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Abstract

Essays on Panel and Network Modeling

Ming Li

2021

This dissertation studies identification and estimation in panel and network models.

Panel models have long been a workhorse in empirical research. In the first two chapters,

we analyze random coefficient linear panel model and panel multinomial choice model,

respectively, where we incorporate features such as time-varying endogeneity and unobserved

heterogeneity that are prevalent in real life into the models. We present new identification

results and provide consistent estimators based on the identification strategy. Then, we

apply the estimation procedures to panel data and obtain economically convincing results.

The study of networks is a fast-growing area of economic research thanks to the increasing

availability of network data and computing power. In the third chapter, we study network

formation problems under non-transferrable utilities (NTU). We show how to identify the

parameters of interest without additive separability based on “logical differencing” and

provide consistent estimators.

In chapter 1, we propose a random coefficient linear panel model where the regressors can

depend on the time-varying random coefficients in each period, a critical feature in many

economic applications including production function estimation. The random coefficients

are modeled as unknown functions of a fixed effect of arbitrary dimension and a random

shock. The regressors may depend on the random coefficients due to agent’s optimization

behavior such as profit maximization, utility maximization, among others. We use a

sufficiency argument to control for the fixed effect, which enables us to construct a feasible

control function for the random shock and subsequently identify the moments of the random

coefficients via a sequential argument. Based on the multi-step identification argument,



we propose a series estimator and prove a new inference result. Monte Carlo simulations

show that the proposed method can capture the distributional properties of the random

coefficients. We then apply the procedure to panel data for Chinese manufacturing firms

and find significant variation in the output elasticities both across firms and through time.

In chapter 2, we propose a simple yet robust method for semiparametric identification

and estimation of panel multinomial choice models, where we allow infinite-dimensional fixed

effects to enter consumer utilities in an additively nonseparable way, thus incorporating

rich forms of unobserved heterogeneity. Such heterogeneity may take the form of, for

example, brand loyalty or responsiveness to subtle flavor and packaging designs, which

are hard to quantify but affect consumer choices in complex ways. Our identification

strategy exploits the standard notion of multivariate monotonicity in its contrapositive

form, which provides leverage for converting observable events into identifying restrictions on

unknown parameters of interest. Based on our identification result, we construct consistent

set (or point) estimators, together with a computational algorithm that adopts a machine

learning algorithm and a new minimization procedure on the spherical-coordinate space.

We demonstrate the practical advantages of our method with simulations and an empirical

example using the Nielsen data. We find that special in-store displays boost sales not only

through a direct promotion effect but also through the attenuation of consumers’ price

sensitivity.

In chapter 3, we consider a semiparametric model of dyadic network formation under

NTU. NTU frequently arises in social interactions that require bilateral consent, such as

Facebook friendship networks or informal risk-sharing networks in developing countries.

However, NTU inherently induces additive non-separability, which makes identification

challenging. Based on multivariate monotonicity, we identify structural parameters by

constructing events involving the intersection of two mutually exclusive restrictions on the

unobserved individual fixed effects to cancel them out. The constructive identification

argument leads to a consistent estimator. We analyze the finite-sample performance of the



estimator via a simulation study. Then, we apply the method to the Nyakatoke risk-sharing

network data. The results show that our approach can capture the essence of the network

formation process. For instance, we find that the greater the difference in wealth between

two households, the lower is the probability they are connected.
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Chapter 1

A Time-Varying Endogenous Random

Coefficient Model with an Application

to Production Functions

1.1 Introduction

Linear panel models with fixed coefficients have been a workhorse in empirical research. A

leading example concerns production function estimation, where the output elasticities with

respect to each input are assumed to be the same both across firms and through time (Olley

and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves, and Frazer, 2015). But it is

neither theoretically proven nor empirically verified that the coefficients should be fixed. For

example, why would Apple have the same capital elasticity as Sony? Moreover, why would

Apple in 2019 have the same labor elasticity as in 2020 when almost everyone is working from

home? Restricting the coefficients to be constant can lead to biased estimates of important

model parameters such as output elasticity with respect to capital or labor (León-Ledesma,

McAdam, and Willman, 2010), and consequently misguided policy recommendations, e.g.,

income distribution policy, tax policy, among others. Therefore, it is crucial to properly

1



account for the unobserved heterogeneity both across individuals and through time in panel

models.

To accommodate the rich forms of unobserved heterogeneity in the economy, one may

consider linear panel models with random coefficients that are either independent of the

regressors or satisfy certain distributional assumptions joint with or given the regressors

(Mundlak, 1978; Chamberlain, 1984; Wooldridge, 2005a). However, because of the agent’s

optimization behavior, it is rarely the case that one can justify any ex-ante distributional

assumptions on the joint distribution of the random coefficients and the regressors. To

see this, consider a firm with individually unique and time-varying output elasticities with

respect to each input. Then, in each period, the firm chooses inputs by maximizing its

expected profits after taking those heterogeneous elasticities into account. Consequently,

the firm’s heterogeneous elasticities enter its input choice decisions for each period in a

potentially very complicated way, making it extremely difficult, if not impossible, to put

any distributional assumption on the joint distribution of the random coefficients and the

regressors.

The combination of unobserved heterogeneity and correlation between the regressors

and the time-varying random coefficients in each period poses significant challenges for the

analyst. The fact that the time-varying random coefficients are known to the agent when

she optimally chooses the regressors but unobservable to the analyst gives rise to the classic

simultaneity problem (Marschak and Andrews, 1944). Allowing the regressors to depend

on the unobserved (to the econometrician) time-varying random coefficients in each period

in an unknown and potentially complicated way makes traditional approaches inapplicable

(Chamberlain, 1992; Arellano and Bonhomme, 2012; Graham and Powell, 2012; Laage, 2020).

Therefore, a new method is needed to deal with the challenges discussed so far to identify and

estimate the parameters of interest, e.g., the average partial effects (APE) (Chamberlain,

1984; Wooldridge, 2005b).

2



This paper proposes a time-varying endogenous random coefficient panel model where

the regressors are allowed to depend on the random coefficients in each period, a feature

called time-varying endogeneity through the random coefficients. The model is motivated by

production function estimation, but can be applied to other important applications, e.g.,

consumer demand analysis, labor supply estimation, Engel curve analysis, among many

others (Blundell, MaCurdy, and Meghir, 2007b; Blundell, Chen, and Kristensen, 2007a;

Chernozhukov, Hausman, and Newey, 2019b). More specifically, the random coefficients

in this paper are modeled as unknown and possibly nonlinear functions of a fixed effect of

arbitrary dimension and a random shock that captures per-period shocks to the agent. In

production function applications, one may interpret the fixed effect as managerial capability

and the random shock as the R&D outcome. The modeling technique is based on the seminal

paper of Graham and Powell (2012), with a major difference that will be discussed in detail

in the model section. Then, the regressors are determined by the agent’s optimization

behavior and expressed as unknown and possibly complicated functions of the fixed effect,

random shock, and exogenous instruments. For example, it can be the solution to a profit

maximization problem with the fixed effect and random shock in the firm’s information set.

As a result, the firm’s choices of inputs are functions of managerial capability, R&D outcome,

and exogenous instruments.

For identification analysis, we use a sufficiency argument to control for the fixed effect

without parametric assumptions, which enables one to construct a feasible control variable

for the random shock given the sufficient statistic and the fixed effect, and subsequently to

identify the moments of the random coefficients. More precisely, we use an exchangeability

assumption on the conditional density of the vector of random shocks for all periods given

the fixed effect to obtain a sufficient statistic that summarizes all of the time-invariant

information about the individual fixed effect. Given this sufficient statistic, the agent’s choice

of regressors for a specific period is shown to not contain any additional information about

the fixed effect. Thus, the density of the regressors for a specific period does not depend

3



on the fixed effect given the sufficient statistic, allowing one to create a feasible control

variable for the random shock given the sufficient statistic and the fixed effect. Finally, a

sequential argument based on the independence result obtained in the first step, the feasible

control variable constructed in the second step, and the law of iterated expectations (LIE),

is adopted to identify the moments of the random coefficients. The intuition of the last step

is after conditioning on the sufficient statistic and the feasible control variable, the residual

variations in the regressors are exogenous. We further discuss how to extend the flexible

identification argument to identify higher-order moments of the random coefficients, include

vector-valued random shocks, incorporate group fixed effects, and allow exogenous shocks to

the random coefficients.

It is worthwhile mentioning that the construction of the feasible control variable for the

random shock in the presence of the fixed effect is not straightforward. Classical control

function literature (Blundell and Powell, 2003) assumes one scalar-valued unobservable term

in the first-step equation that determines the regressors. In this paper, however, there

are two unobserved heterogeneity terms – the fixed effect of arbitrary dimension and the

scalar-valued idiosyncratic shock – that both appear in the first-step equation. The inclusion

of the fixed effect is crucial in applications such as production function estimation (Dhyne,

Petrin, Smeets, and Warzynski, 2020). Therefore, one cannot directly apply the standard

control function analysis (Newey, Powell, and Vella, 1999; Imbens and Newey, 2009). This

paper shows how to exploit the sufficiency argument to construct a feasible control variable

for the random shock in the presence of the unknown fixed effect.

The constructive identification analysis leads to multi-step series estimators for both

conditional and unconditional moments of the random coefficients. We derive convergence

rates and prove asymptotic normality for the proposed estimators. The new inference

results build on existing ones for multi-step series estimators (Andrews, 1991; Newey, 1997;

Imbens and Newey, 2009; Hahn and Ridder, 2013; Lee, 2018; Hahn and Ridder, 2019).

The main deviations from the literature include that the object of interest is a partial mean
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process (Newey, 1994) of the derivative of the second-step estimator with a nonseparable first

step, and that the last step of the three-step estimation is an unknown but only estimable

functional of the conditional expectation of the outcome variable. Thus, one needs to take

the estimation error from each of the three steps into consideration to obtain correct large

sample properties.

Simulation results show that the proposed method can accurately estimate both the mean

and the dispersion of the random coefficients. The mean of the random coefficients has long

been the central object of interest in empirical research as it measures how responsive the

outcome is to changes in regressors. The dispersion of the random coefficients may also be

useful to answering policy-related questions. For example, to what extent is a new labor

augmenting technology being diffused across firms? Such question can be answered based

on the dispersion of labor elasticities estimated using the method of this paper. The results

remain robust under various configurations of the data generating processes, including when

one has different number of agents or periods in the data or use different orders of basis

functions for estimation, and when an ex-post shock is added to the model.

Finally, the procedure is applied to comprehensive panel data on the production process

for Chinese manufacturing firms. Specifically, we estimate the conditional means of the

output elasticities with respect to capital and labor as well as the random intercept, all of

which are allowed to be varying both across firms and through time. Three main findings

emerge. First, larger capital, but smaller labor, elasticities on average than previous methods

are obtained, which is more consistent with literature on the measurement of factor income

shares (Bai, Qian, and Wu, 2008; Jia and Shen, 2016). Second, contrary to what fixed

coefficients models imply, there are substantial variations in the elasticities of output with

respect to capital and labor both across firms within each sector and for each firm through

time. The results lead to a different interpretation of the data and policy implications than

in the misallocation literature pioneered by Hsieh and Klenow (2009), who attribute all of

the observed variation in input cost shares to output and input market distortions that drive
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wedges between the marginal products of capital and labor across firms. Third, we find the

dispersion of the random intercept among firms is consistently larger than that obtained

using the “proxy variable” based method of Olley and Pakes (1996), and show it is caused

by negative correlations between the random intercept and output elasticities.

1.1.1 Related Literature

We review the three lines of literature that this paper is connected to. The first line concerns

random coefficient models. See Hsiao (2014b) for a comprehensive survey. The closest

paper to ours is Graham and Powell (2012), who also consider the identification of the

APE in a linear panel model with time-varying random coefficients. Compared with the

celebrated paper by Chamberlain (1992) who considers regular identification and derives the

semiparametric variance bound of the APE, Graham and Powell (2012) show that the APE

is irregularly identified when the number of periods equals the dimension of the regressors.

However, as will be seen more clearly in the Section 1.2, their time stationarity assumption

on the conditional distribution of idiosyncratic shocks given the whole vector of regressors

effectively rules out time-varying endogeneity through the random coefficients. Therefore,

their method does not directly apply here. Instead, we propose a different method for

identification based on an exchangeability assumption and the control function approach.

Another closely related paper is Laage (2020), who also considers a correlated random

coefficient linear panel model. Laage (2020) proposes a novel method for identification based

on first differencing and the control function approach to identify APE when the number of

periods is strictly larger than the dimension of the regressors. She allows for time-varying

endogeneity through the residual term, but requires the random coefficient associated with

each regressor to be time-invariant such that one can use first-differencing to cancel out the

scalar fixed effect in the first step. As a result, her method does not apply to the setting

considered in this paper. Similarly to Laage (2020), Arellano and Bonhomme (2012) also

consider a time-invariant random coefficient model. They exploit information on the time
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dependence of the residuals to obtain identification of variances and distribution functions

of the random coefficients. Their model assumptions and analysis are very different from

ours. In addition to linear models, random coefficients are also widely used in discrete choice

models (Berry, Levinsohn, and Pakes, 1995b; Bajari, Fox, and Ryan, 2007; Dubé, Fox, and

Su, 2012; Gautier and Kitamura, 2013).

The second line of research concerns identifiability of models with unobserved hetero-

geneity. The concept of exchangeable sequences dates back to Jonnson (1924), and has been

used in many papers in economics (McCall, 1991; Kyriazidou, 1997; Altonji and Matzkin,

2005). The closest paper in this aspect to our work is Altonji and Matzkin (2005), who

assume the conditional density of the fixed effect and random shock given the regressors

for all periods is a symmetric function of the regressors. This assumption is not applicable

to our model, and we propose an arguably more primitive exchangeability condition on the

conditional density of the random shocks for all periods given the individual fixed effect.

We show how to obtain a sufficient statistic for the fixed effect, and subsequently identify

moments of the random coefficients using the new exchangeability condition.

Another method used in this paper is related to the control function approach in

triangular models (Newey, Powell, and Vella, 1999; Florens, Heckman, Meghir, and Vytlacil,

2008; Imbens and Newey, 2009; Torgovitsky, 2015; D’Haultfœuille and Février, 2015). The

construction of the feasible control variable for the random shock in the identification analysis

is built upon Imbens and Newey (2009), who assume a nonseparable first-step equation that

determines the regressors and suggest a conditional cumulative distribution function (CDF)

based approach for identification. The main difference between our model and theirs is

in the first-step equation of the model considered in this paper, there are two unobserved

heterogeneity terms comprised of a fixed effect of arbitrary dimension and a idiosyncratic

shock, whereas Imbens and Newey (2009) assume one scalar-valued unobserved shock in

their first-step equation. Therefore, one cannot directly apply their method to the problem

considered in this paper because the control variable constructed using their method is

7



infeasible. Instead, we use the implied conditional independence result from the sufficiency

argument to construct a feasible control variable for the random shock given the fixed effect

and the sufficient statistic. More recently, Kitamura and Stoye (2018) propose and implement

a control function approach to account for endogenous expenditure in a nonparametric

analysis of random utility models.

The third line of research concerns production function estimation. Production functions

are one of the most fundamental components of economic analysis. Classical literature (Olley

and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg, Caves, and Frazer, 2015) use a fixed

coefficient linear model while allowing for a scalar-valued time-varying productivity shock.

The endogeneity problem is caused by the fact that the productivity shock is unobserved

by the econometrician but known to the firm when making input choice decisions. The key

identification idea in this literature is to use some choice variable of the firm to uncover the

productivity. Specifically, they suggest a “proxy variable” approach where investment (Olley

and Pakes, 1996) or material (Levinsohn and Petrin, 2003) is assumed to be an invertible

function of the productivity shock given other observables. Based on the invertibility

condition, one can uncover the productivity as a nonparametric function of observables.

Then, under the assumption that the innovation in productivity follows a first-order Markov

process, an orthogonality condition between the innovation in productivity and lagged input

choices can be formed to identify the output elasticities with respect to each input. The

main difference between our paper and theirs is that we allow for time-varying endogeneity

through not only the random intercept, but also output elasticities modeled as random

coefficients. We also include a fixed effect of arbitrary dimension and propose a different

identification strategy. Ackerberg, Chen, Hahn, and Liao (2014) study the asymptotic

efficiency of semiparametric two-step GMM estimators and apply their method to production

function estimation with fixed coefficients. Bang, Gao, Postlewaite, and Sieg (2020) develop

a new method for estimating production functions when the inputs are partially latent.
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There is some recent work trying to include a fixed effect into the fixed coefficient linear

production model (Lee, Stoyanov, and Zubanov, 2019; Abito, 2020).

A couple of innovations have been made recently to relax the assumption of fixed output

elasticities with respect to each input. Kasahara, Schrimpf, and Suzuki (2015) analyze Cobb-

Douglas (C-D) production function with heterogeneous but time-invariant output elasticities

modeled as finite mixtures. Li and Sasaki (2017) analyze C-D production function with

heterogeneous output elasticities modeled as unknown functions of a latent technology term.

Their analysis hinges on a key assumption that there is a one-to-one mapping between the

latent technology term and the ratio of the two intermediate goods. The model assumptions

and technique are very different from ours. Doraszelski and Jaumandreu (2018) propose an

empirical strategy to analyze constant elasticity of substitution production function with

labor augmenting productivity, which allows for multi-dimensional heterogeneity and non-

neutral productivity. Fox, Haddad, Hoderlein, Petrin, and Sherman (2016) model the output

elasticities as random walk processes and assume the input choice decisions are made in

period one. They apply their method to the data for Indian manufacturing firms and find

that there is significant variation in the elasticities both across firms and through time. The

method proposed in this paper is different from theirs as we do not assume random walk for

the innovation of the random coefficients and the firms are allowed to choose their inputs in

each period.

In their influential paper, Gandhi, Navarro, and Rivers (2020) (GNR20) argue that

the proxy variable based method is not sufficient for identification without functional

form restrictions. They show how to use the first-order conditions from a firm’s profit

maximization problem to achieve nonparametric identification of the production function.

Similarly, Demirer (2020) models the production function non-parametrically and assumes

it satisfy a homothetic separability condition. He also assumes that the material per capital

is a strictly monotonic function of labor augmenting productivity only, but not the Hicks

neutral productivity. He shows that while the functional form of the production function and
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output elasticity with respect to capital are not identified, output elasticities with respect

to labor and material are identified via cost minimization. Chen, Igami, Sawada, and Xiao

(2020) study how ownership affects productivity by extending GNR20’s framework. The

assumptions and method of this paper are very different from those mentioned above.

The rest of this paper is organized as follows. Section 1.2 introduces the main model

specification and assumptions. Section 1.3 presents the key identification strategy. Series

estimators are provided in Section 1.4, together with their asymptotic properties. Section

1.5 contains a simulation study. In Section 1.6, we apply our method to panel data for the

Chinese manufacturing firms to estimate their production functions. Finally, Section 1.7

concludes. All the proofs and an index of notation are presented in the Appendix.

1.2 Model

In this section, we present a time-varying endogenous random coefficient (TERC) model

where the regressors can depend on the time-varying random coefficients in each period, a

critical feature that appears in many important applications in economics. We provide three

applications that share this feature, followed by assumptions on model primitives.

Consider the following triangular simultaneous equations model with time-varying

random coefficients:

Yit = X
′

itβit + εit, (1.1)

βit = β (Ai, Uit) , (1.2)

Xit = g (Zit, Ai, Uit) , (1.3)

where:

• i ∈ {1, ..., n} denotes n decision makers and t ∈ {1, ..., T} denotes T ≥ 2 time periods.
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• Yit ∈ R represents the scalar-valued outcome variable for agent i in period t. One may

interpret it as total output for firm i in year t in production function applications.

• Xit ∈ RdX is a vector of choice variables of the ith decision maker in period t with the

constant 1 as its last coordinate. It can include, for example, capital, labor and the

constant 1, in the context of production function estimation.

• Zit ∈ RdZ is a vector of exogenous instruments that affects the choice of Xit and is

independent of (Ai, Uit). E.g., Zit can include input prices in the context of production

function estimation.

• Ai represents a fixed effect of arbitrary dimension. The fixed effect Ai can be

interpreted, for example, as the managerial capability of firm i in production function

applications.

• Uit ∈ R is a scalar-valued continuously distributed it-specific random shock term, which

captures idiosyncratic shock that is correlated with input choices in each period such

as an R&D shock to firm i in period t.

• βit ∈ RdX is a vector of random coefficients, the central object of interest. They are

modeled as unknown and possibly nonlinear functions of Ai and Uit. In production

function applications, βit’s are the output elasticities with respect to each input of Xit.

A key feature here is each coordinate of βit varies both across i and through t.

• εit ∈ R is a scalar-valued error term with mean zero. It can be considered as the

measurement error or ex-post shock.

• g (·) is a vector-valued function of (Zit, Ai, Uit) that determines each coordinate of the

choice variables Xit. For example, capital input Kit may be determined by its first

coordinate, g(1) (Zit, Ai, Uit), while labor input Lit equals g(2) (Zit, Ai, Uit), the second

coordinate of g (·).
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To clarify the information structure of the model, (Yit, Xit, Zit) are data and observable to

both the econometrician and the firm, whereas (Ai, Uit) are only observable to the firm, but

not to the econometrician. The functional form of g (·) and β (·) are only known to the firm,

but not to the econometrician. The ex-post shock εit is unobservable to the firm when it

makes input choice decisions in each period.

Model (1.1)–(1.3) naturally arises in many economic applications. We mention a few in

this section.

Example 1.1. The leading example is production function estimation. Suppose firm i in

period t observes its production function (1.1) in the classic C-D form, which is the workhorse

model in the literature and is employed by Olley and Pakes (1996); Levinsohn and Petrin

(2003); Ackerberg, Caves, and Frazer (2015), among many other papers. The firm also

observes its input prices Zit and input elasticities βit, the latter of which is a function of the

managerial capability Ai and the random R&D outcome Uit, both known to the firm. Then,

the firm chooses capital, labor and materials by solving a profit maximization problem using

the information of (Zit, Ai, Uit), obtaining (1.3) as a consequence.

Example 1.2. Another example is Engel curve estimation. Suppose the budget share of

gasoline Yit for household i at time t is a function of gas price and total expenditure in (1.1).

Here βit is modeled as a function of the household fixed effect and an idiosyncratic wealth

shock, and captures how elastic gasoline demand is with respect to total expenditure and

gas price, respectively. Given the fixed effect, random wealth shock, and an instrument of

gross income of the head of household Zit, household i optimally chooses its gas price and

total expenditure budget by solving a utility maximization problem, leading to (1.3) as a

result. See Blundell, Chen, and Kristensen (2007a) for more details of the endogeneity issue

in Engel curve estimation.

Example 1.3. The third example concerns labor supply estimation. Suppose individual

i has a linear labor supply function in the form of (1.1), where Yit is the number of
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annual hours worked and Xit includes the endogenous hourly wage and other exogenous

demographics. The coordinate of βit that corresponds to wage is the key object of interest

which quantifies how labor supply responds to wage rate variations over time. Then, given

exogenous instruments Zit such as the minimum wage in the county or non-labor income,

individual capability Ai, and random health shocks Uit to the individual, agent i chooses the

job that provides a wage that is the solution to her utility maximization problem, leading

to (1.3). See Blundell, MaCurdy, and Meghir (2007b) for more details on labor supply

estimation.

The time-varying correlation between Xit and βit in these examples highlights the

prevalence and importance of time-varying endogeneity through the random coefficients.

Nonetheless, models in this literature do not allow for this feature. Graham and Powell

(2012) propose a panel model with time-varying random coefficients. Using their notation,

they model βit = b∗ (Ai, Uit)+dt (Ui,2t) and assume Ui,2t ⊥ (Xi, Ai) where Xi = (Xi1, .., XiT )
′
.

Thus, the random coefficient βit is time-varying and correlated with Xi via (Ai, Uit).

However, they impose a time stationarity assumption on the conditional distribution of

Uit given (Xi, Ai):

Uit|Xi, Ai ∼d Uis|Xi, Ai, for t 6= s, (1.4)

which effectively rule out time-varying endogeneity through the random coefficients. To see

why, omit Ui,2t for now since it is exogenous. Consider a simple example where the number

of periods T = 2 and the true data generating processes of βit and Xit are

βit = Ai + Uit, Xit = βit (1.5)

Then, suppose one observes Xi2 > Xi1 in the data, which implies

E [Ui2|Xi, Ai] > E [Ui1|Xi, Ai] , (1.6)
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thus violating (1.4). From this simple example, it is clear that under (1.4) one cannot allow

Xit to depend on βit in each period such that one may infer distributional characteristics

about Uit given Xi, a feature that is important to applications such as production function

estimation. As can be seen from (1.3), we allow such dependence between Xit and Uit in each

period. Similarly, Chernozhukov, Hausman, and Newey (2019b) impose a time stationarity

assumption on the conditional mean of the random coefficients given Xi, again ruling

out time-varying endogeneity through the random coefficients. Arellano and Bonhomme

(2012) consider time-invariant random coefficients that are correlated with Xit. Similarly

to Arellano and Bonhomme (2012), Laage (2020) also models the random coefficients to be

time-invariant and allows time-varying endogeneity only through the residual term.

In addition to the time-varying endogeneity of the regressors through the random

coefficients, model (1.1)–(1.3) also features a nonseparable first step that determines Xit and

a fixed effect Ai that enters both the first step (1.3) and the second step (1.1) nonlinearly. The

nonseparability of g (·) in the instrument Zit, fixed effect Ai, and random shock Uit appears

naturally due to the agent’s optimization behavior. For example, in C-D production functions

firms choose their inputs by maximizing their expected profits without the knowledge of εit,

leading to a nonseparable input choice function g (·). The nonlinearity of the fixed effect Ai

appears in two places: (1) the unknown random coefficients β (Ai, Uit) could be nonlinear in

Ai and (2) the first-step equation g (·) could be nonlinear in βit. Allowing a nonseparable

first step g (·) and a nonlinear fixed effect Ai significantly improves the flexibility and thus

widens the applicability of the model, however at the cost of greater analytical challenges for

identification. For example, the usual demeaning or first differencing techniques no longer

apply to the model (1.1)–(1.3). Nonetheless, we show how to achieve identification via a

sufficiency argument in the next section.

It is worthwhile mentioning that Ai and Uit appear in both the first-step equation (1.3)

that determines Xit and the second-step equation (1.1) that determines Yit. This is again a

feature motivated by economic applications, because agents choose Xit optimally based on
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the complete information of (Ai, Uit), both of which affect the outcome Yit. It is different

from traditional triangular simultaneous equations models (Newey, Powell, and Vella, 1999;

Imbens and Newey, 2009) which assume in (1.3) there is only one unknown scalar that

is arbitrarily correlated with (Ai, Uit), which effectively assumes the agent has incomplete

information of (Ai, Uit) when choosing Xit. The complete information assumption is

arguably more realistic based on agent’s optimization behavior, however makes identification

challenging because now one has two unknown terms Ai and Uit in both (1.1) and (1.3). Thus,

the control function approach suggested in Imbens and Newey (2009) does not directly apply.

Instead, we show how to deal with both unobserved heterogeneity terms via a sequential

argument in the identification section.

It should be pointed out that the fixed effect Ai, modeled as an arbitrary dimensional

object, effectively incorporates unobserved variations in the distributions of the idiosyncratic

shocks Uit. For example, if the joint distribution of (Ui1, .., UiT ) is Fi which does not depend

on time, then the whole function Fi can be incorporated as part of the fixed effect Ai, which

may lie in a vector of infinite-dimensional functions. Fi captures a form of heteroskedasticity

specific to each agent, and our method is robust to such forms of heterogeneity in error

distributions without the need to specify Fi.

Before proceeding to the assumptions, we briefly discuss some extensions to the model

(1.1)–(1.3). First, suppose Uit =
(
U

(1)
it , U

(2)
it

)
and Xit is two-dimensional. Then, we can allow

βit to depend on both Ai and
(
U

(1)
it , U

(2)
it

)
and let each of the two coordinates of Xit depend

on Ai and a different coordinate of Uit. For example, let X(1)
it depend on

(
Ai, U

(1)
it

)
and X(2)

it

depend on
(
Ai, U

(2)
it

)
. The modification is allowed and the identification argument can go

through as given. Second, it is possible to follow Graham and Powell (2012) and include an

exogenous U2,it in βit to capture exogenous shocks to agents i at period t. Third, similarly

to Arellano and Bonhomme (2012), both exogenous and endogenous regressors Xit can be

included in the model (1.1) that are associated with constant coefficients β.
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Next, we provide a list of assumptions on model primitives required for the subsequent

identification argument, and discuss them in relation to the model (1.1)–(1.3).

Assumption 1.1 (Monotonicity of g (·)). At least one coordinate of g (Z,A, U) is known

to be strictly monotonic and continuously differentiable in U , for every realization of (Z,A) ∈

Z ×A.

Assumption 1.1 requires at least one coordinate of the unknown function g (Z,A, U)

defined in (1.3) that determines one element of X, say labor choice in production function

applications, to be strictly monotonic in U on its support for every realization of (Z,A).

Without loss of generality (wlog), assume the first coordinate of g, denoted by g(1), satisfies

Assumption 1.1. Then, the assumption implies that there is a one-to-one mapping between

the first coordinate of X and U given (Z,A), which is used to establish an exchangeability

property and subsequently construct a feasible control variable for U .

It is worthwhile mentioning that strict monotonicity in U for all coordinates of g is

not needed because a single U appears in both (1.1) and (1.3). We show in (1.67) that

Assumption 1.1 suffices to prove the exchangeability condition (1.60), an essential step for

the analysis. If one has a model with a multi-dimensional U in (1.1) and each coordinate

of U appearing in one equation of (1.3), then for the proposed method to work, all of

the coordinates of g are required to be strictly monotonic in U to properly control for the

unobserved heterogeneity in the model.

Assumption 1.1 is mild in the sense that it is satisfied in many applications and models.

For example, in production function applications one may interpret U as R&D outcome.

Then, the firm takes advantage of a better R&D outcome (larger U) by purchasing more

machines and hiring more workers, leading to a larger choice of each coordinate of Xit defined

as the vector of capital and labor. Thus, Assumption 1.1 is satisfied. As in Newey, Powell,

and Vella (1999), the assumption is automatically satisfied if g (·) is linear in U , but allows

for more general forms of non-additive relations. An assumption similar to Assumption 1.1

is also imposed in Imbens and Newey (2009).
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Assumption 1.2 (Exchangeability). The conditional probability density function of

Ui1, ..., UiT given Ai wrt Lebesgue measure is continuous in (ui1, .., uiT ) and exchangeable

across t, i.e.

fUi1,...,UiT |Ai (ui1, ..., uiT | ai) = fUi1,...,UiT |Ai (uit1 , ..., uitT | ai) , (1.7)

where (t1, ..., tT ) is any permutation of (1, ..., T ).

Assumption 1.2 requires that the conditional density of (Ui1, ..., UiT ) given Ai is invariant

to any permutation of time. To provide a simple example when it holds, suppose T = 2,

Uit = Ai + κit for t = 1, 2 where κit are iid through time and independent of Ai. Then,

Assumption 1.2 is satisfied and Ui1 and Ui2 are correlated. In this sense, Assumption 1.2 is

milder than requiring Uit to be iid through time. Note that the simple example corresponds to

the standard equicorrelated random effects specification due to Balestra and Nerlove (1966)

from the panel analysis literature. Another attractive feature of Assumption 1.2 is that it

does not rely on parametric assumptions on the joint density of (Ui, Ai).

It is worthwhile emphasizing that Assumption 1.2 requires exchangeability in the

conditional density of Uit’s given Ai, thus allowing arbitrary correlation between Ai and Uit

which is an important feature in many economic applications. For example, in production

function estimation, one may expect that the better managerial capability a firm has, the

greater chance a positive R&D outcome shall occur. Such correlation is allowed under

Assumption 1.2.

Altonji and Matzkin (2005) also impose an exchangeability assumption (Assumption 2.3

in their paper) to achieve identification in a nonparametric regression setting. Compared

with their exchangeability condition, Assumption 1.2 avoids directly imposing distributional

assumptions on the conditional density of Uit given Xi and is arguably more primitive. More
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precisely, Altonji and Matzkin (2005) denote Φit := (Ai, Uit) and assumes

fΦit|Xi1,..,XiT (ϕit|xi1, .., xiT ) = fΦit|Xi1,..,XiT (ϕit|xit1 , .., xitT ) , (1.8)

where (t1, ..., tT ) is any permutation of (1, ..., T ). There are two main differences between

(1.7) and (1.8). First, Altonji and Matzkin (2005) do not distinguish Ai from Uit in the

definition of Φit, whereas Ai and Uit play different roles in this paper. The difference

between Ai and Uit could be important in applications such as production function estimation

because they have different economic interpretations and implications. Second, and more

importantly, the exchangeability assumption (1.8) requires the value of the conditional

density function of Φit given regressors (Xi1, .., XiT ) does not depend on the order in which

the regressors are entered into the function. In (1.7), the requirement is that the conditional

density of (Ui1, .., UiT ) given Ai is exchangeable in (Uit, .., UiT ), which is on the model

primitives (A,U) rather than on (X,A,U) as in (1.8). Moreover, it could be challenging

to justify (1.8) since Φit includes Uit which determines Xit by (1.3), but not Xis for s 6= t,

which creates asymmetry between Xit and Xis in (1.8).

In light of these differences and observations, we distinguish Ai from Uit in this paper

and impose the exchangeability assumption on the conditional probability density function

(pdf) of Uit given Ai in (1.7). In the next section, we use (1.7) to prove an exchangeability

condition (1.15) on the conditional pdf of Ai wrt the elements (Xit, Zit). We show that the

new exchangeability condition (1.15) guarantees the existence of a vector-valued functionWi

symmetric in the elements of (Xi,Zi), such that conditioning on Wi, the fixed effect Ai is

independent of (Xit, Zit) for any fixed t.

Assumption 1.3 (Random Sampling, Compact Support, and Exogeneity of Z ).

(Xi,Zi, Yi, Ai, Ui, εi) is iid across i ∈ {1, ..., n} with n → ∞ and fixed T ≥ 2. The support

of (Xit, Zit) is compact. Zit ⊥ (Ai, Uit).

18



The first part of Assumption 1.3 is a standard assumption on random sampling. Notice

that only a short panel is required. We focus on cross-sectional asymptotics with the

number of agents getting larger (n→∞), while the number of time periods T is held fixed.

After obtaining Wi for each individual, which requires T ≥ 2, one can treat each t-specific

subsample across individuals separately in the identification analysis and one does not need

to do inter-temporal differencing as in Graham and Powell (2012) or Laage (2020).

Assumption 1.3 can be relaxed to allow exogenous macro shocks in the model. One

can still obtain consistency and normality results by using conditional law of large numbers

and central limit theorems by conditioning on the sigma algebra generated by all of the

random variables common to each individual i but specific to period t. This methodological

convenience brings about significant computational advantages because parallel computing

can be used to deal with each t-specific subsample simultaneously.

The second part of Assumption 1.3 requires the support of (Xit, Zit) to be compact,

which is required for the Weierstrass approximation theorem in the proof to show thatWi is a

sufficient statistic for Ai. The last part of Assumption 1.3 requires the exogenous instrument

Zit to be independent of (Ai, Uit) unconditionally. In production function applications, it is

satisfied when Zit is chosen to be, for example, input prices. It is worthwhile mentioning

that in the identification section, we impose another conditional independence assumption

between Zit and (Ai, Uit) conditioning on a sufficient statistic for Ai. The reason for deferring

the conditional independence assumption is because we need first obtain the sufficient

statistic, which is summarized in Lemma 1.1.

1.3 Identification

In this section, we show how to identify the first-order moments of the random coefficient

βit. To motivate the method, consider the classical linear regression model without random
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coefficients

Yit = X
′

itβ + εit. (1.9)

Under the mean independence assumption that E [εit|Xit] = 0, one may take the conditional

expectation on both sides of (1.9) given Xit to obtain

E [Yit|Xit] = X
′

itβ, (1.10)

and subsequently exploit the exogenous variation in Xit to identify β. For example, taking

the partial derivative on both sides of (1.10) wrt Xit identifies

β = ∂E [Yit|Xit] /∂Xit (1.11)

provided there is enough variation in Xit. Since E [Yit|Xit] is an identifiable object from the

data, β is thus identified.

But the identification argument (1.9)–(1.11) does not go through when β is random and

Xit depends on βit in each period. To see this, since βit is now random and correlated with

Xit, if one follows the analysis (1.9)–(1.11), instead of (1.10) she obtains

E [Yit|Xit] = X
′

itE [βit|Xit] . (1.12)

If one follows (1.11) to take partial derivative wrt Xit, it will simultaneously change the

conditional expectation E [βit|Xit] because the conditional pdf of βit given Xit is changed.

In this sense, the variation in Xit is no longer exogenous even though εit is still exogenous

and satisfies E [εit|Xit] = 0, exactly because βit is correlated with Xit.

Therefore, for identification the goal here is to find a set of feasible random variables that

can control for the time-varying endogeneity through the random coefficients, such that after

conditioning on these variables the residual variation in Xit is exogenous and can identify

the moments of the random coefficients. More precisely, we show how to construct control
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variables in

E [Yit|Xit, cv] = X
′

itE [βit| cv] (1.13)

labeled as “cv” (control variable), such that conditioning on these variables, the residual

variation in Xit is exogenous and can be used to identify the first-order moments of βit as in

(1.11).

The analysis is divided into four steps. First, we obtain a key sufficient statistic Wi for

the fixed effect Ai via the exchangeability condition (1.7). Second, we construct a feasible

variable Vit based on the sufficient statistic Wi and show that Vit is a control variable for Uit

given (Ai,Wi). Third, if Ai is known, we prove the residual variation in Xit conditioning on

(Ai, Vit,Wi) is exogenous and can be used to identify the first-order moments of βit. Lastly,

we deal with the unknown Ai via a LIE argument and show the “cv” vector in (1.13) to be

the feasible (Vit,Wi) .

Step 1: Sufficient Statistic for Ai

To construct a sufficient statistic for Ai, we exploit the exchangeability condition (1.7) and

prove the following lemma.

Lemma 1.1 (Sufficient Statistic for Ai). Suppose that Assumptions 1.1–1.3 are satisfied.

Then, one can construct a feasible vector-valued functionWi := W (Xi,Zi) that is symmetric

in the elements of (Xi,Zi) and satisfies

fAi|Xit,Zit,Wi
(ai|xit, zit, wi) = fAi|Wi

(ai|wi) (1.14)

for any fixed t ∈ {1, ..., T}.

Lemma 1.1 exemplifies that one can exploit the panel data structure to control for

complicated unobserved individual heterogeneity terms. The intuition of Lemma 1.1 is that
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Wi “absorbs” all the time-invariant information in the observable variables Xi and Zi. Given

Wi, any t-specific Xit or Zit, e.g., Xi1, Zi1, does not contain any additional information

about Ai. Therefore, one can exclude them from the conditioning set in (1.14) following

the sufficiency argument. It is also worth emphasizing that Lemma 1.1 only concerns the

density of the fixed effectAi, not the random shock Uit, whereas Assumption 2.1 of Altonji

and Matzkin (2005) concerns the joint distribution of Φit := (Ai, Uit).

To see an example of Wi, suppose T = 2 and both Xit and Zit are scalars. Then,

one example of such Wi is T−1∑
t (Xit, Zit, X

2
it, Z

2
it, XitZit). See Weyl (1939) for a detailed

illustration on how to construct Wi. Notice that we do not impose any distributional

assumption on the conditional density of Ai given (Xit, Zit) in Lemma 1.1. With that

said, ex-ante information about Ai can be incorporated to reduce the number of elements

appearing in Wi. For example, when one knows the probability distribution of Ai belongs

to exponential family, such information can greatly simplify Wi. See Altonji and Matzkin

(2005) for a more detailed discussion.

We prove Lemma 1.1 in Appendix 1.A. The key to the proof involves a change of variables

step that uses the exchangeability condition (1.7) to establish that the conditional density

of Ai given (Xi,Zi) is exchangeable through time, i.e.,

fAi|Xi1,Zi1,..,XiT ,ZiT (ai|xi1, zi1, .., xiT , ziT )

= fAi|Xi1,Zi1,..,XiT ,ZiT (ai|xit1 , zit1 , .., xitT , zitT ) , (1.15)

where (t1, ..., tT ) is any permutation of (1, ..., T ). It is worth noting that the inclusion of

Zit’s in the conditioning set in (1.15) is necessary for the change of variable argument to go

through. The exogeneity of Zit is also crucial for the argument. Then, following Altonji and

Matzkin (2005) one can construct a vector-valued function Wi symmetric in the elements

of (Xi,Zi), using the Weierstrass approximation theorem and the fundamental theorem of

symmetric functions, such that (1.14) hold.
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Lemma 1.1 serves as the key device in obtaining the identification of moments of the

random coefficients βit. In the following analysis, we first construct a feasible control variable

for Uit given Ai in Step 2. Then, we exploit the exogenous variation in Xit using the exclusion

condition (1.14) to identify moments of βit in Step 3.

Step 2: Feasible Control Variable for Uit

Given the nonseparable feature of the first-step g (·) function in (1.3), one may wish to use

the method proposed in Imbens and Newey (2009) to construct a control variable for Uit and

subsequently identify moments of βit by exploiting the residual variation in Xit given the

control variable. However, one cannot directly apply their technique in the current setting

because the model considered in this paper has two unobserved heterogeneity terms Ai and

Uit, whereas in their setting there is only one.

To see this more clearly, for brevity of exposition let Xit be a scalar that satisfies

Assumption 1.1. Suppose one naively follows Imbens and Newey (2009) to exploit

the strict monotonicity of g (·) in U given (Z,A) and constructs a conditional CDF

FXit|Zit,Ai (Xit|Zit, Ai), which under Assumption 1.1 equals FUit|Ai (Uit|Ai), as the control

variable for Uit. Then, two issues arise. First, FXit|Zit,Ai (Xit|Zit, Ai) is not feasible because

Ai is unknown. Thus, one cannot consistently estimate it from data. Second, unlike the

unconditional CDF FUit (Uit) in their setting which is a one-to-one mapping of Uit, the

conditional CDF FUit|Ai (Uit|Ai) is a function of both Ai and Uit. Therefore, one can not

uniquely pin down Uit using FUit|Ai (Uit|Ai) if Ai is unknown. For example, given a fixed

value c that FUit|Ai (Uit|Ai) takes, there can be many Uit’s that satisfies FUit|Ai (Uit|Ai) = c,

exactly because Ai is not fixed. Therefore, one needs to explicitly deal with unknown Ai

when constructing a control variable for Uit.

In this step, we deal with the first issue that FXit|Zit,Ai (Xit|Zit, Ai) is infeasible and

show how to construct a feasible variable that can be used later on to form a one-to-one

mapping of Uit. The idea is to use the sufficient statistic Wi in Lemma 1.1 to get rid
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of Ai from the conditioning set of the conditional CDF FXit|Zit,Ai (Xit|Zit, Ai). More

specifically, the sufficiency condition (1.14) implies Ai ⊥ (Xit, Zit)|Wi, which further implies

Xit ⊥ Ai| (Zit,Wi), i.e.,

fXit|Zit,Ai,Wi
(xit| zit, ai, wi) = fXit|Zit,Wi

(xit| zit, wi) . (1.16)

The key observation here is the right hand side (rhs) of (1.16) is feasible since it only involves

known or estimable objects from data. Suppose the first coordinate of Xit denoted by X(1)
it

satisfies Assumption 1.1. Then, one can construct

Vit := F
X

(1)
it

∣∣∣Zit,Wi

(
X

(1)
it

∣∣∣Zit,Wi

)
(1.17)

and use (1.16) to deduce that

Vit = F
X

(1)
it

∣∣∣Zit,Ai,Wi

(
X

(1)
it

∣∣∣Zit, Ai,Wi

)
. (1.18)

Next, we use Assumption 1.1 and the next assumption to prove

F
X

(1)
it

∣∣∣Zit,Ai,Wi

(
X

(1)
it

∣∣∣Zit, Ai,Wi

)
= FUit|Ai,Wi

(Uit|Ai,Wi) , (1.19)

the rhs of which plays an essential role to the subsequent identification analysis.

Assumption 1.4 (Conditional Independence). Zit ⊥ Uit|Ai,Wi.

Assumption 1.4 requires that the exogenous instrument Zit is independent of Uit given Ai

and Wi. Since one may view Wi as summarizing all the time-invariant information about Ai

in the data, the assumption is, loosely speaking, requiring Zit to be independent of Uit given

Ai by the rules of conditional independence, which is already implied by the unconditional

exogeneity assumption of Zit ⊥ (Ai, Uit) in Assumption 1.3. When Assumption 1.4 is satisfied

depends on which Wi is used in practice. For example, if X and Z are both scalars and one
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usesWi = T−1∑
t (Xit, Zit), then Assumption 1.4 is satisfied when g (Zit, Ai, Uit) is separable

in Zit. Assumption 1.4 is used to ensure that the residual variation in Xit given Vit and Wi

is exogenous to (Ai, Uit).

Lemma 1.2 (Feasible Control Variable Vit). Suppose Assumptions 1.1–1.4 hold. Then,

the random variable Vit satisfies

Vit := F
X

(1)
it

∣∣∣Zit,Wi

(
X

(1)
it

∣∣∣Zit,Wi

)
= FUit|Ai,Wi

(Uit|Ai,Wi) , (1.20)

where X(1)
it denotes the first coordinate of Xit that is known to satisfy Assumption 1.1.

The important part of Lemma 1.2 is that Vit is feasible. As a result, it can be consistently

estimated from data. The feasibility of Vit solves the first issue discussed at the beginning

of this identification step. Note that one coordinate of Xit that satisfies Assumption 1.1 is

sufficient to construct Vit. When there are multiple coordinates of Xit that are known to

satisfy Assumption 1.1, one can choose whichever coordinate of Xit to construct Vit because

by (1.20), a single variable Vit suffices to control for Uit given (Ai,Wi). We provide an

extension when Uit is a vector towards the end of the identification section.

However, the conditional CDF FUit|Ai,Wi
(Uit|Ai,Wi) on the rhs of (1.20) is not a one-

to-one function of Uit because Ai is unknown. If Ai is known, then one can condition

on (Ai, Vit,Wi), which by (1.20) is equivalent to conditioning on (Ai, Uit,Wi), and use the

residual variation in Xit to identify moments of βit as in (1.13). In the next step, we deal

with unknown Ai using the sufficiency argument from the first step and the law of iterated

expectations (LIE).

Step 3: Identify the First-Order Moments of βit

We impose the next two regularity assumptions on FUit|Ai,Wi
(Uit|Ai,Wi) and the support

of Xit given (Vit,Wi), respectively.
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Assumption 1.5 (Strict Monotonicity of CDF of Uit). The conditional CDF

FUit|Ai,Wi
(Uit|Ai,Wi) is strictly increasing in Uit for all (Ai,Wi).

Assumption 1.6 (Residual Variation in Xit). The support of Xit given Vit and Wi

contains some ball of positive radius a.s. wrt (Vit,Wi).

Assumption 1.5 requires that the conditional CDF of Uit given (Ai,Wi) cannot have flat

areas, i.e., for each possible realization c ∈ [0, 1] of FUit|Ai,Wi
(Uit|Ai,Wi) and fixed (Ai,Wi),

there is one and only one value of Uit such that FUit|Ai,Wi
(Uit|Ai,Wi) = c. Consequently,

fixing the level of FUit|Ai,Wi
(Uit|Ai,Wi) as well as (Ai,Wi) is equivalent to fixing the level of

Uit. Assumption 1.6 is like the rank condition that is familiar from the linear simultaneous

equations model. It requires that conditional on Vit and Wi, there is residual variation in Xit

to identify moments of βit. Assumption 1.6 is imposed to facilitate a partial derivative based

identification argument and thus rules out discrete Xit’s. One can include discrete Xit’s by

using the within group variation among Xit’s given Vit and Wi. Then, the required support

condition is there are at least dX linearly independent points in the support of Xit given Vit

and Wi.

It is worth mentioning that we do not require the conditional support of the control

variable Vit given Xit is equal to the unconditional support of Vit, i.e., Assumption 2 of

Imbens and Newey (2009), because we take advantage of the linear structure of the model

and separately identify the unconditional mean of βit without integrating over the marginal

distribution of Vit, which identifies the average structural function.

Suppose Ai is known for now, we have

E [βit|Xit, Ai, Vit,Wi]

= E
[
β (Ai, Uit)| g (Zit, Ai, Uit) , Ai, FUit|Ai,Wi

(Uit|Ai,Wi) ,Wi

]
= E [β (Ai, Uit)|Ai, Vit,Wi] =: β̃ (Ai, Vit,Wi) , (1.21)
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where the first equality holds by the definition of Vit and (1.3), and the second equality is

true because the sigma algebra generated by
(
Ai, FUit|Ai,Wi

(Uit|Ai,Wi) ,Wi

)
is equal to that

generated by (Ai, Uit,Wi) by Assumption 1.5, which contains all the information necessary

to calculate the first-order moment of βit as a function of Ai and Uit. As a consequence, the

variation in Xit does not contain any additional information given (Ai, Vit,Wi).

Next, to deal with unknown Ai appearing in (1.21), we use the LIE together with

the sufficiency condition of (1.14). More specifically, taking the conditional expectation

of β̃ (Ai, Vit,Wi) wrt Ai given (Xit, Vit,Wi) gives

E
[
β̃ (Ai, Vit,Wi)

∣∣∣Xit, Vit,Wi

]
= E

[
E
[
β̃ (Ai, Vit,Wi)

∣∣∣Xit, Zit,Wi

]∣∣∣Xit, Vit,Wi

]
= E

[∫
β̃ (a, Vit,Wi) fAi|Wi

(a|Wi)µ (da)
∣∣∣∣Xit, Vit,Wi

]
=: β (Vit,Wi) , (1.22)

where the first equality holds by the LIE and the fact that Vit is a function of (Xit, Zit,Wi) and

the second equality holds by (1.14). The measure µ (·) in the third line of (1.22) represents

the Lebesgue measure.

Given (1.22), taking the conditional expectation of both sides of (1.1) given (Xit, Vit,Wi)

leads to

E [Yit|Xit, Vit,Wi] = X
′

itβ (Vit,Wi) . (1.23)

From (1.23), the “cv” appearing in (1.13) are (Vit,Wi). The result is intuitive because Vit

is a feasible control variable for Uit given (Ai,Wi) and Wi is a sufficient statistic for Ai.

Therefore, fixing (Vit,Wi) effectively controls for (Ai, Uit), thus the residual variation in Xit

is exogenous.

When Assumption 1.6 holds, one can identify β (Vit,Wi) by

β (Vit,Wi) = ∂E [Yit|Xit, Vit,Wi] /∂Xit. (1.24)
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With β (Vit,Wi) identified, one can then identify E [βit|Xit] and Eβit via the LIE. For

example,

Eβit = Eβ (Vit,Wi) = E (∂E [Yit|Xit, Vit,Wi] /∂Xit) , (1.25)

where the expectation is taken wrt the joint distribution of (Vit,Wi), an identifiable object

from data.

Theorem 1.1 (Identification). If Assumptions 1.1–1.6 are satisfied, then E [βit|Vit,Wi],

E [βit|Xit], and Eβit are identified.

Theorem 1.1 presents the main identification result following the steps above. The idea

is simple: find the feasible variables denoted by “cv” in (1.13) such that conditioning on

these variables, the residual variation in Xit is exogenous to that in βit. We have shown that

the feasible variables are (Vit,Wi). The sufficient statistic Wi for Ai constructed in the first

step plays an important role. It not only enables the construction of the feasible control

variable Vit for Uit given (Ai,Wi) in the second step, but also manages to control for Ai

in the last step. By exploiting the panel data structure, the proposed method extends the

traditional control function approach where only one unknown scalar affects the regressors

to the setting with a fixed effect of arbitrary dimension and a random shock, both of which

affect the choice of Xit in a nonseparable way as in (1.3).

Higher-Order Moments of βit

We have shown the identification of the first-order expectation of the vector of the random

coefficients. Higher-order moments such as variance of the random coefficients can also be

of interest to researchers to answer policy-related questions. For example, policy makers

may be interested in how fast labor-augmenting technology is being diffused among firms.

In this section, we briefly discuss how to identify the second-order moments under regularity

conditions.

28



For simplicity of exposition, we consider the case when the vector of regressors (Xit, 1) is

two-dimensional. With a slight abuse of notation, let (βit, ωit) ∈ R2 where βit is the random

coefficient corresponding to the scalar Xit and ωit is the random coefficient associated with

the constant 1. The ex-post shock εit is omitted from the analysis for brevity of exposition.

If εit is present, one may follow the approach proposed in Arellano and Bonhomme (2012)

and impose a structure such as ARMA on the inter-temporal dependence among εit’s to

identify the second-order moments of βit and ωit.

Since (1.22) holds with β2
it or ω2

it in place of βit, one has

E
[
β2
it

∣∣∣Xit, Vit,Wi

]
= E

[
β2
it

∣∣∣Vit,Wi

]
,

E
[
ω2
it

∣∣∣Xit, Vit,Wi

]
= E

[
ω2
it

∣∣∣Vit,Wi

]
,

E [ωitβit|Xit, Vit,Wi] = E [ωitβit|Vit,Wi] . (1.26)

Thus, taking the conditional expectation of the squares of both sides of (1.1) given

(Xit, Vit,Wi) gives

E
[
Y 2
it

∣∣∣Xit, Vit,Wi

]
= X2

itE
[
β2
it

∣∣∣Vit,Wi

]
+ 2XitE [βitωit|Vit,Wi] + E

[
ω2
it

∣∣∣Vit,Wi

]
. (1.27)

Then, the identification of E [β2
it|Vit,Wi], E [ω2

it|Vit,Wi], and E [ωitβit|Vit,Wi] follows

similarly to (1.24). More precisely, one can identify E [β2
it|Vit,Wi] by exploiting the

second-order derivative of E [Y 2
it |Xit, Vit,Wi] wrt Xit:

E
[
β2
it

∣∣∣Vit,Wi

]
=
(
∂2E

[
Y 2
it

∣∣∣Xit, Vit,Wi

]
/∂X2

it

)
/2. (1.28)

Then, one can identify E [βitωit|Vit,Wi] by

E [βitωit|Vit,Wi] =
(
∂E

[
Y 2
it

∣∣∣Xit, Vit,Wi

]
/∂Xit − 2XitE

[
β2
it

∣∣∣Vit,Wi

])
/2 (1.29)
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and finally identify E [ω2
it|Vit,Wi] by

E
[
ω2
it

∣∣∣Vit,Wi

]
= E

[
Y 2
it

∣∣∣Xit, Vit,Wi

]
−X2

itE
[
β2
it

∣∣∣Vit,Wi

]
− 2XitE [βitωit|Vit,Wi] . (1.30)

By induction, the analysis can be extended to identify any order of moments of βit, which

under regularity conditions (Stoyanov, 2000) uniquely determines the distribution function

of βit.

The flexible identification argument can also be used to identify intertemporal correlations

of the random coefficients. For example, one can identify E [βitβis|Xit, Xis, Vit, Vis,Wi] from

E [YitYis|Xit, Xis, Vit, Vis,Wi] for any t, s ∈ {1, .., T} following an almost identical argument

as in (1.26)–(1.30).

Other Extensions

The identification argument is flexible and can adapt to several extensions. First, when there

is a vector of Uit (say two dimensional) in (1.1) while each coordinate of Uit appears in only

one of (1.3), i.e.,

Yit = X
′

itβ
(
Ai, U

(1)
it , U

(2)
it

)
+ εit

X
(1)
it = g(1)

(
Zit, Ai, U

(1)
it

)
X

(2)
it = g(2)

(
Zit, Ai, U

(2)
it

)
,

one can construct

V
(1)
it := F

X
(1)
it

∣∣∣Zit,Wi

(
X

(1)
it

∣∣∣Zit,Wi

)
and V (2)

it := F
X

(2)
it

∣∣∣Zit,Wi

(
X

(2)
it

∣∣∣Zit,Wi

)
,
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and follow Step 1–3 to obtain

E
[
Yit|Xit, V

(1)
it , V

(2)
it ,Wi

]
= X

′

itβ
(
V

(1)
it , V

(2)
it ,Wi

)
.

Then, the identification follows identically to (1.24).

Second, to allow more flexible or even arbitrary inter-temporal correlation than (1.7)

among the Uit’s, one may replace the individual fixed effect Ai with a group fixed effect Aj

when i belongs to group j (Cameron, Gelbach, and Miller, 2012; Cameron and Miller, 2015).

More precisely, we modify the model (1.1)–(1.3) to be

Yijt = X
′

ijtβ (Aj, Uijt) + εijt,

Xijt = g (Zijt, Aj, Uijt) , (1.31)

where i is individual, j is group, and t is time. One may want to use this model instead of

(1.1)–(1.3) if she desires to relax the restriction on the inter-temporal correlations between

Uit’s and finds the evidence of a group fixed effect, e.g., location or sector or age fixed

effect. Let Uij = (Uij1, ..., UijT )
′
. Then, one can use a “group” version of the exchangeability

condition

fU1j ,...,UIj|Aj (u1j, ..., uIj| aj) = fU1j ,...,UIj|Aj (ui1j, ..., uiIj| aj) , (1.32)

where (i1, ..., iI) is any permutation of (1, ..., I), to construct a sufficient statistic Wj for Aj

and proceed as in Step 2–3 to identify moments of the random coefficients.

Third, to deal with persistent shocks to Xit or deterministic time trend in Xit, one may

model the inter-temporal change in Xit, or ∆Xit := Xit −Xit−1, as a function g of (Z,A, U)

instead of modeling Xit as a function g of (Z,A, U). The identification is mostly the same as

before, except that Wi is now a symmetric function in the elements of ∆Xit rather than Xit
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and Vit := F∆Xit|Zit,Wi
. Then, one can identify the moment of βit by taking partial derivative

wrt ∆Xit on both sides of

E [Yit|Xit−1,∆Xit, Vit,Wi] = (Xit−1 + ∆Xit)
′
β (Xit−1, Vit,Wi) . (1.33)

The last extension concerns exogenous shocks. We maintain model (1.1) and (1.3) and

follow Graham and Powell (2012) to replace (1.2) with βit = β (Ai, Uit)+dt (U2,it), where dt is

an unknown time-varying vector-valued function and U2,it is an exogenous shock independent

of all other variables in the system. For example, U2,it can capture the effect of the pandemic

on the mental/physical health of the employees of firm i in period t after the employees have

been hired. Then, following the argument as before, we have

E [βit|Xit, Vit,Wi] = E [β (Ai, Uit)|Vit,Wi] + E [dt (U2,it)] =: β (Vit,Wi) + δ0t, (1.34)

which implies

E [Yit|Xit, Vit,Wi] = X
′

it [β (Vit,Wi) + δ0t] . (1.35)

Taking the partial derivative wrt Xit on both sides of (1.35) gives

∂E [Yit|Xit, Vit,Wi] /∂Xit = β (Vit,Wi) + δ0t. (1.36)

Repeating the same process for a different period s 6= t leads to

∂E [Yis|Xis, Vis,Wi] /∂Xis = β (Vis,Wi) + δ0s. (1.37)

Then, one identifies δ0t − δ0s for any t 6= s by

δ0t − δ0s = {∂E [Yit|Xit, Vit,Wi] /∂Xit − ∂E [Yis|Xis, Vis,Wi] /∂Xis}|Vit=Vis . (1.38)
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Using the same normalization of δ01 = 0 as in Graham and Powell (2012), one identifies δ0t

for all t. Finally, the identification of β (Vit,Wi) follows from (1.36).

1.4 Estimation and Large Sample Theory

The identification argument is constructive and leads to a feasible estimator for the first-order

moment of βit. In this section, we first estimate the conditional and unconditional moments of

the random coefficients using multi-step series estimators. Then, we obtain the convergence

rates and asymptotic normality results for the proposed estimators.

1.4.1 Estimation

The parameters of interest in this paper are

β (v, w) := E [βit|Vit = v,Wi = w] , β (x) := E [βit|Xit = x] , and β := Eβit. (1.39)

We propose to estimate them using three-step series estimators. In the first step, we estimate

V (x, z, w) = FXit|Zit,Wi
(x| z, w) and denote Vit := V (Xit, Zit,Wi). Then, for s = (x, v, w)

we estimate G (s) := E [Yit|Xit = x, Vit = v,Wi = w] using V̂ obtained in the first step and

denote Git := G (Sit) = G (Xit, Vit,Wi). Finally, we estimate β (v, w), β (Xit) and β, all of

which are identifiable functionals of G (s). For brevity of exposition, we provide definitions

of all of the symbols appearing in this section in Appendix 1.C.

More specifically, we first estimate V (x, z, w) by regressing 1 {Xit ≤ x} on the basis

functions qL (·) of (Zit,Wi) with trimming function τ (·):

V̂ (x, z, w) = τ
(
F̂Xit|Zit,Wi

(x| z, w)
)

= τ

qL (z, w)
′
Q̂−1

n∑
j=1

qj1 {Xjt ≤ x} /n


=: τ

(
qL (z, w)

′
γ̂L (x)

)
. (1.40)
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We highlight two properties of V̂ (x, z, w). First, unlike traditional series estimators, the

regression coefficient γ̂L (x) in (1.40) depends on x because the dependent variable in V is

a function of x. This fact makes the convergence rate of V̂ slower than the standard rates

for series estimators (Imbens and Newey, 2009). Second, a trimming function τ is applied

to qL (z, w)
′
γ̂L (x) because we estimate a conditional CDF which by definition lies between

zero and one. One example of τ is τ (x) = 1 {x ≥ 0} ×min (x, 1).

Next, we estimate G (s) by regressing Yit on the basis functions pK (·) of
(
Xit, V̂it,Wi

)
:

Ĝ (s) = pK (s)
′
P̂−1p̂

′
y/n =: pK (s)

′
α̂K . (1.41)

Following Newey, Powell, and Vella (1999), we construct the basis function pK (s) = x ⊗

pK1 (v, w) by exploiting the index structure of the model (1.1). The index structure enables

a faster convergence rate for Ĝ (s). Note that in (1.41) V̂it from the first-step is plugged in

wherever Vit appears.

Finally, we estimate β (v, w) by exploiting the index structure of the model (1.1) and

calculate it as

β̂ (v, w) = ∂Ĝ (s) /∂x =
(
IdX ⊗ pK1 (v, w)

)′
α̂K =: p (s)

′
α̂K , (1.42)

where the second equality holds by the chain rule. To estimate β (x) and β, we use the LIE

and regress β̂
(
V̂it,Wi

)
on the basis function rM (·) of Xit and the constant 1, respectively :

β̂ (x) = rM (x)
′
R̂−1r

′
B̂/n =: rM (x)

′
η̂M ,

β̂ = n−1
n∑
i=1

β̂
(
V̂it,Wi

)
. (1.43)

One may consider β̂ as a “special case” of β̂ (x) by letting rM (·) ≡ 1, which simplifies the

asymptotic analysis in the next section.
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The objects of interest in this paper are β (v, w), β (x), and β. β (v, w) is the conditional

expectation of βit given (Vit,Wi) = (v, w), and can be interpreted as the average of the

partial effects of Xit on Yit among the individuals with the same (Vit,Wi) = (v, w). If one

loosely considers Vit to be Uit and Wi to be Ai, then β (v, w) is the same as βit. In this

sense, β (v, w) provides the “finest” approximation of βit among the three objects in (1.39).

β (x) measures the average partial effect averaged over the conditional distribution of the

unobserved heterogeneity (Ai, Uit) when Xit equals x. It provides useful information about

the partial effects of Xit on Yit for a subpopulation characterized by Xit = x. For example,

if one asks about the average output elasticity with respect to labor for firms with a certain

level of capital and labor, then β (x) contains relevant information to answer such questions.

β is the APE that has been studied extensively in the literature (Chamberlain, 1984, 1992;

Wooldridge, 2005b; Graham and Powell, 2012; Laage, 2020). It is interpreted as the average

of the partial effect of Xit on Yit over the unconditional distribution of (Ai, Uit). Depending

on the scenario and application, all three objects can be useful to answer policy-related

questions.

The multi-step series estimators proposed in this section cause challenges for inference

due to their multi-layered nature. To obtain large sample properties of β̂ (v, w), β̂ (x) and β̂,

one needs to analyze the estimators step by step as the estimator from each step is plugged

in and thus affects all subsequent ones. For asymptotic analysis, there is a key difference

between β (v, w) and β (x) or β: β (v, w) is a known functional of G (s), whereas both β (x)

and β are unknown but identifiable functionals of G (s). We present in the next session how

to deal with these challenges for the purpose of inference.

1.4.2 Large Sample Theory

Before proving convergence rates and asymptotic normality results for the three-step series

estimators defined in (1.42)–(1.43), we first briefly review the related literature. Andrews

(1991) analyzes the asymptotic properties of series estimators for nonparametric and
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semiparametric regression models. His results are applicable to a wide variety of estimands,

including derivatives and integrals of the regression function. This paper builds on his results

and shows asymptotic normality for a vector-valued functional of regression functions. Newey

(1997) also studies series estimators and give conditions for obtaining convergence rates

and asymptotic normality for the estimators of conditional expectations. Newey, Powell,

and Vella (1999) present a two-step nonparametric estimator for a triangular simultaneous

equation model with a separable first-step equation. They derive asymptotic normality for

their two-step estimator with the first-step plugged in. Imbens and Newey (2009) also analyze

a triangular simultaneous equation model, but with a nonseparable first-step equation. They

show mean-squared convergence rates for the first-step estimator, and prove asymptotic

normality for known functionals of the conditional expectation of the outcome variable given

regressors and control variables. We build on and extend their asymptotic results to unknown

but estimable functionals of the conditional expectations.

More recently, Hahn and Ridder (2013) derive a general formula of the asymptotic

variance of the multi-step estimators using the pathwise derivative method by Newey (1994).

They only consider the case that the first-stage model is a regression model with a separable

error. Hahn and Ridder (2019) consider a setting with a nonseparable first step similar to the

one in this paper. They focus on the full mean process instead of the partial mean process

and show how to obtain influence functions for known functionals of the average structural

functions rather than unknown functionals of the conditional expectation functions. Thus,

their results do not directly apply to our setting. Mammen, Rothe, and Schienle (2012,

2016) study the statistical properties of nonparametric regression estimators using generated

covariates. They focus on kernel estimators in these two papers. Lee (2018) considers partial

mean process with generated regressors, where the average is over the generated regressors

while fixing the treatment variable at a certain level. She proposes a nonparametric estimator

where the second step consists of a kernel regression on regressors that are estimated in the
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first step. Her assumptions and method are quite different from those considered in this

paper.

Alternatively to these papers, one may use sieve methods to establish large sample

properties for the multi-step estimators considered in this paper. Ai and Chen (2007) consider

the estimation of possibly misspecified semiparametric conditional moment restriction

models with different conditioning variables, which include many control variable models

similar to the one discussed in this paper. See Ackerberg, Chen, and Hahn (2012) for

more details on how to apply the methods proposed in Ai and Chen (2007). Chen and

Liao (2014) derive point-wise normality for slower than root-n functionals for general sieve

M estimation. Chen and Liao (2015) consider semiparametric multi-step estimation and

inference with weakly dependent data, where unknown nuisance functions are estimated

via sieve extremum estimation in the first step. They show that the asymptotic variance

of the multi-step estimator can be well approximated by sieve variances that have simple

closed-form expressions. We refer interested readers to these papers for more details.

We now derive convergence rates and asymptotic normality results for the proposed

estimators. Since we let n → ∞ for each t in the asymptotic analysis, the t-subscript is

suppressed for notational simplicity. First, we obtain convergence rates for β̂ (v, w), β̂ (x),

and β̂, respectively. For β̂ (v, w), we adapt the results of Imbens and Newey (2009) to the

TERC model considered in this paper. For β̂ (x) and β̂, the effects from first- and second-

step estimations need to be taken into consideration. We present both mean squared and

uniform rates for all three estimators.

Then, we prove asymptotic normality for the estimators, and show that the corresponding

variances can be consistently estimated to construct valid confidence intervals. Asymptotic

normality for β̂ (v, w) is established by applying the results of Andrews (1991) and Imbens

and Newey (2002) to cover vector-valued functionals. For β̂ (x) and β̂, the main difference

from the existing literature is that both estimators are unknown functionals of G (·) that are
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only estimable from the data. Therefore, one needs to correctly account for the additional

estimation error and adjust the asymptotic variance.

Convergence Rates

Recall that the conditional and unconditional moments of the random coefficients are

estimated via the three-step estimators (1.42)–(1.43). The convergence rates for the first-

and second- step estimators V̂ and Ĝ have been obtained in Imbens and Newey (2009). We

adapt their results to our TERC model and impose the following regularity assumption.

Assumption 1.7. Suppose the following conditions hold:

1. There exist d1, C > 0 such that for every L there is a L× 1 vector γL (x) satisfying

sup
x∈X ,z∈Z,w∈W

∣∣∣FX|Z,W (x| z, w)− qL (z, w)
′
γL (x)

∣∣∣ ≤ CL−d1 .

2. The joint density of (X, V,W ) is bounded above and below by constant multiples of its

marginal densities.

3. There exist C > 0, ζ (K1), and ζ1 (K1) such that ζ (K1) ≤ Cζ1 (K1) and for each

K1 there exists a normalization matrix B such that p̃K1 (v, w) = BpK1 (v, w) satis-

fies λmin
(
Ep̃K1 (Vi,Wi) p̃K1 (Vi,Wi)

′)
≥ C, supv∈V,w∈W

∥∥∥p̃K1 (v, w)
∥∥∥ ≤ Cζ (K1), and

supv∈V,w∈W
∥∥∥∂p̃K1 (v, w) /∂v

∥∥∥ ≤ Cζ1 (K1). Furthermore, K1ζ1 (K1)2
(
L/n+ L1−2d1

)
is

o (1).

4. G (s) is Lipschitz in v. There exist d2, C > 0 such that for every K = dX ×K1 there

is a K × 1 vector αK satisfying

sup
s∈S

∣∣∣G (s)− pK (s)
′
αK
∣∣∣ ≤ CK−d2 .

5. V ar (Yi|Xi, Zi,Wi) is bounded uniformly over the support of (Xi, Zi,Wi).
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Assumption 1.7(1) and (4) specify the approximation rates for the series estimators. It

is well-known that such rates exist when FX|Z,W (x| z, w) and G (s) satisfy mild smoothness

conditions and regular basis functions like splines are used. See Imbens and Newey (2009)

for a detailed discussion.

Assumption 1.7(2) is imposed to guarantee that the smallest eigenvalue of

EpK (Si) pK (Si)
′
is strictly larger than some positive constant C. It is imposed because

in the analysis we exploit the index structure of our TERC model by choosing pK (s) =

x ⊗ pK1 (v, w). The usual normalization (Newey, 1997) on the second moment of basis

functions can only be done on x and pK1 (v, w) separately. Thus, we need Assumption 1.7(2)

to make sure the second moment of pK (s) is well-behaved. A similar assumption is imposed

in Imbens and Newey (2002) as well.

Assumption 1.7(3) is a normalization on the basis function pK1 (·), which ensures that

one can normalize EpK1 (Vi,Wi) pK1 (Vi,Wi)
′
to be the identity matrix I as in Newey

(1997). Finally, the conditional variance of Y given (X, V,W ) is assumed to be bounded in

Assumption 1.7(5), which is common in the series estimation literature.

With Assumption 1.7 in position, we prove the following lemma.

Lemma 1.3 (First- and Second-Step Convergence Rates). Suppose the conditions of

Theorem 1.1 and Assumption 1.7 are satisfied. Then, we have

n−1∑
i

(
V̂i − Vi

)2
= OP

(
L/n+ L1−2d1

)
=: OP

(
∆2

1n

)
∫ [

Ĝ (s)−G (s)
]2
dF (s) = OP

(
K1/n+K−2d2

1 + ∆2
1n

)
=: OP

(
∆2

2n

)
sup
s∈S

∣∣∣Ĝ (s)−G (s)
∣∣∣ = OP (ζ (K1) ∆2n) .

Lemma 1.3 states that the mean squared convergence rate for Ĝ is the sum of the first-step

rate ∆2
1n, the variance term K1/n, and the squared bias term K−2d2

1 . Both d1 and d2 are the

uniform approximation rates that govern how well one is able to approximate the unknown

functions V and G with qL (·) and pK (·), respectively. Note that even though the order of
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the basis function for the second-step estimation is K, by the TERC structure K = dX ×K1

and dX is a finite constant. Thus, the effective order that matters for the convergence rate

results is K1.

We now obtain the convergence rates for β̂ (v, w), β̂ (x) and β̂. We impose the following

assumption.

Assumption 1.8. Suppose the following conditions hold:

1. There exist d3, C > 0 such that for every M there is a M × dX matrix ηM satisfying

sup
x∈X

∥∥∥β (x)− rM (x)
′
ηM
∥∥∥ ≤ CM−d3 .

2. There exist C > 0 and ζ (M) such that for each M there exists a normalization

matrix B such that r̃M (x) = BrM (x) satisfies λmin
(
Er̃M (Xi) r̃M (Xi)

′)
≥ C and

supx∈X
∥∥∥r̃M (x)

∥∥∥ ≤ Cζ (M) .

3. Let ξi = β (Vi,Wi)− β (Xi) and ξ = (ξ1, ..., ξn)
′
. Then, E

[
ξξ
′
∣∣∣X] ≤ CI in the positive

definite sense.

4. β (v, w) is Lipschitz in v, with the Lipschitz constant bounded from above.

Assumption 1.8 imposes conditions on the approximation rate of β (x), the normalization

of basis functions rM (x), and the boundedness of the second moment of ξi, similarly to those

in Assumption 1.7.

Theorem 1.2 (Third-Step Convergence Rates). Suppose the conditions of Lemma 1.3

and Assumption 1.8 are satisfied. Then, we have

∫ ∥∥∥β̂ (v, w)− β (v, w)
∥∥∥2
dF (v, w) = OP

(
∆2

2n

)
,∫ ∥∥∥β̂ (x)− β (x)

∥∥∥2
dF (x) = OP

(
∆2

2n +M/n+M−2d3
)

=: Op

(
∆2

3n

)
,
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∥∥∥∥β̂ − β∥∥∥∥2
= OP

(
∆2

2n

)
,

sup
v∈V,w∈W

∥∥∥β̂ (v, w)− β (v, w)
∥∥∥ = OP (ζ (K1) ∆2n) , and

sup
x∈X

∥∥∥β̂ (x)− β (x)
∥∥∥ = OP (ζ (M) ∆3n) .

The first three equations in Theorem 1.2 give mean squared convergence rates, while the

last two show uniform ones. For β̂ (v, w), the convergence rate is the same as Ĝ because

they share the same regression coefficient α̂K and only differ in the basis functions used.

More precisely, for β̂ (v, w) we use IdX ⊗ pK1 (v, w), while for Ĝ (s) we use x ⊗ pK1 (v, w).

Meanwhile, the same regression coefficient α̂K is used for both estimators. Therefore, under

Assumption 1.7 and 1.8, the convergence rate result on Ĝ (s) applies directly to β̂ (v, w).

For β̂ (x) and β̂, further analysis is required because both estimators involve an additional

estimation step. Specifically, for β̂ (x), we estimate it with

β̂ (x) = rM (x)
′ (
R̂−1r

′
B̂/n

)
=: rM (x)

′
η̂M . (1.44)

To obtain the convergence rate for β̂ (x), the key steps include expanding

η̂M − ηM = R̂−1r
′ [(

B̂ − B̃
)

+
(
B̃ −B

)
+
(
B −BX

)
+
(
BX − rηM

)]
/n, (1.45)

where ηM is defined in Assumption 1.8(1), and deriving the rate for each component. We

show the proof in the Appendix 1.B.

For β̂, we estimate it with

β̂ = n−1∑
i

β̂
(
V̂i,Wi

)
. (1.46)

It is possible to analyze β̂ in a similar way as β̂ (x) by expanding β̂
(
V̂i,Wi

)
−β stochastically

and deriving the convergence rate component by component. However, with the convergence

results established for β̂ (x), one can let rM (·) ≡ 1 in (1.44) and directly obtain the rate for

β̂. We follow this simpler approach in the proof.
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Asymptotic Normality

In this section, we prove asymptotic normality for the estimators of β (v, w), β (x) and β,

and show that the corresponding covariance matrices can be consistently estimated for use

in confidence intervals. Imbens and Newey (2002) have obtained asymptotic normality for

estimators of known and scalar-valued linear functionals of G (s). However, β (v, w) is a

known but vector-valued functional of G (s). To apply their results, we use Assumption

J(iii) of Andrews (1991) together with a Cramér–Wold device to show asymptotic normality

for β̂ (v, w).

Assumption 1.9. Suppose the following conditions hold:

1. There exist C > 0 and ζ (L) such that for each L there exists a normalization matrix

B such that q̃L (z, w) = BqL (z, w) satisfies λmin
(
Eq̃L (Zi,Wi) q̃L (Zi,Wi)

′)
≥ C and

supz∈Z,w∈W
∥∥∥q̃L (z, w)

∥∥∥ ≤ Cζ (L).

2. G (s) is twice continuously differentiable with bounded first and second derivatives. For

functional a (·) of G and some constant C > 0, it is true that |a (G)| ≤ C sups |G (s)|

and either (i) there is δ (s) and α̃K such that Eδ (Si)2 < ∞, a
(
pKk
)

= Eδ (Si) pKk (Si)

for all k = 1, ..., K, a (G) = Eδ (Si)G (Si), and E
(
δ (Si)− pK (Si)

′
α̃K
)2
→ 0; or (ii)

for some α̃K, E
[
pK (Si)

′
α̃K
]2
→ 0 and a

(
pK (·)

′
α̃K
)
is bounded away from zero as

K →∞.

3. E
[
(Y −G (s))4

∣∣∣X,Z,W ]
<∞ and V ar (Y |X,Z,W ) > 0.

4. nL1−2d1, nK−2d2, Kζ1 (K)2 L2/n, ζ (K)6 L4/n, ζ1 (K)2 LK−2d2, and ζ (K)4 ζ (L)4 L/n

are o (1).

5. There exist d4 and αK such that for each element sj of s = (x, v, w)
′
:

max
{

sup
s∈S

∣∣∣G (s)− pK (s)
′
αK
∣∣∣ , sup

s∈S

∣∣∣∂ (G (s)− pK (s)
′
αK
)
/∂sj

∣∣∣} = O
(
K−d4

)
.
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6. (As’ J(iii) of Andrews (1991)) For a bounded sequence of constants {b1n : n ≥ 1} and

constant pd matrix Ω1, it is true that b1nΩ1
p−→ Ω1.

Assumptions 1.9(1)–(5) are imposed in Imbens and Newey (2002) and are regularity

conditions required for the asymptotic normality of β̂ (v, w). See Newey (1997) for a detailed

discussion of these assumptions. Assumption 1.9(6) is used in Andrews (1991) and guarantees

that the normality result of Imbens and Newey (2002) applies to vector-valued functionals

of G (s). Essentially, it requires all the coordinates of β̂ (v, w) to converge at the same speed,

which is a mild assumption under our settings because ex-ante we do not distinguish one

coordinate of βit from the others.

Theorem 1.3 (Asymptotic Normality for β̂ (v,w)). Suppose the conditions of Theorem

1.2 and Assumption 1.9 are satisfied. Then, we have

√
nΩ̂−1/2

1

(
β̂ (v, w)− β (v, w)

)
d−→ N (0, I) .

It is worth noting that Ω̂1 in Theorem 1.3 is a function of (v, w), which is omitted

for simplicity of exposition. Theorem 1.3 concerns β (v, w), a known functional of G (s).

However, the result does not directly apply to β (x) and β, because they are unknown

functionals of G (s) and both require an additional estimation step. More specifically, by the

LIE one has

β (x) = E [∂G (Si) /∂X|Xi = x] , β = E [∂G (Si) /∂X] , (1.47)

both of which involve integrating over the unknown but estimable distribution of (Vi,Wi).

Therefore, one need estimate these unknown functionals and correctly account for the bias

arising from this additional estimation step in asymptotic analysis.

Assumption 1.10. Suppose the following conditions hold:
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1. There exists C > 0 such that for each M and K there exist normalization

matrices B1 and B2 such that r̃M (x) = B1r
M (x) and p̃

K (s) = B2p
K (s)

satisfy λmin
(
Er̃M (Xi) r̃M (Xi)

′)
≥ C, λmin

(
Ep̃K (Si) p̃

K (Si)
′)

≥ C,

λmin

(
Er̃M (Xi) p̃

K (Si)
′ (
EpK (Si) pK (Si)

′)−1
Ep̃K (Si) r̃M (Xi)

′
)

≥ C,

supx∈X
∥∥∥r̃M (x)

∥∥∥ ≤ Cζ (M), and sups∈S
∥∥∥p̃K (s)

∥∥∥ ≤ Cζ (K).

2. The fourth order moment of ξi := β (Vi,Wi)− β (Xi) satisfies E [ξ4
i |Xi] <∞.

3. For a sequence of bounded constants {b2n : n ≥ 1} and some constant pd matrix Ω2,

b2nΩ2
p−→ Ω2 holds.

Assumption 1.10(1) is a normalization on basis functions rM (·) and pK (·). The

substantial part is

λmin

(
Er̃M (Xi) p̃

K (Si)
′ (
EpK (Si) pK (Si)

′)−1
Ep̃K (Si) r̃M (Xi)

′
)
≥ C, (1.48)

which is needed to show that the asymptotic covariance matrix Ω2 of
√
n
(
β̂ (x)− β (x)

)
is

positive definite. Assumption 1.10(2) is a regularity condition imposed for the Lindeberg–

Feller Central Limit Theorem (CLT). Assumption 1.10(3) is similar to Assumption 1.9(6)

and is needed to show the asymptotic normality result holds for vector-valued functionals of

G (s).

Theorem 1.4 (Asymptotic Normality for β̂ (x) and β̂). Suppose the conditions of

Theorem 1.3 and Assumption 1.10 are satisfied. Then, we have

√
nΩ̂−1/2

2

(
β̂ (x)− β (x)

)
d−→ N (0, I) .

Furthermore, if E
∥∥∥β (v, w)− β

∥∥∥4
<∞ , we have

√
nΩ̂−1/2

3

(
β̂ − β

)
d−→ N (0, I) .
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Theorem 1.4 gives the asymptotic normality results that can be used to construct

confidence intervals and test statistics for both β (x) and β. To see why the results of Imbens

and Newey (2002) are not directly applicable, suppose β is a scalar and let â
(
β̂, V̂

)
:= β̂ (x)

and a (β, V ) := β (x). Then, we have

â
(
β̂, V̂

)
− a (β, V )

= â
(
β̂, V̂

)
− â

(
β, V̂

)
︸ ︷︷ ︸
known functional of G(s)

+ â
(
β, V̂

)
− â (β, V )︸ ︷︷ ︸

estimation of V

+ â (β, V )− a (β, V )︸ ︷︷ ︸
estimation of a

. (1.49)

From (1.49), it is clear that because one needs to estimate both unknown functional a and

unknown random variable V , in addition to the first term in (1.49) that concerns a known

functional of G (s), there are two more terms that affects the asymptotic normality of β (x).

In Appendix 1.B, we show how to correctly account for the effects from both estimation

steps on influence functions. It is worth mentioning that for β̂ one can significantly simplify

the analysis by observing that β̂ can be viewed as a “special case” of β̂ (x), that is, choosing

rM (·) ≡ 1 in the definition of β̂ (x) gives β̂. Therefore, with slight modifications to the proof

for β̂ (x) one proves normality for β̂.

1.5 Simulation

In this section, we examine the finite-sample performance of the method via a Monte

Carlo simulation study. A discussion of the data generating process (DGP) motivated

by production function applications is first provided. Then, we show the baseline results

and compare the distribution of the estimated random coefficients with the simulated ones.

Finally, several robustness checks are conducted to investigate how the proposed method

performs when one varies the number of periods and firms, as well as orders of basis functions

used for series estimation, and when one includes ex-post shocks to the DGP.
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1.5.1 DGP

The baseline DGP we consider is

Yit = ωit +XK
it β

K
it +XL

itβ
L
it , (1.50)

where the random coefficients
(
ωit, β

K
it , β

L
it

)
are functions of (Ai, Uit), XK

it and XL
it are input

choices of (natural log of) capital and labor, and Yit is the (log of) output. Following the

functional form of C-D production functions,
(
XK
it , X

L
it , Yit

)
can be thought of already taking

natural log. To allow correlation between Ai and Uit, an important feature in empirical

applications, we draw Ai ∼ U [1, 2] and let Uit = Ai × ηIit + ηIIt where ηIit ∼ U [1, 3/2] and

ηIIt ∼ U [1, 3/2] capture idiosyncratic and macro shocks, respectively. Then, we construct the

random coefficients as ωit = Uit, βKit = Ai+Uit, and βLit = Ai×Uit and let βit =
(
ωit, β

K
it , β

L
it

)′
.

Thus, we have a total of N×T×B βit’s where N , T and B are total number of firms, periods,

and simulations, respectively. Based on the DGP, the true ω := Eωit = 25/8 and APEs of

β
K := EβKit = 37/8 and β

L := EβLit = 115/24 are calculated and define β :=
(
ω, β

K
, β

L
)′
.

Finally, we draw each element of the instrument Zit = (Rit,Wit, Pit)
′
independently from

U [1, 3], and calculate capital XK
it and labor XL

it by solving a representative firm’s profit

maximization problem

XK
it =

[(
1− βLit

)
ln
(
Rit/β

K
it

)
+ βLit ln

(
Wit/β

L
it

)
− ln (ωitPit)

]
/
(
βKit + βLit − 1

)
,

XL
it =

[(
1− βKit

)
ln
(
Wit/β

L
it

)
+ βKit ln

(
Rit/β

K
it

)
− ln (ωitPit)

]
/
(
βKit + βLit − 1

)
.

Note that we do not include the ex-post shocks εit for the baseline scenario, but will add it

later on to investigate how it affects the performance.

In the simulations, the observable data are (X, Y, Z). We use these data to estimate

β (v, w), β (x), and β via the three-step estimation outlined in Section 1.4.1. Then, the

performance of the estimated β̂ (v, w), β̂ (x), and β̂ is evaluated against the truth.
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1.5.2 Baseline Results

For the baseline configuration, we set N = 1000 and T = 3, and use basis functions of

degree two splines with knot at the median. We run B = 100 simulations and summarize

the performance of ω̂, β̂
K

and β̂
L

in Table 2.1.

Table 1.1: Performance of ω̂, β̂
K

and β̂
L

Formula ω̂ β̂
K

β̂
L

Bias B−1∑
b

(
β̂

(d)
b − β

(d)
)
/

∣∣∣∣β(d)
∣∣∣∣ 0.0119 0.0144 0.0066

rMSE
√
B−1∑

b

(
β̂

(d)
b − β

(d)
)2
/
∣∣∣∣β(d)

∣∣∣∣ 0.0318 0.0257 0.0323

Table 2.1 shows that the proposed method can accurately estimate the APE β.

Specifically, the first row evaluates the performance based on the normalized average bias

for each coordinate of β across B rounds of simulations. The bias is small for all three

coordinates, with a magnitude between 0.66% and 1.44% of the length of corresponding

β
(d). The second row measures the normalized rMSE of β̂ against true β for each coordinate,

and shows that the method is able to achieve a low rMSE between 2.57% and 3.23% of

the length of corresponding β(d). By the standard bias-variance decomposition of MSE, the

results in Table 2.1 show that the bias of the estimator for the APE is dominated by its

variance.
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Figure 1.1: Histogram of ω̂b and ωb

To provide more granular evidence on how well the proposed method can estimate the

APE β, we compare the histogram of the estimated β̂
(d)
b against the simulated APE β

(d)
b =

(NT )−1∑
i,t β

(d)
it,b, where β

(d)
it,b is the dth dimension of the it-specific βit for the bth round of

simulation, across all B simulations. Figure 1.1 compares the distribution of ω̂b with ωb

across those B simulations. It shows that the proposed method can capture the dispersion

of the true ωb reasonably well. The distribution of ω̂b centers around Eωit = 25/8, echoing

the findings in Table 2.1. It is also worthwhile mentioning that the majority of ω̂b lies in

[2.95, 3.4], a short interval relative to the size of Eωit. Note that the distribution of ω̂b

appears to be slightly right-skewed across B simulations.

We conduct the same comparison for βK and βL and present the results in Figure 1.2 and

1.3, respectively. The results are similar to that obtained for ω. Once again, the method can

capture the distributional characteristics of the true APE well, with the estimated coefficients

located in a tight interval centered around the true APE.
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Figure 1.2: Histogram of β̂
K

b and βKb

Figure 1.3: Histogram of β̂
L

b and βLb

Finally, since β (Vit,Wi) can be thought of as the “finest” approximation of βit, one may

wonder how closely the distribution of β̂
(
V̂it,Wi

)
mimics that of true βit. The distributional

characteristics such as the variance of βLit can be important to answering policy-related

questions. For example, policymakers may want to know the extent to which new labor

augmenting technology is being diffused among firms. In the following analysis, we compare

the distribution of each coordinate of β̂
(
V̂it,Wi

)
with that of true βit to show how accurately

the method can capture the distributional properties of the random coefficients.

Figure 1.4–1.6 show the histogram of each coordinate of the estimated (brown) β̂
(
V̂it,Wi

)
versus that of true (blue) βit. In all three figures, the distribution of each coordinate of

β̂
(
V̂it,Wi

)
centers around the corresponding population mean. It is worth mentioning that

the distribution of each coordinate of β̂
(
V̂it,Wi

)
seems more centered around its mean

with slightly thinner tails than the corresponding coordinate of the simulated βit, which is
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possibly caused by the fact that β̂
(
V̂it,Wi

)
is an estimator of E [βit|Vit,Wi] and thus already

involves averaging across individuals with the same (Vit,Wi). Nonetheless, it is evident in

Figure 1.4–1.6 that there is significant overlap between the distribution of each coordinate

of β̂
(
V̂it,Wi

)
and that of βit, implying that the proposed method can accurately estimate

both the mean and the dispersion of the random coefficients.

Figure 1.4: Histogram of ω̂it versus ωit

Figure 1.5: Histogram of β̂Kit versus βKit

50



Figure 1.6: Histogram of β̂Lit versus βLit

Figure 1.6 is especially interesting because the true βLit follows a non-standard distribution

that is right-skewed. Nonetheless, the histogram of β̂Lit looks very similar to the non-standard

distribution of βLit , providing further evidence that the method works well even under

irregular DGPs.

1.5.3 Robustness Checks

To show how robust the method is in estimating the APE, we conduct another set of

exercises in this section. We evaluate the performance of the proposed method using both

rMSE defined as
√
B−1∑

b

∥∥∥∥β̂b − β∥∥∥∥2
/
∥∥∥β∥∥∥2

, and mean normed deviation (MND) defined as

B−1∑
b

∥∥∥∥β̂b − β∥∥∥∥ / ∥∥∥β∥∥∥.
First, we vary the size of N and T , and summarize the results in Table 1.2. As expected,

a larger N is good for overall performance. We also find the proposed method benefit from

the increase in T for each fixed N , possibly due to better controlling for the fixed effect Ai

with more periods of data available for each individual.
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Table 1.2: Performance under Varying N and T

rMSE MND
N = 500 N = 1000 N = 500 N = 1000

T = 3 0.0305 0.0298 0.0251 0.0242
T = 5 0.0241 0.0223 0.0206 0.0191

Second, we vary the order of the basis functions used to construct the series estimators,

and present the results in Table 1.3. We find that increasing the orders of basis functions

generally improves estimation accuracy. With that said, by using higher-order basis

functions, one puts more pressure on the data because there are more regressors in each

step of estimation, which may explain why the improvement in performance from increasing

the order of basis functions from two to three is significantly smaller than that from going

from one to two. Motivated by the simulation result, we use a basis function with an order

of two in the empirical illustration in the next section.

Table 1.3: Performance under Varying Orders of Basis Functions

Order of Basis Functions rMSE MND
1 0.0607 0.0562
2 0.0298 0.0242
3 0.0290 0.0237

Lastly, we examine how including εit, interpreted as measurement error or ex-post shock,

into the model affects finite sample performance. Specifically, εit ∼ U [−1/2, 1/2] is drawn

independently from all other variables. Results are presented in Table 1.4. It is clear that

adding εit negatively affects the performance of the proposed estimator, however the impact

is mild. When εit is included, rMSE increases from 0.0298 to 0.0391 and MND rises from

0.0242 to 0.0318. The magnitude in the change in performance is small, showing that the

proposed method is robust to the inclusion of measurement error.
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Table 1.4: Performance with and without Ex-Post Shock

Ex-Post Shock? rMSE MND
No 0.0298 0.0242
Yes 0.0391 0.0318

1.6 Production Function Application

In this section, we apply the procedure to comprehensive production data for Chinese

manufacturing firms. Specifically, for each firm in the data we estimate a valued-added

production function, where output elasticities and the intercept are allowed to vary

across firms and periods, and, more importantly, input choices are allowed to depend on

time-varying output elasticities and the random intercept in each period in a nonseparable

way.

Output elasticity is an essential object of interest in the study of production functions as

it quantifies how output responds to variations of each input, e.g., labor, capital, or material.

It also helps answer important policy-related questions such as what returns to scale faced

by a firm are, how the adoption of a new technology affects production, how the allocation of

firm inputs relates to productivity, among others. Using the estimation method proposed in

this paper, we find larger capital, but smaller labor, elasticities on average within each sector

than those obtained by applying Olley and Pakes (1996)’s method (henceforth OP96) to the

same data. The new estimates of average output elasticities in this paper are consistent with

the literature on the measurement of factor income shares among manufacturing firms in

China (Bai, Qian, and Wu, 2008; Jia and Shen, 2016). Then, a summary of the dispersions

of the estimated output elasticities both across firms and through time is provided. Results

show that there is substantial variation in the output elasticities in both dimensions, leading

to a different interpretation of the data than in the misallocation literature pioneered by

Hsieh and Klenow (2009).
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The random intercept, usually considered as TFP in the C-D production function

estimation literature, is another object of primary interest in the literature of firm innovation,

R&D, trade openness, among others. We investigate the dispersion of the random intercept

within each sector and compare them with those derived using OP96’s method. Echoing

recent results reported by Fox, Haddad, Hoderlein, Petrin, and Sherman (2016), we find

larger dispersion in the random intercept among firms than those obtained using OP96’s

method. We provide an economic justification and investigate it empirically. Results show

that the larger dispersion in the random intercept may be caused by its negative correlations

with each of the output elasticities.

1.6.1 Data and Methodology

We use China Annual Survey of Industrial Firms, a comprehensive longitudinal micro-level

data for the period of 1998–2007 that include information for all state-owned industrial

firms and non-state-owned firms with annual sales above 5 million RMB. The data provide

detailed information on ownership, production, and balance sheet of the firms surveyed. It

is collected by National Bureau of Statistics of China and discussed in detail in Brandt,

Van Biesebroeck, and Zhang (2014). Containing over 2 million observations, the data are

representative of the industrial activity in China. According to Brandt, Van Biesebroeck,

Wang, and Zhang (2017), they account for 91 percent of the gross output, 71 percent of

employment, 97 percent of exports, and 91 percent of total fixed assets for the sampled

periods. Many research on topics such as firm behavior, international trade, foreign direct

investment, and growth theory use this data. See, for example, Hsieh and Klenow (2009),

Song, Storesletten, and Zilibotti (2011), Brandt, Van Biesebroeck, Wang, and Zhang (2017),

and Roberts, Yi Xu, Fan, and Zhang (2018).

This paper focuses on the manufacturing sector and follows Brandt, Van Biesebroeck,

Wang, and Zhang (2017) to deal with the change in the Chinese Industry Classification

codes occurred in 2003, which results in a total of 27 two-digit sectors. We choose to focus
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on two-digit sectors to ensure a large enough sample size for the robustness of the estimation

results. The simulation results in Section 1.5 suggest the method can benefit from a larger

T . Thus, firms that appear in the data for at least 6 years, with strictly positive amount

of capital, employment, value-added output, wage expense and real interests are used for

estimation. There are other sanity checks such as total assets should be no smaller than

current assets. See Nie, Jiang, and Yang (2012) for a detailed discussion.

The final data is an unbalanced panel with the total number of firms increasing from

160K in 1998 to 330K in 2007. Only around 40K firms appear throughout the whole period,

indicating a large amount of entry and exit behaviors in the data. The main variables include

year, firm id, industry code, value-added output, capital, labor, and interest payments.

Following Brandt, Van Biesebroeck, and Zhang (2014), appropriate price deflators for inputs

and outputs are applied separately. The summary statistics are presented in Table 1.5.

Table 1.5: Summary Statistics

Variables N mean sd min max
ln(value-added output) 415,333 9.155 1.441 -6.163 16.960
ln(capital) 415,215 9.352 1.644 0.077 18.560
ln(labor) 415,336 5.306 1.131 2.079 12.050
ln(interest) 415,336 5.960 1.741 0.012 14.350
Year 10 - - 1998 2007
Firm ID 55,093 - - - -
Industry Code 27 - - - -

The value-added production function under consideration is

Yit = ωit + βKitKit + βLitLit,

βKit = βK (Ai, Uit) , βLit = βL (Ai, Uit) , ωit = ω (Ai, Uit) ,

Kit = gK (Zit, Ai, Uit) , Lit = gL (Zit, Ai, Uit) , Zit = ln (interest) , (1.51)
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where Yit andKit are the natural log of inflation-adjusted real value-added output and capital

measured in dollars as in Brandt, Van Biesebroeck, Wang, and Zhang (2017), respectively.

There are two key features in the production function (1.51). First, the output elasticities

wrt to capital βKit and labor βLit are both allowed to be time-varying and different across

firms. Traditional methods (Olley and Pakes, 1996; Levinsohn and Petrin, 2003; Ackerberg,

Caves, and Frazer, 2015) do not allow for such heterogeneity. Second, and more importantly,

the choices of capital K and labor L are modeled as nonparametric functions of fixed effect

Ai interpreted as manager ability and idiosyncratic shock Uit interpreted as R&D outcome,

both of which determine βK and βL. Therefore, model (1.51) allows input choices to depend

on time-varying output elasticities in each period, a feature that naturally arises due to firm’s

profit maximization behavior.

It is worth noting that the output measure is the total revenue in dollars, not physical

quantities in pieces due to lack of individual output prices in the data. When firms operate

in distinct imperfectly competitive output markets, this may cause issues as pointed out

by Klette and Griliches (1996). To allow for unobserved labor quality heterogeneity, we

measure labor input in dollars. As a consequence, firm level average wages cannot be used

as an instrument because it is already included in the labor input in the baseline case.

The instrument Zit is the log of real interests, which is likely to be exogenous because

its fluctuation is mostly driven by exogenous policy in China. For robustness purposes,

we use the inter-temporal difference in log of real interests and both interests and wages

as instruments, and find the results are quite similar. There are other possible choices of

instruments including local minimum wage, lagged inputs (De Loecker and Warzynski, 2012;

Shenoy, 2020), demand instruments (Goldberg, Khandelwal, Pavcnik, and Topalova, 2010),

and product/firm characteristics of direct competitors within the same sector and location

(Berry, Levinsohn, and Pakes, 1995b).

We estimate conditional and unconditional expectations of the individually unique and

time-varying output elasticities βit :=
(
βKit , β

L
it

)
as well as random intercept ωit within
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each two-digit sector. More specifically, first we construct Wi :=
(
Ki, Li, Zi, K

2
i , L

2
i , Z

2
i

)
,

where the means are through time. Then, we estimate Vit := FKit|Zit,Wi
(Kit|Zit,Wi) using

second-order polynomial basis functions. The choice of the order of basis functions is

motivated by simulation results in Section 1.5. Next, the conditional expectation of Yit

given (Kit, Lit, Vit,Wi) , defined as Git, is estimated with a series estimator where V̂it from

the previous step is plugged in. Finally, we estimate β (Vit,Wi) := E [βit|Vit,Wi] by taking

the partial derivative of Git with respect to (Kit, Lit). With moments of βit obtained, we

estimate the moments of ωit by exploiting the index structure in (1.51).

1.6.2 Results

Applying the proposed method on the data for Chinese manufacturing firms, we obtain

estimates of the conditional expectation of output elasticities β (Vit,Wi) and random

intercept ω (Vit,Wi) for each firm in each year. Yang (2015) applies OP96’s method to the

same data used in this paper to estimate a value-added production function. Therefore, the

results are directly comparable. First, we compare the mean of β̂
(
V̂it,Wi

)
within each sector

through time with that obtained using OP96’s method. Second, the dispersions of β̂
(
V̂it,Wi

)
both across firms and through time are presented. Lastly, we compare the dispersion of

ω̂
(
V̂it,Wi

)
across firms within each sector with that derived using OP96’s method.

Average Output Elasticities

In this section, we compare the mean of β̂
(
V̂it,Wi

)
within each sector through time with

that obtained using OP96’s method. Output elasticity is an essential object of interest

in economics because it quantifies how responsive output is to variations of each input.

Moreover, by the solution to the canonical firm’s profit maximization problem (PMP) given

C-D production functions in a perfectly competitive market, the output elasticities equal

the input cost share of total outputs, i.e., βK = rK/pY and βL = wL/pY where (w, r, p)

stand for wage, interest rate and output price, respectively. If firms maximize their profits
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when choosing inputs, the estimated output elasticities should in theory be close to input

income shares. Therefore, one may be interested in comparing the estimated elasticities

with input income shares measured from the data. Note that the result that the output

elasticity equals the corresponding input income share obtained by solving the PMP holds

for C-D production functions regardless of whether the inputs and output are measured using

quantities or dollars.

First, we average β̂K
(
V̂it,Wi

)
across firms and through time within each sector, and

compare it with those obtained using OP96’s method on the same data. Results are

summarized in Figure 1.7. Our estimates of the average capital elasticities are larger than

that obtained using OP96’s method for all but one sectors. The average capital elasticity

across all sectors is 49% using our method, whereas the number is 35% by applying OP96’s

method to the same data. We repeat the same analysis for β̂L
(
V̂it,Wi

)
and find that the

pattern is reversed for labor elasticities. Figure 1.8 shows that our estimates of the average

labor elasticities are consistently smaller than that obtained by applying OP96’s method to

the same data for each of the 27 sectors. Our estimate of average labor elasticities across all

sectors is 43%, which is significantly smaller than 62% obtained using OP96’s method.
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Figure 1.7: Comparison of Average Capital Elasticities
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Figure 1.8: Comparison of Average Labor Elasticities

Based on the theoretical result that output elasticities equal corresponding factor income

shares, we compare the estimated elasticities with the factor income shares measured in the

literature. Bai, Qian, and Wu (2008) estimates the average capital income shares to be

55–65% for manufacturing sectors between 1998–2005 in China. A more recent result by Jia

and Shen (2016) shows that on average 50–60% of total output is distributed to capital. Hsieh

and Klenow (2009) briefly mentioned that roughly half of output is distributed to capital

according to the Chinese input-output tables and the national accounts. As can be seen from

Figure 1.7, the average estimated capital elasticity is 49%, which by the solution to firm’s

PMP means about half of total output is distributed to capital. Therefore, our estimates

are consistent with the factor income shares documented in the literature. In contrast, the

average capital elasticity using OP96’s method for Chinese manufacturing firms is only 35%.

The results show that the proposed method in this paper is able to obtain estimates

of elasticities that are closer to those found in the factor income share literature. One

possible explanation for the results is that it is firm’s optimization behavior that leads

to the first-order condition of βK = rK/pY and βL = wL/pY . When βit’s are random,

it is natural that the elasticities affect the choice of each input in each period, leading to
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time-varying endogeneity through the random coefficients. Our TERC model explicitly takes

firm’s optimization behavior into account, whereas traditional fixed coefficients models do

not allow for this feature. As a consequence, the correlations between βit and Xit are not

captured in traditional fixed coefficients models, leading to a potential omitted variable bias.

Dispersions of the Output Elasticities

Next, we examine the variations of the output elasticities with respect to each input. More

specifically, because the elasticities are not comparable across sectors, we calculate the

standard deviation of β̂
(
V̂it,Wi

)
within each sector for each year, excluding top and bottom

1% extreme values for robustness purposes. These standard deviations are then normalized

by the absolute value of the mean of β̂
(
V̂it,Wi

)
within each sector for each year. The

dispersion of the normalized standard deviations across sectors is summarized in Figure 1.9.
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Figure 1.9: Dispersions of Elasticities across Firms

Results show that there are substantial variations in each coordinate of β̂
(
V̂it,Wi

)
among

firms within each sector for each year. More precisely, the normalized standard deviation

of β̂K
(
V̂it,Wi

)
in 1998 has a median of around 0.7 and a maximum of about 2.9, which

implies that the median sector and the maximum sector have a standard deviation that is

about 70% and 2.9 times of the absolute value of their means of β̂K
(
V̂it,Wi

)
, respectively. A

similar pattern is also found for β̂L
(
V̂it,Wi

)
, with the magnitude of the standard deviations

slightly smaller than that of β̂K
(
V̂it,Wi

)
.
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Another important feature of the model in this paper is that the random coefficients

are allowed to be time-varying. To show how dispersed the elasticities are through time,

we first calculate the standard deviation of β̂
(
V̂it,Wi

)
through time for each firm. Then,

the standard deviations are normalized by the absolute value of the means of β̂
(
V̂it,Wi

)
for the same firm through time. As a consequence, the normalized standard deviations are

directly comparable across firms. We pool the normalized standard deviations together and

summarize the results in Figure 1.10.

According to Figure 1.10, there are significant variations in output elasticities with respect

to both capital and labor through time. The majority of the normalized standard deviations

of β̂K
(
V̂it,Wi

)
lies around 0.5, implying that for these firms the standard deviation of the

output elasticity with respect to capital through time is about 50% of its mean through time.

The normalized standard deviation of the output elasticity with respect to labor through

time also centers around 0.5, however with a smaller maximum of about 2 times compared

to that of 5.5 times for capital. Note that if one uses fixed coefficient linear models, the

standard deviations of the elasticities both across firms and through time will be constant

zero by definition.

Figure 1.10: Dispersions of Elasticities through Time
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The dispersions of the output elasticities across firms and periods provide an explanation

to the observed variation in input cost shares across firms that is different from the

misallocation theory pioneered by Hsieh and Klenow (2009). Hsieh and Klenow (2009)

model the elasticities as constants and attribute the variation the marginal revenue product

of inputs to external distortions that the firm faces. They further identify the distortions

using firm’s first-order condition shown as equation (17)–(18) in their paper, assuming the

elasticities are constant across firms and periods. However, there is no obvious reason why

the output elasticities should be the same for intrinsically heterogeneous firms. In addition

to distortions, the firms may also have different elasticities driven by their fixed effect and

idiosyncratic shocks in each period. Therefore, the dispersions shown in Figure 1.9–1.10

provide an alternative explanation to the observed variation in input cost shares across firms

than the misallocation theory.

Dispersion of the Random Intercept

Lastly, we compare the estimated dispersion of the random intercept within each sector with

that obtained by applying OP96’s method on the same data. OP96 allow the intercept to be

both time-varying and correlated with input choices, but require the output elasticities to be

constants. Using OP96’s method, Yang (2015) obtains estimates of intercepts for each firm

and year. We compare the estimated ω̂
(
V̂it,Wi

)
with his results. For robustness purposes,

we exclude the top and bottom 1% of the estimated ω̂
(
V̂it,Wi

)
within each sector for each

year. Then, we compute the standard deviations of ω̂
(
V̂it,Wi

)
for each sector and year,

normalized by the absolute value of the mean of ω̂
(
V̂it,Wi

)
for the corresponding sector

and year. We do the same trimming and normalization for the estimates based on OP96’s

method. Results for all years and sectors are pooled together and summarized in Figure

1.11.
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Figure 1.11: Comparison of Dispersion of the Random Intercept

In Figure 1.11, the horizontal axis represents the normalized standard deviation of the

random intercept within each sector obtained using this paper’s method while the vertical

axis stands for the normalized standard deviation derived using OP96’s method. Each blue

circle corresponds to a sector and year. When the circle is located to the right of the 45

degree line, the normalized standard deviation of the random intercept using our method is

larger than that obtained using OP96’s method. As is evident from Figure 1.11, the majority

of the dispersions of the random intercept calculated using our method are larger than that

obtained using OP96’s method. The results of this paper echo the findings of Fox, Haddad,

Hoderlein, Petrin, and Sherman (2016), who model the output elasticities as random walk

processes and apply their model to Indian production data. They find a larger dispersion of

random intercept than that derived using OLS regression with fixed coefficients.

One of the possible explanations to why making the coefficients random increases the

dispersion of the random intercept is that it is negatively correlated with output elasticities.

In a linear production function, the random intercept contains all the latent factors used in

the production process that are not explicitly included as regressors in the model. When,
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for example, the output elasticity with respect to labor is large for a certain period due

to a positive shock, the firm can take advantage of it and hire more workers, reducing the

contribution to output from the latent factors because the firm may have a limited budget

to spend on all factors. Therefore, it can be the substitution effect between the observed and

latent inputs that causes the negative correlation between the random intercept and output

elasticities.
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Figure 1.12: Estimated Correlation between the Random Intercept and Elasticities

We take this idea to the data, and run estimation based on the identification of

second-order moments of the random coefficients in (1.29). More specifically, we estimate

Ĉorr
(
ωit, β

L
it

)
and Ĉorr

(
ωit, β

K
it

)
for each sector, and summarize the results in Figure 1.12.

The estimated correlation coefficients between the random intercept and capital elasticity are

negative consistently across all sectors. A similar pattern is found for labor elasticity with

only three sectors reporting small positive correlation coefficient around zero. The results

provide empirical evidence that the larger dispersion of the random intercept is likely to be

caused by a negative correlation between the random intercept and the output elasticities.
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1.7 Conclusion

This paper proposes a flexible random coefficients panel model where the regressors are

allowed to depend on the time-varying random coefficients in each period, a critical feature

in many economic applications such as production function estimation. The model allows

for a nonseparable first-step equation, a nonlinear fixed effect of arbitrary dimension, and an

idiosyncratic shock that can be arbitrarily correlated with the fixed effect and that affects the

choice of the regressors in a nonlinear way. A sufficiency argument is used to control for the

fixed effect, which enables one to construct a feasible control function for the random shock

and subsequently identify the moments of the random coefficients. We provide consistent

series estimators for the moments of the random coefficients and prove a new asymptotic

normality result. Applying the estimation procedure to panel data for Chinese manufacturing

firms, we obtain three main findings. First, larger capital, but smaller labor, elasticities are

derived than those obtained using traditional methods. Our estimates are consistent with the

findings in the factor income share literature. Second, there are substantial variations in the

output elasticities across firms and periods, providing a different explanation to the observed

variation in input cost shares from the well-known misallocation theory. Third, the dispersion

of the random intercept is larger than that obtained using classical methods, caused by

negative correlations between the random intercept and each of the output elasticities.

We mention several extensions to this paper for future research. First, although we have

briefly discussed how to identify second-order moments of the random coefficients in Section

1.3, it remains an open question how to separate the variance of the exogenous ex-post shocks

from that of the random intercept. One may follow Arellano and Bonhomme (2012) to impose

time-dependence assumptions such as moving average process on the ex-post shock. Second,

one may prefer to include lagged regressors in the first-step equation (1.3). We have provided

a group exchangeability condition (1.32) that can allow first-step function g (Z,A, U) in

(1.3) to also depend on lagged regressors Xit−1. Nonetheless, it can be challenging to obtain

asymptotic properties for the estimators with group fixed effects. Another related question is
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whether one can incorporate the timing assumptions widely used in the proxy variable based

approaches to make lagged inputs valid instruments. Third, it can be useful to construct a

test of whether the coefficients vary across individuals and/or through time.
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Appendix

1.A Proofs in Section 1.3

Proof of Lemma 1.1. The proof is divided into two parts. First, we establish the exchange-

ability condition (1.15) using Assumption 1.2. Then, we show that there exist Wi such that

(1.14) holds. For simplicity of notations, we assume Xit and Zit are both scalars. The

proof goes through when Xit and Zit are vectors. We prove (1.15) for T = 2, which is wlog

because T is finite and thus any permutation of (1, ..., T ) can be achieved by switching pairs

of (ti, tj) finite number of times. For example, one can obtain (t3, t1, t2) from (t1, t2, t3) by

(t1, t2, t3)→ (t1, t3, t2)→ (t3, t1, t2). We suppress i subscripts in all variables in this proof.

By Assumption 1.2, we have

fU1,U2|A (u1, u2| a) = fU1,U2|A (u2, u1| a) , (1.52)

which implies

fA,U1,U2 (a, u1, u2) = fA,U1,U2 (a, u2, u1) . (1.53)

Let g−1 (X,Z,A) denote the inverse function of g (Z,A, U) with respect to U . Define u1 =

g−1 (x1, z1, a) and u2 = g−1 (x2, z2, a). Calculate the determinants of the Jacobians as

J1
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:=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂A

∂X1

∂A

∂X2

∂A

∂A
∂g−1 (X1, Z1, A)

∂X1

∂g−1 (X1, Z1, A)
∂X2

∂g−1 (X1, Z1, A)
∂A

∂g−1 (X2, Z2, A)
∂X1

∂g−1 (X2, Z2, A)
∂X2

∂g−1 (X2, Z2, A)
∂A

∣∣∣∣∣∣∣∣∣∣∣∣∣ (X1, X2, Z1, Z2, A)

= (x1, x2, z1, z2, a)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 1
∂g−1 (X1, Z1, A)

∂X1
0 ∂g−1 (X1, Z1, A)

∂A

0 ∂g−1 (X2, Z2, A)
∂X2

∂g−1 (X2, Z2, A)
∂A

∣∣∣∣∣∣∣∣∣∣∣∣∣ (X1, X2, Z1, Z2, A)

= (x1, x2, z1, z2, a)

= ∂g−1 (X,Z,A) /∂X
∣∣∣
(X,Z,A)=(x1,z1,a)

× ∂g−1 (X,Z,A) /∂X
∣∣∣
(X,Z,A)=(x2,z2,a)

, (1.54)

and

J2

:=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g (Z1, A, U1)
∂A

∂g (Z1, A, U1)
∂U1

∂g (Z1, A, U1)
∂U2

∂g (Z2, A, U2)
∂A

∂g (Z2, A, U2)
∂U1

∂g (Z2, A, U2)
∂U2

∂A

∂A

∂A

∂U1

∂A

∂U2

∣∣∣∣∣∣∣∣∣∣∣∣∣ (Z1, Z2, A, U1, U2)

= (z2, z1, a, u2, u1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂g (Z1, A, U1)
∂A

∂g (Z1, A, U1)
∂U1

0
∂g (Z2, A, U2)

∂A
0 ∂g (Z2, A, U2)

∂U2

1 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣ (Z1, Z2, A, U1, U2)

= (z2, z1, a, u2, u1)

= ∂g (Z,A, U) /∂U |(Z,A,U)=(z2,a,u2) × ∂g (Z,A, U) /∂U |(Z,A,U)=(z1,a,u1) . (1.55)

Then, we have

fX1,X2,A|Z1,Z2 (x1, x2, a| z1, z2)
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= fA,U1,U2|Z1,Z2

(
a, g−1 (x1, z1, a) , g−1 (x2, z2, a)

∣∣∣ z1, z2
)
|J1|

= fA,U1,U2|Z1,Z2

(
a, g−1 (x2, z2, a) , g−1 (x1, z1, a)

∣∣∣ z2, z1
)
|J1|

= fX1,X2,A|Z1,Z2 (x2, x1, a| z2, z1) |J2J1|

= fX1,X2,A|Z1,Z2 (x2, x1, a| z2, z1) , (1.56)

where the first equality holds by change of variables, the second equality uses (1.53) and

Z ⊥ (A,U), the latter of which enables one to switch the order of (z1, z2) in the conditioned

set, the third equality holds again by change of variables and

X1 = g
(
z2, a, g

−1 (x2, z2, a)
)

= x2

X2 = g
(
z1, a, g

−1 (x1, z1, a)
)

= x1, (1.57)

and the last equality uses the fact that the product of derivatives of inverse functions is 1,

i.e.,

J1J2

= ∂g−1 (X,Z,A) /∂X
∣∣∣
(X,Z,A)=(x1,z1,a)

× ∂g−1 (X,Z,A) /∂X
∣∣∣
(X,Z,A)=(x2,z2,a)

× ∂g (Z,A, U) /∂U |(Z,A,U)=(z2,a,u2) × ∂g (Z,A, U) /∂U |(Z,A,U)=(z1,a,u1)

=
[
∂g−1 (X,Z,A) /∂X

∣∣∣
(X,Z,A)=(x1,z1,a)

× ∂g (Z,A, U) /∂U |(Z,A,U)=(z1,a,u1)

]
×
[
∂g−1 (X,Z,A) /∂X

∣∣∣
(X,Z,A)=(x2,z2,a)

× ∂g (Z,A, U) /∂U |(Z,A,U)=(z2,a,u2)

]
= 1× 1 = 1. (1.58)

Given (1.56), we have

fX1,X2|Z1,Z2 (x1, x2| z1, z2) =
∫
fX1,X2,A|Z1,Z2 (x1, x2, a| z1, z2)µ (da)

=
∫
fX1,X2,A|Z1,Z2 (x2, x1, a| z2, z1)µ (da)
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= fX1,X2|Z1,Z2 (x2, x1| z2, z1) . (1.59)

which implies

fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)

= fX1,X2,A|Z1,Z2 (x1, x2, a| z1, z2) /fX1,X2|Z1,Z2 (x1, x2| z1, z2)

= fX1,X2,A|Z1,Z2 (x2, x1, a| z2, z1) /fX1,X2|Z1,Z2 (x2, x1| z2, z1)

= fA|X1,X2,Z1,Z2 (a|x2, x1, z2, z1) , (1.60)

where the second equality holds by (1.56) and (1.59).

Next, we follow Altonji and Matzkin (2005) to show that the conditional density

fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) can be approximated arbitrarily closely by a function of the

form fA|W (a|W ), where W is a vector-valued function symmetric in the elements of X

and Z. By Assumption 1.3, the supports of X and Z are compact. By Assumption

1.1–1.3, fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) is continuous in (X1, X2, Z1, Z2). Therefore, from the

Stone-Weierstrass Theorem one can find a function fwA|X1,X2,Z1,Z2
(a|x1, x2, z1, z2) that is a

polynomial in (X1, X2, Z1, Z2) over a compact set with the property that for any fixed δ that

is arbitrarily close to 0,

max
xt∈X ,zt∈Z,∀t

∣∣∣fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)− fwA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)
∣∣∣ ≤ δ. (1.61)

Let

f A|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)

:=
[
fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) + fA|X1,X2,Z1,Z2 (a|x2, x1, z2, z1)

]
/2! (1.62)
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denote the simple averages of fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) over all T ! (here T = 2) unique

permutations of (xt, zt), and similarly for fwA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2). By (1.60), we have

f A|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) = fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) . (1.63)

Also note that by construction, we have

f
w

A|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) = f
w

A|X1,X2,Z1,Z2 (a|x2, x1, z2, z1) . (1.64)

By (1.60) and T, it is true that

∣∣∣fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)− fwA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)
∣∣∣

=
∣∣∣f A|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)− fwA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2)

∣∣∣
≤ T !× (δ/T !) = δ. (1.65)

Since fw can be chosen to make δ arbitrarily small, (1.65) implies that

fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) can be approximated arbitrarily closely by a polynomial

f
w that is symmetric in (xt, zt) for t = 1, 2. Thus, by the fundamental theorem of

symmetric functions, f
w can be written as a polynomial function of the elementary

symmetric functions of ((x1, z1) , (x2, z2)) . We denote this function by W and obtain that

fA|X1,X2,Z1,Z2 (a|x1, x2, z1, z2) can be approximated arbitrarily closely by fA|W (a|W ). Let

δ → 0 in (1.61). Then, for any t ∈ {1, .., T} and (Xt, Zt, A,W ) on its support we have

fA|Xt,Zt,W (a|xt, zt, w) = fA|W (a|w) . (1.66)

To see why Assumption 1.1 only requires one coordinate of Xt to be strictly monotonic in

Ut, supposeXt = (Kt, Lt)
′
= (gK (Zt, A, Ut) , gL (Zt, A, Ut))

′
and only gK is strictly monotonic
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in Ut. Then, to establish a similar result as (1.56), for (k1, l1, k2, l2, z1, z2, a) on the support

of (K1, L1, K2, L2, Z1, Z2, A) we have

fK1,L1,K2,L2,A|Z1,Z2 (k1, l1, k2, l2, a| z1, z2)

= fU1,L1,U2,L2,A|Z1,Z2

(
g−1
K (k1, z1, a) , l1, g−1

K (k2, z2, a) , l2, a
∣∣∣ z1, z2

) ∣∣∣J̃1

∣∣∣
= fA,U1,U2|Z1,Z2

(
a, g−1

K (k1, z1, a) , g−1
K (k2, z2, a)

∣∣∣ z1, z2
) ∣∣∣J̃1

∣∣∣
= fA,U1,U2|Z1,Z2

(
a, g−1

K (k2, z2, a) , g−1
K (k1, z1, a)

∣∣∣ z2, z1
) ∣∣∣J̃1

∣∣∣
= fU1,L1,U2,L2,A|Z1,Z2

(
g−1
K (k2, z2, a) , l2, g−1

K (k1, z1, a) , l1, a
∣∣∣ z2, z1

) ∣∣∣J̃1

∣∣∣
= fK1,L1,K2,L2,A|Z1,Z2 (k2, l2, k1, l1, a| z2, z1)

∣∣∣J̃2

∣∣∣ ∣∣∣J̃1

∣∣∣
= fK1,L1,K2,L2,A|Z1,Z2 (k2, l2, k1, l1, a| z2, z1) , (1.67)

where the first and second to last equality holds by change of variables, the second and fourth

equality holds because L is a function of (Z,A, U), the third equality holds by (1.53) and

the exogeneity of Z ⊥ (A,U), and the last equality holds by
∣∣∣J̃2

∣∣∣ ∣∣∣J̃1

∣∣∣ = 1 which is derived

similarly to (1.58). The rest of the proof follows similarly as in the scalar X case above.

Proof of Lemma 1.2. Let g−1 (x, z, a) denote the inverse function for g (z, a, u) in its first

argument, which exists by Assumption 1.1. Assume Xit is a scalar for brevity of exposition.

For any (x, z, a, w) in the support of (X,Z,A,W ), we have

FXit|Zit,Wi
(x| z, w)

= FXit|Zit,Ai,Wi
(x| z, a, w)

= P (Xit ≤ x|Zit = z, Ai = a,Wi = w)

= P (g (z, a, Uit) ≤ x|Zit = z, Ai = a,Wi = w)

= P
(
Uit ≤ g−1 (x, z, a)

∣∣∣Ai = a,Wi = w
)

= FUit|Ai,Wi

(
g−1 (x, z, a)

∣∣∣ a, w) , (1.68)
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where the first equality holds by (1.16), the third uses (1.3), the fourth holds by Assumption

1.1 and 1.4, and the last equality holds by definition of the conditional CDF of Uit given

(Ai,Wi).

By (1.3), Uit = g−1 (Xit, Zit, Ai), so that plugging in gives

Vit := FXit|Zit,Wi
(Xit|Zit,Wi) = FUit|Ai,Wi

(Uit|Ai,Wi) . (1.69)

1.B Proofs in Section 1.4

The proof of Lemma 1.3 follows directly from that of Theorem 12 in Imbens and Newey

(2009). Thus, it is omitted for brevity. First, we prove Theorem 1.2. Note that by T,

we obtain the mean squared and uniform convergence results if we can prove it for each

coordinate of β. Therefore, wlog we assume β is a scalar throughout the proof. Then, we

prove Theorem 1.3 and 1.4. The proof of Theorem 1.3 follows from Imbens and Newey

(2002), Andrews (1991), and a Cramér–Wold device. The proof of Theorem 1.4 requires

more efforts. As discussed before, for β one can obtain its normality by choosing the basis

function rM (·) ≡ 1 and applying the results for β (x).

Proof of Theorem 1.2. As discussed before, the convergence rate for β̂ (v, w) is the same as

Ĝ (s) because they share the same series regression coefficients α̂K . Under Assumption 1.7

and 1.8, the convergence rate result on Ĝ (s) applies directly to β̂ (v, w) and the proof is thus

omitted.

We focus on β̂ (x), since the result for β̂ follows by setting rM (·) ≡ 1. Following Newey

(1997), we normalize Erir
′
i = I and have λmin

(
R̂
)
≥ C > 0. By (1.45), we have

∥∥∥R̂1/2
(
η̂M − ηM

)∥∥∥2
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≤
(
B̂ − B̃

)′
rR̂−1r

′ (
B̂ − B̃

)
/n2 +

(
B̃ −B

)′
rR̂−1r

′ (
B̃ −B

)
/n2

+
(
B −BX

)′
rR̂−1r

′ (
B −BX

)
/n2 +

(
BX − rηM

)′
rR̂−1r

′ (
BX − rηM

)
/n2. (1.70)

Following the proof for Theorem 1 of Newey (1997), Lemma A1 and Lemma A3 of Imbens

and Newey (2002), under Assumption 1.7 we have

∥∥∥∥∥n−1∑
i

p̂ip̂
′

i − Epip
′

i

∥∥∥∥∥ = oP (1) and Epip
′

i ≤ CI. (1.71)

Then, we have

(
B̂ − B̃

)′
rR̂−1r

′ (
B̂ − B̃

)
/n2

≤ C
(
B̂ − B̃

)′ (
B̂ − B̃

)
/n

= Cn−1∑
i

(
β̂
(
V̂i,Wi

)
− β

(
V̂i,Wi

))2

= Cn−1∑
i

(
p̂
′

i

(
α̂K − αK

)
+
(
p̂
′

iα
K − β

(
V̂i,Wi

)))2

≤ C
∥∥∥α̂K − αK∥∥∥2

+ sup
s∈S

∥∥∥pK (s)
′
αK − β (v, w)

∥∥∥2
= OP

(
∆2

2n

)
(1.72)

where the first inequality holds because rR̂−1r
′
/n is idempotent, the last inequality holds by

(1.71), and the last equality uses Lemma 1.3.

Next, we have

(
B̃ −B

)′
rR̂−1r

′ (
B̃ −B

)
/n2

≤ Cn−1∑
i

(
β
(
V̂i,Wi

)
− β (Vi,Wi)

)2

≤ Cn−1∑
i

(
V̂i − Vi

)2
= OP

(
∆2

1n

)
, (1.73)

where the last inequality holds by Assumption 1.8(4) and the equality holds by Lemma 1.3.

Finally, for the last two terms in (1.70), we have
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E
[(
B −BX

)′
rR̂−1r

′ (
B −BX

)
/n2

∣∣∣∣X]
= tr

{
E
[
ξ
′
rR̂−1r

′
ξ
∣∣∣X]} /n2

= tr
{
E
[
ξξ
′
∣∣∣X] rR̂−1r

′}
/n2

≤ tr
{
CIrR̂−1r

′}
/n2 = Ctr

{
R̂−1R̂

}
/n = CM/n. (1.74)

and

(
BX −RηM

)′
rR̂−1r

′ (
BX −RηM

)
/n2

≤
(
BX −RηM

)′ (
BX −RηM

)
/n = OP

(
M−2d3

)
. (1.75)

Collecting terms and using λmin
(
R̂
)
≥ C, we have

∥∥∥η̂M − ηM∥∥∥2
= OP

(
∆2

2n +M/n+M−2d3
)

=: OP

(
∆2

3n

)
, (1.76)

which implies

∫ ∥∥∥β̂ (x)− β (x)
∥∥∥2
dF (x)

≤
∫ (

rM (x)
′ (
η̂M − ηM

)
+
(
rM (x)

′
ηM − β (x)

))2
dF (x)

≤ C
∥∥∥η̂M − ηM∥∥∥2

+ sup
x∈X

∣∣∣β (x)− rM (x)
′
ηM
∣∣∣2 = OP

(
∆2

3n

)
, (1.77)

and

sup
x∈X

∥∥∥β̂ (x)− β (x)
∥∥∥ ≤ sup

x∈X

∥∥∥rM (x)
∥∥∥ ∥∥∥η̂M − ηM∥∥∥+ sup

x∈X

∣∣∣β (x)− rM (x)
′
ηM
∣∣∣

= OP (ζ (M) ∆3n) .
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Proof of Theorem 1.3. Recall that the analysis of Imbens and Newey (2002) applies to scalar

functionals ofG (s). By Cramér–Wold device and Imbens and Newey (2002), for any constant

vector c with c′c = 1 we have

c
′√
nΩ−1/2

1

(
β̂ (v, w)− β (v, w)

)
→d N (0, 1) and(

c
′Ω1c

)−1 [
c
′ (Ω̂1 − Ω1

)
c
]

p−→ 0. (1.78)

By (1.78) and Assumption 1.9(6), it is true that

c
′ (
b1nΩ̂1 − b1nΩ1

)
c

p−→ 0, (1.79)

which implies

b1nΩ̂1
p−→ Ω1. (1.80)

Combining (1.78) – (1.80), we have

√
nΩ̂−1/2

1

(
β̂ (v, w)− β (v, w)

)
=
(
b1nΩ̂1

)−1/2
(b1nΩ1)1/2√nΩ−1/2

1

(
β̂ (v, w)− β (v, w)

)
d−→ Ω−1/2

1 Ω1/2
1 N (0, I) = N (0, I) , (1.81)

where the convergence holds by (1.78), (1.80), and Assumption 1.9(6).

Proof of Theorem 1.4. Following the proof of Theorem 1.3, one can extend the results to

vector-valued functionals using Cramér–Wold device and the proofs of Andrews (1991).

Therefore, wlog we assume β (x) is a scalar in this proof. First, we derive the influence

functions that correctly account for the effects from estimating β (x) and prove asymptotic

normality using Lindeberg–Feller CLT. Then, we show consistency for the estimator of the
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variance, which can be used to construct feasible confidence intervals. We write rM (x) as

r (x) and suppress t subscript when there is no confusion.

By Assumption 1.10(1), we normalize Erir
′
i = I and obtain

∥∥∥R̂− I∥∥∥ = oP (1) using

a similar argument as in the proof of Theorem 1 of Newey (1997). Recall that β̂ (x) =

rM (x)
′
R̂−1r

′
B̂/n. Let

â
(
β̂, V̂

)
= rM (x)

′
R̂−1r

′
B̂/n, and a (β, V ) = E [βi|X = x] (1.82)

and define

Ω21 = E
(
A1P

−1piui
) (
A1P

−1piui
)′

Ω22 = E


(
A1P

−1µIi − A2
(
µIIi + ri (β (Vi,Wi)− β (Xi))

))
×
(
A1P

−1µIi − A2
(
µIIi + ri (β (Vi,Wi)− β (Xi))

))′
 . (1.83)

Then, we have Ω2 = Ω21 + Ω22.

Let F = Ω−1/2
2 , which is well-defined because

Ω21 = A1P
−1
(
Epip

′

iu
2
i

)
P−1A

′

1

= A1P
−1
(
Epip

′

iE
(
u2
i

∣∣∣Xi, Vi,Wi

))
P−1A

′

1

≥ CA1P
−1A

′

1 = Cr (x)
′ (
Erip

′

i

) (
Epip

′

i

)−1 (
Epir

′

i

)
r (x) > 0, (1.84)

where the first inequality holds by Assumption 1.9(3) and the last inequality holds by

Assumption 1.10(1).

We expand

√
nF

(
â
(
β̂, V̂

)
− a (β, V )

)
=
√
nF

(
â
(
β̂, V̂

)
− â

(
β, V̂

)
+ â

(
β, V̂

)
− â (β, V ) + â (β, V )− a (β, V )

)
= n−1/2∑

i

(ψ1i + ψ2i + ψ3i) + oP (1) (1.85)
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and show that

ψ1i = H1
(
piui − µIi

)
, ψ2i = H2µ

II
i , and ψ3i = H2riξi. (1.86)

First, for ψ1i we have

√
nF

(
â
(
β̂, V̂

)
− â

(
β, V̂

))
=
√
nFr (x)

′
R̂−1r

′ (
B̂ − B̃

)
/n

=
√
nFr (x)

′
R̂−1r

′ (
p̂P̂−1p̂

′
Y/n− B̃

)
/n

= n−1/2Fr (x)
′
R̂−1r

′ [
n−1p̂P̂−1p̂

′ (
Y −G+G− G̃+ G̃− p̂αK

)
+
(
p̂αK − B̃

)]
= n−1/2∑

i

Ĥ1p̂i [ui − (G (ŝi)−G (si))] + n−1/2Ĥ1p̂
′ (
G̃− p̂αK

)
+ n−1/2Ĥ2r

′ (
p̂αK − B̃

)
=: D11 +D12 +D13. (1.87)

We show D11 = n−1/2∑
i ψ1i + oP (1), D12 = oP (1), and D13 = oP (1).

The proof of

D11 = n−1/2∑
i

ψ1i + oP (1) (1.88)

is analogous to that of Lemma B7 and B8 of Imbens and Newey (2002), except that we need

to establish
∥∥∥Ĥ1 −H1

∥∥∥ = oP (1). To prove this claim, first we have

‖H1‖ = O (1) and ‖H2‖ = O (1) , (1.89)

because ‖H1‖2 ≤ CA1A
′
1/Ω2 ≤ C and ‖H2‖2 = A2A

′
2/Ω2 ≤ CA1A

′
1/Ω2 ≤ C. In addition,

we have
∥∥∥P̂ − P∥∥∥ = oP (1),

∥∥∥R̂− I∥∥∥ = oP (1), and
∥∥∥n−1∑

i ripi − Erip
′
i

∥∥∥ = oP (1) as in the

proof of Theorem 1 of Newey (1997). By Slutsky Theorem,
∥∥∥R̂−1 − I

∥∥∥ = oP (1). Using CS

and Lemma A3 of Imbens and Newey (2002), we have

∥∥∥∥∥n−1∑
i

ri
(
pi − p̂i

)′∥∥∥∥∥
2

≤ n−1∑
i

‖ri‖2 × n−1∑
i

∥∥∥p̂i − pi∥∥∥2
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= OP

(
Mζ1 (K)2 ∆2

n

)
= oP (1) . (1.90)

Therefore, by T we have with probability approaching 1

∥∥∥Ĥ1 −H1

∥∥∥2

=
∥∥∥FÂ1P̂

−1 − FA1P
−1
∥∥∥2

≤ 2
∥∥∥F (Â1 − A1

)
P̂−1

∥∥∥2
+ 2

∥∥∥FA1
(
P̂−1 − P−1

)∥∥∥2

= 2
∥∥∥F (r (x)

′
(I + oP (1))

(
Erip

′

i + oP (1)
)
− r (x)

′
Erip

′

i

)
P̂−1

∥∥∥2

+ 2
∥∥∥FA1P

−1
(
P − P̂

)
P̂−1

∥∥∥2

≤‖H2‖2 oP (1) + ‖H1‖2 oP (1) = oP (1) . (1.91)

and similarly
∥∥∥Ĥ2 −H2

∥∥∥ = oP (1). The result follows as in the proof of Lemma B7 and B8

of Imbens and Newey (2002).

Next, recall that

(
G̃− p̂αK

)′ (
G̃− p̂αK

)
/n = OP

(
K−2d2

)
(1.92)

by Assumption 1.7(4). Therefore,

∣∣∣n−1/2Ĥ1p̂
′ (
G̃− p̂αK

)∣∣∣2 ≤ n
[
Ĥ1P̂ Ĥ

′

1

] [(
G̃− p̂αK

)′ (
G̃− p̂αK

)
/n
]

≤
∥∥∥Ĥ1

∥∥∥2
OP

(
nK−2d2

)
= oP (1) . (1.93)

For D13, similarly to (1.93) we have

∣∣∣n−1/2Ĥ2r
′ (
p̂αK − B̃

)∣∣∣2 ≤ n
[
Ĥ2R̂Ĥ2

] [(
B̃ − p̂αK

)′ (
B̃ − p̂αK

)
/n
]

= OP

(
nK−2d

)
= oP (1) . (1.94)

86



Summarizing (1.88)–(1.94), we obtain

ψ1i = H1
(
piui − µIi

)
. (1.95)

To obtain ψ2i, we have

√
nF

(
â
(
β, V̂

)
− â (β, V )

)
=
√
nFr (x)

′
R̂−1r

′ (
B̃ −B

)
/n

= Ĥ2n
−1/2∑

i

ri
(
β̃i − βi

)
= Ĥ2n

−1/2∑
i

riβv (Vi,Wi)
(
V̂i − Vi

)
+ Ĥ2n

−1/2∑
i

riβvv
(
Ṽi,Wi

) (
V̂i − Vi

)2
/2

=: D21 +D22. (1.96)

We prove D21 = n−1/2∑
iH2µ

II
i + oP (1) and D22 = oP (1). For D21, we have

D21 = Ĥ2n
−1/2∑

i

riβv (Vi,Wi)
(
V̂i − Vi

)
= H2n

−1/2∑
i

riβv (Vi,Wi) ∆I
i +

(
Ĥ2 −H2

)
n−1/2∑

i

riβv (Vi,Wi)
(
V̂i − Vi

)
+H2n

−1/2∑
i

riβv (Vi,Wi)
(
∆II
i + ∆III

i

)
=: D211 +D212 +D213, (1.97)

where

δij = F (Xi|Zj,Wj)− q
′

jγ
L (Xi) , ∆I

i = q
′

iQ̂
−1∑

j

qjvij/n,

∆II
i = q

′

iQ̂
−1∑

j

qjδij/n, and ∆III
i = −δii. (1.98)
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Following the proof of Lemma B7 of Imbens and Newey (2002), we obtain

D211 = n−1/2∑
i

H2µ
II
i + oP (1) . (1.99)

For D212, we have

|D212|2 ≤ Cn
[(
Ĥ2 −H2

)
R̂
(
Ĥ2 −H2

)′] [
n−1∑

i

(
V̂i − Vi

)2
]

= OP

{
n
(
ζ (M)2M/n

)
∆2

1n

}
= oP (1) . (1.100)

For D213, we have

|D213|2 ≤ Cn
[
H2R̂H

′

2

] [∑
i

((
∆II
i

)2
+
(
∆III
i

)2
)
/n

]
= OP

(
nL1−2d1

)
= oP (1) , (1.101)

where the first equality is established in the proof of Theorem 4 of Imbens and Newey (2002).

Next, for D22, we have

|D22| ≤ C
√
n
∥∥∥Ĥ2

∥∥∥ sup
x∈X
‖r (x)‖

∣∣∣∣∣n−1∑
i

(
V̂i − Vi

)2
∣∣∣∣∣

= OP

(√
nζ (M) ∆2

n

)
= oP (1) . (1.102)

Combining the results for D21 and D22, we obtain

√
nF

(
â
(
β, V̂

)
− â (β, V )

)
= n−1/2∑

i

H2µ
II
i + oP (1) . (1.103)

To obtain ψ3i, first we expand

√
nF (â (β, V )− a (β, V ))

= n−1/2∑
i

Ĥ2riβi −
√
nFβ (x)
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= n−1/2∑
i

H2ri (β (Vi,Wi)− β (Xi)) + n−1/2∑
i

(
Ĥ2 −H2

)
ri (β (Vi,Wi)− β (Xi))

+ n−1/2∑
i

Ĥ2ri
(
β (Xi)− r

′

iη
M
)
−
√
nF

(
β (x)− r (x)

′
ηM
)

=: D31 +D32 +D33 +D34. (1.104)

Recall that D31 = n−1/2∑
iH2riξi by definition of ξi. Thus, we show D32, D33, and D34 are

all oP (1).

For D32, we have

E
[
|D32|2

∣∣∣X] =
(
Ĥ2 −H2

)
r
′E
[
ξξ
′
∣∣∣X] r (Ĥ2 −H2

)′
/n

≤ C
(
Ĥ2 −H2

)
R̂
(
Ĥ2 −H2

)′
≤ C

∥∥∥Ĥ2 −H2

∥∥∥2 (
1 +

∥∥∥R̂− I∥∥∥)
= OP

{∥∥∥Ĥ2 −H2

∥∥∥2
}

= OP

(
ζ (M)2M/n

)
= oP (1) , (1.105)

where the first inequality holds by Assumption 1.8(3) and the fact that Ĥ2 and r are functions

of Xi only, the second equality holds by
∥∥∥R̂− I∥∥∥ = oP (1), and the third equality follows

similarly as in equation (A.1) and (A.6) of Newey (1997). Therefore, D32 = oP (1) by CM.

For D33, by CS we have

|D33|2 ≤ n
(
Ĥ2R̂Ĥ

′

2

)∑
i

(
β (Xi)− r

′

iη
M
)2
/n

= OP

(
nM−2d3

)
= oP (1) , (1.106)

where the first equality holds by Assumption 1.8(1).

For D34, we have

|D34|2 = nF 2
(
β (x)− r (x)

′
ηM
)2

= OP

(
nM−2d3

)
= oP (1) . (1.107)

89



Summarizing (1.104)–(1.107), we obtain

√
nF (â (β, V )− a (β, V )) = n−1/2∑

i

H2riξi + oP (1) . (1.108)

In sum, we have shown

√
nF

(
â
(
β̂, V̂

)
− a (β, V )

)
= n−1/2∑

i

(ψ1i + ψ2i + ψ3i) + oP (1) , (1.109)

where

ψ1i = H1
(
piui − µIi

)
, ψ2i = H2µ

II
i , and ψ3i = H2riξi (1.110)

and

H1piui ⊥
(
H1µ

I
i , H2µ

II
i , H2riξi

)
(1.111)

because E (ui|Xi, Vi,Wi) = 0 by construction.

Let Ψin = n−1/2 (ψ1i + ψ2i + ψ3i). We have EΨin = 0 and V ar (Ψin) = 1/n. For any

ε > 0, under Assumption 1.9 and 1.10, we have

nE
[
1 {|Ψin| > ε}Ψ2

in

]
≤ nε2E

[
1 {|Ψin| > ε} (Ψin/ε)4

]
≤ nε−2EΨ4

in

≤ CE
[
(H1piui)4 +

(
H1µ

I
i

)4
+
(
H2µ

II
i

)4
+ (H2riξi)4

]
/n

≤ C
(
ζ (K)2K + ζ (K)4 ζ (L)4 L+ ζ (M)4 ζ (L)4 L+ ζ (M)2M

)
/n→ 0, (1.112)

where the last inequality follows a similar argument as in the proof of Lemma B5 of Imbens

and Newey (2002). Then, by Lindeberg–Feller CLT we obtain

√
nΩ−1/2

2

(
â
(
β̂, V̂

)
− a (β, V )

)
d−→ N (0, 1) . (1.113)
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To construct a feasible confidence interval, one needs a consistent estimator of the

covariance matrix. Thus, we show Ω̂2/Ω2 − 1 p−→ 0. Recall that

Ω2 = E
(
A1P

−1piui
)2

+ E
(
A1P

−1µIi − A2
(
µIIi + riξi

))2
= Ω21 + Ω22 (1.114)

and

Ω̂2 = n−1∑
i

(
Â1P̂

−1p̂iûi
)2

+n−1∑
i

(
Â1P̂

−1µ̂Ii − Â2R̂
−1
(
µ̂IIi + riξ̂i

))2
=: Ω̂21+Ω̂22. (1.115)

The proof of Ω̂21/Ω2 − Ω21/Ω2
p−→ 0 follows the proof of Lemma B10 of Imbens and

Newey (2009), with the Â1 instead of A1 appearing in the definition of Ĥ1. Nonetheless,

we have shown that
∥∥∥Ĥ1 −H1

∥∥∥ = oP (1). Thus, the proof for Ω̂21 follows similarly and is

omitted for brevity.

For Ω̂22, we first show

n−1∑
i

(
Ĥ1µ̂

I
i −H1µ

I
i

)2
= oP (1)

n−1∑
i

(
Ĥ2µ̂

II
i −H2µ

II
i

)2
= oP (1)

n−1∑
i

(
Ĥ2riξ̂i −H2riξi

)2
= oP (1) . (1.116)

The first two convergence results hold by following the argument of the proof of Lemma B9

in Imbens and Newey (2002). For the last one, we have

Ĥ2riξ̂i −H2riξi

= Ĥ2ri
(
ξ̂i − ξi

)
+
(
Ĥ2 −H2

)
riξi

= Ĥ2ri
(
β̂
(
V̂i,Wi

)
− β̂ (Xi)− β (Vi,Wi) + β (Xi)

)
+
(
Ĥ2 −H2

)
riξi

= Ĥ2ri
(
β̂
(
V̂i,Wi

)
− β

(
V̂i,Wi

))
+ Ĥ2ri

(
β
(
V̂i,Wi

)
− β (Vi,Wi)

)
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+ Ĥ2ri
(
β (Xi)− β̂ (Xi)

)
+
(
Ĥ2 −H2

)
riξi

=: D41i +D42i +D43i +D44i. (1.117)

For D41, we have

n−1∑
i

D2
41i ≤

∥∥∥Ĥ2

∥∥∥2
sup
x∈X
‖r (x)‖2 n−1∑

i

(
β̂
(
V̂i,Wi

)
− β

(
V̂i,Wi

))2

≤ Cζ (M)2 n−1∑
i

[(
p̂
′

i

(
α̂K − αK

))2
+
(
p̂
′

iα
K − β (v̂i, wi)

)2
]

= OP

(
ζ (M)2 ∆2

2n

)
= oP (1) , (1.118)

where the second inequality holds by
∥∥∥Ĥ2

∥∥∥ = OP (1) and Assumption 1.10(1) and the first

equality holds by (1.72).

For D42, we have

n−1∑
i

D2
42i ≤

∥∥∥Ĥ2

∥∥∥2
sup
x∈X
‖r (x)‖2 n−1∑

i

(
β
(
V̂i,Wi

)
− β (Vi,Wi)

)2

≤ Cζ (M)2 n−1∑
i

(
V̂i − Vi

)2
= OP

(
ζ (M)2 ∆2

1n

)
= oP (1) , (1.119)

where the first equality holds by Lemma 1.3.

The proof of n−1∑
iD

2
43i = oP (1) is completely analogous to (1.118) and is thus omitted.

For D44, we have

E
[
n−1∑

i

D2
44i

∣∣∣∣∣X
]

=
(
Ĥ2 −H2

)
n−1∑

i

rir
′

iE
(
ξ2
i

∣∣∣Xi

) (
Ĥ2 −H2

)′
≤ C

(
Ĥ2 −H2

)
R̂
(
Ĥ2 −H2

)′
≤ C

∥∥∥Ĥ2 −H2

∥∥∥2
= oP (1) , (1.120)
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where the first equality holds by Ĥ2 and ri are both functions of X, the first inequality holds

by Assumption 1.8(3), and the last inequality uses
∥∥∥R̂− I∥∥∥ = oP (1). Then, by CM, we have

n−1∑
i

D2
44i = oP (1) . (1.121)

Combining results for D41–D44, we have

n−1∑
i

(
Ĥ2riξ̂i −H2riξi

)2
= oP (1) . (1.122)

Therefore, we have proven (1.116), which implies

n−1∑
i

((
Ĥ1µ̂

I
i − Ĥ2µ̂

II
i − Ĥ2riξ̂i

)
−
(
H1µ

I
i −H2µ

II
i −H2riξi

))2

≤ Cn−1∑
i

(
Ĥ1µ̂

I
i −H1µ

I
i

)2
+ Cn−1∑

i

(
Ĥ2µ̂

II
i −H2µ

II
i

)2

+ Cn−1∑
i

(
Ĥ2riξ̂i −H2riξi

)2
= oP (1) . (1.123)

Since E
(
H1µ

I
i −H2µ

II
i −H2riξi

)2
= Ω22/Ω2 ≤ 1, by M and Lemma B6 of Imbens and

Newey (2002), we have

∣∣∣∣∣Ω̂22/Ω2 − n−1∑
i

(
H1µ

I
i −H2µ

II
i −H2riξi

)2
∣∣∣∣∣ = oP (1) . (1.124)

By LLN, we have

∣∣∣∣∣n−1∑
i

(
H1µ

I
i −H2µ

II
i −H2riξi

)2
− Ω22/Ω2

∣∣∣∣∣ = oP (1) . (1.125)

Therefore, by T, we obtain

Ω̂22/Ω2 − Ω22/Ω2 = oP (1) . (1.126)
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Combining results for Ω̂21 and Ω̂22, we have

Ω̂2/Ω2 − 1 p−→ 0. (1.127)

1.C Notation

Ai : individual fixed effect

A1, Â1, A2 : A1 = rM (x)
′
Erip

′

i, Â1 = rM (x)
′
R̂−1

(
n−1∑

i

rip̂
′

i

)
, A2 = rM (x)

B, B̃, B̂, BX : (β1, ..., βn)
′
,
(
β̃1, ..., β̃n

)′
,
(
β̂1, ..., β̂n

)′
, (β (X1) , ..., β (Xn))

′

dX : dimension of Xit

d1 : series approx rate for V (x, z, w)

d2 : series approx rate for G (s)

d3 : series approx rate for β (x)

F : Ω−1/2
2

G (S) , Ĝ (S) : E [Y |X, V,W ] , pK (S)
′
α̂K

H1, Ĥ1, H2, Ĥ2 : H1 = FA1P
−1, Ĥ1 = FÂ1P̂

−1, H2 = FA2, Ĥ2 = FA2R̂
−1

K : degree of basis functions pK (·) used to estimate G

K1 : degree of pK1 (·) , a component of pK (·) and pK (·)

L : degree of basis functions q (·) used to estimate V

M : degree of basis functions r (·) used to estimate β (x)

pK (s) : x⊗ pK1 (v, w) for s = (x, v, w) , a DK1 × 1 vector

pK (s) : ID ⊗ pK1 (v, w) , a DK1 ×D matrix
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pK1 (v, w) : component basis function of (v, w)

qi, pi, p̂i, pi, p̂i, ri : qL (Xi, Zi,Wi) , pK (si) , pK (ŝi) , pK (si) , pK (ŝi) , rM (Xi)

p, p, p̂, p̂ : (p1, ..., pn)
′
, (p1, ..., pn)

′
, (p̂1, ..., p̂n)

′
,
(
p̂1, ..., p̂n

)′
q, r : (q1, ..., qn)

′
, (r1, ..., rn)

′

P, P̃ , P̂ : Epip
′

i, n
−1∑ pip

′

i, n
−1∑ p̂ip̂

′

i

Q, Q̂ : Eqiq
′

i, n
−1∑ qiq

′

i

R, R̂ : Erir
′

i, n
−1∑ rir

′

i

s, S : (x, v, w) , (X, V,W )

U : random shock per period

V : FX|Z,W control function for U

W : sufficient statistic for A

X : regressors for Y, e.g. labor, capital

Yit, y : outcome variable e.g. value-added output, y = (Y1, ..., Yn)
′

Z : instruments for X, e.g. interest rate

X ,Z,W ,V ,S : the support of X,Z,W, V, S

s, x, z, w : realization of random variables

Xit, Zit : random vectors

Xi,Zi : random matrix (Xi1, ..., XiT )
′
, (Zi1, ..., ZiT )

′

αK , α̂K : series approx coefficient for G (s) , P̂−1p̂
′
y/n

βit : random coefficients

β : Eβit

β (x) : E [βit|Xit = x]

β (v, w) : E [βit|Vit = v,Wi = w]

βv (v, w) : ∂β (v, w) /∂v
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βi, β̃i, β̂i : β (Vi,Wi) , β
(
V̂i,Wi

)
, β̂
(
V̂i,Wi

)
δ0t : E [dt (U2,it)]

γL (·) : series approx coefficient for V (x, z, w)

ηM : series approx coefficient for β (x)

λ : eigenvalue of a matrix

psd, pd : positive semi-definite, positive definite

µIi , µ
II
i : E

[
Gv (Sj) τ

′ (Vj) pjq
′

jqivji
∣∣∣ Ii] ,E [βv (Vj,Wj) rjq

′

jqivji
∣∣∣ Ii]

Ω1 : pK (s)
′
P−1 (Σ + Σ1)P−1pK (s)

Σ,Σ1 : Epip
′

iu
2
i , EµIiµI

′

i

ui, ûi : Yi −G (Si) , Yi − Ĝ
(
Ŝi
)

vji : 1 {xi ≤ xj} − F (xj| zi, wi)

Ω̂1 : pK (s)
′
P̂−1

(
Σ̂ + Σ̂1

)
P̂−1pK (s)

Σ̂, Σ̂1 : n−1∑
i

p̂ip̂
′

iû
2
i , n

−1∑
i

µ̂Ii µ̂
I′

i

µ̂
I
i , µ̂

II
i : n−1∑

j

Ĝv

(
Ŝj
)
p̂jq

′

jQ̂
−qiv̂ji, n

−1∑
j

β̂v
(
Ŝj
)
rjq

′

jQ̂
−qiv̂ji

v̂ji : 1 {xi ≤ xj} − F̂ (xj| zi, wi) .

Ω21 : E
(
A1P

−1piui
) (
A1P

−1piui
)′

Ω22 : E
[(
A1P

−1µIi − A2
(
µIIi + riξi

)) (
A1P

−1µIi − A2
(
µIIi + riξi

))′]
ξi, ξ̂i : β (Vi,Wi)− β (Xi) , β̂

(
V̂i,Wi

)
− β̂ (Xi)

Ω2 : Ω21 + Ω22

Ω̂21 : Â1P̂
−1
(
n−1∑

i

p̂ip̂
′

iû
2
i

)
P̂−1Â

′

1

Ω̂22 : n−1∑
i

(
Â1P̂

−1µ̂
I
i − Â2

(
µ̂
II
i + riξ̂i

)) (
Â1P̂

−1µ̂
I
i − Â2

(
µ̂
II
i + riξ̂i

))′

In the proofs :
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CM : Conditional Markov Inequality

CS : Cauchy–Schwarz Inequality

LLN : Law of Large Numbers

M : Markov Inequality

T : Triangle Inequality
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Chapter 2

Robust Semiparametric Estimation in

Panel Multinomial Choice Models1

2.1 Introduction

The prevalence of heterogeneity and its importance in economic research are now well

recognized. As pointed out by Heckman (2001), one of the most important discoveries

in microeconometrics is the pervasiveness of diversity in economic behavior, which in turn

has profound theoretical and practical implications. Browning and Carro (2007) survey

the treatment of heterogeneity in applied microeconometrics, and find that “there is usually

much more heterogeneity than researchers allow for”, arguing that it is important yet difficult

to accommodate heterogeneity in satisfactory ways. Moreover, the increasing availability of

vast digital databases in this so-called “Big Data Era” brings about new challenges as well

as opportunities for the treatment and understanding of heterogeneity (Fan, Han, and Liu,

2014).

More concretely, in analyzing consumer choices, a topic of wide theoretical and practical

interest in microeconometrics, there might be rich forms of unobserved heterogeneity in
1Joint with Wayne Gao.
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consumer and product characteristics that influence choice behavior in significant yet

complex ways. For example, it has long been recognized that brand loyalty is an important

factor in determining choices of consumer products (Howard and Sheth, 1969), and research

by Reichheld and Schefter (2000) along with their colleagues from Bain & Company, a leading

management consulting firm, finds that brand loyalty is becoming even more important for

online businesses. However, in modeling of consumer behavior it is very difficult (Luarn and

Lin, 2003) to incorporate brand loyalty, a potentially complicated object that is clearly

heterogeneous, hard to measure, and often unobserved in data. Besides brand loyalty,

there may also be other forms of unobserved heterogeneity, such as subtle flavors and

packaging designs, that may influence our choices of consumer products in everyday life. It is

neither theoretically nor empirically clear whether all such complicated forms of unobserved

heterogeneity can be fully captured by scalar-valued fixed effects in fully additive models, as

often found in the literature.

Given these motivations, this paper proposes a simple and robust method for semi-

parametric identification and estimation in a panel multinomial choice model, where we

allow for infinite-dimensional (functional) fixed effects that enter into consumer utilities

in an additively nonseparable and thus fully flexible way, incorporating rich forms of

unobserved heterogeneity. Our identification strategy exploits multivariate monotonicity in

its contrapositive form, which provides powerful leverage for converting observable events into

identifying restrictions under lack of additive separability. We provide consistent estimators

based on our identification strategy, together with a computational algorithm implemented

in a spherical-coordinate reparameterization that brings about a combination of topological,

geometric and arithmetic advantages. A simulation study and an empirical illustration using

the Nielsen data on popcorn sales are conducted to analyze the finite-sample performance of

our estimation method and demonstrate the adequacy of our computational procedure for

practical implementation.
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We consider the following panel multinomial choice model in a short-panel setting:

yijt = 1

{
u
(
X
′

ijtβ0, Aij, εijt
)
≥ max

k∈{1,...,J}
u
(
X
′

iktβ0, Aik, εikt
)}

where agent i’s utility from a candidate product j at time t, represented by

u
(
X
′
ijtβ0, Aij, εijt

)
, is taken to be a function of three components. The first is a linear index

X
′
ijtβ0 of observable characteristics Xijt, which contains a finite-dimensional parameter of

interest β0 we will identify and estimate. The second term Aij is an infinite-dimensional

fixed effect matrix that can be heterogeneous across each agent-product combination. The

last term εijt is an idiosyncratic time-varying error term of arbitrary dimensions. The

three components are then aggregated by an unknown utility function u in an additively

nonseparable way, with the only restriction being that each agent’s utility u
(
X
′
ijtβ0, Aij, εijt

)
is increasing in its first argument, i.e., the linear index of observable characteristics X ′ijtβ0.

Each agent then chooses a certain product in a given time period, represented by yijt = 1, if

and only if this product gives him the highest utility among all available products.

The infinite-dimensionality of the terms u, Aij and εij and the additive nonseparability

in their interactions jointly produce rich forms of unobserved heterogeneity. Across each

agent-product combination ij, we are effectively allowing for flexible variations in agent

utilities as functions of the index X
′
ijtβ0, which serve as nonparametric proxies for the

effects of complicated unobserved factors that influence choice behavior, including brand

loyalty, subtle flavors and packaging designs as discussed earlier. Moreover, unrestricted

heterogeneity in the distribution of the error term εijt is accommodated, allowing for in

particular heteroskedasticity in agent random utilities .

The generality of our setup encompasses many semiparametric (or parametric) panel

multinomial choice models with scalar-valued fixed effects, scalar-valued error terms and

various degrees of additive separability in the previous literature, including the following
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standard formulation:

yijt = 1

{
X
′

ijtβ0 + Aij + εijt ≥ max
k∈{1,...,J}

(
X
′

iktβ0 + Aik + εikt
)}

.

Relatively speaking, in this paper we are able to accommodate the infinite dimensionality

of unobserved heterogeneity and the lack of additive separability in agent utility functions,

under a standard time homogeneity assumption on the idiosyncratic error term that is widely

adopted in the related literature.

Our key identification strategy exploits the standard notion of multivariate monotonicity

in its contrapositive form. The idea is very simple and intuitive, and can be loosely described

as the following: whenever we observe a strict increase in the choice probabilities of a specific

product from one period to another, by logical contraposition it cannot be possible that this

product becomes worse while all other products become better over the two periods. More

formally, we show that a certain configuration of conditional choice probabilities satisfies

the standard notion of weak multivariate monotonicity in all product indexes, which is

naturally induced by the multinomial nature of our model and the monotonicity of each

agent’s utility function in each product’s index. Then, we construct a collection of observable

inequalities on conditional choice probabilities based on intertemporal comparison and cross-

sectional aggregation, which preserves weak monotonicity in the index structure. Finally, we

simply take a logical contraposition of the inequality on conditional choice probabilities, and

obtain an identifying restriction on the index values free of all infinite-dimensional nuisance

parameters, with which we construct a population criterion function that is guaranteed to be

minimized at the true parameter value. The validity of this idea relies only on monotonicity

in an index structure, and therefore it may have wider applicability beyond multinomial

choice models.

Based on our identification result, we provide consistent set (or point) estimators,

together with a computational algorithm adapted to the technical niceties and challenges
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of our framework. Specifically, our estimator can be computed through a two-stage

procedure. The first stage takes the form of a standard nonparametric regression, where

we nonparametrically estimate a collection of intertemporal differences in conditional choice

probabilities, using a machine learning algorithm based on artificial neural networks. In

the second stage, we numerically minimize our sample criterion function, constructed as

the sample analog of our population criterion function with the first-stage nonparametric

estimates plugged in. A highlight of our estimation and computation procedure is the

adoption of a spherical-coordinate reparameterization of our criterion functions in terms of

angles, which enables us to exploit a combination of topological, geometric and computational

advantages.

A simulation study is conducted to analyze the finite-sample performance of our method

and the adequacy of our computational procedure for practical implementation. We

investigate the performances of the first-stage and the final estimators under different

model configurations, and show how the results vary with the sizes and dimensions of

data. We also compare the performances of our estimator under set identification and point

identification, and demonstrate the informativeness of our set estimator under the lack of

point identification.

An empirical illustration of our procedure is also provided, where we use the Nielsen data
2 on popcorn sales in the United States to explore the effects of marketing promotion effects.

The results show that our procedure produces estimates that conform well with economic

intuition. For example, we find that special in-store displays boost sales not only through

a direct promotion effect but also through the attenuation of consumer price sensitivity, a

result that cannot be produced by other methods based on additive separability. Intuitively,

marketing managers are more likely to promote products that they know consumers are more
2Researchers own analyses calculated (or derived) based in part on data from The Nielsen Company (US),

LLC and marketing databases provided through the Nielsen Datasets at the Kilts Center for Marketing Data
Center at The University of Chicago Booth School of Business. The conclusions drawn from the Nielsen
data are those of the researchers and do not reflect the views of Nielsen. Nielsen is not responsible for, had
no role in, and was not involved in analyzing and preparing the results reported herein.
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price and promotion sensitive to. Hence, the average effective price sensitivity of promoted

products tend to be larger than those not promoted due to the selection effect. Given the

nonadditive nature of such selection effects, estimators based on additive separability will be

biased. In contrast, our method is robust to such confounding effects, thus producing more

economically sensible estimates.

As a further generalization, we discuss the wider applicability of our identification

strategy beyond panel multinomial choice models, using an umbrella framework called

monotone multi-index models. This framework captures the key ingredients of a large

class of models, such as sample selection models and network formation models. In

particular, we provide a specific illustration of a dyadic network formation model under

the setting of nontransferable utility, which naturally induces lack of additive separability

in a micro-founded manner. The applicability of our current method, though with some

nontrivial adaptions to the additional complications in network settings, is investigated in a

companion paper by Gao, Li, and Xu (2020).

This paper builds upon and contributes to a large literature in econometrics on semiparamet-

ric (and parametric) discrete choice models, dating back to McFadden (1974a) and Manski

(1975), and more specifically a recent branch of research that focuses on panel multinomial

choice models.

Our work is most closely related to the work by Pakes and Porter (2016), who also exploit

weak monotonicity and time homogeneity. Our current paper adopts a similar approach that

heavily exploits monotonicity, but does not restrict the effect of unobserved heterogeneity as

a scalar index that is additively separable from the scalar index of observable characteristics.

Hence, it is no longer feasible in our model to directly calculate the differences between the

indexes of observable characteristics as in Pakes and Porter (2016).

Another related paper is Shi, Shum, and Song (2018), who propose a novel approach

that exploits cyclical monotonicity of vector-valued functions in a fully additive panel
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multinomial choice model, where scalar-valued fixed effects are differenced out through

“cyclical summation”. Khan, Ouyang, and Tamer (2019) consider a similar additive

multinomial choice model, but utilize the subsample of observations with time-invariant

covariates along all products but one so as to leverage monotonicity in a single linear index

for the construction of a rank-based estimator a la Manski (1987). Relatedly, the earlier work

by Honoré and Kyriazidou (2000) also exploits monotonicity in a single index when certain

covariates across two periods are equal in a dynamic panel setting. Another recent paper

by Chernozhukov, Fernández-Val, and Newey (2019) studies a nonseparable multinomial

choice model with bounded derivatives, and demonstrates semiparametric identification in a

specialized panel setting with an additive effect under an “on-the-diagonal” restriction (i.e.,

when covariates at two different time periods coincide). Our method is significantly different

from and thus complementary to those proposed in these afore-cited papers.

At a more general level, our work can be related to and compared to semiparametric

methods of identification and estimation in monotone single-index models. A related class

of estimators that leverage univariate monotonicity, known as maximum score or rank-order

estimators, date back to a series of important contributions by Manski (1975, 1985, 1987),

and are further investigated in Han (1987), Horowitz (1992), Abrevaya (2000), Honoré and

Lewbel (2002) and Fox (2007). Despite the similarity in the reliance on monotonicity, the

multinomial or multi-index nature of our current model induces a key difference from the

single-index setting, leading to a significantly different method of estimation relative to

rank-order estimators.

Finally, our model and method are complementary to another class of models that fall into

the framework of invertible multi-index models. The celebrated paper by Berry, Levinsohn,

and Pakes (1995) first utilizes the invertibility of the market share function to obtain a vector

of unknown indexes, which is investigated more generally by Berry, Gandhi, and Haile (2013)

and Berry and Haile (2014). Outside the context of demand estimation, a recent paper by

Ahn, Ichimura, Powell, and Ruud (2018) provides a high-level treatment of multi-index
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models based on invertibility. In comparison, our paper does not involve invertibility, but

relies on monotonicity.

The rest of this paper is organized as follows. Section 2.2 introduces our main model

specifications and assumptions. Section 2.3 presents our key identification strategy. In

Section 2.4 we provide consistent estimators along with a computational procedure to

implement it. Section 2.5 and Section 3.5 contain a simulation study and an empirical

illustration with the Nielsen data. Section 2.7 discusses the generalization of our method to

monotone multi-index models, and finally we conclude with Section 2.8.

2.2 Panel Multinomial Choice Model

2.2.1 Model Setup

In this section we present a semiparametric panel multinomial choice model featured by

infinite-dimensional unobserved heterogeneity and flexible forms of nonseparability, which we

will use as the main model to illustrate our identification and estimation method. See Section

2.7 for a more general discussion about the wide applicability of our proposed methods.

Specifically, we consider the following discrete choice model, which states that agent i

chooses product j at time t if and only if i prefers product j to all other alternatives at time

t:

yijt = 1

{
u
(
X
′

ijtβ0, Aij, εijt
)
≥ max

k∈{0,1,...,J}
u
(
X
′

iktβ0, Aik, εikt
)}

(2.1)

where:

• i ∈ {1, ...N} denotes N decision makers, or simply agents.

• j ∈ {0, 1..., J} denotes J + 1 choice alternatives, with J products indexed by 1, ..., J

and an outside option denoted by 0.
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• t ∈ {1, ..., T} denotes T ≥ 2 different time periods.

• Xijt is RD-valued vector of observable characteristics specific to each agent-product-

time tuple ijt. This could include, for example, buyer characteristics such as income

level, product characteristics such as price and promotion status, as well as interaction

and higher-order terms of those characteristics.

• yijt is an observable binary variable, with yijt = 1 indicating that buyer i chooses

products j at time t and yijt = 0 indicating otherwise.

• β0 ∈ RD is a finite-dimensional unknown parameter of interest. We will repeatedly

refer to the term δijt := X
′
ijtβ0 as the (ijt-specific) index throughout this paper, which

is intended to capture how the observable characteristics Xijt influence agent i’s choice

of j at t, ceteris paribus. Further discussion on the index is offered later.

• Aij represents an ij-specific time-invariant unobserved heterogeneity term of arbitrary

dimensions, which we will refer to as the (ij-specific) fixed effect.

• εijt is an ijt-specific unobserved error term of arbitrary dimensions, which captures

time-idiosyncratic utility shocks to product j for agent i at time t.

• u is an unknown function, interpreted as a utility function that aggregates the

parametric index X
′
ijtβ0, the fixed effect Aij and the error term εijt into a scalar

representing agent i’s utility from choosing product j at time t.

We now provide some further clarifications and explanations for model (2.1).

We begin with a brief comparison that highlights the differences between our current

model (2.1) to other models studied in several closely related papers on panel multinomial

choice models. Notice first that model (2.1) includes as a special case the standard panel

multinomial choice model under full additivity and scalar-valued unobserved heterogeneity:

yijt = 1

{
X
′

ijtβ0 + Aij + εijt ≥ max
k∈{1,...,J}

X
′

iktβ0 + Aik + εikt

}
. (2.2)
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Such models have been studied in recent work by Khan, Ouyang, and Tamer (2019) and Shi,

Shum, and Song (2018) with different methods of identification and estimation. In another

recent paper by Pakes and Porter (2016), they investigate a generalized version of (2.2) in

the following form:

yijt = 1

{
gj (Xijt, β0) + fj (Aij, εijt) ≥ max

k∈{1,...,J}
gk (Xikt, β0) + fk (Aik, εikt)

}
, (2.3)

where the function gj produces a potentially nonlinear parametric index and fj aggregates

fixed effects and idiosyncratic errors into a scalar value in a nonseparable way, while

additive separability between the observable covariate index gj (Xijt, β0) and the unobserved

heterogeneity index fj (Aij, εijt) is still maintained. Moreover, although the dimensions of

(Aij, εijt) are not restricted in Pakes and Porter (2016), their overall effect is taken to be

represented by a scalar value, fj (Aij, εijt). We reiterate that our model (2.1) not only

incorporates infinite-dimensionality in unobserved heterogeneity as captured by Aij and εijt,

but also allows such heterogeneity to enter into agent utility functions in a fully nonseparable

way.

The combination of infinite dimensionality and nonseparability jointly produces rich

forms of heterogeneity in agent utility functions. Particularly, nonseparability translates

into unrestricted flexibility regarding the ways in which the nonparametric fixed effect

Aij may enter into the utility function u
(
X
′
ijtβ0, Aij, εijt

)
. In fact, we could equivalently

suppress the notation Aij and instead write the utility function u to be ij-specific,3 i.e.,

uij
(
X
′
ijtβ0, εijt

)
≡ u

(
X
′
ijtβ0, Aij, εijt

)
. Written in this form, our formulation allows for

flexible time-invariant heterogeneity in how the index X
′
ijtβ0 affects agent i’s utility from

product j. In other words, given a fixed value of the index δ, the utility uij
(
δ, εijt

)
can

vary across each agent-product pair in totally unrestricted ways. Such heterogeneity can
3This reformulation, however, will introduce randomness to the utility function uij when we consider

the sampling process and assume cross-sectional random sampling later. Hence, to fully separate random
elements from nonrandom ones, and to explicitly emphasize the dependence on Aij , we will retain the
notations of model (2.1) unless explicitly stated otherwise.
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be induced by a plethora of complicated factors, such as subtle flavors, styles of design and

social perceptions, the effects of which may be highly subjective on an individual basis. Some

people may have a strong preference for Coca Cola over Pepsi or vice versa, while there might

not exist any objective measure of flavor to assess, or even to describe, the subtle differences

between the two popular soft drinks. Car shoppers may have heterogeneous tastes over

engineering and design features in terms of safety, reliability, comfort, sportiness or luxury,

while leading car manufacturers are often famous for their unique blends of features along

these various dimensions, therefore appealing to different groups of customers to different

extents. Beyond these examples, our formulation nests in itself arbitrary dimensions of

agent-product specific heterogeneity that are time invariant.

It should be pointed out in particular that the fixed effect Aij effectively incorporates

unobserved variations in the distributions of error terms εijt. For example, if we assume that

εijt is real-valued and follows a time-invariant distribution with a cumulative distribution

function (CDF) Fij, then the whole function Fij can be readily incorporated as part of the

fixed effect Aij, which may lie in a vector of infinite-dimensional functions. The CDF Fij

absorbs a form of heteroskedasticity specific to each agent-product pair, and our method

will be robust against such forms of heterogeneity in error distributions without the need to

explicitly specify Fij.

On a technical note, we now briefly discuss how the potential concern of tie-breaking

can be handled in our framework. In cases where ties occur with nonzero probabilities, one

popular approach in the literature is to incorporate a random tie-breaking process, modeled

as a (potentially unknown) selection probability distribution among ties. The conceptual

idea underlying this approach is to recognize the incompleteness of the model with respect

to the determination of choice behaviors, and use an ad hoc selection probability to capture

the effects of all unmodeled randomness. When we move from the scalar additive model

(2.2) to model (2.1), rich forms of unmodeled randomness under (2.2) are automatically

absorbed into the infinite-dimensional error term εijt, which nests in itself all possible latent
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variables that affect utilities in some appropriate yet unspecified ways.4 As a result, the

assumption that ties occur with zero probabilities is effectively a much weaker restriction

under our current model (2.1) than under model (2.2).

The flexibility induced by nonseparability and infinite-dimensionality comes with the

consequent analytical challenges to handle them. Various traditional techniques in the style

of differencing based on additivity no longer work in our current model. For example, the

recent method based on cyclical monotonicity proposed by Shi, Shum, and Song (2018)

requires additivity to sum along a cycle of comparisons and cancel out the scalar-valued

fixed effects via this summation, which becomes infeasible under nonseparability in our

model (2.1). To confront the challenges induced by such nonseparability, we instead exploit

a standard shape restriction, or more specifically, monotonicity, which captures a general

commonality shared by many additive models but on its own does not involve additivity at

all.

2.2.2 Key Assumptions

We now continue with a list of key assumptions required for our subsequent analysis, and

discuss these assumptions in relation to model (2.1). To economize on notation, we will from

now on frequently refer to the collection of variables concatenated along product and time

dimensions: Xit := (Xijt)Jj=1, Xi = (Xit)Tt=1, Ai := (Aij)Jj=1, εit = (εijt)Jj=1 and εi = (εit)Tt=1.

The first assumption below imposes a monotonicity restriction on the utility function.

Assumption 2.1 (Monotonicity in the Index). u (δijt, Aij, εijt) is weakly increasing in

the index δijt, for every realization of (Aij, εijt).
4It should be pointed out that the standard ad hoc approach, using selection probabilities among ties,

and our current approach, where latent variables are explicitly modeled by the infinite-dimensional error εijt,
are two distinct approaches, neither of which includes the other as a special case. The key distinction comes
from the lexicographic nature of the selection-probability approach, which cannot be fully represented by
utility functions. It might be debatable whether the lexicographic structure is more conceptually justifiable
or practically relevant, but we refrain from further discussion on this topic, as it is tangential to the main
focus of this paper.
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It should first be clarified that the substantive part of Assumption 2.1 is the restriction

of monotonicity in the index, while increasingness is without loss of generality given that

the index δijt = X
′
ijtβ0 contains an unknown parameter with unrestricted signs. Moreover,

the monotonicity restriction is imposed on the index δijt, but not directly on any specific

observable characteristics in Xijt: quadratic or higher-order polynomial terms as well as

other nonlinear or non-monotone functions of observable characteristics may be included in

Xijt whenever appropriate.

Assumption 2.1 not only serves as a key restriction that will be heavily leveraged upon

by our subsequent identification and estimation method, but may also be regarded as an

integral part of our semiparametric model: monotonicity endows the index δijt with an

interpretation as an objective summary statistic for the direct effect of observable covariates

on agent utilities. In other words, δijt may be considered as a quality measure of the match

between agent i and product j based on their observable characteristics at time t, inducing

a consequent interpretation of the parameter β0 as representing how a certain change in a

linear combination of observable characteristics may increase utilities for all agents from a

certain product j, ceteris paribus.

Given the parametric index structure δijt = X
′
ijtβ0, monotonicity itself seems a rather

weak assumption widely satisfied in a large class of models. In many additive models where

a parametric index in the style of X ′ijtβ0 is added to other components of the model,

Assumption 2.1 could be trivially satisfied by construction, such as the standard panel

multinomial choice model (2.2). In Section 2.7, we provide more examples of parametric

and semiparametric models featured by monotonicity in an index structure beyond the

multinomial choice setting.

Assumption 2.2 (Cross-Sectional Random Sampling). (Yi,Xi,Ai, εi) is i.i.d. across

i ∈ {1, ..., N} with N →∞.

110



Assumption 2.2 is a standard assumption on random sampling.5 In particular, we only

require a short panel, where we focus on cross-sectional asymptotics with the number of

agents getting large (N →∞) but the number of time periods T held fixed.

Assumption 2.3 (Conditional Time Homogeneity of Errors). The conditional

distribution of εit given (Xi,Ai) is stationary over time t, i.e.,εit| (Xi,Ai) ∼ P ( ·|Ai) .

Finally, we impose a conditional time homogeneity assumption on the idiosyncratic shocks.

Assumption 2.3 is strictly stronger than necessary for our purpose, but leads to easier

notations afterwards for clearer illustration of our key method. Alternatively, we could

impose the following weaker version:

Assumption 2.3’ (Pairwise Time Homogeneity of Errors). The marginal distributions

of εit and εis conditional on (Xit,Xis,Ai) are the same across any pair of periods t 6= s ∈

{1, ..., T}, i.e.,εit| (Xit,Xis,Ai) ∼ εis| (Xit,Xis,Ai) .

Assumption 2.3’, a multinomial extension of the group homogeneity assumption in Manski

(1987), is also imposed in Pakes and Porter (2016) and Shi, Shum, and Song (2018), both

containing further discussions about the interpretation, flexibility and restrictions associated

with this assumption. Assumption 2.3’ suffices for our subsequent analysis based on pairwise

intertemporal comparisons, while allowing for some dependence of εit on time-varying

component of observable covariates (Xit,Xis). We demonstrate in Appendix 2.B that our

identification and estimation results carry over under Assumption 2.3’, but until then we

will work with the stronger Assumption 2.3 for notational simplicity.

It might be worth noting that Assumption 2.3 (or 2.3’), a statement conditioned on the

arbitrarily dimensional fixed effect Ai in a fully flexible manner, automatically absorbs all

possible time-invariant components in Xit = (Xijt)Jj=1 and εit = (εijt)Jj=1. As discussed

earlier, long-term brand loyalty, potentially produced by a mixture of complicated factors
5It is worth noting that so far we have not made any explicit restriction on the structure of the spaces

on which the arbitrary dimensional random elements Ai and εi are defined, but implicit in our specification
as well as Assumption 2.2 is the requirement that (Yi,Xi,Ai, εi) be well-defined as random elements
(measurable functions) on a large enough probability space (Ω,F ,P).
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such as design, style, flavor, consumer personality or social perception, is just one example

that applied researchers have found to be important since long ago (Howard and Sheth,

1969) yet conceptually difficult to incorporate empirically (Luarn and Lin, 2003). Such

factors are often hard, if not impossible, to measure quantitatively and therefore are largely

unobserved, and it is neither theoretically nor empirically clear whether a single-dimensional

scalar term is sufficient to capture the effects from such factors. In the meanwhile, completely

ignoring these factors will likely create endogeneity issues in econometric analysis of consumer

behaviors, and it might be hard to find proper instruments for every potentially relevant

latent factor. Therefore, we believe that our main model along with the assumptions above,

admittedly with its own restriction to the fixed-effect specification, constitutes a step forward

in the direction of accommodating more complex unobserved heterogeneity.

A noteworthy restriction of Assumption 2.3 lies in that it rules out random coefficients, a

widely adopted modeling device proposed by Berry, Levinsohn, and Pakes (1995) to induce

sophisticated substitution patterns among products with multi-dimensional characteristics

space. However, the flexibility afforded by our general fixed effect specification can

incorporate arbitrarily complicated substitution patterns with respect to time-invariant

components of observed and unobserved product characteristics, by exploiting the panel

structure of observable data along with the time homogeneity assumption (Assumption 2.3).

It is thus worth pointing out that our current fixed-effect approach and the random-coefficient

approach are two rather different methods: neither nests the other as a special case,

and the two approaches may be more suitable for different sets of empirical applications.

The random-coefficient approach using market share inversion, as developed by Berry,

Levinsohn, and Pakes (1995), Berry, Gandhi, and Haile (2013) and Berry and Haile (2014),

has already been widely used in various settings of demand analysis where time-varying

(or market-varying) endogeneity is a major concern. Our infinite-dimensional fixed-effect

approach based on weak monotonicity might be more suitable to panel-data settings
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where researchers are more interested in incorporating an arbitrarily complicated form of

time-invariant heterogeneity across agent-product pairs.

Finally, as briefly discussed in Section 2.2.1 and formally stated in Assumption 2.3,

the whole distribution of εit can be indexed by the fixed effect Ai. Furthermore, serial

autocorrelation in εit is not ruled out either, as Assumption 2.3 concerns only the marginal

distributions of εit in different periods.

We may now proceed to provide identification arguments for the leading parameter of

interest, β0, in Section 2.3 and construct estimators of β0 in Section 2.4.

2.3 Identification Strategy

In this section, we present semiparametric identification results for model (2.2) under

Assumptions 2.1-2.3. However, as will become clear later in this section, the underlying

idea of our identification strategy applies more widely beyond panel multinomial choice

models. See Section 2.7 for more details.

Our key identification strategy exploits the standard notion of multivariate monotonicity

in its contrapositive form. As a reminder, we start with a standard definition of multivariate

monotonicity, followed by a statement of its logical contraposition.

Definition 2.1 (Multivariate Monotonicity). A real-valued function ψ : RJ → R is

said to be weakly increasing if, for any pair of vectors δ and δ in RJ , if δj ≤ δj for every

j = 1, ..., J , then ψ
(
δ
)
≤ ψ (δ).

Remark 2.1 (Logical Contraposition). The following is equivalent to Definition 2.1:

ψ
(
δ
)
> ψ (δ) ⇒ NOT

{
δj ≤ δj for all j = 1, ..., J

}
. (2.4)

for any
(
δ, δ

)
, where “NOT” denotes the logical negation operator.
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Our subsequent identification strategy will leverage heavily the simple contraposition of

monotonicity (2.4), and our arguments proceed in three major steps. First, we define a

multivariate monotone function in the form of conditional choice probabilities. Second, we

construct an observable inequality based on the monotone function we define, effectively

producing the left-hand side of (2.4). Finally, we use the contraposition of monotonicity to

obtain the right-hand side of (2.4), which will translate into identifying restrictions on the

parameter β0 via the indexes δit := (δijt)Jj=1.

We now present our key identification strategy step by step. For the moment, we fix a

particular product j ∈ {1, ..., J}, a pair of time periods t 6= s ∈ {1, ..., T} and condition on a

generic realization of the observable covariates in the two periods t and s, i.e., (Xit,Xis) =(
X,X

)
∈ Supp (Xit,Xis).

Step 1: Construction of a monotone function

For each individual i, consider i’s choice probability of j given (Xit,Ai):

E [yijt|Xit,Ai] =
∫
1

{
u
(
X
′

ijtβ0, Aij, εijt
)
≥ max

k 6=j
u
(
X
′

iktβ0, Aik, εikt
)}

dP (εijt|Xit,Ai)

=
∫
1

{
u (δijt, Aij, εijt) ≥ max

k 6=j
u (δikt, Aik, εikt)

}
dP (εijt|Ai)

=: ψj
(
δijt, (−δikt)k 6=j ,Ai

)
(2.5)

where the second equality follows from the index definition δijt = X
′
ijtβ0 and Assumption

2.3 (Conditional Time Homogeneity of Errors), which enables us to write ψj without the

time subscript t. Clearly, the monotonicity of the utility function u in the index argument

δijt (Assumption 2.1) translates into the multivariate monotonicity of the function ψj in the

vector of indexes
(
δijt, (−δikt)k 6=j

)
6:

Lemma 2.1. ψj ( · ,Ai) : RJ → R is weakly increasing, for any realized Ai.
6We flip the signs of (δikt)k 6=j purely for the ease of exposition: as discussed earlier, it is the monotonicity,

not the exact direction of monotonicity, that matters in our analysis.
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In terms of economic interpretation, ψj (δit ,Ai) summarizes each agent i’s conditional choice

probability of product j given i’s fixed effect Ai as a function of the index vector δit. Lemma

2.1 admits a simple interpretation: if a product j becomes weakly better for agent i (in terms

of the index δijt), while all other products k 6= j becomes weakly worse, then agent i’s choice

probability of product j should weakly increase.

However, as the realization of Ai is not observable, the conditional choice probability

function ψj ( · ,Ai) is not directly identified from data in the short-panel setting under

consideration here. In the next step, we construct an observable quantity based on ψj

by averaging out Ai.

Step 2: Construction of an observable inequality

Consider the following intertemporal difference in conditional choice probabilities:

γj,t,s
(
X,X

)
:= E

[
yijt − yijs|Xit = X,Xis = X

]
(2.6)

which is by construction directly identified from data.

Write δ := Xβ0 ≡
(
X
′

jβ0

)J
j=1

and similarly for δ, and Xi,ts := (Xit,Xis). The following

lemma translates the monotonicity of ψj
(
δ,Ai

)
in the index vector δ into a restriction on

the sign of the observable quantity γj,t,s
(
X,X

)
, effectively corresponding to an observable

scalar inequality.

Lemma 2.2. δj ≤ δj and δk ≥ δk for all k 6= j =⇒ γj,t,s
(
X,X

)
≤ 0.

To see why Lemma 2.2 is true, rewrite γj,t,s
(
X,X

)
as

γj,t,s
(
X,X

)
= E

[
E
[
yijt − yijs|Xi,ts =

(
X,X

)
,Ai

]∣∣∣Xi,ts =
(
X,X

)]
= E

[
E
[
yijt|Xit = X,Ai

]
− E [yijs|Xis = X,Ai]

∣∣∣Xi,ts =
(
X,X

)]
=
∫ [

ψj

(
δj,
(
−δk

)
k 6=j

,Ai

)
− ψj

(
δj, (−δk)k 6=j ,Ai

)]
dP

(
Ai|Xi,ts =

(
X,X

))
.
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Whenever δj ≤ δj and δk ≥ δk for all k 6= j, by Lemma 1 we have

ψj

(
δj,
(
−δk

)
k 6=j

,Ai

)
− ψj

(
δj, (−δk)k 6=j ,Ai

)
≤ 0

for every possible realization of Ai. Consequently, the inequality will be preserved

after integrating over the fixed effect Ai cross-sectionally with respect to the conditional

distribution P
(

Ai|Xit = X,Xis = X
)
, a potentially hugely complicated probability measure

that we leave unspecified.

Step 3: Derivation of the key identifying restriction

We now take the logical contraposition of Lemma 2.2:

Proposition 2.1 (Key Identifying Restriction). Under Assumptions 2.1, 2.2 and 2.3,

γj,t,s
(
X,X

)
> 0 ⇒ NOT

{(
Xj −Xj

)′
β0 ≤ 0 and

(
Xk −Xk

)′
β0 ≥ 0 ∀k 6= j

}
(2.7)

Recall that δijt = X
′
ijtβ0, so Proposition 2.1 follows immediately from Lemma 2.2 and defines

an identifying restriction on β0 that is free of all unknown nonparametric heterogeneity terms

u, A and ε. Proposition 2.1 is also very intuitive: if we observe an intertemporal increase in

the conditional choice probability of product j from one period to another, it is impossible

that product j’s index becomes worse, while all other products’ indexes become better.

The simple idea behind Proposition 2.1 is to leverage the contraposition of monotonicity

in the index vector, which, apart from its simplicity, brings about robustness against the

rich built-in forms of unobserved heterogeneity along with nonseparability. As the validity

of this idea relies only on monotonicity in an index structure, it is applicable more widely

beyond the panel multinomial choice settings we are currently considering. See Section 2.7

for a general framework under which the contraposition of monotonicity may be utilized. In

particular, in a companion paper (Gao, Li, and Xu, 2020), we adapt this idea to the additional
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complications induced in a network formation setting, where nonseparability arises naturally

from nontransferable utilities.

We also note that the same idea can be readily extended to any nonempty subset of

products, as summarized in the following corollary:

Corollary 2.1. If γj,t,s
(
X,X

)
> 0 for all j ∈ J1 ⊆ {0, 1, ..., J}, it must NOT be that(

Xj −Xj

)′
β0 ≤ 0 for all j ∈ J1 while

(
Xk −Xk

)′
β0 ≥ 0 for all k ∈ J\J1.

Intuitively, if we observe that the conditional choice probabilities of all products in J1 strictly

increase across two periods of time, it cannot be the case that the indexes of all products in

J1 have weakly worsened while the indices of all products outside J1 have weakly improved.

Li (2019) shows that, at least in the case of T = 2, the collection of all identifying restrictions

in Corollary 2.1 lead to sharp identification of β0. That said, for the rest of the paper we

will focus on the identifying restrictions in Proposition 2.1, while noting that all the analysis

below can be readily adapted to incorporate the additional restrictions in Corollary 2.1.

Formulation of Population Criterion Functions

We now formulate a population criterion function based on Proposition 2.1. For every

candidate parameter β ∈ RD, we represent in Boolean algebra the right hand side of (2.7)

in Proposition 2.1 by

λj
(
X,X; β

)
:=

J∏
k=1

1

{
(−1)1{k 6=j}

(
Xk −Xk

)′
β ≤ 0

}
, (2.8)

where (−1)1{k 6=j} takes the value −1 for k 6= j and 1 for k = j. Therefore, Proposition 2.1

can be written algebraically as: γj,t,s
(
X,X

)
> 0 implies λj

(
X,X; β0

)
≡ 0 for any

(
X,X

)
.

We now define the following criterion function by taking a cross-sectional expectation over

the random realization of (Xit,Xis):

Qj,t,s (β) := E [1 {γj,t,s (Xit,Xis) > 0}λj (Xit,Xis; β)] , (2.9)
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which is clearly nonnegative and minimized to zero at the true parameter value β0. Without

normalization and further assumptions for point identification, there might be multiple values

of β0 that minimize Qj,t,s to zero.

More generally, fix any function G : R → R that is one-sided sign preserving, i.e.,

G (z) > 0 for z > 0 and G (z) = 0 for z ≤ 0. For example, we can choose G (z) = [z]+ where

[z]+ is the positive part function. Then, we define QG
j,t,s as

QG
j,t,s (β) := E [G (γj,t,s (Xit,Xis))λj (Xit,Xis; β)] , (2.10)

which is also minimized to zero at the true parameter value β0. The sign-preserving function

G, if also set to be monotone, continuous or bounded, serves as a smoothing function that

helps with the finite-performance of our estimators. We will provide more discussions on

function G in the next section, when we construct estimators based on the sample analog of

the population criterion function defined here. It is worth pointing out that this smoothing

function G is built into the population criterion function as in (2.10), which is different from

the usual technique where smoothing is only done in finite samples but not in the population.

For notational simplicity, we suppress G in QG
j,t,s and simply write Qj,t,s throughout this

paper.

So far we have focused on a fixed product j and a fixed pair of periods (t, s), but in practice

we may utilize the information across all products and all pairs of periods by defining the

aggregated criterion function:

Q (β) :=
J∑
j=1

T∑
t6=s

Qj,t,s (β) , for any β ∈ RD. (2.11)

We summarize our main identification result in the following theorem.

Theorem 2.1 (Set Identification). Under model (2.1) and Assumptions 2.1-2.3,

β0 ∈ B0 :=
{
β ∈ RD : Q (β) = 0

}
. (2.12)
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We will refer to B0 as the identified set. In Appendix 2.C, we provide sufficient conditions

for point identification of β0 up to scale normalization, with similar styles of assumptions

imposed for point identification in the literature on maximum-score or rank-order estimation,

dating back to Manski (1985), as well as in related work on panel multinomial choice models,

such as Shi, Shum, and Song (2018) and Khan, Ouyang, and Tamer (2019).7 However, since

point identification, or lack thereof, is conceptually irrelevant to our key methodology, and as

set identification and set estimation are becoming increasingly relevant in econometric theory

as well as applied research, we will focus on set identification and estimation results in the

main text, following a similar approach adopted by Manski (1975). Of course, whenever the

additional assumptions for point identification are satisfied in data, the set estimator will

shrink to a point asymptotically.

Our criterion function is constructed to be an aggregation of the identifying restrictions on

β0 in the form of Boolean variables across all (j, t, s) in the data, obtained via the logical

contraposition of weak multivariate monotonicity whenever γj,t,s (Xit,Xis) > 0 occurs. As

γj,t,s (Xit,Xis) = −γj,s,t (Xis,Xit), either γj,t,s (Xit,Xis) > 0 or γj,s,t (Xis,Xit) > 0 occurs for

each unordered pair of periods {t, s}, provided that there is nonzero intertemporal variation

in the relevant conditional choice probabilities.

It is important to note that the stochastic relationship between the outcome variable

yi and the observable covariates Xi enters into our criterion function Q only through

the intertemporal differences in conditional choice probabilities as represented by the term

γj,t,s (Xit,Xis). As the randomness of y conditional on X is completely averaged out in γj,t,s,

the only remaining form of randomness in our population criterion function is the random

sampling of observable covariates Xi, which no longer involves the outcome variable yi.
7It might be worth pointing out that the identification arguments in Shi, Shum, and Song

(2018) and Khan, Ouyang, and Tamer (2019) feature conditioning on equality events in the form
of
{
Xk −Xk = 0, for all k 6= j

}
, which essentially utilizes subsamples where observable covariates stay

unchanged except for a single product j across two periods. In contrast, our point identification argument,
available in Appendix 2.C, does not involve conditioning on equalities, but only inequalities that define
(intersections of) half-spaces in the parameter space RD.
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As a result, the systematic component of our population criterion function Qj,t,s, as

defined in (2.9) and (2.10), is nonstandard relative to usual forms of moment conditions as

studied in the literature on extremum estimation. Specifically, in our criterion function

the expectation (moment) operators show up twice, the first time in the definition of

the conditional expectation γj,t,s and the second time in the expectation over observable

covariates (Xit,Xis). Moreover, the two expectation operators are separated by the nonlinear

one-sided sign-preserving function G, so it is impossible to push inside the expectation

operators via the law of iterated expectations.

Relative to the well-known maximum-score or rank-order criterion function as studied

by Manski (1985, 1987) utilizing univariate monotonicity, the nonstandardness of our

criterion function arises from a key difference of multivariate monotonicity from univariate

monotonicity. To see this more clearly, consider the special case of a single-index setting

(J = 1)8, in which our population criterion function degenerates to the maximum-score

or rank-order criterion function if we choose G to be G (z) = [z]+, suppress the product

subscript j, and denote Xt as the vector of observable covariates:

Qt,s (β) +Qs,t (β) =E
[
[γ (Xt, Xs)]+ 1 {(Xt −Xs) β ≥ 0}

]
+ E

[
[γ (Xs, Xt)]+ 1 {(Xs −Xt) β ≥ 0}

]
=E [(yt − ys) sgn ((Xt −Xs) β)] . (2.13)

The last line of (2.13) is the familiar maximum-score criterion function, constructed based

on the following equivalence relationship induced by univariate monotonicity:

γ (Xt, Xs) > 0 ⇔ (Xt −Xs) β > 0, (2.14)
8This arises naturally in binomial choice models with the characteristics of the outside option set to be

zero. In this case, even though there are nominally two choice alternatives, choice behavior is completely
determined by a single index based on the characteristics of the non-default option.
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Such an equivalence relationship is a unique feature of the univariate setting, which can be

derived as a special case of Proposition 2.1:

γ (Xt, Xs) > 0⇒ NOT {(Xt −Xs) β ≤ 0} ⇔ (Xt −Xs) β > 0⇒ γ (Xt, Xs) ≥ 0,

which becomes (2.14) if the monotonicity of γ is strict.

However, such equivalence relationships cannot be generalized to the multivariate setting

with J ≥ 2, as the right hand side of (2.7),

NOT
{(
Xj −Xj

)′
β0 ≤ 0 and

(
Xk −Xk

)′
β0 ≥ 0 for all k 6= j

}
,

does not imply γj,t,s
(
X,X

)
≥ 0 in the converse direction. This breaks the equivalence built

into the maximum-score criterion function. As a result, we can no longer aggregate Qj,t,s

and Qj,s,t into a unified representation as in (2.13).

Hence, our population criterion function is a generalization of the maximum-score

criterion functions to multi-index settings, where the lack of equivalence as described above

leads to a key difference in the criterion functions, and consequently a different approach of

estimation, which will be discussed in the next section.

2.4 Estimation and Computation

2.4.1 A Consistent Two-Step Estimator

We construct our estimator as a semiparametric two-step M-estimator.

The first stage of our procedure concerns with nonparametrically estimating the

intertemporal differences in conditional choice probabilities of the following form

γj,t,s
(
X,X

)
= E

[
yijt − yijs|Xi,ts =

(
X,X

)]
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for all on-support realizations
(
X,X

)
, all pairs of periods (t, s) and all products j.9

Given the first-stage estimators γ̂j,t,s and the smoothing function G, in the second stage

we numerically compute minimizers of the sample criterion function,

Q̂ (β) :=
J∑
j=1

T∑
t6=s

Q̂j,t,s (β) ,

Q̂j,t,s (β) := 1
N

N∑
i=1

G (γ̂j,t,s (Xi,ts))λj (Xi,ts; β) .

Observing that the scale of β0 cannot be identified given that λj (Xi,ts; β) consists of

indicator functions of the the form 1

{
(Xijt −Xijs)

′
β ≥ 0

}
, we imposes the following scale

normalization β0 ∈ SD−1 :=
{
v ∈ RD : ‖v‖ = 1

}
. Following Chernozhukov, Hong, and

Tamer (2007), we define the set estimator by

B̂ĉ :=
{
β ∈ SD−1 : Q̂ (β) ≤ min

β̃∈SD−1
Q̂
(
β̃
)

+ ĉ

}
(2.15)

with ĉ := Op (cN logN). We now introduce assumptions for the consistency of B̂ĉ.

Assumption 2.4 (First-Stage Estimation). For any (j, t, s):

(i) γj,t,s ∈ Γ, and P (γ̂j,t,s ∈ Γ)→ 1, with Γ being a P-Donsker class of functions in L2 (X)

s.t. supγj,t,s∈Γ E |γj,t,s| <∞;

(ii) ‖γ̂j,t,s − γj,t,s‖2 :=
√∫

(γ̂j,t,s (Xi,ts)− γj,t,s (Xi,ts))2 dP (Xi,ts) = Op (cN) with cN ↘ 0 as

N →∞.

Through Assumption 2.4 we take as given the large set of theoretical results on nonparametric

regression in the literature. Many kernel-based and sieve-based methods have been developed
9In practice, we only need to estimate γj,t,s for (J − 1) products and 1

2T (T − 1) ordered pairs of periods.
The former is because conditional choice probabilities must sum to one across all J products, so we may
easily compute the estimator for the last product from the other (J − 1) estimates: γJ,t,s = 1−

∑J−1
j=1 γj,t,s.

The latter is because γj,t,s = −γj,s,t by construction, so we may estimate it for either (t, s) or (s, t). Notice,
however, that each ordered pair (t, s) or (s, t) provides complementary identifying information, as λ (Xi,ts;β)
and λ (Xi,st;β) do not admit such kind of deterministic relationship.
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with different properties demonstrated under various sets of conditions. See Wasserman

(2006) and Chen (2007) for more comprehensive surveys.

Assumption 2.5 (Nice Smoothing Function). The one-sided sign-preserving function

G : R→ R+ is Lipschitz continuous with a finite Lipschitz constant.

Assumption 2.5 is not necessary for consistency per se given that our identification result is

valid with any choice of the one-sided sign-preserving function G, nevertheless we take G to

be Lipschitz so as to simplify the proof.

To state the next assumption, we decompose each row (product) of X−X as the product

of its norm and its direction, i.e., Xk−Xk ≡ rk
(
X−X

)
·vk

(
X−X

)
, where rk

(
X−X

)
:=∥∥∥Xk −Xk

∥∥∥, and vk (X−X
)

:=
(
Xk −Xk

)
/
∥∥∥Xk −Xk

∥∥∥ if Xk 6= Xk while vk
(
X−X

)
:= 0

if Xk = Xk.

Assumption 2.6 (Continuous Distribution of Directions). The marginal distribution

of vk (Xit −Xis) has no mass point except possibly at 0 for each (k, t, s).

Assumption 2.6 is a technical assumption that ensures the continuity of the population

criterion function Q (θ). It is likely to be not necessary for consistency, but we impose

it for simplicity. We note that Assumption 2.6 is fairly weak: it essentially requires that

the directions of intertemporal differences in observable characteristics are continuously

distributed on their own supports. In particular, this allows all but one dimensions of

observable characteristics to be discrete.

With the above assumptions, we now establish the consistency of the set estimator B̂ĉ

based on Chernozhukov, Hong, and Tamer (2007).

Theorem 2.2 (Consistency). Under Assumptions 2.1-2.6, the set estimator B̂ĉ is consis-

tent in Hausdorff distance: dH
(
B̂ĉ, B0

)
= op (1), where

dH
(
B̂ĉ, B0

)
:= max

 sup
β∈B̂ĉ

inf
β̃∈B0

∥∥∥β − β̃∥∥∥ , sup
β∈B0

inf
β̃∈B̂ĉ

∥∥∥β − β̃∥∥∥
.

123



Furthermore, if β0 is point-identified on SD−1,
∥∥∥β̂ − β0

∥∥∥ = op (1) for any β̂ ∈ B̂ :=

arg minβ̃∈SD−1 Q̂
(
β̃
)
.

2.4.2 Computation

We now provide more details on how we practically implement our estimator.

First-Stage Nonparametric Regression

For the first-stage nonparametric estimation of γ, we adopt a machine learning estimator

based on single-layer artificial neural networks, which has been widely adopted in many

disciplines due to its theoretical and numerical advantages in estimating nonlinear and

high dimensional functions. Clearly, model (2.1) naturally induces nonlinearity through

the complex inequalities inside the multinomial choice model (2.1) with unknown forms

of utility functions. Also, given that the estimation of γj,t,s includes (time-varying) all

observable product characteristics from two periods, the potentially high dimensionality of

covariates also makes machine learning algorithm a suitable choice. For single-layer neural

network estimators, Chen and White (1999) provides theoretical results on the convergence

rates, establishing that cN =
(

logN
N

) 1+2/(d+1)
4(1+1/(d+1)) . On the computational side, there are also

many readily usable computational packages to implement neural-network estimators. For

example, in our simulation study and empirical illustration, we use the R package “mlr”

by Bischl et al. (2016), which provides a front end for cross validation and hyperparameter

tuning.

Choice of the Smoothing Function G

Besides the requirement of Lipschitz continuity in Assumption 2.5, in practice we take G to

be bounded from above by setting G (z) = 2Φ
(
[z]+

)
− 1, where Φ is the standard normal

CDF. We now motivate our choice of G.
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Recall that our identification strategy is based on the logical implication of the event

γj,t,s
(
X,X

)
> 0, so for identification purposes we are only interested in 1

{
γj,t,s

(
X,X

)
> 0

}
,

i.e., whether the event γj,t,s
(
X,X

)
> 0 occurs, but not in the exact magnitude of

γj,t,s
(
X,X

)
. However, in finite-sample, when γj,t,s

(
X,X

)
is close to zero, the estimator

γ̂j,t,s
(
X,X

)
is relatively more likely to have the wrong sign, so that the plug-in estimator

1

{
γ̂j,t,s

(
X,X

)
> 0

}
may induce an error of the size 1. Hence the smoothing by G (·) helps

down-weight the observations when γ̂j,t,s
(
X,X

)
is close to zero and shrinks the magnitude

of possible errors.

On the other hand, when γj,t,s
(
X,X

)
is positive and large so that 1

{
γj,t,s

(
X,X

)
> 0

}
can be estimated well, we do not care much about the magnitude of γj,t,s

(
X,X

)
, which

does not provide additional identifying information per se. By setting G to be bounded

from above, we dampen the effects of large γj,t,s
(
X,X

)
at the same time, so that the

numerical maximization of Q̂ is not too sensitive to potential large but redundant variations

in γ̂j,t,s
(
X,X

)
.

Angle-Space Reparameterization of SD−1

In the second stage optimization of Q̂ (β) over β ∈ SD−1, we work with a reparameterization

of SD−1 with (D − 1) angles in spherical coordinates10. Specifically, define the angle space

Θ by

Θ := [−π, π)×
[
−π2 ,

π

2

]D−2
, (2.16)

10The idea and the motivations for using the angle-space reparameterization were also found in Manski
and Thompson (1986), who however used only one angle parameter, given two pre-chosen orthogonal unit
vectors on SD−1.
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and the transformation θ 7−→ β (θ) by

β (θ) =



β1 (θ) := cos θD−1 . . . cos θ2 cos θ1,

β2 (θ) := cos θD−1 . . . cos θ2 sin θ1,

... ...

βD−1 (θ) := cos θD−1 sin θD−2,

βD (θ) := sin θD−1,

we now instead solves the optimization of Q̂ (β (θ)) over Θ, which we further equip with its

natural geodesic metric ρΘ
(
θ, θ̃

)
:= arccos

(
β (θ)

′
β
(
θ̃
))

, which is strongly equivalent to the

(imported) Euclidean distance
∥∥∥β (θ)− β

(
θ̃
)∥∥∥.

This reparameterization (Θ, ρΘ) enables us to exploit the compactness and convexity of

the parameter space Θ = [−π, π) ×
[
−π

2 ,
π
2

]D−2
, which takes the form of a hyper-rectangle.

First, (Θ, ρΘ) preserves all topological structure of the unit sphere, and particularly inherits

the compactness of
(
SD−1, ‖·‖

)
, automatically satisfying the compactness condition usually

imposed for extremum estimation and making it numerically feasible to initiate a grid

on the whole parameter space. Second, while the unit sphere SD−1 is not convex, the

new parameter space Θ becomes convex algebraically, making it computationally easy to

define bisection points in the parameter space. Third, it also preserves the geometric

structures of the sphere, including for instance the obvious observation that −π and

π in the first coordinate of Θ should be treated as exactly the same point, or more

rigorously, ρΘ ((π − ε, θ2, ..., θD−1) , (−π, θ2, ..., θD−1)) → 0 as ε → 0. This seemingly

trivial property is nevertheless important in defining and interpreting whether certain

parameter estimates converge asymptotically or not, and provides conceptual foundations

for subsequent asymptotic theories.
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Figure 2.1: An Adaptive-Grid Algorithm
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An Adaptive-Grid Algorithm

With the angle reparameterization, we seek to numerically compute a conservative rect-

angular enclosure of arg min Q̂ (θ), deploying a bisection-style grid-search algorithm that

recursively shrinks and refines an adaptive grid to any pre-chosen precision (as defined by ρΘ).

Unlike gradient-based local optimization algorithms, our adaptive grid algorithm handles

well the built-in discreteness in our sample criterion function, which has zero derivative

almost everywhere, while maintains global initial coverage over the whole parameter space.

While a brute-force global search algorithm is the safest choice if the dimension of product

characteristics D is relatively small, our adaptive-grid algorithm performs significantly

faster. The essential structure of our algorithm is laid out as follows, with a corresponding

illustration in Figure 2.1.

Step 1: Initialize a global grid Θ(1) of some chosen size MD−1
0 on Θ.

Step 2: Compute Q̂ (θ) for each θ ∈ Θ(1), and select all points in Θ(1) with a criterion

value below the αth-quantile in Q̂
(
Θ(1)

)
:=
{
Q̂ (θ) : θ ∈ Θ(1)

}
into

Θ(1) :=
{
θ ∈ Θ(1) : Q̂ (θ) ≤ quantileα

(
Q̂
(
Θ(1)

))}
.

Step 3: Take the enclosing rectangle of Θ(1), by defining θ(1)
d := min∗Θ(1)

d and θ
(1)
d :=

max∗Θ(1)
d , where Θ(1)

d :=
{
θd : θ ∈ Θ(1)

}
for each d = 1, ..., D− 1 and the operator min∗ and

max∗ have standard definitions of min and max except for the first dimension d = 1. For

the first dimension, it is necessary to account for the underlying spherical geometry and the

127



periodicity of angles, i.e. θ1 + 2π ≡ θ1 and in particular −π ≡ π. This, however, is largely

a programming nuisance: whenever Θ(1)
1 ( Θ(1)

1 crosses over at −π and π, we can add 2π to

every θ1 ∈ Θ(1)
1 and obtain lower and upper bounds of Θ(1)

1 + 2π, as illustrated in Figure 2.1.

Step 4: We initialize a refined grid Θ(2) on Θ(1) := ×D−1
d=1

[
θ

(1)
d , θ

(1)
d

]
of size MD−1

0 .

Step 5: Reiterate until refinement stops (falls below a certain numerical precision).

Note that the above is simply a sketch of our algorithm.11 To be conservative, we add

in buffers at each step of refinement, keep track of both outer and inner boundaries of

the lower-quantile set Θ(m), and make sure that the minimizers of the criterion functions

at all computed points are indeed enclosed by the set returned in the end. We find the

current algorithm to be conservative and perform reasonably well in our simulation study

and empirical illustration.

2.5 Simulation

In this section, we examine the finite-sample performance of our estimation method via

a Monte Carlo simulation study. We start by studying the performance of the first-stage

nonparametric estimator γ̂ or G (γ̂). Then, we show how the two-stage estimator β̂ performs

under various configurations of the data generating process (DGP). Finally, we investigate

how our estimator performs without point identification.

Setup of Simulation Study

For each DGP configuration, we run M = 100 simulations of model (2.1) with the following

utility specification for each agent-product-time tuple ijt:
11Our algorithm relies heavily on the compactness and convexity of the angle space Θ. Compactness

allows us to start with a global grid over the whole parameter space for initial evaluations of the sample
criterion function. At each step of recursion, the convexity of Θ enables us to conveniently refine the grid
by separately cutting each coordinate of Θ(m) into smaller pieces through simple division.
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u
(
X
′

ijtβ0, Aij, εijt
)

= Ai0
(
X
′

ijtβ0 + Aij
)

+ εijt,

where Ai0 is an unobserved scale fixed effect that captures agent-level heteroskedasticity in

utilities, and Aij is an unobserved location shifter specific to each agent-product pair. The

ability to deal with nonlinear dependence caused by the unobservable fixed effects A in a

robust way differentiates our method from others. To allow for such dependence, we generate

correlation between the observable characteristics Xi and the fixed effects Ai via a latent

variable Z12. Furthermore, we set β0 = (2, 1, ..., 1)
′
∈ RD and draw εijt ∼ TIEV (0, 1).

To summarize, for each of the M = 100 simulations we first generate (β0,Xit,Ai, εit) for

all it combinations. Then we calculate the binary individual choice Y matrix according to

model (2.1). Lastly, we compute β̂ from the simulated observable data of (X,Y), and finally

compare our estimator β̂ with the true parameter value β0 normalized to SD−1.

2.5.1 First-Stage Performance

We examine the performance of our first stage estimator γ̂ or G (γ̂). First, we calculate the

true γ or G (γ) using the knowledge of DGP which serves as the benchmark for comparison

later on. Next, we estimate γ with only the observable data (X,Y) using single-layered neural

networks and calculate the plugged-in functional G
(
γ̂
(
X,X

))
at each realized

(
X,X

)
.

Finally, we evaluate the performance of our estimated G (γ̂) by comparing it against the

true G (γ).

We report in Table 2.1 both the means and the maximums of the mean squared errors

(MSE) across M simulations to evaluate the performance of our first stage estimator G (γ̂).

The header of Table 2.1 lists the three choices of the one-sided sign preserving function G.

The first row, “mean MSE”, reports the average MSE of G (γ̂) against the true G (γ), i.e.
12We draw Zi ∼ N (0, 1) and let Ai2 = [Zi]+. Then, we construct X

(2)
ijt = Wijt+Zi with Wijt ∼ N (0, 2J).

The DGP for the rest of A and X are: Ai0 ∼ U [2, 2.5], Ai1 ≡ 0, Aij ∼ U [−0.25, 0.25] for j ≥ 3, X(1)
ijt ∼

U [−1, 1], X(d)
ijt ∼ N (0, 1) for d ≥ 3.
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Table 2.1: Performance of First Stage Estimator G (γ̂)

1 {γ̂ > 0} [γ̂]+ 2Φ
(
[γ̂]+

)
− 1

mean MSE 0.1290 0.0221 0.0109

max MSE 0.1578 0.0254 0.0124

1
M

∑M
m=1 MSE(m) where MSE(m) is the MSE of G (γ̂) in the mth simulation. The second row

reports the maximum MSE of G (γ̂).

From Table 2.1, we see that the adjusted normal CDF 2Φ
(
[γ̂]+

)
−1 performs the best in

terms of both mean MSE and max MSE, while the indicator function gives the worst results

and that the performance of the positive part function lies somewhere in between. This is

expected because when the true γ is close to zero, it is more likely to have the estimated

sign of γ̂ to be different from γ. The discontinuity of the indicator function 1 {γ̂ > 0} at

0 magnifies this uncertainty around zero and leads to a higher MSE. When the true γ is

positive and large, it actually does not matter for our method whether the exact value of

γ is estimated well by γ̂. All we need is the sign of γ̂ coincides with the sign of γ so as to

obtain identifying restrictions on β0. The adjusted normal CDF 2Φ
(
[γ̂]+

)
− 1 performs the

best, because it not only dampens the uncertainty in the estimated sign of γ̂ near zero, but

also attenuates the sensitivity to the exact value of γ̂+ relative to γ+ when γ is positive and

large. For this reason, we will use the adjusted normal CDF function in our second stage.

2.5.2 Two-Stage Performance

We present the performance of our second stage estimator β̂. First, we show the simulation

results under the baseline DGP configuration, where β0 is point-identified. Next, we study

the performance of our algorithm under different numbers of individuals N .13 Finally, we

inspect how our estimator performs without point identification.
13We also vary dimensions of observable characteristics D, numbers of products available J , and numbers

of time periods T and present the results in Appendix 2.D.
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Table 2.2: Baseline Performance

β̂1 β̂2 β̂3

bias 1
M

∑
m

(
β̂md − β0,d

)
-0.0050 0.0021 0.0006

upper bias 1
M

∑
m

(
β̂ud − β0,d

)
0.0015 0.0084 0.0108

lower bias 1
M

∑
m

(
β̂ld − β0,d

)
-0.0115 -0.0042 -0.0096

mean(u−l) 1
M

∑
m

(
β̂ud − β̂ld

)
0.0130 0.0126 0.0205

root MSE
(

1
M

∑
m

∥∥∥β̂m − β0

∥∥∥2
)1/2

0.0745
mean norm
deviations

1
M

∑
m

∥∥∥β̂m − β0

∥∥∥ 0.0648

Baseline Results

For the baseline configuration we set N = 10, 000, D = 3, J = 3, T = 2. Since the sufficient

conditions for point identification are satisfied under the baseline configuration, any point

from the argmin set B̂ := arg minβ∈SD−1 Q̂ (β) , is a consistent estimator of β0. Specifically,

we define

β̂ud := max B̂d, β̂ld := min B̂d, and β̂md := 1
2
(
β̂ud + β̂ld

)
for each dimension of product characteristics d = 1, ..., D, where β̂ud is the maximum value

along dimension d of the argmin set B̂, β̂ld is the minimum value along dimension d of B̂,

and β̂md is the middle point along dimension d of B̂.

Table 2.2 summarizes the main results for the simulations under our baseline configura-

tion. In the first row of Table 2.2 we use the middle value β̂m along each dimension of set

estimator B̂ to calculate the average bias against the true β0 across allM = 100 simulations.

The bias is very small across all three dimensions with a magnitude between -0.0050 and

0.0021. The next two rows show the biases in estimating β0,d using β̂ud and β̂ld respectively

and the biases are again close to zero. The fourth row of Table 2.2 measures the average

width of the set estimator B̂ along each dimension. It is relatively tight compared to the

magnitude of β0. In the second part of Table 2.2 we report the root MSE (rMSE) and mean

131



Table 2.3: Performance under Varying N

∑
d |biasd|

∑
dmean(u-l)d rMSE MND

N = 10, 000 0.0077 0.0461 0.0745 0.0648

N = 4, 000 0.0174 0.0715 0.1006 0.0884

N = 1, 000 0.0694 0.1076 0.1690 0.1405(
N

1, 000

)1/2 (
N

1, 000

)1/3 rMSE1000

rMSEN
MND1000

MNDN

N = 10, 000 3.16 2.15 0.1690
0.0745 ≈ 2.27 0.1405

0.0648 ≈ 2.17

N = 4, 000 2.00 1.59 0.1690
0.1006 ≈ 1.68 0.1405

0.0884 ≈ 1.59

norm deviations (MND) using β̂m. Our proposed algorithm is able to achieve a low rMSE

and MND.

Results Varying N

We vary N while maintaining D = 3, J = 3, T = 2 to show how our method performs under

different sample sizes. In addition to our baseline setup with N = 10, 000, we calculate mean

absolute deviation (MAD), average size of the estimated set, rMSE and MND for N = 4, 000

and N = 1, 000. Results are summarized in Table 2.3.

From Table 2.3, it is clear that a larger N helps with overall performance. MAD decreases

from 0.0694 to 0.0077 when N increases from 1, 000 to 10, 000. The average size of the

estimated sets, the rMSE, and the MND show a similar pattern. However, even with a

relatively small N = 1, 000 the result from our method is still quite informative and accurate,

with the average size of the estimated set and the MND being equal to 0.1076 and 0.1405,

respectively. We emphasize that here the total number of time periods T is set to a minimum

of 2. Our method can extract information from each of the T (T − 1) ordered pairs of time

periods, which increase quadratically with T . See Appendix 2.D for results with larger T .

Next, we numerically investigate the speed of convergence of our method when we increase

sample size N from 1, 000 to 4, 000 and 10, 000 in the second part of Table (2.3). Compared
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Table 2.4: Performance with and without Point ID: Further Examination

point ID ? ĉ
rMSE MND

β̂m β̂u β̂l β̂m β̂u β̂l

(i) yes - 0.0770 0.0789 0.0795 0.0661 0.0685 0.0697

(ii) no
0.01 0.0872 0.0880 0.0894 0.0753 0.0767 0.0775

0.1 0.0860 0.0929 0.0939 0.0737 0.0833 0.0832

1 0.0790 0.1268 0.1447 0.0668 0.1207 0.1295

with the case of N0 = 1, 000, the relative ratios of rMSE are 1.68 for N = 4, 000 and 2.27

for N = 10, 000, both of which lie between (N/N0)1/3 and (N/N0)1/2. A similar pattern is

also found for calculations based on MND. These results indicate that our method achieves

a convergence rate slower than the N−1/2 but slightly faster than the N−1/3 rate.

Estimation without Point Identification

We now investigate the performance of our estimator under specifications where point

identification fails. To make things comparable, we fix (N,D, J, T ) as in the baseline case,

but we modify the configuration in two different ways. We maintain the point identification

of β0 in one setting but lose the point identification in the other14. We deliberately control

the location and scale of each variable to be comparable across the two configurations, with

the only differences being the presence of discreteness and boundedness of supports. When

point identification fails, we compute the set estimator B̂ĉof (2.15) with ĉ > 0. Table 2.4

contains simulation results under the two configurations, with different choices of ĉ when

point identification fails. 15

14Specifically, we set Zi ∼ U
[
−
√

3,
√

3
]
, X(1)

ijt ∼ U [−1, 1], X(2)
ijt = Zi+N (0, 6), and X(3)

ijt ∼ N (0, 1) for the
point identified case. For the DGP without point identification, we let Zi ∼ U

[
−
√

3,
√

3
]
, X(1)

ijt ∼ U {−1, 1},
X

(2)
ijt = Zi + U

(
−
√

6,
√

6
)
, and X(3)

ijt ∼ U [−1, 1].
15Specifically, noting that cN logN ≤ N−1/4 logN ≈ 0.92 ≤ 1 for N = 10, 000, we set ĉ = 0.01, 0.1 and 1,

respectively.
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In Table 2.4 , we calculate the rMSE and MND of the upper bound β̂u, the lower

bound β̂l and the middle point β̂m of the (approximate) argmin setsB̂ĉ (with ĉ = 0 under

point identification and three choices of ĉ under partial identification) with respect to the

true normalized parameter β0. Across rows in (i) and (ii), we see that the lack of point

identification does negatively affect the performance of our estimates, but the impact is

limited to a moderate degree. Within rows in (ii), we observe that, as expected, a more

conservative choice of the constant ĉ worsens performances of the upper and lower bounds by

enlarging the estimated sets; in the meanwhile, it appears that the size (and the performance)

of our estimator based on β̂m is not terribly sensitive to the choice of ĉ.

2.6 Empirical Illustration

2.6.1 Data and Methodology

As an empirical illustration, we apply our method to the Nielsen Retail Scanner Data on

popcorn sales to explore the effects of display promotion effects. The Nielsen Retail Scanner

Data contains weekly information on store-level price, sales and display promotion status

generated by about 35,000 participating retail store with point-of-sale systems across the

United States. Among a huge variety of products covered by the Nielsen data, we choose to

focus on popcorn for two reasons. First, purchases of popcorn are more likely to be driven

by temporary urges of consumption without too much dynamic planning. Second, there is

good variation in the display promotion status of popcorn, which enables us to estimate how

important special in-store displays affect consumer’s purchase decisions.

We aggregate the store level data to the N = 205 designated market area (DMA) level

for year 2015. We focus on the top 3 brands ranked by market share, aggregate the rest into

a fourth product “all other products”, and allow an outside option of “no purchase”. We

calculate the dependent variable “market share” for each of the J = 5 brands. The observed
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Table 2.5: Empirical Application: Summary Statistics

mean s.d. min max

DMA-level Market Share sijt 25.00% 21.59% 0.07% 96.69%

Priceijt 0.4924 0.1803 0.1094 1.3587

Promoijt 0.0282 0.0377 0.0000 0.5000

Priceijt × Promoijt 0.0136 0.0203 0.0000 0.4505

product characteristics X include price, promotion status and their interaction term16. The

summary statistics of the variables discussed above are provided in Table 3.5.

To describe the methodology, we use the observed DMA-level market shares as an

estimate of sijt = E [yijt|Xit,Ai] . Under the strong stationarity assumption, we run the

first-stage estimation of

E [sijt − sijs|Xi,ts] =
∫

(E [yijt|Xit,Ai]− E [yijs|Xis,Ai]) dP (Ai|Xi,ts) .

Specifically, we nonparametrically regress (sijt − sijs) on Xi,ts using single-layered neural

networks from the mlr package in R, and obtain an estimator γ̂j of γj
(
X,X

)
:=

E
[
sijt − sijs|Xi,ts =

(
X,X

)]
. Then, we plug γ̂ into our second-stage algorithm and compute

the (approximate) argmin set B̂ĉ.

2.6.2 Results and Discussion

We report our estimation results in Table 3.6.
[
β̂l, β̂u

]
ĉ
corresponds to the lower and upper

bounds of the (approximate) argmin set B̂ĉ, while β̂mĉ := 1
2

(
β̂lĉ + β̂uĉ

)
corresponds to the

middle point. We show both the exact argmin set (ĉ = 0) and the approximate argmin set
16We calculate Priceijt as the weighted average unit price of all UPCs of the brand j in DMA i during

week t. In the Nielsen data we find two variables related to promotion: display and feature. Due to their
similarity, we calculate Promoijt as (feature∨display)ijt. The interaction term Priceijt×Promoijt is included
in X to show the effect of promotion on the price elasticity of consumers.
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Table 2.6: Empirical Application: Estimation Results

β̂mĉ=0

[
β̂l, β̂u

]
ĉ=0

β̂mĉ=0.014

[
β̂l, β̂u

]
ĉ=0.014

Priceijt -0.9681 [-0.9687, -0.9677] −0.9236 [-0.9711, -0.8761]

Promoijt 0.1970 [ 0.1861, 0.2078] 0.1565 [ 0.0662, 0.2469]

Priceijt × Promoijt 0.1550 [ 0.1399, 0.1700] 0.2731 [ 0.0687, 0.4776]

Table 2.7: Empirical Illustration: Comparison of Results

β̂m β̂CyclicMono β̂OLS β̂OLS−FE β̂MLogit−FE

Priceijt -0.9236 -0.3781 0.0240 -0.3803 -0.8511

Promoijt 0.1565 -0.0567 0.5760 0.5978 0.4589

Priceijt × Promoijt 0.2731 0.9240 -0.8171 -0.7057 -0.2552

with ĉ = 0.01 × N−
1
4 log (N) ≈ 0.014 for N = 205. The estimated coefficients for Price

(negative) and Promo (positive) are clearly consistent with economic intuitions.

The most interesting result is the positive estimated coefficient on the interaction term

Priceijt × Promoijt. An intuitive explanation for the positive sign is that by displaying

certain products in front rows, consumers no longer see the price tags of these products

adjacent to those of their competitors, and consequently become less price-sensitive for these

specially promoted products.

To further illustrate the advantages of our method, we compare our β̂m with the estimates

obtained through four other different popular methods, i.e. Cyclic Monotonicity (CM) based

on Shi, Shum, and Song (2018)17, classic OLS, OLS with scalar-valued fixed effects (OLS-FE)

and the multinomial logit with fixed effects (MLogit-FE). Results (normalized to SD−1) are

summarized in Table 2.7.

The OLS regression result shows that the estimated coefficient on Priceijt is 0.0240, which

is counterintuitive and unreasonable. Moreover, as explained before, displaying the product
17We used 2-week cycles for all available weeks in the data for the CM method.
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at the front row of the store will likely make consumers less price sensitive, implying a positive

coefficient for Priceijt×Promoijt. However, the estimated coefficients for the interaction term

using OLS, OLS-FE and MLogit-FE are all negative, contrary to that intuition. Finally, the

CM-based method reports a small but negative coefficient of -0.0567 for Promoijt, which

could be hard to rationalize.

We regard the contrast between our result and the results obtained in these alternative

methods as an empirical illustration that by accommodating more flexible forms of

unobserved heterogeneity, through the arbitrary dimensional fixed effects that are allowed

to enter into consumers’ utility functions in an additively nonseparable way, our method is

able to produce economically more reasonable results.

2.6.3 A Possible Explanation via Monte-Carlo Simulations

In this section, we propose a possible explanation to the empirical findings in Table 2.7 via

a Monte Carlo simulation. Recall that “Promo” captures whether a product gains increased

exposure by being highlighted by stores. We argue that the negative estimated coefficients

obtained in traditional methods in Table 2.7 for Priceijt × Promoijt may be caused by a

positive correlation between display promotion and unobserved index sensitivity, the latter

of which enters the utility function nonlinearly.

Specifically, suppose the utility function can be written as

uijt = Aij ×
(
X
′

ijtβ0
)

+ εijt, (2.17)

where Xijt contains Price, Promo, and Price×Promo, Aij is the ij−specific fixed effect which

may capture index sensitivity (which can be thought as inversely related to unobserved brand

loyalty), and εijt is the exogenous random shock. Suppose Aij and Promoijt is positively

correlated, which is reasonable because marketing managers with their expertise are more

likely to promote products to which consumers are more price and promotion sensitive. Thus,
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Table 2.8: Percentage of Correct Signs of Estimated Coefficients

α β̂m β̂CyclicMono β̂OLS β̂OLS−FE β̂MLogit−FE

0.15 96% 0% 0% 0% 6%

0.30 97% 0% 0% 0% 0%

0.50 82% 0% 0% 0% 0%

traditional estimation methods that base on linearity would be unable to detect such pattern

and wrongly attribute the effect on price elasticities from Aij to Promo.

To provide some numerical evidence of the claim, we run the following Monte Carlo

simulation. We let β0 = (−4, 2, 2)
′
, Z ∼ U [0, 1], Aij = Z + 1, and εijt ∼ TIEV (0, 1). For

Xijt vector, we draw X
(1)
ijt ∼ U [0, 4] and W ∼ U [0, 1] , and let X(2)

ijt = (1− α)×W + α× Z

and X(3)
ijt = X

(1)
ijt × X

(2)
ijt . We emphasize that X(2)

ijt (Promo) is positively correlated with Aij

through Z, with α measuring the strength of the correlation. We consider three values of α:

0.15, 0.3 and 0.5.

We run 100 simulations for each of the five methods in Table 2.7 to estimate β0. To

replicate the data structure of the empirical exercise, we set N = 205, D = 3, J = 4, and

T = 52. We report in Table 2.8 the percentage of simulations that the corresponding method

is able to generate correct signs for all coordinates of Xijt.

The percentages that our proposed method is able to generate correct signs for all

coordinates of Xijt for α = 0.15, 0.3, and 0.5 are 96%, 97%, and 82%, respectively. The

accuracy of the estimator is negatively affected by the correlation between X(2)
ijt (Promo) and

Aij (multiplicative fixed effect). None of the other methods in Table 2.8 generates estimates

of β0 with correct signs. It is worth mentioning that the CM-based method requires Aij

entering the utility function linearly, which is violated in our DGP in (2.17). Apparently,

all these other models than ours, due to their additive separable structure, completely

ignore the positive dependence between the observable covariate X(2)
ijt (promotion) and the

multiplicative fixed effect Aij, thus producing biases in their estimates.
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Intuitively, since products with larger Aij are more likely to be promoted
(
X

(2)
ijt = 1

)
by the selection of marketing managers, the average effective price sensitivity of promoted

products tend to be larger than those products not promoted. This drives those estimators

that ignore such confounding selection effects to produce a negative coefficient on the

interaction term X
(1)
ijt ×X

(2)
ijt (Price × Promo), as found in the empirical illustration (Table

2.7). In contrast, our method handles such non-additive dependence between observable

characteristics and unobserved fixed effects reasonably well, illustrating the robustness of

our methods.

2.7 Monotone Multi-Index Models

We now present a general framework under which our identification strategy is applicable,

using the notation of Ahn, Ichimura, Powell, and Ruud (2018, AIPR thereafter):

γ (Xi) = φ (Xiβ0) (2.18)

in which: (yi,Xi)Ni=1 constitutes a random sample of N observations on a scalar18 random

variable yi and a J × D random matrix Xi. γ
(
X
)

= T
(
Fyi|Xi=X (·)

)
is a real variable

defined as a known functional T of the conditional distribution of yi given Xi = X. A leading

example is to set γ (Xi) := E [yi|Xi], so that model (2.18) becomes a conditional moment

condition; however, this is not necessary. φ : RJ → R is an unknown real-valued function.

β0 ∈ RD\ {0} is the unknown finite-dimensional parameter of interest. Again, we normalize

β0 ∈ SD−1, as β0 is at best identified up to scale given that φ is an unknown function. As

in Lee (1995), Powell and Ruud (2008) and AIPR, model (2.18) restricts the dependence of

γ (Xi) on the matrix Xi to the J linear parametric indexes Xiβ0 ≡
(
X
′
ijβ0

)J
j=1

.19

18Similar to AIPR, the dimension of yi is largely irrelevant to the analysis of model (2.18): it is the
dimension of γ that matters. Nevertheless, for the clarity of presentation, we take yi to be a scalar.

19Note that model (2.18) is WLOG relative to the following seemingly more general formulation, in which

β0 is explicitly allowed to be heterogeneous across the J rows of Xi: γ (Xi) = φ

((
X

′

ijβ0j

)J
j=1

)
, where
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A noteworthy difference of model (2.18) from the setup in AIPR is that we take γ (Xi) here

to be scalar-valued, while AIPR require their γ (Xi) to have dimension, using their notation

R, no smaller than J . This “order condition” R ≥ J is necessary for their vector-valued

function φ to admit a left-inverse φ−1 such that φ−1 (γ (Xi)) = Xiβ0, which constitutes the

foundation for their subsequent analysis. In contrast, we impose no such order condition for

the sake of invertibility, as we will not rely on invertibility at all. Instead, we impose the

following monotonicity assumption.

Assumption 2.7 (Weak Monotonicity). φ is nondegenerate and nondecreasing in each

of its J arguments on Supp (Xiβ0) ⊆ RJ .

With no other restrictions besides Assumption 2.7 on the unknown function φ, model (2.18)

builds in the fundamental lack of additive separability across the parametric indexes. As

demonstrated in Section 2.2, the key idea developed below for the general multi-index model

(2.18) naturally applies to the analysis of the panel multinomial choice model under complete

lack of additive separability.

We now provide a few illustrative examples for model (2.18) that satisfy Assumption 2.7

beyond multinomial choice settings.

Example 2.1 (Sample Selection Model). Consider the sample selection model studied

by Heckman (1979), where yi = y∗i · di with y∗i = W
′
iµ0 + ui and di = 1

{
Z
′
iλ0 + vi ≥ 0

}
.

We observe (yi,Wi, Zi) but not y∗i . Suppose (ui, vi) ⊥ (Xi, Zi) and the joint distribution of

(ui, vi) is bivariate normal with a positive correlation. Then we have

E [yi|Wi, di = 1] = X
′

iµ0 + E
[
ui| vi ≥ −Z

′

iλ0
]

=: φ
(
W
′

iµ0,−Z
′

iλ0
)
.

By taking Xi := (Wi, Zi, di) and β0 := (µ0, λ0), we may easily rewrite the model in the

formulation of model (2.18) with Assumption 2.7 satisfied.

β0 :=
(
β

′

01, ..., β
′

0J

)′

is a
∑J
j=1 Dj-dimensional vector. This, however, could be readily incorporated in model

(2.18) by appropriately redefining X̃i to obtain the representation γ
(
X̃i

)
= φ

(
X̃iβ0

)
as in model (2.18).
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Example 2.2 (Dyadic Network Formation Model under Nontransferable Utili-

ties). Consider the following simple dyadic network formation model under nontransferable

utilities (NTU):

Dij = 1

{
W
′

ijµ0 + Z
′

ijγ0 ≥ εij
}
1

{
W
′

ijµ0 + Z
′

jiγ0 ≥ εji
}
, (2.19)

where Wij ≡ Wji denotes some symmetric observable characteristics between a pair of

individuals ij, (Zij, Zji) represent some asymmetric observable characteristics between ij,

and (εij, εji) denote some potentially asymmetric idiosyncratic shocks to i’s and j’s utilities

from linking with each other. The observed binary variable Dij ≡ Dji of an undirected link

between ij is determined jointly by two threshold-crossing conditions, interpreted as the

requirement of mutual consent in the establishment of a link between ij. Clearly, we have

E [Dij|Wij, Zij, Zji] = φ
(
W
′

ijµ0, Z
′

ijγ0, Z
′

jiγ0
)
,

which falls under model (2.18) with Assumption 2.7 satisfied. It is worth noting that

the NTU setting, which is a highly plausible feature in the formation of social networks,

naturally induces lack of additive separability via the multiplication of two threshold-crossing

conditions, even if we have a fully additive specification inside each threshold-crossing

condition as in (2.19). Hence, the NTU setting provides a micro-founded motivation for

confronting nonseparability, which our key method is well suited to deal with.

In a companion paper (Gao, Li, and Xu, 2020), we study a related but more complicated

model of dyadic link formation with unobserved degree heterogeneity:

Dij = 1

{
u
(
W
′

ijβ0, Ai, Aj
)
≥ εij

}
1

{
u
(
W
′

ijβ0, Aj, Ai
)
≥ εji

}
,

where Ai and Aj are scalar-valued individual “fixed effects” that represent each individual’s

unobserved heterogeneity in sociability. The involvement of the two-way fixed effects in this
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network formation setting adds further complications relative to the panel multinomial choice

model considered in this paper, and we propose a new method, called logical differencing,

to cancel out the two-way fixed effects, by constructing an observable event that contains

the intersection of two mutually exclusive restrictions on the fixed effects. Nevertheless,

the logical contraposition of multivariate monotonicity remains a convenient device for our

identification arguments.

Proposition 2.2 (General Identifying Restriction). Under model (2.18)

with Assumption 2.7, for any X,X ∈ Supp (Xi), γ
(
X
)

> γ (X) implies

NOT
((
Xj −Xj

)
β0 ≤ 0, ∀j = 1, ..., J

)
.

Proposition 2.2 generalizes our key identification result (Theorem 2.1). Notice that

Proposition 2.2 applies to all functionals γ on the conditional distribution yi|Xi that satisfy

the monotonicity assumption. Besides conditional expectations, there are many models

where conditional quantiles or higher-order conditional moments are more natural choices of

γ. In some cases where the whole conditional distribution yi|Xi can be ranked by first-order

or second-order stochastic dominance, we may aggregate the identifying information from

many choices of γ into a joint restriction on β0. We leave a further analysis of this topic to

future research.

2.8 Conclusion

This paper proposes a simple and robust method for semiparametric identification and esti-

mation in a panel multinomial choice model, exploiting the standard notion of multivariate

monotonicity in an index vector of observable characteristics.

Our key identification strategy using logical contraposition of multivariate monotonicity

is very simple, but it is exactly this conceptual simplicity that lends us the ability to

accommodate infinite dimensionality of unobserved heterogeneity and lack of additive

separability in consumer preferences. As the validity of this methodology essentially relies
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on nothing but monotonicity in a parametric index structure, it should be more widely

applicable beyond the multinomial choice settings we consider.

However, a more comprehensive or in-depth investigation of whether and how this

strategy can be adapted to the peculiarities of specific economic problems still requires a

substantial amount of future work to be done. For applications in industrial organization,

it might be worthwhile to inspect whether certain form of monotonicity can be preserved,

at least approximately, in the presence of additional features, such as random coefficients

and time-varying endogeneity, under certain conditions. In connection to microeconomic

theory, it might also be interesting to investigate whether theoretical results on monotone

comparative statics can be combined with our monotonicity-based method to provide a venue

of identification and estimation in endogenous economic systems.

Furthermore, the asymptotic theory of the semiparametric estimator considered in this

paper turns out to be interesting even in a binary choice model with point identification, as

it features a nonstandard interplay between the nonsmooth sample criterion and the effective

smoothing asymptotically provided by the first-stage estimator. Given that the asymptotic

theory of such estimators is of independent interest and is better studied under different

settings and notations, we refer interested readers to Gao and Xu (2020) for more details.
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Appendix

2.A Proof of Theorem 2.2

We first prove two lemmas before formally proving Theorem 2.2.

Lemma 2.3. Q : Sd−1 → R+ is continuous.

Proof. Recalling that ·vk
(
X−X

)
= Xk − Xk/

∥∥∥Xk −Xk

∥∥∥ whenever Xk 6= Xk while

vk
(
X−X

)
= 0 when Xk = Xk, we have

G (γj,t,s (Xi,ts))λj (Xi,ts; β) =G (γj,t,s (Xi,ts))
J∏
k=1

1

{
(−1)1{k=j} (Xikt −Xiks)

′
β ≥ 0

}

=G (γj,t,s (Xi,ts))
J∏
k=1

1

{
(−1)1{k=j} vk (Xit −Xis)

′
β ≥ 0

}

which is continuous in β with probability one, since vk (Xit −Xis) has no mass point except

possibly at 0, in which case the indicator degenerates to a constant over β ∈ Sd−1. Since

Xi,ts is i.i.d. across i, Sd−1 is compact, and the indicator function is bounded, all conditions

for Lemma 2.4 in Newey and McFadden (1994) are satisfied, by which we conclude that

Q = ∑
j,t,sQj,t,s is continuous on Sd−1.

Lemma 2.4. Under Assumptions 2.2, 2.5 and 2.6, supβ∈Sd−1

∣∣∣Q̂ (β)−Q (β)
∣∣∣ = Op (cN) .
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Proof. We first prove the convergence of Q̂j,t,s (β) to Qj,t,s (β) for each (j, t, s). For each

generic deterministic function γ̃j,t,s, define

Qj,t,s (β, γ̃) := E [G (γ̃j,t,s (Xi,ts))λj (Xi,ts; β)] ,

Q̂j,t,s (β, γ̃) := 1
n

n∑
i=1

G (γ̃j,t,s (Xi,ts))λj (Xi,ts; β) .

so that Q̂j,t,s (β) = Q̂j,t,s (β, γ̃j,t,s) and Qj,t,s (β) = Qj,t,s (β, γ). For notational simplicity we

suppress the subscript (j, t, s) for the moment.

Defining Q :=
{
G
(
γ̃
(
X
))
λ (Xi,ts; β) : γ̃ ∈ Γ, β ∈ Sd−1

}
, we first argue that Q is a P-

Donsker class based on Van Der Vaart and Wellner (1996). First, it is easy to show by

Assumption 2.5 that G (0) = 0, which together with the Lipschitz continuity of G, we have

E [G2 (γ̃ (Xi))] ≤ ME [γ̃2 (Xi)] < ∞ and E |G (γ̃ (Xi))| ≤ E |γ̃ (Xi)| ≤ supγ̃∈Γ E |γ̃ (Xi)| <

∞. Then, as Γ is P-Donsker, G◦ γ̃ must also be P-Donsker. Second, recall that λ (Xi,ts; β) is

the product of indicators of half planes, while the collection of 1
{(
Xk −Xk

)′
β ≥ 0

}
over

β ∈ Sd−1 is a well-known VC Class of functions (sets) and is thus P-Donsker. Finally, since

the indicator function is uniformly bounded and supγ̃∈Γ E |G (γ̃ (Xi))| < ∞, we conclude

that Q is also P-Donsker:

sup
β∈Sd−1

sup
γ̃∈Γ

∣∣∣Q̂ (β, γ̃)−Q (β, γ̃)
∣∣∣ = Op

(
N−

1
2
)
. (2.20)

Next, by Assumption 2.4, we have

sup
β∈Sd−1

|Q (β, γ̂)−Q (β, γ)| ≤ sup
β∈Sd−1

∫ ∣∣∣G (γ̂ (X))−G (γ (X))∣∣∣λj (X; β
)
dP
(
X
)

≤M
√∫ (

γ̂
(
X
)
− γ

(
X
))2

dP
(
X
)

= Op (cN) (2.21)
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by Lipschitz continuity of G, |λj| ≤ 1 and Cauchy-Schwarz. Combining (2.20) and (2.21),

we have

sup
β∈Sd−1

∣∣∣Q̂ (β, γ̂)−Q (β, γ)
∣∣∣ ≤ sup

β∈Sd−1
sup
γ̃∈Γ

∣∣∣Q̂ (β, γ̃)−Q (β, γ̃)
∣∣∣+ sup

β∈Sd−1

∣∣∣Q̂ (β, γ̂)−Q (β, γ̂)
∣∣∣

=Op

(
N−

1
2
)

+Op (cN) = Op (cN)

since N− 1
2 = Op (cN) for nonparametric estimators. Summing over all (j, t, s), we have

supβ∈Sd−1

∣∣∣Q̂ (β)−Q (β)
∣∣∣ = Op (cN).

Main Proof of Theorem 2.2

Proof. We verify Condition C.1 in Chernozhukov, Hong, and Tamer (2007, CHT thereafter)

so as to apply their Theorem 3.1. Condition C.1(a) on the nonemptiness and compactness

of parameter space is satisfied given Theorem 2.1. Condition C.1(b) on the continuity of the

population criterion function Q is proved by Lemma 2.3. Condition C.1(c) on measurability

of the sample criterion function is satisfied by its construction. Condition C.1(d)(e) regarding

the uniform convergence of Qn are satisfied by Lemma 2.4. Hence Theorem 3.1.(1) in CHT

implies the Hausdorff consistency of B̂. The consistency of the point estimator under the

additional assumption of point identification (i.e., B0 is a singleton) follows from Theorem

3.2 of CHT.

2.B Pairwise Time Homogeneity of Errors

As mentioned in Section 2.2.2, Assumption 2.3 is stronger than necessary, and our

identification strategy carries over under the weaker Assumption 2.3’, which requires that

εit ∼ εis| (Xi,ts,Ai) . To see why Proposition 2.1 still holds, consider:

E
[
yijt − yijs|Xi,ts =

(
X,X

)
,Ai

]
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=
∫
1

{
u
(
δj, Aij, εijt

)
≥ max

k 6=j
u
(
δk, Aik, εikt

)}
dP

(
εit|Xi,ts =

(
X,X

)
,Ai

)
−
∫
1

{
u
(
δj, Aij, εijs

)
≥ max

k 6=j
u (δk, Aik, εiks)

}
dP

(
εis|Xi,ts =

(
X,X

)
,Ai

)
=
∫
1

{
u
(
δj, Aij, ε̃ij

)
≥ max

k 6=j
u
(
δk, Aik, ε̃ik

)}
dP

(
ε̃i|Xi,ts =

(
X,X

)
,Ai

)
−
∫
1

{
u
(
δj, Aij, ε̃ij

)
≥ max

k 6=j
u (δk, Aik, ε̃ik)

}
dP

(
ε̃i|Xi,ts =

(
X,X

)
,Ai

)

=
∫  1

{
u
(
δj, Aij, ε̃ij

)
≥ maxk 6=j u

(
δk, Aik, ε̃ik

)}
−1

{
u
(
δj, Aij, ε̃ij

)
≥ maxk 6=j u (δk, Aik, ε̃ik)

}
 dP ( ε̃i|Xi,ts =

(
X,X

)
,Ai

)

where δ = Xβ0, δ = Xβ0, and ε̃i denotes generic realizations of εit and εis conditional on

Xi,ts =
(
X,X

)
and Ai. Notice that the second equality follows from the assumption that

εit ∼ εis| (Xi,ts,Ai).

Again, if δj ≤ δj and δk ≥ δk for all k 6= j, the bracketed term in the last line of the

displayed equation above must be nonpositive for all realizations of Ai and ε̃i, so that

E
[
yijt − yijs|Xit = X,Xis = X,Ai

]
≤ 0 for all realizations of Ai, which further implies that

γj,t,s
(
X,X

)
= E

[
E
[
yijt − yijs|Xi,ts =

(
X,X

)
,Ai

]∣∣∣Xi,ts =
(
X,X

)]
≤ 0.

Taking the logical contraposition again gives Proposition 2.1.

2.C Sufficient Conditions for Point Identification

In this section, we prove sufficient conditions for the point identification of β0. For simplicity

of notation, we fix T = 2.We first need to impose an assumption of strict multivariate

monotonicity on the function ψj defined in (2.5).

Assumption 2.8 (Strict Monotonicity of ψj). For any realized Ai, the function

ψj ( · ,Ai) : RJ → R is strictly increasing, i.e., if δj > δj for all j, then ψ
(
δ,Ai

)
> ψ (δ,Ai) .
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We note that Assumption 2.8 is implied by a stronger version of Assumption 2.1 together

with an additional condition on the support of u given (Xi,Ai).

Assumption 2.8’ (Strict Monotonicity of u). u (δijt, Aij, εijt) is strictly increasing in

the index δijt, for every realization of (Aij, εijt).

Assumption 2.8” (Overlapping Supports). Conditional on any realization of Xi and

Ai, we have ⋂Jj=1 int
(
Supp

(
u
(
X
′
ijtβ0, Aij, εijt

)))
6= ∅.

In particular, Assumption 2.8” is directly implied by the assumption of

Supp
(
u
(
X
′
ijtβ0, Aij, εijt

))
= R conditional on any realization of Xi and Ai, which is

again satisfied in additive panel multinomial choice models with scalar fixed effects a la

u
(
X
′
ijtβ0, Aij, εijt

)
= X

′
ijtβ0 + Aij + εijt under the assumption of Supp (εijt|Xi,Ai) = R as

commonly imposed in the literature.

Lemma 2.5. Assumptions 2.8’ and 2.8” imply Assumption 2.8.

Finally, we impose the following assumption on ∆Xi, with ∆Xij := Xij1 − Xij2 for all

individual i and product j across period 1 and period 2.

Assumption 2.9 (Full-Directional Support of ∆Xi). Suppose either (a) or (b) is true:

(a) 0 ∈ int (Supp (∆Xi)).

(b) There exists some k ∈ {1, ..., dx} such that βk0 6= 0 and Supp
(

∆Xk
ij

∣∣∣∆Xil, l 6= j
)

= R

for all j ∈ {1, ..., J}. Furthermore, for all j ∈ {1, ..., J}, Supp (∆Xij|∆Xil, l 6= j) is

not contained in a proper linear subspace of Rdx.

Assumption 2.9(a) is satisfied when (Xij) is continuous random vector. On the other

hand, Assumption 2.9(b) can accommodate discrete regressors generally, but requires one

continuous covariate with large support. Assumption 2.9 ensures that ∆X ′ijβ0 > 0 and

∆X ′ikβ0 < 0 for all k 6= j hold simultaneously with strictly positive probability.

Theorem 2.3 (Point Identification). Under Assumptions 2.2, 2.3, 2.8 and 2.9, β0 is

point identified on SD−1.
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Proof. Recall first that

γj
(
X,X

)
=
∫ [

ψj

(
δj,
(
−δk

)
k 6=j

,Ai

)
− ψj

(
δj, (−δk)k 6=j ,Ai

)]
dP

(
Ai|Xi =

(
X,X

))
.

Hence, under Assumption 2.8, we have

δj < δj and δk > δk for all k 6= j ⇒ γj,t,s
(
X,X

)
> 0, (2.22)

since ψj
(
δj,
(
−δk

)
k 6=j

,Ai

)
< ψj

(
δj, (−δk)k 6=j ,Ai

)
for every realization of Ai. Together

with Assumption 2.9, we deduce that

P {γj,t,s (Xi) > 0} ≥ P
{

∆X ′ijβ0 > 0 ∧ ∆X ′ikβ0 < 0, ∀k 6= j
}
> 0.

Now for any β ∈ SD−1\ {β0}, define for any product j,

Hj (β) :=
{
v ∈ Supp (∆Xi) : v′jβ < 0 < v

′

jβ0, ∧ v
′

kβ0 < 0 < v
′

kβ, ∀k 6= j
}
.

As β 6= β0, by Assumption 2.9 we know that

P (∆Xi ∈ Hj (β)) > 0. (2.23)

Moreover, for any realization of Xi s.t. ∆Xi ∈ Hj (β), we must have: (i) γj,t,s (Xi) > 0 by

(2.22), and (ii):

λj (∆Xi, β) =
J∏
k=1

1

{
(−1)1{k=j}∆X ′ikβ ≥ 0

}
= 1

so that G (γj (Xi))λj (∆Xi, β) = G (γj (Xi)) > 0 for all such Xi. Hence,

E [G (γj (Xi))|∆Xi ∈ Hj (β)] > 0. (2.24)
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Combining (2.23) and (2.24), we have:

Qj (β) = E [G (γj (Xi))λj (∆Xi, β)]

≥ E [G (γj (Xi))λj (∆Xi, β)1 {∆Xi ∈ Hj (β)}]

= E [G (γj (Xi))1 {∆Xi ∈ Hj (β)}]

= E [G (γj (Xi))|∆Xi ∈ Hj (β)]P (∆Xi ∈ Hj (β))

> 0 = Qj (β0) .

2.D Additional Simulation Results

2.D.1 Adaptive-Grid Computation Algorithm

In this section, we illustrate a typical output of our second-step computation algorithm based

on the adaptive-grid search over the angle space, and show that the algorithm works well.

For this purpose we consider a simplified DGP without fixed effect Aij. We draw each of X(d)
ijt

independently across each dimension d ∈ {1, ..., D} from the standard normal distribution,

and set the distribution of the idiosyncratic shock to be εijt ∼ TIEV (0, 1), so that we can

skip the first-step estimation and directly calculate the true conditional choice probability

conditioned on each Xi. Note that the conditions for point identification of β0 are satisfied.

Because we are only seeking to illustrate the validity of the algorithm itself, we set N to be

large with N = 107 and D = 3, J = 3, T = 2. Then we apply our adaptive-grid algorithm to

search for β0.

Figure 2.2 shows how our computational algorithm works in finding the true unknown

θ0, the angle representation of the true β0 in the Θ space. The horizontal and vertical

axes correspond to the two polar coordinates that are associated with S2. The blue dots

represent the points that our algorithm searches over but find not to be minimizers of the
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Figure 2.2: The Argmin Set in Θ

sample criterion Q̂. The black box indicates the area that the minimizers for the sample

criterion Q̂ lie within, or more precisely, a rectangular enclosure of the numerical argmin set.

The big black dot stands for the true parameter value θ0 = (0.4205, 0.4636)
′
.

It is evident from Figure 2.2 that our adaptive-grid algorithm is able to correctly locate an

area that covers the true θ0, which lies within the small black box representing the estimated

set of θ̂, demonstrating the efficacy of the algorithm. Besides, it is worth mentioning that

our algorithm computes reasonably fast, as it first performs a rough search on the whole

unit sphere S2, then focuses on the area where the minimizers are most likely to lie. In the

last few rounds of search, the algorithm evaluates the criterion function Q̂ on a relatively

small area of points shown by those blue and red dots in Figure 2.2 until the desired level of

accuracy is achieved.

For a more transparent representation, we translate the angles θ in the polar coordinates

into unit vectors β on the unit sphere S2 and show it in Figure 2.3.
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Figure 2.3: The Argmin Set in S2

Figure 2.3 is now plotted on S2 ⊆ R3. Again the blue dots represent the points that do

not achieve the minimum of Q̂; the black box shows an enclosing set of the minimizers of

Q̂. The big black dot represents the true parameter value β0, which resides inside the black

box of the minimizers of Q̂. Figure 2.3 illustrates that our computation algorithm is able to

locate a tight area around β0.

2.D.2 Results Varying D, J, T

In this section, we show how our estimator performs under different (D, J, T ). We maintain

N = 10, 000 as in the baseline configuration. We draw Zi ∼ N (0, 1) and construct A and

X according to the following specifications:

Aij ∼



0, j = 1,

[Zi]+ , j = 2,

U [−0.25, 0.25] , j = 3, ..., J,

X
(d)
ijt ∼



U [−1, 1] , d = 1,

Zi +N (0, 6) , d = 2,

N (0, 1) , d = 3, ..., D,
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which coincides with the baseline model at D = 3, J = 3. We emphasize that in all

configurations we allow for nonlinear dependence between A and X via the latent variable

Zi.

We report in Table 2.9 the performance of our estimators for each of the corresponding

configurations across all M = 100 simulations.

Table 2.9: Performance Varying D, J, T

rMSE J = 3 J = 4

T = 2 T = 4 T = 2 T = 4

D = 3 0.0745 0.0397 0.1137 0.0722

D = 4 0.0945 0.0580 0.1357 0.0807

MND J = 3 J = 4

T = 2 T = 4 T = 2 T = 4

D = 3 0.0648 0.0348 0.1005 0.0639

D = 4 0.0864 0.0539 0.1233 0.0750

From Table 2.9 we find a larger T improves the performance of our estimator, which

is arguably more practically relevant given the increasing availability of long panel data

nowadays. The improvement in performance with larger T is because our method can extract

more information from T × (T − 1) ordered pairs of time periods which effectively increase

the total number of observations. We also find that increase in D or J adversely affects the

performance of our estimator, which is expected because more information is required to

estimate more covariates (D) or deal with more alternatives (J). However, as can be seen

from Table 2.9, the magnitude of such decline in performance is mild. For example, when J

is 4 and T is 4, an increase in the dimension of product characteristics D from 3 to 4 will

increase the rMSE from 0.0722 to 0.0807. Likewise, when D = 4 and T = 4, an increase in

J from 3 to 4 will increase the rMSE from 0.0580 to 0.0807.
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Chapter 3

Logical Differencing in Dyadic

Network Formation Models with

Nontransferable Utilities1

3.1 Introduction

This paper considers a semiparametric model of dyadic network formation under nontransfer-

able utilities (NTU), which arise naturally in the modeling of real-world social interactions

that require bilateral consent. For instance, friendship is usually formed only when both

individuals in question are willing to accept each other as a friend, or in other words, when

both individuals derive sufficiently high utilities from establishing the friendship. It is often

plausible that the two individuals may derive very different utilities from the friendship

for a variety of reasons: for example, one of them may simply be more introvert than the

other and derive lower utilities from the friendship. In addition, there may not be a feasible

way to perfectly transfer utilities between the two individuals. Monetary payments may

not be customary in many social contexts, and even in the presence of monetary or in-kind
1Joint with Wayne Gao and Sheng Xu.
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transfers, utilities may not be perfectly transferable through these feasible forms of transfers,

say, when individuals have different marginal utilities with respect to these transfers.2 Given

the considerable academic and policy interest in understanding the underlying drivers of

network formation,3 it is not only theoretically interesting but also empirically relevant to

incorporate NTU in the modeling of network formation.

This paper contributes to the line of econometric literature on network formation

by introducing and incorporating nontransferable utilities into dyadic network formation

models.4 Previous work in this line of literature focuses primarily on case of transferable

utilities, as represented in Graham (2017a), which considers a parametric model with

homophily effects and individual unobserved heterogeneity of the following form:

Dij = 1

{
w (Xi, Xj)

′
β0 + Ai + Aj ≥ Uij

}
(3.1)

where Dij is an observable binary variable that denotes the presence or absence of a link

between individual i and j, w (Xi, Xj) represents a (symmetric) vector of pairwise observable

characteristics specific to ij generated by a known function w of the individual observable

characteristics Xi and Xj of i and j, while Ai and Aj stand for unobserved individual-specific

degree heterogeneity and Uij is some idiosyncratic utility shock. Model (3.1) essentially says

that, if the (stochastic) joint surplus generated by a bilateral link sij := w (Xi, Xj)
′
β0 +Ai+

Aj − Uij exceeds the threshold zero, then the link between i and j is formed. The model

implicitly assumes that the link surplus can be freely distributed among the two individuals i
2See surveys by Aumann (1967), Hart (1985) and McLean (2002) for discussions on the implications of

NTU on link (bilateral relationship) and group formation from a micro-theoretical perspective.
3For example, the formation of friendship among U.S. high-school students has been studied by a long

line of literature, such as Moody (2001), Currarini, Jackson, and Pin (2009, 2010), Boucher (2015), Currarini
et al. (2016), Xu and Fan (2018) among others.

4It should be pointed out that the line of econometric literature on strategic network formation models,
which primarily uses pairwise stability (Jackson and Wolinsky, 1996a) as the solution concept for network
formation, often builds NTU (along with link interdependence) into the econometric specification from
scratch. See, for example, De Paula, Richards-Shubik, and Tamer (2018b), Graham (2016a), Leung (2015a),
Menzel (2015b), Mele (2017a), Mele (2017c) and Ridder and Sheng (2017a). This paper does not belong
to that line of literature but instead contributes to the line of econometric literature on dyadic network
formation models, which abstracts away from link interdependence but usually incorporates more flexible
forms of unobserved individual heterogeneity.
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and j, and that bargaining efficiency is always achieved, so that the undirected link is formed

if and only if the link surplus is positive. Given this specification, Graham (2017a) provides

consistent and asymptotically normal maximum-likelihood estimates for the homophily

effect parameters β0, assuming that the exogenous idiosyncratic pairwise shocks Uij are

independently and identically distributed with a logistic distribution. Recently, Candelaria

(2016) and Toth (2017) provide semiparametric generalizations of Graham (2017a), while

Gao (2020) established nonparametric identification of a class of index models that further

generalize (3.1).

This paper, however, generalizes Graham (2017a) along a different direction, and seeks to

incorporate the natural micro-theoretical feature of NTU into this class of network formation

models. To illustrate5, consider the following simple adaption of model (3.1) with two

threshold-crossing conditions:

Dij = 1

{
w (Xi, Xj)

′
β0 + Ai ≥ Uij

}
· 1
{
w (Xi, Xj)

′
β0 + Aj ≥ Uji

}
, (3.2)

where the unobserved individual heterogeneity Ai and Aj separately enter into two different

threshold-crossing conditions. This formulation could be relevant to scenarios where Ai

represents individual i’s own intrinsic valuation of a generic friend: for a relatively shy

or introvert person i, a lowerAi implies that i is less willing to establish a friendship

link, regardless of how sociable the counterparty is. For simplicity, suppose for now that

w (Xi, Xj) ≡ 0 and Uij ∼iid Uji ∼ F . Focusing completely on the effects of Ai and Aj, it is

clear that the TU model (3.1) implies that only the sum of “sociability”, Ai + Aj, matters:

the linking probability among pairs with Ai = Aj = 1 (two moderately social persons) should

be exactly the same as the linking probability among pairs with Ai = 2 and Aj = 0 (one

very social person and one very shy person), which might not be reasonable or realistic in

social scenarios. In comparison, the linking probability among pairs with Ai = 2 and Aj = 0
5Starting from Section 3.2, we consider a more general specification than the illustrative model (3.1)

introduced here.
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is lower than the linking probability among pairs with Ai = Aj = 1 under the NTU model

(3.2) with i.i.d. Uij and Uji that follow any log-concave distribution6:

E [Dij|w (Xi, Xj) ≡ 0, Ai = 2, Aj = 0]

= F (0)F (2)

< F (1)F (1)

= E [Dij|w (Xi, Xj) ≡ 0, Ai = Aj = 1]

This is intuitive given the observation that, under bilateral consent, the party with relatively

lower utility is the pivotal one in link formation. Moreover, even though we maintain

strict monotonicity in the unobservable characteristics Ai and Aj, the NTU setting can

still effectively incorporate homophily effects on unobserved heterogeneity: given that

w (Xi, Xj) ≡ 0 and Ai +Aj = 2, the linking probability is effectively decreasing in |Ai − Aj|

under log-concave F . Hence, by explicitly modeling NTU in dyadic network formation, we

can accommodate more flexible or realistic patterns of conditional linking probabilities and

homophily effects that are not present under the TU setting.

However, the NTU setting immediately induces a key technical complication: as can be

seen explicitly in model (3.2), the observable indexes (W ′
ijβ0 and W ′

jiβ0) and the unobserved

heterogeneity terms (Ai and Aj) are no longer additively separable from each other. In

particular, notice that, even though the utility specification for each individual inside each of

the two threshold-crossing conditions in model (3.2) remains completely linear and additive,

the multiplication of the two (nonlinear) indicator functions directly destroys both linearity

and additive separability, rendering inapplicable most previously developed econometric
6A distribution is log-concave if F (x)λ F (y)1−λ ≤ F (λx+ (1− λ) y). Many commonly used distri-

butions, such as uniform, normal, exponential, logistic, chi-squared distributions, are log-concave. See
Bagnoli and Bergstrom (2005) for more details on log-concave distributions from a microeconomic theoretical
perspective.
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techniques that arithmetically “difference out” the “two-way fixed effects” Ai and Aj based

on additive separability.7

Given this technical challenge, this paper proposes a new identification strategy termed

logical differencing, which helps cancel out the unobserved heterogeneity terms, Ai and Aj,

without requiring additive separability but leveraging the logical implications of multivariate

monotonicity in model (3.2). The key idea is to construct an observable event involving the

intersection of two mutually exclusive restrictions on the fixed effects Ai and Aj, which

logically imply an event that can be represented without Ai or Aj. Specifically, in the

context of the illustrative model (3.2) above, we start by considering the event where a

given individual i is more popular than another individual j among a group of individuals

k with observable characteristics Xk = x while i is simultaneously less popular than

another individual j among a group of individuals with a certain realization of observable

characteristics x. This is the same as the conditioning event in Toth (2017) and analogous

to the tetrad comparisons made in Candelaria (2016). However, instead of using arithmetic

differencing to cancel out the unobserved heterogeneity Ai and Aj as in Candelaria (2016)

and Toth (2017), we make the following logical deductions based on the monotonicity of

the conditional popularity of i in w (Xi, x)
′
β0 and Ai. First, the event that i is more

popular than another individual j among the group of individuals with Xk = x implies that

either w (Xi, x)
′
β0 > w

(
Xj, x

)′
β0 or Ai > Aj, while the event that i is less popular than

another individual j among a different group of individuals with Xl = x implies that either

w (Xi, x)
′
β0 < w

(
Xj, x

)′
β0 or Ai < Aj. Second, when both events occur simultaneously, we

can logically deduce that either w (Xi, x)
′
β0 > w

(
Xj, x

)′
β0 or w (Xi, x)

′
β0 < w

(
Xj, x

)′
β0

must have occurred, because Ai > Aj and Ai < Aj cannot simultaneously occur. Intuitively,

the “switch” in the relative popularity of i and j among the two groups of individuals with
7Equivalently, one could write model (3.2) in an alternative form as a “single” composite threshold-crossing

condition:
Dij = 1

{
min

{
W

′

ijβ0 +Ai − Uij ,W
′

jiβ0 +Aj − Uji
}
≥ 0
}
,

where additive separability is again lost in this alternative formulation.
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characteristics x and x cannot be driven by individual unobserved heterogeneity Ai and Aj,

and hence when we indeed observe such a “switch”, we obtain a restriction on the parametric

indices w (Xi, x)
′
β0, w (Xi, x)

′
β0, w (Xi, x)

′
β0, and w

(
Xj, x

)′
β0, which helps identify β0.

Based on this identification strategy we provide sufficient conditions for point identifica-

tion of the parameter β0 up to scale normalization as well as a consistent estimator for β0.

Our estimator has a two-step structure, with the first step being a standard nonparametric

estimator of conditional linking probabilities, which we use to assert the occurrence of the

conditioning event, while in the second step we use the identifying restriction on β0 when the

conditioning event occurs. The computation of the estimator essentially follows the same

method proposed in (Gao and Li, 2020), with some adaptions to the network data setting.

We analyze the finite-sample performance in a simulation study, and present an empirical

illustration of our method using data from Nyakatoke on risk-sharing network collected by

Joachim De Weerdt.

This paper belongs to the line of literature that studies dyadic network formation in a

single large network setting, including Blitzstein and Diaconis (2011a), Chatterjee, Diaconis,

and Sly (2011a), Yan and Xu (2013a), Yan, Leng, and Zhu (2016), Graham (2017a),

Charbonneau (2017), Dzemski (2017a), Jochmans (2017a), Yan, Jiang, Fienberg, and Leng

(2018b), Candelaria (2016), Toth (2017) and Gao (2020). According to our knowledge Shi

and Chen (2016) is the only previous paper that explicitly incorporates NTU into dyadic

network formation models, but Shi and Chen (2016) considers a fully parametric model and

establishes the consistency and asymptotic normality of the maximum likelihood estimators.

In contrast, we consider a semiparametric model here where the functional form of the

idiosyncratic shock distribution is left unrestricted.

This paper is also related to a line of research that utilizes the form of link formation

models considered here in order to study structural social interaction models: for instance,

Arduini et al. (2015a), Auerbach (2016a), Goldsmith-Pinkham and Imbens (2013a), Hsieh
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and Lee (2016a) and Johnsson and Moon (2017). In these papers, the social interaction

models are the main focus of identification and estimation, while the link formation models

are used mainly as a tool (a control function) to deal with network endogeneity or unobserved

heterogeneity problems in the social interaction model. Even though some of the network

formation models considered in this line of literature is consistent with the NTU setting, this

line of literature is usually not primarily concerned with the full identification and estimation

of the network formation model itself.

It should be pointed out that in this paper we do not consider link interdependence

in network formation. See Graham (2015a), Chandrasekhar (2016a) and de Paula

(2016a) for reviews on the econometric literature on strategic network formation with link

interdependence.

This paper is also a companion paper to Gao and Li (2020), which similarly leverages

multivariate monotonicity in a multi-index structure under a panel multinomial choice

setting, which incorporate rich individual-product specific unobserved heterogeneity in the

form of an infinite-dimensional fixed effect that enters into individual’s utility functions

in an additively nonseparable way. The structural similarity between network data and

panel data has long been noted in the econometric literature, but it should also be pointed

out that the network structure considered in this paper is technically more complicated

than the panel structure, as there are no direct ways in the network setting to make

“intertemporal comparison” as in the panel setting that holds the fixed effects unchanged

across two observable periods of time. It is precisely this additional complication induced

by the network setting that requires the technique of logical differencing proposed in this

paper.

The rest of the paper is organized as follows. In Section 3.2, we describe the general

specifications of the dyadic network formation model we consider. Section 3.3 establishes

identification of the parameter of interests in our model, and also provides a consistent tetrad
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estimator. Simulation results are reported in Section 3.4. We present an empirical illustration

of our method using the risk-sharing data of Nyakatoke in Section 3.5. We conclude with

Section 3.6. Proofs are available in the Appendix.

3.2 A Nonseparable Dyadic Network Formation Model

We consider the following dyadic network formation model:

E [Dij|Xi, Xj, Ai, Aj] = φ
(
w (Xi, Xj)

′
β0, Ai, Aj

)
(3.3)

where:

• i ∈ {1, ..., n} denote a generic individual in a group of n individuals.

• Xi is a Rdx-valued vector of observable characteristics for individual i. This could

include wealth, age, education and ethnicity of individual i.

• Dij denotes a binary observable variable that indicates the presence or absence of an

undirected and unweighted link link between two distinct individuals i and j: Dij = Dji

for all pairs of individuals ij, with Dij = 1 indicating that ij are linked while Dij = 0

indicating that ij are not linked.

• w : Rdx × Rdx → Rdw is a known function that is symmetric8 with respect to its two

vector arguments.

• β0 ∈ Rdβ is an unknown finite-dimensional parameter of interest. Assume β0 6= 0 so

that we may normalize ‖β0‖ = 1, i.e., β0 ∈ Sdβ−1.

• Ai is an unobserved scalar-valued variable that represents unobserved individual

heterogeneity.
8Our method can also be adapted to the case with asymmetric w. See Remark 3.1.
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• φ : R3 → R is an unknown measurable function that is symmetric with respect to its

second and third arguments.

In addition, we impose the following two assumptions:

Assumption 3.1 (Monotonicity). φ is weakly increasing in each of its arguments.

Assumption 3.1 is the key assumption on which our identification analysis is based, which

requires that the conditional linking probability between individuals with characteristics

(Xi, Ai) and (Xj, Aj) be monotone in a parametric index δij := w (Xi, Xj)
′
β0 as well as

the unobserved individual heterogeneity terms Ai and Aj. It should be noted that, given

monotonicity, increasingness is without loss of generality as φ, β0 and Ai, Aj are all unknown

or unobservable. Also, Assumption 3.1 is only requiring that φ is monotonic in the index

w (Xi, Xj)
′
β0 as a whole, not individual components of w (Xi, Xj). Therefore, we may

include nonlinear or non-monotone functions w (·, ·) on the observable characteristics as long

as Assumption 3.1 is maintained.

Next, we also impose a standard random sampling assumption:

Assumption 3.2 (Random Sampling). (Xi, Ai) is i.i.d. across i ∈ {1, ..., n}.

In particular, Assumption 3.2 allows arbitrary dependence structures between the

observable characteristics Xi and the unobservable characteristic Ai.

Model (3.3) along with the specifications and the two assumptions introduced above

encompass a large class of dyadic network formation models in the literature. For example,

the standard dyadic network formation model (3.1) studied by Graham (2017a) can be

written as

E [Dij|Xi, Xj, Ai, Aj] = F
(
w (Xi, Xj)

′
β0 + Ai + Aj

)
where F is the CDF of the standard logistic distribution. For the semiparametric version

considered by Candelaria (2016); Toth (2017); Gao (2020), we can simply take F to be some
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unknown CDF. In either case, the monotonicity of the CDF F and the additive structure of

w (Xi, Xj)
′
β0 + Ai + Aj immediately imply Assumption 3.1.

However, our current model specification and assumptions further incorporate a larger

class of dyadic network formation models with potentially nontransferable utilities. Specifi-

cally, consider the joint requirement of two threshold-crossing conditions,

Dij = 1

{
u
(
w (Xi, Xj)

′
β0, Ai, Aj, εij

)
≥ 0

}
· 1
{
u
(
w (Xj, Xi)

′
β0, Aj, Ai, εji

)
≥ 0

}
(3.4)

where u is an unknown function that is not necessarily symmetric with respect to its second

and third arguments (Ai, Aj), and (εij, εji) are idiosyncratic pairwise shocks that are i.i.d.

across the each unordered ij pair with some unknown distribution. In particular, notice

that model (3.2) is a special case of (3.4). Suppose we further impose the following two

lower-level assumptions Assumption 3.1a and 3.1b:

Assumption 3.1a. (εij, εji) are independent from (Xi, Ai, Xj, Aj).

Assumption 3.1b. u is weakly increasing in its first three arguments.

Then, the conditional linking probability

E [Dij|Xi, Xj, Ai, Aj]

=
∫
1

{
u
(
w (Xi, Xj)

′
β0, Ai, Aj, εij

)
≥ 0

}
× 1

{
u
(
w (Xj, Xi)

′
β0, Aj, Ai, εji

)
≥ 0

}
dP (εij, εji)

=: φ
(
w (Xi, Xj)

′
β0, Ai, Aj

)
. (3.5)

can be represented by model (3.3) with Assumption 3.1 satisfied.

In particular, notice that we do not require εij ⊥ εji. In fact, εij ≡ εji is readily

incorporated in our model. If u is furthermore assumed to be symmetric with respect to

its second and third arguments (Ai and Aj), then our model degenerates to the case of
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transferable utilities,

Dij = 1

{
u
(
w (Xi, Xj)

′
β0, Ai, Aj, εij

)
≥ 0

}
,

where effectively only one threshold crossing condition will be determining the establishment

of a given network link.

Remark 3.1 (Symmetry of w (Xi,Xj)). To explain the key idea of our identification

strategy in a notation-economical way, we will be focusing on the case of symmetric w in

the most of the following sections. However, it should be pointed out that our method can

also be applied to the case where w is allowed to be asymmetric in (3.4), so that individual

utilities based on observable characteristics can also be made asymmetric (nontransferable).

In that case, model (3.4) need to be modified as

E [Dij|Xi, Xj, Ai, Aj] = φ
(
w (Xi, Xj)

′
β0, w (Xj, Xi)

′
β0, Ai, Aj

)
, (3.6)

where w (Xi, Xj)
′
β0 may be different from w (Xj, Xi)

′
β0, but φ is symmetric with respect

to its first two arguments w (Xi, Xj)
′
β0, w (Xj, Xi)

′
β0 whenever Ai = Aj. Moreover,

Assumption 3.1 should also be understood as monotonicity with respect to all four arguments

of φ. See Appendix (3.B) for more discussion on how our identification strategy can be

adapted to accommodate asymmetric w under appropriate conditions.

3.3 Identification and Estimation

3.3.1 Identification via Logical Differencing

In this section, we explain the key idea of our identification strategy. We construct a mutually

exclusive event to cancel out the unobservable heterogeneity Ai and Aj, which leads to an

identifying restriction on β0. We call this technique “logical differencing”.
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For each fixed individual i, and each possible x ∈ Rdx , define

ρi (x) := E [Dik|Xk = x] (3.7)

as the linking probability of this specific individual i with a group of individuals, individually

indexed by k, with the same observable characteristics Xk = x (but potentially different fixed

effects Ak). Clearly, ρi (x) is directly identified from data in a single large network.

Suppose that individual i has observed characteristics Xi = xi and unobserved

characteristics Ai = ai. Then, by model (3.3) we have

ρi (x) = E [E [Dik|Xk = x,Ak, Xi = xi, Ai = ai]|Xk = x]

= E
[
φ
(
w (xi, x)

′
β0, ai, Ak

)∣∣∣Xk = x
]

=: ψx
(
w (xi, x)

′
β0, ai

)
, (3.8)

where the expectation in the second to last line is taken over Ak conditioning on Xk = x. As

we allow Ak and Xk to be arbitrarily correlated, the ψx function defined in the last line of

(3.8) is dependent on x. In the same time, notice that ψx does not depend on the identity of

i beyond the values of w (xi, x)
′
β0 and ai. By Assumption 3.1, ψx

(
w (xi, x)

′
β0, ai

)
must be

bivariate weakly increasing in the index w (xi, x)
′
β0 and the unobserved heterogeneity scalar

ai. We now show how to use bivariate monotonicity to obtain identifying restrictions on β0.

Fixing two distinct individuals i and j in the population, we first consider the event that

individual i is strictly more popular than individual j among the group of individuals with

observed characteristics Xk = x:

ρi (x) > ρj (x) , (3.9)

which is an event directly identifiable from observable data given (3.7). Even though event

(3.9) is the same conditioning event as considered in Toth (2017) and analogous to the tetrad
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comparisons made in Candelaria (2016), we now exploit the following logical deduction based

on the bivariate monotonicity of the conditional popularity of i in w (Xi, x)
′
β0 and Ai without

the assumption of additivity between them. Specifically, writing (xi, ai) and
(
xj, aj

)
as the

observable and unobservable characteristics of individuals i and j, by (3.8) we have

ρi (x) > ρj (x) .

⇔ ψx
(
w (xi, x)

′
β0, ai

)
> ψx

(
w
(
xj, x

)′
β0, aj

)
⇒

{
w (xi, x)

′
β0 > w

(
xj, x

)′
β0

}
OR

{
ai > aj

}
, (3.10)

Note that the last line of equation (3.10) is a natural necessary (but not sufficient) condition

for ρi (x) > ρj (x) under bivariate monotonicity.

Now, consider the event that individual i is strictly less popular than individual j among

the group of individuals with observed characteristics Xh = x, i.e.,

ρi (x) < ρj (x) . (3.11)

Then, by a similar argument to (3.10), we deduce

ρi (x) < ρj (x) ⇒
{
w (xi, x)

′
β0 < w

(
xj, x

)′
β0

}
OR

{
ai < aj

}
. (3.12)

Notice that the event
{
ai < aj

}
in (3.12) is mutually exclusive with the event

{
ai > aj

}
that

shows up in (3.10).

Next, consider the event that the two events (3.9) and (3.11) described above simultane-

ously happen. Then, by (3.10), (3.12) and basic logical operations, we have

{
ρi (x) > ρj (x)

}
AND

{
ρi (x) < ρj (x)

}
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⇒
({
w (xi, x)

′
β0 > w

(
xj, x

)′
β0

}
OR

{
ai > aj

})
AND

({
w (xi, x)

′
β0 < w

(
xj, x

)′
β0

}
OR

{
ai < aj

})
⇔

({
w (xi, x)

′
β0 > w

(
xj, x

)′
β0

}
AND

{
w (xi, x)

′
β0 < w

(
xj, x

)′
β0

})
OR

({
w (xi, x)

′
β0 > w

(
xj, x

)′
β0

}
AND

{
ai < aj

})
OR

({
ai > aj

}
AND

{
w (xi, x)

′
β0 < w

(
xj, x

)′
β0

})
OR

({
ai > aj

}
AND

{
ai < aj

})
⇒

({
w (xi, x)

′
β0 > w

(
xj, x

)′
β0

}
AND

{
w (xi, x)

′
β0 < w

(
xj, x

)′
β0

})
OR

{
w (xi, x)

′
β0 > w

(
xj, x

)′
β0

}
OR

{
w (xi, x)

′
β0 < w

(
xj, x

)′
β0

}
⇔

{(
w (xi, x)− w

(
xj, x

))′
β0 > 0

}
OR

{(
w (xi, x)− w

(
xj, x

))′
β0 < 0

}
, (3.13)

The derivations above exploit two simple logical properties: first,

{
ai > aj

}
AND

{
ai < aj

}
= FALSE,

and second,

{
w (xi, x)

′
β0 > w

(
xj, x

)′
β0

}
AND

{
ai < aj

}
⇒

{
w (xi, x)

′
β0 > w

(
xj, x

)′
β0

}
,

which uses only necessary but not sufficient condition, so that we can obtain an identifying

restriction (3.13) on β0 that does not involve ai nor aj. These two forms of logical operations

together enable us to “difference out” (or “cancel out”) the unobserved heterogeneity terms

ai and aj.

In contrast with various forms of “arithmetic differencing” techniques proposed in the

econometric literature (including Candelaria, 2016 and Toth, 2017 specific to the dyadic

network formation literature), our proposed technique does not rely on additive separability
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between the parametric index w (xi, x)
′
β0 and the unobserved heterogeneity term ai.

Instead, our identification strategy is based on multivariate monotonicity and utilizes logical

operations rather than standard arithmetic to cancel out the unobserved heterogeneity terms.

Hence we term our method “logical differencing”.

The identifying arguments above are derived for a fixed pair of individuals i and j,

but clearly the arguments can be applied for any pair of individuals ij with observable

characteristics xi and xj. Writing

τij (x, x) := 1 {ρi (x) > ρj (x)} · 1 {ρi (x) < ρj (x)} ,

λ (x, x;xi, xj; β) := 1

{
(w (xi, x)− w (xj, x))

′
β0 ≤ 0

}
· 1
{

(w (xi, x) < w (xj, x))
′
β0 ≥ 0

}
,

for each β ∈ Sm−1, we summarize the identifying arguments above by the following lemma.

Lemma 3.1 (Identifying Restriction). Under model (3.3) and Assumptions 3.1 and 3.2,

we have.

τij (x, x) = 1 ⇒ λ (x, x;xi, xj; β0) = 0.

A simple (but clearly not unique) way to build a criterion function based on the above

lemma is to define

Q (β) := Eij,kl [τij (Xk, Xl)λij (Xk, Xl;Xi, Xj; β)] , (3.14)

where the expectation is Eij,kl taken over random samples of ordered tetrads (i, j, k, l)

from the population, and (Xi, Xj, Xk, Xl) denote the random variables corresponding to

the observable characteristics of (i, j, k, l). According to Lemma 3.1, Q (β0) = 0, which is
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always smaller than or equal to Q (β) ≥ 0 = Q (β0) for any β 6= β0 because τij ≥ 0 and

λij ≥ 0 by construction.

Observing that the scale of β0 is never identified, we write

B0 :=
{
β ∈ Sdβ−1 : Q (β) = 0

}

to represent the normalized “identified set” relative to the criterion Q defined above. Lemma

3.1 implies that β0 ∈ B0, but in general there is no guarantee that B0 is a singleton. The

next subsection contains a set of sufficient conditions that guarantees B0 = {β0}.

3.3.2 Sufficient Conditions for Point Identification

We now present a set of sufficient conditions that guarantee point identification of β0 on the

unit sphere Sm−1, where for notational simplicity m := dβ.

Assumption 3.3 (Full Directional Support). There exist a pair of x, x, both of which

lie in the support of Supp (Xi), such that Supp (w (x,Xi)− w (x,Xi)) contains all directions

in Rm.

When w (x, x) is a component-wise Euclidean distance function, i.e., wh (x, x) = |xh − xh|

where h indexes each coordinate of possibly vector valued w (·, ·) function, Assumption 3.3 is

satisfied if Supp (Xi) has nonempty interior9, which is analogous to the standard assumption

imposed for point identification on the unit sphere. When some components of w (x,Xj) have

discrete range space, we need to require that at least one component of w (x,Xi)−w (x,Xi)

have full support on R and the coordinate of β0 it corresponds to is nonzero, such that it

creates enough variation in w (x,Xi)− w (x,Xi) to guarantee Assumption 3.3 is satisfied.

9When Supp (Xi) has nonempty interior, there exist x, x ∈ Supp (Xi) such that x >> x in the
point-wise sense and ×dx

h=1 [xh, xh] ⊆ int (Supp (Xi)). In particular, 1
2 (x+ x) ∈ int (Supp (Xi)) and

thus 0 ∈ int (Supp (w (x,Xi)− w (x,Xi))). Consequently, one can construct a ε−ball around origin for
Supp (w (x,Xi)− w (x,Xi)) by choosing Xi from ×dx

h=1 [xh, xh] and Assumption 3.3 is satisfied.
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Assumption 3.4 (Conditional Support of Ai). Ai is continuously distributed on the

same support, conditional on Xi = xi for any xi ∈ supp (Xi).

Assumption 3.5 (Continuity of φ). φ is continuous with respect to the second and third

arguments.

Assumption 3.4 together with Assumption 3.2 implies that conditional on Xi and Xj,

for two randomly sampled agents i, j, 0 is in the support of |Ai − Aj|. Assumption 3.5 then

ensures that τij (x, x) = 1 occurs with strictly positive probability, which is required for the

point identification result.

Next, we lay out the lemma that will be used in the proof of point identification of β0.

Lemma 3.2 (Tools for Point Identification). Under model (3.3), Assumptions 3.1, 3.2,

3.3, 3.4, and 3.5, for each β ∈ Sm−1\β0 , there exist xi, xj, x, and x all in the support of Xi

such that

τij (x, x) = 1, (3.15)

λij (x, x;xi, xj; β0) = 0, (3.16)

λij (x, x;xi, xj; β) = 1. (3.17)

We are now ready to present the point identification result.

Theorem 3.1 (Point Identification of β0). Under model (3.3) and Assumptions 3.1, 3.2,

3.3, 3.4, and 3.5. Then β0 is the unique minimizer of Q (β) defined in 3.14 over the unit

sphere Sdβ−1. Furthermore, for any ε > 0, there exists δ > 0 such that

inf
β∈Sdβ−1\B(β0,ε)

Q (β) ≥ Q (β0) + δ,

where B (β0, ε) =
{
β ∈ Sdβ−1 : ‖β − β0‖ ≤ ε

}
.
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Remark 3.2 (Asymmetry of w, Continued). In Appendix (3.B), we show how the

identification arguments and assumptions above can be adapted to accommodate asymmetry

of w. In short, the technique of logical differencing applies without changes, but the

identifying restriction we obtained become weaker. In particular, when w is antisymmetric

in the sense that w (x, x) + w (x, x) ≡ 0, the identifying restriction we obtained through

logical differencing becomes trivial, and B0 = Sdβ−1. However, with asymmetric but not

antisymmetric w, it is still feasible to strengthen Assumption 3 so as to obtain point

identification. See more discussions in Appendix (3.B).

3.3.3 Tetrad Estimation and Consistency

We now proceed to present a consistent estimator of β0 in the framework of extremum

estimation. We will first construct the sample criterion function and show how to estimate

β0 via a two-step estimation procedure. Then we will list one additional assumption before

presenting the consistency result.

Define the sample analog of the population criterion Q (β) in (3.14) by

Q̂n(β) := (n− 4)!
n!

∑
1≤i 6=j 6=k 6=l≤n

1{ρ̂i (Xk) > ρ̂j (Xk)} ·1{ρ̂i (Xl) < ρ̂j (Xl)}

·

 1

{
w (Xi, Xk)

′
β ≤ w (Xj, Xk)

′
β
}

·1
{
w (Xi, Xl)

′
β ≥ w (Xj, Xl)

′
β
}
 ,

(3.18)

where ρ̂i(x) is a first-step nonparametric estimator of ρi(x). The two-step tetrad estimator

for β0 is defined as

β̂n := arg min
β∈Sdβ−1

Q̂n (β) . (3.19)

The first-step estimation of ρi (x) := E
[
Dik

∣∣∣i,Xk = x
]
function is a standard nonpara-

metric regression problem. Computationally, one can fix each i in the sample, and regress
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Dik, the indicator function for the link between i and k, on the basis functions chosen by

the researcher evaluated at observable characteristics Xk for all k 6= i. There are many tools

readily available to nonparametrically estimate ρi (x) in the first stage. For example, one

can use kernel, sieve, or neural networks. In Section 3.4, we use second order sieves with

knot at the median to estimate ρi (x) for the simulation study. Theoretical properties of our

sieve estimator ρ̂i (x) can be found in Chen (2007).

It is worth mentioning that we can smooth each component of τij (x, x) to achieve better

numerical performance as long as the sign of the differences between ρi (x) and ρj (x) is

preserved. Recall that

τij (x, x) := 1 {ρi (x) > ρj (x)} · 1 {ρi (x) < ρj (x)} . (3.20)

When ρi (x) is close to ρj (x), the estimation of τij (x, x) may be imprecise and sensitive to

errors during data collection and analysis procedure. Therefore, we may wish to smooth both

1 {ρi (x) > ρj (x)} and 1 {ρi (x) < ρj (x)} such that the potential bias caused by the imprecise

estimation at the boundary point of 0 is smaller. In practice, we can do so by applying a

known smooth one-directional function H on ρi (x) − ρj (x). A concrete example of H is

the standard normal CDF, i.e. replace 1 {ρi (x) > ρj (x)} with 2×Φ
[
(ρi (x)− ρj (x))+

]
− 1

and replace 1 {ρi (x) < ρj (x)} with 2 × Φ
[
(ρj (x)− ρi (x))+

]
− 1 in τij (x, x), where (c)+ is

the positive part of c, otherwise 0, and Φ is the CDF of standard normal N (0, 1). We use

smoothed τij (x, x) in the simulation part. See Section 3.4 for details.

For the second step, we estimate β0 by minimizing the sample criterion function Q̂n(β)

over the unit sphere Sdβ−1 after plugging in the first stage estimator τ̂ij (x, x). To exploit the

topological characteristics of the parameter space Sdβ−1, i.e. compactness and convexity, we

develop a new bisection-style nested rectangle algorithm that recursively shrinks and refines

an adaptive grid on the angle space. The key novelty of the algorithm is that instead of

working with the edges of the Euclidean parameter space Rdβ , we deterministically “cut”
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the angle space in each dimension of Sdβ−1 to search for the area that minimizes Q̂n(β).

Additional measures are taken to ensure the search algorithm is conservative. Simulation

and empirical results show that our algorithm performs reasonably well with a relatively

small sample size. Gao and Li (2020) provides more details regarding the implementation in

a panel multinomial choice setting.

For consistency, we impose the following assumption regarding the first-step nonpara-

metric estimator ρ̂i(·) of the ρi (·) function.

Assumption 3.6 (Uniform Consistency for ρi (·)). ρ̂i(·) is a uniformly consistent

estimator of ρi(·) for each agent i.

The usual kernel and sieve methods we mentioned above to estimate ρi(x) have been

proved to satisfy Assumption 3.6: see Bierens (1983) for results on kernel estimators and

Chen (2007) on sieve estimators.

Lemma 3.3 (Uniform Convergence of Q̂n (β)). Under model (3.3) and Assumptions

3.1, 3.2, 3.3, 3.4, 3.5, and 3.6, we have

sup
β∈Sdβ−1

∣∣∣Q̂n (β)−Qn (β)
∣∣∣ p−→ 0.

Finally, we state the consistency result of the tetrad estimator β̂n.

Theorem 3.2 (Consistency). Under model (3.3) and Assumptions 3.1, 3.2, 3.3, 3.4, 3.5,

and 3.6, β̂n is consistent for β0, i.e.,

β̂n
p−→ β0.
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3.4 Simulation

In this section, we conduct a simulation study to analyze the finite-sample performance of

our two-step tetrad estimator. We start by specifying the data generating process (DGP)

of the Monte Carlo simulations. Next, we show and discuss the performance of our 2-step

estimation method under the baseline setup. Then, we vary the number of individuals N ,

the dimension of the pairwise observable characteristics d, and the degree of correlation

between X and A to further examine the robustness of our method. Finally, we show

how the method performs when w (Xi, Xj) is an asymmetric function of Xi and Xj, i.e.

w (Xi, Xj) 6= w (Xj, Xi).

3.4.1 Setup of Simulation Study

For each DGP configuration, we run B = 100 independent simulations of model 3.3 with the

following network formation rule unknown to the econometrician for each agent pair (i, j)

Dij = 1

{
w (Xi, Xj)

′
β0 + Ai > εij

}
· 1
{
w (Xj, Xi)

′
β0 + Aj > εji

}
, (3.21)

where the usual linear additivity is excluded by construction that Dij equals the product of

two indicator functions. In (3.21), Dij equals one if i and j are connected, zero otherwise.

Xi and Xj are dx× 1 vectors of observable characteristics of individual i and j, respectively.

w (Xi, Xj) is a known vector-valued function mapping (Xi, Xj) pairs to a dw × 1 vector. β0

is a dβ × 1 vector of structural parameter of interest. We maintain dx = dw = dβ = d in all

our configurations. Ai represents the unobservable scalar valued fixed effect that is possibly

correlated with Xi. εij is the scalar valued iid random shocks independent of X and A.

In our baseline DGP configuration where we fix N = 100 and d = 3, each coordinate

of Xi is drawn independently across both individuals i and dimensions d from a uniform

distribution on [−0.5, 0.5]. Then we compute W (d)
ij , the dth coordinate of w (Xi, Xj) vector,

as W (d)
ij =

∣∣∣X(d)
i −X

(d)
j

∣∣∣. Note that for the baseline setup we maintain the symmetry of Wij
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in (Xi, Xj) pairs, i.e., Wij = Wji. Later on, we will relax this restriction and investigate the

asymmetric case where Wij 6= Wji.

Next, we construct the unobserved heterogeneity Ai. To allow for the correlation between

Ai and Xi, we draw iid sequence ξi independently from Xi from a uniform distribution on

[−0.5, 0.5] and let Ai = corr × X
(1)
i + (1− corr) × ξi, where corr controls the degree of

correlation between Xi and Ai and is set to be 0.2. Later on, we will vary the correlation

to see how robust our estimator is against correlation between A and X. As for the random

utility shock εij, we draw them from a uniform distribution on [0, 1]. Note that our estimation

method does not require the knowledge of the distribution of Ai or εij. We set the true

β0 ∈ Rdβ to be (1, ..., 1)′ , and estimate the direction of β0, represented by the normalized

vector β0 := β0/ ‖β0‖ on the unit sphere Sdβ−1 because the scale of β0 is not identified. We

shall maintain the specification of (ε, A, β0) and the network formation rule (3.21) to be the

same across all simulations.

Our method allows for asymmetry of Wij in (Xi, Xj) pairs. To numerically show this,

for the last coordinate d = d we compute W (d)
ij as

∣∣∣∣2X(d)
i −X(d)

j

∣∣∣∣ × (2/3). The reason for

multiplying 2/3 is to make the size of W (d)
ij similar to other coordinates of Wij. This way

we generate asymmetry because W (d)
ij 6= W

(d)
ji unless

∣∣∣X(d)
i

∣∣∣ =
∣∣∣X(d)

j

∣∣∣, which is a probability

zero event under our DGP setting. For other dimensions d = 1, ..., d − 1, we maintain the

baseline assumption. As a robustness check, we also vary N and d under asymmetry to show

how our method works.

To summarize, for each of the B = 100 simulations we randomly generate data on the

characteristics of and the network structure among individuals. Then based on the observable

(Xi,Wij, Dij)i,j∈{1,...,N} matrix we construct our two-step estimator β̂ for the true parameter

of interest β0. Specifically, we use a sieve estimator with 2nd-order spline with its knot

at median for the first-stage nonparametric estimation of ρi (·). The spline is chosen to

ensure a relatively small number of regressors in the nonparametric regression considering

the small size of N . In the second stage, we adapt to the adaptive-gird search on the unit
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sphere algorithm developed in Gao and Li (2020) to calculate β̂ that minimizes the sample

criterion function Q̂ (β) over the unit sphere. We refer interested readers to that paper for

more technical details. It should be noted that constrained by computational power, when

calculating the sample criterion Q̂(β) for each β ∈ Sd−1 we randomly draw M = 1000 (i, j)

pairs of individuals and vary across all possible (k, l) pairs excluding i or j. One can improve

those results by increasing M when computational constraint is not present. Lastly, we

compare our estimator β̂ with the true parameter value β0 based on several performance

metrics including rMSE, mean norm deviations (MND), and maximum absolute deviation

(MAB).

3.4.2 Results under Symmetric Pairwise Observable Characteris-

tics

Baseline Results

For the baseline configuration, we fix number of individuals N = 100, dimension ofWij d = 3,

number of (i, j) pairs used in evaluating Q̂(β)M = 1000, and number of simulations B = 100.

We define for each simulation round b the argmin set estimator B̂b as the set of points that

achieve the minimum of Q̂(β) over the unit sphere Sd−1. Under point identification, any

element from B̂b is a consistent point estimator for β0. In particular, we further define ,for

each simulation b = 1, ..., B and each dimension d = 1, ..., d of β

β̂lb,d := min B̂b,d, β̂ub,d := max B̂b,d, β̂mb,d := 1
2
(
β̂lb,d + β̂ub,d

)
,

where β̂lb,d is the minimum value along dimension d for simulation round b of the argmin

set B̂b, β̂ub,d is the maximum value along dimension d for simulation round b of the argmin

set B̂b, and β̂mb,d is the middle point along dimension d for simulation round b of the argmin

set B̂b. Note by construction for each simulation round b, the argmin set B̂b is a subset of

180



Table 3.1: Baseline Performance

β1 β2 β3

bias 1
B

∑
b

(
β̂mb,d − β0,d

)
-0.0021 0.0052 -0.0053

upper bias 1
B

∑
b

(
β̂ub,d − β0,d

)
0.0048 0.0118 -0.0002

lower bias 1
B

∑
b

(
β̂lb,d − β0,d

)
-0.0091 -0.0015 -0.0105

mean(u− l) 1
B

∑
b

(
β̂ub,d − β̂lb,d

)
0.0138 0.0132 0.0103

root MSE
√

1
B

∑
b

∥∥∥β̂mb − β0

∥∥∥2
0.0488

mean norm deviations 1
B

∑
b

∥∥∥β̂mb − β0

∥∥∥ 0.0417

max absolute deviations maxd
∣∣∣ 1
B

∑
b

(
β̂mb,d − β0,d

)∣∣∣ 0.0053

the rectangle Ξ̂b := ×dd=1

[
β̂lb,d, β̂

u
b,d

]
. We calculate the baseline performance using β̂l, β̂u, β̂m

respectively.

Below in Table 3.1 we report the performance of our estimators. In the first row of Table

3.1 we calculate the mean bias across B = 100 simulations using β̂m along each dimension

d = 1, ..., d. The result shows the estimation bias is very small across all dimensions with

a magnitude between -0.0053 and 0.0052. Similar performance is observed using β̂u and β̂l

as shown in row 2 and 3. We do not find any sign of persistent over/under- estimation of

β0 across each dimension. Row 4 measures the average width of the rectangle Ξ̂ along each

dimension. The size of Ξ̂ is very small, indicating a very tight area for the estimated set.

In the second part of Table 3.1 we report rMSE, MND, and MAB, all of which are small in

magnitude and provide evidence that our estimator work well in finite sample.

Results Varying N and d

In this section we vary the number of individuals N and dimension of Wij d to examine

how robust our method is against these variations. We investigate the performance when

N = 50, 100, 200 and d = 3, 4, respectively. We maintain the symmetry in Wij and other
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Table 3.2: Results Varying N and d

d = 3 rMSE MND MAB d = 4 rMSE MND MAB

N = 50 0.0839 0.0724 0.0051 N = 50 0.1119 0.1030 0.0091

N = 100 0.0488 0.0417 0.0053 N = 100 0.0692 0.0647 0.0038

N = 200 0.0334 0.029 0.0043 N = 200 0.0543 0.0523 0.0038

distributional assumptions as in baseline setup. M , the number of (i, j) pairs used to evaluate

objective function, is set to be 1000 in all simulations. Note that one could make M larger

for larger N to better capture the more information available from the increase in N . In this

sense, our results are conservative below. Results are summarized in Table 3.2.

The left part of Table 3.2 shows the performance of our estimator when N changes

and d is fixed at 3. When N increases, rMSE, MND and sum of absolute bias all show

moderate decline in magnitude, indicating the performance is improving. Similar pattern is

also observed for d = 4. This is intuitive because with more individuals in the sample, one

can achieve more accurate estimation of ρi (·) and calculation of Q̂ (β). Moreover, we can

see even with a relatively small sample size of N = 50, the rMSE is 0.0839 when d = 3 and

0.1119 when d = 4, showing that our method is informative and accurate. When N = 200,

the performance is very good, with rMSE being as small as 0.0334 and 0.0543 for d = 3

and d = 4, respectively. When we fix N and compare between d = 3 and d = 4, it is

clear the increase in d adversely affects the performance of our estimator, with rMSE and

MND increasing for each N . Overall, Table 3.2 provides evidence that our method is able

to estimate β0 accurately even with a small sample size.

Results Varying corr

Correlation between observable characteristics X and unobservable fixed effect A is impor-

tant in network formation models. We show how our estimator performs when the correlation
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Table 3.3: Results Varying corr

corr rMSE MND MAB

0.20 0.0488 0.0417 0.0053

0.50 0.0489 0.0435 0.0186

0.75 0.0763 0.0690 0.0506

0.90 0.1010 0.0951 0.0743

between X and A varies. Recall that we construct Ai as

Ai = corr ×X(1)
i + (1− corr)× ξi, (3.22)

where ξi is iid uniform on [−0.5, 0.5] and is independent of Xi. We set corr to be 0.2 in the

baseline configuration. In Table 3.3, we vary corr from 0.20 to 0.90 while fixing N = 100,

d = 3, M = 1000 and obtain the performance of our estimator among B = 100 simulations

when Wij is symmetric.

It can be seen from Table 3.3 that even though increase in corr adversely affects the

performance of our estimator, the magnitude of the impact is relatively small. For example,

rMSE only increases from 0.0488 to 0.1010 when corr increase dramatically from 0.2 to 0.9.

Similar pattern is also observed using other performance metrics. Therefore, our estimator

is robust against correlation between X and A.

3.4.3 Results under Asymmetric Pairwise Observable Character-

istics

In this section, we investigate how our method works when Wij is asymmetric. To introduce

asymmetry, we construct W (d)
ij =

∣∣∣∣2X(d)
i −X(d)

j

∣∣∣∣ × (2/3) for each i, j pair. The reason for

multiplying 2/3 is to make the size of W (d)
ij similar to other coordinates of Wij. As discussed
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Table 3.4: Results under Asymmetry

d = 3 rMSE MND MAB d = 4 rMSE MND MAB

N = 50 0.1498 0.1403 0.0936 N = 50 0.2225 0.2124 0.1521

N = 100 0.1096 0.1028 0.0741 N = 100 0.1751 0.1695 0.1301

N = 200 0.0943 0.0893 0.0672 N = 200 0.1595 0.1555 0.1222

before, under our DGP W
(d)
ij 6= W

(d)
ji unless

∣∣∣∣X(d)
i

∣∣∣∣ =
∣∣∣∣X(d)

j

∣∣∣∣, which is a probability zero

event. For d = 1, ..., d−1, we follow the configuration forW (d)
ij mentioned in section 3.4.1 for

the asymmetric case. We maintain other distributional assumptions for X,A, ε and fix the

number of (i, j) pairsM at 1000 for evaluation of Q̂ (β). Finally, we vary N and D under the

asymmetric setting to show how our estimator performs. Table 3.4 summarizes the results.

From Table 3.4 one can see our method performs reasonably well whenWij is asymmetric.

First, when the number of individuals N increases, the overall performance is improved, with

rMSE decreasing from 0.1498 to 0.0943 for d = 3 and from 0.2225 to 0.1595 for d = 4 when

N increases from 50 to 200. This result is caused by the more information available in the

sample and echos what we have seen for the symmetric Wij case. When the dimension of

Wij d increases from 3 to 4, the performance is worse, with rMSE increasing from 0.0943

to 0.1595 for N = 200. It shows that more data (information) is required for accurate

estimation when the dimension of β0 is larger. Second, when compared with the symmetric

Wij case, the overall performance under asymmetry inWij is worse, with rMSE being 0.1498

for asymmetric Wij versus 0.0839 for symmetric Wij when N = 50 and d = 3. In Appendix

3.B we discuss the implications of asymmetric Wij. It is shown there the identifying power

of the objective function is in general “less restrictive” than the corresponding identifying

restriction in Lemma 3.1. Therefore, one would expect larger bias than symmetric Wij case,

which is exactly what one observes in Table 3.4. Recall that we set total number of (i, j)

pairs for the evaluation of objective function M to be 1000 for all simulations. Based on
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results in Table 3.4, when Wij is asymmetric and computational power allows, we suggest

one increases M to improve performance.

3.5 Empirical Illustration

As an empirical illustration, we estimate a network formation model under NTU with data of

a small village network called Nyakatoke in Tanzania. Nyakatoke is a small Haya community

of 119 households in 2000 located in the Kagera Region of Tanzania. We are interested in how

important factors, such as wealth, distance, and blood or religious ties, are relative to each

other in deciding the formation of risk-sharing links among local residents. The estimation

results demonstrate that our proposed method produces estimates that are consistent with

economic intuition.

3.5.1 Data Description

The risk-sharing data of Nyakatoke, collected by Joachim De Weerdt in 2000, cover all of

the 119 households in the community. It includes the information about whether or not

two households are linked in the insurance network. It also provides detailed information

on total USD assets and religion of each household, as well as kinship and distance between

households. See De Weerdt (2004); De Weerdt and Dercon (2006); De Weerdt and Fafchamps

(2011) for more details of this dataset.

To define the dependent variable link, the interviewer asks each household the following

question:

“Can you give a list of people from inside or outside of Nyakatoke, who you can personally

rely on for help and/or that can rely on you for help in cash, kind or labor?”
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The data contains three answers of “bilaterally mentioned”, “unilaterally mentioned”,

and “not mentioned” between each pair of households. Considering the question is about

whether one can rely on the other for help, we interpret both “bilaterally mentioned” and

“unilaterally mentioned” as they are connected in this undirected network, meaning that

link equals 1. We also run a robustness check by constructing a weighted network based

on the answers, i.e. “bilaterally mentioned” means link equals 2, “unilaterally mentioned”

means link equals 1, and “not mentioned” means link equals 0, and found that results are

very similar.

We estimate the coefficients for wealth difference, distance and tie between households

with our two-step estimator. Wealth is defined as the total assets in USD owned by each

household in 2000, including livestocks, durables and land. Distance measures how far away

two households are located in kilometers. Tie is a discrete variable, defined to be 3 if members

of one household are parents, children and/or siblings of members of the other household,

2 if nephews, nieces, aunts, cousins, grandparents and grandchildren, 1 if any other blood

relation applies or if two households share the same religion, and 0 if no blood religious tie

exists. Following the literature we take natural log on wealth and distance, and we construct

the wealth difference variable as the absolute difference in wealth.

Figure 3.1 illustrates the structure of the insurance network in Nyakatoke. Each node

in the graph represents a household. The solid line between two nodes indicates they are

connected, i.e., link equals 1. The size of each node is proportional to the USD wealth of

each household. Each node is colored according to its rank in wealth: green for the top

quartile, red for the second, yellow for the third and purple for the fourth quartile.

In the dataset there are 5 households that lack information on wealth and/or distance.

We drop these observations, resulting in a sample size N of 114. The total number of ordered

household pairs is 12,882. Summary statistics for the dependent and explanatory variables

used in our analysis are presented in Table 3.5.
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Figure 3.1: A Graphical Illustration of the Insurance Network of Nyakatoke

Table 3.5: Empirical Application: Summary Statistics

Variable Obs Mean Std. Dev. Min Max

link 12,882 0.0732 0.2606 0 1
|(ln) wealth difference| 12,882 1.0365 0.8228 0.0004 5.8898

(ln) distance 12,882 6.0553 0.7092 2.6672 7.4603
tie 12,882 0.4260 0.6123 0.0000 3.0000
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Table 3.6: Empirical Application: Estimation Results

Variable β̂m
[
β̂l, β̂u

]

|(ln) wealth difference| -0.1948 [−0.1964, −0.1932]

(ln) distance -0.8036 [−0.8043, −0.8029]

tie 0.5619 [0.5608, 0.5630]

3.5.2 Methodology

To estimate β0, we need to first estimate ρi (x) := E
[
Dik

∣∣∣i,Wik = w
]
in order to construct

τij (·). We use the second degree spline sieve with its knot at the median to estimate ρi (w).

Specifically, for each household i in the data, we regress dependent variable link Dik on each

dimension of Wik, W 2
ik, and

[
(Wik −median (Wik))+

]2
including constant for k 6= i. The

reason why we could regress on basis functions constructed with W instead of X is because

X affects D only through W . We obtain an estimator ρ̂i (·) evaluated at each realized

Wik = w in the data for each household i. We also smooth each component of τij (·), i.e.

1 {ρi (w) > ρj (w)} and 1 {ρi (w) < ρj (w)} with normal CDF to improve the performance.

In the second stage, we estimate β0 with β̂ that minimizes the sample criterion Q̂ (β) by

adapting to the adaptive-grid search on the unit sphere algorithm developed in Gao and Li

(2020). As shown in finite sample simulations, the method is able to converge fast to the

area that contains true β0.

3.5.3 Results and Discussion

Table 3.6 summarizes our estimation results. The column of β̂m corresponds to the center of

the estimated rectangle Ξ̂. We will use it as the point estimator of the coefficients for each

variable of W vector.
[
β̂l, β̂u

]
corresponds to the upper and lower bound of Ξ̂. While the

scale of β0 is unidentified, we can still compare the estimated coefficients with each other to

obtain an idea about which variable affects the formation of the link more than the other.
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The estimated coefficients for each variable conform well with economic intuition. Our

method estimate the coefficient for absolute wealth difference to be negative in the range

of [−0.1964, −0.1932], which implies the more absolute difference in wealth between two

households, the lower likelihood they are connected. The estimated set for distance is

[−0.8043, −0.8029]. It is natural households rely more on neighbors for help than ones

that live farther away. The estimated coefficient for tie falls in the positive range of

[0.5608, 0.5630], which is also consistent with economic intuition that one would depend

on support from family when negative shock occurs.

It is worth mentioning the estimated set Ξ̂ is very tight in each dimension, with a

maximum width of 0.0032 for tie. Usually the discreteness could make the estimated set

wide, but our algorithm is able to circumvent this issue by leveraging the large support in the

two other continuous variables, i.e., wealth difference and distance. The relative magnitude

and sign of coefficient for tie are estimated in line with expectation. The empirical results

show that our proposed estimator is able to generate economically intuitive estimates under

NTU.

3.6 Conclusion

This paper considers a semiparametric model of dyadic network formation under nontrans-

ferable utilities, a natural and realistic micro-theoretical feature that translates into the

lack of additive separability in econometric modeling. We show how a new methodology

called logical differencing can be leveraged to cancel out the two-way fixed effects, which

correspond to unobserved individual heterogeneity, without relying on arithmetic additivity.

The key idea is to exploit the logical implication of weak multivariate monotonicity and use

the intersection of mutually exclusive events on the unobserved fixed effects. It would be

interesting to explore whether and how the idea of logical differencing, or more generally the

use of fundamental logical operations, can be applied to other econometric settings.
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Simulation results show that our method performs reasonably well with a relatively

small sample size, and robust to various configurations. The empirical illustration using

the real network data of Nyakatoke reveals that our method is able to capture the essence

of the network formation process by generating estimates that conform well with economic

intuition.

This paper also reveals several further research questions regarding dyadic network

formation models under the NTU setting. First, given the observation that the NTU

setting can capture “homophily effects” with respect to the unobserved heterogeneity (under

log-concave error distributions) while imposing monotonicity in the unobserved heterogeneity

in the same time, it is interesting to investigate whether we can differentiate homophily

effects generated by “intrinsic preference” from homophily effects generated by bilateral

consent, NTU and log-concave errors. Second, admittedly the identifying restriction obtained

in this paper becomes uninformative when we have antisymmetric pairwise observable

characteristics. However, preliminary analysis based on an adaption of Gao (2020) to the

NTU setting suggests that individual unobserved heterogeneity can be nonparametrically

identified up to location and inter-quantile range normalizations. After the identification

of individual unobserved heterogeneity terms (Ai), it becomes straightforward to identify

the index parameter β0 based on the observable characteristics, even in the presence of

antisymmetric pairwise characteristics. However, consistent estimators of Ai and β0 in a

semiparametric framework based on identification strategy in Gao (2020) are still being

developed. We thus leave these research questions to future work.
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Appendix

3.A Proofs

3.A.1 Proof of Lemma 3.2

Proof. For notational simplicity, we denote ∆(x;xi, xj) to be w(xi, x) − w(xj, x) and dβ by

m. It follows that

λij (x, x;xi, xj; β) = 1

{
∆(x;xi, xj)

′
β ≤ 0

}
1

{
∆(x;xi, xj)

′
β ≥ 0

}
. (3.23)

Therefore, the event (3.16) is equivalent to
{

∆(x;xi, xj)
′
β0 > 0

}
∪
{

∆(x;xi, xj)
′
β0 < 0

}
and

the event (3.17) is equivalent to
{

∆(x;xi, xj)
′
β ≤ 0

}
∩
{

∆(x;xi, xj)
′
β ≥ 0

}
. By Assumption

3.3, there exist xi and xj in Supp (Xi) such that ∆ (Xk;xi, xj) has full directional support.

Hence, given any β0 and β 6= β0 in Sm−1, there exists some x ∈ Supp (Xi) such that

∆ (x;xi, xj)
′
β0 > 0 AND ∆ (x;xi, xj)

′
β ≤ 0,

and some x ∈ Supp (Xi) such that

∆ (x;xi, xj)
′
β0 < 0 AND ∆ (x;xi, xj)

′
β ≥ 0.
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Hence, (3.16) and (3.17) hold simultaneously with strictly positive probability. Denote the

set of (xi, xj, x, x) satisfying these restrictions by

Ξ :=

(xi, xj, x, x)

∣∣∣∣∣∣∣∣
∆(x;xi, xj)

′
β0 > 0, ∆(x;xi, xj)

′
β0 < 0,

∆(x;xi, xj)
′
β ≤ 0, and ∆(x;xi, xj)

′
β ≥ 0.

 . (3.24)

Note that Ξij occurs with strictly positive probability.

For such a combination of xi, xj, x, and x, we show next the event (3.15) holds with

strictly positive probability. According to the fact that
{

∆(x;xi, xj)
′
β0 > 0

}
holds for xi, xj,

x, and x, under Assumption 3.5 there exists some ε1 > 0 such that ρi(x) > ρj(x) whenever

|Ai−Aj| ≤ ε1. This is true because when the difference between Ai and Aj is small enough,

the relative magnitude of ρi (x) compared to ρj (x) will be solely determined by whether

∆(x;xi, xj)
′
β0 > 0 or not according to (3.7). Similarly, there exists some ε2 > 0 such that

ρi(x) < ρj(x) whenever |Ai − Aj| ≤ ε2. Thus, there exists some ε := min {ε1, ε2} such that

P {τij (x, x) = 1} ≥ P {|Ai − Aj| ≤ ε, (xi, xj, x, x) ∈ Ξ}

= P {|Ai − Aj| ≤ ε| (xi, xj, x, x) ∈ Ξ}P {(xi, xj, x, x) ∈ Ξ}

> 0, (3.25)

where the first inequality holds by {|Ai − Aj| ≤ ε, (xi, xj, x, x) ∈ Ξ} is sufficient for

{τij (x, x) = 1} and the last inequality holds by Assumption 3.4.

Therefore, we conclude the three events (3.15), (3.16), and (3.17), hold simultaneously

with strictly positive probability for some xi, xj, x, and x all in the support of X.

3.A.2 Proof of Theorem 3.1

Proof. By Lemma 3.1, we have β0 ∈ arg minβ∈Sm−1 Q(β) because Q (β0) = 0 ≤ Q (β) by

the construction of the population criterion Q (·). Furthermore, we have β0 is the unique
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minimizer of Q(β) because for any β 6= β0, we have

Q (β) = E [λij (x, x;xi, xj; β) τij (x, x)]

= P {{λij (x, x;xi, xj; β) = 1} ∩ {τij (x, x) = 1}} > 0, (3.26)

where the first equality holds by (3.14) and the last inequality holds by Lemma 3.2.

Next, we show that Sm−1 is a compact set and Q(β) is continuous on Sm−1, which together

with the uniqueness of β0 shown in (3.26) guarantee the identification result holds by Newey

and McFadden (1994b). The former claim is true by the definition of Sm−1. To prove the

continuity of Q (β), define

gij (z, β) := λij (x, x;xi, xj; β) τij (x, x) (3.27)

and let z denote (x, x;xi, xj). Following Newey and McFadden (1994b), the sufficient

condition for the continuity of Q (β) is

(i) P {gij (z, β) is continuous at β = β∗} = 1 for every β∗ ∈ Sm−1, and

(ii) E supβ∈Sm−1 |gij (z, β)| <∞.

Part (i) is true because λij (x, x;xi, xj; β) is a binary function of z = (x, x;xi, xj) and

the change in value from 0 to 1 or from 1 to 0 only occurs when d(x;xi, xj)
′
β = 0

or d(x;xi, xj)
′
β = 0. Under Assumption 3.3, these two events have zero probability of

happening. Thus, part (i) is verified. For part (ii), note that by construction gij (z, β) ∈

{0, 1} is a bounded function of β for all z. Therefore,

E sup
β∈Sm−1

|gij (z, β)| ≤ 1 <∞. (3.28)

Hence we have for any ε > 0, there exists δ > 0 such that

inf
β∈Sm−1\B(β0,ε)

Q (β) ≥ Q (β0) + δ, (3.29)
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where B (β0, ε) :=
{
β ∈ Sm−1 : ‖β − β0‖ ≤ ε

}
.

3.A.3 Proof of Lemma 3.3

Proof. Define the infeasible criterion Q̃n (β) as

Q̃n (β) := (n− 4)!
n!

∑
1≤i 6=j 6=k 6=l≤n

1 {ρi(Xk) > ρj(Xk)} · 1 {ρi(Xl) < ρj(Xl)}

×

 1

{
d(Xk;Xi, Xj)

′
β ≤ 0

}
×1

{
d(Xl;Xi, Xj)

′
β ≥ 0

}
 .

(3.30)

By triangular inequality, we have

sup
β∈Sm−1

∣∣∣Q̂n (β)−Q (β)
∣∣∣ ≤ sup

β∈Sm−1

∣∣∣Q̂n (β)− Q̃ (β)
∣∣∣+ sup

β∈Sm−1

∣∣∣Q̃ (β)−Q (β)
∣∣∣ . (3.31)

According to the decomposition (3.31), we divide our proof into two steps.

Step 1. supβ∈Sm−1

∣∣∣Q̂n (β)− Q̃ (β)
∣∣∣ p−→ 0.

By the fact that λij (Xk, Xl;Xi, Xj; β) is either 0 or 1 for any β ∈ Sm−1, we have
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sup
β∈Sm−1

∣∣∣Q̂n (β)− Q̃ (β)
∣∣∣

= (n− 4)!
n!

∑
1≤i 6=j 6=k 6=l≤n

sup
β∈Sm−1

|λij (Xk, Xl;Xi, Xj; β)|

×

∣∣∣∣∣∣∣∣
1 {ρi(Xk) > ρj(Xk)} · 1 {ρi(Xl) < ρj(Xl)}

−1{ρ̂i(Xk) > ρ̂j(Xk)} ·1{ρ̂i(Xl) < ρ̂j(Xl)}

∣∣∣∣∣∣∣∣
≤ (n− 4)!

n!
∑

1≤i 6=j 6=k 6=l≤n

∣∣∣∣∣∣∣∣
1 {ρi(Xk) > ρj(Xk)} · 1 {ρi(Xl) < ρj(Xl)}

−1{ρ̂i(Xk) > ρ̂j(Xk)} ·1{ρ̂i(Xl) < ρ̂j(Xl)}

∣∣∣∣∣∣∣∣
≤ (n− 4)!

n!
∑

1≤i 6=j 6=k 6=l≤n

 |1 {ρi(Xk) > ρj(Xk)} − 1{ρ̂i(Xk) > ρ̂j(Xk)} |

+ |1 {ρi(Xl) < ρj(Xl)} − 1{ρ̂i(Xl) < ρ̂j(Xl)} |

 ,

(3.32)

where the first inequality uses |λij (Xk, Xl;Xi, Xj; β)| is bounded from above by 1 and the

last inequality uses the fact that whenever the LHS of the last inequality equals 1, the RHS

must always equals 1.

It follows that

E sup
β∈Sm−1

∣∣∣Q̂n (β)− Q̃ (β)
∣∣∣

≤ E |1 {ρi(Xk) > ρj(Xk)} − 1{ρ̂i(Xk) > ρ̂j(Xk)} |

+ E |1 {ρi(Xl) < ρj(Xl)} − 1{ρ̂i(Xl) < ρ̂j(Xl)} | (3.33)

By Assumption 3.6, we obtain

E sup
β∈Sm−1

∣∣∣Q̂n (β)− Q̃ (β)
∣∣∣→ 0 (3.34)

using Dominated Convergence Theorem.
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Finally, by Markov inequality, we have

sup
β∈Sm−1

∣∣∣Q̂n (β)− Q̃ (β)
∣∣∣ p−→ 0. (3.35)

Step 2. supβ∈Sm−1

∣∣∣Q̃n (β)−Q (β)
∣∣∣ p−→ 0.

For this part of the proof, we adapt to section 9.5 of Toth (2017) and use existing results

from the U-process literature. We have
{
Q̃n (β)−Q (β) : β ∈ Sm−1

}
is a centered U-process

of order 4. We follow the arguments from the seminal papers Nolan and Pollard (1987)

and Sherman (1994). For a systematic understanding of U-statistics, we refer the readers to

Serfling (2009).

First, we show
{
Q̃n (β)−Q (β) : β ∈ Sm−1

}
is Euclidean for the constant envelope of 1

(See Definition 8 in Nolan and Pollard (1987)). To see why, first note that the unsymmetrized

kernel of Q̃n (β)−Q (β) for any β ∈ Sm−1 is defined to be

kernel := λij (Xk, Xl;Xi, Xj; β)1 {ρi(Xk) > ρj(Xk)}

× ·1 {ρi(Xl) < ρj(Xl)}

− E
[
τij (Xk, Xl) · λij (Xk, Xl;Xi, Xj; β)

]
. (3.36)

The kernel defined in (3.36) belongs to a Euclidean class if and only if the function class

of λij (Xk, Xl;Xi, Xj; β) indexed by β is Euclidean because the property is closed under finite

addition, multiplication and linear operations, see Nolan and Pollard (1987). By (3.23), we

have

λij (Xk, Xl;Xi, Xj; β) = 1

{
d(Xk;Xi, Xj)

′
β ≤ 0

}
1

{
d(Xl;Xi, Xj)

′
β ≥ 0

}
. (3.37)
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Note that the function class of λij (Xk, Xl;Xi, Xj; β) indexed by β is Euclidean if and only if

the function class of d(Xk;Xi, Xj)
′
β is Euclidean, again by closure under finite multiplication

and indicator functions.

Define the function class G of g (X;Y, Z) := d(X;Y, Z)′β to be

G :=
{
d(X;Y, Z)′β

∣∣∣ β ∈ Sm−1
}
. (3.38)

We have G forms a finite dimensional vector space of functions as long asm <∞. By Lemma

18 of Nolan and Pollard (1987), the collection of all sets of the form {g ≥ 0} or {g ≤ 0} or

{g > 0} or {g < 0} for any g ∈ G is a polynomial class, which implies {graph (g) : g ∈ G } is

a polynomial class of sets because any class of subsets of R is a polynomial class. From this

result and Lemma 19 of Nolan and Pollard (1987), we have G is Euclidean. Therefore, the

kernel defined in (3.36) indeed belongs to a Euclidean class, and according to Corollary 7 in

Sherman (1994), we have

sup
β∈Sm−1

∣∣∣Q̃n (β)−Q (β)
∣∣∣ p−→ 0. (3.39)

Combining (3.35) and (3.39), we have

sup
β∈Sm−1

∣∣∣Q̂n (β)−Q (β)
∣∣∣ p−→ 0. (3.40)

3.A.4 Proof of Theorem 3.2

Proof. We aim to prove, for any ε > 0, P
(
‖β̂n − β0‖

)
> ε → 0. According to the proof in

Theorem 3.1, we have for any ε > 0, there exists δ > 0 such that infβ∈Sm−1\Bm(β0,ε) Q (β) ≥

Q (β0) + δ, where Bm(β0, ε) =
{
β ∈ Sm−1 : ‖β − β0‖ ≤ ε

}
. It follows that there exist δ > 0

such that
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P
(
‖β̂n − β0‖ > ε

)
= P

(
β̂n ∈ Sm−1\Bm (β0, ε)

)
≤ P

(
Q
(
β̂n
)
≥ Q (β0) + δ

)
. (3.41)

By construction of β̂n, we have Q̂n(β̂n)− Q̂n(β0) ≤ 0. Therefore,

P
(
Q(β̂n) ≥ Q(β0) + δ

)
= P

(
Q(β̂n)− Q̂n(β̂n) + Q̂n(β̂n)− Q̂n(β0) + Q̂n(β0)−Q(β0) ≥ δ

)
≤ P

(
Q(β̂n)− Q̂n(β̂n) + 0 + Q̂n(β0)−Q(β0) ≥ δ

)
.

(3.42)

It follows that

P
(
Q(β̂n) ≥ Q(β0) + δ

)
≤ P

(
sup

β∈Sm−1

∣∣∣Q̂n (β)−Q (β)
∣∣∣ ≥ δ/2

)
. (3.43)

By Lemma 3.3, we have for any δ > 0

P
(

sup
β∈Sm−1

∣∣∣Q̂n (β)−Q (β)
∣∣∣ ≥ δ/2

))
→ 0 as n→∞. (3.44)

Therefore, we have for any ε > 0

P
(
‖β̂n − β0‖ > ε

)
≤ P

(
sup

β∈Sm−1

∣∣∣Q̂n (β)−Q (β)
∣∣∣ ≥ δ/2

)
→ 0 as n→∞. (3.45)
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3.B Asymmetry of Pairwise Observable Characteris-

tics

So far we have been focusing on the case with symmetric pairwise observable characteristics,

i.e.,

w (Xi, Xj) ≡ w (Xj, Xi) .

In this section, we briefly discuss how our method can be adapted to accommodate

asymmetric pairwise observable characteristics.

As in Remark 3.1, consider the adapted model (3.6):

E [Dij|Xi, Xj, Ai, Aj] = φ
(
w (Xi, Xj)

′
β0, w (Xj, Xi)

′
β0, Ai, Aj

)
(3.46)

where w needs not be symmetric with respect to its two vector arguments and φ : R4 → R

is required to be monotone in all its four arguments.

The technique of logical differencing still applies in the exactly same way as before.

Specifically, the event
{
ρi (x) > ρj (x)

}
implies that

{
w (Xi, x)

′
β0 > w

(
Xj, x

)′
β0

}
OR

{
w (x,Xi)

′
β0 > w

(
x,Xj

)′
β0

}
OR

{
Ai > Aj

}
,

while the event
{
ρi (x) < ρj (x)

}
implies that

{
w (Xi, x)

′
β0 < w

(
Xj, x

)′
β0

}
OR

{
w (x,Xi)

′
β0 < w

(
x,Xj

)′
β0

}
OR

{
Ai < Aj

}
.

The joint occurrence of
{
ρi (x) > ρj (x)

}
and

{
ρi (x) < ρj (x)

}
now implies that

{
w (Xi, x)

′
β0 > w

(
Xj, x

)′
β0

}
OR

{
w (x,Xi)

′
β0 > w

(
x,Xj

)′
β0

}
OR

{
w (Xi, x)

′
β0 < w

(
Xj, x

)′
β0

}
OR

{
w (x,Xi)

′
β0 < w

(
x,Xj

)′
β0

}
, (3.47)
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which is in general “less restrictive” than the corresponding identifying restriction in Lemma

3.1.

In particular, in the extreme case where w is antisymmetric in the sense of

w (Xi, Xj) ≡ −w (Xj, Xi) ,

the identifying restriction on the RHS of

{
w (Xi, x)

′
β0 > w

(
Xj, x

)′
β0

}
OR

{
w (x,Xi)

′
β0 > w

(
x,Xj

)′
β0

}

becomes {
w (Xi, x)

′
β0 6= w

(
Xj, x

)′
β0

}
,

which can be generically true and thus becomes (almost) trivial.

Correspondingly, Assumption 3.3 needs to be strengthened for point identification:

Assumption 3.3’. There exist a pair of x, x, both of which lie in the support of Supp (Xi),

such that

Supp (w (x,Xi)− w (x,Xi)) ∩ Supp (w (Xi, x)− w (Xi, x))

contains all directions in Rm.

Clearly, the case of antisymmetric w is ruled out by Assumption 3.3’. Assumption 3.3’

ensures that, for any β 6= β0, there exist in-support xi and xj such that

{
w (xi, Xk)

′
β0 > w (xj, Xk)

′
β0
}

AND
{
w (xi, Xl)

′
β0 < w (xj, Xl)

′
β0
}

AND
{
w (Xk, xi)

′
β0 > w (Xk, xj)

′
β0
}

AND
{
w (Xl, xi)

′
β0 < w (Xl, xj)

′
β0
}

(3.48)

and

{
w (xi, Xk)

′
β ≤ w (xj, Xk)

′
β
}

AND
{
w (xi, Xl)

′
β ≥ w (xj, Xl)

′
β
}
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AND
{
w (Xk, xi)

′
β ≤ w (Xk, xj)

′
β
}

AND
{
w (Xl, xi)

′
β ≥ w (Xl, xj)

′
β
}

(3.49)

occur simultaneously with strictly positive probability. (3.48) and (3.49) are sufficient

for
{
ρi (x) > ρj (x)

}
and

{
ρi (x) < ρj (x)

}
to occur simultaneously under the maintained

assumption on the support of Ai. It thus can guarantee point identification of β0.

The estimator can be correspondingly adapted in an obvious manner.
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