones, causing a trade–off between

production and operational pollution. This opportunity cost has not been modeled here

and would further diminish the abatement potential from remanufacturing. In order

to avoid overestimating the GHG mitigation potential of remanufacturing we therefore

limited the degree of its application (Section A.1.2).

More intensive use and downsizing can yield the largest impact mitigation. While

more intensive use can reduce footprints by 25% or 3.9–11.7 t CO2e person−1, downsizing

offers reductions on the order of 17–38% or 3.1–11.4 t CO2e person−1. Both strategies

act positively on both the energy cycle and the vehicle supply chain.

All strategies taken together can cut footprints by 29–57% (4.6–22.7 t CO2e person−1)

with particularly high reductions for larger vehicle segments and conventional powertrains.

Implementing all strategies except for lightweighting leads to similar overall footprint

alleviation (27–54% or 4.3–21.1 t CO2e person−1) but differs in the sense that it acts

more strongly on the energy cycle and less so on the vehicle supply chain.

Footprints can also be cut by switching from the current energy supply to low–carbon

energy supply, by 4–83% (0.8–30.2 t CO2e person−1) in particular, which is comparable in

magnitude to the overall potential of above analyzed ME strategies (28–57% or 4.6–22.7 t

CO2e person−1). While footprint reductions from low–carbon energy supply are very

heterogeneous, with large reductions for BEVs and low reductions for ICEVs, footprint

reductions from ME are strongly homogeneous among all technologies (Table 2.3). This

shows that ME is a very suitable mitigation strategy not only for electric vehicles but for

all technologies. In addition, by comparing the last two rows of Table 2.3, we can assert

that even when taking future low–carbon energy supply as a starting point instead of

the current one, a further substantial drop in footprints is possible thanks to ME.

The corresponding results for ME under low–carbon energy are illustrated in Fig-

ures A.2 and A.4. Most notably, lightweighting becomes a more important strategy
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Figure 2.4: Effect of different material efficiency strategies on energy chain and supply
chain emissions of vans and SUVs under current energy supply. ‘Recycling’ is partially
covered by ‘Remanufacturing’ and ‘More intensive use’ is partially covered by ‘Downsizing’.
SUV=sports utility vehicle; ICEV=internal combustion engine vehicle; HEV=hybrid
electric vehicle; PHEV=plug–in hybrid electric vehicle; BEV=battery electric vehicle;
HFCEV=hydrogen fuel cell electric vehicle; –g=gasoline; –d=diesel. Underlying data
used to create this figure can be found in a data repository at http://doi.org/10.
5281/zenodo.3896664.

Table 2.3: Individual and combined potential of material efficiency strategies and low–
carbon energy supply to reduce vehicle carbon footprints. ICEV=internal combustion
engine vehicle; HEV=hybrid electric vehicle; PHEV=plug–in hybrid electric vehicle;
BEV=battery electric vehicle; HFCEV=hydrogen fuel cell electric vehicle.

ICEV HEV PHEV BEV HFCEV
Material efficiency 30–57% 30–45% 32–49% 31–52% 29–50%
Low-carbon energy 4–6% 6–8% 45–46% 80–83% 5–7%
Combined 35–59% 35–50% 63–74% 90–92% 35–55%
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as it can yield footprint reductions ranging from 0.4–10% or 0.01–4.1 t CO2e person−1

compared to – 3 to + 4% or – 0.8 to + 2.0 t CO2e person−1 under current energy supply

(more details in Section 2.3.4).

2.3.4 Trade–offs of lightweighting

Generally, lightweighting can lead to favorable results, meaning that additional GHG

emissions in the vehicle supply chain are more than compensated for by GHG savings in

the energy cycle. Figure 2.5 shows that lightweighting leads to a CEROI roughly ranging

between 0.6:1 and 1.8:1, with a median of about 1.2:1, when current average energy

supply is assumed. This means that on average one additional kg of CO2e invested

during vehicle production shrinks energy cycle emissions by about 1.2 kg CO2e. However,

in some cases, increased GHG emissions in the vehicle production phase outweigh savings

in the use phase, leading to a CEROI below 1:1.

Assuming low–carbon energy supply, however, a CEROI of about 25:1 and higher

can be achieved. This is largely due to the assumed constant carbon intensity of gasoline

and diesel, while vehicle production benefits from low–carbon energy supply. Thus, it

‘pays off’ to ‘invest’ more carbon upfront. If the carbon intensity of crude oil further

increases in the future,81 the CEROI could become even higher, meaning that for gasoline–

and diesel–powered cars lightweighting could be even more favorable than illustrated by

our computations.

2.3.5 Sensitivity of results

Our results indicate that the mitigation potential of ME exhibits significant variation

over different vehicle technologies and segments as well as energy supply. Here we

further highlight the sensitivity of selected results to two fundamental model parameters,

vehicle occupancy and vehicle lifetime. For example, assuming a longer vehicle lifetime

of 210,000 km instead of 180,000 km, an increase of about 17%, increases total life–cycle

emissions of the ICEV–g truck under current energy supply by 15%, while the footprint

of a micro BEV under low–carbon energy supply is increased by only 7%. Conversely,

a shorter lifetime of 150,000 km reduces use–phase emissions and increases the share
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Figure 2.5: Carbon emissions return on investment (CEROI) of lightweighting different
vehicle types under current and low–carbon energy supply. Whiskers indicate the range
of results across different vehicle segments and technologies. Underlying data used
to create this figure can be found in a data repository at http://doi.org/10.5281/
zenodo.3896664.

of vehicle production emissions further, for example from 73% (Figure 3k) to 77% in

the case of a lightweight BEV car under low–carbon energy. Meanwhile, assuming that

more intensive use increases ridership from 1.5 to 1.75 passengers per vehicle, instead

of 2.0, a 13% difference, increases respective life cycle emissions of all vehicle types in the

more intensive use scenario by the same percentage regardless the emissions intensity of

energy supply.

2.4 Discussion

2.4.1 Discussion of results, limitations and future work

Our results indicate that downsizing and more intensive use can potentially yield the

largest footprint cuts. However, their successful implementation relies strongly on

consumer behavior and is therefore highly uncertain. Today’s potential for downsizing

and more intensive use is significant. For example, with 1.5 passengers per vehicle,82

vehicle occupancy in the US is quite low. In addition, the US share of SUVs and light

trucks almost tripled between 1975 and 2017,77 suggesting that larger vehicles are a

recent consumer preference rather than a necessity. However, nudging consumers toward

more efficient practices will require political intervention. Such intervention could trigger

rebound effects, which can reduce or even negate achieved emission reductions. For
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instance, more efficient vehicles have been found to be driven further than less efficient

ones (direct rebound).83 In addition, cost savings from owning and driving more efficient

vehicles may be spent on increased air travel or other highly polluting activities (indirect

rebound).84 None of the mentioned mechanisms have been analyzed in this work however,

since our model lacks the necessary economic considerations.

Our results and modeling assumptions are largely consistent with the literature

cited throughout this paper. For example, Elgowainy et al.85 estimate that a current

ICEV LDV emits about 280 g CO2e/vkm over its lifetime, which falls right into the

range of our reported 140–389 g CO2e/vkm,5 depending on vehicle segment. Depending

on powertrain, lightweighting reduces vehicle weight by 18–24%, which is consistent with

Bandivadekar et al.,86 who find that about a 20% vehicle weight reduction is possible

with aggressive material substitution. Secondary weight reduction is particularly high

for BEVs due to the high initial weight of the large battery, a finding that is confirmed

by Hofer and colleagues.87 Ambrose et al.88 estimate that vehicle production could

contribute as much as two thirds to the life cycle GHG emissions of a future BEV charged

by renewable electricity, while here we find a range from roughly two thirds to three

quarters (Figure 2.3k).

The individual contributions to GHG mitigation from lightweighting, recycling and

remanufacturing are modest. This is at least true under current global energy supply,

whereas regional conditions could support stronger mitigation effects. For instance,

economies whose energy supply is ‘cleaner’ than the global average, can produce lower

carbon aluminum and thus enable stronger emission benefits from lightweighting.36

We show that larger emission reductions are also possible globally in a hypothetical

future with low–carbon energy supply. For recycling, an economy–wide perspective

considering downcycling of materials recovered from end–of–life vehicles may reveal

stronger system–wide climate benefits40 compared to our results. Conversely, the potential

of remanufacturing may be lower than estimated in this work if a fleet model is employed

which considers efficiency improvements of vehicle vintages. The reason therefore would
5Convert results from Figure 2.2 as follows: g CO2e/vkm = t CO2/person × 1/180,000 vehicle/vkm ×

1.5 persons/vehicle × 1,000,000 g/t
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be that remanufactured engines do not benefit from efficiency improvements as new

ones do, therefore leading to trade–offs between operational and embodied energy and

carbon.43 In addition, we assume that remanufacturing restores vehicle components

to ‘like–new’ conditions, which is not necessarily the case in reality.17 To alleviate the

effects of these two issues, we limit the degree to which remanufacturing is deployed

(Section A.1.2).

Even stronger reductions in vehicle footprints may be possible through additional

deployment of other low–carbon technologies not analyzed in this work. For instance,

carbon capture and storage could save the majority of carbon dioxide discharged from coal

and natural gas power plants,89 while biofuels,90 synthetic fuels,37 and other low–carbon

fuels85 could further alleviate pollution from combustion processes. Similarly, emissions

from steel production could be further decreased by direct iron reduction using renewable

hydrogen.91,92 However, many, if not all of these technologies are not yet commercially

available, which makes their future deployment uncertain.

2.4.2 Relevance for integrated modeling

Integrated energy models can be broadly defined as models of national or global energy

demand and supply within the broader economic–environmental system.93–95 These

models are commonly used to investigate emission pathways as a function of mitigation

efforts79,96–98 and have become more and more detailed in the way they portrait mitigation

mechanisms and consumer behavior.99–101 The industrial ecology literature has pointed

out that explicit linking of service demand to material demand constitutes another

important building block towards a holistic evaluation of climate change mitigation

pathways.102–104 Following this new direction of research, we apply industrial ecology

methodology in order to derive important data points for use within or in combination

with integrated models. Most notably, we have defined 48 different vehicle archetypes

representing the global vehicle market. These archetypes can be readily used to replace

or detail existing descriptions of global average vehicles in integrated models and may

be further customized to represent regional differences. Integrated modeling teams may

choose to only incorporate vehicle fuel consumption or fuel cycle figures, or consider
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the complete vehicle life cycle, including material production, vehicle assembly and ME

options. Doing so could significantly change the technology mix optimization procedure

in integrated models and could illustrate yet unknown mitigation pathways for the

light vehicle sector and its supply chain. Further research on the optimal level of

vehicle–technological detail in integrated models is needed.

2.4.3 Policy implications

In order to stay within reach of climate targets, an annual personal footprint budget of

roughly 1–2 t CO2e has been hypothesized by environmental and consumer organiza-

tions.105,106 This ambitious threshold is currently involuntarily met only by the poorest

of nations, whereas rich countries by far overshoot that target.107 Here we show that

stringent ME and low–carbon energy application can achieve a personal vehicle footprint

roughly as low as 2 t CO2e over the vehicle lifetime. Assuming an average vehicle lifetime

of about 15 years, that value translates to an annual footprint of 130 kg CO2e per person,

which would make up 13% of a personal carbon budget of 1 t CO2e per year, leaving the

majority of the budget for other purposes, such as housing or diet. This indicates that

the current demand level of personal motorized transport is compatible with ambitious

climate targets only under two major conditions: (1) consumers must switch to more

energy– and material–efficient vehicles, e.g. smaller or shared electrified vehicles, and

(2) the energy used to charge these vehicles must be highly decarbonized.

Various policy measures exist which can help consumers switch, such as taxes or

feebates. Yet, as a prerequisite for consumers to make that transition, appropriate vehicles

must be offered by manufacturers, which in turn may need incentives to do so, such as

tighter fuel economy and low–carbon fuel standards. In order to reduce vehicle supply

chain–emissions next to energy cycle–emissions, however, requires existing regulatory

frameworks to be complemented by an additional vehicle production standard, which

regulates emissions embodied in vehicle production. Alternatively, existing standards

could be replaced by a life–cycle standard which regulates all upstream and direct

emissions. Tailpipe emission regulations in different countries around the world are

targeting 95–99 g CO2e per vehicle–km between 2020 and 2025. Some vehicle options
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already achieve these targets today, even under real–world conditions (see Section A.3),

highlighting the scope for further tightening of existing standards.

Smaller, material–efficient vehicles may offer important side effects for sustainability,

such as reduced stress on road and parking space, lower consumer costs, higher energy

security, and increased safety for non–motorized road users.

Finally, in line with Shanmugam et al.,29 we note that lightweighting, recycling and

remanufacturing may be more easily integrated within traditional automotive supply

chains compared to fuel–side initiatives, and depend less upon consumer acceptance, if

at all, compared to consumer–oriented policies. Despite their lower potential to reduce

vehicle footprints, these measures should therefore be implemented regardless.

2.4.4 Conclusions

This work is the first to provide a comprehensive overview of the potential of ME to

mitigate vehicle emissions under a vast range of conditions. We also offer the first

analysis of the carbon return on investment of vehicle lightweighting. Our results indicate

striking differences in the overall potential of different ME strategies to abate footprints.

When implemented together, ME can yield sizeable reductions of up to 57%, comparable

to mitigation of up to 83% achieved through low–carbon energy supplied to vehicles.

Moreover, ME can halve the emissions of an electric car run on low–carbon electricity.

Our analysis illustrates the importance of considering specific conditions when

choosing the most suitable portfolio of mitigation options. Lightweighting should not be

seen as a ‘one–fits–all’ solution as its ‘carbon pay–off’ highly depends on other vehicle

characteristics and energy supply of material production. Recycling and remanufacturing

lead to modest reductions, while downsizing and more intensive use can have the largest

reduction effect on footprints. However, policy incentives will be required in order to

nudge consumers towards more efficient behavior. Rebound effects, which have not been

evaluated in this work, can diminish the footprint alleviation potential of these strategies.

An economy–wide approach will be needed to capture these effects. Conversely, our

results offer a valuable starting point for economy–wide and integrated models, which

usually lack the connection between climate change mitigation and material use.
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According to our results, vehicle production would contribute a larger share of the

life cycle impacts of electric vehicles in a low–carbon energy future. Hence, we argue that

more attention should be paid to vehicle supply chain emissions in regulatory frameworks.

For example, existing fuel economy and low carbon fuel standards could be complemented

by vehicle production standards.

While low–carbon energy supply reduces footprints of electric vehicles more than

that of other vehicles, ME is suited to reduce footprints of all analyzed technologies more

equally. Thus we conclude that ME is highly suited as an immediate strategy to reduce

emissions in the short term until full proliferation of plug–in and fuel cell electric vehicles

in combination with renewable energy supply may be achieved. In addition, ME is a

useful companion to the long–term transition towards low–carbon technology as it can

further cut the footprint of low–carbon vehicles in half.
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Abstract

With the expected rapid growth of renewable electricity generation, charging plug–in

hybrid electric vehicles (PHEVs) from the grid promises ever higher reductions in CO2

emissions. Previous analyses have found that the share that PHEVs are driven in electric

mode can differ substantially depending on region, battery size and trip purpose. Here,

we provide a first fleet–wide emissions mitigation potential of US–based PHEV drivers

adopting high or low shares of electric driving. Specifically, we illustrate scenarios of

different combinations of PHEV uptake, renewable electricity generation shares and

PHEV fueling behavior. Across 21 analyzed scenarios, annual greenhouse gas (GHG)

emissions of the light–duty vehicle (LDV) fleet could differ by an average of 21% (5–43%

range) in 2050 depending alone on the fueling behavior of PHEV drivers. This behavior

could further determine the discharge of about 1.3 (0.7–1.9) Gt CO2 (or roughly one year

of current emissions) over the next three decades, significantly influencing the feasibility

of reaching an 80% emission reduction target in the LDV sector. Governments can nudge

PHEV drivers towards environmentally favorable fueling behavior. We discuss several

options for nudging, including charging infrastructure availability, battery design and

consumer education.

3.1 Introduction

Since a record high in 2007, GHG emissions from the US electricity sector have fallen by

almost a third in subsequent years.108 This positive development has been contrasted

by steadily growing GHG emissions from the transport sector in the same period,108

despite substantial efficiency gains.109 Thus, one promising measure to reduce transport
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GHG emissions, especially in the LDV sector, is to increasingly electrify transport,110

capitalizing on the falling carbon intensity of electricity.

However, only few of today’s commercially available battery electric vehicle (BEV)

models offer a sufficient range for long-distance trips on a single charge. With 515 and

595 km (320 and 370 miles),111 only Tesla’s Model 3 and Model S long range variants offer

a driving range comparable to the 650–800 km (400–500 miles) that popular conventional

cars provide today. Due to their significant price tag, both models may be reserved

to a small percentage of the population however. A lack of charging infrastructure,

load shedding and high cost of electricity can pose additional challenges, especially for

developing countries, making it difficult to transition to fully electric cars.112

This is where plug–in hybrid electric vehicles (PHEVs) have an important advantage

over BEVs: PHEVs can run on both electricity and gasoline. Once the battery is depleted,

the driver can continue driving on gas. Even though the electric range of most of today’s

PHEVs is limited to below 48 km (30 miles),113 one study finds that long–range PHEVs

electrify as many annual miles driven as BEVs.114 Another advantage is that the smaller

battery of a PHEV leads to a smaller price increment over conventional cars. Thus,

PHEVs could play a significant role in the future according to IEA projections.47

For the most effective mitigation of GHG emissions it is however crucial that PHEVs

are mostly driven on electricity, and in areas with a suitably clean supply. Much analysis

has therefore been devoted to the share of electric driving of individual PHEVs. For

example, using data from the National Household Travel Survey, MacPherson et al.

estimate that PHEVs are driven on electricity 60.2% of the time on average in the US,

slightly lower than the US EPA’s estimate of 63.5%.115 This fraction is usually termed

the utility factor (UF) of a PHEV.116 MacPherson et al. also find that the regional

heterogeneity of the UF ranges from below 0.6 in the Midwest and the Northeast to

above 0.8 in Alaska (estimated from Figure 7 therein).115 Ligterink and Eijk find an

average UF of 0.33 in the Netherlands.117 Including business travelers who hardly charge

lowers the UF further to 0.24. Goebel and Plötz anayze data of 1,768 Chevrolet Volt’s

on–board diagnostics systems and find UFs ranging from 0.14 to 1.00, with a median of
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0.80 and a mean of 0.77.118 Similarly, Raghavan and Tal find UFs up to just under 1.0 for

Ford C–MAX (32–km/20–mile electric range) and Chevrolet Volt (56–85 km/35–53–mile

electric range) users, while Toyota Prius (18–km/11–mile electric range) drivers do not

reach UFs higher than 50%.119 The authors also observe that actual ‘real–world’ UFs

are somewhere between 60–103% of EPA’s estimates, which are based on drive–cycle

simulations, indicating that EPA figures overestimate the UF of certain PHEV models.

Researchers observe a similar fueling behavior of other bi–fuel vehicle drivers. During

a 10–year trial, Johns et al. find that alternative fuels, such as E–85 (a blend containing

up to 85% ethanol and 15% gasoline by volume), compressed natural gas, or liquefied

petroleum gas, accounted for only 30% of fuels used in bi–fuel vehicles, meaning that

the majority of miles were fueled by gasoline.120 They further find that convenience,

informal communication with peers, as well as incentives and sanctions have a big effect

on alternative fuel use.

Other important factors include (1) the timing of charging, (2) ride–sourcing and

(3) ambient temperature. Regarding (1), Axsen et al. report that the UF of a PHEV is

reduced if only off–peak charging is available compared to when charging is available at

all times.121,122 Despite the lower UF, GHG emissions from combustion and upstream

processes were reduced, due to avoiding times of peak electricity generation, which

is often dominated by more carbon–intensive energy sources. (2) The International

Transport Forum estimates that the UF of ride–sourced PHEVs is almost half that of

a private PHEV largely due to ‘deadheading’, i.e. empty trips of ride–sourced vehicles

to the pick–up location of the next passenger.123 (3) Finally, Wu et al. show that very

low and very high ambient temperatures can significantly reduce the fuel economy of

PHEVs and other powertrains.124 Higher energy consumption reduces the electric range

of PHEVs which can lead to reduced UFs. Climate change is likely to lead to more heat

extremes in the future125 which could further exacerbate this issue.

Systemic models, such as transport sector models, energy systems models or inte-

grated assessment models are used to explore potential sectoral or holistic pathways of

climate change mitigation. While these models increasingly improve their approximation
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of consumer behavior,126,127 fueling and charging behavior is often modelled in a rather

simplistic fashion.7 For example, Karplus et al. define UFs exogenously in the EPPA

integrated assessment model.128

To conclude, the fuel use behavior of PHEV drivers varies substantially, depending

on trip purpose (e.g business vs. non–business trips), climate, electricity prices and

availability. These extremes could be even more pronounced in the future, depending on

the development of charging infrastructure, climate impacts on PHEV battery perfor-

mance, and user education. While the fueling behavior (and sometimes the corresponding

variation in climate impact) has been studied quite extensively for individual PHEVs

or smaller fleets of government–operated bi–fuel vehicles, the authors are unaware of

any study attempting to compute a fleet–wide estimate of well–to–wheel (WTW) GHG

emissions at national level using a detailed transport scenario model. As such, we regard

this to be the first study to analyze scenarios of climate impacts of the fueling behavior

of US PHEV drivers considering various dynamics of the energy system.

3.2 Methods and data

3.2.1 Model overview

For our analysis, we use the LAVE–Trans (Light–duty Alternative Vehicle Energy

Transitions) model.129–133 LAVE–Trans is a transportation scenario model forecasting

WTW GHG emissions from US light–duty vehicles (LDVs). WTW emissions include

emissions of the entire energy chain from the production of energy carriers to their final

use. Estimates are provided annually for the time period 2005 to 2050.

3.2.2 Vehicle choice

Technology choice is endogenized in LAVE–Trans through a nested discrete choice model

in which six powertrain technologies are available: internal combustion engine vehicles

(ICEVs), hybrid electric vehicles (HEVs), PHEVs, BEVs, compressed natural gas (CNG)

vehicles, and hydrogen fuel cell electric vehicles (HFCEVs). Consumers can further

choose between two vehicle classes: passenger cars and light trucks. For each powertrain

36



and segment, the model distinguishes several characteristics such as vehicle purchase

price, fuel economy/fuel costs, driving range, charging and fuel station availability, model

diversity, and maintenance cost. The model also accounts for available vehicle subsidies

which are subtracted from vehicle purchase prices, and provides an option to model a

carbon tax on energy carriers, increasing their price as a function of their carbon content

and the magnitude of the tax. While fuel economy and CO2 standards cannot be fully

modelled, LAVE–Trans assumes by default that the costs of ICEVs increase in the future

which can be primarily seen as an effect of increasingly stringent regulations.

The model however considers different consumer risk groups, i.e. innovators and

early adopters (16%), early majority (34%), late majority (34%), and laggards (16%).

These groups are distinguished by their willingness to pay for above mentioned vehicle

characteristics. Each consumer picks the vehicle which provides them with the lowest

disutility/cost. The probability distribution of different consumers picking certain vehicles

is directly translated into vehicle sales shares in a given year. A vintage–based vehicle

fleet stock module then translates the inflows of new vehicles and the outflows of retired

vehicles into the current vehicle stock and the corresponding total travel demand for

each year.

3.2.3 Vehicle types

Current PHEVs are modeled to have a 48–km (30–mile) all electric range (Figure 3.1a),

which corresponds well to the sales–weighted average electric range of the nine highest

sold PHEVs, each with cumulative sales above 15,000 units between 2011 and 2019

(estimated using data on electric range by model from EPA’s fuel economy database111

and vehicle sales data from the Alternative Fuels Data Center).134 These nine models

represent 81% of cumulative PHEV sales in that time period. In SSP5 we assume that

PHEV electric range remains constant over the studied time frame, while increasing

ranges are presumed in SSP2 and SSP1 (see section B.1.1).

Similarly, in SSP1 we assume that the driving range of BEVs increase up to 644 km

(400 miles) shortly after 2030 (Figure 3.1b), which is at the lower end of the range that

current gasoline cars provide. The sales–weighted average range of BEVs already increased
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Figure 3.1: Estimated sales–weighted electric driving range and battery capacity of BEV
and PHEV. SSP = shared socio–economic pathway; BEV = battery electric vehicle;
PHEV = plug–in hybrid electric vehicle.

from 121 km (75 miles) in 2011 to around 435 km (270 miles) in 2019. Figure 3.1c

illustrates the corresponding battery capacities, assuming a charging loss factor of 5%.

Detailed cost estimates for all powertrains through 2030 are largely based on Wolfram

and Lutsey.73 Here we extend the time horizon to 2050 and update BEV and PHEV

battery cost estimates in line with Lutsey and Nicholas,135 BNEF,136 Edelenbosch et

al.137 and Ziegler & Trancik138 (see sections 3.2.5 and B.1.3 for more details).

3.2.4 Emissions factors

LAVE–Trans provides detailed emission factors for several energy carriers on a WTW

basis, including gasoline, corn ethanol, cellulosic ethanol, biofuel from cellulosic pyrolysis,

liquefied coal, liquefied gas, electricity, hydrogen, compressed natural gas, and liquified

petroleum gas. Gasoline can be blended with several of these fuels. In this work, we

adopt the standard assumptions of the LAVE–Trans model on gasoline according to

which conventional gasoline is increasingly blended with other drop–in fuels. Specifically,

the share of conventional gasoline falls from 94% in 2010 to 74% in 2050, while the shares

of corn ethanol, cellulosic ethanol and liquefied coal increase accordingly. As a result,

the carbon intensity of gasoline falls slightly from 318 g CO2e/kWh in 2010 to 297 g

CO2e/kWh in 2050. Also the carbon intensity of the electricity mix falls over time, which

is in line with recent developments.108 Depending on the scenario, the decarbonization
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of the electricity grid differs in magnitude however (see next subsection and Figure 3.2a).

Our model assumes average, not marginal emissions factors of electricity generation.

3.2.5 Scenarios of the energy system

We develop three main scenarios following the shared socioeconomic pathways (SSP)

framework.78 From the five available SSPs, we adopt SSP1, SSP2, and SSP5. These three

scenarios differ in terms of challenges to GHG mitigation. SSP1 (‘sustainability’) faces the

lowest mitigation challenges, whereas SSP2 (‘middle of the road’) faces medium challenges

and SSP5 (‘fossil–fueled development’) faces high mitigation challenges. We do not adopt

SSP3 or SSP4 for one major reason. The main difference between SSP3 and SSP5 is the

differing degree of climate change adaptation challenges, while mitigation challenges are

assumed to be similar (see Figure 1 in O’Neill et al.78). The same relationship exists

for SSP2 and SSP4. Since we do not model climate change adaptation measures in this

work, the pairs SSP2/SSP4 and SSP3/SSP5 can be regarded as equivalent and would

not yield different modeling outcomes.

Electricity carbon intensity: In SSP1 we assume that the carbon intensity of

the electricity mix falls from 561 g CO2e/kWh in 2010 down to 50 g CO2e/kWh in

2050 due to significant uptake of renewable electricity as well as CO2 capture and

efficiency improvements of remaining fossil–fueled power plants. SSP5 is characterized by

a moderate reduction down to 400 g CO2e/kWh in the same time period. As the name

suggests, SSP2 follows the in–between path and reaches 225 g CO2e/kWh (Figure 3.2a).

Battery costs: The costs of battery packs are assumed to decrease rapidly in SSP1.

BEV batteries reach a floor price of 50 USD/kWh by 2050, while PHEV battery costs fall

down to 100 USD/kWh (Figure 3.2b). PHEV batteries are assumed to decrease at a slower

rate because they have a smaller storage capacity yet need to provide high power.73,129

However the incremental cost of PHEV batteries over BEV batteries also falls over time.

These assumptions are comparable to those made in recent publications. For example,

Lutsey and Nicholas assume that BEV battery packs could reach 64–73 USD/kWh by

2030, while PHEV battery packs arrive at 86–88 USD/kWh.135 Berckmans et al. calculate

that BEV pack costs could fall down to 50–80 USD/kWh by 2030.139 Estimating from
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Figure 3.2: Select scenario input parameters. SSP = shared socio–economic pathway;
PHEV = plug–in hybrid electric vehicle; BEV = battery electric vehicle.

Figure 1 in Edelenbosch et al., the authors assume pack costs of about 65 USD/kWh by

2030 and 50 USD/kWh by 2050 in their most optimistic scenario.137 A recent consultancy

report estimates a pack price of 73 USD/kWh by 2030.136 The two latter sources do

not mention differences in relative (USD/kWh) costs between BEV and PHEV battery

cost. Also note that first industry claims of battery costs as low as 80 USD/kWh have

been made as of 2020.140 More pessimistic cost trajectories73,137 for BEV batteries

roughly translate to 150 USD/kWh by 2050, which we assume representative for SSP5.

Accordingly, the middle–of–the road scenarios assumes 100 USD/kWh (for more details

see section B.1.3).

Carbon tax: In SSP1 we further assume that a carbon tax is introduced in 2021,

which linearly ramps up to 200 USD/ton CO2 by mid–century. While no carbon tax is

assumed in SSP5, SSP2 again follows the in–between path (Figure 3.2c). Consequently,

prices of carbon–intensive energy carriers significantly increase in SSP1. For example,

gasoline reaches 1.52 USD/liter (5.75 USD/gal) by 2050. Without the added cost of a car-

bon tax, the gasoline price moderately increases to about 1.04 USD/liter (3.93 USD/gal)

in SSP5 which is somewhat higher than the assumed 0.90 USD/liter (3.40 USD/gal) in

the reference scenario of the 2020 Annual Energy Outlook.141 Electricity prices develop

in similar ways in all three scenarios but react to different underlying mechanisms. In

SSP1, the electricity price is less affected by the carbon tax due to strong reductions in

40



carbon intensity of the electric grid (Figure 3.2a). However, the added cost of the massive

expansion of renewable electricity still causes consumer electricity prices to increase from

about 11 ct./kWh to about 16 ct./kWh by 2050. Due to the impact of the carbon tax,

SSP2 and SSP5 experience similar price increases up to 18 and 16 ct./kWh by 2050.

Fueling behavior: For each SSP, we first illustrate a case in which PHEV UFs grow

in accordance with larger battery capacities, that is up to 0.9 in SSP1, and up to 0.75 in

SSP2, while battery capacities and UF remain constant in SSP5. We then illustrate cases

in which the UF remains below these upper estimates despite growing battery capacities.

Reasons therefore could be increased demand for ride–sourcing services, inadequate

recharging infrastructure and potential restrictions for PHEV users to use all charging

bays (for more details and some back–of–the–envelope calculations refer to section B.1.2).

We conservatively estimate that these factors could reduce fleet–wide average UFs by

about 20–25%.

3.3 Results

3.3.1 Vehicle market shares

Sales shares differ substantially in all three scenarios due to the different prevalent

conditions described above. BEVs become fully cost–competitive in SSP1 and share the

vast majority of the market with PHEVs (Figure 3.3a). BEVs also attain considerable

shares in SSP2 but PHEVs are the dominating drive technology (Figure 3.3b). SSP5 sees

a major uptake of HEVs accompanied by a moderate increase of PHEV sales (Figure 3.3c).

Accordingly, cumulative sales of PHEVs reach 254 million units in SSP1, 242 million units

in SSP2, and 210 million units in SSP5. Lower UFs lead to reduced PHEV sales in all

scenarios (Figure 3.3d–f) as increased use of gasoline also raises total cost of ownership.

The differences in vehicles sales between the cases with high and low UFs can be seen in

detail in Figure 3.3g–i. The influence of these sales figures on the total vehicle stock and

on fleet–wide energy demand are shown in section B.2.
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Figure 3.3: Vehicle sales under different SSPs with high UFs (a–c), and with low UFs
(d–f), and differences in sales due to variations in UFs (g–i). SSP = shared socio–economic
pathway; ICEV = internal combustion engine vehicle; HEV = hybrid electric vehicle;
PHEV = plug–in hybrid electric vehicle; BEV = battery electric vehicle.

3.3.2 Fleet–wide WTW GHG emissions

Fleet–wide WTW GHG emissions are estimated at 1.38 Gt CO2e in 2005 and follow a

slight upward trend until about 2016, peaking at about 1.45 Gt, after which emissions

are beginning to fall in all scenarios. Assuming increasingly favorable PHEV fueling

behavior (UF = 0.9), emissions fall quickly in SSP1, due to the sharp increase of BEVs

and PHEVs mainly fueled by low–carbon electricity. As a result, GHG emissions reach

a low of 0.21 Gt by 2050 (green line in Figure 3.4a), which is 85% below 2005 levels.

Cumulative emissions over the 2005–2050 period sum up to 43.3 Gt CO2e. Although SSP5

(UF=0.6) is dominated by fossil fuels and relatively less efficient vehicles, a moderate

reduction in emissions by 21% by 2050 relative to 2005 can be achieved, while cumulative
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emissions reach 53.6 Gt CO2e. This is mainly due to the fact that HEVs are strongly

penetrating the market. While HEVs, just like ICEVs, operate on gasoline, their ability

to capture braking energy makes them significantly more economical compared to ICEVs.

Meanwhile, further reductions are realized due to moderate sales of PHEVs as well as

significant efficiency improvements of ICEVs (see section B.2.2 for more details). Nestled

in between SSP1 and SSP5, SSP2 (UF=0.75) achieves a 52% reduction in emissions in

the analyzed period, mainly due to a stronger uptake of PHEVs, while sales of HEVs and

ICEVs are greatly reduced compared to SSP5. Cumulative emissions arrive at 45.8 Gt

CO2e.

____

____

____

___

___

___

Figure 3.4: Well–to–wheel greenhouse gas emissions under the three SSPs with varying
fueling behavior of plug–in hybrid vehicle drivers. SSP = shared socio–economic pathway;
UF = utility factor.

3.3.3 The influence of PHEV fueling behavior

In the scenarios considered, fueling behavior of PHEV drivers can have a surprisingly

high impact on fleet–wide emissions. For example, in SSP1, an increasingly less favorable

fueling behavior of PHEV users (UF=0.7), can lead to missed reduction opportunities in

the range of 1.9 Gt CO2e (compare the grey area between the green and the red line

in Figure 3.4a). With 1.2 and 1.5 Gt CO2e this difference is similar in SSP5 and SSP2

(see grey–shaded areas in Figure 3.4b and c). The potentially strong influence of PHEV

users is further highlighted by the fact that 2050 emissions arrive at 212 Mt in the case

of SSP1/UF=0.9, and at 370 Mt in the case of SSP1/UF=0.7, a significant difference of
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43% (Figure 3.4a). Conversely, the smallest influence can be observed in SSP5 with a

9% difference in 2050 emissions (Figure 3.4c).

3.3.4 Sensitivity analysis

Future fueling and charging behaviors are highly uncertain and their contribution to

future climate impacts will depend on the uptake of different powertrain technologies,

infrastructural development, and the carbon intensity of energy sources. In the last section

we explored three plausible pathways of the US passenger vehicle market and the energy

supply sector, and quantified their GHG and energy use implications. In this section

we further alter some key variables to test the robustness of our results. Figure 3.5a

shows the influence of three key variables on the relative difference in cumulative WTW

GHG emissions between the cases with high and low UF. This difference is the area

highlighted in grey in Figure 3.4a–c.
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Figure 3.5: Sensitivity of the differences in cumulative well–to–wheel greenhouse gas
emissions between SSP cases with low and high UFs (a). Range of scenarios and sensitivity
cases illustrated in this work (b). CI = carbon intensity; UF = utility factor; SSP =
shared socio–economic pathway.

Little surprisingly, by far the largest influence is due to the spread between high

and low assumed UF. Lowering this spread by half, reduces the difference in results by

almost the same amount (41–44%). As can be seen in Figure 3.3, LAVE–Trans assumes

a substantial increase in future vehicle sales. Holding annual vehicle sales steady at the

2020 level of roughly 16 million units per year, implies a cumulative reduction of total

vehicle sales over the 2020–2050 period by 14–20%, depending on scenario. Accordingly,
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differences in cumulative emissions change by 8–13%. Keeping the carbon intensity of

electricity in SSP5 at the 2020 level, would reduce differences in cumulative emissions by

about 7%. The influence of these parameters is also reflected in the various diverging

emissions pathways as shown in Figure 3.5b. Only three cases reach the 80% reduction

in GHG emissions relative to 2005 hypothesized by several authors.37,129,142 All of these

cases require socioeconomic development in line with SSP1 and favorable PHEV fueling

behavior (UF=0.9). The base case (SSP1/UF=0.9) reaches an 84.7% reduction. From

there, lower vehicle sales reduce emissions further but only by 0.5 percentage points, while

a slighlty higher carbon intensity of electricity (reaching 59 instead of 50 g CO2e/kWh

by 2050) would offset emission reductions by 0.6 percentage points. We caution the

reader that further significant variation could be introduced by changing the vehicle

choice parameters in LAVE–Trans,133 which is not something we have done in this work.

3.4 Discussion

3.4.1 Implications for the US carbon budget

In this work we find that the fueling behavior of PHEV drivers can determine the

discharge of up to 1.9 Gt CO2e over the next 30 years. These results are not insignificant

when one considers that US fuel economy standards led to a cumulative reduction of

about 17 Gt CO2 of combustion emissions over the last 43 years.109

Further, implications for emission reduction targets and the carbon budget are

substantial as well. Estimates of the US carbon budget can range from about 80–150 Gt

CO2 (see section B.1.4). In the scenarios depicted here, WTW emissions of the LDV fleet

consume between 43–55 Gt, which is about one third to one half of the available budget.

(These estimates also include upstream emissions. Excluding these reduces cumulative

emissions to about 41–51 Gt CO2.) This stresses the fact that it will be an immense

effort to stay within the US carbon budget and even high shares of BEVs/PHEVs and

renewable electricity generation may not be enough to meet ambitious climate targets if

not accompanied by other measures. Achieving favorable fueling behavior of alternative

vehicle drivers can be one such measure. Below we discuss some key factors that could
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encourage PHEV drivers to electrify the majority of their driving.

3.4.2 Nudging consumers

Electric charger availability: In a 2008 survey of nearly 2,400 households in the US,

more than half of the respondents stated that they already had the ability to charge

a PHEV at home (within 7.5 meters/25 feet of the vehicle) but had little opportunity

to charge at work or at other locations.143 The availability of EV chargers not only

at home but also at work, along highways and in commercial areas, has been found to

significantly increase UFs. For example, Davies and Kurani find that a PHEV with a

(24–km) 15–mile electric range achieves a UF of 30% in absence of work charging, and

50% when work charging is available.144 Axsen et al. find that the availability of work

charging increases the UF of a PHEV with a 32–km (20–mile) electric range from 45%

to 55%, and similarly for a PHEV with a 64–km (40–mile) electric range from 70% to

79%.121 Heywood et al. cite a report prepared by EPRI which concludes that the UF

of PHEVs with 16– and 64–km (10– and 40–mile) ranges varies between 27–50% and

65–80% depending on whether charging is available only at home or whether it is also

available at work and at commercial locations.37

Arguably, work chargers are even more critical for PHEV commuters than for BEV

commuters. Due to the short electric range of PHEVs, it is crucial that PHEVs can

be recharged at work before returning home. In a 2013 survey by Tal et al., 70% of

Prius (18–km/11–mile electric range) drivers indicated they required work charging, and

so did 33% of Volt drivers (56–85-km/35–38-mile electric range), but only 5% of Leaf

(BEV with 117–121-km/73–75-mile electric range) drivers.145 Wu et al. confirm that

finding and report that workplace charging opportunities significantly increase UFs for

PHEVs with an electric range below 64 km (40 miles).124 Zoepf et al. also confirm that

ubiquitous availability of conventional chargers can double UFs, but add that fast charger

availability does not lead to a significant increase in UFs.146 A report by the National

Academy of Science further stresses that the federal government should ensure that all

BEV and PHEV drivers can charge their vehicles at all public charging stations, raising

the convenience of electric charging.26
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There is a range of incentives and technologies whose impact on PHEV fueling

behavior seems inadequately studied, including the effect of incentivizing home charger

installation, public charger reservation services through smartphone apps, removing

differences in plug–design between different charger networks, the development of wireless

charging, and vehicle–to–grid or vehicle–to–home applications. The optimal amount of

public chargers is another key uncertainty left for future research.

Consumer education: Perhaps the most important incentive for charging a PHEV

is the price difference between electric charging and gasoline fueling as well as the ability

of the PHEV user to obtain that knowledge. Sun et al. showed that electricity prices

significantly affect the timing of charging.122 EPA’s online fuel economy database111

helps consumers compare annual energy costs of most commercially available vehicles in

the US market, including PHEVs and BEVs. EV Explorer147 combines the data from

EPA’s fuel economy database with the mapping functionality of Google Maps. As a

result, users can compare their annual cost of driving a BEV, PHEV or ICEV based

on their exact home and work locations, number of days of commuting, local gasoline

and electricity prices, and charger availability. In addition, several smartphone apps

have been developed with hundreds of thousands of EV charging locations on file, and

useful information on charger availability, charging status, wait times, and wait lists.

Furthermore, reducing driver aggressiveness can save up to 35% of energy use in the

short term and up to 21% in the long term (Table 8.2 in Heywood et al.),37 and can

thus increase the electric range of PHEVs and their UF. Employers could link financial

incentives to economical driving of their employees, or pay for fuel economy training

courses.

Battery design: Zoepf et al. find that high charger availability has a stronger

impact on UFs than larger battery capacities.146 Regardless, it seems advisable that

PHEVs offer at least an electric range comparable to the average daily US travel distance,

which is about 43 km (27 miles).110 Sun et al. showed that PHEV drivers tend not to

charge when PHEV electric range is below drivers’ daily driving distance.122 Doubling

the electric range from 18 to 35 km (11 to 22 miles), which is near the average daily
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distance driven, can raise the UF of a Prius from about 0.28 to about 0.42, an increase

of about 50%.146

3.4.3 Limitations and future work

In this work we estimate the GHG emissions potential of PHEV drivers adopting more

or less environmentally favorable fueling behavior. The most important limitation of

this work is the fact that LAVE–Trans is not able to model these behavioral changes

endogenously as part of its discrete choice module. Instead it relies on exogenously

defined UFs. The aim of this work is to demonstrate an upper range of potential climate

impacts of variations in PHEV fueling behavior, which is why we choose to model cases

with high and low, yet plausible, and externally set, fleet–wide UFs. In a sensitivity

analysis we reduce the spread between high and low assumed UFs and note the resulting

changes. Surprisingly, the results are still substantial, with GHG emission differences

between high and low UFs at the gigaton–scale.

Further, so–called ‘composite vehicles’, simplified representations of a larger, diverse

group of vehicle types, are commonly estimated in vehicle choice models. It has been

shown that this practice can distort vehicle sales mix estimations considerably, which is

why future work should either use a broader range of vehicle options or use correction

methods as described in Yip et al.148

Finally, since LAVE–Trans is not a full–scale energy model, additional variables had

to be defined externally, such as the total amount of annual vehicle sales, carbon taxes,

electricity emissions, and battery pack prices. In order to reduce the bias in our work we

provide different scenarios with various sensitivity cases, displaying a total of 21 different

GHG emission outcomes (Figure 3.5b).

Despite modeling limitations present, our results demonstrate that fueling behavior

of PHEV owners can have significant impact on fleet–wide emissions and can therefore

be decisive for reaching climate targets. Future research may be directed at improving

the empirical basis of our work regarding the factors that could influence fleet–wide UFs

of future PHEV fleets. Further work may address the importance of fueling behavior of

bi–fuel vehicles in other regional markets or at global scale. Integrated models should pay
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more attention to charging and fueling behavior and may revise implicit or potentially

over–simplified assumptions.
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4 Representing vehicle–technological opportunities in in-

tegrated energy modeling
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Abstract

Light–duty vehicles (LDVs) are responsible for more than one tenth of global energy

use and CO2 emissions and are therefore an important focus in pollution mitigation

efforts. Integrated energy models (IEMs) are frequently used to explore cost–optimal

climate change mitigation measures for energy supply and demand sectors, such as

LDVs. Options include fuel and powertrain switching through efficiency standards,

taxation, and technology mandates. This review provides an overview on how LDVs

are modeled in 14 popular IEMs. We find that the representation of mitigation options

can be enhanced by linking emissions and physical outputs from industry, agriculture,

and energy conversion directly to the vehicle life cycle and by more carefully reflecting

important factors that influence LDV life cycle emissions. This would allow for a more

complete internalization of emissions in the technology mix optimization procedure of

IEMs. The results highlight a range of mitigation options currently not considered

in most integrated models, such as reducing embodied emissions in infrastructure and

vehicle production, reducing methane leakage, or switching to less carbon intensive crude

oil grades.

4.1 Introduction

Globally, light–duty vehicles (LDVs) are responsible for more than one tenth of total CO2

emissions and energy use.4–6 In order to explore holistic and cost–effective decarbonization

pathways for the LDV sector, several scenarios have been produced based on integrated

energy models (IEMs), analyzing the effects of CO2 taxation,47 technology mandates,149

fuel economy standards,150 renewable fuels standards,37,151 or increased electric vehicle
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(EV) research and development (R&D) efforts.137,152 Further, these models can be used

to study the effects of fuel taxation.153–155

Broadly, IEMs are models of the energy–economy system, often including modules of

the climate and environmental damage. However, the definition of IEMs is not clear–cut.

We therefore define IEMs as models that (1) entail the entire environmental–energy–

economic system, (2) find an equilibrium state of energy supply and demand, either

for the entire economy (general equilibrium), or for individual energy demand sectors

(partial equilibrium), (3) provide explicit representation of single energy demand sectors

and climate change mitigation technologies within these sectors, (4) are mathematically

solved through optimization or simulation, and (5) allow exploration of future energy

and emissions scenarios under different policy assumptions.22,156,157

IEMs are the most prominent tools for informing long–term national and supra–

national energy and climate policies, and have therefore been used by the US Energy

Information Administration (EIA) and the Intergovernmental Panel on Climate Change

(IPCC) Working Group III to directly inform government and international agencies

around the world, including the United Nations Framework Convention on Climate

Change,158 the White House,149 and the European Commission.159

The recent engineering literature points to several technical and behavioral factors

that can substantially influence energy use and GHG emissions of different LDV tech-

nologies. Examples include material choice in vehicle production,160,161 construction of

road infrastructure,48,162 fueling behavior of multi–fuel vehicle drivers,163,164 charging

behavior of EV drivers,165,166 and the divergence between real–world fuel consumption

and official laboratory testing.74,76 Generally, IEMs do not incorporate such fine–grained

detail in their mitigation scenarios. An open question to date is whether these factors

should be considered inside these models, or whether more bottom–up modeling should

(a) replace or (b) complement IEMs or (c) be used to parametrize or constrain IEMs.

The factors that we are going to discuss (indicated with numbers 1–13 in Figure 4.1b)

have the potential to significantly influence the outcomes of proposed climate change

mitigation measures. Some factors constitute overlooked emission reduction opportunities,
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while others add new constraints currently not considered in several, if not all IEMs.

Other factors, such as biofuel upstream emissions, are in fact included in almost all

models but are in some cases not linked to the life cycle of LDVs, and are therefore not

taken into account in decision–making routines of the transport and energy modules of

these IEMs, consequently masking the full impact of biofuel technologies. This has lead

to heavy reliance on biofuels in past integrated assessments [167, Figure 7 therein]. As

an overall result, IEMs do not capture the complete mitigation potential or trade–offs

with other sectors, raising the risk of misleading technology recommendations.

A growing body of literature suggests that assessments considering greater detail

of (end–use) technologies and end–user behavior are better equipped to model real–

world policies more accurately, while more carefully reflecting technological change and

innovation.19–22,168–173 Policy and decision makers need to be aware of the simplifications

that currently exist in IEMs and the resulting uncertainties around IEM outputs in

order to take these into account in their decisions. Scientists should make an effort to

understand to what extent these factors can negatively or positively influence the results

of integrated decarbonization scenarios. To aid that process we identify a number of

factors from engineering and transport models that are important for climate change

mitigation and present a multi–scalar typology of these factors. We review 14 widely

used IEMs to identify whether and how these factors are modeled in IEMs and to

understand other relevant features of their transport modules, such as technological

detail and technology cost assumptions (totaling nearly 400 factors and model items).

The reviewed IEMs have been selected based on a systematic search of relevant

literature databases and previous reviews of IEMs, see section C.1 for details. Following

that, we evaluate what policies at the nexus of LDVs, energy and climate have been

analyzed using IEMs and which simplifications may have influenced the outcomes. We

end by making some recommendations on how future scenario exercises that aim to

analyze specific transport–energy–climate policies could make use of greater engineering

detail.
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4.2 A typology of factors influencing vehicle energy use and GHG

emissions

Both, integrated and engineering models, assess energy use and GHG emissions of

transport equipment albeit at different scales. IEMs simulate the entire energy–economic–

environmental system while engineering models analyze individual vehicles or vehicle

fleets, often from a life–cycle perspective (Figure 4.1a). Higher scale assessments draw

a larger system boundary at the expense of process detail. Temporal and geographical

scope differ as well. IEMs are usually global with time frames up to 2100, whereas most

engineering models are geographically and temporally more confined.
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Figure 4.1: The range of different transport–related models at different scales (a) and a
typology of different factors that influence vehicle life cycle GHG emissions at different
scales and their interactions (b).

As mentioned before, the engineering literature points to several factors that can

greatly influence the environmental performance of LDVs and therefore have implications

for decarbonization efforts of the LDV sector. Although not exhaustive, the following

selection addresses the most important factors (indicated with numbers 1–13 in Fig-

ure 4.1b) because – as we are going to discuss – they can influence the magnitude and

variability of life cycle energy use and GHG emissions of different LDV technologies

considerably. As such, they influence important trade–offs between these technologies

and therefore affect the relative environmental performance of different technologies.
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Whether or whether not factors are varied over time or geographies is generally not

assessed in this review (except for ‘vehicle age’) because it would go beyond the scope of

this review. We note that nevertheless such dynamic changes should ideally be included

in a realistic assessment.

4.2.1 Road infrastructure

Roads influence operational energy consumption,174 transport costs, and can induce

additional travel demand.175 Additionally, road construction itself is an energy– and

material–intensive process. Different road types require more or less materials and

therefore cause higher or lower embodied GHG emissions.162,174 Chester and Horvath

integrate the construction of different road types into the vehicle life cycle and find that

roads cause 10–15% of the impact of road transport, the remainder being associated

with fuel production and use and vehicle manufacturing.48

4.2.2 Ancillary infrastructure

Ancillary infrastructure may include all the additional infrastructure that is needed for

LDVs besides roads, for example bridges, tunnels, parking lots, and alternative fuel

stations. The availability of alternative fuel stations, for example, can strongly influence

adoption rates of alternative fuel vehicles.176 In addition, the provision of such facilities

can have significant energy and carbon implications. For example, Lucas et al. report

that charging infrastructure contributes 8–12% to total BEV and HFCEV life–cycle

GHG emissions and energy use.177 Further, a Norwegian standard road tunnel emits at

least 31 kt CO2 over its life cycle.178 Chester et al. estimate that parking infrastructure

increases vehicle life–cycle emissions from 230–380 g CO2e km−1 by about 6–23 g CO2e

km−1.179

4.2.3 Vehicle components

Vehicle production can contribute substantially to vehicle life cycle GHG emissions.

Hawkins et al. identify that the embodied carbon in the production of BEVs is roughly

double that of the production of a conventional vehicle.9 Recent LCAs became more
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granular in that they describe the impacts of individual vehicle components. For example,

Ellingsen et al. find a particularly high contribution of lithium–ion batteries to the

production impacts of BEVs.180 Others evaluate the production of electric motors and

fuel cells181,182 and Gawron et al. find that additional hardware can offset some of the

life–cycle GHG emission reductions of automated vehicles.183

4.2.4 Vehicle materials

Between 1995 and 2014, automakers increased the use of lightweighting materials in

vehicles sold in the US in order to comply with fuel economy standards,160 yet meeting

consumer demand for larger vehicles. Lightweighting materials may require higher

energetic input.17,160,161,184 With an increasing uptake of vehicle electrification and

automation, as well as stronger use of lightweighting materials, and the associated material

needs for batteries, sensors, etc., embodied emissions of future vehicle production may

increase, depending on the degree of power sector decarbonization. Higher recycling

rates could partially mitigate that trend.36

4.2.5 Real–world driving

Real–world driving describes the actual on–road behavior of drivers and the corresponding

energy consumption. Significant divergence between official fuel consumption values

based on drive–cycle testing and real–world fuel consumption has been found in several

vehicle markets around the world. In the US, the ‘gap’ is around 30% on average76

and even larger for alternative fuel vehicles.163 This divergence is caused by several

factors, such as driver aggressiveness, as well as climatic and traffic conditions.185,186

Furthermore, vehicle efficiency technologies (e.g. start–stop) are optimized for drive

cycles,185,187 not for real–world driving.

4.2.6 Multi–fuel use

Several vehicle types exist that can run on two or three energy carriers, referred to as

multi–fuel vehicles (MFVs), including bi–fuel vehicles, flexible–fuel (or dual–fuel) vehicles

(FFVs) and plug–in hybrid electric vehicles (PHEVs). Existing literature has focused
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on the refueling behavior of PHEV drivers. The utility factor of a PHEV describes the

ratio of distance driven on electricity to total distance driven and typically ranges from

0.3 to 0.76 depending on a vehicle’s all–electric range,188,189 and the region where the

PHEV is driven.115 Figure C.1 demonstrates the impact of different utility factors on

PHEV energy chain emissions in different electric grid regions. Fewer literature analyzes

the refueling behavior of other MFVs. Daley et al. found that government–owned FFVs

are fueled with E85 (an ethanol–gasoline blend containing 51–83% ethanol by volume,

depending on season and geography) only 24% of the time when available.190 Huse

showed that two thirds of MFV drivers purchase gasoline over ethanol even at price

parity.164

4.2.7 EV–power system interaction

Interactions between the electric power system and the EV fleet are bilateral and complex.

EVs are primarily users of electric energy and the anticipated uptake of EVs will likely

induce an expansion of electricity generation capacity.191 However, EV charging is

reasonably flexible and can be controlled.192 Depending on charging behavior and policy

or market signals, EVs can help improve the stability of an increasingly renewable

electric grid and reduce the costs of EV ownerhsip and electricity storage.192,193 Hence,

the introduction of EVs can impact the profitability of different generation sources

differently. Alternatively, EVs can shift electricity peak demand and lead to grid

congestion. Additionally, the environmental impact of EVs largely depends on the

emissions intensity of the electric grid. In turn, incremental electricity demand from EVs

also determines the marginal mix of electric generators employed. Depending on the

electricity system in question, the time of year and the time of day, marginal emission

rates can vary substantially and can be above or below average electricity emission

rates.165,194,195 Averaged over a whole year, emission factors of the marginal mix are

often higher than emission factors of the average mix.195
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4.2.8 Biofuel emissions

Many vehicle–related impact assessments consider the production of fuels, while certain

inherent factors of that process are not considered.20 For example, in the case of biofuels,

these factors relate to the carbon uptake of feedstocks and land use and land–use

change due to feedstock cultivation. Additional variation in overall emissions stems

from field emissions, e.g. N2O, and the large diversity in feedstocks and conversion

technologies.196,197 For example, many feedstock options can lead to overall GHG

emission reductions compared to gasoline.90,196 Some feedstocks, such as wheat and

rapeseed, can even produce net–negative life–cycle GHG emissions [197, p. 878]. However,

while US corn ethanol generally reduces life–cycle GHG emissions compared to gasoline,

poor land management can lead to increased emissions.12 Figure C.2 compares the energy

chain emissions of corn ethanol and gasoline considering different sources of upstream

emissions, including land use change, feedstock carbon uptake, crude oil upstream and

midstream emissions, and gasoline sulfur content.

4.2.9 Crude oil grades

Similarly, in the case of gasoline, the GHG intensity of different crude oil grades can

vary substantially. For example, Masnadi et al.198 and Gordon et al.199 show that the

upstream carbon intensity of crude oil can easily vary by a factor of eight, from about

15 to 129 g CO2e kWh−1. This variation is largely caused by crude oil characteristics,

geological factors, and the deployed extraction technology. For instance, Masnadi et al.

found that carbon emissions per unit of energetic output can grow over tenfold with

oilfield age.200 Furthermore, crude oil density, and the amount of gas flaring (burning)

and venting (directly emitting methane) are important factors that determine life–cycle

GHG emissions of crude oil and oil products.81,198,201

4.2.10 Methane leakage

While there are many other upstream factors to consider, the last technology–scale item

we wish to highlight is methane leakage (methane that escapes to the atmosphere).
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Methane leakage is of concern during the extraction and transmission of natural gas,

shale gas and coal for electricity generation,202 and hydrogen production.203 Assuming

a natural gas leakage rate of 1–5% would add about 4–30 g CO2e kWh−1 to the GHG

balance of electricity generation from natural gas. In addition, biogenic methane leakage

occurs during the electricity generation from hydropower through the decay of plants on

the reservoir ground. Global average methane leakage from hydro power are found to be

4 g CH4 kWh−1 (112 g CO2e kWh−1 over a 100–year time horizon) with a large range

from micrograms to tens of kilograms.204 These emission sources are of importance for

vehicles powered by natural gas11 and hydrogen,205 and potentially for EVs in regions

with high shares of hydro power, coal and natural gas in the electricity mix.

4.2.11 Vehicle age

Due to increasing powertrain efficiencies, newer vehicles consume less fuel per mile and

thereby reduce GHG emissions per mile. However, newer vehicles tend to be driven

more frequently than older ones.206,207 In addition, every new vehicle produced increases

the amount of energy and emissions embodied in the stock of vehicles, thereby creating

trade–off effects. The question whether replacing newer with older cars or extending the

life of older cars yields reductions in overall GHG emissions, depends on a myriad of

factors, such as the composition of the existing local fleet, the types of new vehicles that

replace older ones, the timing of replacement, and the timing of scrapping schemes and

other policies.208 Figure C.3 shows the impact of ignoring vehicle vintages in modeling

tailpipe emissions of the vehicle fleet.

4.2.12 Travel demand

Travel demand is influenced by fuel prices,209 as well as personal income, employment

levels, and population gains.210 In addition, travel demand is strongly intertwined with

vehicle demand and ownership, which may substantially change in the future due to

increasing electrification, automation and sharing of vehicles. One of many open questions

to date is whether increasing fleet electrification will entail a one–to–one substitution of

conventional cars with EVs. On the one hand, households that own BEVs or PHEVs
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often own more vehicles per household,206 pointing to an imperfect substitution. On the

other hand, the development of long–range EVs and the growing EV charging network

may lead to a perfect substitution in the near future. It is therefore inconclusive whether

future trends may increase the number of vehicles needed to satisfy travel demand, and

therewith increase energy and emissions embodied in vehicle production.

4.2.13 Vehicle mix

Relative cost differences between different LDV technologies is the strongest determi-

nant of consumer vehicle choice, while driving range, model availability, infrastructure

availability play a role among other factors.211 EVs, especially BEVs, are assumed to

grow substantially in numbers in coming decades due to forecast cost improvements

of batteries.47 A strong shift towards electrified, automated and lightweight vehicles

will likely reduce energy chain emissions substantially, but may entail higher embodied

emissions in the production of the required vehicle stock.160,183 In addition, vehicles

tend to become heavier in many markets,187 and may continue so in the future. As

a result – even though vehicles tend to become more efficient per mass – their overall

energy consumption increases.

4.3 Decomposing vehicle energy use and emissions into factors

The factors listed above can be classified into technological and systemic factors, de-

pending on the scale at which they influence LDV energy use and GHG emissions

(Figure 4.1b). Technical factors occur at a technology–specific scale where they affect

energy use and emissions of an individual vehicle or technology. We broadly distin-

guish between (1) energetic expenditures and emissions caused by the manufacturing of

transport equipment and infrastructure, such as cars and roads, and (2) energy use and

emissions from the production and usage of energy carriers, such as gasoline or electricity.

Through the various vehicle life stages, different technological factors can influence each

other. For example, the use of lightweight materials can increase emissions during vehicle

production but reduce emissions during the driving phase. Systemic factors occur at

a higher fleet–wide scale, i.e. they pertain to the entire vehicle fleet. Systemic factors
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also affect each other, for example, vehicle aging creates a demand for new vehicles

(and perhaps new technologies), which alters the vehicle mix. Technological factors also

influence systemic factors and vice versa. For example, an improved fuel economy of a

new (individual) vehicle will also help to (marginally) improve the fuel efficiency of the

entire fleet. On the other hand, demand for larger vehicles may influence the material

composition of new vehicles. Life cycle GHG emissions from LDVs (LCGHGLDV , e.g. kt

CO2e) can be decomposed into these factors:

LCGHGLDV =
∑

technologies
(Equipment︸ ︷︷ ︸

f(1, 2, 3, 4)

+ Energy︸ ︷︷ ︸
f(5, 6, 7, 8, 9, 10)︸ ︷︷ ︸

Technological factors

)×Activity︸ ︷︷ ︸
f(11, 12)

×Mix︸ ︷︷ ︸
f(13)︸ ︷︷ ︸

Systemic factors

(4.1)

where Equipment is embodied carbon in the manufacturing of transport equipment

(e.g. normalized to g CO2e km−1)36,74,212 and is influenced by the factors one through

four. Energy are all embodied emissions in the energy chain (e.g. g CO2e km−1). These

emissions are influenced by the factors five through ten. Activity is the amount of

vehicle travel (e.g. vkm), and is influenced by the factors eleven and twelve. Mix is the

technology mix (%), factor thirteen. Summing over all available technologies yields total

LDV life cycle GHG emissions. As described in the previous section, each of the factors

can significantly influence energy use and emissions of LDVs and may offer potential for

climate change mitigation, which has not yet been comprehensively assessed in IEMs.

4.4 Representing vehicle–technological opportunities in IEMs

In this section we present summarized findings of the in–depth review of fourteen IEMs,

while detailed results for each individual IEM are given in Section C.5 and implications

of our findings are discussed in the next section. In general, we find that technological

detail and the representation of mitigation options can be enhanced (indicated by light

and medium green boxes in Figure 4.2). The vast majority of models accounts for energy

chain emissions, whereas few consider embodied carbon in vehicle production, and none

account for embodied infrastructure emissions.
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Regarding infrastructure construction, several models include emissions from relevant

aggregate industries, such as cement production. Demand for cement is modeled as

a function of GDP independent from transport infrastructure requirements, whereas

a more detailed approach would be to link cement production directly to demand for

transport infrastructure as a function of vehicle travel.21 This approach would also

allow for accounting of energy and emissions embodied in road infrastructure. Similarly,

demand for ancillary infrastructure is only indirectly considered in overall GDP growth or

within relevant aggregate sectors in most models. Some models consider the availability

of fuel and charging stations as part of the vehicle choice procedure. However, none of

the models assign emissions penalties for technologies’ infrastructure needs.

Regarding the manufacturing of vehicles, most models consider some physical vehicle

characteristics, such as engine power, battery capacity or masses of specific components

but do not link these characteristics to specific material and embodied energy needs.

Notably, a version of EPPA37 distinguishes different metals and composites and changes

in the material composition of the vehicle body, but these changes only affect fuel

economy, not embodied energy use. Similar to the cement example above, demand for

steel and aluminum is modeled as a function of GDP in several models, but not directly

linked to demand for vehicle production.

Modeling of the energy chain is more detailed in all analyzed models, although op-

portunities for improvements exist. Real–world fuel consumption is explicitly considered

in EPPA, GCAM, IMACLIM–R, GEM–E3, IMAGE and ETP–TIMES, while others

estimate LDV fuel consumption from IEA’s aggregate energy balances in a top–down

approach. Energy intensities in AIM/CGE are even a little on the high side compared

to EPA’s adjusted average fuel consumption values, which are reflective of real–world

fuel consumption.189 The remaining IEMs assume too optimistic energy consumption

values. PHEV utility factors are explicitly considered in EPPA, NEMS, GEM–E3, and

ETP–TIMES, and have also been applied to versions of IMAGE167 and TIAM–UCL.213

Fueling factors for other MFVs are included in NEMS, IMAGE, and a version of EPPA.37

A more stylized representation of fueling behavior of MFV drivers is achieved in most
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other models by considering either constant or dynamic degrees of biofuel and gasoline

blending, assuming that biofuels can be used directly in ICEVs without prior modification.

Upstream emissions of energy conversion are usually considered in IEMs although a

closer look reveals some room for improvement. For example, interaction of EVs with

the power system is usually modeled as a unilateral one. For instance, the electricity

mix influences EV charging emissions, whereas the timing of EV charging does not

influence the amount of electricity generation nor the electricity mix. In the future, IEMs

may integrate the response of the electricity system to EV charging from a lower–scale

model, for instance an energy system model with a finer time–step resolution. Some

models integrate land use modules, such as GLOBIOM or MAgPIE, which contain

positive and negative emissions from agriculture, forestry and bioenergy and can be used

to comprehensively assess life cycle emissions from different biofuel options when the

agriculture and energy sectors are linked.151 In NEMS, ETP–TIMES and versions of

IMAGE167 and MESSAGE214 exogenous biofuel upstream emission factors have been

linked to available LDV technologies in an ad–hoc fashion. POLES assumes that biofuel

combustion is carbon neutral, while a version of EPPA37 assumes that biofuel land

use change emissions are negligible. Furthermore, a range of models provide a detailed

representation of crude oil supply. For example, the Oil and Gas Supply module in NEMS

distinguishes production of five different crude oil grades but the differences in their

carbon content are not considered during the gasoline production stage. AIM/CGE and

GCAM consider several sources of fugitive methane emissions during coal mining, natural

gas production and distribution and crude oil production, while REMIND additionally

considers biogenic methane release from hydro power.

The apparent strength of IEMs lies in the representation of systemic factors. Aging

of the vehicle fleet, for example, is incorporated in all IEMs but AIM/CGE which does

not employ a vintage formulation. Almost all IEMs calculate travel demand endogenously

as a function of all or several of the following variables: projected fuel cost, personal

income, vehicles per licensed driver, and employment rate. Potential future changes in

vehicle demand and use patterns (e.g. the fact that EVs may or may not substitute
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ICEVs on a one–to–one basis) is not considered by any model. Vehicle mix is endogenized

in most models, for example through the use of discrete choice modules. However, vehicle

technology choice differs vastly between IEMs, partly due to large differences in cost

assumptions. Some models use dated EV battery cost estimates, while other models

(GEM–E3, WITCH, IMAGE, DNE21+, TIAM–UCL, ETP–TIMES) use costs that are

closer to latest empirically observed cost developments.215 Others (EPPA, GCAM) use

fuel cell cost estimates that are based on the assumption that fuel cell systems are

fully learned,129 whereas in reality the global production volume of automotive fuel cell

systems is estimated at less than 1,000 units in 2015.73

While our focus is on the thirteen factors listed in Figures 4.1 and 4.2, we analyze

several further items of IEMs. For instance, the range of considered technologies differs

vastly across different IEMs. While the mainline IMACLIM–R model only considers

HEVs and ICEVs, most other models include a broader range of major conventional

and alternative technologies. For example, NEMS differentiates fourteen powertrains

and recently added autonomous vehicles as part of the Annual Energy Outlook 2018.216

Vehicle efficiency improvements occur in most models but are implemented as simple

annual improvement factors. In Heywood et al.37 EPPA utilizes efficiency improvement

rates based on a soft link with the Autonomie vehicle simulation software. Efficiency

improvement occurs through several measures such as engine downsizing, and reductions

in weight and rolling resistance. As a result, rates of improvement are better aligned

with physical efficiency limits and are therefore more robust and credible. The next

section discusses how improvements to IEMs could enhance the potential of IEMs for

effective policy formulation at the nexus of transport, energy and climate.

4.5 LDV climate change mitigation options in IEMs

One of the most common policies analyzed in IEMs is the introduction of a carbon tax

on fossil fuels217–219 (cf. Table C.23). In practice, a carbon tax is often implemented

as a mark–up on the prices of sold transport fuels, thus implicitly taxing the actual

real–world fuel consumption of the transport sector. Some IEMs however model the

effects of carbon taxes based on official vehicle energy consumption, while others account
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Figure 4.2: Review of integrated energy models applied to US light–duty vehicles and
their coverage of various factors.

for real–world vehicle operation. Additionally, some modelers may apply taxes to direct

tailpipe emissions only, while others apply taxes to emissions of the entire energy chain.

As a result of these differing modeling practices, the impact of a carbon tax policy can

be expected to differ substantially across IEMs, producing disagreement between IEMs

and potentially leading to large uncertainties around anticipated policy outcomes.

In addition, several modeling teams analyze the GHG emissions reduction potential

of the introduction of a renewable fuels standard. This standard is the first policy to

regulate supply chain GHG emissions. Heywood et al.37 (EPPA) find that, compared to

carbon taxes and fuel economy standards, the renewable fuels standard could achieve the

highest GHG emissions reduction over the analysis time frame. However, the authors do

not account for land use change emissions from biofuel feedstock cultivation, which can

produce considerable GHG emissions.12,90,197 Including these emissions would lower the
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emissions reduction potential of the renewable fuels standard significantly. Additionally,

including upstream emissions would allow for assessment of a wider spectrum of climate

change mitigation measures. For example, measures aimed at reducing impacts of

feedstock cultivation, such as switching from corn to cellulosic feedstock.90 Other models,

such as GEM–E3, WITCH, IMAGE, POLES, REMIND and the mainline MESSAGE

version do in fact include a detailed description of LULUC emissions from biofuels, while

POLES assumes that biofuel combustion emissions are carbon neutral. As a result, the

technology mix in POLES may be skewed in favor of biofuel–using technologies, thus

producing inaccuracies in forecast technology mixes and mitigation pathways.

Ó Broin & Guivarch220 (IMACLIM–R) analyze the potential of modal switch and

related infrastructure costs. They conclude that redirecting infrastructure investments

from the LDV sector to the public transport sector could help lower costs of climate

change mitigation. However, the authors do not include the physical requirements needed

to sustain such infrastructure, neither for LDVs nor for public transport. While stronger

use of public transport can effectively reduce direct emissions, the material requirements

are especially high for public transport, potentially causing higher embodied emissions.48

As a result, the GHG reduction potential and the cost effectiveness of this strategy is

likely overestimated by Ó Broin & Guivarch.

Almost all model teams analyze the effects of increasing vehicle electrification, e.g.

through government R&D policies. Most of these models, however, use dated baseline

costs for electric vehicle batteries (notable exceptions include GEM–E3, WITCH, IM-

AGE, DNE21+, TIAM–UCL, and ETP–TIMES), which can be problematic because

model results may overestimate the costs of employing clean technologies and therewith

overestimate the costs of reaching a certain climate target, thus sending wrong signals to

policymakers. Combined with the fact that some models (EPPA, GCAM) assume costs

of fully learned fuel cell systems (which is not currently the case due to low production

volumes), policymakers may focus on the deployment of alternatives to BEVs, which are

sub–optimal not only in terms of carbon, but also in terms of other sustainability indica-

tors, such as energy consumption and costs of ownership.212 Figure C.4 demonstrates
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the effect of battery cost assumptions on EV penetration. For a more comprehensive list

of analyzed policies in IEMs, refer to Section C.6.

No single IEM analyzed the potential effects of environmental standards or carbon

taxes in vehicle production or infrastructure construction. Such regulation could limit

the use of certain energy–intensive materials and promote the use of recycled materials

and remanufactured components during vehicle production. As a direct consequence,

manufacturers may be forced to use less energy–intensive materials and components in

order to meet these standards. As an indirect consequence, manufacturers may reverse

the trend of building ever bigger vehicles in order to still comply with future fuel economy

standards. Resource conservation may be a co–benefit of smaller, and perhaps less

powerful, cars.

Several political and industrial trends will likely increase the relative importance

of indirect emissions in the future, for example increasing electrification, automation

and lightweighting of the vehicle fleet, as well as increasingly stricter fuel economy and

renewable fuels standards. Several of the analyzed factors (1–4, 7–10) influence these

indirect emissions. Therefore, the importance of increasing efforts to properly model

these factors is even more pronounced by mentioned anticipated trends.

4.6 Merging two worlds for prospective vehicle modeling

We have found that systemic factors (factors 11–13, Figure 4.2) are generally well

described in IEMs, while there is potential to improve technological detail (factors 1–10).

These findings add to those of Garcia et al.221 who found that vehicle LCA often

incorporates rich technological detail but neglects system dynamics, such as vehicle

demand and vehicle choice and endogenous modeling thereof. Due to the gaps in both

modeling schools, Creutzig et al.20 and Pauliuk et al.19 propose a coupling of engineering

models and IEMs. This can be achieved by stronger ties between IEMs and engineering–

type models, such as life cycle assessment, vehicle simulation, power plant dispatch

modeling and vehicle and fuel choice modeling, or by directly integrating engineering

data into IEMs in an ad–hoc fashion. A combination of the two modeling schools can

help overcome the insufficiencies that persist in both worlds, improve overall analytical
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capabilities,22 and reduce uncertainties around the LDV energy and emissions reduction

potential and associated costs.

In addition, the links between the LDV sector and other sectors, such as electricity

generation, oil production, agricultural production and specific industry branches should

be made (more) explicit, for which higher sectoral detail is a prerequisite. For example,

besides cement and steel production, which is already represented in many IEMs, further

explicit industries may be considered, such as aluminum (for vehicle production) and

bitumen (for road construction). The construction sector should explicitly distinguish

roads, parking, charging and fuel infrastructure from other infrastructure projects. These

links can be implemented in the same fashion as the electricity–demand–by–sector link,

which is already in place in all IEMs. Doing so would help achieve a more realistic

representation of the interdependencies of the different sectors.

Results from such a model could form the basis for improved and novel policy

recommendations at the nexus of transport, energy and the climate. Two examples of

such novel policies are vehicle manufacturing or infrastructure construction standards,

as mentioned in the previous section. Another example is a ‘smart’ carbon tax222 that

accounts for the variation in life–cycle emissions of different crude oil grades which

would lead to a more complete internalization of the externalities from oil extraction

and refining.

To date, it is largely unexplored how life–cycle relationships (and behavioral aspects)

may influence optimized national and global energy and climate change mitigation

strategies.22 Some exceptions exist in the literature that address the role of indirect

emissions of energy supply (see Section C.3), but no such study has been prepared for

energy end–use technologies, such as LDVs or transport in general. In this work, we

provide an important starting point by identifying and qualitatively evaluating a number

of potential areas for improvement regarding vehicle–technological detail in fourteen

integrated models.
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4.7 Challenges of the proposed approach

The proposed approach offers the merit of identifying additional climate change mit-

igation pathways in the LDV sector that have not been considered systematically in

decarbonization scenarios. However, we acknowledge that IEMs are not LDV–specific

models and it remains open whether all of the identified factors (1) can and (2) should

be incorporated in IEMs. Regarding (1), we acknowledge that it may not be possible to

include all the detail of engineering models in IEMs. Reasons therefore are for example

the sheer vast range of biofuel and gasoline pathways, or the many different vehicle types

and (sub–) components that are being modeled in engineering–type models, and the

associated computational challenges of a full integration with IEMs. Regarding (2), all

of the identified factors can potentially be of importance to consider, even more so since

single factors can influence each other through the different vehicle life stages (Figure 4.1).

However, some factors are more crucial than others when analyzing specific policies (cf.

Section 4.5 and C.6). Therefore, a balance between a too simplified and too detailed

representation of technologies in IEMs needs to be found.219 In accordance with Pauliuk

et al.19 we note that beyond 2050, a more aggregate systems representation may be

more suitable than a highly detailed model as technology descriptions and estimates of

consumer behavior become highly speculative. Therefore, the most appropriate level of

detail of the LDV sector within IEMs remains yet to be determined. Until then, it is at

the discretion of the modelers to decide.

4.8 Moving forward

This review paper adds to the existing literature in several important ways: Firstly, we

discussed the importance of a number of factors affecting life cycle energy use and GHG

emissions of LDVs and provided a typology of these factors. Secondly, we performed

an in–depth review of fourteen popular IEMs recently applied to US LDVs within a

global setting with regards to which factors are considered in these models. Thirdly, we

identified how future improvements to IEMs could enhance the potential for effective

policy formulation at the nexus of transport, energy and climate. We regard some sort of
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integration of engineering data/models with IEMs and a more explicit linking of sectors

and sub–sectors within IEMs as a crucial step for IEMs to maintain their status as

central tools for informing national and supra–national energy–, climate–, and sectoral

policies. IEMs are needed to integrate knowledge from different domains. At this point

engineering–type models do not offer a viable alternative due to their lack of systemic

aspects. Including these novel elements in IEMs can help to identify several climate

change mitigation pathways that have not been systematically explored to date, but also

help to identify potential emission shifting between the LDV sector and other industries.

In addition, updating cost estimates, especially of EV batteries, would lead to lower–cost

emission mitigation scenarios. Taken together, we expect that implications on climate

policy are significant as climate action in the LDV sector may be more cost–effective

than previously assumed. Therefore, future modeling exercises should make an effort

to include a larger set of climate change mitigation strategies and re–evaluate the costs

of climate change mitigation in the LDV sector. This paper indicates several possible

avenues therefore. A collaborative effort across different modeling communities could help

to create a suitable modeling framework for LDVs, or transportation in general. More

transparent model documentations would be a first important step in that direction.
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sition of US light vehicle sector
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Abstract

Large–scale electric vehicle adoption can greatly reduce emissions from vehicle tailpipes.

However, previous research cautioned that it can come with increased indirect emissions

from electricity and battery production commonly not regulated in transport policies. We

combine integrated energy modeling and life cycle assessment to compare optimal policy

scenarios that regulate the tailpipe only, versus both, tailpipe and indirect emissions,

through pricing. Surprisingly, scenarios that also price indirect emissions exhibit higher,

not reduced sales of electric vehicles, while yielding lower cumulative (tailpipe and)

indirect emissions. This is because increased indirect electricity and battery emissions are

more than offset by reduced indirect emissions of fuel production. The results show that

carbon–pricing induced large–scale adoption of electric vehicles is a no–regrets strategy

for climate change mitigation, given continued decarbonization of electricity supply.

Whole–supply–chain policies are therefore needed to promote truly clean technologies.

5.1 Introduction

Global transportation is the single largest energy user and contributor to CO2 emissions,

chiefly driven by light duty vehicles (LDVs).223 In order to curb emissions, many countries,

including the United States (US), are increasingly promoting alternative fuel vehicles

which are typically characterized by lower tailpipe emissions. However, concerns over

potentially growing emissions from energy production and vehicle manufacturing have

been voiced.10–12 These emissions occur off–site, from generating the electricity to charge

electric vehicles, in this work ∼66–86 g CO2 per electric–vehicle km driven in 2020, to

producing the vehicle, here ∼16–38 g CO2 per vehicle–km driven in 2020 (Supplementary
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Table 20 and Figure D.2). It has only recently been recognized that the emissions for

producing gasoline can range significantly, from below ∼15 to ∼320 g CO2/kWh in

2015,198,224 compared to direct tailpipe emissions of about 250 g CO2/kWh. Taken

together, indirect emissions accounted for ∼26% of the 1.5 Gt CO2 caused by the US

LDV fleet in 2020 (Supplementary Table 16).6

The introduction of the Low Carbon Fuel Standard in California suggests that

precedent exists of policies that address at least part of vehicle life–cycle emissions.

However, not a single transport policy exists to date that consistently regulates all

sources of vehicle emissions along the entire supply chain. Fully regulating all emissions,

for example through pricing, could significantly change the relative costs of different

vehicle propulsion options, such as battery electric vehicles (BEVs) versus hydrogen

fuel cell electric vehicles (HFCEVs) versus internal combustion engine vehicles (ICEVs).

Changing costs, in turn, could affect production decisions of vehicle manufacturers, and

purchase behaviors of consumers. The potential impact of these relationships is unknown

though because neither model calculations, nor real–world policies have fully accounted

for, or priced, indirect vehicle emissions to date.

Integrated energy models (IEMs) show that it will be very challenging to reduce

emissions rapidly and far enough to reach the Paris goal.23,79,98,225 However, there is

concern that IEMs do not fully represent the impact of changes in one sector, such as

electricity generation technologies, on emissions in other sectors, say industry or fuel

supply.7,19–21 For electricity generation, this has been investigated,62,170,171,226–228 but

not for vehicles. Our work is the first to fully account for, and price, all emissions that

are directly (within the vehicle sector) and indirectly (in other sectors) caused by US

passenger vehicles. We investigate whether this holistic emissions pricing influences the

assessment of the benefit of competitive technologies.

To this end, we apply an interdisciplinary approach integrating industrial ecology

methods with modelling of the entire energy–economy system. We link a detailed and

comprehensive vehicle life cycle assessment (LCA) model to the Energy Information
6Supplementary Tables can be found at http://doi.org/10.21203/rs.3.rs-334331/v1. Final ver-

sions will be made available on the publisher homepage.
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Agency’s National Energy Modeling System (NEMS). NEMS is the federal government’s

main tool for evaluating energy and climate policies integrative of all energy demand and

supply sectors. Among IEMs, NEMS has the advantage of representing the US passenger

vehicle sector and its upstream sectors in remarkable detail (Section 5.7), which is a

prerequisite for accurately accounting for all vehicle emissions across the entire supply

chain of the vast portfolio of available technology options. Although global IEMs are the

main tool for identifying optimal climate change mitigation pathways, they generally

do not offer the same level of technological detail as national models do7,19,20,229 which

may limit their ability to identify optimal solutions across the range of options available

in the real world. Further, while some integrated assessments account for materials used

in electric power plants,96,172 others call on the importance of considering efficient use of

resources within integrated climate scenarios.230 Yet, material and resource efficiency

have not been thought of as pollution mitigation strategies in large–scale integrated

energy scenarios and are therefore under–represented in the assessment reports of the

Intergovernmental Panel on Climate Change.231

Here we address these knowledge gaps by applying a novel conceptual framework

by Creutzig and colleagues.232 We specify this framework for comprehensive climate

change mitigation analysis of an important demand–side sector, the US LDV sector.

Specifically, we illustrate a set of climate–change mitigation scenarios, primarily for the

vehicle sector, but also considering responses in important upstream sectors, such as

changes to material production, vehicle manufacturing and electricity generation. These

responses are normally not captured in NEMS which is why we soft–link NEMS to a

detailed LCA model (Section 5.7). We assume that the production cost of electric vehicle

batteries and renewable electricity generators fall quickly, in line with recent estimates

(Section 5.7). We further introduce a carbon price in the transport sector in 2021 which

linearly increases up to 150 USD/t CO2 (constant 2016$) by 2050 (Supplementary

Table 9). This level is required for an LDV fleet commensurate with the US nationally

determined contribution (NDC) under the Paris Agreement (Section 5.7). For simplicity

and to provide insight, we run our cases with no carbon pricing on other sectors. The
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difference between scenario one and two is that either emissions from (1) the tailpipe,

or (2) the entire vehicle supply chain are accounted, priced and optimized for. The

implications are both surprising and significant. The strongest effect is that pricing

indirect emissions would push the system to an even faster phase–out of gasoline–powered

vehicles, leading to a scenario with both the lowest direct as well as indirect emissions.

5.2 Optimal vehicle choice

While scenario one (pricing only direct emissions) already leads to a quick phase–out of

ICEVs (Figure 5.1a), the transition is further accelerated in scenario two (full accounting,

Figure 5.1b). In addition, HFCEVs are avoided entirely in scenario two due to the high

emissions penalty of producing hydrogen from natural gas. Reduced sales of ICEVs,

HFCEVs and other powertrains (mostly hybrids and flex–fuel vehicles running both on

conventional liquid fuels and biofuels) are compensated by increased sales of BEVs. This

substitution pattern peaks around 2040 with about 2.4 million units (Figure 5.1c). Sales

of ICEV light trucks experience the strongest decline, and are equally compensated by

BEV cars and trucks. The cumulative amount of avoided ICEVs and HFCEVs amounts

to nearly 29 and 9 million units. We explore a range of side cases in which (a) only energy–

chain emissions instead of full life–cycle emissions are priced, (b) hydrogen production

becomes carbon–neutral by 2050, (c) HFCEVs become cost–competitive with BEVs, as

well as different combinations thereof. We display three of these cases in Figure D.6.

The mentioned substitutions of technologies lead to substantial reductions in cumu-

lative life–cycle emissions through 2050 (– 1.6 Gt CO2, Figure 5.2a and f), largely driven

by reduced fuel combustion (– 1.4 Gt CO2, Figure 5.2b and g) and decreased production

of gasoline and hydrogen (– 0.5 Gt CO2, Figure 5.2c and h). While increased sales of

BEVs lead to growing electricity emissions (+ 0.25 Gt CO2, Figure 5.2d and i), these are

however relatively small compared to the reductions achieved in fuel production (– 0.5 Gt

CO2, Figure 5.2k). Finally, since BEVs are material intensive, an additional 30 Mt

CO2 embodied in vehicle production can be observed. However, increased production

emissions could be more than compensated by ambitious recycling and reuse practices

(+ 0.03 vs. – 0.5 Gt CO2, Figure D.3). We explore a range of side cases (Figure D.6)
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Figure 5.1: Optimal vehicle choice under direct–emissions–only pricing (a) and full emissions
pricing (b). (c) Differences in vehicle choice between (b) and (a). PC=passenger car; LT=light
truck; ICEV=internal combustion engine vehicle; HEV=hybrid electric vehicle; PHEV=plug–in
hybrid electric vehicle; BEV=battery electric vehicle; HFCEV=hydrogen fuel cell electric vehicle;
–100=100–mile range.

which show some variation in their potential for emission reductions (also see dotted lines

in Figure 5.2) but the overall trend is robust among all cases. Accordingly, additional

cumulative life–cycle emission reductions can vary between – 1.4 to – 1.7 Gt CO2 across

all cases (see dotted lines in Figure 5.2f) on top of emission reductions already achieved

under pricing direct emissions only. In Figure 5.2k, the differences in emissions between

‘full pricing’ and ‘direct–emissions–only pricing’ are once more plotted by life cycle stage,

while in Figure 5.2l, all sources of indirect emissions, i.e. production of fuels, electricity

and vehicles, are categorized as such. It becomes apparent that ‘full pricing’ not only

leads to reduced tailpipe emissions, but also to lower indirect supply chain emissions, at

least after about 2035.

5.3 Fleet efficiency

The future of the Corporate Average Fuel Economy (CAFE) standard is currently highly

uncertain and we therefore do not model changes to CAFE after 2025. While the

Trump administration enacted the Safer Affordable Fuel Efficient (SAFE) standard in
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Figure 5.2: Life–cycle CO2 emissions of the US light vehicle fleet, total (a) and broken
down by life–cycle stage (b–e) when fully pricing emissions and when only pricing direct
emissions. Differences in emissions between full and direct–emissions–only pricing (f–l).
Dotted lines illustrate results from side cases (a–j).

2018, freezing the 2020 CAFE requirements through 2026, the Biden administration

announced to re–introduce CAFE but further details are unknown at the time of writing.

Despite the absence of a CAFE standard after 2025 in our model, average real–world

fuel economy233 of the fleet continues to improve greatly in all scenarios, even after 2025

(Figure 5.3). This can be explained by the strong market penetration of BEVs. When

full life–cycle emissions are optimized for, average fuel economy is even higher compared

to direct–emissions–only pricing due to the accelerated penetration of BEVs. Side cases

with higher shares of HFCEVs however exhibit significantly lower average fuel economies
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(Supplementary Table 12). Other fleet characteristics, such as average vehicle weight,

lightweighting through material substitution, segment shares, and total travel demand,

are less impacted by the different accounting approaches (Figure D.10).
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Figure 5.3: Average real–world fuel economy of the US light vehicle fleet when all
emissions are priced and when only direct emissions are priced. The thin green lines
show the range of results from the side cases.

5.4 Resource use implications

Fully pricing life cycle emissions would have important implications on resource use, too

(Figure 5.4). For example, gasoline and diesel consumption would be reduced by 29% and

32% in 2050 (26–32% and 30–39% in the side cases) compared to optimizing for direct

emissions only. Further, while hydrogen demand would generally be reduced by 99.9%

(– 98.0 to + 327.0%), electricity use would increase by 18% (2–18%). Overall, a 7%

reduction in energy consumption can be achieved (1–6%). Meanwhile, a slight increase in

overall material demand by 2.1% (0.8–2.0%) can be observed, with the strongest relative

increase for copper (4.7%, with a range between – 0.7 to + 5.0%). This is largely due

to increased BEV sales (by 9.1%, with a range of – 6.1% to + 9.3%, Supplementary

Table 17).

In absolute terms the difference between the two main scenarios (‘full pricing’ vs.
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Figure 5.4: Normalized co–benefits and trade–offs of full pricing relative to direct–
emissions–only pricing in 2050 (colored bars). The hollow bars show the normalized differ-
ences of the side cases relative to direct–emissions–only accounting in 2050. BEV=battery
electric vehicle; *=on–board energy.

‘direct emissions only’) is a cumulative reduction of gasoline consumption by 0.15 trillion

gallons or 0.6 trillion liters, roughly corresponding to three years of current (2019) annual

US gasoline consumption (55 million gallons/0.2 trillion liters). Similarly, 0.8 PWh

(trillion kWh) of hydrogen are saved, while electricity consumption increases by 3.2 PWh,

roughly corresponding to the current annual amount of electricity end use in the US in

2019. Cumulative material use for vehicle production moderately increases by about

24 Mt, which is chiefly driven by the increased stock of material–intensive BEVs. This

increased material demand is partially mitigated by a slightly decreasing average vehicle

weight (Figure D.10a). Material substitutions due to vehicle lightweighting (Figure D.10b)

lead to a minor increase of aluminum and plastics, and a reduction of steel and iron.

Overall, the strongest absolute increase can be observed for stainless steel (+ 13.2 Mt),

followed by copper (+ 3.1 Mt), aluminum (+ 1.6 Mt) and plastics (+ 1.2 Mt). Si-

multaneously, use of automotive steel and cast iron falls slightly by 1.0 Mt. However,

more ambitious recycling and reuse practices have the potential to more than offset this
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increased demand of virgin materials by about 740 Mt (Section D.1).

5.5 Adequacy of analyzed decarbonization measures

Emission reduction required to halt climate change are sometimes framed through the

carbon budget — the amount of emissions remaining until the atmosphere reaches an

identified temperature threshold. Under the described cases, the US LDV sector would

require 3–5% of the global carbon budget identified by the IPCC,23 which is about as

much as its share of current emissions (Supplementary Table 16).

5.6 Discussion

To date it is largely unknown to what extent indirect emissions shape optimal decarboniza-

tion pathways22 and vice versa. Previous work focusing on electricity supply reported a

limited role of indirect emissions in climate change mitigation scenarios.170,171,226 Here

we explore the role of indirect emissions in decarbonization efforts of the US passenger

vehicle fleet and find that they can in fact significantly alter optimal climate change

mitigation pathways. An important difference between the electricity supply sector and

the LDV sector is that indirect emissions play a larger role, accounting for about a

quarter of total life–cycle emissions already today. In our scenarios, indirect emissions

make up almost half of total LDV sector CO2 emissions in 2050 (44–49%) and about

24–29% of cumulative emissions over the 2010–2050 scenario time frame (Supplementary

Table 16). For comparison, McDowall et al. report that indirect emissions would account

for less than 10% of total life–cycle power plant emissions in 2050 in a decarbonization

scenario of the EU.170

Although overall life–cycle emissions are reduced significantly under full emissions

pricing, indirect ones can increase, most prominently from electricity generation and

battery manufacturing due to strong penetration of BEVs. However, increased electricity

emissions are more than offset by reduced gasoline supply–chain emissions stemming

from exploration, transportation and refining of crude oil (Figure 5.2k). Increased

emissions from material production and vehicle assembly could be more than offset by

increased material efficiency efforts including more ambitious material recycling and reuse
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of components. While it is expected that direct emissions of BEVs are lower than those

of ICEVs, it is surprising that in fact also non–tailpipe emissions are lower (Figure 5.2l).

This sheds new light on the current public debate about ‘dirty’ batteries and electricity.7

In fact, the simultaneous reduction of both direct and indirect emissions from the LDV

fleet indicates a win–win situation, meaning that climate policy with very high shares

of BEVs represents a no–regrets strategy. Our insights are therefore highly relevant for

global climate and transport policies. Current policies, such as performance standards

or emission pricing schemes, should be broadened in their scope in order to regulate

all sources of vehicle emissions along the entire vehicle supply chain. Our scenarios

further indicate that the US (and likely other nations with suitable low–carbon electricity

grids) should target deployment of BEVs and largely disregard competing technologies.

HFCEVs could offer a viable alternative if costs to produce fuel cells and low–carbon

hydrogen would fall considerably in coming years.

Our work represents a first step towards a holistic inclusion of dynamic life–cycle

relationships in integrated modelling frameworks. Future research could include further

potentially important factors and processes, such as deployment of carbon capture and

storage (CCS) at fuel refineries, differences in emission intensities of hydrocarbons,

synthetic liquid fuels, net–negative emission pathways of energy production, and low–

carbon steel production using hydrogen from renewable sources. Future research should

also investigate to what degree results would differ in various regions of the world, or if

other pollutants were internalized in optimal choice routines.

5.7 Methods

5.7.1 Demand–side framework

We address calls for a stronger research focus on demand–side solutions for mitigating cli-

mate change.234 Specifically, we apply and specify a novel, transdisciplinary demand–side

assessment framework focusing on an important emitting sector.104 Our framework ad-

dresses the following key areas: (1) End–use context: we focus on demand–side solutions,
7https://www.bloomberg.com/news/articles/2018-10-16/the-dirt-on-clean-electric-cars
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with the US LDV fleet as a case study. (2) Technology: we use industrial ecology methods

to model full life cycle CO2 emissions and costs of all major established and emerging

vehicle technologies. This enables us to test the potential of different technological

mitigation measures along the entire vehicle supply chain including powertrain switching,

changes in material composition, recycling of materials, reuse of vehicle components, and

feedstock switching for fuel and electricity production. (3) Policy instruments: Carbon

pricing is applied to either tailpipe emissions, or the entire vehicle life cycle. (4) Climate

change mitigation pathways: We present climate change mitigation scenarios of the

US LDV sector and analyze the contribution of several mitigation measures towards

the US NDC and a 2◦C consistent US LDV sector. (5) Sustainable development: We

highlight synergies with other sustainability indicators such as resource use, energy use

and consumer cost.

5.7.2 Integrated energy modelling

Our tool of choice is NEMS which is the model behind the well–known Annual Energy

Outlook.141 Here we use a slightly altered version running on a server at Yale University

(Yale–NEMS).235,236 Yale–NEMS sets prices so that annual energy supply equals energy

demand (general equilibrium) through 2050. The main energy demand sectors are

residential buildings, commercial buildings, transport and industry. Projections of

economic drivers are provided exogenously while world energy prices, world energy

supply and demand, and US energy imports and exports are calculated endogenously.

Yale–NEMS provides a full account of CO2 emissions across all industries and a range of

air pollutants from vehicles and power plants.

Transport sector modelling The transport sector includes several modes of travel,

such as LDVs, aviation, trucking, shipping, and rail. The LDV submodule distinguishes

twelve vehicle sizes, 86 fuel efficiency technologies, as well as sixteen alternative propulsion

technologies including BEV–100 (100–mile electric range), BEV–200, PHEV–10, PHEV–

40, HEV, and HFCEV. Various fuel pathways are modelled as well. The LDV submodule

uses a discrete choice formulation to simulate both the behavior of vehicle manufacturers
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and consumers. Manufacturers make production decisions based on technology cost,

CAFE requirements and potential regulatory costs, while consumers base purchase

decisions on energy prices, charger and fuel station availability, vehicle purchase prices

and a range of other vehicle attributes. Further details on the mainline NEMS and

a direct comparison with other IEMs can be found elsewhere.7 Here we make several

refinements to Yale–NEMS’ LDV submodule: We update vehicle costs in a bottom-up

fashion using detailed cost estimates for all major vehicle components, such as engines,

electric motors, transmissions, fuel cells, and hydrogen storage tanks.73,129 Further,

costs of lithium–ion batteries start out at about 465 USD/kWh in 2016 and reach

floor costs of ∼83 USD/kWh over the modelled time horizon due to economies of scale

and technological development. This cost development is within the range of recent

estimates.137

Modelling upstream sectors The electricity market module considers all major

fossil and renewable generators, including conventional, and advanced coal and gas

power plants with and without CCS, nuclear, hydro, solar thermal, solar photovoltaics

(PV), and on– and offshore wind power. In our scenarios we assume that overnight

capital costs of solar PV and onshore wind power plants fall from around 1,245 and

1,230 USD/kW in 2019 down to about 370 and 540 USD/kW by 2050 due to economies

of scale and technological developments. This cost development is within the range of

recent estimates.237,238 As a result, new power plant capacities are mainly provided by

renewable electricity generators (Figure D.9a), while fossil–fueled power plants retire

(Figure D.9b). Thus, renewables provide more than half of all electricity well before

2030 and more than three quarters by 2050. The remaining electricity demand in 2050 is

mainly met by natural gas (16%) and nuclear power (6%), while coal is almost entirely

phased out (1.5%, see Figure D.7 and Supplementary Table 18). A small percentage

of electricity from coal is generated at CCS–equipped plants. Electricity is not only

produced in the power supply sector but also in the residential and commercial end–use

sectors — a feature that sets Yale–NEMS apart from other IEMs229 — with the main

technologies being rooftop solar PV and distributed natural gas. While electricity demand
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grows from almost four to more than six trillion kWh, an increase by more than half,

electricity emissions fall from almost 2,400 to below 290 Mt CO2, a reduction of 88%.

As a result, the carbon intensity of the electricity mix falls by a factor of twelve, from

546 down to 45 g CO2/kWh (Figure D.6 and Supplementary Table 18).

5.7.3 Determining a carbon price

We introduce a price on carbon in the transport sector in 2021 which linearly increases

up to 150 USD/t CO2 by 2050 (constant 2016$, Supplementary Table 9) — a level

required to meet the US NDC under the Paris Agreement. The US is committed to

reduce CO2 emissions by 80% by 2050 relative to 2005. We assume that all sectors

equally attempt to reduce their emissions by that percentage. According to the US EPA,

direct CO2 emissions from the US LDV fleet amounted to 1,180 Mt in 2005.239 The

growing carbon price leads to a significant cost increase of energy carriers, especially of

gasoline (Figure D.8b). Combined with the cost reductions of electric vehicle batteries

and renewable power plants, our assumed carbon price leads to reductions of direct CO2

emissions on the order of 76–84% in 2050 relative to 2005, depending on the specific

scenario (Supplementary Table 16).

5.7.4 Soft–linking Yale–NEMS with LCA

We soft–link Yale–NEMS to a detailed passenger vehicle LCA model18 and iterate

between the LCA model and Yale–NEMS until inputs and outputs converge between

both models. The LCA model covers CO2 emissions of all major technologies across the

entire vehicle life cycle, including fuel production and combustion, electricity generation

(Supplementary Table 5), material production and recycling (Supplementary Tables 4

and 7), assembly and reuse of vehicle components (Supplementary Tables 2, 6 and 8),

and lightweighting through material substitution (Supplementary Tables 3 and 11).

Inputs from Yale–NEMS into LCA (1) In a first iteration we calibrate the LCA

model to the US case by using the following Yale–NEMS outputs as calibration coeffi-

cients: (1) Vehicle baseline weights (without lightweighting, Supplementary Table 1),
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(2) the expected degree of vehicle lightweighting (substitution of conventional materials

with lightweight materials, Supplementary Table 11), (3) current and future on–road

energy consumption (Supplementary Table 1), (4) current and future battery sizes (Sup-

plementary Table 1), (5) current and future carbon intensity of electricity generation

used to manufacture vehicles and charge BEVs (Supplementary Table 18), and (6) carbon

prices (Supplementary Table 9). Taking these variables into account, the LCA model

calculates per–vehicle life–cycle carbon emissions (Figures D.1 and D.2) and translates

these into life–cycle carbon prices for each technology (Figure D.5 and Supplementary

Table 10).

Inputs from LCA into Yale–NEMS The obtained carbon prices are then linked

back to Yale–NEMS for consideration in the vehicle choice procedure of the LDV

submodule. Specifically, carbon prices on indirect emissions are implemented in Yale–

NEMS as a so–called ‘feebate’. Feebates are regarded as one of the most effective policy

instruments to reduce vehicle emissions.240–242 Feebate systems impose a fee on vehicles

with high CO2 emissions and grant a rebate to low–carbon vehicles. Here we apply that

design to both the production of vehicles and energy carriers separately. First, if the

production of any alternative vehicle technology a is more carbon–intensive than the

production of an ICEV, a fee is added to the purchase price of a, otherwise a rebate is

granted. Second, if the production of the energy source that is used in a over a’s lifetime

is expected to create more CO2 than the production of gasoline used in an ICEV, then

an additional fee is added to a’s purchase price, while a rebate is provided otherwise.

For example: A fee is imposed on the production of BEVs, largely due to the energy–

and material–intensive battery. This fee is increasing with the growing carbon price,

from about 9–15 USD/BEV in 2021 to about 120–210 USD/BEV in 2050, depending

on vehicle and battery size. A rebate is however granted due to the production of

electricity that the BEV is expected to charge over its lifetime. This rebate is growing

strongly each year as electricity quickly decarbonizes — from about 400 USD/BEV in

2021 to ∼2,600 USD/BEV in 2050 (Figure D.5 and Supplementary Table 10). This

way, these price mark–ups (or credits) become part of the decision–making process of
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vehicle manufacturers and consumers and influence both vehicle production and sales

in Yale–NEMS. Note that due to the large uncertainties involved we do not attempt

to estimate the costs of electric vehicle chargers73 (especially when allocating a certain

fraction of the cost of public chargers to individual BEVs and PHEVs), nor do we attempt

to estimate how strongly consumers would discount future costs.242 We do however

acknowledge that these factors could influence consumer choice. Since we wish to present

our results in isolation of these factors we leave it for future research to quantify the

influence of these effects.

Inputs from Yale–NEMS into LCA (2) In a second iteration of the LCA model,

total vehicle sales by technology and segment, and total energy use by energy carrier

are extracted from Yale–NEMS and fed back into the LCA model. In addition, any

vehicle characteristics that have been altered by the the life–cycle carbon price imple-

mented in Yale–NEMS, such as vehicle weights (Figure D.10), are updated in the LCA

model accordingly. As a result of the second LCA model run, total indirect emissions

of vehicle and energy production over time are obtained (Supplementary Table 16).

Tailpipe emissions and emissions from electricity use are taken directly from Yale–NEMS

(Supplementary Table 16).
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6 Conclusions

6.1 Brief summary of results

This thesis contributes to a better understanding of future emissions of low–carbon

vehicle systems in several ways. For example, this work confirms the importance of

the infrastructure that enables a transition toward low–carbon vehicle fleets, such

as wide–spread availability of renewable energy (Chapters 2, 3, and 5) and electric

chargers (Chapter 3). This thesis further highlights the importance of material efficiency

(Chapters 2 and 5) and fueling behavior (Chapter 3). Furthermore, it is highlighted that

models of climate change mitigation commonly model these fine–grained processes in a

more aggregated way, while omitting important linkages between the passenger vehicle

sector and various other economic sectors (Chapter 4). This can lead to technology

assessments that do not fully capture the emission benefits and trade–offs of various

technological alternatives. This in turn can raise the risk of misleading technology

recommendations (Chapter 5), which are an integral part of transport and climate

change mitigation policies.

6.2 Policy implications

The results of this thesis can therefore inform future policies and guide investments

into vehicle technology portfolios and their supporting infrastructure. Current policies

generally fail to systematically consider all sources of emissions along the supply chain.

For example, fuel economy standards have imposed increasingly stricter specific efficiency

and tailpipe emission targets for light-duty vehicles. However, while these resulted

in more efficient vehicles per mass, vehicles became heavier at the same time, which

negated efficiency gains and led to increased vehicle production emissions. In addition,

tailpipe emissions of electric vehicles are assumed to be zero even though no control

mechanisms are in place that ensure that they are at least partially charged with renewable

electricity. Therefore, electric cars can be used by manufacturers as ‘balancing vehicles’

while selling increasingly bigger conventional vehicles and still meeting average fleet

emission targets. More recently, the Low Carbon Fuel Standard and the Renewable Fuels
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Standard have been introduced to regulate supply chain emissions in addition to tailpipe

emissions. However, their coverage is not comprehensive. For example, the Renewable

Fuels Standard only regulates conventional and biofuels. California’s Low Carbon Fuels

Standard8 also regulates electricity emissions but not vehicle production emissions, and

is not implemented nation–wide in the US. This can lead to leakage effects, i.e. export

of high–carbon energy sources from California to other regions. Leakage can also occur

as a result of the current carbon tax landscape, which only covers certain regions and

sectors in the US and worldwide. For example, some US states cover utility companies

but not other polluting sectors, such as transportation or oil production. This perverse

incentive makes gasoline–powered cars relatively more attractive compared to electric

cars, therefore potentially leading to higher emissions in the transport sector. This work

shows that a comprehensive consideration of all supply chain emissions in policy design

would effectively incentivize car manufacturers and consumers to transition towards fuel

and vehicle technologies with the lowest overall emissions. Therefore, policies should

target all sources of vehicle emissions along the entire supply chain.

6.3 Recommendations for future research

This work offers a first step towards a holistic integration of detailed life–cycle relationships

with climate change mitigation models (Chapter 5). It opens up several opportunities

for additional improvements, for example:

• Modelling of novel vehicle technologies, such as longer range (300–400 miles) battery

electric vehicles, plug–in fuel cell vehicles operating on both hydrogen and electricity,

and automated vehicles.

• Including additional energy production pathways, such as carbon capture and stor-

age at fuel refineries, differences in emission intensities of hydrocarbons, synthetic

liquid fuels, and net–negative energy carriers.

• Representing additional material production pathways, such as low–carbon steel
8Similar regulatory approaches have also been implemented in British Columbia, the United Kingdom,

and the European Union.
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production using hydrogen from renewable sources, and the use of fly ash in concrete

production.

• More accurate modelling of consumers, such as driving, charging, fueling and

vehicle–purchase behavior, technology substitution, as well as overall vehicle and

travel demand. These are in part determined by, and therefore require detailed

modeling of, socio–economic factors, technology costs, energy prices, the expansion

and maintenance of road networks, the distribution of (alternative) fuel stations,

and the availability of sharing services and automated driving.

• Consumer preferences, technology costs, infrastructure and regulations in turn

affect production decisions of vehicle manufacturers, which is another area that

may require improved modelling. Manufacturers not only have to decide on

which powertrains to produce but also on vehicle manufacturing techniques and

design, including material choice, sourcing of virgin versus recycled materials, and

purchasing new versus remanufactured vehicle components.

• A more complete linking of emissions and physical outputs from industry, agricul-

ture, and energy conversion directly to the passenger vehicle sector. Modelling of

interdependencies with other transport sectors, such as public transport, aviation

and freight transport, needs attention, too.

• Including the impacts of traffic, ambient temperature and climate change on

deployment and mitigation potentials of various technology options.

• Extending the study of life–cycle relationships in optimal climate change mitigation

to other climate–relevant sectors, such as housing, industry or agriculture, and to

other global regions.

• Internalizing additional pollutants, other than carbon dioxide, in optimal choice

routines.

• Further research is also needed on the optimal amount of processes to be included

in integrated models, and how specifically process models should be linked to
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large–scale integrated models. Increasing integration of models will further require

stronger collaboration of different modelling communities. More transparent sci-

entific publications and supporting technical documentations, as well as publicly

available data and source codes will be of growing importance, too.

Performing the above mentioned steps could help to further improve our understand-

ing regarding which technologies should be promoted in order to achieve climate targets

in a cost–effective way without raising the risk of unintended consequences.
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A Appendix to Chapter 2

A.1 Additional methods

A.1.1 Deriving life–cycle emission factors

Tables 2.1 and 2.2 in the main text specify the life–cycle emission factors of materials

and energy carriers assumed in this work. In this section we discuss and/or derive the

used coefficients. We start by discussing current and future emissions factors of materials

and then proceed with deriving emission factors of energy carriers.

• Virgin materials: Future emission factors for virign aluminum, steel and other

materials are based on the work by Vandepaer and colleagues.62 The coefficients

have been derived by assuming that low–carbon electricity is used to produce the

materials. Since production of primary aluminum is very electricity intensive,243

aluminum achieves a higher GHG emission reduction compared to the other

materials. Other materials may further reduce their GHG intensity by employing

yet immature, uncertain or untested methods. For example, the GHG intensity of

steel could be further reduced by direct iron reduction using renewable hydrogen,92

a method that is not currently cost–competitive.91

• Recycled materials: According to Kim et al.,33 recycling of steel, cast aluminum,

and wrought aluminum can reduce GHG emissions by about 68–82%, 88–97% and

90% relative to the production of virgin materials, while in the GREET2 model,58

reductions of 53%, 79% and 79% are assumed. Here we assume reduction potentials

of 60%, 85% and 85% which are well within the range of the above estimates. For

recycled plastics we assume a carbon intensity of 1.4 kg CO2e kg−1.69 For recycled

copper we assume 1.0 kg CO2e kg−1, which is well within the range of estimates

reported by Ekman and colleagues.70

• Electricity mix: For the current electricity mix, we assume a life–cycle carbon

intensity of 750 g CO2e kWh−1. This value is based on Ecoinvent v3.5 (process:

‘market group for electricity, medium voltage, GLO’, model: ‘allocation, cut–off
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by classification’). This emissions factor is weighted by the emissions factors of

individual global regions based on their share of global electricity production. The

value is similar to the 740 g CO2e kWh−1 assumed by Knobloch et al.65 and

the 720 g CO2e kWh−1 reported by Itten et al.244 which is based on a global

electricity mix of about 66% fossil fuels, 15% nuclear, 16% hydro, and 3% other

renewables. We note that a more appropriate emission factor would weight the

regional vehicle fleet stock with the regional electricity emission factors.65 This

would more appropriately capture the regional distribution of vehicle stocks, and

their agglomeration in regions such as the EU, US, and China. A low–carbon mix

of 60 g CO2e kWh−1 is assumed which roughly corresponds to the 2050 electricity

mix in the SSP2/RCP2.6 scenario in Pauliuk and colleagues.72 The value is based

on modeling from the MESSAGE integrated assessment model.245,246

• Hydrogen: Hydrogen is assumed to emit 460 g CO2e kWh−1 over the fuel life

cycle.73 This value represents a central steam methane reforming process in 2020

using natural gas as a feedstock, and assuming pipeline transport of 7,000 km.71

Onboard reforming is not consdidered. We do not assume reductions in carbon

intensity due to carbon capture and storage or due to a switch to renewable

feedstocks.

• Vehicle assembly energy mix: Based on the GREET2 model60 we assume that

vehicles are assembled using an energy mix of electricity (51%) and heat from

natural gas (46%) and coal (3%). The electricity used is the grid mix described

above (750 / 60 g CO2e kWh−1). From Ecoinvent we estimate the carbon intensity

of heat using natural gas to be 218 g CO2e kWh−1 based on the average of two

processes: (1) ‘market group for heat, central or small–scale, natural gas, GLO’,

and (2) ‘market group for heat, district or industrial, natural gas, GLO’ (model:

‘allocation, cut–off by classification’). The carbon intensity of heat from coal is

659 g CO2e kWh−1 (model: ‘allocation, cut–off by classification’, process: ‘heat

production, hard coal briquette, at stove 5–15kW, RoW’).61 Finally, the overall

carbon intensity of the vehicle assembly energy mix equates to 750 g CO2e kWh−1
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× 0.51 + 218 g CO2e kWh−1 × 0.46 + 659 g CO2e kWh−1 × 0.03 = 503 g CO2e

kWh−1 (current) and 60 g CO2e kWh−1 × 0.51 + 218 g CO2e kWh−1 × 0.46

+ 504 g CO2e kWh−1 × 0.03 = 151 g CO2e kWh−1 (low carbon). We do not

consider further carbon intensity reduction of coal and gas due to carbon capture

and storage.

• Gasoline: The life–cycle carbon intensity of gasoline is estimated at a constant

328 g CO2e kWh−1. The combustion and upstream portions are estimated at 256

and 72 g CO2e kWh−1.7 The combustion portion has been derived by assuming

an energy density of 11.997 kWh kg−1 (lower heating value) and the average

CO2 emitted during complete combustion of 1 kg butane, C4H10, and complete

combustion of 1 kg dodecane, C12H26. The upstream portion is based on Wolfram

and Hertwich.7 The effects of increasing or falling gasoline carbon intensities are

not considered here and have been documented elsewhere.37,81

• Diesel: The life cycle carbon intensity of diesel is assumed a constant 304 g CO2e

kWh−1. The combustion and upstream portions are estimated at 260 and 44 g

CO2e kWh−1. The former value has been derived by assuming an energy density

of 11.969 kWh kg−1 (lower heating value) and the average CO2 emitted during

complete combustion of 1 kg octane, C8H18, and complete combustion of 1 kg

pentacosane, C25H52. The latter value is based on Ecoinvent v3.5 (process: ‘diesel

production, low–sulfur’; model: ‘allocation, cut–off by classification’).61

A.1.2 Modelling of material efficiency strategies

In this section we provide further details on the modelling of selected ME strategies.

Table A.1 details the material composition of conventionally designed and lightweighted

vehicles, based on Burnham et al./GREET.60 With regards to recyclability however we

chose to model aluminum– instead of carbon fiber–intensive lightweighting. The main

premise for this modeling decision is that, although carbon fiber recycling technology

exists, markets for recycled carbon fiber are not as established as markets for recycled

aluminum, leading to a large fraction of carbon fiber not being recycled under current
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conditions.9 In addition, cost of carbon fiber is currently much higher compared to

other materials.29 We therefore replaced any carbon fiber in the original data set

with aluminum. More details on how this has been done can be found in a technical

documentation available online.68

Table A.1: Material composition of conventional and lightweighted vehicle
archetypes.58,60,68

Autom. Stainl. Cast Wrought Cast Copper, Plastics Other
steel steel iron Al Al el. grade

Conv.
ICEV–g 0.62 0.00 0.10 0.02 0.04 0.02 0.11 0.08
ICEV–d 0.62 0.00 0.10 0.02 0.04 0.02 0.11 0.08
HEV 0.64 0.00 0.07 0.01 0.06 0.04 0.11 0.07
PHEV 0.59 0.00 0.07 0.03 0.06 0.05 0.02 0.18
BEV 0.57 0.00 0.02 0.04 0.05 0.06 0.10 0.16
HFCEV 0.57 0.03 0.02 0.02 0.03 0.03 0.12 0.17
Lightw.
ICEV–g 0.31 0.01 0.04 0.23 0.17 0.03 0.13 0.08
ICEV–d 0.31 0.01 0.04 0.23 0.17 0.03 0.13 0.08
HEV 0.34 0.01 0.04 0.21 0.17 0.05 0.12 0.07
PHEV 0.31 0.01 0.03 0.20 0.16 0.06 0.11 0.12
BEV 0.19 0.00 0.03 0.25 0.17 0.08 0.13 0.15
HFCEV 0.22 0.02 0.03 0.30 0.18 0.05 0.14 0.05

Assumed shares of recycled content in automobiles are shown in Table A.2. Vehicle–

specific values were only available for automotive steel and aluminum in a US context.58

For stainless steel we used an expert estimate247 and for plastics we used an estimate from

Toyota Motors who state that 20% of their plastics are either recycled or plant based.10

For cast iron and copper we use the lower values reported by Graedel et al.,248 which

are not necessarily specific to vehicles but still represent best available estimates. The

copper value has also been confirmed by an expert.249 Materials from end–of–life vehicles

often are not functionally recycled but ‘downcycled’ for use in other applications, for

example steel extracted from an end–of–life vehicle often becomes construction steel.17,80

We also note that currently there are differences in the maturity of recycling processes

(and thus in recycling potentials) for standard components such as the vehicle body and

more specialized components such as batteries and fuel cells.250 Due to a lack of data
9

https://www.compositesworld.com/blog/post/the-state-of-recycled-carbon-fiber
10

https://www.plasticsmakeitpossible.com/plastics-recycling/what-happens-to-recycled-plastics/
use-of-recycled-plastics-in-cars-is-shifting-into-overdrive/
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(on partly immature technologies) we were not able to consider these differences and use

plausible estimates of aggregate recovery rates instead.

Remanufacturing rates (Table A.3) have been estimated by using the following

approach: First, typical remanufacturing rates for components of Japanese vehicles have

been retrieved from the work by Nakamura and colleagues.251 These were then mapped

to the vehicle material composition of vehicle components from the GREET2 model.58,60

The resulting remanufacturing rates were further adjusted by the longer vehicle lifetime

assumed in our work. Specifically, while Japanese light vehicles have a typical lifetime

of about 79,300 km, here we estimate an average vehicle lifetime of around 180,000 km.

The adjustment is based on the premise that a longer vehicle lifetime is correlated with

a lower remanufacturing rate. Further details are available in an accompanying technical

documentation.68

Table A.2: Estimated recycled content in vehicles by weight.58,247–249
Autom. Stainl. Cast Wrought Cast Copper, Plastics
steel steel iron Al Al el. grade
0.26 0.41 0.30 0.11 0.85 0.20 0.20

Table A.3: Assumed remanufacturing rates by weight.68,251
Autom. Stainl. Cast Wrought Cast Copper, Plastics
steel steel iron Al Al el. grade

ICEV–g 0.13 0.00 0.20 0.18 0.15 0.16 0.14
ICEV–d 0.13 0.00 0.20 0.18 0.15 0.16 0.14
HEV 0.14 0.00 0.20 0.18 0.15 0.18 0.13
PHEV 0.14 0.00 0.20 0.19 0.15 0.19 0.13
BEV 0.12 0.00 0.09 0.19 0.12 0.19 0.12
HFCEV 0.11 0.19 0.09 0.20 0.12 0.17 0.11

A.2 Absolute and relative reduction potential of material efficiency

The following Figures complement Figure 2.4 in the main text. While Figure 2.4 showed

exemplary results for vans/SUVs the following figures show absolute and relative results

for all vehicle segments. Figures A.1 and A.2 illustrate the absolute reduction potential

of ME strategies under current and low–carbon energy supply, while Figures A.3
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and A.4 demonstrate the relative mitigation potential assuming current and low–

carbon energy.

A.3 Vehicle emission intensities

In the main text we express vehicle carbon footprints as absolute direct and embodied

emissions per person over the vehicle lifetime (t CO2e person−1). An alternative metric

that is commonly used in transport policy is the amount of direct emissions per driven

kilometer (g CO2e vehicle–km−1). This metric neither considers vehicle supply chain

emissions, nor upstream emissions of energy carriers, but tailpipe emissions only. Tailpipe

emission regulations in Southern Korea, the European Union, Canada and the US are

targeting 95–99 g CO2e per vehicle–km between 2020 and 2025. To better compare our

results against this metric we convert absolute personal vehicle footprints into emission

intensities per vehicle–km by dividing absolute footprints by the assumed vehicle lifetime

mileage of 180,000 km and multiplying by 1.5 persons per vehicle. This gives us an

emissions intensity metric (g CO2e vehicle–km−1) which differs from the one applied

in transport policy in the sense that it considers the whole vehicle life cycle impact.

Table A.4 shows life–cycle emission intensities of select vehicle options under current

and low–carbon energy supply. It can be seen that several vehicle options already are

in the range of 95–99 g CO2e vehicle–km−1, even when taking into account real–world

energy consumption, which – according to our simulations – is roughly 30–40% higher

than US06 test–cycle energy consumption. For example, the ICEV–d micro car reaches

real–world tailpipe emissions of 96 g CO2e vehicle–km−1. The last two columns show

the ratio of life–cycle emissions divided by real–world tailpipe emissions.
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Figure A.1: Absolute effect of different material efficiency strategies on life–cycle emissions of
various vehicle types under current energy supply. ICEV=internal combustion engine vehicle;
HEV=hybrid electric vehicle; PHEV=plug–in hybrid electric vehicle; BEV=battery electric
vehicle; HFCEV=hydrogen fuel cell electric vehicle; –g=gasoline; –d=diesel. Note: For micro
cars, ‘No strategy’ is covered by ‘Downsizing’.
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Figure A.2: Absolute effect of different material efficiency strategies on life–cycle emissions
of various vehicle types under low–carbon energy supply. ICEV=internal combustion engine
vehicle; HEV=hybrid electric vehicle; PHEV=plug–in hybrid electric vehicle; BEV=battery
electric vehicle; HFCEV=hydrogen fuel cell electric vehicle; –g=gasoline; –d=diesel. Note: For
micro cars, ‘No strategy’ is covered by ‘Downsizing’.
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Figure A.3: Relative effect of different material efficiency strategies on life–cycle emissions of
various vehicle types under current energy supply. ICEV=internal combustion engine vehicle;
HEV=hybrid electric vehicle; PHEV=plug–in hybrid electric vehicle; BEV=battery electric
vehicle; HFCEV=hydrogen fuel cell electric vehicle; –g=gasoline; –d=diesel. Note: For micro
cars, ‘No strategy’ is covered by ‘Downsizing’.
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Figure A.4: Relative effect of different material efficiency strategies on life–cycle emissions
of various vehicle types under low–carbon energy supply. ICEV=internal combustion engine
vehicle; HEV=hybrid electric vehicle; PHEV=plug–in hybrid electric vehicle; BEV=battery
electric vehicle; HFCEV=hydrogen fuel cell electric vehicle; –g=gasoline; –d=diesel. Note: For
micro cars, ‘No strategy’ is covered by ‘Downsizing’.
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Table A.4: Life–cycle emission intensities of select vehicle options under current and
low–carbon energy supply mix. All units are in g CO2e vehicle–km−−1. ICEV=internal
combustion engine vehicle; HEV=hybrid electric vehicle; PHEV=plug–in hybrid electric
vehicle; BEV=battery electric vehicle; HFCEV=hydrogen fuel cell electric vehicle; –
g=gasoline; –d=diesel; BL=baseline; LW=lightweight.

Life cycle Tailpipe (real–world) Ratio
Current Low CO2 Current Low CO2 Current Low CO2

ICEV–g micro BL 140 134 97 97 1.4 1.4
LW 139 126 90 90 1.5 1.4

ICEV–d micro BL 129 123 96 96 1.3 1.3
LW 129 116 90 90 1.4 1.3

HEV micro BL 129 122 87 87 1.5 1.4
LW 130 117 82 82 1.6 1.4

PHEV micro BL 129 70 30 30 4.3 2.3
LW 127 67 29 29 4.4 2.3

BEV micro BL 141 24 0 0 – –
LW 141 24 0 0 – –

HFCEV micro BL 131 124 0 0 – –
LW 132 118 0 0 – –
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B Appendix to Chapter 3

B.1 Additional methods

B.1.1 Estimating future PHEV range

The BMW i3 REx is sometimes referred to as PHEV and sometimes as BEV with

range extender (RE). Figure B.1 estimates the sales–weighted range of PHEVs with

and without taking REs into account. The blue regression line includes sales of the i3

REx, while the grey regression line excludes the i3 REx. The blue line shows that the

sales–weighted range of PHEVs varied between 40 and 56 km (25 and 35 miles) in the

past with an average of about 48 km (30 miles). When considering REs (grey line), then

the sales–weighted range is a bit higher and has an upward trend.
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Figure B.1: Regression of PHEV range with and without RE. PHEV=plug–in hybrid
electric vehicle; RE=range extender.

Here we assume the constant 30–mile range (blue line) for SSP5, mainly for two

reasons: Firstly, the future of the range extended version of the i3 is uncertain. Some

experts believe that the REx version may be discontinued due to recent advancements in

the electric range of the i3 BEV without RE.252 Secondly, most PHEV models announced

for 2020/2021 do not come with an increased all–electric range over previous models,253
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indicating that future PHEVs may not necessarily offer longer electric ranges compared

to current ones. Conversely, we assume that PHEV range in SSP1 closely follows the

grey line and grows up to about 60 miles by 2050. In SSP2, PHEV range grows up to an

intermediate 45 miles (compare with Figure 3.1a in the main text).

B.1.2 Scenarios of future UFs

In line with Plötz et al.,114 MacPherson et al.115 and EPA data254 we estimate that a

current PHEV with a 30–mile electric range yields a UF of about 0.6, while a PHEV–45

(45–mile electric range) reaches a UF of about 0.75, whereas a PHEV–60 can reach a

UF of about 0.9. However, we also assert that certain factors could significantly reduce

these UFs. For example, the International Transport Forum (ITF)123 assumes that the

UF of a current average PHEV–45 can be significantly reduced by about 45% if used

as a ride–sourced vehicle (Lyft, Uber). Assuming that 20% of all future travel demand

could be met by ride–sourced vehicles, a fleet–average UF of 0.75 could fall down to 0.7

(.7 = .2 × .75 × (1 – .45) + (1 – .2) × .75). Furthermore, if future PHEV and BEV

sales grow at a speed at which the deployment of electric charging infrastructure cannot

keep up with, PHEV drivers may choose to drive more miles on gasoline. A limited

network of chargers could potentially imply that certain chargers be reserved exclusively

for pure BEVs.11 If this effect would further reduce PHEV charging by 15%, the average

UF of 0.7 could further drop to about 0.6 (.6 = .7 × .85). These back–of–the envelope

calculations need to be backed by more empirical data in the future, but nevertheless

highlight the potential variation in average UFs of the PHEV fleet. Other influential

effects may include potential future incentives for favorable fueling behavior, raising the

UF, or increased use of PHEVs for business travels or as government vehicles, which in

turn could lower the UF.

B.1.3 Estimating future battery costs

BEV batteries: As laid out in the main text, BEV battery packs are assumed to fall

from about 600 USD/kWh in 2010 to 50 USD/kWh by 2050 in SSP1, 100 USD/kWh in
11

https://www.carthrottle.com/post/experts-want-plug-in-hybrids-banned-from-public-chargers/
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SSP2 and 150 USD/kWh in SSP5. The corresponding annual rates of cost reduction can

be seen in Figure B.2a and b. The initial cost reduction rate is based on Nykvist and

Nilsson215 who report that costs declined by about 14% per year between 2007 and 2014.

Cost reductions rates are assumed to fall more quickly in SSP5 and more slowly in SSP1.
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Figure B.2: Cost reduction rates of batteries. Relative (a) and absolute (b) cost reduction
rates of BEV battery packs. Absolute cost increment of PHEV battery packs over BEV
battery packs (c). SSP=shared socio–economic pathway. PHEV=plug–in hybrid electric
vehicle; BEV=battery electric vehicle.

PHEV batteries: As mentioned in the main text we assume that PHEV batteries

are slightly more costly but their cost increment over BEV batteries falls over time

(Figure B.2c). We further assume that this cost increment falls slower in SSP1, since

investments are primarily targeted at BEV batteries, and faster in SSP5. More details

can be found in a supplementary file at https://doi.org/10.1021/acs.est.0c03796.

B.1.4 Estimating a US carbon budget

Over the time period 2000–2050, a global carbon budget of roughly 1,000 Gt CO2

yields about a 75% probability of staying below a global temperature increase of 2◦C.255

Assuming a grandfathering policy in which the US would be allowed to continue to emit

15% of global CO2 emissions as has been the case historically,12 the US would be assigned

a carbon budget of 150 Gt CO2. Assuming that annual per capita emissions were to
12https://www.globalcarbonproject.org/carbonbudget/19/highlights.htm
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converge globally to equal levels by 2035–2050, the US carbon budget would shrink to

roughly 80–100 Gt CO2.256 The US has pledged to reduce annual CO2 emissions by

26–28% by 2025 and by 80% by 2050 relative to 2005 levels. As can be seen in Figure B.3,

this commitment is roughly in line with the US carbon budget under grandfathering,

assuming linear emission reductions.
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Figure B.3: Cumulative CO2 emissions of the US following its nationally determined
contribution (NDC) under the Paris Agreement.

B.2 Additional results

B.2.1 Vehicle stocks

(see next page)

B.2.2 Vehicle stock emission rates

(see next page)
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Figure B.4: Vehicle stocks by scenario. High UFs (a–c). Low UFs (d–f). Differences
in stocks between scenarios with low and high UFs (g–i). SSP=shared socio–economic
pathway; UF=utility factor; ICEV=internal combustion engine vehicle; HEV=hybrid
electric vehicle; PHEV=plug–in hybrid electric vehicle; BEV=battery electric vehicle.
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Figure B.5: Average emission rates of the vehicle stock by scenario and fueling behavior.
SSP=shared socio–economic pathway; UF=utility factor.
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B.2.3 Fleet energy use
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Figure B.6: Energy use by scenario and fueling behavior. SSP=shared socio–economic
pathway; UF=utility factor; PJ=peta joules.
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C Appendix to Chapter 4

C.1 Model selection and screening

As mentioned in the main text, we define IEMs as models that (1) entail the entire

environmental–energy–economic system, (2) find an equilibrium state of energy supply

and demand, either for the entire economy (general equilibrium), or for individual energy

demand sectors (partial equilibrium), (3) are mathematically solved through optimization

or simulation, (4) provide explicit representation of single energy demand sectors and

climate change mitigation technologies within these sectors, and (5) allow exploration of

future energy and emissions scenarios under different policy assumptions.22,156,157

In order to identify suitable IEMs we searched the ISI Web of Science, Scopus and

Google Scholar databases using the following keyword string: “Integrated energy model”

OR “integrated assessment model” AND (passenger OR light–duty) AND vehicle AND

energy AND (CO2 or carbon or greenhouse). We also searched the official websites of

the US Energy Information Administration (EIA) and the International Energy Agency

(IEA) and took previous model reviews into account. We identify a total of 14 relevant

IEMs that address US LDVs within climate change mitigation scenarios. In order to

evaluate whether the models consider different factors, the model documentations as

well as different peer–reviewed papers applying the models have been screened using

the keywords in Table C.1 prior to an in–depth review. In addition, we requested

detailed feedback on model descriptions from each modeling team. We received detailed

commentary from all modeling teams but DNE21+.

All works were assessed against whether or whether not the factors in Table C.1

were addressed. For all factors, a benchmark is defined based on the available engineering

literature. For example, the work by Chester & Horvath48 is identified as a state–of–the–

art assessment for road types, because different road types are considered, their material

and energy inputs are included and different life stages are distinguished. As stated in

the main text, whether or whether not factors are varied over time or geographies is

generally not assessed in this review (except for ‘vehicle age’) because it would go beyond

the scope of this review. We note that nevertheless such dynamic changes should ideally
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be included in a realistic assessment.

C.1.1 Road infrastructure

• Considered — A complete life–cycle representation of energetic and material inputs

into road infrastructure accommodating road vehicles, while distinguishing different

road types. Life stages considered pertain to production, use and end of life.

If applicable, impacts are split between different road transport modes, such as

heavy–duty and light–duty vehicles.

• Partially or indirectly considered — (1) An incomplete representation of the above,

or (2) a non–physical (monetary) representation of infrastructure investments, or

(3) considered indirectly as part of aggregate industrial output driven by GDP

without a link to transport.

• Not considered — Neither of the above.

C.1.2 Ancillary infrastructure

• Considered — A complete life–cycle representation of energetic and material inputs

into ancillary infrastructure, such as parking lots, bridges, tunnels, street lighting,

fuel stations and electric chargers. Life stages considered pertain to production,

use and end of life. If applicable, impacts are split between different road transport

modes, such as heavy–duty and light–duty vehicles.

• Partially or indirectly considered — (1) An incomplete representation of the above,

or (2) a non–physical (monetary) representation of infrastructure investments, or

(3) considered indirectly as part of aggregate industrial output driven by GDP

without a link to transport.

• Not considered — Neither of the above.

C.1.3 Vehicle components

• Considered — A detailed life–cycle representation of energetic and material in-

puts into vehicle production, explicitly distinguishing different vehicle/powertrain
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components, such as combustion engine, electric motor, fuel cell, battery (and

type of battery), etc. Life stages considered pertain to production, use and end of

life/recycling.

• Partially or indirectly considered — (1) An incomplete representation of the above,

or (2) a non–physical (monetary) representation of vehicles and components, or

(3) considered indirectly as part of aggregate industrial output driven by GDP

without a link to transport.

• Not considered — Neither of the above.

C.1.4 Vehicle materials

• Considered — Different materials and their energy– and GHG intensities are

explicitly considered during vehicle production, including recycled materials.

• Partially or indirectly considered — (1) An incomplete representation of the above,

or (2) a non–physical (monetary) representation of vehicles and components, or

(3) considered indirectly as part of aggregate industrial output driven by GDP

without a link to transport.

• Not considered — Neither of the above.

C.1.5 Real–world driving

• Considered — (1) In the case of the US, EPA’s adjusted fuel consumption values

are used. In the case of other regions, (2) reasonable drive cycle correction factors

from the literature are used in conjunction with official estimates, or (3) a realistic

drive cycle is simulated. (4) Or for either region, statistical analysis of driver’s

self–reported fuel consumption is conducted. (5) LDV fuel consumption values are

estimated from aggregated transport energy use statistics.

• Partially or indirectly considered — (1) Implausible correction factors are used.

(2) Simulation of a more realistic yet not fully realistic drive cycle, such as the

WLTP (Worldwide Harmonized Light Vehicles Test Procedure).
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• Not considered — Fuel consumption values are based on official laboratory mea-

surements.

C.1.6 Multi–fuel use

• Considered — (1) Plausible multi–fuel use (MFU) factors from the literature are

used, or derived through (2) statistical analysis, e.g. of travel survey data, or

(3) fuel choice modeling, such as logit. The most common multi–fuel vehicles

(MFVs) such as plug–in hybrids, bi–fuel and flex–fuel vehicles are considered.

• Partially or indirectly considered — (1) MFU values are considered for some

vehicle types but not for others, (2) implausible values are used, (3) a simplified

approach is used assuming that for example ICEVs can use several fuels without

any modifications (not explicitly considering MFVs).

• Not considered — Neither of the above.

C.1.7 EV–power system interaction

• Considered — Bilateral interactions between the EV fleet and the electric power

system are considered, e.g. the influence of EVs on the amount, emissions intensity,

costs etc. of electricity generation, as well as the influence of electricity generation

on EV ownership costs, and energy chain emissions.

• Partially or indirectly considered — Only unilateral interactions between the EV

fleet and the electric power system are considered, i.e. either the influence of EVs

on the electric system or the influence of the electric system on EVs.

• Not considered — No connection between the EV fleet and the electric power

system is considered.

C.1.8 Biofuel emissions

• Considered — A full life–cycle representation of energetic and material inputs

into biofuel production including positive emissions from combustion and land use
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and land use change, as well as negative emissions, e.g. through feedstock carbon

uptake, is achieved; either through (1) comprehensive land use change modeling,

or (2) by using exogenous life–cycle factors and linking these to biofuel LDVs in an

ad–hoc fashion.

• Partially or indirectly considered — (1) Biofuel emissions are included but not

linked to the LDV life cycle, (2) implausible values are used, (3) certain life cycle

stages are missing.

• Not considered — Neither of the above.

C.1.9 Crude oil grades

• Considered — A full life–cycle representation of energetic and material inputs into

gasoline and diesel production, considering different crude oil grades.

• Partially or indirectly considered — (1) Different grades are included but their

differences in carbon content are not considered in fuel production, (2) implausible

values are used.

• Not considered — Neither of the above.

C.1.10 Methane leakage

• Considered — A full life–cycle representation of methane emissions from coal, oil,

gas, electricity and hydrogen production, including methane leakage, flaring and

venting. In the case of electricity from hydro power, this includes biogenic methane

emissions.

• Partially or indirectly considered — (1) Incomplete representation of life–cycle

methane emissions, e.g. methane leakages are included but not linked to fuel use

in the transport sector, (2) implausible values are used.

• Not considered — Neither of the above.
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C.1.11 Vehicle age

• Considered — Different vehicle age cohorts and their lifetimes are considered.

Cohorts differ in terms of vehicle characteristics, such as fuel consumption, engine

power, material mix, and/or curb weight etc. (Ideally, decreasing vehicle miles

traveled as a function of increasing vehicle age is considered, too.)

• Partially or indirectly considered — Not applicable.

• Not considered — A vehicle vintage formulation is not used.

C.1.12 Travel demand

• Considered — Travel or vehicle demand is calculated endogenously in the model.

For example, travel demand can be calculated as a function of projected fuel cost,

personal income, vehicles per licensed driver, and employment rate, which can then

be converted into vehicle demand as a function of travel demand and vehicle miles

traveled per vehicle.

• Partially or indirectly considered — Travel or vehicle demand is exogenous.

• Not considered — Not applicable.

C.1.13 Vehicle mix

• Considered — The projected vehicle fleet mix is calculated endogenously, e.g. by

employing a logit model or least–cost optimization. The vehicle mix changes over

time as a function of changing vehicle characteristics, vehicle costs, policies and

consumer preferences. A diverse set of powertrain technologies (and ideally vehicle

sizes) are considered in the fleet mix.

• Partially or indirectly considered — Projected vehicle mix is (1) an exogenous

variable, (2) is based on dated cost assumptions, (3) does not take into account the

most important vehicle technologies such as ICEV, HEV, PHEV, BEV, HFCEV.

• Not considered — Not applicable.
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C.2 Previous reviews related to transport and IEMs

Yeh et al.257 provide a detailed review of GCAM, MESSAGE and two transport–sector

models and compare modeling frameworks and outcomes in terms of CO2 emissions.

The authors suggest several model improvements, including harmonization of base–year

data and key scenario parameters. Creutzig258 reviews selected works of three different

scientific communities, namely transport sector modelers, integrated assessment modelers

and place–based modelers. He identifies differences in general approach, geographical

scope, time frame and modeled mitigation measures and proposes stronger interaction of

the different modeling communities. Edelenbosch219 reports a divergence in modeling

inputs to the LDV sector of several IEMs. Although not specific to transportation, three

more reviews are worth mentioning: Debnath & Mourshed95 highlight deficiencies in the

description of the energy system in the context of developing countries among 34 energy

planning models. Pauliuk et al.19 find inadequacies in the modeling of material demand

by industry, waste generation and recycling among five major integrated assessment

models. Finally, Krey et al.93 find large differences in techno–economic assumptions of

the electricity sector among 16 popular integrated assessment models.

C.3 Previous works addressing life–cycle relationships in IEMs

Arvesen et al.22 note that to date it is largely unexplored how life–cycle relationships may

influence optimized national and global energy and climate change mitigation strategies.

Exceptions include Daly et al.,227 Scott et al.,228 Pehl et al.,171 and MacDowell and

colleagues.170 Daly et al. couple UK TIMES, a national energy optimization model,

with a multiregional economic input–output model in order to analyze the importance

of domestic and nondomestic indirect CO2 emissions for the decarbonization of the

UK energy system. Their results indicate that domestic indirect emissions have little

significance, while nondomestic indirect emissions substantially increase mitigation cost.

If all, direct and indirect, emissions were included in a decarbonization of UK’s energy

supply system, assuming absence of mitigation measures of other countries, marginal

abatement cost of decarbonization were doubled. In a subsequent paper, the same authors
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suggest that the cost–optimal mitigation of emissions generated overseas would require

stronger electrification and stronger use of nuclear energy .228 Pehl et al. integrate LCA

coefficients in the REMIND IAM in order to analyze to what extent the consideration

of life–cycle GHG emissions leads to a more complete internalization of externalities.

Their results suggest that the consideration of indirect emissions has only modest effects

on the global cost–optimal mix of electricity generation technologies and electricity

demand. However, in regions that have large capacities of technologies with a high share

of indirect emissions, cost–optimal electricity mixes differ considerably when accounting

for indirect emissions. Examples include Russia, Latin America, the Middle East &

Northern Africa and the USA. McDowall et al. use a similar approach and integrate

life cycle coefficients with a European TIMES energy system model. Another study

worth mentioning is that by Boubault et al.172 who address the role of raw material

demand of low–carbon technologies by integrating LCA coefficients with the TIAM–FR

global integrated model. Their focus is on resource efficiency, not on climate change

mitigation however. No study has been prepared to date that analyzed the influence of

comprehensive life–cycle relationships of LDVs on optimized national and global energy

and climate change mitigation strategies.

C.4 Influence of selected factors

C.4.1 Multi–fuel use

Figure C.1 illustrates how the difference in a PHEV’s utility factor (UF) can influence

energy chain (well–to–wheel, WTW) emissions. Well–to–wheel describes the entire life

cycle of an energy carrier from primary energy extraction to final use of the energy

carrier. A low UF means that a small fraction of total travel is driven on electricity,

whereas a high UF implies a high share of electric driven kilometers. The higher

the UF, the more pronounced are differences in regional electric grid GHG intensity.

Regions 1 through 26 are NPCC Upstate NY, WECC California, NPCC New England,

NPCC NYC/Westchester, ASCC Miscellaneous, RFC East, SERC Virginia/Carolina,

WECC Southwest, WECC Northwest, ASCC Alaska Grid, HICC Miscellaneous, SERC
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Mississippi Valley, FRCC All, ERCOT All, SERC South, NPCC Long Island, SERC

Tennessee Valley, MRO West, RFC West, SPP South, HICC Oahu, RFC Michigan, SPP

North, MRO East, WECC Rockies, SERC Midwest. All data that was used to prepare

Figure C.1 is contained in an Excel spreadsheet and can be requested from the author.
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Figure C.1: Influence of the utility factor on energy chain (well–to–wheel, WTW)
greenhouse gas emissions (GHGE) of plug–in hybrid electric vehicles. Electric grid
regions are ordered by greenhouse–gas emissions intensity in ascending order.259,260

C.4.2 Biofuel emissions and crude oil grades

Figure C.2 shows the potential variation in the carbon intensity of gasoline, corn ethanol

and different blends thereof. In general, corn ethanol and gasoline–ethanol blends can

modestly lower GHG intensity (diamonds). However, under certain circumstances, they

can also increase GHG intensity as indicated by the error bars. Different sources of

variation have been considered, such as crude oil upstream and midstream emissions

(15–129 g CO2e kWh−1,199 default value 24 g CO2e kWh−1),201 gasoline chemical

composition (C4H10 to C12H26, default C8H18), gasoline lead content (lead/unlead),261
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biofuel feedstock carbon uptake (189–223 g CO2e kWh−1, default value 223 g CO2e

kWh−1)12 and land use change emissions (0–374 g CO2e kWh−1,12 default value 26 g

CO2e kWh−1).90 Crude oil upstream and midstream GHG intensity causes the strongest

variation in gasoline carbon intensity. Assumed land use change emissions have the

strongest influence on biofuel carbon intensity.
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Figure C.2: Influence of different factors on upstream emissions of gasoline and
ethanol fuel. Exx = corn ethanol–gasoline blend (xx% corn ethanol by volume).
LCFS=California’s low carbon fuel standard.90,196,197,199,201,261,262

C.4.3 Vehicle age

Figure C.3 shows total tailpipe CO2 emissions of the US car fleet. The results are

based on a vehicle vintage–stock model constructed with vehicle survival and vehicle

travel as functions of vehicle age,207 vehicle sales data,263 and vehicle real–world fuel

consumption estimates.189 The general stock modeling method applied to vehicles is

described by Fishman and colleagues.264 Panel a) shows total emissions by year and by

vintage (year of manufacture). Panel b) highlights the discrepancy between the vintage

formulation (black line) compared to results that neglect the vintage formulation and
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thus assume that all vehicle kilometers are driven by new, more efficient vehicles (red

line). The resulting difference in CO2 is about 30% in 2015. These results highlight

the existing inertia in the turnover of vehicles that can only be captured by a vintage

formulation. Thus, the importance of employing vintage stock modeling in integrated

models is demonstrated.
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Figure C.3: Influence of vehicle age tracking on modelled fleet–wide CO2 emissions: Car
emissions by year and vintage (a). Car emissions by year (b).189,207,263

C.4.4 Vehicle mix

Figure C.4 shows how assumptions on EV battery costs can influence assumed future EV

penetration. Panel a) illustrates a scenario of strong decline in lithium–ion battery costs,

from about 320 USD kWh−1 in 2015 to about 130 USD kWh−1 in 2030 for BEVs, and

from about 420 USD kWh−1 to about 200 USD kWh−1 for PHEVs.73 In panel b), battery

costs are assumed to remain at 2015 levels. Both scenarios assume cost reductions of

other components consistent with previous work.73,129 A simplified discrete choice model

using a multinomial logit formulation based on Greene et al.129,211 has been constructed

to generate the technology shares. The model distinguishes small and large cars, and

two points in time, 2015 and 2030. The small PHEV has a 60–mile all–electric range
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which is similar to the 2017 Chevrolet Volt, the large PHEV has a 20–mile all–electric

range, similar to Ford’s 2017 Fusion Energi. The small BEV has a 100–mile range, e.g.

2017 Nissan LEAF, the large BEV has a 200–mile range, e.g. 2017 Tesla Model S60.

Assumptions on vehicle annual mileages (12,300 miles in the first year, then decreasing

by 3% year−1) and vehicle average lifetimes (10 years) are taken from the latest National

Household Travel Survey.206 The utility V of an agent is modeled as

Vijt = βP
jt × Pijt + βR

jt ×Rijt + βF
jt × Fijt + βM

jt ×Mijt + βA
jt ×Aijt (C.1)

where P is the vehicle purchase price, R is the range, F is fuel cost, M is annual

maintenance cost, and A is model availability. β is a weighting coefficient specific to

each attribute.211 Subscripts i, j, t denote technology (ICEV, BEV, PHEV), vehicle

class (small/large car), and year (2015, 2030).
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Figure C.4: Influence of assumed lithium–ion battery cost on new BEV and PHEV sales
assuming optimistic costs (a) and constant costs (b). ICEV=internal combustion engine
vehicle, PHEV=plug–in hybrid electric vehicle, BEV=battery electric vehicle.73,129,206,211
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Table C.1: Search terms used to identify factors in each model.
Factor Keywords
1) Road infrastruc-
ture

‘Road infrastructure’, road, highway, street, pavement, as-
phalt, cement, concrete, bitumen.

2) Ancillary infras-
tructure

Light, lighting, parking, ‘parking lot’, charg, ‘charging in-
frastructure’, ‘fuel station’, ‘refuel infra’, ‘recharging infra’,
bridge, tunnel.

3) Vehicle compo-
nents

‘Vehicle component’, component, battery, motor, engine, ‘fuel
cell’, tank, ‘hydrogen tank’, ‘hydrogen storage’, ‘vehicle body’,
body, ‘body–in–white’, glider, transmission.

4) Vehicle materials ‘Vehicle material’, material, metal, steel, aluminum, alu-
minium, rubber, plastic, lightweight, magnesium, composite,
‘carbon fiber’, ‘carbon fibre’, recycl, reuse, remanufactur.

5) Real–world en-
ergy use

Real–world, on–road, laboratory, ‘fuel economy label’, ‘ad-
justed EPA’, ‘EPA adjusted’, ‘drive cycle’, FTP, SC03,
HWFET, US06, 5–cycle, WLTP, ‘energy consumption’, ‘en-
ergy intensity’, NEDC.

6) Multi–fuel use Multi–fuel, ‘utility factor’, charge–depleting, charge–
sustaining, ‘electric driving’, ‘driving on electricity’, ‘gasoline
driving’, ‘driving on gasoline’, fraction, eVMT, displacement,
displac, ‘mileage share’, ‘VMT share’, ‘usage share’, ‘fuel
share’, ‘dual fuel’, bi–fuel, flex–fuel.

7) EV–power sys-
tem interaction

‘Marginal electricity’, ‘average electricity’, ‘marginal emissions
factor’, ‘average emissions factor’, dispatch, ‘merit order’,
capacity, ‘capacity expan’, ‘time slice’, ‘load curve’, baseload,
‘base load’, peakload, ‘peak load’, ‘load duration curve’, ‘load
curve’, ‘load pattern’, ‘load band’, ‘vehicle–to–grid’, ‘power
transfer’.

8) Biofuel emissions Biofuel, ‘land use’, ‘land use change’, LUC, ‘carbon uptake’,
feedstock, bioenergy, upstream, fertilizer.

9) Crude oil grades ‘Oil type’, ‘crude oil’, ‘oil production’, ‘oil extraction’, ‘oil
supply chain’, unconventional, crude, reserve, ‘petroleum
slate’, ‘oil field’, ‘oil sand’, ‘shale oil’, ‘API gravity’, ‘heavy
oil’, ‘heavy crude’, ‘light oil’, ‘light crude’, ‘sour crude’, ‘sweet
crude’, ‘carbon content’, ‘carbon intensity’.

10) Methane leak-
age

‘Methane leakage’, ‘biogenic methane’, methane, leak, bio-
genic, CH4, decay, pipeline, fugitive, vent, flaring, transmis-
sion, ’transmission loss’, ’energy transport’.

11) Vehicle age Vintage, stock ‘vehicle age’, ‘car age’, cohort, ‘vehicle stock’,
‘stock model’, age, surviv, turnover, scrapping, scrap, ‘end of
life’.

12) Travel demand ‘Vehicle demand’, ‘travel demand’, travel, demand, GDP,
gross domestic product, price, ‘fuel price’, ‘VMT demand’.

13) Vehicle mix ‘Vehicle mix’, ‘discrete choice’, logit, MNL, ‘modal share’,
‘vehicle choice’, ‘consumer choice’, least–cost.
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C.5 Detailed evaluation results of the individual models

This section contains detailed descriptions of benchmarking results for individual models. Abbreviations used in the following tables include:

BECCS=bioenergy with carbon capture and storage; BEV=battery electric vehicle; CCS=carbon capture and storage; CSP=concentrated solar

power; FES=fuel economy standard HEV=hybrid electric vehicle; HFCEV=hydrogen fuel cell electric vehicle; ICEV=internal combustion vehicle;

IGCC=internal gasification combined cycle; LULUCF=land use, land–use change and forestry; MFV=multi–fuel vehicle; MSW=municipal solid

waste; NGCC=natural gas combined cycle; PC=pulverized coal; PV=photovoltaics; PHEV=plug–in hybrid electric vehicle; RFS=renewable fuel

standard. BEV/PHEV/HFCEV–x indicates all–electric range, e.g. PHEV–40 has a 40 mile all–electric range.

Table C.2: EPPA benchmarking results

Factors/items EPPA benchmarking results

General items

1) Model core and solver General equilibrium model. Solution algorithm is recursive dynamic, i.e. it starts from a target emissions pathway, and solves

recursively for the carbon price that would deliver the emissions target at each time step, and optimizes for the technology mix

consistent with the resulting carbon price.128, 265, 266

2) Model extensions EPPA is linked to the climate component of the MIT Integrated Global System Modeling (IGSM) framework and to a land use

model. In Heywood et al.37 EPPA receives inputs from the Autonomie vehicle drive cycle simulation tool and a vehicle–technological

stock model.
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Factors/items EPPA benchmarking results

3) Future GDP GDP is calculated endogenously as a function of factor productivity, such as labor, land and energy. Productivity growth rates

are calibrated so that future GDP in a reference or baseline scenario is in line with other projections. Population forecasts are

exogenous, based on UN projections.

4) Time horizon 2005–2100, 5–year steps.

5) Regions 17 regions, including USA, Japan, EU.

6) GHGs All GHGs and other radiative agents. Data for GHGs (CO2, CH4, N2O, HFCs, PFCs, SF6) are based on the United States

Environmental Protection Agency inventory data and projects.

7) Sectoral detail The standard EPPA version distinguishes 13 sectors based on GTAP, which are then disaggregated into 40 sectors (energy–intensive

industries, other industries, services, crops, livestock, forestry, food processing, coal production, oil production, refining, natural gas

production, electricity (coal, natural gas, petroleum, nuclear, hydro, wind, solar, biomass, wind w/ gas backup, wind w/ biofuel

backup, coal CCS, gas CCS, advanced nuclear, advanced gas), private transport (ICEV, PHEV, EV, CNGV), commercial transport,

first–gen. biofuels (corn, sugarcane, sugarbeet, rapeseed, soybeen, wheat, palm oil), advanced biofuels, oil shale, synthetic gas from

coal. In Heywood et al.37 a version with 24 sectors, based on GTAP7, incl. agriculture, forestry, energy–intensive products, other

industry, industrial transport, household transport, coal, crude oil, refined oil, and natural gas is used.

8) Transport sectors Private transport and commercial transport. Private transport is disaggregated into ICEV, PHEV, EV, CNGV. Commercial transport

is an aggregate that is inclusive of aviation, rail and marine transport. (“The model includes a technology–rich representation of the

private passenger vehicle transport sector and its substitution with purchased modes of transportation, including aviation, rail, and

marine transport, as well as road transport that is purchased by households as service”.267)
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Factors/items EPPA benchmarking results

9) Electricity conversion

technologies

14 (five traditional (coal, natural gas, oil, nuclear, hydro) and nine advanced electricity generation technologies: 1) wind, 2) solar, 3)

bio–electricity, 4) wind with natural gas backup, 5) wind with biomass backup, 6) natural gas combined cycle (NGCC), 7) NGCC

with carbon capture and sequestration (CCS), 8) coal with carbon capture and sequestration, and 9) advanced nuclear.)

10) LDV and fuel technolo-

gies

The standard EPPA model defines one vehicle class (mid–size sedans), four powertrain types (ICEV, BEV, PHEV, CNGV), and

five fuels (electricity, gasoline, CNG, first generation biofuels (seven feedstocks), advanced biofuels). A version of EPPA, which

has been used in Heywood et al.,37 receives input data from a technological vehicle stock model, providing specific information on

various powertrains (ICEV, HEV, FFV, Bi–fuel, PHEV–10, –30, CNG, BEV, HFCEV), fuels (XTL, E5–15, E85, CNG, electricity,

hydrogen), and vehicle segments (subcompact, compact, midsize, large car; small, large SUV; small, large pickup; small, large van. ).

Other studies using EPPA may model different technologies, fuels and vehicle segments.

11) LDV life cycle stages Well–to–wheel (energy chain) and vehicle manufacturing in an aggregate representation. Households purchase some outputs from

the service sector and “other industries” (i.e. inclusive of auto manufacturing), so a fraction of the emissions attributable to these

sectors can be assigned to households. In Heywood et al.37, more detailed but generic vehicle production emissions are considered

(25 g CO2e km−1 for ICEVs, 43 g CO2e −1 for HFCEVs, none reported for BEVs, PHEVs, HEVs).

12) LDV cost The standard EPPA model uses aggregated vehicle costs (e.g. PHEV costs are 30% higher than ICEV costs).265 In Heywood et

al.37 costs are based on bottom–up cost estimates of specific components, such as batteries, fuel cells, engines etc. Costs of ICEV

travel increase with increasing fuel cost and increasingly stricter fuel efficiency standards. Cost estimates for fuel cell vehicles seem

to be on the optimistic side [37, Figure 6.12 therein], as these are based on figures based on a report by the National Academies of

Sciences129 who assume that fuel cells are fully learned. Heywood et al.37 assumed 2014 energy prices of 3.04 USD gal−1 for E85,

3.34 USD gal−1 for gasoline, and 0.12 USD kWh−1 for electricity. Future fuel costs partially depend on gasoline tax assumptions.
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Factors/items EPPA benchmarking results

13) LDV efficiency In the standard model version,266, 267 there is a substitution elasticity between fuel and powertrain (capital, i.e. output from ‘other

industries’) inputs to the new–vehicle energy service. If constrained explicitly, or if the cost of fuel increases, households can

increase the share of ‘powertrain capital’ and decrease the share of ‘fuel’ required to produce a given service output (i.e. same

number of vehicle–miles). In Heywood et al.37, powertrain efficiency is simulated using the Autonomie tool. Efficiency improvement

opportunities include light–weighting, engine downsizing, and the addition of low rolling resistance tires, among others.

14) LDV policies / mitiga-

tion measures

Policies analyzed include carbon taxes, emission limits, tradeable permits, technology regulation,265 FESs, RFSs, gas and diesel

taxes,37 and a combination of an FES and an economy–wide carbon cap.268 Other mitigation strategies include lightweighting of

vehicles (which can be interpreted as a consequence of stricter FESs).37

LDV life cycle factors

1) Road infrastructure CO2 from cement production is included but not directly linked to road construction needs for vehicles. Monetary requirements

and embodied emissions of road infrastructure construction are considered in the aggregate energy–intensive industry sector in the

input–output representation of the model.

2) Ancillary infrastructure Ancillary infrastructure is represented in a stylized fashion in the vehicle choice algorithm of the model.37 Monetary requirements

and embodied emissions of ancillary infrastructure construction are considered in the aggregate energy–intensive industry sector in

the input–output representation of the model.

3) Vehicle components Material and energy inputs into specific vehicle components are not treated explicitly. In Heywood et al.37 vehicle body, drive

type, engine, and efficiency features are considered, and so is the added weight from new features, which impacts fuel economy. EV

battery capacities are taken into account. A 12 kWh EV battery roughly translates to 34 miles (55 km) electric driving range.
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Factors/items EPPA benchmarking results

4) Vehicle materials The specific materials used in vehicles are within aggregate sectors through the use of input–output tables. In Heywood et al.37

weight savings due to different materials are considered, and affect fuel economy.

5) Real–world energy use In Heywood et al.37 a uniform on–road/aggressiveness factor of 0.8 is considered across all technologies. On–road fuel economy is

calculated by multiplying laboratory fuel economy values by the on–road factor. For PHEVs, adjustment factor is only applied to

miles driven on gasoline. Paltsev et al.267 apply ICCT’s correction factors to estimate on–road fuel performance (of the EU vehicle

fleet).

6) Multi–fuel use The default version of EPPA assumes that PHEVs operate on electricity 60% and 40% on electricity.265 In Heywood et al.37 a

“petroleum displacement” factor of 65% (constant over time) is assumed for PHEVs. Fuel use shares are not considered for other

MFVs.

7) EV–power system inter-

action

It is assumed that EVs charge the average electricity mix. “We do not model hourly pricing or separately represent base load,

peaking, and shoulder generation, nor do we represent regional differences in the electricity mix across the United States that could

affect the marginal emissions rates for the PHEV fleet” [37, p. 257 therein].

8) Biofuel emissions Land use change is included, distinguishing five different land use types: crop, pasture, managed forest, forest and natural grass.

Biofuel technologies include ethanol from corn, sugarcane, sugar beet and wheat; and diesel from palm fruit, soybeans and

rapeseed/canola, and cellulosic. CO2 emissions from deforestation and biomass burning and CH4 from deforestation burning are

included. Land use change emissions are assumed negligible in Heywood et al.37: “These numbers are based on the assumption that

the land use changes in producing these substantial volumes of biomass–based ethanol do not result in significant CO2 emissions from

this land use change. This assumption is increasingly viewed as unrealistic. Thus these biofuels benefits could well be overestimated.”
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9) Crude oil grade Different crude oil grades and their differences in carbon content are not considered in the EPPA standard version. In Heywood et

al.37 a world average crude oil is assumed to consist of 82% conventional crude, 13% Canadian tar sand, and 5% Venezuelan heavy

and sour crude. Tar sand gasoline cars have a higher well–to–wheel GHG balance than conventional gasoline cars.

10) Methane leakage Methane from coal seams, petroleum production, natural gas transmission and distribution losses and other sources is included.265

Biogenic methane release from hydro power is not mentioned.

11) Vehicle age A simplified vintage stock model is used. Two vintages, new (0–5 years) and used (older than 5 years), are distinguished.

12) Travel demand Travel demand is a function of income growth.

13) Vehicle mix Consumer vehicle choice is calculated endogenously. Technology growth follows Bass diffusion curves and can be restricted by

maximum growth rates. A time lag in technology deployment is considered as well. HFCEV shares are based on optimistic fuel cell

system costs [37, Figure 6.12 therein] (based on figures from NAS129 who assume that fuel cells are fully learned).
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Table C.3: GCAM benchmarking results

Factors/items GCAM benchmarking results

General items

1) Model core and solver GCAM is an integrated model of the energy, land, agricultural, water, and climate systems that calculates equilibria between supply

and demand globally and regionally for a number of modeled commodities in 32 global regions. The solution is a partial equilibrium

as not all markets are represented in the solution (as would be the case in a general equilibrium). The solution algorithm is recursive

dynamic, i.e. agents do not have any foresight about the future when making a decision today.

2) Model extensions GCAM is linked to a reduced–form climate model.

3) Future GDP Future GDP and population are exogenous to the model.

4) Time horizon 2010–2100, 5–year time steps.

5) Regions 32 geopolitical regions; there are 384 land use regions for the agricultural, land use, and hydrological systems, which are constructed

from the intersection between the geopolitical regions and 235 global hydrologic basins.

6) GHGs All GHGs and other radiative forcing agents, including CO2, CH4, N2O and SO2.

7) Sectoral detail Three end–use sectors (transport, buildings, industry), agriculture, land use, water. The buildings sector is divided into residential

and commercial.
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8) Transport sectors Transport is divided into two fundamental demand types (freight and passenger), each of which is supplied with a range of modes

and vehicle technologies. Passenger transport is provided by LDVs, two–wheelers, three–wheelers, bus, passenger rail, high speed rail,

aviation (short & medium distance, long distance), and non–motorized modes. Freight shipping is provided by freight truck, freight

rail, and water–borne shipping (domestic, international). The demands are driven by exogenous population and GDP assumptions,

the services are represented in physical units (passenger–km and tonne–km, respectively), and the allocation of service and energy

to modes and specific vehicle technologies is driven by costs, which include value of time, capital and non–fuel operating costs, and

fuel costs.

9) Electricity conversion

technologies

Biomass (conventioal, IGCC, con. CCUS, IGCC CCUS), coal (PC, PC CCUS, IGCC, IGCC CCUS), gas (CC, steam/CT, CC

CCUS). refined liquids (steam/CT, CC, CC CCUS), nuclear (gen II LWR, gen III), CSP, CSP w/ storage, PV, PV w/ storage,

wind, wind w/ storage, rooftop PV, geothermal.

10) LDV technologies The range of vehicle size classes are region–specific; the USA has four LDV segments (compact car, midsize car, large car, light

truck and SUV). All LDV size classes have five technologies represented (ICEV gasoline, CNG, HEV, BEV, HFCEV). No PHEVs

considered.
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11) LDV life cycle stages Well–to–wheel (energy chain). LDV manufacturing is included in industrial sector and not linked to LDV activity. LDV distribution

is included in freight sector and not linked to LDV activity. LDV fuel consumption and transformation–related energy use (for

refining, electricity generation, hydrogen) are explicitly included. Fuel consumption for fuel distribution is explicitly included for

electricity and natural gas, whereas energy used for distributing liquid fuels is accounted for in the freight sector. Vehicle end–of–life

is included in the freight and industrial sectors and not linked to LDV activity. “The full fuel cycle of each fuel is represented, from

primary energy production and transformation to delivery to the transportation sector. This includes biomass from an agriculture

and land use model. No other upstream inputs to the sector are considered (e.g. vehicle manufacturing, roads). Transportation

in GCAM does not include pipeline energy use, or infrastructural energy used (e.g. airport operations, highway construction and

maintenance).”257

12) LDV cost LDV capital costs of ICE and hybrid–electric vehicles are based on current market data; values in OECD regions are held constant,

while costs in developing countries are assumed to increase over time as more features are added. BEV costs are determined by

subtracting the engine cost of the corresponding ICEV, and adding in the cost of the electric motor and batteries. Initial battery

cost are 1,000 USD kWh−1 in 2005 and fall to 137 USD kWh−1 by 2095. In more progressive scenarios, costs decline faster. Fuel

cell costs are quite optimistic based on a report by NAS.129 Further cost components are fuel cost, maintenance cost, fuel taxes,

infrastructure costs. The latter is either reflected as road toll or fuel tax. In GCAM–USA155 current and future energy prices are

largely based on EIA’s Annual Energy Outlook 2016.

13) LDV efficiency Efficiency increases are exogenous within each modeled vehicle technology; the rates of improvement are faster in the near–term

than the long term (about 0.75% year−1 to 2035, and about 0.1% year−1 after 2050), and can differ by scenario or by study.269
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14) LDV climate policies /

mitigation measures

Fuel economy standard, road toll, fuel tax, and carbon tax may be explicitly considered.

LDV life cycle factors

1) Road infrastructure Not included in the transportation sector. Construction energy use is in the industrial sector, in which cement production–related

energy and emissions are explicitly modeled.

2) Ancillary infrastructure Costs of fuel stations (around 2 ct. vkm−1) is included. Material or energy inputs into ancillary infrastructure are not explicitly

considered.

3) Vehicle components Mass of different components, such as engine, motor and battery, and vehicle curb weight are considered. Different vehicle

characteristics, such as battery capacity and engine displacement are considered. BEV and HFCEV battery energy densities are

taken into account (4.76 kg kWh−1), and remain constant over the modeling time horizon (2005–2095). HEV battery energy density

is assumed constant at 16.7 kg kWh−1. No material needs are considered.

4) Vehicle materials Steel production is included in the model but not linked to vehicle production.

5) Real–world energy use Assumed fuel consumption of 2005 ICEVs (liquid fuels) ranges from 2.91 to 4.0 MJ vkm−1 (81–111 kWh vkm−1), depending on size.

EPA’s adjusted fleet average value of 90 kWh vkm−1 is well within that range.

6) Multi–fuel use MFVs are not considered.

7) EV–power system inter-

action

Electric vehicles are assumed to be charged by the average electricity mix. A dispatch or merit–order model is not included in

GCAM.

8) Biofuel emissions Bioenergy production is modeled in the agriculture and land use module.151 Increased demand of biofuels reduces oil demand

through a link between the energy and the agriculture sector.
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9) Crude oil grade Crude oil and unconventional oil are considered but their carbon content is not distinguished, nor linked to fuel production for use

in vehicles. In addition, “the difference in carbon content of crude oil and refined fuels is assumed to be negligible”.50

10) Methane leakage Upstream CO2 and CH4 incl. fugitive CH4 emissions from natural gas, oil, and coal production are considered. Activities in the

transportation sector indirectly drive these emissions due to their effect on fuel demands. Biogenic methane release from hydro

power is not considered.

11) Vehicle age Vintage tracking is implemented.

12) Travel demand Transport demand is a function of per–capita GDP, the total service price aggregated across all transport sectors, population and

income and price elasticities. LDV travel is projected to grow by an average of 1% per year from 2017 to 2040.

13) Vehicle mix Endogenously determined using a calibrated logit formulation. PHEVs are not considered. HFCEV shares are based on optimistic

fuel cell system costs from NAS129 who assume that fuel cells are fully learned. The range of vehicle size classes are region–specific;

the USA has four LDV segments (compact car, midsize car, large car, light truck and SUV).
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Table C.4: NEMS benchmarking results

Factors/items NEMS benchmarking results

General items

1) Model core and solver General equilibrium. The Integrating Module uses the Gauss–Seidel algorithm for solving a set of linear equations simultaneously.

2) Model extensions NEMS’ Macroeconomic Activity module uses the following models from IHS Markit: Macroeconomic Model of the U.S. Economy,

National Industrial Output Model, and the National Employment by Industry Model, as well as EIA’s model of the regional

economies. NEMS does not integrate a climate module.

3) Future GDP Calculated within IHS’ Macroeconomic Model of the U.S. Economy. (The Macro module is usually deactivated unless used for the

Annual Energy Outlook). National population by age cohort and GDP of major trading partners are exogenous inputs to this model.

4) Time horizon Through 2050, annual steps.

5) Regions Regional detail can differ across different modules. The Macroeconomic module distinguishes 9 US Census Divisions. Emissions and

mitigation costs are calculated for these nine regions. Within the International Energy Market module the US is set within the

global energy market (one global region). The Electricity Market Module distinguishes 15 US electricity supply regions.

6) GHGs CO2, complete GHG coverage for fuels under the Renewable Fuel Standard.

7) Sectoral detail Sectoral detail differs across different modules. The Industrial Output Model is a 2007 input–output model of the US economy

distinguishing 73 sectors, including four non–manufacturing industries, five mining industries, four construction sectors, 14 services,

and the remainder being manufacturing industries. The construction sector distinguishes general construction, construction of

buildings, heavy and civil engineering construction and specialty trade contractors.

8) Transport sectors LDVs, aviation, freight (trucking, shipping, rail) and others (mass transit, recreational boating, military).
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9) Electricity conversion

technologies

Coal, natural gas and petroleum technologies, wind, geothermal, solar photovoltaic, solar thermal, landfill gas, biomass, hydropower,

conventional nuclear, advanced nuclear light water reactor, several environmental control technologies such as carbon capture,

scrubbers, filters, and nitrogen oxides reduction.

10) LDV technologies Six car sizes, six light truck sizes, 86 conventional fuel–saving technologies for light–duty vehicles; gasoline, diesel, and fourteen

alternative fuel vehicle types: flex–fuel methanol, flex–fuel ethanol, dedicated ethanol, dedicated CNG, dedicated LPG, CNG/LNG

bi–fuel, LPG bi–fuel, dedicated electric, diesel/electric hybrid, plug–in gasoline/electric hybrid, gasoline/electric hybrid, methanol fuel

cell, hydrogen fuel cell, and gasoline fuel cell. Fuels include different types of gasoline (conventional (oxygenated and non–oxygenated),

reformulated, and California reformulated gasoline), distillates (kerosene, heating oil, low sulfur (LSD) and ultra–low–sulfur (ULSD)

highway diesel, distillate fuel oil, and distillate fuel from various non–crude feedstocks (coal, biomass, natural gas) via the Fischer–

Tropsch process (BTL, CTL, GTL)), alternative fuels (Biofuels (including ethanol, biodiesel (methyl–ester), renewable diesel,

biomass–to–liquids (BTL)], coal–to–liquids (CTL), gas–to–liquids (GTL), liquefied petroleum gas (LPG)).

11) LDV life cycle stages Well–to–wheel (energy chain).

12) LDV cost Vehicle costs are included. Dated EV battery costs assumed. Motor gasoline prices increase from 2.59 USD gal−1 up to 3.66 USD

gal−1 between 208 and 2050 in the reference case, and up to 5.57 USD gal−1 in the high oil price scenario.

13) LDV efficiency Efficiency improvement factors exist for different efficiency improvement technologies, e.g. material substitution, drag reduction,

5–speed automatic transmission, continuous variable transmission (CVT), automated manual transmission, VVL–6 cylinder, camless

valve actuation 6 cylinder, electric power steering, 42V–launch assist and regenerative braking.
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14) LDV policies / mitiga-

tion measures

“The transportation module can evaluate a range of policy issues, including fuel taxes and subsidies; fuel economy performance

by market class; fuel economy standards for light, medium, and heavy–duty vehicles; vehicle pricing by market class; demand for

vehicle performance within market classes; fleet vehicle sales by technology type; alternative–fuel vehicle sales share; the California

Low–Emission Vehicle Program; changes in vehicle–miles traveled (VMT); and various other policies and developments related to

transportation energy use and greenhouse gas emissions”,270 R&D policy (optimistic technology scenario).

LDV life cycle factors

1) Road infrastructure Through input–output tables, monetary inputs into the transport equipment sector is represented in an aggregated way. Process

emissions of clinker production at cement manufacturers are considered. Cement production is driven by the level of construction

activity, which is projected by the MAM (Macroeconomic Activity Module) and transferred to the IDM (Industrial Demand Module)

as an input.

2) Ancillary infrastructure Total number of refueling stations needed is calculated, including gasoline, diesel, ethanol, methanol, CNG/LNG, LPG, electricity,

and hydrogen stations/chargers. Costs for station infrastructure is considered. Through input–output tables, monetary inputs into

the transport equipment sector is represented in an aggregated way.

3) Vehicle components Battery costs and capacities are included but no material requirements. Fixed battery energy densities (inversed) are assumed, e.g.

0.000842 kwh per vehicle pound for PHEV–10, or 0.00344 kWh per vehicle pound for PHEV–40.

4) Vehicle materials Through input–output tables, material inputs into the transport equipment sector is represented in an aggregated way, in monetary

units. Material substitution is further represented in a highly stylized fashion as a fuel efficiency improvement factor.

5) Real–world energy use Fleet–wide fuel consumption values are based on official values provided by the NHTSA and do not correspond with EPA’s adjusted

values.
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6) Multi–fuel use An alternative fuel choice logit model based on fuel price and fuel availability is used to calculate fuel shares for MFVs, including

PHEVs, bi–fuel and flex–fuel vehicles. Utility factors for PHEVs are 0.21 for PHEV–10 and 0.58 for PHEV–40.

7) EV–power system inter-

action

Dispatch modeling allows for marginal and average cost pricing. Dispatch is determined for representative hours (three seasons by

three times of day). Average electricity emissions are linked to the vehicle life cycle.

8) Biofuel emissions Life–cycle carbon emission intensities are included for 24 different fuels, including different types of biofuels. Upstream emissions

include indirect land use change. Carbon intensities for biofuels are based on life–cycle factors by the California Air Resources

Board.

9) Crude oil grade Five different crude oil grades are distinguished, according to their API gravity and sulfur content. Differences in upstream emissions

of different crude oil grades are not linked to fuel production.

10) Methane leakage Methane emissions are not included.

11) Vehicle age Twenty vintages are distinguished within a vintage stock model. Age–dependent driving schedules (vehicles tend to be driven less

with increasing age) are considered. An MPG degradation factor is considered.

12) Travel demand Vehicle sales are calculated endogenously in MAM (Macroeconomic Activity Module) as a function of energy product prices,

population, GDP and personal income. Vehicles sales are converted to vehicle travel demand by applying exogenous assumptions of

annual vehicle mileages by technology and vintage. It is not considered that EVs may lead to higher vehicle ownership rates per

household.
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13) Vehicle mix Discrete choice model simulates consumer choice. Manufacturer technology choice is considered as well and takes into account

requirements of CAFE and potential regulatory cost of failing to meet CAFE. Nine manufacturer groups are considered. Dated EV

battery costs assumed. Six car sizes, six light truck sizes.
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Table C.5: IMACLIM–R benchmarking results

Factors/items IMACLIM–R benchmarking results

General items

1) Model core and solver General equilibrium, annual recursive-dynamic iteration (simulation), i.e. no inter-temporal optimization.153, 271, 272

2) Model extensions A climate and a land use module are integrated in IMACLIM-R. The representation of LDVs is based on EIA’s SMP model.273

3) Future GDP Population and GDP drivers (active population and labour productivity) are exogenous. GDP itself is endogenous.274

4) Time horizon 2001–2050 (or 2100), yearly time steps.

5) Regions 12 (USA, Canada, Europe, OECD Pacific, Commonwealth of Independent States, China, India, Brazil, Middle East, Africa, Rest of

Latin America, Rest of Asia). Regions are connected through trade of goods, capital and emissions permits.

6) GHGs CO2 from fossil fuel combustion and industry. Non-CO2 forcing agents are not explicitly tracked but represented in the climate

module by an exogenous forcing factor.

7) Sectoral detail Five energy sectors (oil extraction, gas extraction, coal extraction, refinery, power generation), four transport sectors, construction,

agriculture, energy intensive industry, services and light industry.

8) Transport sectors Three transport sectors (air, maritime and terrestrial) and four modes for passenger mobility (private vehicles, non-motorized, public

transport and air). Private vehicles, and non-motorized transport are not productive sectors per se, they are “self-produced” services

by households for own use.

9) Electricity conversion

technologies

26 power plant technologies (15 conventional including coal, gas, oil, nuclear, hydro and 11 renewables, including biomass, wind, PV,

CCS, BECCS). Characteristics of technologies are calibrated on the POLES model.
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10) LDV technologies Initially, the model included only HEVs and ICEVs (standard and improved).153 Technological detail has been improved in McCollum

et al.:214 ICEV (gasoline, diesel, biofuel, synthetic fossil fuel), HEV (gasoline, diesel, biofuel, synthetic fossil fuel), PHEV-20 (gasoline,

diesel, biofuel, synthetic fossil fuel), BEV-150. Other studies using IMACLIM-R may model different technologies.

11) LDV life cycle stages Direct tailpipe CO2 emissions only .214 “As a CGE model all GHG-emitting and energy producing/consuming sectors are included.

This implies that indirect energy use and emissions from fuel production and vehicle manufacture are included, but in the energy

transformation and industry sectors”.219

12) LDV cost Purchase costs, fixed and variable maintenance cost are included. All cost data is calibrated with IEA data and evolve over time.

Purchase costs reduce through learning-by-doing.

13) LDV efficiency “Hybrid vehicle technology is assumed to improve so as to make possible consumption levels in the order of 1.5 litres per 100

kilometres. This figure can also be understood as being an average of electrical vehicles and rechargeable hybrid vehicles”.153 In

addition, efficiency of the LDV fleet may improve as a result of technology shifts towards more efficient technologies.

14) LDV policies / mitiga-

tion measures

Carbon/energy tax, permit trading, specific technology subsidies, regulations, investments into public transport infrastructure.

LDV life cycle factors

1) Road infrastructure CO2 emissions from the industry sector are included. Industrial demand of cement and metals is included but not linked to road

construction. Costs of road infrastructure and public transport infrastructure are included to estimate the demand for transport and

how infrastructure capacity evolves over time. Infrastructure congestion is also considered.220, 275
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2) Ancillary infrastructure Ancillary infrastructure such as electric chargers, fuel stations, parking infrastructure may be indirectly considered in overall demand

but it is not specifically treated in terms of material and energy requirements. Infrastructure availability and costs are part of the

discrete choice formulation in McCollum et al.214

3) Vehicle components Specific vehicle components, such as batteries or fuel cells are not considered.

4) Vehicle materials Industrial demand for metals (and cement) is included but not linked to vehicle production.

5) Real-world energy use Considered, based on IEA’s SMP model which takes an on-road efficiency “gap” factor into account, e.g. 22% for North America.

6) Multi-fuel use “In IMACLIM-R, ethanol and biodiesel are assumed to be directly usable in internal combustion engines (i.e., no engine modification

is necessary), by mixing with oil-based fuels (petrol and diesel, respectively) according to set proportions”.153 Fuel shares are not

specified. It is unknown how utility factors for PHEVs are treated.

7) EV–power system inter-

action

Power plant technologies compete either for base load or peak load generation, following a load curve. Average electricity emission

rates are calculated and linked to EV charging.

8) Biofuel emissions CO2 emissions from land use change included in overall solution but not linked to the fuel life cycle.

9) Crude oil grade Six different grades of oil reserves are distinguished according to the cost of exploration. The carbon intensity of different crude oil

grades is not defined. The carbon content of gasoline therefore does not vary depending on the crude oil source.

10) Methane leakage No CH4 emissions considered, thus CH4 leakage from coal and gas production and distribution or biogenic CH4 release from hydro

power is not considered.

11) Vehicle age Considered based on stock-vintage representation of vehicles.
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12) Travel demand “The mobility demand and modal split result endogenously from household’s utility maximization under constraints of revenues and

time spent in transport. Each mode is characterized by a price and a speed. The price of car mobility depends on fuel prices and

the cost of car ownership, while other modes by the intermediate consumption shares and prices within the general equilibrium

framework. When infrastructure use reaches congestion, the marginal speed of the mode decreases, which limits its use”.219

13) Vehicle mix Calculated endogenously based on a logit discrete choice model. HFCEVs are not considered as a competing technology.
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Table C.6: GEM–E3 benchmarking results

Factors/items GEM–E3 benchmarking results

General items

1) Model core and solver General equilibrium, recursive-dynamic (simulation) solved with mixed non-linear complementarity.

2) Model extensions In GEM-E3T, the GEM-E3 general equilibrium model is linked the PRIMES-TREMOVE economic-engineering model of passenger

and freight transport, which is part of the energy system model PRIMES. PRIMES also includes a biomass supply module. Tailpipe

emission factors are taken from the COPERT model.

3) Future GDP Calculated endogenously as a function of technological progress, population, labor productivity improvements, degree of market

competitiveness, and other assumptions.

4) Time horizon Up to 2050, 5-year steps.

5) Regions 38 (28 EU Member states, USA, Japan, Canada, Brazil, China, India, Oceania, Russia, rest of Annex I, rest of world). Regions are

linked through endogenous bilateral trade based on the Armington assumption that imported and domestically produced goods are

imperfect substitutes.

6) GHGs Kyoto gases (CO2 from energy and industrial processes, CH4, N2O, F-gases).

7) Sectoral detail GEM-E3T distinguishes 30 sectors, including agriculture, oil seeds, coal, crude oil, oil refining, gas, electricity supply, ferrous

metals, non-ferrous metals, chemicals, paper, non-metallic minerals, electric goods, transport equipment excl. EVs, EVs, other

equipment, consumer goods, construction, transport (air, road-freight, road-passenger, rail-freight, rail-passenger, water-freight,

water-passenger), market services, non-market services, ethanol, biodiesel.
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8) Transport sectors Transport equipment excl. EVs, manufacturing of EVs, air, road-freight, road-passenger, rail-freight, rail-passenger, water-freight,

water-passenger. PRIMES-TREMOVE provides more granular data on several transport segments, such as cars (small, medium

large), motorcycles, mopeds, buses, heavy trucks, airplanes, rail, inland navigation etc.

9) Electricity conversion

technologies

10 (coal, oil, gas, nuclear, biomass, hydro, wind, PV, CCS coal, CCS gas).

10) LDV technologies McCollum et al.214 model ICEV (gasoline, diesel, biofuel), HEV (gasoline, diesel, biofuel), PHEV-40 (gasoline, diesel, biofuel),

BEV-250. Siskos et al.276 also include HFCEVs, flex-fuel vehicles, as well as LPG and LNG ICEVs but use the PRIMES-TREMOVE

model as a stand-alone tool without linking it to GEM-E3. PRIMES-TREMOVE also includes different segments such as small,

medium and larger passenger cars and light trucks. The core version of GEM-E3T includes conventional vehicles (using gasoline,

diesel of biofuels), plug-in hybrids (using electricity, petroleum products or biofuels) and battery electric vehicles.

11) LDV life cycle stages Well-to-wheel (energy chain). “[T]he model relates the operation of the transport means to sectors producing the energy commodities,

including alternative fuels, such as electricity and biofuels”.214 “[L]ife cycle evaluations of energy supply, resources, prices, costs-

investment and emissions” are part of the PRIMES model.277

12) LDV cost Costs include purchasing cost, running costs (including fuel purchase cost) and cost factors reflecting uncertainty, technology

maturity and the availability of recharging or refueling infrastructure. “The techno-economic parameters are exogenously assumed

and change over time.”219 Cost of EV batteries fall as a function of production volume (endogenous learning by doing) and as a

function of cumulative expenditure for R&D in batteries (endogenous learning by research).278
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13) LDV efficiency Fuel consumption of vehicles is calculated in COPERT as a function of speed, trip length, occupancy factor and load factor. Different

passenger car types with different energy efficiencies compete against each other based on a Weibull function function driven by

relative costs of competing options.

14) LDV policies / mitiga-

tion measures

Energy efficiency standards (applied on a tank-to-wheel basis), CO2 standards (tank-to-wheel basis), carbon tax (exogenous tax),

emissions cap (endogenous tax), emission allowances, emission reduction target, emissions trading, fuel tax, technology subsidies.

LDV life cycle factors

1) Road infrastructure CO2 from cement, chemicals and nonmetallic minerals production is included279 and is linked to aggregate construction sector

through input-output tables. The construction sector is linked to the transport sectors but does not distinguish different road types

or ancillary infrastructures, such as parking infrastructure. Subsidies and expenditures for public infrastructure are also considered.

2) Ancillary infrastructure Refueling and recharging infrastructure costs and availability are included in the vehicle discrete choice formulation of PRIMES-

TREMOVE (and can also be included in the vehicle choice formulation of GEM-E3T).

3) Vehicle components Costs of vehicles and selected components (like batteries) are considered. “Manufacturing of vehicles distinguishes production of

conventional vehicles and electric vehicles, so as to capture price differentials of car types and the impacts of global competition in the

manufacturing of new car types. The sector producing electric vehicles has endogenous learning functions reflecting the possibility of

cost reduction, mainly for batteries, as a function of production volume.”159 Within the PRIMES–TREMOVE transport model280,

battery energy density is assumed to improve over time.

4) Vehicle materials Ferrous metal production is included279 and linked to aggregate transport equipment sectors via input-output tables.

5) Real-world energy use PRIMES-TREMOVE uses COPERT correction factors. “Electricity consumption for plug-in hybrids and pure electric vehicles is

being calculated using suggested efficiency figures from IEA and Argonne National Laboratory from the U.S. DOE.”277
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6) Multi-fuel use Siskos et al.276 mention: “The CO2 emissions from PHEVs depend on the rate of use of their electric motor or the fraction of

the trip that is powered by electricity” and quote a study by Samaras and Meisterling281 who use utility factors to determine the

fuel share for PHEVs. This is applied in PRIMES-TREMOVE as a stand-alone tool. The GEM-E3T model uses the bottom-up

information from PRIMES-TREMOVE to estimate average rates of use of alternative fuels in plug-in hybrids (electricity, biofuels

and oil products); these are then used as constant factors in GE modeling.

7) EV–power system inter-

action

EV charging is based on the average electricity mix. A power plant dispatch model for deriving marginal electricity emission rates is

included in the full-scale PRIMES model and can derive the marginal electricity mix used for battery recharging.

8) Biofuel emissions N2O emissions from agriculture are considered and production of biogasoline and biodiesel uses feedstock from the agricultural

sectors. COPERT accounts for LULUC emissions and assigns emissions to forestry sector. The PRIMES-Biomass Supply Model is

linked to the transport model and evaluates biomass life-cycle emissions.

9) Crude oil grade Different types of crude oil and the differences in carbon content are not differentiated. The model distinguishes between different

types of refined oil products used in transport (diesel, gasoline, kerosene, LPG and others).

10) Methane leakage Methane from gas and and coal mining, and oil exploration are considered279 but not linked to the fuel life cycle. Biogenic methane

from hydro power is not considered either.

11) Vehicle age Vehicle stock model included.

12) Travel demand PRIMES-TREMOVE projects passenger transport activity and fuel use endogenously as a function of GDP, income, energy prices

and modal shifts (behavior). These projections are reproduced by GEM-E3T in the Baseline scenario projection.
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Factors/items GEM–E3 benchmarking results

13) Vehicle mix Calculated in PRIMES-TREMOVE using a discrete choice model (Weibull distribution) and reproduced in GEM-E3 (also using a

Weibull function). Cost of EV batteries fall as a function of production volume (endogenous learning by doing) and as a function of

cumulative expenditure for R&D in batteries (endogenous learning by research).278 PRIMES-TREMOVE also includes different

segments such as small, medium and larger passenger cars and light trucks.
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Table C.7: AIM/CGE benchmarking results

Factors/items AIM/CGE benchmarking results

General items

1) Model core and solver General equilibrium, mixed complementarity, recursive dynamic.

2) Model extensions AIM-CGE can be linked to the bottom-up technology-rich global model AIM/Enduse, the AIM/Transport model, which has a

detailed transport sector representation, the land allocation model AIM/PLUM, and the MAGICC reduced form climate model.

3) Future GDP Future population and GDP are exogenous.

4) Time horizon 2005–2100, with one-year intervals.

5) Regions 17 (Japan, China, India, Southeast Asia, Rest of Asia, Oceania, EU25, Rest of Europe, Former Soviet Union, Turkey, Canada, US,

Brazil, Rest of South America, Middle East, North Africa, Rest of Africa).

6) GHGs All major GHGs and other climate forcers.

7) Sectoral detail End-use sectors include industry, transport, commercial, residential, non-energy use and other sectors (residential and commercial

are sometimes aggregated). Industry is broken down into iron and steel, chemicals, non-metallic minerals, food processing, pulp and

paper, construction, etc. Agriculture is broken down into rice, wheat, forestry, sugar crops etc.

8) Transport sectors Passenger cars, small and large trucks, passenger bus, ships, aircraft and rail. Rail, navigation, and aviation have freight and

passenger services.
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Factors/items AIM/CGE benchmarking results

9) Electricity conversion

technologies

Coal (PCC, SC-PCC, USC-PCC, AUSC-PCC, IGCC, SC-PCC CCS, USC-PCC CCS, AUSC-PCC CCS, IGCC CCS), oil CC, gas

(CC, ACC level 1–2, ACC CCS), hydro, geothermal, CCS, nuclear, wind (level 1–3), wind with storage (level 1–3), solar PV (level

1–4), PV with storage (level 1–4), waste biomass, advanced biomass (IGCC, IGCC CCS). Various hydrogen pathways are included

as well.

10) LDV technologies ICEV gasoline/diesel (including many efficiency technologies, e.g. weight reduction, engine friction reduction, aerodynamic drag

reduction, rolling resistance reduction, brake drag reduction, continuously variable transmission (CVT), variable valve life and time

(VVLT) and cylinder reactivation, direct injection), HEV gasoline/diesel, PHEV gasoline/diesel, BEV, HFCEV, biofuels.

11) LDV life cycle stages Well-to-wheel (energy chain). “Indirect energy use is treated in energy transformation sector”.219

12) LDV cost LDV costs are derived from AIM/Enduse.42 The default assumption is 0.5% annual improvement in future costs.282

13) LDV efficiency Energy efficiency of transport technologies are derived from AIM/Enduse.42 In Mittal et al., the base year energy efficiency for US

cars is 2.58 MJ pkm−1.283 Efficiency improvement factors are exogenous and a result of light-weighting and other efficiency measures

(relative efficiency improvement per year assumed). Depending on scenario, Zhang et al.284 assume ICEV efficiency improvements

to range between 30% by 2100 and 50% by 2050.

14) LDV policies / mitiga-

tion measures

Carbon tax, emissions constraint with carbon tax.

LDV life cycle factors

1) Road infrastructure It is possible to represent transport infrastructure and congestion (as a function of travel time) in AIM/Transport.51 Process

emissions from cement production are included but not linked to vehicle infrastructure production.
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Factors/items AIM/CGE benchmarking results

2) Ancillary infrastructure Ancillary infrastructure such as electric chargers, fuel stations or parking infrastructure are not explicitly treated. Process emissions

from cement and metal production are included but not linked to vehicle infrastructure production.

3) Vehicle components Specifications of various vehicle components are not provided, e.g. capacity of batteries, or power of fuel cell system.

4) Vehicle materials Steel production sector is included but not linked to vehicle cycle [282, p. 318 therein]. Efficiency improvements are assumed as a

result of light-weighting but upstream emissions of materials are not considered.

5) Real-world energy use Assumed US car fuel consumption values are higher than EPA’s adjusted values. Assumptions: 2005 US car energy use is 2.58 MJ

pkm−1 / 4.13 MJ vkm−1 (vehicle occupancy: 1.6 passengers) = 114.6 kWh vkm−1. Compare with EPA’s adjusted fuel economy for

an average 2005 car (non-SUV): 23.5 MPG (89 kWh vkm−1).189

6) Multi-fuel use Fuel shares of multi-fuel vehicles are not mentioned.

7) EV–power system inter-

action

Average electric power plant emissions are linked to EV charging. No power plant dispatch model is employed.

8) Biofuel emissions “Bioenergy supply is assumed to cause no major land use change or additional CO2 emission in any of the scenarios in this study.”42

“AIM/Transport estimates relatively higher shares of biomass and electricity than other models. Due to the differences in energy

intensity and fuel structure, AIM/Transport projects a lower GHG emission trajectory.”51

9) Crude oil grade Different types of crude oil, e.g. conventional/unconventional, and their different carbon content, are not distinguished.

10) Methane leakage Fugitive emissions from fuel production are considered: “Coal mining (e.g., degasification for natural gas pipeline injection,

degasification for electricity, ventilation for electricity, ventilation oxidizer for heat), natural gas production and distribution (e.g.,

use of instrument air, use of low bleed pneumatic devices), crude oil production (e.g., flaring in place of venting, direct use of CH4,

reinjection of CH4).”42 Biogenic methane from hydro power is not considered.
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Factors/items AIM/CGE benchmarking results

11) Vehicle age The stock of new and old devices is considered (“Capital vintage is taken into account and the old and new capitals are aggregated

by the CES function”).285

12) Travel demand Passenger transport is determined as a function of GDP, generalized travel cost and population.

13) Vehicle mix Calculated endogenously using a multinomial logit type equation. Simplified cost assumptions: the default assumption is 0.5%

annual improvement in future costs282
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Table C.8: MESSAGE benchmarking results

Factors/items MESSAGE benchmarking results

General items

1) Model core and solver Partial equilibrium soft-linked to general equilibrium, inter-temporal optimization (linear programming) to assess the least-cost

investment and operation plan consistent with a climate target. Linear program optimization is used for the energy systems and

land-use modules, non-linear program optimization for the macro-economic module. MESSAGE can be run both with perfect

foresight and myopically.

2) Model extensions MESSAGE-Transport is a version of the mainline MESSAGE that includes a vehicle choice model. Other models that link to

MESSAGE include the MAGICC climate model, the MACRO aggregated macro-economic model, the GLOBIOM land use model

and the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model.

3) Future GDP Exogenous, based on Shared Socio-Economic Pathways database. MACRO adjusts GDP and consumption based on service demand

price changes, syste-mwide investments, and other inputs from MESSAGE.

4) Time horizon 1990 through 2100, in 10-year steps.

5) Regions 11 global regions (North America, Western Europe, Pacific OECD, Central and Eastern Europe, Former Soviet Union, Centrally

Planned Asia and China, South Asia, Other Pacific Asia, Middle East and North Africa, Latin America and the Caribbean,

Sub-Saharan Africa). Regions are linked through imports and exports.

6) GHGs All GHGs and other radiative forcing agents.
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Factors/items MESSAGE benchmarking results

7) Sectoral detail MACRO represents one uniform macro-economic sector. Specific modules within the overall integrated framework model the

agriculture sector (GLOBIOM), and the energy supply and conversion sector, including energy conversion, and energy demand for

transport (MESSAGE-Transport), industry and households. Industry is broken down into thermal and electric demand of total

industry, non-energy use, and cement process emissions. Industry is broken down into thermal and electric demand of total industry,

non-energy use, cement process emissions. Residential is broken down into thermal and electric demands. In MESSAGE-Transport,

the more detailed sectoral representation of transport is broken down into numerous modes, see below.

8) Transport sectors MESSAGE-Transport distinguishes LDVs, two-wheelers, freight trucks, passenger aviation, buses, passenger rail, and a residual

category covering freight aviation, freight rail and domestic shipping.

9) Electricity conversion

technologies

Super-/sub-critical PC with/without desulphurization/denox., IGCC, IGCC CCS, heavy fuel oil, light fuel oil, oil combined cycle,

gas steam, gas combustion, gas combined cycle, nuclear light water reactor Gen II / III+, nuclear high temp., nuclear fast breeder,

biomass steam, biomass IGCC, biomass IGCC CCS, large hydro, small hydro, solar PV, CSP, geothermal, wind (on- and offshore).

A total of more than 100 conversion and end-use technologies are explicitly considered.

10) LDV technologies MESSAGE-Transport distinguishes ICEV (gasoline, diesel / low, high, medium efficiency), ICEV (natural gas, biofuel, synthetic

fossil fuel), HEV (gasoline, diesel, natural gas, biofuel, synthetic fossil fuel), PHEV-40 (gasoline, diesel), BEV-100, HFCEV.214

11) LDV life cycle stages Well-to-wheel (energy chain). “All GHG-emitting and energy producing/consuming sectors are included. This implies that

indirect (i.e., lifecycle) energy use and emissions from fuel production and vehicle manufacture are included, but the latter (vehicle

manufacture) is not represented by a direct/endogenous linkage, rather only through the assumed future energy demands in the

industrial sector.”257

149



Factors/items MESSAGE benchmarking results

12) LDV cost Capital cost, fuel cost and operation & maintenance cost included. Fuel costs include potential fuel taxes. Future fuel costs are

“[e]ndogenously determined by supply sector part of model where fuel costs are determined by an exogenous sets of supply curves

and the prices are set when supply and demand are in equilibrium”.257 “The technoeconomic parameters for each technology are

exogenously assumed and change over time.’168 Costs of vehicle batteries or other specific components are not treated explicitly.

13) LDV efficiency Three different efficiency levels are assumed for ICEVs. Apart from that, efficiency improvements only occur through switching to

more efficient technologies.

14) LDV policies / mitiga-

tion measures

Economy- and sector-wide GHG and energy pricing, GHG emissions cap, fuel subsidies and taxes (and other monetary policies can

be modeled), vehicle sales mandates.

LDV life cycle factors

1) Road infrastructure CO2 emissions from cement production are included but not linked to road construction. Apart from that “energy transport and

distribution infrastructure is included in MESSAGE at a level relevant to represent the associated costs as well as transmission and

distribution losses”.219

2) Ancillary infrastructure Highly stylized representation. Fuel availability is part of the vehicle choice model in MESSAGE-Transport. “Within individual

model regions the capital stock of transmission and distribution infrastructure and its turnover is modeled for the following set of

energy carriers: electricity, district heat, natural gas, hydrogen”271

3) Vehicle components Not explicitly represented.

4) Vehicle materials Process emissions of producing steel and other vehicle-relevant materials are not explicitly represented, neither linked to vehicle

production.

150



Factors/items MESSAGE benchmarking results

5) Real-world energy use In McCollum et al.,214 the average ICEV fuel economy is assumed to be 30 MPG (0.698 kWh km−1, assuming gasoline fuel).

Compare with EPA’s adjusted fuel economy for an average 2005 car (non-SUV): 23.5 MPG (0.89 kWh km−1).

6) Multi-fuel use Not considered.

7) EV–power system inter-

action

In the standard version of MESSAGE, “[e]lectricity is considered as annual average load; there are no time-slices or load-curves”.271

In the ADVANCE project, several features have been added to account for power sector dynamics, for example: “Thermoelectric

technologies are represented in two modes of operation, baseload and flexible, to better account for the cost, efficiency, and availability

penalties associated with flexible operation.”286 Share-dependent flexibility and capacity constraints partially reproduce the shape of

a load duration curve.

8) Biofuel emissions In Yeh et al.257 it is stated that “[b]iomass is currently assumed to be carbon neutral. Feedstock production incurs no negative

emissions, and biofuels combustion incurs no positive emissions. Only second-generation biofuels are assumed to be available”.257 In

McCollum et al.214 biofuel upstream emissions have been updated and assumed to be 0, 15, 50 g CO2 MJ−1 (optimistic, central,

pessimistic). “[C]arbon sequestration and emissions associated with biomass growth and land use changes are included in the

agriculture and land use sectors”257 (within GLOBIOM). GLOBIOM can be used to calculate complete biofuel life-cycle emissions

when agriculture and energy sectors are linked.151 However, GLOBIOM is currently not linked to MESSAGE-Transport. (According

to private communication with the MESSAGE team linking of MESSAGE-Transport and GLOBIOM is anticipated for Spring 2019.)

9) Crude oil grade The varying carbon content of processing different fuel grades (conventional vs. unconventional) is considered in the model, and

therefore well-to-wheel carbon intensity may change over time or may differ by region at a given point in time.

10) Methane leakage CO2 from gas flaring is included. CH4 sources include production and transport of coal, natural gas, and oil, including pipeline

leakages. Biogenic CH4 release from hydro power is not considered.
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Factors/items MESSAGE benchmarking results

11) Vehicle age Included through a vintage model.

12) Travel demand In MESSAGE-Transport “[f]uture demand for passenger travel in the various modes is projected on a passenger-kilometer (pkm)

basis as a function of per-capita GDP, with gradual regional convergence”.214 “Total passenger transport demand (aggregate of all

modes) moves toward a saturation point (at the highest incomes reached in the very long term) of 150,000 pkm year−1.”257 In the

conventional MESSAGE version, a simplified “scenario generator” approach is used in which energy service demands are provided

exogenously.

13) Vehicle mix LDV technology mix and mode choice develop endogenously through the MESSAGE-Transport discrete choice model. “Passenger

mode choices are responsive to service prices and travel-money and travel-time constraints (via a soft-linked logit-based model).”168
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Table C.9: WITCH benchmarking results

Factors/items WITCH benchmarking results

General items

1) Model core and solver General equilibrium, inter-temporal optimization (non-linear and game-theoretic).

2) Model extensions WITCH is linked to the GLOBIOM land use-forestry-bioenergy model (partial equilibrium) and the MAGICC climate model. Some

parameters and assumptions regarding the transport sector are sourced from IEA SMP (the predecessor of IEA’s Mobility Model,

MoMo). These include vehicle fuel efficiency, and vehicle forecasts based on GDP and population.

3) Future GDP GDP and population forecasts are exogenous. GDP forecasts are based on projections made by the OECD. Population forecasts

follow the SSP2 “middle of the road” scenario, based on the projections developed at IIASA for the SSP database.

4) Time horizon 2005–2100, 5-year steps.

5) Regions 13 global regions.

6) GHGs Kyoto gases (CO2, CH4, N2O, short-lived and long-lived F-gases).

7) Sectoral detail One economic production sector that uses capital, labor and energy services; one electricity sector with 13 technologies; one transport

sector with two explicit modes; one aggregated non-electric sector (incl. industry, services, residential); one land use sector.

8) Transport sectors LDVs and road freight are explicitly modeled, while other transport modes are modeled indirectly in the aggregated non-electric

sector.

9) Electricity conversion

technologies

13 electric technologies: PC, IGCC CCS, NGCC, NGCC CCS, wind onshore, wind offshore, solar PV, CSP, nuclear, advanced

nuclear, bio, BECCS, hydro; six non-electric technologies: biomass, oil, gas, coal, traditional biofuels, advanced biofuels.
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Factors/items WITCH benchmarking results

10) LDV technologies ICEV (gasoline, diesel, biofuel), HEV (gasoline diesel, biofuel), PHEV-40 (gasoline, diesel, biofuel), BEV-250.214 Other studies

using WITCH may have modeled different technologies.

11) LDV life cycle stages Well-to-wheel (without biofuel upstream emissions). “Aspects such as infrastructure and the vehicle manufacturing are incorporated

in the overall GDP and representation of final goods.”219

12) LDV cost “A Leontief production function combines the operation and maintenance (O&M) costs, fuel cost, carbon cost and investment cost

associated with each vehicle type. These parameters have unique values for each vehicle type.”152 Vehicle and fuel costs differ across

time and regions. ICEV production costs are held constant at 2005 levels. EV battery costs decrease endogenously at a 14.4%

learning rate (learning by researching). 2010 lithium-ion battery costs are 550 USD kWh−1, which is a quite optimistic value. Costs

fall to 380 USD kWh−1 and 166 USD kWh−1 by 2020 and 2050. In a rapid battery cost improvement scenario, costs fall down to 51

USD kWh−1 by 2100.152 Carrara et al.287 focused on the heavy duty sector and assumed less optimistic battery costs following a

12.5% learning rate.

13) LDV efficiency Exogenous improvements assumed.

14) LDV policies / mitiga-

tion measures

Carbon tax, global carbon cap (450 or 535 ppm CO2e by 2100), R&D (rapidly falling EV battery costs), energy taxes and subsidies

(e.g. on gasoline and diesel in the transport sector, as well as gas and electricity in the stationary sector). (Biofuel levels are assumed

to meet the renewable energy targets set in the US and the EU).

LDV life cycle factors

1) Road infrastructure Indirectly considered in overall GDP and representation of final goods. Production of cement and other inputs into infrastructure

construction are not explicitly modeled.

2) Ancillary infrastructure Fuel infrastructure availability and costs are considered in the vehicle choice algorithm in McCollum et al.214
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3) Vehicle components Only EV battery capacity is specified.

4) Vehicle materials Vehicle manufacturing indirectly incorporated in overall GDP and representation of final goods. Production of steel and other inputs

into vehicle production are not explicitly modeled.

5) Real-world energy use Based on IEA SMP model which includes on-road efficiency gap factor (22% in North America in 2000). Uniform factor assumed for

all technologies.

6) Multi-fuel use Biofuel use in MFVs is limited to a maximum of 50% by 2020, then linearly increasing to 100% by 2100. PHEV utility factors are

not mentioned.

7) EV–power system inter-

action

Flexibility and capacity constraints with fixed parameters create demand for peak-load technologies and allow for output reduction.286

Average emission factors are calculated and linked to EV charging.

8) Biofuel emissions CO2 and CH4 from deforestation and afforestation, and CH4 and N2O from agriculture are accounted for based on GLOBIOM.

GLOBIOM can be used to calculate complete biofuel life-cycle emissions when linking the agriculture and energy sectors.151 “Land

use emissions are accounted for within WITCH, as are the emissions from the use of bio-energy as biofuel or when co-fired with

gas/coal with or without CCS.”152 Biofuel can be sourced either from traditional or advanced sources and are constrained to a

maximum of an E50 fuel mixture with oil-based fuels.

9) Crude oil grade Eight different oil grades are considered, and differentiated by extraction CO2 emissions and costs Lower cost resources are exploited

first. Carbon content of different grades is not considered and not linked to vehicle life cycle.

10) Methane leakage Emissions associated with coal and gas extraction are not considered. Hydro power is treated as carbon-free.

11) Vehicle age Vehicle aging is considered through a vintage stock model that is part of IEA SMP model.
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12) Travel demand Vehicle demand is calculated as a function of population and GDP projections, following IEA SMP modeling assumptions. Vehicle

demand is multiplied by constant annual travel demand to calculate total transport demand (in vehicle kilometers). Vehicle

kilometers are are multiplied by a load factor to calculate person kilometers.

13) Vehicle mix Least-cost minimization (life cycle costs (fixed operation and maintenance costs, fuel and investment costs)). Technology restrictions

can be imposed following an S-shaped diffusion path. EV battery costs decrease endogenously at a 14.4% learning rate (learning by

researching). HFCEVs are not considered.
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Table C.10: REMIND benchmarking results

Factors/items REMIND benchmarking results

General items

1) Model core and solver General equilibrium, intertemporal optimization with perfect foresight (the macro-economic core is a Ramsey-type optimal growth

model in which inter-temporal welfare is maximized).

2) Model extensions The macro-economic module is linked to an energy systems module. Land-use and agricultural emissions and bioenergy supply are

derived from the land-use and agricultural model MAgPIE. A reduced-form climate model MAGICC6 is used to convert emissions

into atmospheric composition, radiative forcing and climate change.

3) Future GDP Baseline population and GDP are inputs based on the Shared Socio-economic Pathway (SSP) scenarios. REMIND’s default

population projections (both total population as well as working age population) are based on IIASA (and the GDP scenarios from

the OECD). GDP in climate policy scenarios changes endogenously, as investments change in reaction to carbon prices/mitigation

policies.

4) Time horizon REMIND spans the years 2005–2100. 5-year steps for 2005–2060, 10-year steps for 2060–2100.

5) Regions The world is divided into 11 regions (US, China, India, Japan, Russia, EU, Latin America, sub-Saharan Africa w/o South Africa,

Middle East / North Africa / Central Asia, other Asia, Rest of world). The regions are linked via resource trade.

6) GHGs All Kyoto gases and other radiative agents. Non-CO2 GHG emissions are determined by applying marginal abatement costs curves

relative to baseline emission levels that depend on activity variables or by assuming exogenous scenarios.
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7) Sectoral detail Three end-use sectors are considered, namely residential/commercial, industry and transport, which are part of a CES (constant

elasticity of substitution) function. The buildings and industry sectors are users of electric and non-electric (gases, solids, liquids,

hydrogen, heat) energy sources.

8) Transport sectors “For passenger transport, we consider LDV (powered by liquids, electricity or hydrogen), Aviation and Bus (aggregated, only

powered by liquids) and Electric Trains (only powered by electricity). For freight transport, there is only one generic mode based on

liquid fuels.”271

9) Electricity conversion

technologies

A total of 50 energy conversion and end-use technologies are available. Around 20 electricity generation technologies are available,

including coal (conventional, CHP, ICG CC, oxyfuel), oil (diesel or turbine), gas (CHP, turbine, CC), nuclear (light water reactor),

solar (PV, CSP), wind, hydro, geothermal (hot dry rock), biomass (CHP, IGCC).

10) LDV technologies ICEV, BEV, HFCEV.

11) LDV life cycle stages Well-to-wheel (complete energy chain). The transport sector uses electricity, liquid fuels, and hydrogen. “Input of final energy in

different forms is required together with investments and operation and maintenance payments into the distribution infrastructure

as well as into the vehicle stock. Material needs and embodied energy are not considered.”219 Vehicle production and infrastructure

construction are not explicitly linked to/part of the vehicle life cycle.

12) LDV cost Investment costs, O&M costs, and fixed costs change over time in response to an endogenous learning curve. Costs of ICEVs remain

constant, BEVs and HFCEVs follow a 10% learning rate. Base year investment cost of an ICEV, a BEV and an HFCEV are: 11,000

USD, 26,000 USD and 32,000 USD. BEV and HFCEV floor cost are 15,000 USD. Fixed O&M cost are assumed to be 10% of

investment cost. Fuel costs are fully endogenized.
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13) LDV efficiency Simple efficiency factor for BEVs (3) and HFCEVs (2.5) relative to ICEVs (1) are used. “[T]he model can endogenously improve

end-use efficiency by investing in more efficient technologies for the conversion of final energies into energy services.”271

14) LDV policies / mitiga-

tion measures

Fuel taxes and subsidies, carbon cap, carbon tax, resource constraints.

LDV life cycle factors

1) Road infrastructure Investments are considered for energy distribution infrastructure, not for transport infrastructure. CO2 from cement production is

included, but not explicitly linked to road infrastructure construction. “[O]peration and maintenance payments into the distribution

infrastructure (infrastructure capacity grows linearly with distributed final energy)” is considered.271

2) Ancillary infrastructure Investments are considered for energy distribution infrastructure, not for ancillary transport infrastructure. Material and energy

needs of ancillary infrastructure are not explicitly considered either.

3) Vehicle components Specific vehicle components such as batteries (and their characteristics, costs, material and energy needs) are not explicitly considered.

4) Vehicle materials Steel emissions are considered but not explicitly linked to vehicle production. (“Emissions of the three largest industry sub-sectors

(cement, chemicals and steel production) can partially be abated by the use of CCS. [...] [E]missions of the sub-sectors are calculated

based on region-specific sub-sector shares in the use of CO2-emitting final energy carriers.”271)

5) Real-world energy use 2005 vehicle energy efficiencies are calibrated against IEA energy balances, and therefore account for the gap between real-world

efficiencies and labeled efficiencies in 2005. (IEA energy balances do not distinguish LDVs from other road transport modes.) The

model does not account for changes of the increasing gap since then.

6) Multi-fuel use Multi-fuel vehicles (MFVs) are not considered.
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7) EV–power system inter-

action

The power sector in REMIND captures the effects of adding wind and solar power to the power sector on a) capacity adequacy,

b) dispatch, c) storage and d) curtailment. Region-specific load duration curves with four load bands are considered.286 Average

electricity emission factors are calculated and linked to EV charging.

8) Biofuel emissions Three different feedstocks are considered but the main source of bioenergy supply is second generation biomass and ligno-cellulosic

and forestry residues, whereas first-generation bioenergy is assumed to phase out in the standard scenario. GHG emissions from

agriculture, forestry and land use are supplied by MAgPIE. LULUC emissions (CO2, CH4 and N2O) from biomass production

and negative CO2 emissions from bioenergy with CCS (BECCS) are considered and accounted for when using biomass to produce

transportation fuels.

9) Crude oil grade Three fossil resources are considered, oil, coal, gas, which are characterized by extraction cost curves (marginal cost of extraction

per unit of energy is a function of cumulative extraction). REMIND prescribes decline rates for the extraction of coal, oil, and gas.

The carbon intensity of different crude oil grades is not considered. Thus, variations in the carbon content of crude oil grades are

not captured in/linked to the production of gasoline.

10) Methane leakage CH4 from waste, land use change and fossil fuel extraction are considered as MAC curves. Upstream CH4 from coal and gas

production and biogenic CH4 from hydropower emissions have recently been added.171 These emissions are linked to transport

demand.

11) Vehicle age Considered through full vintage tracking for all technologies. Vehicle lifetime is 13 years.

12) Travel demand “Mobility from the different modes is an input to a CES function, the output of which is combined with stationary energy in a

CES function to generate a generalized energy good, which is combined with labor and capital in the main production function for

GDP.”219
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13) Vehicle mix “The distribution of vehicles inside the LDV mode follows cost optimization (perfect linear substitutability).”271 Costs of ICEVs

remain constant, BEVs and HFCEVs follow a 10% learning rate. HEVs and PHEVs are not considered. The share of BEVs is

restricted to 70%, HFCEVs to 90%. (Modal shift is possible too.)
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Table C.11: IMAGE benchmarking results

Factors/items IMAGE benchmarking results

General items

1) Model core and solver IMAGE is a partial equilibrium model that calculates equilibria between energy supply and certain energy demand sectors (as

opposed to all energy demand sectors in a general equilibrium model). The solution algorithm is recursive dynamic (simulation), i.e.

agents do not have any foresight about the future when making a decision today.

2) Model extensions Several models are integrated with IMAGE, e.g. the TRAVEL discrete choice model (part of the TIMER energy supply and demand

model), the MAGNET agro-economic general equilibrium model, the MAGICC 6.0 reduced-form climate model, the plant growth,

carbon and water cycle model LPJmL, the GLOBIO land use model, FAIR (climate policy), GLOFRIS (flood risks) and GISMO

(human development).

3) Future GDP The baseline relies on exogenous income and population projections from the OECD. The current main branch uses the SSP GDP

and population projections, with SSP2 being the ‘middle of the’ road baseline.

4) Time horizon 2005–2100. 1970–2005 data is used for model calibration.

5) Regions TAVEL and IMAGE cover 26 regions (Canada, USA, Mexico, Rest Central America, Brazil, Rest South America, Northern Africa,

Western Africa, Eastern Africa, South Africa, OECD Europe, Eastern Europe, Turkey, Ukraine, Asia-Stan, Russia, Middle East,

India, Korea, China, South East Asia, Indonesia, Japan, Oceania, Rest of South Asia, Rest of South Africa).

6) GHGs All GHGs and other radiative agents.
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7) Sectoral detail Transport, forestry, livestock, households, manufacturing, electricity, hydrogen, industry (includes heavy industry submodule with

two sectors, steel and cement), services. All energy demand sectors are represented but with varying detail (e.g. more detail in the

cement and steel sector). “The economy is represented separately in different model components, notably in the agriculture and

energy models with monetary feedback not well represented in the energy model.”288

8) Transport sectors Seven passenger transport modes (foot, bicycle, bus, rail, car, high-speed train, airplane) and six freight transport modes (national

and international shipping, air transport, medium trucks, heavy trucks and rail).

9) Electricity conversion

technologies

20 different power plant types using fossil fuels (oil, coal, natural gas) and bioenergy including CC, CHP, and CCS options; wind

and solar; hydro; nuclear. (11 hydrogen production pathways are included too.)

10) LDV technologies ICEV (gasoline, diesel / conventional, efficient), ICEV (biofuel, hydrogen), HEV (gasoline, diesel, biofuel), PHEV-10 / -30 (gasoline,

diesel, biofuel), BEV-90 / -150, HFCEV.214 Edelenbosch et al.137 assume a 45 kWh battery capacity of BEVs on average, with a

sensitivity range of 30–90 kWh. Battery energy density is not explicitly considered. Other studies using IMAGE may model different

technologies.

11) LDV life cycle stages Well-to-wheel (energy chain). The transport module is fully incorporated within IMAGE which means that all upstream fuel

emissions are accounted for. However they will be allocated to the upstream sectors in the reporting (e.g. biofuel upstream emissions

will be accounted for in the agriculture sector). Note that Girod et al.167 assume that hydrogen and electricity upstream emissions

are negligible. In addition, assumed biofuel upstream emissions are quite optimistic. Therefore, Girod et al. achieve a well-to-wheel

representation only for gasoline and biofuel used in vehicles. Deetman et al.150 consider upstream electricity emissions but use

TIMER as a stand-alone tool without a link to IMAGE. Other studies using IMAGE and TIMER may make different assumptions.
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12) LDV cost In Edelenbosch et al.137 baseline EV battery costs are in line with Nykvist et al.215 but costs can vary by scenario. For example,

the “market leader” scenario assumes battery costs to fall to 150 USD kWh−1 by 2025. Other studies may follow different cost

trajectories.289 Electricity and fuel costs develop endogenously over time.

13) LDV efficiency “Different vehicle types with different energy efficiencies compete against each other (based on the multinomial logit), which allows

for a change of energy efficiency of the mode.”219 Further exogenous energy efficiency improvements are possible. Mode shift is

possible too.

14) LDV policies / mitiga-

tion measures

Carbon tax (rising up to 249 USD t−1 in 2050,137) carbon storage price, EV subsidies, biofuel mandates and obligations, taxes on

energy use, climate target (defined in terms of concentration level, radiative forcing, temperature increase, or cumulative emissions),

efficiency standard (e.g. in transport, heavy industry, households), implementation of sustainability criteria in biofuel production.

LDV life cycle factors

1) Road infrastructure Cement and steel cycles are included. Cement process CO2 emissions are included but not linked to road infrastructure production.

Cost estimates are considered for energy supply infrastructure (e.g. pipelines), but not for road infrastructure.

2) Ancillary infrastructure Fuel station and electric charger availability is part of the discrete choice formulation in McCollum et al.214

3) Vehicle components Costs and capacity of EV batteries are considered.137 Specifications on battery energy densities have not been identified.

4) Vehicle materials Steel cycle is included, including CO2 emissions, but not linked to vehicle production. Embodied emissions of vehicles are included

in the industry sector.
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5) Real-world energy use Girod et al.167 use ICEV and HFCEV energy efficiencies reported by Ogden and colleagues.290 Ogden et al. assume an ICEV fuel

economy of 27 MPG. This value is slightly higher than the fleet average 2004 real-world fuel economy of 23 MPG.189 PHEV and

BEV fuel efficiencies are based on Kromer and Heywood,291 who adjust for aggressive driving using EPA’s US06 drive cycle. (“The

reason that US06 is deemed more appropriate is that the standard FTP and HWFET adjustments (0.9 and 0.78), which are used to

reflect “real-world” conditions, do not reflect the fact that marginal power in a blended mode plug-in hybrid come from the engine.

The fixed multipliers correct for real-world driving conditions by scaling the average fuel consumption, which includes both highly

efficient electric operation and peaking engine power. The aggressiveness of the US06 avoids this problem.”)

6) Multi-fuel use Generally, each vehicle is assumed to use one fuel [288, p. 80 therein]. Girod et al.167 assume that PHEVs use half electricity, half

gasoline. Other studies using IMAGE may make different assumptions.

7) EV–power system inter-

action

TIMER energy model distinguishes between baseload and peakload electricity generation and calculates demand on the basis of a

monthly load duration curve with 156 time slices. Technology dispatch occurs according to merit order.286 This potentially enables

calculation of marginal emission factors, however average emission factors have so far been used. Girod et al.167 assume that

electricity upstream emissions are negligible. Other studies using IMAGE may make different assumptions.

8) Biofuel emissions LUC emissions from clearing forests, indirect fertilizer N2O emissions, carbon uptake and release of plants included, and linked

to fuel life cycle. (Girod et al.167 linked exogenous biofuel upstream emission factors to available LDV technologies in an ad-hoc

fashion. With 30 g CO2e MJ−1 (108 g CO2e kWh−1), these are quite optimistic and much lower than current first generation

biofuels, cf. Figure C.2.)

9) Crude oil grade 12 resource categories for oil exist, including unconventional resources. Carbon content of crude oil grades vary, which is taken into

account in gasoline production.
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10) Methane leakage Several methane sources are included. Gas fueled cars are linked to gas production. Methane emissions during energy transport

are considered (indirectly considering pipeline leakage). Methane emissions during power production are considered, but biogenic

methane release from hydro power is not explicitly described in Stehfest et al.288

11) Vehicle age Vintage structure of the vehicle stock is implemented (15 years lifetime for cars).

12) Travel demand Determined endogenously as a function of GDP, population, fuel price, non-energy prices, vehicle load factor, mode preferences,

energy efficiency, mode speed, service demand per mode, on the basis of travel money budget (TMB) and travel time budget (TTB)

formulation.

13) Vehicle mix Discrete choice (logit). In Edelenbosch et al.137 baseline EV battery costs are in line with Nykvist et al.215 but costs can vary by

scenario.166



Table C.12: DNE21+ benchmarking results

Factors/items DNE21+ benchmarking results

General items

1) Model core and solver Partial equilibrium, intertemporal optimization with perfect foresight (linear programming). Total discounted energy systems cost is

minimized.

2) Model extensions DNE21+ assess energy-related CO2 emissions. A simple climate model based on MAGICC is integrated with DNE21+. Within the

RITE GHG Assessment Model framework, DNE21+ is linked to a non-energy CO2 module and a non-CO2 GHG module. “Land

use model assesses land area for food, energy crops and afforestation. Crop productivity is based on GAEZ model.”271

3) Future GDP Population scenarios are based on UN estimates. Two GDP scenarios are developed. “In Scenario A, the current developed countries

slow down the GDP per capita growth until 2100 and the growth rate converges to 0.5% per year in 2100. Developing countries

continue to grow steadily. The current emerging economies and least developed countries have the per capita GDP growth rates of

around 1% per year and around 2% per year in 2100, respectively. The global average growth rate from 2000 to 2100 is 1.5% per

year. In Scenario B, the current developed countries continue to increase GDP per capita by 1.0% per year in 2100. Developing

countries continue to grow rapidly. The current emerging economies and least developed countries grow at the rate of around 2%

per year and around 3% per year even in 2100, respectively. The global average growth rate from 2000 to 2100 is 2.1% per year.”271

4) Time horizon 2005–2050. The period 2005–2030 is solved in 5-year steps. The period 2030–2050 is solved in 10-year steps. “2005 represents the

period from 2003 to 2007, 2010 represents the period from 2008 to 2012, 2015 represents the period from 2013 to 2017 and so on.”271
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5) Regions 77 including USA, Canada, EU-15, EU-12, Other Western Europe, Japan, Oceania, China, Korea, India, Other Asia, Middle East &

North Africa, Turkey, Africa, Mexico, Brazil, Other Latin America, Russia, Other FUSSR. Regions are linked to each other by

interregional trading of seven items: coal, crude oil, synthetic oil, methane, methanol, hydrogen and CO2.

6) GHGs All GHGs and other radiative agents.

7) Sectoral detail Four end-use sectors (transport, residential and commercial, industrial, other). Indusry is divided into iron & steel, cement, paper &

pulp, chemical (ethylene, propylene, ammonia), aluminum, fuels & electricity. Transport sectors see below.

8) Transport sectors Passenger cars (small, large), trucks (small large), buses.

9) Electricity conversion

technologies

Coal (sub-critical, critical, super critical, IGCC, IGFC), IGCC/IGFC with CCS, oil (diesel, sub-critical, critical, CHP), gas (steam

turbine, combined cycle, combined cycle with high temperature, CHP, oxy-blown combined cycle with CCS), biomass (steam turbine,

combined cycle), nuclear (conventional, advanced), hydrogenm, electricity storage (pumping-up, battery for PV and wind). 200–300

conversion and end-use technologies are modeled in total.

10) LDV technologies Gasoline and ethanol (ethanol content <20%): ICEV (high, low efficiency), HEV, PHEV; Gasoline and ethanol (ethanol content

≤20%): ICEV, HEV, PHEV; Diesel and biodiesel (biodiesel content <20%): ICEV (high, low efficiency), HEV, PHEV; Diesel

biodiesel (biodieseel content ≤20%): ICEV, HEV, PHEV; CNG: HEV, ICEV; BEV; HFCEV. Two segments, small and large.

11) LDV life cycle stages Well-to-wheel (energy chain). “Indirect energy use is not included. For example, emissions from car manufacturing process is

classified into the industrial sector.”219

12) LDV cost ICEV costs are constant over entire time horizon. BEVs start out at about 85,000 USD and drop to about 23,000 USD. HFCEVs

start at 134,000 and drop to 24,000 USD. Li-ion batteries start at 1,667 USD kWh−1 and fall down to 181 USD kWh−1.
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13) LDV efficiency Two efficiency levels exist for ICEVs. No efficiency improvements of power trains. Mode efficiency improvements only through

technology choice/switching.

14) LDV policies / mitiga-

tion measures

“[C]arbon pricing, emission cap and trade system, carbon tax, preferred tax on specific energy sources, fuel subsidies, fuel standards

and energy standards. In general, these policies are implemented via constraints or a price mark-up on energy sources.”271

LDV life cycle factors

1) Road infrastructure Cement production is modeled including process emissions but not linked to infrastructure production.

2) Ancillary infrastructure Not considered.

3) Vehicle components Battery costs are taken into account.

4) Vehicle materials Steel, aluminum, and chemical products (e.g. ethylene and propylene) are modeled (including process emissions) and availability of

steel scrap is considered but not linked to vehicle production.

5) Real-world energy use Fuel consumption for a small ICEV in 2010 ranges from 4.4 to 8.0 l 100 km−1 (39–71 kWh km−1). Large ICEV ranges from 12.1 to

12.7 l 100 km−1 (108–113 kWh km−1). (Fuel efficiencies are not adjusted by region.) EPA’s adjusted values for a small ICEV car is

79 kWh km−1, kWh km−1 for a large ICEV car 86 kWh km−1 (data provided by Aaron Hula at EPA).

6) Multi-fuel use Not considered.

7) EV–power system inter-

action

Within the RITE GHG Assessment Model framework “ [e]lectricity demand is modeled so that demand-supply balance is ensured;

four kinds of time periods are set based on annual load duration curves, and electricity supply follows varying loads. This enables

appropriate evaluation of electricity system corresponding to the characteristics of individual power generation technologies such as

the base power source, the peak power source et cetera”.292 Average electricity emission factors are linked to EV charging.
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8) Biofuel emissions “CO2 fixation through afforestation and the use of bioenergy technologies are also explicitly modeled by estimating the potential

productivity of land areas via a food supply and demand and land-use model”.293 “N2O emissions are considered in 6 sectors:

agriculture, oil, natural gas, residential and transportation, energy intensive industries, and other industrial sectors.”292

9) Crude oil grade Conventional and unconventional oil is considered.

10) Methane leakage CH4 from oil, coal and natural gas sectors is included and several methane mitigation options are implemented including flaring and

coal mining methane capture. Biogenic methane from hydro power is not considered.

11) Vehicle age Not considered (no vehicle vintage formulation is used).

12) Travel demand ”The transportation service is assumed to be exogenous according to region and the five categories, and the scenario is fixed for all

the scenarios analyzed in this study. Therefore, the impacts of climate change mitigation on the level of road transport service

cannot be evaluated endogenously in this analysis.”293

13) Vehicle mix Technological options are endogenously determined through least-cost optimization. Li-ion batteries start at 1,667 USD kWh−1 and

fall down to 181 USD kWh−1.
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Table C.13: TIAM–UCL benchmarking results

Factors/items TIAM–UCL benchmarking results

General items

1) Model core and solver Partial equilibrium, inter-temporal optimization (linear programming).

2) Model extensions TIAM-UCL uses an integrated climate module. TIAM-UCL can be coupled to BUEGO (Bottom up Economic and Geological Oil

field production model).294

3) Future GDP GDP and population are exogenous, provided by the GEM-E3 model or by accepted external sources.

4) Time horizon 2005–2100, 5-year steps. (2010–2035, 5-year steps in BUEGO.)

5) Regions 16 (Africa, Australia, New Zealand, Canada, Central and South America, China, Eastern Europe, Former Soviet Union, India,

Japan, Mexico, Middle-East, Other Developing Asia, So-Korea, USA, Western Europe w/o UK, UK). The world regions are linked

through trade in fossil fuels, biomass and emissions via the trade module.

6) GHGs CO2, CH4, N2O.

7) Sectoral detail Three end use sectors (transport, buildings, industry), upstream and power sector and 43 energy service demands (14 transport,

10 residential, 10 industry energy service demands). Industrial production is subdivided into chemical industry, iron & steel and

non-ferrous metals, pulp & paper and non-metallic minerals, and other industries. See transport sectors below.

8) Transport sectors Domestic aviation, international aviation, bus, commercial trucks, 3-wheelers, 2-wheelers, heavy trucks, medium trucks, LDVs, auto,

rail freight, rail passengers, domestic navigation, international navigation, non-energy.
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9) Electricity conversion

technologies

Coal (atmospheric FI bed, air blown IGCC, oxygen blown IGCC, pressurized FI bed, PC), natural gas (steam, fuel cells), dual

gas/oil (gas-oil combined cycle, advanced gas-oil turbine, oil steam), nuclear (advanced, fusion, advanced LWR, advanced PBMR),

hydro (impoundment, run-of river), biomass (crop direct combustion, crop gasification, waste biogas, MSW direct combustion, solid

biomass direct combustion, solid biomass gasification, solid biomass direct combustion), geothermal (3 types), PV (14 types), solar

thermal, wind (4 types), heat (6 types), 11 sequestration technologies, 10 storage technologies.

10) LDV technologies ICEV (gasoline, diesel, synthetic fossil fuel, natural gas, LPG, ethanol), HEV (gasoline, diesel, biofuel, synthetic fossil fuel), PHEV-10

(gasoline, diesel, biofuel, synthetic fossil fuel), BEV-100, HFCEV, HFCEV-10.214 Note that technologies may be altered in other

works.

11) LDV life cycle stages Well-to-wheel (energy chain). All primary energy sources (oil, gas, coal, nuclear, biomass, renewables) are modeled, from resource

extraction through to conversion, infrastructure requirements, and end-use. “The fuel mix is determined endogenously. Indirect fuel

use from manufacturing, upstream energy and emissions are calculated but not tied to transport.”219

12) LDV cost Investment cost, operation and maintenance cost considered. In the standard version, costs are not component-specific, and learning

is not endogenized. The version used by Anandarajah et al.,295 used endogenous technology learning with initial fuel cell system

costs of 883 USD kW−1 in 2010 and long-term floor cost of 27 USD kW−1. Batteries initially cost 756 USD kWh−1 in 2010 and

decrease to 151 USD kWh−1. Energy prices are calculated endogenously.

13) LDV efficiency “Efficiency and cost of these technologies improve over the period with vintages,”296 i.e. more efficient technologies become available

over time.

14) LDV policies / mitiga-

tion measures

Carbon tax, cap and trade, global and regional carbon caps, technology subsidy, efficiency requirement.
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LDV life cycle factors

1) Road infrastructure Physical output of iron and steel, non-ferrous metals, non-metallic materials and others is represented in TIAM-UCL, but not linked

to vehicle cycle. Fuel infrastructure availability is considered in the vehicle choice formulation by McCollum and colleagues.214

2) Ancillary infrastructure Hydrogen and electricity supply infrastructure is modeled in great detail295 but physical requirements are not considered.

3) Vehicle components Typically, vehicles are represented in an aggregated form. In a version of TIAM-UCL, several components are modeled in terms of

costs (USD), power (kW) and capacity (kWh).213, 295 Battery energy densities are not specified. No materialistic representation.

Components are scaled to match the size and performance of average European vehicles.

4) Vehicle materials Physical output of iron and steel, non-ferrous metals, non-metallic materials and others is represented in TIAM-UCL, but not linked

to vehicle cycle. Both, demand for vehicles and materials is independently determined by population and GDP.

5) Real-world energy use Generally, base-year energy consumption of road transport and other modes is calibrated against IEA’s extended regional energy

balances (which do not distinguish LDVs from other road transport modes or different vehicle technologies). In Anandarajah et

al.295 a uniform gap of 15% between the New European Drive Cycle and real-world fuel consumption is assumed although this

factor has been found to be higher and to differ by technology.73 More recent versions may make different assumptions.

6) Multi-fuel use In McDowall et al.,213 the PHEV utility factor is assumed to be 0.5. Other MFVs are not considered. More recent versions may

make different assumptions.

7) EV–power system inter-

action

The model employs additional (marginal) electricity technologies as electricity demand grows with increasing EV deployment.

Changes in overall power sector emissions associated with EV charging therefore reflect the marginal technologies. EV charging is

based on the average electricity mix.
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8) Biofuel emissions Energy and net CO2 emissions from direct land use are accounted for in the agriculture sector. Net CO2 emissions consider

afforestation, deforestation and forest degradation. N2O emissions in the industry and agriculture sectors are included as well.

Emissions are not linked to the fuel life cycle since agricultural emissions are independent from biofuel production in the energy

sector.

9) Crude oil grades Different oil grades, such as light oil, heavy oil, shale, synthetic oil sands, ultra heavy oil sands and differences in their costs, carbon

intensities and energy requirements are considered. The model can choose upstream oil sources with lower emissions for gasoline

production.

10) Methane leakage Methane emissions from oil, coal, gas reserves, extraction, and gas transmission including leakage.297 These emissions are linked

to the fuel life cycle. 50 mitigation technologies exist including flaring, venting and investments in reducing methane emissions.

Biogenic methane emissions from hydro power are not mentioned. Included are non-energy methane emissions from landfills, manure,

biomass burning, rice cultivation, enteric fermentation and wastewater (accounted for in the residential and agricultural sectors).

11) Vehicle age Addressed by using a vintage model.

12) Travel demand Endogenously determined as a function of per capita GDP. Demand growth is subject to demand elasticity for different services,

between different regions and over time.

13) Vehicle mix Least-cost minimization (full life cycle cost). The version used in Anandarajah et al.295, used endogenous technology learning with

initial fuel cell system costs of 883 USD kW−1 in 2010 and long-term floor cost of 27 USD kW−1. Batteries initially cost 756 USD

kWh−1 in 2010 and decrease to 151 USD kWh−1. (BEV market share can be constrained, representing the inability of meeting

consumer energy demand, e.g. range limitations). (The split between rail and road modes is set exogenously.)
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Table C.14: POLES benchmarking results

Factors/items POELS benchmarking results

General items

1) Model core and solver Partial equilibrium, recursive dynamic (simulation). Myopic anticipation of future costs.

2) Model extensions Additional modules allow covering GHG emissions from industrial sources; agriculture and land-use emissions are derived from

linkages with specialized models. POLES can be linked to the GLOBIOM global land-use model, the MAGICC reduced-form

climate model, the GAINS air pollutants model (including pollutants from road transport and other transport modes), and the

EUCAD power plant dispatch model.

3) Future GDP Per capita GDP and population are exogenous. Frequently, POLES is soft-linked with the general equilibrium model GEM-E3 to

assess policy costs on GDP.298 “An on-going work will allow to connect POLES to the macro-econometric model MAGE (CEPII

institute / JRC) through an energy factor in the production function that will link dynamically GDP, energy intensity and energy

prices.”271

4) Time horizon Usually 1990–2050, in annual time steps. For the ADVANCE project, the time horizon has been extended to 2100.

5) Regions 45 individual countries (28 EU Member States, Norway, Switzerland, Iceland, Turkey, Russia, Ukraine, Canada, USA, Mexico,

Brazil, Japan, South Korea, China, India, Indonesia, Egypt, South Africa) and 12 residual regions. Additional individual countries

are present in more recent versions of the model (Australia, New Zealand, Argentina, Chile, Iran, Saudi Arabia, Thailand, Malaysia,

Vietnam). Oil and gas production is described for 88 producing countries. Coal production distinguishes 74 producers, including an

infra-national disaggregation for large producers (USA, China, Australia, India). Producing regions and consuming regions are

linked through energy markets.
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6) GHGs Kyoto gases from fossil fuel combustion and industry (CO2, CH4, N2O, SF6, HFCs, PFCs). Other emissions (agriculture, land use)

come from a soft linkage with the GLOBIOM/G4M model.

7) Sectoral detail Agriculture, industry, services, residential, transport. Industry is divided into iron & steel, chemicals, non-metallic minerals (cement,

lime, glass, ceramics and other), other (other manufacturing, mining and construction).

8) Transport sectors Passenger cars, motorbikes, buses, passenger rail, aviation (national, international), heavy freight trucks, light freight trucks, freight

rail, waterways freight shipping, international maritime freight shipping.

9) Electricity conversion

technologies

Coal (pressurized supercritical, IGCC, lignite, conventional), nuclear (conventional, 4th generation), gas (conventional, turbine,

combined cycle, fuel cell, CHP), oil (conv., oil-fired gas turbine), hydro (large dams, large run-of-river, large pumped storage, small,

tidal & wave), geothermal, biomass (conv., gasification), wind (onshore, offshore, three different resource quality areas each), PV

(centralized, decentralized), CSP (with/without storage), hydrogen fuel cell. Several CCS technologies are available for power

generation using coal, gas, and biomass and for hydrogen production.

10) LDV technologies Six LDV engine technologies and fuels consumed: ICEV (oil products, biofuels), BEV (electricity), PHEV (oil products, biofuels,

electricity), HFCEV (hydrogen), gas fuel cell (gas), natural gas combustion (compressed natural gas; can be synthetic methane).

11) LDV life cycle stages Well-to-wheel (complete energy chain). Biofuel upstream emissions are considered but combustion of biofuels is assumed carbon

neutral.

12) LDV cost Total cost includes fixed cost (investment, life-time, user discount rate) and variable cost (consumption per km, fuel price). Fuel

prices include fuel taxes which include carbon prices, and develop endogenously. Cost of batteries and fuel cells are considered.299

13) LDV efficiency Fuel efficiency evolves with a price effect.
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14) LDV policies / mitiga-

tion measures

Carbon tax, cap-and-trade, carbon pricing, CO2 budget, environmental damage tax on non-conventional fuels production, phase-out

of fossil fuel subsidies, introduction of renewable fuels subsidy, modal shift, fuel efficiency standard, acceleration of the penetration

emerging vehicle technologies (which can be interpreted as a result of R&D policy).

LDV life cycle factors

1) Road infrastructure Non-metallic minerals (incl. cement) production is considered. “CO2 is emitted when carbonates contained in the raw material are

thermally decomposed in the process.”154 CO2 emissions are not linked to road infrastructure construction.

2) Ancillary infrastructure Availability of refueling stations is considered in the multinomial logit function of vehicle choice. “An additional maturity factor

accelerates or decelerates the adoption of new technologies, reflecting the development of new infrastructure and consumer

preference.”154 Material and energy needs of ancillary infrastructure are not explicitly considered.

3) Vehicle components Only costs are considered (e.g. for batteries and fuel cells). Component specifications, material and energy needs are not explicitly

considered.

4) Vehicle materials CO2 from iron and steel production is considered but not linked to vehicle manufacturing. Demand of steel is represented in physical

quantities (metric tons). Availability of recycled steel is considered as well.

5) Real-world energy use Not considered.

6) Multi-fuel use Considered indirectly by defining a maximum blending constraint for biofuels, which increases for new sales over time.

7) EV–power system inter-

action

Electricity dispatch model EUCAD is used based on six representative days with hourly resolution for all regions. Average emission

factors are assumed for EV charging.
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8) Biofuel upstream Four biomass-to-liquids technologies are described by cost, efficiency and type of feedstock. “[T]he combustion of liquid biofuels

is considered to be carbon neutral (CO2 is only emitted due to the energy use in their production process, which is captured

endogenously); however, an emission factor can be used for the calculation of vehicle emission standards. [...] GHG emissions from

agriculture and land-use are derived from a soft linkage with the GLOBIOM model. [...] The surface of forests evolves to account

for the expansion of the agriculture surface.”154 Net sinks in LULUCF are considered as well.

9) Crude oil grade POLES describes explicitly the costs, direct energy use, and the corresponding emissions, of the extraction process of conventional

on- and offshore oil, tight oil, tar sands, extra heavy oil, and oil shale. CO2 pricing can affect the production of different grades, such

as lowering tar sand production. “Crude oil production is transformed into oil products (one energy carrier represented in the model)

with a refineries efficiency.”271 The carbon content of different grades is captured in the life-cycle emissions of gasoline production.

10) Methane leakage CH4 emitted by the fossil fuel sector accounts for processes in the oil industry (exploration, production and refining, venting and

flaring), upstream processes of natural gas production, transmission and distribution in the natural gas sector, underground mining

and surface coal mining. CH4 and N2O as by-products of incomplete combustion processes are accounted for in the electricity

and industrial sectors, the residential and service sectors, the transport sector. Biogenic methane release from hydro power is not

considered.

11) Vehicle age Vehicle vintages are considered.

12) Travel demand Calculated endogenously as a function of cost of transport relative to income. Capped by saturation effects, e.g. maximum number

of vehicles per capita. “The average mileage per vehicle is driven by the equipment rate (more vehicles translates into lower usage

per vehicle) and average fuel price (decrease of use with higher prices).”271
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13) Vehicle mix “The competition across vehicle types (6 types of vehicles in cars and trucks: conventional ICE, electric, plugin hybrid, H2 fuel cell,

H2 thermal, gas) uses a multinomial logit function that depends on the total cost for the user, considering fixed cost (investment,

life-time, user discount rate) and variable cost (consumption per km, fuel price), and is constrained by infrastructure developments

for refueling stations.”271 HEVs are not considered.
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Table C.15: ETP–TIMES benchmarking results

Factors/items ETP–TIMES benchmarking results

General items

1) Model core and solver Partial equilibrium, optimization (linear programming).

2) Model extensions The ETP-TIMES energy supply model includes an energy conversion module and is soft-linked to end-use sector models for industry,

transport (MoMo mobilty model),300 and households. No climate module is integrated in ETP-TIMES.

3) Future GDP GDP and population estimates are exogenous.301, 302

4) Time horizon Through 2060, 5-year steps.

5) Regions 27 world regions.

6) GHGs CO2, other energy chain emissions, such as N2O and CH4, are based on the work by Edwards and colleagues.71

7) Sectoral detail One energy conversion sector (with around 550 technologies) and three end-use sectors: industry , buildings, transport. The

“industrial sector includes International Standard Industrial Classification (ISIC) Divisions 7, 8, 10-18, 20-32 and 41-43, and Group

099, covering mining and quarrying (excluding mining and extraction of fuels), construction, and manufacturing. Petrochemical

feedstock use and blast furnace and coke oven energy use are also included within the boundaries of industry”.47 The buildings sector

is split into residential and non-residential buildings. The transport sector covers seven transport modes, and several technologies

(see below).

8) Transport sectors MoMo considers rail, shipping, air, 2-and 3-wheelers, LDVs, road freight, buses.

9) Electricity conversion

technologies

Coal, oil, natural gas, nuclear, biomass, hydro, wind, solar, geothermal, ocean. 550 conversion and end-use technologies in total.
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10) LDV technologies ICEVs (gasoline, diesel, CNG and LNG), HEVs, PHEVs, BEVs, HFCEVs. Fuels include “gasoline and diesel, biofuels (ethanol and

biodiesel via various production pathways) and synthetic alternatives to liquid fuels (coal-to-liquid and gas-to-liquid); gaseous fuels,

including natural gas (CNG and liquefied petroleum gas) and hydrogen via various production pathways; and electricity (with

emissions according to the average national generation mix as modeled by the ETP-TIMES model in the relevant scenario)”.47

11) LDV life cycle stages Well-to-wheel (fuel production, use) based on Edwards et al.71 and vehicle manufacturing based on MoMo.

12) LDV cost Assumptions on 2015 battery costs are quite optimistic compared to Nykvist et al.:215 270 USD kWh−1 for a PHEV and 210 USD

kWh−1 for a BEV. In B2DS (Beyond 2◦C scenario), battery costs are assumed to fall strongly through 2060, down to 100 USD

kWh−1 for PHEVs and 80 USD kWh−1 for BEVs. A learning rate of 20% is assumed. Fossil fuel prices are assumed to increase.

Future fuel costs partially depend on assumptions on fuel and carbon taxes: “In 2060, the CO2 price is assumed to reach USD

540/tCO2. The oil price assumptions (in 2015 constant USD) used for this assessment are USD 50 per barrel (bbl) in 2015, USD

140/bbl in the RTS and USD 75/bbl in the B2DS. Fuel taxes reflect the assumptions outlined in this chapter.”47

13) LDV efficiency Efficiency measures include aerodynamic improvement, low rolling resistance tires, lightweighting, transmission and drivetrain

efficiency improvements, engine efficiency, hybridization. Based on several literature sources.

14) LDV policies / mitiga-

tion measures

In B2DS, gasoline taxes are assumed to increase from 11% to more than 200% in the US, reflecting a rising carbon price. By 2060,

cost of ICEVs increases by almost 40% as a result. Introduction of a carbon tax that takes into account life-cycle performance

of energy carriers increases over time and reaches 540 USD t−1. Further measures that are mentioned but whose effects are not

quantified: Introduction of feebates, congestion charging, parking fees.

LDV life cycle factors
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Factors/items ETP–TIMES benchmarking results

1) Road infrastructure Cement production is included in ETP-TIMES. Investment costs for roads are considered. Infrastructure cost estimates include

capital costs, operations and maintenance, and reconstruction costs. No linking of material needs for infrastructure development,

such as cement, to vehicle cycle.

2) Ancillary infrastructure No physical description. Costs of electric home chargers are included in EV powertrain costs, costs of public chargers are included in

electricity costs (roughly 5 ct kWh−1).

3) Vehicle components Considered in terms of costs, unclear whether specific material needs are considered at component-specific level. “Cost functions

define various vehicle configurations, including vehicle component efficiency upgrades (e.g. improved tyres or airconditioning controls),

material substitution and vehicle downsizing, conventional spark and compression ignition engine improvements, conventional and

plug-in hybrid powertrain configurations, batteries, electric motors, and fuel cells. These configurations are added to a basic glider

cost.”47

4) Vehicle materials Primary material needs for vehicles are included in MoMo, based on GREET. (Steel, iron and aluminum production sectors are also

included in ETP-TIMES.)

5) Real-world energy use A gap-factor is added to official laboratory consumption estimates, based on MoMo.

6) Multi-fuel use For PHEVs: In the B2DS (beyond 2 degrees), electric driving shares are assumed to increase to 50% by 2020 and to 80% by 2030.

For other MFVs a simplified approach is used, allocating fuel shares to ICE vehicles. This reflects an assumption that high shares of

alternative fuels are only achieved in case of fuel blending or wide adoption of MFVs (currently a reality only in Brazil).

7) EV–power system inter-

action

Linear dispatch model is used. Average emission rates are linked to electric vehicle charging.
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Factors/items ETP–TIMES benchmarking results

8) Biofuel upstream Direct land use change GHG emissions are considered, based on the work by Edwards and colleagues.71 “Well-to-tank emissions for

fossil fuel-derived fuels and biofuels are largely based on data from the Joint Research Centre, EUCAR and CONCAWE and do not

include indirect land-use change factors.”47

9) Crude oil grade Considered based on ref.71, who differentiate specific GHG emissions for oil grades of different world regions.

10) Methane leakage Considered are GHG emissions from venting, flaring and fugitive losses, based on the work by Edwards and colleagues.71 Due to

leakage issues, CNG and LNG vehicles are not considered in the assessment. Biogenic methane from hydro power is not considered.

11) Vehicle age Implemented through a stock vintage model (except for multi-fuel vehicles).

12) Travel demand Exogenous.

13) Vehicle mix Defined exogenously. (Modal share is determined exogenously as well.)183



C.6 LDV climate change mitigation options in IEMs

In the main text we provide examples on how future improvements to IEMs could enhance

the potential of IEMs for effective policy formulation at the nexus of transport, energy

and climate at national and supra–national level. Here we provide a more comprehensive

list for several prominent policies tested in IEMs and potential implications of considering

life–cycle factors.

Table C.16: Fuel economy standard (FES).
Policy description: Prescribes fuel efficiency and GHG targets to be met by the
average new vehicle fleet, whereby BEVs, HFCEVs, and PHEVs count as zero emission
vehicles and receive multiplier credits. The sole focus on reducing TTW emission
intensity can lead to an increase in WTT and vehicle production emissions. Absolute
travel demand is not regulated. Used vehicles are not addressed. Applied in: EPPA,37
NEMS,149 IMAGE,150 POLES.154 Influential factors: Factors 2–10, 12, 13. Potential
implications of considering factors: FES may shift vehicle mix (factor 13) towards
HEVs and AFVs. Emissions of the vehicle mix in turn are influenced by various factors
(2–10, 12). As a result, uncertainties in overall life–cycle GHG emission reductions exist
and emission shifts between different life–cycle phases cannot be evaluated. For example,
if based on real–world emissions (factor 5, considered in EPPA but not in NEMS),
embodied emissions from vehicle production have lower relative weight. (Current
regulation does not take real–world energy use into account, whereas some models do
in their policy analysis, e.g. EPPA.) EPPA considers improved fuel economy due to
lightweight materials, but not the additional energy inputs into material and components
production. Therefore supply chain GHG emissions may be underestimated. Further,
GHG savings due to stronger use of recycled materials vs. virgin materials cannot be
evaluated. (Current regulation does not take embodied emissions into account, whereas
some models do, e.g. IMAGE considers all energy chain emissions, EPPA considers
emissions in vehicle production as well.) A shift to AFVs can also increase total vehicle
ownership (factor 12).

Table C.17: Renewable fuels standard (RFS).
Policy description: Mandates the ratio of biofuels in gasoline. Applied in: EPPA,37
GCAM,151 IMAGE,288 WITCH.152 Influential factors: Factors 6, 8, 9, 10. Potential
implications of considering factors: RFS can reduce the carbon intensity of driving
ICEVs, HEVs, and PHEVs through higher biofuel ratios in gasoline, but can increase
biofuel upstream emissions. Due to a shift in the ratio of biofuels and gasoline, multi–fuel
use is influential too, as well as factors related to gasoline production, such as crude oil
grades and methane leakage.
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Table C.18: Energy efficiency standard.
Policy description: Different designs are possible, (1) a TTW efficiency standard
that takes into account the direct energy use during driving, or (2) a WTW efficiency
standard that takes into account all energy use of the entire energy chain. The sole
focus on reducing TTW efficiency can lead to an increase in embodied energy/emissions
in the WTT and vehicle production phase. A WTW based efficiency standard would
internalize the former. Absolute travel demand is not regulated. Used vehicles are not
addressed. Applied in: GEM–E3 (TTW).277 Influential factors: Factors 2–6 (2–10),
12, 13. Potential implications of considering factors: Efficiency standards will
shift vehicle mix (factor 13) towards high– efficiency vehicles (either based on on TTW
or WTW), thereby reducing driving energy, but potentially increasing energy use during
energy conversion (TTW) and vehicle production (TTW, WTW). Energy implications of
shifts in the vehicle mix are influenced by factors 2–6, (TTW), respectively 2–10 (WTW).
A shift to low–energy vehicles can also increase total vehicle ownership (factor 12).

Table C.19: Low–carbon fuel standard (LCFS).
Policy description: Requires fuel suppliers to reduce the life–cycle emissions of their
fuels relative to gasoline and diesel and can be fulfilled by any energy source replacing
gasoline. The baseline value for gasoline is 347 g CO2e kWh−1 in 2016 and reduces
to 319 g CO2e kWh−1 from 2020 onwards. Applied in: None identified. Influential
factors: Factors 6–10. Potential implications of considering factors: LCFS can
lower the carbon intensity of driving of any powertrain, as well as energy upstream
emissions of any fuel. Energy chain factors of all energy sources are potentially influential.
Due to a shift in the energy carrier mix, multi–fuel use is an influential factor too.

Table C.20: EV technology mandates.
Policy description: Vehicle manufacturers have to fulfill minimum EV sales re-
quirements as a percentage of overall sales. Applied in: NEMS,149 MESSAGE.257
Influential factors: Factors 2–10, 12. Potential implications of considering fac-
tors: Increases the share of EVs and therewith alters the overall vehicle mix. Emissions
of the vehicle mix in turn are influenced by various factors (2–10, 12). See above for
details.

Table C.21: Government R&D policy.
Policy description: Government invests into R&D activities for certain lower–carbon
technologies with the aim of reducing their costs and increasing their sales. Applied in:
GCAM–USA,155 NEMS,149 WITCH,152 POLES.154 Influential factors: Factors 2–10,
12. Potential implications of considering factors: Increases the share of EVs and
therewith alters the overall vehicle mix (12). Emissions of the vehicle mix in turn are
influenced by various factors (2–10). See above for details.
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Table C.22: Energy tax/subsidy.
Policy description: Government can tax or subsidize certain fuels in order to influence
their costs and thus sales volume. Applied in: EPPA,37 NEMS,270 IMACLIM–R,153,219
GEM–E3,279 MESSAGE,214,219 REMIND,271 IMAGE,288 POLES,219 ETP–TIMES.47
Influential factors: Factors 2–10, 12, 13. Potential implications of considering
factors: Fuel taxes can increase the prices for certain fuels and therefore lower driving
demand (factor 13) or force technology switching, thereby influencing the technology
mix (factor 12). Emissions of the vehicle mix in turn are influenced by various factors
(2–10). See above for details.

Table C.23: Carbon tax.
Policy description: Prices the carbon content of energy carriers, such as gaso-
line, biofuels, natural gas or coal, in the form of a tax. Applied in: EPPA,37
GCAM,50,97,219 IMACLIM–R,219 GEM–E3,279 WITCH,97,287 REMIND,97,271 IM-
AGE,167,219 DNE21+,219,303 TIAM–UCL,219 POLES,219 ETP–TIMES,47 AIM/CGE,219
MESSAGE.219 Influential factors: Factors 5–10. Potential implications of con-
sidering factors: Can potentially reduce all energy chain emissions (factors 5–10). A
carbon tax is often implemented as a mark up on the prices of sold fuels, thus implicitly
taxing the actual real–world fuel consumption of the transport sector. Most IEMs
however model the effects of carbon taxes based on official vehicle energy consumption,
while few account for real–world vehicle operation. Additionally, some modelers may
apply taxes to direct tailpipe emissions only, while others may apply taxes to emissions
of the entire energy chain.
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D Appendix to Chapter 5

D.1 Specific vehicle life–cycle emissions

Specific life–cycle emissions in g CO2/km include all life stages including the entire vehicle

supply chain (considering material production, vehicle assembly, recycling of materials,

reuse of components, and material substitution through lightweighting), as well as the

entire energy chain (production and use of energy carriers). A detailed description of the

specific production processes can be found elsewhere18,68 and all assumed data points

can be requested from the author as a spreadsheet file. Here we calibrate these processes

to the US case as described in Section 5.7 in the main text.

It can be seen from Figure D.1 that fossil–fueled vehicles remain at more or less

steady specific emissions after 2025, which is the last year of the CAFE requirement

in Yale–NEMS. Specific emissions of BEVs, and of PHEVs to some extent, continue to

fall due to decarbonization of the electric grid. In a side case we assume that hydrogen

production transitions from the currently assumed steam methane reforming (SMR)

pathway to an illustrative net–zero emissions pathway. Net–zero could be achieved

by a hydrogen production mix consisting primarily of hydrogen from biomethane with

carbon capture and storage, representing a carbon sink with about – 36 g CO2e/kWh,304

and a small remainder, around 7–8%, of hydrogen from SMR, emitting around 450 g

CO2e/kWh.71

Figure D.2 provides a breakdown of specific emissions by life–cycle stage. Compared

to previous work8,9, 18 emissions embodied in vehicle production are relatively small when

normalized by vehicle kilometers travelled (Figure D.2d and e). This is mostly due to

the relatively high average lifetime mileage of US light vehicles of around 270,000 km207

which is reflected in Yale–NEMS. Previous work has often assumed kilometers travelled

in the range of 150,000–180,000 over the lifetime of a vehicle.8,9, 18
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Figure D.1: Specific life–cycle emissions of modelled powertrains in all scenarios.
ICEV=internal combustion engine vehicle; HEV=hybrid electric vehicle; PHEV=plug–in
hybrid electric vehicle; BEV=battery electric vehicle; HFCEV=hydrogen fuel cell elec-
tric vehicle; –100=100 miles of electric range; SMR=steam–methane reforming. The
underlying data used to compile this figure can be found in Supplementary Table 20.
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0 100 200 300 400

g CO
2
/km

ICEV PC
 ICEV LT
HEV PC
HEV LT

PHEV-10 PC
PHEV-10 LT
PHEV-40 PC
PHEV-40 LT
BEV-100 PC
BEV-100 LT
BEV-200 PC
BEV-200 LT
HFCEV PC
HFCEV LT

b) Total, 2050

0 100 200 300 400

g CO
2
/km

c) Total, 2050, low-carbon H
2

0 100 200 300 400

g CO
2
/km

Materials
Assembly
Electricity
Fuels
Combustion

d) Vehicle production, 2010

0 10 20 30 40

g CO
2
/km

ICEV PC
 ICEV LT
HEV PC
HEV LT

PHEV-10 PC
PHEV-10 LT
PHEV-40 PC
PHEV-40 LT
BEV-100 PC
BEV-100 LT
BEV-200 PC
BEV-200 LT
HFCEV PC
HFCEV LT

e) Vehicle production, 2050

0 10 20 30 40

g CO
2
/km

Recycling+reuse

Figure D.2: Specific life–cycle emissions broken down by life–cycle stage in 2010 and 2050.
ICEV=internal combustion engine vehicle; HEV=hybrid electric vehicle; PHEV=plug–in
hybrid electric vehicle; BEV=battery electric vehicle; HFCEV=hydrogen fuel cell electric
vehicle; –100=100 miles of electric range; H2 = hydrogen. The underlying data used to
compile this figure can be found in Supplementary Table 20.
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D.2 Potential emission reductions due to reuse and recycling
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Figure D.3: Life–cycle CO2 emissions of producing the stock of US light vehicles, under
full pricing and direct–emissions–only pricing, with and without reuse and recycling
(RR) (a). The grey shaded area shows the difference in emissions between full and direct–
emissions–only pricing. The light green shaded area illustrates the emission reduction
potential from RR (b). Dotted lines illustrate results from side cases.

D.3 Technology costs and vehicle choice

Production costs of various powertrains (ICEV, BEV, ...) are calculated using a detailed

bottom–up cost model.73 For this work the model has been extended to 2050 and

battery prices reach floor costs of about 83 USD/kWh within the modeling time horizon.

This cost development is within the range of previous estimates.137 Following that,

vehicle purchase prices are calculated endogenously in Yale–NEMS (Figure D.4). All cost

figures take into account potential feebates as shown in Figure D.5. While no feebate

is implemented under direct–emissions–only pricing (colored bars in Figure D.4), the

full–pricing cases consider feebates on vehicle production (see also Figure D.5a) and on

energy supply and use (Figure D.5b/d), while the well–to–wheel (WTW) pricing cases

only consider feebates on energy supply and use (Figure D.5b/d). In scenario ‘WTW
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pricing / low–c H2 / low–$ HFCEV’ it is assumed that HFCEVs become cost–competitive

with BEVs by 2035. The resulting optimal vehicle choice for each scenario can be seen in

Figure D.6 (for the side cases) and in Figure 5.1 in the main text (for the main cases).

2020 2030 2040 2050
0

10

20

30

40

50

60

T
ho

us
an

d 
U

S
D

 (
co

ns
ta

nt
 2

01
6)

ICEV-g
BEV-100
BEV-200
HFCEV
Feebate (full pricing)
Feebate (full pricing) / low-c H2

Feebate (WTW pricing) 

Feebate (WTW pricing) / low-c H2 / low-$ HFCEV

Figure D.4: Purchase price development of selected powertrains in the midsize car segment.
Default figures (colored bars) show prices in the absence of feebates. WTW=well–to–
wheel; low–c H2=low–carbon hydrogen; low–$=low–cost; ICEV=internal combustion
engine vehicle; BEV=battery electric vehicle; HFCEV=hydrogen fuel cell electric vehicle;
–g=gasoline; –100=100 miles of electric range. The underlying data used to compile this
figure can be found in Supplementary Table 13.

191



2021
2030

2050

ICEV

HEV

PHEV-10

PHEV-40

BEV-100

BEV-200

HFCEV

a) Vehicle production feebate

0

50

100

150

200

2021
2030

2050

b) Energy production feebate

-2000

0

2000

4000

6000

8000

2021
2030

2050

c) Combined feebate

-2000

0

2000

4000

6000

8000

2021
2030

2050

ICEV

HEV

PHEV-10

PHEV-40

BEV-100

BEV-200

HFCEV

d) Energy production feebate (low-carbon H
2
)

-2000

0

2000

4000

6000

8000

Figure D.5: Feebate (in USD/vehicle) on vehicle production (a), energy carrier production
(b), total (c), and on energy carrier production assuming low–carbon hydrogen (d).
ICEV=internal combustion engine vehicle; HEV=hybrid electric vehicle; PHEV=plug–in
hybrid electric vehicle; BEV=battery electric vehicle; HFCEV=hydrogen fuel cell electric
vehicle. –100=100 miles of electric range; H2=hydrogen. The underlying data used to
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Figure D.6: Optimal vehicle choice in the side cases under full pricing (a), and well–
to–wheel (WTW) pricing (b, c). A transition to low–carbon hydrogen is assumed in a)
and c). Further cost reductions of HFCEVs are assumed in c). Differences between
the side cases and scenario one in the main text (direct–emissions–only pricing) (d–
f) and scenario two in the main text (full–emissions pricing) (g–i). low–c H2=low–
carbon hydrogen; low–$ FCV=low–cost fuel cell vehicle; ICEV=internal combustion
engine vehicle; HEV=hybrid electric vehicle; PHEV=plug–in hybrid electric vehicle;
BEV=battery electric vehicle; HFCEV=hydrogen fuel cell electric vehicle; –100=100
miles of electric range; PC=passenger car; LT=light truck. The underlying data used to
compile this figure can be found in Supplementary Table 19.
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D.4 Electricity supply
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Figure D.7: Total electricity generated by utility companies, residential and commercial
buildings in all scenarios. The underlying data used to compile this figure can be found
in Supplementary Table 18.
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Figure D.8: CO2 emissions and emissions intensity from total electricity generated
by utility companies, residential and commercial buildings in all scenarios (a) and
development of gasoline prices and electricity prices in all scenarios (b). The underlying
data used to compile this figure can be found in Supplementary Table 18.
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Figure D.9: Total power plant capacity additions by utility companies, residential and
commercial buildings (a) and power plant capacity retirements by utility companies in all
scenarios (b). NGCC=natural gas combined cycle. The underlying data used to compile
this figure can be found in Supplementary Table 18.

D.5 Vehicle fleet characteristics

While slight differences in average vehicle weight and the degree of lightweighting can

be observed between the different accounting approaches, the curves are generally quite

flat after 2025 in either scenario (Figure D.10a and b). This flattening can be explained

by the fact that CAFE standards exist only through 2025. Due to the implementation

of a feebate, a rebate is provided to BEVs, which is why average vehicle prices remain

relatively constant after 2030 (Section D.3). Conversely, vehicle prices grow considerably

without a feebate system in place. Average vehicle prices are also slightly higher with
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higher shares of HFCEVs except in the side case in which HFCEVs reach cost parity

with BEVs (Supplementary Table 13). Figures D.10d and f exhibit potential adverse

side–effects of the feebate system. The lower prices seem to induce slightly lower sales

shares of cars, giving rise to light trucks, while travel demand is showing marginally

stronger growth but the differences may be too small to be of significance. The side

cases exhibit some variation in these outcomes (see thin green lines in Figures D.10a–f).
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Figure D.10: Characteristics of the US light vehicle fleet under full pricing and direct–
emissions–only pricing. The thin green lines show the range of results from the side cases.
ICEV=internal combustion engine vehicle; MPG=miles per gallon; kUSD=thousand US
dollars.
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