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Abstract 

Decoding Gut Microbial Metabolites through G-Protein Coupled Receptor (GPCR) Activation 

Phu Khat Nwe 

2021 

 

The microbiome encodes for a complex web of metabolites of which scientists are just starting to 

deconvolute. While a lot of focus has been on investigating the implications of the microbial metabolome 

on health and disease physiologies, we have merely uncovered the tip of the interactome of microbes and 

host G-Protein Coupled Receptors (GPCRs). Early literature has reported a plethora of short chain fatty 

acids fermented by dietary fibers acting as GPCR agonists. A few other studies have showcased that gut 

microbes produced N-acyl amides and secondary bile acids mimicking host ligands and therefore 

interacting with these GPCRs. Chapter 2 and 3 showcases the different strategies to mine GPCR agonists 

from the commensal microbiota.  

Chapter 1 describes a collective review of the current state of microbiome research, particularly 

on the chemistry and biosynthesis of the microbiome. Despite advances with metagenomic, culturomic, 

transcriptomic and metabolomic approaches, about three-quarter of the microbiome space, thus termed 

“dark matter” still needs to be deciphered. This chapter highlights a few of the major classes of microbial 

metabolites and their interactions in the microbe-microbe and host-microbe axes including implications in 

GPCR physiology and health and disease dynamics. 

Chapter 2 details an orthogonal platform bridging microbial metabolites and host GPCRs. Here, 

screening 144 bacterial supernatants against 316 host GPCRs utilizing a high throughput GPCR assay called 

the PRESTO-Tango led to a gamut of host-microbe, microbe-microbe and diet-microbe-host interactions. 

Through combinatorial screening, quantitative metabolomics and in vivo studies, we established a new 



approach for parsing the microbiota metabolome and uncovered multiple biologically relevant host-

microbiota metabolome interactions. 

Chapter 3 illustrates E. coli functionalization of indole metabolites under acidic stress response. 

Employing metabolomic and small molecule discovery techniques led to the structural characterization of 

indole analogues which form spontaneously under acidic environment. A high throughput GPCR screen of 

these metabolites showcased potentially mild microbe-host GPCR interactions. A virulence assay alludes 

the potential inhibitory effects of indole oligomerization towards pathogenic microbes. 
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Chapter 1 

Chemistry and Enzymology Encoded by the Human Microbiome 

The following chapter is adapted from my published work as a second author (Shine, E.E.; Nwe, P.-K.; 

Crawford, J.M. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 

2019, ISBN 9780124095472 

 

1.1 Introduction 

The Russian scientist Élie Metchnikoff first proposed the role of gut bacteria on host physiology, 

predating the modern era of microbiome research by more than 100 years.1 His general hypotheses that gut 

bacteria are modulators of host physiology, and that dysregulation of gut homeostasis maintained by certain 

bacterial species could lead to a disease state mostly stand the test of time, even now as we are firmly rooted 

within the 21st century.1 We now understand the collection of bacterial, archaeal, fungal, and viral species 

residing within eukaryotes (termed “microbiota,” “microbiome” referring to all the genes they contain) – 

to be immensely dense, vastly diverse among individuals, and associated with human diseases.2-4 

Collections of microbes at every surface within the body – skin, respiratory, urogenital, and gastrointestinal 

tracts – can influence pathogen infection rates, stimulate immune system development, and contribute to 

inflammation.5-6 Studies have shown that individuals can be >90% different in terms of gut microbiome 

species composition, suggesting diversity in chemistry and enzymology and the biological functions that 

they regulate.7-8  

The implications of humans carrying within each of us a symbiotic collection of organisms 

consisting of billions of different cells, each collective different from our neighbor, is enormous (Figure 1). 

For one, it is hypothesized that we are more microbe than Homo sapiens: in terms of gene and cell numbers, 

although the microbial cells are much smaller than the human cells. Estimates of bacteria-to-human cell 

ratios have ranged in the past from 10:1 to more recently 1:1.9 But more importantly, no matter what the 
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ratio, the genetic capacity of information encoded in the human genome is vastly outweighed by the 

contribution from the microbiome.  Indeed, the combined human microbiome encodes roughly 150-fold 

more genes than our own genome.10 Furthermore, the genetic diversity within bacteria is astonishing.  In 

the human gut alone, nearly 10 million non-redundant reference genes have been identified.11 Bacteria are 

metabolic and chemical factories capable of utilizing a far richer and more diverse array of substrates than 

our own cells.  Most of the details behind these chemical transformations remain hidden among thousands 

of uncharacterized species and genes, further complicated by the vast,  mysterious network of microbe-

Figure 1. General overview of enzyme-mediated host-microbial interactions discussed in this chapter. First, 
bacterial inter- and intra-species competition (a) exists in many forms, such as the secretion of specialized 
metabolites, allowing for fitness advantages and niche expansions. Second, pathogenic or parasitic factors 
exhibiting negative effects on the host (b) are of much interest for their immunomodulatory and/or 
carcinogenic roles. Next, bacterial communication (c) mediated by signaling molecules can coordinate 
group behaviors among bacteria within species or across taxonomic lines. Pathogen exclusion by the host 
(d) may occur through the production of antimicrobial factors, ensuring that pathogens are prevented from 
penetrating the mucosal layer. Commensals and symbionts use enzymatic machinery to confer benefits to 
the host (e), i.e., the synthesis of vitamins and processing of host bile acids. Evolved cooperation between 
bacterial species (f) that depend on nearby synthesis of “public goods” may explain why many bacterial 
species within the microbiome cannot be cultured independently outside of the host. Finally, bacterial 
species can metabolize foreign chemical scaffolds consumed by the host (g). Importantly, we highlight in 
the context of the microbiome, how interactions (a) and (c) may affect the degree to which interactions (b) 
and (d) present disease.  
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microbe and microbe-host interactions in a dense and dynamic community.   We are just beginning to 

explore the tip of the iceberg in regard to how genetic diversity within the microbiome leads to metabolic 

and chemical diversity, and how this diversity contributes to host phenotypic consequences.  Detailed 

mechanisms often remain obscure, and ironically, for many illnesses we find ourselves not too far from 

where Metchnikoff himself stood in 1890 in terms of how the microbiome precedes or predicates disease 

at the molecular level.   

After years of sequencing work to establish the presence or absence of bacterial community 

members between “healthy” and “diseased” patients, microbiome researchers have only more recently 

begun to focus their attention on the hunt for molecular mechanisms that might underlie differences in 

presented pathologies. Our framework for the understanding of disease still largely lies with Koch’s 

postulates, which are based on the pathogenesis of typically one microbe causing disease and that microbe 

conferring disease when inoculated in other healthy subjects.12-13 Yet Koch’s postulates, for example, have 

failed to identify one particular bacterial species involved for all patients with obesity or inflammatory 

bowel disease (IBD) – two conditions which multitudes of studies show are heavily influenced by the 

composition of the microbiome.14-17 Molecular Koch’s postulates first put forward by Stanley Falkow in 

1988, which focuses on the underlying molecules of disease including cytotoxins, provides a framework 

for examining pathogenesis at the molecular level beyond species-level classifications, but these revised 

postulates still fail to take into account the complex interactions among different microbiome members that 

can regulate the pathogenic molecules causing disease and how the function of those molecules can also 

vary with differing host susceptibilities — i.e., other environmental exposures and host genetics.12-13 

Consistent with these challenges, microbiome research has shown that mere presence or absence of a 

bacterial species or a bacterial metabolic product is not enough to account for disease incidence alone, and 

seemingly healthy patients can have high carriage rates of these markers.    

The field’s partial focus on pathogens is well-warranted. Even for complex IBDs, it was shown that 

bacteria penetrating the mucosa – analogous to pathogen invasion – were coated with immunoglobulin A 
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(IgA) in this space, and that human IBD-derived bacteria identified to have an IgA coating could cause 

disease when transplanted into healthy mice.18-19 Like other immune mechanisms intended to protect the 

host, IgA can be co-opted by select microbiome members to promote mucosal colonization instead.20 That 

said, pathogenic interactions still only account for a fraction of microbe-associated impacts on human 

physiology. The challenge is that many bacteria can possess these pathogenic qualities which may depend 

on the microbial composition, diet, and the host. Our understanding of diseases that have such high 

interpersonal variation as cancer, autoimmune disease, and metabolic disorders can no longer focus on just 

pathogenesis, but must also take into account broader host-microbe interactions (Figure 1).13  

Host-microbe symbiotic interactions can be classified as mutualistic (benefiting both organisms), 

commensalistic (benefiting one symbiont), or parasitic (benefiting one organism and harming the other).21-

22 Microbes can exist as obligate partners, depending on each other for nutrients, or can exist as enemies in 

combat.23-26 The chemical and molecular underpinnings of all these interactions, both individual and in 

complex metabolic exchange markets, are critical for understanding the mysteries of the microbiome and 

its impact on human health. In this chapter, it is the goal to introduce the reader to the chemistry and function 

of biosynthetic pathways found in representative microbiota members that provide an entry point for 

understanding human disease within the context of bacteria-mammalian symbioses that have evolved for 

millennia.  

1.2 Natural product biosynthesis encoded in the microbiome 

This chapter will focus on the biosynthesis and function of representative specialized metabolites 

encoded in the microbiome.  Molecules associated with pathogenesis, such as siderophores and 

(lipo)polysaccharides, have been extensively studied for many decades and have been reviewed 

elsewhere.27-30 We also do not cover very low-molecular weight molecules of major functional importance 

in the microbiome, such as primary metabolites including short chain fatty acids,31-33 reactive nitrogen 

species,34 and reactive oxygen species.34-35 Instead, this section will introduce and discuss five major, 

classical classes of natural products produced by bacterial members of the microbiome: ribosomally-



13 
 

encoded and posttranslationally-modified peptides (RiPPs), nonribosomal peptide synthetase (NRPS) 

products, polyketide synthase (PKS) products, hybrids of the latter, and N-acyl-amides. We highlight 

selected examples in recent literature. Particular attention will be paid toward identifying these types of 

chemistries from functional metagenomics or bioinformatic genome mining studies, as well as their 

interactions with other bacterial species that could have implications for community dynamics and/or 

disease severity.  

1.2.1 RiPPs  

The term RIPPs (or ribosomally-encoded and posttranslationally-modified peptides) is a relatively 

recent nomenclature designation given to a diverse set of modified peptides that are derived from ribosomal 

protein synthesis.36 Ribosomal precursor peptides are subjected to diverse posttranslational modifications, 

including proteolytic cleavage, alkylation (e.g., radical SAM-dependent methylation), prenylation, 

dehydration, heterocycle formation, redox modifications, and diverse macrocyclization reactions among 

others. The resulting structures are endowed with better target recognition, decreased susceptibility to 

protease degradation, and increased structural stability relative to standard peptides.  

Almost all RiPPs are synthesized from a structural precursor peptide, typically 20-110 residues in 

length that includes a signal peptide sequence and leader peptide sequence flanking a core peptide at either 

the N- or C-terminus (Figure 2). The leader peptide facilitates recognition of a fairly common set of RiPP 

processing enzymes and sometimes directly participates in catalysis.36 Signaling sequences are more or less 

conserved, while the processing enzymes can tolerate mutations leading to considerable structural variation 

within the core peptide. Together, these features highlight the evolutionary advantage of accessing high 

chemical diversity at a low genetic cost.36   

As with many metabolic pathways and natural products, in prokaryotes, the biosynthetic genes for 

RiPPs are typically clustered together at a single genetic locus, enabling identification of complete RiPP 

pathways from genomic data using bioinformatic approaches.37-40 Analysis of ~65,000 prokaryotic genomes 

identified approximately 30,000 candidate RiPP biosynthetic gene clusters, which included open reading 
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frames for the precursor peptide as well as associated tailoring enzymes.38 RiPPs are nearly universally 

distributed throughout the prokaryote domain of life, especially in the human microbiome. Indeed, in 

human-associated microbiomes, RiPPs are slightly enriched over environmental microbiomes, and they are 

broadly distributed across every sampled body site.37   

Traditionally, RiPPs have been grouped into distinct subclasses based on shared biosynthetic or 

structural features.  Two subclasses that were particularly abundant within human microbiome samples 

were the thioazole/oxazole-modified microcins (TOMMs) and thiopeptides.37 Notably, these RiPP families 

have potent antibacterial activities against Gram-negative and Gram-positive isolates, respectively.  

Mounting evidence supports that RiPPs are utilized by microbes in vivo during inter- and intra-species 

competition for resources and establishment of niche colonization.41 Thus, RiPPs are essential for 

understanding microbe-microbe interactions and how community structure and dynamics are established. 

For instance, an isolated thiopeptide, lactocillin, from a vaginal isolate of Lactobacillus gasseri was found 

to harbor antibiotic activity against a wide-range of Gram-positive organisms, but it was inactive against 

vaginal commensals Lactobacillus jensenii and Lactobacillus crispatus.37 Correspondingly, production of 

lactocillin likely helps to maintain the vaginal microbiome community structure that is dominated by just 

four Lactobacillus species.42 In contrast to the almost uniform vaginal microbiome, a healthy steady-state 

gut microbiome is rich in species diversity, which is sustained by microcins that have a narrow-spectrum 

of activity toward closely related competitors. As an illustration, the gut commensal E. coli Nissle 1917 is 

able to produce microcins M and H47 under inflammatory conditions to limit the expansion of closely 

related Enterobacteriaceae and exert select probiotic effects.43 To illustrate the diversity within this family 

of microbiome-encoded small molecules, we will focus on the structural and enzymatic features of the two 

related RiPPs, thiocillin and microcin B17/P1.  
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Figure 2. Proposed biosynthesis of thiocillins as a representative RiPP pathway. (A) Structures 
of lactocillin and micrococcin P1 (B) Precursor peptide for micrococcin P1 (C) Proposed 
heterocyclization reaction of RiPPs, focusing on microcin B17 as an example (D) Proposed 
pyridine synthase reaction of thiocillins proceeds through a Diels Alder reaction.  
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Microcins  

Microcins have traditionally been the name for ribosomally-derived peptides from Gram-negative 

bacterial species.  Chemically, microcins are a part of the linear azol(in)e-containing peptide family defined 

by the presence of thiazole and (methyl)oxazole heterocycles in an otherwise linear core peptide.38 

Microcins can be further subdivided into class I, IIa, and IIb according to size and genetic characteristics44. 

Genetic loci that encode microcins typically include the precursor peptide, associated modification 

enzymes, a self-immunity gene to protect against self-poisoning, and the genes needed for export out of the 

cell.    

Class I microcins generally have a mass below 5 kDa and their self-resistance genes are often 

located distally to the biosynthetic gene cluster, an exception to the gene “clustering” phenomenon in 

bacteria and fungi.44 An example of a class I microcin is that of microcin B17 (MccB17) encoded by strains 

of E. coli bearing a 70 kb conjugative pMccB17 plasmid.45-46 A three-gene system consisting of mcbB, 

mcbC, and mcbD associate to form the microcin B17 synthetase which transforms 14 residues within the 

backbone into heterocylic moieties, thus activating the molecule for antibiotic activity.47-48 McbD, as part 

of the McbBCD complex (Figure 2C), initiates the cyclodehydration of serine and cysteine residues by ATP 

phosphorylation.49 The zinc-dependent McbB cooperates with McbD to catalyze the formation of 

oxazolines and thiazolines.49-50 These heterocycles are further oxidized/aromatized by the flavin-dependent 

dehydrogenase McbA. The leader peptide is then cleaved off by chromosomally encoded proteases 

(TldD/E) prior to exportation.51-53 The resulting, fully processed microcin B17 is a narrow-spectrum DNA 

gyrase inhibitor against several members of Enterobacteriaceae.54-55 

Class II microcins contain processed peptides that are within 5-10 kDa. Class IIa refers to microcins 

containing disulfide bonds, and class IIb microcins may contain additional C-terminal modifications, such 

as conjugation to a siderophore.44 As mentioned above, E. coli Nissle 1917 encodes microcin H47, which 

has been speculated to be attached to a siderophore (an iron-scavenging molecule).56-57  Indeed, microcin 

H47 has been shown to be synthesized and possess antibacterial activity during iron starvation conditions.43 

Microcin H47 is thought to target recipient bacteria through their cognate siderophore receptors.56, 58 This 
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“Trojan-horse” mechanism of action leads to species selectivity, facilitating competition with closely 

related Enterobacteriaceae that share similar resources and locale.58-59  

 

Thiocillin 

Thiocillin belongs to the thiopeptide class of RiPPs due to the presence of multiple thiazoles 

connected to a central six-membered nitrogenous ring – in this case, a pyridine. Thiocillin targets the 

bacterial 50S ribosome and exhibits potent antibacterial activity against a number of drug resistant 

pathogens.60-61 Its biosynthesis in the native host Bacillus cereus begins with ribosomal translation of a 52-

amino acid precursor peptide that contains a 38-residue leader sequence and a 14-amino acid core peptide 

(Figure 2A,B).62 In addition to the four copies of the pre-processed open reading frame (tclE-H), the gene 

cluster additionally contains two lantibiotic-type dehydratases, cyclodehydratase, dehydrogenase, four 

proposed resistance elements, and other tailoring enzymes that modify individual residues in a stochastic 

manner.63 Combinations of some of these modifications result in a panel of structural variants produced by 

B. cereus: thiocillin I, II, III64, and IV62, micrococcin P1 and P2
65, and YM-266183 and 26618466.  

Isolation of peptide precursors from individual gene deletion strains within the thiocillin gene 

cluster suggested that key posttranslational modifications such as thiazole formation, serine and threonine 

dehydration to form dehydroalanine-type residues, and C-terminal oxidation/decarboxylation precede the 

final maturation step in pyridine ring formation.63, 67 The enzyme TclM was demonstrated to catalyze the 

formal [4+2] cycloaddition between two dehydroalanine moieties (Figure 2D)63. Following cycloaddition, 

subsequent dehydration and elimination of the 38-amino acid leader peptide results in the aromatic pyridine 

product. TclM represents a rare class of Diels-Alderases that recognize a heavily decorated substrate in 

order to catalyze a non-spontaneous reaction. Base catalysis was demonstrated to enhance enzyme substrate 

promiscuity, displaying value for its use as a biocatalyst to make thiocillin analogs.63, 67   

 

 

 



18 
 

1.2.2 Nonribosomal peptides  

The microbiome also encodes peptides derived from a parallel and complementary biosynthetic 

route to the RiPPs through the use of nonribosomal peptide synthetases (NRPSs). Whereas RiPPs use 

ribosome tRNA binding sites (E, P, A) and a mRNA to construct peptides,68 NRPS enzymes instead divide 

the chemical reactions across multiple catalytic proteins or domains often within multidomain enzymes. 

While this process requires much more cellular energy and coding capacity within the genome relative to 

ribosomal protein synthesis, it has a much larger structural and functional repertoire.69  

The majority of NRPSs represent multi-modular enzymes that act in an assembly line fashion. 

Individual amino acids are activated as AMP esters by an adenylation (A) domain and tethered as thioester 

linkages to the flexible phosphopantetheinyl arm of a thiolation (T) domain, a peptidyl carrier protein (PCP) 

(Box 1/Figure B1).70-71  

 

 

 

 

 

  

In addition to standard proteinogenic substrates, NRPS A-domains are able to select from hundreds 

of nonproteinogenic amino acids, dramatically expanding their substrate pool relative to aminoacyl-tRNA 

synthetases used for ribosomal peptide synthesis.72 The condensation (C) domain catalyzes peptide bond 

formation between the thioester of the aminoacyl-T domain of an upstream module with the amine of the 

aminoacyl-T domain of a downstream module, extending the peptide one unit at a time and shuttling the 

growing peptide downstream.70-71 The growing peptide chain can be further modified with tailoring 

Box 1/Figure B1. General schematic of amino acid activation and condensation in NRPS 
biosynthesis. Additional tailoring enzymes modify the growing chain (domains in grey). 
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domains, such as epimerases (E), cyclases (Cy), oxidases (Ox), reductases (R), and methyltransferases 

(MT). The terminal module typically invokes a thioesterase (TE) domain to release the product via 

hydrolysis or macrocyclization. However, reductive release also represents a common termination strategy, 

which we will highlight below. Finally, released products can be subjected to additional post-assembly line 

transformations, including glycosylation, redox modification, and proteolytic cleavage.69  

Some of the most well-studied NRPS-derived products include siderophores, which are known 

virulence factors that chelate iron with exceptional affinity and promote iron acquisition.73-74 Antibiotics, 

such as penicillin, are also well-studied NRPS-derived products.75-76 While the majority of antibiotic and 

other specialized metabolic pathways have been characterized in soil- and sediment-dwelling microbes, 

where they are used for nutrient competition and cell-to-cell signaling,77-80 examples of NRPS products 

encoded within human-associated microbiota species have only more recently been elucidated. 

Bioinformatic analysis of biosynthetic gene clusters within the human microbiome suggests that 

the abundance of NRPS-derived products within human-associated bacterial species are lower than those 

in other prokaryotes, especially soil and aquatic bacteria.29, 37, 81 However, abundance should not be 

conflated with biological importance. Of those microbiota harboring NRPS-containing pathways, many 

have undergone genome reduction and harbor chromosomes as small as 2-3 Mb, suggesting that the often 

large NPRS pathways maintained are crucial for survival and colonization within the gut. With one notable 

exception (pyrazinones), most NRPS-containing biosynthetic gene clusters were found in <5% of 752 

healthy, human microbiome samples.37 Nearly all of the bioinformatically-identified NRPS gene clusters 

have never been described before, meaning that these pathways represent a rich source of novel molecules 

that may have been selected to function in the human environment.29, 37, 81  

 

Lugdunin  

Using a classical bioassay-guided metabolite characterization approach, Zipperer et al. identified a 

nonribosomal peptide encoded within a Staphylococcus isolate from a collection of bacteria isolated from 

the nasal passages of healthy volunteers82. They found that S. lugdunensis IVK28 harbored antibiotic 
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activity against methicillin-resistant Staphylococcus aureus (MRSA) under iron-limiting conditions. 

Transposon mutagenesis of strain IVK28 led to the identification of an approximately 30 kb operon that, 

when mutated, led to a complete loss of antibiotic activity. This operon contained four NRPS genes, a 4�-

phosphopantetheinyl transferase (PPTase) that posttranslationally activates the carrier proteins (T 

domains), a monooxygenase, a type-II editing thioesterase that removes stalled intermediates to improve 

biosynthetic processing, an annotated regulator, and a putative biosynthetic tailoring enzyme of unknown 

function. Collectively, each enzyme had less than 35% identity to any other described enzyme and was 

found exclusively in S. lugdunensis.82   

Isolation and characterization of the antibiotic revealed a new NRPS product termed lugdunin, a 

cyclic peptide containing a thiazolidine heterocycle and three D-form amino acids. The authors 

hypothesized that the thiazolidine ring is formed upon reductive release of a heptapeptide scaffold, whereby 

the amine of the N-terminal L-Cys nucleophilically attacks the C-terminal L-Val carbonyl to form a 

macrocyclic imine (Figure 3).   

Nucleophilic attack by the cysteine thiol group to this Schiff base results in a five-membered 

thiazolidine heterocycle. The structure of lugdunin was larger than expected from bioinformatic analysis, 

as there were only five adenylation (A) domains encoded within the operon. Iterative incorporation of three 

consecutive valine moieties with alternating L- and D-configurations by an iterative LugC adenylation 

domain was proposed to account for this discrepancy - resulting in a heptapeptide metabolite.82  

Lugdunin was demonstrated to possess antibiotic activity against Gram-positive bacteria in vitro, 

and it was also effective in a mouse skin S. aureus infection model. Either purified lugdunin or its producer 

S. lugdunensis applied to the infection site led to a strong reduction of viable S. aureus within the epidermis. 

Correspondingly, the authors found a strong inverse relationship between S. lugdunesis and S. aureus by 

analyzing nasal swabs of patients, suggesting that lugdunin is indeed expressed within the nasal passages 

and can lower the carriage rate of S. aureus.82    
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Tilivalline 

Antibiotic-associated hemorrhagic colitis (AAHC) is a disease phenotype accompanying perturbed 

gut microbial homeostasis as a result of antibiotic treatment. In the absence of Clostridium difficile, AAHC 

is found to be associated with overgrowth of a pathobiont strain, Klebsiella oxytoca.83-85 Schneditz et al. 

first described tilivalline, an enterotoxic nonribosomal peptide produced by this pathobiont, which is present 

in 2-10% of healthy human GI microbiome samples.86 Following brief penicillin therapy, K. oxytoca claims 

an opened environmental niche and this dysbiotic population shift induces acute colitis, as demonstrated in 

a mouse model. While tilivalline is thought to be the chief virulence factor of K. oxytoca responsible for 

Figure 3. Biosynthesis and structure of lugdunin. The linear precursor is released via reduction and 
spontaneously cyclized to form lugdunin. Aldehyde chemistry is typical of reductive release reactions 
catalyzed by reductase (R) domains, shaded in gray 
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disease pathology, tilivalline production provided no advantage for colonization in a rodent model for 

antibiotic-induced dysbiosis. The genomic context of tilivalline shares >50% sequence similarity to 

pyrrolobenzodiazepine biosynthesis genes present in Gram-positive soil bacteria, such as actinomycetes.86 

Indeed, tilivalline was characterized as a pentacyclic pyrrolobenzodiazepine (PDB)86, a member of a 

broader structural class known to bind and alkylate DNA.87-89 Tilivalline is the first PBD shown to be 

formed by the enteric microbiota and thus represents a new class of enterobacterial toxins.86 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Biosynthesis and structure of tilivalline from 3-hydroxy-anthranillic acid (3HAA). Proposed 
biosynthesis of precursor 3HAA is illustrated in upper box. NRPS gene cluster containing NpsA, NpsB 
and ThdA utilizes 3HAA and L-proline as substrates to produce tilivalline. Cytotoxic tilimycin is a 
stable intermediate which results from cyclization of the aldehyde precursor 
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Tilivalline is produced from two transcriptional operons: one encoding the synthesis of a 

hydroxyanthranilic acid substrate90-91 and one encoding the NRPS operon containing a standalone 

adenylation domain, thiolation domain, and one NRPS termination module with a C-A-T-R domain 

architecture (Figure 4).86 NRPS adenylation domain NpsA loads the precursor 3-hydroxy-anthranillic acid 

(3HAA) onto thiolation domain ThdA. The condensation of 3HAA and L-Pro by NpsB is followed by an 

NADPH-dependent reductive release. The linear aldehyde undergoes a spontaneous cyclization event to 

give rise to tilimycin (or kleboxymycin), which was identified as another enterotoxin from the pathway.90-

91 A tryptophanase gene (tnaA) was reported to convert L-Trp to free indole, which then serves as a 

nucleophile to form the final product tilivalline in a spontaneous Friedel-Crafts-type alkylation reaction 

(Figure 4).90, 92 Systematic gene knockout and metabolite profiling experiments established a 4-

hydroxyphenylacetate-3-monooxygenase (hmoX), 2-amino-2-deoxy-isochorismate synthase (adsX), 

isochorismatase (icmX), 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (dhbX), 2-keto-3-deoxy-D-

arabino-heptolosonate phosphate synthase (aroX), and distal gene 3-dehydroquinate synthase (aroB) to be 

responsible for 3HAA substrate biosynthesis.90-92  

While tilivalline and tilimycin share the same pyrrolobenzodiazepine core, they exert distinct host 

phenotypes.90-91, 93 The most recent study by Unterhauser et al. established a detailed mode of action for 

both enterotoxins. As predicted from the PBD class of cytotoxins, the intermediate tilimycin binds and 

stabilizes the minor groove of double-stranded DNA, promoting dysregulation of DNA damage responses 

and replication stress. This causes DNA double strand breaks and G1/S phase cell cycle arrest both in cell 

culture and in vivo. Tilivalline, on the other hand, was reported to stabilize microtubules which constitute 

the cytoskeleton of tubulin. Binding of tilivalline to microtubules inhibits tubulin depolymerization, leading 

to mitotic arrest. Treatment of tilimycin or tilivalline to colon epithelial cells showed that both cytotoxins 

can induce cellular apoptosis through independent modes of action. Collectively, both enterotoxins are able 

to induce apoptotic disease phenotypes which are hallmarks of AAHC.93 Given that up to 10% of humans 

harbor tilivalline-producing K. oxytoca and are asymptomatic,85 decoding resistance mechanisms to keep 

K. oxytoca in check or neutralize tilivalline activity represent an interesting future direction.  
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Pyrazinones  

A conserved NRPS pathway in Staphylococcus aureus and other skin-associated staphylococci 

encodes a family of pyrazinone natural products such as phevalin, tyrvalin and leuvalin.94-95 Phevalin was 

originally discovered in 1995 from soil actinomycetes and was shown to inhibit calcium-dependent calpain 

proteases in eukaryotes.96 A study in human keratinocytes also showed phevalin to be involved in modestly 

regulating its gene expression.97 Similar pyrazinones, isolated from Photorhabdus species, were also shown 

to have calpain protease inhibition.98 As such, it is worth noting that an additional class of synthetic 

pyrazinones are currently under clinical trials for treatment of hepatitis C virus NS3 protease inhibition.99-

100 Despite these roles, the exact function of pyrazinones is still unknown. No antibiotic activity has been 

reported by these compounds, and they have been hypothesized to have a role in signaling and pathogenesis 

of S. aureus.94, 101 Indeed, a structurally related compound 3, 5-dimethylpyrazin-2-ol (DPO) was described 

to act as an autoinducer in Vibrio cholerae quorum sensing.102  

Similar NRPS pathways with a reductase domain that encode dihydropyrazinones and pyrazinones 

were reported in several human gut members from Firmicutes and some Gram-negative strains. These 

pyrazinone-encoding gene clusters were present in >90% of fecal samples from the Human Microbiome 

Project, showcasing the wide distribution of these genes and the prevalence of dipeptide aldehydes and 

pyrazinones in the human gut.103 Select pyrazinones and precursor dipeptide aldehydes are illustrated in 

Figure 5AB.  
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  The pyrazinone precursor dipeptide aldehydes are themselves a noteworthy class of protease 

inhibitors. Dipeptide aldehydes are usually encoded by dimodular NRPS systems with a conserved 

reductase domain for reductive release in a NADPH-dependent manner (Figure 5C). The released aldehydes 

are stable under physiological conditions for hours and undergo cyclization to form dihydropyrazinones. In 

the presence of oxygen, dihydropyrazinones undergo irreversible oxidation to pyrazinones, and molecular 

oxygen becomes more available at the epithelial surface.104-105 However, since the gut environment is 

largely anaerobic with the exception of inflammatory circumstances, oxygen is generally in low abundance 

and oxidation is slow. This leads to an accumulation of the dipeptide aldehydes free in solution, available 

for targeting proteases. The electrophilic aldehydes are known to be targeted by nucleophilic cysteine or 

Figure 5. (A) Representative dipeptide aldehydes. The aldehyde moieties highlighted in red represent 
the pharmacophore for protease inhibition. For example, bortezomib, a clinical proteasome inhibitor, is 
a structural mimic of the dipeptide aldehyde backbone. (B) Representative pyrazinones. Pyrazinone core 
is highlighted in blue, and R1 and R2 groups are derived from various amino acid side chains. (C) 
Biosynthesis and structure of phevalin. PznA (AusA) encodes A1-T1-C-A2-T2-R domains as shown while 
PznB (AusB) encodes a phosphopantetheinyl transferase. 
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serine residues in proteases, specifically cathepsins involved in modulating intestinal epithelial cells.95, 103 

Ruminopeptin, an N-acylated dipeptide aldehyde, was characterized from a gut commensal Ruminococcus 

bromii and was reported to exert inhibitory activities against S. aureus endoproteinase GluC.106  

      

1.2.3 Polyketides 

Polyketides are a structurally and functionally divergent class of small molecules derived from the 

homologation and functionalization of simple acyl- and malonyl-CoA-derived substrates. The chemical 

logic of polyketide synthases (PKSs) mirrors that of fatty acid biosynthesis. As with NRPSs, central features 

of polyketide synthesis involve tethering the elongating acyl chains to a thioester linkage on an acyl-carrier-

protein (ACP), the functional equivalent of T domains (PCPs) in NRPSs. A ketosynthase (KS) domain 

catalyzes C-C bond formation between two acyl-thioester linkages via effective decarboxylative thio-

Claisen condensation (Box 2/Figure B2). Additional �-keto processing by tailoring enzymes, such as 

ketoreductase (KR), dehydratase (DH), and enoylreductase (ER) domains may or may not be present to 

reduce the growing chain to a “programmed” oxidation state. Similar to NRPSs, chain termination often 

ends with a thioesterase (or a reductase) to release the product via hydrolysis or macrocyclization (or 

reductive release). Additional post-assembly line modifications of the polyketide scaffold can follow, 

Box 2/Figure B2. General schematic of effective decarboxylative thio-Claisen 
condensation mediated by the KS domain in PKS biosynthesis. Common PKS 
tailoring enzymes/domains are listed in grey. 
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including acylation, alkylation, glycosylation, prenylation, and redox modifications.69  

The organization of PKS systems can vary. Well-known products like the virulence factor 

mycolactone from Mycobacterium ulcerans107 are produced by giant type I modular PKSs, in which the 

catalytic domains are organized in large multidomain proteins connected by interprotein junctions.69, 108 

Type II PKSs typically produce aromatic polyketides like the antibiotic tetracycline from soil bacteria, in 

which the catalytic components are expressed as discrete proteins and used in an iterative manner.69, 109-112 

However, type II systems are also invoked as modular building blocks in the construction of other molecular 

classes, such as the tetrahydropyridine alkaloids widely distributed in Pseudomonas species, in which the 

discrete proteins are thought to be used once in the catalytic cycle.113-115 Indeed, both type I and type II 

systems can function modularly or iteratively. Yet another enzymatic design is reflected in type III 

polyketides, which are homodimers that form a single active site responsible for priming, extension, and 

cyclization reactions and act in an iterative manner. Type III systems are most often found in plants, many 

of which are responsible for the production of dietary polyketides relevant to diet and the intestinal 

microbiota.116 In this section, we selected an atypical bacterial type II PKS system found in Photorhabdus 

species that produce “plant-like” stilbenes. We believe that this system serves as a model of the structural 

and functional cross-section among bacteria, dietary plants, and host phenotypic outcomes.     

 

Tapinarof 

   Tapinarof is produced by all known members of the Photorhabdus genus, which exist in a tripartite 

symbiosis with insect larvae and nematodes.117 In addition to its pathogenic role in insects and its 

mutualistic role with its host nematode, Photorhabdus asymbiotica is known to cause systemic infections 

and severe soft tissue infections including the skin in humans.118 Indeed, P. asymbiotica is now recognized 

as an emerging human pathogen.119 Tapinarof is a topical drug currently in phase 3 clinical trials to treat 

skin disorders such as atopic dermatitis and the autoimmune disease psoriasis. Its clinical efficacy is thought 

to be derived from its activation of the xenobiotic arylhydrocarbon receptor (AhR) and nuclear factor 

erythroid 2-related factor 2 (Nrf2)-antioxidant signaling pathways.120-121 The AhR is a transcription factor 
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activated by a diverse set of ligands and contributes to the regulation of immune signaling, disease 

progression, and skin barrier integrity. In human cells and in a mouse model, AhR activation leads to 

reduced cytokine expression and inflammation.121 Additionally, tapinarof activates the antioxidant response 

to scavenge reactive oxygen species in a Nrf2-dependent manner.120 Tapinarof has also been reported to 

have moderate antifungal and Gram-positive antibacterial activities.122-124  

The tapinarof biosynthetic pathway is semi-clustered among four distinct regions of the genome 

and encodes several interesting enzymatic features. First, like NRPSs, the starter substrates are amino acids, 

which are then converted into competent PKS substrates (Figure 6). Phenylalanine is converted to cinnamic 

acid (StlA)125 and activated as an acyl-CoA thioester (StlB)126, whereas leucine is transaminated and then 

oxidatively decarboxylated to its acyl-CoA thioester (BkdAB) in a typical branched-chain fatty acid 

biosynthetic process.126 After one round of canonical polyketide extension, these substrates are condensed 

in a head-to-tail fashion by an atypical ketosynthase (KS) StlD to form a carboxylated-cyclohexanedione 

product.126-127 Intriguingly, in this transformation, the KS catalyzes not only a Claisen reaction characteristic 

of this family of enzymes, but also a Michael reaction. The product is then recognized by an aromatase StlC 

to decarboxylate and aromatize the final product.126-127 Photorhabdus species also encode a flavin-

dependent epoxidase thought to detoxify accumulating stilbenes.128 Notably, Photorhabdus is one of two 

known bacterial stilbene producers that convergently evolved to produce “plant-like” compounds typical 

of the plant type III PKS systems – e.g., resveratrol stilbene synthase.125-127, 129-130  
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Tapinarof is closely related to other dietary stilbenes such as resveratrol from grapes, green tea, and 

berries.131 These dietary stilbenes have traditionally been shown to induce anti-inflammatory and anti-

oxidant activities and are sometimes utilized as “alternative therapies” for IBDs, including Crohn’s disease 

and ulcerative colitis.132 Similar to tapinarof, polyphenols from green tea extracts were shown to modulate 

Nrf2 signaling to induce antioxidant and anti-inflammatory effects in a preclinical IBD mouse model.133 

However, IBD clinical trials for stilbene treatments ultimately failed due to inter-individual variability.132 

As such, our growing understanding of xenobiotic transformations of metabolites by gut microbiota 

Figure 6. Biosynthesis of tapinarof and resveratrol. The atypical pathway features a novel stilbene 
synthesis mechanism condensing two units in a head to tail manner by a type II PKS system. Typical 
type III PKS synthesis of resveratrol as a representative of plant stilbenes is shown in the left box. 
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suggests that the inter-individual variations in these clinical trials might be due to the vast differences in 

the gut microbiome among patients.134 We believe that these studies could be revisited in the context of 

illuminating a functional tripartite interaction: dietary plant metabolites, the microbiota, and the host.  

 

1.2.4 Hybrid NRPS/PKS  

Both NRPS and PKS systems utilize analogous protein domains in which a covalently attached 

phosphopantetheinyl cofactor provides a flexible thioester linkage to their biosynthetic intermediates. This 

architecture enables them to interface with each other to create hybrid NRPS-PKS pathways.69 This 

collaboration depends on the efficiency of a ketosynthase or condensation domain to recognize a non-

cognate thioester substrate to catalyze bond formation. This also requires precise protein-protein domain 

interactions to accept and usher the growing intermediates along the biosynthetic assembly line.69 We also 

acknowledge that these types of systems can sometimes accept “free” substrates derived from other non-

PKS/NRPS biosynthetic systems.135-138 

In an analysis of ~2,500 bacterial genomes, the Sivonen group reported 3,339 NRPS/PKS gene 

clusters, commonly occurring in the phyla of Proteobacteria, Actinobacteria, and Firmicutes – all of which 

have been described as common components of the human microbiota.139 A third of these described gene 

clusters encoded hybrid proteins containing NRPS and PKS core domains, and a tenth of which included 

individual catalytic domains in separate open reading frames – which differs from the dominant “modular” 

classification of NRPS/PKS enzymes. Hybrid pathways typically tend to be larger and possess more domain 

types, enabling more chemically diverse scaffolds than either PKSs or NRPSs alone.139 In addition, stand-

alone NRPS/PKS domains such as individual acyl-transferases (AT) can process iterative or modular 

loading of acyl monomers in trans.140-143 Collectively, this means that hybrid NRPS/PKS gene clusters often 

violate the “collinearity” principle, in which the final product can be “read out” by the composition and 

order of biosynthetic domains.69 Thus, while bioinformatic algorithms can now easily identify the presence 

or absence of these pathways, it is becoming increasingly difficult to predict a PKS/NRPS product from 

gene sequence or even targeted biochemical reactions alone. Consequently, hybrid NRPS/PKS pathways 
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offer an opportunity to uncover interesting, less-explored chemical space within natural products, in 

addition to the unknown biological roles that they mediate within host-microbe and microbe-microbe 

interactions.69, 139  

 

Colibactin  

It has been estimated that Escherichia coli resides in up to 90% of humans.144 Some strains of E. 

coli and Klebsiella pneumoniae harbor an ~54 kb genomic island that encodes for the small molecule 

genotoxin termed colibactin.145-147 Colibactins are secondary metabolites produced by the colibactin 

biosynthetic gene cluster (clb or pks), and their structural characterization have been of intense interest to 

the natural products, microbiology, and cancer cell biology communities.148-152 Production of colibactins in 

live bacteria co-cultured with mammalian cells reveal induced mammalian cell genotoxicity and 

cytotoxicity in vitro and in vivo, including DNA double stranded breaks, cell cycle arrest, and genomic 

instability phenotypes.145, 153-156 Presence of the pathway promotes carcinogenesis in colitis-susceptible 

mice treated with azoxymethane, and clinical data show an increased prevalence of clb-encoding E. coli in 

inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients over healthy patient controls.154, 

156-157 The risk of colibactin-mediated carcinogenesis could be increased upon interaction with additional 

strains, as tumor formation in mice was increased in mice co-colonized with toxin-positive Bacteroides 

fragilis and clb+ E. coli over mice mono-colonized with each respective strain.158 

While the clb pathway is diversity-oriented, producing many pathway-dependent metabolites with 

variable activities, the key mode of action of colibactin related to disease has been supported as DNA 

interstrand crosslinking.159 Indeed, Nougayrède, Oswald, and co-workers demonstrated that clb+ bacteria 

crosslink exogenous DNA and activate DNA crosslink repair machinery of the Fanconi anemia pathway.159 

Crosslinking has been confirmed and a mono-adenine adduct has been characterized by two separate 

groups.160-161 The subsequent activation of downstream �H2AX, a marker of DNA double strand breaks, 

and cellular enlargement (megalocytosis) was found to be dependent on every biosynthetic gene in the 
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pathway.145 The presence or absence of uncharacterized peptidase ClbL led to cellular crosslinking versus 

alkylation, respectively, indicating that ClbL is required for the crosslinking phenotype.162  Colibactin is an 

intriguing molecule given that the biosynthetic pathway is found in E. coli Nissle 1917 (EcN, 99% 

similarity)142, a probiotic used for the treatment of ulcerative colitis and irritable bowel syndrome.163 

Remarkably, inactivation of the pathway also abrogates EcN’s beneficial probiotic activity as well as 

colibactin’s genotoxocity, although cross-talk effects of other EcN metabolic pathways have not been ruled 

out.163  

While mounting evidence exists for colibactin’s link to CRC development154, 156-158, 164, an open 

question remains as to the benefits of colibactin to clb+ strains. Because both intestinal inflammation and 

the presence of the clb gene cluster are required for colibactin-mediated carcinogenesis in multiple mouse 

models, one can speculate that colibactin allows a fitness advantage during inflammatory conditions.154 

Activation of the p53 DNA damage response is known to modulate expression of toll-like receptors and 

interferon signaling165, and inflammatory conditions provide Enterobacteriaceae access to new nutrients in 

the intestinal tract leading to blooms.166-167 Additionally, cross-talk is observed for colibactin and 

siderophore biosynthesis through sharing of a phosphopantheinyl transferase required for posttranslational 

carrier protein activation.168 Since siderophores provide certain bacteria with colonization advantages due 

to iron acquisition, colibactin synthesis could contribute to niche establishment during inflammatory 

conditions, where iron is limiting.27, 43, 147 

The mysterious biology surrounding the pathway has resulted in a surge of investigations by 

multiple labs over the last few years in characterizing the biosynthesis and structure of colibactin.148-152 

While the fully mature structure of colibactin is currently under peer review, a wealth of publications has 

become publicly available in recent years describing colibactin’s unique biosynthetic, structural, and 

mechanistic features. The colibactin pathway is regulated by a LuxR-type regulator169 and encodes hybrid 

NRPS/PKS megasynthetases, accessory enzymes, a type II editing thioesterase that uniquely hydrolyses 

multiple pathway intermediates170-172, a transporter,173-174 and a resistance protein.175-176 The unexpected 
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chemical reactivity, instability, and biosynthetic logic employed by the pathway help to explain, in part, the 

challenges behind isolating the final product. Here, we will discuss several interesting features of the 

pathway, including a prodrug activation step, cyclopropane formation from S-adenosyl-methionine, and �-

aminomalonyl-carrier protein biosynthesis.  

 

Figure 7. Proposed biosynthesis of colibactin. Precolibactin is synthesized by a hybrid NRPS-PKS 
pathway. Highlighted features in the chapter include 1) prodrug activation, 2) cyclopropane formation, 

and 3) �-aminomalonyl-biosynthesis. 1) An N-acyl-D-Asn prodrug motif is cleaved by peptidase ClbP, 
leading to the free N-acyl-amide and subsequent spontaneous cyclodehydrations reactions that set the 
electrophilic colibactin warhead. 2) Methionine labeling studies supported that the cyclopropane was 
methionine-derived. Protein biochemical studies established that the methionine-derived unit was SAM. 
Interestingly, hydrolytic derailment of the ClbH product leads to an AHL, whereas ClbI is required to 
shuttle the intermediate downstream and form the cyclopropane motif. 3) ClbH-A1 activates L-Ser and 

transfers it onto carrier protein ClbE to initiate �-aminomalonyl-biosynthesis. Dehydrogenases ClbD 

and ClbF oxidize the L-serinyl-ClbE to �-aminomalonyl-ClbE, and trans-acyltransferase ClbG transfers 
the unit to the PKS module of ClbK and the PKS module ClbO in the proposed biosynthesis. Peptidase 
ClbL is required to convert clb-pathway-derived DNA alkylators into DNA interstrand crosslinkers. 
NRPS-PKS enzyme domains are represented as blue circles, final domain steps of precolibactin 
biosynthesis are shown in grey circles, the spontaneous cylodehyrdrations leading to the active colibactin 
warhead is shown, and additional proteins are listed in the grey box. 
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Prodrug cleavage and colibactin activation 

Biosynthesis of colibactin (Figure 7) begins with the formation of a prodrug termed precolibactin, 

which is hydrolyzed by an inner membrane peptidase ClbP.177-178 Cleavage of precolibactin releases N-acyl-

D-Asn179-181 and linear colibactins, the latter of which undergo sequential cyclodehydrations to form an 

electrophilic ‘warhead.’151, 170, 182 The ‘warhead’ is reminiscent of the duocarmycin family of DNA 

alkylators, which alkylate DNA via cyclopropane ring opening.183 Consistently, the cyclopropane in 

synthetic colibactins closely resembling characterized colibactin metabolites has been shown to be required 

for DNA alkylation.170, 182 Indeed, a gem-dimethyl analog of the warhead was inactive.182  Naturally 

produced colibactin-adenine nucleobase adducts characterized from DNA exposed to clb+ E. coli are in 

agreement with this proposal.160-161 

 

Cyclopropane formation 

The NRPS module ClbH is a unique NRPS with a noncanonical A1-C-A2-T domain architecture. While 

ClbH A1 activates L-Ser170, 184-185 (discussed below), domain targeted metabolomics, genetics, and isotopic 

labeling studies showed that A2 was responsible for L-Met isotopic labeling of the cyclopropane moiety.170, 

186-187 The “Met-derived precursor (for example, S-adenosyl-Met)”186 was confirmed to be derived directly 

from S-adenosyl-Met (SAM) via protein biochemical studies.188 Interestingly, downstream ClbI was shown 

to be required for cyclopropane formation, and in its absence, an acyl-homoserine lactone (AHL) was 

formed as a ClbH-derailment product instead.188 Acyl homoserine lactones (AHLs) are commonly involved 

in quorum sensing and modulation of gene expression in Gram-negative bacteria.189 The production of an 

AHL by the clb pathway, the presence of its LuxR-type transcriptional regulator ClbR169, and the knowledge 

that the native E. coli LuxR-regulator SdiA responds to AHLs190-191, suggest that clb-derived AHLs and 

related molecules may be intercepted as signaling molecules (see also below). These biological connections 

remain exciting open questions in the field.    
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Installation of an �-aminomalonyl-derived unit  

A bioinformatic analysis of the colibactin pathway predicted the possible incorporation of an L-Ser-

derived α-aminomalonyl extender unit186 based on homology to known pathways,192-193 although Ser isotope 

labels were not detected in the dataset at the time186. Unequivocal establishment of the incorporation of this 

extender unit came from protein biochemical studies184-185 and characterization of a product incorporating 

this moiety171. In vitro studies indicated that ClbH-A1 loads L-Ser onto the freestanding PCP ClbE 

(represented as T).  Dehydrogenases ClbD and ClbF then oxidize seryl-ACP to aminomalonyl-ACP.184-185 

Transfer of the α-aminomalonyl unit from ClbE to a T domain in ClbC, ClbI, ClbK, and ClbO was shown 

to be mediated by freestanding acyltransferase ClbG in vitro.185 However, some of these reported activities 

appeared to be the result of promiscuous activity of purified proteins in vitro, as corresponding metabolites 

for loading of this unit onto ClbC and ClbI have not been detected in cell culture. Gene inactivation studies 

further supported that the PKS domain of ClbK accepted ��-aminomalonyl-ACP from the trans-

acyltransferase ClbG.171 Selective inactivation of ClbKPKS by genome editing also demonstrated that PKS 

extension using an α-aminomalonyl-unit was essential for inducing genotoxicity in cell culture.162 

Biosynthetic divergence points introduced through domain skipping of ClbKPKS can produce molecules with 

differing DNA-damaging effects: bithiazole scaffolds can alkylate DNA in vitro, while α-amino-malonyl-

ACP biosynthetic machinery is required for DNA crosslinking.162, 170 We speculate that the diversity arising 

from this pathway could provide an evolutionary benefit for the producer. 

 

1.2.5 N-acyl-amides  

N-acyl-amides represent a broad family of microbial and mammalian signaling molecules, 

including the well-studied subfamily N-acylhomoserine lactones (AHLs), noted above. AHLs serve as 

autoinducers in Gram-negative bacteria and regulate a signaling phenomenon known as quorum sensing.194-

197 Quorum sensing is a bacterial communication method that links bacterial cell density to collective 

genetic behaviors; concentration of an autoinducer controls the transcription of programs as diverse as 
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biofilm formation, virulence factor expression, antibiotic production, bioluminescence, sporulation, and 

DNA-uptake.195 Population-dependency and cellular stress138, 198-199 regulation of these processes are often 

crucial for fitness and survival within a host, both for pathogens and commensals.200 AHLs are typically 

synthesized by autoinducer synthases, which catalyze the condensation of S-adenosyl-Met and an acyl 

carrier protein (ACP)-linked fatty acid.200 Many bacterial species encode receptors for AHLs but no known 

biosynthetic genes within their own genomes, suggesting that AHLs are a common chemical language that 

can be overheard by potentially competing bacterial species.201  

Metagenomic analysis of DNA from soil microbes shed light on an additional class of enzymes 

that share limited sequence similarity with autoinducer synthases, yet catalyze the production of chemically 

similar molecules.202 N-acyl amino acid synthases (NASs) utilize acyl-ACPs and amino acids in lieu of 

SAM as substrates.202 Again, the N-acyl-amide products of these enzymes are hypothesized to have a role 

in signaling much like their AHL counterparts. This is supported by evidence that an acyl-transferase class 

of NASs are genetically linked to two-component signal transduction systems in bacteria.203  

Other N-acyl-amides have been described that arise from mechanistically distinct enzymatic routes.  

A family of N-acyl-L-histidines produced by the “accidental” human pathogen Legionella pneumophila 

was shown to be dependent on an annotated ATP-grasp protein.204 This ATP-grasp protein likely functions 

as an ATP-dependent ligase (Figure 8A) that condenses free medium-chain-length fatty acids from primary 

metabolism with free L-His substrates, which is in contrast to the transferase (Figure 8B) activity of AHL 

synthases and NASs.204 Notably, this pathway is highly upregulated during L. pneumophila macrophage 

infection, and suggests a conserved role for N-acyl-amides in bacterial- mammalian signaling. Additional 

unknown enzymatic mechanisms can account for N-acyl-amide synthesis. For example, a recent report of 

an N-acyl-amide encoded by diverse Pseudomonas species was speculated to arise from an unidentified 

halogenase reaction (Figure 8C) on a tetrahydropyridine alkaloid precursor,114-115 mimicking a similar 

sequence observed in plants.205 These examples indicate that there are a variety of biosynthetic routes, some 
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of which have been characterized, to this class of signaling molecules, indicating that putative N-acyl-amide 

pathways are dramatically underrepresented in genome mining analysis of the human microbiome. 

Ultimately, the various enzymatic pathways converge to create a shared N-acyl-amide core structure.  

Mammalian N-acyl-amides, such as endocannabinoids, are noted to have analgesic and anti-

inflammatory properties and many of these molecules target G-protein-coupled-receptors (GPCRs).206 

GPCRs are one of the largest families of mammalian membrane receptors and are implicated in a variety 

of diseases, notably in obesity, cancer, and IBDs – all conditions which have been widely found to have a 

connection to the microbiome composition.207 Given that the symbiosis of mammals and microbes have 

evolved over millennia, it should not be surprising that human-associated bacteria have developed 

Figure 8. General schematic of enzymes involved in N-acyl amide biosynthesis. (A) ATP-dependent 
ligase couples a fatty acid with an amino acid. (B) A transferase, representative of a typical N-acyl 
synthase, condenses a fatty acid thioester with amino acid to form an N-acyl amide scaffold. (C) 
Proposed halogenase reaction using an alkaloid precursor (D) Inner membrane ClbP cleaves N-
myristoyl-D-Asn to activate colibactin. 
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molecular mimicry that can intercept and selectively activate mammalian transcriptional regulatory 

networks.  The convergence on N-acyl-amide signaling between bacteria and humans likely derives from 

their simple coupling of two abundant primary metabolites, amino acids and fatty acids.   

 

N-acyl-D-Asparagine type molecules 

The colibactin pathway, as mentioned above, is found to produce both N-acyl-amides and AHLs.  N-

myristoyl-D-Asn (NMDA) is one of the most abundant molecules produced by the clb+ pathway and is the 

major species resulting from ClbP peptidase-mediated cleavage of precolibactins (Figure 8D).179-181 In a 

panel of central nervous system receptor assays, NMDA was found to harbor modest 10 �M-level 

antagonistic activity against the dopamine 5 (D5) transporter and the 5-hydroxytryptamine (5-HT7) 

GPCR.181 As with other N-acyl amides derived from the soil environment208-210, NMDA also exhibited mild 

growth inhibitory activity against Bacillus subtilis in the low �M-range, which might be one of the many 

contributors to robust clb+ E. coli colonization within the gut.181 In suspension cultures, NMDA 

accumulated to ~27 �M suggesting that these in vitro activities may be physiologically relevant.181  

The clb pathway in Nissle 1917 was demonstrated to also produce the N-acyl-amides N-dodecanoyl- 

Asn-γ-aminobutyric-acid and N-dodecanoyl-Asn-β-aminobutyric-acid (Figure 9A).211 The production of 

these molecules was found to be largely dependent on ClbN and ClbB.211 As ClbB normally activates and 

incorporates an L-Ala residue prior to polyketide extension, it is unclear if γ-amino-butyric acid (GABA) 

or β-aminobutyric acid (BABA) incorporation is catalyzed by ClbB or is spontaneous, as a ΔclbB strain did 

not fully abolish the production of these products.211 However, the incidence of these compounds is notable, 

as GABA in particular is a primary neurotransmitter throughout the mammalian central nervous system.211 

Cenac and coworkers went on to show that N-dodecanoyl-Asn-GABA could cross the epithelial barrier and 

inhibit calcium signaling via the GABAB GPCR. The authors speculate that this mechanism could be 

involved in modulating visceral hypersensitivity, a key mechanism of underlying abdominal pain associated 

with irritable bowel syndrome. It is unclear if these molecules reach a physiologically relevant 
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concentration in vivo, although synergistic interactions with Lactobacillus species, which produce high 

levels of GABA, could be considered for the potential probiotic enhancement of E. coli Nissle 1917 in 

future studies.212  

 

Commendamide  

 Using a functional metagenomics approach, Brady and coworkers developed a screening assay to 

identify bacterial effectors from gut-associated bacterial genomes that activated mammalian signaling 

pathways.213 Functional metagenomics is a culture-free approach that involves the construction of DNA 

libraries from whole-genomic sample extractions, allowing expression analysis from both cultured and 

currently uncultured microbes.213 In this case, the authors screened cell-free supernatants from an E. coli 

library of ~75,000 cosmid clones to search for small molecules that activated NF-κB – a central 

transcriptional hub controlling cellular responses to a variety of stressors (e.g., pathogen-associated 

molecular patterns, or PAMPs). Characterization of one of these hits revealed the structure N-acyl-3-

hydroxy-palmitoyl glycine, termed commendamide (for commensal mimicking endogenous amide) (Figure 

9B). Characterization of the elicitor gene showed commensal bacterial effector gene (Cbeg12) of the N-

acyl-synthase family to be responsible for producing commendamide. Genes highly similar to Cbeg12 

appeared to be restricted within the Bacteroidetes phylum, suggesting a non-pathogenic role for 

commensal-host signaling.213 Commendamide shares structural similarity with human-produced long- 

chain endocannabinoids such as palmitoylethanolamide, N-acyl-palmitoyl glycine, and anandamide.213 

These endogenous N-acyl-amides are traditionally known to induce GPCRs and targets in pain and 
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inflammation. Commendamide was shown to activate human GPCR GPR132/G2A, which has been linked 

to autoimmunity and atherosclerosis through immune cell expansion, differentiation, and chemotaxis.214  

A follow-up study by the same group mined N-acyl synthases in the human microbiome and 

showed that this class of enzymes was enriched within the gut relative to other environments and that the 

biosynthetic products structurally overlap to known, endogenous ligands.215 Through these identification 

efforts, the authors characterized six additional N-acyl amides. Two of these compounds were similar to 

Figure 9. Selected N-acyl amide structures and their respective GPCR targets. 
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previously characterized commendamide, and not surprisingly, were shown to activate GPR132/G2A. An 

N-acyl serinol (Figure 9C) was found to activate GPR119 due to structural similarities with endogenous 

ligand oleoylethanolamide. Just like natural ligands, microbiota-encoded N-acyl serinol was shown to affect 

GPR119-dependent glucose homeostasis and gastric emptying through glucagon-like peptide 1 (GLP-1) 

release. Similarly, N-palmitoyl ornithine/lysine derivatives (Figure 9D) act as specific activators for 

sphingosine-1-phosphate receptor 4 (S1PR4) known to modulate Th17 polarization and chemotaxis. Lastly, 

N-acylglutamine (Figure 9E) was reported as a new antagonist for two prostaglandin receptors, PTGIR and 

PTGER4.215 These studies highlight the growing importance of bacterial metabolites as modulators of host 

GPCRs216 by mimicking eukaryotic ligands, and the need to identify further enzymatic chemistries 

responsible for mediating such interactions.215    

 

1.3 Metabolic exchange and resistance mechanisms 

In this section, we highlight examples of metabolite modification undertaken by the microbiome, 

rather than de novo metabolite synthesis. Microbes can both alter metabolites produced by the host, such 

as bile acids, or xenobiotics consumed by the host – which often underlie phenotypic variation among 

individuals.217 Among bacterial species, both producers and competitors evolve resistance mechanisms to 

molecularly spar with one another, which can affect community composition. Below, we explore selected 

examples of toxin resistance and xenobiotic metabolism and look at the enzymatic capacity of the 

microbiome to detoxify, transform, and ultimately evade the effects of certain types of functional small 

molecules.  

 

1.3.1 Resistance mechanisms 

Biosynthetic gene clusters often contain transporter, regulatory, and resistance genes that confer 

protection to a producing host.37 This is a necessary survival adaptation, particularly for producers of natural 

products with cytotoxic effects. Self-resistance strategies have been studied extensively, as they form the 

genetic reservoir of antibiotic resistance genes that poses dire future consequences for our health care 
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system.218-220 As such, mining for new chemical scaffolds within the human microbiome should take into 

account resistance elements, as they are often transcribed on mobile genetic elements and can undermine 

the efficacy of newly discovered natural products with therapeutic potential.221 By analyzing the structural 

information of putative resistance genes, modes of action and/or cellular targets sometimes can be inferred 

prior to structural characterization and biological assays.222-223   

Self-resistance takes a number of different chemical and molecular forms, including prodrug 

synthesis, efflux systems, target modifications, and chemical modifications.222 As mentioned above for 

colibactin, prodrug synthesis can involve a “protecting group” that is removed during activation; in this 

case, upon export of the genotoxic product in the periplasm and distal to the host genome.  For colibactin, 

the NMDA prodrug motif is also thought to participate in molecular recognition by the inner membrane 

cation-coupled multidrug and toxic compound extrusion family (MATE) transporter ClbM173-174. One of 

the most common variants of efflux systems are ATP-binding cassette transporters that efflux natural 

products to the extracellular environment with remarkable affinity.224  

Target modification is another common resistance strategy. Here, the binding site of the natural 

product target is mutated in a manner to prevent self-toxicity. A classic example of target modification 

includes methylation of the ribosome to confer resistance to aminoglycosides.225 An alternate strategy 

recognized in biosynthetic gene clusters is the presence of an additional copy of a target gene with often an 

amino acid substitution(s) to confer resistance. Thus, one genomic copy could in principle serve as “bait”226 

for the antimicrobial and the other could compensate for its loss of function.222 Lastly, chemical 

modifications are often employed to deactivate small molecules through addition of a functional group 

(e.g., phosphorylation or acetylation are common addition strategies), or degrade them entirely through use 

of hydrolytic enzymes. For one example, the microcin C producer encodes a resistance element within the 
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microcin locus that serves as a peptidase, detoxifying this compound and preventing antibacterial activity 

through the cleavage of the C-terminal aspartate from a nucleotide.227   

Resistance elements can also uncover new biochemistries that could potentially be exploited for 

therapeutics. In the case of colibactin, the clb pathway-encoded enzyme ClbS protects the producer from 

colibactin that may reenter the cell under certain conditions via diffusion. ClbS is the only encoded enzyme 

in the bacterial clb pathway not required to mediate host genotoxicity, as it was shown that exponential-

Figure 10. Resistance mechanisms of colibactin and polymyxin B. (A) Cyclopropane hydrolase 
ClbS hydrolyzes cyclopropane moiety of colibactin, rendering it inactive. (B) LpxF 
dephosphorylates lipopolysaccharide for polymyxin B resistance. 
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phase cultures of a clbS mutant were capable of inducing the same level of genotoxicity to that of their 

wildtype counterparts.175 In contrast, late-phase cultures of the clbS mutant induce less DNA damage due 

to a growth defect caused by the accumulation of genotoxic colibactins and a subsequent induction of the 

SOS DNA damage response in the producing organism.175 In vitro biochemical studies revealed that ClbS 

can act as an unprecedented “cyclopropane hydrolase,” hydrolytically opening the cyclopropane residue 

required for genotoxicity and generating an innocuous product (Figure 10A).176, 182 This is a newly reported 

enzymatic function, and X-ray crystallography studies place this enzyme within the previously 

uncharacterized DINB_2 enzyme superfamily.176 While ClbS is thought to be localized in the cytosol of 

clb+ strains, ClbS is catalytically active and can confer protection to colibactin-mediated genotoxicity when 

ectopically expressed in mammalian cells175 or exogenously supplemented in a clb+ bacteria-human cell 

transient infection model159, 162.  

Resistance mechanisms provide a fascinating vantage point for analyzing the complex dynamic 

between the host and its microbes. For instance, host innate immunity invokes the use of antimicrobial 

peptides to restrict bacterial growth to the colonic lumen and prevent invasion of the epithelial tissue 

barrier.228 Goodman and coworkers described a resistance mechanism toward the antimicrobial peptide 

polymyxin B (Figure 10B) within the Bacteroidetes phylum.229 A single 4’-phosphatase gene (lpxF) 

encoded in Bacteroides thetaiotaomicron, a common commensal member of the mammalian gut, was 

responsible for observed under-phosphorylation of the lipid A anchor in the lipopolysaccharide. This, in 

turn, conferred cationic polymyxin B resistance by four orders of magnitude over the lpxF isogenic mutant 

strain by altering the cell surface charge. The authors demonstrate that this enzymatic activity endows this 

taxonomic clade with a long term persistence phenotype in mice and resiliency to inflammatory 

conditions.229 Alternatively, it was recently shown that �-lactamase-encoding bacteria including drug-

resistant E. coli can convert the �-lactam amoxicillin into a new immunostimulant that lacks antibacterial 

activity, a functional transformation process.230 Antibiotics often cause inflammation in a patient-dependent 

manner231-234, and microbiome-mediated structural and functional transformations of antibiotics and other 
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drugs represents an area with much promise. In a last example, amidohydrolases that degrade N-acyl-

amides have been described, lending to the hypothesis that certain bacterial strains can intercept and perhaps 

silence bacterial cell-to-cell signaling, which could further contribute to shaping microbiome 

composition.235-236 Like with quorum sensing, certain strains may be able to sense these N-acyl-amide 

molecular signals but may or may not be capable of synthesizing them.190  Indeed, determining general 

molecular mechanisms of microbial fitness and function in the gut will be important to understand host 

inflammation and the progression of dysbiosis.  

 

1.3.2  Xenobiotic Metabolism  

Microbes encounter a vast, foreign library of molecules (xenobiotics) ingested or introduced into 

the host, including dietary compounds, industrial chemicals and pollutants, and pharmaceuticals. Not 

surprisingly, given the vast genomic potential of the microbiome and the promiscuity of bacterial metabolic 

enzymes to catalyze non-cognate reactions, microbes have the capacity to directly alter the chemical 

structures of non-native compounds.134, 237 The uniqueness of each microbial gene pool housed within each 

host imparts an individual metabolic signature, which can have major implications for drug metabolism in 

particular. Outside of host genetics, the inter-individual variability of the microbiome among patients could 

explain the often wide therapeutic ranges required for drug efficacy and/or variable side effects.134, 237 A 

new emphasis is being placed on the microbiome in regards to pharmacology, and it is anticipated that 

future precision medicines could take into account an individual’s microbiome composition. 

Many microbial enzymes associated with xenobiotic detoxification and metabolism are some of 

the most abundant and widely distributed enzyme classes across sequenced microbiomes.238-240 A common 

theme involves hydrolytic and reductive chemistries manifesting in a diverse array of enzyme families - 

from metalloenzymes operating in anoxic conditions, to proteases, hydrolases, lyases, radical enzymes, and 

transferases.134, 241-242  Bacteria are able to degrade xenobiotics to use as energy inputs or carbon/nitrogen 

sources for primary metabolism, as well as use them as terminal electron acceptors during respiration. Due 

to often relaxed substrate selectivity of microbial enzymes, predicting xenobiotic transformation capacity 
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from sequence analysis is a major challenge.134 Systematically predicting and identifying genes that can 

selectively modify certain pharmacophore scaffolds is an open problem in the field. For these reasons, 

microbial contributions to drug metabolism is often assessed currently in an individual drug-by-drug basis. 

Here, we will comment on two case studies: digoxin and gemcitabine.  

 

Digoxin 

The cardiac glycoside digoxin, derived from foxglove (Digitalis purpurea) plant extracts inhibits 

Na+/K+ ATPases in cardiac myocytes and is used to treat heart failure and arrhythmias.243 Early studies 

pointed to a role for the microbiome in affecting patient outcome with digoxin prescription, as co-

administering digoxin with antibiotics decreased the levels of dihydrodigoxin, an inactive metabolic 

derivative, that was excreted.244 A single bacterial sample isolated from dihydrodigoxin-excreting 

Figure 11. Xenobiotic transformation mechanisms of Digoxin and Gemcitabine (A) Flavin-
dependent reductase of Eggerthella lenta reduces the lactone ring of digoxin for inactivation (B) 
Mycoplasma hyorhinis uses cytidine deaminase to inactivate gemcitabine 
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individuals, Eggerthella lenta, was found to reduce the lactone ring of digoxin in vitro (Figure 11A).245 A 

study by Turnbaugh and colleagues used transcriptional profiling and comparative genomics to identify a 

two-gene operon (cgr1 and cgr2) up-regulated by digoxin.246 More recently, Cgr1 and Cgr2 were proposed 

to form a membrane-bound protein complex that shuttles electrons through a series of cytochromes and 

[4Fe-4S] clusters to generate hydride species through Flavin Adenine Dinucleotide (FAD) cofactors. The 

terminal hydride then reduces the lactone moiety of digoxin, rendering its therapeutic effect inactive.247 

 

Gemcitabine 

Gemcitabine is a nucleoside analog (2’2’-difluorodeoxycytidine) used to treat patients with 

pancreatic, lung, breast, and bladder cancers. Differential patient responses to chemotherapeutics is an 

established phenomenon observed in the clinic, and studies suggested a secreted factor within isolated 

human dermal fibroblasts (HDFs) was responsible for gemcitabine drug resistance.248 Bacterial 

contamination of HDFs with Mycoplasma hyorhinis ended up being identified as the root cause for the 

observed phenotype, and gemcitabine inactivation (Figure 11B) was found to be dependent on the single 

expression of a long form of the bacterial enzyme cytidine deaminase (CDDL).249 Deep sequencing of 

pancreatic ductal adenocarcinomas isolated from patients confirmed that intratumor bacteria mainly 

belonging to Gammaproteobacteria and positive for CDDL were present at high incidence within these 

samples. Of those bacteria isolated and cultured in pure form from these samples, 93% were able to render 

human colon carcinoma cell lines fully resistant to gemcitabine.250  

 

1.4 New frontiers in the human microbiome 

The structures and enzymology highlighted herein represent the tip of the iceberg of the coding 

capacity of the microbiome; a majority of possible chemistries and metabolic interactions on all levels 

remain uncharacterized.  At the genetic level, about three-quarters of the prevalent microbiome open 

reading frames detected by metagenomic sequencing within the gut consist of uncharacterized orthologous 
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groups and/or completely novel gene families.250 This means that a majority of enzymes cannot be mapped 

to any known functions within existing databases such as the NCBI-NR database of non-redundant protein 

sequences or KEGG (Kyoto Encyclopedia of Genes and Genomes). In the absence of experimental 

manipulation strategies – i.e., many systems are genetically intractable or strains are currently unculturable 

– assigning function to unknown orthologous genes detected in sequence alone remains a difficult task.251 

Additionally, the overwhelming majority of unknown ions, or “molecular features,” detected within animal-

associated metabolomes are said to represent “dark matter”.252 Greater than 90% of metabolites identified 

in microbiome-derived metabolomic datasets do not have a match in any public databases, and some 

estimates claim that about 1.8% of spectra in an untargeted metabolomic data collection is associated with 

a putative chemical assignment.253-254 Moreover, simply changing the extraction and metabolomic 

conditions greatly expands on this diversity. While some of these molecules will represent “junk” from the 

host perspective – we are discussing the intestinal tract after all – others could open completely new areas 

of signaling biology. Indeed, the host-bacteria interface represents a new frontier in chemical ecology and 

natural products research.  

In light of the major unknowns and the magnitude of data available, how does one continue to pinpoint 

unique enzymes and metabolic products that can tip the scale toward health or disease?  Bioinformatic tools 

based on known chemical languages of natural product biosynthesis have proven to be useful in predicting 

possible chemical mediators from the abundance of genetic data we now have available.81, 255-260 However, 

biosynthetic enzymes related to RiPPs, NRPSs, PKSs, hybrids, and other fairly well-characterized proteins 

discussed herein will similarly only account for a small fraction of this chemical space. The grey and often 

debatable “boundaries” for what constitutes primary versus secondary metabolism will continue to blur. 

There are great opportunities for the natural products field, especially for identifying novel small molecules 

in a functional context regardless of biosynthetic origins.  

The continued integration of microbiology, chemistry, and cell biology will be essential for parsing 

apart the functional mysteries of the microbiome – for both novel metabolites and the genes responsible for 

their production. On the genetics level, mere sequence alone can obscure biological importance: apparent 
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“redundancies” are common and not well understood. For example, some “duplicated” genes at the 

annotation level carryout completely different functions.251 Scalable, unbiased methods for detecting 

relevant bacterial strains and specific genes that influence physiological phenotypes in mammalian hosts 

are essential for beginning to identify complex interactions within their biological context.261-264 Spatial 

distribution of these bacteria among distinct physical niches within the gut may also have vastly different 

consequences for the microbial ecosystem.265 For example, recent research put forth by Elinav and 

colleagues presented evidence that fecal samples do not accurately capture the microbial composition near 

the mucosal surface.266 As this local microenvironment is essential for host-microbe interactions267, 

sequencing downstream fecal samples as a measure of species’ abundance in the gastrointestinal tract tells 

only an incomplete story. This area near the mucosal/epithelial layer is also known to be microaerobic, or 

at least relatively oxygenated in comparison to where most anaerobic microbe members thrive within the 

gut.104, 268 Consequently, aerobic and/or spontaneous oxidation reactions likely occur more readily at the 

host epithelial surface. Along these lines, other spontaneous chemistries regulated by substrate supply or 

chemical instabilities need to be considered. Advanced detection and analysis methods, such as imaging 

mass spectrometry, are being employed to begin to understand spatial localizations of microbial chemistries 

in the gut.269-271 Together, a concerted effort between multiple fields will help to uncover and define 

functional molecules at the host-bacteria interface.  
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Chapter 2 

A Forward Chemical Genetic Screen Reveals Gut Microbiota Metabolites that Modulate Host 

Physiology 

This chapter is adapted from the published work as a second author. (Chen, H.; Nwe, P.-K.; Yang, Y.; 

Rosen, C. E.; Bielecka, A. A.; Kuchroo, M.; Cline, G.W.; Kruse, A. C.; Ring, A. M.; Crawford, J.M.; 

Palm, N.W. Cell, 2019, 177 (5): 1217-1231. 

 

2.1  INTRODUCTION 

The human gut microbiota produces thousands of unique small molecules that can potentially affect 

nearly all aspects of human physiology, from regulating immunity in the gut to shaping mood and behavior 

1-5. These metabolites can act locally in the intestine or can accumulate up to millimolar concentrations in 

the serum and potentially act systemically 5-8. Recent studies have employed state-of-the-art genomic and 

metabolomic approaches to evaluate the microbiota metabolome under various conditions 9-13. These efforts 

have begun to reveal the enormously complex intra- and inter-species microbial chemistries that potentially 

impinge on host physiology, as well as the impact of gut microbes on the processing of dietary small 

molecules and medical drugs. In addition, they underscore the importance of continuing to develop new 

approaches to explore the bioactive microbiota metabolome 8.  

G-protein coupled receptors (GPCRs) are the largest family of membrane proteins encoded in the 

human genome (including over 350 conventional non-olfactory GPCRs) and are critical sensors of a variety 

of small molecules. GPCRs exert pivotal roles in regulating diverse aspects of host physiology, such as 

vision, mood, pain, and immunity 14. Specific GPCRs are also known to sense microbial metabolites. 

Microbiota-derived short-chain fatty acids can activate GPR41, GPR43, and GPR109A and contribute to 

immune-microbiota homeostasis in the intestine 3, 4. Succinate produced by commensal protists can induce 

expansion of tuft cells in the small intestine through activation of the succinate receptor 15-17. Finally, recent 
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studies have continued to reveal novel microbiota-derived GPCR ligands that shape host physiology 18. 

Thus, the microbiota metabolome is a rich source of potential GPCR ligands.  

Here, we use host-sensing of microbiota metabolites by conventional GPCRs as a lens to reveal 

microbial production of bioactive small molecules that may impact host physiology. Building on recent 

developments in high-throughput screening of the complete GPCRome and activity-guided microbial 

metabolite identification approaches, we develop a high-throughput pipeline to screen human gut microbes 

for the ability to produce ligands that can activate human GPCRs5, 8, 13, 19. We show that dozens of diverse 

human gut microbes produce agonists for GPCRs from a variety of families, including both well-

characterized GPCRs and orphan GPCRs with no known natural small molecule ligands. We demonstrate 

that specific gut microbe-derived GPCR ligands, including small molecules resulting from 

biotransformations of dietary compounds, can potentially influence both local and systemic physiology. 

Using bioassay-guided chemical characterization techniques, we identify bacterial-derived L-Phe as an 

agonist for two orphan GPCRs. Finally, we reveal a unique pathway of metabolite exchange between 

bacterial strains that can contribute to the production of the potent psychoactive trace amine 

phenethylamine, which can cross the blood-brain barrier and trigger lethal phenethylamine poisoning after 

administration of an FDA-approved monoamine oxidase inhibitor. Thus, we have established an orthogonal 

approach for elucidating physiologically-relevant microbiota metabolite-host interactions and uncovered 

multiple diet-microbe-host and microbe-microbe-host metabolic axes. 
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2.2  RESULTS 

2.2. 1  A forward chemical genetic screen to identify bioactive microbiota metabolites 

We set out to establish a high-throughput screening system to identify specific human gut microbes 

that produce agonists or antagonists of conventional GPCRs. We developed a pipeline for parsing the 

microbiota metabolome based on the transformative GPCR screening technology Parallel Receptor-ome 

Expression and Screening via Transcriptional Output-Tango (PRESTO-Tango) 19. This technology 

leverages the Tango �-arrestin recruitment assay to simultaneously measure the activation of nearly all non-

olfactory GPCRs (Figure 1, S1A, B) 19, 20. We thus proceeded to exploit this assay to perform a broad-

ranging screen of bioactive metabolites produced by diverse members of the human gut microbiota. 

We previously assembled personalized gut microbiota culture collections from eleven 

inflammatory bowel disease patients through high-throughput anaerobic culture methods and next-

generation sequencing 21. This collection yielded 144 unique bacterial isolates from five phyla, nine classes, 

eleven orders, and twenty families, as well as multiple strains that were assigned to the same species. Thus, 

this culture collection enables us to examine the effects of phylogenetically diverse taxa while also 

providing insights into potential strain-specific differences between members of the same species (Table 

S1). We cultured all members of our collection individually in a medium specialized for the cultivation of 

diverse gut commensals (gut microbiota medium; GMM) 22 and screened their supernatants for activation 

or inhibition of nearly all conventional GPCRs using PRESTO-Tango (Figure 1, 2). PRESTO-Tango 

screening was performed essentially as described by Kroeze et al. 19 and GPCR activation or inhibition was 

determined by comparing stimulation with a given bacterial supernatant to stimulation of the same GPCR 

with bacterial media alone (details described in Methods). No stimulation and bacterial media alone controls 

were included as separate conditions in each experiment to correct for day to day and experiment to 

experiment variability across the screen. 

 



71 
 

 



72 
 

2.2.2  Human gut microbes produce compounds that activate both well-characterized and orphan 

GPCRs 

PRESTO-Tango screening revealed a diverse array of hits, including bacterial-derived metabolite 

mixtures that activated well-characterized GPCRs as well as mixtures that activated orphan receptors. 

Across the complete data set, we observed activation of at least one GPCR from almost every class by at 

least one metabolite mixture (Figure 2). One specific pattern of GPCR activation tracked closely with gross 

phylogeny—strains belonging to the phyla Bacteroidetes and Proteobacteria potently activated the 

succinate receptor (Sucr1), while strains belonging to the phyla Firmicutes, Fusobacteria and Actinobacteria 

largely failed to activate this receptor (Table S2). However, most activation patterns did not correlate with 

phylogeny, and there were multiple examples of bacterial strains that exhibited unique GPCR agonist 

activities despite being assigned to the same species (Table S2). We also noted that stimulation with GMM 

alone activated specific GPCRs when compared to PBS and that media harvested from specific microbes 

sometimes reversed these effects, either due to bacterial consumption of GPCR ligands in the media or 

bacterial production of GPCR antagonists (Table S3).  

Given the high sensitivity of �-arrestin recruitment-based assays like PRESTO-Tango, the veracity 

of individual hits from this screen will need to be confirmed using alternative methods. Nonetheless, these 

data demonstrate that human gut microbes produce a remarkable array of GPCR ligands. 

  

 

Figure 1. A forward chemical genetic screen identifies human gut microbes that activate GPCRs. 

We isolated 144 unique human gut bacteria spanning five phyla, nine classes, eleven orders, and twenty families 
from 11 inflammatory bowel disease patients via high-throughput anaerobic culturomics and massively barcoded 
16S rRNA gene sequencing. Bacterial isolates were grown in monoculture in a medium specialized for the 
cultivation of human gut microbes (gut microbiota medium) and supernatants from individual bacterial 
monocultures were screened against the near-complete non-olfactory GPCRome (314 conventional GPCRs) using 
the high-throughput assay Parallel Receptor-ome Expression and Screening via Transcriptional Output-Tango 
(PRESTO-Tango). 
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Figure 2. Members of the human gut microbiota produce metabolites that activate diverse human GPCRs. 

GPCR activation by metabolomes from a human gut microbiota culture collection consisting of 144 strains isolated 
from 11 IBD patients. Data is displayed on a hierarchical tree of GPCRs organized by class, ligand type, and 
receptor family. Color intensity represents the maximum magnitude of activation (log 2) over background (gut 
microbiota medium alone) across the entire data set—i.e., the maximum activation of a given GPCR by any 
microbial metabolome in our collection. Radii of the circles at each tip are scaled based on the number of strains 
that activated a given receptor or receptor family (i.e., number of hits across the complete data set). Hits are defined 
as activation of a given receptor more than two-fold over background. An interactive html graphic representing 
these data is included in the supplemental information. Graphics were generated in collaboration with visavisllc 
using d3.js. 
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2.2.3  Human gut microbes produce compounds that activate aminergic receptors 

Besides the succinate receptor, the next most prevalent class of GPCRs activated by gut 

commensals was the aminergic receptors, which are expressed in diverse tissues and cell types and regulate 

a wide variety of core physiological processes ranging from neurotransmission to immunity (Figure 2) 23-

25. These hits included bacterial-derived activators of the dopamine (DRDs), histamine (HRHs) and 

adrenergic receptor families. We observed that more than a dozen commensal supernatants activated 

DRD2-4 or HRH2-4 (Figure 3A, S2). For example, ten strains from the phylum Proteobacteria activated 

both DRDs and HRHs, including eight strains from the species Morganella morganii (Figure 3B, C, S2). 

This suggests that production of DRD and HRH agonists is a conserved feature of M. morganii. In contrast, 

we observed that two strains of L. reuteri in our collection activated HRHs, while two distinct strains of 

L.reuteri failed to activate HRHs despite displaying similar growth kinetics (Figure 3C, S2 and data not 

shown). One strain of Streptococcus, but not two related isolates, activated DRD2-4, and two unclassified 

strains of Enterobacteriaceae activated HRH1-4 and DRD2 but failed to activate other DRDs (Figure 3C, 

S2).  

M. morganii was previously reported to produce various biogenic amines, including dopamine, 

tyramine, and phenethylamine (PEA) 26, 27. We noted that all M. morganii supernatants potently activated 

DRD2-4, but not DRD1 and 5 (Figure 3A, B, S2). In contrast, dopamine itself efficiently activated all five 

dopamine receptors (Figure S1A). Therefore, we suspected that M. morganii might primarily produce a 

metabolite that is structurally related to dopamine and can act as a selective ligand for DRD2-4 but not 

DRD1 or 5 (Figure S3A). We examined the ability of all possible upstream and downstream metabolites in 

the mammalian dopamine pathway to activate DRD1-5 via PRESTO-Tango (Figure S3A, B). We found 

that a variety of compounds in this pathway activated various dopamine receptors; in particular, we noted 

that PEA and tyramine showed identical activation patterns to M. morganii supernatant (Figure S3B and 

C). Therefore, we examined the concentrations of dopamine, PEA, and tyramine in M. morganii 

supernatants. In line with a previous report 27, we found that M. morganii produced only trace amounts of 
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dopamine and no detectable tyramine, but instead secreted significant quantities of the potent trace amine 

PEA which, unlike dopamine and tyramine, can readily cross the blood-brain barrier (Figure 3D, S3D, E) 

28. 

Previous reports have also suggested that M. morganii produces histamine 26. We confirmed that M. 

morganii strains indeed secreted significant amounts of histamine by ELISA and that our M. morganii 

strains encode a previously described histidine decarboxylase; in addition, we found that 48 of 49 

previously deposited M. morganii strains encoded this histidine decarboxylase (Figure 3E and Table S4, 

S5). Similarly, two strains of L. reuteri and two strains from the Enterobacteriaceae family that activated 

the histamine receptors also secreted histamine (Figure 3E). However, based on whole genome sequencing, 

both the histamine-producing and non-histamine-producing strains of L. reuteri encoded an identical 

histidine decarboxylase proenzyme (Table S4, S5). Together, these data reveal that M. morganii secretes 

high levels of PEA, which acts as a potent agonist of the dopamine receptors, and that M. morganii and 

select strains of L. reuteri secrete histamine. 

In mammals, PEA, dopamine, and tyramine are produced via the decarboxylation of L-Phe, L-

DOPA, and L-Tyr, respectively, by the aromatic L-amino acid decarboxylase (AADC; Figure S3A) 29. 

Thus, we tested whether M. morganii would similarly process these three amino acids into their respective 

biogenic amines. We used a defined minimal medium (MM) lacking L-Phe, L-DOPA, L-Tyr, and L-His to 

culture M. morganii. Despite normal M. morganii growth, we could not detect any production of PEA, 

tyramine, dopamine, or histamine by liquid chromatography-mass spectrometry (LC-MS) (Figure 3F). 

However, supplementation with L-Phe or L-His led to the production of high levels of PEA or histamine, 

and activation of DRD2-4 or HRH2-4 (Figure 3F, G). In contrast, supplementation with L-DOPA or L-Tyr 

failed to lead to the production of dopamine or tyramine, or activation of DRDs by M. morganii supernatants 

despite similar bacterial growth in all conditions (Figure S4C).  
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This suggests that, unlike mammalian AADC, M. morganii selectively converts L-Phe into PEA and cannot 

efficiently convert L-DOPA or L-Tyr into dopamine or tyramine. While it is currently unclear which 

specific genes are involved in production of PEA by M. morganii, whole genome sequencing revealed the 

presence of at least 17 decarboxylases that are shared between the two strains of M. morganii that we 

sequenced (Table S4, S5). 

 

 

Figure 3. Diverse human gut bacteria activate aminergic GPCRs. 

(A) Activation of aminergic GPCRs by metabolomes from a human gut microbiota culture collection consisting of 
144 strains isolated from 11 IBD patients. GPCR activation was measured by PRESTO-Tango. Screening results 
are displayed on a phylogenetic tree of aminergic GPCRs. Color intensity represents magnitude of activation over 
media alone and radii of the circles represents the number of bacteria that activated a given GPCR by more than 
two-fold over media alone.  

(B) Heatmap depicting the activation of aminergic GPCRs by metabolites from 144 human gut bacteria as measured 
by PRESTO-Tango. Fold induction over stimulation with bacterial media alone is depicted on a log2 scale.  

(C) Activation of DRD2-4 and HRH2-4 by select species and strains as measured by PRESTO-Tango. n=3 
replicates per isolate.  

(D) Quantification of dopamine, phenethylamine and tyramine production by M. morganii. Supernatants from 24-
hour cultures of M. morganii C135 in gut microbiota medium were analyzed by Triple Quadrupole-Mass 
Spectrometry (QQQ-MS/MS) and compared to those of media controls. n=3 replicates per group. 

(E) Quantification of histamine production by 144 isolates of human gut bacteria. All bacteria were grown in gut 
microbiota medium for 48 hours and then supernatants were probed for histamine production via ELISA. 

(F) Mass spectrometric traces of metabolite production by M. morganii C135. M. morganii can directly convert L-
Phe and L-His into phenethylamine and histamine, respectively. However, no conversion of L-Tyr to tyramine or 
L-DOPA to dopamine was observed. M. morganii was cultured in minimal medium (MM) with or without 
additional L-Phe, L-His, L-Tyr or L-DOPA for 48 hours. Metabolite production was analyzed by Liquid 
Chromatography-Mass Spectrometry (LC-MS). 

(G) M. morganii-derived phenethylamine and histamine activate DRD2-4 and HRH2-4, respectively. M. morganii 
C135 were cultured as described in F and supernatants were screened for activity against DRDs and HRHs by 
PRESTO-Tango. n=3 replicates per group. 

Data for all panels other than A and B are representative of at least three independent experiments. Data are 
presented as mean ± SEM. 
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2.2.4  Microbiota-derived histamine promotes increased colonic motility through activation of the 

histamine receptors  

Histamine is generated via decarboxylation of L-His 30. We found that eight strains of M. morganii 

and two strains of L. reuteri generated histamine in vitro and that supplementation with L-His significantly 

increased histamine production by these strains; in contrast, two distinct strains of L. reuteri failed to 

produce histamine regardless of supplementation with L-His (Figure 4A). We also cultured M. morganii 

C135 in multiple media either aerobically or anaerobically and found that M. morganii supernatants 

activated DRDs and HRHs regardless of culture conditions (data not shown). To test whether M. morganii 

can also produce histamine in vivo, we colonized germ-free mice with two distinct mock communities 

containing 9 or 10 diverse human gut microbes or with M. morganii C135 alone with or without 

supplementation of 1% L-His in the drinking water ad libitum to approximate the effect of an L-His-rich 

diet (e.g., a meat-heavy diet) (Figure 4B). In addition, we monocolonized mice with two strains of L. reuteri 

with divergent histamine production capabilities: L. reuteri C93, which produced significant histamine in 

vitro, and L. reuteri C88, which failed to produce histamine in vitro. Mice colonized with M. morganii 

C135 or L. reuteri C93 exhibited high levels of intestinal histamine production, while mice colonized with 

the two mock communities or L. reuteri C88 showed nearly undetectable intestinal histamine (Figure 4C). 

In addition, histamine production in M. morganii monocolonized mice was significantly increased upon 

supplementation with dietary L-His (Figure 4C). Finally, we also detected increased histamine in the serum 

of mice colonized with M. morganii (Figure S5A). 
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We next determined the location of M. morganii in vivo. We used modified Niven's agar to 

enumerate M. morganii CFUs in gnotobiotic mice colonized with two mock communities of 9 or 10 diverse 

human gut microbes plus M. morganii C135 31. We found that M. morganii constitutes approximately 5% 

of the overall microbial community in this context, primarily inhabits the cecum and colon, and is nearly 

absent in the small intestine (Figure S5C and Table S3). Previous studies in humans also indicated that M. 

morganii preferentially localizes in tissue- or mucus-associated niches in the colon 32.  
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Figure 4. Commensal-derived histamine promotes colon motility.  

(A) Production of histamine by M. morganii and L. reuteri is enhanced by additional L-His. Four strains of L. 
reuteri and one strain of M. morganii (C135) were cultured in Gifu medium with or without supplemental L-His 
and histamine concentrations in the supernatants were measured by ELISA after 48 hours. The addition of L-His 
increased histamine production by L. reuteri C93, C94 and M. morganii C135 (all histamine producers), except 
L. reuteri C88 and C89 (background levels in negative controls containing supplemental histidine are due to slight 
cross-reactivity of the histamine ELISA for histidine). n=3 replicates per isolate. 

 (B) Experimental design to test in vivo histamine production and the effects of histamine-producing bacteria on 
colon motility.  

(C) M. morganii- and L. reuteri-derived histamine accumulates in vivo in the intestines of monocolonized mice. 
Groups of female germ-free C57Bl/6 mice were colonized with mock communities of 9 or 10 phylogenetically 
diverse human gut bacteria (Mock Community A or B) or monocolonized with M. morganii C135, L. reuteri C88 
or C93. Mice were fed a conventional diet with or without administration of 1% L-His ad libitum in the drinking 
water. Histamine concentrations in cecal and colonic extracts and feces were measured via ELISA. n=3-5 mice 
per group. 

(D) M. morganii C135- and L. reuteri C93-derived histamine enhances colon motility. Fecal output for mice 
treated as described in B were measured by counting the number of fecal pellets produced by a single mouse in 
one hour. n=3-5 mice per group. 

(E) M. morganii increases colon motility in the context of a mock gut microbial community. Groups of female 
germ-free C57Bl/6 mice were colonized with a mock community of 9 phylogenetically diverse human gut bacteria 
(Mock Community A) with or without M. morganii C135 and administered 1% L-His ad libitum in the drinking 
water. Histamine concentrations in colonic extracts were measured via ELISA and fecal output was measured by 
counting the number of fecal pellets produced by a single mouse in one hour. n=4-5 mice per group. 

(F) Histamine receptor inhibition partially reverses the impact of M. morganii on colon motility. Groups of female 
germ-free C57Bl/6 mice were colonized with a mock community of nine phylogenetically diverse human gut 
bacteria (Mock Community A) or monocolonized with M. morganii C135 for two weeks. Mice were then treated 
with or without a cocktail of four histamine receptor inhibitors (targeting HRH1-4) in the drinking water for one 
week. Histamine concentrations in feces were measured via ELISA and fecal output was measured by counting 
the number of fecal pellets produced by a single mouse in one hour. n=4-6 mice per group. 

(G and H) Relative abundance of genes encoding histidine decarboxylases (from all bacteria) and histidine 
decarboxylase (from M. morganii) are increased in the microbiomes of patients with Crohn’s disease as compared 
to healthy controls (G). Relative abundance of histamine is increased in IBD patients as compared to healthy 
controls (H). Metagenomic and metabolomic data from longitudinal stool samples from IBD patients (publicly 
available from the Human Microbiome Project 2; iHMP) were analyzed for the presence and relative abundance 
of histidine decarboxylase genes (from all bacteria or from M. morganii), or for the relative abundance of 
histamine. Data shown are a compilation of all data across multiple collection timepoints. Total number of samples 
or subjects with detectable M. morganii are denoted below each plot; a subject was considered positive if M. 
morganii was detectable in one or more samples from that patient across the complete dataset. 

Data in all panels are representative of at least two independent experiments. Data are presented as mean ± SEM. 
One-way ANOVA with Tukey’s post-hoc test (C-F) or Kruskall-Wallis with Dunn’s multiple comparisons (G-
H), *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, NS not significant (p > 0.05). 
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Oral gavage with histamine has been reported to increase colon motility in rodents 33, 34. We thus 

hypothesized that gut microbe-derived histamine might also increase intestinal motility. We monitored 

intestinal motility in mice colonized with two mock communities or monocolonized with M. morganii C135 

with or without administration of 1% L-His in the water. We found that colonization with M. morganii led 

to a significant increase in fecal output, which was further increased upon supplementation with L-His 

(Figure 4D). Similarly, we observed that mice colonized with L. reuteri C93 showed increased fecal output 

as compared to mice colonized with L. reuteri C88 (Figure 4D).  

While monocolonizations are useful for reductionist proof-of-principle experiments, they are 

inherently artificial. To test whether M. morganii impacts host physiology in the context of a more diverse 

microbial community, we colonized germ-free mice with a mock community consisting of nine 

phylogenetically diverse human gut microbes with or without M. morganii C135 and examined histamine 

accumulation in the gut and serum as well as fecal output. Although the effects were less profound than 

those observed with monocolonizations, the addition of M. morganii to a mock community also led to an 

increased accumulation of histamine in the colon and serum (Figure 4E and S5D) as well as increased fecal 

output (Figure 4E). 

To test whether the effects of M. morganii on fecal output are dependent on the histamine receptors, 

we colonized germ-free mice with M. morganii C135 and fed these mice with a cocktail of histamine 

receptor inhibitors ad libitum in the drinking water. We found that histamine receptor inhibition 

significantly inhibited the effects of M. morganii on fecal output despite the accumulation of similar levels 

of histamine in the gut (Figure 4F).  

To examine the potential importance of histamine production by M. morganii (or other microbes) 

in human physiology, we mined publicly available metagenomic and metabolomic data from the integrative 

Human Microbiome Project (iHMP; see methods for details on data accession) to determine the relative 

abundance of histamine producing enzymes or histamine itself in patients with IBD (n=65 Crohn’s disease; 

CD, n=38 ulcerative colitis; UC) versus healthy controls (n=27; HC) 35. We found that CD patients exhibited 
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significantly increased prevalence and abundance of histidine decarboxylase genes as compared to healthy 

controls or UC patients (Figure 4G). Furthermore, M. morganii histidine decarboxylase was the most 

prevalent contributor to this increase (Figure 4G and Figure S5E). Finally, the abundance of histamine was 

increased in fecal samples from both CD patients and UC patients as compared to healthy controls as 

measured by metabolomics (Figure 4H). This observation is in line with previous studies demonstrating 

increased histamine in intestinal tissues and contents from patients with IBD (though this is often attributed 

to host-derived histamine) 36. 

Together, these data demonstrate that M. morganii impacts intestinal motility through the secretion 

of histamine and activation of histamine receptors, that dietary histidine can enhance these effects, and that 

bacterial histidine decarboxylases (both generally and from M. morganii) are enriched in patients with CD.  

 

2.2.5  M. morganii can trigger ‘phenethylamine poisoning’ when combined with monoamine 

oxidase inhibition 

We detected abundant histamine production by M. morganii both in vitro and in vivo; in contrast, 

we could only detect low levels of PEA in the colons of M. morganii colonized mice (Figure 5A). A possible 

explanation for this observation is that biogenic amines, such as dopamine, tyramine, and PEA, are rapidly 

degraded in the intestine by mammalian monoamine oxidases (MAOs) 37. To reveal the potential production 

of PEA in vivo, we treated germ-free mice or mice monocolonized with M. morganii C135 or a Bacteroides 

thetaiotaomicron strain (B. theta C34) that does not produce DRD agonists with the irreversible MAO 

inhibitor (MAOI) phenelzine. We observed increased PEA in the colons of M. morganii colonized mice by 

triple quadrupole MS/MS (QQQ-MS/MS) (Figure 5A); in contrast, colonic PEA was undetectable in germ-

free mice and mice colonized with B. theta and treated with MAOI (Figure 5A). Unlike many other 

irreversible MAOIs, phenelzine is still used clinically for the treatment of major depressive disorder, as 

well as a variety of other psychological disorders including panic, social anxiety, and post-traumatic stress  
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disorders 38. We found that mice colonized with M. morganii became lethargic within days after treatment 

with MAOI, and more than half of all mice colonized with M. morganii died before the seventh day of 

treatment (Figure 5B). In contrast, mice monocolonized with B. theta C34 and treated with MAOI appeared 

healthy. Morbidity and mortality after MAOI treatment correlated with elevated levels of PEA in the colon, 

serum and brains of M. morganii monocolonized mice treated with phenelzine, as measured by QQQ-

MS/MS (Figure 5C and S5F, G). Finally, we found that cecal and colonic contents, as well as serum and 

brain extracts from MAOI-treated M. morganii colonized mice activated DRD2 (Figure 5D).  

To test whether M. morganii-derived PEA would also accumulate systemically under more 

physiological conditions, we colonized germ-free mice with M. morganii C135 in the context of a mock 

community of nine diverse gut microbes and treated these mice with phenelzine. We found that, even in 

Figure 5. M. morganii-derived phenethylamine combined with MAOI triggers lethal phenethylamine poisoning.  

(A) M. morganii produces phenethylamine in vivo.  Groups of female germ-free C57Bl/6 mice were colonized with 
M. morganii C135 and treated with or without the MAOI phenelzine. Phenethylamine concentration in colonic 
extracts was examined using QQQ-MS/MS. 

(B) Mice colonized with M. morganii exhibit lethal phenethylamine poisoning after treatment with the MAOI 
phenelzine. Groups of female germ-free C57Bl/6 mice were monocolonized with M. morganii C135 for one week 
before treatment with phenelzine in the drinking water. Survival is depicted on a Kaplan-Meier curve. n=4 mice per 
group. 

(C and D) M. morganii-colonized mice treated with phenelzine accumulated phenethylamine in the cecum, colon, 
serum and brain. M. morganii C135 and B. theta C34 monocolonized female C57Bl/6 mice were treated with or 
without the MAOI phenelzine in the drinking water. Phenethylamine was detected in the cecum, colon, serum or 
brain via QQQ-MS/MS (C) or DRD2 PRESTO-Tango (D).  n=4 mice per group. 

(E) M. morganii-derived phenethylamine accumulates in the sera and brains of mice colonized with a mock 
community of nine phylogenetically diverse human gut microbes (Mock Community A) plus M. morganii. Germ-
free female C57Bl/6 mice were colonized with a mock community of nine phylogenetically diverse human gut 
microbes (Mock Community A) with or without M. morganii C135, or monocolonized with M. morganii C135. All 
mice were treated with the MAOI phenelzine in the drinking water for one week and then phenethylamine 
accumulation in the colon and brain was detected using DRD2-Tango as a proxy.  

Data in all panels are representative of at least two independent experiments. Data are presented as mean ± SEM. 
One-way ANOVA with Tukey’s post-hoc test (D-E), Kaplan meier and Log rank analysis (B), *p < 0.05, **p < 
0.01, ***p < 0.001, ****p < 0.0001. 
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the presence of a mock community, M. morganii colonization led to an increase in PEA in the colon and 

brain, as measured by DRD2 activation (Figure 5E). Together, these data show that M. morganii-derived 

phenethylamine can accumulate systemically in mice treated with MAOIs. 

 

2.2.6  A unique Bacteroides isolate activates GPR56/AGRG1 

We observed that specific bacterial supernatants could activate select orphan GPCRs (Figure 6A). 

To confirm these hits, we repeated our PRESTO-Tango screening procedure using a richer culture medium 

(Gifu) that supports more robust growth of most of the human gut microbes in our culture collection. This 

modified procedure significantly expanded the number of positive hits against orphan GPCRs: 17 orphan 

GPCRs showed greater than four-fold activation compared to media only controls in response to at least 

one bacterial supernatant (Figure 6B). We noted that metabolites from a strain assigned to the species B. 

theta (B. theta C34) activated GPR56/AGRG1 under both culture conditions (Figure 6C). In contrast, other 

strains of B. theta in our collections, including commercially available strains of B. theta and multiple other 

Bacteroides species, failed to activate GPR56/AGRG1 (Figure 6D) despite similar bacterial growth (Figure 

S6A).  

 

2.2.7  The essential amino acid L-Phe activates GPR56/AGRG1 and GPR97/AGRG3 

Since there is no known endogenous small molecule ligand for GPR56/AGRG1 39, we next 

attempted to identify the specific metabolite produced by B. theta C34 that activated GPR56/AGRG1. B. 

theta C34 supernatants were lyophilized, extracted with methanol, and subjected to fractionation by 

reversed-phase HPLC. All resulting fractions were analyzed for activity via GPR56-Tango and fraction 11 

was identified as the active fraction (Figure 6E). High resolution mass spectrometry, NMR and coinjection 

analyses of F11 showed that the essential amino acid phenylalanine (Phe) is the primary constituent of F11  
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(Figure 6E and S6B). Finally, structural characterization using advanced Marfey’s analysis confirmed that 

L-Phe is the likely bioactive ligand (Figure S6C) 40. We next tested whether pure L-Phe or structurally 

related amino acids could activate GPR56/AGRG1 using GPR56-Tango. We found that L-Phe and, to a 

lesser extent, L-Tyr stereoselectively activated GPR56/AGRG1, while L-Trp and L-His, D-Phe, D-Trp, D-

His and D-Tyr showed no activity (Figure 6F and S6D). We hypothesized that L-Phe and L-Tyr in the cell 

culture medium used for the Tango assay might obscure the full extent of GPR56/AGRG1 activation by L-

Phe. Thus, we formulated a custom medium lacking L-Phe and L-Tyr and examined GPR56/AGRG1 

Figure 6. A unique strain of B. thetaiotaomicron C34 is a prolific producer of L-Phe and activates GPR56/AGRG1.  

(A and B) Activation of orphan GPCRs by metabolomes from a human gut microbiota culture collection consisting 
of 144 strains isolated from 11 IBD patients and grown in either gut microbiota medium (A) or Gifu (B) as measured 
by PRESTO-Tango. Screening results are displayed on a phylogenetic tree of orphan GPCRs that was constructed 
and visualized with equal branch lengths using gpcrdb.org, PHYLIP and jsPhyloSVG. Color intensities represent 
the magnitude of activation over media and radii of circles represent the number of bacteria that activated a given 
GPCR by more than two-fold. 

(C) A single isolate C34 assigned to the species Bacteroides thetaiotaomicron activates GPR56/AGRG1 when 
cultured in gut microbiota medium (GMM: top panel) or Gifu medium (bottom panel). Activation of 
GPR56/AGRG1 by supernatants from 144 human gut isolates was measured via GPR56 PRESTO-Tango. 

(D) B. theta strain C34 uniquely activates GPR56/AGRG1. Activation of GPR56/AGRG1 by supernatants from 
diverse species and strains from the genera Bacteroides and Parabacteroides culture in GMM was measured via 
GPR56 PRESTO-Tango. n=3 replicates per isolate. 

(E) B. theta C34-produced L-Phe activates GPR56/AGRG1. B. theta C34 supernatants were fractionated via 
reversed-phase HPLC and fractions were evaluated for activation of GPR56/AGRG1 via GPR56 PRESTO-Tango. 
The active fraction (F11) contained a primary constituent that was identified via LC-MS, HRMS-ESI-QTOF, NMR, 
and advanced Marfey’s analyses as L-Phe.  

(F and G) L-Phe preferentially activates the orphan receptor GPR56/AGRG1. Activation of GPR56/AGRG1 by 
titrating doses of pure L-Phe, L-Tyr, L-Trp, and L-His was measured via GPR56 PRESTO-Tango using RPMI 1640 
medium containing endogenous L-Phe and L-Tyr (F) or custom medium lacking L-Phe and L-Tyr (G). n=3 
replicates per sample. 

(H) L-Phe activates G protein-dependent signaling downstream of GPR56/AGRG1. Activation of G proteins 

downstream of GPR56/AGRG1 by L-Phe as measured by the CRE-SEAP assay. G�s-G�t and G�s-G�o chimeras 

were used to redirect GPR56/AGRG1 signaling to G�s and enable use of the CRE-SEAP assay. n=3 replicates per 
sample. 

Data in all panels except for A, B, and E are representative of at least three independent experiments. Data are 
presented as mean ± SEM. 
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activation under these conditions. We found that removal of endogenous L-Phe and L-Tyr greatly increased 

the sensitivity and magnitude of GPR56 activation by L-Phe and L-Tyr as measured by the Tango assay 

(Figure 6G); furthermore, GPR56 was essential for this response as cells without GPR56 failed to respond 

to L-Phe (Figure S6E).  We also examined the genomes of B. theta C34 and two other strains of Bacteroides 

that failed to activate GPR56/AGRG1 and found that, despite their differential secretion of L-Phe, all four 

strains showed equivalent presence of enzymes in the shikimate pathway that are involved in the synthesis 

of L-Phe (Table S4, S5).  

To test whether L-Phe can also activate G protein-based signaling downstream of GPR56/AGRG1, 

we took advantage of promiscuous G�s-G�t and G�s-G�o chimeras (a kind gift from Stephen Liberles), 

which reroute most GPCRs through G�s and thus enable use of the CRE-SEAP assay to read out G protein 

activation by many different receptors 41. Using this system, we found that L-Phe can activate G protein-

dependent signaling downstream of GPR56/AGRG1 (Figure 6H and Figure S6F); however, because 

activation of G protein-dependent signaling required high concentraions of L-Phe (>1mM), it remains 

unclear whether physiological concentrations of L-Phe will engage this pathway in vivo. 

GPR56/AGRG1 is a member of the adhesion GPCR family. Adhesion GPCRs characteristically 

possess large extracellular domains that mediate interactions with a variety of protein ligands, such as 

components of the extracellular matrix 39. We thus tested whether the extracellular domain of 

GPR56/AGRG1 was also required for activation by the small molecule L-Phe by constructing a truncation 

mutant of GPR56/AGRG1. Although this mutant is expressed normally 42, it failed to respond to L-Phe 

(Figure S6E). Together, these data show that a unique strain of B. theta secretes high levels of L-Phe and 

that L-Phe is a novel agonist of the adhesion GPCR GPR56/AGRG1. 

We next examined whether other orphan GPCRs might also respond to L-Phe. We performed 

PRESTO-Tango screening of all adhesion and orphan GPCRs stimulated with L-Phe and found that 

GPR97/AGRG3 was also activated by L-Phe (Figure S7A). Upon further analysis, GPR97/AGRG3 showed 

greater selectivity toward L-Phe than GPR56/AGRG1—L-Phe, but not L-Tyr, L-Trp, or L-His, activated 
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GPR97/AGRG3 (Figure S7B). Like GPR56/AGRG1, the extracellular domain of GPR97/AGRG3 was 

required for its ability to respond to L-Phe (Figure S7C), and removal of L-Phe and L-Tyr from the medium 

increased the responsiveness of GPR97/AGRG3 to L-Phe (Figure S7B and S7D). Furthermore, L-Phe also 

activated G protein-dependent signaling downstream of GPR97/AGRG3 (Figure S7E). Notably, both 

GPR56/AGRG1 and GPR97/AGRG3 belong to the G family of adhesion GPCRs and are closely related 

evolutionarily (Figure S7F), which may explain their shared ability to detect the essential amino acid L-

Phe. 

 

2.2.8  Bacterial metabolic exchange can contribute to in vivo production of phenethylamine 

Thus far, our reductionist studies revealed that B. theta C34 produces large amounts of L-Phe while 

M. morganii C135 can process L-Phe into the trace amine phenethylamine. Thus, we wished to address 

whether these two bacteria might participate in an active metabolic exchange in vivo. The first step in 

investigating this hypothesis was to determine whether B. theta C34 can directly synthesize L-Phe. Using 

a defined minimal medium that lacks L-Phe (standard amino acid complete medium or SACC; specific 

formulation described in methods; 9, 43, we observed that B. theta C34 could directly synthesize significant 

amounts of L-Phe in vitro (Figure 7A, B). We thus monocolonized mice fed an L-Phe deficient diet with 

B. theta C34 and evaluated the in vivo production of L-Phe via QQQ-MS/MS. GF mice fed with an L-Phe 

deficient diet exhibited reduced concentrations of L-Phe in the feces as compared to GF mice fed a 

conventional diet (Figure 7C). In contrast, mice colonized with B. theta C34 and fed with an L-Phe-deficient 

diet exhibited significantly increased levels of L-Phe as compared to GF mice fed with an L-Phe-deficient 

diet (Figure 7C). 
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We next examined whether M. morganii would directly process B. theta C34-derived L-Phe into 

phenethylamine. We cultured B. theta C34 in SACC medium and then transferred B. theta supernatant to a 

culture of M. morganii C135. We observed that B. theta C34-derived L-Phe was efficiently converted into 

phenethylamine by M. morganii C135 (Figure 7D). To test whether metabolic exchange between C34 and 

M. morganii C135 could contribute to in vivo production of PEA, we colonized GF mice with either M. 

morganii C135 alone or both B. theta C34 and M. morganii C135 and fed these mice with a simplified diet 

We found that mice colonized with M. morganii C135 alone and fed an L-Phe deficient diet remained  
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healthy lacking L-Phe. We then treated these mice with phenelzine to reveal the potential production of 

PEA. and produced minimal PEA (as measured by DRD2 activation by cecal and colonic extracts) despite 

MAOI treatment (Figure 7E). In contrast, mice that were bi-colonized with C34 and M. morganii C135, fed 

an L-Phe deficient diet, and treated with MAOI became lethargic by day 4 and produced significant levels 

of PEA as measured by DRD2 activation by cecal and colonic extracts (Figure 7E). This demonstrates that 

B. theta C34 and M. morganii C135 can participate in an active metabolic exchange in vivo and that this 

exchange can potentially contribute to the production of a bioactive trace amine that can have potent effects 

on host physiology. 

 

 

 

 

Figure 7. Active metabolic exchange between two commensals supports production of phenethylamine.  

(A and B) B. theta C34 can directly synthesize L-Phe. L-Phe concentrations in supernatants from C34 grown in a 
minimal medium (SACC) lacking L-Phe were evaluated by LC-MS (A) and quantitated by QQQ-MS/MS (B). 
n=3 replicates per sample.  

(C) B. theta C34 produces L-Phe in vivo. Groups of germ-free female C57Bl/6 mice fed a conventional diet or a 
defined diet lacking L-Phe were colonized with or without B. theta C34. Fecal L-Phe concentrations were 
measured by QQQ-MS/MS one week after colonization. n=4 mice per group. 

(D) M. morganii C135 consumes B. theta C34-derived L-Phe to produce phenethylamine in vitro. B. theta C34 
cultures were grown in SACC medium lacking L-Phe. Supernatants of C34 cultures were later incubated with M. 
morganii C135. QQQ-MS/MS traces of L-Phe and phenethylamine (PEA) levels in these cultures are depicted 
here.  

(E) B. theta C34 and M. morganii C135 can participate in active metabolic exchange to produce phenethylamine 
in vivo. Groups of female germ-free C57Bl/6 mice were monocolonized with M. morganii C135 or co-colonized 
with B. theta C34 and M. morganii C135, fed a diet lacking L-Phe and treated with the MAOI phenelzine. 
Activation of DRD2 by phenethylamine in cecal and colonic extracts was measured by PRESTO-Tango.  n=4-6 
mice per group. 

Data in all panels are representative of at least two independent experiments. Data are presented as mean ± SEM. 
One-way ANOVA with Tukey’s post-hoc test (B-C and E-F), **p < 0.01, ***p < 0.001, ****p < 0.0001. 
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2.3  DISCUSSION 

Advanced metabolomic, metagenomic and functional genomic approaches have revealed that the 

human microbiota can produce tens of thousands of unique small molecules 5, 13, 44. However, the 

overwhelming complexity of the gut microbiota metabolome obscures facile recognition of chemical 

relationships between microbes and their hosts 5, 8. Here, we used host GPCR activation as a lens to detect 

bioactive metabolites produced by individual gut microbes. This approach revealed a plethora of novel 

microbiota metabolite-GPCR interactions of potential physiological importance. For example, we 

uncovered a diet-microbe-host axis that influences intestinal motility through the microbial production of 

histamine and a tri-partite microbe-microbe-host relationship that results in the production of the potent 

trace amine phenethylamine. Both of these examples resulted in profound effects on local and systemic host 

physiology.  

We found that dozens of human gut bacteria from diverse phyla, families, species, and strains 

produced small molecules that activated various GPCRs (as measured by PRESTO-Tango), including both 

well-characterized GPCRs and orphan GPCRs. We also observed patterns of metabolite production that 

were largely predictable based on phylogeny, as well as strain-specific differences within a given species. 

Future studies will be necessary to determine when and why specific pathways are conserved or not in 

distinct species and strains. We speculate that metabolites resulting from core metabolic processes essential 

to a given microbe will be highly conserved, while metabolites involved in competitive processes may show 

considerable variation even between highly related strains. Regardless of the teleological origins of the 

production of particular microbial metabolites, our results support the notion that human-associated 

microbes represent a remarkably rich source of small molecules that impact human biology. 

Prior studies have employed functional metagenomics screens as well as bioinformatics- and 

bioassay-guided natural product discovery approaches to uncover novel microbial-derived ligands for host 

GPCRs, including orphans (e.g., SCFAs and GPR41 and 43, and commendamide and G2A and GPR119); 

however, these approaches also have notable limitations 5, 13. For example, while functional metagenomics 
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screens enable the identification of novel biosynthetic gene clusters and their products from unculturable 

microorganisms, they are restricted in scope to contiguous biosynthetic gene clusters that can be expressed 

in heterologous hosts, require large-scale library construction efforts, and necessitate extensive follow up 

to identify the specific host receptors that recognize novel bioactive compounds. Similarly, while traditional 

bioassay-guided natural product discovery efforts enable identification of compounds produced by their 

native sources that can engage a specific receptor or pathway, their utility is largely restricted to cultivatable 

microorganisms and they typically examine only a single receptor or activity at a time. In contrast, the high-

throughput functional profiling approach that we employ here enables simultaneous interrogation of 

hundreds of receptors and thousands of chemicals and is unconstrained by prior annotations of biosynthetic 

gene clusters or metabolites (although still dependent on microbial cultivation). We thus anticipate that 

future expansions of this approach will continue to uncover novel microbial metabolites that impact host 

physiology and reveal new natural ligands for orphan receptors. 

Our initial screens were performed in vitro; however, we were particularly interested in examining 

the possibility that production of GPCR agonists by specific microbes might shape host physiology in vivo. 

We found that histamine production by M. morganii or L. reuteri promoted increased colon motility (as 

measured by fecal output), that feeding with exogenous histidine further increased local, M. morganii-

dependent production of histamine and colonic motility, and that histamine receptor inhibition partially 

reversed these effects. Since fecal output is an incomplete measure of intestinal motility, future studies will 

be necessary to determine the mechanistic basis of these change (e.g., effects on fluid secretion versus 

impacts on the enteric nervous system).  We also found that M. morganii monocolonized mice fed with 

histidine exhibited elevated systemic levels of histamine, indicating a potential role for microbiota-derived 

histamine in shaping systemic immune responses. Indeed, a recent study of the gut microbiome in asthmatic 

patients found a significant increase in M. morganii in asthmatics as compared to healthy controls 45. 

Additionally, by mining publicly available metagenomic datasets from the HMP2, we found that histamine 

decarboxylases (in general and from M. morganii specifically) are enriched in patients with Crohn’s 
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disease. This implies that histamine production by the microbiota generally (and by M. morganii in 

particular) may impact human disease 36. 

  While prior studies had reported production of multiple biogenic amines by M. morganii 26, 27, we 

found that all isolates of M. morganii produced the potent trace amine phenethylamine rather than dopamine 

or tyramine. We also found that treatment of M. morganii monocolonized mice with an MAOI led to 

systemic accumulation of phenethylamine and mortality. Phenethylamine is a potent neuroactive chemical 

that, unlike dopamine and tyramine, can readily cross the blood-brain barrier 28. The effects of 

phenethylamine are thought to be mediated primarily through activation of the trace amine-associated 

receptors and subsequent release of norepinephrine and dopamine 46-48. However, our studies suggest that 

phenethylamine can also act as an agonist for DRD2-4 and may be a biased agonist for DRD1 and 5. 

MAOIs were the first FDA approved antidepressants 49; however, their current usage is limited due 

to dangerous dietary and drug-drug interactions 38. Nonetheless, MAOIs remain an important treatment 

option for patients with refractory depression and other psychiatric disorders 38, as well as Parkinson's 

disease 50. Our findings raise an intriguing possibility that interindividual variability in microbial production 

of phenethylamine could explain the variable efficacy of MAOIs on depression. In particular, 

phenethylamine enhances mood and is readily able to cross the blood-brain barrier 51, so it is plausible that 

inhibition of MAO in the gut could enable systemic accumulation of microbially-produced phenethylamine 

that can act distantly in the brain. Our studies thus underscore the possibility that pharmacological inhibitors 

of biogenic amine receptors that are thought to act at specific sites (e.g., in the brain) may also exert their 

pharmacologic activities through modulation of host-microbiota interactions.  

Our studies also uncovered a specific Bacteroides strain that uniquely produces high levels of the 

essential amino acid L-Phe and revealed that L-Phe could activate the orphan GPCRs GPR56 and GPR97. 

Although we did not focus on the physiological roles of these GPCRs here, our finding that L-Phe is a 

GPR56 and GPR97 agonist raises multiple possibilities. GPR56 is highly expressed in the small intestine 

and human pancreatic islets 52, 53, and L-Phe concentrations in the jejunum can reach concentrations up to 
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2 mM after a meal 54. Thus, GPR56 may act as a nutrient sensor to regulate digestion and satiety. Although 

L-Phe levels in the serum usually are well below the levels necessary to activate GPR56/97, patients with 

phenylketonuria (PKU) who cannot degrade L-Phe exhibit serum concentrations of L-Phe higher than 1 

mM 55. Thus, it is theoretically possible that PKU patients may exhibit activation of GPR56 and/or GPR97 

in other tissues.  

The microbiota metabolome results from a complex web of interactions between diverse microbial 

species and strains, environmental inputs (e.g., diet), and host factors. Dissecting these metabolite networks 

will be essential to eventually leverage microbial chemistries for therapeutic benefit. Using a reductionist 

approach, we discovered two bacterial isolates that traffic in the same small molecule: a unique strain of B. 

theta that is a prolific producer of L-Phe and M. morganii, which efficiently converts L-Phe into 

phenethylamine. Thus, these studies demonstrate the ability of reductionist approaches to reveal metabolic 

exchanges that may otherwise be missed when examining endpoint microbiota metabolomes produced by 

complex mixtures of microorganisms. Understanding these metabolic exchange networks will be essential 

to eventually determine the effect of the microbiota metabolome on host biology under more physiological 

settings (i.e., in the context of complete gut microbial communities). Towards that end, we examined the 

effects of M. morganii on host physiology in the context of a mock gut microbial community consisting of 

nine phylogenetically diverse human gut microbes. In this context, we found that M. morganii continued to 

exhibit measurable metabolite-dependent impacts on the host. However, there are almost certainly other 

gut microbial community conditions where competition for ecological space or metabolic precursors (e.g., 

L-His or L-Phe), or active degradation of M. morganii-derived metabolites may reduce or eliminate the 

impact of M. morganii on the host (or, conversely, may enhance the effects of M. morganii). 

Our studies underscore the importance of dietary amino-acids (e.g., L-His) in the production of 

biogenic amines that can shape host physiology. However, they also highlight an alternative source of 

substrates that are often thought of as primarily derived from diet (e.g., essential amino acids): other 

members of the microbiota. This leads to the question of when microbial-produced amino acids may 
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potentially supplement or even replace dietary amino acids in microbial biotransformations. We modeled 

the possibility that microbe-derived L-Phe may be used as a substrate for biotransformation by M. morganii 

using a simplified and highly-artificial diet that lacks L-Phe. However, bacterial L-Phe may also be 

important under physiological conditions. For example, dietary amino acids are largely absorbed in the 

small intestine 54; thus, colonic microbes such as M. morganii have relatively limited access to dietary 

amino acids as compared to small intestinal organisms. Also, low-protein diets naturally decrease microbial 

access to dietary amino acids and fasting may reduce intestinal amino acid availability even further 56. Thus, 

microbial production of amino acids in the colon may play a critical role in the production of various 

bioactive microbiota metabolites under a variety of physiologically relevant conditions.  

While our reductionist approach using monocultured human gut microbes revealed multiple 

potentially physiologically important diet-microbe-host and microbe-microbe-host axes, it also suffers from 

notable limitations that will need to be addressed in future studies to fully understand the in vivo bioactive 

microbiota metabolome. For example, patterns of microbial metabolite production can vary substantially 

depending on the media used for microbial cultivation (as we observed in our separate screens using GMM 

versus Gifu), and in vitro monoculture conditions fail to capture metabolites that result from interactions 

with the host organism, biotransformations of compounds absent from the cultivation medium, or 

interactions with other microbes. Furthermore, the metabolite concentrations produced during in vitro 

cultivation may not reflect in vivo metabolite production. Finally, in vitro screens fail to reveal the natural 

tissue distributions of gut microbiota metabolites. Understanding these distributions will be particularly 

important for metabolites that activate host receptors that are expressed in diverse cell types and tissues. 

For example, the histamine and dopamine receptors are expressed on cells as diverse 

as immune cells, central and peripheral neurons, smooth muscle, epithelial and endothelial cells, and in 

essentially all tissues including the gut, lung, and brain 25, 36, 57. 

In conclusion, while the human gut microbiota metabolome is dauntingly complex and diverse, 

emerging approaches have begun to reveal the key chemical interactions at the host-microbe interface. We 
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show here that high-throughput activity-based screening using potential host receptors as a lens can 

highlight physiologically relevant microbiota metabolites from complex metabolite mixtures. Such host-

centric, functional profiling approaches can thus facilitate a mechanistic understanding of how we interact 

with and are affected by our microbial inhabitants, and have the potential to yield targeted therapeutic 

interventions aimed at the interface between indigenous microbes and their hosts. 

 

2.4  METHODS  

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial Strains   

B.fragilis ATCC       25285 

B.ovatus ATCC       8483 

B.thetaiotaomicron ATCC       29741 

B.uniformis ATCC       8492 

M.morganii ATCC       25830&49948 

Chemicals, peptides, and Recombinant Proteins   

Gifu Anaerobic Broth                    VWR       11007-214 

Bright-GloTMLuciferase Assay System Promega       E2620 

Histamine Elisa Kit                    Enzo Life Sciences  ENZ-KIT140-0001 

Desloratadine                    Tocris              5958 

Tiotidine                    Tocris 0826 

Iodophenpropit                    Tocris 0779 

A987306                    Tocris 3640 

Phenethylamine                    Sigma-Aldrich        241008 
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Tyramine                    Sigma-Aldrich        T90344 

Dopamine                    Sigma-Aldrich        H8502 

Histamine                    Sigma-Aldrich        H7129 

Acetylcholine                    Sigma-Aldrich        A2661 

L-DOPA                    Sigma-Aldrich        D9628 

Succinate                    Sigma-Aldrich                 398055 

Serotonin                    Sigma-Aldrich                 14927 

Gastrin                    Sigma-Aldrich        G9145 

Peptide YY                    Anaspec        AS024401 

Pancreatic polypeptide                    Anaspec        AS-22866 

Cholecystokinin                    Sigma-Aldrich        C2175 

Trace mineral supplement                    ATCC        MD-TMS 

Vitamin supplement                    ATCC        MD-VS 

L-glycine                    Sigma-Aldrich        G8898 

L-valine                    Sigma-Aldrich        94619 

L-leucine                    Sigma-Aldrich        L8000 

L-isoleucine                    Sigma-Aldrich        I2752 

L-methionine                    Sigma-Aldrich        64319 

L-histidine                    Sigma-Aldrich        H8000 

L-arginine                    Sigma-Aldrich        A5131 

L-phenylalanine                    Sigma-Aldrich        P2126 

L-tyrosine                    Sigma-Aldrich        T3754 

L-tryptophan                    Sigma-Aldrich        T0254 

N-methylphenethylamine                    Sigma-Aldrich        M68423 

Octopamine                    Sigma-Aldrich        O0250 
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Synephrine                    Sigma-Aldrich        S0752 

Epinephrine                    Sigma-Aldrich        E4250 

Norepinephrine                    Sigma-Aldrich        A7257 

3-Methoxytyramine                    Sigma-Aldrich        M4251 

DMEM                    Sigma-Aldrich                 D6429 

RPMI 1640                    Thermo Fisher                  21870092 

D-phenylalanine                    Sigma-Aldrich        673-06-3 

FDAA (Marfey’s Reagent)                    Thermo Fisher        48895 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS  

Mice  

6-12 week old germ-free wild-type C57Bl/6 mice were used in all experiments. Both male and female mice 

were used for these studies and mice were age and sex matched within each experiment (only one sex was 

used for each independent experiment). We did not observe any obvious sex-specific differences in in vivo 

phenotypes in any of these studies. 

Bacteria  

All strains were cultured in gut microbiota medium or Gifu broth at 37 °C under anaerobic conditions and 

the identities of all strains were confirmed by 16S rRNA gene sequencing. 

 

METHOD DETAILS 

Bacterial growth conditions  

For PRESTO-Tango screening, all commensals were cultured in gut microbiota medium or Gifu 

broth for 2 days in an anaerobic chamber (Coy) and commensal supernatants were sterilized by high-speed 
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centrifugation and sterile filtration (0.22 �m). For in vitro studies, M. morganii was cultured in minimal 

medium (MM), or MM with 10 mM L-Phe, 2.5mM L-Tyr, 10 mM L-DOPA, or 10mM L-His for 24 hours. 

Bacterial supernatants were analyzed by LC-MS.  

PRESTO-Tango Assay 

HTLA cells, a HEK293 cell line that stably expresses �-arrestin-TEV and tTA-Luciferase (a kind 

gift from Gilad Barnea, Brown University), were plated in 96-well tissue culture plates (Eppendorf) in 

DMEM containing 10% FBS and 1% Penicillin/Streptomycin. One day after plating (after reaching 

approximately 90% confluence), 200 ng per well GPCR-Tango plasmids (19 in 20 �l DMEM were mixed 

with 400 ng polyethylenimine (Polysciences) in an equal volume of DMEM and incubated for 20 minutes 

at room temperature before adding the transfection mixture to the HTLA cells. 16-24 hrs after transfection, 

medium was replaced with 180�l fresh DMEM containing 1% Penicillin/Streptomycin and 10mM HEPES 

and 20�l bacterial medium alone or bacterial supernatant. All bacteria were cultured in gut microbiota 

medium or Gifu under anaerobic conditions for 2 days and bacterial supernatant was isolated via high-speed 

centrifugation followed by filtration with a 0.22 �m filter. Bacteria that failed to reach an OD of 0.5 after 2 

days or caused obvious cell toxicity (e.g., Clostridum perfringens isolates) were excluded from further 

analysis. Supernatants were aspirated 16-24 hr after stimulation and 50 μl per well of Bright-Glo solution 

(Promega) diluted 20-fold with PBS containing 20mM HEPES was added into each well. After 20 min 

incubation at room temperature, luminescence was quantified using a Spectramax i3x (Molecular Devices). 

Activation fold for each sample was calculated by dividing relative luminescence units (RLU) for each 

condition by RLUs from media alone controls.  

Histamine ELISA 

All strains were cultured in gut microbiota medium with or without 1% L-His for 24 hours and 

supernatants were collected via high-speed centrifugation. Cecal and colonic contents and fecal samples 

were collected and weighed; all samples were suspended in PBS at a ratio of 1:2 (w/v) and were 
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homogenized by vortexing. Serum and brains were collected, weighed and suspended in PBS at a ratio of 

1:2 (w/v). Brains were homogenized by passing through a 21G needle fifty times. All samples were 

centrifuged and supernatants were collected for histamine ELISA according to the manufacturer’s protocol. 

Colonization of germ-free mice 

Germ-free C57Bl/6 mice were colonized via oral gavage with 200�l of individual bacterial cultures 

or mixed bacterial consortia. Mock communities A and B consisted of the following taxa: Community A: 

Bacteroides spp; P. distasonis; Peptoniphilus spp; B. ovatus; Clostridiales UC/UC; Lachnospiraceae 

UC/UC; C. stercoris; B. uniformis and Parabacteroides spp.; and Community B: Streptococcus spp; C. 

perfringens; B. fragilis; Erisipelotrichaceae spp; C. aerofaciens; Bacteroides UC; B. producta; 

Allobaculum spp and Oscillospira spp.  All strains were grown to roughly mid-log phase in GMM, mixed 

in equal ratios based on optical density, and then frozen at -80 �C in GMM containing 20% glycerol in 

rubber capped 2ml Wheaton vials until use. All gnotobiotic mice were maintained in Techniplast P Isocages 

and manipulated aseptically for the duration of the experiment. 16S rRNA gene sequencing of the V4 region 

to confirm colonization and microbial composition was performed essentially as described previously 21 

except that data processing and analysis was done using QIIME2-DADA2 58. 

Fecal output assay. 

Individual mice were housed in an empty container (1/4 gallon) for 1 hour after which time the 

fecal pellets were counted and weighed. For mice fed with L-His, mice were given water containing 1% L-

His ad libitum for 2 weeks before fecal output measurements. Based on an average water intake of 4 

ml/ms/day combined with the existing dietary histidine present in conventional mouse chow (5 g/kg; 

Envigo), feeding of 1% L-His ad libitum in the water is equivalent to an overall histidine concentration of 

~15g/kg in the diet. For reference, histidine rich foods such as soy protein, egg white, parmesan cheese, 

cured pork, and beef contain roughly 23, 20.5, 16, 16, and 14 g/kg of histidine, respectively 

(https://ndb.nal.usda.gov/ndb/nutrients/report/).  
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CRE-SEAP Assay. 

96-well plates were pretreated with 30 μl poly-D-lysine (10ug/ml in water) and incubated at room 

temperature for 30 minutes. Plates were washed twice with 100 μl PBS and HEK293T were seeded in 100 

μl DMEM+10% FBS+1% Penicillin/Streptomycin in each well. When cells were 90% confluent, plasmids 

were transfected using PEI reagent at a ratio of 1:2. For DRD1, DRD5 and TA1 (which couple to G�s 

protein), HEK293T cells were transfected with 50 ng GPCR and 50 ng CRE-SEAP reporter plasmid per 

well; For DRD2, DRD3, DRD4, GPR56 and GPR97, cells were transfected with 50 ng GPCR, 50 ng CRE-

SEAP reporter plasmid (BD Biosciences) and 2.5 ng G�s- G�o or G�s- G�t chimeras (a kind gift from 

Stephen Liberles, Harvard; 41 per well. 6 hours after transfection, medium from the wells was replaced with 

180 μl serum-free DMEM and 20 μl DMEM containing putative GPCR ligands was added to each well. 

After incubating for 48 hours at 37°C, followed by 2 hours of incubation at 70°C, supernatants from each 

well were mixed with an equal volume of 0.12 mM 4-methylumbelliferyl phosphate in 2 M diethanolamine 

bicarbonate, pH 10, and incubated at room temperature for 10 minutes. Fluorescence was measured using 

a SpectraMax plate reader (Molecular Devices). 

Histamine Receptor Antagonist Treatment. 

For histamine receptor antagonist treatment, 20 uM Desloratadine (HRH1 antagonist), Tiotidine 

(HRH2 antagonist), Iodophenpropit (HRH3 antagonist) and A987306 (HRH4 antagonist) were added to 

the drinking water. Colon motility was measured after one week of ad libitum treatment. 

General Metabolomic Procedures.  

NMR spectra were taken using an Agilent 600 MHz NMR system with a cryoprobe. High-

resolution MS and tandem MS (MS/MS) data were obtained using an Agilent iFunnel 6550 ESI-HRMS-

QTOF (Electron Spray Ionization-High Resolution Mass Spectrometry-Quadrupole Time-of-Flight) 

instrument on Phenomenex Kinetex 5 μm C18 100Å (4.6 × 250 mm) columns. The Agilent 1260 Infinity 

system with a Phenomenex Kinetex 5 μm C18 100Å column (4.6 × 250 mm) or an Agilent Poroshell 120 
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EC-C18 2.7 μm (3.0 x 50 mm) column and a photodiode array (PDA) detector was used for routine sample 

analysis. An Agilent Prepstar HPLC system with an Agilent Polaris C18-A 5 μm (21.2 × 250 mm) columns 

were used for sample fractionation and purification.   

Metabolite Isolation and Purification.  

B. thetaiotaomicron strain C11 was grown in 10 mL of gut microbiota medium under anaerobic 

conditions at 37°C for 24hr. Supernatant was harvested, lyophilized and extracted with 2mL methanol. The 

crude extract was then dried and fractionated using a preparative C18 HPLC system. The gradient used was 

10-50% acetonitrile in water (with 0.01% trifluoroacetic acid) for 30min, then 100% for 5min. The 

fractions, which were collected every minute, were dried, resuspended in PBS buffer, and tested for 

bioactivity using PRESTO-Tango.  The active fraction was characterized using ESI-HRMS-QTOF and 

NMR analyses. Stereochemistry was confirmed by advanced Marfey’s analysis (Figure S5D)  

Metabolite Quantitation.  

Electro Spray Ionization-Triple Quadrupole-Tandem Mass Spectrometry ESI-QQQ-MS/MS was 

run using Multiple Reaction Monitoring (MRM) mode. An Agilent 6490 ESI-QQQ-MS/MS instrument 

with a Phenomenex Kinetex 1.7 μm C18 100Å (100 x 2.10mm) column was used for quantitation and 

calibration. Each standard (L-Phenylalanine, Phenethylamine, Histamine, Tyramine, Dopamine) was 

optimized using an Agilent Mass Hunter Optimizer. A calibration curve for each standard was established 

using various concentrations (0 - 25μM range) in triplicate. The gradient constituted 10-100% acetonitrile 

in ddH2O (with 0.1% Formic Acid), then a wash step with 100% acetonitrile. The triplicate data was then 

subjected to linear regression analysis to produce a linear calibration curve. Processing of the experimental 

samples involved lyophilization and extraction with 100% MeOH (20% volume of original culture volume) 

before injecting samples. Sample absorbance was subjected to linear calibration to calculate concentrations. 
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Whole-Genome Sequencing and Annotation, HMP2 Data Mining and Data Deposition. 

Whole-genome sequencing. Bacterial DNA was extracted using the DNeasy Ultraclean Microbial 

Kit (Qiagen) according to the manufacturer’s instructions. Sequencing libraries were prepared using the 

Nextera XT library preparation kit (Illumina) according to the manufacturer’s instructions and sequenced 

on a NovaSeq (2x150; Illumina). 

De novo genome assembly. Genome assembly and annotation were performed essentially as 

described in Dodd et al. 9. Briefly, all Illumina paired-end reads were filtered and trimmed using 

Trimmomatic v.0.38 59 with the following parameters: ILLUMINACLIP: NexteraPE-PE.fa:2:30:12:1:true 

LEADING:3 TRAILING:3 MAXINFO:40:0.994 MINLEN:36. The four output files after trimming 

included two (forward and reverse) FASTQ files with paired reads and two FASTQ files with unpaired 

reads. All four files from each strain were assembled into contigs using SPAdes 3.13.0 60 with the default 

parameters for paired-end libraries. Genome coverage was calculated by BBMap 

(http://sourceforge.net/projects/bbmap/). Summary statistics for each genome assembly and alignment are 

shown in Table S3. 

Genome annotation. For each genome assembly, scaffolds longer than 2000 bp were uploaded to 

the Rapid Annotation using Subsystem Technology (RAST) server 61 for annotation (using the default 

RASTtk pipeline). The annotated genomes were downloaded as spreadsheets (Excel XLS format), and the 

summary of genome annotations as well as the detailed annotations for each strain are shown in Table S3.  

HMP2 data acquisition and analysis. Publicly available metagenome and metabolome data from 

the HMP2 were downloaded from The Inflammatory Bowel Disease Multi’omics Database (IBDMDB), 

which was funded by the NIH Human Microbiome Project NIDDK U54DE023798 (https://ibdmdb.org). 

The IBDMDB provides longitudinal meta’ome data on the microbiome of subjects with three clinical 

diagnoses: nonIBD, CD and UC. Raw metagenomic sequencing data was pre-processed and used to 

generate taxonomic and functional profiles by the HMP team. The pipeline employed two steps: (1) 
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MetaPhlAn2 (Truong DT, 2015)-based taxonomic profiling, which uses clade-specific marker genes to 

identify species-level microbial taxa and their relative abundances using metagenomic data; and (2) 

HUMAnN2 (Franzosa EA, 2018)-based functional profiling. Briefly, HUMAnN2 implements a tiered 

search strategy to profile the functional content (gene family, functional pathway, etc.) of a meta’ome 

sample at species-level resolution. In the first tier, based on the known microbial species in a sample (as 

identified by MetaPhlAn2), HUMAnN2 constructs a custom gene sequence database for the samples by 

concatenating precomputed, functionally annotated pangenomes of detected species. In the second tier, 

nucleotide-level mapping of all reads against the sample’s pangenome database is performed. In the final 

search tier, reads that do not align to an identified species’ pangenome are then subjected to translated 

search against a comprehensive, non-redundant protein sequence database (UniRef90 or UniRef50). Per-

gene alignment statistics are weighted based on alignment quality, coverage and sequence length to yield 

gene abundance values. Both taxonomic determinations and functional gene abundances are normalized as 

relative abundances to facilitate comparisons between samples with different sequencing depths. 

The merged tables of taxonomic profiles 

(https://ibdmdb.org/tunnel/products/HMP2/WGS/1818/taxonomic_profiles.tsv.gz) and functional profiles 

(https://ibdmdb.org/tunnel/products/HMP2/WGS/1818/ecs.tsv.gz) from metagenomic analyses, the 

merged table from metabolomics analysis 

(https://ibdmdb.org/tunnel/products/HMP2/Metabolites/1723/HMP2_metabolomics.csv.gz), and the 

HMP2 metadata (https://ibdmdb.org/tunnel/products/HMP2/Metadata/hmp2_metadata.csv), were 

downloaded and analyzed to evaluate the distribution of abundance of histidine decarboxylase and 

histamine in this cohort. For participants whose clinical diagnosis changed during the course of the study, 

data points were assigned to the clinical diagnosis at the time of sample collection. 
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Quantification and Statistical Analysis. 

Statistical analysis was performed using Graphpad Prism version 7.0. Data were assessed for normal 

distribution and plotted in the figures as mean ± SEM. No samples or animals were excluded from the 

analyses. One-way ANOVA and post hoc analysis with Tukey’s test was used to compare the difference 

between treatment groups. Kaplan-Meier and Log rank analysis was used for survival experiments. 

Kruskall-Wallis with Dunn’s multiple comparisons was used to analyze metagenomic and metabolomic 

data from the HMP; p-values for Kruskall-Wallis are approximated based on the chi-squared distribution 

and account for rank ties. Samples sizes are indicated in each figure legend and significant differences are 

indicated in the figures by *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.   

 

Media Formulations. 

Custom (L-Phe- and L-Tyr-free) Dulbecco’s Modified Eagle’s Medium (DMEM) formulation 

          

Ingredients                                                                 Concentration in Medium (g/L) 

      

Inorganic Salts 

Calcium Chloride                                                                              0.2 

Ferric Nitrate•9H2O                                                                          0.0001 

Magnesium Sulfate(anhydrous)                                                        0.09767 

Potassium Chloride                                                                           0.4 

Sodium Bicarbonate                                                                          3.7 

Sodium Chloride                                                                               6.4 

Sodium Phosphate Monobasic(anhydrous)                                       0.109 

 

Amino Acids 

L-Arginine•HCl                                                                                 0.084 

L-Cystine•2HCl                                                                                 0.0626 
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L-Glutamine                                                                                       0.584 

Glycine                                                                                               0.03 

L-Histidine•HCl•H2O                                                                        0.042 

L-Isoleucine                                                                                       0.105 

L-Leucine                                                                                           0.105 

L-Lysine•HCl                                                                                     0.146 

L-Methionine                                                                                     0.03 

L-Phenylalanine                                                                                 0 

L-Serine                                                                                              0.042 

L-Threonine                                                                                        0.095 

L-Tryptophan                                                                                     0.016 

L-Tyrosine•2Na•2H2O                                                                        0 

L-Valine                                                                                              0.094 

 

Vitamins 

Choline Chloride                                                                                 0.004 

Folic Acid                                                                                            0.004 

myo-Inositol                                                                                         0.0072 

Niacinamide                                                                                         0.004 

D-Pantothenic Acid (hemicalcium)                                                     0.004                 

Pyridoxine•HCl                                                                                    0.004 

Riboflavin                                                                                            0.0004 

Thiamine•HCl                                                                                      0.004 

 

Other 

Glucose                                                                                                 4.5 

Phenol Red•Na                                                                                     0.0159 

Pyruvic Acid•Na                                                                                   0.11 
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Minimal Medium 

          

Ingredients                                                                 Concentration in Medium (g/L) 

      

Resazurin                                                                                               0.0001  

KH2PO4                                                                                                                                                        2 

K2HPO4                                                                                                                                                        2 

MgCl2•6H2O                                                                                          0.2 

(NH4)2SO4                                                                                            5 

L-Glycine                                                                                              0.075 

L-Valine                                                                                                0.117 

L-Leucine                                                                                              0.131 

L-Isoleucine                                                                                          0.131 

L-Methionine                                                                                        0.149 

L-Histidine                                                                                            0 

L-Arginine                                                                                            0.174 

L-Phenylalanine                                                                                    0 

L-Tyrosine                                                                                            0 

L-Tryptophan                                                                                        0 

NaHCO3                                                                                                2.5 

Cysteine HCl                                                                                        0.5 

Glucose                                                                                                3.603 

 

Trace Mineral Supplement(g/L)                                                       10ml 

EDTA                                                                                                   0.5  

MgSO4•7H2O                                                                                       3.0  

MnSO4•H2O                                                                                         0.5   

NaCl                                                                                                      1.0   

FeSO4•7H2O                                                                                         0.1  

Co(NO3 )2•6H2O                                                                                   0.1   
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CaCl2 (anhydrous)                                                                                        0.1  

ZnSO4•7H2O                                                                                                 0.1   

CuSO4•5H2O                                                                                                 0.010  

AlK(SO4 )2 (anhydrous)                                                                                0.010   

H3BO3                                                                                                           0.010   

Na2MoO4•2H2O                                                                                            0.010   

Na2SeO3 (anhydrous)                                                                                    0.001   

Na2WO4•2H2O                                                                                              0.010  

NiCl2•6H2O                                                                                                   0.020  

 

Vitamin Supplement     (mg/L)                                                                   10ml 

Folic acid                                                                                          2.0   

Pyridoxine hydrochloride                                                                10.0 

Riboflavin                                                                                          5.0   

Biotin                                                                                                  2.0   

Thiamine                                                                                             5.0  

Nicotinic acid                                                                                    5.0  

Calcium Pantothenate                                                                        5.0   

Vitamin B12                                                                                     0.1  

p-Aminobenzoic acid                                                                        5.0  

Thioctic acid                                                                                       5.0   

Monopotassium phosphate                                                              900.0  

 

Standard Amino Acid Complete (SACC) medium 

          

Ingredients                                                                 Concentration in Medium (g/L) 

      

Resazurin                                                                                               0.0001  

KH2PO4                                                                                                                                                        2 

K2HPO4                                                                                                                                                        2 
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MgCl2•6H2O                                                                                           0.2 

(NH4)2SO4                                                                                             5 

L-Glycine                                                                                               0.075 

L-Valine                                                                                                 0.117 

L-Leucine                                                                                               0.131 

L-Isoleucine                                                                                           0.131 

L-Methionine                                                                                         0.149 

L-Histidine                                                                                             0.155 

L-Arginine                                                                                              0.174 

L-Phenylalanine                                                                                      0 

L-Tyrosine                                                                                              0.181 

L-Tryptophan                                                                                          0.204 

NaHCO3                                                                                                   2.5 

Cysteine HCl                                                                                           0.5 

Glucose                                                                                                    3.603 

 

Trace Mineral Supplement(g/L)                                                           10ml 

EDTA                                                                                                       0.5  

MgSO4•7H2O                                                                                           3.0  

MnSO4•H2O                                                                                             0.5   

NaCl                                                                                                          1.0   

FeSO4•7H2O                                                                                             0.1  

Co(NO3 )2•6H2O                                                                                       0.1   

CaCl2 (anhydrous)                                                                                    0.1  

ZnSO4•7H2O                                                                                             0.1   

CuSO4•5H2O                                                                                             0.010  

AlK(SO4 )2 (anhydrous)                                                                            0.010   

H3BO3                                                                                                       0.010   

Na2MoO4•2H2O                                                                                        0.010   

Na2SeO3 (anhydrous)                                                                               0.001   
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Na2WO4•2H2O                                                                                        0.010  

NiCl2•6H2O                                                                                             0.020  

 

Vitamin Supplement     (mg/L)                                                                10ml 

Folic acid                                                                                                    2.0   

Pyridoxine hydrochloride                                                                           10.0 

Riboflavin                                                                                                   5.0   

Biotin                                                                                                          2.0   

Thiamine                                                                                                    5.0  

Nicotinic acid                                                                                             5.0  

Calcium Pantothenate                                                                                5.0   

Vitamin B12                                                                                               0.1  

p-Aminobenzoic acid                                                                                 5.0  

Thioctic acid                                                                                              5.0   

Monopotassium phosphate                                                                        900.0  
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2.5  SUPPLEMARY INFORMATION 

 

Figure S1. Sensitivity and specificity of the PRESTO-Tango assay, related to Figure 1. 

(A) Activation of CHRMs and DRDs by titrating doses of acetylcholine and dopamine as measured by 
PRESTO-Tango. n=3 replicates per sample. 

(B) Activation of GPCRs by defined GPCR ligands as measured by PRESTO-Tango. Activation is depicted 
on a log 2 scale as a heatmap of 314 GPCRs versus ligands.  
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Figure S2. Diverse human gut bacteria activate DRDs and HRHs, related to Figure 3. 

Activation of DRD1-5 (A) and HRH1-4 (B) by supernatants from 144 human gut bacteria cultured in gut 
microbiota medium (GMM) as measured by PRESTO-Tango.  
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Figure S3. Identification of M. morganii-derived compounds that activate DRDs and HRHs, related to 
Figure 3. 

(A) Mammalian dopamine metabolism. 

(B) Phenethylamine and tyramine serve as selective DRD2/DRD3/DRD4 agonists. Activation of DRD1-5 
by metabolites in the mammalian dopamine metabolism pathway was measured via PRESTO-Tango.  

(C) DRD1-5 activation by titrating doses of tyramine, dopamine and phenethylamine was measured by 
PRESTO-Tango (D). n=3 replicates per sample. 

(D) Calibration curve for phenethylamine and tyramine on QQQ-MS/MS instrument. 

(E) Quantification of phenethylamine production by M. morganii strains via QQQ-MS/MS. 

Data in all panels are representative of at least two independent experiments. 
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Figure S4. Activation of G-protein signaling by phenethylamine and related chemicals downstream of the 
dopamine receptors, related to Figure 3. 

(A) Activation of G�s-dependent signaling downstream of DRD1, 5 and TAAR1 by titrating doses of 
phenethylamine and related chemicals was measured by the CRE-SEAP assay. n=3 replicates per sample. 

(B) Activation of G protein-dependent signaling downstream of DRD2-4 by titrating doses phenethylamine 

and related chemicals was measured by the CRE-SEAP assay. A G�s-G�o fusion was used to redirect 

DRD2-4 to G�s and enable use of the CRE-SEAP assay. n=3 replicates per sample. 

(C) OD values for 24 hour cultures of M. morganii grown in minimal medium (MM) with or without L-
Phe, L-Tyr, L-DOPA or L-His. n=3 replicates per sample. 

Data in all panels are representative of at least two independent experiments. 
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Figure S5. M. morganii localization and production and accumulation of systemic phenethylamine in vivo, 
related to Figure 4. 

(A) Groups of female germ-free C57Bl/6 mice were colonized with mock communities of 9 or 10 
phylogenetically diverse human gut bacteria (Mock Community A or B) or monocolonized with M. 
morganii C135. Mice were fed a conventional diet with or without administration of 1% L-His ad libitum 
in the drinking water. Histamine concentrations in serum were measured via ELISA.  n=3-5 mice per group. 

(B-C) M. morganii primarily inhabits the cecum and colon. Groups of female germ-free C57Bl/6 mice were 
colonized with mock communities of 9 or 10 phylogenetically diverse gut microbes (Mock community A 
and B, respectively) with or without M. morganii C135. M. morganii CFUs can be distinguished from other 
bacteria based on their purple halos when plated on modified Niven’s agar. Gastric, small intestinal, cecal 
and colonic contents from mice colonized with Mock communities A or B and M. morganii were plated on 
Modified Niven’s agar to determine M. morganii colonization levels at various intestinal loci. Stacked 
barplot represents relative abundance of bacterial taxa in mice colonized with Mock community A plus M. 
morganii based on 16S rRNA gene sequencing (see also Table S3). n=4 mice per group. 

(D) Groups of female germ-free C57Bl/6 mice were colonized with a mock community of 9 
phylogenetically diverse human gut bacteria (Mock Community A) with or without M. morganii C135. 
Mice were fed a conventional diet and administered 1% L-His ad libitum in the drinking water. Histamine 
concentrations in serum were measured via ELISA.  n=3-5 mice per group. 

(E) Contribution of individual species to the relative abundance of histidine decarboxylase genes in the 
microbiomes of patients with IBD (CD and UC) as compared to healthy controls (non-IBD). Metagenomic 
data from longitudinal stool samples from IBD patients (publicly available from the Human Microbiome 
Project 2; iHMP) were analyzed for the presence and relative abundance of histidine decarboxylase genes 
(see methods for details). Data shown are a compilation of all data across multiple collection timepoints. 

(F) Quantification of phenethylamine (PEA) in cecum, colon, serum, and brain from mice monocolonized 
with M. morganii C135 and treated with or without phenelzine (MAOI) via QQQ-MS/MS. n=4 mice per 
group. 

(G) Accumulation of phenethylamine (PEA) in serum and brains of mice monocolonized with M. morganii 
C135 and treated with or without phenelzine (MAOI) as measured via QQQ-MS/MS. n=4 mice per group. 

Data in all panels are representative of at least two independent experiments. 

Data are presented as mean ± SEM. One-way ANOVA with Tukey’s post-hoc test (A and E), *p < 0.05, 
***p < 0.001. 
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Figure S6. Effect of different bacterial and culture media on bacterial growth and GPR56/AGRG1 
activation, structural characterization of B. theta C34 agonist L-Phe, and role of N-terminal domain in 
GPR56/AGRG1 activation by L-Phe, related to Figure 6. 

(A) OD600 values of indicated Bacteroides and Parabacteroides strains cultured in gut microbiota 
medium (GMM) for 24 hours. n=3 replicates per isolate.  

(B) 1H NMR spectrum of active fraction 11 in MeOD revealed Phe as the major component.  

(C) Advanced Marfey’s analysis verified the stereochemistry of Phe in fraction 11 to be L-Phe. D-
Phe in the active fraction was not detected. FDAA is 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide 
(Marfey’s Reagent). 

(D) L-Phe and L-Tyr stereoselectively activate the orphan receptor GPR56/AGRG1. Activation of 
GPR56/AGRG1 by titrating doses of pure L-Phe, L-Tyr, D-Phe, and D-Tyr (in L-Phe and L-Tyr-
free medium) was measured via GPR56-Tango. n=3 replicates per sample. 

(E) L-Phe-induced Tango activation is GPR56/AGRG1-dependent. Luciferase expression (RLU) 
was measured after stimulation of cells transfected with GPR56-Tango or empty vector with 
titrating doses of L-Phe. n=3 replicates per sample. 

(F) L-Phe-induced activation of G protein-dependent signaling in HEK cells is GPR56-dependent. 
Activation of G proteins downstream of GPR56/AGRG1 by L-Phe as measured by the CRE-SEAP 

assay. G�s-G�t and G�s-G�o chimeras were used to redirect GPR56/AGRG1 signaling to G�s and 

enable use of the CRE-SEAP assay. Cells transfected with DRD2-Tango and G�s-G�t and G�s-

G�o chimeras failed to respond to L-Phe. n=3 replicates per sample. 

(G) The extracellular domain of GPR56/AGRG1 is indispensable for GPR56/AGRG1 activation 
by L-Phe. Activation of GPR56 or GPR56-ΔNT (a mutant lacking the extracellular domain) by 
titrating doses of L-Phe was measured via PRESTO-Tango. n=3 replicates per sample. 
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Figure S7. L-Phe activates GPR97/AGRG3, a close relative of GPR56/AGRG1, related to Figure 6. 

(A) L-Phe activates GPR56/AGRG1 and GPR97/AGRG3. Activation of all orphan, adhesion and other 
potential amino acid-sensing GPCRs by L-Phe was evaluated via PRESTO-Tango. n=3 replicates per 
sample. 

(B) L-Phe specifically activates GPR97/AGRG3. Activation of GPR97/AGRG3 by titrating doses of L-
Phe, L-Tyr, L-Trp, and L-His was measured via GPR97 PRESTO-Tango. n=3 replicates per sample. 

(C) The extracellular domain of GPR97/AGRG3 is indispensable for GPR97/AGRG3 activation by L-Phe. 
Activation of GPR97 or GPR97-ΔNT (a mutant lacking the extracellular domain) by titrating doses of L-
Phe was measured via PRESTO-Tango. n=3 replicates per sample. 

(D) L-Phe specifically activates GPR97/AGRG3. Activation of GPR97/AGRG3 by titrating doses of L-
Phe, L-Tyr, L-Trp, and L-His was measured via GPR97 PRESTO-Tango in media lacking L-Phe and L-
Tyr. n=3 replicates per sample. 

(E) L-Phe activates G protein-dependent signaling downstream of GPR97/AGRG3. Activation of G 

proteins downstream of GPR97/AGRG3 by L-Phe as measured by the CRE-SEAP assay. G�s-G�t and G�s-

G�o chimeras were used to redirect GPR97/AGRG3 signaling to G�s and enable use of the CRE-SEAP 
assay. n=3 replicates per sample. 

(F) GPR56/AGRG1 and GPR97/AGRG3 are evolutionarily related. A phylogenetic tree for a subset of 
GPCRs, including all adhesion GPCRs, was constructed and visualized with equal branch lengths using 
gpcrdb.org, PHYLIP and jsPhyloSVG. 

Data in all panels are representative of at least three independent experiments. Data are presented as mean 
± SEM. 
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Chapter 3 

Escherichia coli produce indole-functionalized metabolites under acid stress conditions 

 

3.1  Introduction 

Escherichia coli is a prevalent Gram-negative bacterium that resides in greater than 90% of the 

human population. Though present at less than 1% of the total gut flora, E. coli is one of the most studied 

bacteria for its ubiquitous presence and metabolite production.62 A common biomarker for the presence of 

E. coli and other microbial strains is the production of indole. Microbial-derived indole acts as an inter- and 

intra-cellular signal crucial in diverse bacterial physiologies in virulence, biofilm formation, antibiotic 

stress, acid resistance, and so on. In fact, indole is omnipresent in gram-positive and negative bacteria and 

can serve as an indicator for growth of certain microbial strains. Indole is hydrolyzed from dietary 

tryptophan via tryptophanase gene (tnaA) and can accumulate up to millimolar concentrations in stationary 

phase in E. coli and other commensals. 

Microbial indole has been shown to inhibit the expression of Locus of Enterocyte Effacement 

(LEE) pathogenicity gene. LEE gene cluster is a characteristic virulence factor for pathogenic strains such 

as enterohemorrhagic E. coli (EHEC) and encodes for the protein machinery essential in the assembly of 

type III secretion systems and injecting bacterial effectors to the host membrane. Kumar et al. has 

demonstrated that a histidine kinase cpxA in non-indole producing pathogens senses indole concentrations 

in the intestinal epithelium which represses the expression of virulent LEE gene cluster. This example 

showcases indole as an intercellular signal that is utilized by indole-producing and non-producing gut 

bacteria to define and colonize their niches.63 

Indole is also known to regulate antibiotic resistance and consequently persister cell formation in 

E. coli. Upon induction with antibiotics such as rhodamine 6G and SDS, microbial indole upregulates the 

expression of multidrug efflux pump genes acrD and mdtABC through BaeSR and CpxAR, two component 
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regulatory sensors involved in stress signaling.64 Another study by Weatherspoon-Griffin proposed a 

different multidrug transporting cascade through mar, acrAB and tolC transcription by indole-sensing 

cpxAR system as a resistance response to antimicrobial peptide protamine.65 In fact, mutants producing 

indole were demonstrated to confer population-wide antibiotic shielding to less resistant strains in a 

continuous E. coli cultures treated with gentamicin or norfloxacin.66  

In response to acidic environments, E. coli expresses four inducible acid resistance systems (ARs) 

as a compensation for survival.67 The first system AR1 is expressed in the presence of RpoS and cyclic 

AMP receptor protein (CRP) under mildly acidic pHs (5-6).68 Its structural components or mechanism are 

still unclear and need further elucidation. The second system AR2 utilizes glutamate decarboxylase 

(GadA/B) to decarboxylate glutamate to reduce intracellular proton, while the putative glutamate: GABA 

antiporter GadC exchanges extracellular glutamate with GABA. In this way, AR2 increases the intracellular 

pH for neutralization of acid stress and thereby, offer the best protection under pH 3.8 amongst all acid 

resistance mechanisms.68-70 The third system, arginine decarboxylase (AdiA) and its antiporter AdiC, is 

only expressed in the presence of high amount of exogenous arginine and work similarly as AR2 by 

decarboxylating arginine for neutralization of acidic pH.68, 71 The fourth system involves acid-inducible 

lysine decarboxylase (CadAB) in phosphate-starved cells.72  

While the transcriptional and mechanistic changes under acidic stress and other stress responses 

have been intensively characterized, the characterization of the stress metabolome is quite lacking. In fact, 

there have been some studies that show that the production of novel metabolites under stress conditions can 

invoke distinct host immune activities and mediate bacterial cellular stress signaling. For example, a study 

by Kim et al described indole-derived metabolites called indolokines under cellular redox stress in E. coli. 

These indole stress signals were reported to be derived from indole-3-pyruvate in response to transaminases 

AspC and TyrB and found to exert persister cell formation, AHR signaling and IL-6 activation. In this 

study, we utilize acidic stress as an elicitor to uncover previously unknown metabolites that could 

potentially act as stress response signals under inflammation-mimetic conditions. We report a family of 
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indole metabolites that oligomerize under acid stress conditions and serve as agonists of the G-protein 

coupled receptor (GPCR) GPR84, a receptor that is known to regulate cytokine transcription, such as 

interleukin-12.73 

 

3.2  Results and Discussion 

3.2.1  Eliciting indole-functionalized Metabolites in E. coli under acidic stress 

To assess previously uncharacterized stress metabolites in E. coli, BW25113 cultures were grown under 

acidic condition (pH~5) and extracted wildtype strain BW25113 with ethyl acetate. The extracts were then 

analyzed the organic extracts using single quadrupole liquid chromatography mass spectrometry (LC/MS) 

coupled with a photodiode array detector (Figure 1A). UV analysis indicated a family of indole-related 

ions that are upregulated in the presence of acid. Further analysis using high resolution mass spectrometry 

indicated that m/z 118.0651 is indeed indole and that four other ions are indole-derived metabolites (Supp 

Fig 1). Characterization by tandem MS/MS and NMR spectroscopy elucidated the upregulated ions to be 

indole oligomers 1-5. Co-injections with commercially available standards (1,2,4) and synthesized 

standards74, 75 (3, 5) validated the structures (Figure 1B). To further uncover the potential monomers and 

oxidized indole analogues, commercial standards 6-10 were purchased and coinjected with the acidified 

cultures, which led to the additional detection of 6 and 10 in the cultures.  

3.2.2  Acid Stress Cultivation and Detection 

Commensal bacteria often encounter mildly acidic pH as low as pH 5.3 under inflammatory 

conditions in the gut76-78 or as low as pH ~2 when passing through the stomach lumen78, 79. We wondered 

whether a range of mildly acidic pHs can affect the indole polymerization and detection, therefore, we 

tested the relative production levels of indole oligomers under pH 4-7 conditions. Culture medium 

containing LB (Luria Broth) was conditioned to mimic acidic conditions in a pH 4-7 range using disodium  
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Figure 1. (A) Workflow for characterization of indole metabolites in E. coli under acid stress (B) Indole 
metabolites characterized and/or detected from E. coli (C, D) Relative metabolite production levels in E. 
coli WT BW25113 and ΔtnaA strains at pH 4-5 stressed either at initial phase or exponential phase. 

 

phosphate and citric acid with a buffer capacity of >100mM to control for pH (Table S1). E. coli BW25113 

was cultured and stressed with acidic shock pH 4-7 at either initial or exponential phase to capture various 

acidic stress environments for two days. The cultures were then extracted with ethyl acetate and subjected 

to pH, growth (OD600) and untargeted metabolomic analyses. All strains grew well under varying pH levels 

except for pH 4, while the pre- and post- acid induction pH levels remain constant, showing that the pH 

was well controlled (Figure S3). Relative production levels of indole oligomers 1-10 under varying pH 

conditions are depicted in Figure 1C, D. Since free indole is produced in E. coli via a tryptophase (tnaA), 
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mutant ΔtnaA cultures were prepared and analyzed in parallel under identical conditions. 	tnaA cultures 

abolished production of 1-10, supporting that the family is derived from free indole. We also analyzed cell 

free controls of the pH-conditioned media supplemented 1 mg/mL indole, which supports the spontaneous 

oligomerization of 1-10 from free indole (Figure S4).   

3.2.3  Detection of indole polymerization in C10  

To establish whether similar products were produced in other indole producers, we analyzed 

Enterobacteriaceae UC/UC strain C10 isolated from an Inflammatory Bowel Disease (IBD) patient. Using 

the workflow for E. coli BW25113, we observed a similar production profile in the IBD isolate (Figure 2, 

Supporting Figure 5). These studies suggest that indole oligomerization products are upregulated under acid 

stress growth conditions.   

Figure 2. Indole metabolite production levels in Enterobacteriaceae UC/UC strain C10 under pH 4-7 
stressed at initial or exponential phase. 
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Figure 3. Homologs of tnaA gene in intratumor microbiome strains reported in the literature. E. coli 
tryptophanase tnaA protein sequence was blasted against select tumor microbiome strains. The strains with 
tnaA identity >=40% are constructed in a rooted phylogenetic tree with NGphylogeny and iTOL. 
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3.2.4  Presence of tryptophanse (tnaA) gene in tumor strains 

Indole prevalence is an indicator of bacterial growth, in fact, a summary of the prevalence of tnaA 

gene responsible for indole production in different strains has been reported in this review.80 Indole 

functionalization occurs readily at pH 5-7, which is a range representative of mildly acidic tumor 

microenvironments81. Tumor microenvironments are colonized with diverse microbes.82-85 A 

comprehensive study on the tumor microbiome from seven solid cancer types was published recently by 

Nejman and coworkers.84 Because bacteria can effect tumor progression, we analyzed tnaA homologs in 

the reported strains from this study and in other studies82, 84, 86. Tryptophanase is well represented in the 

tumor microbiome strains (Figure 3). This protein alignment data suggest that indole production is 

relatively ubiquitous in the tumor microbiome and that, under acidic tumor pHs, oligomerization would be 

expected to occur more readily.   

3.2.5  Activation of orphan GPCR84 

Diindolylmethane (DIM, 4) was previously reported to activate G-protein coupled receptor GPR84 

through β-arrestin and Gi signaling in an allosteric manner.87, 88 GPR84 is a medium chain fatty acid 

(MCFA) receptor that is primarily expressed in the bone marrow and dendritic cells with low expression in 

gastrointestinal tissues.89  GPR84 expression is integral for modulation of proinflammatory cytokines and 

phagocytosis in macrophages. Endogenous ligands (MCFAs) and DIM 4 were reported to upregulate the 

mRNA expression of interleukin 12 (IL-12) p40 subunit in LPS-induced macrophage cells through GPR84 

activation.73 GPR84 activation by MCFAs was reported to be primarily through G-protein subtype, Gi-Go 

signaling.73 Due to structural similarities to GPR84 agonist 4, we analyzed metabolites 1-10 and another 

positive control decanoic acid at 10 �M for GPR84/β-arrestin2 activity using the PRESTO-Tango assays 

in a dose dependent manner (Figure 4) 90. From these studies, we established carbinol 8 as a new GPR84 

agonist through the β-arrestin2 signaling pathway. We also investigated their G-protein signaling activities 

(Figure S6). Indole-3-carbinol and DIM are commonly found in cruciferous vegetables and have been 
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shown to exert multiple anticarcinogenic properties.91-94 This study reports the activation of microbial 

derived DIM 4 as an immunometabolic GPR84 agonist. 

 

Figure 4. (A) Screening metabolites 1-10 (10 �M) against GPR84/β-arrestin2 activity. Decanoic acid is 
included as a positive control and DMSO was used as a solvent vehicle negative control. (B) Dose 
dependent activation of metabolites 1-10 against GPR84/β-arrestin2. 

Although E. coli’s primary site is in the colon where the pH is neutral, acidic conditions can occur 

under dysbiotic and inflammatory conditions.78 Indole derivatives have been reported to exhibit a wealth 

of biological activities, as summarized in Table 1. In fact, several studies have demonstrated antimicrobial 

activities of metabolites 5, 6, and 8.95-99 It is also noteworthy that most of these derivatives have anticancer, 

antioxidant and anti-inflammatory properties through diverse mechanisms of action.99-101 Collectively, the 

data suggest that indole producers may take advantage of the spontaneous formation of indole oligomers, 

especially under acidic conditions, to inhibit other microbes in their microenvironment.  
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Table 1. Brief overview of reported biological activities of indole metabolites 1-10 in literature 

Compounds Reported Functions Antimicrobial activity  

1 

downregulates bacterial virulence, regulates acid 

resistance, induces bacterial drug resistance, 

biofilm formation, quorum sensing signal, AHR 

ligand 

 

63 64, 80, 102, 103 

2 androgen receptor inhibitor  
104 

3 N/A   

4 

GPR84 (IBD, immunostimulatory), radical 

scavenger, antioxidant, antiangiogenic, 

androgen receptor antagonist, antitumor, organ 

transplant rejection, AHR ligand 

 

87, 91-94, 105 

5 
cytotoxic to Multidrug resistant (MDR) cancer 

cells 

E.coli, B. subtilis, S. 

aureus, C.albicans, T. 

beigelii, S. cerevisiae 

96, 97, 99 

6 
endogenously produced in CNS; natriuretic 

peptide receptor type A antagonist 
S. aureus, S. epidermis 

95, 106 

7 Antioxidant  100 

8 

AHR dependent anti-inflammatory response; 

promote Treg cells while downregulating Th17; 

antiangiogenic 

MRSA, VRE, VSE, 

MREC, MRPA 

91, 98, 105, 107 

9 AHR ligand, potent induction of IL-10, IL-22  
105, 108 

10 
antiproliferative - inhibition of cell cycle-related 

kinase, AHR ligand 
 

101, 105, 109 
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3.3  Experimental Section 

General chemical analysis: 

Fractionation and isolation of metabolites were performed using an Agilent Prepstar HPLC system 

with the following columns: Agilent Polaris C18-A 5μm (21.2 x 250mm2), Agilent Phenyl-Hexyl 5μm 

(9.4x250mm2) and Phenomenex Luna C18 (100Å) 10μm (10.0 x 250mm2). An Agilent 1260 Infinity HPLC 

with an Agilent 6120 Quadrupole low-resolution Electro Spray Ionization (ESI) mass spectrometer was 

used to obtain general Liquid Chromatograph Mass Spectrometry (LCMS) data. High-resolution mass 

spectra were obtained using an Agilent iFunnel 6550 Quadrupole Time-of-Flight (QTOF) instrument 

coupled to an ESI source. 

Characterization of indole metabolites: 

E. coli wild type BW25113 (5mL) culture was grown overnight in LB at 37°C. Upon extraction 

with ethyl acetate and chromatographic analysis of the culture, a family of indole representing peaks were 

detected at 280nm. To characterize these compounds, 1L culture of BW25113 was incubated overnight in 

a 37°C in LB medium. The culture was extracted with ethyl acetate, dried and fractionated with Agilent 

Prepstar HPLC system using Phenomenex Luna C18 (100Å) 10μm (10.0 x 250mm2) and Agilent Phenyl-

Hexyl 5μm (9.4x250mm2).  

Acid stress cultivation conditions:  

To condition the acidity of the bacterial cultures, pH 4-7 were adjusted using 0.2M Na2HPO4 and 

0.1M citric acid buffers accordingly (Supp table 1). Luria Broth (LB) powder was then added to each pH-

preadjusted buffer and autoclaved to achieve the desired sterile medium. E. coli wild type BW25113 and 

its ΔtnaA knockout strain (from Keio collection at the Yale Coli Genetic Stock Center) were inoculated 

into pH 4-7 media at initial phase. Another set of BW25113 and ΔtnaA strains were grown in normal LB 

to reach exponential phase, when the cultures were spun down, supernatant decanted and replaced with 

pH4-7 conditioned LB media for acid stress accordingly. The decanted supernatants were stored and 
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extracted later with ethyl acetate. All cultures were grown aerobically at 37°C for two days in triplicates. 

LB and LB containing 1mg/mL indole were also included as cell free controls. pH and OD measurements 

were taken before and after acid stress. The cultures were then extracted with ethyl acetate, dried and 

reconstituted in MeOH. The extracts were then analyzed on HR-ESI-QTOF-MS on a Phenomenex Kinetex 

C18 (100Å) 5μm (4.6 x 250mm2) using 10-100% acetonitrile in water with 0.1% formic acid for 30min. A 

clinical isolate C10 strain from UC/UC patient was also pH-conditioned, cultured and analyzed with the 

same procedure.  

Chemical Synthesis of 3 and 5: 

Compound 3 was synthesized as previously described.75 The crude product was purified with 

Agilent Prepstar HPLC system with a Phenomenex Luna C18 (100Å) 10μm (10.0 x 250mm2) using 10-

100% acetonitrile in water (with no acid) for 30min. Compound 5 was also synthesized as described with 

minor modifications.74 Upon reaction completion (~1hr), reaction mixture was extracted with 100mL ethyl 

acetate: water (1:1 ratio). The organic layer was washed with saturated sodium chloride and dried with 

anhydrous sodium sulfate. Purification of the crude product was performed with Agilent Prepstar HPLC 

system with a Phenomenex Luna C18 (100Å) 10μm (10.0 x 250mm2) using 40-100% acetonitrile in water 

(with no acid) for 30min.  

G-Protein Coupled Receptor (GPCR) Assay 

Ten indole metabolites (10uM) were tested for GPR84/β-arrestin2 activity using the PRESTO-

Tango assay.90 All compounds were dissolved in DMSO and tested in eight replicates. Endogenous ligand 

decanoic acid was included as a positive control, and DMSO was included as a negative control. Among 

the ten indole metabolites, carbinol and diindolylmethane (DIM) were shown to have GPR84/β-arrestin2 

activity. For dose dependent curves of β-arrestin2 activity, metabolites and the corresponding controls were 

serially diluted and tested for luciferase activity using the same assay. GPR84 G-protein signaling was 

investigated using CRE-SEAP plasmids for Gαs, Gαi, Gαq, Gα12 response.110 
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3.4  Supplementary Information 

 

Figure S1. Upregulation of ions in E. coli BW25113 cultures as elicited by acidic stress 
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Figure S2. Coinjections of select metabolites 1-10 that are present in E. coli extracts under acidic stress 
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Figure S3. A,C show the pH levels of BW25113 and ΔtnaA cultures before acid stress with conditioned 

medium (black) and two days after (blue) (A. acid stressed during initial phase; C. acid stressed during 

exponential phase), B, D show OD600 values to monitor the growth of the BW25113 and dtnaA cultures in 

pH4-7 (B. acid stressed during initial phase; D. acid stressed during exponential phase) 

Figure S4. Production of indole metabolites in LB+1mg/mL indole as a cell-free control 
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Figure S5. A,C show the pH levels of C10 cultures before acid stress with conditioned medium (black) 
and two days after (blue) (A. acid stressed during initial phase; C. acid stressed during exponential phase), 
B, D show OD600 values to monitor the growth of the C10 cultures in pH4-7 (B. acid stressed during 
initial phase; D. acid stressed during exponential phase) 
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Figure S6. Dose dependent G-protein signaling activities of indole metabolites 1-10 

 

Table S1. Buffer composition for controlling specific pH (4-7) for bacterial cultures. 

0.2M Na2HPO4 0.1M citric acid 
pH 

mL mM mL mM 

270.2 77 429.8 61 4.3 

359.8 103 340.2 49 5 

449.4 128 250.6 36 5.9 

610.4 174 91 13 7.1 
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