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Abstract

Energetics of Biological Mechanics and Dynamics

Daniel S. Seara

2021

Living matter is a class of soft matter systems that maintains itself away from ther-

modynamic equilibrium by the continual consumption of energy. Individual proteins

consume energy and break detailed balance to drive active force generation by molec-

ular motors, force-dependent binding kinetics, and chemically driven (dis)assembly.

These non-equilibrium dynamics propagate across heterogeneous structures to drive

essential life processes such as replication, migration, and shape change at the scale

of both single cells and multicellular tissues. While much work has been done to

understand the molecular processes underlying each individual non-equilibrium be-

haviors, we lack a general understanding of how the microscopic breaking of detailed

balance translates to large-scale cellular behaviors and materials properties.

Using the tools of non-equilibrium thermodynamics, this thesis examines this

question by estimating energy dissipation during dynamical and mechanical phase

transitions seen in experiments, simulations, and theoretical models of biological

materials. We choose the actomyosin cytoskeleton, a network composed of poly-

meric proteins (actin) that are driven away from thermodynamic equilibrium by the

activity of molecular motors (myosin), as our model system. Actomyosin contains

the three types of non-equilibrium driving we will focus on: force generation, non-

equilibrium binding kinetics, and active (dis)assembly. At the subcellular level, anal-

ysis of actin filament motions in experiments shows that energy dissipated through

bending controls the transition between stable and contractile steady states. Using

simulations, we show that non-equilibrium binding kinetics of molecular motors con-

trols a fluid-solid phase transition characterized by thermodynamic quantities with
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opposite symmetries under time-reversal. At the cellular level, we develop new tools

for measuring irreversibility in spatiotemporal dynamics to analyze the energetic

costs of oscillations and synchronization of a model biochemical oscillator inspired

by (dis)assembly driven actomyosin dynamics.

Throughout this thesis, we show that a cell’s distance from equilibrium tunes

its mechanical properties and dynamics. This establishes non-equilibrium thermo-

dynamics as a common language with which to unify disparate biological functions,

establishing a framework for discovering universal design principles for living matter.
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4.10 Transiently synchronized dynamics in the reaction-diffusion

Brusselator and finite-size scaling in E. (a) Typical trajectory
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peaks somewhere between q = 0 and the maximum in Fig. 5c. (b)

Wavenumber q that maximizes Ê for the reaction-diffusion Brusse-

lator for compartment volumes V = {101, 102, 103} shows a sharper

transition that gets closer to ∆µHB (red line) as the volume increases. 86
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Chapter 1

Introduction

It is in relation to the statistical point of view that the structure of the

vital parts of living organisms differs so entirely from that of any piece

of matter that we physicists and chemists have ever handled.

Erwin Schrodinger, What is Life?

Living matter constitutes a class of complex, many-body systems characterized

by self-replication and adaptation performed via evolutionarily selected mechanisms.

These mechanisms are powered by chemical reactions that result in the generation of

mechanical work, processing of information, and synthesis of new materials. These

chemical reactions occur in microscopic systems that exchange energy and parti-

cles with a fluctuating environment and are constantly barraged by thermal noise.

In other words – living matter is quintessentially non-equilibrium with no right to

predictable or long-lived dynamics at the level physicists have come to expect from

non-living matter.

And yet, genes are conserved over time-scales relevant for plate tectonics [9]. Pro-

teins extracted from a cell will spontaneously self-assemble into properly functioning,

complex machines that perform their original function in under an hour [10]. DNA

is replicated at a rate of 1,000 base pairs per second, with an error rate of 1 per mil-
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lion base pairs [11]. Unlike non-living matter that succumbs to chaos, turbulence, or

decoherence when driven away from equilibrium, living matter builds robust, repro-

ducible dynamics and structures by continually consuming and dissipating energy.

The question that remains is – How does non-equilibrium driving give rise to

ordered dynamics across time and length scales? This question is fundamentally

physical in nature. However, as noted by Erwin Schrödinger in the quote at the

beginning of this chapter, living matter is unlike any other matter physicists have

dealt with. In a broad sense, this stems from living matter’s ability to avoid thermo-

dynamic equilibrium for long periods of time, delaying the eventual decay to disorder

required by the laws of thermodynamics. Progress in biological physics, therefore, is

synonymous with progress in non-equilibrium physics.

The work in this thesis studies how entropy production at the microscopic scale

leads to various mechanical and dynamical phases and transitions at larger length

scales in biological materials. I take an approach rooted in statistical physics to tie

entropy production to biological function. In this chapter, after reviewing equilibrium

thermodynamics in Section 1.1, I introduce the theoretical framework I build upon

throughout the rest of the thesis, stochastic thermodynamics [12]. Stochastic ther-

modynamics ascribes thermodynamic interpretations to systems at the microscopic

scale (` ∼ 1 µm) driven arbitrarily far from equilibrium, and has found increasing

use in the description of living matter [13].

In Section 1.3 I introduce three related, but distinct, sources of non-equilibrium

behavior and discuss their impacts on the mechanics and dynamics of biological

materials. In particular, I focus on the generation of active stress, force-dependent

binding kinetics, and (dis)assembly. Each of these phenomena are explained through

the lens of the actomyosin cytoskeleton, which I take as a model system for a more

general class of active, adaptive biological materials. For each phenomenon, I intro-

duce previous attempts to study their non-equilibrium behavior, and briefly explain
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how the work in subsequent chapters expands upon them.

1.1 Review of statistical physics

Statistical physics is the study of the mathematical laws that govern the dynamics

and properties of macroscopic systems. Roughly speaking, macroscopic systems are

those found at the human scale, for example, a liter of gas that contains ∼ 1023

particles. To predict the evolution of the gas using the framework of classical me-

chanics, one could “simply” write and integrate the 1023 coupled ordinary differential

equations that express Newton’s Laws for each particle. Not only is a solution ana-

lytically intractable, numerical methods will also be almost useless1. While intuition

based solely on Newtonian mechanics would indicate that macroscopic systems are

unpredictable, everyday experience instead illustrates that macroscopic systems are

remarkably regular and predictable, described by a handful of thermodynamic quan-

tities such as pressure, volume, temperature, heat, work, and entropy. Statistical

mechanics gives us map from the behavior of individual particles to those quantities.

As we will be eventually dealing with biological systems at a scale where quantum

effects are unimportant, we will focus solely on classical systems.

1.1.1 Microcanonical ensemble

We begin by considering a system composed of N particles within a volume V . The

particles can be described by a set of generalized coordinates xi, that can encode

positions, momenta, spins, etc. A particular state of the system is given by the vector

m, called a microstate. This microstate is a vector in a phase space, Γ, spanned by

1At the time of this writing in January 2021, the fastest supercomputer in the world is the
Japanese Fugaku supercomputer which operates at ∼ 4×1017 floating point operations per second.
With a generous assumption that each equation only requires a single floating point operation
(addition or multiplication) 1023 equations/4× 1017FLOPS ≈ 3 days.
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{xi}. If this system is isolated from the environment, the total internal energy E will

remain fixed. The collection of all microstates with a particular value of E makes

up a macrostate. While we cannot control the fluctuations of m, we know it must

be confined to the portion of phase space where the Hamiltonian, H(m), is equal to

the system’s energy E. The central postulate of statistical mechanics is that all m

compatible with H(m) = E, i.e. all the microstates within a macrostate, are equally

probable. This defines the microcanonical ensemble, which gives the probability for

observing a particular microstate given a particular macrostate:

p(m|E) =
1

Ω(E)
δ(H(m)− E). (1.1)

In Equation 1.1, Ω(E) is the volume of phase space that satisfies H(m) = E to

ensure proper normalization of the probability distribution, i.e.
∫

Γ
dm p(m|E) = 1.

As is often the case in statistical mechanics, this normalization constant plays an

outsize role in what follows. For a collection of independent systems, the total allowed

phase space volume is given as the product of the volumes of the subsystems,
∏

j Ωj.

However, the total energy of the system is an extensive quantity, given by the sum

of the energies of the subsystems,
∑

j Ej. In order to better correspond the change

in phase space volume with the change in energy, we define the entropy, S, as the

natural logarithm of Ω:

S(E) = kB ln Ω(E), (1.2)

where kB is the Boltzmann constant, which gives S units of energy per Kelvin.

Equation 1.2 is called the Boltzmann entropy, and can be found on its namesake’s

gravestone in Vienna if you ever need a quick reminder.

Like the energy, S is an additive function of the number of subsystems. Equa-

tion 1.2 allows us to write the relative probability of observing a particular state
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with energy E1 with respect to another state with energy E2, given by the ratio of

the two phase space volumes, in terms of the difference in the entropy between the

two states, i.e.

Ω(E1)

Ω(E2)
= exp(∆S/kB) (1.3)

Expressions of this form that relate relative probabilities to entropy differences will

play a pivotal role in non-equilibrium statistical mechanics.

Thermodynamic equilibrium can be defined as the state where two interacting

systems with total energy Etot = E1 + E2 stop evolving in time. In the thermody-

namic limit, this state is fixed around some energies (E∗1 , E
∗
2) where the phase space

volume is exponentially larger than any other state [14]. This position in Γ being a

maximum of Ω implies that the variation in the entropy

∂S1

∂E1

∣∣∣∣
E∗1

=
∂S2

∂E2

∣∣∣∣
E∗2

, (1.4)

where the vertical line indicates to evaluate the derivative at E∗1 . The derivative

∂S/∂E = T−1 is defined as the (inverse) temperature, making the equilibrium con-

dition equivalent to the two subsystems having the same temperature.

1.1.2 First law of thermodynamics

We can also consider other parameters that describe the system beyond the en-

ergy. Traditional introductions to statistical mechanics consider the bulk of three

dimensional systems and therefore use the volume, V , as this additional parameter.

However, there is nothing special about the volume, so we will consider a general

vector of parameters, x. Before we saw that equilibrium occurs when ∂S/∂E is equal

between subsystems. Using the same line of reasoning, we now also consider the en-

tropy changes with respect to each component of x. Now, the energy is a function
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of these new parameters, E = E(x), which endows the phase space volume, and

therefore the entropy, with dependence on x, S = S(E(x)). Using the chain rule of

calculus, we can write

∂S

∂xi
=
∂S

∂E

∂E

∂xi
= −T−1Ji. (1.5)

In the above, we recognized the definition of the temperature, and defined a new

quantity, Ji ≡ −∂E/∂xi. We call this quantity a generalized force, as it is written

as a gradient of the energy, similar to the definition of a force in classical mechanics,

F = −∇U . For example, when we consider a change in volume, Ji is the pressure p,

and when we consider a change in the total number of particles, Ji is the chemical

potential, µ.

We can write the total variation in the entropy as

dS =
∂S

∂E
dE +

∂S

∂xi
dxi , (1.6)

where summation over repeated indices is implied. Rearranging and using the defi-

nition for temperature and the generalized force, we have

dE = T dS + Ji dxi . (1.7)

This is the first law of thermodynamics, which is a statement about the conservation

of energy. Any change in energy stems from either a change in entropy or a change

in the parameters that define the system.
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1.1.3 Second law of thermodynamics

Classical thermodynamics is related to statistical mechanics by relating two forms of

energy, heat Q and work W , with the first two terms in Equation 1.7, respectively

dE = d̄Q+ d̄W (1.8)

The symbol d̄ is meant to signify that the work and heat performed depend on the

specific protocol used to induce a change in the energy. The work, d̄W = Ji dxi

follows directly from its definition in classical mechanics as a force multiplied by

a displacement, but the relationship d̄Q = T dS is more subtle. The total heat

exchange is a path-dependent function, while the entropy S is a state function,

independent of how a system happened to be prepared. However, if the protocol

used is reversible, meaning the system stays in equilibrium at every point between

the initial and final times, the quantity Q/T is itself a state function that is equal to

S. Integrating Q/T along a reversible path γrev between an initial equilibrium state

A and final equilibrium state B is the entropy change between the two states

∫
γrev

d̄Q

T
= ∆S (1.9)

If the process instead takes an irreversible path, γirr, the heat exchanged is smaller

than the heat exchanged during its reversible counterpart. Intuitively, this is due to

the fact that reversible processes are done extremely slowly and heat transfer occurs

at a rate dependent on the temperature difference and a substance-specific quantity

called the heat capacity. Equating the heat exchange during the irreversible process
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with the change in entropy, we can write

∫
γirr

d̄Q

T
≤ ∆S (1.10)

This is the second law of thermodynamics, as given by Rudolph Clausius. With this,

we can write the change in entropy of a system as a sum of two components, the

heat exchanged over γirr and an entropy production, Sprod

∆S =
Q

T
+ Sprod

Then, the second law of thermodynamics can be written as

Sprod ≥ 0. (1.11)

The entropy production can be considered the total entropy increase that the sys-

tem and the environment experience as a result of performing irreversible protocols.

The second law is therefore sometimes explained as a statement asserting that the

total entropy production of the “universe” must increase, ∆Stot ≥ 0. These state-

ments directly relate irreversibility to entropy production, a concept that will play

an important role in non-equilibrium statistical mechanics.

1.1.4 Canonical Ensemble

While the microcanonical ensemble assumes that the energy of the system can be

specified precisely to define our macrostate and the exact configuration of our system,

the microstate, was allowed to fluctuate. However, interactions with the environment

make this approach impractical. Instead, if the environment (also called a heat bath)

is large compared to the system, its temperature will remain constant in spite of any
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exchange of energy. The probability distribution of observed a particular microstate

given a particular temperature for a system that obeys a Hamiltonian H(m) is given

by the canonical ensemble

p(m|T ) =
1

Z

∫
dm exp(−βH(m)) (1.12)

where we have defined β = (kBT )−1, which gives the energy scale of fluctuations in

a heat bath of temperature T .

The normalization constant Z =
∫

dm exp(−βH) is called the partition function.

Much like the microcanonical normalization constant Ω, Z plays an outsize role when

making calculations using the canonical ensemble. Similarly to Ω, Z is multiplicative

in composite systems. In order to get an additive function analogous to energy, we

can again take the natural logarithm of the normalization constant to define a new,

surprisingly useful function, the free energy F :

− βF = ln(Z). (1.13)

With this, we can rewrite Equation 1.12 as p(m) = exp(−β(H(m)− F )).

The Boltzmann entropy, Equation 1.2, provides a definition of the entropy under

the equiprobability assumption. If Ω(E) is the volume of phase space at a particular

energy E, then ρ = Ω−1 is a phase space density which gives the probability of ob-

serving a state with energy E. The entropy can then be rewritten as S = −kB ln ρ.

However, the canonical ensemble tells us that fixing the temperature renders mi-

crostates nonequiprobable – they are weighted by exp(−βH). Josiah Gibbs2 showed

that, in general, the entropy can be written as the average over the logarithm of the

2Josiah Willard Gibbs (1839-1903) was the pinnacle of a Yale man. He was born in New Haven,
attended Yale University for his undergraduate and Ph.D. studies, and worked in the Physics De-
partment at Yale for his entire career. He almost single handedly invented our modern formulation
of statistical mechanics[15]
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probability distribution over microstates:

S = −kB

∫
dm ρ(m) ln ρ(m). (1.14)

Note that this is closely related to the information theoretic entropy, H =
∑
pi ln pi,

which measures the uncertainty in a discrete probability distribution pi [16]. In the

canonical ensemble, we have

S = −kB 〈−βH− F 〉 → F = E − TS, (1.15)

where we have replaced 〈H〉 with the energy E. As N → ∞, this approximation

becomes exact as fluctuations in the energy scale as N−1/2. In this limit, the two

definitions of entropy (Equations 1.2 & 1.14) coincide as the averages become indis-

tinguishable from their most probable values.

The free energy is the amount of energy available to perform work, a result that

comes directly from an application of the Second Law, Equation 1.11. Rewriting the

entropy production as Sprod = ∆S −Q/T ≥ 0, we can use the finite version the first

law to replace the heat, Q = ∆E −W . This gives

W − (∆E − T∆S) = W −∆F ≥ 0. (1.16)

The equality holds during a reversible process, giving Wrev = ∆F . While an irre-

versible process results in a lower transfer of heat, we now see it comes at the cost

of an increase in the amount of work performed. This excess work, Wdiss, is then

dissipated. If the process done is isothermal, Wdiss is equal to the heat given to the

heat bath, which is related to the entropy production, giving

Wdiss = TSprod. (1.17)
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1.1.5 Irreversibility near equilibrium

The above laws of thermodynamics underpin the regularity seen in macroscopic sys-

tems at equilibrium, circumventing the need to detail every microscopic interaction

within them. They come from purely probabilistic arguments that assume a very

large number of particles, weak interactions, and slow, reversible variations. Anytime

irreversibile processes occurred, we are left with inequalities, such as Sprod ≥ 0 and

Wdiss ≥ ∆F . However, Lars Onsager3 showed that one can do better if we operate

near equilibrium [17, 18].

In these cases, the entropy production rate Ṡ can be written as a linear com-

bination of the product between thermodynamic forces Fi and their resulting flux

Ji, Ṡ = FiJi, where summation over repeated indices is implied. Examples include

gradients in temperature driving a flux of heat or gradients in concentration driving

flux in matter (two examples of Fick’s law), and an electric field driving a current

(a.k.a. Ohm’s Law). Near equilibrium, the forces themselves can also be written

as a linear combination of the fluxes, Fi = LijJj, where Lij are phenomeneological

constants that make up a symmetric matrix, i.e. Lij = Lji. This general statement

constitutes Onsager’s reciprocal relations

Ṡ = LijJiJj. (1.18)

We see here that Ṡ is a positive definite, quadratic form of the fluxes, implying

that entropy production is associated with the presence of observable flows, without

regard for the direction of the flow.

Biological systems, on the other hand, break the assumption of linearity be-

tween forces and fluxes. As a consequence, they are considered far-from equilibrium

3Lars Onsager (1903-1976), born 6 months after Gibbs died, became another giant of statistical
mechanics to work out of Yale University.
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and a new formalism is needed to describe the flow of work and energy. Over the

past two decades, the field of stochastic thermodynamics has been developed and

successfully applied to studying various living and non-living systems driven away

from thermodynamic equilibrium [12]. While the introduction below only deals with

classical systems, many of the ideas have been extended to quantum systems as

well [19, 20, 21].

1.2 Stochastic Thermodynamics

Stochastic thermodynamics is a theory that assigns thermodynamic interpretations

to the dynamics of microscopic systems immersed in some solution such as colloidal

particles, biopolymers, and molecular motors [12]. While there are several ways to

be driven away from equilibrium, we will focus in particular on cases where there

exists a time-independent external driving force. While these forces can have many

origins, such as an external field or flow or unbalanced chemical potentials, they

largely result in establishing a non-equilibrium steady state (NESS) in the system

dynamics. In all cases, the temperature of the system is defined as the temperature

of the solution in which the system is submerged. In conjunction with a separation

of time-scales between the time it takes for the observable and unobservable degrees

of freedom to reach equilibrium, a self-consistent thermodynamic description can be

achieved.

Depending on the type of dynamics and the time and length scales involved, there

exist several different descriptions for stochastic dynamics. We will begin with the

most common, the Langevin Equation description of Brownian motion. After first

deriving expressions for systems near-equilibrium, such as the fluctuation dissipa-

tion theorem, we will use the Langevin equation to illustrate the main features of

stochastic thermodynamics, specifically the identification of heat, work, and entropy
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as stochastic variables defined according to individual trajectories. Each Langevin

equation can be mapped onto two other descriptions of stochastic dynamics – the

Fokker-Planck equation describing the evolution of an ensemble of trajectories, and

a path-integral description for the probability of observing a particular trajectory.

Finally, coarse-graining can lead to discrete dynamics governed by a Master Equation

for the transition rates between states. For each description of stochastic dynamics,

we will discuss the associated expression for the entropy production rate.

1.2.1 Brownian motion and the Langevin Equation

The paradigmatic example used throughout stochastic thermodynamics is that of a

Brownian particle. Brownian particles are generally approximately 1 µm in size and

immersed in a fluid at temperature T whose atoms bombard the Brownian particle

to induce a random walking motion [22]. At this scale, the Reynold’s number is

very small, Re ∼ 10−4, rendering inertial effects negligible [23]. The mean-square

displacement of a Brownian particle in d dimensions increases linearly in time with

a slope defined by its diffusion coefficient D

〈
(x(t)− x(0))2〉 = 2dDt. (1.19)

In 1905, Einstein showed that D is related to the drag coefficient of the colloid γ and

the temperature of the ambient fluid T in equilibrium by [22]

D =
kBT

γ
. (1.20)

These two unassuming equations have had a massive impact on physics. Jean Bap-

tiste Perrin used them to experimentally measure Avogadro’s number in 1908 [24],

which is widely considered as the piece of evidence that definitively ended the dispute
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over the existence of atoms, earning Perrin a Nobel Prize in 1926 [25]4.

Equation 1.20 is a particular version of the fluctuation-dissipation theorem, as

given in linear response theory [27]. This theorem holds near equilibrium, and states

that correlations due to thermal fluctuations contain the same information as the

response to a small perturbation. To be precise, it relates the correlation function,

C(t− t′) = 〈x(t)x(t′)〉 to the response function, χ(t− t′) defined for a small perturba-

tion h(t) using 〈x(t)〉 =
∫

dt′ χ(t−t′)h(t′). In equilibrium, the fluctuation dissipation

theorem is most commonly written in terms of the Fourier transforms of C and χ,

C(ω) =
2kBT

ω
χ̃(ω), (1.21)

where χ̃ is the imaginary part of the complex-valued χ(ω).

In 1911, Paul Langevin wrote an equivalent yet, in his own words, “infinitely

more simple” description of Brownian motion based on a stochastic differential equa-

tion [28]. This approach applies Newton’s Law, F = ma, to the Brownian particle,

but averages the effects from the surrounding fluid into a random force. In general,

the Langevin equation for an overdamped Brownian particle in an external potential

V and subject to a non-conservative force f is given by

γ
∂x

∂t
= −∇V (x, λ) + f(x, λ) + ξ = F(x, λ) + ξ, (1.22)

where F = −∇V + f is the total force. For our case here, both the potential

landscape V and non-conservative force f can be made time-dependent by the action

of some external control parameter, λ(t), which varies according to some prescribed

4This triumph is also marred by a tragedy. Ludwig Boltzmann, the first physicist to write S =
kB ln Ω, was harshly criticized by contemporaries as an ardent proponent of the atomic hypothesis.
While letters written by his friends and family suggest that the physicist suffered from bi-polar
disorder [26], one cannot help but lament that Boltzmann died by his own hand in 1906, a mere 2
years prior to his intellectual vindication by Perrin’s experiments.
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protocol5. The term ξ is the random force that describes the thermal noise due to

the surrounding fluid. In the simplest case, this noise is written as a zero-mean,

delta-correlated Gaussian process, such that [29]

〈ξi(t)〉 = 0; 〈ξi(t)ξj(t′)〉 = 2Dδijδ(t− t′). (1.23)

The coefficient in front of the Dirac-delta function ensures that Equation 1.19 is

obeyed when the system is in equilibrium, i.e. f = 0.

Sekimoto was the first to suggest that Langevin dynamics can be given a thermo-

dynamic interpretation by application of the First Law of Thermodynamics, Equa-

tion 1.8, to individual trajectories [30]. The work performed on the particle is the

sum of the work done to change the potential via λ, and the work done against the

non-conservative force6

d̄W =
∂V

∂λ
dλ+ f ◦ dx . (1.24)

The heat can be identified as simply the difference between the total change in

potential energy and the amount of work

d̄Q = dV − d̄W = −F ◦ dx , (1.25)

where the negative sign indicates that this heat is dissipated into the environment,

which is a result of a choice of convention of what to call positive heat flow. For the

sake of clarity, we will drop this minus sign in the following, defining positive heat

5For example, the protocol could describe the motion of a harmonic trap with stiffness k,
V (x, λ(t)) = 1

2k(x − λ(t))2, or it could describe the changing of the stiffness, V (x, λ(t)) =
1
2 (k − λ(t))x2.

6The stochastic nature of the trajectories introduces a subtlety in taking the integral of f ◦ dx.
This arises arises because the definition of the Riemann–Stieltjes integral, which assumes that a
function approaches a single value as the discretization width vanishes. However, ξ prevents this
limit from being reached, necessitating a prescription for how to discretize the random force [29].
Here, we have used ◦ to indicate that we will use the mid-point, or Stratonovich, discretization
scheme. This allows one to use the regular rule of calculus and is used for the rest of this work.
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flow as an outflow from the system to the environment.

Now, each segment of a trajectory, dx, is associated with an amount of work

performed on the particle and an amount of heat dissipated into the environment.

The total work and heat are therefore functionals of the trajectory, given as

W [x(t)] =

t∫
0

dτ

[
∂V

∂λ

∂λ

∂τ
+ f ◦ ∂x

∂τ

]
(1.26)

Q[x(t)] =

t∫
0

dτ F ◦ ∂x

∂τ
(1.27)

The total change in the entropy of the environment can also be identified using the

heat functional and the usual relationship between the heat and entropy, Senv[x(t)] =

Q[x(t)]/T . For systems in a non-equilibrium steady state, the mean entropy produc-

tion rate is well-defined and, in this case, is given by

T Ṡenv = 〈Fẋ〉 (1.28)

Fluctuation theorems

At the microscopic scale, entropy itself is a stochastic quantity, dependent on a partic-

ular realization of the stochastic trajectory x(t). This implies that a non-equilibrium

process may lead to a negative change in the entropy. While this may appear to vio-

late the Second Law, it is important to note that macroscopic thermodynamics only

refers to averages in large systems and ignores fluctuations. Perhaps surprisingly,

the fluctuations induced by the heat bath obey precise statistical laws themselves.

In microscopic systems, the probability distribution for functionals such as W [x(t)]

and S[x, t] obey fluctuation theorems. The “detailed fluctuation theorem” for a path
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dependent quantity ω takes the form [31]

P (ω)

P̃ (−ω)
= exp(ω) (1.29)

where P̃ is the distribution under some conjugate dynamics, typically time-reversal.

This implies the “integral fluctuation theorem” [32]

〈exp(ω)〉 = 1 (1.30)

The most famous example is the Jarzynski equality, which identifies ω with

work [33]. Beginning and ending in equilibrium distributions with free energy dif-

ference ∆F , the amount of work done in transitioning between the initial and final

states will obey the following equality:

〈exp(−βW )〉 = exp(−β∆F ), (1.31)

where 〈〉 is an ensemble average taken over many instanaces of the same procedure.

Thus, a non-linear averaging of a non-equilibrium quantity, W , allows one to recover

an equilibrium quantity, ∆F [34]. This requires that some individual realizations

obey W < 0, but Jensen’s inequality ensures 〈W 〉 ≥ ∆F , as required in macroscopic

thermodynamics.

1.2.2 Fokker-Planck equation and phase space fluxes

While the Langevin equation describes the equation of motion for a single Brownian

particle, one could also ask how an ensemble of Brownian particles evolve in time.

More precisely, can we predict how likely we are to find a Brownian particle at a

position x after evolving for a time t, given that it started at the origin? The Fokker-
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Planck equation describes the temporal evolution of precisely our quantity of interest,

the probability distribution function, or phase space density, for the position over

time, ρ(x, t). Given a Langevin equation, Equation 1.22, the corresponding Fokker-

Planck Equation is [35]

∂ρ(x(t), t)

∂t
=∇ ·

(
γ−1Fρ−D∇ρ

)
. (1.32)

The Fokker-Planck equation has the form of a conservation law, ∂tρ+∇· J = 0,

where the current is given by

J = γ−1Fρ−D∇ρ. (1.33)

One can further identify a phase space velocity v = J/ρ. The simplest Fokker-

Planck equation is the case with F = 0, which reduces to the diffusion equation,

∂tρ = D∇2ρ. The Fokker-Planck equation is a generalization of Liouville’s theorem,

which states that the phase space density is conserved under Hamiltonian dynamics,

to stochastic trajectories containing dissipative terms.

With an expression for the evolution of ρ, one can identify an entropy associated

with the evolving phase space density. The “stochastic entropy” measures the change

in entropy of the system, not the environment [32],

Ssys[x(t)] = −kB ln ρ(x(t), t) (1.34)

This is simply the quantity that gets averaged over in the Gibbs entropy, Equa-

tion 1.14. The total entropy production is the sum of the contributions from the

system and the environment, Stot = Senv +Ssys. Taking the time derivative of Equa-

tion 1.34, in combination with Equations 1.33 & 1.28, gives the mean total entropy
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production rate 〈
Ṡ
〉

tot
= kB

∫
dx

J · J
Dρ(x, t)

= kB
〈v · v〉
D

. (1.35)

Like in Onsager’s formulation of linear irreversible processes, we see that Ṡ is a

positive definite, quadratic form of a current. Here, the current occurs in phase space.

With a steady state, the evolution of ρ ceases, and the Fokker-Planck equation tells

us that∇·J = 0. In equilibrium, all currents are identically 0. However, in a NESS,

J 6= 0, requiring the current to be purely circulatory [36].

1.2.3 Path integrals and irreversibility

Rather than attempting to describe the evolution of ρ(x(t), t), one may instead be

interested in the probability of observing a particular trajectory. The approach for

this description of stochastic dynamics uses techniques from statistical field theory to

use a path integral for stochastic processes [37, 38]. The path probability functional

of observing a path x(t) is obtained by writing the expression for the Gaussian

distribution for the white noise in a Langevin equation, and performing a change of

variables, giving

P [x(t)] =
1

Z
exp(−A[x(t)]) (1.36)

where Z is a normalization constant and A is the “action” associated with the

trajectory [39],

A[x(t)] =

t∫
0

dτ

[
1

4D

(
γ
∂x

∂τ
− F

)2

+
1

2γ
∇ · F

]
. (1.37)

The last term in the action results from the Jacobian when performing the change

of variables and is symmetric under time-reversal.

The total entropy produced along a trajectory is related to the difference between
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observing a path forward in time up to a total time t, x(τ), compared to the probabil-

ity of observing the reverse path x(t−τ) = x̃(τ). As stated previously, irreversibility

necessitates a production of entropy. This becomes explicit when writing the total

entropy produced along a trajectory as [40]

∆S = kB ln
P [x]

P [x̃]
= kB (A[x̃]−A[x]) . (1.38)

This equates the entropy produced to the portion of the action A that is asymmetric

under time-reversal.

Taking the average of this quantity over the probability of the forward trajectories

and finding it’s slope gives an expression for the mean entropy production rate [41,

42, 43] 〈
Ṡ
〉

= kB lim
t→∞

1

t

〈
ln
P [x]

P [x̃]

〉
P [x]

= kB lim
t→∞

1

t
DKL(P [x]||P [x̃]). (1.39)

DKL(f(x)||g(x)) is the Kullback-Leibler divergence, or the relative entropy, which

measures the distinguishability between two probability distributions f(x) and g(x).

DKL is used throughout information theory and is defined as [44]

DKL(f(x)||g(x)) =

∫
dx f(x) ln

f(x)

g(x)
. (1.40)

Remarkably, Equation 1.39 connects a thermodynamic quantity, entropy produc-

tion which can presumably be measured using a thermometer, to an information

theoretic quantity, DKL which measures the statistical irreversibility of a trajectory.

This exemplifies the deep connections between information and non-equilibrium ther-

modynamics [45].
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1.2.4 Master equation and broken detailed balance

Our final description of stochastic dynamics is perhaps the simplest and most fun-

damental. While all our previous descriptions involved continuous degrees of free-

dom, one can also consider a system making random transitions between discrete

states [46]. Examples include random walks on a lattice or chemical reaction net-

works. The evolution for the probability to be found in state n is governed by the

Master Equation,

∂pn(t)

∂t
=
∑
m

Wnmpm(t)−Wmnpn(t). (1.41)

W is a matrix of transition rates whose elements Wnm give the rate of transitioning

from state m to state n.

The Master Equation states that the total rate of change of the probability of oc-

cupying state n is the influx of probability from all other states m, j+
n =

∑
mWnmpm,

minus the efflux to all other states m, j−n =
∑

mWmnpn. A system is said to obey

detailed balance if the steady state solution obeys j+
n = j−n for all states n. For chem-

ical reactions that break detailed balance, the driving force is a chemical potential

difference, ∆µ, related to the fluxes as [47]

∆µ = kBT
∑
n

ln
j+
n

j−n
(1.42)

For systems obeying the first order kinetics given by Equation 1.41, Onsager’s

flux × force relationship for the entropy production rate remains valid arbitrarily far

from equilibrium [48]. Here the total flux at state n is jn = j+
n − j−n , and the entropy

production rate is 〈
Ṡ
〉

= kB

∑
n

(j+
n − j−n ) ln

j+
n

j−n
. (1.43)

Much like Equation 1.39, this directly implicates irreversibility, via broken de-
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tailed balance, with entropy production. All other descriptions of stochastic dynam-

ics can be derived as a limiting case of a Master Equation. For example, the diffusion

equation arises from nearest neighbor hopping dynamics on a lattice. For this reason,

non-equilibrium behavior seen in continuous variables often have their origins in the

breaking of detailed balance at a smaller length scale. In living matter, this breaking

of detailed balance often stems from a chemical reaction by name of ATP hydrolysis.

1.3 ATP and actomyosin dynamics

Adenosine triphosphate (ATP) is a molecule that all cells use to power the micro-

scopic, protein-based machines that carry out vital life processes such as muscle

contraction [49], DNA transcription into RNA [50], protein synthesis [51], and signal

transduction [52]. By reacting with water, one of the three phosphate groups (Pi)

in ATP is released to transform ATP into the lower energy adensine diphosphate

(ADP), ATP + H2O → ADP + Pi. This hydrolysis reaction results in a free en-

ergy change on the order of 10 kBT per ATP molecule in physiological conditions

(BNID 101989)7. This process is then reversed by dedicated molecular machines

called ATP synthases [54], which utilize proton gradients across a membrane to reat-

tach phosphates to ATP to reform the higher energy ATP, maintaining a ratio of

ATP/ADP ∼ 1000 (BNID 100773), establishing a chemical potential between ATP

and ADP, ∆µATP. From ∆µATP flows all of the behaviors exhibited by living matter8.

A key question then becomes, how does this microscopic chemical driving trans-

late into large scale dynamical and mechanical behaviors of living matter? Here, we

7When referring to numerical values in biology, rather than giving specific references, we will link
to a BioNumber ID (BNID), which can be accessed at https://bionumbers.hms.harvard.edu/.
BioNumbers is a public repository of quantitative measurements made throughout biology that
provides sources and the experimental conditions used to attain the result [53].

8This is an oversimplification. Guanosine triphosphate (GTP) is vital for biopolymer stabil-
ity [55] and signaling networks [56], and ion gradients power the recombination of ADP and Pi by
ATP -synthase [57].
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focus on the actin-myosin cytoskeleton, responsible for the production of mechanical

forces that drive cell shape changes, cell division, and motility [58, 55, 59, 60]. The cy-

toskeleton comprises semiflexible protein polymers called actin [61], that are subject

to forces driven by ATP hydrolysis by molecular motors called myosin [62]. Sys-

tems composed of actin and myosin have become protyptical examples of biological

active matter [63, 64], defined as many-body systems where microscopic injections

of energy lead to self-propulsion of the individual constituents. We take the cell

cytoskeleton as a model system representing a more general class of living, active,

adaptive matter [65], and try to expand the domain of our discussion and results

where possible.

1.3.1 Active stress

Principal among the processes powered by ∆µATP is the generation of forces by

molecular motors embedded within the cell cytoskeleton. These enzymatically pro-

duced forces are termed “active stress”, as they arise purely from the consumption

of ATP. Many phenomenological models exist for molecular motors [66], but they all

result in net motion of a motor along a preferred direction on a structurally polar-

ized cytoskeletal filament. When bound to two anti-parallel filaments, this walking

results in forces that slide the filaments relative to each other. In a network of actin,

myosin and other passive proteins can cross-link the polymers, propagating active

stresses over length scales much larger than that of a single filament, leading to large

scale fluctuations and flows of the network [67, 68, 4, 69].

In recent years, mixtures of purified proteins have provided a simplified system

within which to study the non-equilibrium properties of actin networks [70, 71, 72].

Early examples include measuring violations of the fluctuation-dissipation theo-

rem, Equation 1.21, for colloids embedded within a reconstituted actomyosin net-
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work [73]. By measuring C(ω) and χ̃ independently using two separate techniques,

the authors inferred the distance from equilibrium the violation of the equilibrium

fluctuation-dissipation theorem. This is tightly related to the idea of a frequency

dependent “effective temperature”, which has been used in other biological [74] and

non-biological [75] contexts as a measure of a distance from equilibrium, defined as

Teff =
ωC(ω)

2kBχ̃(ω)
. (1.44)

Despite the simplicity of this approach, the use of Teff remains controversial – for

example, Teff can become negative [74] while some non-equilibrium systems can be

mapped to an apparent equilibrium system that obeys a fluctuation-dissipation the-

orem [76].

Recent efforts have focused instead on measuring entropy production as a mea-

sure for how far biopolymer systems are from equilibrium. In particular, these tech-

niques use the bending fluctuations of exogenous probe filaments embedded within

a cross-linked network as a probe for non-equilibrium activity [72, 77, 78, 79]. These

approaches have used the identification of phase space circulation, the basis for the

Fokker-Planck entropy production rate in Equation 1.35.

While providing a more rigorous metric determining whether a system in or out

of equilibrium, these previous works only detect the presence of phase space circu-

lations, making a binary determination of whether the system is in equilibrium or

not. Furthermore, they do not tie the non-equilibrium behaviors to any biologically

relevant outcomes. For example, while myosin activity seems to always lead to flow

in experiments of purified proteins, the cell cortex, a thin shell of actomyosin just

inside of the cell membrane, endows cells with surface tension that increases with

myosin motor activity [80]. How can we reconcile these two views of myosin activity?

In Chapter 2, we extend these methods of measuring phase space fluxes to provide
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the first quantitative measurement of the entropy produced in a living system at

different levels of activity. We find that the entropy production rate of filament

fluctuations is maximized in the mechanically stable state, and use it to identify a

new class of interactions between actin and myosin. This work thus unifies the two

effects myosin has on actin networks, inducing stability and flow, along the single

axis spanned by phase space fluxes.

1.3.2 Mechanosensitive binding kinetics

Living matter not only produces forces, but also responds to them. Many biologi-

cal proteins are mechanosensitive, altering their behavior in response to an applied

force [81]. An important class of mechanosensitive proteins are involved in binding

and adhesion. Cells dynamically regulate adhesion proteins to regulate cell migra-

tion and maintain tissue integrity by coupling the actin cytoskeleton to extracellular

substrates or to other cells, respectively [82]. Adding another level of complexity,

cross-linking proteins within the actin cytoskeleton are also mechanosensitive, in-

cluding that myosin motors that are the origin of active stress.

While most engineered materials contain bonds that weaken under load, mechanosen-

sitive biological bonds such as myosin and the actin cross-linker α-actinin, strengthen

under load. They decrease their unbinding rate in response to force [83, 84]. Bonds

with this characteristics are known as “catch bonds” [85, 86]. This brings new

questions into the role of myosin motors in the remodeling of the actin network.

The actin cytoskeleton reorganizes itself rapidly due to myosin stresses [87], with

evidence pointing towards myosin-driven rearrangement and detachment of bonds

towards a critical point in the network connectivity that leads to an increased flow

of actin [88]. However, the ability of active stress to strengthen and solidify an actin

network, as seen in engineered polymer networks containing synthetic biomimentic
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catch bonds [89, 90], has remained unexplored.

In Chapter 3, we address these questions using simulations of actomyosin net-

works while explicitly calculating the irreversibility due to binding using a variant

of the measure of irreversibility for discrete dynamics obeying a Master equation,

Equation 1.43. We find that weak catch bonds lead to an increase in network fluid-

ity without much change in binding irreversibility. Beyond a threshold in the strength

of the catch bond, the actomyosin network transitions to a solid-like state where the

binding irreversibility changes rapidly. Thus, while the work of in Chapter 2 stud-

ied the role of actin filament fluctuations in transitions from a stable to a flowing

state, here we find a novel role for myosin binding in driving a similar dynamical and

mechanical transition.

1.3.3 Assembly and disassembly

One of the most striking characteristics of living matter is its ability to dynamically

assemble and disassemble many of its components reliably while maintaining struc-

tural stability. For example, actin filaments can polymerize up to a rate of 10 µm/s

(BNID 111090), the length scale of a eukaryotic cell, but maintain a length on the

order of 100 nm inside of cells (BNID 109294). The assembly and disassembly of

actin filaments can occur in many ways [59]. One is polymerization and depolymer-

ization, each of which occurs at a preferred end of an actin filament as a function

of the phosphorylation state of the actin monomers. Polymerization dynamics leads

to actin treadmilling, an important factor in cell motility [61]. Another mode of

(dis)assemby is the breaking of actin filaments due to myosin induced stresses [71]

or actin binding proteins that induce severing [91].

At large length scales, these (dis)assembly dynamics can appear to induce diffu-

sive behavior. When coupled to other regulatory proteins in the cell, a reasonable
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description of the process is that of multi-species reaction-diffusion [92]. In general,

reaction-diffusion equations have the form [93]

∂ρi(x, t)

∂t
= Di∇2ρi + fi({ρj}), (1.45)

where ρi(x, t) is the chemical concentration of species i across space and time, Di is

the diffusion constant of species i, and fi({ρj}) is a possibly non-linear function that

describes the reactions that species i is subject to due to all other chemical species

in the system.

Alan Turing proved that these reaction-diffusion systems are capable of establish-

ing static, spatial patterns that are known today as Turing patterns [94]. Since this

pioneering work, reaction-diffusion systems have been found to also induce dynamic

patterns such as oscillations, waves, and excitability [95]. Such spatiotemporal dy-

namics are critical to biological processes such as cell division, signal transduction,

and migration [96]. While much work has focused on understanding reaction-diffusion

system dynamics alone, only recently has work turned towards the energetics behind

these non-equilibrium patterns [97, 98]. However, while work on individual models

has progressed, general tools are lacking.

In Chapter 4, we introduce a general method for estimating irreversibility di-

rectly from data of spatiotemporal dynamics using the path integral formulation of

the entropy production rate, Equation 1.39. Our work not only provides a way to

measure the total irreversibility, but also introduces the entropy production factor,

which quantifies irreversibility for every time and length scale in the system. By ana-

lyzing simulations of a 1-dimensional reaction-diffusion oscillator, we find signatures

of the dynamical phase transition that marks the onset of oscillations in the total

irreversibility, but signatures of the separate transition towards synchronization are

found in the entropy production factor. This work will allow researchers to probe
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previously inaccessible degrees of freedom, providing new insight into the energetic

origins of the non-equilibrium, spatiotemporal patterns found throughout biology.
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Chapter 2

Energetics of mechanical stability

2.1 Motivation

The actomyosin cytoskeleton exerts contractile stresses in order to drive shape change

and motion across length scales to regulate diverse physiological processes. It gen-

erates the forces required for cell division by the cytokinetic ring [99], it coordinates

contractility and focal adhesion dynamics to drive cell migration [82], and creates

forces that guide the formation of multicellular tissues during morphogenesis [100].

These contractile forces are the result of myosin molecular motors hydrolyzing ATP

and walking along multiple F-actin polymers that it is connected to, as first illus-

trated in muscle cells [49, 101, 102]. Contractility induced flows are also seen in

reconstitution experiments, where actin and myosin are purified from a cell and de-

posited onto a substrate within a buffer that contains ATP to activate the molecular

motors [103, 67, 6, 4].

Antagonistic to actomyosin’s propensity to flow is its role in maintaining struc-

tural stability for the cell. The rheological properties of cells stem from the properties

of the actin cytoskeleton, resulting in remarkably consistent scaling laws for the cell’s

elastic and viscous properties under a wide range of time scales and perturbations
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[104]. Further, diseases such as cancer are correlated with qualitatively distinct rhe-

ological properties [105]. Understanding the mechanism by which actomyosin pro-

duces stable states would therefore provides an understanding of the design principles

that biological matter uses to balance the need to maintain mechanical stability while

preserving the ability to flow in response to an external or internal signal. Further

complicating the matter is that the constituents of the cytoskeleton are subject to

thermal fluctuations and persistently turning over.

In this chapter, I analyze experimental data gathered in the Murrell Lab in order

to measure entropy production rates in actin filament motions by myosin-induced

stresses, quantitatively establishing that an active stable state dissipates the most

energy due to non-equilibrium forces. We further uncover the molecular interaction

between myosin and actin that leads to this maximal energy dissipate rate that we

term “plucking” by myosin motors. When a myosin motor plucks an actin filament,

it produces large bends but does not result in center-of-mass transport, allowing

myosin stresses to be dissipated without rearranging the entire network.

My contribution to this work comprises the implementation of the entropy pro-

duction rate, bending energy, and velocity autocorrelation analyses, and interpreta-

tion of all results. The work presented here has been adapted from the following

paper:

• D.S. Seara, V. Yadav, I. Linsmeier, A.P. Tabatabai, P.W. Oakes, S.M. Ali

Tabei, S. Banerjee, and M.P. Murrell. Entropy production rate is maximized

in non-contractile actomyosin. Nature Communications, 9, 4948 (2018).
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2.2 Introduction

The eukaryotic cytoskeleton is an active, viscoelastic material that exhibits a wide

range of dynamic responses to both its internal and external environment, such as

polarizing contractile flows during embryonic development [106, 107] and cell division

in the adult [108]. By contrast, there are dynamic steady states that do not result

in flows, including ratcheting in the Drosophila wing [109], excitable wave patterns

in the Xenopus laevis oocyte [110], and fluctuations in the mitotic spindle [111]. It

is generally accepted that the driving force for many of these processes originate

from both filament turnover and the relative sliding between molecular motors and

cytoskeletal polymer along their long axis [49, 101, 102]. For example, reconstituted

networks of microtubules that flow under the influence of kinesins [112, 113], allowing

microtubule networks to retain their density and structural properties under the

influence of extensile forces [111]. By contrast, actin networks activated by myosin

molecular motors lead to filament buckling [71, 114] and severing at high curvatures

[115, 5]. As a result, F-actin networks experience macroscopic architectural changes

and large strains during destabilizing contractile flows [116, 117]. It remains unclear

how networks of semi-flexible polymers can maintain a dynamic steady state in the

presence of active stresses. More generally, the relationship between the out-of-

equilibrium accumulation and dissipation of mechanical stresses and the stabilization

of active materials is unknown.

In this work, we characterize the thermodynamic criteria for the maintenance of

dynamic stability in an active biomimetic material composed of semi-flexible F-actin

through determination of the rate of entropy production as a function of molecular

motor activity. First, we systematically identify the range of motor activity that

differentiates macroscopic contractility (unstable) from steady-state non-contractile
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behavior (stable). Next, we determine the effect of activity on the microscopic bal-

ance of mechanical work and the production of entropy from the myosin-induced

bending of individual F-actin. This provides a quantitative relationship between

how far the system is from equilibrium with its propensity to dissipate mechanical

energy. We then correlate network and filament properties to associate the accu-

mulation of mechanical work and the production of entropy with the mechanical

stability of the bulk material. Finally, we compute the entropy produced in the actin

network in time and per individual myosin filament and correlate the motions of

myosin filaments with the bulk dissipation that stabilizes the material.

2.3 Results

2.3.1 F-actin self-assembles into a 2D nematically ordered

network

Using previously described methods [6], solutions with purified filamentous (F) actin

are crowded onto a lipid bilayer using methylcellulose on top of a glass slide, creating

a quasi-2D synthetic model of a cellular cortex (Fig. 2.1a). In the absence of adhe-

sion between the actin filaments and membrane, the filaments change their spatial

orientation to establish a net direction upon reaching the membrane surface. This

reorganization generates local domains of nematic alignment, quantified by the coars-

grained nematic order parameter, q = 2 〈cos2 θ − 1/2〉 (Fig. 2.1a-d). The nematic

domains originate from and terminate in regions of disorganized F-actin containing

topological defects with charge ±1/2. −1/2 defects are formed by moderate F-actin

bending in radial directions around a central void, whereas +1/2 defects form due

to highly bent F-actin oriented along a single direction (Fig. 2.1e,f).

While the F-actin network exhibits the same defects and symmetries as a tradi-
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Figure 2.1: Reconstituted actin cortex forms nematic domains. (a) Image
of crowded in vitro F-actin cortex. Scale bar is 10 µm. (b) Local nematic director
field (green) overlaid on the same image as (a). Red and blue dots indicate the
+1/2 and −1/2 topological defects, respectively. (c) Nematic order parameter field
shown for the same image as (a). (d) (top) Schematic of a nematically ordered
domain comprised of many actin filaments, where n is the nematic director of the
entire domain, ni is the local alignment of a single F-actin, and θi is the angle between
them and (bottom) image of a single nematic domain. Both red and white show actin
filaments labeled with different fluorophores, polymerized separately, and combined
at a 1 : 50 ratio prior to crowding to visualize individual filaments within the larger
network. (e) Schematic (top) and image (bottom) of a 1/2 disclination defect and
local nematic ordering in quasi 2D F-actin. (f) Schematic (top) and image (bottom)
of a +1/2 disclination topological defect and local nematic ordering in quasi 2D
F-actin network. Scale bars in (d–f) are 5 µm.
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tional nematic liquid crystal composed of short, rigid rods [118], the average F-actin

length in our experiments is ∼ 10 µm, comparable to their persistence length [119].

As a result, defects form due to bending and entanglement of individual actin fila-

ments (Fig. 2.1e,f bottom). We do not observe defect motion or annihilation, reported

in other biopolymer nematic liquid crystals [112, 113, 120, 121].

2.3.2 Myosin activity destabilizes nematic order in F-actin

networks

Previous work in the Murrell lab showed that contractile flow occurs in a cooperative

manner above a critical myosin thick filament density, ρc [4, 5]. For ρ > ρc, filament

buckling coincides with network contraction as it shortens the filament end-to-end

length [122]. However, the impact of sub-contractile densities of myosin (ρ < ρc) on

the dynamics of F-actin is unclear. To this end, we compare and contrast the impact

of activity on actomyosin network dynamics above and below ρc.

To assemble the actomoysin network, myosin dimers are added at t = 0, accu-

mulating and forming myosin thick filaments within ∼ 100 s. After the addition of

myosin, we obtain the F-actin velocity field, v(r, t), using particle image velocimetry

[123] and define the macroscopic strain rate as its divergence, ψ(t) = 〈∇ · v〉r. We

simultaneously quantify the F-actin network structure by the spatially averaged ne-

matic order parameter, 〈q〉r (t). For ρ > ρc, ψ decreases during contraction until it

reaches a maximum in its magnitude, ψmax. 〈q〉 also decreases over time, represent-

ing a loss in F-actin alignment due to myosin activity. the decrease in 〈q〉 precedes

the decrease in ψ, suggesting there may be dynamics of actomyosin (δ 〈q〉 6= 0) that

are non-contractile (ψ ≈ 0) (Fig. 2.2a,b). For ρ < ρc, ψ fluctuates around zero,

although 〈q〉 still decreases by up to 30% of its original magnitude (Fig. 2.2c, d).

This non-contractile state (ψ ≈ 0) is observed experimentally for up to 1 h.
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In summary, myosin activity can drive the establishment of a steady-state defined

by changes in F-actin structure dynamics, absent contractile flows. As myosin is

indeed active in the stable steady state, we asked how the stresses are being dissipated

if they are not resulting in the flow of actin? To answer this question, we estimate

energy dissipation using the tools of stochastic thermodynamics [12].

2.3.3 Activity-dependent dissipation is maximized in stable

state

When driven out of equilibrium, microscopic systems obey fluctuation theorems that

relate the irreversibilty of a process to the amount of entropy produced by that

process [124, 32]. Myosin motors operate far from equilibrium by hydrolyzing ATP to

generate forces on F-actin, as previously quantifed by devaition from teh fluctuation-

dissipation theorem [73]. Here, we show that energy is dissipated by F-actin bending

in the stable steady state defined above.

Using experiments where only 2% of filaments are fluorescently labeled, individ-

ual filaments are tracked over time (Fig. 2.3a). Filament shape is specified by its

tangent angle along its arc length at each time, θ(s, t) (Fig. 2.3b). This function

is decomposed into a set of orthogonal bending modes [125], θ(s, t) =
∑

q aq(t)fq(s)

(Fig. 2.3c), see Appendix A.2). Filament dynamics are represented by the trajectory

of a point in a phase space spanned by the mode coefficients, a(t) = (a1(t), a2(t), . . .)

(Fig. 2.3d). Such phase space trajectories have been used to identify broken detailed

balance in mesoscopic biological systems via circulation within the phase space, a

signature of broken detailed balance[77, 78, 79].

We extend these previous works by not only identifying a non-equilibrium state,

but by quantifying how far from equilibrium the state is by measuring the entropy

produced using the phase space trajectories of a(t), using a formulation based on a
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Figure 2.2: Myosin density affects F-actin nematic order in both contractile
and stable states (a) (top) Fluorescent F-actin network undergoing contraction.
Scale bar is 10µm. (bottom) Heat map of scalar nematic order parameter, q. Myosin
dimer added at t = 0. (b) Spatially averaged F-actin nematic order parameter
measured (〈q〉, blue) and F-actin strain rate (ψ, green) 200 seconds after the onset
of myosin addition when ρ > ρc. Time of maximum magnitude of divergence (tmax)
indicated by vertical dotted red line. Difference between nematic order at t = 0 and
at time of maximum divergence (δq = q(0)− q(tmax)) indicated by horizontal dotted
red line. (c) Spatially averaged nematic order (blue) and strain rate (green) for a
stable actomyosin network, ρ < ρc where myosin is added at t = 0. (d) Percent change
in nematic order (δq/q(0)) for thermal (×), stable (◦), and contractile (∗) network
states. The marker color denotes the myosin isoform added to each experiment
(SkMM= blue, SmMM = green, NMM = red, no myosin = black). We define non-
contractile, stable (S) networks as those with ψmax < ψc = 2 × 10−3s−1, contractile
networks (C) for ψmax > ψc, and networks for which no myosin added as thermal
networks (T).
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Figure 2.3: Quantification of filament bending modes (a) Example of experi-
ment with 2% labeled filaments (red) as myosin accumulates (green). Filaments are
tracked (blue line) until a severing event, indicated by white asterisk. Scale bar is
4µm. (b) Illustration of normal mode analysis done on filament traces at each time
point. The tangent angle, θ, is found along the arc length, s, of the filament at each
time, t. These functions are then decomposed into a set of orthogonal normal modes,
fq(s), whose coefficients aq(t) are tracked in time. (b) First four normal modes. (c)
Time series of first four normal modes for the filament shown in (a).
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Langevin equation for the bending modes [126] (see Appendix A.3). Using natural

units, the total entropy produced up to a time t is given by

∆S(t) =

t∫
0

dτ ȧT (τ)D−1vss[a(τ)] (2.1)

where vss[a(τ)] is the steady state phase space velocity estimated using the entire

trajectory, and ȧ(τ) is the instantaneous phase space velocity. D is the diffusion ma-

trix that enters the Fokker-Planck equation associated with the underlying Langevin

equation for the mode amplitudes. For simplicity, we estimate D from the drag

coefficients of a slender rod [127]. We verify our calculations and approximations

by checking that a control system obeys the detailed fluctuation theorem [128] (see

Appendix A.4).

Using the above formalism, we measure the total energy dissipated per unit fil-

ament length as ∆s(t)T , where T is the temperature of the surrounding medium,

∆s = ∆S(t)/L with L the filament length, and the bar denotes an ensemble average

taken across filaments at each time point. We find that the actomyosin system shows

three distinct phases of energy dissipation that correspond to the three phases of ac-

tomyosin in Fig. 2.2d. In these experiments, myosin accumulates over time and the

three states coincide with changes in the number of tracked myosin thick filaments

over time. The first state is a passive state distinct from thermal states due to the

presence of myosin dimers that have not yet formed myosin thick filaments (S0). The

second is an active, non-contractile state as myosin thick filaments begin to appear

(S1). The third is the contractile state (C) where myosin thick filaments begin to

aggregate and thus the number of tracked thick filaments decreases (Fig. 2.4a, black).

Although an individual experiment will be in each state over time, we assume the

system to be in a steady state due to the fact that the transition to the contractile
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state occurs at the same myosin concentration as found in experiments with fixed

myosin concentration [4].

State S0 shows a small increase in energy dissipated, followed by a large increase

in the rate of energy dissipation during state S1. State C shows a decreased energy

dissipation rate (Fig. 2.4b). Within state S1, total energy dissipation as a function

of myosin number density across experiments collapses along a single curve until

the system gets close to the contractile regime, indicating that myosin filaments

dissipate energy uniformly below a number density, beyond which they do not behave

identically (Fig. 2.4c). These results are replicated using agent-based simulations

using Cytosim [129] (Fig. 2.4, insets).

Having investigated the role that activity plays in dissipating mechanical energy,

we next sought to understand how activity also stores mechanical energy in the

system via filament bending. To this end, we measured the change in bending energy

per unit filament length as myosin accumulates, ∆εbend = ∆Ebend/L (Fig 2.4d). The

bending energy is given by

Ebend =
EI

2

L∫
0

κ2(s) ds , (2.2)

where κ(s) is the local filament curvature and EI is the flexural rigidity of a thin

rod [119]. As with the dissipation energy, we take the ensemble average across

filaments at each time point. We again see three distinct regimes, where the actin

bending energy does not change during state S0 and increases rapidly in state S1 (Fig

2.4d). In state C, bending energies are elevated but decreasing nominally. This may

be attributed to filament severing [71], although it is not necessary as simulations

without severing show similar results (Fig 2.4 d,e, insets). In simulation, it can

be observed that upon the cessation of contractile flow, filaments are polarity sorted

39



with motors at filament barbed ends and bends are released. Again, plotting bending

energy as a function of myosin number density in state S1 collapses experiments along

a single curve as the system approaches contractility (Fig 2.4f).

In summary, the non-contractile state (S) dissipates the most energy per unit time

as measured through the rate of entropy production of filament bending modes. As

the stable and contractile states have different entropy production rates, we sought

to determine if there was a difference in the underlying actomyosin interactions that

produce these rates.

2.3.4 Transverse actomyosin motions underlie maximal dis-

sipation

Active transverse fluctuations and F-actin bending may suggest that myosin and

F-actin are not aligned, in contrast to the canonical model for their interaction of

anti-parallel filament sliding. To explore this, we quantify the extent of axial vs.

perpendicular actin motions and compare them to myosin motions.

To quantify the extent to which non-contractile networks exhibit perpendicu-

lar bending motions, we measure an anisotropic velocity autocorrelation function,

defined as (see Appendix A.5)

δCvv =

〈
C⊥vv(r, t)

C⊥vv(0, t)

〉
t

−

〈
C
‖
vv(r, t)

C
‖
vv(0, t)

〉
t

. (2.3)

Positive values indicate enhanced perpendicular fluctuation autocorrelations; nega-

tive values indicate enhanced parallel fluctuation autocorrelations. We find that all

stable systems, regardless of myosin isoform, exhibit greater fluctuations perpendic-

ular to the filament axis. This stands in stark contrast with contractile systems that

show larger autocorrelations parallel to the filament’s axis as would be expected for
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Figure 2.4: Dissipation and storage of energy in actomyosin (a) Ensemble
averaged energy dissipated per unit length, ∆sT , as a function of time (blue) and
number density of myosin thick filaments counted as a function of time (black). Blue
dots and shaded areas are mean ± standard deviation of n = 19 filaments tracked
in a single experiment. Experiment is broken into three phases, S0, S1, and C. Red
dashed lines indicate slopes measured in each state. (b) Means ± standard deviation
for slopes of entropy in states S0, S1, and C for n = 4 experiments. Each experiments
slope is normalized to the slope of S1 in that experiment. p < 10−4 between slopes
S0 and S1, and p = 0.014 between slopes S1 and C. (c) Dissipation energy density as
a function of myosin number density in state S1 for n = 3 experiments, indicated by
different symbols. Black line and shaded area are mean standard deviation across
experiments. (d) Similar to (a), but showing filament bending energy per unit length,
∆εbend, in blue. (e) Similar to (b), but for filament bending energy slopes. p < 10−5

between slopes S0 and S1, and p = 0.001 between slopes S1 and C. (f) Similar to
(c) but for filament bending energy. All insets for b-g show recapitulation of data
in main figure by agent-based simulations for n = 3 simulations. In the simulations,
there is no S0 phase because myosin is added immediately at t = 0.
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sarcomeric contraction [49, 101] (Fig. 2.5a, b). We name these reversible, myosin-

derived transverse fluctuations “plucking”.

Using a light-activation assay [4] with skeletal muscle myosin II (SkMM), contrac-

tility is induced at a constant myosin density. 405 nm light inactivates blebbistatin,

an ATPase inhibitor, thereby activated myosin in the area of illumination. During

contraction, we measure the relative angle between SkMM thick filaments and the

actin it decorates (Fig. 2.5c). The extend of contractility is measured by an increase

in the strain rate, ψ. We find that as the magnitude of ψ increases, we see a rapid

change in the relative angle betwen actin and myosin (Fig. 2.5d). As a result, we

attribute the enhanced perpendicular fluctuations of actin in a non-contractile state,

and therefore the enhanced entropy production rate, to the variation in the relative

angles between individual myosin thick filament assemblies and F-actin. This indi-

cates that the total “activity”, ζ, in actomyosin networks depends not only on the

myosin density, ρ, but also on the relative angle between the motors and filaments,

θ, i.e. ζ = ζ(ρ, θ).

2.4 Conclusion

By engineering an active biomimetic cortex, we identify a structurally dynamic phase

of actomyosin absent of contractile flow or filament turnover at an intermediate level

of activity. We quantify the entropy production rate, a metric for a system’s dis-

tance from equilibrium [12] and the extent to which energy is dissipated. As bending

energies increase immediately upon sequential addition of individual myosin thick

filaments, and the density of myosin that marks the onset of the contractile state is

the same for experiments done over time as done across separate experiments, we

assume the system to equilibrate quickly and therefore apply a steady state frame-

work. Unexpectedly, we find that the rate of entropy production is non-monotonic
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Figure 2.5: Misaligned myosin plucks F-actin in stable state (a) motions of
F-actin within an actomyosin network. Images of 40 nM smooth muscle myosin
(green) embedded within ∼ 2 µM F-actin network (red). White dotted lines indicate
alignment of F-actin. White arrows indicate direction of motion of F-actin. Scale
bars are 5 µm. (b) Anisotropic velocity-velocity autocorrelation, δCvv. Averages are
taken across several experiments (NSkMM = N0.25%MC = N0.15%MC = 3, NSmMM =
5, NNMM = 2). Colors represent different experimental conditions. (c) Images of
∼ 2 µM actin and 40 nM skeletal muscle myosin, showing evolution of the angle θ
between the myosin and the underlying F-actin. Scale bar is 5 µm. (d) Ensemble
average change in angle of myosin, δ̄θ (open diamonds), and mean myosin number
density (filled dots) as functions of strain rate, ψ. Dotted lines are guides for the
eye. Stable (S) and contractile (C) states indicated above plot. (e) Schematic of
phase diagram showing how dissipation rate (blue), bending energy rate (black), and

strain rate (green) all change as a function of the total activity, ζ̃. An increase in ζ̃
coincides with an increasing myosin density, indicated by the green myosin cartoons.
Thermal, stable, and contractile states are indicated by T, S, and C, respectively.
In the stable state, a schematic representation of myosin’s perpendicular effects on
F-actin are shown.
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with increased activity. As the system is driven from equilibrium, the dissipation

rate first increases in the stable state and then attenuates in the contractile state.

In addition, the work applied, as indicated by the filament bending energy, increases

and then decreases in the contractile state. This is likely due to mechanical relax-

ation via polarity sorting and filament severing. Thus, while the contractile state

has the highest entropy, it is the stable state in which the rate of entropy production

is maximized (Fig. 2.5e).

While we find that axial motions of F-actin, consistent with the canonical sliding

of F-actin in muscle, are associated with contractility, stable fluctuations are domi-

nated by transverse filament deformations (Fig. 2.5b). Furthermore, these transverse

motions occur regardless of myosin isoform, suggesting the generality of these dy-

namic modes in the active stable state. These reversible F-actin plucking events arise

from transient and diverse interactions between non-aligned myosin and F-actin and

have been implicated as a source of stress amplification in disordered fiber networks

[130]. A lack of alignment or overlap between myosin and actin filaments would

imply that fewer myosin heads may be involved in the generation of active mechan-

ical stress. Thus, this work challenges the prevailing model of molecular motors as

dipoles oriented parallel to F-actin, that always yield to contractility. Likewise, the

definition of motor-based activity is now more complex; there is a spectrum of inter-

actions that occur in disordered assemblies of myosin and F-actin at the molecular

level. That spectrum in turn, may determine network level entropy production and

dissipation that stabilizes actively driven materials.

The relationship between motor activity and the accumulation and dissipation of

mechanical energy, which determines material stability is complex. The complexity

arises from a diversity of motor-filament interactions, and the impact of those inter-

actions on the dissipation of mechanical energy. Our multi-length scale identification

and characterization of active stability presents a comprehensive understanding for
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the dynamics of active biological materials.
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Chapter 3

Energetics of non-equilibrium binding

3.1 Motivation

Biological assembly is predicated on the binding of various components. Within the

cell cytoskeleton, this is primarily accomplished via crosslinkers, proteins that bind

multiple cytoskeletal filaments [131, 132, 133, 134, 61], and molecular motors, which

not only bind multiple filaments, but also exert active stresses upon the filaments

they are bound to by the consumption of ATP [60]. While much work has been

done on the non-equilibrium dynamics and forces generated by molecular motors

[66, 135, 73, 67, 88, 4, 136], there has been considerably less work has focused on the

energetic cost incurred by the (un)binding of crosslinkers themselves. This is due to

an implicit assumption on the dynamics of cross-linker binding, namely that they

obey detailed balance [137, 138, 129].

Binding kinetics that obey detailed balance ensures thermodynamically equili-

brated dynamics of crosslinkers. This assumption has generally been considered

correct because most crosslinkers cannot hydrolyze ATP or GTP, suggesting that

they must obey equilibrium kinetics. While this is true for the binding rate of cross-

linkers, the same is not true for the unbinding rate. Researchers have observed an
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increase in bond lifetime for crosslinkers under tension, a behavior dubbed a “catch

bond” [139, 85, 86, 140]. This goes against the intuition that a bond would dissoci-

ate more quickly under tension, forming a so-called “slip-bond” [139]. Despite their

counter-intuitive nature, catch bonds have been observed throughout biology, first

in adhesion molecules of rolling leukocytes [141], then found in bacterial adhesion

molecules [142], and also in actin binding proteins such as α-actinin [2] and myosin

[83].

The presence of a force-dependent unbinding rate, and the lack of a reciprocal

force-dependent binding rate, cause catch bonds to break detailed balance and intro-

duce a source of irreversibility at the microscopic scale of hierarchically constructed

biological materials. The extent to which a material constructed from catch bonds

is driven away from equilibrium remains an open question. Further, the large-scale

effects on the properties of such a material due to the presence of catch bonds is

also unknown. In this chapter, I attempt to provide an answer to these questions

by running molecular dynamics simulations of an actomyosin network, where myosin

motors not only exert active stresses on an actin network, but also exhibit catch bond

binding kinetics. We quantify the relative effects of motor walking and binding on

the network’s distance from equilibrium, the resulting material properties, and the

time-reversal symmetries of the non-equilibrium quantities governing the system’s

distance from equilibrium.

My contribution to the below includes implementing the catch bond kinetics and

irreversibility measurements in the simulations used throughout, running simulations,

and interpretation of all results. The work presented here has been adapted from

the following paper:

• A.P. Tabatabai†, D.S. Seara†, J. Tibbs, V. Yadav, I. Linsmeier, M.P. Murrell,

Detailed Balance Broken by Catch Bond Kinetics Enables MechanicalAdapta-
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tion in Active Materials. Advanced Functional Materials 2020, 2006745.

3.2 Introduction

A nearly universal feature of natural and engineered materials is that the strength of

molecular bonding weakens under externally applied mechanical load [118, 143, 144].

Referred to as slip bonds, load alters the bonds equilibrium free energy landscape and

increases the rate of unbinding compared to the stress-free state [145, 146, 147]. The

resulting destabilization of bonds leads to diverse material dynamics and properties,

from the flow of defects and the emergence of yield stress in crystalline materials to

viscoelasticity and creeping flows in amorphous materials [148, 149, 150, 151, 152,

153]. In rare cases, however, bonds may be reinforced, rather than weakened under

load. Referred to as catch bonds, binding kinetics are altered to introduce feedback

between applied mechanical load and the mechanical properties of the material itself

[86]. In synthetic systems, mechanical load is applied externally and catch bonds can

increase the mechanical toughness of the material in response, enabling several-fold

increase in allowable strain [90, 154, 155, 89, 156]. While catch bonds in biological

systems are also subject to external forces [86], active stresses in living matter are gen-

erated internally and the force generating units, in turn, sense and adapt to applied

load [65]. If the source of the endogenous stress also acts as a catch bond, biologi-

cal activity creates an adaptive feedback between macroscopic mechanical properties

and microscopic, internal stress generation. Active stresses and catch bond kinetics

may coordinate to drive a large spectrum in dynamic mechanical changes, better

informing on the design of active materials.

The cell cytoskeleton is an active out-of-equilibrium system [157, 158] that can

alter its rigidity or fluidity in order to maintain or change cell shape [159]. The

cytoskeleton is comprised of protein polymers and enzymes that irreversibly con-
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vert chemical energy into mechanical work internally [160, 161, 162]. Specifically,

the molecular motor myosin induces relative sliding of the actin polymers through

binding, walking, and unbinding. The unbinding stage occurs at a rate that is

itself dependent upon the magnitude of mechanical load the motor experiences

[163, 164, 165, 166, 167, 168] and is therefore considered a catch bond [169, 170, 83].

As a result, unbinding kinetics break detailed balance and do not obey Boltzmann

statistics [140, 171, 172, 173, 114, 174, 137]. However, the relative extent to which

active stresses, catch bond kinetics, and their interactions contribute to the cytoskele-

ton’s distance from equilibrium. Further, the general impact of broken detailed bal-

ance on the rigidity or fluidity of active materials is unknown.

In this work, we evaluate the impact of the combination of active stress and catch

bond kinetics in the actomyosin crossbridge on the non-equilibrium thermodynamics

and mechanics of a coarse-grained computational model of the cytoskeleton, as a

model of an active material. To do so, we simulate disordered actomyosin networks

and measure the actin flows induced by motors with varying load-dependence of the

myosin unbinding rates. In parallel, we measure the breaking of detailed balance at

the molecular scale and compare it to the propensity for the material to flow on the

network scale. In doing so, we associate non-equilibrium quantities with different

symmetries under time reversal with material phases in actomyosin.

3.3 Results

3.3.1 Catch strength controls force-dependent binding

To isolate the effects of catch bond behaviors in filament networks, we use the coarse-

grained molecular dynamics simulation package AFINES [137]. As contractility has

been shown to occur in the absence of actin crosslinking proteins [71, 5, 6], we study
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only the interactions between motors and filaments, respectively shown in black and

red in Fig. 3.1a,b. Motors are modeled as two beads coupled by a spring and undergo

Brownian motion when unbound. Motors can bind to actin filaments and walk along

the filament once bound. The motor walks towards the barbed end of the actin

filament with a force-dependent velocity, v(F ) = v0(1 − F/Fstall). When bound to

two filaments, the motor walking transmits stress between the two filaments and

throughout the rest of the actin network, provided the existence of sufficient network

connectivity. See Appendix B.1 for full simulation details

Catch bond binding kinetics are generally modeled as an initial increase in bond

lifetime, followed by a decrease at high forces [175, 83, 86]. The bond lifetime is

given by the inverse of the unbinding rate, given by

keff
off(F ) = kc

off exp(Fξcβ) + ks
off exp(Fξsβ), (3.1)

where β is the inverse temperature, F is the force felt by the bond (in our simulations,

the stretch of the spring that binds the two heads of a myosin filament), ξc < 0 and

xis > 0 are parameters with units of length that give the strength of the force-

dependence of the catch and slip pathways, leading to an exponential suppression

and amplification of keff
off respectively, and kc

off and ks
off are the basal unbinding rates

for the catch and slip pathways, respectively. This catch-slip behavior replicates data

seen from single molecule pulling experiments [83], where high force are applied to

single molecules via beads trapped by optical tweezers [176]. However, there is a lack

of evidence that catch bonds experience high enough forces to transition into the slip

regime in their endogenous environment. We therefore use a low-force approximation

to Equation 3.1 when defining a force dependent unbinding rate

keff
off(F ) = k0

off exp(Fξβ). (3.2)
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Figure 3.1: Simulation and catch bond definitions (a) A snapshot of a typical
configuration for AFINES simulations, showing actin filaments (red) and myosin
motors (black) randomly distributed in a box with periodic boundary conditions.
Scale bar is 10 µm. (b) Zoomed in section of the same simulation as (a). (c)
Illustration of the four states of a single simulated myosin motor: I. unbound, II.
bound to a single actin filament, III. bound to two different actin filaments, IV.
motor walking towards the “barbed” end of an actin filament. (d) Ratio of effective
to basal off-rates as given in Equation 3.2, shown for various values of catch strength
ξ (different colors), with stall force of Fstall = 2 pN.

In what follows, we call ξ the catch strength. We vary ξ ∈ [−0.5µm, 0], corresponding

to an energy range of [−125 kBT, 0] at a tensile force of F = 1 pN. We leave

binding rate, kon, independent of F , and thereby break detailed balance at the level

of individual motor (un)binding events.

3.3.2 Catch bond kinetics alone switch (un)binding favora-

bility

Before investigating the effects of catch bonds in a full network, we investigate the

thermodynamic effects from binding kinetics alone. We simulate a simplified system

with one motor within a circular array of immobile filaments. One motor head is

fixed at the origin and the other head is free to diffuse (Fig. 3.2a). The thermally

diffusing head stochastically binds and unbinds to filaments within the array with

probabilities pB and pU, respectively, that are determined in part by the thermally

fluctuating motor length L. Note that the rest length of the motor is less than
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the minimum distance to bind to a filament, therefore the motor will be stretched

in the bound state. This system is further simplified by using a motor with zero

walking speed, eliminating the traditional source of irreversibility from energy input

via ATP dependent motor motility. We quantify the thermodynamic irreversibility,

λ(t), generated by the motor using a standard measure of the entropy production of

a trajectory over a discrete state-space [177, 40, 31] (see Appendix B.4).

In our simulations, motors transition between only two states: bound and un-

bound. The total irreversibility is the cumulative sum over time of the contributions

from binding and unbinding λ(t) = λbind(t) + λunbind(t). In this simple system,

without motor walking or network rearrangement, λ(t) measures the deviation from

the equilibrium binding affinity of the motor. The irreversibility from binding and

unbinding varies with increasing catch strength (Fig. 3.2b,c). Both the number of

(un)binding events and the relative probabilities of (un)binding contribute to changes

in irreversibility. Using a microscopic detailed balance assumption we interpret neg-

ative values of λbind(t) and λunbind(t) as transitions that require heat to be absorbed

from a temperature bath [178]. Within this configuration, the average total irre-

versibility, 〈λ〉, increases with catch strength (Fig. 3.2d). Interestingly, λbind(t) and

λunbind(t) both change sign as |ξ| increases. Specifically, unbinding begins as an en-

ergetically favorable transition, indicated by a net positive λunbind, and vice-versa

for binding. As |ξ| increases, unbinding becomes energetically costly due to the

decreased probability of unbinding.

To investigate this differential effect of ξ on large scale mechanical properties in

the presence of motor walking, we simulate fully mobile actomyosin networks while

varying ξ to measure network flow and energy storage.
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Figure 3.2: Irreversibility switches due to broken detailed balance by catch
bonds (a) Illustration of the circular array of actin filaments (red) and diffusing
myosin motor with one head anchored at the origin in bound (black) and unbound
(gray) states. Circles and arrows show a schematic of a motor switching from a bound
state to an unbound state with probability pU, and similar for a motor switching
from the unbound to the bound state. Box is 2.1 µm wide. (b) Irreversibility
due to binding, λbind as a function of time for increasing |ξ|. (c) Irreversibility
due to unbinding, λunbind as a function of time for increasing |ξ|. (d) Mean total
irreversibility, 〈λ〉, as a function ξ. Inset shows a prototypical example of the total
irreversibility over time, λ = λbind + λunbind, for ξ = −0.1 µm.

3.3.3 Detailed balance broken by catch bonds underlies a

fluid-solid transition

To understand how the breaking of detailed balance by catch bonds affects network

mechanics, we observe the evolution of fully mobile disordered networks with motor

velocity 1 µm/s. Ideal motors (ξ = 0 µm) at a number density of ρ = 0.8 µm−2

contract and condense actomyosin network into regions of high density asters, as

previously observed (Fig. 3.3a) [179, 180, 138]. Changes in the catch strength lead to

dramatic changes in network evolution: intermediate catch strength (ξ = −0.01 µm)

network also condense into asters (Fig. 3.3b), however high catch strength (ξ =

−0.1 µm) results in arrested flow and limited reorganization of actin (Fig. 3.3c).

We quantify the mechanical effects of catch bonds by calculating the energy

density of each network, ω(t) =
∑

i Ui/L
2, where Ui is the potential energy of the

ith component of both the actin filaments and myosin motors and L2 is the area of

the simulation box (Section B.3). We observe that networks at low to intermediate
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values of ξ exhibit an increase and subsequent decrease in ω(t). However, networks

with large catch strengths do not have the decrease in ω at late times (Fig. 3.3d). In

addition, we quantify actin flow during contraction by calculating the cumuluative

displacement field x of the actin filaments interpolated onto a grid (Fig. 3.3e, see

Appendix B.2 for details). We use x to define a network strain, ε(t) = 〈∇ · x(t)〉,

and quantify the extend of the network’s evolution by the maximum strain, εmax

and the rate of contractility by the strain rate, ε̇, measured in the times when ε ∈

[(1/4)εmax, (3/4)εmax] [4].

We find that an increase in |ξ| generates a non-monotonic response in the max-

imum energy density ωmax, the maximum strain εmax, and strain rate ε̇ (Fig. 3.3g-

i). All non-monotonic behaviors occur over the same range of catch strength, ξ ∈

[−10−3,−100]. This non-monotonic is not observed for ideal motors (insets of Fig. 3.3g-

i), indicating that a force-dependent unbinding rate, not active stress, is essential to

get the non-monotonic behavior.

We define a liquid-like regime for |ξ| < 0.01 µm, where increases in |ξ| increase

contraction rate and the total accumulated strain. By contrast, we define a soid-

like regime for |ξ| > 0.01 µm, where increases in |ξ| do not increase actin flow. By

this definition, the catch strength of the actomoysin crossbridge mediates an fluid-

solid dynamical phase transition that is not observed with force independent binding

kinetics of the active molecular motors.

3.3.4 Network connectivity is insufficient to drive solid-like

behavior

Previous works have suggested that network percolation drives a rigidity transition

in cytoskeletal networks [181, 182, 88]. Here, we test the influence of connectivity

and binding kinetics to understand the origin of the observed fluid-solid transition.
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Figure 3.3: Catch bonds mediate a fluid-solid transition (a) Snapshots of
a typical simulation containing actin (red) and myosin (black) with ξ = 0 µm.
The rightmost plot shows a kymograph of the dynamics around an eventual aster
along the green line. (b) Similar to (a), but with motors of intermediate catch
strength, ξ = −0.01 µm. (c) Similar to (a), but with motors of high catch strength,
ξ = −00.1 µm. (d) Typical temporal evolution of energy density, ω, for simulations
with various catch strengths (ξ = 0 µm, red; ξ = −0.01 µm, green; ξ = −0.1 µm,
blue). (e) Strain field x (black arrows) and resulting strain, ∇· x (colormap) shown
for the final snapshot in (a). Arrow sizes are scaled relative to the maximum vector at
t = 76 s. (f) Typical temporal evolution of the strain, ε for various catch strengths
(ξ = 0 µm, red; ξ = −0.01 µm, green; ξ = −0.1 µm, blue). Black line shows
the strain measured for actin filaments subject to only thermal fluctuations. (g-i)
Maximum energy density ωmax (g), maximum strain εmax (h), and strain rate ε̇ (i)
averaged over N ≥ 4 simulations as a function of catch strength ξ. Insets in (g-i)
contain the same information but for ideal motors (ξ = 0 µm) as a function of ρ.
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First, we observe that catch bonds give rise to an increase in bound motor pop-

ulation within a network (Fig. 3.4a), suggesting that the overall connectivity may

be causing the observed mechanical response. Since an increase in bound motors

is also observed by increasing the concentration of ideal bonds, we calculate the

network connectivity for networks composed of ideal and catch bonds separately in

order to isolate the effects of binding kinetics on the mechanical transition. Network

connectivity is calculated by counting the average number of neighboring filaments

that each filament is connected to through a motor by 〈z〉 = 2Nm/Nf , where Nm is

the number of motors connecting each actin filament to other filaments and Nf is

the total number of actin filaments within the system (Fig. 3.4b). These values are

independent of the measured time and redundant connections are not counting.

Both increasing catch strength and increasing ideal motor concentration lead to a

smoothly increasing connectivity over the range 3 < 〈z〉 < 4. However, ideal motors

never exhibit the decrease in contractility, as quantified by εmax, seen in networks

containing catch bond kinetics (Fig. 3.4c). From this we conclude that connectivity

alone cannot explain the transition to a solid-like regime. Furthermore, this provides

yet another regime where the Maxwell criterion for mechanical stability [183] does

not hold. Maxwell’s counting argument says that 2D structures need a connectivity

of zc = 4 to resist a shear. Previous work has shown that filament bending rigidity

can lower the threshold needed for the onset of mechanical rigidity [68]. Here, we

show that non-equilibrium kinetics of bonds can also lower the threshold for the

onset of stability.

We observe a sharp decrease in motor walking speed concomitant with the in-

crease in connectivity for catch bonds, indicating that motors are under load and

force-dependent binding kinetics are engaged in the solid regime. To further inves-

tigate the difference in load in the fluid and solid regimes, we calculate the bond

lifetimes as a function of ξ. Consistent with the increase in bound motors and the
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Figure 3.4: Active stress is necessary but insufficient to induce the fluid-
solid transition (a) Typical time series for the fraction of bound motors shown for
various catch strengths (ξ = 0 µm, red; ξ = −0.02 µm, green; ξ = −0.1 µm, blue).
(b) Schematic showing an example of how network connectivity is calculated. We
map filaments (red) and motors (black) to nodes and edges, respectively, of a graph.
We then calculate the average connectivity of the nodes in the resultant network. (c)
Maximum strain, εmax, against average network connectivity, 〈z〉, for ideal motors
(red) and catch bonds with various values of ξ (black). Connectivity is calculate
at a strain of ε = 0.05. (d) Probability distribution function of bond lifetimes, τ ,
that have contracted to a strain of ε = 0.05. (e) Schematic of network properties
that differentiate the fluid and solid phases. Circular arrows indicate the lifetime of
bound motors, the distribution of which is given by the distributions on the bottom
of the cartoon. In the solid phase, there exists at least one system spanning path,
illustrated by the gray path. All data with error bars are plotted as mean ± standard
deviation.

change in motor speed, we observe that the distribution of bond lifetimes broadens

due to the emergence of a long-lifetime population of bound motors in the solid state

(Fig. 3.4d,e). A decrease in motor speed generates less stress per unit time and may

underlie the decrease in energy density seen at high |ξ| (Fig. 3.3g).

3.3.5 Time-reversal symmetries correlate to material phases

As catch bonds break detailed balance, as shown previously for a simplified config-

uration, we next calculate the irreversibility for binding kinetics for full networks
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in order to understand the role of non-equilibrium thermodynamics in the observed

fluid-solid transition. Contributions to irreversibility from binding and unbinding,

λbind and λunbind, accumulate over time, even in the absence of walking (Fig. 3.5a, b).

We define a characteristic irreversibility, λ∗, while the system is in a steady state at

early times (t < 20 s) to characterize the flow of energy. λ∗ increases with increasing

catch strength, showing two separate regimes that coincide with the fluid and solid

behaviors (Fig. 3.5c). When increasing catch strength leads to an increase in network

fluidity (|ξ| < 0.01 µm), there are small changes in λ∗, but when increasing catch

strength leads to network solidification (|ξ| > 0.01 µm), λ∗ increases rapidly.

The irreversibility is a cumulative measure and can increase either due a changing

number of total (un)binding events, or due to changes in the irreversibility of each

individual contribution. To differentiate these effects, we report the total number

of binding events, N∗, measured at the same time chosen to measure λ∗, calculate

the mean irreversibility given by λ∗/N∗. This mean irreversibility is independent of

the number of transitions and thus measures purely the time-reversal asymmetric

contribution of the irreversibility, while N∗ measures time-reversal symmetric non-

equilibrium contributions to the irreversibility. We find that λ∗/N∗ is invariant in the

fluid phase, and increases significantly in the solid phase. By contrast, N∗ exhibits

a slow decrease in the liquid regime, and a steeper decrease in the solid regime.

This reflects that changes in time-reversal symmetric quantities contribute to the

network’s fluidity, but a change in time-reversal asymmetric quantities underlie the

transition to a solid phase.

3.4 Conclusion

Naturally occurring in biological systems [184, 185, 186], catch bonds are fundamen-

tal building blocks for the assembly of non-equilibrium materials. The irreversible
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Figure 3.5: Symmetries of contributions to irreversibility correlate with
fluid and solid phases (a) Representative time series for irreversibility due to
binding (blue) and unbinding (magenta). Solid lines show the result for ideal motors
(ξ = 0 µm with zero walking velocity (v = 0 µm/s). Dotted lines show the result for
catch bond motors (ξ = −0.5 µm) with a non-zero walking velocity (v = 1 µm/s).
(b) Total irreversibility over time for motors with v = 1 µm/s as a function of ξ.
Blue and red lines correspond to catch strength values in the fluid and solid regimes
of Fig. 3.3, respectively. Magenta line shows λ for ξ = 0 µm. (c) Irreversibility at
t = 5 s, λ∗, and maximum energy density, ωmax (same data as Fig. 3.3g). (d) Mean
irreversibility, λ∗/N∗ and total number of binding events, N∗, at t = 5 s. Vertical
dashed lines in (c) and (d) delineates fluid (left of dashed line) and solid (right of
dashed line) behavior of the network..

conversion of chemical energy into mechanical work has two components, in the gen-

eration of active stresses through motor walking, and the load-dependent unbinding

of the motor. Using actomyosin as a model of active materials in general, we de-

lineate their relative impact on the breaking of detailed balance at the microscopic

scale, and further investigate how ti translates to large-scale mechanical phenomena.

The interplay between motor walking and catch-bond kinetics drives the system

away from equilibrium and determines the material properties of the actomyosin

network. Near equilibrium, the material is an active fluid, where small changes in

λ lead to large changes in the actin flow rate. Further, changes in the thermo-

dynamic irreversibility in this regime are dominated by changes in N∗ (Fig. 3.5c,

d), the total number of transitions made by the system. This is a time-symmetric

non-equilibrium property that can be related to quantities such as an effective tem-

perature [73] or “frenesy” and “traffic” as introduced in other works [187, 188]. Thus,

59



fluidity is driven by motor walking that is allowed to propagate for longer distances

and times as the number of unbinding events decreases, but the irreversibility of

the unbinding itself remains unchanged. By contrast, changes in λ are dominated

by the mean irreversibility, λ∗/N∗, at high values of ξ, making the network an ac-

tive solid. While increases in ξ lead to large changes in λ∗/N∗ (Fig. 3.5), material

flow is suppressed to a lower state than at lower values of ξ, and become arrested

in time (Fig. 3.3). Time-reversal asymmetric quantities govern the transition to a

solid regime, highlighting that catch bond kinetics, not motor activity, dominate the

system’s thermodynamics far from equilibrium, in contrast to previous works [189].

We also observe the emergence of a bimodal distribution of bond lifetimes in the

solid state, reflecting heterogeneity in the network connectivity and network stress.

Thus, large scale mechanical properties and phases adapt to the breaking of detailed

balance at microscopic scales.

These results highlight the role of catchbonds on fluidity, as well as rigidity, as the

latter is principally observed in synthetic systems [90, 154, 155, 89, 156]. Further-

more, the nonmonotonic change in material fluidity is also observed in biochemical

reconstitution experiments that closely resemble our simulations. In the experiments,

we alter an effective catch strength through the increase in motor content or Factin

crosslinking by α-actinin (Figures B.1 & B.2) [167, 186, 190, 191].

In summary, active stress drives the system away from thermodynamic equilib-

rium, but requires non-equilibrium binding kinetics to mount an adaptive mechanical

response. These results highlight fundamental design principles and energetic costs

for the assembly and actuation of active materials, where multiple sources of non-

equilibrium driving can compete to produce diverse material properties.
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Chapter 4

Energetics of biochemical oscillations

4.1 Motivation

The previous chapters investigated how interactions at the single protein level endows

actomyosin networks with their mechanical and dynamical properties. In Chapter 2,

we discovered how myosin motions can dissipate myosin induced stresses in order to

maintain mechanically stable steady state dynamics. In Chapter 3, we discovered

how the binding kinetics of individual myosin motors can control a transition between

states with a propensity for flow and states with arrested mobility. These works

provide a bottom-up approach to active materials design, where tuning dissipation

at the microscale leads to emergent macroscopic phenomena. In this chapter, we

invert this perspective to take a top-down approach towards addressing another

fundamental tool used by living matter – reaction-diffusion dynamics.

At single cell length scales and above, continuum approaches have been successful

in describing protein dynamics [192, 193, 63, 194, 64, 65]. In these cases, proteins

are described by fields that undergo inter- and intra-species chemical reactions and

are subject to diffusion by thermal forces. Drawing on techniques found throughout

condensed matter physics, models for these dynamics are often phenomenological,
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containing all terms allowed by the symmetries present in the problem that replicate

the dynamics seen in experiments [195, 93].

In particular, oscillatory dynamics are ubiquitous in biology [196], from ion-

mediated electrical signal transmission down neurons [197] to phosphorylation-driven

circadian rhythms [198, 199] to reaction-diffusion based oscillations critical for cell

division in both bacteria [200] and eukaryotes [110, 201]. Models that replicate these

dynamics break time-reversal symmetry and are thus manifestly non-equilibrium

models. However, quantifying the energy dissipated across space, and how the total

energy dissipation can tune the observed dynamics, remains unclear. In order to

address these challenges, I developed a method for estimating irreversibility directly

from spatiotemporal data, without requiring knowledge of the underlying dynamics.

This method is widely applicable to dynamics in any number of spatial dimensions,

and is used to study the thermodynamics of a dynamical phase transition in a popular

model for biochemical oscillators.

My contribution in the following is the development of the theory, writing and

analyzing all simulations, and interpretation of the results. The work presented here

has been adapted from the following paper:

• D.S. Seara, B.B. Machta, M.P. Murrell, Irreversibility in dynamical phases

and transitions Nature Communications 12, 392 (2021).
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4.2 Introduction

In many-body systems, collective behavior that breaks time-reversal symmetry can

emerge due to the consumption of energy by the individual constituents [192, 194, 63].

In biological, engineered, and other naturally out of equilibrium processes, entropy

must be produced so as to bias the system in a forward direction [39, 202, 12, 203,

204, 205]. This microscopic breaking of time reversal symmetry can manifest at dif-

ferent length and time scales in different ways. For example, bulk order parameters

in complex reactions can switch from exhibiting incoherent, disordered behavior to

stable static patterns [94, 206] or traveling waves of excitation [207, 93] that break

time reversal symmetry in both time and space simply by altering the strength of

the microscopic driving force. Recent advances in stochastic thermodynamics have

highlighted entropy production as a quantity to measure a system’s distance from

equilibrium [208, 76, 136, 209, 210, 211]. While much work has been done investigat-

ing the critical behavior of entropy production at continuous and discontinuous phase

transitions [212, 213, 214, 215, 216, 217, 218, 219, 220], dynamical phase transitions

in spatially extended systems have only recently been investigated, and to date no

non-analytic behavior in the entropy production has been observed [97, 221].

To address this, we introduce what we term the entropy production factor (EPF),

a dimensionless function of frequency and wavevector that measures time reversal

symmetry breaking in a system’s spatial and temporal dynamics. The EPF is a

strictly non-negative quantity that is identically zero at equilibrium, quantifying

how far individual modes are from equilibrium. Integrating the EPF produces a

lower bound on the entropy production rate (EPR) of a system. We illustrate how

to calculate the EPF directly from data using the analytically tractable example

of Gaussian fields obeying partly relaxational dynamics supplemented with out of
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equilibrium coupling [195]. We then turn to the Brusselator reaction-diffusion model

for spatiotemporal biochemical oscillations to study the connections between pat-

tern formation and irreversibility. As the Brusselator undergoes a Hopf bifurcation

far from equilibrium, its behavior transitions from incoherent and localized to co-

ordinated and system-spanning oscillations in a discontinuous transition. The EPF

quantifies the shift in irreversibility from high to low wave-number as this transition

occurs, but the EPR is indistinguishable from that of the well-mixed Brusselator

where synchronization cannot occur. Importantly, the EPF can be calculated in any

number of spatial dimensions, making it broadly applicable to a wide variety of data

types, from particle tracking to 3+1 dimensional microscopy time series.

4.3 Results

4.3.1 Entropy production factor derivation

Consider a system described by a set of M real, random variables obeying some

possibly unknown dynamics. A specific trajectory of the system over a total time T

is given by X = {X i(t)|t ∈ [0, T ]}. Given an ensemble of trajectories, the average

EPR, Ṡ, is bounded by [41, 202, 12]

Ṡ ≥ lim
T→∞

1

T
DKL

(
P [X]

∥∥∥ P [X̃]
)

DKL

(
P [X]

∥∥∥ P [X̃]
)

=

〈
log

(
P [X]

P [X̃]

)〉
P [X]

(4.1)

where we have set kB = 1 throughout and DKL denotes the Kullback-Leibler diver-

gence which measures the distinguishability between two probability distributions.

P [X] and P [X̃] are the steady state probability distribution functionals of observ-

ing the path X(t) of length T and the probability of observing its reverse path,
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respectively. Therefore, the KL divergence in Equation 4.1 measures the statistical

irreversibility of a signal, and saturates the bound when X contains all relevant,

non-equilibrium degrees of freedom.

We further bound the irreversibility itself by assuming the paths obey a Gaussian

distribution. Writing the Fourier transform of X i(t) as xi(ω), where ω is the temporal

frequency, and writing the column vector x(ω) = (x1(ω), x2(ω), . . .)
T

:

P [x(ω)] =
1

Z

∏
ωn

exp

(
− 1

2T
x†C−1x

)
, (4.2)

where x† denotes the conjugate transpose of the vector x evaluated at the discrete

frequencies ωn = 2πnT−1. C(ωn) is the covariance matrix in Fourier space with ele-

ments Cij(ωn) = 〈xi(ωn)xj(−ωn)〉T−1, and Z is the partition function. The expres-

sion for P [x̃] is identical but with C−1(ωn) → C−1(−ωn). Combining Equation 4.1

with Equation 4.2 and taking T →∞, we arrive at our main result:

Ṡ =

∫
dω

2π
E(ω); E(ω) =

1

2

[
C−1(−ω)− C−1(ω)

]
ij
Cji(ω). (4.3)

This defines the EPF, E(ω), which measures time reversal symmetry break-

ing interactions between M ≥ 2 variables, while integrating E gives Ṡ. E(ω) =

DKL(P [x(ω)] || P [x̃(ω)]) measures the Kullback-Leibler divergence between the joint

distribution of M modes at a single frequency ω. While this quantity does not scale

with trajectory length, the density of modes near a particular frequency is related to

the total trajectory time by ∆ω = 2πT−1. Since ±ω modes must be complex con-

jugates of each other and an overall average phase is prohibited by time translation

invariance, asymmetry between these distributions can only be captured by relative

phase relationships, quantified by their correlation functions. E is large when one

variable tends to lead another in phase, implying a directed rotation between these
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variables in the time domain.

As mentioned above, P [x(ω)] describes the dynamics of a non-equilibrium steady

state, and no reversal of external protocol is assumed. Further, in writing an expres-

sion for P [x̃(ω)], we assume that the observables are scalar, time-reversal symmetric

quantities, such as the chemical concentrations we analyze below.

The Gaussian assumption we make here makes Equation 4.3 exact only for sys-

tems obeying linear dynamics. Nevertheless, E is still defined for non-linear systems,

where the integrated E lower bounds the true Ṡ. To see this, consider projecting

complex dynamics onto Gaussian dynamics by choosing a data processing procedure

which preserves two point correlations but which removes higher ones. This can be

accomplished by multiplying every frequency by an independent random phase —

a post processing procedure which can be applied to individual trajectories. Post-

convolution, the integrated EPF is equal to the KL divergence rate between forward

and backwards rates. From the data processing inequality, the KL divergence rate

of the true fields must be higher, so that the integrated EPF lower bounds the true

entropy production rate (Appendix C.2). In addition to bounding the true Ṡ, we

expect the integral of E to be a good approximation for the wide class of systems

where linearization is reasonable. Such Gaussian approximations are starting points

in many field theories, with higher order interactions accounted for by adding an-

harmonic terms in the action of Equation 4.2. While this is not our focus here, we

expect these additional terms to systematically capture corrections to Ṡ that do not

appear in Equation 4.3. As Cii(ω) = Cii(−ω), the only contributions to E come from

the cross-covariances between the random variables of interest. As such, this bound

yields exactly 0 for a single variable even though higher order terms may contribute

to Ṡ.

This formulation extends naturally to random fields. For M random fields in d

spatial dimensions, φ = {φi(x, t)|t ∈ [0, T ],x ∈ Rd}, the EPR density, ṡ ≡ Ṡ/V
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where V is the system volume, is:

ṡ =

∫
dω

2π

ddq

(2π)d
E(q, ω);

E(q, ω) =
1

2

[
C−1(q,−ω)− C−1(q, ω)

]
ij
Cji(q, ω).

(4.4)

where Cij(q, ω) is the dynamic structure factor and E(q, ω) is now a function of

wavevector q and frequency ω.

Even without an explicit, analytic expression for the structure factor, C, we can

estimate E from data. To use Equation 4.4, we consider data of N finite length tra-

jectories of M variables over a time T in d spatial dimensions. Each dimension has a

length Li. We create an estimate of the covariance matrix, C̃(q, ω), from time-series

using standard methods [see Methods]. These measurements will inevitably contain

noise that is not necessarily time-reversal symmetric, even for an equilibrium sys-

tem. Noise due to thermal fluctuations and finite trajectory lengths in the estimate

of C̃ from a single experiment (N = 1) will systematically bias our estimated E by

∆E = M(M−1)
2

at each frequency and will thereby introduce bias and variance in our

measurement of ṡ. We can simply remove the bias from our measured E , but to

reduce the variance, we smooth C̃ by component-wise convolution with a multivari-

ate Gaussian of width σ = (σq1 , . . . , σqd , σω) in frequency space, giving Ĉ. This is

equivalent to multiplying each component of the time domain C̃(r, t) by a Gaussian,

cutting off the noisy tails in the real space covariance functions at large lag times.

We then use Ĉ in Equation 4.4 to create our final estimator for the EPF, Ê , and

thereby the EPR, ˆ̇s. We calculate and remove the bias in Ê and ˆ̇s in all results below

[see Methods]. Smoothing C̃ with increasingly wide Gaussians in ω and q leads to a

systematic decrease in ˆ̇s due to reduced amplitudes in C̃ (Appendix C.4).

To illustrate the information contained in E , its numerical estimation, and the

accuracy of ˆ̇s, we analyze simulations of coupled, 1 dimensional Gaussian stochastic
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fields for which E and ṡ can be calculated analytically. We then study simulations

of the reaction-diffusion Brusselator, a prototypical model for non-linear biochemical

oscillators, and use E to study how irreversibility manifests at different time and

length scales as the system undergoes a Hopf bifurcation [95].

4.3.2 Driven Gaussian fields

Consider two fields obeying Model A dynamics [195] with non-equilibrium driving

parametrized by α:

∂tφ(x, t) = −DδF
δφ
− αψ +

√
2Dξψ

∂tψ(x, t) = −DδF
δψ

+ αφ+
√

2Dξφ,

(4.5)

where ξ(x, t) is Gaussian white noise with variance 〈ξi(x, t)ξj(x′, t′)〉 = δijδ(x −

x′)δ(t− t′), D is a relaxation constant, and δF/δφ is the functional derivative with

respect to φ of the free energy F given by:

F =

∫
dx

[
r

2
(φ2 + ψ2) +

1

2

(
|∂xφ|2 + |∂xψ|2

)]
, (4.6)

so that the fields have units of `1/2 and r penalizes large amplitudes.

The EPR density, ṡ, is calculated analytically in two ways. First, we solve Equa-

tion 4.1 directly using the Onsager-Machlup functional for the path probability func-

tional of η(x, t) = (φ(x, t), ψ(x, t))T [39, 222]. Second, the covariance matrices are

calculated analytically, used to find E through Equation 4.4, and integrated to find

ṡ. Both cases give the same result for ṡ. The result for both E and ṡ are [Appendix

C.1]:

EDGF =
8α2ω2

(ω2 − ω2
0(q))2 + (2D(r + q2)ω)2

, ṡDGF =
α2

D
√
r
. (4.7)
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We see that EDGF ≥ 0 and exhibits a peak at (q, ω) = (0, ω0(0)), where ω0(q) =√
(D(r + q2))2 + α2, indicating that the system is driven at all length scales with a

driving frequency of α, dampened by an effective spring constant Dr. In addition, it

is clear that multiple combinations of α, r, and D can give the same value for ṡ while

E distinguishes between equally dissipative trajectories in the shape and location of

its peaks. In this way, E gives information about the form of the underlying dynamics

not present in the total EPR.

We note that EDGF is also recovered using an appropriately modified version

of the generalized Harada-Sasa Relation (GHSR) introduced in [222]. The non-

equilibrium driving in Equation 4.5 comes from a rotational current between the two

fields, rather than from a current derived from the gradient of a non-conservative

chemical potential. This requires us to derive a slightly altered version of the GHSR

than given in [222], largely following the steps outlined therein. In addition, our

2-field problem requires that the response and correlation functions be tensors, and

the energy dissipation is related to the trace of their difference [223]. The resulting

GHSR is

Ṡ =

∫
dω

2π

dq

(2π)d
σ(q, ω); σ(q, ω) =

ω

D
Tr
[
ωC(q, ω)− 2R̃(q, ω)

]
, (4.8)

where C(q, ω) is the covariance matrix given in Appendix C.1 and R̃ is the imaginary

component of the response tensor due to the presence of a constant external field

(hφ, hψ), adding the term hφφ+ hψψ to the free energy in Equation 4.6.

We now show that σ = E for the driven Gaussian fields. As we have already

calculated the correlation matrix, we are left to calculate Rij = (δ〈ηi〉/δhj) |hj→0,

where η = (φ, ψ). Solving the perturbed versions of 4.5 in frequency space and
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taking the mean, we find

〈φ〉 =
Dhφ + α〈ψ〉
D(r + q2)− iω

(4.9)

〈ψ〉 =
Dhψ − α〈φ〉
D(r + q2)− iω

. (4.10)

Plugging one solution into the other, we find the auto-responses to be equal to each

other, giving

Tr [R] =
2D (D(r + q2)− iω)

(D(r + q2)− iω)2 + α2
→ Tr

[
R̃
]

=
2Dω (D2(r + q2)2 − α2 + ω2)

(ω2 − ω2
0)2 + (2rω)2

,

(4.11)

where ω0 is defined as in the main text, ω2
0 = D2(r + q2)2 + α2. As can be seen in

the previous section, the trace of the correlation function is

Tr [C] =
4D (D2(r + q2)2 + α2 + ω2)

(ω2 − ω2
0)2 + (2rω)2

. (4.12)

This finally gets us to our desired result

σ(q, ω) =
8α2ω2

(ω2 − ω2
0)2 + (2rω)2

= EDGF. (4.13)

We perform simulations to assess how well E can be extracted from time series

data of fields [See methods for details]. The estimated Ê shows excellent agreement

with Equation 4.7 (Fig. 4.1). Integrating Ê gives ˆ̇s, which also shows good agreement

with ṡDGF.
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Figure 4.1: Entropy production rate and entropy production factor are well

estimated for driven Gaussian fields. (a) Snapshot of typical configurations of

both fields, ψ (blue solid line) and φ (orange dashed line) obeying Equation 4.5

for α = 7.5. (b) Subsection of a typical trajectory for one field for α = 7.5 in

dimensionless units. Colors indicate the value of the field at each point in spacetime.

(c) Ê for α = 7.5 averaged over N = 10 simulations. Contours show level sets of

EDGF. (d) Measured ṡ vs. α for simulations of total time T = 50 and length L = 12.8.

Red line shows the theoretical value, ṡDGF. Mean ± s.d. of ˆ̇s given by black dots

and shaded area. See Table C.1 for all simulation parameters.

Our estimator gives exact results for the driven Gaussian fields because the true

path probability functional for these fields is Gaussian. In contrast, the complex pat-
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terns seen in nature arise from systems obeying highly non-linear dynamics. For such

dynamics, our Gaussian approximation is no longer exact but provides a lower bound

on the total irreversibility. To investigate how irreversibility correlates with pattern

formation, we study simulations of the Brusselator model for biochemical oscilla-

tions [224]. We begin by describing the various dynamical phases of the equations of

motion. Next, we calculate E and Ṡ for only the reactions before adding diffusion to

study the synchronized oscillations that arise in the 1 dimensional reaction-diffusion

system.

4.3.3 Reaction-diffusion Brusselator

We use a reversible Brusselator model [224, 225, 226, 221] with dynamics governed

by the reaction equations:

A
k+1


k−1

X; B +X
k+2


k−2

Y + C; 2X + Y
k+3


k−3

3X; (4.14)

where {A,B,C} are external chemical baths with fixed concentrations {a, b, c}, and

all the reactions occur in a volume V (Fig. 4.4a). The system is in equilibrium when

the external chemical baths and reaction rates obey Bk+
2 k

+
3 = Ck−2 k

−
3 . When this

equality is violated, the system is driven away from equilibrium and exhibits cycles

in the (X, Y ) plane. Defining

∆µ = log

(
Bk+

2 k
+
3

Ck−2 k
−
3

)
, (4.15)

the Brusselator is at equilibrium when ∆µ = 0 and is driven into a non-equilibrium

steady state when ∆µ 6= 0. We vary B and C to change ∆µ while keeping the

product (bk+
2 k

+
3 )(ck−2 k

−
3 ) = 1, keeping the rate at which reactions occur constant for

all ∆µ [227].
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As ∆µ increases, the macroscopic version of Equation 4.14 undergoes dynamical

phase transitions. For all ∆µ, there exists a steady state (Xss, Yss), the stability of

which is determined by the relaxation matrix, R (Appendix C.5). The two eigenval-

ues of R , λ±, divide the steady state into four classes [95]:

1. λ± ∈ R<0 → Stable attractor, no oscillations

2. λ± ∈ C, Re[λ±] < 0→ Stable focus

3. λ± ∈ C, Re[λ±] > 0→ Hopf Bifurcation, limit cycle

4. λ± ∈ R>0 → Unstable repeller

The eigenvalues undergo these changes as ∆µ changes, allowing us to consider ∆µ as

a bifurcation parameter. We define ∆µHB as the value of ∆µ where the macroscopic

system undergoes the Hopf bifurcation (Fig. 4.2a).

Non-equilibrium steady states are traditionally characterized by their circulation

in a phase space [46, 36, 79, 228, 229]. One may then question how it is possible to

detect non-equilibrium effects in the Brusselator when the system’s steady state is a

stable attractor with no oscillatory component. While this is true for the macroscopic

dynamics used to derive λ±, we simulate a system with finite numbers of molecules

subject to fluctuations. These stochastic fluctuations give rise to circulating dynam-

ics, even when the deterministic dynamics do not [225]. We see persistent circulation

in the (X, Y ) plane when λ± ∈ R<0, with the vorticity changing sign around ∆µ = 0

(Fig. 4.2).

In order to assess the accuracy of our estimated EPR, ˆ̇S, we calculate an estimate

of the true EPR, Ṡtrue, for a simulation of Equation 4.14 by calculating the exact

entropy produced by each reaction that occurs in the trajectory [31], and then fitting

a line to the cumulative sum (Fig. 4.3, Appendix C.3). We find that ˆ̇S significantly

underestimates Ṡtrue (note the logged axes in Fig. 4.4c) due to the Brusselator’s
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Figure 4.2: Brusselator dynamics exhibit circulation without macroscopic
oscillatory solution. (a) Eigenvalues of the Brusselator’s relaxation matrix, R as
a function of the chemical driving force, ∆µ. λ± shown in red and blue, respectively,
with each color going from dark to light with increasing ∆µ. The red and blue arrows
serve as guides for the reader to follow the trajectory of λ±. With our parameters,
the stable focus appears at ∆µ = 5.26 and the Hopf bifurcation occurs at ∆µHB =
6.16. (b) Probability distributions (blue) and probability fluxes (red arrows) for
Brusselator simulations with ∆µ = [−1, 0, 1], showing the reversal in flux circulation
direction at ∆µ = 0.

hidden dynamics. In the Brusselator, information is lost because the observed tra-

jectories are coarse-grained — they do not distinguish between reactions that take

place forward through the second reaction or backwards through the third reaction

in Equation 4.14. These pathways would be distinguishable if trajectory of B and C

were also observable. Our method relies purely on system dynamics to give ˆ̇S. Equa-

tion 4.1 is true only if all microscopic details are captured by trajectories X. If X

is already coarse-grained, multiple microscopic trajectories will be indistinguishable

and Equation 4.1 will underestimate the true entropy production rate due to the

data processing inequality [230, 231, 211].

In order to account for this, we recalculate Ṡ by considering the rate at which a
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Figure 4.3: Calculating Ṡtrue and Ṡblind Fit to (blinded) entropy produced for
Brusselator. Light gray lines show the amount of entropy produce as a function of
simulation time for N = 50 simulations at ∆µ = 4.5. Each simulation starts at a
random initial condition and rapidly approaches the steady state value for (X, Y ).
This transient trajectory results in the large variation in initial entropy production
which depends on how far the system begins from (Xss, Yss). Once the system reaches
its steady state, the rate of entropy production approaches a steady value. The
average of ∆S is taken across all trajectories, and a linear fit to the second half of
the resulting mean gives us our value of Ṡblind given in Fig. 4.4. The same method is
used to calculate Ṡtrue as well as ṡblind and ṡtrue for the reaction-diffusion Brusselator
model

given transition can occur as the sum over all chemical reactions that give the same

dynamics. For example, a transition from (X, Y ) → (X − 1, Y + 1) can occur via

reaction k+
2 or k−3 in the Brusselator, each of which produces a different amount of

entropy in general. Looking only in the (X, Y ) plane, it is impossible to tell which

reaction took place. When calculating the entropy produced by only the observable

dynamics, the rate of making the transition (X, Y )→ (X−1, Y +1) is kf = k+
2 +k−3 ,

while the rate of making the reverse transition is kr = k−2 + k+
3 , and the entropy

produced is log(kf/kr). This estimate of the EPR, which we name Ṡblind, is a coarse-
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graining of Ṡtrue, giving the relation Ṡblind ≤ Ṡtrue [232]. We find that Ṡblind shows

excellent agreement with ˆ̇S, indicating that the Gaussian approximation provides a

good estimate for the observable dynamics even when the system is highly nonlinear.

Figure 4.4: Ṡ and E for well-mixed Brusselator. (a) Typical trajectory in (X, Y )
space for ∆µ = 6.2. The occupation probability distribution is shown in blue, with
a subsection of a typical trajectory shown in black. The end of the trajectory is
marked by the white circle. Inset shows the same information for the system at
equilibrium, where ∆µ = 0, with the same colorbar as the main figure. (b) Ê for
∆µ = [3.5, 5.3, 6.2] shown in green, orange, and purple, respectively. Shaded area
shows mean ± s.d. of Ê for N = 50 simulations. Ê is symmetric in ω, so only the
positive axis is shown. Inset shows the same curves on a log-log scale. (c) Ṡ as a
function of ∆µ. Blue squares, orange triangles, and black circles show results for

Ṡtrue, Ṡblind, and ˆ̇S, respectively. Shaded area shows mean ± s.d. of ˆ̇S for N = 50
simulations. Vertical red dashed line indicates ∆µHB. See Table C.2 for all simulation
parameters.

To further benchmark our estimator, we calculate Ṡ using two alternative meth-

ods, one based on the thermodynamic uncertainty relation (TUR) [203, 233] and one

based on measuring first passage times (MFPT) [234]. The prior method measures

a macroscopic current based on a weighted average of a system’s trajectory, jd, and

estimates the EPR using the TUR for diffusive dynamics, Ṡ ≥ 2〈j2
d〉 (τobsVar[jd])−1,

where 〈〉 and Var[] denote an ensemble average and variance taken after an ob-

servation time τobs [209]. The latter method requires measuring the MFPT of an

observable O constructed from the system’s dynamics to reach a threshold that de-

pends on a user-defined error tolerance. We choose O and the threshold based on a
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drift-diffusion approximation for the winding number of the Brusselator. Similarly to

ˆ̇S, both of these methods saturate to the true Ṡ for systems obeying linear dynamics.

As such, they also approximate Ṡblind, but we find that they provide a looser bound

than ˆ̇S (Fig. 4.5).

Figure 4.5: Alternative methods for measuring Ṡ. Comparison of ˆ̇S (black
dots, same data as in Fig. 2c) with two alternative methods for estimating entropy
production rates. ṠTUR (green squares) is based on the thermodynamic uncertainty
relation (TUR), and ṠMFPT is based on measuring the mean first passage time of an
observable. All estimates approximate Ṡblind because they are based only on observ-

ables in the (X, Y ) plane. Our estimator, ˆ̇S, outperforms the other two estimators,
especially beyond the Hopf bifurcation.

Prior to ∆µHB, both ˆ̇S and Ṡblind show a shift in their trends, but Ṡtrue does not.

The smooth transition is due to the finite system size we employ, and gets sharper as

a power law as the system gets larger (Fig. 4.6a). The power law exponent measured

from ˆ̇S is nearly linear, consistent with the Gaussian assumption. The exponent

differs from that of Ṡblind because our Gaussian assumption breaks down at the high

values of ∆µ where the maximum slope occurs (Fig. 4.6b).

The Hopf bifurcation for the Brusselator is supercritical [215], meaning the limit
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cycle grows continuously from the fixed point when ∆µ−∆µHB � 1. Further from

the transition point, the trajectory makes a discontinuous transition. At our resolu-

tion in ∆µ, this discontinuous transition is what underlies the shift in Ṡblind of the

Brusselator. This same transition is present in Ṡtrue, but is difficult to detect numer-

ically for reasons we explain here. In the deterministic limit, Ṡtrue = ∆µ
(
JF − JR

)
,

where JF = b〈x〉k+
2 and JR = c〈y〉k−2 are the forward and reverse fluxes for trans-

forming a B molecule into a C molecule. 〈x〉 is a constant, but by numerically

integrating the deterministic version for Equation 4.14, we observe a discontinuity

in 〈y〉 above the Hopf bifurcation. However, JF � JR, obscuring the discontinuity

in Ṡtrue (Fig. 4.6c). Upon coarse-graining, we have Ṡblind = ∆µ
(
JR

blind − JF
blind

)
, with

JF
blind = b〈x〉k+

2 + 〈x〉3k−3 and JR = c〈y〉k−2 + 〈x〉2〈y〉k+
3 . These two terms are equal

to each other for ∆µ < ∆µHB and diverge continuously when ∆µ ' ∆µHB, followed

by the relatively large discontinuity in JR
blind (Fig. 4.6c, inset).

One gains further insight into the dynamics through the transition by studying

Ê (Fig. 4.4b). For ∆µ < ∆µHB, Ê exhibits a single peak that increases in amplitude

while decreasing in frequency as ∆µ increases. Above ∆µHB, the peak frequency

makes a discontinuous jump, the magnitude of the peak grows rapidly, and additional

peaks at integer multiples of the peak frequency appear due to the non-linear shape

of the limit cycle attractor. These harmonics are expected for dynamics on a non-

circular path. For ∆µ < ∆µHB, the magnitude of the peak is independent of system

volume, while it gains a linear volume dependence in the limit cycle. The width of the

peak is also maximized near the transition, reflecting a superposition of frequencies

present in the trajectories (Fig. 4.7).

To investigate how dynamical phase transitions manifest in the irreversibility

of spatially extended systems, we simulate a reaction-diffusion Brusselator on a 1

dimensional periodic lattice with L compartments, each with volume V , spaced a
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Figure 4.6: Finite size scaling of Ṡ (a) Ṡtrue/V (blue squares) and Ṡblind/V (orange
triangles) for system volumes V = [10, 50, 100, 500, 1000, 5000, 10000], showing an
increasingly sharp transition in Ṡblind, but not in Ṡtrue. Ṡblind shows no volume
dependence below the transition, and is linear dependent on V above it. Vertical
red dashed line shows ∆µHB. (b) Maximum value of ∂Ṡblind/∂∆µ shows a power-

law dependence with volume. Inset shows the same measurement for ∂ ˆ̇S/∂∆µ. (c)
Forward and reverse fluxes, JF (green squares) and JR (red diamonds), obtained from
numerical integration of deterministic equations of motion for the Brusselator. Inset
shows JF

blind (green upright triangles) and JR
blind (red rightward triangles). Vertical

black dashed line shows ∆µHB.

distance h apart. The full set of reactions are now

Ai
k+1


k−1

Xi; Bi +Xi

k+2


k−2

Yi + Ci; 2Xi + Yi
k+3


k−3

3Xi;

Xi

dX
�
dX
Xi+1; Yi

dY
�
dY
Yi+1; i ∈ [1, L]

(4.16)

where dj = Dj/h
2, and Dj is the diffusion constant of chemical species j = {X, Y }.

Qualitatively different dynamics occur based on the ratio DX/DY . DX/DY � 1

yields static Turing patterns [94, 97]. We focus on the DX/DY � 1 regime which

exhibits dynamic, excitable waves. All values of {ai, bi, ci} are kept constant in each

compartment.

In the steady state, the reaction-diffusion Brusselator has the same dynamics

as the well mixed Brusselator, and so it is not surprising that it’s EPR curve as a

function of ∆µ is similar. However, unlike the well-mixed system, the Hopf bifur-
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cation signals the onset of qualitatively distinct dynamics in the reaction-diffusion

system. Prior to the Hopf bifurcation, there are no coherent, spatial patterns in the

system’s dynamics (Fig. 4.8a). Above the Hopf bifurcation, system-spanning waves

begin to emerge that synchronize the oscillations across the system (Fig. 4.8b). Fol-

lowing standard methods [235, 236], we define the synchronization order parameter,

0 ≤ r < 1, using

reiψ =
1

T

T∫
0

dt
1

M

M∑
j=1

eiθj(t) (4.17)

where θj(t) is the phase of the oscillator at position xj and time t, defined with

respect to the center of mass of the trajectory:

θj(t) = arctan
Yj − 〈Yj〉
Xj − 〈Xj〉

. (4.18)

M is the number of oscillators (here, the number of lattice sites in our simulation),

and T is the temporal extent of the data. ψ denotes the overall phase, and r is close

to zero in the asynchronous phase and approaches one as the oscillators synchronize.

Below ∆µHB, r is low and rapidly approaches one as the system approaches

the macroscopic bifurcation point (Fig. 4.8c). Like Ṡ, this transition occurs more

sharply and closer to ∆µHB as the system size increases, approaching the discon-

tinuous transition to the limit cycle behavior (Fig. 4.8c, inset) [237]. Throughout

these changes, the system is driven further from equilibrium, as reflected in the in-

creasing ˆ̇s (Fig. 4.8d). The shift to collective behavior is not reflected in ṡ as it is

almost identical to Ṡ found for the well-mixed Brusselator. Instead, E carries the

signature of the dynamical phase transition. For ∆µ < ∆µHB, Ê shows peaks at

high wavenumbers, reflecting that irreversibility is occurring incoherently over short

length scales. Above ∆µHB, as the system shows synchronized oscillations, there is

an abrupt shift in the peaks of Ê to low q, indicating that this collective behavior car-
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ries the majority of the irreversibility (Fig. 4.9b,c). We also infer that the collective

behavior is partially composed of traveling waves due to the streaks in Ê (Fig. 4.9b).

The slight offset in the transition occurs for high values of ∆µ < ∆µHB where small

regions synchronize for short periods of time, but system wide oscillations are not

observed (Fig. 4.10a). Furthermore, the transition moves closer to the macroscopic

transition point with increased volume of the individual compartments (Fig. 4.10b).

4.4 Conclusion

Previous work has investigated the behavior of Ṡ at thermodynamic phase transitions

with the work of [214] finding general signatures of discontinuous phase transitions

in Ṡ which agree with our results. While [218] found Ṡ to have a discontinuity of its

first derivative with respect to ∆µ in a slightly modified version of the well-mixed

Brusselator, work on the same system presented here did not find any non-analytic

behavior in Ṡtrue [221]. We show that a discontinuous phase transition exists in our

model, but the magnitude of the discontinuity is small and difficult to detect in

Ṡtrue and is more easily seen in the coarse-grained Ṡblind (Fig. 4.6). Further, other

spectral decompositions of the dissipation rate either assume a particular form for

the underlying dynamics [219] or require the measurement of a response function

in addition to the correlation function [222], which is often difficult to perform in

experiments.

Here, we illustrated that the total irreversibility rate cannot distinguish between

the dynamical phase transitions in the well-mixed and the spatially extended Brus-

selator. While the EPR quantifies the emergence of oscillations, the synchronization

of the oscillations across space is only captured in E by its peak shifting from high

to low wavenumber (Fig. 4.9). By simulating systems with increasing compartment

volumes, this shift occurs closer to the macroscopic transition point (Fig. 4.10b),
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similarly to the increasing sharpness of the shift in Ṡ for the well-mixed Brusselator

(Fig. 4.6). Thus, synchronization is intimately related to the emergence of oscilla-

tions. We hypothesize that synchronization occurs due the presence of a slow segment

of the Brusselator dynamics (Fig. 4.4a). The time spent in the slow portion of the

dynamics allows neighboring oscillators to reduce their relative phase through their

diffusive coupling, allowing previously out-of-sync lattice sites to synchronize via the

low-cost mechanism of diffusion. Once the oscillations are synchronized, diffusion

between lattice sites at equal concentrations is an equilibrium process and does not

produce entropy.

In summary, we have introduced the entropy production factor, E , a dimension-

less, scalar function that quantifies irreversibility in macroscopic, non-equilibrium

dynamics by measuring time-reversal symmetry breaking in the cross-covariances

between multiple variables. Integrating E gives a lower bound on the net entropy

production rate, ṡ. Calculating E does not require knowledge about the form of

the underlying dynamics and is easy to calculate for many types of data, including

both random variables, such as the positions of driven colloidal particles [238], and

random fields, such as spatially heterogeneous protein concentrations in cells [110].

Furthermore, we stress that we are only able to resolve the irreversibility present in

the observable dynamics of our chemical example. As discussed above, the presence

of hidden dynamics will provide underestimates of irreversibility measured via Equa-

tion 4.1 due to the data processing inequality [44]. Using other observable infor-

mation, such as asymmetric transition rates [239] or the ratio of populations in

observed states under stalled conditions [231] in Markov jump processes, can give

tighter bounds on the entropy produced when unobserved, dissipative processes are

present. While the examples considered here are simulations of 1+1 dimensional

fields, there is nothing inherently different in the methodology if one were to analyze

experimental data in 2 or 3 spatial dimensions, such as the 3+1 dimensional time
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series data attained using lattice-light sheet microscopy [240].

In active matter, both living and non-living, the non-equilibrium dissipation of

energy manifests in both time and space. With the method introduced here, com-

patible with widely-used computational and experimental tools, we provide access

to these underexplored modes of irreversibility that drive complex spatiotemporal

dynamics.
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Figure 4.7: Finite size scaling of E of Brusselator. (a) Normalized frequency of
maximum of E , ωpeak/V is independent of V , but the jump from high to low frequency
occurs more sharply and occurs closer to ∆µHB as V increases. (b) Normalized full-
width half-maximum (FWHM) of peak in E , ∆ωFWHM, is independent of V and is
maximized around the transition point, reflecting the increased fluctuations near the
phase transition. The location of the peak moves closer to ∆µHB as V increases.
(c) The normalized quality factor of E , Q/V = ωpeak/∆ωFWHMV , is independent
of system size, and has a minimum at the transition point. (d) The normalized
maximum value of E is independent of V below the transition, and gains a linear
dependence on V above it, similar to Ṡblind.
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Figure 4.8: 1 dimensional Reaction-diffusion Brusselator synchronizes
above Hopf bifurcation (a) Subsection of a typical trajectory for X(x, t) and
Y (x, t) for (a) ∆µ = 3.5, below the Hopf Bifurcation and (b) ∆µ = 6.2, above it.
Color indicates the local number of the chemical species. (c) Synchronization order
parameter, 〈r〉, as a function of ∆µ. Vertical red dashed line indicates ∆µHB. Inset
shows the same measurement for volumes V = {101, 102, 103} shown by blue circles,
orange squares, and green triangles, respectively, at each lattice site over a smaller
region of ∆µ. Dots and shaded areas show mean ± s.d. of N = 10 simulations. (d)
ṡ as a function of ∆µ. Blue squares, orange triangles, and black circles show results

for Ṡtrue, Ṡblind, and ˆ̇S, respectively. Shaded area shows mean ± s.d. of N = 10
simulations. Vertical dashed red line indicates ∆µHB. See Tables C.3 & C.4 for all
simulation parameters.
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Figure 4.9: Entropy production factor and macroscopic dynamics (a) E aver-
aged over N = 10 simulations for ∆µ = 4.0, i.e. ∆µ < ∆µHB. Line plots on top and
left of figure show marginals over ω and q, respectively. (b) Similar to (a), but for
∆µ = 6.2, i.e. ∆µ > ∆µHB. (c) Wavenumber, q, that maximizes Ê as a function of
∆µ. Vertical dashed red line shows ∆µHB. Black dots and shaded area show mean
± s.d. over N = 10 simulations.

Figure 4.10: Transiently synchronized dynamics in the reaction-diffusion
Brusselator and finite-size scaling in E. (a) Typical trajectory of a reaction-
diffusion Brusselator system just below the Hopf bifurcation, at ∆µ = 5.8 and
V = 100. See some flashes on collective behavior, but it does not span the en-
tire system, showing why E has peaks somewhere between q = 0 and the maximum
in Fig. 5c. (b) Wavenumber q that maximizes Ê for the reaction-diffusion Brusselator
for compartment volumes V = {101, 102, 103} shows a sharper transition that gets
closer to ∆µHB (red line) as the volume increases.
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Chapter 5

Conclusions and future directions

The work presented in this thesis provides a framework with which to understand

seemingly disparate biological processes. It argues that energy dissipation, as quanti-

fied by entropy production, can be thought of as a control parameter to tune distinct

dynamical and mechanical phases in living matter, in analogy to the temperature in

equilibrium systems. I illustrated that the entropy production rate in the bending

fluctuations of individual actin filaments within a network is indicative of the dy-

namical state of the network as a whole, with a maximal entropy production rate

corresponding to a non-equilibrium steady state. Next, I showed that irreversibility

in mechanosensitive binding kinetics correlates with the onset of a mechanically rigid

phase of an active actin network, and is uncorrelated with a state associated with

an increased amount of flow. Finally, I showed that total irreversibility reflects the

onset of oscillations at a Hopf Bifurcation of a biochemical oscillator, but that the

effects of synchronization are contained in the newly introduced entropy production

factor.

Future work will involve the use of the entropy production factor to characterize

spatiotemporal oscillations in cells. For example, egg cells from the African clawed

frog, a highly studied model organism in developmental biology, exhibit excitable
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wave dynamics induced by the interactions between actin and Rho, a membrane-

bound signaling protein that is, among other things, an upstream regulator of acto-

myosin activity [110, 241]. These excitable waves are hypothesized to be important

for the proper location of the cytokinetic ring at the equator of the cell. This sys-

tem therefore couples chemical wave behavior of Rho to mechanical deformations of

actomyosin to properly integrate spatial information in order to properly assemble a

complex machine critical for the development. This represents an ideal use case for

the entropy production factor to gain insight into the energetic costs of cell division.

In reporting my results, I have placed particular emphasis on the ability to use

entropy production as a way to make fundamental insights into biological function.

Most work in this field uses living matter to test equalities and bounds derived using

non-equilibrium statistical mechanics, but ignores the ability for physics to equally

contribute to understanding biology. However, spatiotemporal biological phenomena

also inspired the creation of the entropy production factor, an advance that sits

squarely within the realm of theoretical physics. Thus, the avenue for discovery

in biological physics is a two-way street. Applying tools from physics to biology

can give insight into mechanisms used by living matter to accomplish complex tasks.

Simultaneously, biology can give insight into the dynamics possible for systems driven

far from equilibrium, which have been notoriously difficult to enumerate. Biology

provides an ideal class of systems to guide our study of non-equilibrium systems

without the need to go to extreme environmental conditions. I believe that some of

the most important contributions to physics and biology in the next few decades will

come from those who are firmly planted at their interface.
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Appendix A

Appendix for Chapter 2

A.1 Nematic order parameter calculations

The nematic order parameter q is calculated using custom Matlab code available here.

First, a director field is created from images of fluorescently labeled F-actin [242].

Briefly, fluorescent images are divided into small, overlapping 3.5 µm by 3.5 µm

windows, and the local F-actin orientation (director) is calculated for each window,

yielding an F-actin director field over an image. To determine the local F-actin

director, each window is Gaussian filtered and transformed into Fourier space using a

2D fast Fourier Transform (FFT). The axis of the least second moment was calculated

from the second-order central moments of the transformed window, and the angle

of the local F-actin director is defined as orthogonal to this axis. Next, the local

degree of alignment is calculated between adjacent windows within 33 kernels. The

local nematic order is calculated for the central window in each kernel using the

modified order parameter equation q = 2 〈cos2(θ)− 1/2〉, where θ is the difference

in F-actin orientation between the central window and the 8 surrounding windows.

This process is repeated for all possible 33 kernels over an image, yielding a nematic

director field with defined director magnitude and orientation for each window over
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an image. Perfect alignment between adjacent regions within an F-actin network

results in an order parameter equal to one. Conversely, orientation differences of 45◦

(maximum expected for quasi-2D F-actin network) between adjacent regions of the

network result in an order parameter equal to zero.

A.2 Filament Normal Modes

Consider a filament that is tracked over time. The tangent angle along the arc length

of the filament can be decomposed into an infinite series of orthogonal functions,

ψn(s)

θ(s, t) =
∞∑
n=1

an(t)ψn(s) (A.1)

The orthogonal functions are given by solving the eigenvalue problem for the fourth

order, linear partial differential equation for the bending of a slender rod with length

L (see section IV of [125])

d4ψn
ds4

= λnψn (A.2)

Which yields the solutions (with s ∈ [−L/2, L/2])

ψn(s) =


cos(kns/L)
cos(kn/2)

+ cosh(kns/L)
cosh(kn/2)

n = 1, 3, 5 . . .

sin(kns/L)
sin(kn/2)

+ sinh(kns/L)
sinh(kn/2)

n = 2, 4, 6 . . .

(A.3)

where kn ≈ (n + 1/2)π. By inverting (A.1), we can determine the state of the

filament at each time by its position in the phase space spanned by its expansion

coefficients, ~a(t) = {ai(t)}.
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A.3 Calculating entropy produced from bending

modes

To calculate ∆stot, we begin with a time series of the coefficients obtained by expand-

ing the tangent angles along the filament’s arc length as described in Appendix A.2:

{aiα}. From here on, let Greek characters define spatial indices, and Latin letters

define temporal indices. Taking the time integral of 1.35, the total entropy produced

is

∆s(t)tot =

∫ t

0

dτ ~̇aT (τ)D−1~vss (A.4)

For simplicity, we assume that the diffusion matrix is a scalar and has no spatial

dependence, D = D0. Discretizing (A.4), we find the change in entropy at each time

point j as (using Einstein notation to imply sums over repeated indices)

∆sjtot = D−1
0

∑
Ω

ȧjµv
ss
µ (A.5)

where the sum over Ω indicates a sum over the entire phase space, as both ȧjµ and

vssµ are vector fields, with values at each point in space. We are left to calculate

two quantities: ȧjµ and vssµ . It is important to note that, in order to calculate a

velocity from (1.22), one must use the Stratanovich interpretation [12]. Therefore,

any velocity is evaluated as a mid-point:

ẋ =
x(t+ δt)− x(t− δt)

2δt
(A.6)

Using the Ito interpretation would instead give the force on the particle.

• Calculating vssµ

– To calculate the steady state velocity throughout phase space, the entire
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space is first discretized into bins of size ∆x. Each position along the

trajectory is then assigned to a bin, α. The velocity at that point is then

calculated in the Stratanovich sense mentioned above. This process is

repeated for the entire trajectory. After every velocity has been assigned

to each visited bin α, the average velocity is found in each bin by summing

all the velocities assigned to that bin and dividing by the number of times

that bin was visited. This gives

vssµ (α) = {E
(
ai+1
µ − ai−1

µ

2δt

)
|aiµ ∈ α} (A.7)

• Calculating ȧµ

– The instantaneous velocity is calculated in exactly the same way that each

instantaneous velocity is calculated above to find vssµ . The only difference

between the two is that vssµ is the average taken over all time.

Looking at (A.5), the calculation is done for every time point (except the first and

last one, to allow the center difference for the velocity to be taken). The sum over

Ω is reduced to a simple product because, at any given time, the system’s velocity

is at a single point, not distributed over space.

More specifically, the steps taken are:

1. Set the parameters used

(a) D0, diffusion constant

(b) ∆a, bin size

(c) δt, time step between points along trajectory

(d) aµ, the modes to consider
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2. Calculate the steady-state velocity field using the entire trajectory as described

above

3. Find the velocity at t2 using (A.6)

4. Find the bin α that the system is occupying at t2

5. Take the dot product between ȧ2
µ and vssµ , and multiply by D−1

0

6. Repeat for all time points up to the second to last one.

This gives the total change in entropy at each time tj, ∆sjtot. To get the change

in entropy along a trajectory of length N , we simply take a moving sum

(N)∆sjtot =

j+N∑
i=j

∆sitot (A.8)

A.4 Testing Detailed Fluctuation Theorem (DFT)

To verify that the entropy being calculated is correct, it is useful to check that it

fulfills Equation 1.30. In order to get sufficient statistics while maintaining the same

analysis pipeline, we consider freely available data on beating axonemes [1, 243].

Once ∆sjtot is found along the trajectory as described above, the distribution of

values is found as shown in Fig A.1. A small region around ∆s = 0 is chosen to

ensure sufficient statistics in the negative side of the axis. Then, the logarithm of

the ratio of probabilities is plotted as a function of ∆s. If the DFT is satisfied, the

result should be a line of slope 1. The results are shown in Fig A.1 for a maximum

magnitude of |∆s| = 1, using the same parameters as in the caption of Fig A.1.

These result in most filaments satisfying the DFT.
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Figure A.1: Testing the detailed fluctuation theorem for filament bending
modes. (a) Screenshots showing a single period of motion for a beating axoneme,
from [1]. (b) Resulting phase space locations (blue) and velocities (red) in a 3-
dimensional subspace of the bending mode coefficient phase space for the axoneme
shown in (a). (c) Probability distributions of entropy production for 10 axonemes.
Inset shows a zoom in on the histogram in black. The red dotted lines indicate the
region around zero where Equation 1.30 is tested. (d) Results for single distribution
shown in the inset of (c), with red dotted line showing the theoretical prediction of
a line with slope 1. The boxplot and individual points on the right show the fitted
slopes for all 10 axonemes analyzed.
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A.5 Anisotropic velocity autocorrelation calcula-

tion

The velocity autocorrelation functions in Fig. 2.5b are calculated as follows. For

each frame in a movie of an F-actin network, the velocity and alignment fields are

calculated as described in the main methods. Each vector is then decomposed into

components parallel and perpendicular to the alignment found at its grid point,

defined as v‖(x, t) = |n · v|, and v⊥ = |v| − v‖, respectively. The spatial mean is

then subtracted to remove short and long wavelength correlations, giving δv⊥(x, t) =

v⊥−
〈
v⊥
〉
x
, and similarly for v‖. The velocity autocorrelation function is then given

by

C⊥vv(r, t) =
1

A

∫
dxdx′

[
δv⊥(x, t)δv⊥ (x′, t) δ (r − |x− x′|)

]
(A.9)

where A is the total area of the field of view and δ() is the Dirac delta function. A

similar expression is used for C
‖
vv. The anisotropic autocorrelation function is defined

as the temporal average of the difference between the normalized perpendicular and

parallel autocorrelations, as given by Equation 2.3
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Appendix B

Appendix for Chapter 3

B.1 AFINES Simulation

The coarse-grained interactions between actin filaments and active motors were simu-

lated using the simulation package AFINES [137]. This simplified polymer dynamics

package enabled simulations of large networks and did not require the mechanistic de-

tail and precision made possible with the MEDYAN or Cytosim packages [180, 129].

Constituent particles evolved via overdamped Langevin dynamics at a fixed tem-

perature in 2D with no volume exclusion. Actin filaments were modeled as polar

beadspring filaments with finite stretching stiffness ka and bending modulus κB and

have a persistence length and equilibrium contour length equal to 10 µm. Motors

were modeled as Hookean springs with spring constant km that dynamically bind

and unbind to actin filaments with finite on and offrates kon and koff respectively.

Motors bind to a nearby filament within a distance of
√
kBT/km with a proba-

bility Pon = kon∆t×min[1, exp(∆E/kBT )], where min[] is the Metropolis factor for

accepting the binding event, ∆t is the discrete time-step of the simulation, kon is the

defined on-rate, and ∆E = Ef −Ei is the energy change in moving from a state with

initial energy Ei to a state with final energy Ef .
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The definition of a catch bond describes keff
off exponentially depending on F and

ξ and a sharp unbinding transition at F = Fmax, thus capturing the essential fea-

tures of a broad class of catchbonds [86] both within biology [185] and suggested

to be ubiquitous to all nonlinear bonds [244]. As Factin networks cannot sustain

a compressive load on bonds, keff
off = koff when F < 0. Unless otherwise stated,

Fmax is set sufficiently high such that F < Fmax for all motors at all times. This

expression for the koff is a lowforce approximation to a more general expression for

catch bonds that include a transition to slip bonds at high forces, a phenomenon

seen in singlemolecule pulling experiments for molecular catch bonds [170]. This low

force approximation has been used to model the dynamics of catch bond crosslink-

ers in vivo [3] and gives simulations that replicate results seen in experiments. In

particular, in vitro experiments of reconstituted actomyosin networks also showed a

nonmonotonic behavior of network strain with increasing myosin concentration, an

experimental analog for increasing active stresses (Figures B.1&B.2). Further, it was

also observed that experiments of actomyosin networks in the presence of the slip

bond crosslinker fascin [7] evolved into asters, similar to simulations with ideal mo-

tors, while experiments containing the catch bond crosslinker αactinin [3, 2] evolved

to an arrested state, similar to simulations with high values of |ξ|.

When bound, a motor moves towards the barbed end of a filament with a baseline

velocity v0 that decreases linearly with the applied load until a stall force Fstall is

reached, that is v(F ) = v0(1− |F |/F stall), with v(|F | > Fstall) = 0.

Filaments and motors were deposited randomly within a box of size L× L (L =

50 µm) with periodic boundary conditions at time t = 0. There are no steric forces

between particles, so no equilibration was necessary. All simulations were run at a

filament density of 0.4 filaments per µm2. In the model, the bending and stretching

stiffness of motors and filaments were finite but decreased below physically realistic

values for computational feasibility and the energy input through motor stepping was
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Figure B.1: Experimental non-monotonicity of actomyosin networks (left)
Reconstituted in vitro experiments consisting of skeletal muscle myosin (SkMM),
F-actin, and the cross-linker α-actinin, shows a non-monotonic behavior of strain
rate with increasing SkMM concentration. α-actinin is known to exhibit catch-
bond behavior [2, 3]. (right) Increasing the concentration of α-actinin at a fixed
concentration of SkMM decreases the network strain rate. Experimental detail can
be found in published works [4, 5, 6].

modeled as a load-dependent velocity along the actin filament over the time step.

B.2 Strain calculations

The deformation of the network was quantified by calculating the strain (t) of the

actin network [137]. To do this, the system was first coarse grained into 5 × 5 µm2

windows. Akin to particle image velocimetry, the change in positions of the center

of mass for the filaments within each coarsegrained window across a time interval

∆t = 5 s was calculated. As such, the instantaneous displacement field at position

r and time t were calculated, weighted by the local density of actin monomers,

x0(r, t), which is then interpolated onto a 1.25 × 1.25 µm2 grid. The instantaneous

displacement field is related to the velocity field by the timescale ∆t.
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Figure B.2: Simulations and experiments give similar dynamics (a) Montage
of dynamics seen in reconstituted in vitro actomyosin experiment containin skeletal
muscle myosin, actin, and the slip bond cross-linker fascin [7]. There is a 4 : 1 ratio
between G-actin and fascin, showing the system evolving to asters. Right shows the
cumulative displacement field (arrows) and strain (colors) at the time point indicated
by the red rectangle. (b) Similar to (a), but with the catch bond cross-linker α-
actinin in the place of fascin, showing the system leading to an arrested state until
there is a large-scale network rupture seen in the final panel. (c) Typical simulation
containing ideal motors (ξ = 0 µm) showing the formation of asters, similar to the
experiments containing fascin. (d) Typical simulation containing motors with high
catch-strength (ξ = −0.1 µm) showing an arrested state, similar to the experiment
containing α-actinin.
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The cumulative displacement field is calculated as

x(r, t) =

t∫
0

dτ x0(r, τ). (B.1)

The strain is calculated as the spatial average of the divergence of the cumulative

displacement field at every time point, ε(t) = 〈∇ · x〉. Contraction is defined as

transitioning from ε ≈ 0 to a maximum εmax. The rate of contraction, or average

strain rate ε̇, was defined as the slope of a line fit to ε(t) from 25% to 75% of εmax

B.3 Energy Density Calculation

The potential energies for filament stretching, U stretch
f , filament bending, Ubend

f , and

motor stretching, U stretch
motor were calculated at each time point. The energy density ω

of a network in a box of area L2 is defined as ω =
∑

i Ui/L
2.

B.4 Calculating irreversibility

Considering a trajectory of length t broken in N steps indexed by j ∈ [1, N ], for each

state m′, there exists a probability per unit time of transitioning to a state m at the

next time step via a mechanism µ, denoted by W
µj
mj+1m′j

. The irreversibility is [31]

λ(t) =
N∑
j=1

ln
W

µj
mj+1m′j

W
µj+1

mj+2m′j

. (B.2)

The denominator in the natural logarithm is the probability per unit time of making

the reverse transition at the next time step, hence measures how likely a transition

is to reverse itself and is equal to zero when the forward and backward transitions

are equal to each other. The only mechanisms for which irreversibility was calculated
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were binding and unbinding.
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Appendix C

Appendix for Chapter 4

C.1 Analytic Ṡ of coupled Gaussian fields

Consider the coupled equations of motion for the scalar fields φ and ψ in d + 1

dimensions.

∂tφ(x, t) = −D(r −∇2)φ− αψ +
√

2Dξφ (C.1)

∂tψ(x, t) = −D(r −∇2)ψ + αφ+
√

2Dξψ. (C.2)

with 〈ξi(x, t)ξj(x′, t′)〉 = δijδ(t − t′)δd(x − x′). This is a Gaussian model with free

energy

F =

∫
ddx

[
r

2

(
φ2 + ψ2

)
+

1

2

(
|∇φ|2 + |∇ψ|2

)]
. (C.3)

The interaction term cannot be written as a gradient of an energy, so we have

∂tφ(x, t) = −DδF
δφ
− αψ +

√
2Dξφ (C.4)

∂tψ(x, t) = −DδF
δψ

+ αφ+
√

2Dξψ. (C.5)
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Combining the two fields into a single vector, η(x, t) = (φ(x, t), ψ(x, t))T , we write:

∂tη = Bη +
√

2Dξ; B(x) =

−D(r −∇2) −α

α −D(r −∇2)

 . (C.6)

To get the cross-spectral density, we rewrite Equation C.6 as an Ito stochastic

differential equation:

dη = Bη dt+ Ξ dW, (C.7)

where W(x, t) is a multidimensional Wiener process in space and time with strength

Ξij =
√

2Dδij. The eigenvalues of A have negative real parts, so a stationary solution

exists. The cross-spectral density is [29]

C(q, ω) = (B(q)− iωI)−1 ΞΞT (B(q) + iωI)−T . (C.8)

Noting Ξ ΞT = 2DI, we have

C(ω) =
2D

| (D(r + q2) + iω)2 + α2)|2

[D(r + q2)]
2

+ α2 + ω2 i2αω

−i2αω [D(r + q2)]
2

+ α2 + ω2

 .

(C.9)

The inverse is given by

C−1(ω) =
1

2D

[D(r + q2)]
2

+ α2 + ω2 −i2αω

i2αω [D(r + q2)]
2

+ α2 + ω2

 . (C.10)

Finally, using Equation 4.4, we have

Ṡ = V

∞∫∫
−∞

dω

2π

dq

2π

8α2ω2

|(D(r + q2) + iω)2 + α2)|2
= V

α2

D
√
r
. (C.11)
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Rearranging the denominator of the integrand of above gives EDGF given in the main

text.

We can alternatively calculate the entropy production rate by using the Onsager-

Machlup functional [39] for the path probability functional P [η] in

Ṡ = lim
T→∞

1

T

〈
ln
P [η]

P̃ [η]

〉
(C.12)

Writing it as a path P [η] ∝ exp(−A), where A is the action, this becomes

Ṡ = lim
T→∞

1

T

〈
Ã − A

〉
, (C.13)

where Ã is the action under time-reversal. To calculate A, we use standard path

integral techniques, i.e. the Martin-Siggia-Rose formalism [245]. The idea is to try

and find the expectation of some observable, O, over noise realizations.

〈O[η]〉ξ =

∫
D[ξ] O[η]P [ξ]. (C.14)

Since the noise is Gaussian, we have

P [ξ] ∝ exp

(
1

4D

∫
ddx dt ξ2

)
(C.15)

(we use Einstein notation throughout). We then insert the most complicated ex-

pression for 1 ever written. Using the integral representation of the functional delta

function, δ[f(x)] =
∫
D[if̃ ] exp

[
−
∫
dxf̃(x)f(x)

]
, we write

1 =

∫ ∏
j

D[ηj]δ(∂tη
j −Bj

kη
k − ξj) (C.16)

=

∫ ∏
j

D[ηj]D[iη̃j] exp

{
−
∫
ddx dt

[
η̃j
(
∂tη

j −Bj
kη

k − ξj
)]}

(C.17)
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to get

〈O[η]〉ξ =

∫
D[ξ]

∏
j

D[ηj]D[iη̃j]O[η] exp

[
1

4

∫
ddx dt

(
ξiΞ−1

ij ξ
j − 4η̃jξ

j
)
− η̃j

(
∂tη

j −Bj
kη

k
)]
.

(C.18)

Completing the square in ξ and doing the Gaussian integrals, we get

〈O[η]〉ξ =

∫ ∏
j

D[ηj]D[iη̃j] O[η]× exp

{
−
∫
ddx dt

[
η̃j
(
∂tη

j −Bj
kη

k
)
− η̃jΞjkη̃k

]}
.

(C.19)

Doing the integrals over the response fields η̃, we are left with

〈O[η]〉ξ =

∫ ∏
j

D[ηj] O[η] exp(−A[η]) (C.20)

where A is the Onsager-Machlup functional

A = − 1

4D

∫
ddx dt

(
∂tη

j −Bj
kη

k
)2

(C.21)

Noting that the only time asymmetric part of the action is ∂tη, we can write

A = − 1

4D

∫
ddx dt

(
∂tφ+D

δF

δφ
+ αψ

)2

+

(
∂tψ +D

δF

δψ
− αφ

)2

(C.22)

Ã = − 1

4D

∫
ddx dt

(
∂tφ−D

δF

δφ
− αψ

)2

+

(
∂tψ −D

δF

δψ
+ αφ

)2

(C.23)

Taking the difference Ã − A, and noting that (a+ b)2 − (a− b)2 = 4ab, we have

Ã − A = − 1

D

∫
ddxdt ∂tφ

(
−DδF

δφ
− αψ

)
+ ∂tψ

(
−DδF

δψ
+ αφ

)
(C.24)

In the Stratonovich convention, dF/dt = ∂tφ (δF/δφ) + ∂tψ (δF/δψ), which will

turn into a constant difference in free energies upon taking the time integral. This
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constant value will tend to zero as the limit T → ∞ is taken. Further, there is

a time-symmetric portion of the action that is being omitted due to the Jacobian

factor in switching from an integral in ξ to η that also arises due to the Stratonovich

discretization used throughout this article.

We find the entropy production rate to be

Ṡ = lim
T→∞

α

DT

∫
ddxdt

(
ψφ̇− ψ̇φ

)
(C.25)

Plugging in the equations of motion, we find

〈
ψ̇φ
〉

=

〈
−DδF

δψ
φ− αφ2 + ξψφ

〉
=
〈
−D

[
(r −∇2)ψ

]
φ− αφ2 + ξψφ

〉
(C.26)〈

ψφ̇
〉

=

〈
−DδF

δφ
ψ + αψ2 + ξφψ

〉
=
〈
−D

[
(r −∇2)φ

]
ψ + αψ2 + ξφψ

〉
(C.27)

Some care must be taken in evaluating the terms linear in the noise. If the Ito

convention had been used, they would be trivially zero, but that is not the general

case in the Stratonovich convention. However, as each field is multiplied by the

opposite component of the noise, one can show that they indeed identically equal 0.

Putting everything together, we have

−Drψφ+D(∇2ψ)φ+ αφ2 +Drφψ −D(∇2φ)ψ + αψ2 (C.28)

The two Laplacian terms will cancel under one integration by parts each, leaving us

with

Ṡ =
α2

D

∫
ddx

〈
φ2 + ψ2

〉
(C.29)

where we have replaced the time average with an ensemble average, assuming ergod-

icity. Assuming the system to be in the steady state, we integrate over the equal-time
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(i.e. ω = 0) power spectrum of φ and ψ

〈φ(k)φ(−k)〉 =

∫
dk

2π

1

k2 + r
=

1

2
√
r
. (C.30)

Using this expression for both φ and ψ in the equation for Ṡ above, we have

Ṡ =
α2

D
√
r
V, (C.31)

where V is the total volume of the space, and ṡ = Ṡ/V .

C.2 Gaussian approximation lower bounds Ṡ

The KL divergence in Equation 4.1 is an exact expression for the entropy production

rate provided that the observed set of variables, {xµ}, contains every non-equilibrium

degree of freedom present in the system. In practice, one only has access to a subset

of those degrees of freedom, making the measured KL divergence a lower bound on

the entropy production rate. Here, we show that the Gaussian assumption for P [X]

provides another lower bound on the irreversibility measured on the scale of the

observed mesoscale trajectories.

The proof relies on the data processing inequality [44], which states that any

transformation of variables F : xµ → yµ will lower the relative entropy between two

distributions over both sets of variables,

DKL (P [{xµ}] ||Q [{xµ}]) ≥ DKL (P [{yµ}] ||Q [{yµ}]) . (C.32)

Intuitively, it states that any processing of an observation {xµ} makes it more dif-

ficult to determine whether it came from P or Q. Our strategy will be to choose a

transformation that will turn any distribution over xµ into a Gaussian distribution
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over yµ. In our case, our observables are the frequency space variables xµ(q, ω),

and the transformation is a multiplication of by a random phase field θ(q, ω), i.e.

xµ(q, ω) → xµ(q, ω)eiθ(q,ω). This random phase, when integrated over frequency

space, will make all correlations zero except for the two-point correlation function

due to the fact that the variables in real space are real, making the two-point cor-

relation equal to 〈xµ(xµ)∗〉, cancelling the random phase. Thus, the transformed

variables are described by a Gaussian distribution (defined as the distribution whose

only non-zero cumulants are the first and second), and the data processing inequality

guarantees that this provides a lower bound to the KL divergence over the original

distributions.

C.3 True and blind entropy production

We calculate the true Ṡ of any specific trajectory z = {mj|j = 1, . . . , N} as follows.

For each state m′, there exists a probability per unit time of transitioning to a new

state m via a chemical reaction µ, denoted by W
(µ)
m,m′ . At steady state, the true

entropy produced is [31]

∆Strue[z] =
N∑
j=1

ln
W

(µj)
mj ,mj−1

W
(µj)
mj−1,mj

(C.33)

Note that ∆Strue is now itself a random variable that depends on the specific tra-

jectory. We estimate
〈
Ṡtrue

〉
by fitting a line to an ensemble average of ∆Strue

(Supplementary Figure 3), and compare that to ˆ̇S. We calculate Ṡblind by consider-

ing the “rate” at which a transition can occur as the sum over all the rates that give
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rise to the observed transition in (X, Y ), i.e.

∆Sblind =
N∑
j=1

ln

∑
{µj |mj−1→mj}

W
(µj)
mj ,mj−1∑

{µj |mj−1→mj}
W

(µj)
mj−1,mj

(C.34)

where
∑
{µj |mj−1→mj} denotes a sum over all reaction pathways µ that give rise to the

transition mj−1 → mj. This procedure coarse-grains ∆Strue, giving ∆Sblind ≤ ∆Strue

[232]. ∆Sblind is the maximum entropy production that can be inferred by any

method that observes trajectories in (X, Y ), but which does not have access to the

reaction pathways followed.

C.4 Bias in Ṡ and E estimators

We now turn to the problem of estimating the bias in our measured entropy pro-

duction rate. For this, we assume that we have an equilibrium process and calculate

what the average measured entropy production rate is, representing the systematic

overestimation of our estimator. We work in coordinates where the covariance matrix

is the identity, Cµν = δµν . Due to a combination of measurement errors and only

having a finite time series, we will measure a matrix that deviates from the identity

by

C̃µν = δµν + R̃µν + iÃµν , (C.35)

where R̃µν(ω) and Ãµν(ω) are elements of a symmetric and anti-symmetric D × D

matrix, respectively, each assumed to be much smaller than 1. The anti-symmetric

contribution must be purely imaginary because C̃µν is a Hermitian matrix by defini-

tion. Further, we have Rµν(−ω) = Rµν(ω) and Aµν(−ω) = −Aµν(ω). For notational

simplicity, we define M̃µν ≡ δµν + R̃µν and therefore Ĉ = M̂ + iÂ.

To calculate the EPR, we need to calculate the EPF, E = Tr{C(ω) [C−1(−ω)−C−1(ω)]}.
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We approximate Ĉ−1 as

Ĉ−1 = (M̂ + iÂ)−1 ≈ M̂−1 − iM̂−1ÂM̂−1. (C.36)

Then, C−1(−ω)−C−1(ω) = 2iM̂−1ÂM̂−1. Multiplying by Ĉ,

C(ω)
[
C−1(−ω)−C−1(ω)

]
} = 2iM̂−1ÂM̂−1M̂− 2M̂−1ÂM̂−1Â (C.37)

Taking the trace of Equation C.37, the first term is an asymmetric matrix with zero

trace. By writing M̂ = I + R̂, we approximate M̂−1 ≈ I − R̂, and the second term

is approximately as Â2 +O(Â2R̂ + ÂR̂Â). Thus, to lowest order we have

E = Tr{C(ω)
[
C−1(−ω)−C−1(ω)

]
} ≈ −Tr

(
Â2
)

= 2
∑
µ>ν

(Âµν)2. (C.38)

Assuming each element of A is an indepenent and identically distributed random

variable, we can write the average EPF measured at equilibrium as

〈E〉eq = 2
M(M − 1)

2

〈
(Âµν)2

〉
=
M(M − 1)

2
. (C.39)

We calculated
〈

(Ãµν)2
〉

as follows:

〈
(Ãµν)2

〉
=
〈
[Im(xµxν∗)]2

〉
(C.40)

=
〈
[Re(xµ)Im(xν∗) + Im(xµ)Re(xν∗)]2

〉
(C.41)

=
〈
[Re(xµ)Im(xν∗)]2 + [Im(xµ)Re(xν∗)]2 + cross-terms

〉
(C.42)

=
1

2
(C.43)

The cross-terms average to zero because, in our choice of coordinate system, |xµ|2 =

1, so the real and imaginary parts of xµ are equally distributed along the unit circle.
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In addition, xµ and xν should be uncorrelated (recall that we are working at equi-

librium). The first and second term each have both a real and an imaginary part

squared, each of which is always positive and on average equal to 1
2
. Thus, each term

is 1
4

and adds to 1
2
.

To estimate ˆ̇S, we smooth Ẽ and integrate over all frequencies. We calculate〈
(Âµν)2

〉
as

(Âµν)2 =

∑
ωi

∆ω

exp

[
−(ωi − ωn)2

2σ2

]
√

2πσ2
Ãµν(ωi)


2

(C.44)

〈
(Âµν)2

〉
=
∑
ωi

(∆ω)2

exp

[
−(ωi − ωn)2

σ2

]
2πσ2

〈
(Âµν)2(ωi)

〉
(C.45)

≈ ∆ω

4πσ2

∫
dω exp

[
−ω2/σ2

]
=

∆ω

4πσ2

√
πσ2 (C.46)

=

√
π

2Tσ
. (C.47)

We used
〈
Ãµν(ωi)Ã

µν(ωj)
〉

=
〈

(Ãµν)2(ωi)
〉
δij in the second line, passed to an in-

tegral using one of the integration measures ∆ω in the third line, and substituted

∆ω = 2π(T )−1 in the fourth line. Finally, we arrive at

Ṡeq = 2
M(M − 1)

2

ωmax∫
−ωmax

dω

2π

〈
(Âµν)2

〉
=
M(M − 1)

2

ωmax

Tσ
√
π

(C.48)

If we also average the covariance functions over N independent trajectories with the

same dynamics, this bias is further reduced, leaving us with our final estimate of the

bias in our entropy production rate estimator

Ṡeq =
1

N

M(M − 1)

2

ωmax/σ

T
√
π

(C.49)
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Following the same line of reasoning for a set of M fields in d + 1 dimensions,

a similar expression can be derived. We again write Cµν(q, ω) = I + Rµν(q, ω) +

iAµν(q, ω). Extra care must be taken in the field case because Equation 4.4 does

not have the same symmetries as Equation 4.3. Specifically, while Rµν(−q,−ω) =

Rµν(q, ω) and Aµν(−q,−ω) = −Aµν(−q,−ω), nothing can be said a priori about

R(q,−ω) or A(q,−ω).

In order to calculate the bias, we will calculate the mean of the spatiotemporal

entropy production factor, E = Tr{[C−1(q,−ω)−C−1(q, ω)] C(q, ω)}. The calcula-

tion is tedious, so we only report the result here:

〈E〉eq =
〈
Tr
[
R2 −A2

]〉
(C.50)

= M(M − 1)
(〈

(Rµν)2
〉

+
〈
(Aµν)2

〉)
+M

〈
(Rµµ)2

〉
(C.51)

= M(M − 1) +
3M

4
(C.52)

We arrived at this by using the fact that Tr (A2) =
∑

µ 6=ν(A
µν)2 and Tr (R2) =∑

µ(Rµµ)2 +
∑

µ 6=ν(R
µν)2 for an asymmetric and symmetric matrix, respectively,

in addition to the assumption that every matrix element is an independent and

identically distributed random variable. As before, 〈(Aµν)2〉 = 1/2 = 〈(Rµν)2〉. Now

turning to the diagonal elements of R,

〈
(Rµµ)2

〉
=
〈
[1− Re (φµφµ∗)]2

〉
(C.53)

= 1 +
〈
Re (φµ)2 Im (φµ)2〉+

〈
Re (φµ)4〉+

〈
Im (φµ)4〉− 2

〈
Re (φµ)2 + Im (φµ)2〉

(C.54)

=
3

4
, (C.55)

where we used 〈x4〉 = 3 〈x2〉2 for Gaussian variables and
〈
Re (φµ)2〉 =

〈
Im (φµ)2〉 =

1/2 in our choice of coordinate system.
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Assuming the signals to have a total length in time of T and a total length in each

spatial dimension of Li, we smooth the spatiotemporal covariance function with a

multivariate Gaussian of width σω in the temporal dimension, and σki in each of the

spatial dimensions, giving a factor of ωmax (σωT
√
π)
−1

for the temporal dimension

and qmax
i (σqiLi

√
π)
−1

for each spatial dimension. Putting all these results together,

we have

ṡeq =
1

N

(
M(M − 1)

2
+

3M

8

)
ωmax

Tσω
√
π

d∏
i=1

qmax
i

Liσqi
√
π

(C.56)

C.5 Macroscopic Brusselator

The reversible Brusselator model we consider in this paper is defined by

A
k+1


k−1

X; B +X
k+2


k−2

Y + C; 2X + Y
k+3


k−3

3X, (C.57)

where A,B,C are fixed external chemicals and the system is assumed to occur in

a well-mixed vessel of volume V . Using mass action kinetics and writing lower-

case letters as concentrations (e.g. x ≡ X/V ), the macroscopic dynamics of the

Brusselator are given by the coupled ODEs

ẋ = k+
1 a− k−1 x− k+

2 bx+ k−2 cy + k+
3 x

2y − k−3 x3

ẏ = k+
2 bx− k−2 cy − k+

3 x
2y + k−3 x

3

(C.58)

Detailed balance holds when each reaction rate in Equation C.57 is balanced,

leading to the following equilibrium concentrations

Xeq = A
k+

1

k−1
(C.59)

Yeq = Xeq
Bk+

2

Ck−2
= Xeq

k−3
k+

3

, (C.60)
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where the first and second equation for yeq come from the k2 and k3 reactions,

respectively. Using the two equations for yeq gives us the condition for detailed

balance given in the main text, Bk+
2 k

+
3 = Ck−2 k

−
3 .

The steady state values of (x, y) are given by setting the deterministic equations

to 0, giving

xss = a
k+

1

k−1
(C.61)

yss =
k+

2 bxss + k−3 x
3
ss

k−2 c+ k+
3 x

2
ss

(C.62)

The relaxation matrix, R, that defines the stability of the steady state is given by

expanding the deterministic equations to first order around their steady state values

R =

∂xẋ ∂yẋ

∂xẏ ∂yẏ

∣∣∣∣
ss

=

−(k−1 + bk+
2 ) + 2k+

3 xssyss − 3k−3 x
2
ss k−2 c+ k+

3 x
2
ss

bk+
2 − 2k+

3 xssyss + 3k−3 x
2
ss −(k−2 c+ k+

3 x
2
ss)

 .

(C.63)

The eigenvalues of R are given by solving its characteristic equation, giving

λ± =
Tr(R)

2
±

[(
Tr(R)

2

)2

− det(R)

]1/2

(C.64)

C.6 Numerical Methods

C.6.1 Driven Gaussian Field

We used a first-order Euler-Maruyama method to simulate Equation 4.5. In short,

for a Langevin equation given by

∂x(t)

∂t
= F (x(t)) +

√
2Dξ, (C.65)
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we can discretize the dynamics in time and integrate forward using

x(tj+1) = x(tj) + ∆t

(
F (x(tj) +

√
2D

∆t

)
. (C.66)

The important detail here is that the random force moves forward with a weight
√

∆t.

This ensures that the mean-square displacement when F = 0 obeys Equation 1.19.

C.6.2 Gillespie algorithm

Simulations of the Brusselator, both the well-mixed version of Equation 4.14 and the

reaction-diffusion version of Equation 4.16, are run using the Gillespie algorithm [8].

The basic premise is to consider a volume of well-mixed molecules that interact with

each other via various mechanisms when they come into contact. By assuming a

Maxwell-Boltzmann distribution for the velocities, one can write the distribution of

time τ before a reaction µ occurs. We define cµ as the probability that reaction µ

occurs given a collision, and hµ as a combinatorial factor reflecting the number of

available particles for reaction µ. The algorithm at each time step is as follows:

1. Input desired values for M reactions, c1, . . . , cM and the initial molecular poplu-

ation numbers, X1, . . . , XN . cµ is related to the reaction rates and type of the

reaction

2. Calculate the affinity aµ = hµcµ for current population sizes

3. Generate two random numbers, r1, r2, each distributed uniformly over (0, 1).

(a) Use r1 to calculate the time of the next reaction step,

τ =
− ln(r1)∑M

ν=1 aν
,
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(b) Normalize all the affinities as ãµ = aµ/
∑

µ aµ. Use r2 to choose which

reaction happens by finding the µ that satisfies

µ−1∑
ν=1

ãν < r2 ≤
µ∑
ν=1

ãν

4. Change t→ t+τ , and change number of chemical species according to whatever

reaction just happened

For the Brusselator, our system of equations are given by Equation 4.14. There

are N = 2 chemical species of interest (X and Y , A,B,C are assumed to remain

constant), and M = 6 chemical pathways (the forward and reverse paths given by

the chemical reaction scheme given above). The probabilities cµ are

c±1 = k±1 ; c±2 = k±2 /V ;

c+
3 =

2!

V 2
k+

3 ; c−3 =
3!

V 2
k−3

(C.67)

and the combinatorial factors are

h+
1 = A, h−1 = X

h+
2 = BX, h−2 = DY

h+
3 = Y

X(X − 1)

2!
, h−3 =

X(X − 1)(X − 2)

3!

(C.68)

Simulation Parameters
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name value units description
Nsim 10 1 number of simulations per parameter set
dt 0.0001 τ simulation time step
tfinal 50 τ total simulation time
dx 0.1 λ spacing between lattice sites
Nsites 128 1 number of lattice sites
α [0, 1, . . . , 25] τ−1 driving frequency
σω 1.57 τ−1 width of smoothing Gaussian in time
σk 1.47 λ−1 width of smoothing Gaussian in space

Table C.1: Gaussian field simulation parameters. Simulations of the Gaussian
fields use an Euler-Maruyama algorithm to integrate the equations of motion. Time
and space are scaled by τ = (Dr)−1 and λ = r−1/2. The simulation is performed on
a periodic, 1-dimensional lattice.

name value units description
Nsim 50 1 number of simulations per parameter set
tfinal 5000 τ total time of simulation
k+

1 1 τ−1 forward reaction rate for reaction 1
k−1 0.5 τ−1 reverse reaction rate for reaction 1
k+

2 2 τ−1 forward reaction rate for reaction 2
k−2 0.5 τ−1 reverse reaction rate for reaction 2
k+

3 2 τ−1 forward reaction rate for reaction 3
k−3 0.5 τ−1 reverse reaction rate for reaction 3
A 100 1 number of chemical species in reaction volume
V 100 1 reaction volume

Table C.2: Brusselator simulation parameters. Simulations of the Brusselator

are done using a Gillespie algorithm [8]. Time is non-dimensionalized by τ =
(
k+

1

)−1
.

The strength of external driving is given by ∆µ = log
(
(bk+

2 k
+
3 )(ck−2 k

−
3 )−1

)
, where

b and c are the concentrations of B and C, respectively. Values of B and C are
changed to give driving strengths ∆µ ∈ [−2, 8] with step size 0.1, while keeping√

(bk+
2 k

+
3 )(ck−2 k

−
3 ) = 1, with 1 an arbitrarily chosen constant. The EPR plot in

Fig. 2c uses varying smoothing widths. When ∆µ < 5, σ = 1.26. When ∆µ ∈ [5, 5.8],
σ = 0.063. When ∆µ > 5.8, σ = 0.031. The EPF plot shown in Fig. 2b uses a
smoothing width of σ = 0.126. Different system volumes are used in Fig. 3.
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name value units description
Nsim 10 1 number of simulations per parameter set
Nc 64 1 number of lattice sites
DX 1 λ2τ−1 diffusion constant of chemical species X
DY 0.1 λ2τ−1 diffusion constant of chemical species Y
tfinal 100 τ total time of simulation
k+

1 1 τ−1 forward reaction rate for reaction 1
k−1 0.5 τ−1 reverse reaction rate for reaction 1
k+

2 2 τ−1 forward reaction rate for reaction 2
k−2 0.5 τ−1 reverse reaction rate for reaction 2
k+

3 2 τ−1 forward reaction rate for reaction 3
k−3 0.5 τ−1 reverse reaction rate for reaction 3
A 100 1 number of chemical species in reaction volume
C 400 1 number of chemical species in reaction volume
V 100 1 reaction volume of each compartment

Table C.3: Reaction-diffusion Brusselator simulation parameters. To add
diffusion to the Brusselator, we employ a compartment-based Gillespie algorithm.

Time is non-dimensionalized by τ =
(
k+

1

)−1
, and space is non-dimensionalized by

using the distance between each compartment, λ = h = 1.

∆µ (σω, σq)
∈ [−1,−0.5] (7, 1)
∈ [−0.5, 0.5] (14, 2)
∈ [0.5, 1] (7, 1)
∈ [1, 5.65] (5, 0.5)

= 5.7 (3.5, 0.4)
= 5.8 (1.75, 0.3)
= 5.9 (0.7, 0.1)
= 6.0 (0.35, 0.05)
= 6.1 (0.14, 0.02)
≥ 6.2 (0.035, 0.005)

Table C.4: Smoothing widths as a function of driving force. This table gives
the smoothing widths (σω, σq) as a function of chemical driving force ∆µ used in
Figure 4c in the main text. Figure 5 in the main text uses a smoothing width of
(σω, σq) = (0.07, 0.1) for all ∆µ.
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[42] Édgar Roldán and Juan M. R. Parrondo. Estimating dissipation from single
stationary trajectories. Physical Review Letters, 105:150607, Oct 2010. 20
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Ralph Böhme, Stephan W. Grill, Jennifer T. Wang, Geraldine Seydoux, U. Ser-
dar Tulu, Daniel P. Kiehart, and Eric Betzig. Lattice light-sheet microscopy:
Imaging molecules to embryos at high spatiotemporal resolution. Science,
346(6208):1257998, 10 2014. 83

[241] Sandrine Etienne-Manneville and Alan Hall. Rho GTPases in cell biology.
Nature, 420(6916):629–635, dec 2002. 88

[242] Maureen Cetera, Guillermina R. Ramirez-San Juan, Patrick W. Oakes, Lind-
say Lewellyn, Michael J. Fairchild, Guy Tanentzapf, Margaret L. Gardel, and
Sally Horne-Badovinac. Epithelial rotation promotes the global alignment of
contractile actin bundles during Drosophila egg chamber elongation. Nature
Communications, 5(1):5511, dec 2014. 89

[243] P Sartori, V F Geyer, A Scholich, F Jülicher, and J Howard. Data from: Dy-
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