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Abstract

Development, Implementation and Evaluation of Medical Decision Support Systems Based

on Mortality Prediction Algorithms From an Operations Research Perspective.

Junchao Ma

2021

Wide implementation of electronic health record systems provides rich data for personalized

medicine. One topic of great interest is to develop methods to assist physicians in prognosis

for example mortality. While many studies have reported on various new prediction models

and algorithms there is relatively little literature on if and how these new prediction methods

translate into actual benefits. My dissertation consists of three theses that aims at filling this

gap between prognostic predictions and clinical decisions in end-of-life care and intensive

care settings.

In the first thesis, we develop an approach to using temporal trends in physiologic

data as an input into mortality prediction models. The approach uses penalized b-spline

smoothing and functional PCA to summarize time series of patient data. we apply the

methodology in two settings to demonstrate the value of using the ”shapes” of health data

time series as a predictor of patient prognosis. The first application a mortality predictor

for advanced cancer patients that can help oncologists decide which patients should stop

aggressive treatments and switch to palliative care such as that provided in hospice. The

second one is a real-time near term mortality predictor for MICU patients that can work

as an early alarm system to guide timely interventions.

In the second thesis, we investigate the integration of a prediction algorithm with physi-

cian decision making, focusing on the advanced cancer patient setting. We design a retro-

spective study to compare prognoses made by doctors and those that would be recommended

by the IMPAC algorithm developed in Chapter 1. We used the doctor’s discharge decision

as a proxy of what they predict the patient as dying in 90 days and show that doctor’s

predictions tend to very conservative. Although IMPAC on its own does not perform better

than doctors in terms of precision and recall, we find that IMPAC and doctors identify



significantly different group of positive cases. IMPAC and doctors are also good at iden-

tifying very different groups of patients in terms of survival time. We propose a new way

to augment decisions of doctors with IMPAC. At the same recall, the augment method

identifies 43% more patients close to death than the doctors do. We also estimate potential

hospitalizations and hospital length of stays avoided if the doctors use augmented procedure

instead of acting on their own beliefs.

In the third thesis, we look at the integration of a prediction algorithm with physician

decision making, focusing on the ICU setting. We use a POMDP framework to evaluate how

decision support systems based on ICU mortality predictions can help physicians allocate

time to inspect the patients at highest risk of death. We assume physicians have limited

time and seek to optimally allocate it to patients in order to minimize their mortality rate.

Physicians can do Bayesian updates on observations of patient health state. A prediction

algorithm can augment this process by sending alerts to physicians. We represent the

algorithm by an arbitrary point on an ROC curve representing a particular alert threshold.

We study two approaches to using the algorithm input: (1) Belief based policy (BBP) that

integrates algorithm outputs using Bayesian updating; (2) Alarm triggered policy (ATP)

where the physician responds only to the algorithm without updating, and compare them

to benchmarks that do not rely on the algorithm at all. By running simulations, we explore

how the accuracy of predictions can translate into lower mortality rates.
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Chapter 1

Introduction

Wide implementation of electronic health record systems provides rich data for personalized

medicine. One topic of great interest is to develop methods to assist physicians in prognosis

on adverse outcomes, for example mortality. While many studies have reported on various

new prediction models and algorithms there is relatively little literature on if and how these

new prediction methods translate into actual benefits. My dissertation consists of three

chapters that aims at filling this gap between prognostic predictions and clinical decisions

in end-of-life care and intensive care settings.

In Chapter 2, we develop an approach to use temporal trends in physiologic data as an

input into mortality prediction models. The approach uses penalized b-spline smoothing

and functional PCA to summarize time series of patient data. We apply the methodology

in two settings to demonstrate the value of using the ”shapes” of health data time series as

a predictor of patient prognosis. The first application a mortality predictor for advanced

cancer patients that can help oncologists decide which patients should stop aggressive treat-

ments and switch to palliative care such as that provided in hospice. The second one is a

real-time near term mortality predictor for MICU patients that can work as an early alarm

system to guide timely interventions.

In Chapter 3, we investigate the integration of a prediction algorithm with physician

decision making, focusing on the advanced cancer patient setting. We design a retrospective

study to compare prognoses made by doctors and those that would be recommended by

the IMPAC algorithm developed in Chapter 1. We used the doctor’s discharge decision

1



as a proxy of what they predict the patient as dying in 90 days and show that doctor’s

predictions tend to very conservative. Although IMPAC on its own does not perform

better than doctors in terms of precision and recall, we find that IMPAC and doctors

identify significantly different group of positive cases. IMPAC and doctors are also good

at identifying very different groups of patients in terms of survival time. We propose a

new way to augment decisions of doctors with IMPAC. At the same recall, the augment

method identifies 43% more patients close to death than the doctors do. We also estimate

potential hospitalizations and hospital length of stays avoided if the doctors use augmented

procedure instead of acting on their own beliefs.

In chapter 4, we look at the integration of a prediction algorithm with physician decision

making, focusing on the ICU setting. We use a POMDP framework to evaluate how decision

support systems based on ICU mortality predictions can help physicians allocate time to

inspect the patients at highest risk of death. We assume physicians have limited time and

seek to optimally allocate it to patients to minimize their mortality rate. Physicians can

do Bayesian updates on observations of patient health state. A prediction algorithm can

augment this process by sending alerts to physicians. We represent the algorithm by a point

on an ROC curve representing a particular alert threshold. We study two approaches to

using the algorithm input: (1) Belief based policy (BBP) that integrates algorithm outputs

using Bayesian updating; (2) Alarm triggered policy (ATP) where the physician responds

only to the algorithm without updating, and compare them to benchmarks that do not

rely on the algorithm at all. By running simulations, we explore how the accuracy of the

algorithm can translate into lower mortality rates.

2



Chapter 2

Redesigning Patient Health Status

Scores using Mortality Predictions

Algorithms, with Applications in

End-of-Life Care and Intensive

Care

2.1 Introduction

There is a rich literature on the development of standardized scores to evaluate the health

status of patients. These scores are objective metrics that provide standardized measure-

ments of severity of disease or risk of severe adverse events.

Health status scores work primarily as a way to account for patient severity levels. The

utility of developing these scores varies across different medical settings. In some clinical

studies, these scores are used as proxy of severity of diseases to facilitate statistical analysis

in controlled studies. For example, Sepsis Organ Failure Assessment (SOFA) has been used

to assess the effects of new therapies for patients in the process of organ failure [1]. In other

cases, health status scores can be used for financial and billing purposes. For example,

3



Intensive care unit (ICU) physicians can justify a medicare beneficiaries’ extended lengths

of stays in ICUs with these scores as discharge readiness indicators [2].

Health status scores are also extremely important references for triaging and optimizing

allocation of limited medical resources. In New York State, mortality risk assessment using

SOFA is one of the three key steps in clinical ventilation protocol [3].

One category of health status score of great interest is severity scores for hospitalized

and acute care patients. Existing scores include Sepsis Organ Failure Assessment (SOFA)

[1], Acute Physiologic and Chronic Health Enquiry (APACHE II) [4], Mortality Probability

Model (MPM II) [5], and Simplified Acute Physiologic Score (SAPS II) [6]. These prognos-

tic tools use physiologic measures, demographics, and sometimes physician evaluations to

generate scores calibrated by important patient outcomes like mortality and readmission.

However, these prognostic tools are limited in using only static information taken at a fixed

point in time (e.g., 24hr after ICU admission) to evaluate patients severity.

Potentially, there is valuable information conveyed by the changes in individual mea-

surements over time. The ability to automate data extraction from electronic health record

(EHR) systems provides opportunities to record patient data and analyze it as time series.

This has enabled development of severity scores that can be updated in real time. For

instance, the Rothman Index (RI, PeraHealth) [7, 8] is a continuous measure of patient

condition based on a range of physiological measures, including labs, vitals, and nursing

assessments. Dynamic scoring systems like RI can be integrated into EHR and work as

a real-time visualization tool for physicians to monitor patient health conditions. These

scores provide efficient and relatively accurate reference for physicians to monitor multiple

patients in busy environments.

Instead of using traditional severity scores calibrated by mortality rate, recent stud-

ies have been using machine learning to generate mortality predictions as a measure of

severity. Mortality predictions as severity scores have three major advantages. First, they

can generate objective prediction scores based on data of large volumes and high dimen-

sions. Second, compared to traditional severity scores, output in the form of probability can

be more easily interpreted by both physicians and patients. Third, mortality predictions

are easier to calibrate with existing evaluation measures for classification algorithms, like

4



Receiver-Operating- Characteristic (ROC) curves and Precision-Recall curves.

Recognizing the importance of temporal trends, a number of studies use summary statis-

tics of the trajectories of the EHR measurements as inputs for mortality prediction [9]. Some

do this by recalculating the scores at regular intervals using the most recent values, or a

snapshot, of the measurements, whereas others recalculate the SOFA score using the worst

values in the earlier 24 hours [10, 11, 12]. Sometimes, unstructured text data from pa-

tient clinical notes are also used as inputs, with features extracted from the text that have

accumulated up to the current point in time [13, 14].

In chapter 2, we propose to use a machine learning approach called functional data

analysis [15] to automatically extract temporal trend from time series data in the EHR to

predict mortality.

Chapter 2 consists of 5 sections. In Section 2.2, we describe the procedure of functional

data analysis and introduce two models for mortality prediction. These are methodologies

that will be applied in the fields of end-of-life care and intensive care respectively in Section

2.3 and 2.4.

Section 2.3 is about making mortality predictions for patients with advanced cancer. We

do a retrospective study of patients with advanced solid tumors identified by the Yale New

Haven Hospital tumor registry. We build a new prognostic tool called IMPAC to predict

30-day, 60-day, 90-day or 180-day mortality risk of patients with advanced cancer. This

tool can work as a decision support to help physicians identify patients who could benefit

from palliative care.

In Section 2.4, we do a retrospective study of patients admitted to the medical ICU

(MICU) of the Yale New Haven Hospital. We build a real-time mortality prediction tool for

MICU patients and demonstrate that trajectory information extracted by functional data

analysis gives better mortality predictions than using only snapshot or summary statistics

of time series. Once implemented in EHR system, this can work as an early warning system

to help nurses and physicians allocate limited medical resources.

In Section 2.5, we discuss limitations of these two applications in practice and introduce

the next chapters that aim at addressing these limitations.
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2.2 Methodology

2.2.1 Functional Data Analysis

We start with introducing methods to extract temporal trends in patient health conditions.

One simple way to take advantage of richer time-varying data is to recalculate traditional

scores like SOFA or APACHE every time there is new data available. But this will not

overcome the intrinsic limitations of these scores. An alternative way is to create a new

score that takes a smoothed average of past clinical measures like Rothman Index(RI;

PeraHealth) [7, 16]. RI is an illness-severity index embedded within the electronic medical

record. It continuously tracks 26 variables including vital signs, nursing assessments, lab

results and cardiac rhythm. These data are fed into a proprietary algorithm, which gives a

numerical score which measures how sick the patient is. Projects in section 2 and section

3 both utilized RI as a major input to predict mortality. Although the exact calculation of

the RI is proprietary, the main idea is to calculate a 1-year mortality risk function for each

of the 26 features selected by stepwise logistic regression. These univariate functions were

then combined together in an additive manner to produce the RI score.

Like RI, there are other frequently updated physiologic measures recorded in EHR in

the form of time series. Trajectories of these data can be seen as a function mapping

from update time to measure values. Plotted on a panel, these time series can be used as

visualization tool for physicians to keep track of the patient health conditions.

We are interested in using machine learning to extract temporal trend of RI and other

frequently updated measurements. Ideally, the representation should be compatible input

into machine learning algorithms that predicts mortality. In practice, these time series are

not always measured at aligned time or frequency. Thus it’s hard and inefficient to store

all time series as tabular data. Linear or curve interpolation also heavily depend on the

interpolation points and might lose significant amount of information about the temporal

trend. Instead, we propose to use functional data analysis [17] to fit smooth curves to EHR

time series.

6



Penalized B-Splines

Time series data stored in EHR can be represented as a discrete set of observations (oj , tj):

At time tj , patient’s data is measured to be oj .

Given a set of K basis functions {bk(t)}, we can represent each time series in the form

of linear combination.

C(t) =
K∑
k=1

ckbk(t) (2.1)

We use basis spline, or B-spline as described in [18]. A B-spline function is a spline

function that has minimal support with respect to a given degree, smoothness and domain

partition. In order to define a set of B-spline functions, one needs to specify the order of

spline basis n and a sequence interior knots k0, k1, ..., kq+1, with k0 ≤ k1...kq+1. When these

knots are equidistant, the splines are called uniform. Then we define an augmented knot

set k−(n−1) = ... = k0 ≤ k1... ≤ kq+1 = kq+2... = kq+n by appending the lower bound knot

k0 and upper bound knot kq+1 for n − 1 times respectively. We can re-index these q + 2n

knots by i = 0, ..., q + 2n − 1 and call them t0, ...., tq+2n−1.For a given sequence of knots,

there is a unique set of spline functions Bi,n(x), i ∈ {0, 1, ..., q + 2n− 1} satisfying:

Bi,n(x) =


nonzero x ∈ [ti, ti+n)

0 otherwise

(2.2)

∑
i

Bi,n(x) = 1, ∀x ∈ [t0, tq+2n−1] (2.3)

Cox-de Boor recursion can be used to derive B-Spline’s functional form of any order.

To start with, the B-splines of order n=1(degree 0) and augmented knots {t0, t1...tq+1} can

be written as the following step functions.

Bi,1(x) =


1 x ∈ [ti, ti+1)

0 otherwise

(2.4)

7



B-splines of higher order n = j are defined by the recursion below:

Bi,j(x) =
x− ti
ti+j − ti

Bi,j−1(x) +
ti+j+1 − x
ti+j+1 − ti+1

Bi+1,j−1(x) (2.5)

Formally, any time series {(oj , tj)} can be approximated as a linear combination of a

set of B-splines of order d:

C(t) =

q+2n−1∑
i=0

ciBi,d(t) (2.6)

While using relatively large number of knots, it’s necessary to introduce some penalty

on the fitted curve to avoid overfitting. We used a penalty on the second derivative of the

fitted curve introduced by [19].

The optimal set of coefficients {c∗i } should minimize a penalized least squares objective

function, which can be written as

∑
j

[oj −
q+2n−1∑
i=0

ciBi,d(tj)]
2 + λ

∫
[

q+2n−1∑
i=0

ciB
′′
i,d(t)]

2dt (2.7)

We are penalizing on the curvature of function C(t)(
∫

[C
′′
(t)]2dt) that measures the

roughness of the curve. C
′′
(t) is easy to calculate because C(t) is a linear combination of

polynomial functions. λ ≥ 0 represents the weight of penalty. The larger λ is, the more

C(t) will be like a straight line and the smaller λ is, the more C(t) will fit closely to the

observed data. In practice, λ can be tuned by visualization of data.

Functional Principal Component Analysis

After fitting curves using a set of K B-spline basis, we can represent each clinical time

series with K weights. When K is large and we have multiple variables stored as time series

for each individual, these functional coefficients can be high dimensional. Some mortality

prediction algorithms based on linear models require us to further extract information from

these variables before using them as model input. In this case, we propose to use functional

principal component analysis (FPCA) [15] for dimension reduction.
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FPCA is a statistical method for investigating the dominant modes of variation of func-

tional data. FPCA has proven success in extracting temporal trends in financial [20] and

environmental [21] studies. The goal of functional PCA is to identify important modes of

variance among these curves. Keeping only dominant modes will improve the signal-to-noise

ratio and allow machine learning models to process the information more efficiently. FPCA

can be applied for displaying modes of functional variation, for modeling sparse longitudinal

data and conducting functional regression and classification.

Suppose we have a frequently measured time series data x of N patients indexed by i.

Assume each patient’s time series is generated by a realization Xi(t) of a square-integrable

stochastic process X(t), t ∈ T . Let µ(.) and G(., .) represent mean and covariance function

of X(t).

µ(t) = E(X(t)) (2.8)

G(s, t) = Cov(X(s), X(t)) =
∞∑
k=1

λkφk(s)φk(t) (2.9)

λ1 ≥ λ2... ≥ 0 are the eigenvalues and φ1, φ2, ... are the orthogonal eigen functions of

the linear Hilbert-Schmidt Operator H(f) =
∫
T Cov(X(s), X(t))f(s)ds. By the Karhunen-

Loève decomposition,

X(t)− µ(t) =

∞∑
k=1

ηkφk(t) (2.10)

where ηk =
∫
T (X(t)−µ(t))φk(t)dt is the principal component corresponding to the k-th

eigenfunciton φk that satisfies E(ηk) = 0, V ar(ηk) = λk, E(ηkηl) = 0, ∀k 6= l.

Suppose we have C1(t), ..., Cn(t) as a set of n realization of L2 functional C(t), the

general procedure for finding principal components is as follows:

• Step 1: Find principal component weight function φ1(s) for which the principal com-

ponents scores

fi1 =

∫
φ1(s)Ci(s)ds (2.11)
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and maximize
∑

i f
2
i1 subject to constraint

∫
φ2

1(s)ds = 1 (2.12)

• Step k(k ≥ 2): Find principal component weight function φK(s) for which the princi-

pal components scores

fik =

∫
φk(s)Ci(s)ds (2.13)

and maximize
∑

i f
k
i1 subject to constraint

∫
φ2

1(s)ds = 1 (2.14)∫
φk(s)φm(s)ds = 0, for all m < k (2.15)

The estimation of φk(t) and ηk(t) in our study setting is achieved by a restricted max-

imum likelihood estimations through a Newton-Raphson procedure described in Peng and

Paul (2009) [22] to estimate functional PCs from sparsely and irregularly observed longitu-

dinal data.

The number of principal components can not exceed the number of B-spline basis used

to fit the original curve. In practice, the proportion of variance explained by each princi-

pal component often decays fast and can guide how many principal components to keep.

Only functional PCs that explains the highest proportion of variance in raw data should

be included. Suppose we only include Ks functional PCs, now each time series can be

approximated as linear combinations of selected PCs.

C(x) =

Ks∑
k=1

wkφk(x) (2.16)

2.2.2 Mortality Prediction Models

Next, we introduce one survival model, Cox Proportional Hazard model [23], and one ma-

chine learning model, Random Forest [24] that will be used to predict patient mortality in
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Section 2.3 and Section 2.4.

Cox proportional-hazards Model

We use Cox Proportional-hazards model [23] to investigate the relationship between the

survival time and the encounter level variables. The key idea of this model is to relate the

time that passes before certain events (like mortality in our setting) occur to covariates

that may be associated with that quantity of time. A hazard function is defined as the

instantaneous rate of an event occurrence and is expressed as:

h(t) = lim∆t→0
Pr(t ≤ T ≤ t+ ∆t|T ≥ t)

∆t
(2.17)

The Cox proportional-hazards model has three major inputs:

1. Event: Death, disease occurrence, disease recurrence, recovery, or other experience of

interest

2. Time: The time from the beginning of an observation period (such as surgery or

beginning treatment) to (i) an event, or (ii) end of the study, or (iii) loss of contact

or withdrawal from the study.

3. Censoring: If a subject does not have an event during the observation time, they are

described as censored. The subject is censored in the sense that nothing is observed

or known about that subject after the time of censoring. A censored subject may or

may not have an event after the end of observation time.

The Cox proportional-hazards model is a semi-parametric model of hazard functions.

For each individual indexed i, the model assumes hazard functions of the following form:

hi(t) = h0(t)e
∑
k xi,kβk (2.18)

Its hazard function can be viewed as consisting of two parts:

• Underlying baseline hazard function, h0(t), that describes how the risk of event per

unit time changes over time. There is no assumption about its shape. So h0(t) is
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estimated by taking average over the whole population.

• The log ratio log( h(t)
h0(t)) is a stationary linear function of individual covariates.

For each individual sample indexed i, let random variable Ti denote the individual’s

survival time. Fi(t) and fi(t) represent the c.d.f. and p.d.f. of Ti.

Hi(t) =

∫ t

0
hi(s)ds =

∫ t

0
h0(s)e

∑
k xi,kβkds =

∫ t

0

fi(s)

1− Fi(s)
ds = −ln(1− Fi(t)) (2.19)

Fi(t) = 1− e−
∫ t
0 h0(s)e

∑
k xi,kβkds (2.20)

We use the Newton-Raphson algorithm to maximize the partial likelihood function given

by [25]. This will give us a set of maximum likelihood estimator for β̂k. All survival analysis

will be done in R language using a package called Survival [26]

Random Classification Forest

We use the random classification forest algorithm [27] to predict a binary outcome(mortality

in T days) m for MICU patients based on a set of input variables x1, ...xk. The data set

contains N independent samples, where each sample, indexed i is defined as, Si = (~xi,mi) =

(xi,1, xi,2, ...xi,k,mi).

The random forest classifier consists of a combination of tree classifiers where each

classifier is generated using a random vector sampled independently from the input vector

and each tree casts a unit vote for the most popular class to classify an input vector. We

will first describe the random forest algorithm in detail.

Repeat following procedure ntree times:

1. From the original data set, draw a bootstrap sample {Si1 , ..., SiN }.

2. Use this sample to grow an unpruned classification tree of depth up to d to predict

m, with the following modification: at each node, rather than choosing the best split

among all predictors, randomly sample mtry out of the k features in ~x and choose the

best split from those variables.
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Each iteration j returns a classification tree Tj(.), which is a mapping from feature

space X to outcome space {0, 1}. Given any new data ~xnew, prediction can be made by

aggregating the predictions of the ntree trees. The prediction score can be represented as

the percentage of yes votes(positive predictions): r =
∑ntree
j=1 Tj(~xnew)

ntree
. By setting a cutoff c,

we will predict all samples with r ≥ c to be positive and those with r < c to be negative.

Random forests have two advantages compared to decision trees and logistic regressions.

First, it can handle large and high dimensional data sets more efficiently. Second, by growing

a large number of independent decision trees, it avoids overfitting by decision trees and

improves accuracy. We used the randomForest R-package [28] to build random forests.

2.3 End-of-life project: Development of Imminent Mortality

Predictor in Advanced Cancer(IMPAC)

2.3.1 Background and Overview

End-of-life care for patients with advanced cancer is aggressive, costly and often discordant

with patients’ wishes [2, 3, 29, 30]. Among Medicare decedents, 80% were hospitalized

within 90 days of death, 27% were admitted to the intensive care unit (ICU) within 30

days, and 20% transitioned to hospice in the last 3 days of life. Thirty percent of all

spending for cancer occurs in the last year of life [31, 32, 33].

Patients with advanced cancer rely on their oncologists to guide end-of-life care deci-

sions. However, oncologists’ estimation of life expectancy is often inaccurate [34, 35] and

overly optimistic [36, 37]. Widely used prognostication tools are limited by dependency on

subjective assessment. Instruments [38, 39, 40] have been developed to stratify the risk of

dying in the near term, but most, like the Palliative Prognostic Index[40], use subjective

physician assessments, static data, and statistical techniques that do not make full use of

data available in electronic health record (EHR) systems.

In this section,we explain the development of a new prognostic tool, the Imminent

Mortality Predictor in Advanced Cancer (IMPAC). The goal of this tool is to generate

mortality prediction for patients with advanced cancer every time they get admitted to

13



hospital. This tool requires patients to stay longer than 48 hours in order to collect enough

data to evaluate each patient’s health conditions. The original paper developing this tool

is published on a peer reviewed medical journal.

This section is organized as follow. First, we describe the study setting and data set.

Second, we describe the methodologies we used to build IMPAC, which includes penalized B-

spline fitting, functional principal component analysis, and Cox proportional hazard model.

Third, we will report model evaluation metrics (ROC, Precision Recall, Survival Time) and

estimate the potentially avoidable cost of treatment using IMPAC.

2.3.2 Data Description

Study Population

We examined the inpatient records of 2774 unique patients with advanced solid tumors

identified by the Yale New Haven Hospital tumor registry with a hospital discharge (for any

cause of admission) between October 1, 2013 and June 31, 2017. These patients, in total,

generated 4778 visits, during this time period.

Variable definitions

For the purposes of the analyses and discussion in this chapter we use 90-day mortality

from the date of discharge as the dependent variable. Patients’ survival status was col-

lected from the institutional tumor registry as of June 31, 2019. For patients with more

than one hospitalization during the study period, each visit (encounter) was treated as a

separate observation. For each unique patient we have demographic data and a distinct

data record for each encounter. For each encounter we have static variables and a time

series of health status scores called the Rothman Index (described in detail below). The

independent variables are defined as follows:

• ED Admission If the patient got admitted to hospital through emergency depart-

ment, this field is set to 1. Otherwise, this field is set to 0.

• Previous Admission in Last 90 days If the patient had at least one hospitaliza-

tion within the past 90 days from current hospital admission, this field is set to 1.
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Otherwise, this field is set to 0.

• Unique patient identifier: Encrypted medical record number.

• Gender

• Age Age of the patient (integer) at the point of current hospital admission.

• Race Race of the admitted patient.

• Disease Team The specialized cancer teams that primarily treats the patient. This

is a proxy for the type of cancer the patient has.

• Discharge Disposition This field indicated where patient is discharged to. Possible

values are: Home, Hospice, Nursing Facility, Self care, Rehabilitation Center, and

Other Hospital Facilities.

Summary statistics for these variables are reported in Table 2.1.

Rothman Index

We used a metric available in the Electronic Health Record at Yale New Haven Hospital, the

Rothman Index (RI; PeraHealth)[7]. RI is a real-time, EHR-based scalar measure of patient

acuity that is continually calculated throughout the hospitalization and has been incorpo-

rated into most commercially available EHRs. It incorporates 26 clinical data elements,

including vital signs, nursing assessments, and laboratory results, and has been shown in

multiple settings to predict both mortality and readmission. Lower RI scores reflect a worse

health status. Table 1 shows empirical probability density function of Rothman Index.

To ensure that enough RI scores are spread across a sufficient period to inform the

model, we exclude visits with less than 48 hours of RI monitoring (excluding 71 patients)

and for which no RI was available between 36 and 48 hours (33 excluded). The final data

set consisted of 2,774 unique patients with 4,575 inpatient encounters.

Functional Data Processing

We use the B-spline basis with n = 4 (degree 3, cubic function), r = 11(evenly divide

[0,1] into 10 pieces) spanned over range from 0 to 2(representing days here). This leads
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Characteristics Total Number Mean Standard Deviation Percentage

Patient Specific 2774 - - -

Age, years - 63 12 -

Gender, Males - - - 46.0%

Visit Specific 4575 - - -

Entry Through ED - - - 41.0%

Prior visit in last 90 days - - - 35.0%

Length of Stays, days - 6.74 6.84 -

Type of Cancer - - - -

Breast - - - 7.3%

Endocrine - - - 2.4%

GI - - - 24.0%

Genitourinary - - - 5.8%

Gynecologic - - - 15.0%

Head and Neck - - - 10.0%

Melanoma - - - 3.5%

Neurologic - - - 7.9%

Sarcoma - - - 4.9%

Thoratic - - - 18.0%

Undefined and Unknown - - - 0.74%

Table 2.1: Summary Statistics for Study Data Set
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Figure 2.1: Empirical pdf of RI

to 13 functional basis, named as b1(t), b2(t), ..b13(t). We plot the B-spline basis functions

that we use to fit the RI curves in figure 2.2. After that, we do functional principal com-

ponent analysis on the fitted curve, and get a set of 13 Functional Principal Components

PC1(t), ...PC13(t). Given these functional PCs we can represent each patient encounter RI

trajectory by a set of weights, then

RIi(t) = wi,1PC1(t) + wi,2PC2(t) + ...wi,13PC13(t), (2.21)

where PC1(t), ..., PC13(t) are the principal component functions and wi,1, ..., wi,13 are the

associated weights for the RI curve of encounter i.

Based on the proportion of total variance(Table 2.2) explained by each functional prin-

cipal components, we only include weights of the top three functional PCs in our prediction

model and plot them in Figure 2.3.

We use the Cox proportional hazard model to predict T -day mortality(T = 30, 60, 90, 180)

starting from 48 hours after admission for each encounter. We use days as unit of time for
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Figure 2.2: B-spline Basis to Fit RI Curves

our analysis. For any sample(hospitalization) indexed i, after 48 hours(2 days) after ad-

mission into hospital, we can observe (ti, δi, ~xi). ti is the survival time between time of

observation(2 days after hospital admission,Ai) and date of last contact(the day each pa-

tient’s vital status was last updated).

ti = Di − (Ai + 2) (2.22)

ti represent actual survival time if data is not censored and a lower bound of survival

time if data is censored. δi is the censoring indicator. δi = 1 if the patient was dead at

last observation. δi = 0 if the patient was still alive at last observation. ~xi is the patient’s

covariate vector which includes age, gender, weights of the first three functional PCs, entry

through ED indicator, visit in prior 90 days indicator, and disease team.
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Principle Component Proportion of Variance Explained

PC1 90.1%

PC2 6.7%

PC3 1.8%

PC4 0.69%

PC5 0.41%

PC6 0.15%

PC7 < 0.1%

PC8 < 0.1%

PC9 < 0.1%

PC10 < 0.1%

PC11 < 0.1%

PC12 < 0.1%

PC13 < 0.1%

Table 2.2: Proportion of Variance Explained by PCs

2.3.3 Prediction model

We used the weights of PC1, PC2, PC3 (w1, w2, w3) as well as 22 static variables to fit

hazard function. After variable selection with Akaike Information Criteria(AIC) [41] the

hazard function h(t) can be written as the following formula:

log(h(t)) =log(h0(t)) + β1age+ β2Gender + β3w1 + β4w2 + β5w3

+ β6EntryThroughED + β7V isitIn90Days+ β8Breast

+ β9Endocrine+ β10GI + β11Genitourinary + β12Gynecologic

+ β13HeadAndNeck + β14Melanoma+ β15Neurologic

+ β16Sarcoma+ β17Thoratic

(2.23)

Figure 4 shows the coefficients and corresponding p values of each independent variables.

For weights of principal components, if the regression coefficient for a particular weight is
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Figure 2.3: First 3 Principal Components of RI Curves

positive and significant, then trajectories that resemble the shape of the corresponding curve

are associated with higher mortality. For static variables, a positive weight represents that

the increase of variable value would lead to higher mortality.

• PC1 represents the average RI level and a upward trend over time. Coefficient of its

weight is negative and significant. This means trajectories with more resemblance to

PC1 indicate higher likelihood of death.

• PC2 represents a downward trend over time. Coefficient of its weight is negative and

significant. This means trajectories with more resemblance to PC1 indicate higher

likelihood of death.

• PC3 represents a downward followed by an upward trend, or recovery trend. Coef-

ficient of its weight is negative and significant. This means trajectories with more

resemblance to PC3 indicates less likelihood of death.

Based on estimated hazard rate, we can calculate the probability of surviving less than

(or dying in) 30 days, 60 days, 90 days, and 180 days. These risk scores are the final output

of our IMPAC tool.

2.3.4 Model Evaluation

We use Monte-Carlo Cross Validation [42] to create random training testing splits. In order

to avoid cases where information from a patient’s future encounters is used to train model
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Figure 2.4: Variable Coefficients in Cox Proportional Hazard Model

to predict mortality for a previous visit, we randomly split the data set into training and

testing set by patients so that approximately 70% of visits are in the training set and 30%

of visits are in the testing set.

We evaluate IMPAC accuracy in three ways:

• Area Under ROC curve

• Area Under Precision-Recall curve

• Survival time distribution.

Precision-Recall Curve

The precision-recall curve plots and summarizes the trade-off between the true positive

rate (sensitivity) and the positive predictive value for a classification model under different

probability thresholds.

Although receiver operator characteristic curves are commonly used to present result for

binary decision problems in machine learning, there are two situations where the precision-

recall curve (PRC) works better as a performance metric:

• When dealing with highly imbalanced data sets, PR curves give a more informative

picture of the algorithms performance [43, 44].
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• When the cost of a false positive is much higher than the cost of a false negative

classification.

We used PRC to evaluate IMPAC since it satisfies both conditions.

Suppose IMPAC generates mortality risk scores r that ranges from 0 to 1. One needs

to set a threshold τ and classify patients with risk scores higher than the threshold τ to

die soon. As this threshold increases, less patients get positive predictions and advised to

shift to palliative care. But the overall precision of these positive prediction would also

change. We use precision recall curves to measure the success of our mortality prediction

algorithms. Suppose our definition of a patient being at end-of-life is being within T days

of death. We use IMPAC to generate an estimate of the probability of T day mortality.

For a given τ precision P,(or Positive Predictive Value) is defined as the proportion of the

patients classified as at end of life, that actually died within T days.

P =
TP

TP + FP
= P (Die in T days|r ≥ τ)

Recall R, (or sensitivity) is defined as the proportion of patients who died within T days

that were predicted to be dying in T days by IMPAC.

R =
TP

TP + FN
= P (r ≥ τ |Die in T days)

Given a time horizon T, and recall value there is a corresponding probability threshold τ .

We take T = 30, 60, 90 and 180 days. For each T, we do the following: For 20 iterations, we

randomly split the raw data set by patient into training and testing set on a 7:3 ratio. And

use linear interpolation to calculate precision levels corresponding to evenly spaced recalls

values (0, 0.01, 0.02, ..., 1). We calculate the average precision level over 20 data splits at

each recall level. The average precision recall curve is shown in Figure 2.5.

For example, using τ = 50% as a classification threshold for 90-day mortality, we achieve

a corresponding recall of R = 40%. At this recall IMPAC has a 60% average PPV. This

means that of all the patients for which we estimate a likelihood of 90-day mortality greater

than 50%, 40% will live longer than 90 days. I.e. we misclassified 40% of the patients and
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Figure 2.5: Average Precision Recall Curve for 30,60,90,180-day Mortality Predictions.

correctly classified 60%. What is the implication of the misclassification? From a medical

perspective the concern is that a patient misclassified in this way will be directed toward

palliative care prematurely, meaning that there was forgone opportunity for life extension

from aggressive care. We therefore want to understand the classification accuracy and

patient survival time distributions.

Survival time distribution

In this section we report on an analysis of the survival distribution for 90-day mortality

predictions using a 50% probability of death as a classification threshold. In Figure 2.6

we display box plots of survival times for patients by classification accuracy. I.e. were

the classifications True Positive, False Negative, True Negative, or False Positive. We can

see that the True Positive and False Negative patients have a very narrow range of short

survival times as they are bounded by 90 days. However, it is instructive to look at the

patients who lived longer than 90 days. The median patient incorrectly classified as likely

to die within 90 days (False Positive) had a median of 229 days. On the other hand the

True-Negative patients lived a median of 526 days. This large difference indicates that even

when ”incorrect” that algorithm is identifying patients who will tend to die substantially

sooner, if not exactly within 90 days.
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Figure 2.6: Survival Time Distribution for Different Groups of Patients.

2.3.5 Determination of Potential Avoidable Care

Reducing the amount of aggressive interventions a patient receives near the end-of-life has

the potential to reduce their suffering and can allow them to spend their remaining time

in an environment that is better suited to their needs and those of their families. This is

one of the main purposes of palliative care. Reducing the intensity of medical interventions

at end of life also reduce medical resource usage and overall waiting time. For example,

it can reduce the load on critical care units in hospitals. It can also reduce medical costs

brought by aggressive treatments, which are mostly expensive. In this section we attempt

to calculate the potentially avoidable costs to the health system of the prediction algorithm

we developed here.

To estimate the potentially avoidable cost of treatment, we selected one test set with the

probability of death within 90 days threshold set at 50% and did a closer analysis of those

patients. For this set of 309 inpatient encounters, 103 resulted in death within 90 days,

and IMPAC correctly identified 41 of those encounters (38 unique patients). For the 41
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encounters, the first hospitalization for each patient was deemed the index hospitalization.

We calculated the potentially avoidable cost using Yale New Haven Health System’s

cost accounting system. We classified all procedures and interventions between IMPAC’s

prediction and the time of actual death as potentially avoidable. We extracted direct cost

data for products and services incurred at the hospital after the 48-hour patient assessment

period of the index admission and during all subsequent inpatient and outpatient visits.

Direct costs are patient care related (e.g. radiology, nursing, laboratory). Hospital indirect

costs, physician services, and costs incurred outside of our health system were excluded.

In this sample, the average total direct cost incurred per patient during the index hos-

pitalization after the initial 48-hour assessment period was $7,495. The average direct costs

of subsequent hospitalizations and outpatient visits totaled $9,194 and $1,172, respectively,

per patient. We assume the total of these costs ($17,861; 95% CI, $9,162 to $21,665) to be

potentially avoidable.

We then compare these potentially avoidable costs with costs associated with hospice

care for the same duration, based on the assumption that IMPAC would divert patients

who are predicted to die soon into hospice care and thus avoid unnecessary interventions.

We assume that these patients receive hospice care for the remainder of their lives and that

survival time under hospice care is the same as in an acute care facility. Hospice costs

were calculated on the basis of 2014 national hospice data showing the daily payment for

four levels of care: routine home care, 93.8% at $156; general inpatient care, 4.8% at $694;

continuous care, 1.0% at $91; and respite care, 0.4% at $161 daily rate. These were used

to approximate an average daily hospice cost which, when multiplied by the total inpatient

length of stay after IMPAC’s prediction of death, approximated the cost of hospice care

used for comparison.

Had these 38 patients been treated under hospice care after the initial 48- hour assess-

ment, it would have prevented 491 days of inpatient acute care. The estimated correspond-

ing cost of hospice care would be $2,448 per patient. This implies a savings in this sample

of $15,413 (95% CI, $9,162 to $21,665), that is, the potential avoidable cost ($17,861) minus

the cost of hospice ($2,448).

One patient in our cohort is illustrative. On her first admission, the IMPAC would have
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predicted death within 90 days. This patient was discharged home with services and was

readmitted twice. She subsequently underwent surgery, made multiple trips to the ICU, and

eventually died in the hospital. Cost of care for this one patient after IMPAC’s prediction

was $91,748 compared with $7,768 for equivalent days under hospice care after the index

admission.

There are several limitations to the assumptions used in this cost-avoidance estimate.

First, we cannot ensure that all patients flagged by IMPAC would indeed switch to hospice

care, or that it would occur exactly at 48 hours into the admission, or that hospice care

would last for the remainder of the patient’s life. Second, we needed to set a time point

after the 48-hour IMPAC score and assume that the inpatient care and procedures would

have been prevented if the patient had transferred to hospice. It is likely that some of

the procedures received after the 48-hour IMPAC reading may have been performed with

the goal of palliation. However, the use of costly palliative procedures is limited under

the hospice benefit and is thus unlikely to significantly alter the cost avoidance estimates.

Although this cost avoidance analysis has limitations, it does provide an estimate of the

financial implications of a more rational approach to end-of-life care.

2.3.6 Conclusion

In summary, we have developed a novel prognostic tool, IMPAC, that uses objective data

to generate life expectancy probabilities automatically from EHR data in real time. Our

novelty lies in using functional data analysis tools to extract temporal trends of cancer

patient’s health conditions to better predict imminent mortality.

Our data indicates heavy usage of aggressive treatments or delayed hospice care near

end of life. There are a few possible explanations for the observed pattern of end-of-life

care at our center. Patients may seek more aggressive care at quaternary facilities because

they are not yet ready to relinquish the hope of improved survival, which they associate,

often inaccurately, with further disease-modifying care. On the providers’ side, expertise

and resources available at major centers may lead to greater use of treatments that are not

standard elsewhere even when physicians may recognize poor prognosis. The availability

of an objective prognostic tool, such as IMPAC embedded within the EHR system, could
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assist oncologists and patients in designing a more realistic plan of care.

If integrated into the standard clinical workflow, the IMPAC will signal oncologists that

goals-of-care conversations are imperative, helping to facilitate prognostic understanding

and informed decisions regarding downstream health care interventions. Our financial anal-

ysis quantified the potential reduction in avoidable care that better mortality predictions

could achieve.

The EOL project has the following limitations. First, IMPAC is trained only on data

collected within a single hospital system. A multi-center study should be conducted to

further validate the accuracy of IMPAC. Second, IMPAC uses RI, which is a proprietary

commercial product, thus limiting applicability at hospitals that don’t use RI. However,

the RI is just one example of a high-frequency EHR-based patient health status index.

When similar indices become more common in the future, we believe our approach couple

be adapted to them as well. Third, we made the assumption in avoidable cost analysis that

those captured by IMPAC could be immediately discharged to hospice. In reality, patients

can’t be immediately discharged until they meet certain kinds of discharge criteria. Patients

might also insist on continuing to receive aggressive treatments, making our cost saving an

over-estimation.

2.4 Using the Shapes of Clinical Data Trajectories to Predict

Mortality in Intensive Care Units

2.4.1 Overview and Background

Because patients in an ICU are so closely monitored there is extremely rich time varying

data associated with a patient stay in an ICU. The ability to automatically extract this

data from EHR systems enables us to build dynamic mortality warning indicators for ICU

patients. Existing illness severity scores like APACHE, MPM, SOFA and SAPS [4, 5, 6, 45]

are used in ICUs for assessing patient acuity level, assigning individual nursing level, and

prioritizing physician inspections. Although proven to be correlated with outcome metrics

like 24-hour mortality, ICU mortality, hospital mortality and readmission, these prognostic
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scores only use static information taken at a fixed point in time (e.g., 24 hr after ICU

admission) to identify patients at high risk of dying during an ICU visit. They ignore

potentially valuable information conveyed by the changes in the measurements over time.

Recognizing this limitation, a number of studies use summary statistics of the trajectories

of the EHR measurements as inputs for mortality prediction.

This project has two aims. The first is to show how functional data analysis [17] can

be used to incorporate the entire trajectory of a frequently measured variable into dynamic

predictions of very near-term mortality (updated regularly during ICU stay). Second, we

demonstrate that there is predictive value in incorporating this extra trajectory informa-

tion: For periodically updated predictions of mortality over a 6-hour window in the ICU,

our approach provides statistically significant improvements to both the area under the

receiver operating characteristic (AUROC) curve and area under the precision-recall curve

(AUPRC) over using trajectory features manually selected from the “same” dataset. In

other words, this increase in accuracy comes at no extra cost (aside from negligible compu-

tational ones), and the same result is seen for 12- and 24-hour prediction windows as well.

The functional data analysis method automatically extracts features from the trajectory.

These features capture information about all aspects of the curve and can be fed as inputs

into any predictive mortality model. Thus, the method can potentially be used to improve

any risk score that uses some form of trajectory information.

The medical literature has many studies looking at mortality prediction using a variety

of data sources and methods. The end of life prediction model we described in the previous

section is an example. There are however very few studies of very short term models

prediction models, where by short term we mean time scales of hours. There are many

inherent challenges in making mortality predictions on such short time horizons. First and

foremost, it requires predicting a very rare event. Even in a relatively high risk population

such as ICU patients the in unit mortality rate is relatively low. In our data set it is

approximately 11 percent. But the mortality rate in any 6 hour interval will of course be

much lower. In our case only approximately 1.2 percent. Second, over short time periods

patient clinical measures can fluctuate, even just from measurement error. On the other

hand a near term prediction can alert physicians and nurses to patients that can be saved
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by timely intervention.

2.4.2 Data Description

Study Population

Our study was a retrospective review of de-identified patient records approved by the Yale

University Institutional Review Board using data on 4,557 unique patients admitted to the

medical ICU (MICU) of the Yale-New Haven Hospital between January 2013 and January

2015. A total of 5,505 hospitalization episodes and 6,113 MICU visits were recorded.

The mean age of patients was 63 years (sd, 17 yr), and 53% were male patients with

mean weight of 179 lb (sd, 57 lb) and mean height of 5.5 ft. (sd, 0.4 ft). About 6.8%

of patients had multiple ICU admissions, and 53% of ICU admissions occurred within 24

hours of being admitted to the hospital. After removing ICU stays shorter than 24 hours,

the average length of ICU stay in our final dataset was 3.9 days. Among all observational

units, 1.2% were followed by death within 6 hours (1.9% for 12 hr, 3.4% for 24 hr, and 17%

were followed by death during the same ICU stay).

Data Fields

In addition to patient demographic data, the EHR also provided records for six different

types of physiologic measures that were sampled periodically during the ICU stay. In

addition, records on 26 types of laboratory values and 18 types of prescribed medications

were also included. A summary is provided in Table 3. We also made use of a metric

that is relatively unique to the Yale-New Haven Hospital, the Rothman Index (RI). This

is an EHR-based measure of patient acuity that is continuously updated throughout an

episode of hospitalization. The RI score is a composite measure updated regularly from

the electronic medical record based on changes in 26 clinical measures including vital signs,

nursing assessments, Braden score, cardiac rhythms, and laboratory test results.
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Category Variable Names

Rothman Index Rothman Index

Physiology Diastolic blood pressure, systolic blood pressure, temper-

ature, Glasgow Coma Scale score, pulse (heart rate), and

total respiratory rate

Laboratory values Sodiumb, potassiumb, chlorideb, creatinineb, glucose, glu-

cose meter, calcium, magnesium, phosphorus, WBC countb,

hemoglobinb, hematocrit, international normalized ratio,

lactate, bilirubin total, bilirubin direct, alanine transami-

nase, aspartate transaminase, alkaline phosphatase, albu-

min, prealbumin, troponin T, fibrinogen level, pH arterial,

Po2 arterial, and Pco2 arterial

Medication Vasopressors/inotropes, dobutamine, dopamine,

epinephrine, norepinephrine, vasopressin, and phenyle-

phrine Antibiotics/antivirals/antifungals: acyclovir,

ceftriaxone, ciprofloxacin, doxycycline, ertapenem, flucona-

zole, gentamicin, moxifloxacin, vancomycin, valacyclovir,

ampicillin-sulbactam, and piperacillin-tazobactam

Demographic Age, gender, race, height, and weight

Chronic disease Dialysis, chronic obstructive pulmonary disease, and HIV

Table 2.3: Raw Variables
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Data Processing

Definition of Sample For each ICU visit, we generated (overlapping) observational units

every 6 hours, where a unit is defined as a 24-hour window during the visit. For example,

an ICU visit that lasted 39 hours generates the observational units (0, 24] hours, (6, 30]

hours, and (12, 36] hours. We want to extract features from the time series data during

these observational unit to predict 6-hour mortality within the end of the observational

units. Figure 7 demonstrates how samples are taken and the targets to predict for each

sample.

Figure 2.7: Observational Units and Prediction Targets.

Outcome of interest For each observational unit, we are interested in predicting 6-

hour, 12-hour and 24-hour mortality, counting from the end of observational unit. If the

patient died within the given time frame, the outcome is labeled 1. Otherwise, the outcome

is labeled 0. On observational unit level, mortality within these time frames are rare events.

Among all observational units, 1.2% were followed by death within 6 hours(1.9% for 12

hours, 3.4% for 24 hours, and 17% were followed by death during the same ICU stay).

Time Series Data Among the physiologic measures in Table 2.3,those that were sam-

pled often enough to provide a usable time series during an ICU stay (updated hourly)

include systolic blood pressure, diastolic blood pressure, heart rate, and the RI. To au-
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tomatically extract features from each time series that characterizes their evolution over

time, we fitted a continuous trajectory to each series in each observational unit. The basis

functions that were used to interpolate the time series data points were cubic(order = 4)

B-splines with 23 evenly spaced interior knots, and they were fitted using penalized least

squares. This leads to 27 unique B-splines to represent each trajectory.

Figure 2.8: B-splines Used to Fit 24-hour Time Series for Each Observational Units.

Figure 8 displays an example of one such fit to RI time series data. the fitted coefficients

capture information about the shape of the time series. We can then use these coefficients as

features of the trajectory in our estimation model. To compare against the use of summary

statistics that are manually selected from the trajectory in the literature, we also calculated

the minimum, maximum, median, first value, last value, and the number of samples for

each time series. We call these variables the “standard trajectory summaries.”

Other Physiologic Measures. For the less frequently sampled physiologic measures,

we used summary statistics for the measurements within each observational unit (maximum,

minimum, and median) to represent their trajectories.

Laboratory Work. For infrequently performed laboratory tests, we used the latest
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Figure 2.9: Fitted RI Curve Using Penalized B-splines.

measurement in the trailing 48 hours as the representative value for each observational unit.

If a laboratory value was not available in the last 48 hours, it was treated as missing and

was handled using the approach described below. The choice of 48 hours was taken from

the protocol used in RI to handle laboratory values.

Medication Records. We consolidated patient medication records into two categories:

a variable for the number of vasopressors and inotropes administered during the period,

and an indicator variable that tracked whether a patient was on antibiotics, anti-fungals,

or antivirals during the period. These variables serve as markers of shock and infection,

respectively, and relate to disease processes.

Time in ICU. We also created a variable to record how long each patient had already

spent in the ICU at the start of the observational unit.

Missing Values. For non time series variables, missing values were handled in the fol-

lowing way. Since the range for the non-missing values across all variables was substantially

bounded away from –1,000, we encoded a missing value with this number to instruct our

tree-based estimation algorithm to treat it differently. For time series data, an observational

33



unit that had fewer than 12 measurements was considered to have a missing functional data

point (the time series). Therefore, the coefficients for the 27-spline functions are all encoded

as –1,000.

The prediction variables that were created above for each observational unit can be fed

into any classifier to estimate the probability of death within the next 6 hours in the ICU

(or indeed, any number of hours). We use the random forest classifier as our platform for

investigating the use of trajectory data because it is a popular non-parametric method that

consistently ranks as one of the top performing prediction tools.

2.4.3 Comparing different models

Employing this to estimate the probability of death, we assess the performance gains result-

ing from using our proposed trajectory variables in lieu of the standard trajectory summaries

defined earlier. We do this by comparing four nested random forest models M1–M4 (Ta-

ble 2.4 for details). In brief, M1 uses the most current values of all predictor variables

aside from RI. M2 appends the additional statistics that make up the standard trajectory

summaries used in the literature. M3 also adds the standard trajectory summaries for RI.

Finally, M4 replaces all summaries with spline coefficients that capture the shape of the

entire trajectory.

We used Monte Carlo cross validation to evaluate the performance of the four mod-

els: We performed 20 random splits of our set of unique patients into training (70%) and

validation (30%) sets. Having 20 different splits of the data reduces the bias that could

arise from any one particular split. For each split, we fit a random forest classifier to the

observational units in the training set. The model was then used to predict the probability

of death within the next 6 hours for each observational unit in the validation set.

Receiver operating characteristics (ROCs) plots are commonly used to assess the per-

formance of binary classifiers. However, they can be misleading in situations where the

outcome classes are highly imbalanced. Such is the case here since the number of observa-

tional units with a mortality event (1.2%) is much lower than the number of units without.

For imbalanced outcomes, simulation studies (23–25) suggest that the precision-recall plot

is more informative where “precision” refers to positive predictive value (PPV) and “recall”
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Model Variables Used

(M1) Snapshot of variables without RI Most recent values for time series data except

RI (diastolic blood pressure, systolic blood

pressure, and heart rate), All other variables

except RI

(M2) Trajectory summaries without RI Add standard trajectory summaries of time

series data (except RI) to model M1

(M3) Trajectory summaries with RI Add standard trajectory summaries for RI to

model M2

(M4) Full trajectory Replace standard trajectory summaries in

model M3 with the spline coefficients that

capture complete trajectories

Table 2.4: Full Description of Model Variables.

refers to sensitivity. In light of this, we calculated both the AUROC curve and the AUPRC

averaged over the 20 splits for each model, along with 95% CIs. We ran paired sample t

tests to compare average AUROC and average AUPRC between different models.

We also applied the Hosmer-Lemeshow test to each of the 20 test sets to evaluate the

calibration of the predictive model. Conceptually, if a well-calibrated model assigns (say)

z% chance of a death event to each of 100 observational units, then about z out of the 100

should result in an actual death. The Hosmer-Lemeshow test measures the discrepancy

between the expected and observed death rates for the observational units, with the null

hypothesis being that the two quantities agree. In performing the test, we followed the

guidelines in [42] for analyzing large datasets.

In addition to making mortality predictions over a 6-hour window, we also repeated the

above mentioned analysis for 12- and 24-hour windows in Appendix. For 12-hour windows,

predictions are made every 12 hours based on the trajectory of the measurements over the

previous 24 hours. For 24-hour windows, predictions were made every 24 hours.
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Model AUROC AUPR

(M1) Snapshot of variables without RI 0.883 (0.877–0.889) 0.342 (0.333–0.351)

(M2) Trajectory summaries without RI 0.887 (0.882–0.892) 0.350 (0.339–0.361)

(M3) Trajectory summaries with RI 0.896 (0.892–0.900) 0.366 (0.353–0.379)

(M4) Full trajectory 0.905 (0.900–0.910) 0.381 (0.368–0.394)

Table 2.5: Out of Sample Area Under ROC and Area Under Precision-Recall for 6-Hour

Mortality Prediction(95% CI in Prentheses)

2.4.4 Results

Table 2.5 compares the AUROC and AUPRC for 6-hour mortality averaged over the 20

splits of the data for models M1–M4 described in Table 2.4. Figure 2.10 and 2.11 plots out

the ROC and Precision-Recall Curve for M1-M4. The table encapsulates three findings,

which also hold for the 12- and 24-hour prediction windows as well(Table 2.6)

12 Hour 24 Hour

Model AUROC AUPR AUROC AUPR

M1 0.876(0.871,0.881) 0.346(0.336,0.356) 0.870(0.866,0.874) 0.344(0.330,0.358)

M2 0.879(0.873,0.885) 0.353(0.341,0.365) 0.874(0.869,0.879) 0.354(0.341,0.367)

M3 0.888(0.881,0.895) 0.368(0.354,0.382) 0.886(0.881,0.891) 0.369(0.355,0.383)

M4 0.876(0.871,0.881) 0.346(0.336,0.356) 0.870(0.866,0.874) 0.344(0.330,0.358)

Table 2.6: Out of Sample Area Under ROC and Area Under Precision-Recall for 12-Hour

and 24-hour Mortality Prediction(95% CI in Parentheses)

First, the AUROC and AUPRC for M4 (0.905 and 0.381, respectively) are both higher

than those for M3 (0.896 and 0.366), and the differences are statistically significant (p =

0.004 and 0.017, respectively). In other words, the spline representation of the trajectories

of time series data conveys additional predictive information that are not already captured

by the standard trajectory summaries. Furthermore, we calculate total decrease in node

impurities(measured by Gini Index[46]) from splitting on each variables, averaged over all

trees. This gives the relative importance of variables(Figure 2.12). Figure 2.12 shows that
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Figure 2.10: Average PR Curves for Model M1-M4.

more than half of the 20 most important variables are the spline coefficients for RI and

pulse, particularly the ones describing the most recent evolution of the times series (e.g.,

“pulse27” is the coefficient for the last spline function in the 24-hour). This reflects the

time decay in the predictive power of the time series data.

Second, the performance of M3 is in turn statistically significantly better than M2 with

AUROC of 0.896 versus 0.887 (p < 0.001) and AUPRC of 0.366 versus 0.350 (p = 0.002).

That is, the RI conveys additional predictive information over the other variables used in

M2, including 11 of the 26 components used to calculate RI. This is reinforced by Figure

2.12, which shows that eight of the 20 most predictive variables are related to the trajectory

of the RI.

Third, the difference in performance between M1 and M2 is small (0.883 vs 0.887 for

AUROC and 0.342 vs 0.35 for AUPRC) and not statistically significant (p = 0.363 for AU-

ROC and p = 0.236 for AUPRC). In other words, beyond the most recent measurement, the

additional trajectory summaries employed in the literature do not add meaningful predictive

power.

To make the performance measures more concrete, it is helpful to consider a single point
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Figure 2.11: Average ROC Curves for Model M1-M4.

on the Precision-Recall curve. Figure 2.10 and 2.11 display the precision-recall curves and

ROCs averaged over the 20 splits of the data for models M1–M4. At 50% recall (sensitivity),

the average PPV for 6-hour mortality prediction is 33% (compared with 21% for M1, 25%

for M2, and 30% for M3). In other words, if the observational units flagged by our algorithm

are to include half of those that resulted in death within 6 hours, then one-third of all flagged

cases will be correct. This seems like a low accuracy but compared with low rate of mortality

in 6-hour windows it is informative. To elaborate, because 1.2% of the observational units

were followed by death within 6 hours, this means that we can identify half of all potential

deaths by focusing on just the top 1.2%× 50%/33% = 1.8% of observational units with the

highest predicted probabilities of death.

Finally, the results of the Hosmer-Lemeshow test (Table 2.7) showed that our final model

M4 is well calibrated: For the 20 test sets, the p values for only three of them were less

than 0.20 with the smallest one being 0.094. Thus, the null hypothesis was never rejected.
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Figure 2.12: Variable Importance Plot for Model M4.

2.4.5 Conclusion

We have shown that using trajectory information of clinical data can improve the accuracy

of mortality predictions. This benefit is apparent for both an approach that uses trajectory

summary statistics and an approach that uses an algorithmically generated functional rep-

resentation of the trajectory. Mortality over short time horizons is a very rare event even

for acutely ill patients, which makes it difficult to predict. Our approach indicates how

making fuller use of the available clinical data can help address this difficulty. One would

expect that this approach would also benefit predictions of other outcomes for which trends

in patient’s health performance could be useful indicators such as readmission or response

to specific treatments.

Any short-time horizon mortality prediction method has the potential to be the basis for

a clinical early warning system. Nursing units and intensivists in ICU are limited resources.

An accurate mortality prediction model have can potentially prioritizing medical resources

to inspect the most needy patient could.
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Seed P-value Seed P-value

1 0.176 11 0.975

2 0.999 12 0.998

3 0.283 13 0.999

4 0.781 14 0.796

5 0.999 15 0.984

6 0.999 16 0.999

7 0.198 17 0.738

8 0.094 18 0.998

9 0.347 19 0.892

10 0.688 20 0.201

Table 2.7: P-value for Hosmer-Lemeshow Test of Each Split.

This model and analysis have a few limitations: First, like the End-of-Life mortality

predictions in section 2.3, the model is only trained on single hospital’s MICU. A multi-

center study is needed to prove that our approach can be generalized to different kinds of

medical units. Second, although our new prediction model shows a significant increase in

both area under ROC and area under Precision-Recall, it’s not clear how these increase

would turn into actual benefit when working as decision support systems. To truly assess

if a warning system is useful in this setting it is necessary to determine if the warning

would identify high mortality risk cases that: 1) are not already known to the nurses and

physicians and 2) could be aided by an intervention.
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2.5 Discussion

In this chapter, we presented a novel approach for using functional data analysis to capture

the temporal trends of EHR data. Compared to traditional methods like taking a snapshot

and manually selecting summary statistics, this can significantly increase the prediction

accuracy in two settings:

• EOL project: Predict 90-day(or similar magnitude like 60-day, 180-day) mortality for

advanced cancer patients using 48-hour RI trajectory.

• MICU project: Predict 6-hour(or similar magnitude like 12-hour, 24-hour) mortality

for Medical ICU patients using 6-hour RI and physiologic trajectory.

There are three key differences between the EOL and MICU settings.First, they have

different time frame. In the EOL project, we focus on predicting 90-day or 180-day mor-

tality. While in MICU project we do predict mortality within much shorter time frame like

6, 12 or 24 hours.Second, their purposes are different. The EOL project aims at identifying

patients who win die within 90-days or 180-days given the disease runs its normal course.

The goal is to minimize the aggressive treatments for those who are identified as close to

death. The MICU project aims at identifying with high near-term mortality rate in order to

avoid as much of these mortality as possible. Third, available data is different. Other than

RI, the MICU project collects more patient level time series data including physiologic, lab

results, medication and ventilation,

Despite these differences, we achieved significantly improved prediction accuracy in both

projects by introducing functional data analysis techniques. As discussed in previous sec-

tions, one of the ultimate goals of designing these mortality prediction algorithms is to

implement them as decision support systems. We recognize that more questions need to be

answered before these tools can prove their efficacy as decision support.

For the EOL project, although IMPAC could potentially benefit the end-of-life decision

process, it remains unclear (1) how this tool works compared to what the physicians do;(2)

if physicians and IMPAC identify same group of patients; (3) what would be a good way for

IMPAC and doctors to collaborate; (4) what’s the potential benefit of this collaboration.
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We will try to answer these questions by conducting a retrospective study using the same

data in Chapter 3.

For the MICU project, while many similar works in recent years focus on building

sophisticated machine learning models that brings benefits measured by area under ROC

or Precision-Recall, it remains unclear how these increase would turn into actual benefits

when working as an alert system in practice. In chapter 4, we will present a theoretical

POMDP framework that evaluate the benefits of any given clinical warning system based

on mortality predictions.
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Chapter 3

Improving End of Life Care by

Augmenting Physician Discharge

Decision Process with Mortality

Prediction Algorithms.

3.1 Introduction

There is great interest in developing tools to improve physician decision making. In par-

ticular, computer based statistical models that use sophisticated data analysis techniques

and large clinical data sets are viewed as having great potential that is only increasing as

computing power increases, data collection expands, and analysis methods advance. Before

these tools become widely adopted, they need to, and should, overcome a number of hurdles.

In this chapter we use the framework of mortality predictions for advanced cancer patients

and the IMPAC model developed in Chapter 2 to explore some of the important issues

related to assessing the use of prediction models in healthcare. While many of the topics

we discuss here are generalizable to other settings, they will be clearer and more concrete

within the context of a specific decision making setting.

Let’s consider an oncologist treating a hospitalized patient knowing that the patient has
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an advanced cancer that is not curable. The physician must decide how aggressively to treat

the patient and whether to refer the patient to palliative care. The physician’s assessment

of the patient can be summarized as the probability rd that the patient will die within 90

days, i.e. the 90-day mortality risk of the patient. If this probability is greater than a

threshold τ the physician will recommend palliative care and if rd < τ the physician will

recommend more treatment. The threshold τ to use in this setting will depend upon the

potential quality of life benefits and life extension potential of additional treatment relative

to palliative care. We do not explore that question here. However, given a threshold τ

one can characterize the physician as classifying patients into one of two possible groups.

Similarly, given τ , the role of a prediction algorithm is to classify a patient. A prediction

algorithm would receive a variety of inputs (independent variables) describing the patient

and would return a probability ra of the patient dying within 90 days.

In Chapter 1 we developed a method for generating ra and assessed its accuracy. In

this chapter our goal is to assess the value of having an algorithm that can generate ra in

this setting. Apriori there are reasons to assume that such an algorithm would be useful.

End-of-life care for patients with advanced cancer is known to be aggressive, costly, and

often discordant with patients’ wishes.[29, 30, 47, 48] Among Medicare decedents, 80% were

hospitalized within 90 days of death, 27% were admitted to the intensive care unit (ICU)

within 30 days, and 20% transitioned to hospice in the last 3 days.[31] Thirty percent of

all spending for cancer occurs in the last year of life. [32, 33] Thus there is evidence that

there is expensive care being given to patients at the end of life that is not benefiting them.

There is also considerable evidence that physicians are not very good at make estimations

of life expectancy near end-of-life. Oncologists, [34, 35, 37]and general physicians [36]

have all been shown to be overly optimistic in their prognoses. In a study involving five

outpatient hospice programs[36], 343 doctors provided survival estimates for 468 terminally

ill patients at the time of hospice referral. Patients’ estimated and actual survival. Median

survival was 24 days. Only 20% (92/468) of predictions were accurate (within 33% of actual

survival); 63% (295/468) were overoptimistic and 17% (81/468) were over-pessimistic. As a

result, patients sent to hospice tend to be extremely close to their deaths. This study also

showed that these estimations are significantly affected by individual characteristics such
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as gender and experience in years. This lack of accuracy and consistency are both likely to

be alleviated with the help of a prediction algorithm.

To deliver value, a prediction algorithm must be adopted and there are significant hur-

dles to that. The algorithms must be widely tested prospectively to be viewed credibly

by physicians. Algorithms will also face resistance if they are perceived to be black boxes

because their methods and outputs are hard to interpret. Even if these hurdles are over-

come it is still necessary to assess their value to decision makers. To assess the value of a

prediction algorithm in this setting it must improve the classification performance of the

physicians and do so in a way that can be actionable and reduce unnecessary care at end of

life. It is actually remarkably rare, in the literature, for the performance of prediction al-

gorithms to be compared to that of physicians(David 2017). Most studies that do compare

performance between prediction approaches also do so in limited ways. The comparison

of an algorithm to a physician is also a false comparison. It assumes that physicians and

algorithms are substitutes when in reality if an algorithm is implemented it will be used to

support physician decision making.

In this chapter we will compare the predictions of physicians and the IMPAC algo-

rithm across multiple dimensions. We will show that there are important differences in

the classifications they make and the thus potential for information gain by using them in

conjunction. We will analyze different approaches to integrate the two and compare per-

formance. In section 3.2 we describe the data set and review the prediction method. In

section 3.3 we compare the performance of the prediction algorithm and physicians in terms

of various measures of prediction accuracy. In section 3.4 we integrate the two prediction

methods and analyze the prediction accuracy performance of the combination. We conclude

in section 3.5 with an illustration of the potential benefits of better predictions to reduce

aggressive treatments at end of life.

Oncologists are not capable of estimating, let alone recording in real time, probabilities

or survival time. This causes two major limitations of our study. First, we are not able to

observe the part of patients who declined doctor’s offer to send them to hospice. Second,

we are not able to identify the earliest time doctors realize that the patient needs to be sent

to hospice. Both will make doctors mortality predictor in our data set more conservative
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than reality. However, we believe this is the most that we can do with our available data.

3.2 Data Description

3.2.1 Study Population

We examined the inpatient records of 2774 unique patients with advanced solid tumors

identified by the Yale New Haven Hospital tumor registry with a hospital discharge(for any

cause of admission) between October 1, 2013 and June 31, 2017. These patients, in total,

generated 4778 inpatient encounters, during this time period.

3.2.2 Variable definitions

For the purposes of the analyses and discussion in this chapter we use 90-day mortality

from the date of discharge as the dependent variable. Patients’ survival status was collected

from the institutional tumor registry as of June 31, 2019. For patients with more than one

hospitalization during the study period, each visit (encounter) was treated as a separate

observation. For each unique patient we have demographic data and a distinct data record

during each encounter. For each encounter we have static variables and a time series of

health status scores called the Rothman Index (described below). The independent variables

are defined as follows:

• ED Admission If the patient got admitted to hospital through emergency depart-

ment, this field is set to 1. Otherwise, this field is set to 0.

• Previous Admission in Last 90 days If the patient had at least one hospitaliza-

tion within the past 90 days from current hospital admission, this field is set to 1.

Otherwise, this field is set to 0.

• Unique patient identifier

• Gender

• Age Age of the patient (integer) at the point of current hospital admission.

• Race Race of the admitted patient.
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• Disease Team The specialized cancer teams that primarily treats the patient. This

is a proxy of the type of cancer the patient has.

• Discharge Disposition This field indicated where patient is discharged to. Possible

values are: Home, Hospice, Nursing Facility, Self care, Rehabilitation Center, and

Other Hospital Facilities.

Summary statistics for these variables are reported in Table 3.1.

Rothman Index

We used a metric available in the Electronic Health Record at Yale New Haven Hospital, the

Rothman Index (RI; PeraHealth). RI is a real-time, EHR-based scalar measure of patient

acuity that is continually calculated throughout the hospitalization and has been incorpo-

rated into most commercially available EHRs. It incorporates 26 clinical data elements,

including vital signs, nursing assessments, and laboratory results, and has been shown in

multiple settings to predict both mortality and readmission. Lower RI scores reflect a worse

health status.To ensure that enough RI scores were spread across a sufficient period to in-

form the model, we excluded visits with less than 48 hours of RI monitoring (excluding 71

patients) and for which no RI was available between 36 and 48 hours (33 excluded). The

final data set consisted of 2,774 unique patients with 4,575 inpatient encounters.

3.2.3 Prediction Model

We use the imminent mortality predictor for advanced cancer(IMPAC) introduced in Section

2.3 as the decision support tool to compare to physicians’ predictions and briefly describe

the methodologies used in IMPAC.

Since patients’ physiologic and Rothman Index data are stored as time series by EMR

system, it is natural to use curves as basic units of analysis, which is termed as functional

data analysis (FDA). In comparison to traditional manual feature extraction, FDA has the

advantage of fully extracting temporal trend of original time series data.

The original IMPAC used the RI trajectory during the first 48 hours of encounter to

predict 30, 60, 90 and 180-day mortality starting from 48 hours after hospital admission.
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Characteristics Total Number Mean Standard Deviation Percentage

Patient Specific 2774 - - -

Age, years - 63 12 -

Gender, Males - - - 46.0%

Visit Specific 4575 - - -

Entry Through ED - - - 41.0%

Prior visit in last 90 days - - - 35.0%

Length of Stays, days - 6.74 6.84 -

Type of Cancer - - - -

Breast - - - 7.3%

Endocrine - - - 2.4%

GI - - - 24.0%

Genitourinary - - - 5.8%

Gynecologic - - - 15.0%

Head and Neck - - - 10.0%

Melanoma - - - 3.5%

Neurologic - - - 7.9%

Sarcoma - - - 4.9%

Thoratic - - - 18.0%

Undefined and Unknown - - - 0.74%

Discharge Disposition - - - -

Hospice - - - 7.2%

Home/Home Care - - - 72.9%

Nursing Facility - - - 16.8%

Rehabilitation Center - - - 1.4%

Other Facilities or Unknown - - - 1.3%

Table 3.1: Summary Statistics for Final Data Set
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However, the aim of this new study is to compare and combine doctor’s decision and IMPAC.

In order to make fair comparison, we want to let them do the prediction at the same time.

So it is more reasonable to train this model to predict mortality from the date of discharge.

Due to technical reasons, each patient’s RI is not measured at synced times and number

of observations during a fixed-length time window can vary significantly (Figure 3.1). Thus,

we are not able to align these observations to generate a tabular data set. Instead, we used

a system of K spline basis functions φk(t) in the linear combination to fit the trajectory of

Rothman Index over 48 hours in the following form:

RI(t) =
K∑
k=1

ckφk(t) (3.1)

Figure 3.1: Boxplot: Number of RI Observations During 48-hour Time Window

n∑
j

[yj −RI(tj)]
2 + λ

∫
[D2RI(t)]2dt (3.2)

=

n∑
j

[yj −
K∑
k=1

ckφk(tj)]
2 + λ

∫
[D2(

K∑
k=1

ckφk(t))]
2dt, (3.3)

Suppose {(yj , tj)} is a patient’s discrete RI time series, a smoothed curve RI(t) can be

fit by minimizing the following penalized least squares criterion:
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n∑
j

[yj −RI(tj)]
2 + λ

∫
[D2RI(t)]2dt (3.4)

=
n∑
j

[yj −
K∑
k=1

ckφk(tj)]
2 + λ

∫
[D2(

K∑
k=1

ckφk(t))]
2dt, (3.5)

Figure 3.2: Set of 13 Basis Functions

where λ is penalty parameter. The larger λ is, the more x(t) will be penalized for over

fitting and x(t) will be closer to a straight line.

Next, we utilized functional principal component analysis (FPCA), which is a dimension-

reduction tool by identifying important modes of variation in high dimensional functional

data. FPCA is defined as an orthogonal linear transformation that transforms the functional

data to a new coordinate system such that the greatest variance by some scalar projection

of the data comes to lie on the first coordinate (called the first principal component), the

second greatest variance on the second coordinate, and so on (Jolliffe 2002). We will use

the first three functional principal components, noted as PC1, PC2 and PC3 as features

that represent temporal trends of Rothman Index during the last 48 hours of the encounter.

Thus for each encounter the time series of RI scores is replaced by three variables that are

the weights on the first three functional principal components. With this compression of

the RI data complete we then train a Cox proportional hazard model in R([26] to estimate

the survival time distribution of each patient.
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In our case, parametric model based on exponential distribution may be written as:

log(h(t)) =log(h0(t)) + β1age+ β2Gender + β3PC1 + β4PC2 + β5PC3+

β6EntryThroughED + β7V isitIn90Days+ β8Breast+

β9Endocrine+ β10GI + β11Genitourinary + β12Gynecologic+

β13HeadAndNeck + β14Melanoma+ β15Neurologic+

β16Sarcoma+ β17Thoratic

(3.6)

Given fitted hazard rate, we can calculate the risk score of IMPAC, rI , which represents

probability of surviving less than 90 days, or equivalently, dying within 90 days after current

hospital discharge.

3.3 Accuracy Comparison of IMPAC and Doctors

One of the challenges of comparing physician and algorithm predictions is that physician

predictions are seldom recorded and thus retrospective studies cannot be used. At the

same time prospective studies are difficult to execute. In this chapter we will use the

recorded discharge dispositions of patients as a proxy for physician predictions about their

life expectancy. If a physician sends a patient to hospice it implies that they believe the

patient will die soon. The median survival time of patients sent to hospice in [36] was 24 days

with the physician’s median survival prediction 126 days. In our data the median survival

time of patients discharged to hospice was only about 9 days. Based on conversations with

oncologists at our study site we concluded that it was unlikely that an oncologist would

discharge a patient to hospice if they felt they had significant chance of surviving more than

90 days. In fact 93% of the patients in our sample who were discharged to hospice died

within 90-days.

The main limitation of using discharge dispositions as physicians’ predictions is that we

are only able to observe those patients who were sent to hospice. We are not able to observe

when a doctor predicts that the patient will die within 90 days and recommends hospice but

the patient or family declined to go to hospice. Thus we will underestimate the sensitivity
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of the real predictions made by doctors. Another limitation of our approach is that we

aggregate the decision making of multiple physicians. Our data does not include information

on individual physicians. There will be heterogeneity across physicians in terms of their

risk assessments and conservatism regarding palliative care recommendations. Given that

all the physicians are at the same institution and consult with each other we believe that

the aggregate performance of the physicians is a good benchmark for physician prediction

abilities.

3.3.1 Comparison Criteria

For a classification algorithm that generates mortality risk scores(ranging from 0 to 1), one

needs to set a threshold and predict patients with risk scores higher than the threshold to

die soon. As this threshold increase, less patients get positive predictions and advised to

hospice. But the overall precision of these positive prediction would also change. We use

precision recall curves to measure the success of our mortality prediction algorithms.

Precision(P), also known as positive predictive value, is defined as the proportion of the

patients discharged to hospice that died within 90 days

P =
TP

TP + FP
(3.7)

Recall(R), also known as sensitivity, is defined as the proportion of patients who died within

90 days that were sent to hospice.

R =
TP

TP + FN
(3.8)

Compared to ROC, precision recall curve works better in the two scenarios. The first one

is when outcome is imbalanced. The second one is when there’s a huge difference between

cost of False Positive and cost of False Negative. We will use precision recall curve as one of

the major criteria to compare different risk predictors in our study for two reasons. First,in

end-of-life settings, it is commonly believed that a false positive cost much more than a

false negative. Second, outcome of 90-day mortality is imbalanced, with only 28% of all
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cases being positive.

Unlike classification algorithms, physicians, like other humans, find it difficult to consis-

tently estimate probabilities and thus it makes sense to view physicians as operating with

an unknown threshold τd. Associated with this threshold is a resulting aggregate precision

and aggregate recall across all physicians.

Pd = P (Die in 90 days|rd > τd) ≈ 0.93 (3.9)

the recall achieved by the physicians is

Rd = P (rd > τd|Die in 90 day) ≈ 0.23 (3.10)

Although these classifications come with a high precision level, physicians identify only

less than a quarter of those patients who die within 90 days from discharge. This indicates

that physicians either (1) tend to overestimate the survival time of patients or (2) make very

conservative discharge decisions. Of course as we mentioned above this estimate of physician

recall is likely lower than reality because we do not observe the cases where hospice was

recommended but either refused or unavailable. On the other hand it is unlikely that the

unobserved cases would significantly increase precision.

3.3.2 Algorithm Performance

Following the same procedure in Chapter 2, we use Monte-Carlo cross validation [42] to

create random training testing splits. For 20 iterations, we randomly split the raw data

set into training and testing set on a 7:3 ratio by patient ID. This avoids using a pa-

tient’s future information to predict the past. For each iteration, we use linear interpola-

tion to calculate precision levels corresponding to 101 evenly spaced recalls between 0 and

1([0, 0.01, 0.02, ..., 1]). Simple average of precision over 20 splits are calculated at each key

recall level. Average precision and recalls for IMPAC prediction and doctor prediction are

plotted(Figure 3.2). Similarly, we calculated average True Positive Rate and False Positive

Rate and plot the average ROC in the appendix. We can see that precision recall and ROC
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curves almost goes through doctors’ precision recall and tpr-fpr point respectively(Figure

3.3). This means we are not able to find any threshold such that corresponding decision

will be strictly better than what the doctors achieve.

Figure 3.3: Average Precision Recall Plots of IMPAC and Doctors

This indicates that at current recall level(0.23), doctors can achieve approximately the

same precision(0.93) by solely acting on their own opinion or solely following IMPAC.

However, we should not conclude from this figure that IMPAC can’t bring additional benefits

to doctors’ decision making process. It’s likely that IMPAC and doctors are identifying

different groups of patients. We will further discuss this in following sections.

3.3.3 Overlap between Two Predictors

In order to see whether IMPAC and doctor make highly overlapped positive predictions, we

did two analysis.

1. We binned IMPAC scores into 10 buckets of length 0.1 and calculated the percentage

of patients who were sent to hospice by doctors within each bucket(Table 3.2)
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2. or each visit, we find 100 visits that has the smallest absolute difference in score.

Percentage of 100 neighbors who were sent to hospice was then calculated and plotted

with the IMPAC score as x-axis(Figure 3.3).

Both table 3.2 and Figure 3.3 shows a positive correlation between IMPAC score and

probability of being sent to hospice. However, even at the very top of IMPAC’s range, only

53.8% of positive cases were correctly identified by doctors. This indicates that there’s a

significant difference between sets of positives identified by IMPAC and doctors.

IMPAC score range Percentage Sent to Hospice

[0,0.1] 0%

(0.1,0.2] 0%

(0.2,0.3] 0%

(0.3,0.4] 0.4%

(0.4,0.5] 0.8%

(0.5,0.6] 7.3%

(0.6,0.7] 12.5%

(0.7,0.8] 23.2%

(0.8,0.9] 41.9%

(0.9,1] 53.8%

Table 3.2: Percentage sent to hospice binned by IMPAC

3.4 Augmentation Oncologists’ End-of-Life Decision with IM-

PAC

From the previous section, we drew two conclusions from data:

• Doctors’ collective precision recall point almost exists on precision-recall frontier of

IMPAC

• IMPAC’s positive prediction get captured by doctors at no more than 53.8% chance.
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Figure 3.4: Proportion Sent to Hospice among 100 Neighbors with Closest IMPAC score

This incentivized us to further explore potential benefits from augmenting oncologists’

end-of-life decision with IMPAC. We can assume both doctor and IMPAC make predic-

tions at exactly the time of discharge. Although doctors may have identified these cases

earlier than discharge date, there’s relatively independent criteria for choosing discharge

dates.Generally, patients need to finish their treatment in current episode to be discharged

It’s reasonable to assume that the observed discharge time is the earliest possible time of

discharge. We assume that at the midnight before discharge date, the doctor made the

prediction about if the patient will die within 90 days. We will also run IMPAC at the same

time to make the fair comparison.

3.4.1 Pooling Method

Suppose IMPAC gives a score rI . Given a risk score threshold c, we will classify those

patients who are either (1) sent to hospice by physicians or (2) given a score that is no

less than c as dying within 90 days. We call this method pooling because it pools positive
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cases in both opinions and send all of them into hospice. Since the positive cases given by

pooling method contains all positive cases given by oncologists, recall level for this method

can only range from RD(when c = 1) to 1(when c = 0). We use Pp(c) and Rp(c) to denote

precision and recall corresponding to cutoff level c when pooling the physician and algorithm

classifications. We give the flow chart of pooling method in figure 3.4.

Pp(c) = P (Die in 90 Days|rd > τd or rI > c) (3.11)

Rp(c) = P (rd > τd or rI > c|Die in 90 days) (3.12)

3.4.2 Agreement Method

Given a risk score threshold c, we will only classify as dying within 90 days those patients

who are both (1) sent to hospice by physicians and (2) given a risk score by the algorithm

that is no less than c. We call this approach to integrating the classifications as the agree-

ment method because it only send patients to hospice when both opinions agree to do so.

Since the positive cases given by the agreement method is a subset of positive cases given

by oncologists, recall level for this method can only range from 0(when c = 0) to RD(when c

= 1). We use Pa(c) and Ra(c) to denote precision and recall corresponding to an algorithm

cutoff level c. We give the flow chart of agreement method in figure 3.5.

Pa(c) = P (Die in 90 Days|rd > τd and rI > c) (3.13)

Ra(c) = P (rd > τd and rI > c|Die in 90 days) (3.14)
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Figure 3.5: Flow Chart for Pooling Method.

Figure 3.6: Flow Chart for Agreement Method.

3.4.3 Augmented Method

If we concatenate the precision recall curve of Pooling method and Agreement method, we

can get a complete Precision-Recall curve with recall ranging from 0 to 1. This gives doctors

the flexibility to be either more conservative or less conservative than they originally did.

Since we are adjusting doctor’s recall by changing c of IMPAC, we call this augmented

method. Figure 4 demonstrates who the two pieces of augmented PR curve is connected by
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PR point of doctor’s prediction.

Paug(c) = Pa(c)I(Raug(c) <= Rd) + Pp(c)I(Raug(c) > Rd) (3.15)

Figure 3.7: Demonstration of Precision-Recall Curve for Augmented Method.

3.4.4 Doctors’ Discharge Decision as a new Covariate to IMPAC

From a different perspective, we can also add oncologists’ discharge decision into the coxph

model to provide IMPAC with additional information to see if it will help increase predictive

power on survival. If we use ToHospice to represent if the patient was discharged to hospice,

the coxph model now becomes:
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log(h(t)) = log(h0(t)) + β1age+ β2Gender + β3PC1 + β4PC2 + β5PC3+

β6EntryThroughED + β7V isitIn90Days+ β8Breast+ β9Endocrine+ β10GI+

β11Genitourinary + β12Gynecologic+ β13HeadAndNeck + β14Melanoma+

β15Neurologic+ β16Sarcoma+ β17Thoratic

+ β18Id

(3.16)

Since this method is essentially augmenting IMPAC with doctors’ decision, we call this

method Augmented IMPAC method. Figure 3.5 shows the coefficients and p values of new

model parameters. We can tell that to hospice has a positive(1.09) coefficient, which is

significantly with p < 2e− 16. We used Aikaike Information Criteria(AIC) to dobackward

variable selection: neither to hospice nor any of the original variables was removed by the

variable selection process. This indicates that doctors decision does add significantly more

predictive power to the original IMPAC model.

Figure 3.8: Coefficient and P-value for Augmented IMPAC
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3.4.5 Evaluation Based on Precision Recall curve

We repeat the procedure in section 3.3 to create average precision recall curve for augmented

method and augmented IMPAC(Figure 3.9).

Figure 3.9: Average Precision-Recall Curves for 4 Classification Algorithms.

We refer a point on the Precision-Recall space (P1, R1) to be Pareto dominated by

another point (P2, R2) if one of the following two conditions are satisfied

1. P1 ≤ P2 and R1 < R2;

2. P1 < P2 and R1 ≤ R2.

In Figure 3.9, there exists points on Precision-Recall curves of both Augmented Method

and Augmented IMPAC that Pareto dominates doctors’ decision.

As discussed in previous chapters, one major limitation of doctor’s end-of-life decisions

is being over conservative. This conservation may be caused by two factors:
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• Doctors systematic tendency to overestimate survival time of patients;[36]

• Doctors intrinsic tendency to set a higher threshold to avoid false positives.

Assuming doctors are risk averse and their current precision level represent their bottom

line, we want to calculate the most amount of positive cases that can be sent to hospice

under this precision constraint. Equivalently, we need to solve the following optimization

problem

R∗ = max
Precision≥Pd

Recall (3.17)

Table 3.3 shows the maximum recall level achieved under the constraint that average

precision does not exceed the doctor’s current precision level(Pd = 0.93). The last row gives

the risk score cutoff τ picked that corresponds to Recall = R∗.

Compared to doctor as baseline(Rd = 0.23, with the same precision level Pd = 0.93,

Augmented method(Ra = 0.34) and augmented IMPAC method(RAI = 0.32) can identify

45.5% and 37.7% positive cases respectively.

IMPAC Augmented Method Augmented IMPAC Doctor(Baseline)

R∗ 0.22 0.34 0.32 0.23

Ratio 95.6% 145.5% 137.7% 100%

τ 0.64 0.65 0.67 -

Table 3.3: Maximum Achievable Recall with Guaranteed Precision

3.4.6 Survival time analysis

We have shown that under same precision, augmented method can achieve a significantly

higher recall level. By definition, the true positives picked up by augmented method contains

all true positives that were sent to hospice by doctors. It’s worth exploring which part of

patients, in terms of survival time, IMPAC helps doctor identify. We bin the patients

who died within 90 days into 6 buckets with equal lengths and reported the percentage
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captured by doctors and augmented method within each bucket(Table 3.4). In the first

row, percentage of each bucket that were sent to hospice was reported. In the second row,

percentage of each bucket that were sent to hospice by augmented method that corresponds

to (pd, R
∗) is reported. The third row reports the relative increment of percentage captured

in each bucket.

Survival Time (0,15] (15,30] (30,45] (45,60] (60, 75] (75, 90]

Doctor 53.9% 13.8% 7.1% 5.6% 2.8% 4.0%

Augmented 61.9% 23.8% 15.5% 13.6% 11.0% 14.6%

Relative Increment +14.8% +72.5% +118.3% +142.0% +192.8% +265.0%

Table 3.4: Percentage Sent to Hospice by Doctor and Augmented Method, Binned by

Survival Time

We can tell that doctors and IMPAC have comparative advantage in terms of identifying

different groups of patients. Apparently, physicians identify a lot of positive cases that are

close to death and perform badly at capturing positive cases who are close to 90 day survival

time. Meanwhile, IMPAC will contribute a huge benefit in capturing positive cases who are

relatively far from death.

Figure 3.9 shows the box plot of survival time distribution for True Positives and False

Positives by setting precision and recall level at (Pd, R
∗). We can tell that survival time of

true positives by augmented are significantly bigger than those captured by doctors. The

line in the middle shows the median of the distribution. The box in the Box Plot extends

from the lower quartile to the upper quartile. The vertical lines, known as ”whiskers”,

ranges from lower quartile - 1.5IQR to upper quartile + 1.5IQR.

3.5 Potential Avoidable Aggressive Treatments

So far, we have demonstrated that augmenting the doctor’s end of life decision can increase

recall by 45% while maintaining the doctor’s previous precision level. Since the eventual

goal of developing decision support system is to reduce aggressive treatments for patients

close to death, we would like to quantify how many aggressive treatment can be correctly

63



Figure 3.10: Survival Time Distribution in Box Plots

avoided by implementing augmented method.

Aggressive treatments for advanced cancer patients include chemotherapy, radiation,

surgery, hospitalization and ICU admissions. Due to the limitations of our data, we only

have access to the financial costs of a small subset of patients (n=669). This part of data

indicates that end of life care does indeed involve many interventions that have little benefit.

During the last 30 days of life, 27% of our patients were admitted to the ICU, with an average

of 2.2 ICU admissions per patient. 38% presented to the ED, with an average of 2.3 ED

presentations; 52% were admitted to an acute care inpatient service, with an average of 2.1

hospitalizations; 18% received chemotherapy; 13% received aggressive radiation; and 3%

underwent an aggressive surgical procedure.

In section 2.2, we already did a financial analysis to estimate the potentially avoidable

cost of treatment. To do that we selected one test set with the probability of death within
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90 days threshold set at 50% and did a closer analysis of those patients whose financial cost

data was available. For this set of 309 inpatient encounters, 103 resulted in death within 90

days, and IMPAC correctly identified 41 of those encounters (38 unique patients). For the 41

encounters, the first hospitalization for each patient was deemed the index hospitalization.

Our estimation in chapter 2 was as follows. Had these 38 patients been treated under

hospice care after the initial 48- hour assessment, it would have prevented 491 days of

inpatient acute care. The estimated corresponding cost of hospice care would be $2,448 per

patient. This implied a savings in this sample of $15,413 (95% CI, $9,162 to $21,665), that

is, the potential avoidable cost ($17,861) minus the cost of hospice ($2,448).

We do not have detailed treatment and cost data for our full sample. Thus we cannot

completely extend the above cost analysis to the augmented prediction context we examine

here. Instead, we can quantify avoidable hospitalizations and lengths of hospital stay.

We randomly selected one test set with the probability of death within 90-days threshold

set at 65% and did a closer analysis of what happened to the patients. Among the 1380

inpatient encounters, 379 (28.5%) actually died within 90 days from the discharge date

of current inpatient visit. The patients in these 379 encounters would have been good

candidates for hospice. However, only 97 (25.6%) were actually discharged to hospice. If

IMPAC were used to augment the physician’s decisions, the number correctly sent to hospice

could have increased to 138 (36.5%). That is, IMPAC identified an additional 41 of positive

cases to send to recommend to hospice.

From a different perspective, we can see that the average number of hospitalizations that

can be avoided by implementing the augmented method. Among the 931 unique patients

who had at least one inpatient encounter during their last 180 days of life, 281 of them were

actually sent to hospice by the doctors before they died. If doctors had used IMPAC as

their decision support, they would have sent 380 of them to hospice before they die, which

is an increase of 35%.

Let Td,i be the date when patient i was discharged to hospice by the doctor and Ta,i

be the earliest when patient i could have been sent to hospice by the augmented method

given τ = 0.65. We know that Td,i ≥ Ta,i. Figure 3.11 shows the empirical cumulative

distribution function of Td,i(red) and Ta,i(blue).
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We can treat the number of hospitalizations and corresponding length of stays(LOS)

that happened during (Ta,i, Td,i] as a measure of potential savings of aggressive treatments.

For any visit (LOS) that satisfy this condition, if the visit (LOS) happened within 90 days

from patients death, we call this a right avoidance. If a visit (LOS) happened between

90 and 180 days from patient death, we call this a neutral avoidance. If the visit (LOS)

happened before 180 days, we call this a problematic avoidance.

Among the 931 patients, augmented method saved 88 inpatient encounters that added

up to 689 days of LOS. Among them, 61 encounters (476 days LOS)are right; 16 encounters

(116 days LOS) are neutral; 11 encounters (97 days LOS) are problematic. Since 1209

encounters actually happened within 90 days from patient mortality, implementing IMPAC

to assist physicians would avoid 5.0% of these encounters.

Figure 3.11: Empirical c.d.f. of Remaining Survival Time When Patient was Sent to Hospice
for the First Time
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3.6 Discussion

Although mortality predictors for end-of-life cancer patients have been widely studied in

cohort studies, the literature mainly focused on improving machine learning models to

achieve better prediction accuracy. Since the ultimate goal of these predictors is to serve as

decision support tools, it’s worth exploring how to incorporate these predictors into doctor’s

end-of-life decision process. Unfortunately, very few analysis have been done according to

our literature review.

In this paper, we designed a retrospective study to compare discharge decisions made

by doctors and IMPAC. We use the doctor’s discharge decision as a proxy of what they

predict the patient as dying in 90 days and showed that doctor’s predictions are indeed

conservative(precision=0.93,recall=0.23). Although at the same recall level, IMPAC has

approximately the same average precision, we found that IMPAC and doctors identify

significantly different group of patients who died within 90 days. The majority of true

positives by doctors had a survival time below 30 days, while true positives by IMPAC were

more widely spread across the [0,90] day interval. This motivated us two intuitive ways

of augmenting doctor’s decisions with IMPAC scores. Both methods identifies significantly

more patients close to death at the same precision level as the doctor’s currently achieve.

In the last section, we estimated potential hospitalizations and hospital length of stays

avoided if the doctors use augmented procedure instead of acting on their own beliefs.

By augmenting doctor’s decision with IMPAC, more than 5% of the current visits that

happened within the last 90 days of patient life in our data could be avoided.

There are a few limitations in our analysis. First, we used the discharge disposition

as a proxy of 90-day mortality prediction made by doctors. However, we can’t observe

cases when doctors initiated hospice care conversation but got declined by patient. Second,

we made the assumption that discharge date can’t be made earlier. Although this is a

reasonable assumption since patients need to finish treatments in the current episode, in

future studies it would be interesting to estimate the earliest time physicians pick up the

hospice candidates and compare it with timeliness of IMPAC predictions.
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Chapter 4

A POMDP Framework to Evaluate

Decision Support System’s

Contribution to ICU patient

Monitoring

4.1 Introduction

Intensive Care Units (ICUs), with the highest mortality rate reported (8%-19%) among

all hospital units, account for around 20% of US hospital costs [49]. ICU staff carry the

mission of closely monitoring patients who face life threatening health conditions. Timely

detection of potentially fatal clinical conditions and intervention is crucial to improving ICU

patient outcomes [50]. As a result, ICUs strive to maintain a very high nurse to patient

ratio to guarantee continuous monitoring of patients to pick up any deterioration of patient

condition before it becomes fatal. High nursing to patient ratios do not automatically

reduce all risks to patients. These ratios are difficult to maintain consistently because of

random fluctuations in the number of patients and supply of nursing. Also, nurses vary in

their experience and skill at detecting patient distress.[51] Physicians are more scarce than

nurses and must rely on the nurses to alert them of emergencies. There is therefore an
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interest in developing patient monitoring technology to assist nurses and physicians.

With the fast development and wide implementation of biomedical sensors, ICU patients’

physiologic data can be collected and stored by the Electronic Medical Record (EMR)

systems at high frequency. This provides both opportunities and challenges for improving

ICU patients chance of survival. On one hand, larger volumes of clinical data contain more

signals that can serve as early alerts of patients’ deterioration for the physicians. On the

other hand, such high dimensional, high frequency data is extremely hard for humans to

process in a timely and consistent way to utilize in a way that would improve decisions.

Early patient monitoring scores like SAPS II (Le Gall et al. 1993), APACHE II (Knaus et

al. 1985) and SOFA (Vincent et al. 1996) use manually selected commonly measured clinical

predictors that are associated with a particular outcome that leads to patient mortality.

These scores are only calculated once and can’t be used as dynamic scores to keep track of

patient health status.

A lot of recent research have focused on developing dynamic mortality prediction al-

gorithms that can be updated in real time. With the help of these predictors, physicians

can keep track of patient health status by observing only a single dynamic score. This is

extremely helpful when the units are busy. Physicians can choose to only receive alerts

when any patient’s risk score jumps above a certain threshold.

In this sense, predicting mortality of ICU patients can improve the allocation of precious

resources including physician time, medication and equipment. Most recent works have tried

to implement a broader range of machine learning algorithms with main focus falling into

one of two categories.

The first category tries to capture temporal trends of physiologic measurements. [52]

used penalized spline fitting to extract temporal trend of physiologic data and showed that

the shapes of the clinical data trajectories convey information about ICU mortality risk

beyond what is already captured by the summary statistics currently used in the literature.

[53] used a set of manually defined trend patterns to predict patient ICU mortality. [54]

used long-short term short memory recurrent neural network to monitor ICU mortality risk.

Methods in the second category try to improve mortality predictions by adding features

that are not used before. [55] developed a supervised learning approach for ICU mortality
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prediction based on unstructured electrocardiogram text reports. [56] improved ICU mor-

tality prediction by integrating physiologic time series and clinical notes with deep neural

net.

Despite diversified methodologies, the ultimate goal of these ICU mortality prediction

algorithms is to build a decision support system that guides ICU physicians and nurses to

save as many lives as possible given resource constraints on physicians’ time and medical

devices. So far, the literature on ICU mortality prediction uses discrimination and calibra-

tion to evaluate these prediction algorithms. Discrimination refers to the models ability to

differentiate those patients facing high risks of mortality from those with low risks. Area

under the receiver operating characteristic (ROC) curve has been widely used as a standard

to compare discrimination across different models [57]. The ROC curve plots a classifier’s

true positive rate versus its false positive rate, corresponding to all possible classification

thresholds. The area under ROC (AUROC), also called c-statistic, is equivalent to the prob-

ability that the model ranks a random positive sample more highly than a random negative

sample. However, in the ICU setting the AUROC has two major limitations: (1) it tends

to fail as a useful metric for discrimination with imbalanced outcomes; (2) false positive

costs much less than a false negative. In this setting a false positive would cause nurses

and physicians to check on a patient more frequently than necessary. A false negative could

cause a patient in distress to not be checked on in time to save their life. Consequently,

some argue that the area under the precision recall (AUPRC) is a better evaluation metric.

However, although it is realized that consistent monitoring of patients is challenging

and that there are large disparities in the cost of false negatives vs false positives, it’s

still unclear how much a marginal improvement of prediction accuracy would translate

to chance of survival per ICU stay, regardless of the prediction accuracy measured used.

There hasn’t been any research to build a framework to evaluate by how much the patient

monitoring process will benefit from marginal increase of the AUROC or AUPRC. To study

the potential benefit of these prediction algorithms we have to model their operations.

The predictions are providing information to decision makers. The decision makers

here are the care providers staffing the ICU who must allocate their time to monitoring

and caring for the patients on the unit. Medical devices like heart monitors are serving
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as warning systems to alert staff to when a patient is in distress. By the time the staff

responds to such an alert the patient may be past the point of recovery. The purpose of a

sophisticated prediction algorithm is to give an alert before the patient is in such distress

that they cannot be saved. E.g. an alert anticipating an upcoming heart monitor alert.

Operationally, such a signal can enable staff to spend more time closely monitoring the

patients who are at higher risk of death. The implication is that for the same amount of

staff time the patient mortality rate can be reduced.

To make the above more concrete we can consider the prediction algorithm for MICU

patient mortality from Chapter 1. If we took a sample of 1000 six-hour blocks of individual

patient time in the MICU, according to the data from the setting we studied, there would

be on average 12 deaths (i.e. a 1.2 percent rate). An algorithm with 50 percent recall

and 33 percent PPV would alert staff 18 times of which six of those times they would be

checking on a patient that was going to die in the next six hours. In other words those

18 alerts would give the staff a chance to intervene in half of the cases. It would help

them focus their attention on a much smaller group of patient-time intervals. From this

example we can also see that the algorithm is not accurate enough to be a replacement for

other monitoring efforts. But, it has potential to serve as a layer of security on top of the

standard monitoring efforts. In the following we construct a theoretical model of exactly

this situation to create a framework for exploring more precisely how an decision support

system can augment the patient monitoring process in critical care.

There are of course additional limitations to prediction algorithms that need to be

addressed. Because most mortality prediction models are black boxes for deaths of all

causes, they are not able to directly give guidance of interventions. In this sense, we can

assume that nurses are not able to use it as guidance. It’s also possible that physicians

could inspect a patient with extremely high risk scores but still not able to figure out what

the potential cause of death would be. In this case, they might need to come back to the

patient later to see if they are able to identify any issues. It is yet to be studied if the

alerts provided by prediction systems can actually lead to interventions that will reduce

mortality. Despite all these limitations, we believe that is only a matter of time before

technology improves enough so that the actionable predictions are being provided and thus
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the framework and model presented here will become increasingly relevant.

In this chapter, we propose a Partially Observable MDP (POMDP) framework, with the

physician as decision maker, that addresses above characteristics of mortality predictors.

The rest of this chapter will be organized in as followed.

In section 2, we introduce the study setting, model assumptions and basic elements

of our POMDP. In section 3, we solve a baseline POMDP where physicians make patient

monitoring decisions based upon only their own observations. In section 4, we solve a more

sophisticated POMDP with a dynamic mortality prediction algorithm providing decision

support to physicians. In this model, the DSS will trigger an alert when the real time

mortality risk exceeds a certain threshold. We will model two different approaches to how

the physician uses the information provided by the DSS. In one approach the physician

reacts to the alerts and in a sense allows the DSS to completely determine the monitoring

decision. In the second approach the physician uses the alert from the DSS to update their

own beliefs about the patient health status. In section 4, we use the modeling framework to

analyze how different prediction algorithm accuracy levels can impact ICU mortality rates

when overall monitoring effort is held constant.

4.2 POMDP Model Setup

We use a discrete time, infinite horizon partially observable Markov decision process (POMDP)

to model individual patient ICU stays. A POMDP models an agent decision process in which

it is assumed that the system dynamics are determined by an MDP, but the agent cannot

directly observe the underlying state (Lovejoy 1991, Aoki 1965). Formally, a POMDP is a

7-tuple (S,A, T,R,Ω, O, γ), where

• S is a set of states;

• A is a set of actions;

• T is the conditional transition rules between states, given actions;

• R: S → R is the reward function;
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• Ω is a set of observations;

• O is a set of conditional observation probabilities

• γ ∈ [0, 1] is the discount factor.

Modeling the unit from the perspective of a single patient simplifies the exposition and

computation. In the analysis of the model and numerical experiments we will hold constant

the physician’s rate of inspection to capture the fact that there are other patients in the

unit. Thus our observations about a single patient will carry over to all patients. We also

model the unit as having a single physician. This is often the case in medium and small

ICUs. In large ICUs a physician will have a subset of patients they are responsible for. As

a result we do not believe that the single physician assumption is very limiting.

4.2.1 ICU setting

The ICUs we study mainly has two types of staff who are responsible of monitoring patients:

1. Physician(Intensivist): Each unit typically only carries one specialized intensivist

who’s competent at detecting a broad spectrum of conditions among critically ill

patients and determining appropriate interventions. As part of daily routines, these

physicians spend a part of their time inspecting patients to try to identify potential

hazards and come up with treatment plans in a timely manner. In our model, we

assume physicians can perform proactive inspections on patients ahead of time. After

spotting a potential hazard, they are able to come up with a treatment plan that

decreases the chance of critical conditions.

2. ICU Nurses: ICU nurses monitor patients, administer medications and responds to

emergencies. ICUs usually have a high nurse to patient ratio. For example, California

has legally required ICU nurse to patient ratio to be no lower than 1:2. However,

compared to physicians, nurses are in general less trained and less capable of detecting

possible life-threatening conditions. In our model, nurses are not explicitly modeled.

They are assumed to be monitoring patients and implementing physician directed

treatment plans.
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ICU patients in our model switch among different states representing different hazard

rate of death or severity of disease. There are three stages based on observability of incom-

ing life-threatening conditions. We will give more details in Section 2.2. Physicians can

instantaneously reveal the current state of each patient by inspecting them. However, after

the inspection is finished, physicians are not able to keep track of the real state of patient

before the next inspection. Instead, they form an unbiased belief of which state the patient

might be at over time. Physicians need to determine an optimal patient inspection policy.

Their objective is to minimize the expected number of patient deaths per inspection visit,

or equivalently maximize the patient chance of survival per ICU stay.

We recognize that health conditions in ICU are also time dependent. To simplify the

model, we don’t track length of time patient is in the unit as a state variable. But that is

to some degree captured in the Bayesian updating of b. As time goes by, belief b on the

patient would go up and motivate the physicians to put some priority on the patients whom

they have not inspected for longer time.

In this section, we will define a modified version of POMDP to model this process. This

is a baseline model that does not include any decision support systems. In other words,

there’s no Ω and O included yet in the this baseline model.

4.2.2 State Space

States

We first define the true state space of the models. Based on patient’s health condition, they

switch among following true states during their ICU visits:

• Stable(S): Stable patients have no human-foreseeable, life-threatening health issues.

Physician (or nurse) inspections are not able to spot any near term hazard or come

up with any change of treatment for this type of patients.

• Pre-critical(P): Pre-critical is an intermediate state between Stable and Critical.

Patients at this stage don’t have any immediate life threatening conditions, but shows

human-detectable physiologic precursors that indicates entrance into Critical State in

the near future. State S and P belong to a partially observable state that can not be
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distinguished by ICU nurses. However, these precursors can be picked up by physician

through inspections. In our model one distinction between nurses and physicians is

that a physician can distinguish between the pre-critical state and stable state while

a nurse cannot.

• Critical(C): Observable state when life threatening health issues occurs and imme-

diately triggers an alert to draw attention from ICU staffs. Once a patient enters this

stage, a physiologic alert will immediately be picked by nurses. The nurses will inform

the physicians, who immediately inspects the patient. The intervention at this stage

is considered ”last-minute”, so the probability of treatment failing is higher than in

the pre-critical state. Also if treatment fails at this stage it leads to immediate patient

mortality within the same epoch.

A patient’s ICU stay ends after hitting one of two terminal states:

• Mortality(M): patient dies within ICU;

• Discharged(D): patient leaves the ICU in healthy condition.

Partially Observable States and Belief Space

We define partially observable states from the physicians’ perspective. Without careful

inspection, ICU physicians are unable to differentiate Stable patients from Pre-Critical ones.

So we define PO = {S, P} to be partially observable state. Upon inspection, physicians

instantaneously reveal the true state of the patient.

We assume patient’s true state transitions based upon a MDP. Physicians understand

how the patient state transition over time, and thus can maintain an unbiased belief on

true states through Bayesian Update. When patient is in PO, we use b ∈ [0, 1] to denote

the patient’s probability of being at state P.

Post Treatment State(PT)

To simplify notations, we define this post treatment state, which is essentially a probability

distribution over belief space. A patient enters post treatment state in one of the following

two scenarios:
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• Patient enters Critical and does not die;

• Patient is in the Pre-Critical state and gets an inspection.

Once the patient enters PT, with probability q, the physician know that the patient is

back to stable, so b is reset to 0. With probability 1− q, physician is not certain about the

patient post treatment state, and belief state becomes f . q captures how capable physicians

are at telling if the treatment worked for certain patients right away. 1− (1−q)f represents

the effectiveness of treatments.

4.2.3 Decision Variable

At the beginning of epoch, the physician needs to decide whether or not to inspect the

patient. We use a ∈ {I,N} to denote their actions, where I means the physician inspects

the patient and N means the physician does not inspect the patient. A belief based policy

π maps beliefs about the patient state at the time of making decisions to an action:

π : b→ a.

4.2.4 State Transition Rule

Critical

At the beginning of an epoch, a critical patient is immediately spotted by ICU nurses,

who will trigger an immediate inspection and intervention by physicians. This is a realistic

assumption since we are modeling the event of a patient being in severe enough distress to

be obvious to nurses by direct observation of the patient or by a physiologic alert is triggered

by a medical device. When a patient enters the critical state two things can happen:

• With probability m, the intervention fails and patient dies immediately,

• With probability 1 −m, the patient survives. Patient enters the aggregate state PT

defined as follows: With probability q, the treatment works immediately, and the

physician knows that the patient is back to Stable. In this case, s = S and b = 0.

76



Figure 4.1: State Transition Diagram.

With probability 1 − q, the physician is not sure about the patient post treatment

state, and we assume the physician’s belief becomes b = f .

Stable

Regardless of inspections, Stable patients turn Pre-critical with probability p1, get dis-

charged with probability d and stay Stable with probability 1 − p1 − d. We assume that

those patients who are ready for discharge will be identified by nurses during routine in-

spections and won’t require any additional inspections from the physician.

Figure 1 shows how true state transits from epoch to epoch. The lines in black show

the natural transitions, without any inspections from physicians. The red line shows what

happens once the physician inspects the patient.

Pre-Critical

Without intervention, Pre-Critical patients enter Critical at the end of the epoch with prob-

ability p2 and stay Pre-Critical with probability 1− p2. With inspection, which is assumed

to be instantaneously completed at the beginning of epoch, the physician immediately gets

full knowledge about the patient state. If the patient is Stable, the post-treatment (there

is no treatment happening here but to make it consistent we use this term) belief state b
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will be set back to 0. Otherwise, a treatment will be given to the Pre-Critical patient. Post

inspection state becomes Stable with probability q + (1 − q)(1 − f) and stay Pre-Critical

with probability (1 − q)f . Post inspection belief state of a Pre-Critical patient becomes 0

with probability q and f with probability 1− q.

4.2.5 Objective

The objective of this POMDP model is to minimize mortality rate per ICU visit. The cost

in our model should be measured by the number of deaths. There are two ways of incurring

a cost during a patient’s ICU stay:

• Discharge(Terminal) cost: If a patient is discharged through M, a terminal cost of

cm = 1 is incurred. If a patient is discharged as healthy, no terminal cost will be

incurred.

• Inspection cost: Each physician inspection incurs a fixed cost of cI , which represents

opportunity costs of physicians efforts that could be otherwise used to save other

patients in the same unit. Both proactive inspection (at partially observable states)

and reactive inspection (at critical state) incur the same cost cI .

The inspection cost cI can be viewed as representing the degree to which the physician

is time constrained. Later we remove this cost and place a constraint on the physician

inspection rate.

4.3 Baseline Model

4.3.1 Event timeline

During an epoch in our baseline model, the physician first picks an action based on their

initial belief state for the patient. If the physician does not inspect the patient (a = N),

nothing happens to the real state and belief state during the epoch. Post-action, the belief

state will have a Bayesian update. The patient’s real state will go through the natural

transition process during this epoch (Black lines in Figure 1).
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If A = I, physician instantly reveals the true state of the patient. If the patient is

revealed at Stable, post-action belief is set to be 0. and the Stable patient go through

the natural transition during the epoch. Else, if the patient is revealed to be Pre-Critical,

the physician will give a treatment. Post inspection, the true state becomes Stable with

probability q+(1−q)(1−f) and Pre-Critical with probability (1−q)f . Post inspection, the

belief state of a Pre-Critical patient becomes 0 with probability q and f with probability

1− q. Figure 2 shows how true state and belief state evolve during an epoch.

4.3.2 Bellman Equation for Baseline Model

First we introduce a few notations to help set up Bellman Equation:

• J(b): cost to go function for any patient in belief state b;

• Q(b, a): the cost to go function given belief b, immediate action a and implementation

of optimal policy afterwards.

By definition, minimum cost to go function J(b) satisfies

J(b) = min(Q(b,N), Q(b, I)) (4.1)

If a patient with belief state b is not given an inspection: (1) no cost of inspection is

incurred; (2) with probability bp2, patient is Pre-critical and will transit to Critical in the

next epoch, cost to go becomes JC ; (3) with probability (1 − b)d, is discharged, cost to

go becomes 0; (4) with probability b(1 − p2) + (1 − b)(1 − d), patient remains in partially

observable states. Belief at the start of new epoch becomes b(1−p2)+(1−b)p1
b(1−p2)+(1−b)(1−d) , cost to go is

J( b(1−p2)+(1−b)p1
b(1−p2)+(1−b)(1−d)). So

Q(b,N) = bp2JC + [b(1− p2) + (1− b)(1− d)]J(
b(1− p2) + (1− b)p1

b(1− p2) + (1− b)(1− d)
) (4.2)
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If a patient with belief state b is given an inspection: (1) a cost of inspection cI is

incurred; (2) with probability b(1 − q), the patient post inspection belief becomes f. Since

physicians won’t be able to inspection again, cost to go becomes Q(f,N). (3) with probability

1 − b(1 − q), the patient post inspection belief becomes 0. Since physicians won’t be able

to inspection again, cost to go becomes Q(0,N).

Q(b, I) = cI + (1− b+ bq)Q(0, N) + (b− bq)Q(f,N) (4.3)

If a patient turns Critical, regardless of belief state, patient incurs an inspection with cost

cI . With probability m, patient dies and incurs cost cm = 1. With probability (1 −m)q,

patient post treatment belief becomes 0, cost to go becomes Q(0, N). With probability

(1−m)(1− q), post treatment belief becomes f , cost to go equals Q(f,N).

JC = cI +m+ (1−m)qQ(0, N) + (1−m)(1− q)Q(f,N) (4.4)

4.3.3 Solving the Baseline POMDP

State Discretization

We start with discretizing belief state space. For each belief b, we round it to the nearest

hundredth. Even though this will lead to a slightly different optimal policy, we believe that

state discretization is good enough because in practice, rounding the belief to 0.01 is much

more precise than what the physicians can keep track of and analyze. The continuous belief

space B = {b : b ∈ [0, 1]} is now discretized into B
′

= {0, 0.01, 0.02, .., 1}.

Policy Iteration

We use value iteration (Howard et al, 1960) to calculate Q(b, a) for all b ∈ B′
and a ∈ {I, A}.

Initialization

• For all b ∈ {0, 0.01, ..., 1} and a ∈ {I, A}, Q(b, a) = V (b) ← q0, q0 is an arbitrary

number;

• Stopping criteria: δ ← 10−5;
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• t ← 0.

Value Iteration

While t = 0 or maxb |Jt−1(b)− Jt(b)| ≥ δ:

[5em]2em For b ∈ {0, 0.01, 0.02, ...1}:

JC ← cI +m+ (1−m)qQ(0, N) + (1−m)(1− q)Q(f,N)

Q(b, I)← cI + (1− b+ bq)Q(0, N) + (b− bq)Q(f,N)

Jt+1(b)← min(Qt+1(b,N), Qt+1(b, I))

t← t+ 1

Value Function and Policy Function

J∗(b) = Jt(b), for all b

π∗(b) = argmaxa∈{I,N}Q(b, a)

4.3.4 Numerical Experiment

Our goal is to understand the potential real impact of short time horizon prediction al-

gorithms on physician care for critically ill patients. To do that we need to use realistic

parameter values in the analysis of the POMDP model. The key parameters of the model

are (p1, p2,m, cm, d). There have been no randomized rigorous studies observational studies

of critical care units that we are aware of that could provide definitive values for these

parameters even for a single specific ICU. However, based on a few metrics like Rothman
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Figure 4.2: Belief Cutoff b̄ vs Cost of Inspection CI

Index, mortality rate and discharge rate, we are believe that it is possible to estimate values

of these parameters that can be used to calculate performance measures of the right order

of magnitude. Our approach to estimating these model parameters is described in detail in

section 3.5. For the numerical examples in this chapter we will use the following values de-

rived from the ICU described in Chapter 1: (p1, p2,m, cm, d) = (0.0027, 0.04, 0.2, 1, 0.0064).

We do not claim that these are the best or only values for these parameters. Rather, we

are only claiming that these values are of the right relative magnitude to be able to inform

our understanding of how prediction algorithms can impact patient outcomes in an ICU.

Given this set of estimators, we can range cost of inspection cI from 0 to 1 and solve

for the optimal policy for each belief level. We have the following observations:

• Observation 1: Optimal policy for baseline model is a threshold policy. Given all

model parameters, there exists b̄, such that A∗ = I if and only if b ≥ b̄.

• Observation 2: J(b) is non-decreasing in b. Under optimal policy, the patient is

better off when his/her chance of being Pre-critical gets lower.

We also ranged the model parameters and Observation 1 always hold. Observation 2 is

demonstrated in Figure 3. As we can see, as the cost of inspection gets larger, physicians

tend to only inspect patients with higher belief.

Next we vary f ∈ {0, 0.1, 0.2, 0.4, 0.5} and fixed all other parameters and solve the

baseline POMDP. Recall that f is the failure rate per inspection.
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• Observation 3: b̄ is non-decreasing in f.

Intuitively, an increase in f indicates decreased benefit from inspecting a patient in state

P. When treatment becomes less effective, physicians will tend to inspect only those they

believe have a higher likelihood of being in the pre-critical state.

Similarly, we vary m within range of {0, 0.1, 0.3, 0.5, 1} and fix other parameters.

Figure 4.3: Belief Cutoff vs Cost of Inspections by Varying f

Observation 4: b̄ is decreasing in m.

In our model, since the only difference between (1) the event in which a state P patient

gets inspection and (2) a state C patient incurs inspection is that m proportion of (2) will

die before going through the same process as (1). In this sense, m measures the cost of

waiting until a state P patient turns Critical to inspect (Figure 5). With a fixed cI , bigger

m would make physicians tend to inspect more patients.

Figure 4.4: Belief cutoff vs Cost of Inspections by Varying m

Observation 5: b̄ is decreasing in p2.
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p2 represents the rate at which a patient transitions from Pre-Critical to Critical without

any interventions. Intuitively, as p2 goes up, the expected cost of physician not inspecting a

Pre-critical patient in the current epoch increases because the patient will move to Critical

more quickly. We plot the b̄ vs. cI for different levels of p2 in Figure 5.

Figure 4.5: Belief Cutoff vs Cost of Inspections by Varying p2

4.3.5 Estimation of Model Parameters

In this section, we describe how we derived estimates for a reasonable range of model

parameters. The list of parameters included in the baseline model are:

• p1: Probability a stable patient turns pre-critical in the next epoch;

• p2: Probability a pre-critical patient turns critical in the next epoch;

• m: Probability of a critical patient dying within same epoch given last-minute inter-

vention;

• cm: Cost incurred per mortality, set to be 1;

• cI : Opportunity cost incurred per physician inspection;

• d: Probability of discharge for stable patients;

To estimate model parameters, we used data in our previous work [52] based upon 4,557

unique patients admitted to the medical ICU (MICU) of the Yale-New Haven Hospital

between January 2013 and January 20. A total of 5505 hospitalization episodes and 6113
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MICU visits were recorded. Overall ICU mortality rate is 11% and average length of

stay is 3.73 days. Yale-New Haven Hospital records a real time severity score, Rothman

Index(RI), in its EMR system. The RI score is a composite measure updated regularly from

the electronic medical record based on changes in 26 clinical measures including vital signs,

nursing assessments, Braden score, cardiac rhythms, and laboratory test results. This score

is independent of diagnosis, and it was developed to be used for any inpatient, i.e. medical

or surgical patients including critical care patients. With a theoretical range from –91 to

100, the majority of patients on a general medical or surgical unit fall within the range from

0 to 100. The RI has previously been shown to have predictive power in forecasting 24-hour

in-ICU mortality.

We will use the RI to classify patients into the Stable and Pre-critical states. To do that

we take into account that the Stable state is defined so that a patient in that state can not

transition to death and that we will use a one-hour duration for epochs. In our data set for

each ICU visit, we take samples once every hour after admission, until the visit ends. This

gives us 74,067 unique observation units. Figure 7 and Figure 8 shows the RI distributions

for people who will not die within 1 hour and those who will die within 1 hour respectively.

Since almost all patients who died within an hour had a below 30 Rothman Index, we use

RI > 30 as a proxy of being in state S and RI ≤ 30 as a proxy of state P. Under this

criteria, 17% of these 1-hour samples are pre-Critical and 83% are Stable. We assume that

the fraction of time spent in state C is negligible compared to the others by definition.

Figure 4.6: RI Distribution for Those not Dying in 1 Hour
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Figure 4.7: RI Distribution for Those Dying in 1 Hour

We also look at the initial Rothman Index for each ICU stay. Among all ICU encounters,

91% start with patients in Stable and 9% start with patients in Pre-Critical. We will

use this number to set up initial belief state at admission in our simulation. Using these

observations, and data on discharge rates and mortality rates we can estimate some of the

key model parameters as follows:

p1 ≈ P (RIt ≤ 30|RIt−1 > 30) = 0.0027

p2 ×m ≈ P (Dead at t|RIt−1 ≤ 30) = 0.045

d ≈ P (discharge in 1h|S) = 0.0064

To estimate values for the parameters f and q we take a calibration approach. We use

the baseline under the assumption that physicians inspect patients once a day on average.

We then simulate the performance for different values of these parameters to identify a set

for which the overall mortality rates and residence time in each state match the data. We

find that by using f = 0.5, q = 0.3 and m = 0.6 the overall ICU mortality rate is very close

to what we observe from MICU data set(11%).

86



4.4 Model with Binary Decision Support System

Now we add a decision support system (DSS) to assist ICU physicians on making their

inspection decisions. This decision support system can be based on any quantity that has

relatively strong correlation with patient state. We use the real time 24-hour ICU mortality

predictor introduced in Chapter 1 as an example. At the beginning of each epoch(hour),

the system automatically run the algorithm to generate a risk score r24 ∈ [0, 1]. Suppose

we use a cutoff c such that an alert is triggered if and only if r ≥ c.

We assume the decision support system generates binary signals at the beginning of

epoch. This signal follows a distribution that only depends on the patients current state:

• Given s = P , the alert (r >= c) is triggered with probability α and not triggered(r <

c) with probability 1− α.

• Given s = S, the alert (r >= c) is triggered with probability β and not triggered(r < c)

with probability 1− β.

The alert is valuable in the sense that it can help physician perform an additional layer

of Bayesian update and potentially update the belief in the direction towards true state.

4.4.1 Policy

For a given set of (α, β), we will study two policies:

1. Belief Based Policy(BBP). Physician update belief on patient type based on alert

at the beginning of epoch. This post-alert belief will be used to decide whether the

patient would be checked or not.

2. Reactive Policy(RP). Physician checks the patient if and only if an alert is trig-

gered. This does not require solving POMDP, but provides us a baseline model of

how DSS work when physicians totally rely on decision support to inspect patients.

4.4.2 Event Timeline for Belief Base Policy Model

A Belief Based Policy is a mapping from post alert belief b ∈ [0, 1] into action a ∈ {I,N}.

For BBP model, there are three major stages during an epoch:
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• Alert When a new epoch start, a patient has an initial true state and belief state.

Then the alert would add a layer of Bayesian update of belief, in the following

way: Suppose a patient has initial belief b. With probability bα + (1 − b)β, alert

would be triggered and post-alert belief becomes bPA = bα
bα+(1−b)β . With proba-

bility b(1 − α) + (1 − b)β, alert will not be triggered and post-alert belief becomes

bPA = b(1−α)
b(1−α)+(1−b)(1−β) .

• Action BBP policy is a mapping from post alert belief space into action space. Physi-

cians observe the post-alert belief of the patient, and based on BBP policy set in

advance, picks the action. Action brings instantaneous transition of true state and

belief state in the same way as described by Section 3.4.

• Transition We use T (b) = b(1−p2)+(1−b)p1
b(1−p2)+(1−b)(1−d) to denote the transition of belief state

from post action till the end of epoch. The true state transition follows the black

arrows given in Figure 1.

4.4.3 Bellman Equation for Belief Based Policy Model

We use b to denote belief state of the patient right before physician takes actions in each

epoch. Given that the patients’ pre-action belief state is b and physician inspects the

patient, with probability b(1 − q), the patient’s post treatment belief becomes f . With

probability 1−b(1−q), the patient’s post treatment belief becomes 0. After that, the patient

will make transition as if the patient started with post-action belief and no inspection was

given.

Q(b, I) =cI + (1− b+ bq)Q(0, N) + (b− bq)Q(f,N) (4.5)

If the patient is at pre-Critical, with cost to go denoted by JC , the patient will automat-

ically incur an inspection cost cI . With probability m, the patient will die with terminal

cost 1. With probability 1-m, the patient will survive, with cost to go function denoted as
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JPT .

JC = cI +m+ (1−m)JPT (4.6)

After treatment, patient belief becomes f with probability (1-q) and 0 with probability

q. Then patient goes through the natural state transition based on figure 1. To simplify

notations, we use

T (x) =
x(1− p2) + (1− x)p1

x(1− p2) + (1− x)(1− d)
(4.7)

to denote mapping from post-action belief to end-of-epoch belief.

Given that patient enters post-treatment state(PT), with probability f(1 − q)p2, pa-

tient will enter Critical again when epoch ends and cost to go equals JC . With probability

(1− f)(1− q)d+ qd, patient gets discharged with cost to go 0.

With probability (1− q)(1− fp2 − (1− f)d), the patient post treatment belief becomes

f and after state transition, patient remains in state S or P. At the end of epoch, belief

state becomes T (f). After that:

• With probability T (f)α + (1 − T (f))β, this patient with belief T (f) will trigger an

alert. And the post-alert belief(or pre-action belief) becomes T (f)α
T (f)α+(1−T (f))β .

• With probability T (f)(1 − α) + (1 − T (f))(1 − β), this patient with belief T (f)

will not trigger any alert. And the post-alert belief(or pre-action belief) becomes

T (f)(1−α)
T (f)(1−α)+(1−T (f))(1−β) .

With probability q(1− d), the patient’s post treatment belief becomes 0 and stays in S

or P at the end of epoch. Post transition belief becomes T (0). After that:

• With probability T (0)α + (1 − T (0))β, this patient with belief T (0) will trigger an

alert. And the post-alert belief(or pre-action belief) becomes T (0)α
T (0)α+(1−T (0))β .

• With probability T (0)(1 − α) + (1 − T (0))(1 − β), this patient with belief T (0)
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will not trigger any alert. And the post-alert belief(or pre-action belief) becomes

T (0)(1−α)
T (0)(1−α)+(1−T (0))(1−β) .

We define JPT as cost to go right after treatment is done at Critical or Pre-Critical.

JPT can be written as:

JPT = (1− q)(1− fp2 − (1− f)d)[T (f)α+ (1− T (f))β]J(
T (f)α

T (f)α+ (1− T (f))β
)+

q(1− d)[T (0)α+ (1− T (0))β]J(
T (0)α

T (0)α+ (1− T (0))β
)+

(1− q)(1− fp2 − (1− f)d)[T (f)(1− α) + (1− T (f))(1− β)]J(
T (f)(1− α)

T (f)(1− α) + (1− T (f))(1− β)
)+

q(1− d)[T (0)(1− α) + (1− T (0))(1− β)]J(
T (0)(1− α)

T (0)(1− α) + (1− T (0))(1− β)
) + f(1− q)p2JC

(4.8)

If a patient in belief state b does not get an inspection from the physician:

• With probability d(1− b) patient gets discharged and cost to go equals 0;

• With probability bp2 patient gets to critical and cost to go equals JC ;

• With probability b(1 − p2) + (1 − b)(1 − d), patient stays in either S or P at the

end of epoch and physician can’t tell them apart. The belief will be updated to

T (b). Then either (1)an alert is triggered with a probability T (b)α+ (1− T (b))β and

belief will be updated to T (b)α
T (b)α+(1−T (b))β or (2) alert is not triggered with probabil-

ity T (b)(1−α)+(1−T (b))(1−β) and belief will be updated to T (b)(1−α)
T (b)(1−α)+(1−T (b))(1−β) .

Q(b,N) = bp2[cI +m+ (1−m)JPT ]+

(b(1− p2) + (1− b)(1− d))[T (b)α+ (1− T (b))β]J(
T (b)α

T (b)α+ (1− T (b))β
)+

(b(1− p2) + (1− b)(1− d))[T (b)(1− α) + (1− T (b))(1− β)]J(
T (b)(1− α)

T (b)(1− α) + (1− T (b))(1− β)
)

(4.9)
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Also by definition,

J(b) = min(Q(b,N), Q(b, I)) (4.10)

4.4.4 Policy Iteration

Like the baseline model, we discretize the belief state by rounding all beliefs to the nearing

hundredth. We use the following policy iteration algorithm to solve the optimal policy for

the discretized belief state MDP.

Initialization For all b ∈ {0, 0.01, ...1} and a ∈ {I,N} Initialize Q(b, a) with arbitrary

number q0. t← 0.

While t = 0 or maxs |V t(s)− V t−1(s)| ≥ δ, do:

Value Iteration: For each b ∈ {0, 0.01, ..., 1} and a ∈ {I,N}, update J(b), JC and

JPT , do

JC ←−cI +m+ (1−m)JPT

JPT ←−(1− q)(1− fp2 − (1− f)d)[T (f)α+ (1− T (f))β]Jt(
T (f)α

T (f)α+ (1− T (f))β
)+

q(1− d)[T (0)α+ (1− T (0))β]Jt(
T (0)α

T (0)α+ (1− T (0))β
)+

(1− q)(1− fp2 − (1− f)d)[T (f)(1− α) + (1− T (f))(1− β)]Jt(
T (f)(1− α)

T (f)(1− α) + (1− T (f))(1− β)
)+

q(1− d)[T (0)(1− α) + (1− T (0))(1− β)]Jt(
T (0)(1− α)

T (0)(1− α) + (1− T (0))(1− β)
) + f(1− q)p2JC

Qt+1(b, I)←−cI + (1− b+ bq)Qt(0, N) + (b− bq)Qt(f,N)

Qt+1(b,N)←−bp2[cI +m+ (1−m)JPT ]+

(b(1− p2) + (1− b)(1− d))[T (b)α+ (1− T (b))β]Jt(
T (b)α

T (b)α+ (1− T (b))β
)+

(b(1− p2) + (1− b)(1− d))[T (b)(1− α) + (1− T (b))(1− β)]Jt(
T (b)(1− α)

T (b)(1− α) + (1− T (b))(1− β)
)

Jt+1(b)←−min(Qt+1(b, I), Qt+1(b,N))

t← t+ 1

(4.11)

After solving the optimal belief based policy, we have the following observations:
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• Observation 6 Like the baseline POMDP, BBP is a threshold policy, which means

there exist a cutoff b̄, such that A∗(b) = I if and only if b ≥ b̄.

• Observation 7 Given fixed β, belief cutoff b̄ is increasing in α. (Figure 4.9)

Figure 4.8: cI vs. b̄ Plot

• Observation 8 Given fixed α, belief cutoff b̄ is decreasing in β.

Figure 4.9: cI vs. b̄ Plot

4.4.5 Minimum Mortality Rate under Inspection Rate Constraints

As observed in previous sections, the optimal belief based policy is a threshold policy given

estimated model parameters. We want to run simulation of an ICU in which physicians

update belief on patient type based on the DSS model we described and inspect only patients
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with belief state higher than a pre-specified threshold b̄.

For each (α, β, b̄) combination that satisfies α ∈ [0, 1], β ∈ [0, α], b̄ ∈ [0, 1], we run

simulation for 20000 ICU stays and calculate inspection rates (IR) per epoch and their

corresponding average number of deaths per ICU visit (MR).

Figure 4.10 plots mortality rate versus inspection rate with α fixed at 0.9 and β varying.

We can observe from it that under fixed α and β, lower threshold b̄ leads to higher inspection

rate and lower mortality rate. Figure 4.11 plots mortality rate versus inspection rate with

α fixed at 0.9 and β varying. Given fixed α and inspection rate constraint, higher β leads

to higher mortality rate.

Figure 4.10: Inspection Rate vs Mortality Rate for combinations of α, β

Figure 4.11 and 4.12 plots the MR vs IR given a fixed α to β ratio. Given fixed α to β

ratio and b̄, higher α leads to lower mortality rate.

4.5 Minimize mortality under inspection rate constraint over

ROC

Suppose we have a classification algorithm like the one we introduced in 2.4 to predict the

probability of a patient dying in the following 24 hours. When an epoch starts, a machine

learning model uses all available information of the patient stored in the EMR and outputs

a risk score, r, between 0 and 1. If r is higher than a given threshold, c, then the model
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Figure 4.11: Inspection Rate vs Mortality Rate for Combinations of α, β

Figure 4.12: Inspection Rate vs Mortality Rate for Combinations of α, β

predicts that the patient is at risk of dying and sends out an alert.

4.5.1 Receiver Operating Characteristic(ROC)

ROC curve plots true positive rate(tpr) against false positive rate(fpr) corresponding to all

cutoff c ∈ [0, 1].

• True Positive Rate (tpr): the proportion of positives(patients who die in 24 hours)

that correctly triggered alert;

tpr(c) = P (r ≥ c|Die in 24 hours) (4.12)
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• False Positive Rate (fpr): the proportion of negatives(patients who survived 24 hours)

that are incorrectly triggered alert.

fpr(c) = P (r ≥ c|Not Die in 24 hours) (4.13)

4.5.2 Get (α, β) plot based on ROC

In this section, we will build a bridge between ROC and Pareto frontier of (α, β) set.

By definition:

α = P (alert|s = P )

β = P (alert|s = S)

tpr = P (alert|die in 24h)

fpr = P (alert|die in 24h)

tpr = P (alert|die in 24h)

=
P (alert, die in 24h)

P (die in 24h)

=
P (S)P (alert|S)P (die in 24h|S) + P (P )P (alert|P )P (die in 24h|P )

P (die in 24h|S)P (S) + P (die in 24h|P )P (P )

=
0.83β × 0.004 + 0.17α× 0.05

0.004× 0.83 + 0.05× 0.17

≈ 0.037β + 0.963α

(4.14)
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fpr = P (alert|not die in 24h)

=
P (alert, not die in 24h)

P (not die in 24h)

=
P (S)P (alert|S)P (not die in 24h|S) + P (P )P (alert|P )P (not die in 24h|P )

P (not die in 24h|S)P (S) + P (not die in 24h|P )P (P )

=
0.83β × 0.996 + 0.17α× 0.95

0.996× 0.83 + 0.95× 0.17

≈ 0.84β + 0.16α

(4.15)

By Equation 4.14 and 4.15, (α, β) can also be written as linear functions of tpr, fpr. We

can also tell that true positive rate is highly correlated with α while false positive rate is

more correlated with β.

4.5.3 Three ROC examples

In this section,we create the following three example ROC curves:

• The first ROC curve is a unit circle in the first quadrant that satisfies

tpr2 + (1− fpr)2 = 1 (4.16)

and we can calculate AUC = π
4 = 0.78.

• The second ROC curve is generated by decreasing the tpr in the unit circle ROC by

0.05. If the new tpr is less than 0, we will assign 0 to it. AUC ≈ 0.75

• The third ROC curve is generated by increasing the tpr in the unit circle ROC by

0.05. If the new tpr is bigger than 1, we will assign 1 to it. AUC ≈ 0.81

We use predictor 1 to represent the one with the lowest ROC(0.75), predictor 2 to

represent the one with ROC in the middle(0.78), and predictor 3 to represent the one with

the highest ROC(0.81). The ROCs and (α, β) frontiers are plotted in Figure 4.13 and Figure

4.14 respectively.
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Figure 4.13: ROC Curves

Figure 4.14: α, β Curves
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4.5.4 Minimum Mortality Rate under Inspection Rate Constraints

With a fixed inspection rate constraint, we can compute minimum mortality rate corre-

sponding to all (α, β) combinations. Based on a previous study [58] the patient-intensivist

ratio (PIR) in ICUs in the United States ranges from 1.0-23.5 with IQR 6.9 - 10.8. This

means more than half of the time each physician needs to monitor 6 to 11 patients. Also,

most physicians inspect patients on a daily basis. Each epoch in our model represents one

hour. If on average each patient gets inspection once per day, the average inspection rate

hour is about 4.2%.

For each of the following policies, we are interested in the minimum mortality rate that

can be achieved given certain inspection rates. We simulate the Belief-Based Policy (BBP)

and the Alert Triggered Policy (ATP) with support from DSS based on Predictor 1, 2 and

3. For each (tpr, fpr) combination, we run 10,000 simulations of independent ICU visits.

As tpr (sensitivity) goes up, physicians inspect patients at higher frequency, and mortality

rate decrease. We can estimate the minimum mortality rate (MR) given inspection rate

(IR) constraints IR ≤ 1%, 2%, 3%, 4%, 5% and 6% respectively. We also list the minimum

mortality rates corresponding to the same set of IR constraints for the Random Policy and

BBP baseline (Table 1). We also plot the average number of times patient enter state C

and State P per encounter(Figure 4.15 and 4.16).

Figure 4.15: Average Number of Epochs in State C per ICU visit

There are a few interesting findings from the simulations. First, increased inspection rate
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Figure 4.16: Average Number of Epochs in State P per ICU visit

lead to lower mortality in all policies. Second, given a fixed inspection rate, the mortality

rate of different policies has the following order: BBP-DSS > ATP > BBP-Baseline >

Random Policy.

Given a 4 percent inspection rate, triggered policies can avoid more than 50% of mor-

tality compared to the BBP Baseline. Belief Based Policies can avoid more than 75% of

mortality compared to the BBP Baseline. Third, at 4% inspection rate, an increase of

AUROC by 0.1 can decrease mortality rate by 0.8%. As the inspection rate goes up, the

benefit of increasing the AUROC goes down. At a lower inspection rate, higher accuracy

can make a bigger difference. This indicates that accurate mortality predictors are more

needed in relatively busy units where physicians are more time constrained.

In addition, the optimal true positive rates (sensitivity) for both ATP and BBP-DSS

are in 0.3-0.5 range. Optimal true positive rates for both ATP and BBP-DSS increases

as inspection rate goes up. This indicates that as physicians have more time to inspect

patients, they tend to use lower risk score thresholds that correspond to higher sensitivity

level. The alert based policy is much less efficient than the belief based policy.
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BBP1 BBP2 BBP3 ATP1 ATP2 ATP3 Random BBP Baseline

MR∗,1% IR 5.2% 3.1% 2.9% 9.2% 7.9% 5.4% 45.3% 25.5%

tpr∗ 0.2 0.3 0.3 0.3 0.3 0.35 - -

fpr∗ 0.032 0.032 0.032 0.062 0.062 0.046 - -

MR∗,2% IR 2.9% 2.1% 1.7% 7.1% 5.5% 4.6% 40.2% 14.9%

tpr∗ 0.25 0.35 0.4 0.35 0.35 0.4 - -

fpr∗ 0.062 0.062 0.062 0.083 0.062 0.062 - -

MR∗,3% IR 2.4% 2.0% 1.5% 6.3% 4.9% 4.2% 36.5% 13.5%

tpr∗ 0.35 0.40 0.45 0.4 0.4 0.4 - -

fpr∗ 0.083 0.083 0.083 0.107 0.083 0.062 - -

MR∗, 4%, IR 2.3% 1.8% 1.5% 5.8% 4.7% 4.0% 32.2% 10.9%

tpr∗ 0.35 0.4 0.45 0.4 0.4 0.45 - -

fpr∗ 0.083 0.083 0.083 0.107 0.083 0.083 - -

MR∗, 5% IR 2.1% 1.5% 1.4% 5.2% 4.5% 3.8% 28.1% 8.5%

tpr∗ 0.35 0.4 0.5 0.4 0.45 0.45 - -

fpr∗ 0.083 0.083 0.107 0.107 0.107 0.083 - -

MR∗, 6% IR 1.9% 1.4% 1.3% 4.6% 4.3% 3.7% 26.3% 6.8%

tpr∗ 0.35 0.45 0.5 0.45 0.45 0.5 - -

fpr∗ 0.083 0.107 0.107 0.134 0.107 0.107 - -

Table 4.1: Minimum Mortality Rate for Different Policies under Different Inspection Rate

Constraint

4.6 Discussion

Despite interests in developing advanced ICU mortality prediction tools, there’s been little

literature talking about how these well these predictor can be used as early warning systems

in practice. In this chapter, we proposed a POMDP framework to evaluate the potential

benefits brought by these mortality predictions.

We come to the conclusion that more accurate mortality predictions can reduce ICU

mortality rate by helping each patient’s belief state to converge faster to the real state.

With the help of mortality prediction algorithms, physicians are able to identify Pre-Critical

patients sooner and thus keep more patients from entering Critical state.

100



We also found that the optimal tpr usually falls between 0.3 and 0.5. This indicates

that a mortality prediction algorithm with higher AUROC is not equivalent to a better

decision support tool. Instead, local performance in certain parts of ROC curves might be

more important. The significant out-performance of the ATP policy by the BPP policy

shows that finding ways to integrate a DSS signal into the decision making process of the

physician may be more fruitful than seeking to replace the physician. This finding is inline

with the results described in Chapter 3.

We recognize that the gap between mortality rate of BBP Baseline and BBP DSS has

been over-estimated. There are two limitations in our model assumption that lead to this

overly optimistic result.

First, the Bayesian update that incorporates both experience and alerts is difficult for

physicians to do precisely in practice. But while in theory the alert-triggered policy appears

easier to implement it will be very difficult to convince physicians to cede control to a black

box algorithm.

Second, we are overestimating the extra information provided by DSS by assuming that

alerts generated on the same patients are independent. However, consecutive predictions

within a short time frame are usually highly correlated, due to the strong correlation between

training data.
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