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Abstract

Clinical Treatment Human Disease Networks and Comparative Effectiveness Research: Analyses

of the Medicare Administrative Data

Hao Mei

2021

As the nation’s largest healthcare payer, the Medicare program generates an unimaginable vast

volume of medical data. With an increasing emphasis on evidence-based care, how to effectively

handle and make inferences from the heterogeneous and noisy healthcare data remains an impor-

tant question. High-quality analysis could improve the quality, planning, and administrations of

health services, evaluate comparative therapies, and forward research on epidemiology and disease

etiology. This is especially true for older adults since this population’s health condition is generally

complicated with multimorbidity, and the healthcare system for older adults is riddled with admin-

istrative and regulatory complexities. Taking advantage of the scaled and comprehensive Medicare

data, this dissertation focuses on outcome research, human disease networks, and comparative

effectiveness research for older adults.

Healthcare outcome measures such as mortality, readmission, length of stay (LOS), and medi-

cal costs have been extensively studied. However, existing analysis generally focuses on one single

disease (or at most a few pre-selected and closely related diseases) or all diseases combined. It is

increasingly evident that human diseases are interconnected with each other. Motivated by the

emerging human disease network (HDN) analysis, we conduct network analysis of disease intercon-

nections on healthcare outcomes measures.

First, we propose a clinical treatment HDN that analyzes inpatient LOS data. In the network

graph, one node represents one disease, and two nodes are linked with an edge if their disease-specific

LOS are correlated (conditional on LOS of all other diseases). To accommodate zero-inflated LOS

data, we propose a network construction approach based on the multivariate Hurdle model. We

analyze the Medicare inpatient data for the period of January 2008 to December 2018. Based on

the constructed network, key network properties such as connectivity, module/hub, and temporal

variation are analyzed. The results are found to be biomedically sensible, especially from a treat-



ment perspective. A closer examination also reveals novel findings that are less/not investigated in

the individual-disease studies. This work has been published in Statistics in Medicine.

Second, considering that many healthcare outcomes are closely related to each other, we propose

a high-dimensional clinical treatment HDN that can incorporate multiple outcomes. We construct

a clinical treatment HDN on LOS and readmission and note that the proposed method can be easily

generalized to other outcomes of different data types. To deal with uniquely challenging data distri-

butions (high-dimensionality and zero-inflation), a new network construction approach is developed

based on the integrative analysis of generalized linear models. Data analysis is conducted using the

Medicare inpatient data from January 2010 to December 2018. Network structure and properties

are found to be similar to that of the LOS HDN (in Chapter 2) but provide additional insights into

disease interconnections considering both LOS and readmission. The proposed clinical treatment

of HDNs can promote a better understanding of human diseases and their interconnections, guide a

more efficient disease management and healthcare resources allocation, and foster complex network

analysis. The manuscript of this work has been drafted and is ready for submission.

Comparative effectiveness research aims to directly compare the outcomes of two or more health-

care strategies to address a particular medical condition. Such analysis can provide information

about the risks, benefits, and costs of different treatment options, thus guide better clinical de-

cisions. While conducting a randomized controlled trial is the gold-standard approach, there are

several limitations. Efforts have been made to utilize healthcare record data in comparative effec-

tiveness research. To estimate and compare causal effects of treatments/interventions, we use the

Medicare data to emulate target clinical trials and develop a deep learning-based analysis approach.

Under emulation, target clinical trials are explicitly “assembled” using the Medicare data. As

such, statistical methods for clinical trials can be directly applied to estimate causal effects. With

emulation analysis, we evaluate the effectiveness and safety outcomes of rivaroxaban versus dabiga-

tran for Medicare patients with atrial fibrillation. The results show that dabigatran is superior in

terms of time to any primary event (including ischemic stroke, other thromboembolic events, ma-

jor bleeding, and death), major bleeding, and mortality. This work has been submitted to Clinical

Epidemiology. Considering that many regression-based statistical methods (e.g., Cox proportional

hazards model for survival data) have too strict data assumptions, we further develop an innovative

deep learning-based analysis strategy. With the “emulation + deep learning” approach, we study



the survival outcomes of endovascular repair versus open aortic repair for Medicare patients with

abdominal aortic aneurysms. It is found that endovascular repair has survival advantages in both

short- and long-term mortality. This work has been published in Entropy.

Significantly different and advancing from the existing literature, this dissertation extends the

scope of outcome research, human disease networks, and comparative effectiveness research. The

findings in this dissertation are shown to have scientific merits, and the methodological develop-

ments may have other applications and serve as prototypes for future analysis.
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Chapter 1

Introduction

There is a growing consciousness among healthcare institutions for adopting the electronic health

record (EHR) system to improve care quality through evidence-based practices. As of 2015, more

than 84% of the U.S. non-federal acute care hospitals have adopted a basic EHR system [1], which

has generated an unimaginably vast volume of patient data. As healthcare data becomes more

voluminous and convoluted, there exist both opportunities and challenges. Advancements in the

statistical field to effectively handle and make inferences from the heterogeneous and noisy health-

care data are required for the transition from information to knowledge. As administrative and

billing data is one essential component of the EHR system, this dissertation focuses on the Medicare

database, aiming to answer critical biomedical questions that have been previously unanswered.

Medicare is a federal health insurance program for adults aged 65 years and above, certain

younger people with disabilities, and people with end-stage renal disease (permanent kidney failure

requiring dialysis or a transplant). As the single largest payer of healthcare in the U.S., it covers 98%

of adults aged 65 and above [2]. It also accounts for over 99% of death for the elderly population and

about 40% of all inpatient discharges [2,3]. The Centers for Medicare & Medicaid Services (CMS)

offers a wide range of datasets that follow Medicare beneficiaries across multiple care settings.

Specifically, it collects over two billion data points per year through reimbursement to hospital care

(Medicare PartA), physician and outpatient services (Medicare Part B), drug prescription (Medicare

PartD), and other health care claims. It also collects billions of other data points through enrollment

information, beneficiary eligibility checks, quality metrics, and calls to 1-800-MEDICARE [4], which

can fulfill many research purposes. In addition to its universal coverage and rich information
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contained, the Medicare data is generally of high quality since it is the basis of determination of

reimbursing eligibility. Demographic information is mostly reliable and valid because it comes from

the Social Security Administration [3]. In the literature, there have been enormous efforts exploring

the Medicare database to answer various questions. This dissertation focuses mainly on outcome

research, disease interconnections, and comparative effectiveness research.

1.1 Literature review

1.1.1 Outcome research

Healthcare outcome measures such as mortality, readmission, length of stay (LOS), and medical

costs are the quality and cost targets healthcare organizations are trying to improve. The impor-

tance of delivering high-value care for patients is increasingly emphasized, with value defined as

the health outcomes achieved per dollar spent [5]. For most if not all diseases, hundreds of these

outcomes have been extensively studied and reported to stakeholders at all levels. Such analysis

can inform a more efficient allocation of resources, identify variations of care, and reveal areas

in which interventions could improve care. The Institute for Healthcare Improvement describes

outcome measurement as “a critical part of testing and implementing changes. Measuring tells a

team whether the changes they are making lead to improvement [6].” In other words, outcome

research fosters improvement and adoption of better practices, thus further improves outcomes.

For example, Piedmont Healthcare’s evidence-based care standardization for pneumonia patients

resulted in a 56.5% relative reduction in mortality rate and a 9.3% relative reduction in LOS [7].

By improving the analytic platform and advancing its applications, the University of Texas Medical

Branch achieved a 14.5% relative decrease in their 30-day all-cause readmission rate, resulting in

$1.9 million in cost reduction [8]. Also, since outcomes informatively reflect intrinsic disease prop-

erties (prevalence, severity, trend, etc.), outcome analysis can advance disease etiology research [9].

Accordingly, understanding outcomes is essential in providing patient-centered and value-based

healthcare services. This statement is especially true for older adults since the health condition for

this population is generally complicated with multimorbidity, and the healthcare system for this

population is riddled with administrative and regulatory complexities [10].

In the literature, extensive analyses on healthcare outcomes have been done using healthcare
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record data, especially the Medicare data. They generally fall into two families. The first family

focuses on a single disease. For example, with a Saskatchewan Ministry of Health hospital adminis-

trative database, Feng and Li [11] analyzed the LOS of ischaemic heart disease. The zero-inflation

nature of data was observed, which is typical in outcome data. For most conditions, only a pro-

portion of the general population may be susceptible and have treatment [11]. Chronic diseases

not needing any hospital treatment is another contributing factor [12]. Feng and Li [11] conducted

a two-part regression analysis to accommodate zero-inflation and identified aboriginal status, age,

and gender as risk factors. Gupta et al. [13] evaluated the effect on a federal program’s outcomes

to reduce condition-specific readmission rates for the Medicare population. With interrupted time-

series and survival analyses, Gupta et al. [13] identified a reduction in readmission rate and an

increase in mortality associated with implementing the program for Medicare patients hospitalized

with heart failure. Other studies include Rinne et al. [14], who investigated the association between

LOS and readmission for chronic obstructive pulmonary disease (COPD); and Petersen et al. [15],

who compared multiple outcomes of myocardial infarction in Veterans Health Administration pa-

tients versus Medicare patients.

The second family focuses on a general population and studies all diseases combined. For

example, Huling et al. [16] proposed a framework for estimating individualized treatment rules

(ITRs) that optimize all disease combined medical costs in the Medicare population. Observing the

zero-inflation nature of the medical costs data, Huling et al. [16] employed a two-part semicontinuous

modeling, wherein the ITR is estimated by separately targeting the zero part of the outcome and

the strictly positive part. Also, they employed a cooperative LASSO penalty to simultaneously

select variables and encourage the signs of coefficients for each variable to agree between the two

components of the ITR. In healthcare outcome studies, penalized optimization is commonly used

since modeling often involves a large number of covariates, and many of them are naturally grouped

with variables in the same group being systematically related or statistically correlated. In analyzing

all diseases combined number of doctor visits data, Chatterjee et al. [17] also noted the zero-inflation

nature of data and group-wise correlation in covariates. Under such settings, they propose a unified

algorithm (Gooogle: Group Regularization for Zero-inflated Count Regression Models) using a

least-squares approximation of the mixture likelihood and a variety of group-wise penalties on the

coefficients. Other examples of all diseases combined outcome studies include Jung et al. [18], who
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compared general readmission rates in two populations: Medicare Advantage and Medicare Fee-

For-Service; and Dall et al. [19], who examined the increasing trend of healthcare resource demand

and identified the overall shortage of hospital beds in the U.S.

There are also a few “scattered” studies analyzing treatment measures of a few pre-selected and

closely related diseases, such as cardiovascular diseases [20] and certain cancers [21]. Correlations

between outcomes of different diseases have been noted in such studies. For example, in a study

investigating LOS variations within the Diagnosis Related Groups, Berki et al. [22] argued that

patients with similar diagnostic and other case-management-relevant characteristics had correlated

LOS measures and emphasized the necessity of jointly analyzing LOS behaviors for diseases homo-

geneous in clinically relevant characteristics. In a study examining the association between COPD

readmission and other quality measures, Rinne et al. [23] discovered modest correlations between

COPD readmission rate and readmission rates for other medical conditions, including heart failure,

acute myocardial infarction, pneumonia, and stroke; low correlations between COPD readmission

rate and mortality rates for all measured conditions; and significant correlations between COPD

readmission rate and all patient experience measures. The authors suggested that although pay-

for-performance programs generally focused on individual disease outcomes, there may be common

organizational factors that influenced multiple disease-specific outcomes. Similar arguments have

been made in follow-up studies. However, existing studies on outcome interconnections are limited

to a small number of diseases.

1.1.2 Human disease network

There is increasing evidence that human diseases are not isolated from each other. Instead, dis-

eases are related through multiple dimensions. For example, correlation between diseases can be

caused by 1) shared or causal disease etiology (e.g., between breast cancer, ovarian cancer, and

other hormone-related diseases; between diabetes and its complications), 2) shared environmen-

tal, dietary, socioeconomic, and other risk factors (e.g., between multiple respiratory diseases that

share air pollution as a common risk factor), and 3) shared prevention, diagnosis, and treatment

strategies (e.g., between diseases that need radiological treatments). The emerging human disease

network (HDN) analysis in the past two decades offers a platform to explore disease interconnec-

tions using a single graph-theoretic framework. In an HDN, one node represents one disease, and
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two nodes are connected with an edge if they are determined to be associated or correlated by

an underlying model. Disease interconnection studies, especially the HDN ones, have significantly

advanced biomedical research beyond the individual-disease ones.

Goh et al. [24] were the first to develop the concept of HDN and establish pan-disease in-

terconnections. They proposed an HDN that linked disorders and disease genes by the known

disorder–gene associations, indicating many diseases’ common genetic origin. The authors found

that, while a few essential human genes play a central role in the human interactome, the vast ma-

jority of disease genes are nonessential, show no tendency to encode hub proteins, and are localized

in the functional periphery of the network. A closer examination showed that the network struc-

ture supported distinct disease-specific functional modules. This study and a few other follow-up

HDNs are gene-centric, under which two diseases are interconnected if they share common genetic

risk factors. For example, Lee et al. [25] built a network that linked two diseases if the mutated

enzymes associated with them catalyzed adjacent metabolic reactions. They found that connected

disease pairs displayed higher correlated reaction flux rate, corresponding enzyme-encoding gene

coexpression, and higher comorbidity than those with no metabolic link between them. Li and

Agarwal [26] constructed an HDN by linking diseases based on shared pathways where disease-

associated genes are enriched. Examining the network properties, the authors provided examples

of novel disease relationships that cannot be readily captured through simple literature search or

gene overlap analysis. Such HDNs representing various molecular relationships have provided new

insights into disease etiology, classification, and shared biological mechanisms.

Noting that genetic information reflects only part of disease interconnections, efforts have been

made to utilize the healthcare record data in constructing HDNs. Working on the clinical history of

30 million patients, Hidalgo et al. [27] developed the first phenotypic disease network that connects

two diseases if their phenotypes are correlated (e.g., comorbidity). This kind of phenotypic HDN

has important clinical implications, as the network structure is closely relevant to understanding

illness progression. Hidalgo et al. showed that 1) diseases progressed preferentially along with

the links of the network; 2) this progression is different for patients with different genders and

racial backgrounds, and 3) patients affected by highly connected diseases had a higher mortality

risk. Follow-up studies along this direction include Jiang et al. [28], who explored the Taiwan

National Health Insurance Research Database and calculated disease comorbidity probability using
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the φ-correlation; and Roque et al. [29], who used text mining and data extraction techniques on

unstructured electronic health record data. Phenotypic HDNs utilize largely accessible healthcare

administrative data, have lucid interpretability, and complement existing genetic HDNs by accom-

modating non-molecular connections. There are also studies that go multi-layer, under which one

layer describes the genetic interconnections among diseases, and another layer describes the phe-

notypic interconnections. Building a multi-layer HDN, Halu et al. [30] showed that diseases with

common genetic constituents tended to share symptoms and uncovered how phenotype information

helped boost genotype information.

There emerges a relatively new family of HDN that examines disease interconnections in health-

care outcomes. Ma et al. [31] were the first to construct a clinical treatment HDN by analyzing

medical costs data in the Taiwan National Health Insurance Research Database. They used a

two-part model for the marginal distribution of disease-specific medical costs and a copula-based

approach to identify unconditional pairwise interconnection between medical costs of two diseases.

With medical costs informatively reflect the financial burden of care and disease severity, such a

clinical treatment HDN has unique implications for disease management and resource allocation.

Healthcare outcome measures are “correlated with” but not equivalent to genetic risk factors and

phenotypes. The interconnections in disease-associated outcomes cannot be derived directly from

the existing genetic and phenotypic HDNs. In other words, a clinical treatment HDN captures dis-

ease interconnections from not only shared causal disease etiology, shared environmental, dietary,

and socioeconomic risk factors, but also shared prevention, diagnosis, and treatment strategies.

1.1.3 Comparative effectiveness research

Comparative effectiveness research aims to evaluate and compare the outcomes of two or more

healthcare strategies to address a particular medical condition. The goal of comparative effective-

ness research is to provide more evidence to guide clinical decisions. Ideally, this should be achieved

through the gold standard double-blinded randomized clinical trials. However, there exist several

practical limitations. A randomized clinical trial is generally expensive and sometimes infeasible.

Limited sample size and inadequate follow-ups are common scenarios that diminish the statistical

power of a randomized controlled trial. Moreover, a randomized controlled trial tests treatment

efficacy under rigorous experimental conditions rather than real-world effectiveness. Results from
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a randomized clinical trial may have limited generalizability to other than designed populations

(e.g., older adults who are underrepresented in clinical trials).

With the concerns mentioned above, efforts have been made to focus on observational data in de-

veloping comparative effectiveness evidence. As one of the richest sources of treatment information

in the country, the Medicare data plays an essential role in observational comparative effective-

ness research. For example, Graham et al. [32] examined the effectiveness and safety outcomes of

dabigatran versus warfarin for Medicare patients with nonvalvular atrial fibrillation. They found

that dabigatran was associated with a reduced risk of ischemic stroke, intracranial hemorrhage,

death, and increased risk of major gastrointestinal bleeding. The authors used propensity scores to

match the two treatment arms and Cox proportional hazards regression to compare time to events.

Even with randomization in clinical trials, propensity scores are generally used to weigh or match

cohorts to account for potential confounding in comparative effectiveness research. In a study of

survival outcomes after endovascular repair versus open repair of abdominal aortic aneurysm in

Medicare beneficiaries, Schermerhorn et al. [33] also analyzed propensity score-matched cohorts

with Cox proportional hazards regression. They found that endovascular repair was associated

with a substantial early survival advantage that gradually decreased over time.

Observational comparative effectiveness studies using healthcare records data are more cost-

effective, have a large sample size and statistical power, and implicate actual practices by assessing

real-world effectiveness. However, it is well established that observational studies generate results

on associations instead of the desired causality. To tackle this problem, statistical techniques

have been developed to conduce causal inferences using observational data. For example, van der

Laan and Rubin [34] proposed the targeted maximum likelihood estimation (TMLE), which is an

automated and iterative procedure to analyze censored observational data in a way that allows

effect estimation in the presence of confounding factors. Chipman et al. [35] proposed a Bayesian

additive regression trees (BART) model where each tree is constrained by a regularization prior,

and fitting and inference are accomplished via an iterative Bayesian backfitting MCMC algorithm

that generates samples from a posterior. Effectively, BART is a nonparametric Bayesian regression

approach that enables full posterior inference on average causal effects. As the existing literature on

this topic is vast, we note that different methods have different advantages and disadvantages [36].

There exists no dominating approach.
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In this dissertation, we focus on the emulation approach proposed by Hernan et al. [37]. Under

emulation, target clinical trials are explicitly “assembled” using observational data, and statistical

techniques for randomized clinical trials can be directly applied. As such, compared to causal in-

ference techniques such as the TMLE and BART, emulation has much more lucid interpretations.

Using EHR data, especially the Medicare data, this approach has been employed on various illness

conditions and treatment strategies. Petito et al. [38] evaluated the suitability of emulation analysis

for assessing the effectiveness of adding a drug (fluorouracil or erlotinib) to an existing treatment

regimen on the overall survival of elderly patients with cancer. They utilized the Surveillance,

Epidemiology, and End Results (SEER)–Medicare linked database to emulate two existing clini-

cal trials. The emulation analysis findings were not meaningfully different from those in elderly

subgroup analyses reported from randomized trials. However, naive observational estimates were

not compatible with those from previous trials. In the situation that a real randomized trial is

not practical, Garćıa-Albéniz et al. [39] utilized the Medicare data to emulate a hypothesized trial

that evaluates the effectiveness and safety of screening colonoscopy prevent colorectal cancer. They

concluded a modest benefit of screening colonoscopy in preventing colorectal cancer for beneficiaries

aged 70 to 74 years and a smaller benefit for older beneficiaries.

1.2 Background studies

In addition to a throughout literature review, I have collaborated with interdisciplinary researchers

at Yale Center for Outcome Research and Evaluation on a variety of outcomes studies, mostly

involving analyses of the Medicare/Medicaid administrative data. These studies are limited to

disease-specific or all diseases combined outcome analysis, which have ignored the complex disease

interconnection. However, they demonstrate the significance of outcome research and are essential

motivations of this dissertation.

In a series of three papers investigating emergency department (ED) utilization in the Medicare

population, Venkatesh et al. first constructed an operational definition for ED visitation using

comprehensive Medicare data sets [40], then examined ED utilization in vulnerable older adult sub-

populations [41, 42]. Despite the high profile of ED visits in analyses using administrative claims,

little work had evaluated the degree to which existing definitions based on claims data accurately
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capture conventionally defined hospital-based ED services. Based on expert consensus and clinician

review, we applied several modifications to existing definitions to construct a new operational

definition for ED visits using both provider- and facility-based Medicare administrative claims. A

comparison between our definition and three existing definitions showed significant differences in

ED visitation estimates, as our definition identified ED visits not captured by previous definitions.

This work has provided several points of guidance to researchers seeking to use administrative

claims data for ED research. Based on the newly developed definition, we further investigated ED

utilization in the vulnerable sub-populations, including Medicare beneficiaries with multiple chronic

conditions (MCCs), dual eligibility, hospice enrollment, and skilled nursing facility (SNF) residence.

We found that vulnerable sub-populations disproportionately visit the ED compared to physician

offices for unscheduled care. For example, 1) dual-eligible beneficiaries demonstrated higher ED

visit rates and lower office visit rates for unscheduled care; 2) the sub-population with MCCs uses

both the ED and the office settings for unscheduled care more so than any other groups, and 3)

a higher proportion of unscheduled care were made to EDs by beneficiaries after a SNF stay in

comparison to those actively residing in a SNF and those without SNF utilization. These findings

have important implications for improving care coordination, measuring quality, or reform payment

to influence ED visitation.

Another work involving ED visits evaluated the effectiveness of an ED-initiated Patient Navi-

gation program (ED-PN) in improving health care access for Medicaid beneficiaries [43]. Medicaid

enrollees frequently utilized the ED due to barriers to access health care services in other settings.

The ED-PN program was designed to have patient navigators who met with the ED patients and

linked them to financial assistance programs and other resources. They helped patients identify a

primary care provider, assisted them in scheduling primary care and specialist appointments, and

accompanied them for up to three visits. They also educated patients on why they shouldn’t use

the ED for primary care and taught them how to navigate the healthcare system. To evaluate the

ED-PN program’s effectiveness, we conducted a prospective, randomized controlled trial comparing

ED-PN with usual care among 100 Medicaid-enrolled frequent ED users (defined as 4–18 ED visits

in the prior year). The primary outcome was ED utilization during the 12 months pre and post-

enrollment. Secondary outcomes included hospitalizations, outpatient utilization, hospital costs,

and Medicaid costs. Using the difference-in-difference approach, we found that the ED-PN pro-
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gram demonstrated significant reductions in ED visits and hospitalizations in the 12 months after

enrollment. We also compared characteristics between ED-PN patients with and without reduced

ED utilization and found that older patients and patients with lower health literacy reduced uti-

lization more than younger patients and patients with higher health literacy. This study provides

high-quality evidence to support ED-PN’s effectiveness, which has important clinical implications

for improving care for the high-need and high-cost Medicaid patients.

Collaborative analyses have also been done on other outcome measures. Considering that the

accrual of final Medicare claims can take up to a year, Li et al. [44] developed real-time reporting

(within two months from admission) models for national trends of multiple outcomes. Specifically,

with incomplete and non-final claims data, we developed time series models for real-time estimation

of national admission, readmission, and observation-stay rates in Medicare patients with acute

myocardial infarction, heart failure, or pneumonia. It was shown that these models provided

validated estimates and predictions. This work allows policymakers to track policy decisions’ impact

in real-time and enable hospitals to better monitor their performance compared to a national

benchmark. In response to the tremendous impact of coronavirus disease 2019 (COVID-19), Janke

et al. [45] examined the relationship between hospital resources and mortality among hospital

referral regions from March 1 to July 26, 2020. Using American Hospital Association data and

COVID-19 data from the New York Times, we found that geographic areas with fewer intensive

care unit beds, nurses, and general medicine/surgical beds were significantly associated with more

deaths. The association was found stronger in the early pandemic period. Our findings underscore

the potential impact of innovative hospital capacity protocols and care models to create resource

flexibility and limit system overload early in a pandemic.

1.3 Summary

Through a comprehensive literature review and a variety of collaborative studies, the importance of

healthcare outcome analysis has been well established. However, it is noted that existing analyses

are generally limited to a single disease (or at most a few pre-selected and closely related diseases)

or all diseases combined. The complex interconnections in human diseases have been ignored. Mo-

tivated by the emerging of HDN analysis, the first two aims (Chapter 2 and Chapter 3) of this
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dissertation are to investigate interconnections in healthcare outcome measures at a pan-disease

level. Specifically, in Chapter 2, we construct a clinical treatment HDN on Medicare LOS data. To

accommodate zero-inflated data, we develop a network construction approach based on the multi-

variate Hurdle approach. In Chapter 3, considering many outcomes are closely related to each other,

we expand the clinical treatment HDN to incorporate multiple outcomes: LOS and readmission.

We propose an innovative modeling approach based on integrative analysis of generalized linear

models to accommodate high-dimensionality and zero-inflation. In both chapters, novel modeling

and estimation approaches are developed to accommodate uniquely challenging data distributions.

In addition, while most existing HDNs are based unconditional pairwise relationships, our models

quantify conditional disease interconnections, which are more informative and statistically more

challenging. Based on the constructed networks, fundamental network properties such as connec-

tivity, module/hub, and temporal trend are examined to answer important biomedical questions.

The proposed clinical treatment HDNs can promote a better understanding of human diseases

and their interconnections, guide a more efficient disease management and healthcare resources

allocation, and foster complex network analysis.

It is also noted that comparative effectiveness research analyzing the observational Medicare

data can only lead to conclusions on association instead of causation. Causal inference is often

desired to make definite conclusions on the relative performance of treatment strategies. Ideally,

this should be achieved using randomized controlled trials, as we have done in evaluating the effects

of the ED-PN program on ED utilization and other outcomes [43]. However, as discussed earlier,

a randomized controlled trial is not always feasible and has limitations. To take advantage of the

scaled Medicare data, Chapter 4 aims to conduct causal inference with the emulation approach.

Under emulation, we use the observational Medicare data to explicitly “assemble” a hypothetical

clinical trial with rigorously defined inclusion/exclusion criteria, treatment regimens, and analysis

procedures. Statistical methods for clinical trials can be directly applied, and causal conclusions

can thus be drawn. We first conduct a case study to evaluate the effectiveness and safety outcomes

of rivaroxaban versus dabigatran for Medicare patients with atrial fibrillation. We analyze the

Medicare data using propensity score and inverse probability of treatment (IPT) weighting Cox

proportional hazards regression, which are commonly used statistical techniques in clinical trials.

Considering that the Cox proportional hazards model has too strict data assumptions, we further
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develop a deep learning-based analysis strategy with relaxed assumptions for survival data. This

work is the first to introduce deep learning to the emulation paradigm. Building on the existing deep

learning components, we propose an innovative analysis pipeline that mimics the “propensity score

+ IPT weighting Cox regression” approach and conduct a bootstrap-type procedure for variation

assessment. With the proposed “emulation + deep learning” approach, we conduct another case

study to compare survival outcomes of endovascular repair versus open aortic repair for Medicare

patients with abdominal aortic aneurysms.
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Chapter 2

Clinical Treatment Human Disease

Network: Analysis of the Medicare

Inpatient Length of Stay Data

2.1 Introduction

For most if not all diseases, clinical treatment measures, such as inpatient LOS, number of out-

patient treatments, and inpatient/outpatient treatment cost, have been extensively studied. Such

analysis has important implications for stakeholders at all levels. For example, the analysis of

LOS can inform hospitals how to effectively and efficiently allocate beds and human resources and

plan forward [46]. The analysis of treatment cost can inform government agencies and individ-

uals/households how to allocate financial resources as well as guide insurance agencies on more

accurately determining premium [19]. Clinical treatment measures can also informatively reflect

prevalence, trend, severity, and other disease properties, and as such, the analysis can also advance

research on disease etiology [9].

In this article, we focus on LOS because of its high clinical relevance and note that other clinical

treatment measures can be analyzed in a similar manner. LOS is one of the most watched clinical

treatment measures. In the U.S., hospital stays cost the health system at least $377.5 billion per

year [19]. There have been extensive clinical and managerial efforts that target LOS as an indicator
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of high-value care [46]. Researchers have also established significant positive correlations between

LOS and disease severity. For example, according to Hicks et al. [47], using the Medis Groups

which allocates patients into five admission severity groups, there is an increase in mean LOS from

2.7 days to 14.3 days from the lowest to the highest severity group.

Existing studies on LOS and other clinical treatment measures mostly belong to two families.

The first family analyzes the treatment of a single disease. For example, with a Saskatchewan

Ministry of Health hospital discharge administrative database, Feng and Li [11] analyzed the LOS

of ischaemic heart disease. The zero-inflation nature of data was observed, which is common as for

most diseases, only a proportion of the general population may be susceptible and have treatment.

Chronic diseases not needing any hospital treatment is another contributing factor [11, 12]. Feng

and Li [11] conducted a two-part regression analysis to accommodate zero-inflation and identified

aboriginal status, age, and gender as risk factors. The second family of analysis considers diseases all

together. For example, studies have examined the increasing trend of healthcare resource demand

and identified the overall shortage of hospital beds in the U.S. and other countries [19]. There

are also a few “scattered” studies analyzing treatment measures of a few pre-selected and closely

related diseases, such as cardiovascular diseases [20] and certain cancers [21].

Significantly different and advancing from the existing literature, in this article, we will study

the interconnections in LOS among diseases. This has been partly motivated by the surge of disease

interconnection studies in the past two decades. For example, Goh et al. [24] was the first to develop

the concept of human disease network (HDN) and establish pan-disease interconnections. This and

a few other followup HDNs [26, 48] are gene-centric, under which two diseases are interconnected

if they share common genetic risk factors. Building on the clinical history of 30 million patients,

Hidalgo et al. [27] developed the first phenotypic disease network. Followup studies include Jiang

et al. [28], Roque et al. [29], and others. Under such a network, two diseases are interconnected

if their phenotypes/outcomes are correlated (e.g., comorbidity). There are also studies that go

multi-layer [30], under which one layer describes the genetic interconnections among diseases, and

another layer describes the phenotypic interconnections. Disease interconnection studies especially

the HDN ones have significantly advanced biomedical research beyond the individual-disease ones.

LOS and other clinical treatment measures are “correlated with” but not equivalent to genetic risk

factors and phenotypes. As such, the interconnections in LOS (or other clinical treatment measures)
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among diseases cannot be derived from the molecular and phenotypic HDNs. The interconnection

in LOS among diseases has been noted. For example, in a study investigating LOS variations

within the Diagnosis Related Groups, Berki et al. [22] argued that patients with similar diagnostic

and other case-management-relevant characteristics had correlated LOS measures and emphasized

the necessity of jointly analyzing LOS behaviors for diseases homogeneous in clinically relevant

characteristics. Similar arguments have been made in followup studies. However, the existing

studies on LOS interconnections are limited to a small number of diseases. This study, with a

global perspective, is expected to have higher significance, in the same way as the HDN ones.

Interconnections in clinical treatment measures can be caused by shared or causal disease eti-

ology (for example, between breast cancer, ovarian cancer, and other hormone-related diseases;

between diabetes and its complications), shared environmental, dietary, socioeconomic, and other

risk factors (for example, between multiple respiratory diseases that share air pollution as a common

risk factor), shared prevention, diagnosis, and treatment strategies (for example, between diseases

that need radiological treatments), and other factors. In Figure 2.1, we showcase the marginal and

joint distributions of LOS of two common diseases: essential hypertension and diabetes mellitus

without complication. The nonparametric fit (blue line in the scatter plot) clearly shows a positive

correlation. In addition, from the marginal distributions, the zero-inflation nature of data is clear.

Figure 2.1: Joint and marginal distributions of LOS of essential hypertension and diabetes
mellitus without complication
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Government agencies, insurance companies, hospitals, and individuals all manage a large num-

ber of diseases with limited healthcare, financial, and human resources. To more efficiently allocate

and plan hospital beds and other resources, which has public health, economic, and ethical im-

portance, it is critical to go beyond individual diseases, take a global view, and account for the

interconnections among diseases in clinical treatment measure research. For example, as suggested

in other HDN studies, tightly interconnected diseases should be considered together, diseases inter-

connected with a large number of others should receive higher priority, and interventions targeting

factors that affect a group of interconnected diseases can be more efficient and cost-effective. Last

but not least, interconnections in treatment can also informatively reflect intrinsic disease proper-

ties.

This study can complement the existing literature and fill knowledge gaps in multiple ways.

Specifically, it differs from the existing LOS analyses by uniquely focusing on the interconnections

among diseases. It advances from studies that analyze a small number of pre-selected diseases by

conducting analysis at the pan-disease level. It differs from the existing molecular and phenotypic

HDNs by being “closer” to clinical treatments, thus having a higher practical value. In the litera-

ture, the most relevant is perhaps the HDN analysis by Ma et al. [31], which analyzed treatment

costs and demonstrated the significance of analyzing disease interconnections in treatment. The

present study differs from Ma et al. [31] in multiple ways. In particular, Ma et al. [31] analyzed

treatment costs, while we examine LOS. The Taiwan population analyzed in Ma et al. [31] dra-

matically differs from the Medicare population. In terms of methodology, Ma et al. [31] examines

unconditional interconnections, which can be much easier and less informative than conditional

interconnections studied here. In the literature, there is a lack of conditional network analysis

approach tailored to LOS data and, as such, new methodological development is needed. Overall,

this study is warranted beyond the existing literature.

2.2 Data

Medicare is a federal health insurance program for adults aged 65 years and above, certain younger

people with disabilities, and people with end-stage renal disease (permanent kidney failure requiring

dialysis or a transplant). It is estimated that 98% of adults aged 65 and older in the U.S. are enrolled
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in Medicare [2]. The Medicare program accounts for over 99% of death for adults aged 65 and older

and about 40 percent of all inpatient discharges [2, 3]. The Medicare claims are bills for services

provided to the Medicare enrollees. The Center for Medicare & Medicaid Services (CMS) offers a

wide range of claims data that is derived from reimbursement or payment of bills.

In analysis, we first retrieve records on 133 million hospital inpatient admissions for the period

of January 2008 to December 2018. These admissions cover Medicare fee-for-services utilized by 35

million Medicare beneficiaries. We further randomly select data on 100,000 subjects aged 65 years

and above.Published studies [49, 50] suggest that the sample size needed for an accurate network

estimation depends on the complexity of network structure (e.g., number of nodes and sparsity

level). For the proposed analysis, in simulation (details in Section 2.5), we find that a sample size

of 10,000 is sufficient to generate accurate estimation for a variety of settings with 100 nodes. In

data analysis, with 108 nodes, we conservatively choose a sample size of 100,000, which is expected

to be sufficiently large while still being computationally affordable.

For each inpatient claim, there can be up to 25 (1 primary and 24 secondary) diagnosis codes,

which are defined under the International Classification of Diseases, Ninth Revision, Clinical Modi-

fication (ICD-9-CM) for discharges prior to October 1, 2015 and under the International Classifica-

tion of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) otherwise. For each inpatient

treatment episode, LOS is calculated as the length between dates of admission and discharge. To

accommodate multiple possible conditions per visit, we allocate 60% of the LOS to the primary

diagnosis and divide the rest evenly among all secondary diagnoses. For example, if an inpatient

treatment episode involved a LOS of ten days and five diagnosis codes, six days will be attributed

to the primary diagnosis, and one day will be attributed to each of the four secondary diagnoses.

We note that in the literature [51], there is still a lack of consensus on how to allocate among mul-

tiple disease conditions. The adopted allocation ensures that for each visit, the primary diagnosis

dominates and that all comorbidity conditions contribute equally. Then for each subject, LOS for

each disease is summed over all inpatient treatment episodes within the study period. The resulted

analysis dataset has 100,000 observations (one for each subject), and each observation contains the

summed LOS for each disease. A zero-entry means that the subject had not been admitted to

hospitals because of the corresponding disease within the study period.

As can be seen from the marginal distributions in Figure 2.1, in addition to the zero-inflation
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nature, LOS data are also skewed. Following the literature [11,52], we conduct marginal logarithm

transformations for the non-zero data entries. Figure 2.2 shows the distributions of the non-

zero data before and after transformation for essential hypertension, diabetes mellitus without

complication, and glaucoma (as an example of rare diseases). From Figure 2.2 and other alike

(omitted here), we conclude that, although there may still be slight skewness after transformation,

normality can be reasonably assumed.

Figure 2.2: Distributions of non-zero LOS data before and after transformation

Figure 2.3: Flowchart of data processing

Following the literature [28], we exclude the following diseases (codes) from analysis: 1) external

causes of injury and supplemental classification (the E and V codes in ICD-9-CM and V00-Z99 in
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ICD-10-CM); 2) pregnancy, childbirth and puerperium complications (630 – 679 in ICD-9-CM and

O00-O9A in ICD-10-CM); and 3) symptoms, signs & ill-defined conditions (760-999 in ICD-9-CM

and P00-P96, R00-R99, and S00-T88 in ICD-10-CM). This leads to 8,062 ICD-9-CM codes and

17,490 ICD-10-CM codes. To better classify and define human diseases, these diagnosis codes are

further grouped using the Clinical Classifications Software (CCS) developed by the Agency for

Healthcare Research and Quality. CCS is a tool for clustering disease diagnoses into a manageable

number of clinically meaningful categories and has been widely used in a variety of studies related

to diagnoses [53]. To generate more reliable estimates, we focus on common diseases defined as

having a population prevalence of 2% or greater over the 11-year study period, leading to 108

diseases for analysis. More detailed information on these diseases is available in Appendix A.1.

Data processing is also presented in Figure 2.3.

(a) Prevalence

(b) Average LOS

Figure 2.4: Top 10 diseases with the highest prevalence and average LOS

To have an overview of the analyzed data and diseases, Figure 2.4a shows the top 10 diseases

with the highest prevalence (population percentage of non-zero LOS), and Figure 2.4b shows the
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top 10 diseases with the highest average LOS among patients with non-zero LOS. The two plots

include both overall (summarized over 11 years) and yearly values. Prevalence and average LOS

depict from two different perspectives the medical burden from hospitalization. It is observed from

Figure 2.4 that chronic conditions tend to have higher prevalence, and acute conditions tend to

have higher average LOS. Congestive heart failure; nonhypertensive is the only condition that ranks

in the top 10 for both prevalence and average LOS. Temporal variations are also clearly observed

from Figure 2.4. While some diseases consistently rank high, others may only appear in the top

10 lists for a few years. For example, hypertension with complications and secondary hypertension

ranks out of the top 10 in prevalence in early years, but rises in rank rapidly from 2016.

There have been extensive studies on LOS using the Medicare data. In the analysis of individual

diseases, for example, Bueno et al. [54] depicted the trends of LOS and its correlation with other

short-term outcomes of Medicare patients hospitalized for heart failure. In the analysis of diseases

overall, for example, Jencks et al. [55] investigated the correlation between LOS and hospital-

associated mortality for all Medicare patients. As described in the above section, the proposed

analysis fundamentally differs from these two types of analysis.

2.3 Methods

Our goal is to construct a disease network under which each node corresponds to the LOS of one

disease. Two nodes are connected with an edge if the LOS values of the corresponding diseases

are “connected”. In general, there are two families of network constructions: unconditional and

conditional. In unconditional analysis, when investigating whether two diseases are interconnected,

the other diseases are “ignored”. Most of the existing HDNs, including the gene-centric HDN

by Goh et al. [24], phenotypic HDN by Hidalgo et al. [27], and treatment costs network by Ma

et al. [31], belong to this category. In conditional analysis, the goal is to quantify whether two

diseases are interconnected conditional on the other diseases. As established in the literature [56],

conditional networks can be more informative and, at the same time, more challenging.

Graphical models have been widely used in the literature for modeling conditional dependence

among a set of variables. A graphical model is associated with a graph G = (V ;E), where the node

set V represents the variables of interest, and the edge set E encodes the corresponding conditional
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dependence relationships for the node set V . Let nb(v) = {w ∈ V : {w, v} ∈ E} be the neighbors of

node v ∈ V , then Xv – measurement of this node – is conditionally independent of its non-neighbors

XV \(nb(v)∪v) given its neighbors Xnb(v). In a sense, a graphical model is a set of multivariate joint

distributions that exhibit certain conditional dependence. In the statistical literature, the most

popular and developed graphical model is perhaps the Gaussian Graphical Model (GGM), which

assumes that the nodes have a multivariate normal distribution, and two nodes are identified to

be conditionally independent if the corresponding element in the precision matrix (i.e., the inverse

of the covariance matrix) is zero. Another commonly used approach, the Ising model, applies

to the case where all nodes are binary. With the consideration that both assumptions are too

restrictive, multiple efforts have been taken, assuming alternative data distributions. For example

Yang et al. [57] assumed that the node-wise conditional distributions arise from some commonly

used univariate exponential families. Voorman et al. [58] proposed a semi-parametric method and

estimated the graph structure with joint additive models, which allow the conditional means to take

on an arbitrary additive form. Fellinghauer et al. [59] used a Graphical Random Forests method to

estimate the pairwise conditional independence relationships among mixed-type, i.e. continuous and

discrete, variables. Several normal copula and nonparanormal models [60] have also been developed

to accommodate non-Gaussian data. Despite extensive effort, however, a closer examination of the

existing methods shows that they are all not directly applicable to zero-inflated data, as observed in

Figure 2.1.

2.3.1 Modeling

To accommodate the zero-inflation nature of LOS data, and also motivated by individual-disease

LOS analysis [11], we propose employing a multivariate Hurdle model [61]. In general, univariate

Hurdle models arise from modification of a density through exclusion of points in the support and

assignment of positive masses to these points. In our case, to accommodate zero-inflation, the

origin is excluded from the density. Let vy = I{y 6= 0}. Then the Hurdle model derived from a

Normal distribution with mean µ and precision η2 has density:

f(y) = exp{vy[1/2log(η2/(2π)) + logp/(1− p)− µ2η2/2] + yµη2 − y2η2/2 + log(1− p)},

21



where p = P (vy = 1) ∈ (0, 1) is the probability of observing a non-zero value.

Built on the univariate Hurdle model, under the multivariate Hurdle model, each conditional

distribution of one node (disease) given the others is a mixture of a point mass at zero and a normal

distribution. Here we note that the original LOS measurements are count data. However, with the

splitting (between the primary and secondary diagnoses) and quite “spread” measurements, it is

reasonable to model LOS as continuous distributions.

Let v = (v1, ..., vd)
T be a d-dimensional binary vector, where d is the number of diseases, and

vj indicates whether a subject has inpatient treatment for the jth disease. Assume that V follows

an Ising model with joint probability:

pv ≡ P (V = v) ∝ exp(vTGv), v ∈ {0, 1}d,

where G is a symmetric interaction matrix in Rd×d, and zero entries indicate conditional indepen-

dence in the occurrence of disease treatment.

Let y ∈ Rd be the vector of LOS of the d diseases. Logarithm transformation for non-zero

data entries is conducted. With a slight abuse of notation, we still use the same notation for the

transformed LOS values, for which normality can be assumed. Consider the distribution:

Y|V ∼ N(µ(v),Σ(v))

with mean vector µ(v) ∈ R2 and covariance matrix Σ(v) ∈ PD(v). Then the conditional distribu-

tion of Y given V = v has log-density:

logf(y|V = v) = vTHy − 1

2
yTKy − C ′(H,K), y ∈ Rv,

where H and K are two d × d interaction matrices that do not vary with v and measure the

dependence between the presence of treatment and LOS and between LOS values respectively,

C ′(H,K) is a normalization constant, and Rv =
∏d
j=1Rvj with R0 = {0}. K is symmetric and

positive definite, but there is no constraint on H. The joint log-density of Y and V is:

logf(y,v) = vTGv + vTHy − 1

2
yTKy − C(G,H,K), y ∈ Rd.
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To quantify pairwise conditional interconnections, the conditional density is derived from the

joint density as follows. For a fixed coordinate b ∈ {1, ..., d}, define its complement A = {1, ..., d} \

{b}. Noting that viyi = yi and v2i = vi, we have the conditional log-density of Yb given YA as:

logf[b|A](yb, vb|yA,vA) = vbg[b|A] + ybh[b|A] −
1

2
y2bk[b|A] − C[b|A],

where the normalization constant C[b|A] does not depend on (yb, vb) and

g[b|A] = gbb + 2gbAvA + hbAyA, h[b|A] = hbb + hTAbvA + kbAyA, k[b|A] = kbb.

Based on the conditional distribution, elements in the three interaction matrices G, H, and K,

which quantify pairwise interconnections between diseases conditional on all other diseases, can be

obtained. Following the literature [61], we conclude conditional independence between diseases i

and j if and only if all four ij interaction elements are zero. That is,

gij = hij = hji = kij = 0.

2.3.2 Estimation

Considering the fact that not all diseases are interconnected, and to generate sparse and inter-

pretable networks, we propose conducting sparse estimation. In particular, we adopt the penal-

ization technique [56], which has been widely used in structure learning of the GGM and other

network constructions. It has also been used in the analysis of clinical treatment measures of indi-

vidual diseases [62]. More specifically, for a fixed coordinate b ∈ {1, ..., d}, consider the conditional

distribution of Yb given the other variables in YA for A = {1, ..., d} \ {b}. For a ∈ A, define the

parameter vector θa = (gba, hba, hab, kba)
T . Then Yb ⊥⊥ Ya|YA\{a} if and only if θa = 0. Consider

the penalized objective function:

logf[b|A](yb, vb|yA,vA)− Pλ(θ),

where Pλ(θ) = λ||θa||1 is the LASSO penalty and λ > 0 is the data-dependent tuning parameter.

Note that the above estimation is defined for each coordinate. The estimations of different coordi-
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nates are connected via sharing the same tuning parameter, ensuring a comparable ground for all

nodes.

Computation The penalized objective function is the sum of a smooth convex function g(θ) and

a non-differentiable convex function h(θ). Generically, the optimization problem minθL(θ) =

g(θ) + h(θ) can be tackled using the proximal gradient descent technique [61]. Specifically, the

proximity operator for θ related to t and h is defined as:

proxh,t(θ) = arg min
x

1

2t
‖θ − x‖22 + h(θ),

where t is the step size and h is the LASSO penalty. Then the update rule can be described as

θk+1 = proxh,tk(θk − tk∇g(θk)).

For a fixed coordinate b ∈ {1, ..., d}, let θ0 = (gbb, hbb, kbb)
T , θa = (gba, hba, hab, kba)

T , and

θ = (θT0 ,θ
T
a )T . The gradients of the log-likelihood function g(θ) = logf[b|A](yb, vb|yA,vA) with

respect to θ can be calculated using the chain rule. As such, the proximal gradient descent-based

neighborhood selection procedure can be conducted for each node. The estimates for G, H, and K

can thus be obtained. More details are available from the authors as well as realized in our code,

which is available at www.github.com/shuanggema. The proposed approach involves the tuning

parameter λ. It is chosen using cross-validation, which has been adopted in penalized GGM and

other network analyses.

With a large sample size, a large number of diseases, and complex model structures (with

multiple interconnection matrices), computation is unfortunately expensive. With a fixed tuning

parameter, analysis takes about two hours. Luckily, estimation under different tunings can be run

in a parallel manner to reduce computer time. For larger data, further parallelization may be

needed to make the analysis affordable.

2.3.3 Analysis of network properties

In a sense, the parameter estimates and model obtained above can fully describe data properties.

However, they may not have lucid interpretations. In network analysis, key properties are usually
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summarized through adjacency, connectivity, module/hub, and other measures [56, 63], which can

provide more meaningful understandings than model parameters only. Similar analysis has been

conducted in the phenotypic and treatment costs HDNs [28,31].

Adjacency matrix The most fundamental property of a network is reflected in the d× d adjacency

matrix, whose elements describe whether a pair of diseases are interconnected conditional on the

others (i.e., whether a linking edge exists). In our model, we conclude conditional independence

between diseases i and j if and only if Gij = Hij = Hji = Kij = 0. More specifically, consider the

estimated interaction matrices Ĝ, Ĥ1 (the estimate of H fitted by column), Ĥ2 (the estimate of H

fitted by row), and K̂. The adjacency matrix A = [aij ] is defined as

aij =

0, if Ĝij < τ & Ĥ1ij < τ & Ĥ2ij < τ & K̂ij < τ

1, otherwise

where we further impose a threshold τ to remove spurious small interconnections and generate

sparser and more interpretable networks. τ can be determined data-dependently (for example,

using cross validation) or based on the specific contexts.

Connectivity For node (disease) i ∈ {1, ..., d}, its connectivity is defined as

Ki =
∑
j 6=i

aij ,

which measures how tightly it is connected to the other nodes. For many networks including the

HDNs [28,31], it has been suggested that nodes with higher connectivity values are more important

in a network sense since they have a higher impact overall.

Module Modules have also been referred to as network communities or clusters in the literature.

A module consists of tightly interconnected nodes, and different modules are relatively weakly

interconnected. It has been suggested that nodes within the same module tend to “behave similarly”

and should be considered as a group. In module construction, first consider the topological overlap

matrix (TOM), whose (i, j)th element is defined as

TOMij =
lij + aij

minKiKj + 1− aij
,
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where lij =
∑

u aiuauj measures how many neighbors that nodes i and j share. Accordingly, the

TOM-based dissimilarity matrix is defined as dissTOM = 1-TOM [63]. Based on dissTOM, which

measures the dissimilarity of any pairs of diseases, modules can then be constructed by hierarchical

clustering with a dynamic tree cutting approach [63]. After module construction, for a node,

its intramodular connectivity, which is connectivity limited to the module it belongs to, can be

computed to reflect “more local” connection properties.

2.4 Data analysis

2.4.1 Network properties

We first consider the “whole picture” with all 11 years combined. With 108 nodes (diseases), the

resulted network has 1,049 edges, with a disease on average connected to 19.4 others. The network

is graphically presented in Figure 2.5 using Gephi. In the plot, a line represents an edge, the size of

a node is proportional to its connectivity, and the color of a node represents its module membership.

Similar constructions and visualizations have been done for individual years. Additional details are

provided in Appendix A.2. Figure 2.5 shows extensive interconnections among nodes. There are

only two diseases that are not linked to any other diseases. This is expected since multimorbidity

is the most common clinical picture of the elderly population [64]. Simply eyeballing the network

suggests that it differs fundamentally from the molecular HDN in Goh et al. [24], phenotypic HDN

in Hidalgo et al. [27], and treatment costs HDN in Ma et al. [31]. This is attributable to differences

in disease definition, approach in network construction, population characteristics, and outcome

measure.

Connectivity Figure 2.6 shows the top 10 diseases with the highest overall and year-specific con-

nectivity values. Comparing it to Figure 2.4 shows that the diseases with the highest connectivity

also tend to have the highest prevalence and possibly the highest LOS. Loosely speaking, these

diseases are the most important. More specifically, all diseases in Figure 2.6 are well-known com-

mon diseases in the elderly population, which provides some support to the validity of our network

analysis. For example, cardiovascular disorders, including congestive heart failure, cardiac dys-

rhythmias, and coronary atherosclerosis, are estimated to be the most common chronic conditions

in the population aged 65 years and above [64]. Systemic diseases like fluid and electrolyte disorders,
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Figure 2.5: Disease LOS network for the period of January 2008 to December 2018

Figure 2.6: Top 10 diseases with the highest overall and yearly connectivity

nervous system disorders, and nutritional, endocrine, and metabolic disorders are also common in

the elderly populations and are expected to have high connectivity because they affect the gen-

eral functioning of the entire body [65]. From a treatment perspective, diseases such as fluid and

electrolyte disorders, acute and unspecified renal failure, and hypertension with complications and

secondary hypertension require extensive care through hospitalizations [66, 67] and are expected

to have high LOS connectivity. In contrast, diseases such as essential hypertension, disorders of
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lipid metabolism, osteoarthritis, and urinary tract infections often do not require hospitalization

but have high connectivity in the constructed LOS network, indicating them to be important co-

morbidities that are connected with other diseases that require higher LOS. For example, serious

osteoarthritis can lead to fractures [68], disorders of lipid metabolism increase the risk of coronary

artery disease [69], and urinary tract infections are highly correlated to septicemia especially in

elderly females [70]. While some individual relationships between a few selected diseases have been

studied in the literature, our results can be informative by looking at all diseases “globally” and

also examining disease pairs less/not investigated. For example, from etiological studies, secondary

hypertension has a closer connection to many other heart and cerebral diseases, urinary diseases,

and endocrine diseases, compared to primary hypertension [71]. However, we show that in the LOS

network, primary hypertension has a higher connectivity. Hypertension is a complicated condition

that individuals generally have different pathogenesis, progression, etiology, and pathophysiology,

and studies on it remain inclusive [67]. Our analysis results may provide additional insights and

also suggest potential future research directions related to hypertension. Such results cannot be

obtained from the individual-disease based.

Module A total of 11 modules are identified, with sizes ranging from 18 to 5. In Figure 2.5, dif-

ferent modules are distinguished using colors. More details on year-specific results are provided

in Appendix A.2. By construction, modules should consist of tightly interconnected diseases. An

enrichment analysis is conducted to examine the representative diseases of different modules. It

is found that the 11 modules are enriched with the following diseases: nervous system diseases

and comorbidities (pink), cardiovascular diseases and complications (light green), gastrointestinal

diseases (celeste), infectious diseases (yellowish brown), respiratory system diseases (orange), cen-

tral nervous system diseases (vermeil), substance abuse disorders and complications (aqua green),

osteoarticular diseases (champagne), urinary system diseases (blue), skin and arthritis infections

(brown), and residual diseases (yellow), respectively.

Module construction can provide an alternative way of disease characterization and classifica-

tion. Classic disease classifications are based on organ, symptom, and phenotype. It has been

recognized that new classifications are needed to serve new purposes [72]. For example, gene-

centric disease classifications have been developed [24] and integrated with classic classifications.

In our LOS disease network, which is closer to clinical practice, diseases form modules not only
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because they share common genetic and environmental risk factors but also because they have

shared treatment strategies. Take the pink module as an example, which is enriched with ner-

vous system diseases. Osteoarthritis, other connective tissue disease, and other non-traumatic

joint disorders have a relatively “long distance” from nervous system diseases based on etiological

studies. However, there is an increasing trend of listing these disorders together with neurological

disorders as an indicator of disease progression and poor prognosis, especially in the elderly popu-

lation [73]. To be more specific, it is common for elderly patients with multiple chronic diseases to

be mobility-impaired. This could cause them to develop various nervous system diseases as well as

osteoarthritis, other connective tissue disease, and other non-traumatic joint disorders.

Within each module, the hub disease is defined as the one with the highest intramodular con-

nectivity. Generically in network analysis, hubs may play central roles in their respective modules

and should be “targeted” first [56]. The hub diseases for the 11 modules are: other nervous sys-

tem disorders (pink), coronary atherosclerosis and other heart disease (light green), diverticulosis

and diverticulitis (celeste), septicemia (yellowish brown), pneumonia (orange), acute cerebrovas-

cular disease (vermeil), chronic obstructive pulmonary disease and bronchiectasis (aqua green),

spondylosis; intervertebral disc disorders; other back problems (champagne), urinary tract infec-

tions (blue), skin and subcutaneous tissue infections (brown), and nutritional deficiencies (yellow),

respectively. All of these diseases have been suggested in the literature as having essential im-

portance for older adults. We note that connectivity and intramodular connectivity are not the

same concept. In particular, connectivity can be potentially affected by a large number of weak

connections, whereas intramodular connectivity better reflects “local properties”. In our analysis,

for example, pneumonia has a low overall connectivity but the highest intramodular connectivity

in the module enriched with respiratory system diseases.

2.4.2 Temporal variation

It is easy to observe variations over time from the above summary statistics. Here we move on with

conducting the above network analysis for each year separately and examining differences across

time. We randomly select the 100,000 samples for each year separately. This way, we can ensure

that representative samples are obtained for all years. We note that if we select and fix a cohort

in year one, it may or may not be representative in the subsequent years. It is also noted that
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temporal variation is not presented with the molecular HDNs (as the molecular basis of most if not

all diseases is stable) and ignored in most of the existing phenotypic HDNs. Temporal variation is

also examined with the treatment costs HDN [31].

Connectivity Figure 2.6 shows the top 10 diseases with the highest yearly connectivity values. While

the structures of high-connectivity diseases for adjacent years are similar, the overall differences

are obvious. Some diseases, such as essential hypertension, fluid and electrolyte disorders, and

disorders lipid metabolism, are stable with high connectivity in almost all years. In contrast, some

other diseases, such as urinary tract infections, osteoarthritis, and septicemia, only appear in the

top 10 lists for a few years. Moreover, a jump in individual disease connectivity between 2010 and

2011 is observed, indicating more intensive interconnections between diseases in the later year. A

closer examination of data and literature suggests that this is at least partly caused by the change

in CMS’ electronic transaction standards that hospitals use to submit Medicare claims. Starting

in January 2011, institutional providers were able to enter up to 25 diagnosis codes for a single

claim, while previously only 9 were allowed [74]. In the retrieved dataset, the average number of

per claim diagnosis codes increases from 8.03 in 2010 to 13.93 in 2011. This can lead to a higher

number of comorbidities per patient and hence a higher disease connectivity. We note that, for the

overall network constructed using all 11 years of data combined, the numbers of comorbidities are

accrued for the entire 11 years of study period, and the policy change in 2011 might not make a big

impact. This is confirmed by repeating the overall network analysis using only the first 9 diagnosis

codes per claim. Assuming physicians enter important diagnoses first, the first 9 existing codes

would be the 9 codes entered if the coding policy had not changed. Therefore, using only the first

9 diagnosis codes mimic the situation that the policy change in 2011 never happened. Comparing

this with the overall network constructed in Section 2.4.1, we observe only ignorable changes in the

network structure (details omitted and available from the authors).

Module To examine yearly variations in disease modules, we compare pairwise disease module

relationships. More specifically, if two diseases are in the same module for one year but not

for the later year, we say their disease module relationship has changed. Figure 2.7a shows the

yearly percentages of pairs of diseases that have changed their module relationships. Overall, we

observe a moderate degree of changes, except for year 2011 where 26% of the pairwise module

relationships have changed. The big change in 2011 is likely also due to the change in CMS’
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(a) Yearly changes in disease module relationships

(b) Modules that contain secondary malignancies in 2014 (left) and 2018 (right)

Figure 2.7: Temporal variations of module structure

electronic transaction standards mentioned earlier. Variations in module relationships can be caused

by multiple reasons, such as changes in risk factors, progress in disease diagnosis, and advances

in treatment strategies. As an example of how disease module memberships may change, Figure

2.7b shows the modules that secondary malignancies (ccs42) belongs to in 2014 and 2018. Thanks

to the innovative cancer immunotherapy technique – immune checkpoint inhibitors (ICPIs), the

landscape of advanced cancer treatment has significantly changed in the last decade. ICPIs has

shown clinically significant antitumor response in multiple cancer types [75]. Since 2015, ICPIs

has been widely used upon the Food and Drug Administration’s approvals and led to significant

improvement in cancer survival [75]. Comparing the module that secondary malignancies belongs
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to in 2014 with that in 2018, we see a big change in the module structure. In Figure 2.7b, common

disease shared by the two modules are colored in green and different diseases are colored in orange.

In 2018, secondary malignancies is no longer clustered with multiple types of skin infections (ccs197

and ccs199) and neuropsychiatric disorders (ccs95, ccs 653, and ccs659), but is clustered with several

intestinal (ccs135 and ccs154), liver (ccs151), and renal disorders (ccs157 and ccs161), all of which

are potential side effects from ICPIs [76].

Remarks Under simpler settings, there are more sophisticated approaches for studying temporal

variations, for example, the time-varying coefficient model. We suspect that it is possible to couple

such techniques with the proposed HDN analysis. However, significant new developments may be

needed. The above examination is simple and can be easier to interpret.

2.4.3 Sensitivity analysis

In the above analysis, for claims with multiple diagnosis codes, we attribute 60% of the LOS to the

primary diagnosis, and the rest 40% evenly to all secondary diagnoses. We would like to note again

that this assignment, although slightly subjective, is sensible, and that there is still no consensus

on splitting LOS (and other treatment measures) among diagnoses. To examine the effects of this

allocation on the findings, we re-conduct the above analysis with all 11 years data combined using

allocations with 70% or 50% to the primary diagnosis and the rest evenly to all secondary diagnoses.

Only ignorable changes in the network structure are observed (details omitted and available from

the authors).

2.4.4 Alternative analysis

For the same CCS diseases, in Appendix A.3, we construct the molecular HDN (using information

extracted from https://phewascatalog.org/phewas) and phenotypic HDN (using the same data as

analyzed above). It is observed that these two HDNs and their key properties differ significantly

from those of the proposed, which further justifies that the proposed disease interconnection analysis

is warranted beyond the existing HDN studies.
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2.5 Simulation

Simulation is conducted to get more insights into performance of the proposed modeling and es-

timation approach. The sample size is fixed as 10,000, and there are 100 nodes (diseases). Note

that the real data has a much larger sample size, and hence more reliable estimation is expected.

We consider a variety of settings with different graph topologies, sparsity levels, and parametric

models. Specifically, with the chain graph topology, the interaction matrices G, H, and K have

banded structures. The numbers of nonzero diagonals depend on the specified sparsity levels. For

example, a 1.5% sparsity results in a band width of three, and a 5% sparsity results in a band width

of seven. With the random graph topology, the interaction matrices G, H, and K have certain

numbers of random off-diagonal entries being nonzero, where the numbers are determined based

on the prespecified sparsity levels. For parametric models, we consider the Hurdle model, Hur-

dle model under contamination with t8 noise, and Gaussian/logistic selection model. The Hurdle

model is said to be G−minimal when only G has nonzero off-diagonal elements and H and K are

diagonal matrices. In this case, the Hurdle model reduces to the logistic/Ising model. The Hurdle

model is said to be complete if for each edge present in the graph, all of the corresponding entries

in each of the three interaction matrices are nonzero [61]. The Gaussian/logistic selection model is

defined as:

Ỹ ∼ N (µ, K), P (Ṽj |Ỹ = ỹ) = logit(a+ bỹj), Y = ỸṼ,

where a and b can be modified to achieve different levels of zero in Y. To make the simulated data

close to the real data (which has 60% - 98% zeros in Y), we choose the off-diagonal values equal

to -2 for G, -1 for H, and 0.5 for K when applicable. a is randomly selected from Uniform[-2, 0]

and b equals 1. Detailed simulation settings are described in Table 3.1.

For each setting, 100 replicates are simulated. In our analysis, the key is the identification of

edges. In Table 3.2, we summarize the mean (standard deviation) percentage of false negative (FN)

and false positive (FP) rates. Satisfactory performance is observed. With the much larger sample

size of the real data, the simulation provides strong confidence in the validity of our findings.
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1. Hurdle model with a G-minimal chain graph and 1.5% sparsity.
2. Hurdle model with a G−H−K-complete chain graph and 1.5% sparsity.
3. Hurdle model with a G-minimal chain graph and 5% sparsity.
4. Hurdle model with a G−H−K-complete chain graph and 5% sparsity.
5. Hurdle model with a G-minimal random graph and 5% sparsity.
6. Hurdle model with a G−H−K-complete random graph and 5% sparsity.
7-12. The same as 1-6, respectively, with nonzero observations contaminated with t8 noise.
13. Gaussian/logistic selection with a diagonal interaction matrix K.
14. Gaussian/logistic selection with a chain graph K and 1.5% sparsity.
15. Gaussian/logistic selection with a chain graph K and 5% sparsity.
16. Gaussian/logistic selection with a random graph K and 5% sparsity.

Table 2.1: Simulation settings

Setting FN(sd) FP(sd) Setting FN(sd) FP(sd)

1 0(0) 0(0) 9 0(0) 0(0)
2 0(0) 0(0) 10 0(0) 2.55%(0.003)
3 0(0) 0(0) 11 2.98%(0.021) 6.09%(0.009)
4 0(0) 1.08%(0.002) 12 1.92%(0.021) 2.30%(0.006)
5 3.19%(0.021) 2.21%(0.003) 13 0(0) 0(0)
6 2.47%(0.026) 0.74%(0.002) 14 0.77%(0.020) 1.56%(0.005)
7 0(0) 0.45%(0.008) 15 3.67%(0.015) 1.81%(0.003)
8 0(0) 0.56%(0.003) 16 7.54%(0.016) 8.44%(0.004)

Table 2.2: Simulation: mean (sd) percentage of FN and FP

2.6 Discussion

In this study, we have developed a HDN built on diseases’ inpatient LOS. To the best of our

knowledge, this is the first of its kind. This analysis can complement the existing individual-disease

and overall LOS analyses as well as the molecular and phenotypic HDNs. This is especially true

considering the significant differences in methodology and findings. As discussed in the first section,

LOS analysis has important implications for managing and planning healthcare and other resources

and can also be informative for reflecting intrinsic disease properties. This network analysis can

provide insights into disease interconnections, assist more efficiently manage/plan resources, and

advance our understanding of diseases. It also complements the existing HDN analysis, in particular

the recent disease treatment costs HDN. It will be important to develop policymaking based on our

findings. However, that is beyond the scope of this article and will be postponed to future research.

Beyond delivering the first disease LOS network and its snapshot and dynamic properties, this

study has also developed a network analysis approach which may have other applications.
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This study inevitably has limitations. LOS only reflects part of the treatment picture. Many

disease episodes are treated outpatient. Chronic diseases are often handled with drug refillings

that do not involve any hospital treatment. It will be of interest to expand the analysis scope

to accommodate other types of treatment. Nevertheless, we note that inpatient treatment, as

the most serious type of treatment, has its own unique value and has been the focus of a large

number of studies. We have considered the whole Medicare population. It will also be of interest to

conduct stratified analysis to better accommodate heterogeneity. As in many other HDN analysis,

our analysis can only infer associations (with undirected networks). Causal analysis would demand

significant additional data. Our examination suggests that the findings are biomedically sensible

to a large extent. However, we are unable to examine all findings considering the large number of

diseases and interconnections. It will also be of interest to examine additional data and provide

more interpretations on the findings.

35



Chapter 3

High-Dimensional Clinical Treatment

Human Disease Network: Analysis of

the Medicare Inpatient Length of

Stay and Readmission Data

3.1 Introduction

Clinical treatment outcomes are defined to measure healthcare quality (e.g., mortality, readmis-

sion, and complication) and efficiency (e.g., length of stay (LOS), outpatient utilization, and medical

costs). For most medical conditions, these outcomes have been extensively studied. Outcome anal-

ysis helps healthcare practitioners carry out more effective and efficient practices, hence further

improve outcomes. For example, Piedmont Healthcare’s evidence-based care standardization for

pneumonia patients resulted in a 56.5% relative reduction in the pneumonia mortality rate and a

9.3% relative reduction in LOS [7]. By improving the analytic platform and advancing its applica-

tions, the University of Texas Medical Branch achieved a 14.5% relative decrease in their 30-day

all-cause readmission rate, resulting in $1.9 million in cost reduction [8]. Therefore, understanding

outcomes is essential in providing patient-centered and value-based healthcare services.

The analysis of clinical treatment outcomes can be generally classified into two families. The
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first family focuses on a single disease. For example, Feng and Li [11] analyzed LOS for patients

with ischaemic heart disease and identified important risk factors. They observed the zero-inflation

nature of LOS data and conducted a two-part regression analysis to accommodate zero-inflation.

Healthcare outcome data is generally zero-inflated since, for most conditions, only a small portion

of the population would be susceptible and have clinical treatments. The second family focuses

on a general population and studies all diseases combined. For example, using conditional logistic

regression clustered by hospital and generalized estimating equations, Jung et al. [18] compared

all diseases combined readmission rates in two populations: Medicare Advantage and Medicare

Fee-For-Service. Even though both families are considered effective, they ignore the complex inter-

connections among human diseases. By examining LOS correlations within the Diagnosis Related

Groups, Berki et al. [22] indicated a need to analyze and understand LOS behaviors for multiple

diseases. Rinne et al. [23] also identified correlations between readmission rates of chronic obstruc-

tive pulmonary disease and other medical conditions (e.g., heart failure, acute myocardial infarction

(AMI), pneumonia, and stroke). However, these studies are generally limited to a few pre-selected

and closely related diseases.

Another major characteristic of analyzing clinical outcomes is that the practices generally focus

on one single outcome. For instance, Huling et al. [16] proposed a framework to estimate individu-

alized treatment rules targeting to optimize medical costs. They observed the zero-inflation nature

of medical costs data and developed an approach based on the two-part semicontinuous model-

ing. Chatterjee et al. [17] proposed group regularization for zero-inflated count regression models

using a least-squares approximation of the mixture likelihood and applied it to number of doctor

office visits data. Noting that many clinical treatments have complicated effects that can only

be effectively captured on multiple outcome scales, studies have focused on the condition-specific

correlation between multiple outcomes. With interrupted time-series and survival analysis, Gupta

et al. [13] identified a negative relationship between readmission rate and mortality for Medicare

patients hospitalized with heart failure. With multivariate regression analysis, Rinne et al. [14]

found that longer LOS was associated with a higher risk of readmission for veterans with chronic

obstructive pulmonary disease. However, analysis on multiple outcomes is again limited to a single

disease and ignore the complex interconnections among different diseases. To our best knowledge,

there is a lack of work that jointly analyzes multiple outcomes of multiple diseases.
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This article fills the research gaps by developing a clinical treatment human disease network

(HDN) that quantifies pan-disease level interconnections on multiple outcomes. This is partially

motivated by the emerging HDN analysis in the past two decades. Existing HDN analyses fall into

three families. The first family is referred to as gene-centric such that diseases are interconnected if

they share common genetic risk factors. Goh et al. [24] was the first to develop the concept of HDN

by connecting two diseases if they are associated with the same gene. Follow-up studies include Li

and Agarwal [26] and Barabasi et al. [48], in which links between human diseases represent various

molecular relationships. The second family is based on disease phenotypes such that two diseases

are connected if their phenotypes are correlated (e.g., comorbidity). Hidalgo et al. [27] was the first

to build a phenotypic HDN upon patients’ clinical histories. Follow-up studies include Roque et

al. [29], Jiang et al. [28], and others. The third family, which is relatively new, examines disease

interconnections based on healthcare outcomes. Ma et al. [31] was the first to construct a clinical

treatment HDN by analyzing disease interconnections in medical costs. Mei et al. [77] expanded the

analysis scope to disease interconnections in LOS. Unlike genetic and phenotypic HDNs, a clinical

treatment HDN captures disease interconnections from not only shared causal disease etiology,

shared environmental risk factors, but also shared prevention, diagnosis, and treatment strategies.

Significantly different and advancing from the existing literature, this article builds a high-

dimensional clinical treatment HDN that focuses on disease interconnections in multiple outcomes.

Specifically, we build a HDN that analyzes the Medicare LOS and readmission data. A third pseudo

outcome, which is a binary indicator of treatment presence, is also included in the graphical model

to accommodate zero-inflation. LOS and readmission are two important outcomes that have been

extensively studied. Prolonged LOS and avoidable readmissions impose huge medical burdens on

both hospitals and patients. In the U.S., hospital stays cost the health system at least $377.5

billion per year [19]. While a 30-day all-cause readmission follows 18% of all hospitalizations, 37%

of them are estimated to be avoidable, which cost the healthcare system $25 to $45 billion per

year [78,79]. There have been substantive efforts that target LOS and readmission as indicators of

high-value care [13,46]. Our choice of outcomes is mainly motivated by the high clinical importance

of LOS and readmission, but we note that the proposed method can be easily generalized to other

outcomes.

As the first network tool studying disease interconnections in multiple outcomes, our approach
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differs from existing clinical treatment HDNs not only in outcome measures but also in statistical

techniques. Ma et al. [31] used a two-part model for the marginal distribution of disease-specific

medical costs and a copula-based approach to identify unconditional pairwise interconnection be-

tween medical costs of two diseases. Mei et al. [77] employed the multivariate Hurdle model

to estimate conditional pairwise correlation between LOS of two diseases. While they both ac-

commodate the zero-inflation nature of data, the modeling techniques are not readily applicable

to high-dimensional outcome data. To deal with uniquely challenging data distributions (high-

dimensionality and zero-inflation), this article develops an innovative network modeling strategy

based on the integrative analysis of generalized linear models. Since the proposed approach is

regression-based, it has much more lucid interpretations and can be easily generalized to incorpo-

rate more outcomes of different data types.

The proposed clinical treatment HDN can inform more efficient management of hospital beds

and other resources, which has public health, economic, and ethical importance. For example,

as suggested in other HDN studies, interventions targeting diseases interconnected with many

others can be more efficient and cost-effective. Moreover, tightly interconnected diseases should be

considered together, and factors that affect a group of interconnected diseases should receive higher

priority [28, 31, 48]. This study complements the existing literature in multiple aspects. First, it

advances current outcome analyses by focusing on multiple outcomes at a pan-disease level. Second,

it fosters complex network research. As most developed HDNs estimate unconditional relationships

on one single outcome, we develop a novel graphical model to estimate conditional interconnections

considering multiple outcomes. It also differs from existing molecular and phenotypic HDNs by

being “closer” to clinical treatments, thus having a higher practical value. Last, it provides new

insights into using the large-scaled Medicare database for outcome research and promotes a better

understanding of the Medicare population.

3.2 Data

This article analyzes the Medicare inpatient data from January 2010 to December 2018. Medicare is

a federal health insurance program for adults aged 65 years and above, certain younger people with

disabilities, and people with end-stage renal disease (permanent kidney failure requiring dialysis or
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a transplant).The Medicare data is considered an excellent source for healthcare analytics because

of its universal coverage and high quality. More than 98% of adults over 65 years old in the U.S.

are enrolled in the Medicare program. It is estimated that the program accounts for over 99% of

death for older adults and about 40% of all inpatient discharges [2, 3]. Centers for Medicare &

Medicaid Services (CMS) offers a wide range of claims data that is derived from reimbursement or

payment of bills. Since it is the basis of determination of reimburse eligibility, the Medicare data

is generally of high quality. It also contains broad information such as beneficiary demographics,

provider information, healthcare service utilization, and medical payments, which can fulfill many

research purposes.

3.2.1 Data preparation

In the analysis, we first retrieve records on 108 million inpatient treatment episodes for the period

of January 2010 to December 2018, which cover Medicare inpatient services utilized by 35 million

beneficiaries. Following the literature [80], we exclude patients who were less than 65 years old

at admission, who had less than 30 days of post-discharge Medicare enrollment, and who died in

hospital. We further select a random sample of 100,000 eligible subjects to reduce computation

burden. In network analysis, the complexity of network structure determines the sample size

needed for accurate estimation. We conduct simulation (details in Section 5) and conclude that the

proposed method achieves satisfactory performance with a sample size of 10,000 for 100 nodes, under

a variety of network structures. For real data analysis of 106 nodes (diseases), we conservatively

choose a sample size of 100,000, which is expected to be sufficiently large.

For each inpatient treatment episode, LOS is calculated as the length between dates of admis-

sion and discharge. Readmission is defined following CMS’ public reported measure on the 30-day

risk-standardized hospital-wide readmission [80]. Specifically, the measure captures all-cause un-

planned readmissions that arise from acute clinical events requiring urgent rehospitalization within

30 days of discharge. Planned readmissions, which are not a signal of care quality and are generally

unavoidable, are not considered in the measure. The detailed algorithm on defining 30-day all-cause

unplanned readmissions is available in CMS’ measure methodology report [80]. For one index ad-

mission, if a patient had multiple unplanned admissions within 30 days of discharge, only the first

is considered readmission. However, the readmission could be an index admission for subsequent
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readmissions.

Diseases are defined by diagnosis codes under the International Classification of Diseases, Ninth

Revision, Clinical Modification (ICD-9-CM) for discharges before October 1, 2015, and under the

International Classification of Diseases, Tenth Revision, Clinical Modification (ICD-10-CM) other-

wise. Following the literature [28, 31], we exclude the following diseases (codes) from the analysis:

1) external causes of injury and supplemental classification (the E and V codes in ICD-9-CM and

V00-Z99 in ICD-10-CM); 2) pregnancy, childbirth and puerperium complications (630 – 679 in

ICD-9-CM and O00-O9A in ICD-10-CM); and 3) symptoms, signs & ill-defined conditions (760-

999 in ICD-9-CM and P00-P96, R00-R99, and S00-T88 in ICD-10-CM). This leads to 7,462 ICD-9-

CM codes and 16,682 ICD-10-CM codes. These diagnosis codes are further grouped into clinically

meaningful categories using the Clinical Classifications Software (CCS). CCS is developed by the

Agency for Healthcare Research and Quality to better classify ICD diagnosis codes into convention-

ally defined human diseases. It has been widely adopted in various studies involving analysis of ICD

codes [53]. To generate reliable estimates, we exclude rare diseases with a population prevalence of

less than 2% over the nine years of study period. This leads to 106 CCS diseases for downstream

analysis. Data processing is presented in Figure 3.1. More detailed information on these diseases

is available in Appendix B.1.

Figure 3.1: Flowchart of data processing

For each inpatient claim, there can be up to 25 (1 primary and 24 secondary) diagnosis codes.

As mortality rates have declined and the population has aged, multimorbidity has become prevalent

among older adults. As a result, it is common for one inpatient treatment episode to deal with
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multiple conditions. To accommodate multiple possible conditions per claim, we allocate 60%

of LOS to the primary diagnosis and divide the rest evenly among all secondary diagnoses. For

example, if an inpatient treatment episode involved a LOS of ten days and five diagnosis codes, six

days will be attributed to the primary diagnosis, and one day will be attributed to each of the four

secondary diagnoses. Allocation of number of readmissions is conducted in the same manner. In

the literature, there is no consensus on how to allocate among multiple disease conditions [51]. The

adopted allocation ensures that for each visit, the primary diagnosis dominates and all comorbidity

conditions contribute equally.

After LOS and number of readmissions are defined for each inpatient treatment episode and

allocated to each diagnosis, for each subject and each CCS disease, LOS and number of readmis-

sions are summed over all inpatient treatment episodes within the study period. To accommodate

the zero-inflation nature of data, we introduce a pseudo outcome, which is a binary indicator of

treatment presence. As such, the resulted analysis datasets contain three n× p matrices, where n

is the number of study subjects and p is the number of CCS diseases. The ij-th entry in each of

the three matrices represents treatment presence indicator (binary), total LOS (continuous), and

total number of readmissions (count), respectively, for subject i and disease j.

3.2.2 Data summary

To have an overview of the analyzed data and diseases, Figure 3.2a shows the top 10 diseases with

the highest prevalence (population percentage of subjects who had clinical treatments), Figure 3.2b

shows the top 10 diseases with the highest average LOS among subjects with clinical treatments,

and Figure 3.2c shows the top 10 diseases with the highest average number of readmissions among

subjects with clinical treatments. The three plots include both overall (summarized over nine years)

and yearly values. Prevalence, LOS, and number of readmissions depict from different perspectives

the medical burden from hospitalization. From Figure 3.2, all diseases on the top 10 lists are

well-known common diseases for the elderly population. It is also observed that chronic conditions

tend to have higher prevalence, and acute conditions tend to have higher LOS and number of

readmissions. While the top 10 lists for LOS and readmission are more similar to each other,

congestive heart failure; nonhypertensive is the only condition that ranks in the top 10 for all

three outcomes. Temporal variations are also clearly observed. For both LOS and number of
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readmissions, a decreasing trend is clearly shown in Figure 3.2b and 3.2c, respectively.

As discussed in Section 1, although limited to a few pre-selected and closely related diseases,

interconnections between LOS and readmission among multiple diseases have been noted in the

literature [22, 23]. In Figure 3.3, we showcase the marginal and joint distributions of LOS and

number of readmissions of two common diseases: essential hypertension and disorders of lipid

metabolism. In all four scatter plots, the nonparametric fit (blue line) clearly shows a positive

correlation. In addition, from the marginal distributions, the zero-inflation nature and skewness

of data are obvious. Following the literature [11], we conduct marginal logarithm transformations

for non-zero LOS data entries. Here we note that the original LOS measurements are count data.

However, with the splitting between the primary and secondary diagnoses and summarizing over

the nine years of study period, it is reasonable to model LOS as continuous distributions. Figure

3.4 shows the distributions of non-zero LOS data before and after transformation for essential

hypertension, disorders of lipid metabolism, and other inflammatory condition of skin. Other

inflammatory condition of skin is included as an example of rare diseases. From Figure 3.4 and

other alike (omitted here), we conclude that, although there may still be slight skewness after

transformation, normality can be reasonably assumed. We model the number of readmission data

as zero-inflated count data, and no data transformation is applied.

3.3 Methods

This article aims to construct an undirected (i.e., no causal relationship between diseases) clinical

treatment HDN that each node represents one disease and two nodes are linked with an edge if

they are associated with correlated LOS or number of readmissions. Methods for learning the struc-

ture of undirected networks can be broadly categorized into methods based on unconditional and

conditional associations among variables. Most existing HDN analysis evaluates unconditional re-

lationships such that when determining whether two diseases are interconnected, the other diseases

are “ignored.” For example, the phenotypic HDN by Jiang et al. [28] employed the φ-correlation

to evaluate unconditional pairwise relationships between phenotypes of two diseases. The clinical

treatment HDN by Ma et al. [31] used a two-part model for the marginal distribution of zero-

inflated medical payments data and a copula-based approach to identify unconditional pairwise
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(a) Prevalence

(b) Average LOS

(c) Average number of readmissions

Figure 3.2: Top 10 diseases with the highest prevalence, average LOS, and average number of
readmissions
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Figure 3.3: Joint and marginal distributions

relationships between the medical payments of two diseases. Considering that unconditional as-

sociations cannot distinguish between direct and indirect relationships, here we aim to conduct

conditional network analysis, by which the interconnection relationship of two diseases is evaluated

conditioning on all other diseases. As established in the literature [56], conditional networks can

be more informative but more challenging.

In the literature, graphical models are widely used for deriving conditional dependence in net-

work analysis. A graphical model is associated with a graph G = (V ;E), where the node set V =

{1, ..., d} represents the variables of interest, and the edge set E ⊆ V ×V encodes the corresponding

conditional dependence relationships for the node set V . Let nb(v) = {w ∈ V : {w, v} ∈ E} be the

neighbors of node v ∈ V . Then if node u /∈ nb(v), Xv and Xu (measurements of node v and u), are

conditionally independent given other variables in the graph. That is:

(u, v) /∈ E iff u ⊥ v|V/u, v.

This is the pairwise Markov property [81], and graph satisfying this property is called conditional

independence graph (CIG).

A CIG is a set of multivariate joint distributions that depicts conditional independence relation-
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Figure 3.4: Distributions of non-zero LOS data before and after transformation

ships. It is advantageous in terms of its good interpretability and visualization capability. There are

various approaches to estimate the structure of a CIG. When the dimension of the feature space

is high, an efficient and popular method is developed on LASSO [81]. Through estimating the

structure of the conditional distribution of each node given others in the graph, the overall graph

structure could be obtained based on the neighborhood of each node. As such, the estimation

could be viewed as a series of variable selection tasks. This is the so-called neighbourhood selection

method. Meinshausen and Buhlmann [81] proposed this idea for the Gaussian Graphical Model,

and Ravikumar et al. [82] extended the application to binary data, wherein the neighborhood of

each node can be estimated independently via linear models or logistic models. Allen and Liu [83]

then used log-linear regressions to estimate the CIG of count data. Efforts has been made to ac-

commodate more data types. For example, Yang et al. [57] employed generalized linear models

(GLMs), and Voorman et al. [58] used penalized generalized additive models for avoiding strict

data assumptions. However, a careful examination shows that when we have multiple information

sources (e.g, multiple outcomes, in our case, LOS and number of readmissions), none of the ex-

isting methods is directly applicable. Herein, we propose a shared CIG that can incorporate all

information available.
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3.3.1 Modeling

To jointly analyze multiple outcomes of different data types and to accommodate zero-inflation,

our method is developed based on the integrative analysis of GLMs. Integrative analysis jointly

analyzes a set of models with similar model structures and closely related response variables. By

assuming model structures to be similar but not completely equivalent, integrative analysis can

detect heterogeneity and utilize information across various data sets, thus lead to more reliable

estimations [84]. We propose an integrative analysis of GLMs, which can accommodate various

data types thus have strong versatility. Let d be the number of diseases, p be the number of

outcomes, and y(k) = (y
(k)
1 , ..., y

(k)
d )T (k = 1, ..., p) be the observed values for the k − th outcome.

Consider the conditional distribution of the k − th outcome of disease j, given all other diseases,

belongs to the exponential family:

p(y
(k)
j |y−j) = Ck(y

(k)
j )exp[θ

(k)
j y

(k)
j − bk(y

(k)
j )], j = 1, ..., d and k = 1, ..., p,

where θ
(k)
j is the natural parameter, and bk(y

(k)
j ) is a know function. From the properties of

exponential family, it can be shown that µ
y
(k)
j

= E(y
(k)
j |y−j) = ḃk(y

(k)
j ), with ḃk being the first

derivative of bk.

To further model the zero-inflation, we employ the idea of two-part models [11] and introduce

a pseudo outcome y(0) = (y
(0)
1 , ..., y

(0)
d )T with each element being a binary indicator of treatment

presence of the corresponding disease. Then for disease j, the k − th outcome value is conditional

on the pseudo outcome in a sense that:

p(y
(k)
j |y

(0)
j = 0,y−j) = 0

p(y
(k)
j |y

(0)
j = 1,y−j) = Ck(y

(k)
j )exp[θ

(k)
j y

(k)
j − bk(y

(k)
j )]

, j = 1, ..., d and k = 0, ..., p.

Since elements in y(k) are very closely related, to capture the connectivity between them, we

assume their GLMs share similar model structures. Let lj =
∑d

k=0 y
(k)
−j

T
β
(k)
j , we define the link

function as:

gk(µy(k)j

) = α
(k)
j + τ

(k)
j lj , j = 1, ..., d, k = 0, ..., p, and τ

(0)
j = 1,
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where α
(k)
j , β

(k)
j , and τ

(k)
j are the parameters to be estimated. Note that the GLMs for different

outcomes of the same disease are also integrated with similar model structures. That is, except for

the intercepts, we let the linear predictors be proportional and controlled by the parameter τ
(k)
j .

Assume that gk is the natural link (i.e., gk = ḃk
−1

) and θ
(k)
j = u(gk(µy(k)j

)). Since µ
y
(k)
j

=

ḃk(θ
(k)
j ), it can be shown that u(t) = ḃk

−1
(g−1(t)) = t. Also assume that Y

(0)
j |Y−j ∼ Bernoulli(pj).

Then the log-likelihood of disease j can be derived as:

Lj(αj ,βj , τ j ,Y) =−
n∑
i=1

log[1 + exp(α
(0)
j + lij)]+

n∑
i=1

y
(0)
ij [α

(0)
j + lij +

p∑
k=1

y
(k)
ij (α

(k)
j + τ

(k)
j lij)− bk(α

(k)
j + τ

(k)
j lij)],

where n is the number of subjects.

This article aims is to jointly analyze LOS and number of readmissions. Therefore, we have

d = 2. Let y(0), y(1), and y(2) be values of treatment presence indicator, LOS, and number of

readmissions, respectively. With the assumptions that:

Y
(0)
j |Y

(0)
−j ,Y

(1)
−j ,Y

(2)
−j ∼ Bernoulli(pj),

Y
(1)
j |Y

(0)
j = 1,Y

(0)
−j ,Y

(1)
−j ,Y

(2)
−j ∼ N(µj , σj),

Y
(2)
j |Y

(0)
j = 1,Y

(0)
−j ,Y

(1)
−j ,Y

(2)
−j ∼ Poisson(λj),

we have the link functions for each outcome as:

log(
pj

1− pj
) = α

(0)
j + lj ,

µj = α
(1)
j + τ

(1)
j lj ,

log(λj) = α
(2)
j + τ

(2)
j lj ,
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respectively. Then the log-likelihood can be derived as:

Lj(αj ,βj , τ j ,Y) =−
n∑
i=1

log[1 + exp(α
(0)
j + lij)]+

n∑
i=1

y
(0)
ij [α

(0)
j + lij + y

(1)
ij (α

(1)
j + τ

(1)
j lij)−

σ2j
2

(α
(1)
j + τ

(1)
j lij)

2+

y
(2)
ij (α

(2)
j + τ

(2)
j lij)− exp(α(2)

j + τ
(2)
j lij)].

3.3.2 Estimation

With the developed node-wise log-likelihood, we can estimate the structure of the conditional

dependence for each node given all others in the graph, and thereby obtain the overall graph

structure. Specifically, for a fix node j ∈ {1, ..., d}, consider the conditional distribution of Yj

given all other nodes in YM for M = {1, ..., d} \ {j}. For m ∈M, node m and node j are defined

as conditionally independent if and only if all the related interactive parameters are zeros. That is,

β
(0)
mj = β

(1)
mj = ... = β

(p)
mj = 0

Our estimation method could be viewed as a generalization of the Quasi-likelihood estimation

method. Even if the models are misspecified, consistency could still be achieved if the conditional

expectation and variance are set correctly for y(k)(k = 1, ..., p).

When analyzing disease interconnection relationships at a pan-disease level, it is reasonable to

assume that not all disease are correlated. Therefore, we propose a sparse estimation such that the

estimated network is sparse and interpretable. Here we employ a group LASSO penalty for sparse

estimation, as it has been well established and widely used in HDN analysis [56, 77]. For m ∈M,

define the parameter vector θm = (β
(0)
mj , β

(1)
mj , ..., β

(p)
mj)

T . As established, Yj ⊥⊥ Ym|YM\{m} if and

only if θm = 0, thus we want the elements of θm to be all zeros or non-zeros at the same time.

To guarantee the uniformity of graph structure, we apply a group LASSO penalty and propose the

penalized objective function:

min
αj ,βj ,τ j

−Lj(αj ,βj , τ j ,Y) + λ
∑
m6=j
||θm||2,
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where λ is the tuning parameter controlling penalty strength and is selected data dependently using

cross validation.

Define the parameter vector ψ = (αj ,βj , τ j)
T . It can be observed that the penalized ob-

jective function is a sum of a differentiable convex function g(ψ) = −Lj(αj ,βj , τ j ,Y) and a

non-differentiable convex function h(ψ) = λ
∑

m6=j ||θm||2. Given the structure of the penalized

objective function, it can be optimized using the proximal gradient descent technique, which has

been largely used in other network studies [61, 77]. Specifically, the proximity operator for ψ is

defined as:

proxh,t(ψ) = arg min
x

1

2t
‖ψ − x‖22 + h(ψ),

where t is the step size. Then the update rule can be described as

ψk+1 = proxh,tk(ψk − tk∇g(ψk)).

The optimum could be achieved by finding the solution ψ? of:

ψ = proxh,tk(ψ − tk∇g(ψ)).

Thus the algorithm terminates when ψk+1 is very close to ψk, i.e., |ψk+1 − ψk| < ε, with ε being

a prespecified threshold.

Since h(ψ) only involves βj , the gradient descent algorithm could be used for updating αj and

τ j . Set φ(θkm) = θkm − tk∂g(θ). For θm(m 6= j) , the detailed update rule is:

θk+1
m =

0, if ||φ(θkm)|| ≤ tkλ
(||φ(θkm)||−tkλ)φ(θkm)

||φ(θkm)|| , if ||φ(θkm)|| > tkλ

For node j = 1, ..., d, the gradient of the log-likelihood g(ψ) = −Lj(αj ,βj , τ j ,Y) with respect

to ψ can be easily calculated with the chain rule. As such, the neighborhood selection procedure

based on proximal gradient descent can be performed for each node, and the overall graph structure

can thus be estimated. Pseudocode are presented in Algorithm 1.
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Algorithm 1 Neighborhood selection algorithm

Input:
Data sets Y;
Tuning parameter λ;
Threshold ε;

Output:
θm(m 6= j, j = 1, ..., p);

1: for j = 1, ..., p do
2: k = 0;
3: Initialize /ψ0;
4: loop
5: Calculate ∂g(ψk);
6: αk+1

j = αkj − tk∂g(αkj );

7: τ k+1
j = τ kj − tk∂g(τ kj );

8: θk+1
m =


0, ||φ(θkm)|| ≤ tkλ

(||φ(θkm)|| − tkλ)φ(θkm)

||φ(θkm)||
, ||φ(θkm)|| > tkλ

;

9: EXIT WHEN |ψk−1 −ψk| < ε
10: k = k + 1
11: end loop
12: return θm(m 6= j);
13: end for

3.3.3 Analysis of network properties

With the graphical model developed in Section 3.3.1 and parameter estimations obtained in Section

3.3.2, we can construct and visualize the desired clinical treatment HDN. In addition, key proper-

ties such as adjacency, connectivity, and module/hub are summarized [56, 63]. Analysis of theses

properties can provide more meaningful interpretations of the network than model parameters only.

Similar analysis has been conducted in the prior phenotypic and clinical treatment HDNs [28,31,77].

Adjacency matrix Elements in the d × d adjacency matrix describe pairwise conditional indepen-

dence, which indicates whether an edge exists between two nodes. In our model, since conditional

independence structure is estimated separately for each node, we conclude conditional indepen-

dence between two diseases i and j if and only if all ij interactive parameters are zeros. That is,

β
(0)
ij = ... = β

(p)
ij = β

(0)
ji = ... = β

(p)
ij = 0. In our case, with p = 2, the adjacency matrix A = [aij ] is
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defined as

aij =

0, if β̂
(0)
ij < τ & β̂

(1)
ij < τ & β̂

(2)
ij < τ & β̂

(0)
ji < τ & β̂

(1)
ji < τ & β̂

(2)
ji < τ

1, otherwise

where a threshold τ is imposed to further remove spurious small interconnections and generate more

interpretable results. τ can be determined data-dependently (for example, using cross validation)

or based on the specific contexts.

Connectivity To what extent one node is connected with other is defined as connectivity. For node

(disease) j ∈ {1, ..., d}, its connectivity is defined as

Kj =
∑
i 6=j

aij .

Since higher connectivity means higher overall impact in a network sense, the importance of nodes

with high connectivity is emphasized in many network analysis including the HDNs [28,31].

Module Network modules, also been referred to as network communities or clusters in some stud-

ies, consist of tightly interconnected nodes. There are many approaches in module construction.

Here we adopt the topological overlap matrix (TOM) based method [63] because of its lucid inter-

pretability. The ij-th element of TOM is defined as

TOMij =
lij + aij

minKiKj + 1− aij
,

where lij =
∑

u aiuauj measures how many neighbors that nodes i and j share. Accordingly, dis-

similarity matrix, which is defined as dissTOM = 1-TOM, measures the dissimilarity of any pairs

of diseases. Based on dissTOM, modules can then be constructed by hierarchical clustering with

a dynamic tree cutting approach [63]. By definition, diseases within the same module tend to

behave similarly in terms of the outcomes measured, and diseases from different module are rela-

tively weakly connected. Therefore, module analysis provides fundamental information in disease

characterization and classification. After module construction, a node’s intramodular connectivity,

is measured as its connectivity limited to the module it belongs to. Diseases with the highest

intramodular connectivity are referred as the hub diseases. These diseases have a higher impact
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within the module it belongs to.

3.4 Data analysis

Analyzing the Medicare inpatient data from January 2010 to December 2008, the constructed

clinical treatment HDN on LOS and readmission is visualized using Gephi and presented in Figure

3.5. In the graph, each node represents one CCS disease. Two nodes are linked with a line if

they are determined to be interconnected under the framework developed in Section 3.3. The

node size is proportional to its connectivity, and the node color represents its module membership.

There are 106 nodes linked with 1,008 edges and clustered into 9 modules. The network is highly-

interconnected, with every node connected to at least one other. Similar network visualization is

also conducted for each year within the study period and is provided in Appendix B.2.

Figure 3.5: LOS and readmission HDN for the period of January 2010 to December 2018

3.4.1 Connectivity

Figure 3.6 shows the top ten diseases with the highest connectivity. Both overall and yearly values

are provided. Comparing Figure 3.6 to Figure 3.2, diseases with high prevalence tend to have high

connectivity. All diseases in Figure 3.6, except for thyroid disorders, also appear in Figure 3.2a.
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On the contrary, the relationship between disease rank in connectivity and average LOS/number

of readmissions is not apparent. All diseases with high average LOS and number of readmissions

do not appear to have a high connectivity. This finding may provide critical insights into future

policymaking since existing interventions generally focus on individual conditions with outstanding

LOS and readmission rates. For example, in March 2010, the Affordable Care Act established the

Hospital Readmissions Reduction Program (HRRP) to incentivize hospitals to reduce readmissions

among Medicare beneficiaries. Starting in October 2012, the program began to penalize general

acute care hospitals with high risk-adjusted 30-day readmission rates for three target conditions:

AMI, heart failure, and pneumonia. The target conditions are well known to have high readmission

rates, which is also confirmed in Figure 3.2c. However, our network analysis shows that they do not

have a high connectivity in terms of LOS and readmission, even in years before the implementation

of HRRP. Since conditions with higher connectivity values have a higher overall impact within the

network system, it may be necessary for interventions like the HRRP to target diseases shown in

Figure 3.6.

Figure 3.6: Top 10 diseases with the highest overall and yearly connectivity

3.4.2 Module

As shown in Figure 3.5, there are 9 modules whose size ranges from 5 to 20. Modules consist of a

group of diseases that are closely interconnected with each other. Module analysis provides essential

information for disease characterization and classification. An enrichment analysis shows that the

9 modules are enriched with the following diseases: cardiovascular and metabolic diseases (purple),

acute conditions with bad prognosis (green), obstinate and recurrent disorders (blue), controllable
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chronic disorders (orange), secondary diseases and complications (yellow); digestive system dis-

eases (vermeil), genitourinary system diseases (champagne), cerebrovascular disease (brown), and

residual disease (gray), respectively. Widely used classifications of diseases are generally based

on 1) bodily region or system, 2) function or effect, 3) disease pathology, and 4) disease etiology.

Significantly different from existing standards, our analysis provides an alternative way of disease

characterization and classification from a treatment point of view. For example, the green, blue,

and orange modules each contains diseases of various body systems. These diseases have a relatively

long distance considering disease pathology and etiology. However, they share common characteris-

tics in clinical treatments. Precisely, the green module consists of severe and acute conditions that

require immediate treatments. These diseases generally have a poor prognosis, which would result

in prolonged LOS and high readmission rates. The blue module is enriched with chronic conditions

which are usually incurable and require repeated treatments. The orange module contains control-

lable chronic diseases, which do not require extensive inpatient treatments and are often handled

with outpatient treatments and drug refillings.

3.4.3 Hub

Hub diseases are those with the highest intramodular connectivity. For each module, the hub

diseases are: disorders of lipid metabolism and essential hypertension (purple), fluid and electrolyte

disorders (green), chronic kidney disease (blue), esophageal disorders (orange), septicemia (yellow);

deficiency and other anemia (vermeil), hyperplasia of prostate and other diseases of kidney and

ureters (champagne), paralysis (brown), and pneumonia (gray), respectively. It is noted that overall

connectivity and intramodular connectivity describe the importance of diseases from two different

aspects. For example, hyperplasia of prostate, as the hub disease for the module (champagne) of

genitourinary diseases, has a low overall connectivity but a high intramodular connectivity. This is

expected since disorders of the genitourinary system are relatively independent in incidence, most

of which are not significantly related to disorders of other systems [85]. A further literature search

reveals that, while age and sex hormones are two important risk factors, the etiology of prostate

hyperplasia has not been well established [86]. A closer examination of disease interconnected with

prostate hyperplasia may provide additional insights and also suggest potential future research

directions.
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3.4.4 Temporal variation

Following the literature [27, 28, 77], we examine the temporal variations of network structure by

repeating the above analysis for each year from 2010 to 2018. We select an independent random

sample of 100,000 subjects for each year. The independent sampling ensures that the select sample

represents cohort characteristics for the corresponding year.

Connectivity Temporal variations in connectivity are apparent, as shown in Figure 3.6. Except for

disorders of lipid metabolism and essential hypertension, which have continuously high connectivity

in all years, all other diseases show a noticeable fluctuation in connectivity across time. For example,

chronic kidney disease continuously ranks high (the third highest) in connectivity from 2011 to

2018. However, it has a lower (the eighth highest) overall connectivity due to the really low value

in year 2010. This observation indicates that examining temporal variations, especially recent year

trend, may provide valuable information that could not be obtained through an overall estimation.

Generally speaking, there is an increasing trend in connectivity for most diseases from 2010 to

2018. Contributing factors may include the improvement in healthcare accessibility and technical

advances in diagnosis and treatments. We also observe a jump in individual connectivity from

2010 to 2011. This is mainly due to the change in CMS’ electronic transaction standards that

providers use to submit Medicare claims. Starting in January 2011, institutional providers can

enter up to 25 diagnosis codes for a single claim where previously only 10 were allowed [13]. A

closer examination of the data reveals that the average number of diagnosis codes per Medicare

inpatient claims increased from 8.03 in 2010 to 13.93 in 2011. This policy change causes an increased

number of comorbidities and hence an increased connectivity. However, with the overall network

building on all claims accumulated for 9 years, it is reasonable to believe that all comorbidities

are captured. Therefore, the policy change may significantly impact yearly estimation but will not

affect the overall analysis.

Module To get insights into temporal variations in module membership, we evaluate changes in

pairwise module relationship. If two diseases belong to the same module in one year and belong to

different modules in the following year, we say their module relationship has changed. The converse

also holds true. Figure 3.7a shows the yearly percentage of disease pairs that have changed their

module relationships. There is a moderate change (20% - 30%) in pairwise module relationships
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in all years. The biggest change happens in year 2011, which is possibly also due to the change in

CMS’ electronic transaction standards mentioned above.

(a) Yearly changes in disease module relationships

(b) Modules that contain AMI in 2011 (left) and 2013 (right)

Figure 3.7: Temporal variations of module structure

To have a closer look at how module structures could change, Figure 3.7b shows the modules

that AMI (ccs100) belongs to in 2011 and 2013. Diseases colored in purple are shared diseases in

both years, and those colored in pink appear only in one of the two years. As one of the most

common conditions in older adults, AMI is known to be associated with high medical expenses and

poor prognosis. This is also confirmed in Figure 3.2b and 3.2c, where AMI has the second highest

average LOS and average number of readmissions. For this reason, it is one of the three initial

target conditions of HRRP, which aims to incentivize healthcare providers to reduce readmissions.

The program went effective in October 2012 and resulted in a reduction in unadjusted readmission

rates from 18.9% to 16.0% for AMI [87]. Therefore, we expect a noticeable change in the module

structure containing AMI before and after the implementation of the HRRP. As shown in Figure

3.7b, the module containing AMI has 26 conditionals in 2011 and 16 conditions in 2013. For

both years, AMI is highly interconnected with other cardiovascular diseases, including coronary
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atherosclerosis and other heart disease (ccs101), congestive heart failure; nonhypertensive (ccs108),

and peripheral and visceral atherosclerosis (ccs114). Fore year 2011, it is clustered with more

diverse disorders, mainly secondary diseases and complications. Given the high prevalence and

intensive treatments for AMI, this observation is very reasonable. However, for year 2013, with a

significant decrease in readmission rates after implementing HRRP, AMI is no long clustered with

various secondary diseases and complications. Instead, the module in 2013 include more heart-

related conditions, including pulmonary heart disease (ccs103), cardiac dysrhythmias (ccs106), and

heart valve disorders (ccs96).

3.4.5 Sensitivity analysis

In data preparation, we allocate 60% of outcome measures (i.e., LOS and number of readmissions)

to the primary diagnosis code and the rest 40% evenly to all secondary diagnosis codes. This

allocation ensures that the primary diagnosis dominates and all secondary diagnoses contribute

evenly. To learn about the impact of this allocation approach on network structure, we conduct

sensitivity analysis, in which we allocate 70% of outcome measures to the primary diagnosis and the

rest 30% evenly to all secondary diagnoses. The above analysis in network structure and properties

is repeated using combined data for the whole study period, and only ignorable differences are

observed (details omitted and available from the authors).

3.4.6 Comparison to the LOS HDN

Comparing to the LOS HDN constructed in Chapter 2, the network incorporating both LOS and

readmission has a similar structure. Specifically, both networks are highly interconnected with a

comparable level of sparsity. High connectivity and hub diseases such as essential hypertension,

disorders of lipid metabolism, and fluid and electrolyte disorders are consistently identified. Com-

paring Figure 2.6 with Figure 3.6, chronic kidney disease and diabetes mellitus without complication

are the only two diseases that appear on the top 10 connectivity lists for the LOS and readmission

HDN but not on that for the LOS HDN. Moreover, the jump in connectivity from 2010 to 2011

due to the change in CMS’ electronic transaction standards are also captured by both networks.

Despite the similarities, the two networks are different in several ways. Comparing Figure 2.5 with

Figure 3.5, in the LOS and readmission HDN, there are several really big nodes with more number
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of small sized nodes on the periphery of the network. This means that central diseases are intercon-

nected with a larger number of other disease and are better recognized when adding readmission

to the network construction. Moreover, modules constructed in Chapter 2 have more traditional

interpretations in terms of bodily system, disease pathology, and disease etiology. Analyzing both

LOS and readmission, modules constructed in this chapter consist of similar diseases from a treat-

ment perspective. The yearly changes in pairwise module relationships are also observed to be

higher in the network on LOS and readmission, compared to that on LOS only. These deviations

are attributable to different outcomes evaluated and different modeling approaches utilized.

3.5 Simulation

Simulation is conducted to learn about performance of the proposed modeling and estimation

approach. For simulated datasets, we consider a variety of settings with different graph theories

(e.g., dependency network and star graph) and sparsity levels.

A dependency network [88] could be viewed as a mechanism for combining regression/classification

models via Gibbs sampler to define a joint distribution. For example, in Bayesian network, joint

distributions are defined using the product of local distributions. In our simulations, to generalize

multiple interconnected data sets, integrated generalized linear models developed in section 3.3.1

are used here to define local distributions. For βj (j = 1, ..., p), we construct three interactive ma-

trices M(β(0)), M(β(1)) and M(β(2)), indicating parameters in β(0),β(1), andβ(2), respectively.

Noting that the diagonal elements have no actual impact, we set them to be 1 for convenience. We

assume that the interactive matrices have a diagonal structure, a banded structures, or an expo-

nential attenuation structure. For the banded structure, the numbers of nonzero diagonals depend

on a prespecified sparsity levels. For example, a 1.5% sparsity level results in a band width of three

(i.e., a tri-diagonal matrix), and a 5% sparsity level results in a band width of seven. Non-zero

elements in matrices with a banded structure are set to be 0.1 or 0.5. For the exponential attenu-

ation structure, we consider an attenuation factor of 0.5. We also impose blocks on the interactive

matrices, such that nodes in different blocks are conditionally independent.

A star graph [82] consists of sets of mutually independent nodes linked to one seed nodes (i.e.,

a tree with one internal node and leaves). In the simulated data sets, we distributed the variables
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equally based on the number of seeds. For example, if there are 5 seed nodes and 100 variables in

total, we split the variables evenly into 5 groups with one seed per group. Again, the number of

leaves in each group depends on a prespecified sparsity levels. For example, if the sparsity level

is 0.5, then the seed node is expected to be linked with half of other nodes in its group. With

exact sampling, data sets are sampled from models developed in section 3.3.1. β in each model are

randomly generated from N(0, 0.25).

Detailed simulation settings are described in Table 3.1. Coefficients other than β are randomly

generated from prespecified distributions, which are presented in Table 3.2. To reduce computation

burden, we fix the sample size as 10,000 and the node size as 100. We note that for real data analysis,

a much larger sample size is used for a similar number of nodes, hence more reliable estimation is

expected.

Dependency network

1 M(β(0)) has a banded structure with sparsity level 1.5%; M(β(1)) and M(β(2) are diagonal

2 M(β(0)), M(β(1)) and M(β(2)) all have a banded structure with sparsity level 1.5%

3 M(β(0)) has an exponential attenuation structure; M(β(1)) and M(β(2)) are diagonal

4 M(β(0)), M(β(1)) and M(β(2)) all have exponential attenuation structure

5 M(β(0)) has a banded structure with sparsity level 5%; M(β(1)) and M(β(2)) are diagonal

6 M(β(0)), M(β(1)) and M(β(2)) all have banded structure with sparsity level 5%
7-10 Five blocks of settings 3-6, respectively

Star graph

11 One seed with a sparsity level of 0.7
12 Five seed with a sparsity level is 0.5
13 Five seed with a sparsity level is 0.7
14 Ten seed with a sparsity level is 0.7

Table 3.1: Simulation settings

α for seeds in star graph N(0, 0.25)
α for dependency network and non-seeds in star graph N(0, 1)
τ N(1, 0.01)
σ2 1

Table 3.2: Coefficient generation

To gain more insights into the relative performance of our approach compared to two alter-

native approaches, we compute and compare the area under the receiver operating characteristic

curve (AUC) using different methods. The first alternative approach conducts a regression analysis

separately for each of the three outcomes: treatment presence, LOS, and number of readmissions.
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Estimated coefficients indicate conditional pairwise relationship considering a single outcome. Con-

ditional independence is then concluded between two diseases if the corresponding coefficients in

all three models are estimated to be zero. The second alternative approach computes the uncon-

ditional pairwise Spearman correlation for measures of all three outcomes as a vector. For each

setting, 100 replicates are simulated. In network analysis, the key is to accurately identify edges.

In Table 3.3, we summarize the mean AUC and corresponding standard deviation, which shows

that the proposed approach outperforms the two alternative approaches in all 14 settings. The

simulation results provide strong confidence in the validity of our findings.

Setting Proposed Alternative1 Alternative2

1 94.61% (0.03) 87.81% (0.09) 85.90% (0.10)
2 96.50% (0.02) 85.86% (0.06) 83.00% (0.07)
3 94.75% (0.02) 89.24% (0.03) 87.13% (0.04)
4 94.99% (0.02) 85.44% (0.04) 81.12% (0.06)
5 95.40% (0.01) 95.03% (0.02) 91.48% (0.04)
6 87.11% (0.05) 79.94% (0.06) 67.70% (0.06)
7 94.53% (0.02) 86.77% (0.04) 85.40% (0.05)
8 93.14% (0.03) 81.57% (0.03) 76.83% (0.04)
9 94.88% (0.03) 92.35% (0.03) 88.20% (0.03)
10 87.96% (0.07) 81.86% (0.06) 73.10% (0.06)
11 84.90% (0.02) 76.48% (0.02) 81.42% (0.02)
12 94.17% (0.01) 72.14% (0.02) 78.54% (0.03)
13 83.43% (0.03) 77.80% (0.02) 80.14% (0.02)
14 86.90% (0.02) 73.59% (0.02) 79.23% (0.02)

Table 3.3: Simulation results: mean AUC (sd)

3.6 Discussion

In this article, we construct a clinical treatment HDN building on disease associated LOS and

number of readmissions. The analysis can complement the existing literature in multiple ways.

First, it complements the individual-disease and overall outcome analyses by focusing on pan-

disease level interconnections. Second, the proposed clinical treatment HDN complement existing

molecular and phenotypic HDNs by being “closer” to clinical treatments and thus having a higher

practical value. Third, the network analysis on LOS and readmission complements existing clinical

treatment HDNs (e.g., medical costs HDN by Ma et al. [31] and LOS HDN by Mei et al. [77])

by incorporating multiple outcomes. As discussed in Section 3.1, outcome analysis has important
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implication for evaluating and improving healthcare quality and efficiancy, as well as infomatively

reflect intrinsic disease properties. The proposed analysis on LOS and readmission can foster a

better understanding of disease interconnections in term of healthcare outcomes, provide insights

into a better disease management, and guide a more efficient allocation of hospital beds and other

resources. In addition, the novel analytic approach developed for constructing a high-dimensional

and conditional network using zero-inflated data may further complex network analysis.

This article has certain limitations. Due to limited data access, we focus on inpatient treatment

only. Although inpatient treatment deals with the most serious diseases and consumes the most

healthcare resources, it is only part of the healthcare system for the Medicare beneficiaries. In

addition, LOS and readmission only describe part of the medical burden from inpatient treatment.

With more data, it would be of interest to expand the analysis to incorporate other types of

treatment (e.g., outpatient treatment and drug prescription) and other outcomes (e.g., number of

office visits and medical costs). It is noted that the proposed modeling approach is regression-based

and can be easily expanded to accommodate more outcomes of different data types. In the analysis,

we examine the temporal variations in a cross-sectional manner. It is a common approach that

has been largely used in studies on temporal variations in the healthcare domain [89,90], including

existing phenotype [27, 28] and clinical treatment [31, 77] HDNs. With the consideration that we

have observed remarkable dynamics in network structures across time, it will be of interest to

develop a time-varying network framework. This will require extensive methodology development

and will be postpone to future studies. Another limitation associated with the proposed model

is that its computation is more expensive as compared to generally used unconditional models.

The graphical algorithm presented in this article deals with a large sample size, a large number of

unknown parameters, and a complex model structure. Although estimation for different nodes and

under different tuning can be run in a parallel manner to reduce computation time, for large data,

further parallelization and distributed computing should be carried out.
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Chapter 4

Comparative Effectiveness Research

via Clinical Trial Emulation and a Big

Data Approach

4.1 Testing the effectiveness and safety of rivaroxaban and dabi-

gatran for atrial fibrillation via an emulation analysis of the

Medicare data

4.1.1 Introduction

Atrial fibrillation (AF) is an abnormal heart rhythm characterized by rapid and irregular heart

chamber beatings. It affects three to six million people in the U.S. alone [91], among whom 85%

to 90% are eligible for oral anticoagulation therapies [92, 93]. As well established in the literature,

it is of great significance to properly choose among non-vitamin K antagonist oral anticoagulants

(NOACs). Rivaroxaban and dabigatran were approved by the U.S. FDA in November 2011 and

October 2010, respectively. They were the first and second NOACs marketed for preventing stroke

among people with non-valvular AF, and have been widely used since marketing. A study shows

that in 2014, they accounted for 74% NOAC prescription during AF office visits [94].

In general, to draw definitive and objective conclusions on a drug’s treatment effects, well-
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controlled randomized clinical trials are needed. There have been multiple trials comparing dabi-

gatran with Warfarin (for example, the RE-LY trial [95]) and rivaroxaban with Warfarin (for

example, the ROCKET-AF trial [96]). These trials show that both rivaroxaban and dabigatran

are non-inferior to Warfarin in preventing stroke and reducing the risk of bleeding. Recent effort

has also been made to compare rivaroxaban with dabigatran. Examples include the DARING-AF

and DANNOAC-AF studies [97,98]. However, they have limited sample sizes and broadly consider

anticoagulants without focusing on rivaroxaban against dabigatran directly.

With the high popularity of these two drugs, it is of high interest to conduct a direct and focused

comparative study. However, with the potentially high cost and the already broad usage of both

drugs, such a randomized clinical trial is not foreseeable in the near future. To tackle this problem,

we resort to the analysis of existing observational data, whose cost is negligible compared to that of

a clinical trial. For this specific comparison problem, observational data has additional advantages.

For example, it has been noted that the administration and adherence patterns of rivaroxaban and

dabigatran are different. In the existing trials, according to the drug instructions, the rivaroxaban

group took pills once a day together with an evening meal, and the dabigatran group took pills

twice daily. It has been suggested that such differences can lead to different adherence patterns,

and these differences further differ between controlled clinical trials and real-world practice [99].

From a public health perspective, real-world clinical practice, which also accommodates the effects

of behavioral factors, can be of more interest. In this perspective, observational data may more

honestly reflect the real-world treatment effects. In addition, as to be shown below, the available

observational data is also considerably larger than many clinical trials on related regimens.

With observational data, the most straightforward approach is to conduct a multivariate re-

gression analysis, as has been pursued on this topic in several publications [100–102]. It has been

well recognized that the associations observed in regression, even after controlling for confound-

ing, may not reflect the desired causal treatment effects. Causal inference with observational data

is a “classic” and broad field. The existing literature is vast and has been reviewed in multiple

publications. For relevant discussions, we refer to Hernan and Robins [36] and references therein.

It is noted that different approaches have different advantages and disadvantages, and that there

is no dominating approach. In this study, we adopt the emulation approach [37], which has been

developed through a series of publications on a variety of illness conditions and treatment strate-
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gies [103–106]. Under emulation, clinical trials are explicitly assembled using observational data,

and statistical techniques for randomized clinical trials can be directly applied. As such, compared

to causal inference techniques such as TMLE [34] and BART [35], emulation can have much more

lucid interpretations.

In this article, our goal is to conduct a direct comparison of rivaroxaban and dabigatran and

draw more definitive conclusions on their relative treatment effects, which can potentially have high

public health implications. Without an actual clinical trial, we analyze the observational data in

Medicare. This database has been chosen because of its broad coverage (hence more power and

a better reflection of the general population in the U.S.) and high data quality. In addition, AF

and the utilization of rivaroxaban and dabigatran can be much more prevalent in the Medicare

population than others. This study may advance the existing literature in multiple aspects. First,

it focuses on rivaroxaban and dabigatran and targets at conducting a direct comparison. Second,

it adopts the emulation approach to explicitly “assemble” a clinical trial using observational data.

The conclusion so drawn can be more informative than those from regression analysis and more

lucid/interpretable than those using some other causal inference techniques. Third, it showcases a

new way of analyzing the Medicare data to better inform clinical practice. Last, it also marks a new

application of the emulation technique. In addition, we also examine temporal variations, which

have been largely neglected in published emulation studies. Overall, this study may provide a useful

complement to the existing AF, clinical trial, emulation, and Medicare data analysis literature.

4.1.2 Data source and study population

Medicare is a national health insurance program in the U.S. The Medicare claims are bills for

services provided to the Medicare beneficiaries: adults aged 65 years and above, certain younger

people with disabilities, and people with end-stage renal diseases [2]. Data analyzed in this study

is extracted from the Centers for Medicare & Medicaid Services (CMS) Chronic Conditions Data

Warehouse (CCW). The CMS CCW offers a wide range of claims data that follows beneficiaries

across multiple care settings. For our analysis particularly, the Part A inpatient data and Part D

prescription drug event data are used to identify eligible study subjects (more details in Section

4.1.3). The Medicare beneficiary identification number is used to link beneficiaries between the two

datasets.
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Our study focuses on the subpopulation with multiple chronic conditions (MCCs). This sub-

population has also been studied for cardiometabolic conditions [107, 108] and diabetes [109, 110],

among others. Health-wise, this subpopulation is more vulnerable. In particular, 80% of AF

happens to patients 65 years old and above [91], and AF is often associated with MCCs such as

diabetes, dementia, and other heart diseases [92]. We further limit our study period to 2012-2013.

The consideration is that by early 2012, both drugs were already extensively used (as such, a large

sample size/sufficient power and broad representativeness can be achieved). A two-year study pe-

riod is “normal” for a real phase III clinical trial. In addition, sufficiently detailed drug utilization

information after 2013 is unavailable to our study. As such, we are unable to determine drug con-

tinuation or switch afterward. Overall, the source population includes 35,758,327 subjects (before

patient selection), among whom 179,510 had taken rivaroxaban or dabigatran during the study

period (more details in Section 4.1.3).

4.1.3 Methods

As established in the literature [37], under the emulation analysis framework, the first step is to

develop a randomized clinical trial protocol. The trial can be a real one, a “hypothetical” one, or

a mixture of both. Then an observational data analysis protocol is developed to emulate this trial.

Accordingly, in section the targeted randomized clinical trial, we first develop the trial protocol.

As there is no existing trial that directly compares rivaroxaban and dabigatran, our design has

been based on relevant trials particularly including the RELY and ROCKET-AF trials as well as

observational data analysis [111,112]. The emulated trial is designed in section the emulated trial,

with its analysis approaches described in section analysis of the emulated trial.

The targeted randomized clinical trial

The goal of the randomized clinical trial is to compare effectiveness (prevention of stroke and other

thromboembolic events) and safety (bleeding and mortality) between standard-dose rivaroxaban

and dabigatran in patients with both non-valvular AF and MCCs.

The first step is to define the inclusion/exclusion criteria. The target trial enrolls participants 65

years old and above, who are diagnosed with non-valvular AF within three months before enrollment

and have MCCs. A participant is excluded if one or more of the following criteria are met: 1) a
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prescription of an anticoagulant within three months before study entry, which may increase the

risk of bleeding; 2) a NOAC preference different from the tested drugs; 3) indications other than

AF for the respective anticoagulant (mitral valve disease, heart valve repair or replacement, deep

vein thrombosis, pulmonary embolism, or joint replacement) in the three months preceding study

entry; 4) being in a skilled nursing facility, receiving hospice care, or being in hospitalization; and

5) having had a kidney transplant or undergoing dialysis.

The trial starts on 01/01/2012. A three-month washout period is adopted with the consid-

eration that anticoagulants used in AF are usually prescribed in 30-day or 90-day cycles. This

ensures that there would be no previous usage of anticoagulants that potentially influence our out-

comes of interest. The trial closes on 12/31/2013. An overall two-year study period is normal for

peer cardiovascular trials. To gain insights into potential temporal variations (which have been

largely neglected in both real and emulated trials), we further dissect the 21-month study period

into three equal intervals. As such, there are a total of three trials, each with a seven-month re-

cruitment period. As the whole study terminates on 12/31/2013, the three trials have different

lengths of follow-up, which may provide insights into the impact of follow-up length on clinical trial

observations.

After recruitment, an eligible participant is randomly assigned to one of two treatment arms.

One arm receives rivaroxaban 20 mg once daily, and the other arm receives dabigatran 150 mg twice

daily. Each participant is followed until death, loss to follow-up, or end of the study (12/31/2013).

A loss to follow-up is defined as a discontinuation of treatment (a gap in the assigned treatment

for over 60 days) or switching NOAC or dosage, whichever occurs first.

The primary outcomes include time to ischemic stroke, other thromboembolic events (systemic

embolism, transient ischemic attack, pulmonary embolism), major bleeding, all-cause death, and

the first occurrence of any of the above. The secondary outcomes include time to any bleeding and

acute myocardial infarction (AMI).

The emulated trial

The emulated trial has been designed largely in line with that described above. More specifically,

we first identify Medicare beneficiaries who filed the first prescription for either rivaroxaban or dabi-

gatran with the standard dosages between 04/01/2012 and 12/31/2013. We start from 04/01/2012
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to ensure participants’ three-month medical history is available to determine whether the washout

period eligibility is satisfied. We define the first prescription date as the index date. We include

only individuals who were 65 years old or above, had at least three months of continuous enroll-

ment in Medicare, and had MCCs. We exclude a subject if one or more of the following criteria

are met: 1) a prescription of an anticoagulant within three months before the index date (has not

been washed-out); 2) a diagnosis indicating a potential alternative indication other than AF for

anticoagulation within three months before the index date; 3) being in a skilled nursing facility,

receiving hospice care, or being in hospitalization; and 4) having had a kidney transplant or un-

dergoing dialysis. We also exclude individuals with incomplete data for potential confounders at

the baseline (0.54% percentage, thus we go for complete case analysis). Information on the list of

confounders is provided in Table 4.1. Additional information on patient selection is provided in the

flowchart in Figure 4.1, and related drug names and ICD-9-CM codes are provided in Appendix

Table C.1 and C.2.

Then the eligible subjects are classified into two treatment groups: rivaroxaban and dabigatran.

Follow-up information is extracted for each subject (to death, loss to follow-up, or end of the study

– 12/31/2013). To identify the primary outcome, we track the study subjects to their first Medicare

inpatient claims with the primary diagnosis code indicating each of the following: ischemic stroke,

other thromboembolic events, major bleeding, and all-cause death. For secondary outcomes, we

also identify all occurrences of any bleeding event (including major bleeding) and AMI in the same

manner. Detailed information on the ICD-9-CM codes for identifying these events is provided in

Appendix Table C.3.

We then create three subsequent emulated trials to examine potential temporal variations. The

same criteria and procedures are applied to the three trials to ensure comparability. All trials then

have a seven-month recruitment period. However, they have different lengths of follow-up. Detailed

information on the sizes of each trial is provided in Figure 4.1.

Analysis of the emulated trial

It has been recognized that an emulated trial may still differ from its real counterpart in multiple

ways. We refer to Hernan and Robins [37] and Danaei et al [104] for discussions. As such, the

analysis of an emulated trial, although similar to that for a real trial in many ways, also has
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Individuals who filled a prescription for Rivaroxaban (20 

mg/d) or Dabigatran (150 mg/d) between 04/01/2012 – 

12/31/2013: 

362,674 

Eligible individuals: 

70,129 

- 10,454 were less than 65 years old 

- 2,977 had less than three months of 

continuous Medicare enrollment 

before the index date 

Trial 1 (04/01/2012 – 10/31/2012) 

Rivaroxaban: 5,880 

Dabigatran: 12,170 

Trial 3 (06/01/2013 – 12/31/2013) 

Rivaroxaban: 16,583 

Dabigatran: 9,184 

Individuals who had a diagnosis of atrial 

fibrillation: 

179,510 

Trial 2 (11/01/2012 – 05/31/2013) 

Rivaroxaban: 14,572 

Dabigatran: 14,308 

- 60,214 filled at least one claim for any 

NOAC within the three-month period 

before the index date 

- 29,675 were kidney transplant recipients, 

undergoing dialysis, diagnosed with other 

potential NOAC indications  

- 1,932 were in hospital on the index date 

- 2,187 were in skilled nursing facility or 

hospice on the index date 

Figure 4.1: Flowchart of assembling clinical trials

differences.

First, to emulate the estimation of an intention-to-treat effect, which is common in real clinical

trials, we use the observed therapy initiation (the first fill of rivaroxaban or dabigatran, the analog

of random assignment in a clinical trial) as the treatment indicator. An observation is censored

when a participant discontinued or switched therapy.

In a well-executed randomized clinical trial, different arms can be sufficiently balanced. As such,

there may be no need for accounting for confounding – although it is noted that it is still commonly

done out of caution. With emulated trials, since randomization does not really happen, there is a

risk of imbalance. As such, as suggested in the literature [37], accounting for potential confounding is

strongly recommended in emulation trial analysis. By reviewing the existing trials including RE-LY
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and ROCKET-AF and published observational studies [111,112], and also taking into consideration

data availability, we include the following variables as potential confounders: demographic variables

(age, gender, race), medical conditions (AMI, congestive heart failure, previous stroke or transient

ischemic attack, diabetes mellitus, hypertension, chronic kidney disease (CKD), history of bleeding,

acquired hypothyroidism, and the number of other CMS comorbidities), and medication use (non-

steroidal anti-inflammatory drug and antiplatelet). Information is also provided in Table 4.1.

For each emulated trial and each outcome, we fit a Cox proportional hazards model, including

the treatment indicator and all baseline confounders as covariates. To further achieve balance as in a

randomized clinical trial, we resort to the propensity score and inverse probability treatment (IPT)

weighting approach. In particular, to calculate the propensity score, we estimate the probability of

having a specific treatment using a logistic model and include the same set of baseline confounders

as covariates [113]. Then the weight is calculated as the inverse of the propensity score for one

treatment group and the inverse of one minus propensity score for the other group. By assigning

such weights to study subjects, we create a pseudo-population, for which there exists no association

between the baseline confounders and treatment.

With the three emulated trials, the above analysis can generate three sets of estimates. Beyond

examining them individually, we also pooled the individual effect together and generated unified

estimations. In particular, we adopt a random effect mixed model approach [114], which decomposes

within-study and between-study variations and computes a weighted and combined effect.

Remarks

In some emulation studies [104,105,115], the sequential trial concept and corresponding techniques

have been developed. Our setting has similarity with the sequential trials in that we also have

three trials conducted in a consecutive manner. However, we note that the current setting can be

somewhat simpler compared to that in Danaei et al [104], Caniglia et al [105], and some others.

First, we study the direct comparison of two treatment drugs without having controls “waiting for”

the switch to treatment, which creates significant overlaps between trials. Second, the number of

subjects included in more than one trial is only 3.54%, dramatically smaller than many existing

emulation studies. With such a small overlap, we are able to mostly ignore the potential correlations

between trials. Another difference is that we allow temporal variations, as opposed to assuming
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the same treatment effects. As such, we do not have the “inference with correlated trials” problem.

4.1.4 Results

Patient characteristics and unadjusted incidences

As shown in Figure 4.1, our analysis includes a total of 70,129 eligible participants, with 18,050,

28,880, and 25,767 in each of the three emulated trials, respectively. Table 4.1 shows the baseline

characteristics by trial and treatment. It is observed that before IPT weighting, participants

treated with rivaroxaban are slightly younger, more likely to be female, and with somewhat less

cardiovascular disease history.

Variables Trial 1 Trial 2 Trial 3

R D R D R D

Demographics
Age(years)

65-74 2898 (49.29) 5850 (48.07) 6817 (46.78) 6553 (45.80) 8313 (50.13) 4433 (48.27)
75-84 2395 (40.73) 4935 (40.55) 6044 (41.48) 5947 (41.56) 6720 (40.52) 3745 (40.78)
≥ 85 587 (9.98) 1385 (11.38) 1711 (11.74) 1808 (12.64) 1550 (9.35) 1006 (10.95)

Sex (female) 2882 (49.01) 5910 (45.56) 7000 (48.04) 6540 (45.71) 7978 (48.11) 4155 (45.24)
Race

White 5450 (93.19) 111016(90.94) 13478 (92.82) 13261 (93.11) 15185 (92.25) 8351 (91.46)
Black 192 (3.28) 533 (4.40) 563 (3.88) 512 (3.59) 678 (4.12) 428 (4.69)
Other 206 (3.52) 465 (4.66) 479 (3.30) 470 (3.30) 597 (3.63) 352 (3.85)

Medical history
Diabetes mellitus 2327 (39.57) 5228 (42.96) 6071 (41.66) 6319 (44.16) 6984 (42.12) 4005 (43.61)
Hypertension 5382 (91.53) 11304 (92.88) 13496 (92.62) 13476 (94.19) 15287 (92.18) 8567 (93.28)
CKD 1359 (23.11) 3378 (27.76) 3659 (25.11) 3957 (27.66) 4339 (26.17) 2683 (29.21)
History of bleeding 128 (2.18) 290 (2.38) 370 (2.54) 402 (2.81) 416 (2.49) 270 (2.94)
Acquired HT 1670 (28.40) 3378 (27.76) 4210 (28.89) 4246 (29.68) 4840 (29.19) 2743 (29.87)
No. of other
CMS comorbidities

0-3 1621 (27.57) 3310 (27.20) 3672 (25.20) 3462 (24.20) 4499 (27.13) 2382 (25.94)
4-6 2836 (48.23) 5711 (46.93) 7106 (48.76) 7024 (49.09) 7930 (47.82) 4334 (47.19)
≤ 7 1423 (24.20) 2149 (25.88) 3794 (26.04) 3822 (26.71) 4154 (25.05) 2468 (26.87)

Cardiovascular disease
AMI 429 (7.30) 940 (7.72) 1106 (7.59) 1092 (7.63) 1317 (7.94) 659 (7.18)
CHF 2501 (42.53) 5912 (48.58) 6618 (45.42) 7256 (50.71) 7227 (43.58) 4484 (48.82)
Stroke or TIA 1189 (20.22) 2853 (23.44) 3094 (21.23) 3351 (23.42) 3616 (21.81) 2163 (23.55)
Medication use
NSAIDs 510 (8.67) 1054 (8.66) 1072 (7.36) 890 (6.22) 1355 (8.17) 616 (6.71)
Antiplatelet 760 (12.93) 1291 (10.61) 1577 (10.82) 1044 (7.30) 1977 (11.92) 711 (7.74)

R rivaroxaban, D dabigatran, CMS centers for Medicare & Medicaid Services,CKD chronic kidney disease,
AMI acute myocardial infarction, CHF congestive heart failure, TIA transient ischemic attack, HT hypothyroidism,
NSAIDs non-steroidal anti-inflammatory drug

Table 4.1: Baseline characteristics of the study cohorts, before IPT weighting

We then examine the temporal variations of the baseline characteristics across the three emu-

lated trials. It is observed that for both the rivaroxaban and dabigatran arms, most of the baseline
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characteristics do not change substantially over time. We do observe that the number of patients

with CKD obviously rose during the two years. For rivaroxaban, the percentage of patients with

CKD rose from 23.11% to 25.11% and then to 26.17%. For dabigatran, the percentages are 27.76%,

27.66%, and 29.21%, respectively. A similar increase is also observed in vulnerable patients with

medical history (for example, having a history of bleeding, stroke, or acquired hypothyroidism)

during the two-year period.

Table 4.2 shows the number of unadjusted incidence by trial and treatment. For the three

trials, the numbers of participants that developed any of the primary outcomes are 1,717, 2,818,

and 1,525, respectively; the numbers of participants lost to follow-up are 12,285, 15,333, and 8,850,

respectively; and the numbers of participants that reached the end of follow-up without any primary

outcome are 4,048, 10,729, and 15,392, respectively. For rivaroxaban, the average follow-ups are

273, 201, and 85 days for the three trials, respectively; For dabigatran, the average follow-ups are

255, 210, and 97 days, respectively.

Adjusted hazard ratio, temporal variation, and pooled results

As shown in Appendix Table C.4, after the IPT weighting, all sample characteristics are more

balanced between the rivaroxaban and dabigatran groups. This is further “confirmed” by Appendix

Figure C.1, which shows almost identical propensity score distributions for the weighted trial 1

cohort. Similar plots for the other two trials are omitted here.

Table 4.3 shows the adjusted hazard ratio and p-value for each outcome by trial and treatment.

For any primary outcome, rivaroxaban is found to have a significantly higher hazard ratio in all

three trials. However, the magnitudes of the estimated hazard ratio and p-values show considerable

temporal variations. There are also significant temporal variations for the two primary effectiveness

outcomes. Rivaroxaban is found to have a significant protective effect for ischemic stroke in trials 1

and 2, but non-significantly increases its risk in trial 3. To get more insight into this difference, we

show in Figure 4.2 the Kaplan-Meier survival curves of ischemic stroke outcome as an example. We

acknowledge the difference in follow-up periods for the three trials, but also note that the survival

curves for the three trials differ significantly in the early days of follow-up. As such, the observed

difference in treatment effect cannot be fully attributed to the follow-up difference. For other

thromboembolic events, the two drugs are not significantly different in all three trials. However,
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the estimated hazard ratio switches sign between trial 1 and the other two. For all the safety

outcomes (all-cause mortality, major bleeding, and any bleeding), rivaroxaban is observed to be

significantly inferior. Again, it is observed that the magnitudes of the estimated hazard ratios and

p-values vary across trials. For AMI, there are no significant differences between the two drugs for

all three trials.

Trial 1 Hazard Ratio (HR) p-value

Primary outcome Any primary events 1.072 0.0403
Ischemic stroke 0.799 0.0004
Other thromboembolic events 0.935 0.4892
Major bleeding 1.119 0.1280
All-cause mortality 1.252 <.0001
Secondary outcome
Any bleeding 1.413 <.0001
AMI 0.979 0.8549

Trial 2 HR P-value

Primary outcome
Any primary events 1.266 <.0001
Ischemic stroke 0.892 0.0333
Other thromboembolic events 1.133 0.1595
Major bleeding 1.237 0.0004
All-cause mortality 1.510 <.0001
Secondary outcome
Any bleeding 1.661 <.0001
AMI 0.954 0.6517

Trial 3 HR P-value

Primary outcome
Any primary events 1.380 <.0001
Ischemic stroke 1.085 0.2490
Other thromboembolic events 1.228 0.0692
Major bleeding 1.183 0.0480
All-cause mortality 1.752 <.0001
Secondary outcome
Any bleeding 1.867 <.0001
AMI 0.884 0.3699

Pooled Results HR P-value

Primary outcome
Any primary events 1.232 0.0025
Ischemic stroke 0.915 0.2819
Other thromboembolic events 1.086 0.2934
Major bleeding 1.187 <.0001
All-cause mortality 1.488 <.0001
Secondary outcome
Any bleeding 1.633 <.0001
AMI 0.944 0.3988

AMI acute myocardial infarction

Table 4.3: Adjusted hazard ratio and p-values for the primary and secondary outcomes

The pooled hazard ratio shows that, compared to dabigatran, rivaroxaban has a significantly

increased risk of any primary outcome. It non-significantly reduces the risk of ischemic stroke and
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Figure 4.2: Survival curves of time to ischemic stroke

AMI, non-significantly increases the risk of other thromboembolic events, and significantly increases

the risk of all the safety outcomes (all-cause mortality, major bleeding, and any bleeding).

4.1.5 Discussion

The effectiveness of rivaroxaban and dabigatran for AF has been well established. It is not our goal

to challenge or re-establish this conclusion. Rather, considering that both have been extensively

used in clinical practice, our goal is to conduct a direct comparison, which has been insufficiently

pursued in the literature. Without being able to conduct a real trial, we have resorted to the

emulation approach to “assemble” trials based on observational data to draw causal statements.

We note that, in terms of statistical measures (accuracy, efficiency, etc.), there is no definitive

conclusion on the performance of different causal inference techniques. The adopted emulation

approach can be preferred with more intuitive interpretations. In addition, as partly shown in this

article, it can also provide guidance to the development of a real trial (if it ever becomes feasible).

The potential limitations of emulation have been well discussed in the literature [36, 37, 104, 115]

and will not be repeated here.

We have analyzed the Medicare data, which is the most comprehensive and largest medical

record database for seniors in the U.S. Nevertheless, it has limitations. Specifically, as a medical

claims database, it does not include certain information [116]. As such, we are not able to verify if

the two treatment groups are also balanced in other potentially relevant but unmeasured aspects.

We note that this limitation is also shared by quite a few other emulation and other causal inference

studies [103,104,106,115]. Medicare has an almost universal coverage in the U.S elderly population.

As such, the findings can be applied to this population with reasonable confidence. Although there
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is no indication that the treatment effects of rivaroxaban and dabigatran depend on race and

other demographic factors, the applicability of our findings to other populations still needs further

examination. Moreover, we have had limited data access, which has led to a not current dataset, a

limited sample size, and a limited follow-up (we note that drug usage information is not available

in the “generic” Medicare database). On the other hand, we also note that there has been no

indication in the literature that the treatment effects of the two drugs differ between the study

and other periods. The sample size in this study has already been considerably larger than its

peers [101, 111, 117, 118]. In addition, there has been a considerable number of events, even in the

third trial with the shortest follow-up.

Our analysis has led to the following main findings. The first is that, based on both the indi-

vidual trials and pooled effects, dabigatran is found to be significantly superior to rivaroxaban in

terms of reducing safety concerns (bleeding events and overall mortality). This finding is consistent

with the existing observational data analyses [111,112,117,119]. As discussed in Graham [112], the

higher bleeding risk and mortality of rivaroxaban may be the side effects of the once-daily regi-

men, leading to higher peak and lower trough serum concentrations than twice-daily administrated

dabigatran. Another finding is that rivaroxaban and dabigatran are not significantly different

in preventing ischemic stroke and other thromboembolic events. In some of the existing obser-

vational studies, results are non-conclusive regarding the preventive effects of rivaroxaban versus

dabigatran [111, 112, 117–121]. This can be caused by differences in study populations and anal-

ysis techniques. As we do not have access to other data, it is impossible to exactly pin down the

causes. An interesting finding, which has been largely neglected in the literature, is the tempo-

ral variations. First, it is observed that in the study period, the prescription of rivaroxaban was

increasingly preferred over dabigatran. In trial 1, the rivaroxaban group accounts for 32.58% of

the whole study sample, whereas in trial 3, it accounts for 64.36%. Southworth et al. suggested

that this change in prescription pattern might be attributed to that post-marketing reports caused

misconceived bleeding risks with dabigatran [122]. In addition, patients initiating rivaroxaban are

slightly younger and healthier. Interestingly, some other studies have observed opposite prescrip-

tion patterns. Because rivaroxaban has been studied in older and higher-risk populations, some

physicians are more likely to prescribe rivaroxaban to high-risk elderlies [120]. Some other studies

have also found that rivaroxaban patients are older and with more comorbidities. One plausible
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explanation for the difference between this and other studies is that, our trial enrollment period

includes the early stage after rivaroxaban’s new approval, and physicians often tend to use familiar

(and seemingly safer) drugs for sicker patients (it is noted that we have focused on patients with

MCCs). This may also partly explain the increasing prescription of rivaroxaban over the two-year

period.

This study may be the first to observe that some findings on treatment effects also have temporal

variations. In the existing emulation studies, the study time periods are usually not strongly

justified, with the underlying belief (or assumption) that the findings should not depend on time

periods. As can be partly seen from the survival curves, observed differences are obvious. A

deeper examination suggests that, although there are some differences between trials in terms of

demographic and clinical characteristics, such differences are not sufficient to explain the treatment

effect differences. This analysis may raise the alarm for other emulation studies, which may also

face temporal variations.

4.1.6 Conclusion

This study has provided a direct and objective comparison of the treatment effects of rivaroxaban

and dabigatran via conducting an emulation analysis of the Medicare data. The findings may assist

clinicians making more informed decisions in the treatment of senior AF patients with MCCs. This

study also provides another demonstration of applying the emulation technique to draw causal

conclusions based on observational medical record data. Despite certain limitations, it is expected

to be informative for various stakeholders, including clinicians, patients, and biomedical/statistical

researchers.
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4.2 Evaluation of survival outcomes of endovascular versus open

aortic repair for abdominal aortic aneurysms with a big data

approach

4.2.1 Introduction

Abdominal aortic aneurysm (AAA) is a balloon-like dilatation of the aorta that supplies blood to

the body and happens below the chest. Each year, it is estimated that 200,000 people in the U.S.

are diagnosed with AAA, and ruptured AAA (rAAA) poses significant clinical and public health

challenges [123]. rAAA is associated with an overall mortality rate of over 80%, which causes more

than 5,000 deaths in the country each year [124, 125]. Once rAAA occurs, repairing procedures

need to be conducted immediately. In the current clinical practice, there are two main approaches:

emergent open aortic repair (OAR) and endovascular aortic repair (EVAR). OAR has a relatively

longer history and is still considered as the standard procedure for AAA repair, during which large

incisions are unavoidable [126]. EVAR was first successfully conducted and reported in year 1994,

and only small incisions in the groins are needed [127]. However, this circumvented procedure makes

EVAR require more intense monitoring and probable reintervention [33]. Moreover, preoperative

imaging and specific anatomic requirements make EVAR less well suitable for emergent rAAA.

As suggested in multiple studies [128–132], the preferred minimum invasion but awaited long-term

postoperative complications may account for the favorable 30-day mortality but similar or even

inferior late survival of EVAR compared to OAR. With the criticalness of rAAA and prevalence

of EVAR and OAR, it is of significant interest to objectively evaluate and directly compare their

survival outcomes.

In general, to compare the effects of two treatments, the gold-standard approach is to conduct

a randomized controlled clinical trial. However, most of the existing clinical trials have focused

on patients who have elective/intact AAA (eAAA/iAAA) and excluded those who have rAAA

and require emergent care (e.g., OVER [128], DREAM [129]). This is highly sensible as patients

with rAAA cannot bear the prolonged process of eligibility examination, treatment assignment,

and finally, surgical procedure, which are non-negligible steps in a clinical trial for bias control but

unacceptable for saving lives in a real-world setting.
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With the aforementioned concerns, researchers have focused on observational data and analysis

to investigate the survival outcomes of the two procedures for rAAA patients. Our literature

review suggests that quite a few of them have relied on large medical claims databases including

Medicare [33, 131, 133, 134]. In these studies [33, 131], regression and other association analysis

techniques have been the main tools. It is well recognized that such analyses, even after accounting

for confounders, can only lead to conclusions on association, as opposed to the desired cause-

and-effect relationship. To overcome such limitations, causal inference techniques [35, 36, 135] can

be adopted. Here we note that, with extensive examinations and comparisons, no approach has

been observed to dominate others – it is expected that such an approach may not exist, and

different approaches have different pros and cons. In this article, we adopt the emulation approach,

which is relatively new but has already been examined in many publications [38, 136, 137]. With

this approach, a clinical trial is explicitly designed and assembled using observational data, and

statistical analysis approaches designed for clinical trials can be then adopted, leading to causal

statements. Comparatively, the biggest advantage of this approach may be its lucid interpretations.

Built on the emulation strategy, we take a big data analysis approach. Here “big data” is

manifested in at least two perspectives. The first is that our effort is built on the Medicare data.

The Medicare database is massive, covers the dominating majority of the U.S. senior population,

and contains comprehensive information. Compared to for example hospital- and community-based

data, Medicare data is advantageous with its unbiased sample selection and relatively uniform and

detailed data collection. It has served as the basis of a large number of clinical and public health

studies, including those that adopt causal inference analysis techniques [38, 138]. More details on

the analyzed Medicare data are provided below in Section 4.2.2. The second big data perspective is

that in analyzing the emulated trial, deep learning techniques are adopted. In “standard” emulation

analysis (as well as most if not all analysis of real clinical trials) [38, 137], regression (e.g., logistic

and Cox) techniques have been adopted. For diverse fields including engineering, business, social

science, and others [139,140], the superiority of deep learning techniques in prediction has been well

established through a myriad of published studies. Relatively recently, deep learning techniques

have been applied to biomedical studies on cancer [141], fracture [142], chronic diseases [143],

and cardiovascular diseases [144]. The studied outcomes/phenotypes include continuous [143],

categorical [142], and, more recently, survival [145]. It is noted that the existing deep learning
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analyses of biomedical data are mostly in the association analysis domain.

The overarching goal of this study is to directly compare EVAR versus OAR for rAAA patients

and draw conclusions as close to causal as possible, so as to further inform clinical practice. This

study may advance from the existing literature in multiple aspects. First, it strives to compare

the treatment effects of EVAR and OAR under the clinical trial framework, as opposed to the

commonly adopted observational data analysis framework. Second, it advances from the existing

emulation analyses by investigating a new disease condition and treatments, which have critical

clinical importance. In addition, deep learning techniques, as opposed to “simple” regressions, are

adopted. This study may assist introducing deep learning to the emulation paradigm. Third, it

may also foster deep learning research. More specifically, this is the first application of deep learning

to the emulation analysis and study of rAAA. Built on the existing deep learning components, we

assemble an analysis pipeline that mimics the “propensity score + inverse probability treatment

– IPT weighting Cox regression” approach (which has been adopted in the existing emulation

analyses [38,137]).

Looking at a higher level, an “ordinary” clinical trial generates an information set (target),

whose most notable characteristic is the balance in information between two treatment arms. In

addition, it is usually assumed that such an information set can be sufficiently described using a

(semi)parametric model. Information contained in observational data fundamentally differs from

the target. As such, a central goal of the emulation approach is to properly carve a piece of

information, as large as possible, that mimics the target. With the deep learning analysis approach,

the (semi)parametric probabilistic structure can be significantly relaxed. Overall, this study falls

into the intersection of information theory and machine learning.

4.2.2 Methods

Data source

As briefly mentioned above, we analyze the Medicare data in this study. Medicare is a federal health

insurance program for adults aged 65 years and above, certain younger people with disabilities, and

people with end-stage renal disease (permanent kidney failure requiring dialysis or a transplant).

As the single largest payer of health care in the U.S., it covers 98% of adults who are over 65
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years old, accounts for 99% of death in the elderly population, and generates a huge amount of

medical claims data [146]. The centers for Medicare & Medicaid Services (CMS) offers a wide

range of datasets that follow Medicare beneficiaries across multiple care settings. More specifically,

it collects over two billion data points per year through reimbursement to hospital care (Medicare

Part A), physician and outpatient services (Medicare Part B), drug prescription (Medicare Part

D), and other health care claims. It also collects billions of other data points through enrollment

information, beneficiary eligibility checks, quality metrics, and calls to 1-800-MEDICARE [4].

For our study, we first retrieve all inpatient claims between 01/01/2011 to 09/30/2015 from the

Medicare provider utilization and payment data: hospital care (Part A), which contains detailed

information on health services provided in 54 million inpatient episodes for 23 million Medicare

beneficiaries. Information contained in each claim includes beneficiary demographics (e.g., age,

sex, race), Medicare enrollment status, services provided (up to 25 diagnosis codes and up to 25

procedure codes), and beneficiary death information. More details on such information and how it

is utilized in our analysis are provided below.

It is noted that for research purposes, the Medicare data can be viewed as publicly available.

We only conduct secondary analysis of the existing deidentified data. As such, no IRB or other

approvals are needed.

The target randomized clinical trial

Under the emulation analysis paradigm [37], one of the first and most important steps is the design

of a target randomized clinical trial. For treating rAAA, there is a lack of real clinical trials. As

such, similar to in some literature [38], we need to design a hypothetical target trial. The following

design has been motivated by relevant observational studies [33, 131–134] and is clinically well

grounded.

The target randomized clinical trial aims to compare the short- and long-term all-cause mortality

of rAAA patients treated with EVAR and OAR. More specifically, we enroll participants who are

diagnosed with rAAA within the enrollment period and exclude those who meet any of the following

criteria: 1) the participant is under 65 years old at enrollment; 2) conversion between EVAR and

OAR is necessary after randomization; 3) the participant has concurrent conditions of thoracic

aneurysms, thoracoabdominal aneurysms, or aortic dissection; and 4) a repair of the thoracic aorta
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or visceral or renal bypass is considered necessary for the participant. If a participant develops

multiple cases of rAAA during the enrollment period, only the first is considered as the primary

case and included in analysis. Such criteria have been motivated by observational studies [33, 132]

and data availability, and have the same level of rigor as a real clinical trial.

The trial enrolls participants from 01/01/2011 to 09/30/2015. After enrollment, each eligible

participant is randomized to receive either EVAR or OAR and followed until death, loss to follow-

up, or end of the study (06/30/2019). Such decisions have been made with the considerations that

both treatments have been extensively adopted in the study period, the enrollment is long enough

to ensure a sufficient sample size, and the follow up is long enough to ensure a sufficient effective

sample size.

To assess both short- and long-term mortality after EVAR and OAR, we define two primary

outcomes: time from treatment to short-term perioperative mortality and time from treatment to

long-term all-cause mortality. The short-term perioperative mortality is defined as death during

the index hospitalization or within 30 days of discharge, for which all participants alive at 30 days

after discharge are censored. For the long-term all-cause mortality, a subject is censored at loss to

follow-up or end of the study (06/30/2019), whichever comes first. The two survival outcomes have

different implications but are both critically important [132].

The emulated trial

To emulate the target randomized clinical trial described above, we develop an emulated trial using

the Medicare claims data. The strategy closely follows that developed in the emulation literature

[38]. First, we identify Medicare beneficiaries who were diagnosed with rAAA and underwent EVAR

or OAR between 01/01/2011 and 09/30/2015. We exclude individuals that met any of the following

criteria: 1) the individual was under 65 years old at diagnosis; 2) both EVAR and OAR were present

in the same index hospitalization, which indicated conversion; 3) concurrent diagnosis codes of

thoracic aneurysms, thoracoabdominal aneurysms, or aortic dissection; 4) concurrent procedure

codes of repair of the thoracic aorta or visceral or renal bypass; and 5) less than 12 months of

Medicare enrollment before the index hospitalization. If a beneficiary had multiple eligible claims,

only the first was considered as the primary case and included in analysis. Additional information on

patient selection is provided in the flowchart in Figure 4.3. The relevant International Classification
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of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes are provided in Appendix

Table C.5.

Figure 4.3: Flowchart of cohort definition

We then classify each eligible subject into one of the two treatment groups: EVAR and OAR,

based on the procedure he/she actually received. Follow-up information is then extracted for each

subject (to death, loss to follow-up, or end of the study which is 06/30/2019). A loss to follow-up

is defined as discontinuation of Medicare enrollment. To identify the primary outcomes, we track

each study subject from treatment to his/her documented death. We note that there are 5.35%

study subjects for whom the date of treatment is missing. For these subjects, we use the date of

admission to approximate the date of treatment, since rAAA is an emergent condition that needs

immediate treatment, and the average lag time between admission and procedure is 0.53 days in

our cohort.
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Data analysis

This study has survival outcomes. If this were a real clinical trial, analysis could be conducted

using a Cox model. Although balance is expected with proper randomization, to be cautious, in

clinical trial analysis, potential confounders are still commonly adjusted. For an emulated trial

with a survival outcome, published studies [38, 137] suggest the following main analysis steps: (a)

conduct a propensity score analysis for treatment using the logistic regression approach, and (b)

conduct a Cox regression analysis for survival with inverse probability treatment – IPT weighting.

As briefly mentioned in Section 4.2.1, deep learning has demonstrated promising performance

with biomedical data. It is of significant interest to apply it to emulation. Equally importantly,

the analysis presented in the Appendix C.2.2 shows that the Cox proportionality assumption is

not satisfied. The deep learning approach described below, although has some connections with

the Cox model, can be more flexible and less dependent on model assumptions, with its “built-in”

flexibility. It consists of the following steps: (a) generate propensity scores for treatment using

a single-layer neural network. This corresponds to the logistic regression mentioned above; (b)

construct a multi-layer neural network for survival. Advancing from the “standard” deep learning

survival, we incorporate weights generated in Step (a), which corresponds to the IPT weighted Cox

regression mentioned above; and (c) advancing from the existing deep learning literature, we also

conduct a bootstrap-type procedure to gain insights into the variation of the neural network weight

estimation, which is analogous to the regression coefficient estimation and reveals the treatment

effects.

Denote n as the number of independent subjects. For subject i, denote Ci as the censoring

time and Ti as the event time. We observe the right-censored survival outcome Yi = min(Ti, Ci)

and censoring indicator di = I(Ti ≤ Ci) with I(·) being the indicator function. Denote Xi =

(Xi1, Xi2, ..., Xip) as the baseline covariates and Zi as the binary treatment assignment.

Step 1: We employ a single-layer neural network to estimate the propensity score, which

is the probability of treatment assignment conditional on the baseline covariates. In particular,

the input includes the covariates described in Table 4.4, with standardization for the continuous

variables and coding for the categorical variables. The labels in the data are the binary treatment

assignment variables. For the neural network architecture, we use Rectified Linear Units (ReLU)
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EVAR OAR
(N=3930) (N=3866) P-value*

Demographic
Age, mean(sd) 78.03 (7.52) 76.59 (6.90) <.0001
Male 3023 (76.34) 2786 (72.06) <.0001
Race 0.0030

White 3588 (90.77) 3550 (92.02)
Black 249 (6.30) 178 (4.61)
Other 116 (2.93) 130 (3.37)

Medical conditions
Congestive heart failure 464 (11.72) 299 (7.73) <.0001
Cardiac arrhythmia 596 (15.05) 438 (11.33) <.0001
Valvular disease 199 (5.03) 172 (4.45) 0.2304
Coronary disease 758 (19.14) 603 (15.60) <.0001
Diabetes 329 (8.31) 256 (6.62) 0.0045
Hypertension 1250 (31.25) 1078 (27.88) 0.0004
Chronic obstructive pulmonary diseases 707 (17.85) 584 (15.11) 0.0011
Clinically significant lower extremity vascular diseases 26 (0.66) 27 (0.70) 0.8215
Renal atherosclerosis 20 (0.51) 27 (0.70) 0.2684
Vascular intestine disease 7 (0.18) 2 (0.05) 0.1027
Renal failure 493 (12.45) 358 (9.26) <.0001
Other renal diseases 3 (0.08) 1 (0.03) 0.3289
Kidney transplant 4 (0.10) 3 (0.08) 0.7291
Liver disease 33 (0.83) 30 (0.78) 0.7766
Cerebrovascular diseases and paralysis 93 (2.35) 67 (1.73) 0.0544
Other neurological diseases 153 (3.86) 114 (2.95) 0.0258
Hyperlipidemia 817 (20.63) 687 (17.77) 0.0013
Cancer 132 (3.33) 87 (2.25) 0.0037
Rheumatoid arthritis 76 (1.92) 39 (1.01) 0.0008
Prior intact AAA diagnosis 511 (12.90) 440 (11.38) 0.0393
Other
Year in which repair was performed <.0001

2011 808 (20.40) 1013 (26.20)
2012 869 (21.94) 913 (23.62)
2013 819 (20.68) 785 (20.31)
2014 837 (21.14) 701 (18.13)
2015 627 (15.83) 454 (11.74)

Outcome (followed until death, loss to follow-up, or 06/30/2019)
All-cause mortality 2430 (61.36) 2542 (65.75) <.0001
Perioperative mortality (in-hospital or 30 days after dis-
charge)

1107 (27.95) 1704 (44.08) <.0001

* P-values are based on t-tests for continuous variables and Chi-squared test for categorical variables

Table 4.4: Descriptive characteristics of the study cohort

as the activation function, sigmoid activation function to produce the probability output, and

logarithmic loss function (binary cross-entropy). For optimization, a stochastic gradient descent

algorithm with Nesterov momentum is used, and a grid search is conducted to tune the learning

rate. For such tasks, we adopt the open-source python module keras (https://keras.io). With the

outputted propensity score, we compute the IPT weight as its inverse for a subject in one treatment

group and the inverse of one minus propensity score for a subject in the other group.

Step 2: Here we conduct the IPT weighted survival analysis. The input includes the same set
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of covariates and treatment indicator as in Step 1, as well as the IPT weights computed above. For

subject i, denote wi as the IPT weight and Ri = j : Tj > Ti as the at-risk set (at time Ti). We

consider a neural network with two hidden layers and the number of nodes determined by tuning.

Denote θ as the weights that characterize the network (note that they are not the IPT weights),

and gθ(Xi, Zi) as the output for subject i. Partly motivated by the loss function under the Cox

regression as well as recent deep learning studies, such as DeepSurv, we consider the objective

function:

l(θ) = − 1∑
i di

n∑
i=1

diwi[gθ(Xi, Zi)− log
∑
j∈Ri

exp(gθ(Xj , Zj))].

For optimization, we adopt a gradient descent approach. ReLU is used as the activation func-

tion, and the adaptive moment estimation algorithm (Adam) for gradient descent optimization

with a cyclical learning rate method is adopted. We perform a grid search for hyper-parameter

tuning. The computational program is developed based on the open-source python module pycox

(https://github.com/havakv/pycox ).

Step 3: A procedure similar to the 0.632 bootstrap for regression analysis [147] is conducted.

In particular, 0.632n samples are randomly selected from the original data without replacement.

With the bootstrapped samples, the above analysis is conducted, and the neural network weight

estimates are extracted. This is repeated multiple (e.g. 1,000) times to assess the variability of

estimates. For regression, the 0.632 bootstrap is equivalent to the “n-out-of-n with replacement”

bootstrap. By sampling without replacement, it can reduce ties and computational cost.

The above analysis can deliver the following. The first is a propensity score estimate for each

subject. If needed, the weights of the neural network can be extracted to help assess the relative

contributions of covariates. The second is the survival neural network. For a subject with a set

of known confounder values and treatment assignment, it can generate the (relative) survival risk.

Most of the existing deep learning studies have treated neural networks as black boxes. As we

conduct a clinical trial analysis, the effect of the treatment is of the most essential interest. As

such, we retrieve the estimated weights for the treatment indicator and confounders. With the

presence of hidden layers, the weight matrices need to be multiplied across layers to obtain the

overall contributions. The third product is that, for the (overall) weight of the treatment indicator,

the bootstrap-type analysis can generate an evaluation of its variability. The same is also applicable
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to the confounders.

Remarks For binary responses, the superiority of neural networks over logistic and other

regressions has been demonstrated in a large number of publications [141,142]. Several recent pub-

lications, such as DeepSurv [145] and Cox-nnet [148] and others, seem to suggest similar superiority

for survival data. As our goal is to take advantage of the recent deep learning developments, we

choose not to “re-establish” the merit of deep learning. We also note that there are multiple “base

techniques” for building neural networks. The adopted ones have been shown in recent studies as

having competitive performance. To the best of our knowledge, there is still no study showing that

certain techniques dominate the others.

4.2.3 Results

Patient characteristics and unadjusted incidences

Our analysis includes 7,826 eligible subjects, with 3,960 in the EVAR arm and 3,866 in the OAR

arm. The summary statistics are shown in Table 4.4. It is observed that the study subjects were

slightly younger in the OAR arm, and more likely to be white males in both arms. Participants

in the OAR arm were healthier with lower percentages of almost all medical conditions (except for

two rare conditions: clinically significant lower extremity vascular diseases and renal atheroscle-

rosis). It is also observed that, as time passed by (from year 2011 to 2015), the rAAA patients

were more and more likely to receive EVAR. Here we note that, without the IPT weighting, all

demographic variables and most medical condition variables are significantly unbalanced between

the two treatment arms, highlighting a significant difference between real clinical trials and obser-

vational data. Table 4.4 also shows the unadjusted incidence rates by treatment. The EVAR arm

has a slightly lower unadjusted incidence rate for long-term all-cause mortality and a significantly

lower unadjusted incidence rate for short-term perioperative mortality.

Analysis of the emulated trial

Prior to analysis, we delete 15 records with missing measurements (7 in the EVAR arm and 8

in the OAR arm). Analysis is conducted using the approach described in Section 4.2.2. For the

propensity score analysis, the baseline covariates include age, gender, race, year in which repair
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was performed (this variable has been considered in the published observational studies [33,131]; it

is also motivated by the changing rates of EVAR and OAR), and 20 medical conditions, as shown

in Table 4.4 (related ICD-9-CM codes in Appendix Table C.5). For survival analysis, the same

baseline covariates and treatment indicator are included.

For both the propensity score and survival analysis, the obtained fully connected neural network

architectures are available from the authors. For the propensity score analysis, the learning rate is

tuned as 0.008. The distributions of propensity scores are shown in Figure 4.4. Minor differences

between the two arms are observed.

Figure 4.4: Distribution of propensity score

For the analysis of short-term survival, the learning rate for Adam optimizer is tuned as 0.016.

The analysis results are summarized in Figure 4.5. The left panel shows the estimated survival

curves, after accounting for IPT weights, for the two treatments separately. With the bootstrap

procedure, we are also able to obtain the pointwise 90% confidence intervals. It is noted that

this analysis mimics the “familiar” regression analysis and differs from most of the existing deep

learning studies. EVAR is observed to have a modest survival advantage, with the lower bounds

of its confidence intervals almost coinciding with the upper bounds of OAR’s confidence intervals.

Based on the estimated survival curves, we compute the expected survival under EVAR as 83.5 days,

compared to 79.2 days under OAR. In the right panel of Figure 4.5, the forest plot, which shows the

medians as well as the 25% and 75% quantile values of the overall estimated weights (“accumulated”

over layers), again suggests the survival advantage of EVAR. The right panel of Figure 4.5 also

contains weight information for confounders that demonstrate considerable and “persistent” effects
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(across the bootstrapped datasets), including race and seven medical conditions.

Figure 4.5: Analysis of short-term mortality (left: estimated survival curves with pointwise 90%
confidence intervals; right: forest plot of the estimated weights)

For the analysis of long-term survival, the learning rate for Adam optimizer is tuned as 0.036.

The analysis results are summarized in Figure 4.6, which are parallel to those in Figure 4.5. The

findings are similar to those for short-term survival. Briefly, the left panel suggests some advantage

of EVAR, but the pointwise confidence intervals overlap. We compute the expected survival as

1464.2 days under EVAR and 1348.0 days under OAR. The forest plot in the right panel shows that

the advantage of EVAR is smaller than that for short-term survival. Confounders that demonstrate

considerable and “persistent” effects include race, sex, and six medical conditions.

Figure 4.6: Analysis of long-term mortality (left: estimated survival curves with pointwise 90%
confidence intervals; right: forest plot of the estimated weights)

Remarks For comprehensiveness, we also conduct regression-based analysis. The results are
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presented in Appendix C.2.2. As the Cox model assumption is violated in both survival analyses,

the results cannot be sensibly utilized.

4.2.4 Discussion

As fully discussed in the published literature, the Medicare data has multiple unique advantages.

With its broad coverage of the U.S. elderly population, our findings can be applied to this population

with high confidence. Although there is no evidence that the relative treatment effects of EVAR

and OAR differ by age, sex, and race [132–134], application of the findings to the younger U.S.

population and populations in other countries/regions should be conducted with cautions. On the

other hand, it has also been recognized that the Medicare data has limitations [4,146]. For example,

it does not contain certain information (e.g., over-the-counter drug use). As such, there may exist

imbalance on unmeasured confounders. We note that this limitation is shared by other emulation

studies and analysis of observational data. We have analyzed the Medicare inpatient data from

01/01/2011 to 06/30/2019. Both the enrollment and follow-up times are long enough, especially

compared to peer studies [132–134]. Although there is no indication that the treatment effects

have temporal variations, it may still be of interest to examine more extensive data (which is not

pursued with data access limitations). Another data limitation is that we do not have access to

data on other clinical settings (e.g., emergency room or outpatient). With the special nature of

rAAA, inpatient claims should be able to catch the dominating majority of the cases.

The emulation strategy has been developed and adopted in quite a few studies. Its pros and

cons have been well documented [36, 38, 137]. It is especially noted that, first, emulation trials,

although resembling real clinical trials in multiple perspectives, still have notable limitations and

cannot replace real clinical trials. Second, there is still a lack of objective comparison and definitive

conclusion on its relative performance with respect to other causal inference approaches. Although

important, this is beyond the scope of this study. The adopted deep learning methods have been

based on certain well-developed components and software programs. Nevertheless, their “combi-

nation” and application to the emulation setting and rAAA treatment problem are new and novel.

Our analysis has demonstrated how to “replace” regression using deep learning under settings more

sophisticated than in the literature. As the “propensity score + survival analysis” strategy and indi-

vidual components of the deep learning analysis have been more or less developed in the literature,
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we choose not to methodologically further discuss or conduct more numerical investigations.

Our main finding is that EVAR has advantageous short- and long-term survival. Although the

improvement in expected survival is modest, considering the severity of rAAA, it may still have

important clinical implications. In the literature, the short-term survival advantage of EVAR has

been suggested in multiple observational analyses [33, 131, 133]. However, there has been a lack of

definitive conclusion on the long-term benefit. For example, Behrendt et al. [132] suggested early

survival benefit of EVAR over OAR, which reversed at ∼2.5 years of follow-up, for iAAA and rAAA

patients in Germany. Schermerborn et al. [33] observed similar survival of the two procedures after

3 years from initial surgery for iAAA patients in the Medicare population. And a 15-year follow-

up resulted from the EVAR-1 trial indicated that EVAR had inferior late survival compared with

OAR [130]. Multiple factors can contribute to the differences observed in the aforementioned and

other studies. First, the studied populations have different characteristics. Second, the analysis

strategies also differ, with our strategy closer to a controlled clinical trial. It is also noted that the

study periods are different. Although there is still no indication of temporal variation in treatment

effects, related confounders may change over time.

Besides treatment, our analysis also suggests that race, gender, and certain medical conditions

are associated with survival after EVAR and OAR among rAAA patients. While most observational

studies that compare EVAR and OAR match study subjects or adjust for potential confounders,

there is a lack of attention on how these variables may impact survival after rAAA. We have

found that compared to other races, the white race is associated with lower short- and long-term

mortality, and the black race is associated with lower short-term mortality. This race difference

has been insufficiently studied in the literature. It can be caused by genetic effects (considering

that genetic factors contribute to many cardiovascular diseases), lifestyle, cultural factors, access to

care, and other factors that may confound survival. While Egorova et al. [133] observed significantly

worse outcomes after EVAR and OAR for female patients, we have found no gender difference in

short-term mortality and male associated with higher long-term mortality. One contributing factor

is the difference in analysis technique: Egorova et al. [133] compared the observed survival with

expected survival in a life table, while we have conducted a more comprehensive adjusted analysis.

Lastly, we have identified certain medical conditions as associated with survival. What may seem

counterintuitive is that some medical conditions are found as negatively associated with mortality.
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For example, it is found that prior iAAA diagnosis decreases short-term mortality risk after rAAA,

and the presence of cardiac arrhythmia increases both short- and long-term survival. One plausible

explanation is that patients with related medical conditions are more likely to have regular hospital

visits and more access to healthcare services, which may lead to more timely detection of emergent

rAAA. For example, it is noted in Edwards et al. [131] that patients who had a prior diagnosis of

iAAA were less commonly admitted through the emergency department, and were more commonly

transferred between hospitals before treatment, which was associated with better survival. Dardik

et al. [149] also found that the presence of hypertension, diabetes, and COPD were correlated with

a statistically significant lower mortality rate, whereas the presences of smoking, heart disease,

and renal disease were correlated with a statistically insignificant lower mortality rate after the

diagnosis of rAAA.

4.2.5 Conclusion

This study has suggested certain short- and long-term survival advantage of EVAR over OAR

for rAAA patients. It has also further advanced the emulation and deep learning techniques for

analyzing data mined from large medical record databases. Both the medical findings and analytic

developments can complement the existing literature and be of interest to stakeholders at multiple

levels.
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Chapter 5

Concluding Remarks

With the Medicare administrative data, this dissertation develops various statistical methods for

biomedical research in older adults. Chapter 2 and Chapter 3 focus on examining disease intercon-

nections in healthcare outcome measures using network analysis. To be more specific, in Chapter

2, we build a clinical treatment HDN on inpatient LOS. Considering that multiple outcomes are

closely related to each other, In Chapter 3, we build a clinical treatment HDN that can incorporate

multiple variables. We analyze LOS and readmission data in Chapter 3 and note that the proposed

method can be easily expanded to incorporate more outcomes of different data types. In both

chapters, to accommodate uniquely challenging data distributions (high-dimensionality and zero-

inflation), novel modeling and estimation approaches have been developed. The methodological

developments may have other applications and can foster complex network analysis. Based on the

constructed networks, we analyze key network properties such as connectivity, module/hub, and

temporal variation. The findings are found to be largely supported by existing biomedical evidence.

A closer examination of analysis results also reveals novel findings that are less/not investigated

in the individual-disease studies. These findings have clinical importance and can provide valuable

information in guiding future analysis. The proposed clinical treatment HDNs complement existing

molecular and phenotypic HDNs by being more clinically sensible and having more practical impli-

cations. They can be used to guide more efficient allocation of hospital beds and other resources,

provide additional insights into disease interconnections from a treatment perspective, and define

an alternative way of disease characterization and classification.

In Chapter 4, we adopt the emulation approach to conduct causal inferences on treatment/intervention
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effects. With emulation analysis, we first compare rivaroxaban and dabigatran’s effectiveness and

safety outcomes for Medicare patients with atrial fibrillation. We analyze the emulated trial using

propensity score and IPT weighting Cox proportional hazards regression. We find that dabigatran

is superior in terms of time to any primary event (including ischemic stroke, other thromboembolic

events, major bleeding, and death), major bleeding, and mortality. Differences between the two

drugs in terms of stroke and other thromboembolic events are not significant. We also observe tem-

poral variations, which have been largely neglected in other emulation studies. Considering that

the regression-based statistical techniques generally have too strict data assumptions (e.g., Cox

proportional model for survival data), we develop a novel deep learning strategy, which mimics the

“propensity score + IPT weighting Cox regression” approach. We note that the proposed method

can be easily generalized to other regression models and data types. We apply this approach to

study survival outcomes of endovascular repair versus open aortic repair for Medicare patients with

abdominal aortic aneurysms. We find that endovascular repair has survival advantages in both

short- and long-term mortality. Overall, the developed “emulation + deep learning” approach

provides an alternative and more flexible way of evaluating treatment/intervention effects using

observational data. This study is the first application of deep learning to the emulation analysis,

which can further analysis in both domains. It also showcases a new way of analyzing the scaled

and comprehensive Medicare database. The emulated trials can guide the development of a real

clinical trial (if it ever becomes feasible). The findings provide solid evidence for guiding better

clinical decisions.

5.1 Limitation

This dissertation inevitably has limitations. Due to limited data accessibility, the analyses focus on

Medicare inpatient claims. Inpatient treatment is only part of the healthcare system for Medicare

beneficiaries. Many treatments are accomplished in other clinical settings, such as outpatient office

visits and ED visits. Moreover, chronic diseases generally do not involve many hospital treatments

and are often handled with drug refillings. Nevertheless, we note that inpatient treatment is the

most serious type of treatment that consumes the most medical resources. Accordingly, analysis

focus on inpatient treatment has its unique value. We have considered the whole Medicare popu-
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lation. With the broad coverage of Medicare to the U.S. elderly population, our findings can be

applied to this population with high confidence. It will be of interest to conduct stratified analysis

to better accommodate heterogeneity. Although there is no evidence that the findings differ be-

tween race and other demographic factors, the generalization of our findings to other populations

still needs further examination.

For Chapter 2 and Chapter 3, as in many other HDN analysis, our analysis can only infer as-

sociations (with undirected networks). Causal analysis would demand significant additional data.

Besides, unadjusted outcomes are used to construct the proposed clinical treatment HDNs. It is

noted that the proposed approach in Chapter 3 is regression-based and can be expanded to include

covariants such as demographic and other risk factors. However, building HDNs on risk-adjusted

outcomes is beyond the scope of this dissertation and will be postponed to future studies. In the

analysis, we examine the temporal variations in a cross-sectional manner. Given that we have

observed significant dynamics in network structures across time, it will be of interest to develop a

time-varying network framework. This framework will require extensive new methodology develop-

ment. Moreover, the presented graphical algorithms deal with a large sample size, a large number

of unknown parameters, and a complex model structure. As a result, computation is expensive.

Luckily, estimation for each node and under different tunings can be run parallel to reduce computer

time. For larger data, further parallelization may be needed to make the analysis affordable. Our

examination suggests that the findings are biomedically sensible to a large extent. However, we are

unable to examine all findings considering a large number of diseases and interconnections. It will

also be of interest to examine additional data and provide more interpretations of the findings.

For Chapter 4, it is noted that even with full access to different treatment settings, the Medicare

database covers limited information [4,146]. For example, it does not contain information on over-

the-counter drug uses, patients’ socioeconomic status, and adherence to medication regimen, all

of which are essential confounders for treatment effects. It is unknown that whether treatment

arms are imbalanced on these unmeasured confounders. In addition to data limitations, it is

well documented in the literature that the emulation approach, while being lucidly interpretable,

has notable limitations [36, 38, 137]. For example, it can only emulate target trials without blind

assignment. There is still a lack of direct and objective comparison of this approach concerning

other causal inference approaches. It will be of interest to conduct such a comparison, but it is
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beyond the scope of this study. In the analysis, we develop an innovative deep learning approach

to mimic the commonly used “propensity score + IPT weighting Cox proportional hazards model.”

Although we conduct a bootstrap-like procedure to gain insights into the variability of estimates,

the rigorous statistical inference has not been pursued. Noting that statistical properties for neural

networks are less investigated in the literature, it will be of future interest to research more along

this direction.

5.2 Future study

With the possibility of more comprehensive data, we will expand the analysis scope to incorporate

other treatment settings and other outcomes of different data distributions. This includes accom-

modating more outcome measures in constructing clinical treatment HDNs and investigating more

medical conditional and treatments using the “emulation + deep learning” analysis approach. It

is also of future interest to validate the findings of this dissertation by examining potential un-

measured risk factors. Regarding the analysis of clinical treatment HDNs, we plan to develop

new modeling approaches, which could accommodate risk-adjusted outcomes, intervention/shock

effects, and time-dependent variables. Regarding the emulation analysis, we will conduct a direct

comparison for its relative performance concerning other causal inference techniques. We are also

planning to expand the deep learning algorithm to different data types beyond survival analysis

and derive corresponding theoretical properties.
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Appendix A

Supplementary Materials for Chapter

2

A.1 Clinical Classifications Software disease categories

Table A.1: CCS disease categories

ccs100 Acute myocardial infarction

ccs101 Coronary atherosclerosis and other heart disease

ccs103 Pulmonary heart disease

ccs104 Other and ill-defined heart disease

ccs105 Conduction disorders

ccs106 Cardiac dysrhythmias

ccs107 Cardiac arrest and ventricular fibrillation

ccs108 Congestive heart failure; nonhypertensive

ccs109 Acute cerebrovascular disease

ccs110 Occlusion or stenosis of precerebral arteries

ccs111 Other and ill-defined cerebrovascular disease

ccs112 Transient cerebral ischemia

ccs113 Late effects of cerebrovascular disease

ccs114 Peripheral and visceral atherosclerosis

ccs115 Aortic; peripheral; and visceral artery aneurysms

ccs117 Other circulatory disease

ccs118 Phlebitis; thrombophlebitis and thromboembolism

ccs120 Hemorrhoids

ccs121 Other diseases of veins and lymphatics

ccs122 Pneumonia (except that caused by tuberculosis or sexually transmitted disease)

ccs125 Acute bronchitis

ccs126 Other upper respiratory infections
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ccs127 Chronic obstructive pulmonary disease and bronchiectasis

ccs128 Asthma

ccs129 Aspiration pneumonitis; food/vomitus

ccs130 Pleurisy; pneumothorax; pulmonary collapse

ccs131 Respiratory failure; insufficiency; arrest (adult)

ccs133 Other lower respiratory disease

ccs134 Other upper respiratory disease

ccs135 Intestinal infection

ccs138 Esophageal disorders

ccs139 Gastroduodenal ulcer (except hemorrhage)

ccs140 Gastritis and duodenitis

ccs141 Other disorders of stomach and duodenum

ccs143 Abdominal hernia

ccs145 Intestinal obstruction without hernia

ccs146 Diverticulosis and diverticulitis

ccs149 Biliary tract disease

ccs151 Other liver diseases

ccs152 Pancreatic disorders (not diabetes)

ccs153 Gastrointestinal hemorrhage

ccs154 Noninfectious gastroenteritis

ccs155 Other gastrointestinal disorders

ccs157 Acute and unspecified renal failure

ccs158 Chronic kidney disease

ccs159 Urinary tract infections

ccs160 Calculus of urinary tract

ccs161 Other diseases of kidney and ureters

ccs162 Other diseases of bladder and urethra

ccs163 Genitourinary symptoms and ill-defined conditions

ccs164 Hyperplasia of prostate

ccs19 Cancer of bronchus; lung

ccs197 Skin and subcutaneous tissue infections

ccs198 Other inflammatory condition of skin

ccs199 Chronic ulcer of skin

ccs2 Septicemia (except in labor)

ccs201 Infective arthritis and osteomyelitis (except that caused by tuberculosis or sexually transmitted disease)

ccs202 Rheumatoid arthritis and related disease

ccs203 Osteoarthritis

ccs204 Other non-traumatic joint disorders

ccs205 Spondylosis; intervertebral disc disorders; other back problems

ccs206 Osteoporosis

ccs207 Pathological fracture

ccs209 Other acquired deformities

ccs211 Other connective tissue disease

ccs212 Other bone disease and musculoskeletal deformities
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ccs238 Complications of surgical procedures or medical care

ccs259 Residual codes; unclassified

ccs29 Cancer of prostate

ccs3 Bacterial infection; unspecified site

ccs4 Mycoses

ccs42 Secondary malignancies

ccs44 Neoplasms of unspecified nature or uncertain behavior

ccs47 Other and unspecified benign neoplasm

ccs48 Thyroid disorders

ccs49 Diabetes mellitus without complication

ccs50 Diabetes mellitus with complications

ccs51 Other endocrine disorders

ccs52 Nutritional deficiencies

ccs53 Disorders of lipid metabolism

ccs54 Gout and other crystal arthropathies

ccs55 Fluid and electrolyte disorders

ccs58 Other nutritional; endocrine; and metabolic disorders

ccs59 Deficiency and other anemia

ccs60 Acute posthemorrhagic anemia

ccs62 Coagulation and hemorrhagic disorders

ccs63 Diseases of white blood cells

ccs651 Anxiety disorders

ccs653 Delirium dementia and amnestic and other cognitive disorders

ccs657 Mood disorders

ccs659 Schizophrenia and other psychotic disorders

ccs660 Alcohol-related disorders

ccs661 Substance-related disorders

ccs663 Screening and history of mental health and substance abuse codes

ccs7 Viral infection

ccs79 Parkinson‘s disease

ccs81 Other hereditary and degenerative nervous system conditions

ccs82 Paralysis

ccs83 Epilepsy; convulsions

ccs87 Retinal detachments; defects; vascular occlusion; and retinopathy

ccs88 Glaucoma

ccs89 Blindness and vision defects

ccs94 Other ear and sense organ disorders

ccs95 Other nervous system disorders

ccs96 Heart valve disorders

ccs97 Peri-; endo-; and myocarditis; cardiomyopathy (except that caused by tuberculosis or sexually transmitted

disease)

ccs98 Essential hypertension

ccs99 Hypertension with complications and secondary hypertension
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A.2 Year-specific LOS HDNs

(a) 2008 (b) 2009

(c) 2010 (d) 2011

Figure A.1: Year-specific LOS HDNs
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(e) 2012 (f) 2013

(g) 2014 (h) 2015

Figure A.1: Year-specific LOS HDNs
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(i) 2016 (j) 2017

(k) 2018

Figure A.1: Year-specific LOS HDNs
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A.3 Alternative analysis

As briefly discussed in Chapter 2, the interconnections in LOS among diseases differ from those

obtained based on genetic and phenotypic information. To more firmly establish such differences

and gain additional insights into the proposed analysis, we further analyze and compare with the

molecular HDN (as developed in Goh et al. [24]) and phenotypic HDN (as developed in Hidalgo et

al. [27]).

A.3.1 The molecular HDN

This HDN is gene-centric, under which two diseases are interconnected if they share common genetic

risk factors. We note that the disease list investigated in Goh et al. [24] differs from that in this

study. To make the results more directly comparable, we need to re-do the analysis using the

approach in Goh et al. [24] but with a different list of diseases. More specifically, we first extract

data from https://phewascatalog.org/phewas [150], which contains information on shared genes

between the electronic health record driven Phenome-wide association studies codes (PheCode).

Like the CCS used in our study, PheCode is also a disease classification software that groups the

International Classification of Diseases (ICD) codes. Based on common ICD codes, we convert the

1,723 PheCodes into 204 CCS codes. We further focus on the network for the same 108 CCS codes

as in our analysis.

A.3.2 The phenotypic HDN

Hidalgo et al. [27] introduced two comorbidity measures to quantify the correlation between two

diseases. Here we adopt the φ-correlation, which is Pearson’s correlation for binary variables.

Specifically, the φ-correlation between disease i and j is defined as:

φij =
Cij − PiPj√

PiPj(N − Pi)(N − Pj)
,

where N is the total number of study subjects, Cij is the number of subjects diagnosed with both

diseases, and Pi and Pj are numbers of subjects diagnosed with disease i and disease j, respectively.

Then using the same inpatient Medicare data from January 2008 to December 2018, we construct
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the phenotypic HDN for the same 108 CCS diseases.

A.3.3 Results

Similar to the proposed LOS HDN, the molecular HDN and phenotypic HDN constructed here are

also unweighted and undirected. The obtained network structures as shown in Figure A.2, which

also includes the one constructed in Chapter 2 for comparison. The molecular HDN has 1,344 edges

and 5 modules, and the phenotypic HDN has 1,059 edges and 9 modules. In comparison, the one

constructed in Chapter 2 has 1,049 edges and 11 modules. A closer examination confirms that the

three networks are significantly different.

Figure A.2: HDNs constructed using three different approaches

Connectivity Table A.2 shows the top 10 diseases with the highest connectivity values. It is observed

that CCS58 and CCS95 are the only two diseases that are in the top 10 list for all three networks.

For the molecular HDN, the top 10 list is enriched with endocrine, metabolic, and nervous diseases.

The phenotypic HDN and LOS HDN are more similar and share seven common diseases (CCS55,

CCS59, CCS95, CCS108, CCS157, CCS58, and CCS99). Considering that molecular information

is “farther away” from clinics, the observed results are sensible and further establish the necessity

of additional analysis beyond the molecular HDN.

Module We further examine differences in module structures. Specifically, if two diseases are in the

same module under the LOS HDN but not under an alternative network, we say that their disease

module relationship is different (across networks). Comparing the LOS HDN with the molecular
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HDN CCS Disease Connectivity

Molecular ccs205 Spondylosis; intervertebral disc disorders; other back problems 82
ccs58 Other nutritional; endocrine; and metabolic disorders 82
ccs211 Other connective tissue disease 77
ccs95 Other nervous system disorders 75
ccs47 Other and unspecified benign neoplasm 73
ccs51 Other endocrine disorders 67
ccs204 Other non-traumatic joint disorders 66
ccs87 Retinal detachments; defects; vascular occlusion; and retinopathy 66
ccs59 Deficiency and other anemia 65
ccs198 Other inflammatory condition of skin 64

Phenotypic ccs59 Deficiency and other anemia 66
ccs55 Fluid and electrolyte disorders 58
ccs95 Other nervous system disorders 57
ccs157 Acute and unspecified renal failure 54
ccs99 Hypertension with complications and secondary hypertension 54
ccs159 Urinary tract infections 51
ccs131 Respiratory failure; insufficiency; arrest (adult) 50
ccs58 Other nutritional; endocrine; and metabolic disorders 49
ccs3 Bacterial infection; unspecified site 47
ccs108 Congestive heart failure; nonhypertensive 46

LOS ccs55 Fluid and electrolyte disorders 75
ccs59 Deficiency and other anemia 67
ccs98 Essential hypertension 63
ccs53 Disorders of lipid metabolism 63
ccs95 Other nervous system disorders 56
ccs108 Congestive heart failure; nonhypertensive 48
ccs157 Acute and unspecified renal failure 46
ccs58 Other nutritional; endocrine; and metabolic disorders 45
ccs138 Esophageal disorders 45
ccs99 Hypertension with complications and secondary hypertension 42

Table A.2: Top 10 diseases with the highest connectivity

HDN shows that 23.5% of the 5,778 pairwise module relationships are different. Comparing the

LOS HDN with the phenotypic HDN shows that 14.36% of the pairwise module relationships

are different. As a representative example, Figure A.3 shows the modules that other nutritional;

endocrine; and metabolic disorders (CCS58) belongs to in the three networks. It is noted that

CCS58 has relatively higher significance as it is one of the two diseases that appear in the top

10 connectivity list for all three networks. Figure A.3 shows that the three modules are highly

different. The modules under the molecular HDN and phenotypic HDN do not share any common

diseases other than CCS58. The modules under the molecular HDN and LOS HDN share two

common diseases (CCS118 and CCS135) other than CCS58. The modules under the phenotypic

HDN and LOS HDN share one common disease (CCS98) other than CCS58. In Figure A.3, shared

diseases are colored in green, and different diseases are colored in orange.

105



Figure A.3: Modules that contain CCS58

A.3.4 Remarks

This analysis further supports our argument that the proposed disease interconnection analysis is

warranted beyond the existing molecular and phenotypic HDNs. It can be of interest to further ex-

plore differences and consolidate the three networks. However, that demands significant additional

research and will be postponed to the future.

106



Appendix B

Supplementary Materials for Chapter

3

B.1 Clinical Classifications Software disease categories

Table B.1: CCS disease categories

ccs100 Acute myocardial infarction

ccs101 Coronary atherosclerosis and other heart disease

ccs103 Pulmonary heart disease

ccs104 Other and ill-defined heart disease

ccs105 Conduction disorders

ccs106 Cardiac dysrhythmias

ccs107 Cardiac arrest and ventricular fibrillation

ccs108 Congestive heart failure; nonhypertensive

ccs110 Occlusion or stenosis of precerebral arteries

ccs111 Other and ill-defined cerebrovascular disease

ccs112 Transient cerebral ischemia

ccs113 Late effects of cerebrovascular disease

ccs114 Peripheral and visceral atherosclerosis

ccs115 Aortic; peripheral; and visceral artery aneurysms

ccs117 Other circulatory disease

ccs118 Phlebitis; thrombophlebitis and thromboembolism

ccs120 Hemorrhoids

ccs121 Other diseases of veins and lymphatics

ccs122 Pneumonia (except that caused by tuberculosis or sexually transmitted disease)

ccs125 Acute bronchitis

ccs126 Other upper respiratory infections

ccs127 Chronic obstructive pulmonary disease and bronchiectasis
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ccs128 Asthma

ccs129 Aspiration pneumonitis; food/vomitus

ccs130 Pleurisy; pneumothorax; pulmonary collapse

ccs131 Respiratory failure; insufficiency; arrest (adult)

ccs133 Other lower respiratory disease

ccs134 Other upper respiratory disease

ccs135 Intestinal infection

ccs138 Esophageal disorders

ccs139 Gastroduodenal ulcer (except hemorrhage)

ccs140 Gastritis and duodenitis

ccs141 Other disorders of stomach and duodenum

ccs143 Abdominal hernia

ccs145 Intestinal obstruction without hernia

ccs146 Diverticulosis and diverticulitis

ccs149 Biliary tract disease

ccs151 Other liver diseases

ccs152 Pancreatic disorders (not diabetes)

ccs153 Gastrointestinal hemorrhage

ccs154 Noninfectious gastroenteritis

ccs155 Other gastrointestinal disorders

ccs157 Acute and unspecified renal failure

ccs158 Chronic kidney disease

ccs159 Urinary tract infections

ccs160 Calculus of urinary tract

ccs161 Other diseases of kidney and ureters

ccs162 Other diseases of bladder and urethra

ccs163 Genitourinary symptoms and ill-defined conditions

ccs164 Hyperplasia of prostate

ccs19 Cancer of bronchus; lung

ccs197 Skin and subcutaneous tissue infections

ccs198 Other inflammatory condition of skin

ccs199 Chronic ulcer of skin

ccs2 Septicemia (except in labor)

ccs202 Rheumatoid arthritis and related disease

ccs203 Osteoarthritis

ccs204 Other non-traumatic joint disorders

ccs205 Spondylosis; intervertebral disc disorders; other back problems

ccs206 Osteoporosis

ccs207 Pathological fracture

ccs209 Other acquired deformities

ccs211 Other connective tissue disease

ccs212 Other bone disease and musculoskeletal deformities

ccs238 Complications of surgical procedures or medical care

ccs259 Residual codes; unclassified
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ccs29 Cancer of prostate

ccs3 Bacterial infection; unspecified site

ccs4 Mycoses

ccs42 Secondary malignancies

ccs44 Neoplasms of unspecified nature or uncertain behavior

ccs47 Other and unspecified benign neoplasm

ccs48 Thyroid disorders

ccs49 Diabetes mellitus without complication

ccs50 Diabetes mellitus with complications

ccs51 Other endocrine disorders

ccs52 Nutritional deficiencies

ccs53 Disorders of lipid metabolism

ccs54 Gout and other crystal arthropathies

ccs55 Fluid and electrolyte disorders

ccs58 Other nutritional; endocrine; and metabolic disorders

ccs59 Deficiency and other anemia

ccs60 Acute posthemorrhagic anemia

ccs62 Coagulation and hemorrhagic disorders

ccs63 Diseases of white blood cells

ccs651 Anxiety disorders

ccs653 Delirium dementia and amnestic and other cognitive disorders

ccs657 Mood disorders

ccs659 Schizophrenia and other psychotic disorders

ccs660 Alcohol-related disorders

ccs661 Substance-related disorders

ccs663 Screening and history of mental health and substance abuse codes

ccs7 Viral infection

ccs79 Parkinson‘s disease

ccs81 Other hereditary and degenerative nervous system conditions

ccs82 Paralysis

ccs83 Epilepsy; convulsions

ccs87 Retinal detachments; defects; vascular occlusion; and retinopathy

ccs88 Glaucoma

ccs89 Blindness and vision defects

ccs94 Other ear and sense organ disorders

ccs95 Other nervous system disorders

ccs96 Heart valve disorders

ccs97 Peri-; endo-; and myocarditis; cardiomyopathy (except that caused by tuberculosis or sexually transmitted

disease)

ccs98 Essential hypertension

ccs99 Hypertension with complications and secondary hypertension
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B.2 Year-specific LOS and readmission HDNs

(a) 2010 (b) 2011

(c) 2012 (d) 2013

Figure B.1: Year-specific LOS and readmission HDNs
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(e) 2014 (f) 2015

(g) 2016 (h) 2017

Figure B.1: Year-specific LOS and readmission HDNs
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(i) 2018

Figure B.1: Year-specific LOS and readmission HDNs
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Appendix C

Supplementary Materials for Chapter

4

C.1 Rivaroxaban versus dabigatran for atrial fibrillation

Table C.1: ICD-9-CM codes for identifying eligible individuals

Eligibility criteria Generic drug name / ICD-9-CM Code*

Inclusion
Atrial fibrillation 427.31
First prescription for

Dabigatran-150mg dabigatran etexilate mesylate
Rivaroxaban-20mg rivaroxaban

Exclusion (three months of history)
Received prior treatment with

Warfarin warfarin, warfarin sodium
Eliquis apixaban
Savaysa edoxaban tosylate

Kidney transplant V42.0
Renal dialysis V45.11
A potential alternative indication for anticoagulation

Mitral valve disease
394.x-397.x, 398.9, 42.4x, V42.4, V43.3

Heart valve repair or replacement
Venous thromboembolism 451.1, 451.2, 451.81,451.9, 453.1, 453.2, 453.8, 453.9,

671.3, 671.4
Phlebitis or thrombophlebitis 451.x
Pulmonary embolism 415.1x
Joint replacement V43.60-V43.66, V43.69

* Primary or any secondary diagnosis code
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Table C.2: Generic drug names, ICD-9-CM codes, and Medicare MCC indicators for defining
confounders

Variable Generic drug name / ICD-9-CM Code* / Medicare
MCC indicator

Medical History
Diabetes mellitus DIABETES EVER
Hypertension HYPERT EVER
CKD CHRONICKIDNEY EVER
History of bleeding (3m preceding) Intracranial bleeding 430, 431, 432; Hemoperitoneum 568.81;

Hematuria 599.7; GI hemorrhage 530.7, 531.0, 531.2, 531.4,
531.6, 532.0, 532.2, 532.4, 532.6, 533.0, 533.2, 533.4, 533.6,
534.0, 534.2, 534.4, 534.6,569.3, 535.01, 535.11, 535.21, 535.31,
535.41, 535.51, 535.61, 535.71, 537.83, 537.84 , 562.02 ,562.03,
562.12, 562.13, 569.85, 578; Epistaxis 784.7; Hemoptysis 786.3;
Vaginal hemorrhage 623.8, 626.2; Hemarthrosis 719.1, 719.2;
NOS hemorrhage 459

Acquired HT HYPOTH EVER
No. of other CMS comorbidities

Alzheimer’s disease ANEMIA EVE
Related disorders or senile dementia ALZH DEMEN EVER
Anemia ANEMIA EVER
Asthma ASTHMA EVER
Benign prostatic hyperplasia HYPERP EVER
Cataract CATARACT EVER
COPD COPD EVER
Ischemic heart disease ISCHEMICHEART EVER
Hip or pelvic fracture HIP FRACTURE EVER
Glaucoma GLAUCOMA EVER
Hyperlipidemia HYPERL EVER
Osteoporosis OSTEOPOROSIS EVER
Rheumatoid arthritis or osteoarthritis RA OA EVER
Breast cancer CANCER BREAST EVER
Colorectal cancer CANCER COLORECTAL EVER
Prostate cancer CANCER PROSTATE EVER
Lung cancer CANCER LUNG EVER
Endometrial cancer CANCER ENDOMETRIAL EVER

Cardiovascular Disease
AMI AMI EVER
CHF CHF EVER
Previous stroke or TIA STROKE TIA EVER
Medication Use
NSAIDs Filling a prescription for diclofenac, ibuprofen, naparofen, keto-

profen, fenoprofen, flurbiprofen, piroxicasm, meloxicam, mefe-
namic acid, or indomethacin after the index date

Antiplatelet Filling a prescription for aspirin, clopidogrel, prasugrel, dipyri-
damole, ticlopidine, or ticagrelor after the index date

* Primary or any secondary diagnosis code
MCC multiple chronical condition, CMS centers for Medicare & Medicaid services, CKD chronic kidney disease,
HT hypothyroidism, COPD chronic obstructive pulmonary disease, AMI acute myocardial infarction,
CHF congestive heart failure, TIA transient ischemic attack, NSAIDs non-steroidal anti-inflammatory drug

114



Table C.3: ICD-9-CM codes used for defining study outcomes

Outcome ICD-9-CM Codes*

Primary outcome
Ischemic stroke 433, 434, 436
Other thromboembolic events Systemic embolism (444), TIA (435), Pulmonary embolism (415.1)
Major bleeding Intracranial bleeding (430, 431, 432), Hemoperitoneum (568.81), Hema-

turia (599.7), GI hemorrhage (530.7, 531.0, 531.2, 531.4, 531.6, 532.0,
532.2, 532.4, 532.6, 533.0, 533.2, 533.4, 533.6, 534.0, 534.2, 534.4,
534.6,569.3, 535.01, 535.11, 535.21, 535.31, 535.41, 535.51, 535.61,
535.71, 537.83, 537.84 , 562.02 ,562.03, 562.12, 562.13, 569.85, 578)

All-cause mortality N/A
Secondary outcome
Any bleeding event Major bleeding; Epistaxis (784.7), Hemoptysis (786.3), Vaginal hem-

orrhage (623.8, 626.2), Hemarthrosis (719.1, 719.2), NOS hemorrhage
(459)

Acute myocardial infarction 410

* Primary or any secondary diagnosis code

Table C.4: Baseline characteristics of the study cohorts, after IPT weighting

Variables Trial 1 Trial 2 Trial 3

R D R D R D

Demographics
Age(years)

65-74 8743 (48.43) 8749 (48.47) 13384 (46.35) 13391 (46.36) 12747 (49.47) 12768 (49.53)
75-84 7314 (40.52) 7327 (40.59) 11983 (41.50) 11985 (41.49) 10467 (40.63) 10469 (40.61)
≥ 85 1995 (11.05) 1975 (10.94) 3509 (12.15) 3510 (12.15) 2551 (9.90) 2541 (9.86)

Sex (female) 8804 (48.77) 8794 (48.72) 13536 (46.87) 13540 (46.87) 12130 (47.08) 12136 (47.08)
Race

White 16460 (91.65) 16465 (91.67) 26734 (92.97) 26743 (92.96) 23531 (91.96) 23537 (91.94)
Black 727 (4.05) 725 (4.04) 1073 (3.73) 1075 (3.74) 1107 (4.33) 1112 (4.34)
Other 774 (4.31) 770 (4.29) 949 (3.30) 950 (3.30) 950 (3.71) 951 (3.72)

Medical history
Diabetes mellitus 7547 (41.81) 7552 (41.84) 12400 (42.94) 12404 (42.94) 10999 (42.69) 11026 (42.77)
Hypertension 16688 (92.44) 16686 (92.44) 26968 (93.39) 26979 (93.40) 23856 (92.59) 23880 (92.64)
CKD 4680 (25.93) 4673 (25.89) 7605 (26.34) 7608 (26.34) 7013 (27.22) 7003 (27.17)
History of bleeding 422 (2.34) 419 (2.32) 774 (2.68) 774 (2.68) 684 (2.66) 688 (2.67)
Acquired HT 5037 (27.90) 5045 (27.95) 8453 (29.28) 8458 (29.28) 7578 (29.41) 7573 (29.38)
No. of other
CMS comorbidities

0-3 4945 (27.39) 4935 (27.34) 7142 (24.73) 7144 (24.73) 6878 (26.69) 6871 (26.65)
4-6 8536 (47.29) 8543 (47.33) 14130 (48.93) 14137 (48.94) 12271 (47.63) 12303 (47.73)
≤ 7 4571 (25.32) 4571 (25.33) 7605 (26.34) 7604 (26.33) 6616 (25.68) 6604 (25.62)

Cardiovascular disease
AMI 1384 (7.66) 1372 (7.60) 2202 (7.63) 2206 (7.64) 1981 (7.69) 2007 (7.79)
CHF 8406 (46.57) 8411 (46.60) 13857 (47.99) 13856 (47.97) 11705 (45.43) 11693 (45.36)
Stroke or TIA 4040 (22.38) 4041 (22.39) 6432 (22.28) 6433 (22.27) 5775 (22.42) 5770 (22.38)
Medication use
NSAIDs 1562 (8.65) 1565 (8.67) 1967 (6.81) 1970 (6.82) 1971 (7.65) 1971 (7.65)
Antiplatelet 2050 (11.35) 2051 (11.37) 2627 (9.10) 2636 (9.13) 2692 (10.45) 2719 (10.55)

R rivaroxaban, D dabigatran, CMS centers for Medicare & Medicaid Services,CKD chronic kidney disease,
AMI acute myocardial infarction, CHF congestive heart failure, TIA transient ischemic attack, HT hypothyroidism,
NSAIDs non-steroidal anti-inflammatory drug
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Figure C.1: Histograms of the after-weighting propensity scores for trial 1
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C.2 Endovascular versus open aortic repair for abdominal aortic

aneurysms

C.2.1 ICD-9-CM codes for defining study cohort and confounders

Table C.5: ICD-9-CM codes for defining study cohort and confounders (one year of medical history)

Variable ICD-9-CM Code*
Inclusion
Ruptured abdominal aortic aneurysm 441.3
Endovascular aortic repair 39.71
Open aortic repair 38.44, 39.25, 39.52, 38.34, 38.64, 38.40, 38.60
Exclusion
Thoracic aneurysms 441.1, 441.2
Thoracoabdominal aneurysms 441.6, 441.7
Aortic dissection 441.00-441.03
Repair of the thoracic aorta 38.35, 38.45, 39.73
Visceral or renal bypass 38.46, 39.24, 39.26
Medical history
Congestive heart failure 398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.91, 404.13,

404.93, 425.4, 425.5, 425.7, 425.8, 425.9, 428.0, 428.1, 428.20, 428.22,
428.30, 428.32, 428.40, 428.42, 428.9

Cardiac arrhythmia 426.0, 426.10, 426.11, 426.12, 426.13, 426.7, 426.9, 427.0, 427.1, 427.2,
427.3, 427.9, V45.0, V53.3

Valvular disease 093.2, 394, 395, 396, 397, 424, V42.2, V43.3
Coronary disease 412, 413, 414, 429.2
Diabetes 250
Hypertension 401, 402, 403, 404, 405
Chronic Obstructive Pulmonary diseases 416, 417.9, 490, 491, 492, 493, 494, 495.0, 495.1, 495.2, 495.3, 495.4,

495.5, 495.6, 495.8, 495.9, 496, 500, 501, 502, 503, 504, 505, 506.0,
506.2, 506.4, 506.9, 508.1, 508.8, 508.9

Clinically significant lower extremity vas-
cular diseases

440.22, 440.23, 440.24, 440.3, 444.22, V43.4

Renal atherosclerosis 440.1
Vascular intestine disease 557.1
Renal failure w dialysis V45.1, V56.0, V56.1, V56.2, V56.3, V56.8, 585.6, 39.95 (w/o 586)
Renal failure without dialysis 403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 404.92, 404.93,

585 (w/o 585.6), 588.0
Other renal diseases 582, 583.0, 583.1, 583.2, 583.4
Kidney transplant V420
Liver disease 070.22, 070.23, 070.32, 070.33, 070.44, 070.54, 070.9, 456.0, 456.1, 571,

572.1, 572.2, 572.3, 572.4, 572.8, 573.0, 573.1, 573.8, 573.9
Cerebrovascular diseases and paralysis 342, 344.1, 344.3, 344.4, 344.5, 344.9, 437.0, 438
Other neurological diseases 330, 331, 332, 333, 334.0, 334.1, 334.2, 334.4, 334.8, 335.0, 335.1, 335.2,

335.8, 335.9, 336.0, 336.2, 343, 344.0, 348.1, 348.3, 344.2, 344.6, 345,
437.3, 437.4, 437.5, 437.6, 437.7

Hyperlipidemia 272
Cancer 140, 141, 142, 143, 144,145, 146, 147, 148, 149, 150, 151, 152, 153, 154,

155, 156, 157, 158,159, 160, 161, 162, 163, 164, 165, 170, 171,172, 174,
175, 176, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191,
192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203.0, 238.6

Rheumatoid arthritis 446, 701.0, 710.0, 710.1, 710.2, 710.3, 710.4, 710.8, 710.9, 711.2, 719.3,
714,720, 725, 728.5, 728.89

Prior intact AAA diagnosis 441.4, without mention 441.3
* Primary or any secondary diagnosis/procedure code
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C.2.2 Regression analysis

In “standard” clinical trial analyses as well as emulated trial analyses [131, 151], regression tech-

niques have generally been adopted. Here to complement the analysis presented in the main text,

we also conduct regression-based analysis. The overall strategy is similar to that presented in

Section 4.2.2. The first step is to estimate the propensity score using a logistic regression. The

same set of variables as presented in Table 4.4 is included. Then we conduct the IPT weighted

Cox regression analysis. Both steps can be realized using existing R functions. For inference, we

directly use the p-values generated by Cox regression. There is hence no need for bootstrap.

The estimated propensity scores are shown in Figure C.2.

In the analysis of short-term survival, the estimated coefficient of EVAR is -0.611, with a

standard error of 0.027 and a p-value less than 0.001. Other significant variables include age, hy-

pertension, chronic obstructive pulmonary diseases, and prior intact AAA diagnosis. More detailed

estimation and inference results are available from the authors. We test the proportional hazards

assumption, and the global Chi-squared test returns a p-value less than 0.001, suggesting a viola-

tion of model assumptions. We further plot the scaled Schoenfeld residuals for treatment in the left

panel of Figure C.3 and observe that the residuals are correlated with time. The plot of deviance

in the right panel of Figure C.3 also suggests a violation of model assumptions.

In the analysis of long-term survival, the estimated coefficient of EVAR is -0.317, with a standard

error of 0.002 and a p-value less than 0.001. Other significant variables include age, hypertension,

chronic obstructive pulmonary diseases, and prior intact AAA diagnosis. The global Chi-squared

test returns a p-value less than 0.001, which, along with Figure C.4, suggests that the Cox model

assumptions are not satisfied.

Overall, we present the regression-based results for completeness but note that, with the viola-

tions of model assumptions, their results should not be utilized.
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Figure C.2: Distribution of propensity score using logistic regression

Figure C.3: Analysis of short-term survival using Cox regression (left: Scaled Schoenfeld residuals
for treatment; right: Deviance residuals)

Figure C.4: Analysis of long-term survival using Cox regression (left: Scaled Schoenfeld residuals
for treatment; right: Deviance residuals)
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