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Abstract

Morphogenesis of Class IV Neurons in Drosophila melanogaster

Olivier Trottier

2021

The establishment of the neuron’s morphology is essential to its function. The

class IV neurons of the Drosophila melanogaster larva are two-dimensional sensory

neurons that develop a complex dendritic arbor sensitive to mechanical stimuli.

The fully-developed dendritic tree results from a multitude of stochastic processes

including dendritic tip growth, branching and self-avoidance. However, it is yet

unknown how the microscopic dendritic growth processes produce the macroscopic

morphology of the class IV neurons. In this study, we aim to bridge this gap by

formulating multi-scale models of neuronal dendritic morphogenesis. We begin

by analyzing the tip dynamics and branching process of class IV dendritic trees.

We find that the tip growth dynamics can be described by a Markov process that

transitions between three velocity states: growing, paused and shrinking. Driven

by the results of our analysis, we propose two types of model of morphogenesis.

First, we use the mean-field approximation to formulate dendritic tree growth as

a system of reaction-diffusion equations with two kinds of species, dendrites and

tips. This coarse-grained approach predicts that the dendritic tree grows by the

propagation of a density wave whose tail stabilizes to a steady-state. Second, we

construct an agent-based model of morphogenesis that implements the stochastic

rules of microscopic tip growth and branching whose combined effects lead to

the development of the dendritic tree. Within the limitations of the model, this

more fine-grained approach predicts morphometrics that agree with the measured

values. In summary, our results characterize the development of class IV neurons

and provide a framework to understand how the large-scale morphology of the class

IV neuron dendritic tree emerges from the local stochastic growth of its branches.
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Introduction 1

Neurons are the primary units of the nervous system allowing the majority of

biological organisms to perceive and respond to their environment. They exhibit a

variety of shapes and fulfill a multitude of functions by communicating information

through synapses. Their proper development is therefore crucial for the survival

of the organism. The class IV dendritic arborization neurons in the Drosophila

melanogaster larva are an example of a cellular machinery that the larva uses to

sense its surroundings. Their sensory function relies on the formation of a complex

dendritic tree that is continuously refined over the larval development. In this

chapter, I present a brief overview of the developmental biology of class IV neurons

and introduce models of dendritic morphogenesis that aim to decipher their multi-

scale developmental process.

1.1 Biology of class IV neurons in Drosophila

melanogaster

1.1.1 Structure and function

The dendritic arborization neurons are sensory neurons that are found in all of the

abdominal body segments of the Drosophila melanogaster larva. The larva’s body
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is separated into 11 body segments along the antero-posterior axis, including 3

thoracic and 8 abdominal segments. Each body segment is further divided into

two hemisegments separating the left and right side of the larva. Within the body

hemisegment, the territories of the dendritic aborization neurons are organized in

a stereotypical manner that is repeated throughout all abdominal hemisegments

(see fig. 1.1) [27]. Furthermore, along the anatomical frontal axis, i.e. the axis that

traverses the larva from left to right, they are located between the cuticle and the

epidermis of the larva (see fig. 1.2) [20].

Figure 1.1 – The four classes of dendritic arborization neurons in Drosophila
Reproduced from box 2 of [27]. The shaded areas correspond to the receptive
fields while the circles identify the cell bodies. The neuronal territories of two
body segments only are drawn for simplicity. The same pattern repeats for
other segments’ boundary. Scale bars correspond to 50 µm.
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BA

Figure 1.2 – Cross-sectional view of the Drosophila larva epidermis
Reproduced from figure 2D and 1B of [20]. A. Class IV neuron dendrites are
located at the bottom of the epidermis surrounded by the extra-cellular matrix
(ECM). The scale bar corresponds to 0.5µm B. Diagram of the anatomy shown
in A.

As part of the peripheral nervous system, the dendritic arborization neurons are

stimulated by physical contacts and relay their sensory information to the central

nervous system through synaptic connections [26]. They are categorized by the

complexity of their dendritic arbor into four classes as shown in fig. 1.1. Class I

neurons exhibit a few dendritic branches while the dendritic arbor of class IV neurons

has an abundance of branches that extend far beyond the range of other classes

[19]. As such, understanding the development of the class IV neuron dendritic tree

poses a difficult problem and is the subject of this thesis.

Endowed with an extensive dendritic arbor, class IV neurons are excellent

nociceptors that respond to mechanical, thermal and light stimuli [26, 82, 91]. This

function is crucial for the survival of the larva especially when attacked by one of

its most dangerous predator, the parasitic wasp Leptopilina boulardi. During these

attacks, the wasp punctures the larva with an ovipositor aiming to inject an egg

that ultimately hatches inside the larva’s body leading to its death. As a defense

mechanism, the perforation of the larva’s cuticle stimulates the dendrites of its class

IV neurons, which subsequently initiates various escape behaviors that prevent the

injection of the wasp egg [69]. In other words, the survival of the larva is intertwined

with its ability to detect these attacks using its mechanosensory system. Moreover,

recent studies have discovered that class IV neurons cover the entire epidermis of

1.1 Biology of class IV neurons in Drosophila melanogaster 7



the larva in a two-dimensional array, ensuring the detection of the ovipositor jab

from all directions [19]. Therefore, class IV neurons have been evolutionarily driven

to construct complex dendritic arbors that optimize the detection of external stimuli

within their developmental constraints.

In fact, it has been suggested that the shape and size of dendritic arbors result

from a general optimization principle whereby neurons balance the metabolic cost of

their molecular components and the need to efficiently sample the information that

reaches their receptive field [89]. In addition, this optimum is constantly changing

as the organism develops, which incurs changes in size and metabolism. Therefore,

dendrites must adapt to these changes by continuously remodeling their dendritic

arbor while receiving synaptic or sensory inputs.

1.1.2 Development of the dendritic tree

The development of dendritic arborization neurons in Drosophila is the subject

of intense research. Over the past decades, innovation in imaging and genetic

techniques, such as the Mosaic Analysis with a Repressible Cell Marker (MARCM)

[40], has opened new horizons in Drosophila studies. These novel tools have lead to

the discovery of an extensive family of molecules that are involved in the growth of

dendritic arborization neurons. A summary of these molecules and their function is

given in [27, Table 1]. This section summarizes the role of some of these molecules

within the dendritic growth process. The goal is not to be exhaustive, but to identify

and describe the key growth mechanisms that motivate the analysis and modeling

of the class IV neuron morphogenesis.

Under ideal temperature and humidity conditions, the Drosophila larva has a

life cycle that spans ∼ 4 days following an initial embryo stage that lasts ∼ 20 hours

after the egg is laid [3]. During this cycle, the larva grows almost 5-fold in size

from a length of ∼ 0.5mm after hatching to ∼ 3mm in the adult stage. Following
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this considerable anatomical change, the average diameter of class IV neurons also

increases almost 5-fold from ∼ 75µm to ∼ 350µm (see fig. 1.3).

Figure 1.3 – Development of Drosophila class IV neurons
A. Development of the larva over the embryo (E) and the three larval stages
(L1, L2, L3). B. Development of the class IV neurons over the embryo and
larval stages. Figure provided by Sonal Shree.

To maintain coverage of its receptive field, the class IV dendritic tree must

continuously grow in size and complexity. This large-scale growth is accomplished

through several molecular processes: 1) dendritic branches elongate, 2) new den-

dritic branches are formed by lateral branching and 3) dendritic tips stop growing

upon contact with other dendrites.

1.1 Biology of class IV neurons in Drosophila melanogaster 9



t = 0 min t = 3 min t = 5 min t = 9 min t = 12 min

Figure 1.4 – Dynamical processes in class IV neuron development
The time-lapse images are recorded at 24 hr AEL over the course of 12 min.
Growth, branching, contact, retraction and annihilation events are identified by
green, magenta, yellow, red and blue stars, respectively. Scale bars correspond
to 5 µm. Modified from a figure provided by Sonal Shree.

Growth

The growth of the dendritic arbor of class IV neurons is a complex machinery due

to its enormous size in comparison to typical cellular scales that are ∼ 1− 10µm

[52]. Although the growth of axons have been studied extensively in the past, our

knowledge of dendritic growth is still unfolding. Nonetheless, we have started

uncovering a variety of molecules whose cooperative actions lead to the proper

development of the class IV dendritic tree [8].

Throughout development, dendritic tips of class IV neuron elongate as depicted

in fig. 1.4. At the molecular scale, tip growth is accompanied by the growth of the

cytoskeleton, which is made of actin filaments and microtubules. Actin filaments

(F-actin) are helical polymers [10] and microtubules (MTs) are rod-shaped polymers

that exhibit a stochastic process of growth and shrinkage called dynamic instability

[24, 53]. Sustaining tip growth with cellular building blocks poses a significant

metabolic problem due to the large extension of the dendritic tree. To supply this de-

mand, molecular-motors actively transport intracellular material by carrying cargoes

along the cytoskeleton. For example, microtubule-associated molecular motors such

as dynein and kinesin transport several kinds of cargo such as organelles, vesicles,

neurotransmitter receptors, cell adhesion molecules, cell signaling molecules and

mRNAs [23, 96]. The structure and maintenance of the microtubule meshwork is

therefore paramount to enable cellular transport from and to the cell body, ensuring
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proper development [30]. Several studies have reported that microtubules in the

dendrites of class IV neuron have a mixed polarity early in their development (50%

of MT minus-ends are oriented outward and 50% are oriented inward with respect

to the cell-body), but the orientation of MTs uniformizes to outwardly-oriented

minus-ends at the later developmental stages [22, 54, 76]. However, these studies

utilize MT end-binding proteins (EB) to probe the MT polarity [1], which may be

biased against stable outwardly-oriented plus-end MTs.

In addition to intracellular transport, class IV dendritic trees utilize a more local

strategy to nucleate microtubules. Indeed, studies have discovered that pieces of

the Golgi apparatus, called Golgi outposts, are found throughout the entire arbor,

predominantly located near branch points [60, 94]. A positive correlation between

the location of Golgi outposts and growing microtubules suggest that Golgi outposts

contribute to dendritic tip growth by providing a local (acentrosomal) supply of

microtubule nucleation sites. In fact, studies on mammalian neuronal dendrites

suggest that Golgi outposts could play an important role in dendritic development

by participating in the local synthesis of proteins [75].

Branching

In cooperation with dendritic tip growth, the formation of new branches also

contributes to establishing coverage of the class IV neuron receptive field. As

shown in fig. 1.4, branching occurs throughout the entire branch, and not only at

the branch tip.

Several studies have started elucidating the molecular mechanisms that give

rise to the branching process. As explained above, Golgi outposts have been found

throughout the entire class IV dendritic arbor and their correlation with growing

microtubules suggests that they may promote branch formation and stabilization

by providing initial cellular building blocks (e.g. microtubule nucleation sites) [60].

1.1 Biology of class IV neurons in Drosophila melanogaster 11



However, other studies demonstrate that the regulation of microtubule nucleation

sites is controlled by γ-tubulin, a nucleator of mictrobules, independently of Golgi

outposts [57].

Remodeling of the cytoskeleton may also be a major molecular strategy for gen-

erating new branches. One study has found that actin filaments are enriched at the

location of future branch points and hence precede their formation [58]. Moreover,

several studies have observed that the severing activity of cytoskeletal elements sig-

nificantly affects the complexity of the dendritic tree pattern. For example, reducing

the expression of the actin-severing protein Tsr/cofilin or increasing the stability of

F-actin decreases the formation of new dendrites [58]. Other investigations made

similar observations for microtubules. One study shows that the transcription factor

Knot regulates branching by controlling the expression of Spastin, an ATPase that

severs microtubules [29]. Another study has found that axonal regeneration in

Drosophila da neurons is strongly dependent on the expression of the spastin gene

[77]. Furthermore, Katanin 60, another microtubule severing protein, is also re-

quired for the proper development of da neurons [48]. In addition, using a statistical

approach, another study has shown that the density of microtubules and F-actin are

strong determinants of the tree topology [56]. More specifically, the MT density

is a strong predictor of arbor length and branch points are enriched with F-actin.

Overall, these results indicate that cytoskeletal severing proteins play an important

role by reshaping the dendritic tree and providing nucleation sites. This function is

also consistent with our findings that Spastin acts as a nucleator by increasing the

average number of MT growing ends [36, 37].

Conjointly with the cytoskeleton, there is also evidence that molecular motors

and endosomes play an active role in branching. Indeed, mutations in genes

encoding for motor-protein such as the dynein subunit gene (dlic) and the kinesin-1

heavy chain (khc) reduce the complexity of the dendritic arbors and shift the branch

spatial distributions towards the cell body [72]. In addition, mutant arbors that do
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not express Rab5, a small GTPase that regulates the early endocytic pathway, show a

reduction in the number of branches. This phenotype indicates that Rab5-endosomes

play a key role in the branching process by carrying an essential cargo for forming

new branches. Another study showed that reducing the expression of the coiled-coil

protein Shrub, which is a key component of the endosomal sorting complex required

for transport, reduced the amount of branches in early-stage class IV neurons, but

increased the number of terminal branches in third-instar larva [80].

Finally, another hypothesized mechanism of neurite branching worth mention-

ing is the extension of neurites by mechanical cytoskeleton forces. By analyzing

axonal growth in Drosophila cultured primary neurons, one study has found that

sliding of microtubules mediated by kinesin-1 was necessary and sufficient to extend

the axon [46]. Subsequent studies by the same group, using kinesin-1 heavy chain

(KHC) mutants, found that this outgrowth mechanism is also conserved in class IV

neuron dendrites [59, 90].

Self-avoidance

Tip growth and branching are two mechanisms that promote coverage of the recep-

tive field. To prevent excessive filling of the occupied area, the growth of dendritic

tips in class IV neurons is inhibited after contacting other dendrites. This process

is known as self-avoidance and is mediated by the Down Syndrome Cell Adhesion

Molecule (DSCAM). Intense research on the molecular basis of self-avoidance has

uncovered a novel strategy of dendritic pruning that warrants a brief foray into this

mechanism [51, 73, 97].

Dscam1 is a cell adhesion molecule that is embedded across the cellular mem-

brane of class IV neurons. One of its end is outside the cell (in the extracellular

matrix), while the other end is in contact with the cytoplasm (the intracellular

tail) (see fig. 1.5). Upon encountering a copy of itself, Dscam1 binds with this
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copy (homodimerization) and triggers a repulsive signaling pathway that inhibits

growth. However, the repulsive signal is not activated if two different forms of the

Dscam1 molecule encounter each other. Hence, when a dendritic tip contacts a

dendrite belonging to the same tree, the homophilic binding of Dscam1 inhibits

further tip growth. Furthermore, Dscam1 endows the cell with a molecular identity

via the alternative splicing of the Dscam1 locus, which can create at least 19,000

isoforms [97]. Thus, the molecular diversity of Dscam1 allows the cell to distinguish

between self and non-self neurites, which is essential for the coexistence of dendritic

arborization neurons of different types in a given receptive field.

Figure 1.5 – Binding kinetics of the DSCAM molecule
Reproduced from figure 2a of [97]. Two DSCAM molecules bind with one
another only when they are homodimers or complementary heterodimers.
Upon binding, a repulsive signaling is transmitted through the cytoplasmic tail.

By inhibiting the growth of dendrites that collide with one another, class IV

neurons are effectively pruning their dendritic trees in regions of high dendrite

density where the tip collision frequency is increased. However, since this pruning

mechanism is contact-mediated, a sufficient probability of contact is necessary to

ensure that neighboring dendrites avoid each other. This condition is ensured by

integrins and cadherins, which maintain the dendrites tightly bound to the basal
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membrane of the epidermis [20, 32, 74]. Thus, the dendritic arbor is constrained

on a two-dimensional plane making contacts more likely to occur compared to a

three-dimensional space geometry. Therefore, the anchoring molecules work in

consortion with Dscam1 to prune the dendritic tree via contacts.

In addition, mutation of Dscam1 in Class III da neurons have shown that it also

counters the effect of targeting cues by netrins [50]. This suggests that more complex

da neurons like class III and class IV organize the spacing and distribution of their

dendritic branches dynamically by the combined effect of autonomous dendrites

growth and contact-based repulsion.

Tiling

At 48 hr AEL, the class IV neurons establish almost complete coverage of the larva’s

epidermis in a tiled fashion as shown in fig. 1.3. In Drosophila, this phenotype is

known as tiling and it occurs by preventing overgrowth of class IV neurons [19].

Tiling has also been observed in other neuronal systems such as the visual nervous

system in mammals [2, 4, 87, 88]. However, it is not universal across the Drosophila

nervous system. For example, in the developing central nervous system, there is

partial evidence that the initial positioning of motor neurons is not a consequence of

neighboring neuron repulsion, but is instead controlled by early developmental cues

[38]. Moreover, the tiling phenotype is not exhibited by all dendritic arborization

neurons, but only the class III and IV neurons [18].

Although the type-specific dendrites repulsion controlled by Dscam1 would

be an effective strategy to establish the boundaries of the neuron’s receptive field,

several studies have found that Dscam1 is not required for the tiling of class IV

neurons [25, 51, 73]. Instead, experimental evidence shows that the tiling of class

IV neurons is controlled by a more complex pathway that includes the 7-pass trans-
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membrane cadherin Flamingo [16, 33, 79] and the kinases Hippo and Tricornered

[11, 12].

Once tiling is established, the growth of class IV neurons scales with the growth

of the organism. One study has shown that this scaled growth is regulated by

the microRNA bantam (ban) [62]. In this study, they observed that ban mutants

exhibited overgrown dendritic trees indicating that microRNAs, which are known to

be temporal regulators of development, play an active role in dendritic growth. In

addition, they found that the inhibitory function of ban was not autonomous in class

IV neurons, but required signaling with the underlying epithelial cells indicating

that the substrate also plays a significant part in the growth of dendrites.

In summary, the tiling of class IV neurons helps the larva to gather sensory

information in an efficient and non-redundant manner.

1.2 Models of branching morphogenesis

Class IV neurons are a complex biological system that develop an intricate branch-

ing pattern throughout their development. Such designs are not unique to the

Drosophila nervous system, but are found in many living organisms and arise from

a multitude of processes that shape the morphology of the tree in specific ways.

Understanding how these processes create the branching patterns that are observed

has motivated researchers to propose models of branching morphogenesis based

on established principles of growth. In this section, I describe several models of

branching morphogenesis that are relevant to our model system and explain how

each of them succeeds at reproducing the observed morphology using a given set of

branching rules.
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1.2.1 Branching morphogenesis as an optimization process

A century ago, Ramón y Cajal [5] proposed architectural principles in neuronal

anatomy and Wilfrid Ralls [66] subsequently build upon these ideas to start devel-

oping a neuron theory that considers both morphological and electrophysiological

properties. Iterating on the ideas of Ramón y Cajal and Ralls, Cuntz et al. proposed

the idea that the process of branching morphogenesis seeks to minimize the total

dendritic material while maximizing the signal transduction to the cell body [9].

More specifically, the morphogenesis optimization principle aims to minimize

the following cost function:

C =
∑
i

`i+ bf
∑
j

Lj(~xj) (1.1)

where `i corresponds to the length of the ith branch in a given tree, Lj(~xj) is the

length of the shortest path from the root of the tree to the target position ~xj and

bf is a parameter that weights the relative strength of the two costs. The first

term in eq. (1.1) corresponds to the material cost of the tree, while the second

term corresponds to the cost of transmitting an attenuating signal from a set of

positions ~xj . These two opposing costs were initially proposed by Cajal, namely that

the cytosol or material must be minimized (first term) while also minimizing the

conduction time (second term). To build the tree from a given set of targets, the

model uses a greedy algorithm that iterates through each target point and connects

them to the tree with a path that minimizes the total cost.

Then, by varying the single parameter of this optimization problem, namely

the balancing factor bf , the landscape of morphologies is explored by optimizing

the arbor for a given set of target points ~xj (see fig. 1.6). To test the sufficiency of

the optimization, the authors attempt to reproduce the morphology of several cell

types include amacrine cells, hippocampal granule cells and cortical pyramidal cells.
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For each cell type, the set of target points that is used to generate synthetic trees

is determined by sampling the measured density of tree nodes and the number of

targets varies in each cell type.

path along the tree from the root (large black node) to the carrier
point; this quantity is consistent with the conduction time
conservation constraint by Cajal. In the example here, even
though P is closer to node 5 in Euclidean terms, the additional cost
of path length (adding node 5 on the path) might tip the balance in
favour of node 4. A balancing factor bf, which weighs these two
costs against each other in the cost function (total cost = wiring cost
+bf ? path length cost), represents the one and only parameter of the
model.

Figure 2B illustrates the approach for neuronal trees grown on
homogeneously distributed random carrier points in a circular
envelope when the root is located at its centre. Since the two
constraints (minimizing wiring and minimizing path length to the
root) are weighted according to the balancing factor bf
determining the contribution of the second constraint, the
synthetic trees range along the dimension of that parameter from
a pure minimum spanning tree, which grows in a wide spiral, to a
purely stellate architecture (Figure 2B, from left to right).

In the following, we will apply this method of creating optimized
graphs to reproduce morphologies in various neuronal prepara-
tions. The main effort will be to obtain an adequate set of carrier
points for the application of the algorithm; this will prove to
depend strongly on the density profile of the spanning field in the
respective geometries. When additional constraints will be
required in generating neurons in specific brain areas, this will
provide clues pointing to actual computational or functional
features of neuronal morphology.

A geometric approach for generating neuronal trees
Whereas our previous work was limited to insect dendrites

[19,20], here we explored whether the algorithm is also able to
reproduce a variety of neuronal structures. We first investigated
the simple case of a planar neuron: the starburst amacrine cell of
the mammalian retina. Its root is invariably located at the centre of
a circular planar structure (data from [24]; Figure 3A). This
arrangement provides a common geometrical context for these
cells. In order to best generate synthetic starburst amacrine cell-
like neurites, random carrier points were distributed according to a
ring-shaped density function around the centre in the root, limited

by a simple circular hull (Figure 3B). The locus of increased
density most likely corresponds to the area where an increased
number of connections is being made in the real cell, with
directional selectivity probably being computed there [25,26].
Figure 3C demonstrates that this process successfully generates a
synthetic neurite. The right balance between the two optimization
constraints plays a crucial role, as is evident from a synthetic tree
grown with a different balancing factor (bf = 0.2, Figure 3D). An
appropriate balancing factor was determined by quantitatively
comparing total cable length, mean path length to the root and
number of branch points to the original real tree (Figure 3E).
Using the corresponding balancing factor resulted in realistic
distributions of branch order and path length values as well as a
realistic Sholl plot [27], which counts the number of intersections
of the tree with root-centred concentric spheres of increasing
diameter values (Figure 3F–H). The starburst amacrine cell neurite
required a higher bf than did the insect dendrites (0.6 versus 0.4,
see [19,20]). Additionally, suppressing multifurcations improved
the growth process (compare Figure 3CD with Figure 2B). This
was generally beneficial for all neurons studied here, and might
reflect a constraint for the underlying developmental growth
process. To better reproduce the appearance of reconstructions of
real neurons, spatial jitter was added in all cases in the form of low-
pass filtered spatial noise applied directly on the coordinates of the
nodes in the resulting tree. Note that homogeneous noise
application was only possible after the tree was resampled to a
fixed segment length. Spatial noise in real reconstructions is partly
due to fixation (e.g. shrinkage or reconstruction artefacts) and
should therefore not necessarily be reproduced by the synthetic
morphologies. However, wriggly paths in neuronal branching,
corresponding to a spatial jitter along the branches, can be a result
of obstacle avoidance and therefore can be associated with space
packing issues [3], relating to the third law described by Ramón y
Cajal. In this study, however, we do not model volumetric
optimization or space packing of other neuronal and non-neuronal
structures in the tissue. We thus simply note here that in order to
fully reproduce starburst amacrine cell reconstructions, multi-
furcations were suppressed and spatial jitter was added.

We next studied dendrites of hippocampal granule cells, which
fill a three-dimensional volume rather than a plane (template data

Figure 2. Generating neuronal branching structures using optimized graphs. (A) The growth described by an extended minimum spanning
tree algorithm (see text). Unconnected carrier points (red) are connected one by one to the nodes of a tree (black). Red dashed lines indicate three
sample Euclidean distances to the nodes of the tree for sample point P. (B) Example trees grown on homogeneously distributed random carrier
points in a circular hull starting from a root located at its centre (see top). Plotted as a function of the balancing factor bf, the trees range from perfect
minimum spanning trees (left) to almost direct connections from the root to any point (right).
doi:10.1371/journal.pcbi.1000877.g002
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Figure 1.6 – Minimal spanning tree algorithm of the Cuntz et al. model
Reproduced from figure 2 of [9] A) Example of the trade-off that is considered
during the construction of the tree with the minimal spanning tree algorithm.
To construct the tree, the target points (red circles) are connected to the
dendritic tree (black circles). In this example, the target point P 5 is closest
to point 5 in euclidean distance, but the path that goes through point 5 is
longer than the one that goes through point 4. Depending on the value of the
balancing factor, one path will incur a smaller total cost than the other. B)
Examples optimal morphologies for increasing values of the balancing factor
bf . The red circles corresponds to the set of targets from which the conduction
is minimized.

The model succeeds at reproducing a wide range of morphologies as assessed by

comparing the branch depth distribution, the branch length distribution, the Sholl

intersections and the electrotonic map, which determines the sizes and quantities of

sub-trees. The model also succeeds at reproducing the tiling of contiguous neurons,

as seen in Purkinje cells, by running many optimizations that compete to reach

target points.

Insights

The success of the Cuntz et al. model hints that optimization of material cost and

connectivity may be at work during the development of neurons. Indeed, since

neurons must function right from the onset of development, it is plausible that

18 Chapter 1 Introduction



their activity and the availability of cellular material during development drive

their formation. Moreover, the fact that synthetic and real neurons share many

morphological similarities for various cell types indicate that such optimization

principles may be universal across neurons.

Limitations

Although the Cuntz et al. model succeeds at reproducing diverse neuronal morpholo-

gies from a simple optimization principle, it has no physical foundation. Indeed, the

model provides a formula for constructing an optimal and realistic dendritic tree,

but it does not explain how such tree is constructed by physical processes. Moreover,

the final shape of the spanning tree is strongly determined by the position of the

target points and it is unclear how these target points arise in neuronal systems. To

produce the synthetic trees, the authors define the target points from the density of

measured trees. Since the target points are highly correlated with the real trees, the

extent to which the algorithm is simply sampling the real morphology distribution is

unknown.

1.2.2 Turing patterns in class IV neuron morphogenesis

In 1952, Alan Turing proposed the idea that the diverse structural patterns in living

organisms were an emergent phenomenon of the underlying chemical reactions

of biological constructs, nowadays known as Turing patterns [84]. Following this

hypothesis, Sugimura et al. proposed a model of branching morphogenesis that

consists of a set of three chemical species that diffuse and react with one another to

create dendritic shapes [78].

Specifically, the model species consist of 1) core molecules c(~x,t), meant to

represent inert dendrites, 2) activators u(~x,t) that promote the growth of dendrites
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c and 3) suppressors v(~x,t) that inhibit dendritic growth. The diffusion-reaction

dynamics of these species is governed by the following dynamical equations:

∂u(x,t)
∂t

=Du∇2u+f(u,v) (1.2)

∂v(x,t)
∂t

=Dv∇2v+g(u,v) (1.3)

∂c(x,t)
∂t

= phc(a(u)− c)(c−pk) (1.4)

The first term in in the RHS of equations eq. (1.2) and eq. (1.3) models the

diffusive motion of activators and suppressors with diffusion constant Du and Dv,

respectively. The authors consider the case where suppressors diffuse faster than

activators (Dv >Du). In addition, suppressors and core molecules are free to explore

the full 2D space, while activators are constrained to small volume around the core

molecules (see fig. 1.8C).

The second terms, f and g, model the specific interactions between activators

and suppressors, including self-interactions. More specifically, activators are auto-

catalytic (∂f∂u > 0), but their growth is inhibted by suppressors (∂f∂v < 0), while sup-

pressors are promoted by activators ( ∂g∂u > 0) and their degradation is concentration-

dependent (∂g∂v < 0).

The last equation eq. (1.4) determines the growth of the dendritic shape, which

is entirely determined by the activator-suppressor dynamics. As opposed to u and v,

the core molecules do not diffuse and can only grow in the presence of the activators,

which is controlled by the function a(u). The RHS of eq. (1.4) indicates that the

"state" of the core molecules is bistable where a(u) is the switching point between

absence (c= 0) and presence (c= 1) of dendrites.
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To better understand how the bistable dynamical system of the core molecules

c lead to dendritic growth, the authors graphically explain how a(u) controls the

stability of the fixed points of c (see fig. 1.7).

Figure 1.7 – Summary of the cell compartment model introduced by Sugimura et al.
Reproduced from figure 1 of [78]. A) Summary of the reaction dynamics be-
tween the chemical species. Activators A promote the growth of dendrites and
suppressors S (1), while suppressors inhibit the presence of activators (2). In
addition, suppressors diffuse faster than activators and the motion of activators
is bound by the dendrites volume. B) The extra cellular suppressor molecules
inhibit the growth of surrounding dendrites. C) The cell compartment consists
of a core (representing the dendrites) surrounded by an envelope where activa-
tors can diffuse. The envelope is defined by the union of spheres of radius R
centered at each core molecule. D) Summary of the reaction dynamics between
the core (c) and activators (u). The growth of dendrites (dcdt > 0) is initiated
when the activator concentration reaches a certain threshold Tr. When u(~x,t)
is below threshold, c= 0 is a stable fixed point. When u(~x,t) is above threshold,
c= 0 is an unstable fixed point.
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Figure 1.8 – Mean-field dynamics of the Sugimura et al. model
Reproduced from figure 2 of [78]. A,D) Examples of simulated dendrites in
the cell compartment model of Sugimura model. B,E) Concentration profile of
activators. C,F) Concentration profile of suppressors.

Insights

The simplicity of the Sugimura model is its greatest strength. Based on a simple set

of reaction-diffusion equations, the model can produce branched networks that are

similar in shape to the class IV neuron dendritic tree. Moreover, the fact that the

tree is built entirely from the local activator-suppressor dynamics, which is itself

constrained by the local dendrites density, indicates that a self-organizing branching

process is sufficient to form a dendritic tree.

Limitations

Although the simplicity of this model facilitates intuition, it also limits its representa-

tion of real systems. One of the hallmark of biological systems is their ability to adapt
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to changes in their environment. This adaptability requires continuous sampling

of their environment, which lead to stochastic behaviors. In class IV neurons, the

adaptability of the shape to fill space originates from the stochastic growth of branch

tips, which constantly go through phases of growth and shrinkage. In this model,

such stochasticity is absent in branch tips since the dendritic tree in the bulk quickly

reaches an equilibrium given by the steady-state of the activator-suppressor dynam-

ics. In addition, the authors presume the presence of activators and suppressors, but

their biological origin is unclear. Consequently, it is difficult to assess the feasibility

of the parameter values in physiological conditions.

1.2.3 Mechanistic model of mammary gland morphogenesis

Studying the mouse mammary gland, kidney and the human prostate, Hannezo

et al. [21] proposed a model of branching morphogenesis that recapitulates the

statistical properties of the branched network exemplified in these organs. Taking a

non-reductionist approach, the authors aimed to predict the large-scale statistical

properties of the branched networks using rules of growth that are loosely dependent

on the cellular and molecular scale dynamics. This summary focuses on the two-

dimensional ductal network of the mouse mammary gland epithelium studied by

the authors.

The Hannezo et al. model is based on the theory of branching and annihilating

random walks (BARWs) [7] where the growth of branch tips is regulated by three

local rules: 1) tip branching, 2) tip elongation and 3) tip termination. The rules are

summarized graphically in figure fig. 1.9. Stochastic simulation of these rules show

that they can generate branched networks with statistical properties that are similar

to the organs’ network. The statistical properties were assessed by several metrics

such as the average tip termination probability, i.e. the fraction of tips that terminate

at a given level, the distribution of subtree sizes and the subtree persistence, i.e. the
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fraction of subtrees at the 6th level that are still present at a deeper level. As shown

in fig. 1.9, the model predicted networks that were in agreement with the ductal

networks.

Figure 1.9 – Graphical summary of the Hannezo et al. model
Reproduced from figure 2 of [21]. A) Model rules for the growth of ductal
networks. B) Comparison of simulated and experimental ductal networks. C)
Comparison of the simulated and experimental tree topology. The origin of a
subtree starts at generation n = 6. D-F) Statistical metrics of simulated and
experimental trees. The shaded region corresponds to mean ± SD.

Supporting the simulations, the hydrodynamic limit of the branching rules was

also considered using a 1D mean-field approach that involves two species: active
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a (tips) and inactive i (ducts) particles. The dynamical equations that govern the

evolution of these two species are the following:

∂a

∂t
=D∇2a+ rba

(
1− a+ i

n0

)
(1.5)

∂i

∂t
= rea+ rb

n0
a(a+ i) (1.6)

In the active tip equation, the first term models the motion of the tips through

diffusion while the second term results from branching events, which increase the

local number of active tips by 1 with probability rb. Finally, the last term corresponds

to the annihilation of active tips upon encountering another active tip or duct particle.

This term is normalized by n0, the steady state density of ducts, such that no more

new branches are created when the local density of ducts and tips reaches a steady

state.

In the inactive ducts equation, the first term models the process of tip elongation

whereby inactive ducts are produced at a rate re in the vacant space created by the

moving active tips. The second term is the counterpart of the last term of the active

tip equation where inactivation of an active tip produces inactive particles.

With this formulation, the mean-field model predicts duct and tip densities

that are in agreement with the observations (see fig. 1.10). Moreover, the model

predicts that the ductal network of the mammary gland epithelium grows through

the propagation of a constant-speed solitary density wave of active branch tips.
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>50% of EdU+ cells, Figures S4J and S4K). Importantly, we
found good qualitative agreement between experiment and
theory, with active tips present at the edge of the growing front
and a remarkably constant density of trailing ducts (Figure 3D).
Quantitatively, analysis of the spatial profile at the growing front
showed that the density of active tips decayed exponentially

both ahead and behind the front, with the decay length of the
former larger than the latter by a factor of ð

ffiffiffi
2

p
" 1Þ, all key

and non-trivial predictions of the Fisher-KPP dynamics (Figures
S4F–S4I; Method Details).
Together, these results suggest that the global spatiotem-

poral dynamics of mammary ductal morphogenesis can be

B

CA

D

Figure 3. Branching and Annihilating Random Walks Reproduce the Kinetics of Mammary Invasion
(A) Numerical simulation of the model at different developmental time points with ducts shown in black and active tips in red.

(B) Theory predicts a self-organized solitary pulse of active tips positioned at the growing edge of the network, leaving behind a trail of inactive ducts of constant

density.

(C) 3D reconstruction of a fourth mammary gland following an EdU pulse at 5 weeks showing the position of active tips. Active tips are localized preferentially at

the invasion front, mirroring qualitatively the prediction of the model.

(D) Density profiles of ducts (black) and fully proliferative tips (red), averaged over n = 4 glands, alongside theory (red and black lines, respectively) revealing good

quantitative agreement. Error bars represent mean and SEM. Scale bar, 5 mm.

See also Figure S3.
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Figure 1.10 – Mean-field predictions of the Hannezo et al. model
Reproduced from figure 3 of [21]. B) Temporal evolution of the predicted
densities of active and inactive tips. D) Comparison of theoretical and experi-
mental density profiles.

Insights

Hannezo et al. proposed a model of branching morphogenesis based on a simple set

of local rules (tip elongation, tip bifurcation, tip termination) that can quantitatively

predict observed morphologies. Moreover, the model reproduces the small amount

of branch crossovers seen in the ductal networks of mammary glands, similar

to the dendritic network of class IV neurons. In the model, this is ensured by

terminating the growth of active tips that are in proximity of inactive ducts. The

success of this mechanism suggests that the branching morphogenesis of ductal

networks is a stochastic self-organized process contrary to the idea that it is governed

deterministically by a genetic program. Since this self-organizing branching process

was observed in several 2D and 3D tissues, they propose that it could be universal in

organic tissue development.

Limitations

Although the proposed model is certainly successful at recapitulating key aspects of

branching morphogenesis in tissues, it is unlikely that this branching model unifies
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all biological branching processes. One branching rule that is most limiting is the

tip branching. Indeed, in class IV neurons, although dendritic tips can certainly

branch into two branches, most new tips are born out of the inert dendrites (which

corresponds to the inactive ducts in this model). In further iterations of the main

model, side-branching was considered, but the side-branches were constrained to

grow for only a typical length, could not branch further and were only created

during tip branching events. Moreover, as the branching process occurs solely at

the tips, the majority of new tips are located at the periphery of the network, which

is also predicted by the mean-field model. This is undoubtedly different than the

branching process of class IV neurons since branch tips are born across the entire

network. Finally, the tip termination process also limits the universality of the model.

In class IV neuronal growth, dendritic tips do not terminate upon contact, but retract

and potentially regrow in other directions depending on their dynamics.

1.2.4 Mechanistic model of class I neuron morphogenesis

Palavalli et al. [61] proposed a computational model of branching morphogenesis

for Drosophila class I neuron at the early developmental stage (15-25 hr AEL),

which incorporates both deterministic and stochastic rules of growth. The model is

summarized in fig. 1.11.
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Figure 1.11 – Graphical summary of the Palavalli et al. model
Reproduced from graphical abstract of [61].

The model starts from a vertical branch of length 30µm, which corresponds

approximately to the geometry of class I neuron at 15 hr AEL. From this initial branch,

new branches are born out of existing branches at a rate of λL, where λ corresponds

to the branching rate per unit length of dendrites and L represents the length of any

potential parent branch. Once branches are spawned, they grow at a velocity von that

is constrained by measurements. The initial growth direction is uniformly distributed

and the subsequent orientation is controlled by the persistence length lp set to 17µm.

Then, with a certain rate koff , branches transition to a shrinking state that shortens

the branch at a rate voff . The depolymerizing state can also be induced by contacts

with other dendrites, which is motivated by the contact-based retraction triggered

by the Dscam pathway. Upon contact, branches switch to the depolymerizing state

with a probability poff , which is set to 1 for the wild-type cases. Finally, reversion

to the polymerizing state is controlled by another rate, kon. In addition, the model
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distinguishes between primary, secondary, tertiary and quaternary branches and

assigns them different parameters: λi,ki,on,ki,off ,vi,on,vi,off where i indexes the

order.

To evaluate their model, they measure the total dendritic length over devel-

opmental time and categorize the length distribution by the branch order, which

corresponds to the depth of a given branch in the tree hierarchy. They also compare

the number of secondary and tertiary branches and measure the growth rate of

branches to constrain the switching rates (kon,koff ).

Then, they explore the model parameter space by changing the value of r= kon
koff

.

They find that the density of the arbor depends strongly on r, where increasing r

leads to denser trees. This is expected since a higher value of r implies a higher

value of kon, which means that branches spend more time in the polymerizing state.

Moreover, they find that these simple rules of growth cannot recapitulate the number

of secondary and tertiary branches measured in class I neurons. Indeed, in their

simulations, the number of secondary branches is overestimated almost twofold

compared to the measurements, while the number of tertiary branches increases

monotonically with time.

To rescue the model, they introduce an aging process where the switching rates

and tip velocities decrease by a constant factor every 2 hrs. The switching rates

and branching rate are reduced by a factor fi, while the velocities are reduced by

a different factor fv,i. In addition, the decay factor changes for each branch order

(2 to 4). With this new model, they are able to reproduce the branch number, the

mean branch length of secondary and tertiary branches and the branching angle

distribution, i.e. the angle between secondary and primary branches. Although their

predictions are in agreement with experimental observations, their aging protocol

introduces 6 new parameters that are unconstrained by measurements, henceforth

reducing the predictive power of the model.
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Overall, their model demonstrates that class I dendritic trees are shaped au-

tonomously by the dynamics of their branch tips without external cues. Moreover,

the model highlights two important mechanisms that determine the tree morphol-

ogy. First, the branching of secondary and tertiary branches act as a maturation

process that prevents the retraction of primary branches. Second, the contact-based

retraction is a negative feedback that shapes the tree’s architecture based on the

local dendrites density.

Insights

The success of the model at reproducing the number of branches and branch length

distribution hints that the development of class I neuron may be an autonomous

process that is independent of extrinsic factors. Moreover, the success of the model

in recovering the Gaussian distribution of the measured branching angle reinforces

the idea that the arbor geometry emerges from the local growth dynamics.

Limitations

Although the model predictions are in agreement with the measurements, the com-

parison is only performed over 10 hours of growth from 15 to 25 hr AEL, which

corresponds to 10% of the larva’s lifetime. It is unclear if the model would still

hold at later developmental stages. Moreover, the aging process parameters are

unconstrained by measurements. It is possible that such an aging process occurs

in vivo, but the particular functional dependence of the parameters on the aging

process is not supported by experimental observations. Finally, the model recapit-

ulates coarse-grained metrics of the tree topology like branch length and branch

number, but spatial metrics like the density of dendrites are not compared. Although

prediction of the tree topology is a necessary condition for the model’s success, it is

also necessary that it recapitulates the spatial distribution of the branches, as this is
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an important driver of the contact-based retraction. The qualitative comparison of

the simulated and real trees presented by the authors indicate that spatial metrics

are also in agreement. However, it is difficult to assess the accuracy of the model on

these metrics without quantification.

1.3 Question and hypothesis

Defective dendritic arbors are known to be the cause of several neurological disorders

such as schizophrenia, autism spectrum disorders and neurodegenerative diseases

[35]. The molecular mechanisms of these pathologies are still unknown and the

design of new therapies is impeded by our limited understanding of the fundamental

developmental processes of dendritic arbors. This lack of knowledge stems from

the diversity of dendritic arbors and the complexity of the underlying molecular

mechanisms. The need to develop a comprehensive understanding of neuronal

development that connects molecular processes to cellular morphology motivates

the following question:

How do neuronal dendrites grow?

To answer this question, we hypothesize that dendritic growth is an emergent

property of the molecular scale dynamics (see fig. 1.12).
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Figure 1.12 – The emergence of dendritic morphogenesis
Molecules, including molecular-motors, cytoskeletal polymers, severing pro-
teins and cell adhesion molecules, interact with one another at the nanometer
length scale over the second time scale, which leads to the growth of the
dendritic tip at the micrometer length scale and over the minute time scale.
Furthermore, the growth dynamics of the dendritic tip is modulated by the tip
environment, which consists of the extra-cellular matrix, the epithelium and
other dendrites, which ultimately generate the morphology of the dendritic
tree at the millimeter length scale over the day time scale. Figure designed in
collaboration with Sabyasachi Sutradhar.

This hypothesis prompts the following sub-questions:

• What molecular mechanisms drive dendritic growth?

• How do the spatial and temporal dynamics of the dendrite affect the overall

growth of the dendritic tree?

• How do the molecular mechanisms change over development?

• Are there universal principles of dendritic growth that have been evolutionarily

promoted by environmental factors?

The verification of this hypothesis requires establishing a direct link between

the molecular processes of dendritic growth and the cellular structure of the class IV

dendritic tree. Although extensive research in the past decades have shone new light
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on the molecular landscape of Drosophila dendritic growth [27, 41, 71, 97], there is

still much to be learned about their effect on the large-scale dendritic growth. In

addition, multi-scale data-driven models are also necessary to reinforce the causal

relationships between the molecular processes and cellular structure evidenced by

experimental observations.

To take part in this arduous endeavor, I focus on building the connection

between the sub-cellular growth processes and the cellular morphology, using the

dendritic tip as the elementary unit. To establish this correspondence, I use the

class IV neurons of the Drosophila melanogaster larva as a model system for several

reasons: 1) the neurons are nearly two-dimensional making them easier to observe

compared to three-dimensional neurons, 2) the genetic tools are well-developed,

which makes mutation experiment easier to design and 3) the short life cycle

provides rapid developmental observations compared to mammalian model systems.

In this physical study of the class IV neuron dendritic growth, I have made several

contributions as detailed in each chapter of this thesis and summarized in the

conclusion.
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Material and Methods 2

In this chapter, I describe the data acquisition and image analysis techniques that

were used to process the static and dynamic observations of the dendritic growth in

Drosophila class IV neurons.

The sample preparation and image acquisition were performed by Sonal Shree.

The dendritic tip tracking was performed by Sabyasachi Sutradhar. The image analy-

sis was performed in collaboration with Sonal Shree and Sabyasachi Sutradhar.

2.1 Sample preparation and microscopy

The fly line used to image class IV dendritic arborization neurons in this study was

Bloomington stock 35842, possessing the following genotype: +;ppk-CD4-tdGFP;.

The fly stock was maintained at 20◦C in a humidity-controlled incubator on standard

D-2 glucose medium vials (Archon Scientific) with a 12-hour light/dark cycle. Fly

crosses were maintained in fly chamber at 25 ◦C, 60 % humidity. The plate used to

collect the fly embryos was apple juice agar-based containing a mixture of apple

agar concentrate, propionic acid, phosphoric acid and water. Also, large drops of

yeast paste were deposited in the center of the plate to stimulate egg laying.

Before imaging, the larva was washed with 20% and 5% sucrose solutions, anes-

thetized using FlyNap (Carolina Biologicals, Burlington, NC, USA), and transferred
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to an apple agar plate to recover. After recovery, the larva was gently positioned on

a 1% agar bed with their dorsal side, put on a slide, and imaged in a drop of 50%

PBS, 50% Halocarbon oil 700 (Sigma Aldrich). The larva was further immobilized

by gently pressing a 22×22 mm2 coverslip lined with Vaseline or vacuum grease.

For imaging, samples were mounted on the microscope stage, illuminated with

a Nikon laser (488 nm at 18-21 % laser power) and imaged with a spinning disk

confocal microscope. The microscope consisted of 1) a Yokogawa CSU-W1 disk with

a pinhole size of 50 µm, which was built on a fully automated Nikon TI inverted

microscope with a perfect focus system, 2) an sCMOS camera (Zyla 4.2 plus sCMOS)

and 3) Nikon Elements software with either a 40X (1.25 NA, 0.1615 µm pixel size)

or 60X (1.3 NA, 0.106 µm pixel size) water immersion objective. The temperature of

the sample region was maintained using an objective space heater at 25◦C (OKO labs

stage heater). Samples were manually focused onto the third or fourth abdominal

body segments (A3 or A4) prior to image acquisition. Movies were collected in a

frame of 2048×2048 pixels and a complete stack of images with a depth of 6-8 µm

was produced every 4, 5 or 6 s. The stacks were then projected along the depth to

find the maximal pixel intensity (maximal intensity projection).

2.2 Datasets

To analyze the class IV neuron dendritic growth, three dataset of class IV neurons

were assembled.

The first dataset consists of static images of class IV neurons collected at 24,

48, 72, 96 and 120 hr AEL. A 60X objective was used at 24 hr AEL while a 40X

objective was used at the later developmental stages. At 72 hr AEL, the class IV

dendritic tree reaches a size of ∼ 300×400µm2, which did not fit into one field of
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view of the camera at a 40X magnification (330× 330µm2). To image the entire

dendritic tree, a set of overlapping images was taken for each neuron and stitched

together in post-processing (see section 2.4). This dataset was used to measure the

static morphometrics including the branching angle, neuron size, branch length,

persistence length, branch orientation, fractal dimension, meshsize, interbranch

distance and dendrites, branch points and branch tips densities (see section 3.3 and

section 3.2.4).

The second dataset consists of movies of class IV dendritic growth collected at

18, 24, 48, 72 and 96 hr AEL. Similar to the static image dataset, a 60X objective

was used at 18, 24 and 48 hr AEL while a 40X objective was used at the later

developmental stages. The duration of the movies varied between 20 and 30

minutes depending on imaging conditions. Movies were stabilized after acquisition

using the algorithm developed in [43] to reduce the effect of muscle twitches and

drifts. This dynamic dataset was used to track the dendritic tips (see section 2.3),

analyze their growth process (see section 3.1) at 24, 48 and 96 hr AEL. Moreover,

the embryo stage movies at 18 hr AEL were used to measure the dynamics of the

tip post-collision (see section 3.1.4). Finally, the branch birth and death rate was

measured at 24, 48, 72 and 96 hr AEL using the dynamic dataset (see section 3.2).

Finally, the last dataset consists of static images collected at 24,48,72 and 96

hr AEL using a magnification of 20X. This dataset was used to measure the body

segment size (see section 3.3.1).

A summary of the datasets’s statistics is given in table 2.1.
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18 hr AEL 24 hr AEL 48 hr AEL 72 hr AEL 96 hr AEL 120 hr AEL
Static dataset
# of cells 0 13 6 8 7 5
# of animals 0 8 5 7 6 5
Dynamic dataset
# of cells 102 9 6 6 6 0
# of animals 18 3 4 6 6 0
Segment size dataset
# of cells 0 12 12 12 12 0
# of animals 0 3 3 3 3 0

Table 2.1 – Summary of datasets

2.3 Branch tip tracking

Using the dataset of dendritic growth movies, the growth process of the dendritic

tip was tracked. First, dendritic tips were selected by visual inspection based on

the criterion that they did not touch other dendrites during the recording. This

was necessary since the planarity of the maximally projected images prevented the

identification of tips when they overlapped with other dendrites. Moreover, the tip

selection was also necessary to avoid the effect of muscle twitches and the drifting

motion of the larva outside of the focal plane, which prevented accurate tracking.

During a muscle twitch, regions of the dendritic tree would move drastically for one

or two frames making tracking impossible. Dendritic tips were selected to be outside

of these regions.

Once a sufficient amount of tips was gathered, movies were cropped around

each tip to segment a sufficiently-large neighborhood of the tip that captured the

dynamics over the entire recording. This segmentation process created a small-size

movie for each selected tip. Using this movie, the tip position was located by fitting a
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2D gaussian function convolved with an error function (see fig. 2.1b). The functional

form of the fit is given by:

I(~x) = I0 exp
[

(θ̂(θ) · (~x−~x0))2

2σ2
θ

]
erfc

[
r̂(θ) · (~x−~x0)

σr

]
+ Ib (2.1)

r̂(θ) = (cos(θ),sin(θ)) (2.2)

θ̂(θ) = (−sin(θ),cos(θ)) (2.3)

where erfc is the complementary error function, ~x0 corresponds to the position of

the tip and θ denotes its orientation. Once the tip was located, the center of the

branch was determined by fitting a 1D gaussian along the perpendicular direction

(see fig. 2.1c):

I(y) = Ĩ0 exp
[

(y−y0)2

2σ2

]
+ Ĩb (2.4)
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Figure 2.1 – Tracking of the class IV dendritic tips
A. Neighborhood of a tip. Scale bar represents 1 µm. B. Two-dimensional
tip intensity profile fit. C. Perpendicular intensity fit. Figure provided by
Sabyasachi Sutradhar.

Finally, the accuracy of the tracking method was tested with static simulated

images of filaments of various size and shapes (see fig. 2.2). For most size and

shapes, the tracking algorithm was accurate within a half-pixel size. However, when

the shape of the filament was oscillatory, the error was considerably high as shown

in fig. 2.2. However, since dendritic branches do not exhibit such kind of rapid
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oscillations, the tracking algorithm was deemed accurate for the purpose of fitting

class IV dendrites.
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Figure 2.2 – Accuracy tests of the dendritic tip tracking method
A. Examples of simulated filaments tracked with the tracking method. B. Track-
ing error of the type of filaments shown in A. Figure provided by Sabyasachi
Sutradhar.

2.4 Image stitching

As explained above, tiled images of class IV neurons were collected at 72, 96 and

120 hr AEL. Hence, reconstruction of the full dendritic tree required stitching the

images together. In still images, image stitching can be easily accomplished by phase

correlation [65] since a translation is sufficient to align two contiguous patches.

However, in recording living organisms such as the Drosophila larva, the subtle

motion of the larva or muscles twitches between the recording of one patch and

another makes stitching more difficult. An example of stitching two patches of class

IV neuron at 72 hr AEL using a translation derived from phase correlation is depicted

in fig. 2.3a. As shown by the color channels, the branches of the dendritic network in

the overlapping region do not align perfectly creating a spurious motion blur. For the

analysis of coarse-grained metrics, a translation-based stitching may be sufficient,

but for the purpose of our analysis, dendritic branches need to be perfectly aligned
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in the overlapping region and continuous at the boundaries in order to ensure proper

skeletonization (as explained in section 2.5).

(a) Phase correlation method (b) Maxwell demons method

Figure 2.3 – Comparison of two stitching methods using a class IV neuron at 72 hr
AEL
The novel stitching method based on the demons registration technique is
better suited to align dendritic branches in regions where two patches overlap
(yellow channel).

To resolve this issue, I designed a stitching algorithm in Matlab using non-

rigid transformations. The main routine of the algorithm uses the built-in Matlab

function imregdemons, which registers one image onto a reference image using a

continuous displacement field derived from diffeomorphic demons [83, 86]. Since

the displacement field can change continuously throughout the overlapping region,it

provides more freedom to register two images with one another. However, one

limitation of diffeomorphic demons is the fact that the displacement field is not-

invertible. In other words, if ~D(~x) registers image 1 onto image 2, the same field

cannot be used to register image 2 onto image 1. Therefore, a reference image

must be identified first before stitching. For the stitching of class IV dendritic

trees, the selection of a reference image is ambiguous as there is no patch that is

more trustworthy than another. To resolve this ambiguity, two displacement fields

~D1(~x), ~D2(~x) are calculated where ~Di(~x) uses image i as a reference to align the
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other image. Then, these two fields are spatially interpolated to define the final

displacement field that moves image 2 onto image 1:

~Df (~x) = I(~x) ~D1(~x) + (1− I(~x)) ~D2(~x) (2.5)

where 0 ≤ I(~x) ≤ 1 and ~x corresponds to the pixel coordinate in the overlapping

region. I(~x) approaches 1 as ~x approaches the boundaries of image 1, while it

approaches zero as ~x approaches the boundaries of image 2. The interpolation of

the fields ensures that the final stitched image is continuous at the boundary of the

overlapping region. Indeed, as ~x approaches image 1, using image 1 as a reference

is increasingly more valid, hence the weight of ~D1(~x) increases accordingly.

Finally, the interpolator I(~x) is defined by the solution of the heat equation in

the two-dimensional overlapping region using Dirichlet boundary conditions:

dI

dt
= α∇2I (2.6)

I(~x) =



1 ~x ∈ Ω1 \Ω2

0 ~x ∈ Ω2 \Ω1

0.5 ~x ∈ Ω1∩Ω2

(2.7)

where the second equation defines the boundary conditions and Ωi corresponds to

the set of boundary pixels that are adjacent to image i. The thermal conductivity α

controls the smoothness of the interpolation between the two images. For simplicity,

α= 1 is used. A stitched image example produced by this method is given in fig. 2.3b.

As shown, the two sets of dendritic branches in the overlapping region are now

sufficiently aligned to preserve the continuity of the dendritic network.
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2.5 Skeletonization

To characterize the topology and geometry of the class IV neuron, microscopy images

of class IV neurons are segmented to extract the skeleton of the dendritic tree. To

trace the skeleton, I designed an automatic skeletonization algorithm that builds

upon a voxel scooping method previously proposed in [70].

The voxel scooping method traces the skeleton of a binary image by iteratively

scooping bright pixels in a local neighborhood. The voxel (or pixel) scooping is

performed by scoopers, which are point-like agents that move through the binary

image by attraction to bright pixels, analogous to a bacterium that moves through

an environment to ensure a continuous supply of food (bright pixels). The algorithm

starts from a seed position where the scooper is initialized. Then, the scooper moves

towards the center of mass of the unscooped bright pixels that are connected to its

occupied region. When the neighboring unscooped pixels form a disconnected set,

which happens when the scooper reaches a branch point in the tree, new scoopers

are initiated for each disconnected subset of the neighboring pixels. The scooping

process is summarized graphically in fig. 2.4.

A. Rodriguez et al. / Journal of Neuroscience Methods 184 (2009) 169–175 171

Fig. 1. Cluster and centerline for synthetic branching structure. (a) Initial dataset showing a branching, tubular structure. (b) Clusters are shown in distinct colors from a
starting seed location. Inset shows a closeup view of clusters near a branch point. (c) The resulting centerline (in blue) before removal of spurious end nodes (shown as red
circles). (d) The centerline after pruning of spurious end nodes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
the article.)

new node as well as the addition of voxels into each new cluster is
discussed in the next two subsections.

2.3. Node positioning

On each iteration, i, the algorithm creates a number of clusters
Ci,k from unvisited voxels directly connected to a cluster Ci−1,j of the
previous iteration (Fig. 2a). In order to position the corresponding
new node, Ni,k, at a location along the centerline of the structure
(Fig. 2b), its position, !N i,k, is computed based on the position of the
parent node, !N i−1,j , the center of mass of the new cluster, !Cmi,k, and
its size, Si,k, relative to its parent’s size, Si−1,j. The size of a cluster
is approximated by the length of the diagonal of its axis aligned
bounding box (AABB) (Fig. 2a).

The position of each new node is given by the expression:

!N i,k =

{
!N i−1,j + 0.5(Si,k/Si−1,j) × ( !Cmi,k − !N i−1,j) if Si,k ≤ Si−1,j

!N i−1,j + 0.5(Si−1,j/Si,k) × ( !Cmi,k − !N i−1,j) if Si,k > Si−1,j

(1)

where: !N i,k is the position of the new node, !N i−1,j is the position of
the node for the parent cluster, Si,k is the length of the diagonal of
the current cluster’s AABB, Si−1,j is the length of the diagonal of the
parent cluster’s AABB, and !Cmi,k is the center of mass of the new
cluster.

This expression causes the position of the new node to advance
(with respect to the previous node) as a function of the size change
(Fig. 2b). When the new connected component, Ci,k, is of the same
size as the parent component, Ci−1,j, the new node, Ni,k, is positioned
halfway between the center of mass of the connected component
and the node of the parent cluster, Ni−1,j. When the connected com-
ponent is significantly smaller or bigger than the parent component,
the new node position tends to approach the center of mass. For
tree-like tubular structures, such as neurons, this calculation places
each new node at a location that closely follows the centerline of
the object.

2.4. Voxel scooping

Each node position is also used to expand its corresponding clus-
ter by iteratively adding unvisited object voxels in its vicinity. For

Fig. 2. Two-dimensional schematic of cluster formation and voxel scooping. (a) Ci,k (orange) and Ci,k+1 (red) are formed from connected components of voxels around parent
cluster Ci−1,j (cyan). (b) The node Ni,k (orange dot) for cluster Ci,k has been computed using Eq. (1). (c) Unvisited object voxels (bright orange) within the scooping distance
(overlayed circle) of Ni,k are added to cluster Ci,k . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Figure 2.4 – Summary of voxel scooping tracing method
Reproduced from figure 2 of [70].

More specifically, the scooping process is initialized from an input seed position,

which defines the root of the tree ~N0,1. Moreover, let Ci−1,j correspond to the cluster
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of pixels scooped at iteration i−1 by the jth scooper (see fig. 2.4a) and let ~Ni−1,j

correspond to the respective cluster position, which ultimately defines the position

of a node on the skeleton. At the next iteration i, the image is scanned around

Ci−1,j to find unscooped bright pixels, which yields a set of disconnected subsets of

unscooped pixels {Ci,k,Ci,k+1, . . .} where k corresponds to the number of clusters

found so far in this iteration. Then, the center-of-mass ~Cmi,k of each disconnected

subset Ci,k is calculated. Using the center-of-mass, the position of the new clusters

~Ni,k is defined by linearly interpolating between ~Cmi,k and ~Ni−1,j (see fig. 2.4b).

The distance where ~Ni,k is located along the interpolated line is defined in terms of

the size of the cluster. Namely,

~Ni,k = ~Ni−1,j + 0.5si,k( ~Cmi,k− ~Ni−1,j) (2.8)

si,k = min
(
Si,k
Si−1,j

,
Si−1,j
Si,k

)
(2.9)

where Si,k corresponds to the diagonal of the bounding box that encloses Ci,k (see

fig. 2.4a). Once ~Ni,k are defined, the scooping process is performed by adding all

unscooped pixels that are within a certain radius ri,k of ~Ni,k to the cluster Ci,k (see

fig. 2.4b). The scooping radius is defined as the maximal distance between the

cluster position and the cluster pixels:

ri,k = max
m
| ~Ni,k−~xi,k,m| ~xi,k,m ∈ Ci,k (2.10)

As the scooping iterations proceed, the newly added clusters Ci,k,Ci,k+1, . . . are

defined as children of the parent cluster Ci−1,j . Once all pixels have been scooped,

this hierarchical ordering and the clusters position ~Ni,k defines the nodes of the

skeleton.

Before skeletonization, the images are cured manually by removing pixels that

belong to the axon in order to retain the dendritic tree only. Moreover, images

are cropped to remove pixels that belong to adjacent neurons. Then, the recorded
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gray-scale images are binarized by finding an approximate contour of the dendritic

tree and filling its interior. The contour of the tree is found using a Canny edge

detector [6] and the interior of the shape is traced with two-dimensional random

walkers that drift along the image intensity gradient starting from the contour pixels.

In general, the image intensity is brighter inside a branch compared to its periphery,

hence the random walkers are attracted towards the interior of the tree.

To define the root of the tree, which corresponds to the position of the soma

or cell body, the distance transform of the binary mask is used to find the shortest

distance to the background. Since the soma is generally more bulky than any

branches, the soma region contains pixels that are furthest from the background

compared to other pixels in the dendritic network. Therefore, the soma position is

defined as the furthest pixel from the background.

Once the skeleton is built from the binary mask, branches are pruned. Depend-

ing on the smoothness of the binary shape boundary, the scooping may sometimes

create small branches that are smaller than the thickness of the branches. To avoid

this spurious effect, branches whose length is smaller than the average diameter

of the parent branch are removed. Furthermore, the nodes of the branches are

resampled at an equal distance of 0.1µm along the path of the branch.

Finally, the accuracy of the skeletonization algorithm is assessed by comparison

with methods that were previously developed. Several automatic skeletonization

methods have been proposed in the past such as [31, 44, 45, 55, 64, 95]. For

simplicity, the novel skeletonization algorithm is compared with the App2 algorithm

[92], which is a 3D automatic tracing method used in the Vaa3D software [63],

and the Matlab [49] built-in function bwmorph [39], which uses the medial axis

transform. As shown in fig. 2.5, the scooping method is comparable to the App2

algorithm and is more accurate than bwmorph. Furthermore, based on the nature

of the scooping iteration, the scooped skeletons do not have any closed loops,
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which is preferable since the class IV dendritic tree does not generally form close

loops. However, loops are more frequent at 120 hr AEL as shown in fig. 2.6, and

consequently, the scooping algorithm over-estimates the amount of branches at this

stage.
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Figure 2.5 – Comparison of automatic skeletonization methods
The image corresponds to a region of a class IV neuron at 72 hr AEL.

Figure 2.6 – Example of over-skeletonization effects occurring at 120 hr AEL
The z-projection of the image stacks creates apparent dendrite loops on the 2D
image. Such loops are broken by the skeletonization algorithm, overestimates
the number of tree branches.
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Dynamic and Static Properties
of Class IV Neuron
Morphogenesis

3

In this chapter, the stochastic growth of class IV neurons is characterized. Specifically,

the branch tip growth and the branching process are analyzed to build the founda-

tions of our proposed models. In addition, the morphology of class IV dendritic tree

is assessed with various metrics.

The branch tip growth analysis was performed in collaboration with Sabyasachi

Sutradhar using the raw tracking data produced by his tracking algorithm. The

analysis of the branching process was performed in collaboration with Sonal Shree

using movies of class IV neurons development that she acquired. The morphological

analysis was performed on skeletons of class IV neurons extracted from static

microscopic images provided by Sonal Shree.

3.1 Tip state dynamics

3.1.1 Fitting process of the tip growth tracks

The dendritic tip tracking produces a set of time series that specify the changes in

length of dendritic branches over the course of 20-30 min. Tracking of the dendritic
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tips is repeated at 24, 48 and 96 hr AEL and the resulting tracks are used to quantify

the dendritic growth process. An example of a dendritic tip track at 24 hr AEL

is shown in fig. 3.1. As shown, the growth of the tip is stochastic in nature and

exhibits three distinguishable processes whereby the branch grows, stays idle or

retracts. These observations motivated us to use a 3-state dynamical system to fit

the dendritic growth process.
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Figure 3.1 – Example of a 24 hr AEL dendritic tip track fitted with a smoothing spline

First, the phase velocity is defined as the average velocity of the tip in a given

phase of growth. To determine the distribution of phase velocities at which a tip

grows, the tip tracks are fitted with a piecewise-linear continuous function. The main

difficulty in performing a piecewise-linear fit is to identify the number of segments in

the function and the position of the joints that connect the linear segments together,

i.e. the points at which the derivative is discontinuous. To solve this problem, the

fitting process is separated into two stages. In the first stage, the tip tracks are

over-fitted to find the maximal number of segments and the joints that connect them.

In the second stage, the fits are regularized by removing redundant segments.
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In the first stage, the tracks are over-fitted using a smoothing spline. A smooth-

ing spline fit uses a spline function fss to approximate a set of data points {(xi,yi)}

and is regularized by the smoothness of the spline. More specifically, the following

objective function is minimized by the fit:

O({(xi,yi)},fss) = p
∑
i

(fss(xi)−yi)2 + (1−p)
∫ ∣∣∣∣∣d2fss

dx2

∣∣∣∣∣
2

dx (3.1)

where 0 ≤ p ≤ 1 is a hyper-parameter that controls the weight given to the mini-

mization of the total squared error (first term) and the smoothness of the spline

(second term). p= 1 corresponds to a complete over-fit where the spline function

goes through all data points while p= 0 corresponds to the case where the spline

is constant over the domain of the data. In our case, p= 0.99 is used for the initial

over-fit of the tip tracks in order to average out some noise and reduce the effect of

outliers. A spline fit is performed on each track time series (ti, `ji ) where `ji denotes

the length of track j at time ti. An example of a p = 0.99 smoothing spline fit is

shown in fig. 3.1.

Using the smoothing spline, the derivative of the fit at the sampled time points

ti is evaluated to calculate the instantaneous velocity of the tip vji where j indexes

the track. The empirical distribution of the instantaneous velocities is constructed by

combining all tracks at a given stage and is fitted with a mixture model composed of

two log-normal and one normal distributions:

p(v) = pS
Θ(−v)
|v|
√

2πσ2
S

Exp[ (log(|v|)−µS)2

2σ2
S

] (3.2)

+ (1−pS−pG) 1√
2πσ2

P

Exp[ (v−µP )2

2σ2
P

] (3.3)

+pG
Θ(v)

|v|
√

2πσ2
G

Exp[ (log(|v|)−µG)2

2σ2
G

] (3.4)
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where Θ(v) is the Heavyside step function, which allows us to fit the log-normal

component to the positive (resp. negative) domain of the distribution when fitting

the growing (shrinking) state velocity distribution. Each component of the mixture

model fits the velocity of the track in one of its three states: the first log-normal

distribution fits the shrinking state velocities, the normal distribution fits the paused

state velocities and the second log-normal distribution fits the growing state veloc-

ities. In total, this model has 8 free parameters, where 2 of them, pS ,pG, control

the weight of each component on the total distribution while µS ,σS ,µP ,σP ,µG,σG

control their shape. To reduce the dimensionality of the fit, the average velocity of

the paused state is fixed to 0, µP = 0. In addition, an upper bound on the width of

the paused-state velocity is imposed to prevent the central Gaussian from invading

the entire domain of the distribution. Specifically, σP < 0.1µmmin−1. An example

fit of the instantaneous velocities at 24 hr AEL is shown in fig. 3.2 with the best-fit

parameters of the mixture model and the average velocity of the tip in each state.
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Figure 3.2 – Instantaneous velocity distribution at 24 hr AEL

Once the initial fit to the velocity distribution is established, the dynamical state

of the tracks is identified using the velocity fit. More precisely, the tip state is defined
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by binning its velocity into three contiguous regions. The position of the boundary

that separates these three regions is controlled by the width of the paused state

velocity component. Let sji (v
j
i ) correspond to the instantaneous state of the jth track

at time ti where the dependence on the velocity vji is emphasized. Then, sji (v
j
i ) is

defined as follows:

sji (v
j
i ) =



S or Shrinking if −∞< vji <−w0

P or Paused if −w0 < vji <w0

G or Growing if w0 < vji <∞

(3.5)

w0 =
√

2log(2)σP (3.6)

where w0 is the half-width at half-max of the paused state Gaussian distribution.

With this definition, the instantaneous state of the tip is defined in all tracks.

However, the times at which the state of the tip changes is still unknown. One

of the main advantage of using a smoothing spline fit is the C2 continuity of the

function, i.e. its first derivative is continuous. This property is paramount since

the continuity of the instantaneous velocity produces well-defined state transitions,

which correspond to the time points at which the velocity crosses the velocity state

boundaries. More precisely, let T jbegin,k and T jend,k correspond to the beginning and

end times of the kth phase of track j. The phase endpoints are defined by the

sequence of states sji and the sampled times ti:

T jend,k = min
i

{
ti
∣∣∣ti > T jbegin,k,s

j
i 6= Sji+1

}
(3.7)

T jbegin,k+1 = T jend,k (3.8)

T jbegin,0 = t0 (3.9)
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Given the endpoints of each phase in each track, the phase velocity V j
k is

determined by the length change using the smoothing spline:

V j
k =

fss(T jend,k)−fss(T
j
begin,k)

T jend,k−T
j
begin,k

(3.10)

At this point, a collection of dynamical phases with a well-defined state, duration

and velocity is obtained for each track. The properties of these phases derive from

the piecewise-linear fits of the tracks and the fit to the instantaneous track velocity

distribution. However, a fit of the phase velocity distribution is the sought-after

quantity since it is a better indicator of the average velocity of the tip in each state

and since it is less prone to fluctuations caused by the over-fitted spline. Initially,

the phase velocities were undefined since the phase velocity distribution depends on

the state definition and the definition of the states depends on the fit to the phase

velocity distribution.

This causal problem is resolved in the second stage of the fitting process. Since

the piecewise-linear fits and the phase velocity distributions are inter-dependent, the

fitting process is iterated several times to ensure that their definitions are consistent

with one another. However, two steps are modified in the iteration of the fit: 1) the

phase velocity distribution is fitted instead of the instantaneous velocity distribution

and 2) the state of the phase is defined by binning its phase velocity instead of using

the instantaneous velocity. As the iterations proceed, the velocity fit changes as a

function of the new phase velocities. The update of σ0 then redefines the velocity

state boundaries, which changes the state of the track phases accordingly. As a result

of the states redefinition, contiguous phases in a given track may be given the same

state. When such event occurs, the two phases are combined into one phase whose

duration is given by the sum of the duration of the two phases, and its velocity is

defined by the length change between the beginning of the first combined phase and

the end of the second combined phase. This merging process reduces the number of
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phases in a given track, which further regularizes the piecewise-linear fit. Finally,

the iterations continue until the phases of all fits of a given developmental stage do

not change for three consecutive iterations, which is the criterion of convergence.

In practice, the fitting stops after 5−10 iterations. In addition, before the iterative

fitting starts, all phases whose duration is smaller than 0.5min are removed. After

the removal of a short phase, the endpoints of the adjacent phases are joined together

at the midpoint of the short phase. This additional pruning ensures that the phases

are long-enough to contain enough sampled time points and prevents over-fitting

with very short and highly oscillatory phases. In the datasets, the sampling period

varies between 4,5,6 seconds, which implies that a phase of 0.5min has ∼ 4− 5

points.

When the fitting iteration terminates, a set of growth phases of various duration

and velocity and a fit of the phase velocity distribution at each developmental

stage is obtained. Examples of tracks with their growth phases and the associate

phase velocity distributions are shown in fig. 3.3 and fitted using a bin width of

0.1µmmin−1. As depicted, the piecewise-linear fits succeed at capturing the various

growth phases of the tracks while being resistant to noise. Furthermore, while the

phase velocity distribution is well separated into three peaks at 24 hr AEL, this

separation is less pronounced at the later stages. This indicates that the dynamicity

of the tip growth slows down as the neuron ages. This is also evidenced by the

decrease of the average shrinking or growing speed towards zero.
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Figure 3.3 – Examples of dendritic track fits with their associate velocity distributions
The colors of the shaded areas in the tracks indicate the state of the phase as
given by the velocity distribution. The raw tracks data is provided by Sabyasachi
Sutradhar.
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In summary, the two-stage fitting process is described by the following pseu-

docodes:

Algorithm 1: Tip fitting process - first stage

Result: Sji ,T
j
begin,k,T

j
end,k,V

j
k

Initialization: ti, `
j
i , i= 1, . . . ,n, j = 1, . . . ,m;

for 1≤ j ≤m do

Fit track j with a smoothing spline f jss(t) using data ti, `
j
i ;

Define the instantaneous track velocity: vji = dfjss(t)
dt

∣∣∣∣
t=ti

;

end

Calculate pS ,pG,µS ,σS ,µP ,σP ,µG,σG by fitting the distribution of

instantaneous track velocities {vji } using the mixture model p(v) ;

Calculate the half-width of the paused-state Gaussian: w0 =
√

2log(2)σP ;

Calculate the state velocity boundaries: Bv = ]−∞,−w0,w0,∞[;

for 1≤ j ≤m do

Define the instantaneous states of track j, sji , by binning vji with Bv;

Define the begining and end of each phase, T jbegin,k,T
j
end,k, and the

number of phases Nj , using sji and ti;

Calculate the phase velocity, V j
k , using T jbegin,k,T

j
end,k and f jss(t);

end
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Algorithm 2: Tip fitting process - second stage

Result: Sji ,T
j
begin,k,T

j
end,k,V

j
k

Initialization: ti,f jss,N
j ,Sji ,T

j
begin,k,T

j
end,k,V

j
k , i= 1, . . . ,n, j = 1, . . . ,m;

for 1≤ j ≤m do

for 1≤ k ≤N j do

Remove phase k if T jend,k−T
j
begin,k < 0.5min;

end

end

while Tracks have changed in the last 3 iterations do
Calculate pS ,pG,µS ,σS ,µP ,σP ,µG,σG by fitting the distribution of phase

velocities {V k
i } using the mixture model p(v) ;

Calculate the half-width of the paused-state Gaussian: w0 =
√

2log(2)σP

;

Calculate the state velocity boundaries: Bv = ]−∞,−w0,w0,∞[;

for 1≤ j ≤m do

for 1≤ k ≤N j do

Define the state of phase k, Sjk, by binning V j
k with Bv;

if Sjk == Sjk−1 then

Combine phase k−1 with phase k;

Update T jbegin,k,T
j
end,k,V

j
k using f jss;

end

end

Update Nj;

end

end
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3.1.2 Tip growth is a 3-state dynamical process

Using the set of fitted growth tracks at each developmental stage, the transition

process of the tip state is further characterized. More precisely, the transition

between each dynamical state is modeled as a 3-state Markov chain.

A Markov process is a stochastic process that describes a sequence of events

whose probability are independent of past events. The property by which the

probability of new events is independent of past events is called memorylessness

or more commonly called the Markov property. In other words, memorylessness

is the defining property of Markov processes. Moreover, the sequence of events

described by a Markov process imply a temporal dimension and can be categorized

into states, which belong to a finite or measurable space. As such, Markov processes

are classified into four categories that specify whether the state space is countable

or continuous and whether time is discrete or continuous. To model the class IV

neuron tip growth dynamics, continuous-time Markov chains are used since they

have a finite state space and a continuous temporal dimension.

To quantify the continuous-time Markov chain that models the tip growth

process, the finite state space is defined as S = {S,P,G}, which characterizes the

average velocity of the tip, and the rate of transition from state i to state j is denoted

by {kij | i, j ∈ S}. Moreover, the state probability vector ~P (t) = (PS(t),PP (t),PG(t))

represents the probability to find the tip in each of the three states at time t, given

that the tip was initialized in some initial state ~P0 at time t= 0. The master equation

of this 3-state Markov chain is given by the following differential equations:

dPS(t)
dt

=−(kSP +kSG)PS(t) +kPSPP (t) +kGSPG(t) (3.11)

dPP (t)
dt

=−(kPS +kPG)PP (t) +kSPPS(t) +kGPPG(t) (3.12)

dPG(t)
dt

=−(kGS +kGP )PG(t) +kSGPS(t) +kPGPP (t) (3.13)
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Using the following state label map:

S→ 1, P → 2, G→ 3 (3.14)

the master equation can be expressed succinctly in matrix form:

d~P (t)
dt

=K ~P (t) (3.15)

K =


−kSP −kSG kPS kGS

kSP −kPS−kPG kGP

kSG kPG −kGS−kGP

 (3.16)

(K)ij =


−
∑
k kjk, i= j

kji, i 6= j

(3.17)

where (K)ij corresponds to the (i, j)th element of the matrixK. A general solution of

the system above can be expressed in terms of the eigenvalues (λi) and eigenvectors

(~wi) of the transition matrix K:

~P (t) =
∑
i

ai ~wie
λit (3.18)

where ai are coefficients that are defined by the initial condition ~P (0) = ~P0. More

precisely, expressions for ai are found by inverting the matrix of eigenvectors:

~a=


a1

a2

a3

= U−1 ~P0, U = [~w1, ~w2, ~w3] (3.19)
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where [. . .] corresponds to concatenation of column vectors. When the tip is

initialized in a particular state i, the state vector is given by the Kronecker delta:

Pi(0) = 1⇒
(
~P

(j)
0

)
i
= δij (3.20)

where the superscript (j) denotes the initial state. Solving for the eigenvalues of K

involves finding the roots of its characteristic equation:

det(K−λI) =−λ3−k1λ
2−k2

2λ= 0 (3.21)

k1 = kGP +kGS +kPG+kPS +kSG+kSP (3.22)

k2
2 = kPGkSG+kPSkSG+kPGkSP

+kGS (kPG+kPS +kSP ) +kGP (kPS +kSG+kSP ) (3.23)

The characteristic polynomial of this 3-state system has no constant term, which

guarantees the existence of a zero eigenvalue, whose eigenvector is the steady state

solution Pss. Moreover, since k1 > 0 and k2
2 > 0, the other two eigenvalues are

guaranteed to have a negative real part, which corresponds to decaying modes.

Expression for the eigenvalues are given by:

λ1 = 0 (3.24)

λ2 =
−k1−

√
k2

1−4k2
2

2 (3.25)

λ3 =
−k1 +

√
k2

1−4k2
2

2 (3.26)
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with the associate eigenvectors:

~Pss = ~w1 =



kGPkPS +kGS (kPG+kPS)
(kPG+kPS)(kGS +kSG) + (kGS +kPG)kSP +kGP (kPS +kSG+kSP )

kGSkSP +kGP (kSG+kSP )
(kPG+kPS)(kGS +kSG) + (kGS +kPG)kSP +kGP (kPS +kSG+kSP )

kPSkSG+kPG (kSG+kSP )
(kPG+kPS)(kGS +kSG) + (kGS +kPG)kSP +kGP (kPS +kSG+kSP )


(3.27)

~w2 =



√
k2

1−4k2
2−kGP −kGS−kPG+kPS +kSG+kSP

2(kPG−kSG)

−
√
k2

1−4k2
2 +kGP +kGS−kPG−kPS +kSG−kSP

2(kPG−kSG)

1


(3.28)

~w3 =



−
√
−4k2

2 +k2
1−kGP −kGS−kPG+kPS +kSG+kSP

2(kPG−kSG)

√
−4k2

2 +k2
1 +kGP +kGS−kPG−kPS +kSG−kSP

2(kPG−kSG)

1


(3.29)

Note that ~w1 is normalized with respect to the L1 norm, namely ~1 · ~w1 =
∑
i ~w1,i = 1

where ~1≡ (1,1,1). With this normalization, the first eigenvector corresponds to the

steady-state probabilities, ~w1 = ~Pss.

To estimate the transition rates kij from the tracks, two methods are considered:

1) Maximum-likelihood estimation (MLE) of kij and 2) fit of the phase duration

distribution. First, the maximum-likelihood estimate of the transition rates is calcu-

lated by counting the total amount of each transition type and the total exposure
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time in each state. Specifically, let Nij correspond to the total amount of observed

transitions from state i to state j and let Ti correspond to the total time spent in

state i across all tracks. The MLE for kij is given by:

kij = Nij

Ti
(3.30)

Ti =
∑
j

Nj∑
k=1

∆T jk δSj
k
,i

(3.31)

∆T jk = (T jend,k−T
j
begin,k) (3.32)

where δi,j is the Kronecker delta and T jbegin,k,T
j
end,k,S

j
k correspond to the beginning

time, end time and state of phase k of track j as defined in the previous section.

The MLE of the transition rate matrix K is given in fig. 3.4 for each developmental

stage.
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Figure 3.4 – Maximum likelihood estimates of the transition matrix K over develop-
ment
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Using the same measurements, the conditional transition probabilities pij is

defined as the probability that the tip transitions to state j given that it was in state

i before the transition, and the rate at which the tip exits the ith state ki:

pij = Nij∑
jNij

(3.33)

ki =
∑
j

kij =
∑
jNij

Ti
(3.34)

⇒ kij = Nij

Ti
= Nij∑

jNij

∑
jNij

Ti
= pijki (3.35)

Note that eq. (3.35) can be used as an alternative estimate of the transition

rates, provided pij and ki are given. This is the essence of the second method, where

pij is evaluated by counting the state transitions Nij and ki is estimated by fitting

the distribution of the state duration. Indeed, for a Markov process, the time spent

in each state is exponentially distributed with an average of 1
ki

where ki is the exit

rate as defined above. This can be derived directly from the master equation.

Consider a time interval ∆t that is separated into n sub-intervals of length

dt= ∆t
n . Furthermore, assume that the initial state of the tip is m, i.e. ~Pi(0) = δim.

Recall that ~Pi(t) provides the probability that the tip is in state i after time t given

that the initial state is ~P (0). Then, assuming that n is large enough, the following

expression for ~Pi(t) is obtained:

~P (dt) n�1≈ ~P (0) + d~P (t)
dt

∣∣∣∣∣
t=0

dt (3.36)

= ~P (0) +K ~P (0)dt (3.37)

= (1+Kdt)~P (0) (3.38)

⇒ ~Pi(dt) = δim

1−
∑
j

kmjdt

= δim (1−kmdt) (3.39)
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where 1 is the identity matrix. Finally, let p(t >∆t) be the probability that the tip

transitions in a time greater than ∆t and let s(t) correspond to the state of the tip

at time t. This quantity is given by the product of the probability that it remains in

its initial state in all the sub-intervals dt. Taking the infinitesimal limit n→∞, the

exact expression for p(t >∆t) becomes:

p(t >∆t) = lim
n→∞

p(s(ti) =m,∀i,1≤ i≤ n) (3.40)

= lim
n→∞

n∏
i=1

p(s(ti) =m|s(ti−dt) =m) (3.41)

= lim
n→∞

n∏
i=1

p(s(dt) =m|s(0) =m)(Markov property) (3.42)

= lim
n→∞

n∏
i=1

~Pm(dt) (3.43)

= lim
n→∞

n∏
i=1

(1−kmdt) (3.44)

= lim
n→∞

(
1− km∆t

n

)n
(3.45)

= e−km∆t (3.46)

Note that the ability to simplify the product of probabilities is a consequence of

the Markov property. The cumulative and probability density function of the state

duration t can then be derived directly from eq. (3.46):

p(t≤∆t) = 1−p(t >∆t) (3.47)

⇒ p(t= t′) = dp(t≤∆t)
dt′

∣∣∣∣
∆t=t′

(3.48)

= kme
−kmt (3.49)

which is recognized as the exponential distribution with an average of 〈t〉 = 1
km

.

Using this fact, the state duration distributions is fitted to obtain an estimate of

ki, which is used in eq. (3.35) to evaluate the transition rates. The corresponding

transition rate matrix K is given in fig. 3.5 and the state duration fits are shown

64 Chapter 3 Dynamic and Static Properties of Class IV Neuron Morphogenesis



in fig. 3.6 for each developmental stage. The fit of the duration is performed over

the restricted range 1min≤ t≤ 3< t > to avoid the censorship effect caused by the

fitting process, which removes phases whose duration are shorter than 0.5min. As

depicted, the exponential distribution is a good fit to the state duration distribution

for all states at each developmental stage. Moreover, the average duration of each

state averages to ∼ 1min, except for the paused state at 96 hr AEL, which lasts 2min

on average. This indicates that the tip is less dynamic at 96 hr AEL as it spends

a higher proportion of its time in an idle state, compared to the earlier stages. In

subsequent analyses, the transition rate matrices derived from the state duration fit

are used since they are more resilient to the censorship of short phases.
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Figure 3.5 – Transition matrix estimates derived from the fitted exit rates over devel-
opment

3.1.3 The tip transition process is approximately Markov

The main assumption of the 3-state model of dendritic tip growth is the fact that

the transition dynamics is independent of the past. The exponential distribution of

the state duration at all stages is certainly a signature of the Markov property of the

transitions. To verify this further, the transition matrix eigenvalues are estimated

at increasing lag times and compared to the expected eigenvalues from a Markov
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Figure 3.6 – State duration distributions over development
The distributions are fitted with an exponential distribution in the range 1≤
t≤ 3〈t〉 using a non-linear least squares fit. The bin width is 0.25min.
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process. Let Tij(t+dt|t) correspond to the probability that the tip is found in state

j at time t+dt when initiated in state i at time t. Then, if the tip is in some state

vector ~P (t) at time t, its state vector at time t+dt is given by multiplying by the

transition matrix T (t+dt|t):

~P (t+dt) = T (t+dt|t)~P (t) (3.50)

If the transitions are Markov, the transition matrix T (t+dt|t) is independent of the

previous history, which implies that T (t+dt|t) = T (dt|t= 0) = T (dt). In other words,

the transition probabilities do not change with time. Note that T (dt) is different than

the transition rate matrix K mentioned above. However, since K is the generator of

transitions, one can relate T (dt) to K by exponentiation:

T (dt) = eKdt
dt�1≈ 1 +Kdt (3.51)

Therefore, if the tip state transition is a pure Markov process, the state vectors can be

determined at all future times using T and the initial state vector ~P (0), namely:

~P (t+ndt) = T (dt)~P ((n−1)dt) = (T (dt))2 ~P ((n−2)dt) = . . .= (T (dt))n ~P (0)

(3.52)

This property can be used to test the Markovianess of the transition process in the

following way. First, consider all pairs of time points separated by a time ndt and

calculate an estimate of T (ndt) by measuring the proportion of each transition type

from a given state:

T̂ij(ndt) = nij∑
j nij

(3.53)

where nij is the number of point pairs whose first point is in state i and whose

second point is in state j. Then, according to eq. (3.52), one expects that T̂ij(ndt)≈
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(
T̂ij(dt)

)n
if the transition process is Markov. An effective way to compare these

matrices is to compare their eigenvalues:

λi(ndt) = (λi(dt))n = en ln(λi(dt)) = e
−ndt

(
− ln(λi(dt))

dt

)
(3.54)

In other words, the eigenvalues of T̂ij(ndt) decay exponentially with a rate of

− ln(λi(dt))
dt where λi(dt) ≤ 1 for a Markov process. Using these expressions, the

eigenvalues of T̂ij(ndt) are estimated at each sampled values of n and compared

against the eigenvalues expected from a Markov process. The comparison is shown

in fig. 3.7. The eigenvalue associated with the stationary state has a value of 1 and

is not expected to decay since its decay rate vanishes. For the non-unit eigenvalues,

their value decays as the lag time increases, which is consistent with a Markov

process. However, the decay rate is only similar to the Markov decay rate at times

t≤ 0.5min. At later times, the decay rate is slower, which indicates that transitions

have a long-time dependence on the past. Moreover, the non-unit eigenvalues exhibit

two exponential decays where the initial decay is fast and short and the second

decay is slow and long. In other words, although the eigenvalues are decaying in

time, the decay rates are slower than expected from a Markov process indicating

that the tip transition may not be purely Markov.
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Figure 3.7 – Markov property test of the state transition process
Each color represents a different eigenvalue. The Markov process lines cor-
respond to exp

[
−∆t

(
− ln(λi(dt))

dt

)]
where λi(dt) is the eigenvalue estimated

from pairs of points separated by one time step ∆t
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3.1.4 The tips retract upon contact with other dendrites

As a result of the branch growth process, dendritic branches elongate and occupy

a larger portion of their local neighborhood. Consequently, branch tips ultimately

collide with other dendrites in the tree and stop growing. Furthermore, as a result

of the DSCAM mechanism (as explained in section 1.1.2), branches start shrinking

after contacting other dendrites. To quantify this process, the duration of the tip

contacts is measured throughout development as shown in fig. 3.8. The average

duration is estimated within the range 1 ≤ t ≤ 5 min for the 24 and 48 hr stage,

while the range 1 ≤ t ≤ 10 min is used for the 96 hr stage. To fit the distribution,

the maximum likelihood estimate of an exponential distribution with the calculated

mean is overlayed on top of the measured distribution. As depicted, the exponential

distribution is a good fit of the experimental distribution. Moreover, this analysis

shows that contacts are not instantaneous, but lasts an average of ∼ 2.7min over

the course of the development.
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Figure 3.8 – Distribution of the branch tips contact duration
The distributions are fitted with an exponential distribution using maximum-
likelihood. The maximum-likelihood estimate of the mean is given by the
empirical mean of the data over the fitted range. Measurements were per-
formed in collaboration with Qiwei Yu.

In addition, the post-collision transition dynamics is measured in a manner

similar to the previous analysis. To do so, branch tips were tracked only after

they started retracting from their collision point. However, due to the difficulty of
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identifying clear collision events followed by retractions, the post-collision dynamics

was only measured at 18 hr AEL where the dataset was the richest. The estimate

of the transition matrix derived from the state duration fits and the phase velocity

distribution are shown in fig. 3.9. As indicated by the exit rates, the post-collision

tip dynamics is biased towards the shrinking state. This bias can also be seen in the

values of kPS and kGS , which are high compared to the other rates. Moreover, the

velocity distribution shows three distinct peaks that identify the three states with

average velocities that are similar to what was found previously at 24 hr AEL (see

3.3).

-4 -2 0 2 4
Velocity (µm/min)

0

0.2

0.4

0.6

0.8

1

1.2

Pr
ob

ab
ili

ty
 d

en
si

ty
 (

m
in

/µ
m

)

Shrinking
<v>= -0.85
p

S
= 0.56

µ
S

= -0.50

S
= 0.82

Paused
<v>= 0.00
p

P
= 0.07

P
= 0.03

Growing
<v>= 0.62

p
G

= 0.38

µ
G

= -0.75

G
= 0.74

K*
ij (min-1) - 18 hr AEL

S P G

S

P

G

Figure 3.9 – Post-collision transition matrix K∗ and velocity distribution at 18 hr AEL

3.2 Branching process

In this section, the spatial and temporal characterization of the branching process is

summarized. This analysis was performed in collaboration with Sonal Shree using

dynamical movies of class IV neurons that she provided.

3.2 Branching process 71



3.2.1 The complexity of the dendritic tree increases over

development

As seen in fig. 1.3, the number of branches in the tree increases over development as

a result of the branching process. To quantify this morphological change, a dataset

of static neuron images is used to calculate the number of branches, branch points

and branch tips over development as shown in fig. 3.10. The complexity of the tree

increases considerably over the course of its development. The number of branches

increases ∼ 10 fold from ∼ 250 at 24 hr AEL to ∼ 2000 at 96 hr AEL, and similar

increases are observed for the number of branch points and branch tips. To quantify

this increase, the number of each species is fitted with a cubic polynomial fit as

shown in fig. 3.10. Note that since four developmental stages are fitted, there are no

degrees of freedom remaining in the fit.
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Figure 3.10 – Evolution of the dendritic tree complexity over development
The real root of the cubic fits is given by t0 and the inflection point is given by
tinf.

There are a few interesting features to note about the fits. First, the single real

root of the fit t0 is calculated using the standard formula of the roots of a cubic

polynomial. For all three species, the root is located at ∼ 19 hr AEL, which is close

to the beginning of morphogenesis that starts at ∼ 14 hr AEL [3]. Moreover, for

a cubic polynomial of the form: N(t) = at3 + bt2 + ct+ d, the inflection point is

located at tinf =− b
3a , which corresponds to the point where the second derivative
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vanishes, N(t)′′ = 0. The three different fits indicate that tinf ≈ 54 hr AEL. This

corresponds approximately to the time when the neuron size reaches the size of

the segment, which happens at ∼ 48 hr AEL. This indicates that contact with the

segment boundary initiates a change in the branching mechanism at the whole-tree

level.

Moreover, the fact that the inflection point and root of all three fits coincide is a

consequence of the definitions of branches, branch points and branch tips. Indeed,

according to these definitions and assuming that class IV neurons are binary trees,

the following equivalence exists between the number branches NBranches, branch

points NBranch points and branch tips NBranch tips:

NBranches =NBranch points +NBranch tips (3.55)

In addition, since the birth of a new branch tip is always accompanied by a new

branch point, NBranch tips and NBranch points only differ by the initial amount of branch

tips. Therefore, at later times, since the initial amount of branch tips is of order

∼ 1, one finds that NBranch points ≈ NBranch tips, which also implies that the number

of branches is approximately twice the number of branch tips or branch points,

i.e. NBranches ≈ 2NBranch tips ≈ 2NBranch points. In other words, all three species are

proportional to one another, which explains why the cubic fits have similar shapes.

3.2.2 The branching rate is an extensive property of the tree

Next, time-lapse images of class IV neurons over a period of 15 to 30 minutes are used

to measure the branching process at each developmental stage. After segmenting

each neuron individually, the total number of branching events is counted manually

in each neuron. All recorded branching events at each developmental stage are

shown in fig. 3.11.
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Figure 3.11 – Measurement of branching events over development
Each color represents measurements from an individual neuron. The branch-
ing events are centered with respect to the soma position and rotated to align
the left-right body axis along the vertical direction.

Using the total number of branching events observed NBranching events and the

duration of the observation ∆T , an estimate of the absolute branching rate ωb is

calculated for each neuron as follows:

ωb = NEvents

∆T (3.56)

The resulting estimates for ωb are shown in fig. 3.12a. From a first impression,

the absolute branching rate of each neuron appears approximately constant over
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development. However, this is unlikely since the branching rate at 72 and 96 hr

AEL is under-estimated due to the fact that the neuron’s dendritic tree does not fit

completely into the field of the view of the microscope. Indeed, the field of view

of the microscope is 330µm at a magnification of 40X, while the body segment

where the dendritic tree grows reaches dimensions of 400× 300µm2 at 96 hours

(see section 3.3.1 for more details on size measurements).

The partial coverage of the dendritic tree field prompted us to normalize

the branching rate by the amount of total dendritic length observed during the

observation. First, the total branch length Ltot is calculated from the dendritic tree

skeleton of the first frame, which is constructed using a custom-made skeletonization

algorithm (see section 2.5). As shown later in fig. 3.27a, the total branch length

increases by 0.2mmhr−1 ∼ 3.3µmmin−1, which implies that it does not change

considerably over the course of the 30 min movie. Therefore, the total branch length

Ltot is assumed to be constant during the observation and its value is estimated

using the initial time point. Using Ltot and ωb, a length-normalized branching rate

kb is calculated as follows:

kb = ωb
Ltot

(3.57)

Estimates of the normalized branching rate using eq. (3.57) are shown in

fig. 3.12b. As depicted, the branching rate decreases by almost 10 fold from 24 to

48 hr AEL and remains approximately constant afterwards. Moreover, the branching

rate is also fitted with a decaying exponential function and a constant value, i.e.

kb(t) ∼ ae−bt + c. The c parameter indicates that the branching rate reaches a

constant value of 0.0012µm−1min−1 at later stages. However, the fit parameters

that model the initial exponential decay, a and b are not well-constrained with

relative errors of ∼ 200% and ∼ 100%, respectively. This is due to the sharp decrease

of the branching rate and the variability of the data at 24 hr AEL.
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Figure 3.12 – Branching rate over development
Note that the 72 and 96 hr AEL movies only partially cover the entire dendritic
tree. Therefore, the absolute branching rate is under-estimated at these stages.
The error of the fit parameters are calculated from the standard formula of
non-linear least squares fitting.

Aside from the initial transient phase, which is poorly constrained, the data and

the fit demonstrate that the branching rate is approximately constant from 48 to

96 hr AEL. This implies that the branching process is an extensive property of the

tree, meaning that the absolute branching rate of the tree scales with the overall

size or mass of the neuron. This indicates that the intra-cellular material needed

for forming new branch tips are produced distributively, and not centrally. In other

words, as the tree grows, its production capability for building the intracellular

components needed for growth also increases. This hypothesis is consistent with

experimental observations that showed that translation regulators are transported

in the class IV dendritic arbor providing evidence that protein translation occurs not

only at the cell body, but also within the dendritic arbor [93].
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3.2.3 The branching process is uniform in space

To further quantify the branching process, the spatial distribution of the branching

events is analyzed. First, the area of the neuron is divided into 10× 10µm2 bins.

This particular bin size was chosen to sample the branching process with sufficient

precision as the average branch length varies between 5−10µm. Then, the number

of branching events in each bin is divided by the total observation time and area of

the bin to define an absolute branching rate density Ωb(~x):

Ωb(~xi) =
NBranching events,i

A∆T (3.58)

where ~xi,NBranching events,i corresponds to the center and number of recorded branch-

ing events in the ith bin, respectively, and A is the area of the bin. The estimate

for Ωb in each bin is then averaged over all cells that have coverage over the given

bin at that particular developmental stage. The resulting average values for Ωb are

shown in fig. 3.13 and the number of cells in each bin is shown in fig. 3.14. This

measurement is inherently noisy due to the small number of branching events in

each bin. To reduce this noise, bins that are covered by at least two cells for each

developmental stage are taken into account at the cost of reducing sampling of the

periphery. Nonetheless, estimates of the branching rate density demonstrate that

the branching rate is uniform over the area of the neuron.
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Figure 3.13 – Branching rate density over development
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Figure 3.14 – Number of sampled cells in the branching analysis

In addition, similar to the calculation of the normalized branching rate kb as

explained in the previous section, a branching rate Kb(~x) normalized by the total

dendritic length in each given bin is calculated:

Kb(~xi) =
NBranching events,i

∆TAρL(~xi)
(3.59)

where ρL is the dendritic length density calculated with a Gaussian kernel estimator

with a bandwidth of 5µm. Since ρL is a divider in the calculation of Kb, the

smoothness of ρL provided by the kernel estimator helps to reduce the noise in Kb.

The measured values of Kb are shown in fig. 3.15. Again, the branching process is
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uniform in space throughout development. One may observe a slight over-density

at the periphery of the neuron at 72 and 96 hr AEL. However, the periphery of

the neuron is not as richly sampled as the bulk, as shown in fig. 3.14. Therefore,

more data would be required to conclude that the branching rate is higher near the

boundary.
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Figure 3.15 – Spatial dependence of normalized branching rate over development

3.2.4 Branching angles are normally distributed

With a better grasp of the temporal and spatial dependence of the branching process,

the branching angles are now examined. The branching angle is defined as the
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angle between the two branch vectors that define the orientation of a pair of sibling

branches that share a common branch point. The orientation of a branch is given

by the vector tangent to the branch and oriented towards the deeper end of the

tree. Incidentally, since one of the children branches is normally aligned with its

parent, the branching angle can also be defined as the angular difference between

the orientation vectors of a branch and its parent branch, measured at their common

branch point.

The distribution of branching angles is measured using skeletons of static images

of class IV neurons taken at each developmental stage. Using these skeletons, the

branching angle is calculated as the difference between the orientation of two

branches that are sibling to one another. All branching angles from all cells of

a given developmental stage are assembled together to construct the branching

angle distributions shown in fig. 3.16. The branching angles peak at ∼ 100◦ and

have a standard deviation of ∼ 30◦ across all developmental stages. Moreover, the

maximum-likelihood estimate of a normal distribution provides a good fit to the

empirical distribution. Finally, pooling all measurements together, the branching

angle has an average of 99.03±0.25◦ and a standard deviation of 30.36±0.18◦.
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Figure 3.16 – Branching angles over development

3.2.5 Branch tips annihilate after complete retraction

In the previous section, the birth rate of new branches was quantified. As with

anything that pertains to the living, birth is ultimately (and unfortunately) followed

by death. This holds true for the class IV neuron as most branch tips retract back

to their branch point and die as a result of contacts with other branches or due

to fluctuations in their growth. The branch tip death process is quantified in two

ways.

First, the death rate is measured manually in a manner similar to the measure-

ment of the branching rate. More specifically, the total number of branch death
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events NDeath events, which correspond to the complete disappearance of a branch tip,

is divided by the duration of each movie ∆T to define the absolute death rate:

κd = NDeath events

∆T (3.60)

The average death rate of any given tip is defined by dividing the absolute death

rate by the total number of branch tips NT observed in each movie:

kd = κd
NT

(3.61)

The resulting measurements are shown in fig. 3.17. Similar to the measurement of

the absolute branching rate, the absolute death rate is also under-estimated at 72

and 96 hr AEL, due to the fact that the field of view is smaller than the size of the

neuron. However, the death rate per unit tip is trustworthy as it is normalized by

the number of observed branch tips. As shown, the death rate per tip decreases ∼ 10

fold from 24 to 48 hr AEL similar to what was observed with the branching rate.

However, at 72 hr AEL, the death rate increases and later decreases ∼ 2 fold.
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Figure 3.17 – Death rate over development
Note that measurements at the first developmental stage were performed
between 22 and 24 hrs. The mean death rate at this stage agglomerates all of
these measurements together. The inferred death rate is calculated using the
estimated net branching rate and the measured birth rate.
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Second, another estimate of the death rate is inferred from the net growth rate

of the number of branch tips. Let ωnet correspond to the net branching rate, which

results from the combined effect of the birth and death process of branch tips, and

let kd correspond to the average death rate of any given tip as defined above. Then,

the following relationship holds:

ωnet(t) = ωb(t)−kd(t)NT (t) (3.62)

where dependence on the developmental time t is added for generality. By inverting

this relationship, another expression of the death rate is obtained:

kd(t) = ωb(t)−ωnet(t)
NT (t) (3.63)

The net branching rate ωnet is estimated by the derivative of the cubic fit of the

number of branch tips vs the developmental time (see fig. 3.10). The resulting

values for ωnet(t) are shown in fig. 3.18.
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Figure 3.18 – Net branching rate over development
The error is calculated by propagating the error of the parameters that fits the
number of branch tips (see fig. 3.10)
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Using ωnet(t) and the measurement of the absolute branching rate ωb, the death

rate kd is inferred at the various developmental stages using eq. (3.63). The inferred

values are shown in fig. 3.17 in comparison with the measurements. As shown, the

inferred values agree with the measurements indicating that the branching rate and

death rate measurements are consistent with one another.

3.3 Morphometrics of class IV neurons

3.3.1 Neuron and segment size

Throughout development, the size of the class IV neurons increases along with the

body of the larvae. Since the class IV dendritic tree is an open shape, the definition of

size is ambiguous. To tackle this ambiguity, two methods are considered to calculate

the size of the neuron. In addition, the neuron size is compared against the body

segment size as measured by Sonal Shree.

Neuron size

The neuron size is calculated using the set of class IV neuron skeletons produced by

the custom-made skeletonization algorithm (see section 2.5). An example of a 96 hr

AEL skeleton is shown in fig. 3.19 where the origin (0,0) corresponds to the location

of the soma found by the skeletonization algorithm.
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Figure 3.19 – Example of a class IV neuron skeleton at 96 hr AEL

The branches of the skeletons are one-dimensional objects that are formed by a

collection of ordered nodes where each branch is sampled at a rate of 1 node every

0.1µm (10nodes
µm ). Since each node is associated with a unit amount of dendrite, the

mass distribution of the class IV neurons is described by the set of nodes position

~ni = (nx,i,ny,i) where i is the node index. Note that this assumes that the branch

thickness is constant across all branches. This is not the case in real neurons, but it

is sufficient for analyzing the spatial extension of the dendritic tree.

The first method used to calculate the neuron size assumes that the spatial

distribution of the branch nodes is uniform. With this assumption, estimates of

the neuron size are proportional to the standard deviation of the mass distribution.

Recall that a one-dimensional uniform distribution in the domain (a,b) has a variance

of (b−a)2

12 . Since b−a corresponds to the range of the distribution, the uniform neuron

size is defined as follows:

~Duni =
√

12var(~ni) (3.64)
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where var(·) and
√
· are independently applied to each dimension. Therefore, ~Duni

defines both the anterior-posterior (AP) and left-right (LR) sizes. Note that ~Duni is

related to the moment of area IA in the following way:

(D2
uni,AP,D

2
uni,LR) = 1

12A(IA,AP , IA,LR) (3.65)

IA,AP =
∫∫

A
x2dxdy (3.66)

IA,LR =
∫∫

A
y2dxdy (3.67)

where A corresponds to the total area of the shape, the x,y axis corresponds to the

AP,LR axis respectively, and the axes are centered on the center-of-mass of the

shape.

An example of the neuron boundary calculated using the uniform size is shown

in fig. 3.20a and the uniform neuron size of all neurons in the static dataset is shown

in fig. 3.20b. The neuron grows faster along the LR axis compared to the AP axis.

Also, the neuron has a rectangular shape as evidenced by the fact that the AP size is

significantly smaller than the LR size.
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(a) Example of the uniform size boundary
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Figure 3.20 – Example of the boundary calculation assuming a uniform dendrite dis-
tribution
The dashed lines in fig. 3.20a corresponds to the AP and LR axes centered on
the center-of-mass of the nodes distribution. The color of the nodes encode
whether they are above or below the AP or LR axis.

The second method of the neuron size estimation relaxes the assumption of

uniformly distributed branch nodes. In this method, the neuron size is given by

the percentiles of the mass distribution in each dimension. Focusing on a single

dimension x, let α correspond to a given percentile such that 0≤ α≤ 1. Using the

inverse cumulative distribution cdfx(z) of the nodes distribution, the percentile size

Dα,x is defined as:

Dα,x = Uα−Lα (3.68)

Lα = cdf−1
x (β), Uα = cdf−1

x (1−β) (3.69)

cdfx(z) = 1
N

N∑
i=1

Θ(z−nx,i), β = 1−α
2 (3.70)

Θ(x) =



0 x < 0

0.5 x= 0

1 x > 0

(3.71)
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where N corresponds to the number of nodes in the tree, Θ(x) is the Heavyside

theta function and Lα,Uα correspond to the lower and upper bounds of the mass

distribution that contains a percentage α of the mass. Examples of the percentile

size boundary are shown in ?? for various values of α.
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Figure 3.21 – Examples of the percentile size boundary

As expected, the range of the boundary increases as the fraction α of the

contained mass increases. Moreover, the 90% size (D90%) and 95% size (D95%) are

slightly too restrictive while the 99% size (D99%) encloses the dendrite mass almost

entirely.

Performing this calculation on the full dataset of neurons at different develop-

mental times, a time series of the percentile sizes is obtained as shown in fig. 3.22.

As expected, the growth rate of the percentile size shows a trend similar to the

uniform size Duni when comparing the AP and LR sizes. Moreover, the growth rates

of the D99% size are comparable to the growth rates of Duni indicating that Duni

also measures the full extension of the dendritic tree. This also indicates that the

assumption of uniform mass distribution is justified.

In summary, there are several methods that one can use to measure the neuron

size. One of the caveat of the percentile size method is that it is a parametric

method, as one needs to chose the value of the parameter α. Therefore, since Duni
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Figure 3.22 – Temporal evolution of the percentile neuron size

is non-parametric and compares to D99%, Duni is chosen as a measure of the neuron

size for future analyses.

Segment size

Concurrent to the growth of the neuron during development, the larval body segment

in which the neuron is contained also increases in size. The body segment has a

rectangular shape that aligns with the left-right and anterior-posterior body axes of

the larva. To measure the segment size, a set of low-magnification images is used to

measure the distance between two adjacent Class IV neuron somas (see fig. 3.23a).

When the two somas belong to different segments, the distance that separates them

correspond to the anterior-posterior size (blue dashed line in fig. 3.23a). When the

two somas belong to the same segment, the distance that separates them corresponds

to the left-right size (orange full line in fig. 3.23a). Performing these measurements

on different class IV neurons at 24,48,72 and 96 hr AEL, the temporal evolution of

the larval segment sizes is obtained over developmental time (see fig. 3.23b). As
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shown, both the AP and LR sizes grow linearly over development and the AP size

grows at a slightly slower rate than the LR size. This behavior was also observed

with the neuron size as shown in fig. 3.20b.
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Figure 3.23 – Measurement of the body segment size over development
The green line identifies the dorsal midline, which separates the left-hand side
from the right-hand side of the larvae. The length of the orange and blue lines
in fig. 3.23a corresponds to the anterior-posterior (AP) and left-right (LR)
segment size, respectively. The arrowheads of the AP-LR compass indicate the
positive direction of each axis. Figure a) provided by Sonal Shree.

A subtlety arises from using the distance between somas as a proxy of the

segment size. As shown in fig. 3.23a, the soma of class IV neurons are slightly

receding away from the dorsal midline. Due to this recession, using the soma-to-

soma distance overestimates the segment size.

To correct for this overestimation, the offset between the segment center and

the soma is estimated by assuming that the center of the segment coincides with the

center-of-mass. Then, the center-of-mass ~RCOM of each neuron is centered at the

soma using a coordinate system that aligns the AP and LR body axes. Therefore, the

components of ~RCOM correspond to the distance between the segment center and

the soma in each dimension.
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Once the soma offset of two adjacent neurons is known, the segment size ~LS is

calculated from the soma-to-soma distance ~LS−S as follows:

~LS = ~LS−S−∆~LS (3.72)

∆~LS =
(
L
~RCOM−R

~RCOM

)
(3.73)

where L
~RCOM (R ~RCOM) corresponds to the center-of-mass of the neuron that is on

the left-hand side (right-hand side) of the dorsal midline. When the neuron is

located on the left-hand side of the dorsal midline, LRCOM,LR > 0 if the soma is

receding from the midline. Similarly, if the neuron is located on the right-hand side

of the dorsal midline, RRCOM,LR < 0 if the soma is receding from the midline. The

sign of RCOM,LR flips when moving to the other side of the dorsal midline because

~RCOM is defined with respect to the neuron’s soma position, and not with respect to

a fixed origin. This sign flip is indeed observed when calculating the center-of-mass

of the class IV neurons with respect to their soma position (compare circles and

crosses in fig. 3.24a).
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(b) Segment size overestimation estimate

Figure 3.24 – Estimation of the segment size measurement overestimation
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In practice, the position of the center-of-mass is calculated using the static

class IV neurons dataset as opposed to using the neurons that were used in the

measurement of the soma-to-soma distance. The reasons for using this dataset

is twofold: First, measuring the center-of-mass of the neurons used in the soma-

to-soma measurement would require the segmentation and skeletonization of an

additional set of curated neurons. Second, a low magnification was used in the

soma-to-soma distance measurement, which leads to less precise measurements of

the center-of-mass compared to the more resolved neurons in the static class IV

neurons dataset.

One inconvenience of the static image dataset is that neurons are not paired, but

are imaged independently, and may not belong to the same larvae. Since the pairing

information is missing, each neuron is paired with its mirror image reflected across

the AP (resp. LR) axis when calculating the LR (AP) overestimation. This amounts

to estimating the overestimation as ∆~LS = 2~RCOM for each neuron. Performing

this calculation at each developmental stage, an average of the overestimation is

obtained for each dimension (see fig. 3.24b). The size overestimation increases

throughout development on the LR dimension, while it remains close to 0 on the

AP dimension. Moreover, comparing the soma-to-soma distance vs the corrected

distance, the correction has a significant effect on the growth rate of the LR segment

size, while the AP segment size is almost unchanged (see fig. 3.25).
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Figure 3.25 – Comparison of the measured and corrected segment size

Neuron size vs segment size

Finally, the neuron size is compared against the segment size as shown in fig. 3.26.

On the AP axis, the neuron size is within ∼ 30µm of the segment size at 24 hrs

after egg-lay, but the gap slowly decreases over development. On the LR axis, the

difference between the neuron size and the segment size is more pronounced. At

24 hours after egg-lay, the neuron and segment size differ by ∼ 80µm and this

difference is gradually reduced to ∼ 0µm at 96 hours after egg-lay.
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Figure 3.26 – Comparison of the neuron size and segment size growth

Moreover, the growth rate of the neuron sizes is either higher than or similar to

the growth rate of their respective segment size. On the LR axis, the growth rate of

the neuron size is significantly higher than the growth rate of the segment size. This

indicates that the expansion of the neuron on the LR axis overcomes the expansion

of the segment such that the neuron ultimately reaches the size of the segment. A

similar effect is also observed on the AP axis, although the difference in the growth

rate of the neuron and segment size is smaller. This is explained by the fact that the

neuron has a smaller amount of empty space to fill along the AP axis compared to

the LR axis. Therefore, the growth rate of the neuron along the AP axis matches the

growth of the segment faster than the LR axis.
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However, relative to the growth of the segment size, the growth rates of the AP

and LR neuron size are not significantly different (within ∼ 1 standard error):

dDuni,AP
dt

dDSeg,AP
dt

=
3.93±0.12 µm

hour

3.59±0.07 µm
hour

= 1.10±0.04 (3.74)

dDuni,LR
dt

dDSeg,LR
dt

=
4.56±0.15 µm

hour

3.82±0.12 µm
hour

= 1.20±0.05 (3.75)

This implies that the expansion of the neuron is tuned to the growth of the seg-

ment.

In summary, we find that the class IV neuron is initially smaller than the size

of the body segment, but due to its rapid growth, it quickly reaches the size of the

segment and completely covers its area at ∼ 72 hr AEL. At this stage, class IV neurons

efficiently tile the surface of the larvae and the growth of the segment constrains the

expansion of the neuron.

3.3.2 Branch length

During development, the total dendritic mass of the class IV neuron increases as

a result of cellular growth. To quantify this growth, the total dendritic branch

length is calculated using skeletons of class IV neurons at various developmental

stages. As shown in fig. 3.27a, the total branch length increases linearly throughout

development at a rate of 0.19mmhr−1. Using estimates of the total branch length

Ltot, the mean branch length 〈L〉 is calculated as follows:

〈L〉= Ltot
NBranches

(3.76)

where NBranches corresponds to the total count of branches in the neuron. As shown

in fig. 3.27b, the mean length initially increases from 24 to 72 hr AEL, but it decreases

from 72 to 120 hr AEL. The initial increase in the mean length could be explained
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by a global stretching of the dendritic tree, which would elongate the branches

of the tree uniformly. However, by measuring the growth rate of non-terminal

branches in proportion to their initial length from 24 to 48 hours and from 48 to

96 hr AEL, no evidence of stretching was found in comparison to the growth of the

segment size (see fig. 3.28). Another process that could explain this increase are

pruning mechanisms that remove branches in the tree. Indeed, when a branch is

annihilated, its sibling and parent branch are joined together into a longer branch

thereby increasing the average branch length. Alternatively, the decrease in the

mean branch length from 72 to 120 hr AEL could be explained by an increase in the

branching rate. However, this not warranted by observations (see fig. 3.12b).
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Figure 3.27 – Total and mean branch length of class IV neurons over development
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Figure 3.28 – Expansion of non-terminal branches
The fractional change is calculated as Linitial−Lfinal

Linitial
. Reproduced from original

measurements performed by Sonal Shree.

Finally, the distribution of branch length over the dendritic arbor is analyzed

at each developmental stage. As shown in fig. 3.29, the branch lengths are expo-

nentially distributed over the entire duration of the development. An exponential

distribution further supports the hypothesis that branching is a Poisson process, since

the interval length between Poisson events are exponentially distributed.

Furthermore, the correlation of the branch length Cl(∆d) is calculated as a

function of the depth of the branches within the tree topology:

Cl(∆d) = 〈L(d)L(d+ ∆d)〉d−〈L(d)〉2d
〈L2(d)〉d−〈L(d)〉2d

(3.77)

where L(d) is the length of a given branch at depth d, L(d+ ∆d) is the length of

a descendant located ∆d levels deeper and 〈. . .〉d averages over all branch pairs

in the tree. As shown in fig. 3.30, the branch length has no correlation further

strengthening the hypothesis that the branching process is uniform throughout the

arbor.
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Figure 3.29 – Branch length distribution over development
When comparing the normalized probability densities, the density expected
from an exponential distribution is added as a guide.
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Figure 3.30 – Branch length correlation over development

3.3.3 Persistence length

The shape of the dendritic branches is quantified by their persistence length Lp. In

general, the persistence length of a curve quantifies its straightness and increases
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as the curve becomes straighter. Mathematically, the persistence length is defined

through the correlation of the tangent vectors t̂(s) along the curve:

〈t̂(s) · t̂(s+ ∆s)〉= 〈cos(∆θ(∆s))〉= e
−∆s
Lp (3.78)

where ∆θ(∆s) corresponds to the difference of the angle between two tangent

vectors on the curve that are separated by a path length ∆s and 〈·〉 averages over

all pairs of points on the curve. In other words, the persistence length corresponds

to the decay length of the cosine of the tangential angle as one moves along the

path of the curve. To calculate the persistence length of a given dendritic tree, the

tangential angles θ of all branches is used to calculate the average cos(∆θ(∆s)) over

all path length separation ∆s and all positions on the tree. Following eq. (3.78),

〈cos(∆θ(∆s))〉 is fitted with a non-linear least-squares to obtain an estimate of the

persistence length. In addition, 〈cos(∆θ(∆s))〉 is fitted over the range 0≤∆s≤ 〈L〉

to avoid the abrupt change of the tangential angle that occurs at the branch points.

An example of the 〈cos(∆θ(∆s))〉 fit is shown in fig. 3.31a.
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Figure 3.31 – Persistence length of class IV neurons

100 Chapter 3 Dynamic and Static Properties of Class IV Neuron Morphogenesis



As depicted, the persistence length gradually increases from 24 to 72 hr AEL,

and decreases from 72 to 120 hr AEL. The straightening of the branches from 24

to 72 hr AEL may be explained by the maturation of the dendritic tree. In the

early stage of morphogenesis, the tree is still being formed with many short flexible

branches that grow in various directions to fill space. At the tree develops, short

branches are pruned near the soma leading to a higher amount of long straight

branches. This can be seen as well in the images where later trees have long straight

branches near the soma compared to the earlier trees (see fig. 1.3). From 72 to

120 hr AEL, branches become less straight and reach levels of undulation that are

comparable to the early stage. This increase in the amount of flexible branches at

later stages may be a consequence of the increasing absolute branching rate, which

increases the amount of young and malleable branches.

3.3.4 Branch orientation

The persistence length is useful in understanding the average shape of the branches

in the tree. However, as a single measure, it does not capture the fine structure

of the branching morphology. To better understand the shape of the branches, the

spatial distribution of the branch orientation is measured throughout the tree.

First, the tangential angles of the branches are measured from the tangent

vectors that define the two-dimensional path of the branches. In the class IV neuron

skeletons, the tangent vectors are sampled every 0.1µm along each branch. The

angle of the tangent vectors is determined by sliding a window of 1µm along the

path of the branch and performing a principle component analysis (PCA) on the set

of 10 branch nodes to find the vector that best fits the nodes. This running average

along the branch path helps to reduce the noise that originates from the branch

nodes’ position. The distribution of the tangential angles as a function of the radial

position of the tangent vector is shown in fig. 3.32 at each developmental stage. The
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distributions agglomerate all angles from all branches in all trees of the given stage.

The estimated distributions demonstrate that the tangential angles are uniformly

distributed at all stages indicating that branches are oriented in all directions across

the tree, irrespective of the radial position of the branch. This indicates that branches

grow freely in space and are not biased towards any specific direction. Moreover,

the bulk of the tangential angles is centered at a given radius, which increases

throughout development indicating that the tree expands. In addition to the radial

translation of the distribution, the spread also increases indicating that the tree is

filling its occupied area as it is expanding. The uniformity of the distribution is also

evident after summing over the radial direction as shown in fig. 3.33).
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Figure 3.32 – Radial dependence of the tangential angle distribution over develop-
ment
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Figure 3.33 – Tangential angle distribution over developmental time

Similar to the tangential angle, the polar tangential angle is also measured. The

polar tangential angle is the difference between the tangential angle and the two-

dimensional polar angle at the given position. More specifically, if φji corresponds to

the tangential angle at the jth node of the ith branch, the polar tangential angle is

given by:

ψji = φji −θ
j
i (3.79)

~xji = |rji |(cos(θji ),sin(θji )) (3.80)

104 Chapter 3 Dynamic and Static Properties of Class IV Neuron Morphogenesis



where ~xji denotes the 2D position of the jth node of the ith branch and the origin

is located at the soma. In other words, ψ = 0◦ (ψ = 180◦) corresponds to the

positive (negative) radial direction while ψ = 90◦ (ψ = −90◦) corresponds to the

anti-clockwise (clockwise) angular direction. In a similar fashion to the tangential

angle analysis, the polar tangential angle distribution is calculated by assembling

all measurements of a given developmental stage (see fig. 3.34). As shown, the

polar tangential angle is centered at the origin across all developmental stages.

This indicates that the branches’ orientation is biased towards the outward radial

direction. As an aside, this is a general property of two-dimensional trees, which

was qualitatively observed by Leonardo da Vinci as inscribed in one of his notebooks

[42, p. 395]. Since the branches of a tree ultimately converge to a common root,

their orientation is biased towards the radial direction. Indeed, in the extreme case

where branches are purely angular, they do not converge to their common root,

and consequently a tree cannot be formed. The bulk of the polar angle distribution

is mostly contained within [−45◦,45◦] indicating that the bias is about halfway

between purely radial and purely angular. Again, summing over the radial direction,

the one-dimensional polar tangential angle distribution is shown in fig. 3.35. This

alternative analysis more evidently shows that branches are biased towards the

radial direction with a dispersion of ∼ 45◦.

Several mechanisms could be the cause of this radial bias in the branch orien-

tation in addition to the structure constraint imposed by the tree geometry. The

branches’ orientation may be biased towards the positive radial direction because

growth is mostly unhindered in this direction. Indeed, since branch growth is inhib-

ited by contact with other branches, branches are more likely to grow in a direction

where there are no other branches. When branches grow at the edges of the tree, the

positive radial direction is void of branches and therefore has the least amount of

growth obstacles. However, although this is likely the case for the early stages when

class IV neurons have not tiled the larva’s surface, this is not true at the later stages
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when the neurons are in contact with their neighbors. Therefore, this rationale can

only partially explain the radial bias.
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Figure 3.34 – Radial dependence of the polar tangential angle distribution over devel-
opment
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Figure 3.35 – Polar tangential angle distribution over development

In anticipation of the proposed models of morphogenesis, the average cosine

and sine of the polar tangential angle is shown in fig. 3.36. As expected, the cosine

components are significantly above 0, while the sine component fluctuates around 0.

Note that 〈cos(ψ)〉 decays slightly over development due to the spread of the polar

tangential angle at later stages.
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Figure 3.36 – Average cosine and sine of the polar tangential angle over development

3.3.5 Fractal dimension

Motivated by the branched dendritic network of class IV neurons, the fractal dimen-

sion df is utilized as one measure of density. In 2D, the fractal dimension varies

between 1 and 2 and indicates how a shape is closer to a line (df = 1) or a surface

(df = 2) in a continuous manner. In other words, the fractal dimension quantifies the

ability of a shape to fill space. There are many ways to define the fractal dimension

such as the box counting dimension or the Hausdorff dimension [13]. For simplicity,

this analysis considers only the correlation and box-counting dimensions. First, the

correlation dimension is defined in terms of the correlation integral of the shape

[17]. More precisely, let us assume that a shape is discretized by a set of N points
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with position ~xi. Given this set of points, the correlation dimension dc is defined in

terms of the correlation integral C(r):

C(r) = 2
N(N −1)

∑
i,j=1
i<j

Θ(r−|~xi−~xj |) (3.81)

C(r)∼ rdc (3.82)

where Θ(x) is the Heavyside step function. In other words, C(r) is equal to the

fraction of pairs of points that are separated by a distance of at most r. For a

fractal, C(r) is expected to be a power law whose power corresponds to the fractal

dimension.

On the other hand, the box counting dimension db is defined in terms of a

set of boxes that covers the shape. Given a box size r, let N(r) correspond to the

number of boxes needed to cover the entire shape. As the size of the boxes increases,

N(r) decreases since a smaller amount of bigger boxes are needed to cover the

given shape. Again, the functional behavior of N(r) is a power law whose power

corresponds to the box-counting dimension:

N(r)∼ r−db (3.83)

In this morphometric analysis, these power laws are exploited to estimate the

fractal dimension. Since the neurons have a finite shape, the fractal nature is only

expected to hold over a certain range of radii. At small distances, the power laws

are lost due to the finite sampling rate of the branches while at large distances, C(r)

and N(r) saturate due to the finite size of the neuron. Therefore, to estimate the

approximate fractal nature of the neuron, the power laws are fitted over the range

〈L〉
2 ≤ r ≤Rg where 〈L〉 is the mean branch length of the tree and Rg is the radius of

gyration.
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To estimate the correlation dimension, C(r) is calculated using the neurons’

skeletons where each branch is sampled at a rate of 1point
0.1µm . Then, a linear least-

squares fit is performed on the logged (r,C(r)) data to find the correlation dimension.

An example of the correlation integral for a class IV neuron at 96 hr AEL is shown in

fig. 3.37a.

To estimate the box dimension, a set of boxes of size r is laid out on a square

lattice and the number of non-empty boxes is counted. This process is repeated for

all given radii to establish the behavior of N(r). The logged (r,N(r)) data is then

fitted with a linear least-squares to find the box-counting dimension. An example

of the functional form of N(r) for the same class IV neuron example is shown in

fig. 3.37b. As depicted, the fractal dimension varies by approximately 5% between

the two methods.
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Figure 3.37 – Fractal dimensions of a class IV neuron at 96 hr AEL

Although fitting the power laws over a restricted range helps to alleviate the

finite size effects, it is insufficient. When measuring C(r) to estimate the correlation

dimension, points that are within a distance r of the boundary are underestimating

C(r) since part of their neighborhood is empty due to the boundary. To alleviate
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this effect, periodic boundaries are used. This amounts to calculating a modified

correlation integral C ′(r):

C ′(r) = 2
N(N −1)

∑
i,j=1
i<j

Θ(r−|~dij |) (3.84)

~d
(k)
ij = min(|~x(k)

i −~x
(k)
j |, |L

(k)− (~x(k)
i −~x

(k)
j )|) (3.85)

where ~d
(k)
ij corresponds to the shortest distance between ~xi and ~xj along the kth

dimension and L(k) is the size of the neuron in the kth dimension. In practice, before

C(r) is calculated, the points in the shape are centered at the center-of-mass and the

periodic boundaries are located at half the uniform size ~Duni/2 on each side of the

tree (see section 3.3.1). Moreover, points that fall outside the boundary are removed

to avoid overestimating the correlation integral.

To test the effect of the periodic boundaries, a set of points on a square lattice is

generated with a lattice spacing of d= 0.01 (see fig. 3.38a). This shape is expected

to have a correlation dimension of 2 since it fills the entire space. As shown in

fig. 3.38b, this value is recovered only when periodic boundaries are used indicating

that periodic boundaries are effective in removing the underestimation of C(r) due

to the boundary effects.
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Figure 3.38 – Effect of periodic boundaries on the correlation dimension

In summary, there are many ways that one can calculate the fractal dimension.

Since this analysis of the fractal nature of class IV neurons does not aim to be

exhaustive, the correlation dimension dc calculated with periodic boundaries will be

used for subsequent comparisons of the fractal dimension.

Finally, the fractal dimension of class IV neurons is analyzed over their develop-

ment. As shown in fig. 3.39, it remains relatively constant at a value of ∼ 1.8 during

the larval development. However, at 24 hr AEL, the fractal dimension is slightly

smaller at a value of ∼ 1.7 and also shows more variability. This indicates that the

shape of the neuron in the early developmental stage has not reached maturation

and is still under construction. Moreover, the fact that the fractal dimension reaches

a constant early in its development indicates that the class IV dendritic tree is quick

to fill its receptive field. This is also consistent with the hypothesis that the shape of

the tree is optimized to fill its area aiming to detect the mechanical stimuli that it

receives.
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Figure 3.39 – Fractal dimension of class IV neurons over development

3.3.6 Meshsize

Complementary to the fractal dimension, the size of the empty space between

the dendrites is also quantified. Since the tree is an open shape, the size of the

empty space is not mathematically well-defined. However, one can use approximate

measures that capture this intuition. The lacunarity of a given shape is one example

that assesses the size of empty space or holes in a given shape [47]. For this analysis,

we propose a novel metric that is inspired by the function of the class IV neuron:

the hitting probability.

Recall that Class IV neurons are nociceptors that detect mechanical stimuli.

These mechanical stimuli come in the form of a puncture of a given size that jabs

the class IV dendritic tree and stimulates its sensorial receptors. Depending on their

ability to fill space, class IV neurons are able to detect punctures of various sizes.

Motivated by this sensory function, we define the hitting probability h(r) of a shape

as the probability that a box of size r randomly collides with the given shape. As r
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increases, the hitting probability increases and captures the distribution of the holes’

size within the shape.

To calculate the hitting probability, a square lattice of box centers ~ci, i= 1, . . . ,M

is laid out on a fine grid. The lattice points correspond to the random positions of

the box center. As an alternative, one could also define the box centers from a set of

uniformly random variables that extend over the range of the tree in each dimension.

Once the box centers are defined, the fraction of boxes of a given size r that collides

with any points ~xj on the discretized shape X is calculated. One way to perform this

calculation is to count the fraction of boxes of size r that hits the shape:

h(r) = 1
N

∑
i

1X (r,~ci) (3.86)

1X (r,~ci) =

 1
M

M∑
j=1

Θ
(
r

2 −|~xj−~ci|
) (3.87)

where Θ(x) is the Heavyside step function and 1X (r,~ci) is an indicator function that

equals one when the ith box centered at ~ci is within a distance r of at least one

point on the shape X . In other words, h(r) counts the fraction of boxes that are

within a distance r of the shape. In practice, this method works for calculating the

hitting probability. However, due to the fact that collision tests must be performed

for each box at each radius, one can only evaluate h(r) for a small set of radii for

computational efficiency. To circumvent this limitation, we approach the problem

with a different angle. Instead of asking what fraction of boxes of a given size r hit

the shape, we seek the smallest box size di that hits the shape at every given center

~ci. This can be computed using the Chebyshev distance Dc(~x,~y) between ~ci and the

points on the shape ~xj:

di = 2min
j
Dc(~ci,~xj) (3.88)

Dc(~x,~y) = max
k
|~x(k)−~y(k)| (3.89)
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The appearance of the Chebyshev distance arises from the fact that boxes are used

in the hitting test. If one used circles instead of boxes, one would need to use the

normal euclidean distance in the above formula. Once the smallest hitting sizes

di are computed, one instantly knows that all boxes of size r ≥ di centered at ~ci

will hit the shape. In other words, the fraction of boxes of size r that hit the shape

corresponds to the fraction of di that are less than or equal to r. This fraction is

no less than the empirical cumulative distribution of di. This leads to the following

definition of h(r):

h(r) = 1
M

∑
i

Θ(r−di) (3.90)

This definition of h(r) captures the same information as in the previous method,

but the use of the empirical cumulative distribution allows us to evaluate h(r) at

many more points for the same computational cost. In practice, a square lattice

of 500×500 box centers is laid out to span the range [−Rg,Rg] in each dimension

where Rg in the radius of gyration. Rg is used as the limits of the square lattice to

avoid segmentation effects at the boundary. Once di is calculated at each box center,

the value of the hitting probability is estimated at 5002 = 250000 points, which is

practically continuous over the dynamical range of h(r). An example of the hitting

probability calculated with this technique is shown in fig. 3.40b for a class IV neuron

at 96 hr AEL.
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Figure 3.40 – Hitting probability of a class IV neuron at 96 hr AEL

Using the hitting probability curve h(r), the meshsize rh is defined as the box

size that attains a hitting probability of 50%. The threshold of 50% is chosen as it

corresponds to the inflection point of the hitting probability by definition. Therefore,

the meshsize captures the critical point at which the hits change from mostly missing

to mostly hitting. As such, the meshsize provides a definition of the size of the holes

in the shape.

Again, the temporal evolution of the meshsize is quantified over development

using the set of class IV neuron skeletons (see fig. 3.41a). The meshsize increases

almost 2-fold from 24 to 72 hr AEL indicating that the class IV dendritic tree becomes

sparser over the first instar of the development. From 72 to 120 hr AEL, the meshsize

decreases in a manner similar to the evolution of the mean branch length. Indeed,

when the meshsize is normalized by the mean branch length, rh
〈L〉 , this quantity is

conserved over the development of the dendritic tree as shown in fig. 3.41b. This

conservation indicates that the ability of the tree to fill space is contingent on the

size and quantity of its branches. As the mean branch length decreases, the size of
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the holes in the tree also decreases. This is a consequence of the fact that smaller

branches more easily fill space compared to longer branches due to the persistence

length of the branches. Indeed, for a fixed amount of dendritic length, a large

number of small branches have more degrees of freedom than a low number of

longer branches.

Given the initial increase of the meshsize and the scaling behavior between the

meshsize and the mean branch length, these observations indicate that there is a

mechanism that increases the length of the branches in the early stages. This could be

the result of a branch pruning process whereby branches disappear, which increases

the size of the holes in the dendritic tree shape. Alternatively, there could also be

a stretching of the tree branches, which would increase the mean branch length.

However, this is in contradiction with our measurement of the branch extension,

which shows that inner branches do not significantly stretch in comparison with the

body segment (see fig. 3.28).
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Figure 3.41 – Meshsize of class IV neurons over development
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3.3.7 Interbranch distance

Recall that the class IV dendritic tree aims to fill its receptive field with dendrites to

perform its sensory function. As explained in the previous section, the meshsize is a

morphometric that quantifies the average size of the holes in the shape formed by the

tree. In this section, the distribution of distances between branches is analyzed as an

attempt to define a finer metric that quantifies the size of holes and the distribution

of empty space.

Let us define the interbranch distance `I(β) as the distance between two

branches along a branching angle β. More specifically, consider a position ~x on a

branch where the tangential angle at this position is given by φ. From this position,

a line is traced at an angle φ+β until it collides with another branch. The length of

this line corresponds to the collision distance at position ~x and angle β, denoted as

`I(β,~x). Repeating this process over all positions, the interbranch distance is then

given by the positional average of the collision distances:

`I(β) = 〈`I(β,~x)〉~x (3.91)

The angle β is understood as the angle at which a nascent branch tip may grow

relative to the orientation of the branch φ. After averaging over all positions ~x

and branching angles β, 〈`I(β)〉β captures a notion similar to a mean free path for

one-dimensional objects. Using this intuition, one could say that `I(β) corresponds

to the average distance at which a branch tip will contact another branch when

branching at an angle β relative to its parent branch orientation.

Given this definition, skeletons of class IV neurons are used to calculate the

interbranch distance by scanning for collisions across the full range of branching

angles. The resulting interbranch distance `I(β) is shown in fig. 3.42. In practice,

since the shape is not closed, there will be cases in which no collisions are detected.
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For example, this can happen at the boundary when the branching angle is outwardly

directed. In these cases, `I(β,~x) is undefined since no collisions happen. These cases

are therefore omitted in the averages shown in fig. 3.42.

First, one notices that the interbranch distance is symmetric around β = 0. This

indicates that branches are approximately parallel with their neighbors. Indeed, if

the collision distance at some position ~x and branching angle β is given by `I(β,~x)

due to a collision with a neighboring branch node positioned at ~y, the same collision

distance is expected when scanning from position ~y at the reflected angle −β, i.e.

`I(β,~x) = `I(−β,~y). Then, when all positions are averaged, the same distance is

counted for both β and −β. Second, one also notices that the interbranch distance

increases from 24 to 72 hr AEL, and decreases from 72 to 120 hrs. This trend is

also observed when averaging over all branching angles as shown in fig. 3.43a.

This feature is also captured by the meshsize, which shows an increase at the early

stage and a slight decrease at the later stages. Third, one also notices that the

interbranch distance decays to 0 as |β| → 180◦, but remains non-zero as β→ 0. This

is an effect caused by the branch tips, which have non-zero collision distances along

the orientation of the branch (β = 0). Finally, note that the interbranch distance

peaks at a given branching angle, whose average varies between 60◦ and 80◦ over

development as shown in fig. 3.43b. The fact that the interbranch distance is

longest in a certain direction relative to the branch indicates that there are favorable

directions at which a branch can grow. However, one could argue that the branching

angle range |β| ∈ [50,130] has similar interbranch distances, which indicates that

branching perpendicularly offers sufficient freedom for growth.
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Figure 3.42 – Interbranch distances over development
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Figure 3.43 – Average interbranch distance over development

In summary, the interbranch distance indicates that the tree becomes sparser

from 24 to 72 hr AEL, but grows denser from 72 to 120 hr AEL, similar to the

behavior of the the meshsize. In addition, the angular dependence of `I(β) indicates

that branching perpendicularly from an existing branch provides the least amount

of obstruction for growth.

3.3.8 Dendrite, branch point and branch tip densities

Finally, to analyze the spatial properties of the dendritic tree, we analyze the

densities of 3 types of species: dendrites, branch points and branch tips. Since

the dendrites are one-dimensional objects that are embedded in two-dimensional

space, the dendrites density is a line density with units of µm−1. On the other hand,

the branch point and branch tip density are point densities with units of µm−2.

First, the two-dimensional species densities is averaged over all cells of the same

developmental stage as shown in fig. 3.44. As depicted, the dendrites density is

uniform across the area covered by the neurons from 24 to 72 hr AEL. However,
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at 96 hr AEL, there is a slight over-density near the periphery of the neuron in a

band of ∼ 50µm. The branch points and branch tips density show a similar behavior

where the over-density is even apparent at 72 hr AEL. In addition, the number of

branch points and branch tips are approximately equal as found in fig. 3.10.
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Figure 3.44 – Two-dimensional species density over development
The species density is evaluated in 10× 10µm2 bins and averaged over all
cells of the same developmental stage. The dendrites mass is measured as a
line density while the branch points and branch tips are point densities.

In addition, the species density is quantified as a function of the radial distance

from the soma (see fig. 3.45). To calculate the radial density at a given radius R,

the amount of species contained in an annulus with dimension r ∈ [R−W/2,R+

W/2],θ ∈ [0,2π] (W = 10µm is the radial bin width) is divided by the area of the

annulus. The temporal evolution of all species density indicates that the dendritic

tree expands at a steady rate as evidenced by the propagation of the density front

over periods of 24 hrs. Moreover, the steady-state densities in the bulk of the tree
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decays from 24 to 72 hr AEL, stabilizes from 72 to 96 hr AEL, and increases again at

120 hr AEL.
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Figure 3.45 – Radial species density over development
The species density is calculated in radial bins of 10µm. Each color represents
the average over all cells within the same developmental stage.

Since the real neurons are not spherically symmetric, but possess a non-unit

aspect-ratio, the projected density is calculated along each axis of its rectangular ge-

ometry. More precisely, the two-dimensional species density is mean-projected along

the left-right (anterior-posterior) axis to calculate the density along the anterior-

posterior (left-right) axis. When performing the projection along a given dimension,

only non-empty bins are considered to avoid under-estimating the projected density.

The resulting projected densities are shown in fig. 3.46 after averaging over all

cells. Similar to what is shown by the radial densities, the projected species density

along the AP and LR axis both demonstrate that the species density is approximately

constant near the origin and decays to zero near the boundary of the cell. Moreover,

the temporal behavior of the projected density is similar to the behavior of the radial

density.
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Figure 3.46 – Axial species density along the AP and LR axis over development
The species density is evaluated in 10× 10µm2 square bins and averaged
over the LR (AP) axis when calculating the AP (LR) axis density. Each color
represents the average over all cells of the same developmental stage.

First, the decay length of the dendrites density profiles is quantified. Since the

neuron has a rectangular geometry, the non-spherical geometry smears the radial

density at the boundary of the shape in comparison with the axial densities. Instead,

the decay length is evaluated by fitting the dendrites axial density on each side

of the cell along each dimension. However, since the density decays on the scale

of ∼ 10µm, the binned density do not provide enough sampled points to fit. To

resolve this issue, the dendrites density is upsampled using a Gaussian kernel with
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a bandwidth of 2.5µm. This particular bandwidth is selected in order to smooth

the profile at the boundaries while keeping the specific features of the decay. Using

the kernel density, the bulk density ρbulk is calculated as the average density of

the sampled points in the inner 50% of the profile. Then, each side of the kernel

density profile is fitted independently with an exponential function from ρbulk
2 to 0

(see fig. 3.47a). The resulting decay lengths of the exponential fit are shown in

fig. 3.47b over development. As shown, the density decays rapidly at the boundary

at 24 and 48 hr AEL. At 72 hr AEL, the decay is more smooth over a length that is

almost twice as large as the early-stage decay length. However, from 72 to 120 hr

AEL, the density decay sharpens and the decay length decreases to a value that is

similar to the early-stage value.
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Figure 3.47 – Decay length of dendrite axial density over development

Finally, the species density is averaged over the area of the neuron defined

by the uniform size (see section 3.3.1). As shown in fig. 3.48, the density initially

decreases until 72 hr AEL, but increases subsequently until 120 hr AEL.
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Figure 3.48 – Average species density inside the uniform boundary over development
The average dendrites density is evaluated as the total branch length divided
by the area of the uniform boundary. The branch points and branch tips
density are calculated by counting the total number of the respective species
and dividing by the area of the uniform boundary.

In summary, the density of dendrites, branch points and branch tips decreases

as the dendritic tree expands from 24 to 72 hr AEL, but increases from 72 to 120 hr

AEL.

3.4 Conclusions

• We characterize the tip growth dynamics using movies of the class IV neuron

development and find that it is well-approximated by a 3-state Markov process.

• We quantify the rate of branching and find that it is an extensive and spatially

uniform property of the dendritic tree.

• We assess the change in the morphology of the tree using established and novel

metrics and find that the tree expands throughout development. Furthermore,

the dendrites density decreases at the early stage, reaches a steady-state during

the second instar of development and increases again at the later stages.
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Mean-Field Models of Dendritic
Morphogenesis

4

The dendrites of Class IV neurons in Drosophila grow through various dynamical

processes. In this chapter, we present several mean-field approaches to model the

dendritic tree growth as a drift-diffusion-reaction dynamical system comprising 5

types of species: dendrites, branch points, shrinking, paused and growing branch tips.

We derive expressions for the tree expansion velocity as a function of the microscopic

parameters and make predictions on their value using our measurements of the

morphometrics.

The proposal and design of the mean-field models were done by Yuhai Tu.

Predictions and mathematical derivations were performed in collaboration with

Yuhai Tu and Qiwei Yu.

4.1 5-species model

The 5-species mean-field model consists of a set of dynamical equations that governs

the temporal evolution of 5 species: dendrites (U ′), branch points (B), paused

(P ), growing (G) and shrinking tips (S). Each species is described by a probability

density of point particles that depends on both space and time. Moreover, the species

are categorized into two groups: immobile and mobile:
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• U ′(~x,t): Immobile dendrites that are not dynamic

• B(~x,t): Immobile branch points that are located at intersection of branches

• P (~x,t): Immobile branch tips that are neither growing nor shrinking

• G(~x,t): Mobile growing branch tips

• S(~x,t): Mobile retracting branch tips

• T (~x,t) = U ′+B+S+P +G: Total density of all species

• R(~x,t) = S+P +G: Total density of branch tips

In this model, the various morphogenesis events are modeled as reactions among

the species. In addition to the reaction terms, the motion of the mobile species is

modeled with drift and diffusion terms. In the next sections, we describe the precise

form of the dynamical terms that model the morphogenetic processes.

4.1.1 Reaction terms

Dendrite growth

During morphogenesis, dendritic tips elongate leading to an increase in the total

mass of dendrites. In the mean-field approach, this phenomenon is modeled as

the growth of immobile dendrite particles U ′ promoted by the presence of mobile

growing branch tips G:

G
kG→G+U ′

⇒ ∂U ′

∂t
= . . .+kGG(1−λ2

GTT ) (4.1)
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where λGT is an interaction length scale that controls the effective distance at which

growing tips collide with other species and the factor of 1−λ2
GTT represents the

probability that a growing tip encounters empty space. This multiplicative factor

models the condition that sufficient space is necessary for the growth of dendrites.

1−λ2
GTT is in fact an approximation of the exact term: 1−

∫
S(~x)T (~y)d2~y where S(~x)

is a small surface, centered at the tip position ~x. For simplicity, we define S(~x) as

a square of size λGT and assume that λGT is sufficiently small such that T (~y) is

approximately constant over the surface:

1−
∫
S(~x)

T (~y)d2~y ≈ 1−λ2
GTT (~x) (λGT � 1) (4.2)

Therefore, in regions where the probability density of finding any species is

high (close to ∼ 1), 1−λ2
GTT approaches 0 and inhibits the growth of new dendrites.

Finally, kG is the rate constant at which growing tips produce dendrites. This

parameter is determined by the average speed of growing tips vG and the particle

size a: kG = vG
a .

Dendrite shrinkage

In addition to elongation, dendritic branches also shrink whereby their dendritic

tip retracts towards their original branch point leading to a reduction in the total

mass of dendrites. Similar to growth, this phenomenon is modeled as the removal

of immobile dendrite particles U ′ promoted by the presence of mobile retracting

branch tips S:

S+U ′
kS→ S

⇒ ∂U ′

∂t
= . . .−kSS (4.3)
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In other words, shrinking tips S act as sinks of dendrite particles. The rate at which

dendrites are depleted from the presence of shrinking tips is determined by the rate

constant kS , which is a function of the average speed of shrinking tips vS and the

particle size a: kS = vS
a .

Tip dynamics

During morphogenesis, branch tips exhibit a dynamical behavior: they grow, shrink

or remain immobile for a certain amount of time. Given our previous observations

of the tip dynamics, we model the branch tip dynamics as a Markov chain with 3

dynamical states: shrinking, paused, growing. The transitions between each of these

states are determined by a total of 6 rate constants:

S
kSP
�
kPS

P, P
kPG
�
kGP

G, G
kGS
�
kSG

S

⇒∂S

∂t
= . . .− (kSP +kSG)S+kPSP +kGSG (4.4)

⇒∂P

∂t
= . . .− (kPS +kPG)P +kSPS+kGPG (4.5)

⇒∂G

∂t
= . . .− (kGS +kGP )G+kSGS+kPGP (4.6)

where kij , i, j ∈ {S,P,G} correspond to the transition rate constants.

Branching

Concurrent to tip dynamics, new dendritic tips are born out of existing branches. We

call this process branching. Guided by our investigation of the branching process

(see section 3.2), we assume that the probability of branching is proportional to the

amount of dendrites, which implies that regions with a high density of dendrites are

more likely to spawn new branches. Therefore, the branching process is modeled as
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the creation of a branch point B and a growing tip G promoted by the presence of

immobile dendrite particles U ′:

U ′
k′b→B+G

⇒∂U ′

∂t
= . . .−k′bU ′(1−λ2

BU ′B) (4.7)

⇒∂B

∂t
= . . .+k′bU

′(1−λ2
BU ′B) (4.8)

⇒∂G

∂t
= . . .+k′bU

′(1−λ2
BU ′B) (4.9)

where k′b is the branching rate. Here, k′b is a rate constant with units of inverse

time ([k′b] = 1
Time) whereas the measured branching rate has units of inverse time

and length ([kb] = 1
Time·Length). One can relate these two quantities using the particle

size a: k′b = kba. The multiplicative factor (1−λ2
BU ′B) models branching inhibition

mechanisms similar to the 1−λ2
GTT factor of the growth term (see above) where

the presence of branch points inhibits the local branching rate. λBU ′ is a length scale

that controls the distance at which B particles effectively interact with dendrites.

In the simplest scenario, one can set λBU ′ = a indicating that branch points are

point-like and cannot stack with one another. Alternatively, one could set λBU ′ to an

experimentally determined length scale that models the inhibition of new branch

tips near existing branch points.

Contact inhibition

As a pruning mechanism, the Down-Syndrome Cell Adhesion Molecule (DSCAM) in

class IV neurons mediates contact inhibition whereby a growing branch tip starts

retracting upon contact with another branch. In the mean-field approach, this
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process is modeled as the conversion of growing tips G to shrinking tips S upon

collision with all species:

G+T → S+T

⇒∂G

∂t
= . . .−kGλ2

GTGT (4.10)

⇒∂S

∂t
= . . .+kGλ

2
GTGT (4.11)

where λGT is the same interaction length scale that was introduced in the growth

term. Also, kG is the same constant that appears in the dendrite growth term since

this phenomenon is mediated by the contact of growing tips G.

Branch annihilation

Finally, when branch tips retract back to their original branch point, the branch tip

and branch point disappear. In the mean-field model, this event is modeled as a

collision between a shrinking tip S and a branch point B that annihilate them and

create an immobile dendrite:

S+B→ U ′

⇒∂U ′

∂t
= . . .+kSλ

2
BSB (4.12)

⇒∂B

∂t
= . . .−kSλ2

BSB (4.13)

⇒∂S

∂t
= . . .−kSλ2

BSB (4.14)

where λB is the interaction length scale between branch points and branch tips.

Note that kS is the same constant that is used for the dendrite shrinkage term since

this phenomenon is mediated by the contact of shrinking tips S.
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4.1.2 Transport terms

To model the motion of the mobile tips, drift-diffusion terms are used for the growing

and shrinking tips. We consider two cases where the dynamics occur in one or two

spatial dimensions. In 1D, these terms are given by:

L+,1D(G(x)) =
(
−v+

∂

∂x
+D+

∂2

∂x2

)
G(x) (4.15)

L−,1D(S(x)) =
(
v−

∂

∂x
+D−

∂2

∂x2

)
S(x) (4.16)

where v+,v− are the drift velocities of the growing and shrinking tips and D+,D−

are the associated diffusion constants.

In 2D, the transport terms are:

L+,2D(G(r,θ)) =
(
−v+,r

∂

∂r
+D+,r

∂2

∂r2 + D+,θ
r2

∂2

∂θ2

)
G(r,θ) (4.17)

L−,2D(S(r,θ)) =
(
v−,r

∂

∂r
+D−,r

∂2

∂r2 + D−,θ
r2

∂2

∂θ2

)
S(r,θ) (4.18)

where D+,r,D−,r and D+,θ,D−,θ correspond to the radial and angular diffusion

constants of the growing and shrinking tips, respectively. In addition, v+,r and v−,r

correspond to the radial drift velocity of the growing and shrinking tips, respectively.

Note that v+,r,v−,r are different than the tip speeds vG,vS as v+,r,v−,r accounts for

the two-dimensional motion of the tips while vG,vS describes the one-dimensional

growth dynamics of the branches. Also, notice that the r−1∂r term of the diffusion

operator is absent in the transport terms as will be explained later in section 4.4.
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4.1.3 Summary

In summary, the reaction processes of morphogenesis are modeled as a 5-dimensional

dynamical system:

∂U ′

∂t

∣∣∣∣
Reaction

= kGG(1−λ2
GTT )−kSS−k′bU ′(1−λ2

BU ′B) +kSλ
2
BSB (4.19)

∂B

∂t

∣∣∣∣
Reaction

= k′bU
′(1−λ2

BU ′B)−kSλ2
BSB (4.20)

∂P

∂t

∣∣∣∣
Reaction

=−(kPS +kPG)P +kSPS+kGPG (4.21)

∂G

∂t

∣∣∣∣
Reaction

=−(kGS +kGP )G+kSGS+kPGP −kGλ2
CIGT +k′bU

′(1−λ2
BU ′B)

(4.22)

∂S

∂t

∣∣∣∣
Reaction

=−(kSP +kSG)S+kPSP +kGSG+kGλ
2
CIGT −kSλ2

BSB (4.23)

which is also summarized diagrammatically in fig. 4.1.

S

PUB

G

Tip Dynamics
Growth
Shrinkage
Branching
Contact Inhibition
Branch Annihilation

Arrow Legend

Figure 4.1 – Reaction dynamics of the 5-species mean-field model
Arrowheads indicate positive contributions to the respective species density
while flat ends indicate negative contributions.

The reaction equations possess a conservation law that arises from the fact

that branching events create an equal amount of branch points (B) and branch tips

(G,S,P ). This can be readily seen by summing eqs. (4.20) to (4.23):

∂

∂t
(G+S+P −B)

∣∣∣∣
Reaction

= 0 (4.24)
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In other words, G+S+P −B is a conserved quantity that is determined by the

initial conditions:

G+S+P −B =K(~x) (4.25)

where K(~x) the initial difference between the density of branch tips and branch

points. As the initial density of species is highly-localized, we assume that K(~x)≈ 0

over the spatial range of the tree.

Finally, with the addition of the growing and shrinking tip transport terms, the

complete dynamical system of the 5-species model is given by:

∂U ′

∂t
= kGG(1−λ2

GTT )−kSS−k′bU ′(1−λ2
BU ′B) +kSλ

2
BSB (4.26)

∂B

∂t
= k′bU

′(1−λ2
BU ′B)−kSλ2

BSB (4.27)

∂P

∂t
=−(kPS +kPG)P +kSPS+kGPG (4.28)

∂G

∂t
= L+(G)− (kGS +kGP )G+kSGS+kPGP −kGλ2

CIGT +k′bU
′(1−λ2

BU ′B)

(4.29)

∂S

∂t
= L−(S)− (kSP +kSG)S+kPSP +kGSG+kGλ

2
CIGT −kSλ2

BSB (4.30)

4.2 3-species model

Although the 5-species model is heuristically well grounded, it is hard to intuit

due to the complexity of the equations. In addition, the treatment of the branch

tip states as three independent quantities is a fundamental problem. Since S,P,G

represent the internal dynamical state of the tip and not physical quantities, their

probability densities are not independent from one another, but are bound by the

density of branch tips. This property is not captured in the 5-species model since the

growing and shrinking tips move independently with their own transport terms. In
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reality, the density of dendritic tips R= S+P +G is the true physical quantity that

is independent from the branch points B and dendrites U ′.

As we found previously in our analysis of the tip dynamics (see section 3.1.2),

the tip growth process is on the minute time scale, while the growth of the tree

occurs over the course of several days. Since the model aims to predict the long-time

growth behavior of the tree, we use the separation of these two time scales to

argue that the tip dynamics is at equilibrium over the time scale of the development.

Therefore, the dynamics between S,P and G is treated as changing the effective

motion of the dendritic tips. Since the tip dynamics is modeled as a Markov process,

the steady state, or stationary state, of the Markov chain is easily found by solving

the following set of linear differential equations:

0 =−(kSP +kSG)PS(t) +kPSPP (t) +kGSPG(t) (4.31)

0 =−(kPS +kPG)PP (t) +kSPPS(t) +kGPPG(t) (4.32)

0 =−(kGS +kGP )PG(t) +kSGPS(t) +kPGPP (t) (4.33)

where PS(t),PP (t),PG(t) represent the probabilities of finding a tip in the respective

S,P or G state at any given time t. Exact expressions of the steady state was given

in our analysis of the tip dynamics (see section 3.1.2). For simplicity, let us denote

the steady state probabilities as (PS,ss,PP,ss,PG,ss) = (fS ,fP ,fG) where fi depend

on the rate constants kij . Assuming that the tip dynamics is at steady state, we

approximate the densities of the internal state variables S,P,G as proportions of the

tips density R:

S→ fSR, P → fPR, G→ fGR (4.34)
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With these substitutions, we reduce the 5-species mean-field model to a 3-dimensional

system:

∂U ′

∂t
= kGfGR(1−λ2

GTT )−kSfSR−k′bU ′(1−λ2
BU ′B) +kSλ

2
BfSRB (4.35)

∂B

∂t
= k′bU

′(1−λ2
BU ′B)−kSλ2

BfSRB (4.36)

∂R

∂t
= LR(R) +k′bU

′(1−λ2
BU ′B)−kSλ2

BfSRB (4.37)

where LR(R) contains the transport terms of the tips. In 2D, these terms are given

by:

LR(R(r,θ)) =
(
vR,r

∂

∂r
+DR,r

∂2

∂r2 + DR,θ

r2
∂2

∂θ2

)
R(r,θ) (4.38)

where vR,r is the radial drift velocity and DR,r,DR,θ are the radial and angular

diffusion constants of the tips.

4.3 2 species model

Although the 3-species model is more appealing than the 5-species model, there are

still modifications that one can make to further simplify the mean-field equations.

First, we make the following simplifications:

1. T ≈ U ′

Most of the dendritic tree is formed by immobile dendrites. Therefore, the

density of branch points B and branch tips R are negligible in comparison to

U ′, which warrants the approximation T = U ′+R+B ≈ U ′.

2. (1−λ2
BU ′B)≈ 1

Recall that this factor arises in the branching term, which enforces the condition

that branch points cannot spawn on top of one another. However, if we consider

4.3 2 species model 137



the branch points as point-like particles with a negligible size, branch points

are very unlikely to spawn next to one another. This effectively implies that

λBU ′ ≈ 0. Another way to explain this simplification is to recall that (1−λ2
BU ′B)

is an approximation of the more exact term U ′

U ′+B′ , which corresponds to the

fraction of dendrites that are free of branch points. In real class IV neurons, we

expect this fraction to be ≈ 〈L〉
〈L〉+a where 〈L〉 ∼ 10µm is the average length of

dendritic branches. Again, since we expect that the particle size is much smaller

than the average branch length, i.e. a� 〈L〉, we have U ′

U ′+B′ ≈
〈L〉
〈L〉+a ≈ 1

With these simplifications, the new mean-field equations become:

∂U ′

∂t
= kGfGR(1−λ2

GTU
′)−kSfSR−k′bU ′+kSλ

2
BfSRB (4.39)

∂B

∂t
= k′bU

′−kSλ2
BfSRB (4.40)

∂R

∂t
= LR(R) +k′bU

′−kSλ2
BfSRB (4.41)

One of the caveats of the 5-species and 3-species models is the definition of

the particle size a, which is somewhat arbitrary. Furthermore, the definition of the

dendrites density U ′ also creates a problem since the dendritic tree is composed of

a set of connected one-dimensional tree branches that occupy a two-dimensional

space. Therefore, dendrites more closely resemble linear structures than point-like

particles and should therefore be treated as such.

In order to construct a model in terms of the branch density, we recast the

mean-field equations using the dendrites line density U = aU ′ and take the limit

where the particle size a goes to zero, while keeping U constant. Recall that the

particle size enters in the following definitions:

kS = vS
a
, kG = vG

a
, k′b = akb, U ′ = U

a
(4.42)
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where the units of U and kb are now: [U ] = 1
Length , [kb] = 1

Length·Time . Substituting

these expressions into the simplified equations, we obtain:

1
a

∂U

∂t
= vG

a
fGR

(
1−λ2

GT

U

a

)
− vS
a
fSR−kbU + vS

a
λ2
BfSRB (4.43)

∂B

∂t
= kbU −

vS
a
λ2
BfSRB (4.44)

∂R

∂t
= LR(R) +kbU −

vS
a
λ2
BfSRB (4.45)

In the limit a→ 0, the dependence of the interactions length scale λB and λGT on

the particle size is unknown. This implies that they cannot be safely removed, which

leads to the following redefinition of the interaction length scales:

λRB = λ2
B

a
(4.46)

λRU = λ2
GT

a
(4.47)

yielding the following equations:

∂U

∂t
= vGfGR (1−λRUU)−vSfSR−akbU +avSλRBfSRB (4.48)

∂B

∂t
= kbU −vSλRBfSRB (4.49)

∂R

∂t
= LR(R) +kbU −vSλRBfSRB (4.50)

Taking the a→ 0 limit, the system simplifies to:

∂U

∂t
= (vGfG−vSfS)R−vGfGλRURU (4.51)

∂B

∂t
= kbU −vSλRBfSRB (4.52)

∂R

∂t
= LR(R) +kbU −vSλRBfSRB (4.53)

The disappearance of the avSλRBfSRB term in the ∂U
∂t equation due to the a→ 0

limit can be understood heuristically. Recall that this term arises from the branch

annihilation process whereby a branch tip that retracts back to its branch point
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disappears along with the branch point resulting in the creation of a dendrite

particle. However, under the small particle size assumption, the creation of this

dendrite particle is minuscule compared to the local dendrites density, and can

therefore be neglected. The same argument holds for the disappearance of the akbU

term. As a result of the branching process, a dendrite particle is converted into

a branch tip and a branch point. However, this loss of dendrite particles is again

negligible compared to the local line density of dendrites.

Finally, a problem still remains with the treatment of the branch annihilation

process. During morphogenesis, branches disappear when their branch tip retracts

back to their birth place, the branch point of the branch. The retraction of the branch

tip can be triggered in two ways: 1) by the stochastic behavior of the growth or 2) by

the contact of the tip with surrounding dendrites, which is regulated by the DSCAM

pathway. The key aspect of this process is that the branch annihilation occurs only

when the branch tip "collides" with its own branch point. In the current model, this

condition is not satisfied since there are no variables that track each pair of branch

point and branch tip. A branch tip can annihilate with any other branch points and

not solely with the branch point from which it originated.

To resolve this issue, we instead treat the branch annihilation process as a death

process that depends on the dynamics of the tip and the local density of dendrites.

Consequently, this removes the need to use a destructive interaction term between

branch points and branch tips to model the tip annihilation process. Moreover,

since the branching process conserves the quantity R−B, as explained earlier in

section 4.1.3, the density of branch points can be recovered from the density of
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branch tips and is therefore redundant. We can then simplify the model using only

two species:

∂U

∂t
= vRR− cRURU (4.54)

∂R

∂t
= LR(R) +kbU −kd(U)R (4.55)

where vR = (vGfG− vSfS), cRU = vGfGλRU and kd(U) is the death rate of the

dendritic tips. Note that kd(U) is a non-linear function of the dendrites line density

U that increases as the local dendrites density increases. The zeroth-order term

models the spontaneous annihilation of the tip that results from the tip dynamics

while the non-linear component accounts for the conjoint effect of stochastic growth

and contact inhibition.

For the rest of this chapter, we will be focusing on the 2-species model, de-

tailing the microscopic origin of the model parameters and making coarse-grained

predictions on the morphogenesis.

4.4 Dendritic tip growth as a 1D biased random

walk

In this section, we explain how growth of dendritic tips is modeled as a random

walk with drift and diffusion and provide theoretical estimates on how the trans-

port parameters are related to the microscopic parameters of the Markovian tip

dynamics.
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4.4.1 2D motion of dendritic tips

In two dimensions, the dendritic tip effectively behaves as a random walker. This

walk results from two processes: 1) the one-dimensional random walk that models

its growth process and 2) the persistent orientation of the growth that is distributed

with a given mean and variance with respect to the branch orientation. Recall that

the 2-dimensional motion of dendritic tips is modeled using the following transport

terms:

LR(R(r,θ)) =
(
vR,r

∂

∂r
+DR,r

∂2

∂r2 + DR,θ

r2
∂2

∂θ2

)
R(r,θ) (4.56)

where vR,r is the radial drift velocity and DR,r,DR,θ are the radial and angular

diffusion constants of the tips. Moreover, let p(x,t|x0, t0) denote the probability

density that the tip has a length x at time t, given that it had a length x0 at time t0.

The 1D biased random walk that models the tip growth process can be understood

with the following drift-diffusion equation:

∂p(x,t|x0, t0)
∂t

=−vR
∂p

∂x
+DR

∂2p

∂x2 (4.57)

where vR and DR are the drift velocity and diffusion constant of the 1D tip growth.

Furthermore, let d̂ represent the orientation of the dendrite growth in the two-

dimensional neuron. Denoting ψ as the angular difference between the angle of the

vector tangent to the dendrite branch and the radial direction r̂, also called the polar

tangential angle, the explicit form of d̂ is:

d̂= cos(θ+ψ)x̂+ sin(θ+ψ)ŷ = cos(ψ)r̂+ sin(ψ)θ̂ (4.58)
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Assuming that the growth direction ψ is a random variable with a distribution p(ψ),

our goal is to relate vR,r,DR,r,DR,θ to vR,DR,p(ψ). Using the growth vector d̂, the

flux of the tip density R is:

~JR = d̂(vRR−DRd̂ ·∇R) = d̂

(
vRR−DR

(
cos(ψ)∂R

∂r
+ sin(ψ)1

r

∂R

∂θ

))
(4.59)

The transport terms are derived by taking the divergence of this flux. However,

for any given dendritic tip, the growth of the tip is constrained along the direction

d̂. Therefore, there will be no contribution arising from the divergence of d̂, i.e.

∇· d̂= 0. This leads to the following transport terms:

Ld(R) =−∇· ~JR (4.60)

=−vRd̂ ·∇R+DRd̂ ·∇
(

cos(ψ)∂R
∂r

+ sin(ψ)1
r

∂R

∂θ

)
(4.61)

=−vR
(

cos(ψ)∂R
∂r

+ sin(ψ)1
r

∂R

∂θ

)
(4.62)

+DR cos(ψ)
(

cos(ψ)∂
2R

∂r2 + sin(ψ)
(
− 1
r2
∂R

∂θ
+ 1
r

∂2R

∂r∂θ

))
(4.63)

+DR
sin(ψ)
r

(
cos(ψ) ∂

2R

∂r∂θ
+ sin(ψ)1

r

∂2R

∂θ2

)
(4.64)

=−vR
(

cos(ψ)∂R
∂r

+ sin(ψ)1
r

∂R

∂θ

)
(4.65)

+DR

(
cos2(ψ)∂

2R

∂r2 + 2cos(ψ)sin(ψ)
r

∂2R

∂r∂θ
− cos(ψ)sin(ψ)

r2
∂R

∂θ
+ sin2(ψ) 1

r2
∂2R

∂θ2

)
(4.66)

Taking the average over ψ and assuming that its distribution is symmetric with

respect to ψ = 0 , we have:

L(R) = 〈Ld(R)〉d =−vRc1
∂R

∂r
+DR

(
c2
∂2R

∂r2 + (1− c2) 1
r2
∂2R

∂θ2

)
(4.67)
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where c1 = 〈cos(ψ)〉 and c2 = 〈cos2(ψ)〉. The radial and angular transport parameters

are then given by:

vR,r = c1vR (4.68)

DR,r = c2DR (4.69)

DR,θ = (1− c2)DR (4.70)

The c1, c2 constants are evaluated using the experimental measurements of p(ψ)

(see fig. 3.36). Finally, given the approximate azimuthal symmetry observed in the

dendritic trees, we assume that dendritic growth has no angular dependence, i.e.

R(r,θ)≈R(r). This assumption simplifies the transport terms to:

LR(R(r)) =−vR,r
∂R

∂r
+DR,r

∂2R

∂r2 (4.71)

4.4.2 Microscopic origin of the tip growth drift velocity vR

Under the assumption that the tip dynamical system has reached steady state, the tip

growth drifts at a constant velocity vR, which is given by the steady-state-weighted

average of the state velocities:

vR = 〈vG〉PG,ss+ 〈vP 〉PP,ss−〈vS〉PS,ss (4.72)

= 〈vG〉PG,ss−〈vS〉PS,ss (4.73)

where 〈vS〉,〈vP 〉,〈vG〉 correspond to the average speed of the tip in each state.

Moreover, we assume that the paused state velocity is centered at 0, 〈vP 〉 = 0.

eq. (4.73) provides an expression for the drift velocities in terms of the microscopic

parameters of the tip dynamics, i.e. the transition rate parameters kij and the state

velocities vi. Although this expression could be used in practice to estimate vR,

its precision is highly dependent on the absolute error of 〈vG〉PG,ss and 〈vS〉PS,ss,
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since vR is constructed from the difference of these two quantities. More precisely,

assuming for simplicity that PG,ss,PS,ss have no error, the relative error of vR is

given by:

(∆vR
vR

)2
= PG,ss

v2
R

∆〈vG〉2 + PS,ss
v2
R

∆〈vS〉2 (4.74)

= PG,ss〈vG〉2

v2
R

(∆〈vG〉
〈vG〉

)2
+ PS,ss〈vS〉2

v2
R

(∆〈vS〉
〈vS〉

)2
(4.75)

Thus, if vR is small, but 〈vS〉 ≈ 〈vG〉 � vR, the relative error ∆vR
vR

can be very large

as it increases with the magnitude of 〈vG〉,〈vS〉, even if the relative errors of 〈vS〉

and 〈vS〉 are small.

Alternatively, one can measure the tip growth drift velocity vR directly from

the average displacement of the tip growth tracks. This method provides a better

precision and is detailed in section 4.4.4.

4.4.3 Microscopic origin of the tip growth diffusion constant

DR

To relate the effective diffusion coefficient of the branch tips to the microscopic

growth parameters, we use the Green-Kubo relation for material transport:

DR =
∫ ∞

0
〈
[
v(t+ t′)−〈v(t+ t′)〉t′

][
v(t′)−〈v(t′)〉t′

]
〉t′dt (4.76)

where v(t) corresponds to the velocity of the tip at time t. In other words, the

diffusion constant is defined as the integral of the auto-correlation function of the

tip velocity. To start, we first calculate the velocity auto-correlation:

Cv(t, t′) = 〈v(t+ t′)v(t′)〉=
∫ ∞
−∞

∫ ∞
−∞

vwp(v,t+ t′,w,t′)dvdw (4.77)
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where p(v,t+ t′,w,t′) is the joint probability density that the tip velocity equals v at

time t and that it equals w at time t+ t′. Given the 3-state model of the tip dynamics,

the velocity distribution is easier to derive by conditioning on the discrete dynamical

states of the tip. Let us define P (S(t) = i) as the probability that the tip is in state i

at time t and P (S(t+ t′) = j|S(t) = i) as the conditional probability that the tip is in

state j at time t+ t′ given that it was in state i at time t. We then have the following

formula:

p(v,t+ t′,w,t′) =
∑
i

p(v,t+ t′,w,t′|S(t′) = i)P (S(t′) = i) (4.78)

=
∑
i

(
P (S(t+ t′) = i|S(t′) = i)δ(v−w)

+
∑
j 6=i

P (S(t+ t′) = j|S(t) = i)pj(v)

pi(w)P (S(t′) = i) (4.79)

=
∑
i

P (S(t) = i|S(0) = i)δ(v−w) +
∑
j 6=i

P (S(t) = j|S(0) = i)pj(v)

pi(w)P (S(t′) = i)

(4.80)

where pi(w) represents the velocity probability density in state i, δ(x) is the Dirac

delta function and summations are performed over the indices i∈{1,2,3}= {S,P,G}.

To derive the expression above, we assumed that the velocity correlation is a

delta function (δ(v−w)) if the state does not change. In other words, we as-

sume that the tip velocity is constant over the duration of the state and only

changes during state transitions. Moreover, we also used the fact that the tran-

sition probability of the tip state is invariant under time translation. In other words,

∀t′,P (S(t+ t′) = i|S(t′) = j) = P (S(t) = i|S(0) = j).

Moreover, using the fact that:

〈P (S(t) = i)〉t = lim
T→∞

1
T

∫ T

0
P (S(t) = i)dt= Pi,ss (4.81)
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where Pi,ss denotes the steady-state probability to find the tip in state i, and taking

the average over all time t′, we have:

〈p(v,t+ t′,w,t′)〉t′ =
∑
i

(
P (S(t) = i|S(0) = i)δ(v−w)

+
∑
j 6=i

P (S(t) = j|S(0) = i)pj(v)

pi(w)Pi,ss (4.82)

This leads us to define the stationary velocity correlation function, which only

depends on the lag t:

Cs,v(t) = 〈Cv(t, t′)〉t′ (4.83)

=
∞∫
−∞

∞∫
−∞

(∑
i

P (S(t) = i|S(0) = i)δ(v−w)pi(w)Pi,ss (4.84)

+
∑
i

∑
j 6=i

P (S(t) = j|S(0) = i)pj(v)pi(w)Pi,ss

vwdvdw (4.85)

=
∑
i

P (S(t) = i|S(0) = i)〈v2
i 〉+

∑
j 6=i

P (S(t) = j|S(0) = i)〈vivj〉

Pi,ss
(4.86)

=
∑
i

∑
j

P (S(t) = j|S(0) = i)〈vivj〉

Pi,ss (4.87)

where vi is a random variable that corresponds to the tip velocity in the i state.

This implies that the average 〈·〉 is applied over all random variables inside the

bracket. Moreover, we assumed that the velocity distribution across different state is

uncorrelated 〈vivj〉= 〈vi〉〈vj〉. Using the following identity:

vi =
∑
k

vkδki =
∑
k

vkP (S(0) = k|S(0) = i) (4.88)
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where δij is the Kronecker delta, and defining V (i)(t) as the time-dependent random

variable that represents the expected tip velocity at time t given that it was initiated

in state i:

V (i)(t) =
∑
j

P (S(t) = j|S(0) = i)vj (4.89)

we can express Cs,v(t) in a more familiar form:

Cs,v(t) =
∑
i

∑
j

∑
k

P (S(0) = k|S(0) = i)P (S(t) = j|S(0) = i)〈vkvj〉

Pi,ss
(4.90)

=
∑
i

〈
∑

j

P (S(t) = j|S(0) = i)vj

(∑
k

P (S(0) = k|S(0) = i)vk

)
〉

Pi,ss
(4.91)

=
∑
i

〈V (i)(t)V (i)(0)〉Pi,ss (4.92)

In other words, Cs,v(t) corresponds to the velocity auto-correlation of V i(t) averaged

over all initial state i weighted by the steady-state probability of each state.
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Before moving forward, we rewrite 〈v(t+ t′)〉t′ in terms of the variable Vi(t):

〈v(t+ t′)〉t′ = lim
T→∞

1
T

T∫
0

∞∫
−∞

p(v,t+ t′)vdvdt′ (4.93)

= lim
T→∞

1
T

T∫
0

∞∫
−∞

∑
ij

pi(v)P (S(t+ t′) = i|S(t′) = j)P (S(t′) = j)vdvdt′

(4.94)

= lim
T→∞

1
T

T∫
0

∞∫
−∞

∑
ij

pi(v)P (S(t) = i|S(0) = j)P (S(t′) = j)vdvdt′ (4.95)

=
∑
ij

P (S(t) = i|S(0) = j)

 ∞∫
−∞

pi(v)vdv

 lim
T→∞

1
T

T∫
0

P (S(t′) = j)dt′


(4.96)

=
∑
ij

P (S(t) = i|S(0) = j)〈vi〉Pj,ss (4.97)

=
∑
j

〈V (j)(t)〉Pj,ss (4.98)

In addition, let us introduce the following definitions:

~v = (−vS ,0,vG)T (4.99)

Vss = 〈~v〉 · ~Pss =
∑
j

〈vj〉Pj,ss =
∑
j

〈V (j)(0)〉Pj,ss (4.100)

∆V (i)(t) = V (i)(t)−
∑
j

〈V (j)(0)〉Pj,ss (4.101)

= V (i)(t)−Vss (4.102)

where vG,vS are random variables that represent the speed of the tip in the growing

or shrinking state, Vss is the tip velocity at steady state and ∆V (i)(t) is the deviation

4.4 Dendritic tip growth as a 1D biased random walk 149



of the velocity from the steady-state velocity Vss. Using these definitions, the

expression of the diffusion coefficient is simplified in the following way:

DR =
∫ ∞

0

(
Cs,v(t)−〈v(t+ t′)〉t′〈v(t′)〉t′

)
dt (4.103)

=
∑
i

Pi,ss

∫ ∞
0

〈V (i)(t)V (i)(0)〉−
∑
j

〈V (i)(t)〉〈V (j)(0)〉Pj,ss

dt (4.104)

=
∑
i

Pi,ss

∫ ∞
0

〈V (i)(t)

V (i)(0)−
∑
j

〈V (j)(0)〉Pj,ss

〉
dt (4.105)

=
∑
i

Pi,ss

∫ ∞
0

(
〈V (i)(t)∆V (i)(0)〉−Vss〈∆V (i)(0)〉

)
dt (4.106)

=
∑
i

Pi,ss

∫ ∞
0
〈∆V (i)(t)∆V (i)(0)〉dt (4.107)

To derive the last expression, we have added 0 using the fact that
∑
iPi,ss〈∆V (i)(0)〉=

0. Expanding the expression for ∆V (i)(t), we have:

∆V (i)(t) = vGP
(i)
G (t)−vSP (i)

S (t)− (〈vG〉PG,ss−〈vS〉PS,ss) (4.108)

where P (i)
G (t),P (i)

S (t) are short forms for P (S(t) = S|S(0) = i),P (S(t) =G|S(0) = j),

respectively. Recall that these quantities can be expressed in terms of the right

eigenvectors ~wj and eigenvalues λj of the state transition generator K (see sec.

section 3.1):

~P (i)(t) =
∑
j

a
(i)
j ~wje

λjt (4.109)

where the (i) index emphasizes the dependence on the initial conditions,
(
~P (i)(0)

)
j

=

δij . To derive an expression for ∆V (i)(t), recall that ~1 = (1,1,1) is a left eigenvector

of K with eigenvalue 0:

~1K = 0 (4.110)
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This implies that ~1 is orthogonal to ~w2, ~w3:

~1K~wj = λj~1 · ~wj (j 6= 1) (4.111)

⇒ 0 = λj~1 · ~wj (4.112)

⇒ 0 =~1 · ~wj (λj 6= 0, ∀j 6= 1) (4.113)

Therefore, if we assume that the initial state of the Markov chain ~P0 is also normal-

ized with the L1 norm, ~1 · ~P0 = 1, we have:

~P0 =
∑
j

aj ~wj = a1 ~Pss+a2 ~w2 +a3 ~w3 (4.114)

⇒~1 · ~P0 = 1 = a1~1 · ~Pss+a2~1 · ~w2 +a3~1 · ~w3 (4.115)

1 = a1 + 0 + 0 (4.116)

therefore a1 always equals 1 due to our choice of eigenvectors ~wj and normalization

of ~P (i)(t). This implies the following form for ~P (i)(t):

~P (i)(t) =
∑
j

a
(i)
j ~wje

λjt = ~Pss+
3∑
i=2

a
(i)
j ~wje

λjt (4.117)

Using this general expression and the definition of the state velocity vector ~v =

(−vS ,0,vG)T , we can express ∆V (i)(t) in a succinct form:

∆V (i)(t) = vGP
(i)
G (t)−vSP (i)

S (t)− (〈vG〉PG,ss−〈vS〉PS,ss) (4.118)

= ~v · ~P (i)(t)−〈~v〉 · ~Pss (4.119)

= ~v ·
(
a

(i)
2 ~w2e

λ2t+a
(i)
3 ~w3e

λ3t
)

+ (~v−〈~v〉) · ~Pss (4.120)

= b
(i)
2 eλ2t+ b

(i)
3 eλ3t+ (~v−〈~v〉) · ~Pss (4.121)

b
(i)
j = a

(i)
j ~v · ~wj (4.122)

As explained at the beginning of this derivation, we assume that the velocity of each

state is uncorrelated with any other state. Moreover, we assume that the velocity
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does not change unless the dynamical state changes. Consequently, we have the

following identities:

〈v2
i 〉−〈vi〉2 = 0 (4.123)

〈b(i)j b
(k)
l 〉= 〈b(i)j 〉〈b

(k)
l 〉 (4.124)

In addition, using the definition of ~P (i)(0), we also find:

~v · ~P (i)(0) = vi =
∑
j

a
(i)
j ~v · ~wj = ~v · ~Pss+ b

(i)
2 + b

(i)
3 (4.125)

⇒ b
(i)
2 + b

(i)
3 = vi−~v · ~Pss (4.126)

Using the above expression and the non-correlation assumptions, we obtain the

following form for the velocity auto-correlation 〈∆V (i)(t)∆V (i)(0)〉:

〈∆V (i)(t)∆V (i)(0)〉= 〈
(
b
(i)
2 eλ2t+ b

(i)
3 eλ3t+ (~v−〈~v〉) · ~Pss

)(
b
(i)
2 + b

(i)
3 + (~v−〈~v〉) · ~Pss

)
〉

(4.127)

= 〈
(
b
(i)
2 eλ2t+ b

(i)
3 eλ3t

)(
b
(i)
2 + b

(i)
3

)
〉 (4.128)

=
(
〈b(i)2 〉e

λ2t+ 〈b(i)3 〉e
λ3t
)

(〈vi〉−〈Vss〉) (4.129)

Finally using the fact that the real part of λ2,λ3 is negative, we find the following

expression for the diffusion coefficient:

∫ ∞
0
〈∆V (i)(t)V (i)(0)〉dt= (〈vi〉−〈Vss〉)

∫ ∞
0

(
〈b(i)2 〉e

λ2t+ 〈b(i)3 〉e
λ3t
)
dt (4.130)

=−(〈vi〉−〈Vss〉)
(
〈b(i)2 〉
λ2

+ 〈b
(i)
3 〉
λ3

)
(4.131)

DR =
∑
i

Pi,ss

∫ ∞
0
〈∆V (i)(t)V (i)(0)〉dt (4.132)

=−
3∑
i=1

3∑
j=2

Pi,ss (〈vi〉−〈Vss〉)
〈b(i)j 〉
λj

(4.133)
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4.4.4 Measurements of the tip growth drift velocity vR and

diffusion constant DR

To determine the drift velocity vR and diffusion coefficient DR, we analyze the

average displacements of the tip tracks vs time at each developmental stage. At each

developmental stage, we are given a set of timeseries indicating the branch length

L
(j)
i associated to a given tip j at a certain time ti over the course of the recording.

Using this data, we calculate the spatial and temporal displacements as follows:

∆L(j)
i,k = L

(j)
i −L

(j)
i−k (4.134)

∆ti,k = ti− ti−k (4.135)

where the index k denotes the number of time steps separating the two points in

the difference measurements. For a one-dimensional biased random walk, the drift

velocity V and diffusion constant D are determined by the mean and variance of

the displacements ∆L:

〈∆L〉= V∆t (4.136)

〈∆L2〉−〈∆L〉2 = 2D∆t+σ2 (4.137)

where σ2 arises from the assumption of a Gaussian measurement noise. Therefore,

to estimate the drift and diffusion constant, we fit the mean and variance of the

displacements to linear functions of the temporal difference ∆t. For simplicity, let

us assume that the measurements are sampled at a constant period ∆T , such that
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ti = i∆T . Then, we calculate the mean and the variance of the displacements as

follows:

µ∆Lk = 〈∆Lk〉= 1
Nk

∑
j

nj∑
i=k+1

(
L

(j)
i −L

(j)
i−k

)
(4.138)

σ2
∆Lk = 〈∆L2

k〉−〈∆Lk〉2 = 1
Nk−1

∑
j

nj∑
i=k+1

(
L

(j)
i −L

(j)
i−k−〈∆Lk〉

)2
(4.139)

where nj is the number of time points in the jth track and the sums run over all

tracks (j) and all pairs of points (i) separated by a time k∆T such that Nk is the

total number of such pairs across the whole dataset. The expected error of these

estimates are calculated using the formula for the standard error of the mean and

variance (see [67], sec. 6h):

SE(µ∆Lk) = σ∆Lk√
Ñk

(4.140)

SE(σ2
∆Lk) =

√√√√ 1
Ñk

(
µ4,∆Lk −

(
Ñk−3
Ñk−1

)
σ4

∆Lk

)
(4.141)

Ñk =
∑
j

⌊
tnj − t1
k∆T

⌋
(4.142)

where µ4,∆Lk = 〈(∆Lk − µ∆Lk)4〉 is the fourth central moment, b·c is the floor

operator and Ñk is the effective number of independent pairs of points separated by

a time k∆T .

Using the formulas for the mean and variance of the displacements ∆Lk, we fit

these quantities with a weighted linear least squares fit where the weights w of the

mean and variance are given by the squared inverse of the standard error:

wµ∆Lk
= 1

SE2(µ∆Lk)
= Ñk

σ2
∆Lk

(4.143)

wσ2
∆Lk

= 1
SE2(σ2

∆Lk)
= Ñk(

µ4,∆Lk −
(
Ñk−3
Ñk−1

)
σ4

∆Lk

) (4.144)
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Furthermore, to mitigate the effect of the correlations induced by taking all possible

pairs of points in the calculation of the displacements, only powers of 2 of the

sampling period are fitted. In other words, the time delays of the fitted means and

variances are:

∆tfitted = 2m∆T, m ∈ {0,1, . . .} (4.145)

To test the accuracy and precision of the fitting method, we simulated tip growth with

a given drift velocity and diffusion constant and recovered the transport parameters

by fitting the mean and variance of the track displacements. N = 100 growth

tracks were simulated with a sampling interval period of 6 s, a drift velocity of

V = 0.1µmmin−1 and a diffusion constant of D = 0.15µm2 min−1. The initial track

length was uniformly distributed between 0 and 5 µm and the track lasted 30min

unless it hit the boundaries at L = 0µm or L = 10µm. In addition, we added a

measurement white noise on the track length with a variance of 0.152µm2, which

is a precision of ∼ 1 pixel in our experimental setup. As we can see in fig. 4.2, the

fitting method accurately recovers the input drift velocity and diffusion constant.

4.4 Dendritic tip growth as a 1D biased random walk 155



0 5 10 15
Time delay t (min)

0

0.5

1

1.5

2

<
L

(
t)

>
 (

µm
)

V t, V=0.111 0.001
Mean  SEM ( T=6s)

0 5 10 15
Time delay t (min)

0

0.5

1

1.5

2

2.5

3

3.5

<
L

(
t)

2 >
 -

<
L

(
t)

>
2  (

µm
2 )

2D t + 2, D=0.141 0.003, 2=0.047 0.001
Var  SEV ( T=6s)

Figure 4.2 – Test of the drift and diffusion constants measurements
Mean and variance of the displacements of 100 simulated growth tracks, sam-
pled every ∆T = 6s with a drift velocity of V = 0.1µmmin−1 and a diffusion
constant of D = 0.15µm2 min−1. The initial track length is uniformly dis-
tributed between 0 and 5µm and the track lasts 30min unless it hits any of the
boundaries at L= 0µm or L= 10µm. A length measurement white noise with
σL = 0.15µm is also added. The open circles identify the fitted points and the
shaded area corresponds to the given statistic ± 1 standard error. The error
of the fitted parameters are derived from the standard formula for a weighted
linear least squares fit.

Using our fitting method, we estimate the drift velocity and diffusion constant

of the tip growth tracks in class IV neurons. The fits are displayed in figs. 4.3 and 4.4.

We also re-plot the diffusion constant fits on logarithmic scales in fig. 4.5 to better

display the small time behavior. In the dataset, multiple movies were combined

together with different sampling periods. A fit is performed for each sampling period

found at the given developmental stage and the values of each fit parameters is

averaged with a weight proportional to the squared inverse of the fit parameter error.

Points are fitted in the interval 0min≤∆t≤ 10min for the drift velocity fits, while

points are fitted in the interval 0.25min ≤ ∆t ≤ 10min for the diffusion constant

fits. The upper threshold of 10min is used to select only the displacements with

the highest precision. The lower threshold of 0.25min is used for the diffusion

constant fit in order to ensure that the linear behavior of the variance was fitted.

This is especially important for the 48 hr AEL fit, where the noise of the variance
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is significant for ∆t≤ 0.25min. Note that the diffusion constant fits are displayed

on a logarithmic scale, but the least-squares linear fit is performed on linear scale,

which assumes normally-distributed errors. Also, the intercept of the diffusion fits is

sometimes negative, which we interpret as a consequence of the fact that the small

time behavior ∆t≤ 0.25 is omitted in the fits.

In general, the fits accurately reproduce the behavior of the mean and variance

of the displacements. The drift velocities are similar in magnitude at 24 and 48

hr AEL but decreases by a factor of 10 at 96 hr AEL. This is likely an effect of the

maturation of the neuron, which has a lifespan of ∼144 hours. A similar behavior is

observed in the diffusion constants, although the magnitude of the decrease is not

as significant as the decrease of the drift velocity.
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Figure 4.3 – Drift velocities of dendritic tip growth over development
The colors identify the sampling periods found in the dataset. The open circles
correspond to the fitted points.
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Figure 4.4 – Diffusion constants of dendritic tip growth over development
The colors identify the sampling periods found in the dataset. The open circles
correspond to the fitted points.

4.4 Dendritic tip growth as a 1D biased random walk 159



10-1 100 101

Time delay t (min)

10-1

100

101

102

103

<
L

(
t)

2 >
 -

<
L

(
t)

>
2  (

µm
2 )

2D t + b, D=0.468 0.03,b=-0.063 0.02
Var  SEV ( T=4s)
2D t + b, D=0.287 0.02,b=-0.059 0.02
Var  SEV ( T=5s)
2D t + b, D=0.470 0.07,b=0.353 0.1
Var  SEV ( T=6s)
Weighted avg., D=0.354 0.02,b=-0.057 0.01

(a) 24 hr AEL

10-1 100 101

Time delay t (min)

10-2

10-1

100

101

102

<
L

(
t)

2 >
 -

<
L

(
t)

>
2  (

µm
2 )

2D t + b, D=0.385 0.04,b=-0.143 0.03
Var  SEV ( T=5s)
2D t + b, D=0.217 0.02,b=-0.056 0.02
Var  SEV ( T=6s)
Weighted avg., D=0.258 0.02,b=-0.086 0.02

(b) 48 hr AEL

10-1 100 101

Time delay t (min)

10-2

10-1

100

101

102

<
L

(
t)

2 >
 -

<
L

(
t)

>
2  (

µm
2 )

2D t + b, D=0.085 0.004,b=0.008 0.004
Var  SEV ( T=5s)
2D t + b, D=0.087 0.005,b=-0.007 0.005
Var  SEV ( T=6s)
Weighted avg., D=0.086 0.003,b=0.003 0.003

(c) 96 hr AEL

Figure 4.5 – Diffusion constants of dendritic tip growth over development on logarith-
mic scales
The colors identify the sampling periods found in the dataset. The open circles
correspond to the fitted points.

In summary, we find the following estimates of the drift velocity and diffusion

constants throughout neuronal development:

Parameters\Stage 24 hr AEL 48 hr AEL 96 hr AEL
V (µmmin−1) 0.0343 ± 0.000592 0.0200 ± 0.000304 0.00161 ± 0.000451
D (µm2 min−1) 0.354 ± 0.0156 0.258 ± 0.0187 0.0858 ± 0.00293
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Finally, we compare the measurements of the drift velocity and diffusion con-

stant with our microscopic estimates that stem from the assumption that the growth

tip transition dynamics is at steady state:
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Figure 4.6 – Comparison of estimates of the drift velocity vR and diffusion constant
DR

As explained before, we see that the drift velocity estimates from the tip dy-

namics parameters have a low precision, while the track displacement fit estimates

are better constrained. Moreover, at 24 and 48 hr AEL, the two Green-Kubo esti-

mates of the diffusion constant differ significantly. This is potentially related to the

noise in the growth tracks that was also observed in the diffusion constant fit at

∆t≤ 0.25min.
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4.5 Contact inhibition

Upon contact with another branch, a growing tip stops and switches to a shrinking

state. As a result, the collision of the tip modifies the master equation of the tip

dynamics in the following way:

dPS(t)
dt

=−(kSP +kSG)PS(t) +kPSPP (t) +kGSPG(t) +kCIPG(t) (4.146)

dPP (t)
dt

=−(kPS +kPG)PP (t) +kSPPS(t) +kGPPG(t) (4.147)

dPG(t)
dt

=−(kGS +kGP )PG(t) +kSGPS(t) +kPGPP (t)−kCIPG(t) (4.148)

where kCI is the rate at which growing tips contact other dendrites. The collision

rate of a growing tip with a dendrite is proportional to the line density of dendrites

U and the average growth velocity vG:

kCI = αvGU (4.149)

where α is a geometrical factor that arises from averaging over all contact angles.

More specifically, if a growing tip is oriented parallel to its neighboring dendrite,

collision will not happen, while the collision rate is maximal perpendicular to the

neighbor dendrite. In other words, the rate of collision is proportional to |sin(ϕ)|

where ϕ is the difference between the growing tip orientation and the average

orientation of the neighboring dendrites. Assuming that ϕ is uniformly distributed

and averaging over all contact angles, we get:

α= 1
2π

∫ π

−π
|sin(ϕ)|dϕ= 2

π
(4.150)
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Analyzing the modified master equation in eqs. (4.146) to (4.148), contact

inhibition effectively increases the kGS rate to:

k′GS = kGS +kCI (4.151)

As a result of this modification of kGS , the steady-state of the tip will shift towards

the shrinking state. Under the assumption that kCI is small, we can approximate the

change in the steady-state probabilities ~Pss by expanding to first order in kCI :

~P ′ss = ~P ′ss(k′ij) = ~Pss(kij + δiGδjSkCI) = ~Pss+ d~Pss
dkGS

kCI (4.152)

where ~P ′ss are the new steady-state probabilities and ~Pss are the steady-state proba-

bilities of the bare master equation, without contact inhibition. Using the expressions

of ~Pss derived previously in eq. (3.27), the derivative of the steady state is given

by:

d~Pss
dkGS

= kPG (kSG+kSP ) +kPSkSG
k4

2


kPG+kPS +kGP

kSP −kGP

−kSP −kPG−kPS

 (4.153)

where k2 is defined in eq. (3.23). As expected, the derivative of the steady state with

respect to kGS is positive for the shrinking state (PS,ss = ~Pss,1) and negative for the

growing state steady state (PG,ss = ~Pss,3). The new steady-state can then be written

as a function of the bare steady-state probabilities:

P ′S,ss = PS,ss+ ∆fSαvGU, P ′G,ss = PG,ss−∆fGαvGU (4.154)

∆fS = (kPG (kSG+kSP ) +kPSkSG)(kPG+kPS +kGP )
k4

2
(4.155)

∆fG = (kPG (kSG+kSP ) +kPSkSG)(kSP +kPG+kPS)
k4

2
(4.156)
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Recall that the tip transition steady-state probabilities PS,ss,PG,ss enter in the mean-

field equations through the tip growth speed: vR = vGPG,ss−vSPS,ss. Substituting

the new steady-state constants P ′S,ss,P
′
G,ss into vR and rewriting the U equation in

terms of the bare transition steady-state probabilities PS,ss,PG,ss, we obtain:

∂U

∂t
= (P ′G,ssvG−P ′S,ssvS)R

= (PG,ssvG−PS,ssvS)R− (∆fGvG+ ∆fSvS)αvGRU

= vRR− cRURU (4.157)

with:

cRU = 2
π
vG(∆fGvG+ ∆fSvS) (4.158)

Therefore, accounting for contact inhibition adds an additional RU term in the U

equation, whose coefficient corresponds to the cRU coefficient that was introduced

previously.

In addition, we also consider modeling the effect of contact inhibition as "sticky"

contacts. In this case, upon contact, a tip does not start shrinking right away, but

instead pauses for some time, which is regarded as promoting the G→ P transition

in the master equation:

dPS(t)
dt

=−(kSP +kSG)PS(t) +kPSPP (t) +kGSPG(t) (4.159)

dPP (t)
dt

=−(kPS +kPG)PP (t) +kSPPS(t) +kGPPG(t) +kCIPG(t) (4.160)

dPG(t)
dt

=−(kGS +kGP )PG(t) +kSGPS(t) +kPGPP (t)−kCIPG(t) (4.161)
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Therefore, in the sticky contact assumption, the effective kGP rate is modified.

Proceeding through the same process as before, we find the following expressions

for the contact inhibition coefficient c̃RU :

d~Pss
dkGP

= kPG (kSG+kSP ) +kPSkSG
k4

2


kPS−kGS

kSP +kSG+kGS

−kSP −kSG−kPS

 (4.162)

∆f̃S = (kPG (kSG+kSP ) +kPSkSG)(kPS−kGS)
k4

2
(4.163)

∆f̃G = (kPG (kSG+kSP ) +kPSkSG)(kSP +kSG+kPS)
k4

2
(4.164)

c̃RU = 2
π
vG(∆f̃GvG+ ∆f̃SvS) (4.165)

4.6 Death rate estimate of dendritic tips from a

first-passage problem with drift and diffusion

The last parameter that remains to be explained in the 2-species model is the

tip death rate kd(U). To derive an expression for the death rate in terms of the

microscopic parameters, we treat the dynamical processes of tip growth, collision

and death as a 1D biased random walk in a finite domain with a reflecting boundary

and an absorbing boundary. More precisely, we imagine that a branch of length x

grows with a net drift velocity vR and diffusion coefficient DR. The position x= 0

corresponds to the branch point position and is treated as an absorbing boundary

since the branch disappears when reaching back to the branch point. The position

x = L is imagined to be the average length that a branch reaches when colliding

with other dendrites, and is treated as a reflecting boundary since the branch tip

retracts upon contact with other dendrites. We assume that the branch is initialized
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with a length x0 and we aim to answer the following question: what is the average

death rate of the branch?

4.6.1 The first-passage time probability density

To derive an expression for the average death rate, let us first introduce some

definitions to frame the first-passage problem. Let p(x,t|x0) be the probability

density that a branch has a length x at time t given that it had an initial length of

x0. Given the drift and diffusion parameters of the branch growth, the differential

equation that governs the growth of the branch is the well-know drift-diffusion

equation:

∂p

∂t
=−vR

∂p

∂x
+DR

∂2p

∂x2 =−∂J
∂x

(4.166)

J(x,t) = vRp−DR
∂p

∂x
(4.167)

where J(x,t) is the probability density flux. As explained above, the initial and

boundary conditions are:

p(x,0|x0) = δ(x−x0) (4.168)

p(0, t|x0) = 0 (4.169)

J(L,t) = vRp(L,t|x0)−DR
∂p(x,t|x0)

∂x

∣∣∣∣
x=L

= 0 (4.170)

where δ(x) is the Dirac delta function.

Let us define f(τ) as the first-passage time probability density, where f(τ)dτ

represents the probability that a tip of initial length x0 reaches the origin x= 0 at

time τ . The definition of f(τ) is closely related to the survival probability S(t) that

the branch tip hasn’t reached the origin x = 0 at time t. The survival probability
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is simply given by the integral of the probability density p(x,t|x0) over the spatial

domain:

S(t) =
∫ L

0
p(x,t|x0)dx (4.171)

Given S(t), the probability that the tip reaches the origin between time τ and τ +dτ

is given by the difference of the survival probability between these two times. In

other words:

f(τ)dτ = S(τ)−S(τ +dτ) (4.172)

In the infinitesimal limit dτ → 0, we obtain the following definition for f(τ):

f(τ) =−∂S(τ)
∂τ

(4.173)

This also implies the following relation between S(t) and f(τ) assuming that S(0) =

1:

S(t) = 1−
∫ t

0
f(τ)dτ (4.174)

With the first-passage time probability density f(τ), the mean first-passage time

is simply defined as the first moment of this distribution:

〈τ〉=
∫ ∞

0
f(τ)τdτ (4.175)

Moreover, we define the average death rate as:

kd = 〈1
τ
〉=

∫ ∞
0

1
τ
f(τ)dτ (4.176)
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One can also define another death rate k′d from the inverse of the mean first-passage

time:

k′d = 1
〈τ〉

(4.177)

In our analysis, we will use kd as the definition of the death rate since k′d underesti-

mates the effect of short-lived branches.

It is also useful to derive equivalent formulas in the Laplace temporal space t→ s.

Using well-known Laplace transform identities, we have the following expressions:

S̃(s) =
∫ ∞

0
S(t)e−stdt, F (s) =

∫ ∞
0

f(t)e−stdt (4.178)

lim
t→∞

S(t) = 1−F (0) (4.179)

〈τ〉= lim
s→0

−dF (s)
ds

(4.180)

〈1
τ
〉=

∫ ∞
0

F (s)ds (4.181)

S̃(s) = 1−F (s)
s

(4.182)

4.6.2 Mean first-passage time vs lifetime

A subtlety arises in the mean first-passage time formula. In the case where no parti-

cles survive at long times, f(τ) is properly normalized as a probability distribution

and the mean first-passage time represents the average lifetime of the particles:

lim
t→∞

S(t) = 0⇒
∫ ∞

0
f(τ)dτ = 1 (4.183)

However, in the case where some particles survive at long times, which can

happen for example in infinite spatial domains, the mean first-passage time and

the average lifetime of the particles differ. In this case, f(τ) accounts only for the
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particles that do not survive as seen in eq. (4.174). To account for the surviving

particles, we propose the following formula for the average lifetime of a particle:

〈τ`〉= lim
T→∞

(∫ T

0
f(τ)τdτ +TS(T )

)
(4.184)

The intuition behind this formula is simple: the average lifetime at time T is a

weighted sum of the particles that did not survive from t = 0 to t = T and the

particles that survived until time t= T . Moreover, by applying the definitions above,

one finds that 〈τ`〉 is simply given by the integral of the survival probability S(t):

〈τ`〉= lim
T→∞

(∫ T

0
f(τ)τdτ +TS(T )

)

= lim
T→∞

(
−
∫ T

0

∂S(τ)
∂τ

τdτ +TS(T )
)

= lim
T→∞

(
−S(τ)τ

∣∣∣T
0

+
∫ ∞

0
S(τ)dτ +TS(T )

)
=
∫ ∞

0
S(τ)dτ (4.185)

As we can see, the average lifetime of the particles is finite only when the survival

probability decays sufficiently fast with time t. Otherwise, when limt→∞ tS(t) 6= 0,

the average lifetime diverges, capturing the intuition that some particles survive

indefinitely. Therefore, when particles survive at long times, the system can still

have a finite mean first-passage time 〈τ〉 while having an infinite mean lifetime. This

is simply stating that, if a particle reaches back to the origin, it will do so in a finite

time, which on average is given by 〈τ〉. We can also build the same intuition using

the Laplace transforms introduced previously. First, note that:

〈τ`〉= lim
s→0

S̃(s) (4.186)

Analyzing the cases of surviving or no-surviving particles separately, we have:
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1. Surviving particles (limt→∞S(t) 6= 0)

lim
t→∞

S(t) = 1−F (0) 6= 0 (4.187)

〈τ`〉= lim
s→0

S̃(s) = lim
s→0

1−F (s)
s

=∞ (4.188)

As we see, the average lifetime diverges due to the 1
s singularity.

2. No surviving particles (limt→∞S(t) = 0)

lim
t→∞

S(t) = 1−F (0) = 0 (4.189)

〈τ`〉= lim
s→0

S̃(s) = lim
s→0

1−F (s)
s

L’Hôpital= lim
s→0

−F ′(s)
1 = 〈τ〉 (4.190)

In this case, the 1
s singularity of S̃(s) is an essential singularity that is cured by

the fact that 1−F (s) also converges to 0 as s→ 0 since no particles survive at

long times.

4.6.3 First-passage problem in a semi-infinite spatial domain

Before deriving the complete solution of the first-passage problem that models

the branch growth, we study the case where the branch grows unhindered in a

semi-infinite domain. In the infinite domain x ∈ (−∞,∞), the solution of the

drift-diffusion equation is the well-known expanding Gaussian (see [68]):

∂p

∂t
=−vR

∂p

∂x
+DR

∂2p

∂x2 (4.191)

p(x,0|x0) = δ(x−x0) (4.192)

p(x,t|x0) = 1√
4πDRt

e
−(x−x0−vRt)

2
4DRt (4.193)

To solve the same equation in the semi-infinite domain x∈ [0,∞), we use the method

of images and the solution of the infinite domain. Since the particle is initialized
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at x = x0, the image particle must be located at x = −x0 in order to satisfy the

absorbing boundary condition at x= 0. Therefore, the semi-infinite domain solution

is given by:

p(x,t|x0) = 1√
4πDRt

e
−(x−x0−vRt)2

4DRt −e
−
vRx0
DR e

−(x+x0−vRt)2

4DRt

 (4.194)

where the weight of the image particle e−
vRx0
Dr is tuned to satisfy the condition

p(0, t|x0) = 0 at all times. With this solution, we calculate the survival probability by

integrating over the semi-infinite domain:

S(t) =
∫ ∞

0
p(x,t, |x0)dx

= 1
2

1−e
−
x0vR
DR

(
1 + erf

(−x0 + tvR
2
√
tDR

))
+ erf

(
x0 + tvR
2
√
tDR

) (4.195)

erf(z) = 2√
π

∫ z

0
e−t

2
dt (4.196)

where erf(z) is the error function. Taking the derivative of S(t), we get the first-

passage time density function f(τ):

f(τ) = x0
2
√
πDRτ3/2 e

−
(x0 + τvR)2

4Dτ (4.197)

The mean first-passage time is then:

〈τ〉=
∫ ∞

0
τf(τ)dτ = x0

vR
e
− vRx0

DR (4.198)

At first glance, this is somewhat unintuitive since the mean first-passage time

decreases as the initial length x0 increases. Indeed, one might expect the mean

first-passage time to increase as x0 increases. This intuition holds for the lifetime

of the particles or the survival probability of the particles at a given time t, but

not for the first-passage time. Recall that the first-passage time is the time that a
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particle returns to the origin, given that it returns. Particles that do not return are

not accounted for in the first-passage time density function. The reason why the

mean first-passage time decreases with increasing x0 is due to the interplay between

the drift and diffusion. If a particle must return, it must do so through a diffusive

motion since the drift is moving the particle away from the origin. Therefore, if the

particle returns to the origin, it must do so in a short time period since the drift

motion overthrows the diffusive motion at long times. As x0 increases, it becomes

even more difficult for diffusion to overthrow drift and bring the particle back to the

origin. Therefore, the return to the origin must take a shorter time as x0 increases

such that the drift doesn’t have sufficient time to counter the diffusive motion.

Finally, we find the following expression for the mean death rate in the semi-

infinite domain:

kd = 〈1
τ
〉=

∫ ∞
0

1
τ
f(τ)dτ = e

−x0vR
DR (2DR+x0vR)

x2
0

(4.199)

Note that this is a monotonic function of x0, i.e. ∀x0 > 0, dkddx0
< 0.

4.6.4 First-passage problem in a finite spatial domain

Although solving first-passage problems in infinite spatial domains provide intuition

on the death process, the growth of the tip occurs in a finite spatial domain where

the upper boundary x= L is reflecting and models the growth inhibition by contacts.

To derive an expression of the average death rate in this context, we first solve for

the Laplace transform of the first-passage time probability density F (s).

172 Chapter 4 Mean-Field Models of Dendritic Morphogenesis



Recall that p(x,t|x0) is the probability density that a branch has a length x

at time t given that it had an initial length of x0. The differential equation that

determines the evolution of this probability is the same as introduced before:

∂p

∂t
=−vR

∂p

∂x
+DR

∂2p

∂x2 =−∂J
∂x

(4.200)

J(x,t) = vRp−DR
∂p

∂x
(4.201)

where δ(x) is the Dirac delta function and J(x,t) is the probability density flux. In

the finite spatial domain relevant to tip growth, the initial and boundary conditions

become:

p(x,0|x0) = δ(x−x0) (4.202)

p(0, t|x0) = 0 (4.203)

J(L,t) = vRp(L,t|x0)−DR
∂p(x,t|x0)

∂x

∣∣∣∣
x=L

= 0 (4.204)

Next, we apply the Laplace transform of the probability density p(x,t|x0) over the

temporal coordinate t:

P (x,s) =
∫ ∞

0
e−stp(x,t)dt (4.205)

The differential and boundary conditions for P (x,s) become:

sP −p(x,0) =−vR
∂P

∂x
+DR

∂2P

∂x2 (4.206)

⇒ sP +vR
∂P

∂x
−DR

∂2P

∂x2 = δ(x−x0) (4.207)

P (0,s) = 0 (4.208)

J(L,s) = vRP (L,s)−DR
∂P (x,s)
∂x

∣∣∣∣
x=L

= 0 (4.209)
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As we can see, solving for P (s,x) amounts to solving for the Green’s function of

the operator on the left of eq. (4.207). The general solution to the homogeneous

equation is:

P (x,s) =A+e
k+(s)x+A−e

k−(s)x (4.210)

k±(s) =
vR±

√
v2
R+ 4DRs

2DR
= vR

2DR
±λ(s) (4.211)

λ(s) =

√
v2
R+ 4DRs

2DR
(4.212)

For x < x0, the left Green’s function must satisfy the absorbing boundary condition

P (0,s) = 0, which implies the following solution:

PL(x,s) =ALe
vR

2DR
x sinh(λ(s)x) (4.213)

For x > x0, the right Green’s function must satisfy the reflecting boundary condition,

which implies the following solution:

0 = vR
(
A+e

k+L+A−e
k−L

)
−DR

(
A+k+e

k+L+A−k−e
k−L

)
(4.214)

⇒A+ = (vR−DRk−)e−k+LAR, A− =−(vR−DRk+)e−k−LAR (4.215)

⇒ PR(x,s) =AR
(
ek+(−L+x) (vR−k−DR)−ek−(−L+x) (vR−k+DR)

)
=ARe

vR
2DR

(−L+x)(
eλ(−L+x) (vR−k−DR)−e−λ(−L+x) (vR−k+DR)

)
=ARe

(−L+x)vR
2DR (2λDR cosh(λ(L−x))−vR sinh(λ(L−x))) (4.216)
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Next, we impose continuity of the Green’s function at x= x0:

PL(x0,s) = PR(x0,s) (4.217)

ALe
vRx0
2DR sinh(λx0) =ARe

vR(−L+x0)
2DR (2λDR cosh(λ(L−x0))−vR sinh(λ(L−x0)))

(4.218)

AL = Ae
− vRx0

2DR

sinh(λx0) (4.219)

AR = Ae
− vR(−L+x0)

2DR

2λDR cosh(λ(L−x0))−vR sinh(λ(L−x0)) (4.220)

The left and right Green’s function become:

PL(x,s) =Ae
vR(x−x0)

2DR

( sinh(λx)
sinh(λx0)

)
(4.221)

PR(x,s) =Ae
vR(x−x0)

2DR

( 2λDR cosh(λ(L−x))−vR sinh(λ(L−x))
2λDR cosh(λ(L−x0))−vR sinh(λ(L−x0))

)
(4.222)

Finally, the last arbitrary constant A is fixed by the discontinuity of the first deriva-

tive:

lim
ε→0

∫ x0+ε

x0−ε

(
sP +vR

∂P

∂x
−DR

∂2P

∂x2

)
dx= 1 (4.223)

vR (PR(x0,s)−PL(x0,s))−DR

(
P ′R(x0,s)−P ′L(x0,s)

)
= 1 (4.224)

P ′R(x0,s)−P ′L(x0,s) = −1
DR

(4.225)

where ′ denotes derivatives with respect to x. In the simplification of the last line,

we used the continuity of P (x,s) at x= x0. Imposing the discontinuity condition,

we obtain the following expression for A:

− 1
DR

=−Aλ
(cosh(λx0)

sinh(λx0)

)
+A

(
−2λ2DR sinh(λ(L−x0)) +λvR cosh(λ(L−x0))

)
2λDR cosh(λ(L−x0))−vR sinh(λ(L−x0))

(4.226)

A= sinh(λx0)(2λDR cosh(λ(L−x0))−vR sinh(λ(L−x0)))
λDR (2λDR cosh(λL)−vR sinh(λL)) (4.227)
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The final expression for the Green’s function is then:

P (x,s) =


e
vR(x−x0)

2DR
sinh(λx)(2λDR cosh(λ(L−x0))−vR sinh(λ(L−x0)))

λDR(2λDR cosh(λL)−vR sinh(λL)) x≤ x0

e
vR(x−x0)

2DR
sinh(λx0)(2λDR cosh(λ(L−x))−vR sinh(λ(L−x)))

λDR(2λDR cosh(λL)−vR sinh(λL)) x > x0

(4.228)

= e
vR(x−x0)

2DR
sinh(λx<)(2λDR cosh(λ(L−x>))−vR sinh(λ(L−x>)))

λDR (2λDR cosh(λL)−vR sinh(λL))

(4.229)

x< = min(x,x0) (4.230)

x> = max(x,x0) (4.231)

Using this solution, we now find an expression for the Laplace transform of the

first-passage time probability density F (s) by evaluating the Laplace-transformed

flux J(x,s) at x= 0:

f(τ) =−dS(τ)
dτ

=−
∫ L

0

∂p(x,τ |x0)
∂τ

dx=
∫ L

0

∂J(x,τ)
∂x

dx=−J(0, τ) (4.232)

⇒ F (s) =−J(0,s)

=−
(
vRP (0,s)−DR

∂P (x,s)
∂x

∣∣∣∣
x=0

)
=−

(
vRPL(0,s)−DR

∂PL(x,s)
∂x

∣∣∣∣
x=0

)

= e
− vRx0

2DR (2λDR cosh(λ(L−x0))−vR sinh(λ(L−x0)))
2λDR cosh(λL)−vR sinh(λL) (4.233)
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where λ= λ(s) is a function of s. For finite L, the mean first-passage time is:

〈τ〉= lim
s→0

−dF (s)
ds

= lim
s→0
−e−

vRx0
2DR λ′(s)(

(2λDR cosh(λ(L−x0))−vR sinh(λ(L−x0)))((2DR−LvR)cosh(Lλ) + 2Lsinh(Lλ)DRλ)
(2DRλcosh(Lλ)−vR sinh(Lλ))2

− (2λDR (L−x0)sinh(λ(L−x0)) + (2DR−vR (L−x0))cosh(λ(L−x0)))
2DRλcosh(Lλ)−vR sinh(Lλ)

)

=
e
− vRx0

2DR
(
2DR sinh

(
vRx0
2DR

)
+vRx0

(
cosh

(
vR(2L−x0)

2DR

)
− sinh

(
vR(2L−x0)

2DR

)))
(
cosh

(
LvR
2DR

)
− sinh

(
LvR
2DR

))2
v2
R

= DRe
LvR
DR

v2
R

(
1−e

−vRx0
DR

)
− x0
vR

(4.234)

which coincides with our previous expression of the mean first-passage time in the

semi-infinite domain (see eq. (4.198)).

To verify our expression, we analyze the limit L→∞ and compare our expres-

sion with our previous results. First, we go back to the expression for F (s) before

taking the s→ 0:

F (s) L→∞≈ e
− vRx0

2DR e−λx0 = e
−
(
vR+
√
v2
R

+4DRs
2DR

)
x0

(4.235)

The corresponding mean first-passage time is then:

〈τ∞〉= lim
s→0

lim
L→∞

−dF (s)
ds

= lim
s→0

e
−
(
vR+
√
v2
R

+4DRs
2DR

)
x0
x0√

4sDR+v2
R

= x0
vR
e
− vRx0

DR (4.236)
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which agrees with out previous expression (eq. (4.198)). Furthermore, we also

recover the full distribution f(τ) by taking the inverse Laplace transform of F (s),

which amounts to taking the inverse Fourier transform since F (s) has no singulari-

ties:

f(τ) = lim
T→∞

1
2πi

∫ iT

−iT
esτF (s)ds

= 1
2π

∫ ∞
−∞

eiωτF (iω)dω s= iω

= 1
2π

∫ ∞
−∞

eiωτe
−
(
vR+
√
v2
R

+4DRiω
2DR

)
x0
dω

= x0
2
√
πDRτ3/2 e

−
(τvR+x0)2

4τDR (4.237)

which is the same expression that was found previously in the semi-infinite domain

case (eq. (4.197)).

4.6.5 Mean death rate in the L→∞ limit

Finally, we derive an expression for the tip’s death rate kd(U) as a non-linear function

of the dendrites density U . As an approximation, we only consider the first two

leading order terms of kd(U) in the limit where U � 1. Since U ∼ 1
L , this limit

corresponds to the L→∞ limit in the first-passage problem considered above:

kd(U) = 〈1
τ
〉 ≈ kd,0 +kd,1(U) (4.238)

Recall that kd,0 was already found in eq. (4.199) when studying the case of

a semi-infinite boundary. We now focus on the next order term kd,1(U). To do so,
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we use the Laplace transform F (s) of the first-passage time density f(τ) in finite

domain case:

kd = 〈1
τ
〉=

∫ ∞
0

1
τ
f(τ)dτ =

∫ ∞
0+

F (s)ds (4.239)

where F (s) was derived in eq. (4.233):

F (s) = e
− vRx0

2DR (2λDR cosh(λ(L−x0))−vR sinh(λ(L−x0)))
2λDR cosh(λL)−vR sinh(λL) (4.240)

λ(s) =

√
v2
R+ 4DRs

2DR
(4.241)

To simplify the expressions, we use the following dimensionless variables:

t=
√

1 + 4DR

v2
R

s (4.242)

Pe = vRL

2DR
(4.243)

y0 = vRx0
2DR

(4.244)

In terms of these variables, the L→∞ limit translates to Pe→∞. Using these

expressions yields the following expression for kd:

kd = v2
Re
−y0

2DR

∫ ∞
1

F (t)dt (4.245)

F (t) = t(tcosh((Pe−y0) t)− sinh((Pe−y0) t))
tcosh(Pet)− sinh(Pet)

(4.246)

= te−y0t

(
t−1 + (t+ 1)e−2t(Pe−y0)

t−1 + (t+ 1)e−2tPe

)
(4.247)

In the limit Pe→∞, the zeroth-order term in F (t) is given by:

F (0)(t) = te−y0t (4.248)
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Integrating over t gives the zeroth-order term of the death rate:

kd,0 = v2
Re
−y0

2DR

∫ ∞
1

F (0)(t)dt

= v2
Re
−y0

2DR

(
e−y0

(1 +y0
y2

0

))

= e
− vRx0

DR (2DR+vRx0)
x2

0
(4.249)

which corresponds to the same quantity that we found before in eq. (4.199). To

derive the next order, we subtract the zeroth-order term from the full expression of

F (t) and retain only the leading order terms:

F (1)(t) = F (t)−F (0)(t)

= te−ty0

(
t−1 + (t+ 1)e−2t(Pe−y0)

t−1 + (t+ 1)e−2tPe −1
)

= te−ty0e−2tPe (t+ 1)
(

e2ty0−1
t−1 + (t+ 1)e−2tPe

)
(4.250)

To expand the denominator in this expression, one must be careful since both

f1(t) = t−1 and f2(t) = (t+ 1)e−2tPe can be small over the integration range and in

the Pe→∞ limit. Note that f1(t) is monotonically increasing for t ∈ (1,∞), while

f2(t) is monotonically decreasing (given Pe is large enough). Therefore, we expect

a cross-over point t∗ where f1(t∗) = f2(t∗). To find this point, we need to solve the

following transcendental equation:

t∗−1 = (t∗+ 1)e−2t∗Pe (4.251)

⇒ t∗ = 1 + (t∗+ 1)e−2t∗Pe (4.252)

To solve for t∗, we iterate the approximation for t∗ using the transcendental equation.

To zeroth-order, we have:

t
(0)
∗ = 1 (4.253)
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Substituting this expression back into the transcendental equation yields the first-

order estimate:

t
(1)
∗ ≈ 1 + (t(0)

∗ + 1)e−2t∗(0)Pe

= 1 + 2e−2Pe

= 1 + r∗ (4.254)

r∗ = 2e−2Pe (4.255)

Using t∗ = t
(1)
∗ as the cross-over point and the monotonicity of f1(t) and f2(t), we

can ensure that there is non-vanishing expansion center by splitting the integral

range into two parts:

t ∈ (1,1 + r∗)⇒ f1(t)≤ f2(t) (4.256)

t ∈ (1 + r∗,∞)⇒ f1(t)≥ f2(t) (4.257)∫ ∞
1

F (1)(t)dt= IL+ IR (4.258)

IL =
∫ 1+r∗

1
F (1)(t)dt (4.259)

IR =
∫ ∞

1+r∗
F (1)(t)dt (4.260)

Below the cross-over point t∗, F (1)(t) is exponentially close to t= 1 in the large Pe

limit. This warrants a Taylor expansion of the integrand around t = 1. We then

obtain the following expression for IL:

F
(1)
L (t) = 2sinh(y0) +

(
−e2Pe sinh(y0) + 2(y0 cosh(y0) + sinh(y0))

)
(t−1) +O

(
(t−1)2

)
(4.261)

⇒ IL =
∫ 1+r∗

1
F

(1)
L (t)dt

≈ 2sinh(y0)r∗+
(
−e2Pe sinh(y0) + 2(y0 cosh(y0) + sinh(y0))

) r2
∗
2

≈ 2sinh(y0)e−2Pe + 4(y0 cosh(y0) + sinh(y0))e−4Pe (4.262)
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For the part above the cross-over point, we expand the denominator around

f1(t) since it is greater than f2(t). We then obtain the following approximation for

F
(1)
R (t):

F
(1)
R (t) = te−ty0e−2tPe (t+ 1)

(
e2ty0−1

t−1 + (t+ 1)e−2tPe

)

= te−ty0e−2tPe
(
t+ 1
t−1

)(
e2ty0−1

1 + t+1
t−1e

−2tPe

)

≈ te−ty0e−2tPe
(
t+ 1
t−1

)(
e2ty0−1

)(
1− t+ 1

t−1e
−2tPe

)
(4.263)

To simplify the notation further, we recast the above expression using the variable

r = t−1:

F
(1)
R (r) = (r+ 1)e−(r+1)(2Pe+y0)

(
r+ 2
r

)(
e2(r+1)y0−1

)(
1− r+ 2

r
e−2(r+1)Pe

)
(4.264)

= e−(r+1)(2Pe+y0)
(
e2(r+1)y0−1

)(
r+ 3 + 2

r
−
(
r+ 5 + 8

r
+ 4
r2

)
e−2(r+1)Pe

)
(4.265)

When integrating F
(1)
R (r) over the range (r∗,∞), integrands will have the form

rne−a(r+1), where n ∈ {−2,−1,0,1}. Therefore, we evaluate the following generic

integrals in the limit where r∗ is small:

h(a,r∗,n) =
∫ ∞
r∗

rne−a(r+1)dr (4.266)
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The relevant solutions for h(a,r∗,n) are given by:

h(a,r∗,1) = (1 +ar∗)
a2 e−a(1+r∗) (4.267)

h(a,r∗,0) = 1
a
e−a(1+r∗) (4.268)

h(a,r∗,−1) = e−aΓ(0,ar∗) (4.269)

h(a,r∗,−2) = e−a
(
e−ar∗

r∗
−aΓ(0,ar∗)

)
(4.270)

Γ(a,b) =
∫ ∞
b

ta−1e−tdt (4.271)

where Γ(a,b) is the incomplete Gamma function. Since r∗ is exponentially small, we

seek an expression for Γ(0,x) in the limit where x is small:

Γ(0,x) =−γ− log(x) +x+O(x2) (4.272)

where γ ≈ 0.577216 is the Euler-Mascheroni constant. Expanding all terms in

eq. (4.265), we obtain the following expression for IR:

IR = h(2Pe−y0, r∗,1)−h(2Pe+y0, r∗,1)

−h(4Pe−y0, r∗,1) +h(4Pe+y0, r∗,1)

+ 3h(2Pe−y0, r∗,0)−3h(2Pe+y0, r∗,0)

−5h(4Pe−y0, r∗,0) + 5h(4Pe+y0, r∗,0)

+ 2h(2Pe−y0, r∗,−1)−2h(2Pe+y0, r∗,−1)

−8h(4Pe−y0, r∗,−1) + 8h(4Pe+y0, r∗,−1)

−4h(4Pe−y0, r∗,−2) + 4h(4Pe+y0, r∗,−2) (4.273)
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Before unpacking all these terms, let us analyze their general form at the leading

order in the Pe→∞ limit:

h(nPe±y0, r∗,1)≈ (1 + 2(nPe±y0)e−2Pe)
(nPe±y0)2 e−(nPe±y0)

≈ 1
(nPe±y0)2 e

−(nPe±y0) (4.274)

h(nPe±y0, r∗,0)≈ 1
nPe±y0

e−(nPe±y0) (4.275)

h(nPe±y0, r∗,−1)≈ e−(nPe±y0)
(
−γ− log(nPe±y0)− log(2) + 2Pe+ 2(nPe±y0)e−2Pe

)
≈ 2Pee−(nPe±y0) (4.276)

h(nPe±y0, r∗,−2)≈ e−(nPe±y0)
(
e−(nPe±y0)2e−2Pe

2e−2Pe

− (nPe±y0)
(
−γ− log(nPe±y0)− log(2) + 2Pe+ 2(nPe±y0)e−2Pe

))

≈ e−(nPe±y0)
((1− (nPe±y0)2e−2Pe

)
e2Pe

2 − (nPe±y0)(2Pe)
)

≈ e−(nPe±y0)
(
e2Pe

2 −2Pe(nPe±y0)
)

(4.277)

where n is assumed to be a positive integer. As we can see, the leading order terms

arise from h(2Pe±y0, r∗,−1) and h(4Pe±y0, r∗,−2). Unpacking these expressions,

we have:

IR ≈ 2h(2Pe−y0, r∗,−1)−2h(2Pe+y0, r∗,−1)

−4h(4Pe−y0, r∗,−2)−4h(4Pe+y0, r∗,−2)

≈ 2
(
2Pee−2Pe (2sinh(y0))

)
+ 4e−4Pe

((
e2Pe

2 −4P 2
e

)
(2sinh(y0))−2Pey0 (−2cosh(y0))

)

≈ 8Pe sinh(y0)e−2Pe (4.278)
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Since the terms in IR are leading the terms in IL, we can omit IL altogether. The

final expression for kd,1 becomes:

kd,1 = v2
Re
−y0

2DR
(IL+ IR)

≈ v2
Re
−y0

2DR

(
8Pe sinh(y0)e−2Pe

)
= 2Pev2

Re
−2Pe

DR

(
1−e−2y0

)

= Lv3
Re
− vRL
DR

D2
R

(
1−e−

vRx0
DR

)
(4.279)

Finally, combining the zeroth and first-order terms of the death rate, we obtain

the following approximate expression in limit L→∞:

kd = 〈1
τ
〉

≈ kd,0 +kd,1

= e
− vRx0

DR (2DR+vRx0)
x2

0
+ Lv3

Re
− vRL
DR

D2
R

(
1−e−

vRx0
DR

)
(4.280)
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4.6.6 Stochastic simulation of the 1D biased random walk in

a finite domain

To assess the accuracy of our estimate for the mean first-passage time 〈τ〉 and the

mean death rate 〈 1τ 〉 in the finite domain case, we performed stochastic simulations

of the first-passage problem with the following parameter values:

vR = 0.1 µm
min

DR = 0.5 µm
min

x0 ∈ {1,1.1, . . . ,5}µm

L ∈ {5,5.1, . . . ,10}µm

which were chosen in the physiological range of the class IV neuron tip growth.

Using the simulation results, we calculate estimates of 〈τ〉 and 〈 1τ 〉 and compare

them against our theoretical expressions (eqs. (4.234) and (4.280)) as shown in

fig. 4.7. The theoretical estimates are in good agreement with the calculations from

the stochastic simulations. However, the theoretical estimate for 〈 1τ 〉 deviates from

the simulation when L < 7.5µm. This is expected since our approximation relies

on the large L limit, which is evidently not satisfied as L approaches 0. Indeed, we

find a complete agreement when we calculate a more accurate estimate of the death

rate by numerically integrating the full expression of the Laplace transform (see

eq. (4.245) and blue line in fig. 4.7).
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Figure 4.7 – Death rate estimates from first-passage stochastic simulations
Each data point corresponds to an average of N = 1000 simulations. The results
of the simulations for the two different averages are plotted as open circles.
The solid line corresponds to the theoretical estimates calculated above.

Moreover, we also find that 1
〈τ〉 < 〈

1
τ 〉 for the cases analyzed above. This is due

to the fact that short-lived particles have much a bigger impact on 〈 1τ 〉 in comparison

to 1
〈τ〉 . One can see this in the simulation estimates as well where the difference

between 1
〈τ〉 and 〈 1τ 〉 increases when x0 approaches the absorbing boundary at x= 0.

This inequality is in fact true in general and is a particular case of Jensen’s inequality
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[28]. Given a convex function f(x) and a random variable X, Jensen’s inequality

states the following:

f(〈X〉)≤ 〈f(X)〉 (4.281)

In our case, f(x) = 1
x is indeed convex in the domain x∈ [0,∞), which is the relevant

domain for the first-passage time since τ ≥ 0.

4.7 Predictions of the 2-species mean-field model

In summary, the 2-species model consists of the following two differential equa-

tions:

∂U

∂t
= vRR− cRURU (4.282)

∂R

∂t
=−vr

∂R

∂r
+Dr

∂2R

∂r2 −kd(U)R+kbU (4.283)

where kd(U) = kd,0 +kd,1(U) is the tips death rate, which is a non-linear function

of U , vr = c1vR,Dr = c2DR are the drift velocity and diffusion constants along the

radial direction, and c1 = 〈cos(ψ)〉, c2 = 〈cos(ψ)2〉 account for the orientation of the

branches (see section 4.4.1).

The beauty of the mean-field model is that it connects the microscopic parame-

ters of the tip dynamics to the macroscopic properties of the tree. The microscopic

parameters are given by the average tip growth parameters vR,DR, the transition

rates kij , the average state velocities vS ,vG, the growth orientation parameters c1, c2,

the branching rate kb and the death rate kd. The macroscopic properties are given

by the expansion velocity of the tree V and the steady-state densities of dendrites

and branch tips Uss,Rss.
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4.7.1 Parameters summary

As a result of our analysis of the tip growth, we obtain quantitative measurements of

the microscopic parameters that describe tip growth at 24, 48 and 96 hr AEL. These

parameters are summarized in table 4.1.

Parameters\Stage 24 hr AEL 48 hr AEL 96 hr AEL
kSP (min−1) 0.204 ± 0.0188 0.200 ± 0.0156 0.428 ± 0.0306
kSG (min−1) 0.489 ± 0.0417 0.394 ± 0.0287 0.566 ± 0.0387
kPS (min−1) 0.672 ± 0.0578 0.553 ± 0.0467 0.239 ± 0.0131
kPG (min−1) 0.465 ± 0.0385 0.366 ± 0.0302 0.248 ± 0.0142
kGS (min−1) 0.609 ± 0.0562 0.706 ± 0.0540 0.845 ± 0.0519
kGP (min−1) 0.0875 ± 0.00681 0.120 ± 0.00788 0.265 ± 0.0146
vS (µmmin−1) 0.648 ± 0.0210 0.499 ± 0.0166 0.343 ± 0.00798
vG (µmmin−1) 0.772 ± 0.0210 0.917 ± 0.0166 0.456 ± 0.00798
kb (min−1µm−1) 0.00937 ± 0.000543 0.00129 ± 0.000104 0.00115 ± 0.000228
c1 0.411 ± 6.76e-06 0.295 ± 3.19e-06 0.222 ± 7.66e-07
c2 0.551 ± 3.85e-06 0.537 ± 1.67e-06 0.526 ± 3.90e-07
vR (µmmin−1) 0.0343 ± 0.000592 0.0200 ± 0.000304 0.00161 ± 0.000451
vR,r (µmmin−1) 0.0141 ± 0.000243 0.00592 ± 8.98e-05 0.000358 ± 0.000100
DR (µm2 min−1) 0.354 ± 0.0156 0.258 ± 0.0187 0.0858 ± 0.00293
DR,r (µm2 min−1) 0.195 ± 0.00859 0.139 ± 0.0101 0.0451 ± 0.00154
DR,θ (min−1) 0.159 ± 0.00700 0.120 ± 0.00867 0.0407 ± 0.00139

Table 4.1 – Model parameters in the 2-species mean-field model
kij are the tip transition rates determined experimentally (see fig. 3.5), vS ,vG
are the average speed of of the tip in the shrinking and growing state (see
fig. 3.3), kb is the branching rate measured in experiments (see fig. 3.12b), c1, c2
are estimated from the branch orientation (see fig. 3.36), vR,DR are determined
by the track displacement fits (see fig. 4.3), vR,r is determined by eq. (4.68),
DR,r is determined by eq. (4.69) and DR,θ is determined by eq. (4.70)

Moreover, we almost use macroscopic measurements to infer other microscopic

parameters. First, we use the expansion velocity of the tree, which is estimated by

fitting the neuron size with a spline (see fig. 4.8a). The spline fit’s zero is constrained

at 14 hr AEL since it corresponds to the start of morphogenesis. Using the fit, we

evaluate its derivative to estimate the velocity at each developmental stage (see

fig. 4.8b) where the error of the velocities are calculated by bootstrapping the fit.

The values of the velocities are shown in table 4.2.

4.7 Predictions of the 2-species mean-field model 189



0 24 48 72 96 120
Developmental time (hours AEL)

0

100

200

300

400

500
N

eu
ro

n 
si

ze
 (

µm
)

AP
LR
AP - Spline fit
LR - Spline fit

(a) Spline fit of the neuron size

0 24 48 72 96 120
Developmental time (hours AEL)

-3

0

3

6

9

N
eu

ro
n 

ex
pa

ns
io

n 
ve

lo
ci

ty
 (

µm
 h

r-1
)

Mean - AP
Bootstrap error - AP
Mean - LR
Bootstrap error - LR

(b) Spline fit of the neuron expansion velocity

Figure 4.8 – Measurement of the expansion velocity along the AP and LR dimension

24 hr AEL 48 hr AEL 96 hr AEL
Vuni, AP (µmhr−1) 4.98 ± 0.310 3.70 ± 0.328 0.977 ± 0.299
Vuni, LR (µmhr−1) 6.33 ± 0.343 5.04 ± 0.359 1.53 ± 0.329
1
2(Vuni, AP +Vuni, LR) (µmhr−1) 5.65 ± 0.327 4.68 ± 0.366 1.26 ± 0.314

Table 4.2 – Neuron expansion velocity along the AP and LR axes

The other macroscopic properties that we use are the average dendrites and

branch tips density as shown in fig. 3.48. These estimates are summarized in

table 4.3.
24 hr AEL 48 hr AEL 96 hr AEL

Uss (µm−1) 0.169 ± 0.00906 0.131 ± 0.00259 0.0990 ± 0.00435
Rss (µm−2) 0.0212 ± 0.00231 0.0110 ± 0.000375 0.00648 ± 0.000503

Table 4.3 – Average dendrites and branch tips density over development

4.7.2 Numerical integration

To get more insights into the dendritic tree growth predicted by the mean-field model,

we numerically integrate the spatio-temporal differential equations. To demonstrate

an example of the predicted growth, we use the parameter values measured at 24 hr
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AEL. In addition, we specify the death rate kd using the steady-state approximation,

i.e. kd,ss = kbUss
Rss

.

For the boundary conditions, we use Dirichlet boundary conditions since there

are no indications that fluxes of particles vanish at the origin r = 0. On the left

boundary r = 0, the species density is set to the steady-state value Uss,Rss that

we measured previously (see fig. 3.48), while the density vanishes on the right

boundary:

U(~x= 0, t) = Uss

R(~x= 0, t) =Rss

U(|~x|= L,t) = 0

R(|~x|= L,t) = 0 (4.284)

For the initial conditions, we set the initial density profiles to a peaked profile

localized near the origin. The shape of the profile is sigmoidal and decays away

from the origin:

f(x) = 1
1 +ex

U(~x,0) = Ussf

( |~x|−L0
σ0

)
R(~x,0) =Rssf

( |~x|−L0
σ0

)
(4.285)

where L0 and σ0 modulate the shape of the sigmoidal. In our integrations, we

choose L0 = 10µm and σ0 = 2µm. With these boundary conditions and parameters,

we integrate the dynamical system to obtain their radial density profiles as shown in

fig. 4.9.
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Figure 4.9 – Temporal dynamics of the 2-species mean-field model at 24 hr AEL

As one can see, there are three main features exhibited in the temporal dynamics:

1) the species densities gradually invade space at a constant speed, 2) the densities

reach a steady state after passage of the front and 3) the shape of the density fronts

is constant over time. In other words, the numerical solution indicates that the

dendritic tree proliferates by the propagation of a density front that leaves a steady

state behind. This is in agreement with what he have observed in real neurons

when we examined the species density over development (see fig. 3.44, fig. 3.45,

fig. 3.46).

4.7.3 Marginal stability analysis of the growth front

Motivated by the observation of a front propagation in the numerical results, we

derive an expression of the front speed as a function of the microscopic parameters

using marginal stability analysis [85]. Recall the differential equations of the 2-

species model that govern the temporal change of the dendrites line density U and

branch tips point density R:

∂U

∂t
= vRR− cRURU (4.286)

∂R

∂t
=−vr

∂R

∂r
+Dr

∂2R

∂r2 −kd(U)R+kbU (4.287)

where kd(U) = kd,0 +kd,1(U) is the tips death rate, which is a non-linear function of

U . To find the marginally stable velocity, we seek traveling wave solutions of the
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form {U(r, t),R(r, t)} = {U(r−V t),R(r−V t)} where V is the wavefront velocity.

Moreover, we assume that the waveform decays exponentially from the center to

the forefront of the wave with a decay length of 1/q. This leads us to the following

ansatz for U,R:

U(r, t) = U0e
−q(r−V t) (4.288)

R(r, t) =R0e
−q(r−V t) (4.289)

Linearizing the equations in terms of U,R and substituting the traveling wave ansatz,

we get:

V qU0 = vRR0 (4.290)

V qR0 =
(
qvr + q2Dr−kd,0

)
R0 +kbU0 (4.291)

Eliminating U0,R0, we obtain the following equation for V :

qV − vRkb
qV

+kd,0 = qvr + q2Dr (4.292)

where all terms that depend on V are on the left-hand side. This first equation can

be understood as finding the intersection between two functions of q for a given V ,

namely:

f1(q) = f2(q) (4.293)

f1(q) = qV − vRkb
qV

+kd,0 (4.294)

f2(q) = qvr + q2Dr (4.295)

Note that f1(q) is a monotonic function of q (∀q, f ′1(q)> 0) and f2(q) is a quadratic

function of q with no constant term. At small values of q, f1(q) is negative, while

f2(q) approaches zero from the positive side. In this regime, there are no solutions

that satisfy the equation. On the other hand, once q passes a certain threshold from
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below, namely qV >
−kd,0+

√
k2
d,0+4vRkb

2 , f1(q) becomes positive, which implies that

f2(q) will have two points that intersect with f1(q). At the crossing between these

two regimes, f1(q) = f2(q) admits a single solution (qm,Vm), which corresponds to

the marginally stable solution [85].

The solution is still underdetermined as there is one equation for two unknowns

q,V . The additional constraint arises from the stability condition of the velocity,

namely, dV
dq

∣∣∣
q=qm

= 0. Using this fact and taking a q derivative on both sides of

eq. (4.293), we find:

∂f1(q,V )
∂q

+ ∂f1(q,V )
∂V

dV

dq
= ∂f2(q,V )

∂q
+ ∂f2(q,V )

∂V

dV

dq
(4.296)

⇒ ∂f1(q,V )
∂q

∣∣∣∣
q=qm

= ∂f2(q,V )
∂q

∣∣∣∣
q=qm

(4.297)

In other words, at the marginally stable point (qm,Vm), the slopes of the two

intersecting functions must also match. This last condition adds another constraint

that determines the marginal stability solution completely. The two constraint

equations are:

qmVm−
vRkb
qmVm

+kd,0 = qmvr + q2
mDr (4.298)

Vm+ vRkb
q2
mVm

= vr + 2qmDr (4.299)

Multiplying the second equation by qm and adding the first equation, we find the

following relation between Vm and qm:

3Drq
2
m+ 2(vr−Vm)qm−kd,0 = 0 (4.300)
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Removing the dependence on qm, we obtain an equation for Vm:

k2
c

(
4Vm (Vm−vr)3 + 18kd,0DrVm (Vm−vr)−27D2

rk
2
c

)
+k2

d,0V
2
m

(
(Vm−vr)2 + 4kd,0Dr

)
= 0 (4.301)

where kc =
√
vRkb is the effective dendrites growth rate, akin to the rate constant of

the Fisher-Kolmogorov–Petrovsky–Piskunov equation [14, 34]. As we can see, kc

arises from the combination of both tip growth (vR) and branching (kb). To simplify

the equation for Vm, we use the following dimensionless parameters:

um = Vm
vr

(4.302)

ε=
√
Drkc
vr

(4.303)

δ = kd,0
kc

(4.304)

where ε controls the strength of the two growth modes (diffusion or drift) and δ

is the tip death rate in proportion to the effective dendrite’s growth kc. With these

substitutions, we have the following equation for um:

4um (um−1)3 + δ2u2
m

(
(um−1)2 + 4δε2

)
+ 18δε2um (um−1)−27ε4 = 0 (4.305)

Solving this equation for um amounts to finding the roots of a quartic polynomial.

In general, for δ > 0, ε > 0, this polynomial has two imaginary and two real roots.

For this analysis, we will focus on finding the positive real root, which is associated

with the right-moving front.

Since the um polynomial has two parameters (ε,δ), there are four limits to study.

First, ε controls whether the growth is dominated by the tips’ radial drift (ε� 1) or

radial diffusion (ε� 1). Second, δ controls the tip’s death rate kd,0 in comparison to

the birth rate kc. Expanding the real solutions for um in terms of δ and ε, we get the

following expressions in each of the four limits:
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• Drift dominated growth, low relative death rate (ε� 1, δ� 1)

um = 1 +
(27

4

) 1
3
ε

4
3 − δ

(1
2

) 1
3
ε

2
3 +O(δ2, ε2) (4.306)

Vm ≈ vr +
(27

4

) 1
3
(
D2
rk

2
c

vr

) 1
3

− kd,0

2
1
3kc

(Drkcvr)
1
3 (4.307)

In this regime, the growth of the tree is dominated by the radial drift motion

of the tips, which is dependent upon the tip transition dynamics and velocities.

The expansion velocity is then equal to the tip’s radial drift velocity to leading

order in ε,δ. At the next order, the diffusion of the tips increases the expansion

velocity, while the death rate kd,0 slows down the propagation of the front.

• Drift dominated growth, high relative death rate (ε� 1, δ� 1)

um = 3
√

3ε
2δ3/2 + 9

4δ2 +O( 1
δ3 ,

1
ε

) (4.308)

Vm ≈
3
√

3
√
Drkc

2

(
kc
kd,0

)3/2

+ 9vrk2
c

4k2
d,0

(4.309)

In this regime, the asympotic behavior of the expansion velocity depends on

the relative value of ε and δ. For ε < 1√
δ
, the second term becomes dominant

and um ∼ 1
δ2 . In this regime, the growth of the tree is driven by the drift vr

although it is heavily damped by the death rate kd,0. For ε > 1√
δ
, the first term

becomes dominant over the second term, which leads to um ∼ 1
δ

3
2

. In this

regime, diffusion dominates, but it is again heavily damped by kd,0. Moreover,

the existence of these two regimes may not be physically achievable. Recall

that kd,0 also depends on the drift velocity vR and DR. When the drift is high

compared to diffusion (ε� 1), the tip quickly escapes the absorbing boundary

and therefore has a low death rate kd,0. Depending on the value of kb, this

means that δ & 1 for ε� 1.
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• Diffusion dominated growth, low relative death rate (ε� 1, δ� 1)

um =
(27

4

) 1
4
ε+ 3

4 − δ
(√

3
4

(27
4

) 1
4
ε+
√

3
8

)
+O(δ2,

1
ε

) (4.310)

Vm ≈
(27

4

) 1
4 √

Drkc+ 3
4vr−

kd,0
kc

(√
3

4

(27
4

) 1
4 √

Drkc+
√

3
8 vr

)
(4.311)

In this regime, the growth is dominated by the combined effect of branching

and the diffusion of the tips. In this case, at the leading order, the front velocity

is proportional to
√
Drkc, which is reminiscent of the Fisher’s equation front

velocity. At the next order, increasing the radial drift velocity vR increases the

expansion velocity, while increasing the zeroth-order death rate kd,0 decreases

the expansion velocity.

• Diffusion dominated growth,high relative death rate (ε� 1, δ� 1)

um = 3
√

3ε
2δ3/2 + 9

4δ2 +O( 1
δ3 ,

1
ε

) (4.312)

Vm ≈
3
√

3
√
Drkc

2

(
kc
kd,0

)3/2

+ 9vrk2
c

4k2
d,0

(4.313)

In this regime, the expansion velocity has the same asymptotic expression as in

the case ε� 1, δ� 1. However, in this regime, there is no ambiguity regarding

the dominance of each term: the first term is leading. Therefore, the expansion

velocity is dominated by the combined effect of branching and diffusion and

dampened by the death rate.

By using eq. (4.305) and the measured expansion velocities, we evaluated the

growth regimes of the neuron at the sampled developmental stages as shown in

table 4.4. At 24 hr AEL, the growth is dominated by diffusion with a high relative

death rate (ε� 1, δ� 1), while at 48 and 96 hr AEL the growth is still dominated
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by diffusion but the death rate is relatively low (ε� 1, δ� 1). However, since the

values of δ are not significantly different than 1, the δ expansion may not be accurate

in physiological conditions.

Predictions\Stage 24 hr AEL 48 hr AEL 96 hr AEL
ε=

√
Drkc
vr

3.45 3.93 19.7
δ = k0

kc
1.84 0.667 0.531

Growth regime Diffusion dominated Diffusion dominated Diffusion dominated
Table 4.4 – Marginal stability parameters at different developmental stages

Note that δ is evaluated using eq. (4.305) and the average value of kd,0 inferred
from the measured expansion velocities VAP ,VLR (see table 4.2)

Finally, to test the validity of these approximations, we compare them graphi-

cally against the exact um solution found numerically (see fig. 4.10). As depicted, at

small and large δ, the asymptotic expansions are good approximations of the exact

solution obtained by numerically solving the quartic equation in um.
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(b) Diffusion dominated growth, ε= 3

Figure 4.10 – Approximations of the expansion velocity using marginal stability
The exact value of um is calculated numerically by solving for the um roots
in eq. (4.305). The small and large δ behavior are calculated using the
approximate formula derived above.
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By rearranging the marginal stability equations, the model can make also

predictions on the decay length of the density front, λρ = 1
q , given an estimate of

the expansion velocity Vm. More precisely, by eliminating the dependence on the

zeroth-order death rate kd,0, one finds the following constraint equation for q in

terms of the microscopic parameters and the expansion velocity:

2DrVmq
3− q2

(
V 2
m−vrVm

)
−vRkb = 0 (4.314)

Since the growth of the tree is different along AP and LR axis, we make sep-

arate predictions of the decay length λρ along each of these dimensions for each

measured developmental stage. The resulting predictions are compared with our

measurements of the dendrites density front decay length in fig. 4.11. As shown,

the predicted AP decay length is overestimated at 24 and 48 hr AEL, while the LR

decay length is overestimated only at 48 hr AEL.
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Figure 4.11 – Mean-field predictions of the density front decay length λρ
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4.7.4 Predictions of the microscopic parameters cRU ,kd,L0

In addition to making predictions on the large-scale dendritic growth, the mean-field

theory also makes quantitative predictions on the microscopic growth parameters

using the macroscopic morphometrics. More precisely, using measurements of the

steady-state densities Uss,Rss and the expansion velocity Vuni, AP,Vuni, LR at each

developmental stage, we infer the contact inhibition parameter cRU , the death rate

kd and the initial branch length L0.

First, we make predictions on the contact inhibition parameter cRU . Using the

steady-state equation of the mean-field model, we estimate the value of cRU from

Uss,Rss and vR:

cRU,ss = vR
Uss

(4.315)

Alternatively, recall that we also estimate cRU by treating the effect of contact

inhibition as a modification of the kGS or kGP rate, which induces a perturbation

of the tip transition steady state as derived in eq. (4.158) and eq. (4.165). The

resulting three estimates are compared in fig. 4.12. First, note that all three estimates

are within a factor of two of one another, which is already a success for a mean-

field approximation. Furthermore, note that the kGP perturbation prediction is

consistently smaller than the kGS perturbation prediction. This is consistent with

the intuition that contacts that promote transitions to the shrinking state are more

prohibitive than contacts that promote transitions to the paused state. In other

words, one expects that contact inhibition will be more severe on the growth of the

dendrite if the tips retract instantly after collision as opposed to pausing. In addition,

if we treat the predictions from the density steady state as a ground truth, the fact

that it is bounded by the kGS and kGP perturbations indicates that the effect of

contacts is in between pure retraction and pure pausing. This is also consistent with

what we find in experimental observations where branch tips make several contacts
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with other dendrites before retraction is initiated and contacts have a non-zero

duration as shown in fig. 3.8.
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Figure 4.12 – Mean-field predictions of the contact inhibition parameter cRU

Second, we make predictions on the branch tip death rate kd using three

different methods. In the first method, we use the steady-state density equations to

estimate kd:

kd,ss = kbUss
Rss

(4.316)

Since we expect that the dendritic densities reach a steady state near the soma, this

estimate assumes that most of the branch deaths occur in the bulk of the tree.

In the second method, we predict kd using the formula of the average death

rate 〈kd〉 from the first-passage time analysis (see eq. (4.245)). Since we do not

have a closed form of the full death rate, we evaluate the integral numerically with

the respective microscopic parameters at each developmental stage. This estimate

has one free parameter, the initial length of the branch L0. To make predictions,

two values of L0 that are proportional to the inverse dendrites density U−1
ss are used.
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Indeed, we expect that L0 / U−1
ss since U−1

ss is the length scale of the average space

between the dendrites.

Finally, the third estimate of kd is derived from the marginal stability equation

and the measurement of the tree expansion velocity Vuni, AP or Vuni, LR. More precisely,

with a given expansion velocity, we use the marginal stability equation eq. (4.301) to

solve for the positive quadratic root of kd,0. However, this prediction underestimates

the death rate since it omits the non-linear dependence on U , i.e. the deaths due to

contacts.

The comparison of these three estimates with the measured value of the death

rate is shown in fig. 4.13a. First, similar to the predictions of cRU , the death rate

predictions and measurements are all within a factor of two of one another, except

for the marginal stability predictions, which is expected since they underestimate

the death rate. Furthermore, the steady-state predictions are in agreement with the

measurements, which implies, as explained above, that branches die mostly within

the bulk of the tree. Moreover, the first-passage predictions are also consistent with

the measurements. Indeed, since we expect that L0 /U−1
ss , the first-passage estimate

that uses L0 = U−1
ss should be a lower bound of the death rate, which is what we

observe. In addition, the 24 hr AEL measurement is in between the L0 = U−1
ss and

L0 = 0.5U−1
ss estimates, while the 48 hr measurement is smaller than the L0 = U−1

ss

estimate. This indicates that branches at the earlier stage initially grow to longer

lengths (in proportion to U−1
ss ) before they die compared to the later stages. Finally,

at 96 hr AEL, the estimates are not in agreement with the measurements, but the

closest prediction is the L0 = 0.5U−1
ss first-passage time estimate. This discrepancy

may be a consequence of the fact that the mean-field model does not take the

effect of the segment boundary into account. Indeed, as shown in the numerical

integration, the tree’s expansion is unbounded. This is a good approximation at the

earlier stage where the neuronal boundaries have not been established. However,
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at the later stages, the boundaries may have considerable effects on the densities,

which will affect the steady state, first-passage and marginal stability predictions.

Parallel to the predictions of the death rate, we also examine the value of

the initial branch length L0 as inferred from the marginal stability equation and

the measured expansion velocities Vuni, AP,Vuni, LR. The predictions are shown in

fig. 4.13b. Again, since the marginal stability analysis only accounts for the zeroth-

order death rate, the predictions of L0 from these expressions will be overestimated.

This is indeed what we observe as the predictions are comparable or greater than

U−1
ss , which is the upper bound of L0.
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Figure 4.13 – Mean-field predictions of the death rate kd and initial branch length L0

4.8 Conclusions

• We propose a model of dendritic morphogenesis cast into a set of reaction-

diffusion equations, which uses the mean-field approximation to model the

interaction between the active and passive elements of the growth process.
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• The model predicts that the dendritic tree expands from the combined effect

of tip growth and branching akin to the propagating wavefront in Fisher’s

equation.

• The model makes quantitative predictions on the microscopic growth parame-

ters, such as the death rate and the contact inhibition, which are in agreement

with the measured values at the early stage of development.
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Agent-based Models of Class IV
Neuron Morphogenesis

5

In this chapter, we formulate a computational model of morphogenesis using stochas-

tic processes that reproduce the growth of dendritic tips. After constraining the

model parameters with our measurements, we show that it recapitulates some of the

morphometrics of class IV neurons. Finally, we explore the effect of the free param-

eters on the tree morphology and investigate an alternate model of the branching

process.

The initial design of the agent-based model was performed in collaboration

with Sujoy Ganguly and Hugo Bowne-Anderson [15]. Subsequent modifications of

the model were inspired by the analysis of the tip dynamics provided by Sabyasachi

Sutradhar. Finally, model predictions of various morphometrics is compared against

physiological values that were measured using images and movies of class IV neurons

provided by Sonal Shree.

5.1 Agent rules of morphogenesis

An agent-based model is a model where agents are given a set of rules that control

their behavior within their environment. In this case, the agents are the branch tips,

which are the main contributors to the growth of the dendritic tree. We identify
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three main rules of dendritic tip growth based on the observed growth dynamics: 1)

tip growth, 2) branching, 3) contact inhibition. The implementation of these rules is

described in the following sections.

5.1.1 Tip growth

One of the main rule of morphogenesis governs how the tip grows. Following the

analysis of the tip dynamics (see section 3.1), we model tip growth as a 3-state

Markov process whose states define the velocity of the tip. First, the transition

dynamics of the tip state is governed by the 3-state Markov process whose transition

rates are given by the measured values.

First, each new tip is initialized in the growing state G and the duration of this

initial phase of growth is determined by a free parameter of the model, T0. Once

the initial phase is complete, the next state of the tip is determined by the measured

transition probability. Specifically, the next state is shrinking if a Bernouilli trial

succeeds with a success rate of p= kGS
kGS+kGP , while a failure indicates that the next

state is paused. Once the next state is determined, denoted as m, the duration of

this phase of growth is determined by sampling an exponential distribution with an

average of 1
km

where km =
∑
j kmj is the exit rate of state m as determined by the

transition rates kmj . Finally, the velocity of the tip in each state is determined by

sampling the mth component of the velocity distribution mixture model fit.

The subsequent transitions of the tip are processed in a similar manner. In

general, let si(t) ∈ {S,P,G} correspond to the state of the ith tip at time t in the

simulation and assume that a transition occurs. The next state is determined by a

Bernouilli trial with a success rate of p= ksi(t)m∑
j
ksi(t)j

where success indicates that the

next state is m and failure indicates that the next state is the last choice that remains

after excluding state m and state si(t). Once the next state is determined, the

duration and velocity of this new phase are determined as explained previously by
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sampling an exponential distribution with an average of 1
km

and the mth component

of the velocity distribution mixture model fit.

Moreover, the transition rates and velocity fit parameters change continuously

over the course of the simulation. The temporal evolution of the parameters is

determined by a linear interpolation of the measured values within the measured

temporal range. Outside the measured range, the dynamics parameters are extrapo-

lated constantly from the closest measured value.

As a result of the tip dynamics, the length of branches changes. Let ∆t and δ

correspond to the time scale of the simulation and the spatial sampling interval of

the branch path, respectively. Moreover, let vi(t) correspond to the velocity of the ith

tip at time t in the simulation and let Li(t) correspond to the length of its associate

branch. Then, the change in length of the ith branch ∆Li(t) is given by the following

expression:

Li(t+ ∆t) = Li(t) + ∆Li(t) (5.1)

∆Li(t) = vi(t)∆t (5.2)

Once the change in length is calculated, the number of steps of length δ taken by

the tip is determined by the following formula:

Ni(t) =
⌊

∆Li(t) + ∆L̃i(t)
δ

⌋
(5.3)

∆L̃i(t) = Li(t)−Li(t−∆t)− δNi(t−∆t) (5.4)

where ∆L̃i(t)≥ 0 corresponds to the amount of length that is not accounted for by

the finite amount of steps in the previous iteration. Accounting for ∆L̃i(t) ensures

that the finite sampling interval of the branches δ does not cause rounding errors in

the length of the branch. Moreover, using a finite stepsize δ ensures that branches
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are discretized uniformly and therefore have the same smoothness irrespective of

the magnitude of the growth steps that they have taken in the past.

Once the number of steps is determined, the two-dimensional position of the tip

~xTip,i is updated. There are three cases to consider: Ni(t)> 0,Ni(t) = 0,Ni(t)< 0.

• Ni(t)> 0

In this case, the branch grows in a direction that is determined by the persis-

tence length Lp, which is a free parameter of the simulation. More specifically,

the change of the growth direction ∆θi,j at each step j is determined by

sampling a normal distribution with a mean of 0 and a variance of 2δ
Lp

:

∀1≤ j ≤Ni(t), ∆θi,j ∼N
(

0, 2δ
Lp

)
(5.5)

where N
(
µ,σ2) denotes a normal distribution with mean µ and variance σ2.

The new tip position is then given by:

~xTip,i(t+ ∆t) = ~xTip,i(t) + δ

Ni(t)∑
j=1

t̂(θi,j−1 + ∆θi,j) (5.6)

t̂(φ) = (cos(φ),sin(φ)) (5.7)

θi,j = θi,0 +
j∑

k=1
∆θi,k (5.8)

where θi,0 corresponds to the growth angle of the tip at the beginning of the

iteration.

• Ni(t) = 0

In this case, the tip doesn’t move:

~xTip,i(t+ ∆t) = ~xTip,i(t) (5.9)
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• Ni(t)< 0

When a negative number of steps is calculated, it implies that the branch has

retracted caused by a negative tip velocity. Consequently, the new position of

the tip will correspond to one of the point that discretizes the branch path. Let

{~yj |0≤ j ≤ n,n=
⌊
Li(t)
δ

⌋
} correspond to the ordered set of two-dimensional

points ~yj that discretize the path of the branch of length Li(t) such that ~y0

corresponds to the branch point position and ~yn corresponds to the branch tip

position. The new tip position is then given by:

~xTip,i(t+ ∆t) = ~yj̃ (5.10)

j̃ =
⌊
Li(t+ ∆t)

δ

⌋
(5.11)

Note that since Li(t+∆t)< Li(t), j̃ < n, which implies that ~yj̃ is well-defined

provided Li(t+ ∆t)≥ δ. If Li(t+ ∆t)< δ, this implies that the branch tip has

retracted back to the branch point. In this case, the tip or agent is deleted and

cannot grow any further. This models the branch annihilation process.

5.1.2 Branching

At any given time during the simulation, new branch tips or agents are spawned

from existing branches in the dendritic tree. The rate at which each branch gives

birth to a new branch tip is proportional to its length as found previously in the

analysis of the branching process (see section 3.2). In other words, the longer a

branch becomes, the more likely it is to give birth to a new branch tip during the

time step of the simulation ∆t. This probabilistic event is modeled as a Poisson

process whose rate is proportional to the branching rate kb. Namely, the probability
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P (L,∆t) that a branch of length L gives birth to a new branch tip in a time ∆t is

given by:

P (L,∆t) = 1−e−kbL∆t (5.12)

∆t�1≈ kbL∆t (5.13)

Once a new branch tip is born, its position along its parent branch is sampled

uniformly with some restrictions. This rule is chosen in order to preserve the

exponential distribution of branch lengths (see fig. 3.29). The candidate branch

points are restricted to be a distance of at least 2ε = 0.8µm from existing branch

points to ensure that the new branch tip does not collide prematurely with the high

density of dendrites near branch points.

Once the tip is born, the orientation of its growth with respect to its parent

is determined by sampling a normal distribution with an average of 99.03◦ and a

standard deviation of 30.36◦. These parameters correspond to the average and stan-

dard deviation of all measured branching angles pooled together (see section 3.2.4).

Furthermore, the branching angle is restricted to the range [30,150]◦ to prevent the

tip from colliding with its parent branch.

Finally, at birth, tips are initialized in the growing dynamical state and the

duration of the initial growing state is determined by the free parameter T0 as

mentioned in the previous section.

5.1.3 Contact inhibition

As a tip grows following the prescribed tip dynamics, it may contact other dendrites

in the tree. The third main rule of the dendritic tips determines the changes that

follow contacts, which model the growth inhibition process mediated by Dscam1.
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First, a tip collides with another branch when it is in close proximity with

one of its branch nodes. Specifically, the tip is deemed in contact with another

branch when it is within a distance ε= 0.4µm from the branch. This value loosely

corresponds to the branch thickness at the tip. Once a contact occurs, the state of

the tip changes to the paused state and its duration is determined by sampling an

exponential distribution with an average of 2.5min. This value is chosen based on

the analysis of the contact duration (see fig. 3.8).

Once the tip exits the paused state, its growth dynamics changes compared to

its dynamics prior to contact. More specifically, the transition rate parameters of

the Markov process are changed to the post-collision transition rates as measured

previously at 18 hr AEL (see fig. 3.9). Moreover, since the velocity of the tip measured

at 18 hr AEL is not representative of the tip velocity throughout development,

only the transition rates are modified upon collision while the the state velocity

parameters remain the same. As shown in fig. 5.1, the post-collision transition

rates favor the shrinking state as the average tip velocity becomes negative after

contact.
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Figure 5.1 – Comparison of the free and post-collision dynamics in silico
The average velocity is measured from the transition rates steady state and
the average state velocities while the diffusion constant is calculated using the
Green-Kubo relation described in section 4.4.3.
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Finally, the post-collision dynamics is transient and its duration is determined

by the free parameter α. More specifically, once the tip enters into the post-collision

dynamics, it transits from one state to another according to the post-collision transi-

tion rates for a duration α, after which the values of the transition rates are reverted

back to the free tip transition rates, i.e. the transition rates that determine the tip

dynamics before collision.

5.2 Initial and boundary conditions

In addition to the agent rules, additional modeling choices are made to define the

initial and boundary conditions of the simulated morphogenesis.

For the initial conditions, the simulation starts at 14 hr AEL, which corresponds

to the start of morphogenesis, and ends at 120 hr AEL. Initially, 3 agents are

positioned at the soma located at the origin (0,0) and their initial growth direction

is given by 0,120,240◦, respectively. Moreover, to ensure that the initial branches do

not retract prematurely due to randomness, their velocity is set to 1µmmin−1 for

the first 25 minutes of the simulation. Moreover, branching is not allowed during

this period to prevent premature collisions of the soma branches with secondary

branches.

For the boundary conditions, the growth of dendrites is restricted to a rectangu-

lar boundary to model the tiling phenotype of the class IV neurons. The sizes of the

boundary are determined by a linear fit to the corrected segment size measurements

(see fig. 3.25) and remain constant after 96 hr AEL. Also, when a dendritic tip

collides with the boundary, their state changes to the paused state preventing them

from crossing.
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5.3 Parameter summary

The agent-based model has many parameters that define the growth rules of the

agent. Some parameters change over the course of the simulation and are summa-

rized in table 5.1. In particular, the transition rates and velocity parameters are

linear interpolated between the measured developmental times. In addition, the

constant parameters are summarized in table 5.2 and the free parameters are given

in table 5.3.
Parameters Symbol (Units) 24 hr AEL 48 hr AEL 96 hr AEL
Shrinking-to-paused transition rate kSP (min−1) 0.204 0.200 0.428
Shrinking-to-growing transition rate kSG (min−1) 0.489 0.394 0.566
Paused-to-shrinking transition rate kPS (min−1) 0.672 0.553 0.239
Paused-to-growing transition rate kPG (min−1) 0.465 0.366 0.248
Growing-to-shrinking transition rate kGS (min−1) 0.609 0.706 0.845
Growing-to-paused transition rate kGP (min−1) 0.0875 0.120 0.265
Shrinking state velocity avg. 〈vS〉 (µmmin−1) 0.648 0.499 0.343
Shrinking state velocity std. std(vS) (µmmin−1) 0.482 0.494 0.324
Paused state velocity avg. 〈vP 〉 (µmmin−1) 0 0 0
Paused state velocity std. std(vP ) (µmmin−1) 0.082 0.045 0.053
Growing state velocity avg. 〈vG〉 (µmmin−1) 0.772 0.917 0.456
Growing state velocity std. std(vG) (µmmin−1) 0.504 1.603 0.655
Branching rate kb (min−1µm−1) fit (see fig. 3.12b)
Segment size DAP,DLR (µm) fit (see fig. 3.25)

Table 5.1 – Dynamic simulation parameters
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Parameters Symbol (Units) Value
Timestep ∆t (min) 0.1
Stepsize δ (µm) 0.1
Collision distance ε (µm) 0.4
Contact duration average tcontact (min) 2.5
Post-collision shrinking-to-paused transition rate k∗SP (min−1) 0.097
Post-collision shrinking-to-growing transition rate k∗SG (min−1) 0.540
Post-collision paused-to-shrinking transition rate k∗PS (min−1) 1.015
Post-collision paused-to-growing transition rate k∗PG (min−1) 0.406
Post-collision growing-to-shrinking transition rate k∗GS (min−1) 0.946
Post-collision growing-to-paused transition rate k∗GP (min−1) 0.079
Branching angle average µθb (◦) 99.03
Branching angle standard deviation σθb (◦) 30.36
Simulation start time tstart (hr AEL) 14
Simulation end time tend (hr AEL) 120
Branching start time tbranching (hr AEL) 14.4167
Initial number of branches Nb,soma 3
Initial branches velocity Vsoma (µmmin−1) 1

Table 5.2 – Constant simulation parameters

Parameters Symbol (Units) Value
Growth persistence length Lp (µm) 100
Initial growth duration T0 (min) 1.5
Post-collision dynamics duration α (min) 10

Table 5.3 – Free simulation parameters

5.4 Morphogenesis of class IV neuron in silico

Using the dendritic growth rules and parameters mentioned above, a series of 12

stochastic simulations is generated and the morphology is recorded throughout the

development of the tree in silico. Examples of simulated trees are shown in fig. 5.2 at

the 24, 48, 72, 96 and 120 hr AEL and compared against examples of experimental

neurons. As depicted, the morphology of the simulated neurons are qualitatively

similar to the real class IV neurons. Moreover, the accuracy of the agent-based model

is assessed with various quantitative metrics as shown in fig. 5.3. For each of these
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metrics, the average and standard deviation of the metric value is calculated using

the 12 simulations generated with the same parameter set.

Figure 5.2 – Comparison of experimental and simulated trees
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Figure 5.3 – Simulated morphometrics over development
The horizontal axis corresponds to the developmental time in hr AEL.

First, topological metrics such as the total branch length, the number of branches

and the mean branch length are compared. Note that these metrics are not indepen-

dent since the mean branch length corresponds to the ratio of the total branch length

and the number of branches. Although the total branch length of simulated and

real neurons are in agreement throughout development, the number of branches

differ significantly at 120 hr AEL. This discrepancy is potentially due to an overesti-

mation of the number of branches by the skeletonization algorithm. Alternatively,

the difference in the number of branches at the later stages could also indicate that
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branches disappear too quickly in simulated morphogenesis, which could be caused

by a highly dynamic branch tip or a rescue mechanism that is not captured by the

model. Finally, the output branching rate per unit length is calculated to verify that

the branching process is indeed extensive. Agreement of the branching rate between

simulated and real neurons is expected since the input branching rate is determined

by the fit to the measured values.

Next, various rates are quantified over the development of the dendritic tree.

First, the rate at which branch tips die or annihilate is measued as explained

previously in section 3.2.5. Both the absolute death rate over the entire neuron and

the death rate normalized by the number of tips are calcualted. As shown, the death

rate is slightly lower than the physiological value at 24 hr AEL, but is overestimated

almost two-fold from 48 hr AEL onward. Moreover, the temporal evolution of the

death rate per unit tip matches the evolution of the branching rate as expected from

the fact that more branch births leads to a proportionally higher death rate. This

is also consistent with the mean-field model, which predicts that the ratio kb
kd

is set

by the density ratio Uss
Rss

once the steady-state is established (see section 4.7). To

get more insights into the cause of the branch death, the rate at which branch tips

collide with other dendrites or the boundary is also recorded, which is not measured

experimentally. The absolute collision rate and the collision rate per unit tip are

calculated in a manner similar to the death rate. As shown, the absolute collision

rate increases until 72 hr AEL, but subsequently decreases until 96 hr AEL and

increases again from 96 to 120 hr AEL. This non-monotonic variation of the collision

rate is a signature of the change in the tip dynamics, which becomes less active or

more immobile at 96 hr AEL compared to the previous stages. Hence, the probability

that a tip collides with other dendrites decreases accordingly. Finally, the collision

rate per unit tip shows a rather peculiar behavior. After an initial sharp increase, it

reaches a plateau until 48 hr AEL. Then, it decreases linearly with time until 96 hr

AEL and remains constant from this point until the end of the simulation. The linear
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decrease of the collision rate is likely caused by the linear interpolation of the tip

dynamics parameters, which decreases the mobility of the branch tip from 48 to 96

hr AEL. Also, at 96 hr AEL, the collision rate per unit tip reaches a steady-state since

the tip dynamics parameters remain constant from that point forward.

Moreover, metrics that assess the space-filling ability of the shape are consid-

ered. First, the simulated neuron size is calculated (as explained in section 3.3.1)

on the anterior-posterior (AP) or the left-right (LR) dimension. As depicted, the

sizes of the neuron are under-estimated compared to the measurements indicating

that the mass of the simulated neurons is more concentrated near the soma than

the physiological neurons. In addition, the fractal dimension (as explained in sec-

tion 3.3.5) and the mesh size (as explained in section 3.3.6) are also compared. As

indicated by both metrics, the density of the simulated trees is initially in agreement

with the real neurons at 24 hr AEL, but the simulated tree becomes significantly

denser from 48 hr AEL onward. Indeed, after 48 hr AEL, the fractal dimension is

overestimated by at least 1 standard deviation indicating that the shape is closer to

filling two-dimensional space compared to real neurons. Moreover, the meshsize is

underestimated by at least 2 standard deviations (worst at 72 hr AEL) indicating that

holes in the dendritic tree are significantly smaller than real class IV neurons. Finally,

the average persistence length of the branches is used to assess the morphological

shape of the branches. As shown, the persistence length is in agreement with the

real neurons throughout most of the development. Note that the persistence length

of the growth process, set to 100µm, is different than the persistence length of the

branches. This is due to the combined effect of branching and branch annihilation,

which effectively segments branches into a set of short connected segments whose

orientation changes abruptly from one segment to the next. These abrupt changes in

the branch path reduces its straightness, which explains why the output persistence

length is much smaller than the persistence length of the growth process.
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Finally, the density profiles of the dendrites and dendritic tips are quantified

using the average species density and the density decay length as explained in

section 3.3.8. Regarding the average dendrites density, the simulated neurons are

similar to the real neurons with the highest discrepancy observed at 72 hr AEL. This

is explained by the fact, at 72 hr AEL, the neuron size is underestimated and the

total branch length is overestimated, which both contribute to increasing the average

dendrites density. Furthermore, the dendritic tips density of the simulated neurons

is also in agreement with the measured values where the highest discrepancy occurs

at 120 hr AEL, which again may be due to the over-estimation of the number of

branches by the skeletonization algorithm. Since the neuron size and the total

number of branch tips are both underestimated, this indicates that although the

simulated trees do not extend as far as the real trees, their spatial distribution

of branch tips normalized over the tree area is similar. Finally, the decay length

of the dendrite density profiles at the periphery is examined. As this measure is

inherently noisy, agreement between the model and real neurons is difficult to assess.

Nevertheless, the metric value of the simulated neurons is within a standard error

of the measured values. In addition, note that the decay length along the AP and

LR directions are similar, since the boundary conditions are uniform across all four

boundaries. This is a limitation of the agent-based model since the AP boundary in

vivo is known to be more sharply defined than the LR boundary.

5.4.1 Successes and failures

Using three simple rules of dendritic morphogenesis, which include 1) stochastic

branch growth, 2) extensive branching and 3) contact-based growth inhibition, the

agent-based model succeeds at capturing the qualitative features of the dendritic

tree morphology as exemplified by the simulated trees shown in fig. 5.2. Moreover,

the model also succeeds at reproducing coarse-grained morphometrics such as the

total branch length, the neuron size or the dendrites density.
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However, the agent-based model is unable to capture some key processes of

morphogenesis. One of the biggest failure, which has a major impact on the tree

morphology is the branch death rate. Indeed, in simulations, the death rate is almost

twice as high as the measured death rate indicating that branches annihilate too

quickly which over-prunes the tree. Two reasons may explain a high death rate.

First, the average initial branch length T0 may be too small to allow branches to

survive to fluctuations of the tip growth. Indeed, as was found in the analysis

of the mean-field death process, a higher initial branch length leads to a higher

probability that the branch tip does not return to its native branch point where it

annihilates. Second, the duration of the post-collision dynamics may be too long,

which increases the probability that the tip retracts back to its branch point since

the post-collision dynamics is skewed towards the shrinking state. Finally, another

failure of the model is its inability to reproduce the low density of dendrites near

the soma that is observed at the late stages. This indicates that the assumption of a

spatially uniform branching rate may be incorrect. Alternatively, there could also be

a non-uniform death process whereby old branches, which are predominantly closer

to the soma, are more likely to die than younger branches, which are located mostly

at the periphery of the neurons.

5.5 Free parameter exploration

In order to assess the importance of the free parameters of the model, the parameter

space is explored and the effect of the parameters on the morphology is quantified

using the morphometrics. The agent-based model has 3 free parameters: the

persistence length of the growth Lp, the duration of the post-collision dynamics

α and the duration of the initial branch growth phase T0. To analyze their effect,

multiple series of 12 simulations are generated where each series possess a different

set of free parameter values. To simplify the parameter exploration, the exploration
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of each free parameter is performed independently from the other free parameters.

When a free parameter is not explored, its value is fixed to the value given in table 5.3.

These base values were selected because they are physiologically plausible and

because they generated realistic morphologies as shown in section 5.4 in preliminary

explorations.

5.5.1 Persistence length Lp

First, the effect of the persistence length on the morphology is analyzed. More specifi-

cally, the following values of the growth persistence length are considered:25,50,100,200µm.

Examples of simulated trees generated with each of these four persistence length

values are compared with the experimental trees in fig. 5.4. As expected, increasing

the persistence length increases the straightness of the branches. Moreover, the

morphometrics are compared against the experimental measurements as shown in

fig. 5.5.
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Figure 5.4 – Simulated trees with variable persistence length Lp
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Figure 5.5 – Simulated morphometrics with variable persistence length Lp
The horizontal axis corresponds to the developmental time in hr AEL.

As depicted, the value of the persistence length does not have a considerable

effect on most of the morphometrics. The morphometrics that are the most affected

are the branch persistence length and the dendrites average density. As expected,

the branch persistence length decreases as the growth persistence length decreases,

since the growth persistence length is an upper bound of the persistence length of

the branch path. Moreover, the dendrites density decreases as the input persistence

length increases because increasing the growth persistence length decreases the

ability of branches to explore and fill space. The fact that the persistence length
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has a small effect on the overall tree morphology is potentially a consequence of

the uniform branching rate. Indeed, since branching can occur everywhere and

since it scales with the local density of dendrites, the branching process is efficient

at exploring and filling space and henceforth branches may not require a suitable

persistence length to explore their neighborhood.

5.5.2 Post-collision dynamics duration α

The second free parameter that is explored is the duration of the post-collision

dynamics α. In this exploration, α takes the following values: 1,5,10,50,100min.

Examples of simulated trees for each of these values are depicted in fig. 5.6 and the

morphometrics comparison is shown in fig. 5.7.
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Figure 5.6 – Simulated trees with variable post-collision dynamics duration α
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Figure 5.7 – Simulated morphometrics with variable post-collision dynamics duration
α
The horizontal axis corresponds to the developmental time in hr AEL.

In general, the metrics portray what one would expect by increasing the duration

of the repulsive post-collision dynamics, i.e., increasing α increases the pruning of

the tree. This intuition is demonstrated in several ways.

First, the total branch length and the number of branches decrease as α in-

creases, while the mean length remains relatively constant over the range of the

explored values. Moreover, the collision rate per unit tip decreases as α increases

since the branch tip spends more time in a repulsive state. Surprisingly, increasing
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α decreases the absolute death rate while the death rate per unit tip is almost

unaffected. This can be explained by the compound effect of branching and tip

growth. As branch tips spend more time in the shrinking state, the total branch

length increases at a slower rate, which leads to fewer new branches, since the

branching process is extensive. Fewer branch births therefore leads to fewer branch

deaths, since the death rate scales with the birth rate.

In addition, the metrics of density are also consistent with the idea that in-

creasing α increases pruning. Indeed, the meshsize increases and the dendrites and

dendritic tips densities decrease when α increases. However, the fractal dimension

is almost unaffected by α and slightly decreases by increasing α to 100min. Finally,

α has also no effect on the uniform neuron size.

5.5.3 Initial growth duration T0

The third free parameter that is explored is the duration of the initial growth phase

of the branch tip T0. For this exploration, the value of T0 is set to 0.5,1,1.5,2min.

Examples of simulated trees for each of these values are depicted in fig. 5.8 and the

morphometrics comparison is shown in fig. 5.9.
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Figure 5.8 – Simulated trees with variable initial growth duration T0
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Figure 5.9 – Simulated morphometrics with variable initial growth duration T0
The horizontal axis corresponds to the developmental time in hr AEL.

The duration of the initial growth phase T0 is the free parameter that has the

most prominent effect on the morphology. In general, the change in the metrics

are consistent with the idea that increasing T0 leads to a higher branch survival,

which increases the dendrites mass and density. Indeed, as T0 increases, both the

total branch length and number of branches increases, and the mean branch length

decreases since more branches survive. Furthermore, the collision rate increases

for increasing T0 and the density metrics also indicate that the tree becomes denser

with a higher value of T0.

5.5 Free parameter exploration 229



One unexpected observation is the fact that the persistence length of the

branches decreases as T0 increases. This maybe caused by the fact that, when

the value of T0 is small, the tree is sparse and therefore branches collide less often

and their persistence length is closer to the persistence length of the growth, which

is given by Lp = 100µm in this exploration.

Another surprising observation is the increase of the absolute death rate as T0

increases. This is again a signature of the compound effect of branch growth and

extensive branching as mentioned in the α exploration. However, when normalizing

by the number of branch tips, the death rate decreases as T0 increases consistent

with the first-passage analysis presented in the mean-field model (see section 4.6).

Moreover, the death rate per unit tip does not decrease linearly as T0 increases

linearly. This is again consistent with the first-passage analysis that shows that the

death rate depends non-linearly on the initial branch length.

Interestingly, looking at the uniform neuron size and the decay length of the

density fronts, two predictions of the mean-field model are confirmed as established

by the marginal stability analysis of the front (see section 4.7.3). First, as T0

increases, the zeroth-order death rate kd,0 decreases since the branch has a higher

survival probability. This allows for the density front to propagate faster as shown by

the increase in the uniform neuron size for increasing T0. Second, as T0 increases,

the agent-based model predicts that the density front decay length decreases. Indeed,

this is consistent with the marginal stability analysis of the mean-field model since

a lower value of kd,0 is associated with a sharper density front as a higher branch

survival leads to a more quickly filled boundary.
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5.6 Non-uniform branching exploration

Motivated by the failure of the agent-based model to recover the low dendrites

density near the soma, the effect of a non-spatially uniform branching rate is also

explored. For this new branching rule, branches that are closer to the periphery

of the neuron are more likely to give birth to new branch tips. More specifically,

the probability that any branch node of length δ at position ~xi gives birth to a new

branch tip is given by the following formula:

PB(~xi) =
exp

[
−(Rg−|~xi|)

λ

]
∑
j exp

[
−(Rg−|~xj |)

λ

] (5.14)

where Rg is the radius of gyration of the tree, (0,0) corresponds to the position

of the soma as mentioned before and λ is a free parameter that determines the

spatial extent of the non-uniform branching rate. In this modified branching rule,

the number of new branch tips at the given time t is first determined by sampling a

Poisson distribution with an average of kb(t)LTot(t)∆t, where LTot(t) corresponds to

the total branch length. Then, the new branch tips are spatially distributed according

to eq. (5.14).

Using this new branching rule, multiples series of simulations are generated

by changing the value of λ to 12.5,25,50,100µm. Examples of simulated trees are

compared with the experimental trees in fig. 5.10 and the associated morphometrics

are given in fig. 5.11.
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Figure 5.10 – Simulated trees with variable branching rate decay length λ
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Figure 5.11 – Simulated morphometrics with variable branching rate decay length λ
The horizontal axis corresponds to the developmental time in hr AEL.

As shown by the simulated tree examples, the tree density is slightly lower

near the soma as the branching rate is more biased towards the periphery of the

neuron (smaller values of λ). Although changing the branching rate decay length

has a noticeable effect on the branching pattern, the morphometrics are only slightly

affected. The uniform neuron size increases slightly as λ decreases since the mass

distribution of the tree has a higher variance in this case. Moreover, the changes in

the fractal dimension and the meshsize indicate that the tree is sparser as λ decreases,

but the differences of these metrics at different values of λ are not significant. In
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addition, the decay length of the density profile increases proportionally with the

decay length of the branching rate. This is expected since a higher branching rate at

the boundary (small λ) leads to denser dendrites at the front, and hence the density

profile decays more sharply.

Based on the results of this exploration, a non-uniform branching rate with

a decay length of 12.5µm could explain the sparser density of dendrites near the

soma. However, this modified branching rule does not significantly affect most

morphometrics.

5.7 Effect of the segment boundary condition

Finally, to asses the effect of the boundary condition on the morphology of the tree,

another set of simulations is generated using a repulsive boundary. More specifically,

in this model, branch tips that collide with the boundary go directly to the shrinking

state, as opposed to going to the paused state as used previously. Examples of

simulated trees for a repulsive boundary are depicted in fig. 5.12 and compared

against the pausing boundary used in the base simulations. The morphometrics

comparison is shown in fig. 5.13 and demonstrates that the boundary condition has

no significant effects on the morphology.
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Figure 5.12 – Simulated trees with a repulsive boundary

5.7 Effect of the segment boundary condition 235



0 24 48 72 96 120
0

0.005

0.01

0.015

B
ra

nc
hi

ng
 r

at
e 

(m
in

-1
µm

-1
)

0 24 48 72 96 120
0

5

10

15

20

25

A
bs

ol
ut

e 
co

lli
si

on
 r

at
e 

(m
in

-1
)

0 24 48 72 96 120
0

0.02

0.04

0.06

0.08

C
ol

lis
io

n 
ra

te
 p

er
 ti

p 
(m

in
-1

)

0 24 48 72 96 120
0

100

200

300

400

500

600

U
ni

fo
rm

 n
eu

ro
n 

si
ze

s 
(µ

m
) Exp. - AP - Fit

Exp. - LR - Fit
Exp. - AP
Exp. - LR

0 24 48 72 96 120
0

5

10

15

20

25

A
bs

ol
ut

e 
de

at
h 

ra
te

 (
m

in
-1

)

0 24 48 72 96 120
0

0.05

0.1

0.15

D
ea

th
 r

at
e 

pe
r 

tip
 (

m
in

-1
)

0 24 48 72 96 120
0

0.05

0.1

0.15

0.2

0.25

0.3

A
vg

. d
en

dr
iti

c 
le

ng
th

 d
en

si
ty

 (
µm

-1
)

0 24 48 72 96 120
0

0.01

0.02

0.03

0.04

A
vg

. d
en

dr
iti

c 
tip

 d
en

si
ty

 (
µm

-2
)

0 24 48 72 96 120
0

5

10

15

D
en

dr
ite

s 
de

ns
ity

 d
ec

ay
 le

ng
th

 (
µm

)

Exp. AP - Mean  SD
Exp. LR - Mean  SD

0 24 48 72 96 120
0

2

4

6

8

10

A
ve

ra
ge

 b
ra

nc
h 

le
ng

th
 (

µm
)

0 24 48 72 96 120
0

1

2

3

4

5

6

M
es

hs
iz

e 
(µ

m
)

0 24 48 72 96 120
0

1000

2000

3000

4000

N
um

be
r 

of
 b

ra
nc

he
s

0 24 48 72 96 120
0

10

20

30

40

50

Pe
rs

is
te

nc
e 

le
ng

th
 (

µm
)

0 24 48 72 96 120
0

5

10

15

20

25

T
ot

al
 le

ng
th

 (
m

m
)

0 24 48 72 96 120
1.5

1.6

1.7

1.8

1.9

2

Fr
ac

ta
l d

im
en

si
on

Exp. - data
Exp. - Mean  SD
Pausing boundary - Mean  SD
Repulsive boundary - Mean  SD

Figure 5.13 – Simulated morphometrics with a repulsive boundary
The horizontal axis corresponds to the developmental time in hr AEL.

5.8 Caveats and limitations

The agent-based model succeeds at reproducing qualitative and quantitative features

of dendritic morphogenesis. However, the model makes several assumptions that

may limit the range of its application and the accuracy of the predicted morphology.

This section lists some of these limitations.
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First, the tip dynamics parameters at 72 hr AEL are not constrained by experi-

mental measurements, but are determined by the linear interpolation of the 48 and

96 hr AEL parameters. Large differences between the interpolated and measured

values could incur significant changes in the morphology on and after 72 hr AEL.

Second, the transition rates of the post-collision dynamics do not change

throughout development. Depending on the variation of the post-collision dynamics

during development, this assumption could cause discrepancies in the morphology

leading to either denser or sparser trees.

Third, the model assumes that the substrate, i.e. the epithelium, has no effect

on the growth. The main assumption is that neurons are slipping onto the substrate,

which was warranted by the non-extension of the non-terminal branches (see

fig. 3.28). However, this assumption is potentially incorrect as interactions of the

dendrites with the epithelium may play a functional role in the expansion of the

dendritic tree. Indeed, recent work has shown that proximal dendrites of da neurons

in Drosophila are enclosed in epithelial cells, which inhibits branching and growth,

and the enclosure is mediated by membrane-associated proteins [81]. Moreover,

if dendrites gradually attach to the substrate as they are growing, older dendritic

branches may be more affected by the epithelium compared to newer branches. This

mechanism could explain the sparser number of branches observed near the soma

at the later stages.

Finally, the model completely neglects the effect of neuronal activity on the

development. This is in part due to the fact that neuronal activity was not measured

in this first attempt to characterize class IV neuron development. It is imaginable

and likely possible that the sensory stimulation of class IV neurons plays a significant

role in the development of its dendritic tree.
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5.9 Conclusions

• We propose an agent-based model of dendritic morphogenesis that generates

synthetic class IV neuron dendritic trees using three stochastic rules of growth

constrained by experimental measurements: 1) stochastic branch growth, 2)

extensive branching and 3) contact-based growth inhibition.

• The model predicts that coarse-grained morphometrics such as the total branch

length and the number of branches are in agreement with the measurements,

but the dendrites density and the branch death rate are overestimated.

• The model has three free parameters: 1) the persistence length of the growth,

2) the duration of the post-collision dynamics and 3) the duration of the initial

branch growth phase. Among these parameters, the duration of the initial

growth phase of the branch has the strongest impact on the tree morphology

whereby increasing this duration leads to denser dendritic trees.
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Conclusions and Outlook 6

Dendrites are essential for neurons to receive information from their external envi-

ronment. The shape of dendritic trees comes in various forms and their development

ensues from a complex cellular machinery that assembles the dendritic arbor through

a multitude of microscopic molecular mechanisms. How these mechanisms cooperate

with one another to form the observed dendritic morphologies remains misunder-

stood. This lack of knowledge and the beauty of this complex multi-scale process has

motivated us to investigate the causal relationships between the molecular processes

of dendritic growth and the emergent cellular morphology. Our study of the class IV

neuron dendritic growth in Drosophila melanogaster larvae has led us to characterize

dendritic growth using common and novel metrics and build multi-scale models of

dendritic morphogenesis that improved upon previous proposals.

6.1 Contributions

To investigate the dendritic growth of class IV neurons, we have used analytical

tools, theoretical models and stochastic simulations to quantify the microscopic and

macroscopic aspects of the growth. Our contribution to the research of neuronal

growth is multi-faceted.

In chapter 2, we described how we made our observations of the class IV

dendritic growth in vivo. To process our images, we designed a novel image stitching
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algorithm using non-rigid displacement fields. We also designed a skeletonization

algorithm based on a previous algorithm that traces neurons by scooping pixels

[70].

In chapter 3, we characterized the dendritic development into three main

processes: 1) stochastic tip growth, 2) extensive branching and 3) contact-based

growth inhibition. First, we found that the class IV dendritic tip growth can be

described by a 3-state Markov process whose state determines the velocity of the

tip. Second, we discovered that the branching process is spatially uniform with a

rate that scales with the total amount of dendrites in the tree. Third, we found

that the duration of the branch tip contacts are exponentially distributed and the

post-collision dynamics favors tip retraction. Finally, we described the morphology

using established and novel metrics and concluded that the density of the tree is

initially dense, but subsequently becomes sparser and reaches a steady-state at later

stages.

In chapter 4, we formulated a mean-field model of dendritic growth following

the ideas of previous models [21, 78] and using the insight that we gained from our

analysis of the dendritic growth process. Our framework constructs mathematical

relationships between the local growth processes and the macroscopic growth.

In particular, we succeed at predicting the parameter values of the microscopic

processes using the large-scale morphometrics henceforth establishing a link between

the sub-cellular processes and the morphology. In addition, we predict that the

dendritic tree expands from the motion of a solitary wave of dendritic tips that

travel at a constant speed. The wave velocity results from the combined effect of

tip growth, branching and contact inhibition, akin to the propagating wavefront in

Fisher’s equation and the Hannezo et al. model of the ductal network morphogenesis

in mammary glands [21].
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In chapter 5, we implemented an agent-based model of branching morphogen-

esis similar in idea to the proposal of Palavalli et al. [61]. However, our model is

more strongly constrained by our measurements of the growth processes leaving

only three parameters free. Moreover, the agent-based model can recapitulate the

dendritic morphology of the three larval stages, while the Palavalli et al. model

recovers only the first 10 hours of development. By exploring the parameter space,

we also find that the initial branch growth duration is a strong determinant of the

morphology, while the effect of the growth persistence length and the duration

of the post-collision dynamics on the morphology are nominal. Our fine-grained

computational model improves our understanding of branching morphogenesis by

providing a mechanistic foundation for the development of the class IV neuron mor-

phology. Combined with the mean-field model, the agent-based model strengthens

our hypothesis that dendritic morphogenesis is an emergent phenomenon of the

local growth processes.

In summary, we characterized the class IV growth processes throughout the

larval development and constructed multi-scale theoretical and computational mod-

els of dendritic growth constrained by our analysis. Our models improve upon

previous approaches by providing a mechanistic framework to understand den-

dritic growth. The mean-field model establishes a direct connection between the

microscopic growth mechanisms and the large-scale features, which improves the

Sugimura et al. [78] model as it better represents the stochastic growth process

of class IV neurons. Moreover, the microscopic growth mechanisms that build the

foundations of both models help us the cellular processes that drive neuronal growth

at the large scale. This connection is an improvement of the proposal by Cuntz

et al. [9] model, since their model disregards constraints imposed by the cellular

processes when optimizing the dendritic network. Finally, our results demonstrate

that the sub-cellular growth processes of class IV neurons are sufficient to produce
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a self-organized dendritic arbor leading us to answer our original question in the

following way:

How do neuronal dendrites grow?

The growth of the class IV neuron dendritic tree is autonomous and self-

organizes through contact-based retraction.

6.2 Future work

Our characterization of dendritic growth and our proposed multi-scale models opens

many avenues that will shine new light on dendritic morphogenesis in class IV

neurons.

Our analysis of the tip growth dynamics characterizes the growth as a Markov

process with specific transition rates and associated velocities. Our samples of the

tip dynamics allowed us to calculate the dynamics parameters with certainty at each

developmental stage. However, the sparsity of the dataset prohibited an in-depth

analysis of the spatial dependence of tip dynamics. With a denser sampling of the

tip dynamics, one could study the variability of the tip dynamics throughout the

arbor with the following questions: How does the tip dynamics change spatially?

Specifically, how do the average growth velocity and diffusion constant change as a

function of the distance from the soma? Is the dynamics more or less active at the

periphery? A non-uniform dynamics would indicate that spatial cues are potentially

at play during the development while a uniform dynamics would indicate that such

spatial cues are either spatially uniform or inconsequential to the large scale of the

tree. Alternatively, non-uniformities in the dynamics could also provide evidence

242 Chapter 6 Conclusions and Outlook



on intracellular transport constraints that module the growth of tips throughout the

tree.

Another aspect of the tip dynamics that raises new questions is the Markov

property. As explained earlier, we found mixed evidence that the tip growth process

is truly Markov. One could further test this result with more data or by using

the agent-based model as a testbed for the effects of non-Markovianness on the

morphology. Furthermore, the agent-based model assumes that the state duration is

uncorrelated with the state velocity. However, our preliminary analysis has shown

the presence of some correlation between the duration of the velocity. Including

these correlations in the agent-based model would be the first strategy to probe their

effect.

The predictions of the mean-field model also suggest new investigations. One

of the major caveats of the mean-field model is the absence of the boundary effects,

which arise from the tiling of the class IV neurons in vivo. As such, the model predicts

a forever expanding tree constrained solely by the tip dynamics and branching

process. One could easily implement the boundary constraints numerically using

a moving boundary whose velocity is set by the growth of the body segment size.

The results of this model would provide answers to these questions: how does the

boundary condition change the density front profile? How far do these changes

propagate towards the bulk of the profile?

Moreover, the validity of the mean-field model could be further assessed by

measuring the distribution of the branch lifetimes over development. The model

makes quantitative predictions on the shape of the lifetime distribution by modeling

the tip death process as a first-passage problem. Discrepancies between the predicted

and measured distribution would suggest the presence of additional mechanisms

that influence tip growth. A measured lifetime that is higher than predicted would

indicate that there are rescue mechanisms that promote regrowth or prevents certain
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death, while a shorter measured lifetime would suggest that the contact growth

inhibition promotes persistent changes in the tip dynamics that accelerate the death

process. Related to this question, one could also use the agent-based model to

test the mean-field predictions of the contact inhibition parameter cRU and the

death rate kd. In particular, cRU was predicted from a first-order perturbation of

the tips steady-state. How important is the next leading order in this perturbation?

Simulations could help put a bound on the error of the perturbation or elucidate

second-order effects due to contacts.

Finally, this thesis establishes a connection between the dendritic tip growth

processes and the morphology of the resulting tree. However, this relationship pro-

vides only a partial answer to the broader question of the emergence of morphology

from molecular mechanisms. Establishing the other half of this connection requires

a consideration of the molecular constraints on the growth of the dendritic tips.

To build this connection, one could use stochastic simulations framed within the

agent-based model to implement the molecular constraints on the growth. First, one

could model the transport of the membrane and cytoskeletal elements by sectioning

the dendrite branches into finite elements with transport properties that depend on

the density of molecular motors. Then, the tip could be treated as an independent

agent that moves based on the local dynamics and density of the cytoskeleton (actin

and microtubules). Furthermore, the effect of the stabilization of microtubules on

the establishment of the branch could be studied by modeling the acetylation and

tyrosination of the microtubule bundles. In addition, one could model local sources

of proteins (eg. Golgi outposts) and study how their distribution throughout the

arbor influences the growth of the dendritic tips. Based on recent findings [56],

the microtubule and actin density are strong predictors of the morphology, hence

modeling the cytoskeleton dynamics could be sufficient to predict the morphology

from the molecular processes.
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