
Yale University Yale University 

EliScholar – A Digital Platform for Scholarly Publishing at Yale EliScholar – A Digital Platform for Scholarly Publishing at Yale 

Yale Graduate School of Arts and Sciences Dissertations 

Spring 2021 

Essays on Game and Economic Theory Essays on Game and Economic Theory 

Xiangliang Li 
Yale University Graduate School of Arts and Sciences, lxlnemo@gmail.com 

Follow this and additional works at: https://elischolar.library.yale.edu/gsas_dissertations 

Recommended Citation Recommended Citation 
Li, Xiangliang, "Essays on Game and Economic Theory" (2021). Yale Graduate School of Arts and 
Sciences Dissertations. 79. 
https://elischolar.library.yale.edu/gsas_dissertations/79 

This Dissertation is brought to you for free and open access by EliScholar – A Digital Platform for Scholarly 
Publishing at Yale. It has been accepted for inclusion in Yale Graduate School of Arts and Sciences Dissertations 
by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more 
information, please contact elischolar@yale.edu. 

https://elischolar.library.yale.edu/
https://elischolar.library.yale.edu/gsas_dissertations
https://elischolar.library.yale.edu/gsas_dissertations?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
https://elischolar.library.yale.edu/gsas_dissertations/79?utm_source=elischolar.library.yale.edu%2Fgsas_dissertations%2F79&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elischolar@yale.edu


Abstract

Essays on Game and Economic Theory

Xiangliang Li

2021

This dissertation studies a range of topics in game and economic theory.

Chapter 1 proposes a new solution to the two-player bargaining problem of Nash (1950):

The Consensus solution. The Consensus solution maximizes the total amount of options

that both players agree are worse than the solution but better than no-cooperation. It

can be characterized by a simple equality. It satisfies all the axioms of the Nash solution

except Axiom IIA (Independence of Irrelevant Alternatives); the Nash solution satisfies all

its axioms except one, which says: when both players’ utilities of no-cooperation become

lower creating additional room for players to cooperate, then as long as options within the

additional room are worse than the current solution, the solution shall not change. At the

same time, it is the same as the Nash solution in comprehensive bargaining problems, a class

of bargaining problems where many good properties of the Nash solution are discovered.

We discuss when bargaining problems are non-comprehensive. We conclude that the key

difference between the two solutions is that the Consensus solution emphasize what players

can achieve via cooperation whereas the Nash solution focus more on the anticipation of

no-cooperation.

Chapter 2, coauthored with with Treb Allen and Costas Arkolakis, studies a broad class

of network models where a large number of heterogeneous agents simultaneously interact

in many ways. We provide an iterative algorithm for calculating an equilibrium and offer



sufficient and “globally necessary” conditions under which the equilibrium is unique. The

results arise from a multi-dimensional extension of the contraction mapping theorem which

allows for the separate treatment of the different types of interactions. We illustrate that

a wide variety of heterogeneous agent economies – characterized by spatial, production, or

social networks – yield equilibrium representations amenable to our theorem’s characterization.

Chapter 3, coauthored with with Treb Allen and Costas Arkolakis, develops a quantitative

general equilibrium model that incorporates the many economic interactions that occur over

the city, including commuting and spatial spillovers of productivities. Despite the many

spatial linkages, the model allows for characterizing the existence of the spatial equilibrium

of the city even when the spillovers are much more general than what are usually considered

in literature. We consider a city planner who designs zoning policies but leave the rest to the

market. The goal of the city planner is chosen such that the planner’s difference compared

with the market does not lie in redistribution but only efficiency. We provide an explicit

formula to evaluate welfare effects of zoning policies.
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Chapter 1

The Consensus Bargaining Solution
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1.1 Introduction

Bargaining is a universal phenomenon arising from different economic problems e.g. allocation

of resources, exchange of goods, and coordination of actions. In these problems, bargaining

is only the phenomenon; behind it is the fundamental question of cooperation: there are

many ways of cooperating, different players favor different ways, which way shall be chosen?

Economists had long thought the answer arbitrary (e.g., Edgeworth, 1881, p. 29) until Nash

(1950).

Nash (1950) proposes to identify a solution by a list of its desired properties (axioms)

and implements the axiomatic approach within a simple bargaining model.

Definition 1. A two-player bargaining problem is a pair (W, s) where W ⊂ R2 is the set of

utilities that players 1 and 2 can obtain via cooperation and s ∈ R2 is the pair of utilities

obtained with no-cooperation and is usually called as the threat.

Within this bargaining problem, the solution example that Nash (1950) sets is the v ∈ W

that maximizes (v1 − s1)(v2 − s2) and the Nash solution can be identified by four axioms.

Nash (1950)’s impacts are fundamental. First, there is a clear before-and-after. Afterwards,

instead of regarding bargaining as indeterminate, economists have turned to find solutions

and there have been many alternatives (for surveys, see Roth, 1979; Peters, 1992; Thomson,

1994). Second, despite the fact that there are many solutions, the Nash solution has remained

the only one that is overwhelmingly used in applications. And these applications span almost

all subfields of economics: macroeconomics (e.g., Calmfors and Driffill, 1988; Pissarides,

2000), industrial organziation (e.g., Grossman and Hart, 1986; Tirole, 1988; Hart, 1995),

political economy (e.g., Shleifer and Vishny, 1994; Grossman and Helpman, 2001), labor

2



economics (e.g., Manser and Brown, 1980; McElroy and Horney, 1981; Chiappori, 1992),

and so on. And many of them have become classic works in their own fields.

Except for its self-evident simplicity, the wide applications of the Nash solution can be

explained by its many appealing properties that people have found over the years. For

example, Harsanyi (1956) finds it coincides with Zeuthen’s solution (see Zeuthen), which

is an equilibrium point in a psychological bargaining process where players’ firmness is

measured by their evaluation of risk; Sobel (1981) and Moulin (1983) show that it satisfies the

property of midpoint domination; 1 Binmore (1984) shows that the Nash solution is closed

under the multiplication defined between bargaining problems; Lensberg (1988) shows that

the Nash solution is invariant in subproblems, which are obtained by fixing some players’

utilities; Maschler et al. (1988) shows that the Nash solution is the solution of a dynamic

system; Shapley (1988) points out that the Nash solution is the only solution such that,

under some scaling transformation for individual utilities, the outcome is both egalitarian

and utilitarian; Chun (1988); Peters and Van Damme (1991); Anbarci and Sun (2013) show

that the Nash solution is invariant when threat s and/or feasible set W are changed in

certain ways; last but not the least Van Damme (1986); Binmore et al. (1986); Howard

(1992); Trockel (2002) show that the Nash solution is the Nash equilibrium of some non-

cooperative bargaining games.

Despite its many appealing properties, the Nash solution has also been controversial.

First, its objective function, the product of two utility numbers (v1 − s1)(v2 − s2), does

not have a straightforward interpretation (Rubinstein et al., 1992); Second, Axiom IIA

1. That is for both players solution v should be better than ( s1+maxw∈W w1

2 , s2+maxw∈W w2

2 ).
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(Independent of Irrelevant Alternatives) of the Nash solution says that suppose v is the

solution, if we remove some other options, v should remain to be the solution. While Axiom

IIA suggests that there is some intrinsic reason such that v is selected as the solution, its

implications are disturbing. Mathematically, the Nash solution only depends on v’s local

property; economically, it implies for the purpose of comparing two solution candidates, all

other options do not matter. Luce and Raiffa (1965) offer more detailed criticisms on Axiom

IIA. Last, we would like like to add that there are examples where the Nash solution clearly

clashes with our common sense. Consider the following one.

Example 1. Hulk and Betty negotiate how often they go hiking, biking, or do nothing.

And their utilities are u = fhuh + f bub + fnun where uh, ub, un ∈ R2, and fh, f b, fn ≥ 0

satisfying fh + f b + fn = 1 represent the frequencies of each activity. If they cannot reach

an agreement, they simply do nothing and get utilities un. In terms of Nash’s bargaining

model, the feasible set of utilities W is the triangle area of uh, ub, and un and the threat s

is un.

Consider an instance where uh = (2, 2), ub = (1, 3) (Hulk’s is 1 and Betty’s is 3), and

un = (0, 0), as shown in Figure 1.1a. That is Hulk prefers hiking and Betty prefers biking.

In this bargaining problem, the Nash solution is uh i.e. Hulk and Betty should always go

hiking. It is worth to point out that this is irrelevant with the fact that hiking gives the

same the same utility. For example, even if uh = (6, 2) and ub = (3, 3) as shown in Figure

1.1b, the Nash solution is still uh. In both cases, the Nash solution completely favors one

player over the other. There is no compromise at all clashing with our common sense.

Despite the controversies of the Nash solution, it has gained more consensus in literature

4



Figure 1.1: Hiking v.s. Biking

than other solutions and is the the main focus of bargaining theory and applications. By

no means this implies that other solutions, including the Raiffa-Kalai-Smorodinsky solution

(Raiffa, 1953; Kalai and Smorodinsky, 1975), the continuous Raffia solution (Raiffa, 1953;

Livne, 1989; Peters and Van Damme, 1991), the Equal Area solution (Dekel, 1982; Ritz, 1985;

Anbarci and Bigelow, 1994), and the Supper-Additive solution (Perles and Maschler, 1981),2

are less convincing than the Nash solution. In fact, in our view, they all are intuitively

appealing. For example, the axiom of the Raiffa-Kalai-Smorodinsky that is employed to

replace Axiom IIA of the Nash solution says this: given every feasible utility of one player,

if the maximum feasible utility of the other player becomes weakly larger, then the utility

of the other player given by the solution should also weakly larger. However, one one hand,

these solutions are quite different from the Nash solution, which is reflected by the fact

that their key axioms are very different from Axiom IIA. As a result, it is not clear how

to precisely compare them and further make a trade-off. On the other hand, due to the

fundamental contribution of Nash (1950) and its simplicity, the Nash solution has magnetic-

2. Bargaining solutions can be classified into two types depending on if there are interpersonal comparison
of utilities. In the main context, we do not list solutions that impose interpersonal comparison of utilities
e.g. Utilitarian solution and Egalitarian solution.
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likely attracted much attention, which has led to discoveries of its many appealing properties;

and these discoveries in turn further reinforce the Nash solution’s attraction. To advance

our understanding of bargaining, it seems necessary to have a solution that can guide us out

of the Nash solution’s magnetic force, a solution that can be precisely compared with the

Nash solution and help us make a trade-off.

One mission of this paper is to provide such a new solution: the Consensus solution. The

Consensus solution achieves this mission by delicately being different but not too different

from the Nash solution.

On one hand, the Consensus solution is different from the Nash solution such that it

can overcome the Nash solution’s major controversies. First, it maximizes the total amount

of options that both players agree are worse than the solution but better than no-cooperation

(Problem 1.1). Therefore, it bears a straightforward interpretation of maximizing the consensus

of players. Second, it satisfies all the axioms of the Nash solution except the controversial

Axiom IIA (Independence of Irrelevant Alternatives); in contrast, the Nash solution satisfies

all its axioms except one (Axiom 6) which says: when both players’ utilities of no-cooperation

become lower creating additional room for players to cooperate, then as long as the options in

the additional room are worse than the current solution, the solution shall not change. Third,

the Consensus solution is not as extreme as the Nash solution in bargaining problems like

the one between Betty and Hulk because it can additionally capture the cooperative aspects

of a bargaining problem: although Betty and Hulk have a conflicting interest between biking

and hiking, they both are better off doing something instead nothing.

On the other hand, the Consensus solution is closely related with the Nash solution

such that it can inherit the appealing properties of the Nash solution. In terms of axioms,
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it satisfies not only all the axioms of the Nash solution except Axiom IIA but also part

of Axiom IIA in the following sense. Specifically, we decompose Axiom IIA into several

subaxioms (Axioms 4, 5, and 6N). Among them, there is only one axiom (Axiom 6N) that

the Consensus solution does not satisfy. The rest axioms are enough to characterize the Nash

solution in comprehensive bargaining problems (Theorem 2c), 3 where most of the appealing

properties of the Nash solution are discovered. Since the Consensus solution also satisfies

the rest axioms, it is the same as the Nash solution in comprehensive bargaining problems

and correspondingly inherit these appealing properties of the Nash solution.

The bargaining theory after Nash (1950) gradually focuses on comprehensive bargaining

problems due to the idea of free disposal of utilities. Specifically, by free disposing players’

utilities, one can always transform a non-comprehensive bargaining problem into a comprehensive

one. At first glance, it appears a reasonable idea but careful investigations are needed

to reach a conclusion. In Nash’s bargaining model, utilities are only representations of

players’ preferences. They do not exist therefore cannot be directly free disposed. Although

physical resources can be freely disposed, it does not necessarily mean that utilities can

be independently “free disposed.” For example, two players’ utilities may be u1 = x1 and

u2 = x1

2
+x2 where x1 and x2 represent how much resources they get. Here, free disposing x1

decreases both players utility. Furthermore, the bargaining matter may not even be about

resources (see Example 1). Of course, one can assume that, on top of the bargaining matter,

there are physical resources that can independently affect players’ utilities. But on one

hand, one essentially consider another bargaining problem instead of what we are originally

3. A bargaining problem (W, s) is comprehensive if for any v ∈W and w ∈ R2, s ≤ w ≤ v implies w ∈W .
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interested in; on the other hand, this assumption may be invalid because there are bargaining

situations where there do not exist additional physical resources. We give detailed examples

in section 1.2.3.

While the Consensus solution inherits the appealing properties of the Nash solution and

overcomes some of its controversies, by no means we regard the Consensus solution as ideal.

It still bears some of the criticisms on Axiom IIA (mainly due to Axiom 5). But completely

discarding Axiom IIA would be a too big step and have the risk of adding confusions on top

of those we already have in bargaining theory. We would like to progressively move forward

and the Consensus solution can serve as a stepstone along the way. Therefore, in this paper

we propose the Consensus solution and compare it with the Nash solution; in our companion

paper, we propose another solution and compare it with the Consensus solution.

Now we shall move to the main context and formally introduce the Consensus solution.

1.2 Maximization

We consider the same bargaining problem (W, s) (see above Definition 1) as in Nash (1950)

and maintain the same assumptions: W is compact and convex and s ∈ W . Compactness is

a technical assumption. In the context of von Neumann-Morgenstern utility, the availability

of randomization is sufficient for convexity. In Nash (1950), s ∈ W is assumed because s can

be obtained by two players jointly triggering the threat.

Before moving on, we need a few notations.

• v ≥ w if v1 ≥ w1, v2 ≥ w2;

• v 
 w if v ≥ w and v 6= w;

8



• v ∈ W is an efficient point of W if there is no other w ∈ W such that w 
 v and we

denote the set of all efficient points as E(W );

• µ(W ) is the area of set W .

1.2.1 The Consensus Solution

We define the Consensus solution of the bargaining problem (W, s) as the solution(s) of the

following maximization problem

max
v≥s,v∈E(W )

µ({w ∈ W |s ≤ w ≤ v}). (1.1)

To interpret problem (1.1), consider all the points within W . Using threat s, we can

classify them into two types: Individually Irrational points I(W, s) ≡ {w ∈ W |w1 <

s1 or w2 < s2} and Individually Rational points R(W, s) ≡ {w ∈ W |w ≥ s}. The former

are, for at least one player, strictly worse than s and in problem (1.1), they do not matter in

any way. Given a solution candidate v ∈ E(W ), the latter can be classified into three types

as shown in Figure 1.2a: C(W, s, v) ≡ {w ∈ W |w ≤ v} ∩ R(W, s), Consensus points of v;

B1(W, s, v) ≡ {w ∈ W |w1 > v1, w2 ≤ v2} ∩ R(W, s), player 1’s Bargaining points of v; and

B2(W, s, v) ≡ {w ∈ W |w1 ≤ v1, w2 > v2} ∩R(W, s), player 2’s Bargaining points of v.

C(W, s, v) contains all options which, both players agree, are better than s but worse

than v. It is exactly {w ∈ W |s ≤ w ≤ v}, the measure of which problem (1.1) maximizes.

Thus, the Consensus solution of (W, s) can be interpreted as maximizing players’ consensus.

B1(W, s, v) and B2(W, s, v) are alternatives that are for one player strictly better than v

but worse for the other. Particularly, B1(W, s, v) contains options that player 1 prefers to v.

9



Figure 1.2: Notations

The larger it is, the lower v1, the more dissatisfied player 1 is with v. Similarly, B2(W, s, v)

can measure player 2’s dissatisfaction. the Consensus solution can also be interpreted as

minimizing players’ total dissatisfaction. To see this, notice that µ(C(W, s, v)) = µ(R(W, s))−

µ(B1(W, s, v))− µ(B2(W, s, v)). Thus, problem (1.1) is equivalent to

min
v≥s,v∈E(W )

µ(B1(W, s, v)) + µ(B2(W, s, v)). (1min)

1.2.2 Characterization

Now we provide the characterization results of the Consensus solution.

Theorem 1. Suppose W is convex and compact and s ∈ W .

(a). There exists a unique solution of problem (1.1).

(b). If there is only a unique efficient point in (W, s) that is individually rational, i.e.

E(R(W, s)) is a singleton, the solution of problem (1.1) is E(R(W, s)); if E(R(W, s)) is not

a singleton, v is a solution of problem (1.1) if and only if there exists a outward normal

10



vector n = (n1, n2) of W at v such that

|vv1|
|vv2|

=
n1

n2

. (1.2)

where, as shown in Figure 1.2b, point v1 is the other intersection of the boundary of R(W, s)

and the vertical line passing v and similarly v2 is the other intersection of the boundary of

R(W, s) and the horizontal line passing v. Moreover, |vv1|, |vv2| > 0.

Theorem 1 is foundational to this paper. It not only gives the characterization results of

the Consensus solution but also is important to discover and prove the axiomatic characterization

in next section.

In Theorem 1, equation (1.2) is essentially the first order condition of problem (1.1).

This equation can also be stated geometrically as: line v1v2 and supporting line T that

corresponds to normal vector n are in parallel.

To prove Theorem 1, we rewrite problem (1.1) as maxv∈E(R(W,s)) µ({w ∈ R(W, s)|w ≤

v}). Clearly, we just need to show the case where E(R(W, s)) is not a singleton. For this

case, R(W, s) must be full-dimensional i.e. µ(R(W, s)) > 0. Therefore, we can replace the

constraint v ∈ E(R(W, s)) with v ∈ R(W, s). Then it is convenient to consider a more

general problem as shown below.

max
v∈W

µ({w ∈ W |w ≤ v}). (1.3)

Now we state the characterization results of problem (1.3) in below Lemmas 1-3. For the

purose of Theorem 1 (the part where E(R(W, s)) is not a singleton), we just need to apply
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them with set R(W, s).

Lemma 1. Existence: For any compact set W ⊂ R2, problem (1.3) has a solution.

Lemma 2. First Order Condition: Suppose W is convex, compact, and full dimensional

(µ(W ) > 0), and E(W ) is not a singleton. Then v is a solution of problem (1.3) if and

only if there exists a outward normal vector n = (n1, n2) of W at v such that equation (1.2)

holds. Moreover, |vv1|, |vv2| > 0 4 and µ({w ∈ W |w ≤ v}) first weakly increases then weakly

decreases as v moves along E(W ) from left to right.

Before stating Lemma 3, we need to define a type of bargaining sets. Suppose W is

convex, compact, and full dimensional. If there exists a nontrivial interval I ⊂ E(W ) and a

line L parallel with I such that for any v ∈ I, its corresponding v1, v2 ∈ L, we then call such

W as an Odd Bargaining set. An example of an Odd Bargaining set is the convex hull of

points a = (2, 0), b = (2, 1), c = (1, 2), and d = (0, 2), where I is interval bc and L is line ad.

Lemma 3. Uniqueness: Suppose W is convex, compact, and full dimensional. Problem

(1.3) has multiple solutions if and only if W is an Odd Bargaining Set.

We leave the formal proofs of Lemmas 1-3 in Appendix 1.6.2 and sketch their intuitive

ideas here. For Lemma 1, we just need to show the objective function in problem is continuous

with respect to v and then the existence follows from Weierstrass’s extreme value theorem.

For Lemma 2, to show that v is a solution of problem (1.3) implies equation (1.2) holds,

we compare the area of {w ∈ W |w ≤ v′} with {w ∈ W |w ≤ v′} where v′ is an efficient

point right to v. As shown in Figure 1.3a, the increment and decrement are the areas of sets

4. v1, v2 are defined the same way in Theorem 1 but with respect to set W instead of R(W, s).
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v′v′1v1vx and vv2v′2vx respectively, where v′1 and v′2 are defined similarly as v1 and v2 and

vx is the intersection of intervals vv1 and v′v′2. Therefore, when v′ and v are close enough,

they are approximately |v′1 − v1||vv1| and |v′2 − v2||vv2| and
|v′2−v2|
|v′1−v1| ≈

n1

n2
for some normal

vector n at v. Thus we must have

µ({w ∈ W |w ≤ v′})− µ({w ∈ W |w ≤ v}) ≈ |v′1 − v1||vv1| − |v′2 − v2||vv2|

≈ |v′1 − v1||vv2|( |vv
1|

|vv2|
− n1

n2

).

Therefore, v is a solution of problem (1.3) implies equation (1.2) equation (1.2) holds. To

finish the rest of Lemma 2, we just need to prove |vv
1|

|vv2| −
n1

n2
weakly decreases as v moves

along E(W ) from left to right. The second term n1

n2
weakly increases because W is convex.

The firs term must weakly decrease since it is equal to the slope of line v1v2 and as shown

in Figure 1.3b, line v1v2 must be weakly steeper than line v′1v2 because v, v′1, v1, and v2

are extreme points of W , which in turn must be weakly steeper than line v′1v′2 for a similar

reason.

(a) Necessary Part. (b) Sufficiency Part.

Figure 1.3: Illustration of the Proof of Lemma 2.

For Lemma 2, ifW is an Odd Bargaining set, Lemma 2 immediately implies the corresponding
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interval I of W are solutions of problem (1.3); if problem (1.3) has multiple solutions, we show

W must be an Odd Bargaining set according to its definition i.e. there exists corresponding

interval I and line L, which we prove by respectively showing for different solution v, n1

n2
of

equation (1.2) has to be the same and |vv
1|

|vv2| also has to be the same. Appendix 1.6.3 contains

the details of this proof.

Applying Lemmas 1 and 2 with set R(W, s), we immediately get the existence and

equation (1.2) in Theorem 1. To get the uniqueness result in Theorem 1, according to

Lemma 3, we just need to show that R(W, s) is not an Odd Bargaining set, which has to be

true because s ≤ w for any point w ∈ R(W, s) but in an Odd Bargaining set, there cannot

exist such point s.

1.2.3 Comparison with the Nash solution

It is well-known that the Nash solution is the solution of the below problem

max
v≥s,v∈E(W )

(v1 − s1)(v2 − s2).

To contrast the Nash and Consensus solutions, we rewrite it as below, reprint problem (1.1),

and illustrate them in Figure 1.4:

max
v≥s,v∈E(W )

µ({w ∈ R2|s ≤ w ≤ v}); (1N)

max
v≥s,v∈E(W )

µ({w ∈ W |s ≤ w ≤ v}). (1)

For problem (1N), we have the following theorem.
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Figure 1.4: The areas that the Nash and Consensus solutions maximize.

Theorem 1N. 5 Suppose s ∈ W and W is convex and compact.

(a). There exists a unique solution of problem (1N).

(b). If there is only a unique efficient point in (W, s) that is individually rational, i.e.

E(R(W, s)) is a singleton, the solution of problem (1.1) is E(R(W, s)); if E(R(W, s)) is not

a singleton, v is a solution of problem (1.1) if and only if there exists a outward normal

vector n = (n1, n2) of W at v such that

|va1|
|va2|

=
n1

n2

(2N)

where points a1 ≡ (v1, s2) and a2 ≡ (s1, v2).

Equations (1N) and (1) suggest that for the Consensus solution, its desirability solely

depends on the options within W whereas for the Nash solution, it may depend on options

outside W . Such difference in dependence on W is again revealed in their characterizing

equations (1.2) and (2N). The two equations’ right sides are exactly the same and about the

local information of W at v; their left sides are different. The left side of equation (1.2), it

5. The contents of this theorem are known and simple to prove. Thus, we omit its proof.
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is |vv
1|

|vv2| depending on points (v1 and v2) in W whereas the left side of equation (2N) is |va
1|

|va2|

where a1 and a2 may be outside of W .

Now we revisit Example 1 we introduce in last section. With the help of equation (1.2),

we can obtain its Consensus solution: (8
5
, 12

5
). In terms of physical actions, the Consensus

solutions means that they go biking 40% of the time and go hiking 60% of the time, which

is much more moderate than Nash solution.

Despite their difference, the two solutions are the same in comprehensive bargaining

problems. To see this, notice that for a comprehensive bargaining problem (W, s), all points

w satisfying s ≤ w ≤ v are within W . Therefore, equations (1N) and (1) coincide thus the

two solutions must be the same.

In literature, comprehensive bargaining problems are widely studied because of the idea

that one can always transform a non-comprehensive bargaining problem into a comprehensive

one by independently free disposing players’ utilities. This idea appears reasonable but

careful investigations are needed to reach a conclusion. First, in Nash’s bargaining model,

utilities are only representations of players’ preferences, they do not really exist and therefore

cannot be free disposed. Second, what may be free disposed are physical resources. However,

on one hand, the bargaining matter may not be about resources (see Examples 1 and 2a);

on the other hand, even when the bargaining matter is about resources, independently free

disposing players’ resources is neither sufficient nor necessary (Examples 2b and 2c). Last,

surely one can transform a non-comprehensive bargaining problem to a comprehensive one

by including from outside of the bargaining matter resources that can independently affect

players’ utilities. However, on one hand, since these resources have nothing to do with

the bargaining matter, it is questionable that such inclusion is the right description of real
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bargaining situations and what players would like to subscribe to; on the other hand, there

are situations where there are no outside resources to be included at all because all physical

resources have already been included (Examples 2d and 2e). Of course, sometimes we do

consider some form of free disposal like money burning (e.g. , Spence, 1978; Van Damme,

1989), but they are in strategic models with incomplete information where free disposal serves

as a signal or communication device and shall not be confused with Nash’s cooperative model

with complete information where bargaining is to argue cases that favor instead of oppose

their interests.

Example 2. (a). Coordination of Actions Two countries need to coordinate (e.g.

on climate change) which action to take from n options, under which their utilities are

u1, u2, ..., un ∈ R2. If they cannot agree which action to take, they get utilities u0. In terms

of Nash’s bargaining model, W is the convex hull of points u0, u1, ..., un and s is u0. Here

(W, s) is non-comprehensive unless u0 is correlated with other actions in a specific manner,

as shown in below,

u0
1 ≥ min

k∈A2

uk1 where A2 = argmax
k=1,2,...,n

uk2;

u0
2 ≥ min

k∈A1

uk2 where A1 = argmax
k=1,2,...,n

uk1.

(b). Allocation of Resources Two brothers have 2 million dollars to inherit. Their

utilities are u1 = x1 and u2 = x1

2
+ x2 where x1 and x2 represent how much money they

get. They need to agree how to split the money subject to x1 + x2 ≤ 2; otherwise, they get

nothing. W is the triangle area of points (0, 0), (0, 2) and (2, 1) and threat s is (0, 0). Here,

although we assume free disposal of money, (W, s) is not comprehensive.

(c). Exchange of Goods Two players derive their utilities from consuming two goods:
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apple and banana. Their utilities are u1(xA1 , x
B
1 ) = 2xA1 + xB1 and u2(xA2 , x

B
2 ) = xA2 + 2xB2

where xA1 and xB1 stands for player 1’s consumption of apple and banana; similar for xA2 and

xB2 . Denote their total endowments of the goods are (3, 3). Following the standard setup in

Edgeworth’s box, xA1 + xA2 = 3 and xB1 + xB2 = 3. In terms of Nash’s bargaining model, W is

the quadrilateral (0, 9), (6, 6), (9, 0), and (3, 3), s is their utilities before the exchange. Notice

that although we do not assume free disposal of goods, (W, s) is comprehensive regardless

the position of threat s.

(d). Wage Negotiation Labor union and management negotiate how to split 1 unit

profits. Their utilities are respectively uL = w and uM = 1 − w where w ≥ 0 represents

the wage. If no agreement, an strike happens, labor union gets nothing and management

suffers 1 loss due to fixed cost i.e. uL = 0. In terms of Nash’s bargaining model, W is

the triangle (1, 0), (0, 1), and (0,−1) (the first coordinate represent union’s utility) and s is

(0,−1). (W, s) is non-comprehensive. And the Nash solution sets w = 1.

(e). Marriage Problem Two partners are married. Their utilities are u1 = c1 +

l1 and u2 = c2 + l2 where c1, c2 ≥ 0 represent their consumption satisfying c1 + c2 ≤ a

(a > 0 is their total asset), and l1, l2 ≥ 0 represent the enjoyment that they obtain from

the accompanionship. They need to decide how to allocate their consumption. If they

cannot reach an agreement, divorce happens and their consumption is (a1, a2) dictated by

law satisfying a1 + a2 = a. Triangle M of points (l1, l2 + a), (l1 + a, l2), and (l1, l2) represents

what utilities they can obtain within marriage. In terms of Nash’s bargaining model, W

is the convex hull formed by triangle M and point (a1, a2), and s is (a1, a2). (W, s) is

non-comprehensive if either l1 > a1 or l2 > a2 holds.
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1.3 Axiomatization

In above, we compare the Consensus and Compromise solutions within a single bargaining

problem. In this section, we view them as functions of all the bargaining problems and

compare the axioms that characterize them.

Let B be a set of tuples (W, s) where W ∈ R2 is convex and compact, and s is a point in

W . Consider function V : B→ R2. If for all (W, s) ∈ B, V (W, s) ∈ W , we then call V (·) as

a solution of bargaining problems.

In below, we present axioms that lead to the Consensus and Nash solutions. The two

solutions share five axioms in common. This is connected with the result of last section—

the common axioms are enough to identify them in comprehensive bargaining problems.

Formally, we have the below theorem.

Theorem 2. (a). A solution V (·) of B satisfies Axioms 1-5, and 6 if and only if for any

(W, s) ∈ B, V (W, s) is the Consensus solution of (W, s) i.e. the solution of problem (1.1).

(b). A solution V (·) of B satisfies Axioms 1-5, and 6N if and only if for any (W, s) ∈ B,

V (W, s) is the Nash solution of (W, s) i.e. the solution of problem (1N).

(c). A solution V (·) of B satisfies Axioms 1-5 if and only if for any comprehensive

bargaining problem (W, s) ∈ B, V (W, s) is the Consensus (and Nash) solution of (W, s).

We introduce a few notations used in below axioms. We call a point w and a subset W

of R2 as symmetric if w1 = w2 and W = {(w2, w1)|w ∈ W}, respectively. For given points

c ∈ R2
++, b ∈ R2, and w ∈ R2, c·w+b ≡ (c1w1+b1, c2w2+b2) and c·W+b ≡ {c·w+b|w ∈ W}.

Here (c, b) represents a pair of order-preserving affine transformations of players’ utilities.

And W \W ′ ≡ {w ∈ W |w /∈ W ′}.
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Axiom 1. Efficiency: For any (W, s) ∈ B, V (W, s) is an efficient point of W .

Axiom 2. Symmetry: For any (W, s) ∈ B, if both W and s are symmetric, then V (W, s)

is symmetric.

Axiom 3. Affine Invariance: For any (W, s) ∈ B, for any c ∈ R2
++ and b ∈ R2, V (c ·

W + b, c · s+ b) = c · V (W, s) + b.

Axioms 1-3 are used in Nash (1950). Axiom 1 is self-evident. Axiom 2 says that V (·)

shall be impartial. The subtext of Axiom 3 is that utilities are only representations of

players’ preferences therefore different representations shall not change the solution, just like

one shall not feel colder if Celsius is used instead of Fahrenheit. Since the absolute values

of utilities become meaningless, Axiom 3 effectively rules out interpersonal comparison of

utilities.

Axiom 4. -Irrational: For any (W, s), (W ′, s) ∈ B, if W ⊃ W ′ and W \W ′ are Individually

Irrational points of V (W, s), then V (W ′, s) = V (W, s).

Axiom 5. -Bargaining: For any (W, s), (W ′, s) ∈ B, if W ⊃ W ′ and W \ W ′ are

Bargaining points of V (W, s), then V (W ′, s) = V (W, s).

Axiom 6. +Consensus: For any (W, s), (W, s′) ∈ B, if s′ ≤ s and R(W, s′) \ R(W, s) are

Consensus points of V (W, s), then V (W, s′) = V (W, s).

Axiom 6N. (a). -Consensus: For any (W, s), (W ′, s) ∈ B, if W \ W ′ are Consensus

points of V (W, s), then V (W ′, s) = V (W, s);

(b). Threat Reference: For any (W, s), (W, s′) ∈ B, if s′ ≤ s and s′ is on the same

line with s and V (W, s) 6= s, then V (W, s′) = V (W, s).
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Axioms 4, 5, and 6N can be seen as a decomposition of Axiom IIA used in Nash (1950).

Using the same notations, we can state Axiom IIA as: For any (W, s), (W ′, s) ∈ B, if W ′ ⊂ W

and V (W, s) ∈ W ′, then V (W ′, s) = V (W, s). Clearly, Axiom IIA implies the Axioms 4, 5,

6Na. But the reverse does not hold because the three axioms say independently removing

individually irrational points, V (W, s)’s Bargaining points, and V (W, s)’s Consensus points

does not change the solution while the contents of Axiom IIA are much richer than its

appearance and also covers cases of jointly removing them.

Figure 1.5: Subfigures (a), (b), and (c) are examples where Axiom 6 apply; Axiom 6 does not
apply in Subfigures (d) because s′ ≤ s does not hold; Axiom 6 does not apply in Subfigures (e)
because compared with R(W, s), R(W, s′) also has more (Player 2’s) Bargaining Points of v(shaded
area); in Subfigure (f), there does not exist s′ 6= s such that Axiom 6 can apply.

While Axioms 2-5 need further explanations, they have nothing to do with understanding

the differences between the Consensus and Nash solutions, the main mission of this paper.

Thus we leave these explanations to Section 1.5 and turn our main focus on Axioms 6 and

6N.
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Axiom 6 says that when the threat becomes worse for both players (s′ ≤ s), players

have additional options to cooperate ( R(W, s′) ⊃ R(W, s)), then as long as the additional

options are worse than the current solution (R(W, s′) \ R(W, s) are Consensus points), the

solution shall not change. Put it in short, Axiom 6 says the case when the change of the

threat induces more Consensus points regardless the exact position of the new threat. In

comparison, Axiom 6N is almost the exact opposite of Axiom 6. Axiom 6Na says cases of

lessening Consensus points ; Axiom 6Nb says cases when the threat changes and the new

threat is at a certain position: in the same line with the old threat and solution.

Now consider Axioms 6 and 6N in below examples.

Example 3. (a). Let s = (0, 0), a1 = (1, 0), a2 = (0, 2), and v = (1, 1) as shown in Figure

1.6a. Denote sa1va2 as W . Both the Nash and Consensus solutions of (W, s) are v.

Figure 1.6: Nash Solution v.s. Consensus Solution (The detailed description is Example 3.)

Denote triangle sva2 as W ′. Here W \W ′ are Consensus points of v. For (W ′, s), the Nash

solution is still v satisfying Axiom 6Na; but the Consensus solution changes to vC = (2
3
, 4

3
)

thus violates Axiom 6Na.
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(b). Consider W ′, triangle sva2, in part (a). Let s′ = (1
4
, 3

4
) and v′ = (1

4
, 3

4
), as shown in

Figure 1.6b. Both the Nash and Consensus solutions of (W ′, s′) are v′.

Let s′′ be (0, 1
2
). s′′ is on line s′v′. For (W ′, s′′), the Nash solution is still v′ satisfying

Axiom 6Nb; but the Consensus solution changes to vC = (2
3
, 4

3
) thus violates Axiom 6Nb.

(c). Let s = (0, 0), a1 = (3, 1), a2 = (1, 3), b1 = (−1,−3), b2 = (−3,−1) as shown in

Figure 1.6c. Denote rectangle a1a2b2b1 as W . Both the Nash and Consensus solutions of

(W, s) are v = (2, 2).

Consider (W, s1). Here R(W, s1)\R(W, s) are more Consensus points of v. The Consensus

solution is still v; but the Nash solution changes to a1 thus violates Axiom 6. Similarly in

(W, s2).

In our view, the above three examples together with Axioms 6 and 6N reflect what matter

more in determining the Consensus and Nash solutions. For the Consensus solution, what

two player can achieve via cooperation (Consensus and Bargaining points) matter more. In

Example 3a, the Consensus solution changes with lessening Consensus points; In Example

3b, the Consensus solution favors player 2 more in (W ′, s′′) than in (W ′, s′) with more player

2’s Bargaining points (of v′); In Example 3c, the Consensus solution does not change because

Bargaining points do not change and there are more Consensus points. For the Nash solution,

what two player can achieve via no-cooperation (the threat) matters more. In Examples 3a

and 3b, the Nash solution does not change because the relative position of the threat does

not change; in Example 3c, the Nash solution changes because the relative position of the

threat changes.

We will continue to discuss such difference between the Nash and Consensus solutions
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from other perspectives in next section. Before that, we present the proof of Theorem 2a.

Theorem 2b’s proof is very similar and can be found in Appendix 1.6.4.

Proof. If part: If for any (W, s) ∈ B, V (W, s) is the solution of problem (1.1), V (·) satisfies

Axioms 1 -5.

Axiom 1: V (·) clearly satisfies Axiom 1.

Axiom 2: Consider symmetric W and s. W ’s has a unique symmetric efficient point.

Denote it as v. We just need to show V (W, s) = v. That is to show that v is the solution

of problem (1.1). If E(R(W, s)) is a singleton, clearly v is the solution of problem (1.1). If

not, due to the symmetry of W , s and v, there exists a tangent line T of W at v with slope

−1 and v1v2’s slope is also −1. Thus equation (1.2) in Theorem 1 holds. Again, v is the

solution of problem (1.1).

Axiom 3: Under order preserving affine transformations on utilities, the relative positions

of points inW do not change. Specifically, if E(R(W, s)) is a singleton, after the transformation,

it is still a singleton; if E(R(W, s)) is not a singleton, the parallel relationship between lines

v1v2 and tangent line T does not change, that is equation (1.2) in Theorem 1 still holds. In

both cases, the relative positions of the solution of problem (1.1) do not change. Thus, V (·)

satisfies Axiom 3.

Axiom 4: V (·) clearly satisfies Axiom 4.

Axiom 5: Since W ′ is a subset of W , for any v′ ∈ E(W ′), we have

µ({w ∈ R(W, s)|w ≤ v′}) ≥ µ({w ∈ R(W ′, s)|w ≤ v′}).

Furthermore, since W \W ′ are Bargaining points of V (W, s), when v′ = V (W, s), two sides
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of the above inequality are equal. Thus, V (W, s) must also solve problem (1.1) with (W ′, s).

That is V (·) satisfies Axiom 5.

Axiom 6: Since R(W, s′) \ R(W, s) are Consensus Points of v ≡ V (W, s), we have

E(R(W, s′)) = E(R(W, s)) and µ({w ∈ R(W, s′)|w ≤ v}) = µ({w ∈ R(W, s)|w ≤ v}) +

µ(R(W, s′) \ R(W, s)). So v must also solve problem (1.1) with (W, s′). Thus V (·) satisfies

Axiom 6.

Only If part: If V (·) of B satisfies Axioms 1 - 6, for any (W, s) ∈ B, V (W, s) is the

solution of problem (1.1). Suppose v solves problem (1.1). We prove this part by showing

V (W, s) = v.

If E(R(W, s)) is a singleton, due to Axiom 1, we have V (R(W, s), s) = v. Also, due to

Axiom 4, we have V (W, s) = V (R(W, s), s). Thus V (W, s) = v.

If E(R(W, s)) is a not singleton, we prove V (W, s) = v in below six steps and they are

illustrated in Figure 1.7.

Figure 1.7: Proof of Theorem 2
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(a) Since v solves problem (1.1), according to part (b) of Theorem 1, we have a supporting

line T at v such that T is parallel with v1v2.

(b) Due to Axiom 3, it is equivalent to prove V (W, s) = v after order-preserving affine

transformations on utilities. Implement affine transformations such that v becomes

a symmetric point and T ’s slope is −1. Line v1v2’s slope must also be −1. Thus

|vv1| = |vv2|. Let s′ ≡ (v2
1, v

1
2). s′ must be symmetric.

Here we provide a few observations of s′ that will be used in later steps: (1). s′ ≤ v;

(2). s ≤ s′ because s ≤ v1 and s ≤ v2; (3). s′ ∈ W because s′ is within triangle

sv1v2 ⊂ W .

(c) Let W 1 be the triangle area circumvented by lines T , s′v1, and s′v2. W 1 must also be

symmetric. According to Axioms 1 and 2, V (W 1, s′) = v.

(d) Due to observation (3) in step b, R(W, s′) is well-defined. Denote it as W 2. Notice that

W 1 \W 2 contains only Bargaining points of v. According to Axiom 5, V (W 2, s′) =

V (W 1, s′) = v.

(e) Notice that for any W, s′, R(W, s′) = R(R(W, s′), s′) i.e. R(W, s′) = R(W 2, s′).

According to Axiom 4, V (W, s′) = V (W 2, s′) = v.

(f) We already have s ≤ s′ (observation (2) in step b). According to Axiom 6, V (W, s) =

V (W, s′) = v, as desired, if we can further show that R(W, s) \R(W, s′) are Consensus

points of v.

It is equivalent to show for any Bargaining point w ∈ R(W, s) of v, w ≥ s′ i.e. w1 ≥ s′1

and w2 ≥ s′2. Without loss of generality, suppose w is player 1’s Bargaining point of v.

26



Thus w1 > v1. Also v1 ≥ s′1(observation (1) in step b). So w1 > s′1. We prove w2 ≥ s′2

by contradiction. Suppose not, w2 < s′2. The locational relationship between v, s, w

and v1 are:

• v is strictly right above v1;

• s is weakly below and strictly left to v1;

• w is strictly below and right to v1 (w2 < s′2 = v1
2 and w1 > v1 = v1

1).

Thus v1 is an interior point of triangle vsw. A contradiction with v1 being an extreme

point of R(W, s).

�

1.4 Further Comparison

In last two sections, we have compared the Consensus and Nash solutions from perspectives

of maximization and axiomatization. In this section, we further compare them from other

perspectives.

1.4.1 Isosolution

As shown in Axioms 6 and 6N, one key difference between the Consensus and Nash solutions

lies in the position of the threat. To further explore the meaning of the position of the threat,

we consider all the possiblities of threat s within W . Formally, we introduce a new concept:

isosolution. An isosolution of v ∈ E(W ) is the set of threats that yield v as a solution in

(W, s).
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Consider the W in Example 3c. Let v be any point on interval a1a2. As shown in

Figure 1.8a, its Nash isosolution is an interval, the intersection of W and the line passing v

with slope 1, which reflects Axiom 6Na. Whereas, its Consensus isosolution depends on the

position of v, as shown in Figure 1.8a’. If v is above point (2, 2), its Consensus isosolution

is a polyline with two segments : the first segment’s slope is 1 the same with the Consensus

isosolution within triangle sa1a2; the second segment is horizontal. When the threat moves

from the first segment to the second segment, there are new individually rational points and

they all are Consensus points of v, which reflects Axiom 6. If v is below point (2, 2), it is

the same with the exception that the second segment is vertical. If v is point (2, 2), the

second segment becomes the whole pentagon b1s1ss2b2. In Figures 1.8b and 1.8b′, we also

show the Nash and Consensus isosolutions when W is a unit disk. As Figure 1.8 shown, the

Consensus and Nash solutions are the same when the threat is close to the efficient frontier

of W , specifically, when the threat is at the first segment of the Consensus isosolution and

the two solutions are usually different from each other when the threat is far away from the

efficient frontier. To understand this further, we move to next section.

1.4.2 Situation of Bargaining

Now, we compare the Consensus and Nash solutions through understanding the situation of

bargaining problem (W, s).

Situation of Bargaining Problem (W, s): W part Since W can be completely

characterized by its boundary δW , we can understand situation of W through δW . We need

to introduce four sets.
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Figure 1.8: Isosolution: the set of threats that yield the same solution.
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• M1 ≡ {w ∈ W |w1 = max
w′∈W,w′2=w2

w′1} are the best choices for player 1 given player 2’s

utilities;

• m1 ≡ {w ∈ W |w1 = min
w′∈W,w′2=w2

w′1} are the worst choices for player 1 given player 2’s

utilities;

• M2 ≡ {w ∈ W |w2 = max
w′∈W,w′1=w1

w′2} are the best choices for player 2 given player 1’s

utilities;

• m2 ≡ {w ∈ W |w2 = min
w′∈W,w′1=w1

w′2} are the worst choices for player 2 given player 1’s

utilities.

Now we can divide W ’s boundary into the below eight contiguous segments, as shown in

Figure 1.9.

• M1 ∩M2 represents “win-win” and is a downward-sloping curve;

• m1 ∩m2 represents “lose-lose” and is a downward-sloping curve;

• M1 ∩m2 represents “win-lose” and is a upward-sloping curve;

• m1 ∩M2 represents “lose-win” and is a upward-sloping curve;

• A1 ≡ argmaxw∈W w1 represents “Win–” and is a vertical line;

• a1 ≡ argminw∈W w1 represents “Lose–” and is a vertical line;

• A2 ≡ argmaxw∈W w2 represents “–Win” and is a horizontal line;

• a2 ≡ argminw∈W w2 represents “–Lose” and is a horizontal line;

30



Figure 1.9: Situation of (W, s)

A1, a1, A2, and a2 describe the situation of W from one player’s perspective; M1 ∩M2,

m1 ∩ m2, M1 ∩ m2, and m1 ∩M2 are from two players’ perspectives. Specifically, A1 and

a1 are the best and worst choices for player 1; similarly, A2 and a2 are the best and worst

choices for player 2; M1∩M2 and m1∩m2 feature the non-cooperative aspects of W because

along them two players’ interests are negatively correlated; whereas, M1 ∩m2 and m1 ∩M2

feature the cooperative aspects of W because along them two players’ interests are positively

correlated.

Since M1∩M2, m1∩m2, M1∩m2, and m1∩M2 are from two players’ perspectives, among

the above eight sets, they are relatively more important in shape the situation. To better

see this, consider examples in Figure 1.10. In them, W is a rectangle with the center at the

origin and the slopes of its edges are −1 and 1. Denote the lengths of its edges along the

two directions as ln and lc. They represent the strengths of non-cooperative and cooperative

aspects of W . And Figures 1.10a-1.10c are examples where ln > lc, ln = lc, and ln < lc.

Clearly, players’ interests are relatively more conflicting in Figure 1.10a and more consistent

in Figure 1.10c. To be more precise, define a uniform probability over W , then correlation

coefficients of two players utilities in Figures 1.10a-1.10c are respectively smaller than, equal

31



to, and bigger than 0. 6

Figure 1.10: Situation of W

(If we think of δW as a piece of music, the above eight sets are its basic notes. To hear

them, run your finger along δW in Figures 1.9 and 1.10.)

Situation of Bargaining Problem (W, s): s part Threat s reshapes the situation

by classifying some points in W as individually irrational or rational. We simply call

this classification as eliminating individually irrational points. To understand the reshaped

situation, again, we can focus on the boundary of W : which part of δW is eliminated by s?

Or equivalently, which part remains?

Depending on the exact position of s in W , different parts of δW can be eliminated. But

almost always, one whole non-cooperative segment, m1 ∩m2, is eliminated (except s itself

when s ∈ m1 ∩m2); always, part of the other non-cooperative segment, M1 ∩M2, remains;

oftentimes, parts of the cooperative segments, m1 ∩ M2 and M1 ∩ m2, remain; m1 ∩ M2

and M1 ∩ m2 are completely eliminated whenever the below two inequalities strictly hold

6. Notice that the correlation coefficients do not change under the affine transformation in Axiom 3.
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(respectively).

s1 ≥ min
w∈A2

w1;

s2 ≥ min
w∈A1

w2.

(1.4)

In next subsection, we use the above two inequalities to understand some bargaining

situations of some economic problems even without having to explicitly write down what

W and s are. We are able to do this because the two inequalities have straightforward

interpretations. Each one of them tests if the threat is empty or not for some player by

considering an extreme scenario. Suppose player 1 abstains from bargaining with player 2

except the right of triggering the threat. In W , clearly player 2 wants to choose from A2, but

will player 2 be able to freely choose without any concern? The answer is no if the first of

inequalities (1.4) holds, that is, player 1’s threat is not empty ; no if it does hold. Similarly,

the second inequality tests if player 2’s threat is empty or not.

The View from Situation of Bargaining Problem (W, s) Now we are ready

to understand the differences of the Nash and Consensus solutions from the perspective of

the situation of bargaining.

As shown in equation (2N), the Nash solution depends, except s, only on v; whereas, as

shown in equation (1.2), the Consensus solution, in addition, depends on v1 and v2. Here, v

is on M1 ∩M2; v1 and v2 may be on M1 ∩m2 and m1 ∩M2. Thus, the Nash solution only

consider a non-cooperative aspect of W ; whereas, the Consensus solution additionally uses

v1 and v2, to detect the cooperative aspects of W .

Whether the cooperative aspects of W are detected by v1 or v2 is a sharp characterization

of whether Consensus solution v is the Nash solution or not.
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For Consensus solution v, if its corresponding v1 or v2 is on M1 ∩m2 or m1 ∩M2, almost

always, v is not the Nash solution. In Figures 1.8a and 1.8b, it is such case when the

threat is outside of triangle a1sa2 i.e. the threat is on the second segment of a Consensus

isosolution. And as long as the threat is outside of triangle a1sa2 and or not on interval sb

where b = (−2,−2), v is not the Nash solution.

For Consensus solution v, if neither its corresponding v1 nor v2 is on M1∩m2 or m1∩M2,

v is also the Nash solution. In Figures 1.8a and 1.8b, when the threat is within triangle a1sa2

i.e. the threat is on the first segment of a Consensus isosolution. And as long as the threat

is inside triangle a1sa2, v is always the Nash solution. This can also be formally examined

by the following two equations 
I1(v) = v2 − s2;

I2(v) = v1 − s1.

(1.5)

If neither its corresponding v1 nor v2 is on M1 ∩m2 or m1 ∩M2, the above two equations

hold and according to equations (1.2) and (2N), v must also be the Nash solution.

Furthermore, we speak intuitively when the Nash and Consensus solutions are different

or the same from two perspectives: W and s. From the perspective of W : when the situation

of W is mainly non-cooperative, its cooperative aspects are less likely to be detected and the

Nash and Consensus solutions are less likely to be different; when W is mainly cooperative,

its cooperative aspects are more likely to be detected and the Nash and Consensus solutions

are more likely to be different. From the perspective of s: when s is far from W ’s efficient

frontier (M1 ∩ M2, W ’s non-cooperative aspect), the two solutions are more likely to be

different; when s is close to W ’s efficient frontier, the two solutions are more likely to be the
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same. We illustrate these (by comparing the Nash and Consensus isosolutions) in Figure

1.11 and conclude this subsection.

Figure 1.11: When the threat is in the grey area, the Nash and Consensus solutions are the same;
otherwise, they are different.

1.4.3 Different Subjective Views

In above, we have stated the objective differences and similarities of the Nash and Consensus

solutions. In below, we shall discuss the different subjective views behind them.

Behind the Nash solution, it is implicitly assumed that a solution is determined by

an exogenous preference that, with the presence of the threat point, can evaluate options

bilaterally. Thus for the purpose of comparing two options, except the threat all other

options do not matter. Correspondingly, when some of other options are removed, Axiom

IIA is used to discover the solution according to the revealed preference.

Behind the Consensus solution, our view is quite the opposite. There is no exogenous

35



preference to evaluate options. The options on the table are all we have. They shall be

the sole basis to evaluate themselves. Put it alternatively, they should be peer-reviewed.

Thus, what options are on the table matters even if they are not chosen as the solution.

Based on these ideas, we classify all points of W using s and v into: Individually Irrational,

Consensus, and Bargaining points; and those points, in turn, evaluate the desirability of v.

Furthermore, Individually Irrational points are those that can be vetoed by players’ action

of choosing not to cooperate and we think they should be irrelevant, as shown by Axiom 4.

Consensus points are clearly inferior to v and we think it should not hurt the desirability of v

if there are more, as shown by Axiom 6. Bargaining points are the only type, between which

and v, we do not have a clear tell who is better. This is where different positions can be

taken. And the Consensus solution takes the one of an arbitrator who does not have a direct

preference over options but prefers not to change the solution when there is less bargaining,

as shown by Axiom 5.

In the Nash solution, the threat plays a fundamental role. It is conditional on the

threat that the exogenous preference evaluates options bilaterally.7 That is: the threat

serves as the reference point, as can be seen in Nash’s product, Axiom IIA, and Axiom

6Nb. This has some unintended consequences. First, the Nash solution does not satisfy

a different version of symmetry. In Example 3b, let W ′ and W ′′ be quadrilaterals s1v1vv2

and s1a1a2v2 respectively. For (W ′, s1), both the Nash and Consensus solutions of (W ′, s1)

are v; For (W ′′, s1), the Consensus solution is still v but the Nash solution changes to w1

despite that W ′′\W ′ are symmetric Bargaining points of v. Second, in the Nash solution, the

7. This is necessary because Axiom 3 deprives the meaning of the level of utilities.
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threat always has strategic implications disregarding the cooperative aspect of the bargaining

problem. In Figures 1.8a and 1.8c, whenever we lower one player’s utility of the threat, the

opponent player’s utility of the Nash solution is higher. 8 Effectively, in the Nash solution,

the threat acts like a bargaining chip to obtain higher utilities;

In the Consensus solution, the threat is simply to eliminate Individually Irrational points

and then absent itself from the rest of bargaining. Put it differently, the threat first help

define what the players have in common (Consensus points) and what they disagree with

(Bargaining points) and then let them speak themselves, respecting the cooperative and

non-cooperative aspects of the bargaining problem. Correspondingly, the relative position

of the threat is not essential, as shown by Axiom 6.

In all, the Nash solution focuses on threat s, the anticipation of no-cooperation, and the

Consensus solution focuses on W , what they can obtain via cooperation.

The different views are essentially a matter of modelling choice and logically there is

no right or wrong. However, we still can assess them internally with the bargaining model

that a solution rests on and externally with our common sense in real bargaining situations

that a solution aims to fit. In the Nash’s bargaining model (thus the one of this paper),

players are assumed to be intelligent and rational enough. Therefore, they should be able

to realize that it is nobody’s interest to trigger the threat unless the utilities of the solution

are lower than those of the threat. Thus, the threat itself shall have no strategic implication

beyond eliminating Individually Irrational points. As for our common sense, in Example 1,

the Consensus solution says that they should go biking 40% of the time and go hiking 60%

8. This reflects a general property of the Nash solution. More formally, for bargaining problem (W, s),
when s2 decreases, the Nash solution v1 increases as long as W is smooth at v and there exists w such that
w1 > v1. This is directly implied by equation (2N).
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of the time while the Nash solution says that they should go hiking 100%. And Axioms 6

and 6N provide formal ways for us to evaluate and experiment.

1.5 Other Discussions

1.5.1 (A)symmetry

Axiom 2 directly assumes symmetry. For models where players have no identity differences

other than that they are called player 1 and 2 like the one in this paper, it is a natural

assumption. However, in the real world, identity differences often exists. For example,

bargaining may be between two gangs of different sizes, two kids of different ages, or a labor

union and a firm. In those cases, assuming symmetry may not be be appropriate.

How should we model the asymmetry caused by identity differences? It depends on the

exact meaning of identity differences. If identity differences mean that players have different

strategic advantages, e.g. a larger gang may have more weapons and a larger territory, such

asymmetry should be investigated in richer bargaining models that incorporate the strategic

components; if identity differences do not bear any strategic implication, e.g. a 4-year-old

and 5-year-old bargaining over toys, while it is a moral difficulty to quantify the asymmetry,

the Consensus solution does offer an interface. Consider a weighted version of problem (1min)

min
v≥s,v∈E(W )

c1µ(B1(W, s, v)) + c2µ(B2(W, s, v)) (1.6)

where c1, c2 ≥ 0 satisfying c1+c2 = 2. Clearly, (c1, c2) can be used to quantify the asymmetry.

Intuitively, they are different weights on players’ dissatisfaction. In terms of axiomatization,
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for other c1 and c2, it is not obvious what is the substitute of Axiom 2. But given a non-

empty solution V (·) satisfying all the axioms but Axiom 2, there exists a unique pair of

(c1, c2) such that V (·) is the solution of problem (1.6).

1.5.2 Interpersonal Comparison

While Axiom 3 rules out interpersonal comparison of utilities, sometime it is misunderstood

as no interpersonal comparison at all.

First, players themselves can have interpersonal comparisons. In reality, different interpersonal

comparisons, like envy, equity, and altruism, often comes together with bargaining. For

example, we do see that a child and his parents bargain over his usage of tablets and

consumption of ice-cream both are for the interest of the child. In models, these comparisons

can be built into players’ preferences over physical allocations. For example, the child’s utility

may be uc = xt + xi where xt, xi ∈ [0, 1] stand for his usage of tablet and consumption of

ice-cream respectively and his parents’ utility may be up = 1−x2
t −x2

i −xc where xc = {1, 0}

stands if the child cries or not. If they do not reach an agreement, the child gets nothing

and cries. We can easily write down the bargaining problem between the child and parents

in the form of (W, s). 9 Here, such comparisons done by players have already be encoded in

(W, s) and shall not be repeated.

Second, solution V (·) can also incorporate interpersonal comparisons. Problem (1min) is

one way to compare players’ dissatisfaction; and problem (1.6) provide many other ways. In

fact, we think that the nature of finding a solution is to conduct interpersonal comparisons.

9. s = (0, 0) and W is the area circumvented by lines uc = 0, up = −1, and curve up = 1− u2
c

2 .
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When conducting interpersonal comparisons, we need to be very careful about two things.

First, interpersonal comparisons should be based on utilities instead of physical allocations.

Otherwise, we may accidentally mix our own preferences into solution V (·). This is not

a concern for Nash’s bargaining model, which is written in terms of utilities. Second,

comparison shall not vary with the measurements of utilities. This is simply because absolute

values of utilities are meaningless.

1.5.3 Axiom 5

Axiom IIA says the solution does not change when there are less points; Axiom 5 says the

same and additionally restricts the lessened to Bargaining points. This additional restriction

makes Axiom 5 avoid some but not all the criticisms on Axiom IIA. For example, suppose W ′,

compared with W , contains less player 1’s Bargaining points of V (W, s). One may expect

that player 2 should benefit from this change. But under Axiom 5, the solution remains

unchanged. Clearly, Axiom 5 sacrifices the principle of compromise, just like Axiom IIA.

But if we look from a different perspective, there is some gain out of this sacrifice. The

solution does not have to be frequently adjusted when the bargaining situation changes

now and then. That is: the solution is stable. While the stability only looks appealing

in the unstructured bargaining model like the one of this paper, it becomes a dominating

factor when the risk is structured into the bargaining models as in Van Damme (1986) and

Binmore et al. (1986). The Nash solution also satisfies Axiom 5 and in these structured

models, emerges to be the solution. And in these models, the Consensus solution is the same

with the Nash solution. In addition, when working together with Axiom 6, its controversial
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effect is more limited. Consider Example 3a. It is the example in which the Consensus

solution performs the worst in the following senses: 1. player 1 has no Bargaining points of

v at all; 2. among all bargaining problems, its ratio of the areas of player 2’s Bargaining

points and v’s Consensus points is the highest (equal to 1
2
).

Furthermore, if we were to discard Axiom 5 together with Axiom 6N, both of which are

arguable, the new solution would be very different from the Nash solution and there might

be a risk of adding further confusions. Thus in this paper, we only discard Axiom 6N and

leave dealing with Axiom 5 in our companion work.

1.6 Appendix

1.6.1 Proof of Lemma 2

Existence: For any compact set W ⊂ R2, problem (1.3) has a solution.

Proof. Define g(v) ≡ µ({w ∈ W |w ≤ v}). Since W is compact, it is sufficient to prove g(·)

is a continuous function.

Because W is compact, it must be bounded. Without loss of generality, assume it is

bounded by a square D ⊂ R2 and D’s edges are parallel with the two axes. Suppose the

length of its each edge is d. For any two points v′, v ∈ R2, we must have

|g(v′)− g(v)| ≤ |v′1 − v1|d+ |v′2 − v2|d

Consider any given v ∈ R2 and a sequence {vk}k=1,2,... in R2 satisfying
∥∥v − vk∥∥ → 0 as

k →∞. From the above inequality, we must have |g(vk)− g(v)| → 0 as k →∞. Thus g(·)
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is continuous, as desired. �

1.6.2 Formal Proof of Lemma 2

To prepare for the formal proof of Lemma 2, we transform µ({w ∈ W |w ≤ v}), a function

of a point, into a function of a scalar by parametrizing the efficient frontier E(W ).

Define the area of set {w ∈ W |w1 ≥ v1} as B1(v1); similarly, define the area of set

{w ∈ W |w2 ≥ v2} as B2(v2). Thus we have

µ({w ∈ W |w ≤ v}) = µ(W )−B1(v1)−B2(v2). (1.7)

Define v̄1 = maxv∈E(W ) v1 and v̄2 = maxv∈E(W ) v2. 10 Let I1(w1) be the length of interval

{m ∈ W |m1 = w1} and similiarly I2(w2) be the length of interval {m ∈ W |m2 = w2}. We

have

B1(v1) =

∫ v̄1

v1

I1(w1)dw1 (1.8)

10. They are well defined because E(W ) is compact if W is convex and compact. Because W is compact,
to prove E(W ) is compact, we just need to show E(W ) is closed in W . It is obviously true if W = E(W );
if not, it is equivalent with showing W \ E(W ), the set of inefficient points, is open in W .

For any inefficient point w ∈W , there are two cases:

• there exists some v ∈W such that v1 > w1 and v2 > w2. then there exists a neighborhood U of w in
W such that for any w′ ∈ U v1 > w′1 and v2 > w′2. That is U ⊂W \ E(W ).

• there does not exist v ∈W such that v1 > w1 and v2 > w2. But there must exist v 
 w because w is an
inefficient point. Without loss of generality, we assume v1 = w1 and v2 > w2. Let v′ ∈ argmaxw′∈W w′1.
It must be that v1 = v′1; otherwise, let v′′ = tv′ + (1− t)v ∈W , for small enough t, we have v′′1 > w1

and v′′2 > w2. A contradiction with assumption of this case. Thus there exists a neighborhood U of
w in W such that for any w′ ∈ U v1 ≥ w′1 and v2 > w′2. That is U ⊂W \ E(W )

In all, W \ E(W ) is open in W , as desired. Also, W being convex is necessary here. W =
w|w1 = 0, 1 ≤ w2 ≤ 2 ∪ w|w1 + w2 = 1, 0 ≤ w1 ≤ 1 is an example that W is compact but E(W ) not.
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11 and

B2(v2) =

∫ v̄2

v2

I2(w2)dw2. (1.9)

Since W is a convex set, E(W ) can be represented by a strictly decreasing, continuous

and concave function f(·) such that for any v ∈ E(W ), v2 = f(v1). f(·)’s domain is [v1
¯
, v̄1]

where v1
¯

= minv∈E(W ) v1. Substitute v2 = f(v1) into equation (1.9), and further substitute

equations (1.9) and (1.8) into (1.7), then we get a function of v1. Denote it as g(v1).

g(v1) = µ({w ∈ W |w ≤ v}) = µ(W )−
∫ v̄1

v1

I1(w1)dw1 −
∫ v̄2

f(v1)

I2(w2)dw2. (1.10)

Thus problem (1.3) is equivalent with the below problem

max
v1∈[v1

¯
,v̄1]
g(v1). (1.11)

Problem (1.11)’s first order condition is


g′l(v1) ≥ 0 v1 ∈ (v1

¯
, v̄1]

g′r(v1) ≤ 0 v1 ∈ [v1
¯
, v̄1).

(1.12)

where g′l(·) and g′r(·) are g(·)’s left and right derivatives. 12

In below, we further show in Lemma 4 the equivalence of problem (1.11) and inequality

(1.12) and in Lemma 5 the equivalence of inequality (1.12) and equality (1.2). They together

11. This integration is the definition of area in terms of Riemann integral. It is well defined because I1(·)
is continuous in closed interval [v1, v̄1] therefore integrable.

12. The well-definedness of g′l(·) and g′r(·) is explained shortly.
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Problem (1.3) Equality (1.2)

Problem (1.11) Inequality (1.12)

Equation 1.10

Lemma 2

Lemma 5

Lemma 4

Figure 1.12: Roadmap of the Proof of Lemma 2

constitute the proof of Lemma 2 as illustrated in Figure 1.12.

Before presenting Lemmas 4 and 5, we need to explicitly express g′l(v1) and g′r(v1). Since

f(·) is continuous and concave, its left and right derivatives, f ′l (·) and f ′r(·), are well defined

on (v1
¯
, v̄1] and [v1

¯
, v̄1) respectively. Let cone N(v) be the set of outward normal vectors of

W at v. Notice that N(v)’s two edges are orthogonal with their corresponding supporting

lines whose slopes are respectively equal to f ′l (v) and f ′r(v). Therefore we denote the two

edges as nl and nr, as shown in Figure 1.13, such that


f ′l (v1) = −nl1

nl2
v1 ∈ (v1

¯
, v̄1]

f ′r(v1) = −nr1
nr2

v1 ∈ [v1
¯
, v̄1).

(1.13)

Notice that I1(v1) = |vv1| and I2(v2) = |vv2|. In below, for convenience, we write them

in short as I1 and I2. Applying the chain rule in equation (1.10) and substituting it with
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Figure 1.13: Normal Vectors

equation (1.13), we have g(·)’s left and right derivatives: 13



g′l(v1) = I1 + f ′l (v1)I2

= I1 −
nl1
nl2
I2

v1 ∈ (v1
¯
, v̄1]

g′r(v1) = I1 + f ′r(v1)I2

= I1 −
nr1
nr2
I2

v1 ∈ [v1
¯
, v̄1)

(1.14)

When v1 ∈ (v1
¯
, v̄1], obviously we have I2 6= 0, we can write g′l(v1) further as

g′l(v1) = I2(
I1

I2

− nl1
nl2

). (1.15)

Now we can present Lemmas 4 and 5.

Lemma 4. Suppose W is convex, compact, and full dimensional. v1 is a solution of problem

(1.11) if and only if inequality (1.12) holds.

13. In g′l(v1), −n
l
1

nl
2

can be −∞ if v1
¯
< v1 = v̄1. Since I2(v) > 0, g′l(v1) is still well defined and equal to

−∞.
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Proof. The “Only If” part holds simply because inequality (1.12) is problem (1.11)’s first

order condition.

Now we show its “If” part. Observe equation (1.15). Term −nl1
nl2

weakly decreases with v1

because it is concave function f(·)’s left derivative(see equation (1.13)). If I1
I2

also weakly

decreases with v1, then g′l(v1)’s sign can only change one direction: from strictly positive to

zero, from zero to strictly negative, and from strictly positive to strictly negative. Therefore

as v1 ∈ [v1
¯
, v̄1] increases, not all of the below three phases necessarily happen, but they have

to happen in the below order:

1. g(v1) strictly increases;

2. g(v1) stays constant;

3. g(v1) strictly decreases.

Thus for problem (1.11), its first order condition, inequality (1.12), is also sufficient.

Thus we just need to prove I1
I2

indeed weakly decreases with v1. Consider any two distinct

efficient points v and v′. Without loss of generality, suppose v1 < v′1.v′1 and v′2 are defined

similarly with v1 and v2. They all are extreme points of W .

Let a1 be the intersection between lines v′1v2 and vv1. It has to be that |vv1| ≥ |va1|. Or

else, v1 would be an interior point of quadrilateral v2vv′v′1. A contradiction with v1 being

an extreme point of W . Thus

|vv1|
|vv2|

≥ |va
1|

|vv2|
. (1.16)

Similarly, let a2 be the intersection between lines v′1v2 and v′v′2. It has to be that |v′v′2| ≥
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|v′a2|. Or else, v′2 would be an interior point of quadrilateral v2vv′v′1. And we have

|v′v′1|
|v′a2|

≥ |v
′v′1|
|v′v′2|

. (1.17)

Notice that the right side of equation (1.16) and the left side of equation (1.17) are both

equal to the slope of line v′1v2. Thus we have

I1)

I2

=
|vv1|
|vv2|

≥ |v
′v′1|
|v′v′2|

=
I ′1
I ′2
.

This means I1
I2

indeed weakly decreases with v1, as desired. �

Lemma 5. Suppose W is convex, compact, full dimensional, and E(W ) is not a singleton.

For a given v ∈ E(W ), there exists a normal vector n ∈ N(v) such that equality (1.2) holds

if and only if inequality (1.12) holds. Moreover, when inequality (1.12) holds, I1, I2 > 0

(I1 = |vv1| and I2 = |vv2|).

Proof. The proof here involves nothing but carefully dealing with well-definedness and corner

cases. Consider the below equivalences


I1 − nl1

nl2
I2 ≥ 0 v1 ∈ (v̄1, v̄1]

I1 − nr1
nr2
I2 ≤ 0 v1 ∈ [v̄1, v̄1)

Conditions (a) and (b)−−−−−−−−−−−−⇀↽−−−−−−−−−−−−
Condition (c)

I1

I2

∈ [
nl1
nl2
,
nr1
nr2

]
Condition (d)−−−−−−−⇀↽−−−−−−−
Condition (d)

∃n, I1

I2

=
n1

n2

.

(1.18)

Its leftside is inequality (1.12)(obtained by substituting expression (1.14) into (1.12)). Its

rightside is equality (1.2). The conditions attached to each arrow are what needed to establish

the corresponding direction of equivalence. All of them are as follows:
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(a) if v1 = v1
¯

and v1 = v̄1, inequalities (1.12) still hold;

(b) I2 is strictly positive;

(c) whenever I2 = 0, I1 6= 0 and neither
nl1
nl2

nor
nr1
nr2

is ∞;

(d)
nl1
nl2

and
nr1
nr2

are non-negative.

We verify conditions (a)-(d) under the following three cases.

First, when v1
¯
< v1 < v̄1, as shown in Figure 1.13a and 1.13b, the condition of condition

(a) does not apply. Since both player 1 and 2’s Bargaining Points of v are nonempty, thus

I1, I2 > 0. Furthermore, conditions (b), (c) and (d) are satisfied.

Second, when v1 = v1
¯
< v̄1, player 1’s set of Bargaining Points is non-empty. Then

obviously I1 > 0, nr2 > 0, and nl2 > 0 (condition (c) is satisfied), as shown in Figure 1.13c.

Thus inequality I1 − nr1
nr2
I2 ≤ 0, leftside of equivalence (1.18), implies nr1 > 0 and I2 > 0

(condition (b)). Also I2 > 0 implies nl1 = 0, thus I1 − nl1
nl2
I2 = I1 ≥ 0(condition (a) ). Now

condition (d) clearly holds.

Last, when v1
¯
< v1 = v̄1, it is essentially the same with the second case if in above we

represent the efficient frontier as a function of v2.

Notice that in above three cases, we have also concluded I1, I2 > 0. �

1.6.3 Proof of Lemma 3

We just need to show if the solutions of problem (1.11)(therefore problem (1.3)) are not

unique, W has to be an Odd Bargaining set.

Clearly W ’s efficient frontier is not a singleton. From Lemma 2, we know for any solution
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v, I1
I2

= n1

n2
. The monotonicity of n1

n2
and I1

I2
proved in Lemma 4 further imply: n1

n2
has to be

the same for any solution, so does I1
I2

.

n1

n2
being the same for any solution implies that all solutions share and are on the same

supporting line T . Suppose both v and v′ are two distinct solutions. Due to Lemma 2, both

lines v1v2 and v′1v′2 are parallel with T . If v′1v′2 is between v1v2 and T (vv′), either v′1 or v′2

is an interior point of the trapezoid with four vertices v, v′, v1, and v2. A contradiction with

v′1 and v′2 being extreme points of W . Similarly, it cannot be that v1v2 is between v′1v′2

and T (vv′). Thus lines v1v2 and v′1v′2 have to coincide. Call them as line L.

Also according to the proof of Lemma 4, the set of all the solutions has to be connected.

And since g(·) is continuous, it is also closed. Therefore, we can suppose the set of all the

solutions is an interval I. That is W has to be an Odd Bargaining set.

1.6.4 Proof of Theorem 2b

The “If part” of Theorem 2b can be simply verified. In below, we prove its “Only If part.”

Only If part: If V (·) of B satisfies Axioms 1 - 5, and 6N, for any (W, s) ∈ B, V (W, s)

is the solution of problem (1N). Suppose v solves problem (1N). We prove this part by

showing V (W, s) = v.

If E(R(W, s)) is a singleton, due to Axiom 1, we have V (R(W, s), s) = v. Also, due to

Axiom 4, we have V (W, s) = V (R(W, s), s). Thus V (W, s) = v.

If E(R(W, s)) is not a singleton, we prove V (W, s) = v in below eight steps and they are

illustrated in Figure 1.14.

(a) Since v solves problem (1N), according to part (b) of Theorem 1N, we have a normal
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Figure 1.14: Proof of Theorem 2b

vector n at v such that equation (2N) holds. Suppose n’s corresponding supporting

line is T .

(b) Due to Axiom 3, it is equivalent to prove V (W, s) = v after order-preserving affine

transformations on utilities. Implement affine transformations such that both s and v

are symmetric points. Since under the affine transformation equation (2N) still holds.

Thus T ’s slope must be −1.

(c) Let s′ be a point on interval sv that is distinct from s and v. Clearly, s′ is symmetric

Let a1 be the intersection of the vertical line passing v and the horizontal line passing

s′; similarly, let a2 be the intersection of the horizontal line passing v and the vertical

line passing s′.

We choose s′ close enough to v such that both a1 ∈ W and a2 ∈ W whenever possible.

Notice that when a1 ∈ W is not possible, it must be the case that player 1 has no
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Bargaining points of v in (W, s); similarly, for a2. Since E(R(W, s)) is not a singleton,

for at least one player, there are Bargaining points. That is at least we have a1 ∈ W

or a2 ∈ W .

If a1 ∈ W and a2 ∈ W , R(W, s′) contains square sa1va2; if a1 /∈ W and a2 ∈ W ,

R(W, s′) is left to line va1 and above line sa1, that is they are convex set R(W, s′)’s

hyperplane, as shown in Figure 1.14; similarly for a1 ∈ W and a2 6 inW . In any case,

we have W t, the union of R(W, s′) and square sa1va2, is convex.

(d) Let W 1 be the triangle area circumvented by lines T , s′a1, and s′a2. W 1 must be

symmetric. According to Axioms 1 and 2, V (W 1, s′) = v.

(e) Since W t is convex (see step (b)) and also notice that W 1 \W t are players’ Bargaining

points of v, according to Axiom 5, V (W t, s′) = V (W 1, s′) = v.

(f) Now denote R(W, s′) as W 2. Notice that W t \W 2 are Consensus points of v. Thus

according to Axiom 6Na, V (W 2, s′) = V (W t, s′) = v.

(g) Since W 2 ≡ R(W, s′), R(W, s′) = R(W 2, s′). According to Axiom 4, V (W, s′) =

V (W 2, s′) = v.

(h) Notice that s is on line s′v. According to Axiom 6Nb, V (W, s) = V (W, s′) = v, as

desired.
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Chapter 2

On the Equilibrium Properties of

Network Models with Heterogeneous

Agents

with Treb Allen and Costas Arkolakis
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2.1 Introduction

The twenty first century has witnessed the rise of big data and big models in the social

sciences. Exponential growth in computational capacity combined with access to new micro-

level datasets have allowed the empirical implementation of models where large numbers of

heterogeneous agents interact simultaneously with each other in myriad ways. While the rise

of big data and big models has introduced empirical content to traditionally theoretical fields,

important questions about the positive properties of these big models remain unresolved.

Two concerns – critical for applied work – are particularly pressing: How can we compute

the solution of an equilibrium system with hundreds or thousands of heterogeneous agents

efficiently? And even if we do calculate a solution, how do we know that the equilibrium we

find is the only possible one?

In this note, we answer these questions for a large class of models where many heterogeneous

agents simultaneously interact in many ways. In particular, we consider systems where N

heterogeneous agents engage in H types of interactions whose equilibrium can be reduced to

a set of N ×H equations of the following form:

xih =
N∑
j=1

fijh (xj1, ..., xjH) , (2.1)

where {xih} ∈ RN×H++ reflect the (strictly positive) equilibrium outcomes for each agent of

each interaction and fijh : RH++ → R++ are the known (differentiable) functions that govern

the interactions between different agents. In particular, fijh is the function that governs the

impact that an interaction with agent j has on agent i’s equilibrium outcome of type h.1

1. These interactions could be market interactions or non-market interactions (as discussed by Glaeser
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As we illustrate, this formulation is sufficiently general to capture models of many different

economic networks – from firm linkages to social networks to the spatial structure of cities.

The contribution of the paper is to provide conditions under which an equilibrium

satisfying equation (2.1) is unique and can be calculated using an iterative algorithm.

The key insight, loosely speaking, is to simplify the analysis by abstracting from agent

heterogeneity and focusing on the strength of economic interactions. Formally, rather than

focusing on the N2×H functions {fijh}, we instead focus on the H×H matrix of the uniform

bounds of the elasticities εhh′ ≡ supi,j,{xjh}

(∣∣∣∣∂ ln fijh({xjh}
h
)

∂ lnxjh′

∣∣∣∣). The conditions provided

depend only on a single statistic of this matrix: its spectral radius being less than one (or,

with additional restrictions on {fijh}, equal to one).2 Moreover, the conditions provided

are shown to be “globally necessary”, i.e. they are the best possible conditions that are

agnostic about the heterogeneity across agents: formally, we show that if the conditions are

not satisfied, there exist {fijh} where multiplicity is assured.

Our main result relies on a multi-dimensional extension of the contraction mapping

theorem, which – to our knowledge – is new and of independent interest in its own right.

The insight of this extension is that it is possible to partition the space of endogenous

variables into subsets, each of which operates in a different metric subspace. This partition

is particularly helpful in economic models where heterogeneous agents interact in many ways

et al. (2003); Glaeser and Scheinkman (2002)).

2. The spectral radius plays a number of important roles in economics, e.g. in the characterization of
macro-economic stability (see e.g. Hawkins and Simon (1949)) and the solution of linearized DSGE models
(Fernández-Villaverde et al. (2016)). More recently, Elliott and Golub (2019) shows that the spectral radius
characterizes the efficiency of public goods provision in networks with non uniform externalities. To our
knowledge, this note is the first to show that the spectral radius of a matrix of elasticities of economic
interactions characterizes the uniqueness of (and the speed of convergence of an iterative algorithm to) the
equilibrium of a network model with many heterogenous agents.
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(i.e. H is large), as it allows us to separate the study of each type of interaction.

To illustrate the versatility of our approach, consider two alternative strategies often

employed to analyze the equilibrium properties of a system. The first alternative strategy

is to recursively apply a process of substitution to re-define the equilibrium system as a

function of fewer economic interactions. For example, in a simple exchange economy with

multiple agents and multiple goods, there are two interactions – buying and selling, which

in equilibrium can be summarized by the value of each agent’s endowment (wages) and

consumption bundle (price index). Alvarez and Lucas (2007) characterize the equilibrium

of such a system by first substituting wages into the price index and then analyzing the

structure of the model only in terms of wages.3 While feasible for small H, the complexity of

this strategy increases exponentially with the number of interactions in the model, creating

a curse of dimensionality for large H.

The second alternative strategy is to “stack” all economic outcomes into a single NH×1

vector and apply standard contraction mapping arguments. The disadvantage of such an

approach is that it treats different types of economic outcomes identically – despite the fact

that they may play very different roles in the equilibrium system. The results in a loss of

information and introduces the possibility that the sufficient conditions may fail despite the

system being unique.4 In contrast, our approach both avoids the curse of dimensionality of

3. Indeed, Allen et al. (2014) show that the sufficient conditions presented in Alvarez and Lucas (2007) –
which rely on showing the gross substitutes property of the system, c.f. Mas-Colell et al. (1995) – can be
relaxed when treating wages and the price index separately. The results here extend those of Allen et al.
(2014) both by allowing for general (non-constant elasticity) functional forms and by allowing for more than
two types of economic interactions.

4. A simple example is the following system where N = 1 and H = 2: x11 = x
1
2
11x

2
12 + 1, x12 = x

1
2
12 + 1. It

is straightforward to show that by treating x11 and x12 as a single vector variable, the standard contraction
conditions that the matrix norm (induced by the vector norm) of the system’s Jacobian matrix is strictly
less than one (see e.g. Olver (2008) Chapter 9) are not satisfied, whereas the multi-dimensional contraction
mapping conditions we provide are satisfied. See Online Appendix 2.5.5 for details.
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the first strategy and the loss of information inherent to the second, permitting an analysis

of economic systems with large numbers of interactions.

We provide additional results for a special case of equation (2.1) where the elasticities

∂ ln fijh({xjh}
h
)

∂ lnxjh′
are constant and identical across agents. This case has emerged as the de-

facto benchmark in the “quantitative” spatial literature, spanning the fields of international

trade, economic geography, and urban economics (see e.g. the excellent review articles by

Costinot and Rodriguez-Clare (2013) and Redding and Rossi-Hansberg (2017)). We also

offer results that facilitate the analytical characterization of the spectral radius condition

and, as a result, the parametric region where uniqueness and computation is feasible.

We finally apply our theorem to offer new results and extensions of seminal models

from disparate fields in economics, illustrating its broad applicability. In particular, in the

field of spatial economics, we provide uniqueness conditions for quantitative urban models

in the spirit of Ahlfeldt et al. (2015) in the presence of spatial productivity and amenity

spillovers. In the field of macroeconomics, we provide uniqueness results for the sectoral

production network in the spirit of Acemoglu et al. (2012) but generalized to allow for non

unit elasticities of substitution as in Carvalho et al. (2019). In the field of social networks, we

provide uniqueness conditions for a model of discrete choice with social interactions in the

spirit of Brock and Durlauf (2001) but generalized to allow for many choices and arbitrary

weights on others’ actions.

A voluminous literature in economic theory has used fixed point theorems to analyze

existence and uniqueness of solutions of economic models. The literature has offered three

main approaches in order to characterize the positive properties of economic models: (1)

use of the contraction mapping theorem; (2) conditions on the Jacobian matrix such as
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it satisfying gross substitution or it being an M-matrix (see e.g. Mas-Colell et al. (1995)

chapter seventeen, Arrow et al. (1971) chapter nine, and Gale and Nikaido (1965)); or (3)

the Index Theorem.5 This paper follows the first approach. While the latter two approaches

are powerful, they are often impractical to apply to situations where many agents interact

in many ways. For example, the Jacobian of equation (2.1) is of size HN2×HN2, making it

difficult to characterize; in contrast, the conditions below depend on a single statistic of an

H ×H matrix.6 Similarly, the the Index Theorem has typically proven impractical to apply

to production economies.7 Our contribution to this literature is to show that for a general

class of models with heterogeneous agents and multiple interactions a multi-dimensional

extension of the contraction mapping theorem can be a powerful tool in characterizing their

properties. The resulting theorem provides easy-to-verify conditions for uniqueness of an

equilibrium and an algorithm for its computation.

The structure of the remainder of the note is as follows: Section 2 presents the multi-

5. Notice that substitutability conditions are effectively conditions on the cross-derivatives of the Jacobian.
Berry et al. (2013) show that a relaxed form of substitutability, weak gross-substitutes, together with strict
connectedness are sufficient for invertibility (in our context, uniqueness). In a setup that maintains the
assumptions of a typical Walrasian economy, Iritani (1981) shows that Weak Indecomposability is necessary
and sufficient for uniqueness. He also shows that a stronger form of Weak Indecomposibility implies
Weak Gross substitutability so these analysis are intimately related. Kennan (2001) shows that concave
monotonically increasing functions have a unique positive fixed point; here, we make no restrictions that
the functions be monotonic, increasing, or concave (although the condition that the spectral radius of the
matrix of bounds of the elasticities be no greater than one does simplify to a requirement of quasi-concavity
in the special case where N = H = 1 and the function being considered is monotonically increasing).

6. Even when the Jacobian can be characterized, the conditions required to establish uniqueness may be too
stringent. For example, consider the system xi =

∑N
j=1Kijx

α
j for Kij > 0 and α ∈ (0, 1). The ith diagonal

term of its Jacobian is 1−αKiix
α−1
i which can be negative or positive, violating e.g. the classical condition

of Gale and Nikaido (1965) that all principal submatrices of the Jacobian have positive determinants. In
contrast, the spectral radius of the elasticity is α < 1, so uniqueness is established immediately by the
Theorem presented here.

7. See an extensive discussion on the applications of the index theorem to exchange and production
economies in Kehoe (1985); Kehoe et al. (1985). While mathematically powerful, the index theorem
conditions typically lose their sufficiency when attempted to translate them in economically interpretable
conditions.
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dimensional contraction mapping extension (Lemma 1), offers the main result (Theorem 1),

and makes five remarks. Section 3 presents three applications of the result to the fields

of spatial networks, sectoral production networks, and social networks, respectively. For

brevity, the proof of Lemma 1 and Theorem 1 are presented in the Appendix, and details of

the remarks and applications are presented in the Online Appendix.

2.2 Main Results

We start our presentation by offering a multi-dimensional extension of the standard contraction

mapping theorem. While of interest in itself, it also facilitates the proof of Theorem 1 below.

Lemma 1. Let {(Xh, dh)}h=1,2,...,H be H metric spaces where Xh is a set and dh is its

corresponding metric. Define X ≡ X1 × X2 × ... × XH , and d : X × X → RH+ such

that for x = (x1,...,xH) , x′ =
(
x′1,...,x

′
H

)
∈ X, d (x, x′) =


d1 (x1, x

′
1)

...

dH (xH , x
′
H)

. Given operator

T : X → X, suppose for any x, x′ ∈ X

d (T (x) , T (x′)) ≤ Ad (x, x′) , (2.2)

where A is a non-negative matrix and the inequality is entry-wise. Denote ρ (A) as the

spectral radius (largest eigenvalue in absolute value) of A.

If ρ (A) < 1 and for all h = 1, 2, ..., H, (Xh, dh) is complete, there exists a unique fixed

point of T , and for any x ∈ X, the sequence of x, T (x), T (T (x)), ... converges to the fixed

point of T .

58



Proof. See Appendix 2.5.1. �

Lemma 1 extends the standard contraction mapping result to multiple dimensions by

replacing the contraction constant with the matrix A. It then states that a simple sufficient

statistic of that matrix – its spectral radius ρ (A) – replaces the role of the contraction

constant in determining the contraction of the system. This sufficient statistic succinctly

summarizes the role of the asymmetry of the impact of the different variables in determining

the positive properties of the system: as long as the spectral radius is less than one there

exists a unique fixed point, and it can be computed by applying the mapping T (x) iteratively,

which converges to the fixed point at a rate ρ (A). Intuitively, a spectral radius of less

than one holds if and only if the sequence limk→∞Ak converges to zero so that repeated

applications of the operator eventually bound the set of points of the sequence arbitrarily

close to the fixed point. Note that Lemma 1 reduces to the standard contraction mapping

theorem if H = 1 (see e.g. Theorem 3.2 of Lucas and Stokey (1989)).

2.2.1 Main Theorem

As mentioned in the introduction, the main result of the paper concerns systems whose

equilibrium can be written as in equation (2.1). Before presenting our main result, some

additional notation is in order. Let N ≡ {1, ..., N} and H ≡ {1, ..., H} correspond to the set

of economic agents and the set of economic interactions, respectively. Let x be an N -by-H

matrix of endogenous economic outcomes, where for i ∈ N and h ∈ H, we (slightly abuse

notation) and let xi denote x’s ith row and x.h to denote x’s hth column. We restrict our

attention to strictly positive {xih}i∈N ,h∈H ∈ R
N×H
++ and strictly positive and differentiable
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{fijh}. Finally, define the elasticity εijh,jh′ (xj) ≡ ∂ ln fijh(xj)

∂ lnxjh′
, i.e. εijh,jh′ (xj) is the impact of

agent j′s outcome of type h′ on agent i′s outcome of type h.

Theorem 1. Suppose there exists an H-by-H matrix A such that for all i, j ∈ N , h, h′ ∈ H,

and xj ∈ RH++ |εijh,jh′ (xj)| ≤ (A)hh′. Then:

(i). If ρ (A) < 1, then there exists a unique solution to equation (2.1) and the unique

solution can be computed by iteratively applying equation (2.1) with a rate of convergence

ρ (A);

(ii). If ρ (A) = 1 and:

a. If |εijh,jh′ (xj)| < (A)hh′ for all i, j ∈ N and h, h′ ∈ H when (A)hh′ 6= 0, then equation

(2.1) has at most one solution x;

b. If εijh,jh′ (xj) = αhh′ ∈ R where |αhh′| = (A)hh′ for all i, j ∈ Nand h, h′ ∈ H i.e.

fijh (xj) = Kijh

∏
h′∈H x

αhh′
jh′ for some Kijh > 0–then equation (2.1)’s solution is column-

wise up-to-scale unique, i.e. for any h ∈ H and solutions x and x′ it must be x′.h = chx.h for

some scalar ch > 0;

(iii). If ρ (A) > 1, N ≥ 2H+ 1, and fijh (xj) = Kijh

∏
h′∈H x

αhh′
jh′ , then there exists some

{Kijh > 0}i,j∈N ,h∈H such that equation (2.1) has multiple solutions that are column-wise up-

to-scale different.

Proof. See Appendix 2.5.2. �

It is important to emphasize that the conditions provided in the Theorem 1 abstract from

the particular heterogeneity of agents – i.e. the particular functions {fijh} – and instead focus

on the magnitude of the economic interactions across all agents, i.e. the uniform bounds on

elasticities |εijh,jh′ (xj)| ≤ (A)hh′ . Loosely speaking, the matrix (A)hh′ captures the degree to
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which the economic outcome of any agent of type h′ can impact any other agents’ economic

outcome of type h. Such conditions that focus on the strength of the economic interactions

rather than the heterogeneity of the agents themselves are advantageous in settings where

the same economic model may be applied to different empirical contexts. For example, in

spatial models, the heterogeneity of agents captures such things like the specific underlying

geography (e.g. trade costs) which are highly context dependent; in contrast, the elasticities

govern the strength of economic interactions (e.g. the elasticity of demand) that may be

similar across locations.

Part (i) of the Theorem applies Lemma 1 to show that there exists a unique solution and

that solution can be computed with an iterative algorithm that converges at a rate ρ (A).

In particular, denote equation (2.1) as x = T (x); then for any initial “guess” of a positive

solution x0 ∈ RN×H++ , one simply iterates x1 = T (x0), x2 = T (x1), x3 = T (x2), ... until

convergence. The restriction that fijh : RN++ → R++ further guarantees that the solution is

strictly positive (something not guaranteed by the original Lemma).

Part (ii) of the Theorem deals with the case of ρ (A) = 1, which turns out to be a

common phenomenon in economic modeling (see Remark 4 below). It establishes uniqueness

by imposing extra conditions on the elasticities εih,jh′ (xj): if either the elasticities are strictly

smaller than their bounds (part ii.a) or the elasticities are constant (part ii.b) then uniqueness

can be assured.

Finally, since whether or not a system of the form of equation (2.1) has a unique solution

in general depends on the particular specification of heterogeneity of agents, our choice to

abstract from agent heterogeneity comes at the cost of preventing us from providing necessary

conditions for uniqueness. Nonetheless, part (iii) of Theorem 1 shows that the conditions
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provided are “globally necessary”. That is, for any matrix of elasticity bounds A such that

ρ (A) > 1, one can construct a set functions that govern the interactions {fijh} with a

corresponding A where multiple equilibria are assured.8 Such functions can be constructed

even restricting attention only to functions with constant elasticities. Put another way, the

sufficient conditions for uniqueness provided in the Theorem 1 are the best that can be

provided when abstracting from agent heterogeneity.

2.2.2 Remarks

We provide below five remarks that both facilitate the implementation and extend Theorem

1. Details are presented in Online Appendix 2.5.3.

The first two remarks provide extensions to Theorem 1.

Remark 1. (Generalized Domain) Although above we define fijh (·) as a function solely of

xj, Theorem 1 can be extended to allow fijh (·) to be a function of the full set of equilibrium

outcomes x for all j i.e. fijh : RN×H++ → R++. Doing so requires replacing the condition on

elasticity |εijh,jh′ (xj)| ≤ (A)hh′ with
∑

m∈N

∣∣∣∂ ln fijh(x)

∂ lnxmh′

∣∣∣ ≤ (A)hh′ . The remainder of Theorem

1 and its proof is unchanged. This generalization allows that the impact that agent j has

on agent i through an interaction of type h can depend on the equilibrium outcomes of any

other agents (including i’s own outcomes).

Remark 2. (Presence of Endogenous Scalars) In addition to equilibrium outcomes for

each agent and interaction, certain economic systems also contain an endogenous scalar that

8. Part (iii) of Theorem 1 extends the result of Allen and Donaldson (2018) to equilibrium systems with
more than two equilibrium interactions (i.e. H > 2).
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reflects e.g. the aggregate welfare of the system, as in:

λhxih =
N∑
j=1

fijh (xj1, ..., xjH) , (2.3)

where λh > 0 is endogenous. We offer two results for such systems.

The first result concern the equilibrium system (2.3) with constant elasticities (as in

Theorem 1 part(ii)b). For this form, if ρ (A) = 1, we have the same conclusion as in

part (ii)b: the {xih} of any solution is column-wise up-to-scale unique. If ρ (A) < 1, it is

possible to subsume the endogenous scalars into the equilibrium outcomes through a change

in variables, expressing equation (2.3) as in equation (2.1), which in turn implies that the

{xih} are column-wise up-to-scale unique. (Separating the {xih} and {λh} to determine the

scale of {xih} requires the imposition of further equilibrium conditions, e.g. aggregate labor

market clearing conditions).

The second result concerns the the equilibrium system (2.3) with H additional aggregate

constraints of the form
∑N

i=1 xih = ch for known constants ch > 0. This system has a unique

solution as long as ρ (A) < 1
2
, where A is defined as in Theorem 1. Intuitively, ρ (A) < 1

2

ensures that the feedback effect from changes in the endogenous scalar are small enough to

continue to ensure a contraction.

The next remark facilitates implementation of Theorem 1.

Remark 3. (Change of variables) It is often useful to consider a change of variables of

one’s original equilibrium system when writing it in the form of equation (2.1). A particularly

important example that has found widespread use in spatial economics9 is the following

9. See e.g. Eaton and Kortum (2002); Alvarez and Lucas (2007); Chaney (2008); Arkolakis et al. (2012);
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economic system in which the elasticities are constant:

∏
h′∈H

x
γhh′
ih′ =

∑
j∈N

Kijh

∏
h′∈H

x
κhh′
ih x

βhh′
jh′ . (2.4)

for all i ∈ N and h′ ∈ H where γhh′ , κhh′ , and βhh′ are (h, h′)th cells of matrix Γ, K,

and B, respectively. To transform equation (2.4) to the form of equation (2.1), if Γ−K is

invertible, we can redefine x̃ih ≡
∏

h′∈H x
γhh′−κhh′
ih′ . Substituting this definition into the right-

hand-side we obtain x̃ih =
∑

j∈N Kijh

∏
h′∈H x̃

αhh′
jh′ , where αhh′ is the corresponding element

of matrix B(Γ−K)−1, which is in the form of (2.1) with (A)hh′ = |αhh′|. Note that a change

of variables is not just analytically convenient: the presence of the absolute value operator

in Theorem 1 means that a change of variables may reduce the spectral radius, making it

more likely that the sufficient conditions for uniqueness are satisfied.

The last two remarks offer details about the spectral radius.

Remark 4. (Spectral Radius of 1) In practice, ρ (A) = 1 is a general phenomenon in

economic systems which include nominal variables (e.g. prices). Indeed, any economic

system of the form (2.4) that is homogeneous of degree 0 in at least one of its arguments

will have spectral radius ρ (A) equal to 1 or larger. This implies that part (i) of Theorem

1 is applicable to economic systems where all economic interactions are real, whereas part

(ii) of Theorem 1 is applicable to economic systems where some economic interactions are

nominal.

Remark 5. (Characterization of the Spectral Radius) While it is straightforward to

Allen and Arkolakis (2014); Redding (2016); Monte et al. (2018).

64



numerically calculate ρ (A) to apply the results of Theorem 1, analytical characterizations

are also possible. We offer two results to facilitate such characterization. The first is well

known: the Collatz–Wielandt Formula (e.g. see Page 670 in Meyer (2000)), implies that if

the summation of each row (or column) of A is less than 1, then ρ (A) ≤ 1.

The second is, to our knowledge, new. Define g (s) as the determinant of matrix sI −A

i.e. g (s) = |sI −A| and denote its k-th derivative as g(k) (s). For any constant s > 0,

ρ (A) ≤ s if and only if g(k) (s) ≥ 0 for all k = 0, 1, 2, ..., n− 1.

2.3 Applications

In this Section, we apply Theorem 1 to provide new results to three seminal papers examining

spatial networks, production networks, and social networks, respectively. For brevity, we

present only a brief summary of the results here, relegating a more detailed discussion of

each application to Online Appendix 2.5.4.

2.3.1 Spatial Networks

The first example we consider is one of a urban spatial network. We follow the seminal work

of Ahlfeldt et al. (2015), where agents choose where to reside and work in a city subject

to commuting costs in the presence of spatial agglomeration spillovers which decay over

space. In that paper, uniqueness is proven only in the absence of these spillovers. Here,

we use Theorem 1 to provide conditions for uniqueness in the presence of agglomeration

spillovers. Unlike Ahlfeldt et al. (2015), however, we assume residential and commercial floor

spaces are exogenously given. Interpreting the spatial network model through the lens of our
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framework, an economic agent is a city block and there are three types interactions between

agents: interactions through the goods market, interactions through the labor (commuting)

market, and interactions through the spatial productivity spillovers. These interactions in

turn determine the three types of equilibrium (strictly positive) outcomes for each agent:

the residential floor price, the number of workers employed, and the productivity. As in the

original paper, let α denote the labor share in the production function, ε > 0 denote the

commuting elasticity, and λ denote the strength of the agglomeration spillover. Applying

Theorem 1, a sufficient condition for uniqueness is λ ≤ min
(
1− α, α

1+ε

)
, i.e. uniqueness is

guaranteed as long as the agglomeration spillovers are not too large and are bounded above

by a combination of the land share and the commuting elasticity.

We note that this commuting model is one example of how to apply theorem Theorem 1

to spatial networks. In Online Appendix 2.5.4 we also apply Theorem 1 to (1) trade models

with tariffs and and input-output interactions (extending the parameter range provided by

Alvarez and Lucas (2007) where uniqueness is assured); and (2) economic geography models

with agglomeration productivity spillovers that decay across space (extending the frameworks

of Allen and Arkolakis (2014) and Redding (2016), where spillovers are assumed to only be

local).

2.3.2 Production Networks

The second example we consider is one of a sectoral production network. We follow the

seminal work of Acemoglu et al. (2012), who consider a production economy where each

sector uses intermediate inputs from every other sector. In that paper, the production
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function is assumed to be Cobb-Douglas between labor and intermediates and Cobb-Douglas

across intermediates. Here, we use Theorem 1 to provide conditions for uniqueness when we

allow for a more general production function with non-unit elasticities of substitution both

between labor and intermediates and across intermediates.10

Interpreting this production network through our framework, an economic agent is a

sector, and the interactions are through intermediate input usage. Using Theorem 1, we can

show that the equilibrium is always unique, regardless of the unit elasticity of substitution.

2.3.3 Social Networks

The third example we consider is one of a social network. We follow the seminal work of

Brock and Durlauf (2001), where agents make a discrete choice over a set of actions and

their payoffs of each actions depends on the choices on others in their social network. In

that paper, conditions for uniqueness are provided when agents have a choice set of two

actions and the effect of others’ actions on an agent’s payoffs is summarized by their mean

actions. Here, we apply Theorem 1 to an extension with an arbitrary number of actions in

the choice set and where the effect of others’ actions on an agent’s payoffs is summarized by

a generalized weighted mean, where weights can be individual specific, i.e. we allow for an

arbitrary social network. Unlike Brock and Durlauf (2001), however, we assume private and

social component of utility are proportional rather than additive.

Through the lens of our framework, each individual in the social network is an economic

agent and each of the actions in the choice set comprises a different economic interaction.

10. Carvalho et al. (2019) consider this general formulation and Carvalho and Tahbaz-Salehi (2019) the
case with unit elasticities between labor and intermediates.
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Each of these interactions in turn result in an equilibrium outcomes for each agent, which

is the expected payoff of choosing each action. As in the original paper, let β denote the

shape value of the extreme value distribution (which governs the relative importance of the

random utility coefficient in agent’s payoff) and let J denote the strength of social spillovers.

Applying Theorem 1, a sufficient condition for uniqueness is βJ < 1
H

where H is the number

of actions in the choice set, i.e. the greater the number of economic interactions, the weaker

the social spillovers must be to ensure uniqueness.

2.4 Conclusion

In this note, we provide sufficient conditions for the uniqueness and computation of the

equilibrium for a broad class of models with large numbers of heterogeneous agents simultaneously

interacting in a large number of ways. The conditions are written in terms of the elasticities

of the economic interactions across agents. These results are based on a multi-dimensional

extension of the contraction mapping theorem which allows for the separate treatment of

the different types of these interactions. We illustrate that a wide variety of heterogeneous

agent economies – characterized by spatial, production, or social networks – yield equilibrium

representations amenable to our theorem’s characterization.

By construction, the conditions provided here depend only on the uniform bound of the

elasticities of agent’s interactions on each other’s outcomes rather than the particular form

of the network model; that is, the conditions provided abstract from agent heterogeneity.

We show that should the conditions provided not hold, there exist network models for

which multiplicity is guaranteed, i.e. our conditions are “globally” necessary. However,
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an outstanding and important question remains about how agent heterogeneity itself shapes

the positive properties of model equilibria.

2.5 Appendix

2.5.1 Proof of Lemma 1

Proof. We prove that the sequence generated by the operator converges to a unique point.

To prove convergence we first prove that the sequence is a Cauchy sequence on a complete

metric space. Define dmax (x, x′) = max (d (x, x′)) as the metric in space X. Clearly (X, dmax)

is complete. Now consider any x ∈ X. Denote x0 = x and for integer n ≥ 1 xn = T (xn−1).

For integers n and m, suppose n < m. We have

d (xn, xm) ≤ d
(
xn, xn+1

)
+ d

(
xn+1, xn+2

)
+ ...+ d

(
xm−1, xm

)
<
(
An + An+1 + ...+ Am−1

)
d
(
x0, x1

)
≤
(
An + An+1 + ...+ Am−1 + Am + ...

)
d
(
x0, x1

)
≤ An (I−A)−1 d

(
x0, x1

)
. (2.5)

Notice if ρ (A) < 1 then An converges to zero matrix and (I−A)−1 is finite. Furthermore,

for n < m, dmax (xn, xm) → 0 as n → ∞. Therefore {xn}n=1,2,... is a Cauchy sequence on a

complete metric space and it has a limit.

To prove existence denote the limit of the sequence y = limn→∞ x
n in X. We claim

T (y) = y. This is because T (·) is continuous, which is implied by the following formula
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dmax (T (x) , T (x′)) ≤ max (Ad (x, x′))

≤ Hāmax (d (x, x′))

= Hādmax (x, x′)

where ā is the largest element of matrix A. Finally, by a standard contradiction argument

the point has to be unique. We thus have established convergence, existence, and uniqueness.

�

2.5.2 Proof of Theorem 1.

Proof. Define y = lnx i.e. for any h ∈ H i ∈ N yik = lnxik. Thus, equation (2.1) can

be equivalently rewritten as yih = ln
∑

j∈N fijh (exp yj) . Denote its right side as function

gih (y), thus

∂gih
∂yjh′

=
εijh,jh′ (exp yj) fijh (exp yj)∑

j∈N fijh (exp yj)
(2.6)

For any y and y′, according to mean value theorem, there exists some tih ∈ [0, 1] such that

ŷ = (1− tih) y + tihy
′ satisfies for each i and h

gih (y)− gih (y′) = ∇gih (ŷ) (y − y′)

=
∑

j∈N ,h′∈H

∂gih (ŷ)

∂yjh′

(
yjh′ − y′jh′

)
(2.7)

Part (i): Combine the above two equations (2.6) and (2.7) with condition |εih,jh′ (xj)| ≤
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(A)hh′ , we have

|gih (y)− gih (y′)| ≤
∑

j∈N ,h′∈H

(A)hh′ fijh (exp yj)∑
j∈N fijh (exp yj)

∣∣yjh′ − y′jh′∣∣
≤
∑
h′∈H

(A)hh′ max
j∈N

∣∣yjh′ − y′jh′∣∣ . (2.8)

For any h ∈ H, define dh (yh, y
′
h) = max

j∈N

∣∣yjh − y′jh∣∣ and Yh = RN . dh (·, ·) is a metric on

Yh. Furthermore, define Y = Y1×Y2× ...×YH and d (y, y′) =


d1 (y1, y

′
1)

...

dH (yH , y
′
H)

 for y, y′ ∈ Y .

Notice that inequality (2.8) then becomes d (g (y) , g (y′)) 5 Ad (y, y′). Thus we can apply

Lemma 1 to obtain the desired results (existence, uniqueness and computation).

For the purpose of the computation, instead of applying the iterative procedure in the

space Y = RN×H according to Lemma 1, it is equivalent to do so in the space where x lies

on, i.e. RN×H++ .

Part (ii.a):Suppose there are two distinct solutions y and y′ i.e. yih = gih (y) and

y′ih = gih (y′). We will arrive at a contradiction. Substitute these two solutions into equation

(2.7). Also |εih,jh′ (xj)| < (A)hh′ when (A)hh′ , as long as the right side of equation (2.8) is

not zero, we have

|yih − y′ih| <
∑
h′∈H

(A)hh′ max
j∈N
|yih′ − y′ih′ | . (2.9)

Thus we have d (y, y′) ≤ Ad (y, y′) and the inequality strictly holds as long as the right side is

not zero. Since y and y′ are distinct. We must have d (y, y′) as a nonzero nonnegative vector.
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Thus according to the Collatz–Wielandt Formula (ρ (A) = maxd∈RH+ ,y 6=0 min1≤h≤H
dh 6=0

(Ad)h
zh

Page

670 in Meyer (2000)), we have ρ (A) > 1. A contradiction.

Part (ii.b): We will again argue by contradiction. Suppose a pair of solutions x and x′

to equation (2.1) exists that are column-wise up-to-scale different. That is d =


d1

...

dH

 is a

nonzero vector where dh = min
s∈R

max
j∈N

∣∣yjh − y′jh + s
∣∣. For any h ∈ H, we can suppose we have

sh and jh such that dh =
∣∣yjhh − y′jhh + sh

∣∣.
Combine the above two equations (2.6) and (2.7) with condition εih,jh′ (xj) = αhh′ where

|αhh′ | = (A)hh′ , we have

|gih (y)− gih (y′) + ŝh| =

∣∣∣∣∣∑
h′∈H

αhh′
∑
j∈N

fijh (exp ŷj)∑
j∈N fijh (exp ŷj)

(
yjh′ − y′jh′ + sh′

)∣∣∣∣∣
≤
∑
h′∈H

|αhh′ | dh′ (2.10)

where ŝh =
∑

h′∈H αhh′sh′ . Notice that dh ≤ max
i∈N
|yih − y′ih + ŝh|. Therefore we have

dh ≤
∑

h′∈H |αhh′ | dh′ ≤
∑

h′∈H (A)hh′ dh′ i.e.

d 5 Ad. (2.11)

If dh > 0, there there must exists h′ such that dh′ > 0 and αhh′ 6= 0. For any h′ dh′ > 0,

according to the definition of dh′ there must exist some j ∈ N such that
∣∣yjh′ − y′jh′ + sh′

∣∣ <
dh′ . Thus inequality (2.10) must strictly hold for all i ∈ N whenever dh > 0. Therefore
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dh <
∑

h′∈H |αhh′ | dh′ ≤
∑

h′∈H (A)hh′ dh′ . Thus, again, according to the Collatz–Wielandt

Formula, we have ρ (A) > 1, which is a contradiction.

Part (iii): Consider {Kijh > 0}i,j∈N ,h∈H which satisfies
∑

j∈N Kijh = 1 for any i. Obviously,

x = 1 is one solution of equation (2.4). In the following we are going to construct {Kijh > 0}i,j∈N ,h∈H

such that there exists another different solution.

As we have ρ (A) > 1, suppose z is A’s non-negative eigenvector such that ρ (A) z =

Az. For a given h, divide H = {1, 2, ..., H} into two sets H−h = {h′|αhh′ ≤ 0} and H+
h =

{h′|αhh′ > 0}; also arbitrarily divide N = {1, 2, ..., N} into 2H + 1 non-empty disjoint sets{
N+
h ,N

−
h

}
h∈H and N 0.

Now we construct x̄ ∈ RN×H++ . If j ∈ N 0, for any h′, x̄jh′ = 1; if j ∈ N+
h , x̄jh′ =

exp (zh) h′ ∈ H+
h

exp (−zh) h′ ∈ H−h

; if j ∈ N−h , x̄jh′ =


exp (−zh) h′ ∈ H+

h

exp (+zh) h′ ∈ H−h

. Obviously, x′ is column-

wise up-to-scale different from x. In below, we show there exists {Kijh > 0}i,j∈N ,h∈H such

that x̄ is also a solution of equation (2.1).Notice that

∑
j∈N

Kijh

∏
h′∈H

x̄
αhh′
jh′ =

=
∑
j∈N+

h

Kijh

∏
h′∈H

x̄
αhh′
jh′ +

∑
j∈N−h

Kijh

∏
h′=H

x̄
αhh′
jh′ +

∑
j /∈N+

h ,N
−
h

Kijh

∏
h′∈H

x̄
αhh′
jh′

= exp

(∑
h′=H

|αhh′ | zh′
) ∑

j∈N+
h

Kijh + exp

(
−
∑
h′=H

|αhh′ | zh′
) ∑

j∈N−h

Kijh +

+
∑

j /∈N+
h ∪N

−
h

Kijh

∏
h′∈H

x̄
αhh′
jh′ (2.12)

In the last term of above equation, for any j /∈ N+
h ∪N

−
h , we have exp

(∑
h′∈H |αhh′ | zh

)
≥
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∑
h′∈H x̄

αhh′
jh′ ≥ exp

(
−
∑

h′∈H |αhh′| zh
)
. Notice that exp

(∑
h′∈H |αhh′ | zh

)
= exp (ρ (A) zh)

where ρ (A) > 1. Therefore, we can adjust the value of {Kijh}j∈I while keeping
∑

j∈N Kijh =

1 such that equation (2.12) is equal to exp (zh) or exp (−zh). That is we have∑
j∈N Kijh

∏
h′∈H x̄

αhh′
jh′ = x̄ih as desired.

�

2.5.3 Further Details of Remarks

In this section, we provide further details for the remarks discussed in the paper.

Remark 1

Extending the domain of fijh to all x requires only a small change to the proof of Theorem 1,

where equality (2.6) and inequality (2.8) respectively become ∂gih
∂yjh′

=

∑
m
∂ ln fimh(x)

∂ ln xjh′
fimh(exp y)∑

j∈N fijh(exp y)

and

|gih (y)− gih (y′)| ≤
∑
h′∈H

max
j∈N

∣∣yjh′ − y′jh′∣∣
∑

j∈N
∑

m

[∣∣∣∂ ln fimh(x)
∂ lnxjh′

∣∣∣] fimh (exp y)∑
j∈N fijh (exp y)

=
∑
h′∈H

max
j∈N

∣∣yjh′ − y′jh′∣∣
∑

m

∣∣∣∑j∈N
∂ ln fimh(x)
∂ lnxjh′

∣∣∣ fimh (exp y)∑
j∈N fijh (exp y)

≤
∑
h′∈H

(A)hh′ max
j∈N

∣∣yjh′ − y′jh′∣∣ .
The rest of the proof of Theorem 1 remains unchanged.
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Remark 2

Consider first the equilibrium system (2.3) with constant elasticities, which can be written

as follows:

λhxih =
∑
j∈N

Kijh

∏
h′∈H

x
αhh′
jh′ , (2.13)

where λh > 0 is endogenous. In the case that ρ (A) = 1, we have the same conclusion as

in part (ii)b: the {xih} of any solution is column-wise up-to-scale unique. The proof of this

result is exactly the same as part (ii)b of Theorem 1.

If ρ (A) < 1, it is possible to subsume the endogenous scalars into the equilibrium

outcomes through a change in variables, expressing equation (2.13) as in equation (2.1).

To do so, define x̃ih ≡ xih
∏

h′∈H λ
dh′h
h′ , where dh′his the h′hth element of the H ×H matrix

(I−α)−1 and α ≡ (αhh′) (i.e. α is the matrix of elasticities without the absolute value

taken) so the system becomes:

x̃ih =
∑
j∈N

Kijh

∏
h′∈H

x̃
αhh′
jh′ .

Note that because ρ (A) < 1, then so too is ρ (α) < 1, so that (I−α)−1 exists. From

Theorem 1 part (i), the {x̃ih} are unique and can be calculated using an iterative algorithm,

which in turn implies that the {xih} are column-wise up-to-scale unique. (Separating the

{xih} and {λh} to determine the scale of {xih} requires the imposition of further equilibrium

conditions, e.g. aggregate labor market clearing conditions).

Consider now equilibrium system (2.3) withH additional aggregate constraints
∑N

i=1 xih =

ch for known constants ch > 0.
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The second result concerns the general case with an endogenous scalar:

λhxih =
N∑
j=1

fijh (xj1, ..., xjH)

withH additional aggregate constraints
∑N

i=1 xih = ch for known constants ch > 0. Substituting

in the aggregate constraints allows us to express the equilibrium system as:

xih =
N∑
j=1

(
fijh (xj1, ..., xjH)

1
ch

∑N
i′=1

∑N
j′=1 fi′j′h (xj′1, ..., xj′H)

)
,

where the denominator is equal to the endogenous scalar, i.e.

λh = 1
ch

∑N
i′=1

∑N
j′=1 fi′j′h (xj′1, ..., xj′H). We can define the new function:

gij,h (x) ≡ fijh (xj1, ..., xjH)
1
ch

∑N
i′=1

∑N
j′=1 fi′j′h (xj′1, ..., xj′H)

so that the equilibrium system becomes:

xih =
N∑
j=1

gijh (x) .

We can then bound the elasticities, following Remark 1. Note:

∂ ln gij,h
∂ lnxm,l

=


(
∂ ln fij,h
∂ lnxj,l

)(
1− fij(xp,l)∑

o,p fop({xp,l})

)
if m = j

−
∑

o

(
∂ ln fom,h
∂ lnxm,l

)
fom,k(xp,l)∑

o,p fop,k({xp,l})
if m 6= j
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so that:

∣∣∣∣∂ ln gij,h
∂ lnxm,l

∣∣∣∣ =


∣∣∣∂ ln fij,h
∂ lnxml

∣∣∣ (1− fij,k(xp,l)∑
o,p fop({xp,l})

)
if m = j

∑
o

∣∣∣∂ ln fom,h
∂ lnxm,l

∣∣∣ fom,k(xp,l)∑
o,p fop,k({xp,l})

if m 6= j

so that:

∣∣∣∣∂ ln gij,h
∂ lnxm,l

∣∣∣∣ ≤

|Akh|

(
1− fij,k(xp,l)∑

o,p fop({xp,l})

)
if m = j

|Akh|
∑
o fom,k(xp,l)∑

o,p fop,k({xp,l})
if m 6= j

Finally, we can sum across all m locations to yield:

∑
m

∣∣∣∣∂ ln gij,k
∂ lnxm,l

∣∣∣∣ ≤ |Akl|
(

1− fij,k (xp,l)∑
o,p fop ({xp,l})

)
+
∑
m 6=j

(
|Akl|

∑
o fom,k (xp,l)∑

o,p fop,k ({xp,l})

)
⇐⇒

∑
m

∣∣∣∣∂ ln gij,k
∂ lnxm,l

∣∣∣∣ ≤ |Akl|
(

1− fij,k (xp,l)∑
o,p fop ({xp,l})

+

(
1− fij,k (xp,l)∑

o,p fop ({xp,l})

))
⇐⇒

∑
m

∣∣∣∣∂ ln gij,k
∂ lnxm,l

∣∣∣∣ ≤ 2 |Akl| .

Hence, from Remark 1, we have uniqueness as long as ρ (A) < 1
2
, as required.

Remark 3

Here we provide a simple example of the claim that “The presence of the absolute value

operator in Theorem 1 means that a change of variables may reduce the spectral radius,

making it more likely that the sufficient conditions for uniqueness are satisfied.”

Consider the equilibrium system:

xi =
N∑
j=1

Kijx
− 1

2
i xj.
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From Remark 1, a sufficient condition for uniqueness is that
∑

m∈N

∣∣∣∂ ln fijh(x)

∂ lnxmh′

∣∣∣ ≤ (A)hh′ =∣∣−1
2

∣∣ + |1| = 3
2
. The transformed system x̃i =

∑N
j=1 Kijx̃

2
3
j , where x̃i = x

3
2
i has a spectral

radius of 2
3
. Hence, the sufficient condition for uniqueness provided from Theorem 1 is

satisfied for the transformed system but not the original system.

Remark 4

Consider equation (2.4). We will directly prove that ρ (A) = ρ
(
BΓ−1

)
≥ 1. Suppose for

some h̄ ≥ 1 that {x.h}h=1,...,h̄ are nominal variables. Then if we construct {x̄.h}h∈H by scaling

{x.h}h=1,...,h̄ up to t times and keeping all other entries unchanged, the constructed {x̄.h}h∈H

should still solve the equation. Therefore we can write

ΓT = BT,

where T is a H-by-1 vector and

Th =


t h ≤ h̄

0 other case

.

Notice that this further implies Γ−1B has eigenvalue of 1. Furthermore, because BΓ−1 =

Γ
(
Γ−1B

)
Γ−1, BΓ−1 also has eigenvalue of 1. We define matrix A as the absolute value of

BΓ−1 (i.e. each entry of matrix A is the absolute value of the corresponding entry in matrix

BΓ−1). Therefore ρ (A) must be weakly larger than 1 because ρ (A) = limn→∞ ‖An‖
1
n ≥

limn→∞
∥∥(BΓ−1

)n∥∥ 1
n = ρ

(
BΓ−1

)
.
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Remark 5

We prove a necessary and sufficient condition such that ρ (A) ≤ 1.

Lemma 2. Let A be a non-negative n × n matrix. The function f (λ) is defined as the

determinant of matrix λI −A i.e. f (λ) = |λI −A| , and its k-th derivative is denoted by

f (k) (λ). Then ρ (A) ≤ s if and only if f (k) (s) ≥ 0 for all k = 0, 1, 2, ..., n− 1.

Proof. If part: Notice that f (n) (s) = n! > 0. Then f (n−1) (λ) strictly increases with λ.

So f (n−1) (λ) > 0 for λ ∈ [s,∞). Using deduction we obtain f (λ) is strictly increasing and

f (λ) ≥ 0 for any λ ∈ [s,∞]. According to Perron–Frobenius theorem, ρ (A) is A’s largest

eigenvalue, so that f (ρ (A)) = 0. Thus, by strict monotonicity it must be ρ (A) ≤ s.

Only If part: According to the Fundamental Theorem of Algebra (e.g. see Corollary

3.6.3 of Fine and Rosenberger (1997)), f (λ) can be decomposed as f (λ) = f1 (λ) f2 (λ)

such that f1 (λ) =
∏

i∈C (λ− λi)
(
λ− λi

)
and f2 (λ) =

∏
i∈R (λ− λi) where λi is conjugate

of λi and C and R are set of indexes. For all i ∈ C, λi is a complex number and for all

i ∈ R λi is a real number. Clearly, λi and λi are eigenvalues of A.Notice that f (k) (λ) =∑
(k1,k2)∈Dk, f

(k1)
1 (λ) f

(k2)
2 (λ) where Dk = {k1, k2|k1 + k2 = k, k1, k2 ≥ 0}. When i ∈ R λi ≤

ρ (A) (from Perron–Frobenius theorem), we have f
(k2)
2 (s) ≥ 0. Additionally, f

(k1)
1 (λ) =
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∏
i∈C
[
λ2 −

(
λi + λi

)
λ+ λiλi

](k2,i)
where k2,i ≥ 0 and

∑
i∈C k2,i = k2. Notice that

[
s2 −

(
λi + λi

)
s+ λiλi

](k2,i)
=



s2 −
(
λi + λi

)
s+ λiλi > 0 k2,i = 0

2 (s− Re (λi)) k2,i = 1

2 > 0 k2,i = 2

0 k2,i > 3

,

where Re (λi) is real part of λi. As Re (λi) < ‖λi‖ ≤ ρ (A) ≤ s (the second inequality is also

from Perron–Frobenius theorem), so
[
s2 −

(
λi + λi

)
s+ λiλi

](k2,i) ≥ 0. In all, f (k) (s) ≥ 0

k = 0, 1, 2, ..., n− 1.

�

2.5.4 Applications

In this section, we provide more detail for the three examples discussed in Section 2.3.

Spatial Networks

The first set of applications is examples where interactions across heterogeneous agents take

place in space. We consider an urban model (extending the results of Ahlfeldt et al. (2015)),

an economic geography model (extending the results of Allen and Arkolakis (2014)), and a

trade model (extending the results of Alvarez and Lucas (2007)) in turn.

Urban Model Here we prove the uniqueness of the quantitative urban framework of

Ahlfeldt et al. (2015) with endogenous agglomeration spillovers but assume residential and
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commercial land are exogenously given. In terms of our framework, each city block is a

different economic agent and there are three different economic interactions, each represented

by an equilibrium condition. The first economic interaction is through the goods market,

where we require the goods markets clear, i.e. the income in a city block is equal to its total

sales:

Ii =
S∑
j=1

KijQ
−ε(1−β)
i w1+ε

j (2.14)

where Ii = QiHRi
β

is the total income of the residents living in location i, Qi is the rental

price in location i, wj, is the wage in location j, and Kij = Φ−1TiEjd
−ε
ij H > 0 is a matrix

incorporating the commuting costs between locations.

The second economic interaction is through the labor (commuting) market, where we

require that the total number of agents working in a location, HMi, is equal to the number

of workers choosing to commute there, i.e.:

HMi =
S∑
j=1

KjiQ
−ε(1−β)
j wεi , (2.15)

Finally, the third economic interaction is through the spatial productivity spillover, where

the productivity of a city block depends on the density of nearby workers, i.e:

A
1
λ
i = a

1
λ
i

S∑
j=1

e−δτij

Kj

HMj. (2.16)

Given the assumed Cobb-Douglas production function and the assumed fixed amount

of land in each location used for production, we substitute wi = αAiH
α−1
Mi L

1−α
Mi into above
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equations to create three equilibrium conditions that are a function of three outcomes: the

price of residential land, the number of agents working in a location, and the productivity of a

location. Observe that equations above are of the form of equation 2.4 with {Qi, HMi, Ai}i=1,...,S

as endogenous outcome variables.11 And the corresponding Γ and B are respectively
1 + ε (1− β) 0 0

0 1 + ε (1− α) −ε

0 0 1
λ

 and


0 (α− 1) (1 + ε) 1 + ε

−ε (1− β) 0 0

0 1 0

 . Then

we have

A =


0 (1−α)(1+ε)

1+ε(1−α)
λ(1+ε)

1+ε(1−α)

ε(1−β)
1+ε(1−β)

0 0

0 1
1+ε(1−α)

λε
1+ε(1−α)

 .

Recall from Remark 5 that if the summation of each row of A is less than 1, then we have

ρ (A) ≤ 1. Specifically, from Theorem 1(i), Ax ≤ x holds as long as λ ≤ min
(
1− α, α

1+ε

)
,

as claimed.

Economic Geography Model We now consider the framework of Allen and Arkolakis

(2014). The model yields the same mathematical equilibrium system as in Redding (2016)

and Allen et al. (2014) and thus the results apply in all these models. We extend that

framework to allow for productivity spillovers that decay over space of the form:

Ai = Āi

N∑
j=1

KA
ijL

α
j ,

11. Although Φ is also an endogenous variable, it is not location specific. Treating it exogenously is
equivalent with the equilibrium. (The equivalence can be shown by scaling {Qi, HMi, Ai}i=1,...,S .)
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where Ai represents the productivity of region i, Āi its exogenous component and Li the labor

in region i that is determined in equilibrium. KA
ij represents spatial spillovers in productivity

and α the spillover elasticity that is common across locations. Furthermore, appropriately

replacing the equilibrium conditions (corresponding to equations 10 and 11 of Allen and

Arkolakis (2014) that represent interactions through trade and the labor market) we obtain:

LiA
1−σ
i wσi = W 1−σ

N∑
j=1

T 1−σ
ij ūσ−1

j L
1+β(σ−1)
j wσj

L
β(1−σ)
i w1−σ

i = W 1−σ
N∑
j=1

T 1−σ
ji ūσ−1

i Aσ−1
j w1−σ

j ,

where wi is the wage in location i, ūi the exogenous amenity, β the local amenity spillover

elasticity and σ the demand elasticity. Tij represents the matrix of trade costs to ship goods

across locations.12

We can write the parametric parametric matrices corresponding to Theorem 1 as

Γ =


1 1− σ σ

β (1− σ) 0 1− σ

0 1 0

 , B =


1 + β (σ − 1) 0 σ

0 σ − 1 1− σ

α 0 0

 .

Therefore,

Γ−1 =


1 σ

σ−1
σ − 1

β (σ − 1) βσ 1 + β

0 − 1
σ−1

0

(σ − 1)2


12. Overall amenity of living in a location i is ui = ūiL

β
i ,i.e. it depends on local population. The amenity

is assumed to affect welfare of a location multiplicatively.
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and

BΓ−1 =


1 + β (σ − 1) βσ σ − 1 + β (σ − 1)2

β (σ − 1)2 βσ (σ − 1) + 1 σ − 1 + β (σ − 1)3

α ασ
σ−1

α (σ − 1)

 .

We consider the case that β < 0 < α which allows for the spectral radius to be less

or equal than one. The case α, β ≥ 0 always implies a spectral radius bigger than one.

When β < 0 the first two rows of BΓ−1 may be negative. Notice that (σ − 1)
(
BΓ−1

)
22
<

(σ − 1)
(
BΓ−1

)
11

=
(
BΓ−1

)
13

and (σ − 1)
(
BΓ−1

)
22
<
(
BΓ−1

)
23

. There is a number of

cases to discuss. Here we only consider the case
(
BΓ−1

)
22
≥ 0; other cases can be derived

similarly.

If
(
BΓ−1

)
22
> 0 i.e. β > − 1

σ(σ−1)
, then we have

∣∣BΓ−1
∣∣ =


1 + β (σ − 1) −βσ σ − 1 + β (σ − 1)2

−β (σ − 1)2 βσ (σ − 1) + 1 σ − 1 + β (σ − 1)3

α ασ
σ−1

α (σ − 1)

 .

A sufficient condition for ρ
(∣∣BΓ−1

∣∣) ≤ 1 is that the summation of each column is smaller

than 1 (see Remark 5). Thus we have

α + β (σ − 1) (2− σ) ≤ 0

ασ

σ − 1
+ βσ (2− σ) ≤ 0

α + βσ (σ − 1) ≤ 1

σ − 1
− 2.

The three inequalities and β > − 1
σ(σ−1)

can guarantee ρ
(∣∣BΓ−1

∣∣) ≤ 1 and, therefore,
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uniqueness.

Trade Model with Tariffs We now analyze the celebrated Ricardian model developed

by Eaton and Kortum (2002) specified with tariffs and input-output network as in Alvarez

and Lucas (2007).

The equilibrium of their model can be characterized by the three equations below (corresponding

to equations 3.8, 3.15, and 3.17 respectively in Alvarez and Lucas (2007)),

pmi =

[
n∑
j=1

λj

(
1

κij

AB

ωij

)−θ (
wβj p

1−β
mj

)−θ]− 1
θ

, (2.17)

Liwi (1− sfi) =
n∑
j=1

Lj
wj

(
1− sfj

)
Fj

Djiωji, (2.18)

Fi =
n∑
j=1

Dijωij, (2.19)

where Dij ≡
(wβj p

1−β
j )

−θ

p−θmi

(
AB
κijωij

)−1/θ

λj is country i’s per capita spending on tradeables that is

spent on goods from country j and sfi = α[1−(1−β)Fi]
(1−α)βFi+α[1−(1−β)Fi]

is labor’s share in the production

of final goods (equations 3.10 and 3.16 in Alvarez and Lucas (2007)) and the endogenous

variables are: pmi, the price index of tradeables in country i; Fi, the fraction of country i’s

spending on tradeables that reaches producers; and wi, country i’s wage. Finally, ωij is the

bilateral tariff.

Now we show how to transform the equilibrium equations into the form of equation (2.4).

First, raise both sides of equation (2.17) to the power of −θ and denote λj

(
1
κij

AB
ωij

)−θ
as

85



K1
ij, then we can rewrite equation (2.17) as

p−θmi =
n∑
j=1

K1
ijw
−βθ
j p

−(1−β)θ
mj ; (2.20)

Second, substitute the expression of Dij into equation (2.19), multiply both sides by p−θmi,

and denote ωijλj

(
1
κij

AB
ωij

)−θ
as K2

ij, then we can rewrite equation (2.19) as

p−θmiFi =
n∑
j=1

K2
ijw
−βθ
j p

−(1−β)θ
mj ; (2.21)

Third, define F̃i ≡ α + (β − α)Fi, substitute equation (2.19) into it, and notice that∑n
j=1 Dij = 1. Thus we have F̃i =

∑n
j=1Dij [α + (β − α)ωij] .Again, substitute the expression

of Dij, multiply both sides by p−θi , and denote [α + (β − α)ωij]λj

(
1
κij

AB
ωij

)−θ
as K3

ij, then

we can have equation

p−θmiF̃i =
n∑
j=1

K3
ijw
−βθ
j p

−(1−β)θ
mj (2.22)

Last, substitute the expressions of sfi and Dji into equation (2.18) , subsequently replace

α + (β − α)Fi with F̃i, multiply both sides by p
(1−β)θ
mi wβθi and define

Lj
Li
ωjiλj

(
1
κij

AB
ωij

)−θ
as

K4
ij, then we can rewrite equation (2.18) as

p
(1−β)θ
mi FiF̃

−1
i w1+βθ

i =
n∑
j=1

K4
ijwjF̃

−1
j pθmj. (2.23)

Now we have transformed the equilibrium equations into the form (2.4) but with four

set of endogenous variables
{
pmi, Fi, F̃i, wi

}
i=1,2,...,n

. Notice that all the kernels, K1
ij, ..., K

4
ij,

defined above are positive when α, β, θ > 0 and 0 < ωij ≤ 1. Then we have the corresponding
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parameter matrices

Γ =



−θ 0 0 0

−θ 1 0 0

−θ 0 1 0

(1− β) θ 1 1 1 + βθ


, B =



− (1− β) θ 0 0 −βθ

− (1− β) θ 0 0 −βθ

− (1− β) θ 0 0 −βθ

θ 0 −1 1


The determinant of Γ is − 1

βθ2+θ
6= 0. This implies Γ is always invertible as long as θ > 0.

Therefore, we have

∣∣BΓ−1
∣∣ =



1− β 0 0 β

0 0 0 0

0 0 0 0

1−(1−β)2

β+1/θ
0 1

βθ+1
|1−(1−β)βθ|

βθ+1


Here 1 ≥ θ(1 − β)β or β ≥ 1

2
is sufficient for ρ

(∣∣BΓ−1
∣∣) ≤ 1 i.e. we have (up-to-

scale) uniqueness. In comparison, the essential conditions for uniqueness in Alvarez and

Lucas (2007) are i) (mini,j=1,2,...,n {κij}mini,j=1,2,...,n {ωij})
2
θ ≥ 1 − β; ii) α ≥ β; iii) 1 −

mini,j=1,2,...,n {ωij} ≤ θ
α−β (see their Theorem 3).13

Production Networks

We next study economic interactions that arise from from input-output production linkages.

13. If 1 ≥ θ(1 − β)β, we can solve explicitly the eigenvalues are
{

0, 0, 1, (1−β)−βθ
1+βθ

}
. Obviously,∣∣∣ (1−β)−βε1+βε

∣∣∣ < 1, thus the uniqueness holds. If 1 < θ(1 − β)β, the characteristic polynomial is f (x) =

x4 + 2β2−2β+β/θ
β+1/θ x3 + 2β3−4β2+β+β/θ−1/θ

β+1/θ x2. According to Lemma 2, we can check the value of f (k) (1) for

k = 0, 1, 2, 3, a sufficient condition to guarantee ρ
(∣∣BΓ−1

∣∣) ≤ 1 is β ≥ 1
2 . (In this case the sufficient and

necessary condition is 4β3− 2β2 + 2/θ+ 5β/θ ≥ 0 and 2β3 + 2β2 +β+ 4β/θ− 1/θ ≥ 0 when 1 < θ(1−β)β.)
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Constant Elasticity Among Intermediates

We first consider a direct extension of the framework by Acemoglu et al. (2012) where the

production function is Cobb-Douglas in labor and intermediates. Instead, we assume that

intermediates across all sectors are aggregated through a constant elasticity of substitution

aggregator different sectors with an elasticity σ. This extension is explicitly discussed in

Carvalho and Tahbaz-Salehi (2019) as a special case of the nested CES case considered by

Baqaee and Farhi (2018). Formally the production function is

yi = zil
α1
i

(∑
j

x
σ−1
σ

ji

) σ
σ−1

α2

where zi stands for the productivity and is exogenous, li is the labor, xji is the intermediate

goods from sector j, and α1 + α2 = 1.

Therefore, from cost minimization we have the price of the goods produced in sector i

pi =
ᾱ

zi
wα1 (Pi)

α2 (2.24)

where we define ᾱ = αα1
1 αα2

2 , w is the wage, and the price index of intermediate goods Pi is

determined in the following equation

P 1−σ
i =

∑
j

τ 1−σ
ji p1−σ

j (2.25)

where τji stands for the standard iceberg trade cost but can be interpreted here as the cost

of adaption of the good as an intermediate in another sector. Substitute the expression of
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pj = ᾱ
zj
wα1Pα2

j (equation (2.24)), into (2.25) we immediately obtain

P 1−σ
i =

∑
j

(
ᾱ

zj
wα1

)1−σ

τ 1−σ
ji P

α2(1−σ)
j . (2.26)

Normalize the wage w to be 1. Notice that since zi is exogenous, this equation (for all i)

determines the price indexes {Pi}. Therefore, as long as consumer utility function satisfies

concavity condition, this equation alone can represent the equilibrium. Define xi ≡ P 1−σ
i

and fij (xj) ≡
(
ᾱ
zj
wα1

)1−σ
τ 1−σ
ji xj, thus the above equation is the form of equation (2.1). We

immediately have
∂ ln fij
∂ lnxj

= α2, so uniqueness and convergence of an iterative operator require

|α2| < 1, which is satisfied as long as labor is used in production.

Constant Elasticity Between Intermediates and Factors We now consider the generalization

of the production networks setup in Acemoglu et al. (2012) as discussed in Carvalho et al.

(2019) to incorporate constant elasticity of substitution between intermediate goods.

Consider a static economy consisting of n competitive firms denoted by {1, 2, · · · , n}, each

of which producing a distinct product. Firms employ nested CES production technology

yi =
[
χ (1− µ)

1
σ (zili)

σ−1
σ + µ

1
σM

σ−1
σ

i

] σ
σ−1

where li is the amount of labor, zi is the (exogenous) labor productivity, and the intermediate
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input bundle Mi is a CES aggregate of inputs purchased from other firms:

Mi =

[
n∑
j=1

a
1
ζ

ijx
ζ−1
ζ

ij

] ζ
ζ−1

.

We remark that Carvalho et al. (2019) also include firm-specific capital in the production

function; however, given that it is assumed to be supplied inelastically, it is isomorphic to

the exogenous labor productivity term zi.

Solving the cost minimization problem of the firm results in the following system of

equations for equilibrium prices:

p1−σ
i = (1− µ) (ziw)1−σ + µ

(
n∑

m=1

asmp
1−ζ
m

) 1−σ
1−ζ

which in turn can be written as:

(
p1−σ
i − (1− µ) (ziw)1−σ

µ

) 1−ζ
1−σ

=
n∑

m=1

asmp
1−ζ
m .

Normalizing the wage w = 1 and defining xi ≡
(
p1−σ
i −(1−µ)(ziw)1−σ

µ

) 1−ζ
1−σ

, this becomes:

xi =
N∑
j=1

aij

(
µx

1−σ
1−χ
j + (1− µ) z1−σ

j

) 1−ζ
1−σ

,

which is a special case of equation (2.1) with fij ≡ aij

(
µx

1−σ
1−ζ
j + (1− µ) (zj)

1−σ
) 1−ζ

1−σ

.
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Note that:

∂ ln fij
∂ lnxj

=

(
1− ζ
1− σ

)(
1− σ
1− ζ

)
µx

1−σ
1−χ
j

µx
1−σ
1−χ
j + (1− µ) (zj)

1−σ
=⇒

∣∣∣∣∂ ln fij
∂ lnxj

∣∣∣∣ =
µx

1−σ
1−χ
j

µx
1−σ
1−χ
j + (1− µ) (zj)

1−σ
< 1,

so that by Theorem 1 (part ii.a), there exists at most one equilibrium.

Social Networks

Here we consider a discrete choice framework with social interactions as in Brock and Durlauf

(2001), generalized to include a choice set of more than two actions. Suppose there are N

individuals where each individual i ∈ {1, ..., N} chooses from a set of H actions, where

hi ∈ {1, ..., H} indicates her choice. Let the N -tuple ω ≡ {h1, ...., hN} denote the actions by

entire population and let ω−i denote the actions of all individuals except i.

Let agent i′s payoffs for choosing action h consists of three components:

Vih = uih + Sih (ω−i) + εih,

where uih is the private utility associated with choice h, Sih (ω−i) is the social utility

associated with the choice, and εih is a random utility term, independently and identically

distributed across agents. In equilibrium, an agent will choose the action hi that maximizes

her payoffs given the actions of others, i.e:

hi (ω−i) ≡ arg max
h∈{1,...,H}

Vih (ω−i) .
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Define µijh to be the conditional probability measure agent i places on the probability that

agent j chooses action h. We assume that Sih (ω−i) takes the following form:

Sih (ω−i) = J ln

(∑
j 6=i

ωij,h (µijh)
η

) 1
η

 ,

where J governs the strength of the social interaction, ωij,h (normalized so that
∑

j 6=i ωij,h =

1) are weights that agent i places on agent j’s choice of action h to capture heterogeneity in

the social network connections, and the parameter η ∈ (−∞,∞) determines what type of

mean aggregation is used across other individuals (e.g. η = −∞ is the minimum, η = −1 is

the harmonic mean; η = 0 is the geometric mean; η = 1 is the arithmetic mean; and η =∞

is the maximum). We note that the log transform on the social utility function – not present

in the primary case considered by Brock and Durlauf (2001) – ensures that the uniqueness of

the equilibrium can be characterized without reference to an (endogenous) threshold value

(c.f. Brock and Durlauf (2001) Proposition 2).

The presence of weights ωij,h and the flexibility of the particular mean function (governed

by parameter η) – both of which are absent in the particular functional forms characterized

by Brock and Durlauf (2001) – allow for flexible social interactions between individuals in

the network. However, the uniqueness conditions provided below turn out to only depend on

the strength of the social interaction J . Note that without loss of generality we can define

the private utility as follows uih ≡ ln vih, which allows us to interpret J as the parameter

which governs the extent to which social interactions determine the choice of agents. A value

of J = 0 means that decisions are only made by private considerations of utility, whereas a

value J = 1 means that social utility and private utility vih are given equal proportions in
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the utility function.

Retaining the assumption from Brock and Durlauf (2001) that the random utility term

follows an extreme value distribution with shape parameter β and agent’s conditional probabilities

are rational (so that µijh = µjh for all j ∈ {1, ..., N} and µjh is equal to the probability agent j

actually chooses action h) results in the following equilibrium conditions for all i ∈ {1, ..., N}

and for all h ∈ {1, ..., N}:

µih =

exp (βuih)×
((∑

j 6=i ωij,h (µjh)
η
) 1
η

)Jβ
∑H

k=1 exp (βuik)×
((∑

j 6=i ωij,k (µjk)
η
) 1
η

)Jβ (2.27)

Note this is a system of N ×H equilibrium conditions in N ×H unknown probabilities µjh.

Equation (2.27) is a special case of (2.1). To see this, define yih ≡ µ
η
Jβ

ih , so that equation

(2.27) becomes:

yih =
exp

(
η
J
uih
)
×
∑

j 6=i ωij,hy
Jβ
jh(∑H

k=1

(∑
l 6=i exp

(
η
J
uik
)
ωil,ky

Jβ
lk

)Jβ
η

) η
Jβ

Furthermore, define xih ≡
∑

l 6=i exp
(
η
J
uih
)
ωil,hy

Jβ
lh so that equation (2.27) becomes:

yih =
xih(∑H

k=1 x
Jβ
η

ik

) η
Jβ

.
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Then given the definition of xih, we have:

xih =
∑
j 6=i

exp
( η
J
uih

)
ωij,h

 xjh(∑H
k=1 x

Jβ
η

jk

) η
Jβ


Jβ

. (2.28)

Finally, defining fijh ≡ exp
(
η
J
uih
)
ωij,h

 xjh(∑H
k=1 x

Jβ
η
jk

) η
Jβ


Jβ

if j 6= i and fiih = 0 results in

equation (2.28) be written as:

xih =
N∑
j=1

fijh (xj1, ..., xjH) ,

as in (2.1). It is straightforward to provide bounds on the elasticities of interactions as

follows:

∂ ln fij,h
∂ lnxj,h

= Jβ

1−
x
Jβ
η

jh∑H
k=1 x

Jβ
η

jk

 ∈ [0, βJ ]

and, for h′ 6= h:

∂ ln fij,h
∂ lnxj,h′

= −Jβ

 x
Jβ
η

jh′∑H
k=1 x

Jβ
η

jk

 ∈ [−βJ, 0]

So that if we define:

(A)hh′ ≡ βJ

then we have for all h, h′: ∣∣∣∣∂ ln fij,h
∂ lnxj,h′

∣∣∣∣ ≤ (A)hh′

Since the largest eigenvalue of a constant positive square matrix is that constant divided by
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the number of rows, Theorem 1(i) implies that we have uniqueness as long as βJ < 1
H

. Hence,

as as the size of agent’s choice set increases, guaranteeing uniqueness requires increasingly

weak social spillovers.

2.5.5 Additional Remarks

Footnote 4

Here we illustrate the importance of treating the endogenous as H vectors with N elements

instead of one giant variable with NH elements. To focus on the ideas, we set N = 1.

Consider the below example:

x11 = x
1
2
11x

2
12 + 1

x12 = x
1
2
12 + 1

(Here, in order to be consistent with the paper, we do not suppress the notation of N .)

We show when the system is treated as a single 2 × 1 vector, it is not a contraction. We

consider its log transformation by setting y1 = lnx11 and y2 = lnx12. Thus the above two

equations become:

y1 = ln
(
e

1
2
y1+2y2 + 1

)
(2.29)

y2 = ln
(
e

1
2
y2 + 1

)
. (2.30)
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Denote its right side as T (·) : R2 → R2. Its Jacobian matrix is

J (y) =

 1
2

e
1
2 y1+2y2

e
1
2 y1+2y2+1

2e
1
2 y1+2y2

e
1
2 y1+2y2+1

0 1
2

e
1
2 y2

e
1
2 y2+1

 .

Notice that the tight upper bound of the Jacobian matrix is

A =

 1
2

2

0 1
2

 .

For two y and y′, applying the mean value theorem on the two single-valued functions of

T (·), we have

|T (y)− T (y′)| ≤ A |y − y′| (2.31)

To apply the standard contraction mapping, we treat y1 and y2 as a single vector variable.

We consider two natural choices of norms to serve for the metric used in the contraction

mapping: 1. the max norm ‖y‖max = max (y1, y2); 2. the Euclidean norm ‖y‖ =
√
y2

1 + y2
2.

For the first norm, according to inequality (2.31), we have

‖T (y)− T (y′)‖max ≤ 2 ‖y − y′‖max .

Clearly, the standard contraction mapping does not apply.

For the second norm, again according to inequality (2.31), we have

‖T (y)− T (y′)‖ ≤ ‖A‖ ‖y − y′‖
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where ‖A‖ is the A’s matrix norm. Here ‖A‖ ≈ 2.118. Again, the standard contraction

mapping does not apply.

In constrast, applying our multi-dimension contraction mapping, we treat y1 and y2 as

two separate variables.We immediately have ρ (A) = 1
2
, so that inequality (2.31) implies the

uniqueness.
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Chapter 3

Optimal City Structure

with Treb Allen and Costas Arkolakis
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3.1 Introduction

As of 2014, 54% of people worldwide live in cities. This is an increase from 34% in 1960,

and urban population is expected to increase by more than 1% per year in the upcoming

decades. This unprecedented concentration is indicative of the large agglomeration economies

that take place in shorter distances and lead firms and individuals to cluster in cities. While

local governments have a large array of potential policy tools at their disposal (e.g. zoning

policies, subsidies, infrastructure projects, etc.), little is known about how a city can best take

advantage of these agglomeration economies in order to improve the welfare of its citizens.

In this paper, we develop a quantitative general equilibrium model of a city that incorporates

the agglomeration forces within the city and allows us to examine the welfare effects of

zoning policies. Our model has three key ingredients. First, following a large literature on

the economics of the city we assume that agents make commuting choices (see e.g. Anas and

Kim (1996), Anas and Rhee (2006), Ahlfeldt et al. (2012)) i.e. they choose where to live and

work. Second, we assume that there are spatial spillovers of productivity. Specifically, the

productivity in one location may depend on the distribution of agents working within the

city. Last, we assume that firms produce the good using commercial buildings and labor as

perfectly complementary inputs and agents have Cobb-Douglas preferences over residential

buildings and the good. Among the above three ingredients, agents’ commuting choices are

the nexus connecting the rest of the model; spatial spillovers of productivity imply that

agents’ commuting choices have externality and open up the possibility for interventions by

the city planner to be welfare improving; and since residential and commercial building can

affect agent’s commuting choices, zoning policies can serve as tools for the city planner to
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correct the externality. Despite the rich interplay among its different ingredients, the model

remains tractable. In particular, we present two sets of results that facilitate the use of this

model to evaluate zoning policies.

The first set (Proposition 1) is about the positive aspect of the model. We prove that for

any zoning policy that allocates the aggregate residential and commercial buildings, there

always exists a competitive equilibrium allocating the rest of resources. While this result is

not surprising, it is reassuring that zoning policy is compatible with the rest of the market

despite many spatial linkages present in the model. The second set (Proposition 2) is about

the normative aspect of the model. We assign the city planner to maximize agents’ average

utility. When there are no spatial spillovers, we show that the market is the same with the

city planner. This ensures that compared with the market, the difference of the city planner

does not lie in redistribution but only efficiency. We then consider how the city planner

can improve welfare and provide an explicit formula to evaluate the welfare effect of zoning

policy in practice.

Our approach is related with the standard general equilibrium analysis of welfare used

in trade and geography models (see, for example, Arkolakis et al. (2012) and Allen and

Arkolakis (2014)). Also, our model is connected with urban models where residential and

working locations are separated by commuting frictions (see Fujita and Ogawa (1982), Lucas

and Rossi-Hansberg (2003), Ahlfeldt et al. (2012), Anas and Kim (1996), Anas and Rhee

(2006)and Ioannides (2013) for a comprehensive review). We contribute to this literature

by adding an actual geography of the city (as in Ahlfeldt et al. (2012)) and in addition by

providing the apparatus to characterize the equilibrium of the model as well as the planner so

as to analyze local policy interventions. Finally, our work is also related to a urban literature
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that analyzes optimal spatial policy use in the presence of externalities, reviewed in Glaeser

and Gottlieb (2008). Closer to our approach, Turner et al. (2014) evaluate the effect of land

use regulation on the value of land use and on welfare. The authors exploit cross-border

changes in development, prices, and regulation in regions near municipal borders together

with detailed data on the land use and regulations.

The remainder of the paper is organized as follows: in the next section, we present the

theoretical model. In Section 3, we present our formal results. Section 4 concludes.

3.2 Model

This section describes the theoretical model. The premise of the model is similar to the

canonical Alonso-Mills-Muth model (Alonso et al. (1964), Mills (1967), Muth (1969) see

Ioannides (2013) ch. 5 for a description) and in particular we assume individuals have

preferences over good consumption and housing and their income is determined by their

working productivity and time. We assume a perfectly competitive good market with firms

that use land and labor to produce. Now we proceed to formally introduce the model.

3.2.1 Model Setup

We consider a city consisting of a set of locations Θ = {1, 2, ..., N} that we denote with

subscripts i or j. There is a building endowment Hi > 0 at each location i ∈ Θ which can

be put in residential, HRi ≥ 0, or commercial use, HCi ≥ 0,

HRi +HCi ≤ Hi.
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There are two types of players in the city: firms and agents. Firms organize production only

within commercial area i.e. locations where there are positive commercial building; agents

live and consume in residential area and work in commercial area.

Agents

Let Ω be the set of all agents and µ (.) be the measure defined in set Ω. µ (Ω) represents

he number of population. Throughout this paper, we denote µ (Ω) as L̄. Agents live and

consume in residential area and work in commercial area. Agents can only live in one location

and work in one location. But agents do not have to work and live in the same location.

Agents have the same preferences. The utility function used to represent their preference

is Cobb-Douglas

u = uiq
βh1−β,

where ui stands for amenity of location i where the agent lives; q is the good consumed by

the consumer; h is the quantity of housing the agent consumes; and β ∈ (0, 1).

The only heterogeneity agents have is their location-specific productivity. Agent ω’s

productivity a (ω) = [aj (ω)]j∈Θ ∈ R
N
++, where aj (ω) stands for ω’s productivity in location

j. Regarding the distribution of productivity a (ω), we follow Eaton and Kortum (2002) and

Ahlfeldt et al. (2012). Specifically, we assume that the idiosyncratic productivity, aj (ω),

follows a Frechet distribution with shape parameter θ, i.e. Pr [aj (ω) ≤ u] ∼ e−u
−θ

. We also

assume aj (ω) is independent across different working places, i.e. aj (ω) ⊥ ak (ω) for any

j 6= k j, k ∈ Θ.

The agent has one unit of time that can be used to work. If agent ω chooses to live in i
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and work in j, she has tij ≡ 1− dij unit of time left working, where dij represents the time

spent in commuting. Therefore, her wage income in total is

wjaj (ω) tij

where wj is the wage at location j for agents with productivity 1 working one unit time.

Every agent equally owns all the residential and commercial buildings and therefore

receives the same capital income k, which will be defined later. Thus her total income is

y = k + wjaj (ω) tij.

The timing of agents making decisions is as follows. Agents first choose where to live;

they then observe their idiosyncratic location-specific productivity; they finally decide where

to work and how to consume. Therefore, in below we use backward induction to solve the

agent’s problem.

Solving The Agent’s Problem First, given the agent’s total income y and the choice

that she chooses to live at location i, the agent maximizes her utility coming from consumption

i.e.

max
q,h

qβh1−β (3.1)

subject to

pq + rRih ≤ y, (3.2)
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where p and rRi are the price of good and rent of residential housing at location i respectively.

The Cobb-Douglas preference over the consumption good and housing implies that the agent

spends a constant share of income β in the consumption good and 1 − β in housing. Thus

we have the indirect expression of total consumption as

c
y

pβr1−β
Ri

where c = ββ (1− β)1−β (For convenience of notation, in the following we omit the constant,

as it does not affect agent’s decision).

Second, given the realized productivity a (ω) and the choice that she chooses to live at

location i, the agent chooses where to work by maximizing her total consumption, which is

equivalent to maximize her total income i.e. maxj∈Θ k + wjaj (ω) tij. Clearly, the agent just

needs to maximize her wage income. Thus the agent chooses to work at locations from

arg max
j∈Θ

wjaj (ω) tij.

Last, the agent chooses to live in the place that provides the largest ex ante utility i.e.

max
i∈Θ
E
[
ui

k+maxj∈Θ wjaj(ω)tij

pβr1−β
Ri

]
. The macro variables including wj, p, and rRi can be determined

in equilibrium. Therefore, the agent can take them as given and only form beliefs over

her wage income maxj∈Θwjaj (ω) tij. Using the Frechet distribution, we can obtain its

expectation as (the detailed calculation is in the appendix)

E
[
max
j∈Θ

wjaj (ω) tij

]
= Γ

(
θ − 1

θ

)
Wi,
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where Wi =
(∑

j (wjtij)
θ
) 1
θ
. Thus the agent chooses to live at locations from

arg max
i∈Θ

ui
k + Γ

(
θ−1
θ

)
Wi

pβr1−β
Ri

.

Firms

Firms produce goods in commercial area. We assume all firms at location j have the same

production function

q = Aj min (l, h) .

where Aj is firm’s productivity, l is the effective units of labor, and h is the amount of

commercial building rented. We assume the goods and input market are perfectly competitive.

Therefore, firms solve the below problem

max
l,h

pq − wjl − rCjh, (3.3)

where p is the price of goods; wj is the wage of per effective unit labor; and rCj is the rent

of commercial building in location i. We have the solution of firm’s problem



l = h = 0 pAj < wj + rCj

l = h ≥ 0 pAj = wj + rCj

l, h =∞ pAj > wj + rCj

(3.4)
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3.2.2 Aggregation

Having determined the behavior of each agent and firm individually, we next turn to aggregating

individual decisions to the level of the city.

Agent Side First, since we assume all agents hold an equal share of all the buildings,

agents capital income k satisfies the below equation

∑
i∈Θ

rRiHRi +
∑
j∈Θ

rCjHCj = kL̄. (3.5)

Second, we have the summation of all residents is equal to the total population

∑
i

LRi = L̄. (3.6)

Third, the fact that agents are homogeneous when they choose where to live implies that

(ex-ante) welfare is equalized over all the residential locations i.e.

U =
uiyi

pβr1−β
Ri

. (3.7)

where U stand for ex-ante welfare of the agents and total income yi = k + Γ
(
θ−1
θ

)
Wi with

Wi =
(∑

j (wjtij)
θ
) 1
θ
.

Fourth, from agent’s problem (3.1), we know the share of the total rent in the total

expenditure is 1− β, thus we have

rRiHRi = (1− β) yiLRi. (3.8)
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Last, we have the total income

yi = k + Γ

(
θ − 1

θ

)
Wi (3.9)

with Wi =
(∑

j (wjtij)
θ
) 1
θ
.

Firm Side First, the solution of firm’s problem imply that at the city level, we have

wj + rCj = pAj

and 

wj = pAj LEj < HCj

0 ≤ wj ≤ pAj LEj = HCj

wj = 0 LEj > HCj

(3.10)

where LEj is the total supply of effective units of labor and HCj is the total commercial

building at location j.

Second, LEj the total supply of effective units of labor is a summation of effective units

coming from different residential areas

LEj =
∑
i∈Θ

tijlijLRi

where lij ≡
∫∞

0
ajf (aj) daj

∏
k 6=j
∫ ajwjtij

wktik
0 f (ak) dak represents the total productivity coming

from i to j if there is one unit of agents living at i, f (a) = θa−θ−1 exp
(
−a−θ

)
is the
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probability density function of Frechet distribution with shape parameter θ, and LRi is

the total population living at location i. Here, lijLRi is the total productivity of agents

commuting from i to j. Here when θ > 1 (meaning the heterogeneity is large enough), lij is

finite and it can be explicitly calculated as (the calculation is in the appendix)

lij = g

(
(wjtij)

θ∑
k (wktik)

θ

) θ−1
θ

where g = Γ
(
θ−1
θ

)
is a constant. Therefore,

LEj =
∑
i∈Θ

gtij

(
(wjtij)

θ∑
k (wktik)

θ

) θ−1
θ

LRi. (3.11)

Third, we consider spatial spillovers of productivity in the following form

Ai = Āi
∑
j

KijL
η
wj (3.12)

where Āi > 0, Kij > 0, and constant η are exogenously given, and Lwj = min (LEj, HCj)

represents the effective units of labor who actually work in location j. This formulation is

in line with Lucas and Rossi-Hansberg (2003) and Rossi-Hansberg (2005), the endogenous

interaction of agents with others implies that that there are external benefits to producers

from production done nearby.

Last, if the market determines the allocation of residential and commercial buildings, we

have for any j ∈ Θ

HRj +HCj = Hj (3.13)
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and 

rRj = rCj HRj, HCj > 0;

rRj < rCj HRj = 0;

rRj > rCj HCj = 0.

(3.14)

3.3 Equilibrium and Welfare Analysis

In this section, we define the market equilibrium and setup the zoning planner and present

the equilibrium and welfare analysis.

Definition 2. In a Market Equilibrium, all the resources are allocated through the

market. It is mathematically represented by real variables {HRj, HCj, Aj, LRj, LEj}i∈Θ, price

variables {rRj, rCj, wj, yj}i∈Θ, and {p, k, U} which are determined in equations (3.5)-(3.14).

Observe that in a market equilibrium, the total number of variables is 9N + 3. They

correspond to the 9N + 2 equations and a price normalization condition.

Definition 3. A Zoning Planner allocates the aggregate residential and commercial

buildings {HCi, HRi}i∈Θ and the rest allocation is completed through market. Particularly

equations (3.5)-(3.12) determine variables {Aj, LRj, LEj}i∈Θ, {rRj, rCj, wj, yj}i∈Θ, and {p, k, U}.

3.3.1 Equilibrium Analysis

Now we state the existence result of the market equilibrium and zoning planner.

Proposition 1. i). The market equilibrium has a solution i.e. there exists {HRj, HCj, Aj, LRj, LEj}i∈Θ,

{rRj, rCj, wj, yj}i∈Θ, and {p, k, U} such that equations (3.5)-(3.14) hold.
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ii). Given any zoning plan {HCi, HRi}i∈Θ satisfying
∑

iHCi > 0 and
∑

iHRi > 0, there

exists {Aj, LRj, LEj}i∈Θ, {rRj, rCj, wj, yj}i∈Θ, and {p, k, U} such that equations (3.5)-(3.12)

hold.

Proof. Here we explain the main ideas of the proof and leave details in the appendix. The

proof is based on Brouwer’s fixed point theorem. There are two challenges in applying

the fixed point theorem. First, equations (3.7), (3.10) and(3.14) involve corner conditions

and therefore cannot directly serve as an operator used in Brouwer’s fixed point theorem;

second, some variables may go unbounded whereas Brouwer’s fixed point theorem require

the domain of variables to be compact. The two types of challenges are not new and have

been dealt in literature. Particularly, in order to prove the existence of equilibrium points in

non-cooperative game, Nash (1951) develops a technique to deal with the first challenge by

embedding the equilibrium equations in a dynamic system which can serve as an operator; the

literature of general equilibrium deal with the second challenge by considering the equilibrium

in a large bounded set (“box”) and then show that for a fixed point cannot be at the boundary

of the box. And the nature of our proof is to synthesize the two techniques and apply them

multiple times since in our model the two challenges show up in several places. �

This proposition illustrates that the characterization of the properties of the equilibrium

of urban models with spatial spillovers can be generalized beyond particular examples.

Theories that feature technological spillovers across space (see for example Fujita and Ogawa

(1982), Lucas and Rossi-Hansberg (2003), Rossi-Hansberg (2005), Fujita and Thisse (2013)

chapter 6) usually assume a particular geography (e.g. line or circle) and structure for

trade costs or impose a restriction on the spillover matrix Kij, and also typically assumed
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particular values for the spillover elasticity, η = 0 or η = 1. In contrast, Proposition 1 proves

that an equilibrium always exists for any η and for any matrix Kij governing technological

diffusion across space.

3.3.2 Welfare Analysis

Now we turn to compare the welfare difference between the market equilibrium and zoning

planner. Toward this end, we need to assign an objective function for the zoning planner to

maximize. Consider the below one

max
{HCi,HRi}i∈Θ

U (3.15)

subject to

HRj +HCj ≤ Hj. (3.16)

In below, we shall compare the expected utility of agents U under the market equilibrium

and zoning planner. However, it is difficult to directly compare. Therefore, we consider a

social planner as a benchmark who has a greater power than both the market equilibrium

and zoning planner. Formally, we have the below definition.

Definition 4. A Social Planner not only directly allocates the aggregate residential and

commercial buildings {HCi, HRi}i∈Θ but also determines all the rest allocations subject to

some constraints. Particularly, the social planner organizes the production, dictates LRi i.e.

how many agents live in location i, and allocates the goods and residential buildings to each

agent according to a linear rule, specifically, an agent gets qi + qijl units goods and hi + hijl
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units of residential housing if an agent commutes from i to j and can effectively work l hours.

The social planner considers the below problem

max
{HCi,HRi,LRi,qi,hi,qij ,hij}i∈Θ

U (3.17)

subject to equations (3.6) and (3.16), the constraint that given the linear allocation rule,

agents maximizing utilities in determining their commuting choices (denote Ωi as the set of

agents choosing to live at location i and Ωij =
{
ω ∈ Ωi|j = arg maxj∈Θ aj (ω) qβijh

1−β
ij

}
a the

set of people commuting from i to j ), and the residential housing and goods constraints

hiLRi +
∑
j

∫
ω∈Ωij

hijtijaj (ω)µ (dω) ≤ HRj

and ∑
i

qiLRi +
∑
ij

∫
ω∈Ωij

qijtijaj (ω)µ (dω) ≤
∑
j

Aj min (LEj, HCj)

where LRi = µ (Ωi), LEj =
∑

i tij
∫
ω∈Ωij

a (ω)µ (dω), and

U = max
i∈Θ
E
[
ui

(
qβi h

1−β
i + max

j∈Θ
Eaj (ω) qβijh

1−β
ij

)]
.

Proposition 2. When η = 0, the solution(s) of both the zoning and social planners can be

implemented via the market equilibrium. Specifically, equations (3.5)-(3.14) have a solution

that also solves problems (3.17) and (3.15).

Proof. Details are in the appendix. �

When there are no spatial spillovers, Proposition 2 states that in our model, the market

equilibrium can reach the same goal of the zoning and social planners. It is related with but
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shall not be confused with the typical welfare theorems. The First Welfare Theorem cannot

be readily applied in our model because of our timing assumption and the fact that there

is no insurance markets (incomplete market). This result is more closed with the Second

Welfare Theorem but in our market equilibrium agents’ endowments are fixed, specifically,

they equally own all the buildings. This proposition ensures that compared with the market,

the difference of the zoning planner does not lie in redistribution but only efficiency.

When there are spatial spillovers, agents’ location choices have externality. While a

typical remedy to correct the externality is Pigou tax, in practice, Pigou tax may not

be a feasible policy tool e.g. a city planner may not be able to subsidize workers in one

neighborhood/block but not in another. We may need to consider other policy tools. Observe

that the allocation {HCi, HRi}i∈Θ of residential and commercial building can affect agent’s

commuting choices. Thus, the zoning policy may, to some extent, correct the externality.

Particularly, in equation 3.12, Lwj = min (LEj, HCj). If HCj is the binding variable, the

marginal increment of productivity in location i caused byHCj then is ηĀiKijL
η−1
wj . Aggregate

this effect across all location i and multiply with the price and inputs, we have its (partial

equilibrium) welfare effect1 as

rCj + κj

where κj = ηpLη−1
wj

∑
i ĀiKij min (LEi, HCi) . At the same time, the opportunity cost of

increasing one unit HCj is the benefit of increasing one unit HRj, which is measured by rRj.

Therefore, in practice, we can use rCj + κj − rRj to evaluate zoning policy at location j.

1. As shown in our proof, the nominal variables are directly linked with the objective function of welfare.
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3.4 Conclusion

In this paper, we develop a general equilibrium model of city. Despite the many spatial

linkages, the model allows for characterizing the existence of the spatial equilibrium of the city

even when the spillovers are much more general than what is usually considered in literature.

We consider a city planner whose different with the market does not lie in redistribution but

only efficiency. One shortcoming of this paper is that we are not able to provide a sharp

characterization of the optimal zoning policy when there are spatial spillovers. This reflects

a general difficulty in policy decision-making. Its mathematical nature is how to optimize

subject to a high-dimension fixed point problem.

3.5 Appendix

3.5.1 Derivation of expected wage income and productivity

In this appendix, we derive the expression of expected income E [maxj∈Θwjaj (ω) tij] and

productivity lij.

Since aj (ω) follows Frechet distribution i.e. Pr [aj (ω) ≤ u] ∼ exp
(
−u−θ

)
, denote its

density function as f (u) = θu−θ−1 exp
(
−u−θ

)
. Thus we have
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E
[
max
j∈Θ

wjaj (ω) tij

]
=
∑
j

∫ ∞
0

wjtijajf (aj) daj
∏
k 6=j

∫ ajwjtij
wktik

0

f (ak) dak

=

∫ ∞
0

wjtijajθa
−θ−1
j exp

(
−a−θj

)
daj exp

(
−
∑
k 6=j

(
ajwjtij
wktik

)−θ)

=

∫ ∞
0

θwjtija
−θ
j exp

(
−a−θj

)
exp

(
−a−θj

∑
k (wktik)

θ

(wjtij)
θ

)
daj.

Denote cij =
(

(wjtij)
θ∑

k(wktik)θ

) 1
θ
. We have

E
[
max
j∈Θ

wjaj (ω) tij

]
=
∑
j

wjtij

∫ ∞
0

θa−θj exp
(
− (cijaj)

−θ
)
dvj.

Notice that

∫ ∞
0

θa−θj exp
(
− (cijaj)

−θ
)
daj =

cθij
cij

∫ ∞
0

θ (cijaj)
−θ exp

(
− (cijaj)

−θ
)
dcijaj

= cθ−1
ij

∫ ∞
0

θy−θ exp
(
−y−θ

)
dy

= cθ−1
ij

∫ ∞
0

x−
1
θ exp (−x) dx

where in the last two steps we use two changes of variables: y = cijaj and x = y−θ. Notice

that Gamma function is defined as Γ (t) =
∫∞

0
xt−1 exp (−x) dx. Thus

∫∞
0
x−

1
θ exp (−x) dx =
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Γ
(
θ−1
θ

)
. Combine the above two equations we have

E
[
max
j∈Θ

wjaj (ω) tij

]
= Γ

(
θ − 1

θ

)∑
j

wjtijc
θ−1
ij

= Γ

(
θ − 1

θ

)∑
j

wjtij

(
(wjtij)

θ∑
k (wktik)

θ

) θ−1
θ

= Γ

(
θ − 1

θ

)(∑
j

(wjtij)
θ

) 1
θ

as desired.

Notice that the above derivation has already given the value of expected productivity

lij ≡
∫ ∞

0

ajf (aj) daj
∏
k 6=j

∫ ajwjtij
wktik

0

f (ak) dak

=

∫ ∞
0

θa−θj exp
(
− (cijaj)

−θ
)
daj

= Γ

(
θ − 1

θ

)
cθ−1
ij = Γ

(
θ − 1

θ

)(
(wjtij)

θ∑
k (wktik)

θ

) θ−1
θ

.

3.5.2 Proof of Proposition 1

Proof. Part i).

The proof is based on Brouwer’s fixed point theorem. We need to construct a suitable

operator.

First, consider the operator for HCi, HRi, Aj, and LRi.

H ′Ci =
HCi + max (0, Dri)Hj

1 + max (0, Dri) + max (0,−Dri)
, (3.18)
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H ′Ri =
HRi + max (0,−Dri)Hj

1 + max (0, Dri) + max (0,−Dri)
(3.19)

where Dri = rCj − rRj is the difference between rents,

A′i = Āi
∑
j

KijL
η
wj (3.20)

L′Ri =
LRi + max (0, ERi) L̄

1 +
∑

i max (0, ERi)
(3.21)

where ERi = rRiHRi − (1− β) yiLRi is the excess supply on housing.

Second, consider LEj. Since all wages wj may be zero, so is the
∑

k (wktik)
θ. Thus

equation (3.11) may be ill-defined. To overcome this difficulty, we introduce an auxiliary

variable πij satisfying for any i
∑

j πij = 1, which is used to represent
(wjtij)

θ∑
k(wktik)θ

the

percentage that people living in location i commute to j. We have the operator for LEj

and πij

L′Ej =
∑
i∈Θ

gtijπ
θ−1
θ

ij LRi (3.22)

π′ij =
πij + (wjtij)

θ

1 +
∑

j (wjtij)
θ

(3.23)

where wj = πwjpAj.

Third, consider rRj, rCj, and wj. They may potentially be zero and unbounded (non-

compact). To deal with this issue, again we introduce new auxiliary variables πRj satisfying,

which is used to represent rRi∑
i rRi

location j’s relative rent price, πwj and πCj satisfying for

any j πwj + πCj = 1, which are used to present the wage and rent shares
wj
pAj

and
rCj
pAj

in
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location j. We have the operator for πRj

π′Rj =
(uiyi)

1
1−β∑

i (uiyi)
1

1−β
. (3.24)

Notice that (uiyi)
1

1−β comes from equation (3.7) thus this equation states that when welfare

is equalized, what the relative rent price should be.

We have the operator for πwj and πCj

π′Cj =
πRj + max (0, ELj)

1 + max (0, ELj) + max (0,−ELj)
(3.25)

π′wj =
πwj + max (0,−ELj)

1 + max (0, ELj) + max (0,−ELj)
(3.26)

where ELj = LEj −HCj is the excess labor in location i.

We can use them to construct rRj, rCj, and wj. Specifically,

r′Rj = rπRj (3.27)

r′Cj = pAjπCj (3.28)

w′j = pAjπwj (3.29)

where r = min
{

(1−β)Ȳ∑
i πRjHRi

, r̄
}

, Ȳ = 1 is the normalized total GDP and r̄ > 0 is a large

constant and will be explained shortly.
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Last, we have the operator for yi, k, and p

y′i = k + g

(∑
k

(wktik)
θ

) 1
θ

, (3.30)

k′ =
(1− β) Ȳ +

∑
rCjHCj

L̄
, (3.31)

and

p′ = min

{
βȲ∑

iAj min {LEj, HCj}
, p̄

}
(3.32)

where p̄ > 0 is also a large constant and will be explained shortly together with r̄.

Let T : x→ x′ be equations (3.18)-(3.32) where x (and x′) represent all the endogenous

variables (except U which can simply be calculated according to equation (3.7)) and the

auxiliary variables {πij, πRj, πwj, πCj}i,j∈Θ. T has a fixed point because all the variables can

be constrained in a convex and compact domain, given r̄ and p̄.

Each equation of fixed point of T directly implies one of market equilibrium except that

in equations (3.27) and (3.32), r and p may be equal to r̄ and p̄, which are not part of the

market equilibrium. Now we show how to choose r̄ and p̄ such that for a fixed point of T , r

and p cannot be equal to r̄ and p̄.

First, we choose a large enough r̄ such that r = r̄ must imply max rCj < max rRj which is

against equations (3.18) and (3.19) of operator T . Assume r = r̄. Notice that since
∑

j πRj =

1, max rRj = max rπRj ≥ r̄
N

. Since r = min
{

(1−β)Ȳ∑
i πRiHRi

, r̄
}

, r = r̄ implies (1−β)Ȳ∑
i πRiHRi

> r̄. A

very large r̄ implies that
∑

iHRi can be arbitrarily very small (in equation (3.24), a bounded

yi implies πRi is bounded). Therefore, HCj must be lower bounded above 0 (it has to be
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approximately Hj), so
∑

iAj min {LEj, HCj} must be lower bounded above 0 (notice that

for some j, LEj is lower bounded above 0). Therefore p = min

{
βȲ∑

i Aj min{LEj ,HCj} , p̄
}

is

upper bounded regardless the value of p̄. Thus max rCj ≤ max pAj is upper bounded.

Particularly, we can choose r̄ large enough such that max rCj <
r̄
N

. Therefore, we have

max rCj < max rRj.

Second, similarly, we choose a large enough p̄ such that p = p̄ must imply max rCj >

max rRj which is against equations (3.18) and (3.19) of operator T . Assume p = p̄. Therefore

βȲ∑
i Aj min{LEj ,HCj} ≥ p̄ furthermore, for any j, min {LEj, HCj} must be small enough. At the

same time, for some j, LEj is lower bounded above 0. Thus we have for some j, LEj −HCjis

lower bounded above 0. Thus πCj ≥ LEj−HCj
1+LEj−HCj

> c (equation (3.25)), for some constant

c > 0. At the same time, rCj = πRjpAj(equation (3.28)). Thus we can choose p̄ high enough

such that rCj > r̄ furthermore max rCj > Nr̄. At the same time rRj = πRir ≤ r̄. Thus we

have max rCj > max rRj, as desired.

In all, the fixed point of T directly implies the existence of the market equilibrium.

Part ii). Observe that compared with part i), here the only difference is that {HCj, HRj}

are taken as given. We can still use the same procedure as used in part i) except three

simplifications. First, we do not need equations (3.18) and (3.19) anymore. Second, we

only need to consider the residential rents in locations i where HRi > 0 and productions

in location j where HCj > 0. Third, denote the sets of the two type locations as ΘR and

ΘC . Simply set r = (1−β)Ȳ∑
i∈ΘR

πRjHRi
and p′ = βȲ∑

j∈ΘC
Aj min{LEj ,HCj} , which are naturally upper

bounded. That is we do not have to construct auxiliary variables r̄ and p̄ anymore. �
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3.5.3 Proof of Proposition 2

Proof. Since η = 0, we can treat the productivity as exogenous. It is sufficient to show the

market equilibrium is equivalent with the social planner’s problem. We proceed by showing

the first order conditions of the social planner are equivalent with the market equilibrium

conditions. Toward this end, we first transform the social planner problem into a more

tractable form.

Observe that it is without loss generality to require qi
hi

=
qij
hij

; otherwise, different agents

commute from i to j have different Marginal Rate of Substitution therefore there is room to

improve agents’ welfare (without changing agents locational choices). Thus, we assume one

qi = ciai, hi = cibi, qij = cijai, and hij = cijbi where ci, cij ≥ 0 and ai, bi > 0 satisfy

aβi b
1−β
i = 1 (3.33)

which represents one unit consumption bundle at location i. Thus given agent’ choice of

where to live, they just need to solve maxj∈Θ aj (ω) cijtij. Notice that this is the same

problem as in the market equilibrium maxj∈Θwjaj (ω) tij except that we replace wj with cij.

Thus by defining

W θ
i =

∑
j

(tijcij)
θ , (3.34)

similarly as we do for the market equilibrium, we obtain agents’ average consumption

and productivity in location i are ci + gWi and g
(cijtij)

θ−1

W θ−1
i

(recall g is defined as Γ
(
θ−1
θ

)
).

Therefore, we have: the total consumed goods constraint
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∑
i

ai (ci + gWi)LRi ≤
∑
j

Aj min (LEj, HCj) , (3.35)

the residential building at location i

bi (ci + gWi)LRi ≤ HRi,

and the constraint of the total effective labor at location j

LEj ≤
∑
i∈Θ

tijg
(cijtij)

θ−1

W θ−1
i

LRi. (3.36)

In addition, we have the welfare equalization condition

U = ui (ci + gWi) . (3.37)

Therefore, the social planner’s problem becomes

max
{U,ci,cij ,Wi,ai,bi,HRi,HCj ,LRi,LEj}

i,j∈Θ

U

subject to equations 3.33-3.37 and equations (3.6) and (3.16).
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Set up the Lagrange function

L = U +
∑
i

λEi

(
qβi h

1−β
i − 1

)
+
∑
i

λWi

(
W θ
i −

∑
j

(tijcij)
θ

)
+
∑
i

λri (Hi −HRi −HCi)

+ λp

(∑
j

Aj min (LEj, HCj)−
∑
i

ai (ci + gWi)LRi

)
+
∑
i

λrRi (HRi − bi (ci + gWi)LRi)

+ λk

(
L̄−

∑
i

LRi

)
+
∑
j

λwj

(∑
i

tijg
(cijtij)

θ−1

W θ−1
i

LRi − LEj

)
+
∑
i

λPi (ui (ci + gWi)− U)

where {λEi, λWi, λri, λp, λrRi, λk, λwj, λPi}i,j∈Θ are the constraints’ corresponding Lagrange

multipliers.

Now we consider this Lagrange function’s first order conditions. Differentiate it with

respect to the Lagrange multipliers, we get the above constraints thus we do not reprint

them; differentiate it with respect to {U, ci, cij,Wi, ai, bi, HRi, HCj, LRi, LEj}i,j∈Θ, we get 2

∂L
∂U

= 1−
∑
i

λPi = 0, (3.38)

∂L
∂ci

= −λpaiLRi − λrRibiLRi − λPiui = 0, (3.39)

∂L
∂cij

= −λWiθ
(tijcij)

θ

cij
+ λwjtijg (θ − 1)

(cijtij)
θ−1

cijW
θ−1
i

LRi = 0, (3.40)

∂L
∂Wi

= λWiθ
W θ
i

Wi

−λpaigLRi−λrRibigLRi+
∑
j

λwjtijg (1− θ) (cijtij)
θ−1

W θ−1
i Wi

−λPiuig = 0, (3.41)

∂L
∂ai

= λEiβa
β−1
i b1−β

i − λp (ci + gWi)LRi = 0, (3.42)

2. Here, we do not consider the corner case here. For the corner case, the same procedure follows except
that we need to use the complementary-slackness form.
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∂L
∂bi

= λEi (β − 1) aβi b
−β
i − λrRi (ci + gWi)LRi = 0, (3.43)

∂L
∂HRi

= λrRi − λri = 0, (3.44)

∂L
∂HCi

= λpAjx− λri = 0, (3.45)

∂L
∂LRi

= −λpai (ci + gWi)− λrRibi (ci + gWi)− λk +
∑
j

λwjtijg
(cijtij)

θ−1

W θ−1
i

= 0, (3.46)

and

∂L
∂LEj

= λpAjy − λwj = 0 (3.47)

where x, y ∈ [0, 1] are used to represent the subgradients of min (LEj, HCj) with respect to

LEj and HCj.

In below, we show that the market equilibrium result satisfies the first order conditions

of the social planner problem. If we substitute the corresponding

{U, ci, cij,Wi, ai, bi, HRi, HCj, LRi, LEj}i,j∈Θ of the market equilibrium result, clearly equations

3.33-3.37 and equations (3.6) and (3.16) are satisfied. Thus we just need to check if we can

find corresponding Lagrange multipliers such that equations 3.38-3.47 hold.

We first construct the Lagrange multipliers with the help of use the market results.

Set λp = p the price of goods; λwj = wj the wage per efficient unit; λri = λrRi =

rRi the residential rent3; λk = k capital income; λPi = ββ (1− β)1−β pβr1−β
Ri

LRi
ui

; λWi =

λwj
θ−1
θ

1

cijW
θ−1
i

LRi; λEi = yiLRi the total expenditure. Now we verify equations 3.38-3.47 one

by one. Equation 3.38 holds by setting the right nominal price p; Equation 3.39 because

it is exactly the budget constraint for people who consumes one unit consumption bundle;

3. Again, here we only consider the non-corner case; for the corner case, the first order conditions are in
the complementary-slackness form.
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Equation 3.40 clearly holds after substituting λWi = λwj
θ−1
θ

1

cijW
θ−1
i

LRi; Equation 3.41 holds

because it is a linear summation of equations 3.39 and 3.40; Equations 3.42 and 3.43 holds

because they are exactly the expenditure spent on goods and housing; Equations 3.42 and

3.43 holds because they are the rent equalization conditions; Equation 3.46 is the budget

constraint for an average consumer satisfied; Equation 3.47 is simply the wage equation.

Also, any solution of the social planner corresponds to a market equilibrium. Notice that

we can reversely use the same equations and Lagrange multipliers in the above paragraph

to construct the market results. �
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