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Abstract 
 

Identification and Characterization of the P53-Induced Long Noncoding RNA 
Isoform Pvt1b and Its Role in Stress-Specific Growth Inhibition via Myc 

Repression 
 

Christiane Elizabeth Olivero 
2021 

 
The tumor suppressor p53 and proto-oncogenic Myc transcription factors 

are frequently deregulated in cancer, with common loss-of-function and gain-of-

function mutations observed in the p53 and Myc networks, respectively. Referred 

to as the ‘guardian of the genome,’ p53 regulates genes important for curtailing 

cellular proliferation and tumorigenesis under conditions of stress, while the 

proto-oncogene Myc induces genes that, in contrast, promote cellular growth and 

can, in overcoming growth inhibitory signals, support cancer development. While 

previous literature has documented decreased Myc expression in response to 

cellular stress, researchers have long puzzled over identifying the specific 

regulatory lever responsible. The work presented here identifies a novel regulatory 

axis positioned at the intersection of the p53 and Myc pathways, which represses 

Myc and restricts cellular proliferation downstream of p53 activation. 

Long noncoding RNAs (lncRNAs) are a diverse class of transcripts lacking 

protein-coding potential and implicated in gene expression regulation. Here I 

present my work on the identification of an isoform of the lncRNA Plasmacytoma 

variant translocation 1 (Pvt1) and the characterization of its role in the p53-

mediated response to stress. I found that the stress-specific Pvt1b, expressed 50 

Kb downstream of the Myc locus, is induced by p53 in response to oncogenic and 



 ii 

genotoxic stress and accumulates at its site of transcription. I demonstrated that 

production of the Pvt1b RNA is necessary and sufficient to repress Myc 

transcription in cis without altering the chromatin organization of the locus. I 

investigated the functional outputs of Pvt1b-mediated Myc downregulation and 

found that inhibition of Pvt1b increased both Myc levels and transcriptional 

activity and promoted cellular proliferation. Notably, Pvt1b loss accelerated tumor 

growth, but not tumor progression, in an autochthonous mouse model of lung 

cancer. Further examination of the Pvt1b mechanism of action failed to identify 

Pvt1b-specific sequences required for its function, but uncovered a potential role 

for histone deacetylation in Pvt1b regulation of Myc. Finally, I initiated 

development of a suite of genetically engineered Pvt1 mouse models, the 

characterization of which will shed light on Pvt1 function in vivo and benefit future 

mechanistic studies. 

Taken together, this work conceptually advances our understanding of 

stress-induced growth inhibition orchestrated by p53. Specifically, I identify Pvt1b 

as the primary mediator of stress-specific Myc repression, providing insight into 

the long-standing question of how p53 activation triggers Myc downregulation. As 

such, this work has far-reaching implications not only for our understanding of cis-

acting lncRNAs, which can fine-tune local gene expression downstream of broadly 

active transcription programs, but also for the exciting therapeutic possibility of 

restricting Myc levels in cancer via Pvt1b modulation. 
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Chapter 1: Background 
 

Long noncoding RNAs in gene regulation 

 Recent sequencing advances have revealed pervasive transcription of 

mammalian genomes, far exceeding the level of RNA production required for 

protein synthesis alone. Specifically, despite protein-coding sequences comprising 

just 2% of the human genome, as much as 75% of the genome is transcribed 

(Djebali et al., 2012). This discrepancy has largely upended one of the foundational 

tenets of molecular biology: that RNA (with a few notable exemptions) provides 

the cellular instructions, copied from DNA, to produce proteins (Rinn and Chang, 

2012). Why cells expend the energy to transcribe a majority of the genome is still 

not well understood, and some have speculated that these noncoding RNAs 

(ncRNAs), not being destined for translation, may amount to nothing more than 

extensive transcriptional noise. However, there is increasing evidence for 

noncoding transcripts with critical roles in cellular homeostasis, implicating these 

RNAs as having nuanced and previously unappreciated functions that go far 

beyond mere messenger (reviewed in (Statello et al., 2020)). 

Once simply referred to as “junk DNA,” recent years have seen a collective 

reframing of noncoding DNA sequences as mysterious genomic “dark matter” with 

unexplored functional depths. Breaking from a protein-centric view of cellular 

operations, there has been growing interest in how the RNAs produced from these 

enigmatic parts of the genome might impose an additional regulatory layer on 

cellular activities. Constituting perhaps the most nebulous of these ncRNA classes, 
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long noncoding RNAs (lncRNAs) encompass a heterogenous collection of 

RNA molecules broadly defined as transcripts exceeding 200 nucleotides in length 

and, like other ncRNAs, lacking protein-coding potential (Rinn and Chang, 2012). 

In contrast to other ncRNAs classes, such as miRNAs (microRNAs), with their 

comparatively well-defined role in post-transcriptional gene regulation, lncRNAs 

have far more varied and versatile roles in biology, stemming in part from their 

imprecise operational definition (Cech and Steitz, 2014). 

LncRNA transcription and processing share many similarities with those of 

protein-coding genes. For one thing, lncRNA genes possess chromatin marks 

consistent with other actively transcribed genes: H3K4me3, H3K9ac, H3K27ac 

(Guttman et al., 2009). Like mRNAs (messenger RNAs), many lncRNAs are 

transcribed by RNA Pol II, and are often subject to 5’-capping, splicing, and 

polyadenylation (Quinn and Chang, 2016). Following transcription, lncRNAs have 

comparable stability to mRNAs, with slightly shorter half-lives on average (Clark 

et al., 2012), and are also subject to nonsense-mediated decay (NMD), although 

perhaps with increased susceptibility over mRNAs (Mendell et al., 2004). 

However, there are several key features that distinguish lncRNAs from coding RNA 

transcripts, apart from their lack of open reading frame (ORF). First, the structures 

of lncRNA loci can vary widely, with lncRNA genes found overlapping, antisense 

to, or divergent from protein-coding genes, or located in intronic or intergenic 

regions (Rinn and Chang, 2012). Notably, lncRNAs can also undergo unique 

processing events, including RNase P 3’ end cleavage (as in MALAT1 processing) 

(Wilusz et al., 2008), RNA back-splicing to form circRNAs (circular RNAs) 

(Salzman et al., 2012), and the trimming of snoRNAs (small nucleolar RNAs) from 
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the introns of protein-coding genes (Yin et al., 2012) (reviewed in (Quinn and 

Chang, 2016)). Importantly, it is likely that our understanding of the full breadth 

of diversity in lncRNA form, structure, and processing is incomplete. 

LncRNA genes engulf protein-coding genes in abundance. While one study 

identified roughly 60,000 lncRNA genes in the human genome (Iyer et al., 2015), 

estimates of that number now approach 100,000, far outstripping the 21,000 

known protein-coding genes (Fang et al., 2018). Interestingly, some have noted a 

correlation between higher numbers of lncRNA genes and increasing organismal 

complexity, suggesting lncRNAs may have played an outsized role in recent 

evolutionary history (Jandura and Krause, 2017). Indeed, the ratio of noncoding 

to protein-coding DNA sequences increases as a factor of developmental 

complexity and is especially high in vertebrates (Mattick, 2004). This observation 

highlights the importance of the expansion of the noncoding genome, although it 

is still unknown whether this relationship between noncoding DNA and 

organismal intricacy is causal or simply incidental. 

 Analyses of the human transcriptional landscape have determined that 

lncRNAs are expressed with exquisite cell-type and disease-state specificity (Iyer 

et al., 2015). While this may point to critical lncRNA functions in normal and 

disease states, it is thus far from clear whether these specific lncRNA expression 

patterns are a cause or consequence of underlying biology. To date, examination 

of individual lncRNAs has revealed functions in cell cycle regulation (Dimitrova et 

al., 2014; Marin-Bejar et al., 2013), nuclear organization (Hacisuleyman et al., 

2014; Sunwoo et al., 2009), and differentiation (Jain et al., 2016; Kretz et al., 

2013), among myriad other ubiquitous cellular processes (reviewed in (Statello et 
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al., 2020)). As a result of lncRNA-specific expression signatures, the putative 

prognostic value of lncRNAs in disease is high. For example, several lncRNAs are 

expressed at higher levels in accordance with increased tumor stage or metastasis 

risk, and can provide valuable information about cancer severity (Lu et al., 2017; 

Shi et al., 2015). UCA1 (Urothelial Cancer Associated-1) and HULC (Highly 

Upregulated in Liver Cancer) have been proposed as biomarkers for bladder and 

liver cancer, respectively, in keeping with the tissues in which they were originally 

identified (Milowich et al., 2015; Xie et al., 2013). Surprisingly, the only lncRNA to 

be used in an FDA-approved diagnostic test to date is PCA3 (Prostate Cancer 

Antigen 3); its presence in patient urine samples enables prostate cancer diagnosis 

with a high degree of accuracy and sensitivity, surpassing the previous diagnostic 

standard, prostate-specific antigen (PSA) (Fradet et al., 2004; Hessels et al., 

2003). Continuing advances in our knowledge of the specificity of lncRNA 

expression patterns in disease will provide ample occasion for lncRNA-based 

diagnostic and prognostic test development moving forward. 

Of the lncRNAs which have been functionally characterized, many regulate 

gene expression, having described roles in modulating virtually every step of RNA 

production (Dimitrova et al., 2014; Marin-Bejar et al., 2013), processing (Tripathi 

et al., 2010; Yap et al., 2018), stability (Cao et al., 2017; Kretz et al., 2013), and 

translation (Carrieri et al., 2012; Zhang et al., 2013) (reviewed in (Statello et al., 

2020)). Gene regulation by lncRNAs is an extensive area of research; there has 

been significant interest in the role of lncRNAs in epigenetic modifications in 

particular, with several studies describing lncRNAs interacting with polycomb 

proteins to elicit gene repression (Khalil et al., 2009; Rinn et al., 2007; Tsai et al., 
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2010). While recent work demonstrating the promiscuous binding of PRC2 

(Polycomb Repressive Complex 2) to RNAs has cast doubt on the prevalence of this 

mechanism of action (Davidovich et al., 2013), lncRNAs have been shown to 

frequently associate with chromatin-modifying complexes to control transcription 

of target genes (reviewed in (Statello et al., 2020)). It is important to note that 

lncRNA functions are by no means restricted to gene regulation, and an increasing 

number of studies highlight regulatory roles for lncRNAs in organizing subcellular 

compartments and governing organelle activities (Clemson et al., 2009; Leucci et 

al., 2016; Yap et al., 2018). 

Despite immense growth in the field of lncRNA biology over the past three 

decades, efforts to distinguish bona fide functional lncRNAs from transcriptional 

noise have been bogged down by the sheer volume of uncharacterized lncRNA 

transcripts, raising questions about how to best prioritize them for additional 

study. Bioinformatic analyses have attempted to tackle this problem by examining 

the molecular features and regulation of lncRNAs to provide clues about their 

potential functions. One popular method involves assigning putative functions to 

lncRNAs based on their co-expression with protein-coding genes (Guttman et al., 

2009; Hung et al., 2011). These so-called “guilt by association” studies use what is 

known about different cellular pathways as a proxy for lncRNA function based on 

whether a lncRNA is co-regulated with protein-coding genes in the same network. 

The database decodeRNA catalogues lncRNAs based on this strategy (Lefever et 

al., 2017), although these functional projections should be approached with 

caution due to the correlative nature of these analyses. Others have attempted to 

predict function by evaluating lncRNA composition. For example, one recent study 
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grouped lncRNAs based on short sequence motifs called kmers, finding functional 

similarities between lncRNAs with related kmer profiles, despite an absence in 

linear sequence homology (Kirk et al., 2018). Notwithstanding these advances in 

computational methods, experimental validation of lncRNA candidates is the only 

way to confirm their functional importance. As such, recent genome-wide screens 

for functional lncRNAs that evaluate a specific cellular output following 

perturbation, such as those that have been performed using CRISPR/Cas9 genome 

editing, or its variants CRISPRa (CRISPR activation) or CRISPRi (CRISPR 

inactivation), can provide useful insights into function (Bester et al., 2018; Joung 

et al., 2017; Liu et al., 2017; Zhu et al., 2016). 

 

Long noncoding RNA mechanisms of action 

 The study of lncRNAs poses unique challenges, but perhaps the most 

irksome of these is the inability to define lncRNAs based on an unequivocal set of 

characteristics. Unlike mRNAs, or indeed some other ncRNA classes, there is no 

distinct (or even hazy) lncRNA model that can provide clear instructions for 

functional characterization, because any two lncRNAs can vary greatly in form, 

function, and mechanism of action. As a class, lncRNAs are extremely modular, 

able to bind DNA, proteins, and other RNAs, and multifaceted in their regulatory 

output, capable of eliciting either positive or negative feedback within a variety of 

cellular pathways (reviewed in (Statello et al., 2020)). Therefore, while the existing 

body of lncRNA literature can provide clues as to what a lncRNA might do, there 

is no standard path to follow when it comes to experimental design. Many 

frameworks have been developed which attempt to classify lncRNAs by their 
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modes of action (Rinn and Chang, 2012; Wang and Chang, 2011). For example, 

some have proposed dividing lncRNAs by “mechanistic themes” into those which 

act as either “decoys,” which interfere with DNA-protein interactions, “scaffolds,” 

which bring together two or more proteins in a complex, or “guides,” which localize 

proteins within a specific genomic area (Rinn and Chang, 2012).  While these 

groupings are certainly useful, there are many gray areas and potential for overlap 

that preclude precise categorization. 

One framework that is particularly helpful for initial lncRNA 

characterization without extensive a priori knowledge of mechanism involves 

broadly categorizing lncRNAs by their localization, or more specifically, based on 

the cellular compartment in which they reside. Subcellular fractionation and single 

molecule RNA fluorescence in situ hybridization (smRNA-FISH) are useful 

experimental tools for determining lncRNA location within the cell (Cabili et al., 

2015; Conrad and Orom, 2017). Notably, the majority of lncRNAs are nuclear-

enriched, perhaps reflecting the large number of lncRNAs involved in some aspect 

of gene expression regulation (Cabili et al., 2015; Derrien et al., 2012). LncRNA 

localization patterns have significant bearing on the spectrum of potential 

functions a lncRNA can execute, and can therefore guide further mechanistic 

studies. As such, lncRNA subcellular position informs an extremely related 

framework: categorization based on whether a lncRNA regulates in cis or in trans 

(Kopp and Mendell, 2018; Quinn and Chang, 2016). 

Cis-acting lncRNAs generally reside close to their site of transcription 

and regulate genes located in cis, or which are expressed from the same 

chromosome (Figure 1) (Gil and Ulitsky, 2020). These lncRNAs may act on their 
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nearest neighbor, or cross large linear distances to enact regulation, with spatially 

disparate genes brought in close proximity by long-range chromatin interactions 

(Cai et al., 2016). These distant contacts are often, but not always, facilitated 

between genes residing within the same topologically associated domain (TAD) 

(Groff et al., 2018). While many cis-regulatory lncRNAs exert control over one or 

more target genes, their effects can also be far more widespread. 

One lncRNA with extensive regulatory influence is XIST (X-Inactive-

Specific Transcript), a lncRNA which performs the critical task of dosage 

compensation in females by coordinating epigenetic repression of the entire X-

chromosome from which it is expressed in a process known as X-chromosome 

inactivation (XCI) (reviewed in (Loda and Heard, 2019)). XIST becomes 

upregulated in early development, eventually coating one of two X-chromosomes 

to induce widespread chromosomal reorganization and a heterochromatic state 

(Loda and Heard, 2019). Indispensable for gene silencing, XIST is responsible for 

coordinating the repression of >1000 genes through functions encoded in discrete 

and genetically separable elements of the XIST transcript (Loda and Heard, 2019). 

For example, the repeat A region of XIST is essential for gene silencing (Wutz et 

al., 2002), while other regions have been identified as necessary for recruitment of 

PRC1 (Polycomb Repressive Complex 1) or its localization on the inactive X-

chromosome, with some occasional redundancy (Colognori et al., 2019; Wutz et 

al., 2002). The XIST sequences and RNA binding proteins (RBPs) required for the 

establishment and maintenance of gene silencing, and the precise order of events 

in XCI, are incompletely understood. Attempts to identify XIST interactors have 

revealed numerous binding partners including various PcG (polycomb group) 
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proteins, hnRNPs (heterogeneous ribonucleoproteins), and others with unknown 

functional significance (Chu et al., 2015; McHugh et al., 2015). Different 

approaches have defined different, albeit overlapping, sets of XIST interacting 

proteins (Chu et al., 2015; McHugh et al., 2015). Notably, multiple studies have 

identified SHARP (SMART/HDAC1-Associated Repressor Protein; also known as 

Spen) as an XIST binding partner with a critical role in recruiting the nuclear 

corepressor SMRT and the histone deacetylase HDAC3 to remove activating 

histone acetylation marks from the X-chromosome (Chu et al., 2015; McHugh et 

al., 2015). However, a recent study demonstrated that HDAC3 is not essential to 

the establishment of XCI (Zylicz et al., 2019), raising questions about the role of 

the XIST-SHARP interaction in gene repression. While study of XIST dates back 

to the beginning of the lncRNA field itself (Brown et al., 1991), our understanding 

of XIST’s mechanism of action is still expanding and evolving, 30 years later. This 

highlights the complexity of lncRNA mechanisms and the importance of 

employing multiple orthogonal approaches in lncRNA functional characterization. 

The lncRNA Morrbid operates by a similar general mechanism of action, 

although with a far more restricted regulatory output than XIST. Expressed 

exclusively in a subset of myeloid cells, Morrbid influences cellular lifespan by 

repressing the pro-apoptotic gene Bim in cis (Kotzin et al., 2016). This negative cis-

regulation is mediated by Morrbid recruitment of PRC2 to the Bim promoter 

facilitated by chromatin contacts between the neighboring Morrbid and Bim loci. 

XIST and Morrbid exemplify an archetype of cis-acting lncRNAs, namely those 

that interact with chromatin-modifying complexes (either activating or repressive) 

to engage in epigenetic regulation of target gene(s). Many lncRNAs, cis-regulatory 
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or otherwise, execute their functions through their association with various RBPs 

(reviewed in (Statello et al., 2020)). However, lncRNA-mediated cis-regulation 

does not always require RNA-protein interactions, or indeed the RNA molecule 

itself. A notable example of this is Airn (Antisense Igf2r ncRNA), a lncRNA 

oriented overlapping and antisense to Igf2r (Insulin-like growth factor receptor 

2); both genes are encoded in a paternally imprinted gene cluster that also includes 

Slc22a2 and Slc22a3 (Statello et al., 2020). Airn expression from the paternal 

allele, specifically transcription through the Igr2r promoter region, is required for 

Igf2r silencing via transcriptional interference, a function which does not require 

the Airn RNA molecule, only its production (Latos et al., 2012; Sleutels et al., 

2002). In this way, the placement and architecture of the Airn locus confers its 

entire Igf2r-repressing function. However, the Airn RNA transcript has been 

shown to play a role in epigenetically repressing Slc22a3 through the recruitment 

of a histone methyltransferase G9a, revealing distinct transcript- and 

transcription- based mechanisms (Nagano et al., 2008). 

These difficulties in elucidating the mechanism by which Airn represses 

genes in the Igf2r locus emphasize a key and pervasive challenge in the lncRNA 

field; specifically, how can we accurately discern the element(s) of a lncRNA locus 

required for its function(s)? Gene regulation by cis-acting lncRNAs can be 

mediated by (1) DNA elements in the locus, (2) the act of transcription or RNA 

processing, (3) the RNA molecule itself, or some combination thereof (Figure 1) 

(Gil and Ulitsky, 2020). Employing either deletion of a lncRNA locus or insertion 

of a premature polyadenylation signal downstream of its transcriptional start site 

(TSS) can aid in dissociating the contributions of DNA elements in the locus from 
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both the act of transcription and the activity of the RNA molecule (Engreitz et al., 

2016; Paralkar et al., 2016). However, differentiating between the interconnected 

roles of transcription and the RNA transcript has proven a more thorny problem. 

Some experimental tools may be too intractable or imprecise to effectively isolate 

one lncRNA feature from the other and can produce muddled results. For example, 

recent work has demonstrated that antisense oligonucleotides (ASOs), often a 

preferred choice for RNA depletion in lncRNA studies (especially for nuclear-

enriched transcripts), can cause premature transcription termination and 

therefore do not constitute a loss-of-function (LOF) model specific to the RNA 

molecule (Lee and Mendell, 2020). Given such shortcomings in current 

technologies, necessity dictates that we continue to develop diverse and innovative 

experimental tools and approaches with lncRNA biology in mind. 

Cis-activating lncRNAs can be especially difficult to functionally dissect, as 

their transcription alone may be responsible for their ascribed regulatory outputs. 

Indeed, the transcription of protein-coding genes, like lncRNAs, has been shown 

to activate the expression of neighboring loci (Engreitz et al., 2016), perhaps 

because active transcription increases interactions mediated by cis-regulatory 

elements, thus supporting promoter-enhancer contacts (Gu et al., 2018). These 

observations may point to a widespread mechanism of transcription-facilitated 

cis-activation that is not specific to lncRNAs. Interestingly, many cis-activating 

lncRNAs are transcribed from enhancers and regulate neighboring genes by 

modulating enhancer availability through the act of their transcription or 

recruitment of the Mediator complex (Isoda et al., 2017; Lai et al., 2013). Yet, the 

role of other enhancer RNAs (eRNAs), such as the RNAs produced from p53-
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bound enhancer regions (p53BERs), is less clear, and may depend only on DNA 

elements to elicit gene expression changes (Melo et al., 2013). Other lncRNAs are 

not transcribed from enhancers per se, but may have enhancer elements associated 

with their loci. LincRNA-p21, for example, has been proposed to activate the 

transcription of its neighboring gene p21 through cis-regulatory DNA elements 

(Groff et al., 2016), despite other studies demonstrating a role for the RNA 

molecule (Dimitrova et al., 2014; Huarte et al., 2010). Controversies such as these 

highlight a need for robust characterization of cis-acting lncRNAs and clear 

identification of the elements of lncRNA loci required for their function(s). 
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Figure 1. Cis- and trans- acting mechanisms of action by lncRNAs. Long noncoding RNAs 
(lncRNAs) can function in either cis or trans. Cis-acting lncRNAs are nuclear-enriched and can 
regulate neighboring protein-coding genes (PCGs) through DNA elements in the lncRNA locus, the 
act of transcription, or the RNA transcript. Functions of the lncRNA transcript (blue) are mediated 
through interactions with target genes (red), RNA binding proteins (green and purple), or other 
RNAs (orange). Trans-acting lncRNAs can reside in the nucleus and regulate target genes 
expressed from different chromosomes in a similar manner, or can reside in the cytoplasm and 
engage in RNA-RNA and RNA-protein interactions to influence various cellular processes. 
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In contrast to cis-acting lncRNAs, trans-acting lncRNAs can travel far 

from their site of transcription, and either regulate genes elsewhere in the nucleus 

or are exported to the cytoplasm, enabling a range of other activities (Figure 1) 

(reviewed in (Statello et al., 2020)). A notable example of a nuclear-enriched 

trans-acting lncRNA is HOTAIR (HOX Transcript Antisense RNA), expressed 

antisense to the HOXC gene cluster and proposed to epigenetically repress the 

distally located HOXD cluster via PRC2 recruitment (Rinn et al., 2007). However, 

this trans-acting mechanism has been called into question by a study noting 

nonspecific interactions between PRC2 and RNA (Davidovich et al., 2013). 

Additionally, the function of Hotair in the mouse has come under scrutiny after 

conflicting results were obtained using the same locus deletion model. One group 

documented homeotic transformations in response to Hotair loss (Li et al., 2013), 

while another group found no developmental defects whatsoever, and therefore 

concluded Hotair was dispensable for mouse development (Amandio et al., 2016). 

Despite these inconsistencies, there is functional evidence for HOTAIR 

overexpression in supporting breast cancer metastasis, highlighting a need for 

improved mechanistic elucidation (Gupta et al., 2010). 

Firre (Functional intergenic RNA repeat element), in contrast to other 

trans-acting nuclear-enriched lncRNAs, resides close to its site of transcription on 

the X-chromosome, but engages in various trans-chromosomal contacts in order 

to spatially concentrate distal genomic elements (Hacisuleyman et al., 2014). 

While the function of Firre was not initially clear, recent studies have proposed 

roles in hematopoiesis and XCI, potentially involving both trans- and cis- 

regulatory activities (Fang et al., 2020; Lewandowski et al., 2019). This unique 
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example illustrates that lncRNA location is not always a proxy for its function and 

that localization patterns in cis and trans may leave space for nuanced and 

unexpected mechanisms of action. 

Examples of trans-acting lncRNAs that function in the cytoplasm include 

NORAD (Noncoding RNA Activated by DNA Damage), which binds PUMILIO 

proteins to support genomic stability (Lee et al., 2016); LAST (LncRNA-Assisted 

Stabilization of Transcripts), which stabilizes the mRNA encoding Cyclin D1 

(CCND1) to promote cellular proliferation (Cao et al., 2017); and SAMMSON 

(Survival Associated Mitochondrial Melanoma Specific Oncogenic Noncoding 

RNA), which associates with the mitochondrial regulator p32 to increase its 

localization and function in mitochondrial homeostasis (Leucci et al., 2016). 

On the whole, cis-acting lncRNA mechanisms appear to be more prevalent 

than trans-acting. This idea is supported by enrichment of the majority of lncRNAs 

in the chromatin fraction, the low copy number of some lncRNAs, and the 

conservation of lncRNA genomic organization (or synteny) despite poor sequence 

conservation, all of which favor local cis-regulatory lncRNA modes of action 

(reviewed in (Gil and Ulitsky, 2020)). These observations in no way preclude 

abundant trans-acting lncRNA mechanisms, and indeed some lncRNAs have been 

suggested to regulate in both cis and trans. For example, in this work I describe a 

cis-acting role for an isoform of the lncRNA Pvt1 in negatively regulating the 

expression of a neighboring protein-coding gene (see Chapters 2-5). However, 

various trans-regulatory mechanisms for Pvt1 have been previously described, 

including a role in protein stabilization (Tseng et al., 2014), and one in which a 

circular form of Pvt1 (circPVT1) acts as a miRNA decoy (Panda et al., 2017). 
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Moreover, there is disagreement even with respect to the cis-activity of Pvt1, and 

whether it depends on the RNA or DNA elements in the locus (Cho et al., 2018). 

Such distinct regulatory functions described for Pvt1 and other lncRNAs may be 

cell-type specific and in keeping with observed differences in localization patterns. 

Another exciting possibility is that they reflect bona fide isoform-specific functions 

that become important in different cellular contexts, underscoring a need for 

further exploration. 

 

 

Long noncoding RNAs in cancer 

The work  in this section has been published as part of the following invited 

review: Olivero, C., and Dimitrova, N. Identification and characterization of 

functional long noncoding RNAs in cancer. (2020). The FASEB Journal 34, 

15630-15646. 

Introduction 

Cancer is a disease of aberrant cell growth arising from a complex genetic 

landscape of inherited and sporadic mutations and environmental factors. 

Historically, cancer research has prioritized examining alterations to protein-

coding genes in molecular pathways influencing the hallmarks of cancer (Hanahan 

and Weinberg, 2000, 2011). While these analyses have provided extensive insights 

into key players in tumorigenesis, protein-coding sequences account for only 2% 

of the genome (International Human Genome Sequencing, 2004). Both the 

pervasive transcription of the human genome (Djebali et al., 2012) and the 
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presence of cancer- associated mutations in noncoding regions (Freedman et al., 

2011) have suggested a potential wealth of unexplored cancer targets. Notably, the 

heterogeneous class of long noncoding RNAs (lncRNAs) occupies a significant 

space within the noncoding transcriptome, with recent estimates suggesting the 

existence of over 100,000 human lncRNA transcripts (Bertone et al., 2004; 

Carninci et al., 2005; Consortium, 2012; Kapranov et al., 2007).  

LncRNAs are operationally defined as RNA molecules exceeding 200 

nucleotides in length that lack protein-coding potential (Mercer et al., 2009; Rinn 

and Chang, 2012). Able to dynamically fold into intricate secondary structures 

(Qian et al., 2019) to interact with DNA, proteins and other RNAs, lncRNAs are 

diverse in their structure, localization, and pattern of expression, enabling them to 

regulate the flow of cellular information at many levels (Wang and Chang, 2011). 

Frequently the targets of transcriptional programs, lncRNAs influence many 

fundamental cellular processes including cell division, genome maintenance, and 

pluripotency (Lee et al., 2016; Loewer et al., 2010; Yap et al., 2010).  

As lncRNAs are expressed with exquisite cell-type and disease-state 

specificity, they are ideally positioned to act as biomarkers for a number of 

pathologies, including different cancers (Derrien et al., 2012; Iyer et al., 2015; Yan 

et al., 2015). Identifying lncRNA expression changes, or their association with 

recurrent copy number variations (CNVs) or cancer susceptibility single nucleotide 

polymorphisms (SNPs) have the potential to become useful tools in cancer 

diagnosis and treatment planning. Beyond their diagnostic and prognostic utility, 

over the past decade, individual lncRNAs have been mechanistically and 

functionally dissected, revealing critical roles in cancer-related pathways at the 
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cellular and organismal level. These studies have pointed to lncRNAs as operators 

within proto-oncogenic and tumor suppressive networks, suggesting that lncRNAs 

themselves may play active roles in promoting or limiting tumor development 

(Huarte, 2015; Prensner and Chinnaiyan, 2011; Wapinski and Chang, 2011). 

Despite growing data supporting the involvement of lncRNAs in 

tumorigenesis, it is often difficult to surmise whether changes in individual 

lncRNAs are bona fide drivers of human cancer development and whether 

targeting altered lncRNAs in patients would be expected to produce therapeutic 

benefit. Here, we present an overview of how functional lncRNAs in cancer are 

identified. We highlight promising therapeutic targets based on patient data and 

on experimental evidence from in vitro and in vivo cancer models. We also discuss 

important discrepancies to suggest a best-practice roadmap for further 

characterization of the roles of lncRNAs in cancer.  

 

Identification of cancer-associated lncRNAs 

Mining global human cancer genomic and transcriptomic data 

Integrating genomic and transcriptomic data from diverse human cancers 

has provided a starting point for the identification of lncRNAs with functional roles 

in cancer. In particular, recurrent genetic alterations have implicated many genes 

involved in oncogenesis, and the capacity to identify such genes has expanded in 

the last several years due to rapid advances in sequencing technologies. These 

studies have uncovered that many recurrent somatic copy number variations 

(SCNVs) map to noncoding regions (Beroukhim et al., 2010). Notably, analysis of 

5000 human tumor samples across 13 cancer types from The Cancer Genome Atlas 
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(TCGA) revealed that, on average, as many as one quarter of all lncRNAs manifest 

frequent cancer-related copy number gains or losses (Yan et al., 2015). A more 

recent study probed the copy number of over 10,000 lncRNAs in 80 cancer cell 

lines across 11 cancer types, identifying 136 lncRNAs involved in focal SCNVs 

(Volders et al., 2018). Importantly, 76 of these lncRNAs lacked copy number 

changes in flanking protein-coding genes, suggesting potential lncRNA-driven 

genomic alterations in cancer. Cancer risk SNPs in noncoding loci can also point 

to a potential role for specific lncRNAs in tumorigenesis. One study identified 

nearly 4000 lncRNAs overlapping disease-associated SNPs, while another 

estimated that roughly 12% of all cancer-associated SNPs mapped within 5 Kb of 

lncRNA loci (compared to 55% mapping near protein-coding genes) (Iyer et al., 

2015; Yan et al., 2015).  

Apart from harboring genomic alterations, lncRNAs have also been found 

to exhibit differential expression patterns in tumor samples compared to normal 

tissues. A comprehensive meta-analysis of over 7000 gene expression datasets, 

including a range of normal and cancer samples, identified as many as 60,000 

lncRNAs with altered expression (Iyer et al., 2015). Notably, many previously 

unannotated lncRNAs were found in disease-associated regions and the expression 

of roughly 8000 lncRNAs clustered with specific cancer or cell lineages, suggesting 

the potential for lncRNAs to execute cancer-specific functions (Iyer et al., 2015). 

Along similar lines, an analysis of seven cancer types revealed that, on average, 

26% of expressed lncRNAs were significantly deregulated in at least one cancer 

type (15% upregulated and 11% downregulated) with 60% of these altered lncRNAs 

demonstrating cancer specificity (Yan et al., 2015). In addition, a recent study of 
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lncRNA-associated epigenetic alterations across 20 different cancers identified 

over 2000 lncRNAs either epigenetically activated or silenced in at least one cancer 

type (Wang et al., 2018). Altogether, these studies led to the consensus that, as a 

class, lncRNAs are subject to frequent genetic and epigenetic alterations in cancer.  

 

LncRNA loci with recurrent SCNVs in cancer  

In addition to global patterns of lncRNA deregulation in cancer, several 

individual lncRNAs have been identified based on frequent large-scale genomic 

alterations. One of the first cancer-associated lncRNAs was identified in murine 

lymphomas due to the frequent translocations and viral insertions involving the 

as-yet uncharacterized Pvt1 (Plasmacytoma Variant Translocation 1) lncRNA 

(Cory et al., 1985; Graham et al., 1985), located approximately 72 Kb downstream 

of the MYC (Myelocytomatosis) proto-oncogene. Later studies extended these 

results to human cancer and demonstrated a correlation between PVT1 genomic 

amplification and poor prognosis in acute myeloid leukemia and in breast and 

ovarian cancers, among others (reviewed in (Colombo et al., 2015)). Significantly, 

PVT1 amplification is observed frequently in a range of cancer types including in 

33% of ovarian cancers, 20% of esophageal cancers, 13% of invasive breast 

carcinomas and 7% of lung adenocarcinomas based on TCGA data (Hoadley et al., 

2018). Moreover, PVT1 alterations are associated with a significant reduction in 

overall and disease-free survival (Cerami et al., 2012; Gao et al., 2013; Hoadley et 

al., 2018).  

Another prominent example of a lncRNA initially characterized by genomic 

alterations is FAL1 (Focally Amplified LncRNA 1, also known as FALEC) located 
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on chromosome 1q21 (Hu et al., 2014a). FAL1 copy number gains have been 

observed across many cancer types, including in approximately 10% of liver 

cancers, invasive breast carcinomas and lung adenocarcinomas according to TCGA 

data (Hoadley et al., 2018). FAL1 amplification and overexpression are associated 

with late stage tumors and with decreased survival of patients with ovarian cancer 

(Hoadley et al., 2018; Hu et al., 2014a). Similarly, the lncRNA SAMMSON 

(Survival Associated Mitochondrial Melanoma Specific Oncogenic Noncoding 

RNA) was identified in a region of focal amplification on chromosome 3p13-14 in 

10% of melanomas (Leucci et al., 2016). High SAMMSON copy number and 

expression levels are correlated with a reduction in disease-free survival of 

melanoma patients and associated with resistance to MAPK (Mitogen Activated 

Protein Kinase) inhibitors (Cerami et al., 2012; Gao et al., 2013; Hoadley et al., 

2018; Leucci et al., 2016).  

The locus of the lncRNA LOC285194 on chromosome 3q, on the other hand, 

is subject to recurrent monoallelic deletions in as many as 80% of osteosarcomas, 

often followed by loss of heterozygosity (LOH) (Pasic et al., 2010). Loss of 

LOC285194 is associated with decreased survival in osteosarcoma patients (Pasic 

et al., 2010). The focal deletion of PRAL (p53 Regulation-Associated LncRNA) on 

chromosome 17p in hepatocellular carcinoma has also been associated with 

reduced survival (Zhou et al., 2016). Similarly, recurrent loss of the 9p21 locus, 

where the lncRNA ANRIL (Antisense Noncoding RNA in the INK4 Locus) resides, 

is observed in over 50% of glioblastomas, more than 40% of mesotheliomas, and 

roughly 30% of bladder cancers (Hoadley et al., 2018). Interestingly, a 403 Kb 
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germline deletion encompassing the ANRIL locus is associated with a strong 

hereditary predisposition to melanoma development (Pasmant et al., 2007).  

Many regions of recurrent SCNVs, however, harbor both lncRNAs and 

protein-coding genes. Therefore, determining the specific contribution of the 

lncRNA has been challenging. For example, the presence of multiple overlapping 

transcripts in the ANRIL locus, including the p15INK4B (CDKN2B), p16INK4A 

(CDKN2A), and p19ARF tumor suppressors, has confounded the role of ANRIL 

(Yap et al., 2010). Analogously, PVT1 is co-amplified with MYC and the PVT1 gene 

body contains DNA regulatory elements, which promote MYC expression (Fulco et 

al., 2016). Likewise, SAMMSON is expressed near MITF (Microphthalmia 

Associated Transcription Factor), a key factor in melanocyte differentiation, 

whereas the commonly amplified genomic region in which FAL1 resides contains 

the proto-oncogene MCL1 (Myeloid Cell Leukemia Sequence 1). Finally, the 

LOC285194-associated region of deletion also harbors the tumor suppressor 

LSAMP (Limbic System-Associated Membrane Protein). Given the complex 

chromatin architecture and transcriptional profiles in these loci, further studies 

are needed to deconvolve the specific roles of the lncRNAs and to determine 

whether lncRNAs act in cooperation with or independently of their neighboring 

protein-coding genes.  

 

LncRNA loci with cancer-associated SNPs  

The link between inherited germline variants in lncRNA loci and cancer 

predisposition or prognosis has been probed extensively in large-scale genome-
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wide associated studies (GWAS). These studies have identified a plethora of 

lncRNA-linked SNPs associated with altered cancer risk or patient prognosis. 

As an example, the 2 Mb region mapping to 8q24 has emerged as a major 

hotspot for over a hundred SNPs strongly associated with multiple diseases, 

including cancers of the breast, colon, ovaries, prostate, and bladder (Easton and 

Eeles, 2008; Ghoussaini et al., 2008; Grisanzio and Freedman, 2010; Huppi et al., 

2012). Many of these SNPs are significantly correlated with cancer development 

and highly predictive of poor patient outcome (Bertucci et al., 2012; Garcia-Closas 

et al., 2008; Haiman et al., 2007; Yeager et al., 2007; Zhang et al., 2012b). While 

MYC is the dominant oncogene in the locus, many of the cancer risk SNPs are 

linked to the expression of lncRNAs in the surrounding region, including PVT1 

(Meyer et al., 2011), CCAT1 (Colon Cancer Associated Transcript 1, also known as 

CARLo-5) (Zhao et al., 2016), CCAT2 (Colon Cancer Associated Transcript 2) (Ling 

et al., 2013), PCAT1 (Prostate Cancer Associated Transcript 1) (Guo et al., 2016), 

PCAT19 (Prostate Associated Transcript 19) (Hua et al., 2018), and PRNCR1 

(Prostate Cancer Associated Noncoding RNA 1) (Huang et al., 2018b). The ANRIL 

locus is another example of a hotspot harboring more than 10 cancer risk SNPs, 

some of which are correlated with ANRIL expression (Cunnington et al., 2010; 

Khorshidi et al., 2017). Other lncRNAs linked to cancer SNPs include HOTAIR 

(HOX Transcript Antisense RNA) (Botti et al., 2018), HOTTIP (HOXA Distal 

Transcript Antisense RNA) (Huang et al., 2018b), MALAT1 (Metastasis-Associated 

Lung Adenocarcinoma Transcript 1) (Huang et al., 2018b), HULC (Highly 

Upregulated in Liver Cancer) (Huang et al., 2018b), MEG3 (Maternally Expressed 

3) (Dong et al., 2020), H19 (Hashemi et al., 2019), GAS5 (Growth Arrest Specific 
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5) (Dong et al., 2020), and PTENP1 (Phosphatase And Tensin Homolog 

Pseudogene 1) (Ge et al., 2017).  

Mechanistic investigations of SNPs associated with lncRNAs have 

suggested that the risk variants may, in some cases, affect regulatory DNA 

sequences, thereby resulting in altered lncRNA expression. For example, the 

PCAT1-linked risk variant rs7463708 was found to increase the activity of a distal 

enhancer, resulting in increased PCAT1 expression (Guo et al., 2016), whereas the 

PCAT19-linked SNP rs11672691 was proposed to perturb transcription factor 

binding sites, resulting in the increased expression of a pro-metastatic PCAT19 

isoform (Gao et al., 2018; Hua et al., 2018). Finally, a high-risk neuroblastoma 

associated SNP rs693940 on chromosome 6p22 was found to contribute to 

differential CpG methylation and decreased expression of NBAT-1 

(Neuroblastoma Associated Transcript-1, also known as CASC14), a lncRNA with 

tumor suppressor properties (Pandey et al., 2014). Apart from these intriguing 

examples, however, the majority of lncRNA-associated SNPs lack experimental 

support that would robustly link the cancer-susceptibility variants with 

deregulation of lncRNA levels or function, and have thus had limited impact on the 

identification and characterization of functional lncRNAs in cancer.  

 

LncRNAs differentially expressed in cancer  

Global gene expression analyses of normal and cancer samples have also led 

to the identification of numerous differentially expressed lncRNAs hypothesized 

to contribute to disease development. Some of the initial analyses revealed 

frequent upregulation of lncRNAs, such as the imprinted lncRNA H19 in Wilms’ 
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tumors and lung cancer (Hibi et al., 1996; Kondo et al., 1995; Rainier et al., 1993), 

the prostate cancer-specific lncRNA PCGEM1 (Prostate Cancer Gene Expression 

Marker 1) (Srikantan et al., 2000), the lung metastasis-promoting lncRNA 

MALAT1 (Ji et al., 2003) and the hepatocellular carcinoma overexpressed lncRNA 

HULC (Panzitt et al., 2007).  

The differential expression of some of these lncRNAs has been associated 

with clinical outcomes. For example, altered H19 expression correlates with poor 

clinical outcomes across various cancer types including breast cancer, non-small 

cell lung cancer and acute myeloid leukemia (Shima et al., 2018; Zhang et al., 

2018b; Zhou et al., 2017). On the other hand, increased expression of PCGEM1 in 

normal prostate tissue is a prostate cancer risk factor (Petrovics et al., 2004; 

Srikantan et al., 2000). At the same time, a large body of literature has cemented 

the strong correlation between high MALAT1 expression levels and poor patient 

prognosis across over 20 cancer types (Amodio et al., 2018; Zhang et al., 2015). 

Finally, high expression of HULC is associated with poor overall survival and 

distant metastases (Chen et al., 2017).  

Notably, integrated analysis of gene expression and methylation datasets 

has also led to the identification of differentially expressed lncRNAs arising from 

cancer-associated epigenetic changes, including AFAP1-AS1 (AFAP1 Antisense 

RNA 1) and EPIC1 (Epigenetically Induced LncRNA1), both identified as 

hypomethylated and overexpressed in Barrett's esophagus and esophageal 

adenocarcinoma, and breast cancer, respectively (Wang et al., 2018; Wu et al., 

2013).  
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Gene expression profiling in cohorts of cancer patients have further fueled 

the discovery of lncRNAs associated with specific cancer types. Transcriptome 

sequencing across a cohort of prostate cancer patients identified PCAT-1 amongst 

121 unannotated prostate cancer-associated ncRNA (noncoding RNA) transcripts 

(PCATs) (Prensner et al., 2011). Similarly, comprehensive lncRNA profiling in 

colorectal carcinoma led to the identification of CCAT1 (Kim et al., 2014b; Nissan 

et al., 2012), CCAT2 (Ling et al., 2013) and other CCAT family members (Kim et 

al., 2015b), whereas the lncRNA GAPLINC (Gastric Adenocarcinoma Predictive 

Long Intergenic Noncoding RNA) stood out as aberrantly overexpressed in gastric 

tumors (Hu et al., 2014b). A different set of analyses led to the identification of 

stage-specific lncRNAs, such as the lncRNA CRNDE (Colorectal Neoplasia 

Differentially Expressed) (Graham et al., 2011), a marker of early stages of 

colorectal cancer development, although the protein-coding capacity of CRDNE 

remains an open question (Szafron et al., 2015). Transcriptome profiling of breast 

cancer subtypes, on the other hand, highlighted sets of lncRNAs which are either 

differentially expressed in tumor samples compared to normal tissues or uniquely 

enriched in specific stages or subtypes of breast cancer. Examples include MALAT1 

(Arun et al., 2016; Jadaliha et al., 2016), HOTAIR (Gupta et al., 2010), and BCAR4 

(Breast Cancer Anti- Estrogen Resistance 4) (Meijer et al., 2006; Xing et al., 2014). 

In parallel, mouse models of cancer were recently employed for the identification 

of 30 murine MaTARs (Mammary Tumor Associated RNAs), many of which were 

found to have human counterparts (hMaTARs) with potential clinical significance 

determined based on differential expression and correlation with cancer subtype 

and/or hormone receptor status (Diermeier et al., 2016). Interestingly, many of 
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these examples of cancer-specific lncRNAs were later found to show differential 

expression across multiple cancer types, hinting at universal roles in cancer 

pathogenesis. 

 

LncRNAs in cancer pathways  

In addition to profiling tumor samples, many researchers have undertaken 

diverse functional approaches to identify novel lncRNAs, including dissecting 

tumor suppressive and pro-oncogenic transcriptional networks, analyzing various 

cancer-related cellular states and processes, and performing genome-wide 

functional screens.  

Analysis of the p53 (also known as Trp53) transcriptional network, in 

particular, has revealed a wealth of lncRNAs with potential tumor suppressor 

functions. By comparing gene expression profiles and p53 binding patterns in the 

absence and in the presence of genotoxic or oncogenic stress, known to activate the 

p53 pathway, as well as in p53-proficient and -deficient cells, researchers have 

identified multiple direct lncRNA targets of p53. These included lincRNA-p21 

(Huarte et al., 2010); PANDAR (Promoter Of CDKN1A Antisense DNA Damage 

Activated RNA, also known as PANDA) (Hung et al., 2011); p53BERs (p53-Bound 

Enhancer Regions) (Melo et al., 2013); Pint (P53 Induced Transcript) (Marin-Bejar 

et al., 2013); LED (LncRNA Activator of Enhancer Domains) (Leveille et al., 2015); 

PR-lncRNAs (p53-Regulated lncRNAs) (Sanchez et al., 2014; Younger et al., 2015); 

DINO (Damage Induced Noncoding) (Schmitt et al., 2016); lncPRESS1 (LncRNA 

P53 Regulated And ESC Associated 1) (Jain et al., 2016); NEAT1 (Nuclear Enriched 

Abundant Transcript 1) (Adriaens et al., 2016; Blume et al., 2015; Mello et al., 
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2017); PURPL (P53 Upregulated Regulator Of P53 Levels) (Li et al., 2017); PINCR 

(P53-Induced Noncoding RNA) (Chaudhary et al., 2017); GUARDIN (Hu et al., 

2018); and an isoform of Pvt1, Pvt1b (Olivero et al., 2020). Functional 

characterizations have suggested that many of these lncRNAs contribute to p53 

tumor suppressor activities.  

Other lncRNAs have been identified downstream of oncogenic signaling 

networks, giving insight into their potential functions. For example, Orilnc1 

(Oncogenic RAS-Induced lncRNA 1) was identified as a target of oncogenic RAS 

signaling with a proposed role in promoting cell growth (Zhang et al., 2017). 

LncRNA-OIS1 (Oncogene- Induced Senescence 1) was found to modulate 

senescence induced by activation of oncogenic RAS (Li et al., 2018), whereas 

BANCR (BRAF-Activated Non-Protein Coding RNA) was identified as a transcript 

induced upon expression of oncogenic BRAFV600E (Flockhart et al., 2012). 

Analogously, investigation of estrogen receptor (ER) signaling targets identified 33 

ER agitation-related (ERAR) lncRNAs and suggested potential roles in ER-positive 

breast cancer (Wu et al., 2016). A similar study was performed to examine lncRNAs 

regulated by androgen receptor (AR) signaling, which identified ARLNC1 (AR-

Regulated Long Noncoding RNA 1) as both a downstream target and upstream 

effector of AR signaling during prostate cancer progression (Zhang et al., 2018c). 

MYC-regulated lncRNAs have also been identified, including a set of MYCLos 

(MYC-regulated lncRNAs) (Kim et al., 2015b); LAST (LncRNA-Assisted 

Stabilization of Transcripts) (Cao et al., 2017); DANCR (Differentiation 

Antagonizing Non-Protein Coding RNA) (Lu et al., 2018), and SNHG15 (Small 

Nucleolar RNA Host Gene 15) (Jiang et al., 2018).  
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Alterations of cancer hallmarks that enable tumorigenesis have also been 

linked to the functions of specific lncRNAs (reviewed in (Gutschner and 

Diederichs, 2012)). Examples include lncRNA gadd7 (growth-arrested DNA 

damage-inducible gene 7) with a proposed role in suppressing cell cycle 

progression (Liu et al., 2012), SPRY4-IT1 (SPRY4 Intronic Transcript 1) with a 

proposed role in inhibiting apoptosis in melanoma (Khaitan et al., 2011), and 

SALNR (Senescence-Associated lncRNA), proposed to regulate senescence (Wu et 

al., 2015). 

Finally, genome-wide functional screens for lncRNAs involved in 

promoting or inhibiting specific cellular outcomes important in cancer have aimed 

to identify candidates for further study. A CRISPR/Cas9-based genome editing 

approach used a paired guide RNA (gRNA) strategy to target for deletion a set of 

700 human lncRNAs, identifying 51 lncRNAs able to regulate cancer cell growth 

(Zhu et al., 2016). Alternatively, CRISPRi (CRISPR inactivation) and CRISPRa 

(CRISPR activation) screens, involving a nuclease-dead Cas9 to tether 

transcriptional repressors or activators to lncRNA loci have provided effective 

epigenetic loss-of-function and gain-of-function approaches to query on a genome-

wide level the role of lncRNAs in processes such as cellular proliferation or 

therapeutic resistance (Bester et al., 2018; Joung et al., 2017; Liu et al., 2017; Liu 

et al., 2020).  

 

Functional characterization of lncRNAs in cancer 

Common approaches and limitations  
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For the hundred or so lncRNAs identified in the approaches described 

above, the pressing question has become how to accurately distinguish functional 

lncRNAs from lncRNAs that are subject to passenger genetic and epigenetic 

alterations in cancer. RNA interference (RNAi)-mediated downregulation of 

lncRNAs has been a common approach for functional characterization. In parallel, 

antisense oligonucleotides (ASOs) have provided a convenient and efficient loss-

of-function alternative. While RNAi is most effective for lncRNAs exported to the 

cytoplasm, ASOs lend broader efficacy by triggering RNase H-mediated co-

transcriptional RNA cleavage and degradation, in some cases accompanied by 

transcriptional repression (Lai et al., 2020; Lee and Mendell, 2020). Frequently, 

RNAi and ASO approaches have been performed in parallel with exogenous 

lncRNA overexpression. Regrettably, few studies have complemented RNAi or 

ASO loss-of-function experiments with knockdown-resistant lncRNA rescue 

mutants, missing an important opportunity to both demonstrate specificity and 

establish a system to investigate the sequence basis for lncRNA function. CRISPR-

based epigenetic inhibition (CRISPRi) and activation (CRISPRa) have also been 

employed as successful loss-of-function and gain-of-function approaches, 

respectively.  

Genetically engineered mouse models (GEMMs) of lncRNAs and CRISPR-

based editing of lncRNA loci in cell lines have also brought important insights. In 

contrast to protein-coding genes, where genetic approaches aim to perturb the 

open reading frame (ORF) and therefore, the functional output of the transcript, 

methods to target lncRNAs have been, by necessity, more diverse and creative 

(reviewed in (Bassett et al., 2014)). Some loss-of-function studies have undertaken 
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deletion of the entire gene body, the promoter region, or narrower functional 

regions, while others have employed introduction of a premature polyadenylation 

signal (PAS) or polyadenylation cassette (STOP) to terminate transcription. 

Conversely, gain-of-function studies in animal models have involved the 

introduction of a transgenic lncRNA sequence or amplification of an entire lncRNA 

locus.  

Strikingly, for many lncRNAs, observed phenotypes have varied with the 

use of alternative approaches. For example, initial RNAi knockdown of the p53-

regulated lncRNA, lincRNA-p21, suggested that it acts globally to modulate the 

expression of multiple p53 target genes, whereas subsequent genetic deletion of its 

promoter in the mouse revealed a more restricted role in promoting the expression 

of the neighboring p21/CDKN1a gene (Dimitrova et al., 2014; Huarte et al., 2010). 

Further investigation involving a locus deletion genetic approach, however, raised 

doubts about whether the lncRNA plays any functional role at all (Groff et al., 

2016). The metastasis-promoting lncRNA HOTAIR has provided additional 

examples of the complexity in developing lncRNA models. While ectopic 

expression of HOTAIR in breast cancer cells induced global gene expression 

changes and increased metastases in a xenograft mouse model, supporting an 

oncogenic function (Gupta et al., 2010), loss-of-function models, including RNAi-

mediated knockdown, a 4 Kb gene body deletion, and a 140 Kb locus deletion have 

led to significant discrepancies (Amandio et al., 2016; Li et al., 2013; Rinn et al., 

2007; Schorderet and Duboule, 2011). The differences between alternative models 

have highlighted the need to use multiple independent and complementary 

approaches to investigate the functional roles of lncRNAs in cancer biology.  
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Multi-pronged approaches to lncRNA characterization  

In this section, we focus on a small set of lncRNAs for which work from 

multiple groups or involving an array of in vitro and in vivo approaches has 

revealed exciting functional insights and provided starting points for further 

exploration of their contributions to tumor development.  

 

MALAT1 

MALAT1 remains one of the most studied cancer-associated lncRNAs, with 

proposed roles in influencing nuclear speckles (Hutchinson et al., 2007), pre-

mRNA splicing (Tripathi et al., 2010), and epigenetically regulating gene 

transcription (West et al., 2014). While initial studies pointed to a pro-metastatic 

function (Ji et al., 2003), further characterization resulted in discrepancies (Figure 

2). Three different loss-of-function GEMMs, including an insertion of a LacZ 

reporter and polyadenylation cassette 69 nucleotides downstream of the Malat1 

transcription start site, a 3 Kb deletion of the 5’ end and promoter region of Malat1, 

and a conditional deletion of 7 Kb encompassing the entire Malat1 gene body, 

revealed that Malat1 is dispensable for organismal development and viability 

(Eissmann et al., 2012; Nakagawa et al., 2012; Zhang et al., 2012a). Strikingly, none 

of the mouse models showed effects on global gene expression, nuclear speckle 

formation, or alternative pre-mRNA splicing. This opposed previous findings 

using RNAi to downregulate MALAT1 levels in cancer cell lines in vitro (Tripathi 

et al., 2010; West et al., 2014), perhaps suggesting a cancer-specific function. 

Furthermore, different in vivo models have yielded conflicting results about the 

function of MALAT1 in cancer. On the one hand, crossing the promoter deletion 
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model (Zhang et al., 2012a) to the MMTV-PyMT (mouse mammary tumor virus-

polyomavirus middle T antigen) mouse model of breast cancer resulted in reduced 

metastases to the lung, without affecting primary tumor burden, an effect largely 

recapitulated by ASO-depletion of Malat1 in vivo (Arun et al., 2016). This pro-

metastatic function was also observed in a mouse xenograft model of lung cancer 

where MALAT1 knockout human lung tumor cells formed fewer tumor nodules 

(Gutschner et al., 2013). In this model, targeting MALAT1 with ASOs after tumor 

implantation prevented metastasis formation, pointing to MALAT1 as a viable 

therapeutic target (Gutschner et al., 2013). On the other hand, crossing the Malat1 

premature termination model (Nakagawa et al., 2012) to the MMTV-PyMT breast 

cancer model led to a significant increase in the number and area of metastatic 

nodules in the lungs (Kim et al., 2018). This surprising tumor suppressive effect 

could be rescued with a Malat1 transgene expressed from the Rosa26 locus (Kim 

et al., 2018). A similar effect was observed in vitro in human breast cancer cells, 

with expression of MALAT1 from an exogenous construct rescuing the increased 

metastatic ability conferred by MALAT1 knockout in clonal cell populations (Kim 

et al., 2018). The debate surrounding the precise contribution of MALAT1 to cancer 

development is ongoing. It is unclear whether the phenotypic differences arising 

from MALAT1 loss might be due to differences in experimental setup, such as 

mouse strain or knockout approach, or reflect the complex biology of MALAT1. 

Altogether, investigations of MALAT1 using in vitro and in vivo approaches have 

highlighted the biological and technical complexities associated with studying the 

functional roles of lncRNAs in cancer (Arun and Spector, 2019; Sun and Ma, 2019).  



 34 

 

Figure 2. Identification and functional characterization of MALAT1. MALAT1 was 
identified as upregulated in metastatic (M) LUAD (lung adenocarcinoma) compared to non- 
metastatic (NM) tissue. Functional characterization of MALAT1 has utilized various loss-of-
function (LOF) and gain-of-function (GOF) models including polyadenylation cassette insertion 
(Malat1STOP, (Nakagawa et al., 2012)), promoter deletion (Malat1 D3, (Zhang et al., 2012a)), and 
locus deletion (Malat1 D7, (Eissmann et al., 2012)) genetically engineered mouse models (GEMMs), 
as well as transcript degradation with RNAi and ASO, and transgenic overexpression. Crossing 
Malat1  D3 or Malat1STOP GEMMs to the MMTV-PyMT BC (breast cancer) mouse model has 
resulted in either oncogenic (red box, (Arun et al., 2016)) or tumor suppressor (green box, (Kim et 
al., 2018)) models for Malat1 function, due to observed decreases and increases in lung metastases, 
respectively. 
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NEAT1 

Similarly to MALAT1, several studies have examined the role of NEAT1 

during cancer development, leading to opposing views (Figure 3). Initial studies 

suggested that NEAT1 levels were elevated in a variety of human cancers relative 

to normal tissues and correlated with worse prognosis, suggesting a pro-oncogenic 

role for NEAT1 ((Chakravarty et al., 2014) and reviewed in (Yang et al., 2017)). 

This conclusion was supported by a study of Neat1 knockout mice subjected to 

chemical induction of skin squamous cell carcinoma with the carcinogen DMBA 

and the pro- inflammatory agent TPA (Adriaens et al., 2016; Nassar et al., 2015). 

While Neat1-deficient animals displayed no obvious phenotypes in the absence of 

stress (Nakagawa et al., 2011), loss of Neat1 conferred resistance to chemically-

induced squamous cell carcinoma (Adriaens et al., 2016). Interestingly, studies 

have also suggested that NEAT1 may be a target of the p53 pathway and, therefore, 

may have tumor suppressive activities in some contexts (Blume et al., 2015; 

Idogawa et al., 2017). Indeed, tumor suppressive functions of Neat1 were unveiled 

in primary mouse embryonic fibroblasts (MEFs), where Neat1 knockout led to 

increased colony formation in an E1A; HrasG12V transformation experiment, as 

well as in an autochthonous mouse model of pancreatic cancer, where Neat1 

deficiency increased the occurrence of premalignant lesions, known as pancreatic 

intraepithelial neoplasias (PanINs) (Mello et al., 2017). Interestingly, Malat1 and 

Neat1 are neighboring genes and studies have suggested that genomic deletion of 

either lncRNA may impact the epigenetic organization and transcriptional profiles 

of the entire locus, raising questions about the specificity of each approach 

(Nakagawa et al., 2012).  
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Figure 3. Identification and functional characterization of NEAT1. NEAT1 was initially 
identified as being upregulated in prostate cancer (PCa) compared to normal (N) tissue, suggesting 
a potential oncogenic function (top, red box). Later, it was also identified as a p53 target with p53 
binding to a conserved p53 Response Element (p53RE) in the NEAT1 promoter, as well as a 
paraspeckle component induced by cellular stress, suggesting a potential tumor suppressor 
function (top, green box). Functional characterization of NEAT1 has utilized various loss-of-
function (LOF) and gain-of-function (GOF) models including a polyadenylation cassette insertion 
genetically engineered mouse model (GEMM) (Nakagawa et al., 2011), transcript degradation with 
RNAi or ASO, and exogenous overexpression. The Neat1STOP GEMM has been shown to either 
decrease (Adriaens et al., 2016) or increase (Mello et al., 2017) tumor growth following chemical 
induction of SCC (squamous cell carcinoma) or when crossed to a PDAC (pancreatic ductal 
adenocarcinoma) GEMM, respectively, suggesting either oncogenic (bottom, red box) or tumor 
suppressor (bottom, green box) models for Neat1 function in cancer.  
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PVT1 

As one of the lncRNAs strongly associated with advanced disease and poor 

patient prognosis, PVT1 has been the subject of extensive investigation (Figure 4). 

In keeping with the finding that PVT1 is frequently co- amplified with the MYC 

proto-oncogene, Myc-Pvt1 co-amplification in a mouse model of breast cancer was 

found to be more tumorigenic than Myc amplification alone (Tseng et al., 2014). 

This study suggested that PVT1 acts in trans to promote MYC protein stability, 

based on evidence that a 300 Kb genomic deletion of the PVT1 locus in a human 

colorectal carcinoma cell line resulted in decreased MYC protein levels (Tseng et 

al., 2014). However, later studies found evidence for MYC enhancers within the 

region of deletion, raising questions about the role of the PVT1 locus and its 

associated RNA in MYC regulation (Fulco et al., 2016). Subsequent studies 

confirmed the presence of DNA regulatory elements in the locus but challenged the 

understanding of PVT1 as a strictly pro-oncogenic lncRNA (Cho et al., 2018; Porter 

et al., 2017). On the one hand, deletion of a ~600 bp region containing a p53 

binding site and mapping to the 5’ end of PVT1 led to defects in p53-mediated MYC 

repression, although the contribution of PVT1 to the p53 response was unclear 

(Porter et al., 2017). On the other hand, CRISPRi-based inhibition of PVT1 in 

breast cancer cell lines revealed a role for the PVT1 promoter as a DNA tumor 

suppressor boundary element that limits MYC promoter accessibility to enhancers 

within the PVT1 gene body, resulting in restricted MYC expression (Cho et al., 

2018). In this setting, the PVT1 RNA appeared to be dispensable (Cho et al., 2018). 

In contrast, our group identified a stress-induced, p53- dependent isoform of Pvt1, 

Pvt1b, which is both necessary and sufficient to repress Myc transcription (Olivero 
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et al., 2020). These findings were recapitulated in vitro using a genetic loss-of-

function approach to mutate the p53 binding site required for Pvt1b expression 

(Olivero et al., 2020). Importantly, mutagenesis of the Pvt1-associated p53 binding 

site at the time of tumor initiation in an autochthonous mouse model of lung 

cancer led to larger tumors and indicated a key role for Pvt1b in restraining tumor 

growth downstream of p53 (Olivero et al., 2020). In the future, it would be 

interesting to deconvolve the oncogenic and tumor suppressive elements in the 

PVT1 locus and to differentiate between DNA elements and RNA isoforms with 

potentially distinct functions.  
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Figure 4. Identification and functional characterization of PVT1. PVT1 was identified in 
murine lymphomas following the observation of translocations, viral insertions, and amplifications 
involving the Pvt1 locus. Functional characterization of PVT1 has utilized various loss-of- function 
(LOF) and gain-of-function (GOF) models including amplification genetically engineered mouse 
models (GEMMs) (Myc/Pvt1AMP, MycAMP, (Tseng et al., 2014)), locus deletion (PVT1 ), tumor-
specific mutagenesis of the Pvt1-associated p53 Response Element (p53RE) (p53RE, (Olivero et al., 
2020)), transcript degradation with RNAi and ASO, and CRISPR-mediated epigenetic activation 
and inhibition (CRISPRa/i). The increased tumor growth observed in a Myc/Pvt1 co-amplification 
GEMM (Myc/Pvt1AMP) compared to Myc amplification alone (MycAMP) when crossed to the 
MMTV-Neu BC (breast cancer) GEMM suggests an oncogenic function for Pvt1 (red box, (Tseng et 
al., 2014)). However, the increased tumor growth in Pvt1-associated p53RE mutagenized lung 
tumors following Cre-mediated tumor initiation in a Kras-driven lung adenocarcinoma (LUAD) 
GEMM suggests a tumor suppressor function (green box, (Olivero et al., 2020)).  
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XIST  

With a critical role in X chromosome inactivation and dosage compensation 

that has been investigated for decades (reviewed in (Brockdorff et al., 2020; 

Sahakyan et al., 2018)), the potential role of XIST (X Inactive Specific Transcript) 

in tumorigenesis has intrigued researchers. Historically, it has been observed that 

altered chromosome copy numbers and inappropriate dosage compensation are 

frequently associated with human cancer. Notably, men with Klinefelter syndrome 

characterized by an extra X chromosome have an increased risk of many 

malignancies including breast cancer and non-Hodgkin lymphoma (Swerdlow et 

al., 2005), and loss of X chromosome inactivation has been observed in breast 

cancer cell lines (Sirchia et al., 2005) and testicular germ cell tumors (Kawakami 

et al., 2003). In support of these correlative observations, a conditional Xist 

deletion model in mouse blood cell lineages led to aggressive myeloproliferative 

neoplasm and myelodysplastic syndrome with complete penetrance, likely as the 

result of widespread gene expression changes (Yildirim et al., 2013). The tumor 

suppressive role of XIST was recapitulated in RNAi and overexpression studies in 

breast cancer cell lines as well as by crossing the Xist knockout to the MMTV-PyMT 

mouse model of breast cancer (Xing et al., 2018). Further studies should determine 

the prevalence of XIST and X inactivation perturbations in human cancer and 

investigate the possibility of targeting this pathway as a therapeutic strategy.  

 

ANRIL  

High ANRIL expression in tumor tissues has been linked to aggressive 

pathological features and poor overall survival (reviewed in (Kong et al., 2018)). 
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In initial studies, targeted deletion of a 70 Kb region in the Anril locus, which 

harbors multiple cancer and coronary artery disease associated SNPs, led to viable 

progeny but showed increased mortality during development and as adults (Visel 

et al., 2010). Primary cultures of smooth muscle cells, isolated from mutant mice, 

exhibited excessive proliferation and diminished senescence, cellular phenotypes 

consistent both with accelerated coronary disease pathogenesis and increased 

cancer risk. Mechanistic investigation revealed that the effects were mediated in 

cis through the reduced expression of Cdkn2a and Cdkn2b and led to the 

conclusion that the risk region contained key regulatory elements. Subsequent 

investigation using exogenous overexpression of ANRIL in primary human 

fibroblasts suggested that the lncRNA may be responsible for CDKN2A/2B 

repression through the locus-specific recruitment of the repressive PRC1 complex 

(Yap et al., 2010). Unfortunately, little progress has been made over the past 

decade in determining whether ANRIL transcription or transcript accumulation is 

required for its cis-regulatory function, in part due to the limited conservation of 

ANRIL sequence and exonic structure between human and mouse.  

 

Promising lncRNA candidates warranting further investigation  

In this section we examine exciting, albeit limited, initial studies of lncRNAs 

with putative cancer functions, the validation of which could benefit from the 

development of alternative approaches and further characterization.  
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SAMMSON 

To investigate the role of SAMMSON as a lineage addiction oncogene in 

melanoma, researchers employed ASO-mediated knockdown and exogenous 

overexpression as loss-of-function and gain-of-function tools (Leucci et al., 2016). 

They observed that SAMMSON amplification and increased expression led to 

altered mitochondrial metabolism and homeostasis. In turn, this caused increased 

melanoma cell viability and clonogenic potential and resulted in sensitization of 

melanoma cells to MAPK targeting therapeutics in vitro and in patient-derived 

xenograft (PDX) models in vivo. Further mechanistic studies clarified the role of 

SAMMSON in balancing mitochondrial translation rates (Vendramin et al., 2018). 

The generation of genetic models of SAMMSON may reveal further insights into 

its role in melanoma development.  

 

NKILA 

NKILA (NF-κB interacting long noncoding RNA) was identified as both a 

target and negative modulator of the NF-κB signaling pathway, with low NKILA 

levels observed in metastatic breast cancer cell lines and correlated with decreased 

disease-free survival in a cohort of breast cancer patients (Liu et al., 2015). 

Mechanistically, a series of deletion mutants demonstrated that NKILA interacts 

directly and stably with the NF-κB:IκB complex in the cytoplasm to prevent IκB 

phosphorylation and suppress activation of the NF-κB pathway, suggesting a 

tumor suppressive role for NKILA in limiting inflammatory processes in cancer 

(Liu et al., 2015). A different study from the same group showed that RNAi 

downregulation of NKILA in cytotoxic T cells (CTLs) led to increased tumor 
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infiltration and reduced tumor volume in a breast cancer PDX mouse model, 

implicating NKILA as a potential target in the field of cancer immunotherapy 

(Huang et al., 2018a).  

 

LncGata6 

LncGata6 (LncRNA GATA6) was identified as a divergent transcript 

expressed from the promoter of Gata6, which is specifically enriched in a subset of 

intestinal stem cells (Zhu et al., 2018). Deletion of exons 2-4 of lncGata6 in the 

mouse did not affect Gata6 levels but resulted in decreased intestinal regeneration 

due to decreased proliferative capacity of intestinal stem cells (Zhu et al., 2018). 

Consistent with the key role of stem cells in intestinal tumorigenesis, genetic and 

ASO-mediated depletion of lncGata6/lncGATA6 were found to impair tumor 

growth in the APCmin mouse model of intestinal adenoma and in a PDX model 

(Zhu et al., 2018). Future studies should focus on elucidating the mechanism by 

which lncGATA6 is upregulated in colorectal cancer and on determining the extent 

to which it contributes to aberrant Wnt signaling, a known colorectal cancer driver.  

 

DINO 

The p53 target lncRNA DINO binds to and stabilizes p53 in a positive 

feedback loop, enhancing the activation of p53 target genes (Schmitt et al., 2016). 

Importantly, RNAi knockdown of DINO in human fibroblasts and a deletion of the 

Dino promoter in MEFs led to impaired cell cycle arrest following genotoxic stress 

(Schmitt et al., 2016). Interestingly, ectopic expression of DINO in HPV-positive 

cervical cancer cells, which suppress p53 stabilization and express DINO at low 
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levels, led to reactivation of dormant p53, resulting in sensitization of the cancer 

cells to chemotherapeutic agents and vulnerability to metabolic stress (Sharma 

and Munger, 2020). To date, however, evidence that DINO acts as a tumor 

suppressor in human cancer is limited.  

 

LINC-PINT 

Like DINO, linc-Pint was also identified as a p53 target (Marin-Bejar et al., 

2013). A knockout mouse generated by replacing the linc-Pint locus with a LacZ 

reporter cassette yielded smaller pups, suggesting a role for linc-Pint in early 

development (Sauvageau et al., 2013). Characterization of LINC-PINT function in 

cancer suggested a role in limiting cell invasion, with LINC-PINT overexpression 

leading to decreased liver metastases in a mouse model (Marin-Bejar et al., 2017). 

In a transwell migration and invasion assay, invasiveness increased following 

treatment with LINC-PINT -targeting ASOs or following CRISPR-mediated 

deletion of a highly conserved LINC-PINT sequence element (Marin-Bejar et al., 

2017). Analysis of the previously generated linc-Pint knockout mouse (Sauvageau 

et al., 2013) in a cancer background could help support these results. However, the 

potential role of the LINC-PINT RNA may be confounded by the identification of 

a peptide with a function in suppressing cell proliferation encoded by a circular 

form of LINC-PINT (Zhang et al., 2018a).  

 

THOR  

While examples of alternative organismal models for lncRNA function in 

cancer are limited, in part due to low evolutionary conservation of lncRNAs, 
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investigation of the highly conserved lncRNA THOR (Testis-associated Highly 

conserved Oncogenic long noncoding RNA) in human and zebrafish cancer models 

has implicated this lncRNA in promoting melanoma development (Figure 5) 

(Hosono et al., 2017). THOR expression is normally restricted to the testis, but has 

been found aberrantly overexpressed in multiple cancer types, including lung 

adenocarcinoma, lung squamous carcinoma, and melanoma (Hosono et al., 2017). 

Knockdown of THOR via RNAi and ASOs in lung adenocarcinoma and melanoma 

cell lines led to decreased proliferation and reduced colony formation (Hosono et 

al., 2017). These findings were corroborated in two independently derived lung 

adenocarcinoma cell lines harboring approximately 3 Kb CRISPR-mediated 

deletions within the THOR gene body. Conversely, THOR overexpression gave the 

opposite phenotype, leading to increased proliferative capacity and anchorage- 

independent growth. Importantly, ectopic expression of human THOR in zebrafish 

cooperated with oncogenic NRAS and p53 loss to promote melanoma 

development, whereas knockout of THOR in zebrafish embryos delayed mutant 

NRAS-induced melanoma formation (Hosono et al., 2017). Further studies may 

reveal the potential of using THOR expression as a biomarker or targeting THOR 

as a therapeutic strategy.  

 

 

 

 

 

 



 46 

 

Figure 5. Identification and functional characterization of THOR. THOR was identified 
as a testis-specific ultra-conserved lncRNA aberrantly expressed in cancer tissues (Hosono et al., 
2017). Hosono and colleagues generated several in vitro and in vivo loss-of-function (LOF) and 
gain-of-function (GOF) models to functionally characterize THOR. LOF models included transcript 
degradation with RNAi and ASO, and THOR partial locus deletion (THOR-/-) in both human cells 
injected in severe combined immunodeficiency disease (SCID) mice and in a genetically engineered 
zebrafish model (THOR-/-) embryonically injected with NRAS to induce melanoma. GOF models 
included THOR overexpression (OE) in vitro and OE of human THOR (hTHOR) in p53-deficient 
zebrafish (p53-/-) embryonically injected with NRAS to induce melanoma. Overexpression of 
THOR plays an oncogenic role (red box) in cancer by binding to IGF2BP1 and increasing the 
stability of its mRNA targets to promote cancer progression.  
 

 

 



 47 

Future Perspectives 

Identification of lncRNAs that are genetically or epigenetically perturbed in 

cancer has risen sharply over the past decade. The precipitous increase in the 

number of cancer-associated lncRNAs has been accompanied by a growing 

excitement that many lncRNAs may act as novel drivers of cancer development. 

Yet, lagging understanding of how lncRNAs function in physiologic and pathologic 

contexts has limited our insights into the roles of lncRNAs in tumorigenesis. The 

current literature points to many lncRNAs acting as both oncogenes and tumor 

suppressors. While these seemingly contradictory findings may stem from 

differences in experimental models, they may also be reflective of complex and 

context-dependent lncRNA biology, analogous to the dual oncogenic and tumor 

suppressor roles played by cancer-associated protein-coding genes (Shen et al., 

2018). Future studies should prioritize the identification and validation of true 

dual functions from technical inconsistencies.  

LncRNAs make attractive drug targets, particularly in diseases where 

protein candidates are not amenable to pharmacological inhibition (Dang et al., 

2017). Both siRNA- and ASO-mediated lncRNA degradation as well as locked 

nucleic acid (LNA)-mediated interference with lncRNA function have emerged as 

clinic-ready approaches (Arun et al., 2018; Lieberman, 2018). The successful 

deployment of these approaches in cancer, however, is predicated upon robust 

functional characterization. In the future, it would be essential to develop in vitro 

and in vivo models that closely recapitulate the recurrent genetic or epigenetic 

changes of lncRNAs observed in human cancer. In parallel, experiments that 

uncover the functional elements of perturbed lncRNA loci will inform whether 
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motives or structural features of the lncRNA molecules, the act of their 

transcription, or underlying DNA elements mediate their roles in disease 

development. These questions will be best answered through the integration of 

diverse and complementary approaches and by corroboration from multiple 

independent studies.  

 

 

The p53 and Myc duet in cancer 

Transcription networks coordinate the expression of a variety of genes in 

response to cellular inputs. As such, transcription factors and their downstream 

gene expression programs are frequently deregulated in cancer, with many the 

target of alterations that promote tumor growth (reviewed in (Bradner et al., 

2017)). Two significant transcription networks in cancer are regulated by the p53 

tumor suppressor and the Myc proto-oncogene, respectively. As a consequence of 

their central roles in controlling cellular growth and survival, albeit activated by 

very different cellular impulses, both networks are often subject to pro-

tumorigenic genetic and epigenetic modifications (Dang, 2012; Kastenhuber and 

Lowe, 2017). 

The human TP53 gene, which encodes the p53 tumor suppressor protein, is 

mutated in as many as 50% of all human cancers, with p53 loss often predictive of 

advanced tumor grade and poor overall survival (Kandoth et al., 2013; Olivier et 

al., 2010). Germline TP53 mutations, the defining characteristic of Li Fraumeni 

Syndrome, dramatically increase the risk of developing a range of tumor types 

(Olivier et al., 2010). Similarly, mice with germline loss of one or both copies of 
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p53 (Trp53-/- or Trp53+/-) are prone to spontaneous tumorigenesis, with 

complete p53 loss often resulting in neoplasm development within the first year of 

life (Donehower et al., 1992; Jacks et al., 1994). Apart from mutations which inhibit 

p53 directly, mutations that disturb critical p53 effector genes are also common, 

and can be equally as disruptive to p53 network function. For example, transgenic 

mice that overexpress Mdm2 (Mouse double minute 2), a negative regulator of p53, 

and mice lacking Arf (Alternate reading frame of Cdkn2a), a positive regulator of 

p53, are both similarly prone to spontaneous tumorigenesis (Jones et al., 1998; 

Kamijo et al., 1999). 

On the other hand, cancer-driving mutations affecting the Myc network are 

often characterized not by alterations to Myc coding sequences, but by alterations 

that increase Myc expression or activity. Upregulation of MYC in avian leukosis 

virus (ALV)-induced lymphomas via retroviral insertion upstream of the MYC 

promoter is well-documented (Hayward et al., 1981; Payne et al., 1982). 

Furthermore, an analysis of somatic copy number alterations (SCNAs) in human 

cancer revealed MYC alterations as one of the most prominent (Beroukhim et al., 

2010). The MYC locus often participates in chromosomal rearrangements, and is 

a frequent translocation partner of the immunoglobulin heavy chain locus (Taub 

et al., 1982), a fusion that increases MYC expression and is modeled in the Eµ–

Myc mouse model of B-cell lymphoma (Adams et al., 1985). Focal genomic 

amplifications of the MYC locus in the form of homogeneously staining regions 

and double minutes are also common (Alitalo et al., 1983; Collins and Groudine, 

1982). Notably, several studies have illustrated MYC oncogene addiction, with 
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suppression of MYC sufficient to cause tumor regression (reviewed in (Dang, 

2012)), suggesting its importance for viability in MYC-driven cancers. 

The observation that loss-of-function and gain-of-function mutations in 

TP53 and MYC, respectively, have such pervasive effects on cancer pathology 

points to critical roles for these transcription networks in maintaining normal 

cellular growth and homeostasis. 

 

The p53 tumor suppressor pathway 

Under normal conditions, p53 is constitutively produced and degraded, 

enabling rapid action to be taken against cellular assaults (Kastenhuber and Lowe, 

2017). In response to a variety of cellular stressors, such as doxorubicin-induced 

DNA damage or the expression of an activated oncogene, p53 is stabilized via 

repression of MDM2 activity and p53 post-translational modifications, thus 

enabling its tetrameric binding to canonical p53 response elements (p53REs) and 

the induction of the p53 transcriptional program (Figure 6) (Beckerman and 

Prives, 2010; Kastenhuber and Lowe, 2017). The ability of p53 to bind specific DNA 

sequences is critical to its function. Genes directly induced by p53 share the 

presence of a conserved p53RE, usually in their promoter or first intron 

(Beckerman and Prives, 2010), composed of two 10 bp motifs separated by a 

stretch of nucleotides between 10-13 bp in length (el-Deiry et al., 1992).  There is 

some evidence of gene repression downstream of p53 (Allen et al., 2014), but its 

contribution to the p53 response remains unclear. Significantly, p53 stabilization 

strongly correlates with reduced MYC levels, suggesting that p53 may actively 

suppress positive regulators of the cell cycle rather than simply promoting the 
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expression of negative regulators of cell growth (Ho et al., 2005; Porter et al., 

2017). 

Through the activation of its transcription program, p53 drives a variety of 

cellular outcomes, the most prominent of which are transient cell cycle arrest 

(Brugarolas et al., 1995), senescence (Ferbeyre et al., 2002), and apoptosis (Lowe 

et al., 1994). Moreover, several studies have suggested that canonical p53 

responses and full p53 transcriptional activation may be dispensable for tumor 

suppression, suggesting that some non-canonical p53-driven responses may play 

equally important roles in cellular homeostasis (Jiang et al., 2011; Li et al., 2012).  

The targets of p53 are diverse and include coding and noncoding genes with 

functions in a range of cellular processes such as cell cycle regulation,  

pluripotency, metabolism, and inflammation (reviewed in (Kastenhuber and 

Lowe, 2017)). Notably, the characterization of numerous lncRNA targets of p53 in 

recent years suggests the growing importance of this class of noncoding transcripts 

in the p53 response to stress (as discussed previously in this chapter). What 

dictates selection of a particular cellular outcome in response to p53 activation is 

unclear, although evidence suggests it may depend on cell type and stressor 

(Attardi et al., 2004; Paris et al., 2008). Despite these gaps in knowledge, it is clear 

that p53 is critical in preventing the outgrowth of aberrantly proliferating cell 

populations that might otherwise initiate cancer development. 
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Figure 6. The p53 tumor suppressor pathway. The tumor suppressor protein p53 is a 
transcription factor that is stabilized by cellular stress (i.e. DNA damage, oncogene activation, 
hypoxia, etc) and binds p53 Response Elements (p53REs) to upregulate various coding and 
noncoding target genes. The induction of the p53 transcription program drives cellular outcomes 
(i.e. cell cycle arrest, senescence, and apoptosis) that limit cell growth. 
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The proto-oncogenic Myc network 

Myc responds to pro-growth stimuli by orchestrating the induction of cell 

cycle genes to promote cell division. It does so most commonly through 

heterodimerization with its partner Max (Myc-associated factor X) and 

cooperative binding to E-box (CACGTG) sequences in the promoters of target 

genes (Amati et al., 1993; Blackwell et al., 1990). While Myc half-life is short, Max 

is more stable, pointing to both Myc expression and protein synthesis as rate 

limiting steps in cellular proliferation (Amati et al., 1993). 

Researchers have long sought to define a universal set of Myc target genes, 

but precise characterization of the Myc transcription network has remained 

elusive. Analysis of serum-stimulated fibroblasts revealed nearly 300 genes 

induced in a Myc-dependent manner (Perna et al., 2012), consistent with an 

understanding of Myc as driving a selective gene expression program (Sabo et al., 

2014; Walz et al., 2014). However, several studies have advocated a less 

discriminatory role for Myc function, suggesting that Myc acts not necessarily as a 

sequence-specific transcription factor, but as a global amplifier of genes expressed 

from open chromatin (Lin et al., 2012; Rahl et al., 2010). These differing 

viewpoints stem, in part, from normalization tactics used in RNA-sequencing 

experiments to identify Myc target genes. Specifically, there has been 

disagreement over how to contend with the proposed ability of Myc to increase 

global transcription as a potential confounding factor in standard normalization 

practices. Some have argued that normalization based on cell equivalents 

overcomes biases introduced by Myc-induced surges in total RNA content, but in 

practice accuracy may require multiple analyses (Kress et al., 2015). Of note, Myc 
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roles in gene repression have also been suggested, such as its proposed function in 

influencing the cellular response to DNA damage by downregulating the CDK 

inhibitor p21 to promote apoptosis, perhaps indicating feedback between the p53 

and Myc transcription programs (Seoane et al., 2002). 

 Ambiguities concerning Myc regulation and function in cancer also persist. 

Expressed from the 8q24 locus, MYC is impacted by a range of cis-acting DNA 

elements (Fulco et al., 2016). An abundance of lncRNAs in the MYC locus have also 

been identified, with some proposed to have cancer-specific functions in MYC 

regulation (Ling et al., 2013; Xiang et al., 2014). How these lncRNAs and other 

enhancer and repressor elements adjacent to the MYC locus drive MYC expression 

in different cancer types is still an open question. While elevated Myc levels are 

known to promote aberrant cell growth under circumstances favorable to 

tumorigenesis, its dysregulation has also been associated with an increased 

propensity for cells to undergo programmed cell death (Zindy et al., 1998). 

Interestingly, some have speculated about a Myc expression threshold cells cannot 

surpass without triggering apoptosis (Murphy et al., 2008). This has been 

proposed as especially critical in early cancer development when cells retain 

functional tumor suppressor pathways, suggesting that lower levels of Myc 

dysregulation may be optimal for initial cancer cell survival. 

 

 

Project framework: p53, Myc, and the missing lncRNA 

This chapter links together disparate elements of lncRNA biology and 

cancer biology in broad strokes. A key question raised at the intersection of these 
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fields is whether, and to what extent, lncRNA aberrations in cancer can constitute 

true drivers of tumorigenesis. There is abundant evidence for genetic and 

epigenetic alterations of lncRNAs in cancer and their presence in pathways 

essential to cancer growth and development is well-documented. However, 

ultimately only a small fraction of cancer-related lncRNAs have been shown to 

have significant, and functionally consistent, physiological impacts when they are 

manipulated in vivo (discussed in detail previously in this chapter). As such, the 

functional impacts of individual lncRNAs, and indeed lncRNAs as a class, on 

cancer pathogenesis are incompletely understood. 

An additional, and ultimately related, question highlighted here concerns 

the elusive threads connecting the p53 and Myc transcription networks. Given the 

significant, albeit often contradictory, influences of the tumor suppressor p53 and 

the proto-oncogene Myc on cell growth, and by extension, cancer development, 

one might expect a need for cells to coordinate their activities in order to avoid the 

transmission of opposing cellular impulses (Figure 7). As alluded to previously, 

p53 activation results in repression of Myc as a mechanism for temporarily 

curtailing cellular proliferation in stressed cells (discussed more in Chapter 2). 

This phenomenon has long been of interest to cancer biologists, but remained 

poorly understood despite decades spent studying Myc regulation. We find that 

this cellular fail-safe is primarily facilitated by the lncRNA isoform Pvt1b, the 

subject of this work. Considering the heterogeneity of lncRNAs in form and 

function, they make apt candidates for enacting specific local regulation 

downstream of broadly active transcription factors. However, the lncRNA field has 

been plagued by challenges in ascertaining lncRNA functional roles, particularly 
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under tumorigenic conditions; many controversies center on lncRNAs with both 

ascribed pro- and anti- oncogenic capabilities rooted in evidence from conflicting 

model systems. 

Here I describe Pvt1b as an emissary connecting two extensive gene 

expression programs, a potential archetype for lncRNA function, which may exist 

in other cellular processes and pathways. Incorporating lessons in experimental 

design derived from lncRNA literature and guided by an understanding of the roles 

of p53 and Myc in cancer, I employ a range of orthogonal approaches to assess the 

function and biological significance of Pvt1b under physiologic and tumorigenic 

conditions. I first identify and characterize Pvt1b, presenting evidence for its role 

in repressing Myc transcription downstream of p53 activation (see Chapter 2). I 

further investigate the functional elements of the Pvt1b transcript (see Chapter 

3) and pursue a potential mechanism of action involving Pvt1b-guided  histone 

deacetylation at the Myc promoter (see Chapter 4). Finally, I provide a 

foundation for future dissection of Pvt1 function in vivo through my role in 

generating three genetically engineered Pvt1 mouse models, the incisive 

combination of which should help illuminate features of the Pvt1 locus required 

for its activities (see Chapter 5). Rationales for specific experiments are discussed 

in detail in Chapters 2-5. 
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Figure 7. The p53 and Myc transcription networks in cancer. In response to mitogenic 
stimuli, MYC (red) dimerizes with its partner MAX (yellow) to upregulate target genes that promote 
cellular proliferation. In contrast, p53 (green) responds to cellular stress, binding as a tetramer to 
induce genes that suppress cellular growth. In cancer, MYC is frequently the target of gain-of-
function (GOF) mutations, while p53 is frequently the target of loss-of-function (LOF) mutations. 
MYC levels have been observed to decrease following p53 activation, and various mechanisms, both 
direct and indirect, have been proposed to explain this phenomenon. 
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Chapter 2: 
p53 activates the long noncoding RNA Pvt1b to inhibit Myc and 
suppress tumorigenesis 

 

The work described in this chapter has been published as follows: Olivero, C.E., 

Martinez-Terroba, E., Zimmer, J., Liao, C., Tesfaye, E., Hooshdaran, N., 

Schofield, J.A., Bendor, J., Fang, D., Simon, M.D., et al. (2020). p53 Activates the 

Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis. Mol Cell 

77, 761-774 e768. Co-author contributions that have also been included in this 

thesis are specified in figure legends and/or text.  

 

Introduction  

The p53 (also known as TP53) network is a central tumor suppressive 

mechanism in mammalian cells that is inactivated in the vast majority of human 

cancers (Vousden and Prives, 2009). In response to cellular stress induced by DNA 

damage or oncogenic signaling, p53 transcriptionally activates target genes to limit 

cellular proliferation or to permanently eliminate damaged cells (Vousden and 

Prives, 2009). Transcriptional activation by p53 relies on its binding to conserved 

p53 response elements (p53REs) in the promoters of target genes (Levine and 

Oren, 2009). p53 has also been implicated in the repression of cell cycle regulators 

(Engeland, 2018). One of the prominent targets of p53 repression is the 

Myelocytomasis (Myc) oncogene (Ho et al., 2005; Levy et al., 1993; Sachdeva et al., 
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2009), a global transcriptional amplifier that responds to mitogenic signals to 

promote cellular proliferation (Lin et al., 2012). Multiple models for how p53 

negatively affects Myc levels have been proposed, including p53 binding to the Myc 

promoter to suppress histone acetylation, binding to a distal regulatory element to 

alter nucleosome positioning in the Myc promoter, or activating repressive Myc-

targeting microRNAs (Ho et al., 2005; Porter et al., 2017; Sachdeva et al., 2009). 

However, the mechanism of p53-mediated Myc downregulation and its 

contribution to tumor suppression in vivo have remained unclear. 

Long noncoding RNAs (lncRNAs) can modulate gene expression locally by 

accumulating near their sites of transcription (Kopp and Mendell, 2018). In dosage 

compensation, Xist and other lncRNAs expressed from the X-chromosome 

specifically repress genes across the entire X-chromosome through the 

recruitment of epigenetic regulators (Lee, 2012). Other cis-regulatory lncRNAs act 

in a more limited, locus-specific manner, such as the p53 target lincRNA-p21 

proposed to promote the levels of its neighbor p21 (also known as Cdkn1a) by 

recruiting activating factors (Dimitrova et al., 2014). While studies of locus-specific 

cis-regulatory lncRNAs have revealed important roles in diverse biological 

processes (Dimitrova et al., 2014; Elling et al., 2018; Kotzin et al., 2016), 

characterization of the RNA molecule is often confounded by potential functional 

roles of DNA regulatory sequences in the lncRNA locus (Bassett et al., 2014; 

Engreitz et al., 2016; Groff et al., 2016). Defining the RNA-mediated regulation 

provides important opportunities for RNA-based therapeutics that can alter 

hardwired molecular interactions to change cellular responses. 
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Plasmacytoma variant 1 (Pvt1), a lncRNA expressed 50 Kb downstream of 

Myc, is altered in a large fraction of human cancers. Frequent translocations and 

viral integrations in the Pvt1 locus in lymphomas suggest important roles for Pvt1 

in cancer progression (Cory et al., 1985; Graham and Adams, 1986; Graham et al., 

1985). In addition, co-amplification of Myc and Pvt1 across multiple cancer types 

correlates with poor cancer patient prognosis, suggesting cooperation between the 

two genes during tumorigenesis (Cui et al., 2016; Tseng and Bagchi, 2015; Zeng et 

al., 2017). This pro-oncogenic cooperation between Myc and Pvt1 was recently 

confounded by the identification of a p53-binding site in the Pvt1 locus and by the 

description of the Pvt1 promoter as a transcriptional repressor of Myc (Cho et al., 

2018; Porter et al., 2017). These studies suggested undefined roles for Pvt1 in 

cancer progression and a potential crosstalk between the tumor suppressor p53 

pathway and the oncogenic Myc network.  

In this study, I characterized Pvt1b, a p53-induced isoform of the lncRNA 

Pvt1, and determined its contribution to Myc regulation and the p53 response to 

stress. I show that production of the Pvt1b RNA downstream of p53 represses Myc 

transcription and suppresses cellular proliferation during stress and in the early 

stages of tumorigenesis. The model presented here illuminates a role for the 

lncRNA isoform Pvt1b as a locus-specific transcriptional regulator that serves to 

enact selective gene repression downstream of the broad p53 transcriptional 

activation network. 
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Results 

p53 suppresses Myc under conditions of genotoxic and oncogenic 

stress  

To gain insight into the mechanism by which p53 causes suppression of 

Myc, I used multiple independent approaches to model the p53-dependent 

response to stress. To model the cellular response to genotoxic stress, I utilized 

wild-type (WT) mouse embryonic fibroblasts (MEFs) treated with the genotoxic 

agent Doxorubicin (Doxo) (Figure 8A). I observed that activation of the p53 

transcriptional program following Doxo treatment for 24 hours resulted in 3-fold 

induction of the p53 target p21 and a concomitant reduction in Myc RNA and 

protein levels by 34±6% (p=0.008, Figure 8B) and 44±15% (p=0.0051, Figure 8C), 

respectively, consistent with previous findings (Ho et al., 2005; Porter et al., 2017). 

I also found that p53 activation by oncogenic stress, modeled by Tamoxifen (Tam)-

CreER-dependent restoration of endogenous p53 expression in a murine lung 

adenocarcinoma cell line (K-rasLA2-G12D/+; p53LSL/LSL; Rosa26-CreERT2+, KPR) 

(Figure 8D) (Feldser et al., 2010), similarly led to a 70-fold activation of p21, a 

34±7% repression of Myc RNA (p=0.0020, Figure 8E) and a 37±10% decrease in 

Myc protein (p=0.0028, Figure 8F). Myc repression by 39±5% was also observed 

in intestinal epithelium cells isolated from mice exposed to 6 Grays (Gy) of whole-

body irradiation, which leads to a well-characterized p53-mediated response to 

genotoxic stress in vivo (p=0.0007, Figures 8G and 8H) (Clarke et al., 1994). 

Altogether, these results suggested that Myc repression is a general event 

downstream of p53 transcriptional activation. 

In an effort to elucidate the mechanism by which p53 activation results in 
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Myc repression, Nadya Dimitrova examined whether p53 associates with the Myc 

locus. She observed that both in Doxo-treated MEFs and Tam-treated KPR cells, 

stress-dependent Myc repression was accompanied by binding of p53 to a distal 

p53RE, located 50 Kb downstream of Myc, which has previously been implicated 

in limiting Myc expression (Figure 8I)(Porter et al., 2017).  

Consistent with p53 dependency, the changes in Myc RNA and protein 

levels were present in p53-proficient, but not p53-deficient MEFs (Figures 8J and 

8K). Additionally, the decrease in Myc RNA levels was detectable as early as 4 

hours following p53 activation and was coincident with the decrease in Myc protein 

levels, suggesting direct transcriptional modulation by p53 (Figures 8L and 8M). 

Inhibition of protein translation with Cycloheximide (Chx) revealed that Myc 

protein stability was not significantly affected by the presence of stress, suggesting 

that the decrease in Myc levels was not primarily due to post-translational 

regulation (Figure 8N).  
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Figure 8. p53 suppresses Myc in response to genotoxic and oncogenic stress. (A) 
Schematic of the model system for studying p53-mediated response to genotoxic stress in WT MEFs 
untreated or treated with Doxo for 24 h. Activation of p53 by passaging or by genotoxic stress is 
represented by light and dark red nuclei, respectively. (B) p21 and Myc RNA levels in cells from 
(A). Data show mean ± SEM (n=4, biological replicates),  *p<0.05, **p<0.01, paired t test. (C) Left 
Representative image and quantification of Myc protein levels from cells in (A). Hsp90 as a loading 
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control. Right Bargraph of Myc protein levels showing mean±SEM (n=5, biological replicates), 
**p<0.01, paired t test. (D) Schematic of the model system for studying p53-mediated response to 
oncogenic stress in KPR cells untreated or treated with Tam for 24 h. Activation of p53 by oncogenic 
stress is represented by red nucleus. (E) p21 and Myc RNA levels in cells from (D). Data show mean 
± SEM (n=6, biological replicates), ***p<0.001, paired t test. (F) Left Representative image and 
quantification of Myc protein levels from cells in (D). Hsp90 as a loading control. Right Bargraph 
of Myc protein levels showing mean±SEM (n=5, biological replicates), **p<0.01, paired t test. (G) 
Schematic of the model system for studying p53-mediated response in vivo in intestinal epithelial 
cells isolated from WT mice at 6 h post 6 Gy whole-body irradiation. Samples provided by Nadya 
Dimitrova. (H) p21 and Myc RNA levels from mice in (G). Data show mean ± SEM (n=3, biological 
replicates) **p<0.01, ***p<0.001, unpaired t test. (I) Enrichment of p53 binding at the Pvt1-
associated p53RE by ChIP-qPCR in Left Doxo-treated MEFs and Right Tam-treated KPR cells. Data 
show mean ± SEM (MEFs: n=4; KPR: n=3, biological replicates) *p<0.05, **p<0.01, paired t test. 
P53 ChIP performed by Nadya Dimitrova. (J) Myc RNA levels in p53-deficient or p53-proficient 
MEFs, untreated or treated with Doxo for 24 h. Data show mean ± SEM (n=3, biological replicates), 
ns = not significant, *p<0.05, paired t test. (K) Left Representative image and quantification of 
Myc protein levels from cells in (J). Hsp90 as a loading control. Right Bargraph of Myc protein 
levels showing mean ± SEM (n=3, biological replicates), ns = not significant, *p<0.05, paired t test. 
(L) Myc RNA levels in WT MEFs, untreated or treated with Doxo for the indicated times. Data 
show mean ± SEM (n=4, biological replicates), ***p<0.001, paired t test. (M) Left Representative 
image and quantification of Myc protein levels from cells in (L). Hsp90 as a loading control. Right 
Bargraph of Myc protein levels showing mean ± SEM (n=4, biological replicates), **p<0.01, 
***p<0.001, paired t test. (N) Left Representative image and quantification of Myc protein levels 
following treatment with cycloheximide (Chx) for indicated times in WT MEFs, untreated or treated 
with Doxo for 8 h. Right Myc protein half-life (n=3, biological replicates), ns = not significant, 
paired t test. 
 
Contributions from N. Dimitrova in (G) and (I) are described above. 
 
 

Myc repression correlates with activation of a p53-dependent Pvt1 

isoform, Pvt1b 

I was intrigued that the distal p53RE was located within the gene body of 

the lncRNA Pvt1 (Figure 9A), which has previously been implicated as a p53 target 

(Barsotti et al., 2012). Considering lncRNAs can act in cis to regulate the 

transcription of neighboring genes, I examined whether Pvt1 played a role in 

restricting Myc expression during stress. I noted significant stress-dependent 

induction of an isoform of Pvt1, termed Pvt1b, initiated at a transcription start site 

located immediately downstream of the p53RE. I observed a 3.1±0.2-fold 

induction of Pvt1b in Doxo-treated MEFs (Figure 9B) and a 38±6-fold induction 

of Pvt1b in Tam-treated KPR cells (Figure 9C). Pvt1a, an isoform of Pvt1 initiated 
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at exon 1a, was induced to a lesser extent in Doxo-treated MEFs (Figure 9B) and 

was not significantly induced by Tam in KPR cells (Figure 9C). Copy number 

calculations suggested that Pvt1b was induced from 20 to 210 copes per cell, while 

Pvt1a was expressed at 300-400 copies per cell (Figure 10A). Notably, activation 

of Pvt1b was coincident with Myc repression and occurred as early as 4 hours 

following Doxo treatment in MEFs (Figure 10B) or 6 hours following Tam 

treatment in KPR cells (Figure 10C), consistent with direct transcriptional 

regulation by p53. Similarly, Doxo-treated human fibroblasts exhibited a 2-fold 

decrease in MYC levels and an 8-fold increase of human PVT1B (Figure 10D). 

These findings indicated that the downregulation of Myc and the activation of a 

p53-dependent, stress-specific Pvt1 variant are conserved between mouse and 

human.  

To further characterize the transcripts produced from the Pvt1 locus, I 

performed RT-PCR with forward primers located in either exon 1a or 1b and a 

reverse primer in exon 5. I found evidence for extensive alternative splicing and 

confirmed that variants containing exon 1b were induced by p53, while exon 1a-

containing variants were constitutively expressed (Figures 9D and 9E). Despite the 

splicing heterogeneity, sequencing of nascent RNA revealed that stress-induced 

Pvt1b differed from constitutively expressed Pvt1a solely by the use of exon 1b 

versus exon 1a, and exhibited comparable splicing patterns to downstream exons 

(Figure 9F). I concluded that p53 activation during genotoxic and oncogenic stress 

initiated transcription in the Pvt1 locus from exon 1b, leading to the production of 

the p53-dependent isoform, Pvt1b, while Pvt1a represented a largely constitutively 

expressed isoform.  
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Figure 9. p53-dependent induction of the Pvt1 isoform, Pvt1b. (A) Schematic of the 
mouse Myc-Pvt1 locus, highlighting exons 1a and 1b of Pvt1 and the location of the p53RE (green 
*). (B, C) Isoform-specific and total Pvt1 RNA levels detected with primers located in indicated 
exons in (B) WT MEFs and (C) KPR cells, treated as indicated. Data show mean ± SEM (n=3, 
biological replicates), *p<0.05, **p<0.01, ***p<0.001, paired t test. (D, E) RT-PCR detection of 
Pvt1a isoforms (a, blue), amplified with primers from exon 1a to exon 5, and Pvt1b isoforms (b, 
orange), amplified with primers from exon 1b to exon 5, in RNA isolated from (D) MEFs and (E) 
KPR cells, ladder (L). (F) Genome browser tracks and Sashimi plots from TimeLapse-seq data in 
KPR cells, treated as indicated. Average number of splice junctions from 2 biological replicates from 
exon 1a to exon 2 (blue) and from exon 1b to exon 2 (orange) are indicated. Processing of samples 
for TimeLapse-seq and data analysis performed by Jeremy Schofield and Josh Zimmer. 
 
Contributions from J. Schofield and J. Zimmer in (F) are described above. 
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Figure 10. p53 activates the lncRNA isoform Pvt1b. (A) Copy number calculations of Pvt1a, 
Pvt1b, and Myc by qRT-PCR analysis of KPR cells untreated or 24 h post-treatment with Tam. (B, 
C) qRT-PCR analysis of Pvt1b levels in (B) MEFs treated with Doxo for the indicated times and (C) 
KPR cells treated with Tam for the indicated times. The observed induction of Pvt1b as early as 4-
6 hours post stress suggests direct transcriptional activation by p53. (D) Top Schematic of the 
human PVT1 locus, highlighting exon 1a (blue), exon 1b (orange), the conserved p53RE (green star) 
and showing the location of qPCR primers (red arrows), Bottom qRT-PCR analysis of relative 
PVT1A, PVT1B, and MYC RNA levels in normal human fibroblasts untreated or treated with Doxo 
for 24 h. Data show the mean ± SEM of 3 technical replicates from a representative example of two 
biological replicates. Human fibroblast samples provided by Nadya Dimitrova. 
 
Contributions from N. Dimitrova in (D) are described above. 
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Stress-induced Myc repression occurs in the absence of promoter-

enhancer contact reorganization 

Previous work had shown that CRISPR-mediated transcriptional regulation 

of the Pvt1 promoter in p53-deficient cancer cells causes reorganization of the 

chromatin architecture in the locus and impacts the access of Myc to downstream 

enhancers (Cho et al., 2018). To test whether the stress-responsive, p53-dependent 

induction of Pvt1b was associated with changes of these chromatin contacts, I 

performed Chromosome Conformation Capture (3C) in MEFs and KPR cells. 

Using an anchor in the Myc promoter, I confirmed that the Myc promoter accessed 

multiple upstream and downstream enhancers, including previously described 

Pvt1 intragenic enhancers (Figures 11A and 11B) (Cho et al., 2018). However, I did 

not detect significant changes in the chromatin looping between the Myc promoter 

and Myc-associated enhancers during the p53-mediated stress response (Figures 

11A and 11B). These results argue against a model where p53-dependent activation 

of Pvt1b leads to reorganization of the three-dimensional architecture of the locus.  
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Figure 11. p53 activation does not substantially alter chromatin architecture of the 
Myc-Pvt1 locus. (A-B) 3C analysis of BamHI-digested DNA from (A) WT MEFs, untreated or 
treated for 24 h with Doxo and (B) KPR cells, untreated or treated for 24 h with Tam. Interaction 
frequency with an anchor in the Myc promoter (A1, green arrow) is plotted relative to genomic 
location. A unidirectional forward primer strategy was used to probe chromatin interactions within 
the Myc- Pvt1 locus and primers were designed to query previously described enhancer regions 
interacting with the Myc promoter (Cho et al., Cell 2018), published H3K4me1 peaks (Meyer et al., 
JBC 2016), and control regions. Top Interaction frequency plots depicting the strongest 
interactions between the Myc promoter and upstream and downstream enhancers. Note that the 
chromatin architecture is largely unchanged by the presence of stress. Bottom Interaction 
frequency plot depicting weaker interactions between the Myc promoter and upstream and 
downstream enhancers. Note the change of scale and that the three strongest peaks, depicted in the 
Top panels, are excluded in the Bottom panels to allow visualization of smaller peaks. Note that 
there is a pre-existing chromatin looping interaction between the Myc and Pvt1 promoters, which 
exhibits a mild increase following Doxo treatment in (A) WT MEFs but is not significantly changed 
in (B) Tam-treated compared to untreated KPR cells. Data represent (A) n=3 biological replicates 
or (B) representative plot from n=2 biological replicates, ns = not significant, *p<0.05, paired t-
test.  
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Accumulation of Pvt1b in the chromatin surrounding the Pvt1-Myc 

locus 

To gain insight into the potential regulatory function of Pvt1b, I performed 

single-molecule RNA Fluorescence in situ Hybridization (smRNA-FISH), which 

allows visualization of individual RNA molecules by utilizing multiple 

fluorescently-labeled probes per transcript. I designed four independent probesets 

to detect Pvt1 transcripts. Pvt1a- and Pvt1b-specific probesets (named Pvt1a 

(ex.1a) and Pvt1b (ex.1b)) were designed against the first exon of each isoform. 

While isoform-specific, the two probesets were not expected to detect single RNA 

molecules due to the low number of probes per transcript. The probeset Pvt1 

(ex.1a-10) was designed to detect both full-length Pvt1a and full-length Pvt1b at 

single-molecule resolution, while the Pvt1 (introns) probeset was specific to 

unspliced Pvt1 molecules. Finally, I designed a probeset to detect Myc intronic 

regions (Myc (intron)) and mark the site of Myc transcription. I observed that 

Pvt1a and Pvt1b exhibited a primarily 2- or 4-dot nuclear pattern in Etoposide 

(Etop)-treated MEFs, reflective of G1 or S/G2 stages of the cell cycle, respectively 

(Figures 12A and 13A). Pvt1a and Pvt1b formed larger clouds in Tam-treated KPR 

cells (Figures 12B and 13B), which have amplified the locus, as shown by DNA 

Fluorescence in situ Hybridization (DNA-FISH) (Figure 13C). By co-staining either 

Pvt1a or Pvt1b with total Pvt1, I concluded that both isoforms exhibited an 

identical localization pattern (Figures 12A, 12B, 13A and 13B). Notably, Pvt1a- and 

Pvt1b-containing foci co-localized with signals specific to the introns of nascent 

Myc (Figures 12C and 12D) as well as with nascent Pvt1 transcripts (Figures 12E 

and 12F). These results led me to conclude that, following transcription, Pvt1a and 
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Pvt1b are retained on the chromatin surrounding the Pvt1-Myc locus. Subcellular 

fractionation analysis confirmed enrichment of both Pvt1 variants in the 

chromatin fraction (Figure 12G). 
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Figure 12. Accumulation of Pvt1 isoforms in the chromatin surrounding the Pvt1-Myc 
locus. (A-F) smRNA-FISH with indicated probes in (A, C, E) WT MEFs, untreated or treated with 
Etop for 24 h and in (B, D, F) KPR cells untreated or treated with Tam for 24 h. DNA, DAPI. Note: 
Pvt1b is detectable in untreated, p53-proficient MEFs likely due to activation of the p53 pathway 
by passaging in primary cells but is undetectable in untreated, p53-deficient KPR cells. (G) Pvt1a 
and Pvt1b RNA levels in Doxo-treated WT MEFs following subcellular fractionation (representative 
from n=2 biological replicates). Rn7s1 and Kcnq1ot1 used as controls for the cytoplasmic and 
chromatin fractions, respectively. Subcellular fractionation and analysis performed by Ephrath 
Tesfaye. 
 
Contributions from E. Tesfaye in (G) are described above. 
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Figure 13. Co-localization of Pvt1a and total Pvt1 by smRNA-FISH. (A-B) smRNA-FISH 
with probes designed against indicated regions in (A) WT MEFs, untreated or treated with Etop for 
24 h and in (B) KPR cells untreated or treated with Tam for 24 h. The following probesets are 
shown: Pvt1a (ex.1a, red) detecting Pvt1a isoform with 11 probes spanning exon 1a and Pvt1 (ex.1a-
10, green) detecting total Pvt1 with 48 probes spanning exons 1a-10. Note: The Pvt1a probeset does 
not detect at the single molecule level. (C) DNA-FISH with probes generated using a Bacterial 
Artificial Chromosome (BAC) of the Myc locus (Myc BAC, red) or a control region in chromosome 
6 (Chr 6 BAC, green) in untreated WT MEFs and KPR cells, highlighting increased copy number of 
the Myc locus in KPR cells. DNA-FISH performed by Dorthy Fang. 

Contributions from D. Fang in (C) are described above. 
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Pvt1b RNA represses Myc levels in cis 

Based on the stress-dependent expression of Pvt1b and its local chromatin 

accumulation, I hypothesized that Pvt1b could be involved in Myc repression 

through an RNA-dependent mechanism. To directly test this hypothesis, I 

designed three independent antisense oligonucleotides (ASOs) specific to exon 1b 

(Figure 14A). I used a non-targeting ASO (CON) as a negative control. As ASOs 

lead to co-transcriptional RNA cleavage and degradation, ASO1, 2, and 3 

significantly downregulated both Pvt1a and Pvt1b (Figure 14B).  

Next, I examined how Pvt1-targeting ASOs affected Myc expression levels. 

In untreated MEFs, Myc RNA and protein levels were not significantly altered in 

ASO compared to CON samples, indicating that knockdown of Pvt1 isoforms did 

not affect Myc regulation in the absence of stress, consistent with previous findings 

(Figures 14C, 14D and 15A) (Cho et al., 2018). As expected, upon treatment with 

Doxo, CON MEFs experienced a significant decrease in Myc RNA (Figure 14C) and 

protein levels (Figures 14D and 15A). On the other hand, I found that Pvt1-

targeting ASOs completely rescued stress-induced downregulation of Myc RNA 

and protein (Figures 14C, 14D and 15A). These findings revealed that 

transcriptional activation of Pvt1b by p53 is required for Myc repression during 

stress. As a control, the absence of Myc downregulation was not due to altered 

association of p53 with the Pvt1b-associated p53RE (Figure 15B).  

To test the sufficiency of Pvt1b in suppressing Myc, Elena Martínez-Terroba 

employed the CRISPR-SAM (Synergistic Activation Mediator) system to activate 

the expression of endogenous Pvt1b in p53-deficient cells (Dahlman et al., 2015). 

CRISPR-SAM combines nuclease-proficient Cas9 with 15-nucleotide ʻdead RNAsʼ 
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(dRNAs), which are competent for Cas9 recruitment but do not support Cas9 

nuclease activity. In CRISPR-SAM, the dRNA scaffold is extended by two MS2 

binding loops (dRNA-MS2), which serve to recruit the MS2-binding protein (MBP) 

fused to the transcriptional activator domains of p65 and HSF1, allowing CRISPR 

activation (CRISPRa) of target genes (Dahlman et al., 2015). Martínez-Terroba 

designed A1 and A2 dRNA-MS2 targeting the promoters of Pvt1a and Pvt1b, 

respectively (Figure 14E). Compared to a non-targeting control (C), CRISPRa using 

A1 led to 1.6-fold induction of Pvt1a, without altering Pvt1b levels, while A2 

resulted in a 20-fold activation of Pvt1b with no significant induction of Pvt1a 

(Figure 14F). Next, she examined the effect of activation of endogenous Pvt1a and 

Pvt1b on Myc levels. In support of the model, she found that CRISPRa of Pvt1b, 

but not Pvt1a, was sufficient to significantly repress Myc RNA in p53-deficient cells 

compared to control dRNA-expressing cells (p=0.023, Figure 14G). Activation of 

Pvt1b did not further downregulate Myc levels following p53 restoration, 

indicating that Pvt1b acted downstream of p53 (Figure 14G). On the other hand, 

activation of Pvt1b was not sufficient to suppress Myc protein levels, opening the 

possibility for Pvt1b-independent input at the post-transcriptional level (Figures 

15C and 14H).  

To distinguish between activity in cis versus in trans, I tested whether 

exogenous overexpression of Pvt1a and Pvt1b by transfection of cDNA constructs 

containing exons 1a-10  (1a) or 1b-10 (1b) affected Myc expression (Figure 14I). I 

observed a 6.5-fold overexpression of Pvt1a as well as a 23-fold overexpression of 

Pvt1b, which were comparable to CRISPRa-induced overexpression (Figure 14J). 

However, I found that exogenously delivered Pvt1a or Pvt1b did not significantly 
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affect Myc RNA or protein levels, arguing against an effect in trans (Figures 14K, 

14L and 15D). Altogether, these data supported a previously unappreciated role for 

Pvt1b, but not Pvt1a, in the repression of Myc in cis. 
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Figure 14. Production of Pvt1b RNA suppresses Myc expression in cis. (A) Schematic 
of ASO design. * denotes p53RE. (B) Isoform-specific and total Pvt1 RNA levels in WT MEFs 
transfected with indicated control (CON) or Pvt1-targeting ASOs and harvested 24 h post Doxo 
treatment. Data are normalized to CON and show mean ± SEM (n=3, biological replicates). (C) 
Myc RNA levels in cells from (B), untreated or treated with Doxo for 24 h. Data are normalized to 
CON-Doxo and show mean ± SEM (n=3, biological replicates), ***p<0.001, ns = not significant, 
paired t test. (D) Quantification of Myc protein levels in cells from (B). Data are normalized to 
CON-Doxo and show mean ± SEM (n=3, biological replicates), *p<0.05, ns = not significant, paired 
t test. (E) Schematic of CRISPRa dRNA design. * denotes p53RE. CRISPRa cell lines generated by 
Elena Martínez-Terroba. (F) Pvt1a and Pvt1b RNA levels following Pvt1a (A1) or Pvt1b (A2) 
transcriptional activation in KPR cells, untreated or treated with Tam for 24 hours. Data are 
normalized to control dRNA (C) and show mean ± SEM (n=5, biological replicates), ns = not 
significant, *p<0.05, paired t test. Data collection and analysis performed by Elena Martínez-
Terroba. (G) Myc RNA levels from experiment in (F). Data collection and analysis performed by 
Elena Martínez-Terroba. (H) Quantification of Myc protein levels in cells from (F). Data show 
mean ± SEM (n=3, biological replicates), ns = not significant, paired t test. Protein samples 
provided by Elena Martínez-Terroba. (I) Schematic of Pvt1a and Pvt1b overexpression constructs. 
(J) Isoform-specific and total Pvt1 RNA levels in WT MEFs transiently overexpressing full length 
Pvt1a (1a) or Pvt1b (1b). Data are normalized to empty vector (EV) and show mean ± SEM (n=3, 
biological replicates), ns = not significant, paired t-test. (K) Myc RNA levels from experiment in 
(J). (L) Quantification of Myc protein levels in cells from (J). Data show mean ± SEM (n=3, 
biological replicates), ns = not significant, paired t test. 
 
Contributions from E. Martínez-Terroba in (E), (F), (G) and (H) are described above. 
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Figure 15. Effects of Pvt1b manipulation in cis and in trans on Myc protein levels. (A) 
Representative immunoblot analysis of Myc protein levels in whole-cell extracts isolated from ASO 
knockdown experiments in Fig. 4D. Hsp90 as a loading control. (B) ChIP-qPCR analysis showing 
the enrichment of p53 binding at p53RE relative to input in CON- and ASO1- treated WT MEFs 
following 8 h Doxo treatment. Data represented mean ± - SEM of biological replicates, ns = not 
significant, paired t-test. P53 ChIP performed by Nadya Dimitrova. (C) Representative 
immunoblot analysis of Myc protein levels in whole-cell extracts isolated from CRISPRa 
experiments in Fig. 4H. Hsp90 as a loading control. Protein samples provided by Elena Martínez-
Terroba. (D) Representative immunoblot analysis of Myc protein levels in whole-cell extracts 
isolated from exogenous overexpression experiments in Fig. 4L. Hsp90 as a loading control.  

Contributions from N. Dimitrova in (B) and E. Martínez-Terroba in (C) are described above. 
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Genetic inhibition of Pvt1b reverses stress-induced Myc 

downregulation 

To investigate the functional contribution of Pvt1b to the p53 tumor 

suppressor pathway, I developed a genetic approach to specifically inhibit Pvt1b 

expression by mutating the p53RE required for its expression. I targeted Cas9 to 

the Pvt1b p53RE by designing a guide RNA (DRE) adjacent to the GGG protospacer 

adjacent motif (PAM) site located in the central region of the p53 consensus 

binding motif (Figure 16A). A non-targeting gRNA (Con) was used as a negative 

control. I generated control (Con) and mutant (DRE) KPR population, MEF 

population, and KPR clonal cell lines, which contain numerous or clone-specific 

CRISPR/Cas9-induced mutations of the Pvt1b-associated p53RE. I confirmed 

mutagenesis of the p53RE by Sanger sequencing (Figures 16A, 17A and 17B) and 

ChIP showed that DRE mutagenesis reduced p53 binding by 15-fold (Figure 16B). 

Importantly, by qRT-PCR, Pvt1b levels were significantly suppressed in DRE cells 

compared to controls (Figures 16C, 17C, 17D and 17G), and, by smRNA-FISH, I 

observed loss of Pvt1b-specific signal in Tam-treated DRE KPR cells compared to 

Tam-treated controls (Figures 16D and 16E). These observations led to the 

conclusion that mutagenesis of the Pvt1b-associated p53RE leads to efficient 

abrogation of stress-dependent Pvt1b activation.  

Next, I queried whether DRE mutagenesis led to isoform-specific inhibition. 

By qRT-PCR and smRNA-FISH, I found that Pvt1a RNA levels and localization 

pattern were not significantly altered in DRE KPR population and clonal cell lines 

compared to controls, indicating that mutation of the p53RE led to specific 
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inhibition of Pvt1b in KPR cells (Figures 16C, 16D, 17C and 17D). On the other 

hand, mutagenesis of the p53RE in MEFs led to a significant reduction of Pvt1a 

(Figure 17G), consistent with our findings that Pvt1a expression has a p53-

dependent component in this cell type (Figure 9B). 

Finally, I examined by qRT-PCR and immunoblotting the effects of the DRE 

mutation and the resulting loss of Pvt1b expression on Myc levels during the 

cellular response to stress. In Con KPR population, KPR clonal, and MEF lines, 

exposure to oncogenic or genotoxic stress led to the expected significant decrease 

in Myc RNA (Figures 16F, 17E, 17F and 17H) and protein levels (Figures 16G, 16H, 

17I and 17J). In contrast, exposure to stress in DRE KPR population, KPR clonal, 

and MEF lines did not lead to a significant decrease in Myc RNA levels compared 

to unstressed cells, consistent with the ASO data (Figures 16F, 17E, 17F and 17H). 

These results provided an independent, genetic confirmation that Pvt1b regulates 

Myc RNA levels downstream of p53. 

Interestingly, while Myc protein levels were significantly elevated in DRE 

KPR+Tam and DRE MEF+Doxo lines compared to Con KPR+Tam and Con 

MEF+Doxo lines, respectively, the rescue was not complete (Figures 16G, 16H, 17I 

and 17J), consistent with the possibility of Pvt1b-independent regulatory input at 

the post-transcriptional level (Figure 14H). 

Of note, mutagenesis of the Pvt1b-associated p53RE did not impact the 

long-range chromatin interactions in the locus, consistent with chromatin 

architecture not playing a significant role in p53-mediated Myc repression (Figure 

18A).  



 82 

 

Figure 16. Genetic inhibition of Pvt1b leads to increased Myc levels. (A) Top Schematic 
of p53RE mutagenesis, indicating the PAM site (red box) and Cas9 cleavage site (red arrow). 
Bottom Mutant alleles, determined by Sanger sequencing. (B) ChIP-qPCR analysis of p53 
enrichment at Pvt1b-associated p53RE in indicated cells and treatments. Data show mean ± SEM 
(n=3, biological replicates) *p<0.05, paired t test. P53 ChIP performed by Nadya Dimitrova. (C) 
Pvt1a and Pvt1b RNA levels in indicated cells and treatments. Data show mean ± SEM (n=3, 
biological replicates), **p<0.01, ns = not significant, paired t test. (D, E) smRNA-FISH of Pvt1b 
(ex.1b, red) co-localized with (D) total Pvt1 (ex1a-10, green) or (E) nascent Myc (intron, green) in 
indicated cells and treatments. DNA, DAPI. (F) Myc RNA levels in indicated cells and treatments. 
Data show mean ± SEM (n=3, biological replicates), *p<0.05, ***p<0.001, ns = not significant, 
paired t test. (G) Representative image and quantification of Myc protein levels in indicated cells 
and treatments. Hsp90 as a loading control. (H) Quantification of Myc protein levels from 
experiments in (G). Data show mean ± SEM (n=6, biological replicates), *p<0.05, ***p<0.001, 
paired t test.  
 
Contributions from N. Dimitrova in (B) are described above. 
 

 

 

 

 



 83 

 
 
Figure 17. Genetic inhibition of Pvt1b rescues stress-dependent Myc repression in 
KPR clonal and MEF cell lines. (A-F) Analysis of (A, C, E) clone D and (B, D, F) clone E, 
isolated from KPR cells infected with a gRNA targeting the Pvt1b p53RE (ΔRE). As a control, KPR 
clones expressing Con gRNA were analyzed. (A, B) Sanger sequencing of the region containing the 
Pvt1b-associated p53RE. (C, D) qRT-PCR analysis of relative Pvt1a and Pvt1b RNA levels in 
indicated samples. (E, F) qRT-PCR of the ratio (+Tam/-Tam) of Myc expression in indicated 
clones. Bars show the mean ± SEM of n=3 biological replicates, ***p<0.001, paired t-test. (G-J) 
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Analysis of MEF population cell lines, infected with a gRNA targeting the Pvt1b p53RE (ΔRE) or a 
non-targeting control (Con) and harvested untreated or 8-24 h post Doxo treatment. (G) qRT-PCR 
analysis of relative Pvt1a and Pvt1b RNA levels in indicated samples. Data represent mean ± SEM 
of n=3 biological replicates, **p<0.01, ***p<0.001, paired t- test. (H) qRT-PCR analysis of relative 
Myc RNA levels in indicated samples. Data represented as mean±SEM of n=3 biological replicates, 
ns = not significant, ***p<0.001, paired t- test. (I) Immunoblot analysis of Myc protein levels in 
whole-cell extracts from indicated cells. Hsp90 as a loading control. (J) Quantification of Myc 
protein levels from cells in (I). Data represent mean ± SEM of n=7 biological replicates, *p<0.05, 
**p<0.01, ***p<0.001, paired t- test.  
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Figure 18. Effects of genetic inhibition of Pvt1b on the chromatin architecture of the 
Myc-Pvt1 locus and Myc transcription. (A) 3C analysis in KPR cells, infected with Pvt1b 
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p53RE-targeting (ΔRE) or Control (Con) gRNAs and treated for 24 h with Tam. Interaction 
frequency relative to an anchor in the Myc promoter (A1, green arrow) is plotted from three 
technical replicates from a representative experiment of two biological replicates, as described in 
Figure S2. (B) MA plots from TT-TimeLapse-seq data depicting log2 fold change in nascent RNA 
(n >11,000 for each condition) in (A) untreated or (B) Tam-treated KPR cells. Myc and total Pvt1 
are indicated (purple dots). Processing of samples for TT-TimeLapse-seq and data analysis 
performed by Jeremy Schofield, Josh Zimmer and Matt Simon. 
 
Contributions from J. Schofield, J. Zimmer, and M. Simon in (B) are described above. 

 

Pvt1b suppresses Myc transcriptional activity and cellular 

proliferation in vitro 

By analyzing the effects of the DRE mutation on gene expression in total 

RNA from untreated and Doxo-treated DRE and Con MEFs in collaboration with 

Nima Hooshdaran and Jesse Zamudio, I confirmed that Myc is a target of Pvt1b 

regulation in response to stress (Figure 19A). Next, to test whether Pvt1b acted at 

the transcriptional or post-transcriptional level, my collaborators Josh Zimmer, 

Jeremy Schofield and Matt Simon sequenced nascent RNA from untreated and 

Tam-treated DRE and Con KPR cells (Schofield et al., 2018). They found that 

nascent Myc transcripts were significantly upregulated in DRE+Tam compared to 

Con+Tam KPR cells, indicative of transcriptional regulation (Figures 19B and 

19C). These data revealed that Pvt1b production promotes transcriptional 

suppression of Myc. 

Next, Hooshdaran and Zamudio queried how the changes in Myc RNA 

levels affected the Myc transcriptional program by examining the consequence of 

Pvt1b loss on a curated set of 196 Myc target genes (Gene Set Enrichment Analysis, 

HALLMARK_MYC_TARGETS_V1 (Liberzon et al., 2015)). They plotted the 

cumulative frequency distribution of the fold change of Myc target genes in DRE 



 87 

cells relative to Con cells in the presence of stress (logFC [DRE/Con+stress]). 

Compared to a randomly generated set of control genes expressed at comparable 

levels, they found a significant increase in the levels of Myc targets in MEFs and 

KPR cells (Figures 19D and 19E). They concluded that Myc derepression by DRE 

mutagenesis leads to a small but significant increase in the transcriptional activity 

of Myc.  

Considering Myc target genes include factors that promote cellular growth, 

I compared the proliferation of mutant cells compared to controls. It has 

previously been shown that Tam-mediated p53 restoration in KPR cells leads to a 

permanent cell cycle arrest, called senescence (Feldser et al., 2010). While loss of 

Pvt1b expression did not overcome senescence, it led to a significant increase in 

cellular proliferation and colony formation compared to control cells (Figures 19F 

and 19G). As a control, the DRE mutation did not impact Myc levels and 

proliferation in p53-deficient cells, ruling out off target effects (Figures 18B and 

19F). These data suggested that Pvt1b mediates specific aspects of p53 function to 

suppress the proliferative potential of cells in vitro. 
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Figure 19. Pvt1b suppresses Myc transcription and proliferative function. (A, B) 
Butterfly plot depicting the fold change (logFC) in gene expression of indicated samples relative to 
statistical significance (-log10(p-value), MEF: n=3; KPR: n=2, biological replicates). Gene 
expression profiling was performed by (A) RNAseq of polyA-selected RNA isolated from Con or 
ΔRE gRNA-expressing MEFs, untreated or treated with Doxo for 24 hours or (B) TimeLapse-seq of 
ribosomal cDNA-depleted s4U-labeled RNA isolated from Con or ΔRE gRNA-expressing KPR cells, 
untreated or treated with Tam for 16 hours. Total Pvt1 (blue) and Myc (red) are labeled. Library 
preparation performed by Nadya Dimitrova. Data analysis performed by Nima Hooshdaran and 
Jesse Zamudio. (C) Top Genome browser tracks depicting the Myc-Pvt1 locus and Bottom Detail 
of the Myc locus from TT-TimeLapse-seq. Processing of samples for TT-TimeLapse-seq and data 
analysis performed by Jeremy Schofield, Josh Zimmer and Matt Simon. (D, E) Cumulative 
frequency distribution plot of differential expression for a set of curated Myc target genes and a 
matched set of control genes from analyses in (A, B). Library preparation performed by Nadya 
Dimitrova. Data analysis performed by Nima Hooshdaran and Jesse Zamudio. (F) Population 
doublings in Con or ΔRE gRNA-expressing KPR cells, untreated or treated with Tam over indicated 
timecourse. Data show mean ± SEM (n=3, biological replicates), **p<0.01, unpaired t test. (G) 
Representative images of colony formation assay of Tam-treated KPR cells, infected with Con or 
ΔRE gRNAs. Numbers show mean ± SEM (n=3, biological replicates), **p<0.01, unpaired t test. 
 

Contributions from N. Hooshdaran and J. Zamudio in (A), (B), (D) and (E), and from J. Schofield, 
J. Zimmer, and M. Simon in (C) are described above. 
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Tumor-specific inhibition of Pvt1b promotes tumor growth in vivo 

Inactivation of p53 in the K-rasLSL-G12D/+(K) autochthonous mouse model of 

lung cancer has been shown to increase tumor burden and promote tumor 

progression from benign to aggressive disease (DuPage et al., 2009; Jackson et al., 

2005; Jackson et al., 2001). To elucidate whether Pvt1b mediated some aspects of 

p53 function, Nadya Dimitrova and Clara Liao performed tumor-specific 

mutagenesis of the Pvt1b-associated p53RE (Figure 20A). Dimitrova built a 

bifunctional lentiviral construct (U6-gRNA PGK-Cre, UGPC) for co-expression of 

the DRE gRNA (UGPC-DRE) and Cre recombinase, required for Cas9 targeting and 

tumor initiation, respectively (DuPage et al., 2009). Expression of Cas9 in a tumor-

specific manner was achieved by crossing the K model to Rosa26-Cas9LSL (C) mice 

to generate KC animals (Platt et al., 2014). As a negative control, they used a non-

targeting control (UGPC-Con). As a positive control, they used a previously 

described gRNA that targets the open reading frame of p53 (UGPC-p53KO) (Xue 

et al., 2014). Sanger sequencing confirmed successful mutagenesis of the Pvt1b-

associated p53RE in UGPC-DRE-infected animals (Figure 20B).  

They next examined hematoxylin and eosin (H&E) sections of lungs from 

mice infected with UGPC-Con, -p53KO and -DRE virus and sacrificed at 16 weeks 

post tumor initiation. In the K model, progression of atypical adenomatous 

hyperplasia (AAH, grade 1) and lung adenoma (grade 2) to adenocarcinoma (grade 

3) and invasive adenocarcinoma (grade 4) is promoted by loss of p53 function 

(Jackson et al., 2005). Indeed, histopathological analysis revealed that all of the 

tumors (53/53 tumors) in UGPC-Con-infected animals manifested grade 1 features 

(Figures 20C and 20D). In contrast, 70% of UGPC-p53KO-expressing tumors 
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(39/56 tumors) were marked by atypical nuclei, desmoplasia, and transition to a 

poorly differentiated phenotype and were classified as grade 2 or 3 (Figures 20C 

and 20D) (DuPage et al., 2009). Based on these data, they estimated that a large 

portion of the tumors underwent successful CRISPR/Cas9 editing in vivo. Editing 

of the Pvt1b-associated p53RE resulted in tumors with histopathological features 

comparable to controls and only 3% of tumors (2/67 tumors) in UGPC-DRE-

infected animals were classified grade 2 or 3, suggesting that tumor progression 

was not accelerated by Pvt1b inhibition (Figures 20C and 20D). They concluded 

that Pvt1b does not likely mediate the ability of p53 to restrain tumor progression 

from benign hyperplasia to advanced disease.  

On the other hand, quantification of the tumor area relative to the total lung 

area revealed that the tumor burden in UGPC-DRE-infected animals (21±4%) was 

significantly increased compared to the burden of control mice (12±2%) 

(p=0.0040, Figure 20E). Notably, the tumor burden in p53RE-edited mice was 

comparable to the tumor burden in UGPC-p53KO-infected mice (26±3%) (Figure 

20E). These findings suggested that Pvt1b mediated in large part the growth-

restrictive functions downstream of p53, particularly during the pre-malignant 

stages of the disease. As a control for potential off-target effects of Cas9 expression 

and CRISPR editing, Ephrath Tesfaye used two independent sgRNAs (sg1 and sg2) 

to target the p53RE in intron 1 of an unrelated lncRNA, Gm26542, for which we 

had evidence for direct p53 regulation (Figures 21A, 21B and 21C). In contrast to 

Pvt1b, inhibition of Gm26542 did not affect proliferation in Tam-treated KPR cells 

in vitro (Figure 21D) and did not significantly alter the tumor burden in KC mice 

in vivo (Figure 21E).  
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The increase in tumor burden in UGPC-DRE-infected animals compared to 

UGPC-Con mice was not due to decreased apoptosis as there was no evidence for 

Cleaved Caspase 3 (CC3) immunohistochemistry (IHC) staining in lung sections. 

Instead, the increase in tumor burden could be attributed to enhanced 

proliferation, as manifested by the significantly greater number of phosphorylated 

histone H3 (pHH3)-positive mitotic cells in Pvt1b-deficient tumors from UGPC-

DRE-infected animals compared to tumors from UGPC-Con-infected mice 

(p=0.0026, Figures 20F and 20G).  

Finally, to investigate whether Pvt1b acted downstream or independent of 

p53, Dimitrova and Liao performed an epistasis experiment. They generated 

cohorts of either KC or K-rasLSL-G12D/+; p53FL/FL; Rosa26-Cas9LSL/LSL (KPC) 

animals, which have genetically engineered Cre-inducible loss-of-function alleles 

of p53. They analyzed tumor burden at 12 weeks post tumor initiation with UGPC-

Con or -DRE virus. Consistent with their findings above, they observed a significant 

increase in the tumor burden of UGPC-DRE-infected mice compared to UGPC-

Con-infected KC animals (p=0.0035, Figure 20H). In contrast, they found that the 

tumor burden was not significantly different between UGPC-DRE and UGPC-Con-

infected KPC animals (Figure 20H). Moreover, there was no statistically significant 

difference between the tumor burden of KC mice infected with UGPC-DRE and 

KPC mice infected with UGPC-Con (Figure 20H). Altogether, these results 

revealed that Pvt1b and p53 enhance the expansion of pre-malignant tumors 

through a common pathway.  
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Figure 20. Tumor-specific editing in a lung cancer model reveals a role for Pvt1b in 
suppressing tumor growth, but not progression. (A) Schematic of tumor-specific gene 
editing in KC and KPC lung cancer mouse models. (B) Mutant ΔRE alleles, determined by Sanger 
sequencing of bulk DNA isolated from tumor-bearing lungs. (C) H&E staining of lung sections of 
KC mice infected with indicated gRNAs and analyzed at 16 weeks post tumor initiation (pti). Scale 
bars as indicated. (D) Quantification of tumor grade in mice described in (C). The number of 
tumors analyzed from n=5 mice is indicated for each group. (E) Quantification of tumor burden in 
mice described in (C). Dots represent individual animals and bargraph shows mean ± SEM (n=7 
mice), ***p<0.001, **p<0.01, ns = not significant, unpaired t test. (F) Representative images of 
immunohistochemistry for the mitotic marker pHH3 in lung sections from (C). Scale bars as 
indicated. (G) Quantification of images in (F). Data show mean ± SEM of n=13-15 tumors from 
n=5 mice, **p<0.01, Mann-Whitney test. (H) Quantification of tumor burden in KC and KPC mice 
infected with indicated gRNAs and analyzed at 12 weeks pti. Dots represent individual animals and 
bargraph shows mean ± SEM (KC: n=6 mice, KPC: n=3 mice), *p<0.05, ns=not significant, 
unpaired t-test. All in vivo experiments and data analysis performed by Nadya Dimitrova and Clara 
Liao.   
 
Contributions from N. Dimitrova and C. Liao in (A-H) are described above. 
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Figure 21. Mutagenesis of Gm26542-associated p53RE does not affect proliferation 
in vitro, tumor growth in vivo. (A) Schematic of the mouse Gm26542 lncRNA locus depicting 
the sequence of the p53RE located in intron 1, and the PAM sites (PAM #1 and PAM #2) utilized by 
guide RNAs sg1 and sg2, respectively. Schematic provided by Ephrath Tesfaye. (B) Sanger 
sequencing of the region containing the Gm26542-associated p53RE in KPR cells infected with sg1 
or sg2. Data collection and analysis performed by Ephrath Tesfaye. (C) qRT-PCR analysis of 
relative RNA levels of the Gm26542 lncRNA in Con-, sg1- and sg2- infected KPR cell populations 
showing the p53-dependent induction of Gm26542 at 24 hours post Tam treatment and the 
abrogation of this induction by p53RE mutagenesis. Data collection and analysis performed by 
Ephrath Tesfaye. (D) Growth analysis showing population doublings in Con, sg1, or sg2 gRNA-
expressing KPR cells, untreated or treated with Tam. Data show mean ± SEM of n=3 biological 
replicates, ns= not significant, unpaired t-test. Cell lines provided by Ephrath Tesfaye. (E) 
Quantification of tumor burden as tumor area relative to total lung area in KC mice infected with 
indicated gRNAs and analyzed at 16 weeks post tumor initiation (pti) as described in Fig. 20. Data 
show tumor burden of individual mice and mean±SD, ns = not significant, unpaired t-test. In vivo 
experiments and data analysis performed by Nadya Dimitrova. 
 
Contributions from E. Tesfaye in (A-D) and N. Dimitrova in (E) are described above. 
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Discussion 

This study provides new mechanistic insights into the function of the 

lncRNA Pvt1 in the context of the p53 tumor suppressor pathway. I identify a 

conserved isoform of Pvt1, Pvt1b, which is directly activated by p53 in response to 

genotoxic and oncogenic stress. My data reveal that production of Pvt1b functions 

as a p53-dependent mechanism that is wired into the Myc-Pvt1 locus to directly 

and swiftly down-regulate Myc transcription during stress (Figure 22). This 

appears to be the primary mechanism underlying stress-induced Myc reduction at 

the transcriptional level, although these data are also consistent with Pvt1b-

independent regulation at the post-transcriptional level. 

Functionally, I observed that Pvt1b activation leads to restricted Myc levels 

and transcriptional activity and suppressed cellular proliferation. Furthermore, 

use of an autochthonous mouse model of lung cancer demonstrated that Pvt1b acts 

downstream of p53 during the early stages of cancer development to limit tumor 

growth. Strikingly, in this respect, epistasis analysis suggested that Pvt1b acts as 

the primary mediator of p53. On the other hand, I found that Pvt1b is not involved 

in other aspects of p53 function, such as promoting senescence or limiting tumor 

progression to advanced disease. Altogether, these analyses define the specific 

contributions of Pvt1b downstream of p53, pointing to growth limiting and tumor 

suppressive functions of Pvt1b in the context of cancer. These conclusions contrast 

the common classification of Pvt1 as an oncogene, which is based on extensive 

correlative evidence linking Pvt1 aberrations with increased invasive capacities of 

cancer cells and poor patient survival (Guan et al., 2007; Guo et al., 2018; Kong et 

al., 2015; Riquelme et al., 2014; Tseng et al., 2014; Zeng et al., 2017; Zhang et al., 
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2019; Zhao et al., 2018; Zheng et al., 2016; Zhu et al., 2017). On the other hand, 

these data are consistent with recent reports of tumor suppressive elements in the 

Pvt1 locus (Barsotti et al., 2012; Cho et al., 2018; Porter et al., 2017).  

My findings shed light on a subset of genomic aberrations reported across a 

variety of malignancies, which represent translocations between the first exon of 

Pvt1a fused to various 3’ gene partners (Iwakawa et al., 2013; Kim et al., 2014a; 

Nagoshi et al., 2012; Northcott et al., 2012). Such rearrangements would be 

expected to separate the Myc locus from Pvt1b, providing cells with a proliferative 

advantage due to the inability of p53 to suppress Myc levels during early stages of 

tumor development. On the other hand, the proposed tumor suppressive role of 

Pvt1b is at odds with the common amplification of the Pvt1 locus in cancer (Guan 

et al., 2007; Riquelme et al., 2014). I propose that amplification of other elements, 

such as the Pvt1a transcript or Pvt1-associated Myc enhancers may be the drivers 

of oncogenic activities in this setting, as proposed by others (Cho et al., 2018; Tseng 

et al., 2014). Alternatively, these alterations might be occurring following p53 

inactivation, which would preclude Pvt1b expression. 

Mechanistically, I provide direct evidence for a role of Pvt1b RNA 

production in Myc regulation. Antisense-mediated depletion experiments reveal 

that Pvt1b is required for stress-induced Myc inhibition, whereas epigenetic 

activation from the endogenous locus shows that Pvt1b is sufficient to repress Myc 

in the absence of stress or a functional p53 pathway. While ASO-based knockdown 

and CRISPR-guided epigenetic experiments cannot formally differentiate between 

the mature Pvt1b molecules or the production of nascent Pvt1b transcripts as the 

mediator of Myc repression, these data support an RNA-based mechanism. 
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This conclusion differs from the recent finding that the Pvt1a promoter 

suppresses Myc levels in an RNA-independent manner (Cho et al., 2018). The 

discrepancy can potentially be explained by the previous focus on the constitutive 

Pvt1 isoform, by the use of p53-deficient cell lines, or by the use of ineffective ASOs 

(Cho et al., 2018). Alternatively, I propose that the two tumor suppressive activities 

in the Pvt1 locus, one p53- and RNA-dependent and the other p53- and RNA-

independent, may co-exist and operate in distinct cellular contexts. My findings 

also do not contradict studies that have implicated Pvt1a or circular Pvt1 isoforms 

as oncogenes via diverse mechanisms, such as oncoprotein stabilization or 

competition for miRNA binding (Tseng et al., 2014; Xu et al., 2017; Zhao et al., 

2018). Indeed, the complexity of the Pvt1 locus highlights the need for further 

rigorous dissection of the various alternative start site- and splice-variants.  

It is important to note that Pvt1b mediates a repressive event downstream 

of p53, which is a well-characterized transcriptional activator. Considered in the 

context of the previously characterized p53-dependent cis-regulatory lincRNA-p21 

(Dimitrova et al., 2014), it appears that transcription factors use lncRNAs to either 

enhance their inherent activity or to allow reverse regulation within local circuits. 

LncRNAs which accumulate at their sites of transcription, such as Pvt1b, are poised 

to act as modulators of gene expression in a locus-specific manner. Indeed, Pvt1b 

activation leads to Myc repression within four hours of exposure to genotoxic 

stress, which is comparable to the kinetics of activation of p53 target genes. I 

propose that production and/or chromatin accumulation of p53-induced Pvt1b 

transcripts act in cis during the cellular response to stress to rapidly influence the 

transcriptional environment at the Myc promoter. Thus, locus-specific 
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transcriptional regulation by lncRNAs may provide additional tools within a 

transcriptional program that allow dynamic and swift responses to cellular 

challenges. As the mechanisms of more p53-dependent lncRNAs are revealed, we 

can gain new insight into how regulatory RNAs contribute to the cellular responses 

to stress mediated by p53. Although future work will determine the functional 

elements of Pvt1b transcripts, the widespread importance of this regulatory circuit 

in normal and transformed cells in vitro and in vivo suggests the possibility of 

controlling Myc levels in cancer by modulating Pvt1b activity. 
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Figure 22. LncRNA Pvt1b mediates crosstalk between the Myc and p53 
transcriptional networks. Top Under conditions of cellular stress, p53 (green) directly activates 
lncRNA Pvt1b (orange) to indirectly repress Myc (red), inhibiting cellular proliferation and tumor 
growth. Bottom p53-mediated induction of Pvt1b following cellular stress leads to local repression 
of Myc transcription, with smRNA-FISH inset showing Pvt1b accumulation at the Myc-Pvt1 locus. 
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Chapter 3: 
Investigating the functional elements of the Pvt1b transcript 

 

Introduction 

The elements of lncRNAs required to perform specific functions can 

comprise a range of characteristics encoded in the transcripts themselves, 

including sequence and/or structural motifs (see Chapter 1). The sequence of a 

lncRNA may enable its association with specific RNA binding proteins (RBPs) or 

may fold into unique hairpins or more complex structures that otherwise confer 

function (reviewed in (Zampetaki et al., 2018)). Given that Pvt1b differs from 

Pvt1a primarily based on whether transcript initiation is from exon 1b or exon 1a, 

respectively, I reasoned that the function of Pvt1b may depend explicitly on the 

exon 1b sequence or any structures therein. In this chapter, I investigate the 

importance of Pvt1 exon 1b for p53-dependent Myc repression by attempting to 

either alter Pvt1b-specific sequences or disrupt their production. In doing so, I 

provide insight into the potential mechanism by which Pvt1b downregulates Myc 

under conditions of cellular stress. 

 

Results 

Investigating the function of the Pvt1 exon 1b sequence in p53-

dependent Myc repression 
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To determine if Pvt1 exon 1b harbors any sequence and/or structural motifs 

required for Pvt1b function, I developed a genetic approach to test the functionality 

of regions within exon 1b whose disruption could rescue p53-induced Myc 

repression. To accomplish this, I employed a strategy to generate numerous 

CRISPR/Cas9-induced mutations throughout the 191 bp exon 1b sequence (Figure 

23A). After analyzing available PAM sites, I selected 11 high specificity guide RNAs, 

excluding those with low specificity scores (Concordet and Haeussler, 2018) and 

those targeting similar areas of the exon 1b sequence (Figure 23B). I generated 11 

mutant (gALT1-11) KPR population and PR MEF population cell lines (refer to 

Chapter 2, Figure 8 for descriptions of KPR and PR MEF cell lines), each of which 

contain heterogeneous mutations in the guide RNA-specific region targeted by 

Cas9 (Figure 23B). A guide RNA targeting dTomato (gTOM) was used as a negative 

control, while the guide RNA targeting the Pvt1b-associated p53RE (gRE, see 

Chapter 2, Figure 16) was used as a positive control due to its previously 

documented ability to rescue stress-induced Myc downregulation (see Chapter 2, 

Figure 16). I confirmed mutagenesis by each guide RNA (gALT1-11) by Sanger 

sequencing and Tracking of Indels by DEcomposition (TIDE) analysis (Brinkman 

et al., 2014), observing estimated mutagenesis efficiencies ranging from 37.2 – 

94.4% (Figure 23C). Importantly, by qRT-PCR, Pvt1b levels were significantly 

suppressed in gRE cells compared to controls (Figures 23C and 23E), consistent 

with previous results (see Chapter 2, Figure 16). These observations led us to 

conclude that I had successfully mutagenized sequences in Pvt1 exon 1b. 

 Infection with gALT1-11 resulted in fluctuations in Pvt1b expression levels 

in both KPR and PR MEF cell lines, variations which appeared guide RNA-
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independent, with some guide RNAs yielding differing Pvt1b levels depending on 

cell line (Figures 23C and 23E). Considering that the qRT-PCR Pvt1b forward 

primer overlaps the exon 1b regions targeted by gALT8 and gALT9, I anticipated 

Pvt1b levels in these cell lines might be unusually low, although any 

underestimation of Pvt1b expression appeared to be minimal (Figures 23C and 

23E). Importantly, any reductions in Pvt1b expression resulting from infection 

with gALT1-11 did not approach the extent of Pvt1b inhibition observed following 

infection with gRE (Figures 23C and 23E). 

Finally, I used qRT-PCR to assess whether mutations within the Pvt1 exon 

1b sequence had any effect on Myc levels during the cellular response to stress. In 

negative control KPR population and PR MEF population cell lines infected with 

gTOM, exposure to oncogenic or genotoxic stress led to an expected decrease in 

Myc RNA (Figures 23D and 23F). Importantly, positive control KPR population 

and PR MEF population cell lines infected with gRE experienced a rescue in stress-

dependent Myc downregulation (Figures 23D and 23F), consistent with previous 

findings (see Chapter 2, Figure 16). Next, I found that exposure to stress in 

gALT1-11 KPR population and PR MEF population cell lines did not result in any 

notable increases in Myc levels approaching the rescue observed in gRE cell lines. 

Taken together, these results suggested mutagenesis of sequences throughout Pvt1 

exon 1b was insufficient to rescue p53-dependent Myc repression. 

 

 



 102 

 

Figure 23. Probing the role of the Pvt1 ex1b sequence in p53-dependent Myc 
repression. (A) Schematic of the 5’ end of the Pvt1 locus showing transcript initiation sites for 
Pvt1a (blue) and Pvt1b (orange) at exon 1a and exon 1b, respectively. Guide RNAs to mutate the 
exon 1b sequence (gALT1-11) shown in red, with red 5’ ends of Pvt1b transcripts indicating 
mutagenesis. Location of Pvt1b-associated p53RE indicated by green asterisk. (B) Left, Pvt1 exon 
1b sequence, with PAM sites (red) utilized by guide RNAs gALT1-11 indicated sequentially. Right, 
percent mutagenesis efficiency yielded by each guide RNA (gRNA) as estimated by Tracking of 
Indels by DEcomposition (TIDE) analysis in KPR cells as described in (Brinkman et al., 2014). N/A 
= data not available. (C) Pvt1b RNA levels in KPR cells infected with indicated guide RNAs, 
untreated or treated with tamoxifen (TAM) for 24 h. Data show mean ± SEM (n=3, technical 
replicates, confirmed in independent biological replicates). (D) Myc RNA levels in same cells as 
(C). Data are normalized to untreated within each cell line and show mean ± SEM (n=2, biological 
replicates). (E) Pvt1b RNA levels in PR MEFs infected with indicated guide RNAs, untreated or 
treated with tamoxifen (TAM) for 48 h and doxorubicin (DOXO) for 24 h. Data show mean ± SEM 
(n=3, technical replicates, confirmed in independent biological replicates). (F) Myc RNA levels in 
the same cells as (E). Data are normalized to untreated within each cell line and show mean ± SEM 
(n=2, biological replicates). 
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Investigating the function of spliced Pvt1b in p53-dependent Myc 

repression 

 To determine if the spliced Pvt1b transcript is required for p53-dependent 

Myc repression, I developed a genetic approach to abrogate splicing between Pvt1 

exon 1b and its downstream exon 2 and thereby decrease processing of nascent 

Pvt1b transcripts. I designed a guide RNA (gdeltaSS) to target Cas9 close to the 3’ 

end of Pvt1 exon 1b (Figure 24A) with the goal of mutagenizing the AG|GU 

sequence spanning the exon|intron junction, which comprises a key sequence 

element of the splice donor site (Mount, 1982). I generated KPR population and 

PR MEF population cell lines (refer to Chapter 2, Figure 8 for descriptions of KPR 

and PR MEF cell lines) containing numerous mutations at the 3’ end of Pvt1 exon 

1b. As above, a guide RNA targeting dTomato (gTOM) was used as a negative 

control, while the guide RNA targeting the Pvt1b-associated p53RE (gRE, see 

Chapter 2, Figure 16) was used as a positive control due to its previously 

documented ability to rescue stress-induced Myc downregulation. I confirmed 

mutagenesis of the exon|intron junction by Sanger sequencing and Tracking of 

Indels by DEcomposition (TIDE) analysis (Brinkman et al., 2014) in KPR cells and 

PR MEFs, observing 92.8% and 90.5% estimated efficiencies, respectively (Figure 

24B and Figure 24C). However, I observed low frequencies of deletions larger than 

5 nucleotides (Figure 24B and Figure 24C), and given the location of the Cas9 cut 

site 4-5 nucleotides away from the exon|intron junction, it is possible that a low 

percentage of mutations directly affected the AG|GU splice site. 

 To determine the efficacy of this approach in inhibiting the production of 

spliced Pvt1b, I analyzed the expression of Pvt1 transcripts in gdeltaSS-infected 
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population cell lines. While exon 1b 3’ end mutagenesis did not affect Pvt1a 

expression, it resulted in a significant 34% decrease in spliced Pvt1b in tamoxifen-

treated KPR cells relative to control (Figure 24D) and a similar, albeit 

nonsignificant, decrease in spliced Pvt1b in PR MEFs treated with tamoxifen and 

doxorubicin (Figure 24F). Importantly, infection with gRE inhibited Pvt1b 

expression in both KPR cells (Figure 24D) and PR MEFs (Figure 24F), consistent 

with previous results (see Chapter 2, Figure 16). To determine if the observed 

reduction in spliced Pvt1b was due to abrogated splicing and not simply decreased 

expression, I analyzed nascent Pvt1b RNA levels using a qRT-PCR primer set 

spanning the Pvt1 exon 1b|intron junction. Concurrent with a decrease in spliced 

Pvt1b, gdeltaSS-infected KPR and PR MEF cells exhibited increases in nascent 

Pvt1b compared to controls, suggesting a defect in pre-mRNA processing (Figures 

24D and 24F). Collectively, these data suggested partial inhibition of the splicing 

event linking Pvt1 exon 1b and exon 2. 

 To assess whether the processing of nascent Pvt1b into spliced Pvt1b, and 

the resulting Pvt1 ex 1b – exon 2 sequence is required for stress-dependent Myc 

repression, I analyzed Myc RNA levels in response to oncogenic or genotoxic 

stress. In negative control KPR population and PR MEF population cell lines 

infected with gTOM, exposure to oncogenic or genotoxic stress led to an expected 

decrease in Myc RNA (Figures 24E and 24G). Importantly, positive control KPR 

population and PR MEF population cell lines infected with gRE experienced a 

rescue in stress-dependent Myc downregulation (Figures 24E and 24G), consistent 

with previous findings (see Chapter 2, Figure 16). However, mutagenesis of the 

3’ end of exon 1b did not increase Myc levels following cellular stress to the extent 
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observed in gRE-infected cells (Figures 24E and 24G). Given that Pvt1b-associated 

p53RE mutagenesis resulted in near total loss of Pvt1b expression and yielded a  

~30% rescue of Myc levels, I would expect to observe a fraction of that rescue in 

Myc expression with a loss of spliced Pvt1b reaching only as high as 34% in 

gdeltaSS cells (Figures 24D and 24F). As such, these data and the importance of 

spliced Pvt1b in p53-dependent Myc repression are largely inconclusive, but could 

be further resolved with the isolation of gdeltaSS clones with biallelic 

modifications. 
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Figure 24. Probing the role of spliced Pvt1b in p53-dependent Myc repression. (A) 
Schematic of the 5’ end of the Pvt1b transcript, indicating splicing between exon 1b and exon 2 and 
its disruption due to CRISPR-induced mutagenesis of the splice site at the 3’ end of exon 1b. Region 
targeted by guide RNA (gdeltaSS) shown in red. (B, C) Mutagenesis efficiency of gdeltaSS 
estimated by Tracking of Indels by DEcomposition (TIDE) analysis in KPR cells (B) and PR MEFs 
(C) as described in (Brinkman et al., 2014). (D) Pvt1a, spliced Pvt1b, and nascent Pvt1b RNA levels 
in KPR cells infected with indicated guide RNAs, untreated or treated with tamoxifen (TAM) for 24 
h. Data show mean ± SEM (n=3, biological replicates); ns = not significant; **p < 0.01, ***p < 0.001 
and ****p < 0.0001, unpaired t test. (E) Myc RNA levels from cells in (D). Data show mean ± SEM 
(n=3, biological replicates); ns = not significant; ***p < 0.001, unpaired t test. (F) Pvt1a, spliced 
Pvt1b, and nascent Pvt1b RNA levels in PR MEFs infected with indicated guide RNAs, untreated or 
treated with tamoxifen (TAM) for 48 h and doxorubicin (DOXO) for 24 h. Data show mean ± SEM 
(n=3, biological replicates); ns = not significant; **p < 0.01, unpaired t test. (G) Myc RNA levels 
from cells in (F). Data show mean ± SEM (n=3, biological replicates); ns = not significant; unpaired 
t test. 
 

 

 

 

 

 

 

 



 107 

Discussion 

 The research presented in this chapter attempts to address whether Pvt1b 

sequence and/or structural specificity is necessary for its stress-dependent 

function in repressing Myc expression. Neither mutagenesis of sequences 

throughout Pvt1 exon 1b, nor abrogation of Pvt1b splicing was sufficient to rescue 

p53-induced Myc downregulation to the extent observed following Pvt1b 

inhibition via mutagenesis of the p53 binding site required for its expression. 

While the experiments outlined in this chapter were ultimately unsuccessful in 

identifying discrete elements of the Pvt1b transcript required for its function, these 

data do not conclusively disprove the existence of such sequence and/or structural 

motifs.  

 The analysis of cell populations with mutation heterogeneity, while useful 

in rapidly assessing the broad importance of numerous sequence elements at once, 

may not be sensitive enough to pinpoint essential sequences. There are several 

possible outcomes of such cell population-based mutagenesis experiments that 

may muddle our interpretation: (1) mutagenesis efficiency is not high enough or, 

depending on the types of indels produced by a particular guide RNA, yields 

mutations that preserve rather than disrupt critical motifs, (2) the guide RNAs 

chosen do not target close enough to key sequences to effectively alter them, and 

(3) any useful mutations that might inhibit RNA function in isolation are easily 

obscured by other, less impactful, mutations. In short, it is possible that these 

approaches are not precise enough to yield interpretable results. For example, the 

decrease in spliced Pvt1b observed in gdeltaSS KPR and PR cell lines is 

significantly less than the decrease in Pvt1b levels following p53RE mutagenesis 



 108 

and may not have been sufficient to rescue Myc levels. Therefore, it is possible a 

more robust abrogation of splicing would nullify Myc repression and recapitulate 

the results observed with Pvt1b transcriptional inhibition. One method for 

overcoming some of these pitfalls involves the isolation of clonal cell lines and 

comprehensive analysis of individual mutations. This approach can be fruitful but 

may result in clone-specific behaviors unrelated to the mutation in question. 

 Choosing the appropriate cell model in which to perform such cell 

population-based mutagenesis experiments poses an additional challenge. KPR 

cells, while a robust model for p53-dependent Myc repression under conditions of 

oncogenic stress, harbor multiple copies of the Myc-Pvt1 locus in the form of 

extrachromosomal DNA circles (see Chapter 2, Figure 13). This leads to a 

landscape of numerous distinct Cas9-induced Pvt1 mutations existing in a single 

cell, the effects of which on the expression of individual Myc alleles may vary and 

produce an average that does not reflect complex heterogeneity between loci. 

However, my experiments in PR MEFs, which do not exhibit the same extensive 

Myc-Pvt1 amplifications, support and provide an independent confirmation of our 

data in KPR cells. In summary, while this set of genetic queries did not successfully 

discover a sequence-based and/or structural mechanism for Pvt1b function, they 

do not preclude the existence of such a mechanism and alternative approaches are 

needed to better understand the functional elements of the Pvt1b transcript. 
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Chapter 4: 
Investigating the mechanism of Pvt1b-mediated Myc repression 

 

Introduction 

 Previous studies have investigated the role of histone deacetylases (HDACs) 

in p53-dependent Myc repression (Harms and Chen, 2007; Ho et al., 2005). 

Notably, Ho et al. observed decreased histone H4 acetylation marks at the Myc 

promoter following p53 activation and further posited a mechanism for p53-

induced Myc downregulation involving mSin3a, a corepressor that associates with 

HDAC1 (Ho et al., 2005). However, the function of HDACs in regulating Myc 

expression is unclear, with different studies investigating the effect of HDAC 

inhibitors on Myc levels reporting conflicting results (Majumdar et al., 2012; 

Sasakawa et al., 2003; Xu et al., 2005; Yu et al., 2020). 

 The function of lncRNAs in gene regulation via epigenetic modification is 

well-documented (reviewed in (Statello et al., 2020)). A significant example of an 

HDAC-dependent mechanism of lncRNA-mediated gene regulation is the function 

of XIST in cis-repression of the X-chromosome via SHARP/HDAC3 (McHugh et 

al., 2015). One of a family of transcriptional repressors, SHARP (also known as 

Spen) interacts with SMRT (Ariyoshi and Schwabe, 2003), a component of the 

nuclear corepressor complex with a known role in HDAC3-mediated chromatin 

deacetylation (You et al., 2013). A direct interaction between XIST and SHARP is 

required to recruit SMRT and HDAC3, enabling transcriptional silencing of the X-
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chromosome via histone deacetylation and RNA Pol II exclusion (Chu et al., 2015; 

McHugh et al., 2015; Moindrot et al., 2015; Monfort et al., 2015). Recent evidence 

from the Guttman (unpublished) and Chang (Carter et al., 2020) labs notes an 

association between SHARP/Spen and exon 2 of human and mouse Pvt1. In 

preliminary RAP-MS experiments performed by Giuseppe Militello in our lab, we 

also detected evidence for SHARP/Spen binding the Pvt1 RNA in KPR cells (data 

not shown). This may suggest a mechanism of cis-repression by Pvt1b similar to 

that employed by XIST during X-chromosome inactivation (XCI), involving 

histone deacetylation via HDAC3 recruited by SHARP/Spen (McHugh et al., 2015). 

In this chapter, I present preliminary evidence supporting a role for Pvt1b in stress-

dependent Myc repression via histone deacetylation at the Myc promoter. 

 

Results 

Histone deacetylation may be required for stress-dependent Myc 

repression 

 To confirm previous findings (Ho et al., 2005) and determine whether 

histone acetylation marks at the Myc promoter change in response to cellular 

stress, I performed H3K27ac ChIP in KPR cells following treatment with or without 

tamoxifen. Concurrent with a decrease in Myc expression, I observed 

commensurate decreases in H3K27ac marks upstream of the Myc transcriptional 

start site following exposure to oncogenic stress (Figure 25A). To gain insight into 

whether Pvt1b is required for histone deacetylation at the Myc promoter following 

p53 activation, I performed H3K27ac ChIP in KPR cells infected with gRE to 

mutagenize the Pvt1b-associated p53RE and inhibit Pvt1b expression (see 



 111 

Chapter 2). In contrast to the results observed in wildtype cells (Figure 25A), 

H3K27ac marks did not decrease in response to oncogenic stress in cells in which 

Pvt1b expression was inhibited (Figure 25B). These results, while preliminary and 

in need of repetition, suggest a potential HDAC-based mechanism underpinning 

Pvt1b function. 
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Figure 25. Histone deacetylation may be required for stress-dependent Myc 
repression. (A) Left, Myc RNA levels in KPR cells, untreated or treated with tamoxifen (TAM) 
for 24 h. Right, ChIP-qPCR analysis of H3K27ac enrichment at the Myc promoter in the same cells. 
Data show mean ± SEM (n=3, technical replicates of one biological replicate); ns = not significant; 
*p < 0.05, paired t test. (B) ChIP-qPCR analysis of H3K27ac enrichment at the Myc promoter in 
KPR cells infected with a guide RNA targeting the Pvt1b-associated p53RE (gRE), untreated or 
treated with tamoxifen (TAM) for 24 h. Data show mean ± SEM (n=3, technical replicates of one 
biological replicate); ns = not significant; paired t test.  (C,D) qRT-PCR of the ratio (+stress/-
stress) of Pvt1b and Myc expression levels in KPR cells (C) and PR MEFs (D) treated with or without 
the HDAC3 inhibitor RGFP966 for 6 h (C) or 4 h (D). KPR cells were treated with 24 h tamoxifen 
(C) and PR MEFs were treated with 48 h tamoxifen and 24 h doxorubicin (D) to induce cellular 
stress. Data in (C) show mean ± SEM (n=3, technical replicates of one biological replicate); *p < 
0.05, paired t test. Data in (D) show mean ± SEM (n=3, biological replicates); ns = not significant; 
paired t test. NT = no treatment. (E,F) qRT-PCR of the ratio (+stress/-stress) of Pvt1b and Myc 
expression levels in KPR cells (E) and PR MEFs (F) treated with or without the pan-HDAC 
inhibitors TSA or SAHA for 4 h. Treatment with cellular stress and fold induction of Pvt1b 
performed as in (C,D). Data show mean ± SEM (n=3, biological replicates); ns = not significant; *p 
< 0.05, paired t test. NT = no treatment.  Data collection and analysis performed by Giuseppe 
Militello. 
 
Contributions from G. Militello in (E) and (F) are described above. 
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Histone deacetylase inhibition rescues stress-dependent Myc 

repression 

 To query whether HDACs play a role in p53-dependent Myc repression 

more directly, I sought to determine whether the inhibition of one or more HDACs 

could rescue stress-induced Myc downregulation. Given the importance of HDAC3 

in XIST-mediated XCI, we treated KPR cells and PR MEFs with the HDAC3 

inhibitor RGFP966 in the presence and absence of stress. HDACs, including 

HDAC3, have a well-documented role in repressing the p53 pathway (Ito et al., 

2002; Monte et al., 2006; Narita et al., 2010), and treatment with RGFP966 caused 

a minor decrease in Pvt1b compared to untreated controls (Figures 25C and 25D). 

While Myc levels decreased in response to both oncogenic and genotoxic stress in 

control samples, we observed a partial, albeit nonsignificant, rescue of Myc levels 

with HDAC3 inhibition (Figures 25C and 25D). These results indicated that 

HDAC3 may play a role in p53-induced Myc repression, but do not completely 

explain the observed decreases in Myc expression. 

 To determine whether additional HDACs might be important for Myc 

downregulation under conditions of cellular stress, Giuseppe Militello performed 

experiments utilizing pan-HDAC inhibitors trichostatin A (TSA) and 

suberoylanilide hydroxamic acid (SAHA), which inhibit class I and class II HDACs, 

including HDAC3 (Xu et al., 2007). While SAHA did not have significant effects on 

Pvt1b expression relative to controls, TSA treatment caused robust downregulation 

of Pvt1b, perhaps indicating systemic effects on the p53 network (Figures 25E and 

25F). While Myc RNA levels displayed an expected decrease in the presence of 

stress, he observed a significant increase in Myc RNA in KPR cells treated with 
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either TSA or SAHA, amounting to a near-full rescue of Myc expression (Figure 

25E). Similarly, he observed robust, albeit nonsignificant, increases in Myc 

expression in stressed PR MEFs following treatment with pan-HDAC inhibitors 

(Figure 25F). Taken together, these data point to an HDAC-dependent mechanism 

for Pvt1b-mediated Myc repression. 

 

Discussion 

 The results presented in this chapter comprise a broad investigation of the 

hypothesis that Pvt1b represses Myc transcription by facilitating histone 

deacetylation at the Myc promoter in response to cellular stress. These preliminary 

data thus far point to a mechanism of p53-dependent Myc repression via histone 

deacetylation, which may require Pvt1b expression. That H3K27ac marks did not 

decrease at the Myc promoter in cells in which Pvt1b expression was inhibited, in 

contrast to wildtype cells, suggests the specific importance of Pvt1b in histone 

deacetylation. Significantly, preliminary findings from an epistasis experiment 

involving HDAC inhibition in cells lacking Pvt1b implicate HDACs as functioning 

in the same pathway as Pvt1b (data not shown), providing further support for 

Pvt1b modulating Myc expression via HDACs. However, additional mechanistic 

studies are needed to establish the link between Pvt1b, HDACs, and Myc 

repression more definitively. While HDAC3 inhibition prompted a partial rescue 

of Myc downregulation under conditions of oncogenic or genotoxic stress, the 

more prominent Myc rescue observed following pan-HDAC inhibition suggests the 

potential involvement of additional HDACs. In the future, it will be necessary to 
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determine which class I/II HDACs inhibited by TSA and SAHA are responsible for 

the stress-dependent decrease in Myc expression.  

 While my results certainly point to a role for histone deacetylation in stress-

specific Myc regulation, any potential involvement of SHARP/Spen in keeping 

with the mechanism of XIST-mediated XCI still needs to be investigated (Chu et 

al., 2015; McHugh et al., 2015; Moindrot et al., 2015; Monfort et al., 2015). I have 

designed a strategy for generating a CRISPR-mediated Spen knockout model, 

which will be useful for assessing any requirement for SHARP/Spen in p53-

dependent Myc regulation. Thoroughly validating any putative interaction 

between Pvt1b and Spen (Carter et al., 2020) via RNA immunoprecipitation (RIP) 

or crosslinking and immunoprecipitation (CLIP) studies will also be important for 

elucidating the mechanism of Pvt1b-mediated Myc repression. LncRNAs often 

engage epigenetic regulators to elicit repression (reviewed in (Statello et al., 

2020)), and the data presented here currently support this paradigm. Future work 

in our lab will focus on both further defining the functional elements of the Pvt1b 

isoform and elucidating the role of HDACs in the p53-Pvt1b-Myc regulatory axis. 
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Chapter 5: 
Generation of Pvt1 genetically engineered mouse models 

 

Introduction 

 Historically, the study of lncRNAs in cancer has benefitted from the use of 

GEMMs to probe lncRNA function in vivo (see Chapter 1). Perturbation of 

lncRNA function via genetic or epigenetic modifications to the endogenous locus 

can help overcome many issues with the study of lncRNAs in in vitro model 

systems (see Chapter 1) and can solidify our understanding of lncRNA function 

at the organismal level. Considering the power of in vivo models in resolving 

lncRNA function(s), I sought to deploy a suite of molecular tools that would enable 

elucidation of the function(s) of Pvt1 isoforms under both physiologic and 

tumorigenic conditions. 

 First, I took advantage of a well-characterized synthetic polyadenylation 

signal (PAS) to elicit premature transcription termination (Levitt et al., 1989), a 

robust genetic tool that has been used previously to clarify mechanisms of local 

gene regulation enacted by lncRNAs (Engreitz et al., 2016). The short 49 bp 

sequence, when transcribed as part of the Pvt1 locus, should cause efficient 3’ 

cleavage and polyadenylation of nascent Pvt1 transcripts (Figure 26A) (Levitt et 

al., 1989). In addition to stimulating 3’ end-processing machinery via transcription 

of a A(A/U)UAAA hexamer followed by a GU-rich tract 30 bp downstream 

(Millevoi and Vagner, 2010), PAS insertion may also suppress Pvt1 transcription 
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initiation due to the tight connection between the splicing and transcriptional 

processes (Engreitz et al., 2016). 

I chose to insert the synthetic PAS within Pvt1 exon 1b, just downstream of 

the Pvt1b transcription start site (TSS), in order to abrogate production of the full 

length Pvt1b transcript (Pvt1b-PAS, Figures 26A and 26C). Due to the efficiency 

with which polyadenylation occurs and the location of Pvt1 exon 1b downstream 

from exon 1a, I expected that a PAS insertion within exon 1b would also abrogate 

the production of nascent Pvt1a transcripts, effectively acting as a LOF model for 

both Pvt1a and Pvt1b. Therefore, to distinguish between any potentially divergent 

functions ascribed to Pvt1a and Pvt1b isoforms, I designed a separate LOF model 

specific to Pvt1a (Pvt1a-PAS) by inserting a PAS into Pvt1 exon 1a, just 

downstream of the Pvt1a TSS (Figures 26A and 26C). This model should result in 

specific abrogation of Pvt1a transcription, without negatively affecting Pvt1b, thus 

providing both a control for any experiments using the Pvt1b-PAS model and an 

important tool for elucidating Pvt1a function independent of Pvt1b. 

 To complement the Pvt1a-PAS and Pvt1b-PAS GEMMs, I designed an 

additional Pvt1 GEMM using a novel ribozyme-based tool developed in our lab to 

elicit co-transcriptional cleavage and subsequent transcript degradation (Winkler 

et al., in preparation). This strategy relies on the 74 bp-length self-cleaving 

ribozyme Twister, initially identified and characterized by the Breaker lab at Yale 

(Figure 26B) (Roth et al., 2014). In in vitro studies, Twister undergoes efficient 

self-cleavage under simulated physiologic conditions, approaching rates as high as 

~1000 min-1  (Roth et al., 2014). Twister’s small size and ability to rapidly self-

cleave via site-specific phosphodiester scission (Jimenez et al., 2015) make it an 



 118 

ideal candidate for a lncRNA LOF tool. Previous studies have demonstrated 

success using ribozymes to inhibit ncRNA accumulation in yeast and mouse cells 

(Camblong et al., 2009; Tuck and Buhler, 2021; Tuck et al., 2018) and unpublished 

results from our lab indicate that Twister robustly destabilizes transcript 

aggregation in vivo when inserted into the LincRNA-p21 locus (Winkler et al., in 

preparation). 

I chose to insert the Twister sequence into Pvt1 exon 1b in order to abrogate 

accumulation of both Pvt1a and Pvt1b transcripts, similar to the Pvt1b-PAS model 

(Pvt1b-TWI, Figure 26C). Inserting Twister into the same location as the PAS in 

the Pvt1b-PAS model enables direct comparison between the effects of premature 

polyadenylation and Twister-mediated transcript cleavage on neighboring Myc 

expression. While PAS-mediated transcript cleavage and polyadenylation leaves a 

downstream nascent cleavage product with a terminal 5’ phosphate group, a ready 

substrate for degradation by the 5’ end surveillance factor XRN2 (West et al., 

2004), the downstream fragment resulting from Twister self-cleavage instead 

possesses a 5’ hydroxyl group (Roth et al., 2014), which is unlikely to engage 

XRN2-mediated transcriptional termination (Doamekpor et al., 2020; Jinek et al., 

2011; Mathy et al., 2007; West et al., 2004). Indeed, unpublished results from our 

lab suggest that Twister-mediated RNA cleavage enables some level of 

transcription to proceed through the locus (Winkler et al., in preparation), in 

contrast to the rapid drop-off in transcription resulting from PAS insertion, usually 

within 2 Kb (Core et al., 2008). Considering that local gene regulation by lncRNAs 

may depend on the RNA transcript or the process of transcription through the 

locus alone (Engreitz et al., 2016), the Pvt1b-TWI model will provide further 
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insight into the elements of the Pvt1 transcript required for its function(s). 

Whether the Pvt1b-PAS and Pvt1b-TWI models successfully abrogate both Pvt1a 

and Pvt1b levels will need to be empirically determined, as the increased distance 

between either the polyadenylation sequence or the Twister ribozyme and the 

Pvt1a TSS may result in reduced efficiency of these LOF tools (Engreitz et al., 2016; 

Tuck and Buhler, 2021; Tuck et al., 2018). 

 In this chapter, I describe the successful generation of the Pvt1a-PAS, 

Pvt1b-PAS and Pvt1b-TWI alleles in the mouse and provide evidence for their 

germline transmission. These GEMMs set the stage for further extensive 

characterization of the contributions of Pvt1a and Pvt1b isoforms to organismal 

development and normal homeostasis, the cellular response to stress, and 

tumorigenesis. 
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Figure 26. Schematic of Pvt1 GEMMs. (A) Illustration of premature RNA cleavage and 
polyadenylation induced by insertion of a 49 bp synthetic polyadenylation signal (PAS) into an 
endogenous gene. Inhibitory line indicates transcriptional suppression. (B) Illustration of co-
transcriptional RNA degradation induced by insertion of the 74 bp self-cleaving Twister ribozyme 
(TWI) into an endogenous gene. Inhibitory line indicates transcriptional suppression. The 
structure of the Twister ribozyme is shown (adapted from Roth et al. 2014). (C) Top, schematic of 
the Myc-Pvt1 locus. Bottom, schematics of the Pvt1a-PAS, Pvt1b-PAS and Pvt1b-TWI alleles, as 
present in their associated genetically engineered mouse models (GEMMs). 
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Results 

Design and generation of in vivo Pvt1a-PAS, Pvt1b-PAS and Pvt1b-TWI 

alleles 

 Pvt1a-PAS, Pvt1b-PAS and Pvt1-TWI mice were generated in collaboration 

with Adam Williams and Rick Maser at the Jackson Laboratory for Genomic 

Medicine (JAX). We chose candidate guide RNAs based on predicted specificity 

scores (Concordet and Haeussler, 2018) and the criteria that Cas9 cleavage and 

subsequent insertion of either PAS or TWI occur <100 bp from Pvt1a and Pvt1b 

TSSs to increase the likelihood of efficient premature transcript termination or co-

transcriptional transcript degradation, respectively. The final two guide RNAs, one 

targeting Pvt1 exon 1a (gEx1a) and one targeting Pvt1 exon 1b (gEx1b), were 

selected based on cleavage efficiency estimates from in vitro analyses performed 

at JAX (Figure 27A; data not shown). Homology directed repair (HDR) templates 

were subsequently designed with either the 49 bp PAS or the 74 bp TWI sequence 

inserted at the expected Cas9 cleavage site with appropriate length homology arms 

on either side of the altered DNA. Single-stranded oligo donors (ssODNs) were 

constructed complementary to the non-target strand to increase repair efficiency 

(Richardson et al., 2016). 

Briefly, mouse embryos were electroporated with guide RNA:Cas9 

ribonucleoprotein (RNP) complexes and the appropriate homology directed repair 

(HDR) templates to generate Pvt1a-PAS, Pvt1b-PAS and Pvt1b-TWI alleles. These 

embryos were surgically implanted into pseudo-pregnant mice and we received the 

resulting litters from JAX including at least five potential founder mice for each 
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allele with successful knock-ins based on initial genotyping performed by JAX 

(data not shown). 
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Figure 27. Pvt1-PAS, Pvt1b-PAS, and Pvt1b-TWI genotyping. (A) Schematic of the mouse 
Pvt1 locus highlighting in vivo CRISPR/Cas9 editing strategy, including guide RNAs used to edit 
Pvt1 exon 1a (gEx1a) and exon 1b (gEx1B), respectively. Red lines indicate location of genotyping 
primers. (B-D) Gel images of genotyping results from potential (B) Pvt1a-PAS, (C) Pvt1b-PAS, and 
(D) Pvt1b-TWI founder mice. Allele combinations of each mouse indicated. PAS = Polyadenylation 
sequence; TWI = Twister ribozyme; KI = Knock-in; WT = Wildtype. Genotyping performed by 
Nadya Dimitrova. (E) Gel images of genotyping results from F1 mice, generated by backcrossing 
Pvt1 mutant (mut) founder mice to wildtype (wt) mice to produce heterozygotes. Genotyping 
results from F1 heterozygous mice with germline transmission of Pvt1a-PAS, Pvt1b-PAS, and 
Pvt1b-TWI alleles are shown. PAS = Polyadenylation sequence; TWI = Twister ribozyme; WT = 
Wildtype. Matings and genotyping performed by Nadya Dimitrova. 
 
Contributions from N. Dimitrova in (B-E) are described above. 
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Germline transmission of Pvt1a-PAS, Pvt1b-PAS, and Pvt1b-TWI 

alleles 

 As founder mice are subject to mosaicism, it is necessary to deconvolve the 

altered Pvt1 alleles and establish germline transmission of successful knock-ins. 

First, the presence of Pvt1a-PAS, Pvt1b-PAS and Pvt1b-TWI alleles in potential 

founder mice was confirmed by genotyping of DNA extracted from mouse tail 

clippings (Figures 27A-D). In multiple independent founders, increases in band 

size compared to wildtype mice were observed, indicating varying degrees of 

successful PAS and TWI knock-ins (Figures 27B-D). All five potential Pvt1a-PAS 

founders appeared homozygous for PAS knock-in, six potential Pvt1b-PAS 

founders appeared heterozygous for PAS knock-in, and analysis of potential Pvt1b-

TWI founders revealed one homozygous and four heterozygous for TWI knock-in 

(Figures 27B-D). 

 To establish germline transmission, founder mice were crossed to wildtype 

C57BL/6J mice. Heterozygous mice constitute generation F1 (filial 1) and are 

poised to be utilized in future experiments, as they, unlike the founder mice, do not 

suffer from the challenges associated with mosaicism. Crossing two F1 

heterozygous mice together will produce a litter of wildtype mice and mice 

heterozygous or homozygous for the altered allele, enabling further analyses. 

Therefore, the establishment of germline transmission for all Pvt1a-PAS, Pvt1b-

PAS, and Pvt1b-TWI alleles and production of F1 mice heterozygous for these 

altered alleles paves the way for downstream analyses (Figure 27E). 
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Discussion 

In summary, this chapter describes the design and generation of the Pvt1a-

PAS, Pvt1b-PAS and Pvt1b-TWI mouse models, the combination of which will 

allow us to better understand and define the functional elements of the Pvt1 locus 

and its associated isoforms. Future experiments will focus on characterizing the 

effects of these mutant alleles on both Pvt1 transcription and transcript stability, 

and on neighboring Myc expression. Careful analysis of the efficacy of the PAS and 

TWI alleles in vivo and how they influence local regulation of Myc will allow us to 

more precisely describe how Pvt1b represses Myc transcription, and whether this 

requires Pvt1b RNA production alone, or additionally requires the Pvt1b RNA 

transcript itself. In addition, the inclusion of a Pvt1a-specific mouse model, will 

provide insight into the potentially divergent functions of the Pvt1a and Pvt1b 

isoforms and whether pro- and anti-tumorigenic functions coexist in the same 

locus. 

Importantly, the insertion of either the synthetic polyadenylation signal or 

the Twister ribozyme constitutes the addition of a short (<100 bp) sequence into 

the endogenous Pvt1 locus without requiring the deletion of any DNA elements. 

Previous work has demonstrated the role of DNA elements encoded in the Pvt1 

locus in positively and negatively regulating Myc expression (Cho et al., 2018; 

Fulco et al., 2016), suggesting the importance of minimal disruption to the 

endogenous sequence in Pvt1 GEMM design considerations. Deletion of over 300 

Kb of the Pvt1 locus in vivo resulted in reduced stability of the Myc protein (Tseng 

et al., 2014), but raised questions about the relative functional contributions of the 

Pvt1 RNA itself compared to DNA elements. In comparison, the mouse models 
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described above do not delete, and should largely avoid the disruption of, DNA 

elements, providing an opportunity to assess the role of the Pvt1 RNA and its 

production more directly. 

In addition to helping elucidate molecular mechanism, these three GEMMs 

will improve our understanding of the importance of Pvt1 at the organismal level. 

For example, analysis of developmental timepoints and aging studies will shed 

light on any physiologic effects observed as a result of Pvt1 loss, and may suggest 

new roles in organism growth and homeostasis. While Pvt1 loss alone may not be 

sufficient to predispose animals to spontaneous tumor development, crossing the 

Pvt1a-PAS, Pvt1b-PAS and Pvt1b-TWI models with established cancer models will 

enable investigation of the importance of Pvt1 in promoting or suppressing various 

cancer types. There is much that we still do not understand about the role of Pvt1b 

as a tumor suppressor, For example, previous work has demonstrated that Pvt1b 

loss increases oncogenic K-ras-driven tumor growth (see Chapter 2, Figure 19). 

However, it is unknown whether Pvt1b loss in combination with loss of another 

tumor suppressor gene may constitute a second “hit” in the “two-hit hypothesis” 

framework of cancer development (Knudson, 2001) and be sufficient to drive 

tumorigenesis. Taken together, these novel GEMMs provide an unprecedented 

opportunity to further our knowledge of Pvt1’s roles in development and disease 

and inform our understanding of lncRNA function at the organismal level. 
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Chapter 6: Summary and Perspectives 

 

Here I have identified and characterized Pvt1b, revealing a bona fide tumor 

suppressor function embedded in the Pvt1 locus and mediated by a stress-specific 

lncRNA isoform. This work substantially contributes to both the fields of cancer 

biology and lncRNA biology by (1) improving our understanding of the regulatory 

feedback between the p53 tumor suppressor and Myc proto-oncogenic networks 

and its physiological impacts on cancer initiation and development, and (2) 

uncovering a novel lncRNA isoform-switching mechanism that enables swift locus-

specific reverse regulation downstream of a transcriptional activator. In employing 

diverse LOF and GOF tools in powerful in vitro and in vivo model systems, I 

provided critical insight into how, and the extent to which, Pvt1b contributes to 

tumor suppression and growth inhibition downstream of p53 activation. 

I found that Pvt1b is rapidly induced by genotoxic and oncogenic stress in a 

p53-dependent manner. The production of the Pvt1b RNA, 50 Kb downstream of 

the Myc locus, is necessary and sufficient to repress Myc transcription in cis, with 

negative functional consequences on Myc transcriptional activity and cellular 

proliferation. Importantly, using a genetic LOF model specific to p53 function, I 

demonstrated that Pvt1b inhibition increases Myc expression, cellular 

proliferation, and tumorigenesis under conditions of cellular stress. These 

observations complicate the long-standing classification of Pvt1 as an oncogenic 

lncRNA, which stems from decades of evidence linking its elevated expression to 
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the increased proliferative and invasive capacities of cancer cells (Cui et al., 2016) 

as well as increased tumor aggressiveness and poor patient survival (Zhu et al., 

2017). In stark contrast to this body of literature, I have unearthed a novel tumor 

suppressor function for this lncRNA gene, previously hidden in the vast expanse of 

the complex pro-oncogenic Pvt1 locus. My work does not contradict the wealth of 

evidence implicating Pvt1 as an oncogenic lncRNA, which dates back to its 

discovery nearly 40 years ago (Cory et al., 1985; Graham et al., 1985). Instead, we 

can now propose a more nuanced and holistic model for Pvt1 function that 

incorporates both tumor suppressive and oncogenic activities as mediated by 

different elements of the Pvt1 locus and its associated RNAs. 

The study of cancer-associated genetic and epigenetic alterations and their 

frequencies has implicated both coding and noncoding genes as potential drivers 

of tumorigenesis (see Chapter 1). As such, the identification of recurrent genetic 

rearrangements involving the lncRNA Pvt1 locus provided strong impetus for the 

study of Pvt1 in the context of cancer (Cory et al., 1985; Graham and Adams, 1986; 

Graham et al., 1985; Shtivelman et al., 1989). In keeping with co-amplifications of 

the Myc-Pvt1 locus observed in tumors (Riquelme et al., 2014), co-gain of Myc and 

Pvt1 was found to advance cancer progression in a mouse model of breast cancer 

(Tseng et al., 2014). Importantly, gain of either Myc or Pvt1 alone had more limited 

effects on tumor growth, suggesting a pro-oncogenic synergy between these two 

loci, perhaps deriving from a role for the Pvt1 RNA in promoting Myc protein 

stability (Tseng et al., 2014). Several additional molecular mechanisms have been 

proposed to describe the tumor-promoting function of Pvt1, including its function 

as a miRNA sponge (Panda et al., 2017; Zhao et al., 2018), its role in epigenetically 
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repressing tumor suppressor genes via association with chromatin modifying 

complexes (Kong et al., 2015), and its ability to stabilize oncoproteins (Xu et al., 

2017). Distinct from these proposed oncogenic functions, my work and the work of 

others demonstrates a function for the Pvt1 locus in restricting Myc expression to 

limit tumorigenesis, either through DNA elements (Cho et al., 2018; Fulco et al., 

2016) or through stress-induced production of the Pvt1b RNA, as shown here. The 

discovery of both activating and repressive DNA elements in the Pvt1 locus that 

regulate Myc expression calls into question previous assumptions about Pvt1 

function (Fulco et al., 2016), suggesting a more nuanced picture of Pvt1 regulatory 

roles.  

The tumor suppressive function of Pvt1 may have operated under the radar 

of cancer biologists due to the frequent inactivation of the p53 network in tumor 

development. In such cases where Pvt1b is inhibited due to genetic alterations in 

the Pvt1 locus or the removal of upstream activating signals, the oncogenic 

activities of Pvt1 would be expected to predominate. This may explain the 

acquisition of extrachromosomal DNA (ecDNA) circles harboring Myc-Pvt1 co-

amplifications in p53-deficient KPR cells, as well as the recent observation of a 

Myc-Pvt1 ecDNA genomic rearrangement in a human colon cancer cell line, which 

fused exon 1 of Pvt1 to exons 2 and 3 of Myc, disrupting normal cis-regulatory 

circuits in the locus (Hung et al., 2020). Interestingly, genomic alterations in the 

region surrounding the Pvt1 p53RE are common. Several studies have documented 

translocations specifically involving the first exon of Pvt1 fused to a number of 3’ 

gene partners across a variety of malignancies (Iwakawa et al., 2013; Nagoshi et 

al., 2012; Northcott et al., 2012), and various somatic mutations encompassing the 
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Pvt1 promoter (Cho et al., 2018). In p53-proficient tumors, such genetic 

aberrations might be expected to either separate the Myc locus from Pvt1b, likely 

rendering Pvt1b incapable of repressing Myc in trans, or potentially destroy the 

p53RE required for Pvt1b expression, thus providing cells with a proliferative 

advantage. Future studies of Pvt1 in cancer should therefore consider whether 

observed Pvt1-associated tumor-promoting effects derive from the activation of its 

oncogenic features, the disruption of its tumor suppressive features, or some 

combination thereof. 

Pvt1 functional studies have largely been performed in cancer backgrounds. 

However, surprisingly little knowledge has been amassed concerning the function 

of Pvt1 under physiological conditions, with the biological relevance of some 

proposed regulatory activities of Pvt1 unclear due to their inherent cancer-

specificity (Cho et al., 2018). Here I have provided insight into this mystery by 

demonstrating that Pvt1b is a target of the p53 gene expression program, and is 

therefore linked to normal cellular homeostasis and the cellular response to stress. 

Researchers long puzzled over the molecular mechanism(s) underpinning the 

negative regulatory feedback observed between the p53 and Myc pathways, and 

whether p53 activation played a direct or indirect role in Myc repression. Several 

models to explain this phenomenon have been proposed, including histone de-

acetylation at the Myc promoter via direct p53 binding (Ho et al., 2005), p53 

induction of Myc-targeting miRNAs (Christoffersen et al., 2010; Sachdeva et al., 

2009), and p53 binding to a distal repressor element in the Pvt1 locus to reduce 

Myc levels (Porter et al., 2017). Pvt1 has been previously identified as a p53 target 

gene in several studies (Allen et al., 2014; Barsotti et al., 2012), but the role of Pvt1 
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within the p53 transcriptional program, if any, was virtually unexplored. 

Expanding on these findings, I provided evidence that induction of Pvt1b by p53 is 

the primary mediator of p53-dependent Myc repression using two distinct LOF 

systems. Therefore, Pvt1b joins a class of p53-regulated lncRNAs responsible for 

executing important growth-inhibitory functions within the p53-coordinated 

tumor suppressor response (Dimitrova et al., 2014; Hung et al., 2011; Schmitt et 

al., 2016). While p53 has been previously implicated in the indirect repression of 

cell cycle genes through the p53-DREAM (p53–p21–DREAM–E2F/CHR) pathway 

(reviewed in (Engeland, 2018)), to my knowledge Pvt1b is the first example of a 

p53-regulated lncRNA enacting local repression of a growth-promoting gene. 

Indeed, work from our lab has found that cis-acting lncRNA targets of p53 often 

engage in positive co-regulatory relationships with neighboring loci, while Pvt1b is 

currently the only known outlier in this trend (Tesfaye et al., In review). Taken 

together, I propose a model whereby p53 induces Pvt1b to dampen proliferative 

signaling during potential cancer-initiating events. As such, Pvt1b acts at the 

intersection between two pervasive transcription networks, providing a crucial 

avenue of communication that allows cells to prioritize tumor suppression over 

continued growth under conditions of stress. 

While I describe a stress-specific role for Pvt1b in restricting Myc 

expression, the molecular mechanism underlying this regulatory relationship is 

still a matter of open investigation. Both the localization of Pvt1b near its TSS and 

the negative effect of Pvt1b induction on neighboring Myc transcription clearly 

establish a cis-regulatory model for Pvt1b function. Moreover, the effects of ASO-

mediated depletion or endogenous activation of Pvt1b point to a role for the Pvt1b 



 132 

RNA in Myc repression, as opposed to DNA elements in the locus. Importantly, 

p53 is not explicitly required for this effect, as upregulation of Pvt1b alone is 

sufficient to drive Myc downregulation. ASO-mediated depletion of Pvt1b reduced 

Myc levels, suggesting a role for the RNA molecule itself; however, we cannot 

formally exclude a role for the act of Pvt1b transcription in mediating Myc 

repression, especially in light of recent evidence that ASOs can cause premature 

transcription termination (Lee and Mendell, 2020). Indeed, my Pvt1 exon 1b-

targeting ASOs act near the Pvt1b TSS, rendering it impossible to distinguish 

between the effects mediated by the Pvt1b RNA or its production. However, my 

findings concerning the role of HDACs in Myc repression via p53-dependent 

deacetylation of the Myc promoter, and the potential requirement for Pvt1b in this 

process, while preliminary, strongly suggest a function for the lncRNA molecule. 

Modulation of epigenetic marks is a common mode by which lncRNAs regulate 

gene expression, especially in cis (see Chapter 1). Therefore, we may envision 

Pvt1b as acting in a similar manner to lncRNA Morrbid, regulating a neighboring 

gene via association with chromatin modifying complexes to influence critical cell 

survival decisions (Kotzin et al., 2016). Notably, the additional evidence that Pvt1b 

binds SHARP (Carter et al., 2020), a transcriptional repressor known to function 

in Xist-mediated histone deacetylation of the X-chromosome (McHugh et al., 

2015) and predicted to have Xist-like repressive activity via computational analysis 

(Kirk et al., 2018), may implicate Pvt1b as engaging in a similar mechanism of 

action to Xist. Future work will explore this possibility. 

Our inability to identify sequences in Pvt1 exon 1b required for p53-

dependent Myc repression does not preclude a role for the RNA molecule, or 
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indeed the existence of sequence-specific function. My attempts to mutate critical 

Pvt1b sequence and/or structural motifs may not have been efficient or pervasive 

enough to produce effects at the population level. On the other hand, the ~200 bp 

stretch of nucleotides unique to the Pvt1b isoform may be dispensable to its 

function. The existence of RNA sequence-independent lncRNA mechanisms has 

been insinuated by the nonspecific interactions between RNAs and PRC2 

(Davidovich et al., 2013). Indeed, some proteins can engage in dynamic and 

promiscuous RNA interactions in the absence of a true RNA-binding domain due 

to intrinsically disordered regions (IDRs) (Protter et al., 2018). The structural 

disorder of IDRs also favors liquid-liquid phase separation (LLPS), and IDR-

containing proteins have been shown to interact with lncRNAs in the formation of 

nuclear and cytoplasmic condensates (Garcia-Jove Navarro et al., 2019; Yamazaki 

et al., 2018). As such, Pvt1b may associate with IDR-containing proteins or other 

RBPs to repress Myc in a sequence-independent manner, although this possibility 

requires further investigation. 

Critically, Nadya Dimitrova and Clara Liao demonstrated a role for Pvt1b in 

restricting tumor growth at the organismal level using an autochthonous mouse 

model of lung cancer. In the KC mouse, tumorigenesis is driven by oncogenic K-

ras and is exquisitely sensitive to p53 loss. Tumor-specific Pvt1b ablation in this 

background had profound consequences, producing tumors that were larger than 

their Pvt1b-expressing counterparts and increasing tumor burden almost to the 

extent observed with p53 loss. Epistasis analysis and the absence of increases in 

tumor grade in Pvt1b-deficient tumors revealed a highly specific and powerful role 

for Pvt1b downstream of p53 activation in curtailing tumor growth. In this way, 
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Pvt1b acts as a critical barrier to the ability of cancer cells to proliferate unchecked, 

joining the ranks of a select number of cancer-associated lncRNAs with 

documented roles in tumorigenesis in vivo (Gupta et al., 2010; Gutschner et al., 

2013; Mello et al., 2017). While this LOF model does not allow for differentiation 

between the effects of DNA elements in the Pvt1 locus and the Pvt1b RNA, the 

Pvt1a-PAS, Pvt1b-PAS, and Pvt1b-TWI mouse models, generated in the course of 

this work, should distinguish the functional elements of Pvt1 transcripts with a 

higher degree of sensitivity. 

An exciting implication from this work is the significant influence cis-acting 

lncRNAs can exert over cellular activities via highly specific local gene regulation. 

Pvt1b represses one transcription factor downstream of another transcription 

factor, thus acting as a mediator between two gene expression networks to rapidly 

fine-tune cellular outputs in response to a specific cellular input. To my knowledge, 

Pvt1b is the first example of a lncRNA acting in this manner, although cis-

regulation of transcription factors by lncRNAs may be far more commonplace (Liu 

et al., 2018). The closest example I could find of a similar lncRNA mechanism is 

that of NANCI (Nkx2.1-Associated Noncoding Intergenic RNA). NANCI is induced 

downstream of Wnt (Wingless/Integrated) signaling, upon which it upregulates its 

neighbor NKX2.1 (NK2 Homeobox 1) to influence lung epithelial development 

through the activation of a plethora of NKX2.1 target genes (Herriges et al., 2014). 

Differing only in whether their cis-regulation is activating or repressive, NANCI 

and Pvt1b may represent the founding members of a burgeoning class of cis-acting 

lncRNAs that function at the intersection of transcription programs to influence 

gene expression on a broader scale. Considering the speed with which lncRNAs can 



 135 

be produced relative to proteins, lncRNAs are uniquely poised to swiftly and 

dynamically respond to cellular stimuli. Cis-acting lncRNAs are even more well-

suited for this task because their site of transcription is the same as their site of 

action. In this way, Pvt1b as an expeditious regulatory lever is similar to p53 itself, 

which is constitutively produced and degraded, and therefore always primed for 

rapid activation. Global analyses have revealed many lncRNAs expressed in close 

spatial proximity to genes with roles in transcription regulation including 

transcription factors and chromatin modifiers (Guttman et al., 2009; Ponjavic et 

al., 2009). Such lncRNAs are co-expressed with their neighboring protein-coding 

gene(s) more frequently than expected by chance, suggesting functional regulatory 

relationships (Ponjavic et al., 2009). Taken together, cis-acting lncRNAs may play 

outsized roles in global gene regulation and are apt candidates for transmitting 

rapid feedback between cellular pathways. As such, future studies should pay 

particular attention to lncRNAs adjacent to genes with broad transcription 

regulatory capabilities. 

One compelling discovery from my work is the identification of an isoform-

specific function for Pvt1b. Traditionally, studies have viewed lncRNA loci as 

discrete functional units, with many lncRNA genetic LOF models based on deletion 

of either the entire lncRNA locus, or the promoter, resulting in complete loss of 

lncRNA expression (see Chapter 1). In recent years, our expanding 

understanding of the numerous and interconnected functional elements of lncRNA 

genes has prompted the development of more targeted genetic models that attempt 

to disrupt or enhance specific features of the lncRNA transcript while preserving 

as much of the endogenous locus as possible (see Chapter 1). Increased attention 
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to how lncRNAs produce a particular regulatory output, and whether these 

functions are transcript-dependent or transcript-independent has encouraged the 

use of innovative and thoughtful experimental tools and approaches. That 

transcript-dependent lncRNA mechanisms can involve varied RNA-DNA, RNA-

RNA, and RNA-protein interactions is now well-documented (reviewed in 

(Statello et al., 2020)). While it is understood that the abundance and availability 

of lncRNA interactors may change in different cellular contexts, little attention has 

been paid thus far to how alterations in the lncRNA transcript itself might 

influence function in response to cellular inputs. 

The alternative splicing and processing of lncRNAs presents numerous 

opportunities for the production of transcripts with diverse functions and 

mechanisms of action. The sequence and/or structural motifs in a lncRNA 

transcript often dictate function by specifying the molecular interactions in which 

a lncRNA can engage (reviewed in (Zampetaki et al., 2018)). Therefore, it stands 

to reason that the inclusion or exclusion of defined regions of a lncRNA transcript 

through alternative transcript initiation, processing, or termination events may 

expand, restrict, or otherwise transform a lncRNA’s regulatory repertoire. Multi-

exonic lncRNAs can be spliced in numerous combinations, potentially producing 

transcripts with different functions due to the combination of specific sequence 

motifs, or the generation of rare exon-exon junctions, which may influence the set 

of possible RBPs, or other factors, a lncRNA can bind. Our analysis of splice 

junctions in nascent Pvt1 RNAs revealed abundant transcripts produced from the 

Pvt1 locus, composed of various combinations of exons. Similar diversity in 

spliceoforms has been observed for other lncRNAs (Niemczyk et al., 2013). There 
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are few examples of lncRNA isoforms executing distinct regulatory functions, 

including a SNP-specific function for PCAT19 in prostate cancer (Hua et al., 2018) 

and a role for a long isoform of CCAT1, CCAT1-L, in transcriptional regulation of 

MYC (Xiang et al., 2014). However, Pvt1 is unique in that the tumor suppressor 

function of the stress-induced Pvt1b coexists alongside the varied, and potentially 

oncogenic, activities of the constitutively transcribed Pvt1a. Fortunately, advances 

in the depth and sensitivity of RNA-sequencing technologies may enable more 

robust identification of lncRNA isoforms moving forward, paving the way for an 

improved understanding of lncRNA isoform-dependent activities. 

Finally, this work has important implications for Myc-based therapeutic 

interventions in cancer. Myc-driven cancers can regress upon Myc inhibition 

(Soucek et al., 2002), suggesting its potency as a therapeutic target. However, drug 

development efforts have been challenged by the absence of a targetable binding 

pocket on the surface of Myc (Dang et al., 2017). LncRNA perturbation can provide 

alternative avenues for therapeutic intervention as a way of side-stepping so-called 

‘undruggable’ proteins. This therapeutic perturbation can be accomplished in 

several ways, with the most common and clinic-ready approaches including: 1) 

small interfering RNAs (siRNAs) and ASOs to achieve lncRNA degradation and 2) 

ASOs, often in the form of locked nucleic acids (LNAs), to cause steric disruption 

of lncRNA function by altering splicing, inhibiting specific lncRNA-binding 

partner interactions or causing a change in secondary structure formation (Arun 

et al., 2018). In principle, cis-acting lncRNAs make particularly attractive 

therapeutic targets; with such confined regulatory outputs, their perturbation may 

be less likely to trigger unwanted off-target effects. Theoretically, Pvt1b induction 
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in p53-deficient tumors may provide a way to limit Myc expression at its source. 

However, current clinic-ready technologies target RNAs for degradation and, in 

practice, Myc repression via Pvt1b would instead require its upregulation from the 

endogenous locus. Targeting lncRNA molecules to specific genomic locations in 

vitro has been made possible by CRISPR (Shechner et al., 2015). However, 

deployment of this technology in vivo is unlikely to happen for many years. 

Nonetheless, the prospect of modulating Myc expression in cancer, via Pvt1b or 

otherwise, is exciting and should be explored further in the future. 
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Final Remarks 

 

Previous work has often treated Pvt1 as a simple genetic unit, not always 

leaving space for complex regulatory functions that may arise from its 300 Kb of 

genomic information. My distinction between the Pvt1a and Pvt1b isoforms 

provides an avenue to re-evaluate Pvt1 and, by extension, its relationship to Myc, 

in a new light. My findings do not necessarily conflict with the body of literature 

supporting a synergistic relationship between Myc and Pvt1. Rather, they raise the 

possibility that Pvt1a and Pvt1b may have distinct, and perhaps opposing, 

functions, with DNA elements in the Pvt1 locus and Pvt1a cooperating with Myc to 

promote its expression and activity, and Pvt1b acting as a stress-specific molecular 

brake for this process. This multiplicity of function may not be restricted to the 

Pvt1 locus, suggesting that the lncRNA class as a whole should be re-examined for 

alternative functions encoded in lncRNA loci. Our work further highlights the 

potential for cis-acting lncRNAs, when expressed in close proximity to 

transcription factors or other protein-coding genes with widespread influence, to 

exert profound control over cellular operations. Taken together, the results 

presented here implicate Pvt1b as a central node of communication between the 

p53 and Myc transcription networks, which enacts selective gene repression 

downstream of a broad transcriptional activator to limit cell growth and perhaps 

prevent cancer before its onset. Future studies should focus on both identifying the 

element(s) of Pvt1b required for Myc repression, and disentangling the intricacies 

of the Pvt1 locus to illuminate its varied, and perhaps isoform-specific, functions. 



 140 

Chapter 7: Materials and Methods 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Mouse strains  

All animal work was conducted in accordance with a protocol approved by 

the Yale University Institutional Animal Care and Use Committee. K-rasLSL-G12D/+
 

(K) and p53FL/FL (P) mice were previously described (Jackson et al., 2005; Jackson 

et al., 2001) and obtained from the laboratory of T. Jacks (MIT). Rosa26-

Cas9LSL/LSL (C) mice were previously described (Platt et al., 2014) and purchased 

from Jackson Laboratories (026556). Wild-type (WT) C57BL/6J mice were 

purchased from Jackson Laboratories (000664). Pvt1a-PAS, Pvt1b-PAS and 

Pvt1b-TWI mice were generated using CRISPR/Cas9-mediated engineering in 

C57BL/6J mice in collaboration with Rick Maser and Adam Williams at the 

Jackson Laboratory for Genomic Medicine. In brief, guide RNA:Cas9 

ribonucleoprotein (RNP) complexes and HDR templates were introduced into 

embryos via electroporation. Mice carrying successful knock-ins were identified by 

PCR-based genotyping and germline transmission was established by 

backcrossing once to WT (C57BL/6J) mice. Guide RNA and HDR template 

sequences can be found in Supplementary Table 1; genotyping primer sequences 

can be found in Supplementary Table 2. 

For irradiation experiments, 4-8 months-old mice were irradiated with 6 Gy 

of whole body irradiation and sacrificed 6 hours post irradiation. For tumor studies, 

3-6 months-old mice were used. Experiments were performed blind to gender and 
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with an equal distribution of males and females in each experimental group. 

 

Cell culture and drug treatments  

WT MEFs were isolated from embryos at E13.5 from timed matings of WT 

C57BL/6J animals. All MEF experiments were performed at passages 2-10. KPR8 

lung adenocarcinoma cell line of the genotype K-rasG12D/+; p53LSL/LSL; Rosa-

CreERT2 was previously established from spontaneously arising primary tumors 

isolated from K-rasLA2-G12D/+; p53LSL/LSL; Rosa-CreERT2 mice, as previously 

described (Feldser et al., 2010). p53-restorable p53LSL/LSL; Rosa-CreERT2 MEFs 

were previously described (Ventura et al., 2007). Genotypes and Tam-mediated 

restoration of p53 expression were validated by genotyping and by qRT-PCR and 

immunoblotting, respectively. Puromycin-sensitive KPR8 (KPR) and p53-

restorable MEF clones were generated by transient transfection with a guide RNA 

targeting the ORF of puromycin to inactivate the puromycin-resistance gene 

expressed from the Stop cassette, cloned downstream of a U6 promoter in a 

BRD004 lentiviral construct (a gift from the Broad Institute, MIT) that co-

expresses spCas9 and GFP. Normal human fetal lung fibroblasts were purchased 

from the NIA Aging Cell Culture Repository (TIG-1, NG06173). Primary MEFs and 

human fibroblasts were maintained in DMEM (Gibco) supplemented with 15% 

FBS (F0926, Sigma-Aldrich), 50 U/ml pen/strep (Gibco), 2 mM L-glutamine 

(Gibco), 0.1 mM non-essential amino acids (Gibco), and 0.055 mM b-

mercaptoethanol (Gibco). Cancer cells and 293 viral packaging cells were cultured 

in DMEM supplemented with 10% FBS, 50 U/ml pen/strep, 2 mM L-glutamine, 

and 0.1 mM non-essential amino acids. All cell cultures were maintained at 37°C 
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in a humidified incubator with 5% CO2. Viral titering was performed in 3TZ cells, 

a derivative of 3T3 cells, expressing a LSL-LacZ transgene (generously provided by 

the laboratory of T. Jacks, MIT).  

To delete the loxP-STOP-loxP (LSL) cassette preventing p53 expression, 

cells were treated with 0.5 µM 4-hydroxytamoxifen (Tam, Cayman Chemical 

Company). To induce DNA damage, cells were treated with 0.5 µM doxorubicin 

(Doxo, Sigma-Aldrich) or 50 µM etoposide (Etop, Millipore Sigma) for smRNA-

FISH studies. To assess protein stability, cells were treated with 50 µg/ml 

cycloheximide (Chx, Sigma-Aldrich) for the indicated times. To inhibit HDAC3, 

cells were treated with 14 µM RGFP966 (MedChem Express). To inhibit all HDACs, 

KPR cells were treated with 50 ng/ml trichostatin A (TSA, Sigma-Aldrich) or 50 

nM suberoylanilide hydroxamic acid (SAHA, Sigma-Aldrich) and p53-restorable 

MEFs were treated with 25 ng/ml TSA or 75 nM SAHA, respectively. 

 

Constructs  

Mutagenesis of p53REs in cultured cells was performed with a gRNA 

targeting the p53RE of Pvt1b (gDRE) or Gm26542 (g1 or g2), cloned downstream 

of a U6 promoter in BRD001 or BRD004 lentiviral constructs (gifts from the Broad 

Institute, MIT) that co-express spCas9 and either an IRES-driven puromycin-

resistance gene or GFP, respectively. Mutagenesis of Pvt1 exon 1b or the Pvt1 exon 

1b splice site in cultured cells was performed with gRNAs targeting across the Pvt1 

exon 1b sequence (gALT1-11) or a gRNA targeting the 3’ end of exon 1b (gdeltaSS), 

respectively, each cloned into the BRD001 lentiviral construct, as previously 
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described. Control gRNA targeting dTomato (Con) was used as a negative control. 

Tumor-specific mutagenesis of p53REs in vivo was performed with gRNAs cloned 

downstream of a U6 promoter in UGPC (U6-gRNA-PGK-Cre) lentiviral vector. 

UGPC-Con targeting dTomato was used as a negative control. UGPC-p53KO 

targeting the ORF of p53 was used as a positive control (Xue et al., 2014). For 

CRISPRa experiments, a lentiviral vector (lenti-SAM-Hygro) was constructed to 

co-express nuclease-proficient spCas9, a U6-driven 15-mer ʻdead RNAʼ (dRNA) 

extended by two MS2 loops (dRNA-MS2) (Dahlman et al., 2015), the 

transcriptional activator domains p65 and HSF1 fused to the MS2-binding protein 

(MBP), and a hygromycin-resistance gene. All sgRNA and dRNA sequences used 

in this study can be found in Supplementary Table 1. 

Lentivirus was produced in 293 cells by co-transfecting the lentiviral 

constructs with pCMV-dR8.2 dvpr (Addgene plasmid #8455) and pCMV-VSV-G 

(Addgene plasmid #8454) viral packaging constructs. Viral containing 

supernatants supplemented with 4 µg/ml polybrene (Millipore Sigma) were used 

to infect WT MEFs and KPR cells by 2-3 consecutive lentiviral infections, delivered 

at 24 hour-intervals. Following infections, cells were selected with 5 µg/ml (KPR) 

or 2 µg/ml (MEFs) puromycin (Sigma-Aldrich) or 800 µg/ml hygromycin (Roche). 

UGPC lentivirus was prepared as above, concentrated by ultracentrifugation, and 

titered by infecting 3TZ cells and determining the number of viral particles based 

on the fraction of LacZ-positive cells as previously described (DuPage et al., 2009). 

Mutagenesis of the Pvt1b and Gm26542 p53REs was confirmed by PCR 

amplification of the region, subsequent cloning into pCR-Blunt II-TOPO® vector 

(Invitrogen) and Sanger sequencing. Mutagenesis of the Pvt1 exon 1b sequence and 
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the Pvt1 exon 1b splice site was confirmed by PCR amplification of the region, 

Sanger sequencing and Tracking of Indels by Decomposition (TIDE) analysis 

(Brinkman et al., 2014). Primers used in mutagenesis efficiency estimates can be 

found in Supplementary Table 2. 

For overexpression experiments, full-length Pvt1a (exon 1a-10) and Pvt1b 

(exon 1b-10) cDNAs were synthesized as gene blocks and cloned into pWZL Hygro 

retroviral vector (Addgene plasmid #18750). 5 µg of empty vector, Pvt1a-, or 

Pvt1b-expressing constructs were transfected into 1-3x106 WT MEFs using the 

Amaxa Mouse/Rat Hepatocyte Nucleofector Kit (Lonza, VPL-1004) and the 

Nucleofector 2b Device (Lonza). Analysis was performed at 48 hours post 

transfection. Information about key plasmids used in this work can be found in 

Supplementary Table 3. 

 

METHOD DETAILS 

RNA isolation and qRT-PCR  

For RNA-seq and qRT-PCR analysis, RNA was isolated with the RNeasy 

Mini Kit (Qiagen) and 0.5-1 µg of total RNA was reverse transcribed using the High 

Capacity cDNA Reverse Transcription Kit (Applied Biosystems). SYBR Green PCR 

master mix (Kapa Biosystems) was used for quantitative PCR in triplicate reactions 

with primers listed in Supplementary Table 2. Relative RNA expression levels were 

calculated using the ddCt method compared to GAPDH and normalized to control 

samples.  
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Immunoblotting  

Cells were collected, counted, and lysed in 2×Laemmli buffer (100 mM Tris-

HCl pH6.8, 200 mM DTT, 3% SDS, 20% glycerol) at 0.5-1x104 cells/µl. Samples 

were heated at 95°C for 7 minutes and passed through an insulin syringe. Protein 

from 1x105 cells was separated on 10% SDS-polyacrylamide gels and transferred to 

nitrocellulose membranes (Bio-Rad). After blocking (5% milk, PBST), membranes 

were incubated overnight at 4°C in primary antibody, then 1hr at RT in secondary 

antibody. The following antibodies were used: anti-c-Myc (1:1000, clone Y69, 

ab32072, Abcam), anti-Hsp90 (1:2500, 610419, BD Transduction Laboratories), 

anti-Hsp90 (1:1000, 4877S, Cell Signaling Technology), goat anti-mouse 

secondary antibody (1:50000, 1706516, Bio-Rad), and donkey anti-rabbit 

secondary antibody (1:50000, 711-035-152, Jackson ImmunoResearch). Protein 

bands were visualized using Amersham ECL Prime Western Blotting Detection 

Reagent (GE Healthcare). Quantification of Myc and Hsp90 protein levels was 

performed using the rectangle selection and measure tools in FIJI and Myc levels 

plotted relative to Hsp90 levels and normalized to negative control in relevant 

graphs. For cycloheximide experiments, Myc levels were normalized to negative 

control and half-life of Myc protein was determined using Prism8 software. 

 

Chromatin immunoprecipitation (ChIP)  

Cells were harvested by trypsinization, counted, washed once in PBS and 

crosslinked in 1% methanol-free formaldehyde (Thermo Scientific) diluted in PBS 

for 10 min at RT. The reaction was stopped by adding glycine to a final 

concentration of 100 mM and placing the samples on ice for 5 min. Cells were 



 146 

washed twice in cold PBS and the pellet was frozen and stored at -80°C.  

5-10x106 nuclei were isolated by incubating the thawed cell pellet in Cell 

lysis buffer (20 mM Tris-HCl, pH 8.0, 85 mM KCl, 0.5% NP-40), supplemented 

with protease inhibitors (1 mM PMSF and Mini Complete Protease Inhibitor 

Cocktail Tablet, Roche) on ice for 10 min. After centrifugation, the supernatant was 

removed and the nuclei were resuspended in Nuclei lysis buffer (50 mM Tris-HCl, 

pH 8.0, 10 mM EDTA, 1% SDS supplemented with protease inhibitors) and 

incubated for 10 min on ice. Next, chromatin was sonicated to 300-500 bp 

fragment size in an ice-water slurry for 10 cycles (15” ON, 30” OFF) for p53 ChIP 

and 10-12 cycles (10” ON, 30” OFF) for H3K27ac ChIP using a Bioruptor sonicator 

(Diagenode). Sonicated lysates were centrifuged at 13K rpm for 20 min and diluted 

in ChIP dilution buffer (0.01% SDS, 1.1% Triton- X100, 1.1 mM EDTA, 20 mM Tris-

HCl, pH 8.0, 167 mM NaCl, supplemented with protease inhibitors). Input aliquots 

were saved at this point. The sonicated chromatin was precleared with beads 

(PureProteome Protein G Magnetic Beads, Millipore Sigma) and used to set up 

chromatin immunoprecipitations with a p53 antibody (P53-CM5P-L, Leica), 

H3K27ac antibody (ab4729, Abcam), or control IgG (ab46540, Abcam) and 

incubated overnight at 4°C on a rotator. Beads (PureProteome Protein G Magnetic 

Beads, Millipore Sigma) were blocked overnight in 1% BSA in PBS supplemented 

with 20 µg salmon sperm DNA (Invitrogen) per immunoprecipitation reaction. 

The next day, the blocked beads were added to the immunoprecipitation reactions 

and samples were incubated on the rotator for an additional hour. Beads were 

washed once in each of the following washes for 5 min at 4°C on the rotator: Low 

salt wash (0.1% SDS, 1% Triton-X100, 2 mM EDTA, 20 mM Tris-HCl pH 8.0, 150 
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mM NaCl supplemented with protease inhibitors), High salt wash (0.1% SDS, 1% 

Triton-X100, 2 mM EDTA, 20 mM Tris-HCl, pH 8.0, 500 mM NaCl), LiCl wash 

(0.25 M LiCl, 1% NP-40, 1% Na deoxycholate, 1 mM EDTA, 20 mM Tris-HCl, pH 

8.0), and TE wash (10 mM Tris-HCl, pH 8.0, 1 mM EDTA).  

After completely removing any remaining liquid from the washes, beads 

were resuspended in Elution buffer (50 mM Tris-HCl, pH 8.0, 10 mM EDTA, pH 

8.0, 1% SDS) and incubated at 65°C for 15 min with frequent vortexing to prevent 

settling. After elution, the beads were pelleted, and the supernatant was 

transferred to a new tube and incubated overnight at 65°C to reverse the 

crosslinking. The next day, samples were treated with RNaseA or 2 hours at 37°C, 

followed by a proteinase K (Roche) treatment for 30 min at 55°C. The DNA was 

purified by phenol-chloroform extraction and EtOH precipitation. The DNA pellet 

was air dried, resuspended in 200 µl H2O and used for quantitative PCR analysis 

(ChIP-qPCR) using primers listed in Supplementary Table 2.  

 

Single-molecule FISH (smRNA-FISH) 

Quasar570 (Q570)- and Quasar670 (Q670)-conjugated Stellaris FISH 

probes are listed in Supplementary Table 1 (Stellaris, LGC Biosciences). smRNA-

FISH was performed according to the manufacturer recommendations. Briefly, 

cells were grown on coverslips and fixed for 10 min in 4% methanol-free 

formaldehyde (Thermo Scientific) at RT, followed by PBS washes. Cells were 

dehydrated overnight at 4°C in 70% EtOH (diluted in DEPC-H2O) and stored in 

70% EtOH for up to a week at 4°C. Coverslips were transferred to a hybridization 

chamber and equilibrated for 5 min in Wash Buffer A (Stellaris, LGC Biosciences) 
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prepared with formamide (Millipore Sigma) according to manufacturer’s 

instructions. Cells were incubated overnight at 30°C with the indicated probes 

diluted 1:50 in Hybridization solution (Stellaris, LGC Biosciences) prepared with 

formamide according to manufacturer’s instructions. The next day, cells were 

washed 2 times for 30 min at 30°C in Wash Buffer A, incubated in Wash Buffer B 

(Stellaris, LGC Biosciences) for 5 min at RT, and mounted in antifade reagent 

(Vectashield Mounting medium with DAPI, Vector Laboratories). The following 

probesets were used: Pvt1b (ex.1b) detecting Pvt1b isoform with 10 probes 

spanning exon 1b, labeled with Q670 and false-colored in red; Pvt1a (ex.1a) 

detecting Pvt1a isoform with 11 probes spanning exon 1a, labeled with Q670 and 

false-colored in red; Pvt1 (ex.1a-10) detecting total Pvt1 with 48 probes spanning 

exons 1a-10, labeled with Q570 and false-colored in green; Pvt1 (introns) detecting 

nascent Pvt1a with 31 probes spanning intron 1 upstream of exon 1b, labeled with 

Q670 and false-colored in red; and Myc (intron) detecting nascent Myc with 33 

probes spanning intron 1 of Myc, labeled with Q570 and false-colored in green. 

Pvt1a (ex.1a) and Pvt1b (ex.1b) probesets do not detect at the single molecule level. 

Images were captured using an Axio Imager 2 microscope system (Zeiss) with a 

PlanApo 63x 1.4 oil DIC objective lens (Zeiss). For KPR cells, z-stacks of 12 planes 

at 0.5 µm steps were acquired and used to generate maximum intensity projections. 

For WT MEFs, single plane images were acquired. All images were edited using 

Adobe Photoshop. 

 

DNA-Fluorescence in situ hybridization (FISH) 

DNA-FISH was performed as previously described (Chaumeil et al., 2008). 
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To generate probes, the following BAC clones were used: RP23-55F11 (Myc) and 

RP24-301E22 (Chr 6) (BACPAC Resources). BAC DNA was purified with a 

Nucleobond Xtra BAC kit (Takara Bio USA) and nick translated with a nick 

translation system (Invitrogen) and Alexa Fluor® 488-5-UTP or Alexa Fluor® 

594-5-UTP (Invitrogen) following manufacturer instructions. Final probes were 

ethanol precipitated with 7.5M ammonium acetate and stored in sterile TE at -

20°C.  

20 ng of nick-translated probe was precipitated with 3 µg of salmon sperm 

DNA (Invitrogen) and 1 µg of mouse COT1 DNA (Invitrogen) using 1/10th volume 

of sodium acetate (3M, pH 5.5) and 2.5 volumes of ethanol. Probes were stored 

overnight at -20°C, then centrifuged at 13K rpm for 30 min at 4°C, washed twice 

with 70% ethanol, and air dried. Pellets were resuspended in formamide (Millipore 

Sigma), incubated at 37°C for at least 10 min, and denatured for 7 min at 75°C. 

After denaturing, an equal volume of 2X hybridization buffer (4X SSC, 20% w/v 

dextran sulfate, 2 mg/mL BSA, 40 mM RVC) was added and probe-DNA mixtures 

were pre-annealed for 30 min to 1 hour at 37°C.  

Cells were plated on coverslips and fixed in 4% paraformaldehyde in PBS 

for 10 min at RT, followed by PBS washes. Cells were permeabilized in 0.5% Triton 

X-100 in PBS for 6 min, washed twice with 70% ethanol and stored in 70% ethanol 

at -20°C. Cover slips were dehydrated in an ethanol series (80%, 90%, 100%), air 

dried, and incubated in RNase A diluted in 2X SSC (100 µg/mL) for 1 hour at 37°C. 

Cover slips were washed three times with 2X SSC for 5 min and incubated in 50 

µg/mL pepsin diluted into prewarmed 0.01M HCl for 3 min at 37°C, followed by 
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two 5 min PBS washes and one in 1X PBS/MgCL2. After washing, cover slips were 

incubated in 1% formaldehyde (Thermo Scientific) in 1X PBS/MgCL2 for 10 min at 

RT. Cover slips were next washed in PBS for 5 min and dehydrated in an ethanol 

series (70%/90%/100%) and air dried. Cover slips were then denatured in 

prewarmed 50% formamide in 2X SSC for 30 min at 80°C, dehydrated in an ice-

cold ethanol series (70%/90%/100%), and incubated with denatured probe DNA 

overnight at 42°C in a dark chamber humidified with 50% formamide in 2X SSC. 

Following incubation, cover slips were washed three times with prewarmed 50% 

formamide in 2X SSC at 42°C for 5 min and three times with prewarmed 2X SSC 

at 42°C for 5 min.  Cover slips were mounted on slides with antifade mounting 

medium with DAPI (Vector Laboratories) and sealed with nail polish. Single plane 

images were captured using an Axio Imager 2 microscope system (Zeiss) with a 

PlanApo 63x 1.4 oil DIC objective lens (Zeiss). 

 

Subcellular fractionation  

Subcellular fractionation was performed as previously described (Conrad 

and Orom, 2017) with slight modifications. Briefly, cells were harvested by 

trypsinization, rinsed once in PBS and re-suspended in 1 mM EDTA in PBS. 1x106 

cells were set aside for whole cell (WC) RNA isolation using TRIzol (Invitrogen) 

following the manufacturer’s protocol. 3 x106 cells were lysed in 0.4 mL cell lysis 

buffer (10 mM TrisHCl pH 7.5, 0.15% NP-40, 150 mM NaCl, 100 U/mL RNase-IN 

(Promega) for 5 min on ice. Lysate was layered on a sucrose cushion (24% w/v 

sucrose, 150 mM NaCl, 10 mM TrisHCl pH 7.5,100 U/mL RNase-IN) and 

centrifuged for 10 min at 3,500g, yielding the cleared cytoplasmic fraction 
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(supernatant) and pelleted nuclei. Nuclear pellets were washed once in PBS 

supplemented with 1 mM EDTA, re-suspended in 0.25 mL glycerol buffer (50% 

glycerol, 20 mM Tris-HCl pH 7.5, 75 mM NaCl, 0.5 mM EDTA, 0.85 mM DTT, 100 

U/mL RNase-IN), and lysed by the immediate addition of an equal volume nuclear 

lysis buffer (10 mM HEPES pH 7.6, 7.5 mM MgCl2, 0.2 mM EDTA, 300 mM NaCl, 

1% NP-40, 1 mM DTT, 1M Urea, 100 U/mL RNase-IN) with 2 min incubation on 

ice. Centrifugation for 2 min at 18,800g yielded the nucleoplasmic and chromatin- 

associated fractions in the supernatant and pellet, respectively. Chromatin pellets 

were washed once in 1 mM EDTA in PBS and solubilized in 1 mL TRIzol reagent 

by syringing. RNA was extracted from the cytoplasmic and nucleoplasmic fractions 

using TRIzol-LS (Invitrogen) and from the chromatin-associated fraction using 

TRIzol following the manufacturer’s protocols. Subcellular RNA enrichment 

patterns were determined by qRT-PCR, normalizing fraction Ct values to WC Ct 

values. Cytoplasmically-enriched RNA Rn7s1 and chromatin-enriched RNA 

Kcnq1ot1 served as fractionation quality controls. Primer sequences can be found 

in Supplementary Table 2.  

 

Antisense knockdown  

1 µM Pvt1-targeting (ASO1, ASO2, and ASO3) or control (CON) antisense 

LNA Gapmers (Exiqon, Qiagen) were transfected into 1-3x106 MEFs using the 

Amaxa Mouse/Rat Hepatocyte Nucleofector Kit (Lonza, VPL-1004) and the 

Nucleofector 2b Device (Lonza). Knockdown of Pvt1 variants and the 

corresponding effects on p21 and Myc expression were assayed at 72 hours post-

transfection by qRT-PCR following the indicated treatments. The sequences of all 
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ASOs are listed in Supplementary Table 1.  

 

Chromosome Conformation Capture (3C)  

Chromosome conformation capture was performed as described previously 

with minor modifications (Hagege et al., 2007). Briefly, cells were harvested by 

trypsinization, counted, washed once in PBS and 5-10x106 cells were crosslinked 

in 1% methanol-free formaldehyde (Thermo Scientific) diluted in PBS for 10 min 

at RT. The reaction was stopped by adding 1.425 ml of 1 M glycine. Cell pellets were 

frozen in a bath of dry ice covered in 100% EtOH and stored at -80°C, or were 

processed immediately. Cells were lysed in 5 ml cell lysis buffer (20 mM TrisHCl 

pH8.0, 85 nM KCl, 0.5% NP-40, 5 mM MgCl2, 0.1 mM EGTA) including 1x 

complete protease inhibitor (Roche). Cell nuclei were resuspended in 0.5 ml of 1.2x 

Cutsmart restriction buffer (New England Biolabs) and SDS was added to each 

tube to a final concentration of 0.3%. Following extraction with 2% Triton X-100, 

chromatin was digested overnight at 37°C with 400-800 U BamHI-HF (New 

England Biolabs). Ligations were performed in a total reaction volume of 6.125 mL 

of 1.15x ligation buffer (10x Ligation Buffer: 600 mM Tris-HCl pH7.5, 50 mM DTT, 

50 mM MgCl2, 10 mM ATP (New England Biolabs) using 100 U of T4 DNA ligase 

(New England Biolabs) with incubation at 16°C for 4 h, followed by further 

incubation at RT for 30 min. Reversal of crosslinking was performed by adding 

300 µg proteinase K (Roche) followed by incubation at 65°C overnight. DNA was 

extracted with phenol-chloroform followed by EtOH precipitation. The efficiency 

of restriction enzyme digestion was examined using qRT-PCR with primer sets 

spanning BamHI sites. The concentrations of 3C libraries were determined by 
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qRT-PCR and compared to a genomic DNA reference of known concentration. 

Samples were subsequently diluted to a concentration of 20 ng/µl and a total of 50 

ng was used for each qRT-PCR reaction. Interaction frequencies were determined 

using a unidirectional primer strategy with an anchor designed against the 

promoter of Myc (A1) and were normalized to a control region in the Myc-Pvt1 

locus. The primer sequences can be found in Supplementary Table 2. 

 

RNA-seq  

Total RNA was isolated in three biological replicates. PolyA selection and 

cDNA library preparation was performed using TruSeq Stranded mRNA Library 

Prep (Illumina). Paired-end 100 bp sequencing was performed on an Illumina 

HiSeq 4000 instrument. RNA-seq read files were merged from technical replicates 

and mapped to the mm10 genome assembly using Tophat (ver 2.0.14) (Trapnell et 

al., 2009) with gencode (vM10) annotation used as the transcriptome index. 

Additional transcripts were assembled using stringtie (1.2.4) (Pertea et al., 2015) 

and reads within exon sequences counted using HTSeq (HTSeq-0.6.1) counts 

(Anders et al., 2015). The differential expression analysis was performed with 

EdgeR (3.22.3) (using general linear model settings for biological triplicates with 

blocked matrix model for paired comparisons) (Robinson et al., 2010). For analysis 

of Myc targets, the Hallmark Gene Set in the Molecular Signature Database (Broad 

Institute) (Liberzon et al., 2015) was used and compared to randomly selected and 

expression matched genes with statistical significance of differential expression 

determined with a Kolmogorov-Smirnov test.  
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Transcriptome-wide TimeLapse-seq 

At approximately 60% cellular confluence, media was spiked with a final 

concentration of 100 µM s4U (Alfa Aesar) and grown in the dark for 1 hour. Cells 

were rinsed once with PBS, scraped from plates, suspended in 1 mL TRIzol 

(Invitrogen), and frozen overnight at -80°C. Total RNA was purified and treated 

with TimeLapse chemistry essentially as described (Schofield et al., 2018) with 

minor modifications. Briefly, following chloroform extraction and isopropanol 

precipitation (supplemented with 1 mM DTT) genomic DNA was depleted by 

treating with TURBO DNase (Invitrogen) and total RNA was extracted with acidic 

phenol:chloroform:isoamyl alcohol and EtOH precipitation. Isolated total RNA 

was mixed with 600 mM TFEA, 1 mM EDTA and 100 mM sodium acetate, pH 5.2 

in water. A solution of 10 mM NaIO4 was added and the reaction mixture was 

incubated at 45°C for 1 hr. Chemically treated RNA was purified using Agencourt 

RNAclean XP beads (1 equivalent volume, Beckman Coulter) according to 

manufacturer's instructions. Purified material was then incubated in a reducing 

buffer (10 mM DTT, 100 mM NaCl, 10 mM Tris pH 7.4, 1 mM EDTA) at 37°C for 

30 min, followed by a second RNAclean bead purification. For each sample, 10 ng 

of total RNA input was used to prepare sequencing libraries from the Clontech 

SMARTer Stranded Total RNA-Seq kit Pico Input (Takara Bio USA) with 

ribosomal cDNA depletion. Paired-end 100 bp sequencing was performed on an 

Illumina HiSeq 4000 instrument. 
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TT-TimeLapse-seq 

At approximately 60% cellular confluence, media was spiked with s4U (1 µM 

final, Alfa Aesar) and cells were grown in the dark for 5 min. Total RNA and DNA 

isolation were performed as described above. Total RNA (50 µg) was biotinylated 

with MTSEA biotin-XX (Biotium), isolation and streptavidin enrichment 

essentially as described (Schofield et al., 2018). Enriched RNA was chemically 

treated as described above. Library construction and sequencing were performed 

essentially as described above. 

 

TimeLapse-seq mutational analysis 

Filtering and alignment to the mouse GRCm38.p5 were performed 

essentially as described previously (Schofield et al., 2018). Briefly, reads were 

filtered to remove duplicate sequences with FastUniq (Xu et al., 2012), trimmed of 

adaptor sequences with Cutadapt v1.16 (Martin, 2011) and aligned to GRCm38 

using HISAT2 v2.1.0 (Kim et al., 2015a) (with default parameters except -mp 4,2). 

Reads aligning to transcripts were quantified with HTSeq (Anders et al., 2015) 

htseq-count. SAMtools v1.5 (Li et al., 2009) was used to collect only read pairs with 

a mapping quality greater than 2 and concordant alignment (sam FLAG = 147/99 

or 83/163). Mutation calling was performed essentially as described previously 

(Schofield et al., 2018). Briefly, T-to-C mutations were only considered if they met 

several conditions. Mutations must have a base quality score greater than 40 and 

be more than 3 nucleotides from the read’s end. Sites of likely single-nucleotide 

polymorphisms (SNPs) and alignment artifacts were identified with bcftools or 

from sites of high mutation levels in the non-s4U treated controls and were not 
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considered in mutation calling. Browser tracks were made using STAR v2.5.3a 

(Dobin et al., 2013) and normalized across samples using scale factors calculated 

using RNA-seq reads using edgeR (Robinson et al., 2010) (calcNormFactors using 

method = ‘upperquartile’). 

 

Differential expression analysis 

Differential expression analysis of transcriptome-wide TimeLapse-seq and 

TT-TimeLapse-seq data was performed with DESeq2 (Love et al., 2014) essentially 

as described previously (Schofield et al., 2018). DESeq2 expression analysis was 

performed on TT-TimeLapse-seq and transcriptome-wide TimeLapse-seq data to 

determine changes in transcriptional activity and mRNA expression, respectively. 

 

Growth curve and colony assay  

To generate growth curves, Con-, DRE-, sg1-, or sg2-expressing KPR cells 

were grown in the presence or absence of Tam. Population doublings over 

indicated time course were plotted as the average of three independent 

experiments. For colony assays, 4x105 Con- or DRE -expressing KPR cells were 

plated in the presence of Tam in 6 cm dishes and monitored for colony formation. 

Plates were washed with PBS, fixed in 0.5% Crystal Violet; 25% MeOH for 10 

minutes and washed in ddH2O. The average of three biological replicates is shown.  

 

Tumor studies  

Lung tumorigenesis was initiated in cohorts of KC and KPC mice as 

described in (DuPage et al., 2009) by intratracheal infection with 1x105 pfu UGPC 
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lentiviruses . Mice were analyzed at 12 or 16 weeks post tumor initiation. For 

histological analyses, lungs were inflated with 4% paraformaldehyde, and fixed 

overnight in 4% paraformaldehyde, prior to dehydration in 70% ethanol. Fixed 

lungs were embedded in paraffin, sectioned, and stained with hematoxylin and 

eosin (H&E). Tumor burden scored as tumor area relative to total lung area was 

determined using the freehand selection tool and Measure feature in ImageJ on 

images acquired with an Axio Imager 2 microscope system (Zeiss) with a PlanApo 

10x 0.3 objective lens (Zeiss). Tumor grade was scored as previously described 

(DuPage et al., 2009; Nikitin et al., 2004). 

 

Immunohistochemistry  

Immunohistochemistry on paraffin sections was performed using the ABC 

Vectastain kit (Vector Labs) with an antibody to pHH3 Serine 10 (9701S, Cell 

Signaling Technologies). The staining was visualized with DAB (Vector Labs) and 

slides were counterstained with hematoxylin.  

 

QUANTIFICATION AND STATISTICAL ANALYSIS 

In relevant figures, figure legends convey the statistical details of 

experiments including statistical tests used and type and number (n) of biological 

replicates, while asterisks define degree of significance as described. All Student’s 

t-tests and Mann-Whitney U-tests were analyzed in two sided. All sequencing data 

were aligned to the mouse genome (GRCm38/mm10). All statistical analyses were 

performed and graphics were generated using Prism8 software. Tracking of Indels 

by DEcomposition (TIDE) analysis was used to estimate mutagenesis efficiency. 
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DATA AND SOFTWARE AVAILABILITY  

All software used in this work is listed in Supplementary Table 4. Data 

generated in (Olivero et al., 2020) are available through Gene Expression Omnibus 

(GEO) under accession number GEO: GSE126940. Some figures were created 

using graphics from www.Biorender.com. 
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Supplementary Tables 

Supplementary Table 1: ASO, dRNA, gRNA, HDR template, and smRNA FISH 
probe information 
 

ASOs 
Name Target Sequence 
Con N/A GCTCCCTTCAATCCAA 
ASO1 Pvt1 exon 1b GTAACTAGCACACATC 
ASO2 Pvt1 exon 1b TTTGCTCCTTCTAAAT 
ASO3 Pvt1 exon 1b GAGTCCATGTGACGTT 
   

SpCas9 dRNAs 
Name Target Sequence 
Con dTomato gCGAGTTCGAGATCGA 
A1 Pvt1a TSS GGAGATCGGGGACAC 
A2 Pvt1b TSS gATGGTCATAGCTAGT 
   

SpCas9 gRNAs 
Name Target Sequence 
Con dTomato GGCCACGAGTTCGAGATCGA 
RE Pvt1b p53RE gATATGGGCAGTGACAAGTTT 
p53 p53 ORF GTGTAATAGCTCCTGCATGG  
sg1 Gm26542 p53RE gTCTGAGGCCTGGGACTTGCC 
sg2 Gm26542 p53RE GGACTTGCTCAGTTCTTGGA 
sgALT1 Pvt1 exon 1b gAAACACAAACGCTTTCCCAC 
sgALT2 Pvt1 exon 1b gTTCTTAAAGCTCTAGCCAGT 
sgALT3 Pvt1 exon 1b gAAGTCCCACTTGGAGCTCCA 
sgALT4 Pvt1 exon 1b gTCTATCCTTGGAGCTCCAAG 
sgALT5 Pvt1 exon 1b GACTTCTTAAAAGATTTAGA 
sgALT6 Pvt1 exon 1b gTTAGAAGGAGCAAAGCTGTC 
sgALT7 Pvt1 exon 1b gAGGAAATCAGAAACGTCACA 
sgALT8 Pvt1 exon 1b gCGTCACATGGACTCCATGAC 
sgALT9 Pvt1 exon 1b GACTGGGAAAAACCTCGTGG 
sgALT10 Pvt1 exon 1b GGTGGCCTGCTCTCAGTGCT 
sgALT11 Pvt1 exon 1b GATGTGTGCTAGTTACATCT 
sgdeltaSS Pvt1 exon 1b 3’ end GTGTGCTAGTTACATCTCGG 
Puro Puromycin resistance gene gCGGGTGGCGAGGCGCACCGT 
   

in vivo SpCas9 gRNAs 
Name Target Sequence 
sgEx1a Pvt1 exon 1a gCTGGTCAAGCGGGCTCGGCA 
sgEx1b Pvt1 exon 1b gTCTATCCTTGGAGCTCCAAG 
   

HDR Templates 
Name Target Sequence 
Pvt1a-PAS Pvt1 exon 1a CCGGGGCTGCCAACATCCTTTCC 

ACGCGGATATCCACTCGGGGGG 
CTCTGGGAATGCTAAGTTCGTAG 
CTTCTCTTCATCCTGGCCTTGCCA 
CACAAAAAACCAACACACAGATC 
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TAATGAAAATAAAGATCTTTTAT 
TCGAGCCCGCTTGACCAGTGGGT 
CCATGTGCTCGGCGGCCA 

Pvt1b-PAS Pvt1 exon 1b CACGAGGTTTTTCCCAGTCATGG 
AGTCCATGTGACGTTTCTGATTT 
CCTGACAGCTTTGCTCCTTCTAA 
ATCTTTTAAGAAGTCCCACTTCA 
CACAAAAAACCAACACACAGATC 
TAATGAAAATAAAGATCTTTTAT 
TGGAGCTCCAAGGATAGAAACA 
CAAACGCTTTCCCACTGGC 

Pvt1b-TWI Pvt1 exon 1b CGAGGTTTTTCCCAGTCATGGAG 
TCCATGTGACGTTTCTGATTTCCT 
GACAGCTTTGCTCCTTCTAAATCT 
TTTAAGAAGTCCCACTTCAATAAA 
GCTGCATTAATGCCGCGCTATCGC 
GACATTACTCTGCTATTTTTGCGG 
GCTTGTAACCGCTTTATTGGGAG 
CTCCAAGGATAGAAACACAAACG 
CTTTCCCACTG 

   
smRNA FISH Probes 

Name 3’ Modification Sequence 
PVT1_exons_1 Quasar 570 TCTGGGAATGCTAAGTTCGT 
PVT1_exons_2 Quasar 570 CCATGTGACGTTTCTGATTT 
PVT1_exons_3 Quasar 570 ACACATCCAAGCACTGAGAG 
PVT1_exons_4 Quasar 570 AAATCAGACCTCCGAGATGT 
PVT1_exons_5 Quasar 570 TTCAGGAAGTCTCCAGAGAG 
PVT1_exons_6 Quasar 570 CAGAATTACTCCCCAGGAAA 
PVT1_exons_7 Quasar 570 GGGTAGAGATACAATCCTCT 
PVT1_exons_8 Quasar 570 GCTCTCAGAAACACTGCATT 
PVT1_exons_9 Quasar 570 CTGGTTCTTCTGAGAGACTG 
PVT1_exons_10 Quasar 570 AGGCATCTCACAGCAAAGTA 
PVT1_exons_11 Quasar 570 TTATCACATTAGAGGACCCG 
PVT1_exons_12 Quasar 570 ACTTGGCATCTCTTAAGTCA 
PVT1_exons_13 Quasar 570 AGACTTCCATCTTTGCTATT 
PVT1_exons_14 Quasar 570 CAGCTGTCTTATAGGATTGC 
PVT1_exons_15 Quasar 570 TCTTAGGGTCAGTATCATGG 
PVT1_exons_16 Quasar 570 AGTATTCTAGCTTGGAGCTA 
PVT1_exons_17 Quasar 570 TTGTCACTCCATTTGGCAAA 
PVT1_exons_18 Quasar 570 TGCTTAAAGACCACAGAGGC 
PVT1_exons_19 Quasar 570 ATTGCTTTGGGTATTTTGGT 
PVT1_exons_20 Quasar 570 AATGTCTACTTGTTGGCCAA 
PVT1_exons_21 Quasar 570 TAGCAGAGTGGTTCAAAGGC 
PVT1_exons_22 Quasar 570 AGAATTTCAGAGGGCACTCG 
PVT1_exons_23 Quasar 570 AGACTTAGGGCATACAGGTA 
PVT1_exons_24 Quasar 570 CTGGATTCTGTAGCTATTCT 
PVT1_exons_25 Quasar 570 TAAAGCATCCAGGGCAGAAC 
PVT1_exons_26 Quasar 570 TGACTCCTGTTGGAAAACCA 
PVT1_exons_27 Quasar 570 CACGCTCATGTCCTTTAATA 
PVT1_exons_28 Quasar 570 GTTTAGCACTATCCATCTTT 
PVT1_exons_29 Quasar 570 TTGCTCTCCTTATGAAGAGG 
PVT1_exons_30 Quasar 570 GAAACCTTAAGCATGAGCCA 
PVT1_exons_31 Quasar 570 AGTGCACTCTTATACGTCAC 
PVT1_exons_32 Quasar 570 ATCTTAAGATGGCTTGGACC 
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PVT1_exons_33 Quasar 570 GAGATTCGGAACTGACAGGC 
PVT1_exons_34 Quasar 570 AAAGAGAACGTGTCCCTTGT 
PVT1_exons_35 Quasar 570 TCTATTGTAGGTTGTTCCTG 
PVT1_exons_36 Quasar 570 AAATCCAGGCTACTTCTCAG 
PVT1_exons_37 Quasar 570 GCCTCCAGAGAAAACGATGA 
PVT1_exons_38 Quasar 570 CAGGGCTCATGAGAACAGAG 
PVT1_exons_39 Quasar 570 CTTACCAGGAGAAGCATCAT 
PVT1_exons_40 Quasar 570 CAGCACATAGAACACAGGCA 
PVT1_exons_41 Quasar 570 GAAGATTGTGCCAGGAACTC 
PVT1_exons_42 Quasar 570 CAGATCCTGGTTTAGAACGG 
PVT1_exons_43 Quasar 570 CTGTCATCTTCTCTTCTTTG 
PVT1_exons_44 Quasar 570 TCCTTAATGTGCTACCACAA 
PVT1_exons_45 Quasar 570 GGATTCTACTTCACCATAGG 
PVT1_exons_46 Quasar 570 CCAAGGCATTATGAAGTGCA 
PVT1_exons_47 Quasar 570 AAAGTGTCTCAGGGAATCCT 
PVT1_exons_48 Quasar 570 TCAGTAAGTCACAGCTGTGA 
PVT1_intron_AE1up_1 Quasar 670 TTCCAGGGGATAAACTTGGA 
PVT1_intron_AE1up_2 Quasar 670 AATGCAAAAGCCACTTTCCT 
PVT1_intron_AE1up_3 Quasar 670 AAGGTTAACACGCGCTCGTG 
PVT1_intron_AE1up_4 Quasar 670 TCGAGTCTAGTGATGAGGAA 
PVT1_intron_AE1up_5 Quasar 670 ACACCCAAACTCTCTGGCAA 
PVT1_intron_AE1up_6 Quasar 670 TAGAGGCCATCCTGGGAAAT 
PVT1_intron_AE1up_7 Quasar 670 GCATAAATCCAGAATTACCT 
PVT1_intron_AE1up_8 Quasar 670 CTGAGGAAATGGGCTCTTGA 
PVT1_intron_AE1up_9 Quasar 670 CAAATCTGCGCTGATTGCAG 
PVT1_intron_AE1up_10 Quasar 670 TCGTAAATGAGGCCTCCAAA 
PVT1_intron_AE1up_11 Quasar 670 GACTAGACTCAGACTTCCAG 
PVT1_intron_AE1up_12 Quasar 670 AAGGATGGAGGGAGCATCAC 
PVT1_intron_AE1up_13 Quasar 670 GTTTTAGGAGATCACCTTCT 
PVT1_intron_AE1up_14 Quasar 670 GCACAGAAAGTTTCCTGACA 
PVT1_intron_AE1up_15 Quasar 670 CTTCCACGAACACAGGAACG 
PVT1_intron_AE1up_16 Quasar 670 TAGCAAGGATGAAGGCGTGG 
PVT1_intron_AE1up_17 Quasar 670 GTTAAAGCAACAAGCTATCC 
PVT1_intron_AE1up_18 Quasar 670 TAGCCAAGAAAGGGCCAATC 
PVT1_intron_AE1up_19 Quasar 670 CACTCATAGGTACAGCAGAA 
PVT1_intron_AE1up_20 Quasar 670 TGGAAGTCTGCACAGTTCTC 
PVT1_intron_AE1up_21 Quasar 670 CACATGTAGCTTCATGGCTG 
PVT1_intron_AE1up_22 Quasar 670 ATCCATGATGTGTCTACACA 
PVT1_intron_AE1up_23 Quasar 670 CAGATTATCACCCACTAGTA 
PVT1_intron_AE1up_24 Quasar 670 GAACGTTCTGGAGAGCTCAA 
PVT1_intron_AE1up_25 Quasar 670 GATTTCTCTCCTTAAGCTTC 
PVT1_intron_AE1up_26 Quasar 670 TTCTCCCTATACTCTCTTAA 
PVT1_intron_AE1up_27 Quasar 670 GTCAAATGACAACAACCCCT 
PVT1_intron_AE1up_28 Quasar 670 AACAGAGACCTGCATCCTTA 
PVT1_intron_AE1up_29 Quasar 670 CAACATCCTACCACATGCAC 
PVT1_intron_AE1up_30 Quasar 670 GTGAACAAGCCCAAACTTGT 
PVT1_intron_AE1up_31 Quasar 670 CTAGCTATGACCATAGGACT 
PVT1_Exon1a_1 Quasar 670 GTGGCCCGTGACGTCACG 
PVT1_Exon1a_2 Quasar 670 TGGTAGAGCGCGGGGCTG 
PVT1_Exon1a_3 Quasar 670 CGGCCACACGCGCTCTGC 
PVT1_Exon1a_4 Quasar 670 AGTGGGTCCATGTGCTCG 
PVT1_Exon1a_5 Quasar 670 TTGCCGAGCCCGCTTGAC 
PVT1_Exon1a_6 Quasar 670 CGTAGCTTCTCTTCATCC 
PVT1_Exon1a_7 Quasar 670 GCTCTGGGAATGCTAAGT 
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PVT1_Exon1a_8 Quasar 670 GCGGATATCCACTCGGGG 
PVT1_Exon1a_9 Quasar 670 CTGCCAACATCCTTTCCA 
PVT1_Exon1a_10 Quasar 670 GACTCCGAGGTCACCGGG 
PVT1_Exon1a_11 Quasar 670 AGAGGGTGGATCCAGCCG 
PVT1_Exon1b_1 Quasar 670 GGCTAGAGCTTTAAGAAG 
PVT1_Exon1b_2 Quasar 670 ACACAAACGCTTTCCCAC 
PVT1_Exon1b_3 Quasar 670 TGGAGCTCCAAGGATAGA 
PVT1_Exon1b_4 Quasar 670 TCTTTTAAGAAGTCCCAC 
PVT1_Exon1b_5 Quasar 670 CAGCTTTGCTCCTTCTAA 
PVT1_Exon1b_6 Quasar 670 GACGTTTCTGATTTCCTG 
PVT1_Exon1b_7 Quasar 670 CCAGTCATGGAGTCCATG 
PVT1_Exon1b_8 Quasar 670 GGCCACCACGAGGTTTTT 
PVT1_Exon1b_9 Quasar 670 CATCCAAGCACTGAGAGC 
PVT1_Exon1b_10 Quasar 670 TCCGAGATGTAACTAGCA 
c-Myc intron_1 Quasar 570 AAAGACCACCAGATCTGTGC 
c-Myc intron_2 Quasar 570 TAACCGGCCGCTACATTCAA 
c-Myc intron_3 Quasar 570 CCCCAACTACTCTTGAGAAA 
c-Myc intron_4 Quasar 570 CATCTTGACAAGTCGCTCTA 
c-Myc intron_5 Quasar 570 CGCTTCAAAATGCATCCCGG 
c-Myc intron_6 Quasar 570 CCCATAGTAACCTCGGGAAC 
c-Myc intron_7 Quasar 570 AAGCAAGAATGTCCAACCGG 
c-Myc intron_8 Quasar 570 CCCTCAAAGGACACATATCA 
c-Myc intron_9 Quasar 570 GATTCCAAGGGCTTTCTTTG 
c-Myc intron_10 Quasar 570 TAATCCCTTCTCCAAAGACC 
c-Myc intron_11 Quasar 570 TCTCGCTCCCAAACGCAAAA 
c-Myc intron_12 Quasar 570 GGTAAGTCAGAAGCTACGGA 
c-Myc intron_13 Quasar 570 TTTAAATGCCCTCTCAGAGA 
c-Myc intron_14 Quasar 570 GTCAGAAATGCACCAAGCTG 
c-Myc intron_15 Quasar 570 TTAAAAGGCTCAGGGACGGG 
c-Myc intron_16 Quasar 570 GGGGGTCAGGCTTAAATTTT 
c-Myc intron_17 Quasar 570 CCAACATCAAGTCCTAGTGC 
c-Myc intron_18 Quasar 570 AATTTTGCTTCTCCTCACTG 
c-Myc intron_19 Quasar 570 TCAACGAATCGGTCACATCC 
c-Myc intron_20 Quasar 570 CAGTCTTCCTAGCAATTCAG 
c-Myc intron_21 Quasar 570 TTACGGAACCGCTCAGATCA 
c-Myc intron_22 Quasar 570 TACACTCTAAACCGCGACGC 
c-Myc intron_23 Quasar 570 ATAATAAGAGACACCTCCCT 
c-Myc intron_24 Quasar 570 GCTATCACAAGCCTCTCGAA 
c-Myc intron_25 Quasar 570 TGGAGGAGAGAGCTCAGTCT 
c-Myc intron_26 Quasar 570 CTTTTCTTTCCGATTGCTGA 
c-Myc intron_27 Quasar 570 AAGGAGAAAGGCGAGAGGCG 
c-Myc intron_28 Quasar 570 CTAAGAGCCGAGGCGCAAAG 
c-Myc intron_29 Quasar 570 GAGGCGACTGTAGGGAATAC 
c-Myc intron_30 Quasar 570 TCCTTCGAGCAGGGACTTAG 
c-Myc intron_31 Quasar 570 TACTATCAGTGACGCTCGTC 
c-Myc intron_32 Quasar 570 AGGCATGCACTCTTTTACTC 
c-Myc intron_33 Quasar 570 GAGTTATCCAGCTCTGGTTG 
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Supplementary Table 2: qRT-PCR and PCR primer sequences 
 

qRT-PCR primers (mouse) 
Gene Forward sequence Reverse sequence 
Pvt1a (ex1a-2) ACTTAGCATTCCCAGAGCCC TGGAGGGCATCTTCTTACCG 
Pvt1b (ex1b-2) CCATGACTGGGAAAAACCTCG TGGAGGGCATCTTCTTACCG 
Pvt1b nascent (ex1b-int) CCATGACTGGGAAAAACCTCG CCAGCACAATAGCCCACAATG 
Pvt1 (ex4-5) CTGGGACACTGCCTGATTGA TCCTTCTGGAACGCTTAAAGG 
Myc TTCATCTGCGATCCTGACGAC CACTGAGGGGTCAATGCACTC 
p21 TCCACAGCGATATCCAGACA GGACATCACCAGGATTGGAC 
Rn7s1 CTGTAGTGCGCTATGCCGA GTTCACCCCTCCTTAGGCAA  
Kcnq1ot1 GGCCAGAAGCAGAGGTGATT CCGAGCCGTAACTGCAAAAC 
Gm26542 CCTTGGCTGACACCCGAACC CCGAGTTCGAGCGCGTCTTC 
Gapdh AGCTTGTCATCAACGGGAAG TTTGATGTTAGTGGGGTCTCG 
Pvt1 p53RE (ChIP) GGCTAAGGATGCAGGTCTC AAACGCTTTCCCACTGGCTA 
Myc promoter (ChIP) CGCGAGCAAGAGAAAATGGTC CTTTGGGAACTCGGGAGGG 
   

qRT-PCR primers (human) 
Gene Forward sequence Reverse sequence 
PVT1a (ex1a-2) TTCCAGTGGATTTCCTTGCGG CTGACAGGCACAGCCATCTTG 
PVT1b (ex1b-2) GCACAAGGGCCCAACTGGA CTGACAGGCACAGCCATCTTG 
MYC TCGGATTCTCTGCTCTCCTCG AGGTGATCCAGACTCTGACCT 
   

3C qRT-PCR primers 
Name Sequence  
BamHI-016 GTGCTCAGCTCCATCCTGCAAG

GACAATTC 
 

BamHI-015 GAGGGAACAAAATACTCATGG
GAGGAGATAC 

 

BamHI-008 TTGAAAAAGCCTGCTAGACAGT
CCCTGGTG 

 

BamHI-007 TGCACTTCCTTGAGAAGCTGGT
AGGATACC 

 

BamHI001 CACAGGAGGAACATCAGGAGA
CCCAAATTC 

 

BamHI002 TCAGCTGCCGGGTCCGACTCG
CCTCAC 

 

BamHI003 GCAGTGAGGAGAAGCAAAATT
GGGACAGGG 

 

BamHI008 TGAGTGACACCAACATCCTGGA
GCCTCAG 

 

BamHI009 AACCAGGCTACTCTAACTCTCT
CTGCTCAG 

 

BamHI013 CTCCTCTCAGGCTTGATGCCCC
TTCATTG 

 

BamHI014 ACGAACTTAGCATTCCCAGAGC
CCCCCG 

 

BamHI015 TGGAAAGGTGTCTCTTTTCTGT
TGTTTCTGG 

 

BamHI016 GGCACCGACTGGGCATGTATC
CTGCTTG 

 

BamHI017 GTCTCAGTGCAGCAGCCCTTGA
GTGAAAG 
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BamHI018 TGCATTGCCACATTCCAGATTG
TCACCTTG 

 

BamHI019 CAGTAGCAGAGAGCATAAGCC
TTTGTCTCC 

 

BamHI020 GAGGTATGAATGTAAACATTG
TACACATACTG 

 

BamHI022 GTTAATTGGGTGTTCTAGCTCT
GGAAAATGC 

 

BamHI024 CTATTTTGCCCCTTTGTTCCCT
GTTCTATCC 

 

BamHI028 TGTAGATCTCAACAGATGAACC
CAGGGGAC 

 

BamHI029 GCAACACTTGATGACTTGACCA
AATAAACAGC 

 

BamHI030 AGTTCCAAAGGTGAAAAAGCT
GTATAATCGTC 

 

BamHI031 CTGCCTCTCAGCTCACGGCCAC
TGTGTC 

 

BamHI032 CTTGAGAGCCTGCATATCCTTT
GAGCAGAT 

 

BamHI033 CCCCAATCCTTTTCTCTACTCC
ATACCCAC 

 

BamHI036 AGGCAGGGCTGGAGTTTTGTT
CTGTTTGTG 

 

BamHI042 AATTGAGAAACCACCCGATAGT
AACCTGGG 

 

BamHI050 CACAAGAGACAGCTACATCTG
GGTCCTTTC 

 

Pvt1 3'E.1 BamHI003 CCTGTCTCCTCCCCCATCCTGA
TAGTAC 

 

Pvt1 3'E.1 BamHI004 TGGTATGAGTATCCAAAGACAT
TGAGGACTC 

 

Pvt1 3'E.2 BamHI003 ACTAGAGTATGTCTGCCTTTTG
TGTGGGAC 

 

Pvt1 3'E.2 BamHI005 TCTTTGAGTTCATTTGTAAGGG
TATTTCCAGC 

 

BamHIctrl ATTAAAGGTGGAGTGAGACAT
CAGAGGTGG 

 

   
RT-PCR primers 

Name Forward sequence Reverse sequence 
Pvt1 (ex1a-5) TGGATATCCGCGTGGAAAGG TCCTTCTGGAACGCTTAAAGG 
Pvt1 (ex1b-5) CTCTAGCCAGTGGGAAAGCG TCCTTCTGGAACGCTTAAAGG 
   

Genotyping PCR primers 
Name Forward sequence Reverse sequence 
Pvt1a PAS TACCAGGCAGAGCGCGTG CTGGGCTCCAGAGTTTCCA 
Pvt1b PAS/TWI ACTTGCACAGTCCTATGGTCA CGTAAGGCACATCCTCACCT 
   

Mutagenesis efficiency PCR primers 
Name Forward sequence Reverse sequence 
Pvt1 p53RE GAAGTGCATGTGGTAGGATG GCACATCCTCACCTCCGAGA 
Pvt1 exon 1b GCCTGTTTTGCATATGGGCAG ACAAGGCAGTCCCATACAGTC 
Pvt1 exon 1b 3’ end CAGTGGGAAAGCGTTTGTG AGCAAGAAACAGCCACCCTT 
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Supplementary Table 3: Key plasmids and recombinant DNA used in this work 

Name Source Identifier 
pCMV-dR8.2 
dvpr (Stewart et al., 2003) Addgene #8455 

pCMV-VSV-G (Stewart et al., 2003) Addgene #8454 
pWZL Hygro S. Lowe, unpublished Addgene #18750 
BRD001 Broad Institute N/A 
BRD004 Broad Institute N/A 
UGPC (Olivero et al., 2020) N/A 
lenti-SAM-hygro (Olivero et al., 2020) N/A 
Myc BAC BACPAC Resources Center Cat#RP23-55F11 
Chr 6 BAC BACPAC Resources Center Cat#RP24-301E22 
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Supplementary Table 4: Software and algorithms used in this work 
 

Resource Source Location 
GraphPad Prism, 
version 8.2.1 for 
MacOS 

N/A www.graphpad.com 

FIJI N/A https://imagej.net/Downloads    
TIDE (Brinkman 

et al., 
2014) 

http://shinyapps.datacurators.nl/tide/ 
 

Biorender N/A www.biorender.com 

Tophat (v2.0.14)  (Trapnell 
et al., 
2009) 

http://ccb.jhu.edu/software/tophat/index.shtml 

stringtie (v1.2.4)  (Pertea et 
al., 2015) 

https://ccb.jhu.edu/software/stringtie/ 

HTSeq (v0.6.1)  (Anders et 
al., 2015) 

https://htseq.readthedocs.io/en/release_0.11.1/ 

EdgeR (v3.22.3)  (Robinson 
et al., 
2010) 

https://bioconductor.org/packages/release/bioc/html/
edgeR.html 

FastUniq (Xu et al., 
2012) 

http://sourceforge.net/projects/fastuniq/ 

Cutadapt (v1.16)  (Martin, 
2011) 

https://cutadapt.readthedocs.io/en/stable/ 

HISAT2 (v2.1.0)  (Kim et al., 
2015a) 

https://ccb.jhu.edu/software/hisat2/index.shtml 

SAMtools (v1.5)  (Li et al., 
2009) 

http://samtools.sourceforge.net 

STAR (v2.5.3a)  (Dobin et 
al., 2013) 

https://github.com/alexdobin/STAR  

DEseq2 (Love et 
al., 2014) 

https://bioconductor.org/packages/release/bioc/html/
DESeq2.html  
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