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Abstract 
 

RNA Methylation and Ythdf Readers in Posttranscriptional Regulation and Development 
 

Cassandra Kontur 
 

2021 
 

Development in animals requires precise and coordinated changes in gene expression. This 

genetic remodeling is achieved through extensive regulatory networks of proteins and RNAs that 

function together to specify new cell fates and patterns. One developmental event heavily reliant 

on these regulatory networks is the maternal-to-zygotic transition (MZT), a universal step in 

metazoan embryogenesis in which a fertilized oocyte is reprogrammed into a pluripotent embryo. 

The earliest stages of the MZT are governed by maternally inherited gene products, which are 

required for cellular functions in the initially transcriptionally silent embryo. To shift 

developmental control to the zygote, these maternal mRNAs are massively degraded through 

multiple posttranscriptional mechanisms. The RNA modification, N6-methyladenosine (m6A) has 

been proposed as a master regulator of mRNA decay during developmental transitions, but the 

direct effects of this pathway on maternal transcript clearance remain unclear. To determine 

whether m6A facilitates gene expression changes during the MZT, I employed zebrafish embryos 

as a model system to dissect the contributions of RNA methylation and its reader proteins to 

maternal transcript fate.  

 Through transcriptome analysis and reporter assays, I found that m6A controls maternal 

mRNA degradation by promoting deadenylation. To understand how RNA methylation fits into 

the framework of known decay pathways, I compared transcripts co-targeted by m6A and miR-

430, a microRNA that controls mRNA clearance in zebrafish. This revealed that these mechanisms 



function independently but additively to promote mRNA degradation, reflecting that methylation 

modulates transcript abundance in concert with known regulators.  

 To disentangle the roles of the Ythdf proteins that mediate the effects of m6A on mRNA, I 

generated zebrafish genetic mutants of Ythdf1, Ythdf2, and Ythdf3. Through transcriptomic and 

phenotypic analysis of these mutants, I determined that global maternal mRNA clearance, zygotic 

genome activation, and development proceed normally in the absence of any one reader. This 

revealed that individual Ythdf proteins have limited effects on the removal of methylated maternal 

mRNAs during the MZT. To test if this limited impact of single Ythdf loss stems from functional 

redundancy between the readers, I produced double mutants of Ythdf2 and Ythdf3. Double Ythdf 

deletion prevents female gonad development, indicating that these factors exert overlapping 

activities during oogenesis. Finally, to fully establish functionally redundancy, I created triple 

Ythdf mutants, which are larval lethal. I observed this same phenotype in zebrafish lacking the 

methylases that add m6A to mRNA, indicating that RNA methylation is essential for 

developmental viability.  

Together, this work provides insight into the contributions of the m6A modification and its 

Ythdf effectors to maternal mRNA clearance, and establishes how these key regulators coordinate 

the gene expression changes that underlie embryonic reprogramming. 
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CHAPTER 1: RNA methylation regulates 
gene expression during development 

 
Global changes in gene expression underlie all cellular transitions. To ensure that this 

massive genetic remodeling is executed precisely and efficiently, a complex web of regulatory 

mechanisms coordinate their functions to specify new cell fates and patterns. While transcription 

is integral to the modulation of gene expression, multiple posttranscriptional maneuvers also 

contribute to reprogramming. By finetuning the genetic output from already synthesized mRNAs, 

these posttranscriptional mechanisms offer rapid and responsive transcriptome manipulations 

without necessitating largescale transcriptional adjustments.  

One transition heavily reliant on posttranscriptional regulation is the maternal-to-zygotic 

transition (MZT), a process universal to all metazoans. The MZT is the hallmark first step in 

embryogenesis, in which a fertilized oocyte undergoes developmental reprogramming into a 

pluripotent embryo. This transition is an ideal situation to study the effects of posttranscriptional 

processes, as the zygote is initially transcriptionally silent and development is sustained by 

maternally inherited gene products. This means that posttranscriptional pathways dominate the 

early MZT, and a vast network of regulatory factors remodels the maternal transcriptome and 

proteome to facilitate proper developmental progression. 

The posttranscriptional mechanisms controlling gene expression changes during the MZT 

are extensive, interwoven, and often universal across organisms. The embryo employs multiple 

regulatory pathways simultaneously, including those involving RNA-binding proteins (RBPs) and 

microRNAs, which rely on sequence elements embedded in target mRNAs for their activity. Other 

pathways engage features inherent to the mRNA transcript, such as RNA secondary structures or 

codon identity. Ubiquitous RNA modifications such as the 5’end cap and the 3’end poly(A) tail 
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also play a crucial regulatory role, through interactions with translation and decay machinery. 

Recently, internal mRNA modifications have been identified as mediators of mRNA fate, where 

deposition of chemical groups on the canonical A, C, G, and U nucleotides confers an additional 

layer of regulatory information. As the most abundant internal mRNA modification, N6-

methyladenosine (m6A, also termed methylation) has the capacity to mark thousands of transcripts 

for simultaneous, specific changes in RNA regulation, making it an especially promising 

mechanism to control maternal transcriptome remodeling. 

RNA methylation has already been implicated in numerous developmental transitions that 

require extensive genetic reprogramming, suggesting that it may be a global mechanism to control 

development. m6A has been linked to stem cell differentiation, gametogenesis, and embryogenesis, 

where the function of m6A as a posttranscriptional regulator is central to its facilitation of these 

transitions (Fig. 1.1.). To direct cell state switching, RNA methylation tags transcripts encoding 

developmental regulators and relies on its effectors to mediate their degradation or translation. The 

enzymes responsible for m6A metabolism are often essential to development across organisms, 

reflecting that this pathway plays a critical role in reprogramming. Given that m6A is a master 

mediator of posttranscriptional remodeling during developmental transitions, its impact on the 

maternal transcriptome during the MZT is likely to be significant. 

 



 3 

Figure 1.1. m6A facilitates developmental transitions by modulating mRNA decay 
RNA methylation contributes to the transition from a pluripotent to a differentiated state in multiple 
developmental contexts, including in stem cells, oogenesis, and zebrafish embryogenesis. Transcripts 
marked by m6A are more rapidly degraded than unmarked mRNAs, allowing for global changes in 
gene expression. These effects of m6A on mRNA fate are frequently mediated by the YTHDF readers 
(green).  

 

In this dissertation, I aim to address how the m6A modification serves as a central 

determinant of gene expression changes during key developmental transitions. First, I review 

foundational literature in the field of maternal mRNA clearance during the maternal-to-zygotic 

transition (Chapter 1.1.). I then focus on the posttranscriptional mechanisms through which m6A 

controls mRNA decay and translation, with an emphasis on the factors involved in adding and 

interpreting the modification (Chapter 1.2.). I address how RNA methylation contributes to both 

embryogenesis and parallel transcriptome reprogramming events, including in stem cells and 

gametogenesis (Chapter 1.3.)  

I then explore whether these roles of RNA methylation on mRNA decay and translation 

extend into control of gene expression during the maternal-to-zygotic transition in zebrafish. In 

Chapter 2, I investigate the behavior of endogenously methylated maternal mRNAs to gain insight 

into how this mark specifies maternal transcript fate. I combine mRNA-sequencing and poly(A) 

tail analysis to reveal that m6A modification is associated with enhanced deadenylation, clarifying 

the mechanistic underpinnings of m6A regulation of maternal mRNA clearance (Chapter 2.1). I 

validate the impact of m6A on poly(A) tail shortening through methylated reporters, and 

demonstrate the reliance of this pathway on zygotic transcription (Chapter 2.2.). I explore the 

interplay between methylation and microRNAs, revealing that these pathways coordinate their 

functions to co-target specific mRNAs for enhanced clearance (Chapter 2.3.), and that the 

microRNA miR-430 controls Ythdf3 downregulation at the mRNA level. Finally, I analyze 

ribosome profiling data to show that m6A also promotes maternal mRNA translation (Chapter 
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2.4.). Together, these analyses demonstrate how RNA methylation contributes to the 

posttranscriptional regulatory landscape guiding transcriptome turnover during the MZT.  

To understand which m6A writers and readers impart the significance of methylation onto 

maternal transcripts, I analyze their expression during the MZT (Chapter 3.1.) To dissect the 

contributions of each YTHDF reader to maternal mRNA clearance, I generate single mutants of 

YTHDF1, YTHDF2, and YTHDF3, and use RNA-sequencing analysis to establish the 

consequences of reader deletion on the maternal transcriptome. I reveal that loss of any one reader 

is not sufficient to fully stabilize methylated maternal messages, suggesting that these factors 

redundantly control degradation (Chapter 3.2.). Further, I carefully address the role of YTHDF2 

on maternal mRNA clearance versus zygotic genome activation, uncovering that YTHDF2 is not 

required for progression of either event, thus overturning the view that YTHDF2 alone dictates 

timing of decay and transcription during the MZT (Chapter 3.2., Chapter 3.3.).  

Finally, I examine the possibility of redundancy of YTHDF function through single, 

double, and triple zebrafish mutants. I demonstrate that deletion of any single YTHDF or even 

double YTHDFs does not impact embryogenesis (Chapter 4.1.). Yet, I discover that the YTHDFs 

exhibit dosage dependency to control oogenesis and larval viability, as double mutants cannot 

establish ovaries, and triple mutants are lethal (Chapter 4.2., Chapter 4.3.). Together, this reveals 

that the YTHDFs exert overlapping functions to control gene expression changes, and that these 

m6A readers are essential for multiple stages of development. 

Lastly, I summarize the results obtained and explain their implications relative to the field 

of RNA methylation as a whole in Chapter 5. I suggest routes of further exploration, and explore 

outstanding questions (Chapter 5). Finally, I describe the methodologies employed (Chapter 6). 
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1.1. Posttranscriptional control of maternal mRNA clearance 

Early embryonic development is initially sustained by maternal mRNAs and proteins pre-

loaded into the oocyte (Vastenhouw et al., 2019). As developmental control shifts towards the 

zygote, these maternally inherited products are systematically degraded through multiple, 

interconnected clearance pathways (Despic and Neugebauer, 2018; Tadros and Lipshitz, 2009; 

Vastenhouw et al., 2019; Yartseva and Giraldez, 2015). While the extent and timing of maternal 

clearance vary across eukaryotes, several core posttranscriptional mechanisms are found to 

contribute to mRNA removal in most species (Fig. 1.2.) (Vastenhouw et al., 2019). These factors 

and elements can be both maternally derived or zygotically produced, and frequently target the 

same mRNAs simultaneously (Yartseva and Giraldez, 2015).  

 

 
 

Figure 1.2. Mechanisms of maternal mRNA clearance 
Multiple pathways and features contribute to maternal mRNA degradation in zebrafish embryos, and 
thus enable changes in gene expression. These mechanisms include RNA secondary structure, codon 
optimality, RNA modifications, sequence elements, RNA-binding proteins (RBPs), and microRNAs.  

 

The first major mechanism facilitating maternal mRNA clearance is RNA binding proteins 

(RBPs), which bind to sequence elements in transcripts and recruit effectors to enable 

deadenylation and decay. For example, in Drosophila, binding of the Smaug RBP to specific 

hairpin structures results in transcript deadenylation or translational repression, through 

interactions with downstream factors (Chen et al., 2014a; Newton et al., 2015; Semotok et al., 

2005; Tadros et al., 2007; Temme et al., 2010). Pumilio and BRAT also function in flies, and 
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recognize unique motifs to promote deadenylation (Gerber et al., 2006; Laver et al., 2015; 

Thomsen et al., 2010; Weidmann et al., 2014), thus ensuring specific sets of mRNAs are cleared 

by different trans-acting factors. Similarly, AU-rich-element binding proteins help degrade 

transcripts in zebrafish (Despic et al., 2017; Rabani et al., 2017; Vejnar et al., 2019), C. elegans 

(D’Agostino et al., 2006; Gallo et al., 2008; Schubert et al., 2000), and Xenopus laevis (Graindorge 

et al., 2008; Moraes et al., 2006; Paillard et al., 1998; Voeltz and Steitz, 1998), and the factor 

BTG4 in mice mediates deadenylation (Yu et al., 2016).  

A second major player degrading maternal transcripts is small non-coding RNA, which 

includes microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), and endogenous small 

interfering RNAs (endo-siRNAs) (Vastenhouw et al., 2019). For instance, the miRNA miR-430 in 

zebrafish induces translational repression and deadenylation of hundreds of maternal transcripts 

(Bazzini et al., 2012; Giraldez et al., 2006), and miR-427 in Xenopus (Lund et al., 2009) and miR-

309 in Drosophila (Bushati et al., 2008) function similarly. In Drosophila, maternal transcripts are 

also cleared by piRNAs (Barckmann et al., 2015; Dufourt et al., 2017; Rouget et al., 2010), and in 

C. elegans, endo-siRNAs are required for transcript elimination (Stoeckius et al., 2014). Both 

RBPs and these non-coding RNAs rely on cis elements embedded in the transcript for their 

function, such as specific sequences or structures (Rabani et al., 2017; Vejnar et al., 2019).  

A third recently uncovered pathway is codon optimality, in which the ratio of stabilizing 

to destabilizing codons influences maternal mRNA translation and half-life in zebrafish, 

Drosophila, Xenopus, and mouse (Bazzini et al., 2016; Medina-Muñoz et al., 2021; Mishima and 

Tomari, 2016). Codon optimality relies on the abundance of cognate tRNAs for each codon, where 

the search for scarce tRNAs slows ribosome decoding, enabling interactions with deadenylase 

machinery (Boël et al., 2016; Presnyak et al., 2015; Wu et al., 2019a). Several factors have been 
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proposed to sense codon-dependent slowing and modulate downstream decay, including the RNA 

helicase Dhh1p (Radhakrishnan et al., 2016), the RBP FMRP (Shu et al., 2020), and CCR4-NOT 

itself (Buschauer et al., 2020), although which of these are required for codon-mediated mRNA 

degradation in the MZT remains unclear.  

Finally, chemical modifications of the mRNA have emerged as another regulatory layer in 

maternal mRNA clearance. For example, the m6A reader YTHDF2 controls maternal transcript 

abundance in early mouse oocytes and in zebrafish embryos (Ivanova et al., 2017; Zhao et al., 

2017). Similarly, the reader of 5-methylcytosine, Ybx1 promotes mRNA stabilization and 

translational repression in zebrafish, potentially via interaction with poly(A) tail binding proteins 

((Sun et al., 2018; Yang et al., 2019). Terminal uridylation of maternal transcripts in mice, 

zebrafish, and Xenopus helps rapidly degrade transcripts with short poly(A) tails during the MZT 

and oocyte-to-embryo transition (Chang et al., 2018; Morgan et al., 2017). Finally, loss of the 

deadenylase component CNOT6L in mice reduces inosine modifications in maternal mRNAs, 

although whether this accounts for defective translation and decay in these mutants is unclear 

(Brachova et al., 2021). While these examples illustrate the importance of these marks in specific 

contexts, the universality, extent of activity, and mechanisms employed by RNA modifications to 

remove messages during the MZT are yet to be defined.  

Together, this multitude of pathways orchestrates maternal mRNA clearance across 

organisms. These pathways frequently intersect, with the fate of a single transcript simultaneously 

dictated by multiple modes of clearance, potentially to ensure robust and timely degradation. Yet, 

as known mechanisms cannot account for the full breadth of clearance (Yartseva and Giraldez, 

2015), additional pathways or interactions governing maternal mRNA decay are likely to be 

revealed through future research. 
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1.2. RNA methylation and posttranscriptional control of gene 
expression 
 
1.2.1. Characteristics of the m6A modification 

m6A was initially discovered through several landmark studies in the 1970s, which 

revealed not only the presence of this modification on mRNA molecules, but also its function in 

transcript destabilization (Adams and Cory, 1975; Camper et al., 1984; Desrosiers et al., 1974; 

Dubin and Taylor, 1975; Perry and Kelley, 1974; Perry et al., 1975; Sommer et al., 1978). The 

m6A modification is conserved across eukaryotes, from plants to yeast to vertebrates, and can also 

be found in bacteria and viruses (Beemon and Keith, 1977; Bodi et al., 2010; Canaani et al., 1979; 

Deng et al., 2015; Furuichi et al., 1975; Garcias Morales and Reyes, 2021; Horowitz et al., 1984; 

Nichols, 1979; Sommer et al., 1978; Zhong et al., 2008). Although m6A on mRNA is the focus 

here, this mark is also found in other classes of RNA, including tRNAs, rRNAs, lncRNAs, 

snRNAs, and microRNAs, each with unique processing machinery (Lence et al., 2019). Since the 

early demonstrations that m6A is functionally significant to the cell (Camper et al., 1984; Sommer 

et al., 1978), RNA methylation is now understood to contribute to almost every aspect of the 

mRNA lifestyle, including processing, splicing, polyadenylation, nuclear export, localization, 

stability, and translation (Heck and Wilusz, 2019; Roundtree et al., 2017a; Zaccara et al., 2019). 

The mark itself appears to be regulatorily neutral, and its functional outcome is instead dictated by 

its context and interactors. Characterization of the enzymes and proteins that control m6A 

homeostasis, termed the writers, readers, and erasers, have demonstrated that the modification is 

highly regulated and required for specific cellular and developmental processes (Heck and Wilusz, 

2019). Similarly, high throughput m6A-sequencing (Dominissini et al., 2012; Meyer et al., 2012) 

uncovered specific features of m6A topology throughout the transcriptome that suggest its 
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incorporation is intentional and meant to confer specific instructions for gene expression (Zaccara 

et al., 2019). These mapping studies also uncovered the abundance of m6A throughout the 

transcriptome, where 25% of transcripts are estimated to harbor at least one modification in 

mammals (Balacco and Soller, 2019; Dominissini et al., 2012; Meyer et al., 2012; Wei et al., 1975, 

1976), further strengthening the view that methylation functionally regulates mRNA and cell fates.  

 

1.2.2. Transcriptome topography of the m6A modification 

While m6A is highly abundant, its presence is also selective, and only some transcripts are 

enriched in the modification (Linder et al., 2015; Schwartz et al., 2014). Precisely how this 

specificity is achieved remains unclear, but it likely stems from the selectivity of its writer proteins 

and their cofactors, as well as the underlying structural and sequence contexts of the mRNA (Lence 

et al., 2019). Several specific features are known to define the m6A modification landscape, many 

of which were established through early high-throughput sequencing studies of methylated 

mRNAs (Dominissini et al., 2012; Meyer et al., 2012).  

First, the methyltransferase complex that deposits m6A scrupulously installs the mark in 

the DRACH consensus sequence (D = A,G,U; R= A,G; H = A,C,U) (Dominissini et al., 2012; 

Harper et al., 1990; Meyer et al., 2012). Yet thousands of DRACH motifs are not methylated, 

suggesting that the writers have additional means to control where methylation occurs (Zaccara et 

al., 2019).  

Second, m6A exhibits a specific pattern along the transcript body, with enrichment in the 

5’UTR, CDS, and 3’UTR, and most highly around the stop codon (the last being linked to the 

terminal exon-exon junction likely for regulation of alternative polyadenylation and 3’UTRs (Ke 

et al., 2017)) (Bodi et al., 2012; Dominissini et al., 2012; Linder et al., 2015; Meyer et al., 2012; 
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Schwartz et al., 2014). This topography is conserved across cell types, where m6A tags in the 

3’UTR and near stop codons are largely constitutive, suggesting tight regulation of these sites, 

while those in the 5’UTR or CDS are less conserved, implying more dynamic control in these 

regions (An et al., 2020; Schwartz et al., 2014; Zhang et al., 2020a).  

 Third, substantial evidence indicates that methylation is introduced co-transcriptionally 

onto nascent transcripts (Barbieri et al., 2017; Bertero et al., 2018; Haussmann et al., 2016; Huang 

et al., 2019a; Ke et al., 2017; Knuckles et al., 2017; Lence et al., 2016; Slobodin et al., 2017). 

Incorporation likely occurs during RNA PolII elongation, as METTL3 and RNA PolII interact in 

plants (Bhat et al., 2020), and prior to splicing, as m6A can be detected in introns and splice 

junctions (Louloupi et al., 2018). Deposition of m6A to nascent transcripts suggests that the act of 

transcription likely influences writer specificity or guides the m6A enrichment pattern (Slobodin 

et al., 2017; Zaccara et al., 2019). 

Fourth, the selectivity of m6A addition is determined by both the main components of the 

writer complex and its cofactors (Schwartz et al., 2014). The catalytic core, METTL3 and 

METTL14, are suggested to dictate broad m6A deposition in canonical regions, while the cofactors 

modulate m6A at more context specific sites (Wang et al., 2021). Subunit proteins may recognize 

their own binding motifs and thus recruit the writer to neighboring m6A sequences, thereby 

controlling where the transcript is methylated (Patil et al., 2016; Zhang et al., 2020c). Modulation 

in the expression and activity of the methyltransferase complex may explain differential m6A 

modifications across cell and developmental states.  

Together, these features of m6A deposition demonstrate that the methylation landscape is 

highly specific and can be attenuated to diverse physiological contexts. Understanding the pattern 

of m6A can provide key insight into how this mark controls gene expression. Yet, current 
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knowledge of where m6A is located is limited by its mapping techniques (McIntyre et al., 2020). 

These approaches traditionally rely on antibody capture coupled with high throughput sequencing, 

which preclude determination of site specific stoichiometries and are associated with 

immunoprecipitation biases (McIntyre et al., 2020). Additionally, many of these mapping 

techniques cannot distinguish m6A from another modification, N6,2’-O-dimethyladenosine 

(m6Am), which also influences transcript stability (Linder et al., 2015; Mauer et al., 2017). 

Numerous new approaches are being developed to overcome these limitations, which often rely 

instead on fusion proteins, restriction endonucleases, and single-molecule direct RNA sequencing 

(Anreiter et al., 2021; Linder and Jaffrey, 2019). As the identification of m6A becomes more 

quantitative, capable of capturing fractional abundance, and site specific, our understanding of the 

function importance of this epitranscriptomic mark will greatly improve.  

 

1.2.3. The m6A writer complex 

METTL3 and METTL14 

Discovery of the “writer” proteins that catalyze m6A addition to mRNA greatly advanced 

the field of epitranscriptomics. Methyltransferase identification enabled mutagenesis studies that 

revealed how loss of methylation impacts gene expression, and showed that these enzymes are 

essential for numerous cellular and developmental processes (Clancy et al., 2002; Zhong et al., 

2008). The m6A methyltransferase complex is comprised of METTL3 and METTL14, which form 

a heterodimer to serve as the catalytic core (Bokar et al., 1997; Liu et al., 2014; Schöller et al., 

2018; Śledź and Jinek, 2016; Wang et al., 2016a, 2016b, 2014b) (Fig. 1.3.). Several auxiliary 

cofactors facilitate m6A deposition by interacting with the core to guide methylase localization, 

specificity, binding, and activity (Fig. 1.2.). These cofactors are still being identified, but are 
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known to include WTAP, VIRMA, RBM15, ZC3H13, and CBLL1/HAKAI (Garcias Morales and 

Reyes, 2021; Lence et al., 2019). Although both METTL3 and METTL14 contain a 

methyltransferase domain, crystal structure analysis has shown that only METTL3 has catalytic 

activity, while METTL14 functions as an allosteric adapter to stabilize interaction with the RNA 

and improve methylation efficiency (Huang et al., 2019b; Schöller et al., 2018; Śledź and Jinek, 

2016; Wang et al., 2016a, 2016b). Notably the functions of METTL3 extend beyond its role as a 

methyltransferase, as this enzyme has also been found to promote translation in the cytoplasm 

(Choe et al., 2018; Lin et al., 2016; Sorci et al., 2018). 

 Proper function of METTL3 and METTL14 is vital to development, as loss of these writers 

disrupts the methylome and subsequently impairs cellular reprogramming across organisms.  

For instance, METTL3 and METTL14 are required for early embryogenesis in mice, as genetic 

knockouts are lethal and depletion in mESCs inhibits differentiation (Aguilo et al., 2015; Batista 

et al., 2014; Chen et al., 2015; Geula et al., 2015; Meng et al., 2019; Wang et al., 2014b). Similarly, 

the homolog, MTA, is essential for embryogenesis and growth in Arabidopsis thaliana (Bodi et 

al., 2012; Shen et al., 2016; Zhong et al., 2008), and inactivation of core methyltransferase 

components Ime4 and Mum2 in yeast prevents meiosis and sporulation (Agarwala et al., 2012; 

Bodi et al., 2010; Clancy et al., 2002; Schwartz et al., 2013). The methylases are also crucial for 

spermatogenesis and oogenesis in zebrafish and mice, where they regulate gene expression at 

multiple stages of maturation, including in the germ cells (Lin et al., 2017; Sui et al., 2020; Xia et 

al., 2018; Xu et al., 2017). In Drosophila, they are necessary for sex determination (Haussmann et 

al., 2016; Lence et al., 2016). This extensive range of developmental functions across organisms 

demonstrate the importance of m6A and its writers in modulating gene expression during key 

developmental milestones and transcriptome turnover.  
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Figure 1.3. The methyltransferase complex adds m6A to mRNAs co-transcriptionally 
The m6A modification is added to mRNA by the methyltransferase complex, which is comprised of 
two core components, METTL3 and METTL14, as well as several cofactors that help determine the 
activity, localization, and specificity of the complex, including WTAP, VIRMA, HAKAI, RBM15, and 
ZC3H13. The methyltransferase interacts with RNA polymerase II to install the modification co-
transcriptionally, and methylation on transcripts leads to their downstream regulation. Other unknown 
or cellular context specific factors may also contribute to methyltransferase activity and specificity.  
 

WTAP 

WTAP, also called Fl(2)d in flies, is a central adapter of the methyltransferase complex, 

and its interaction with METTL3 is required for m6A formation in yeast and mammals (Agarwala 

et al., 2012; Horiuchi et al., 2013; Ping et al., 2014; Schwartz et al., 2014). WTAP helps recruit 

and anchor the methylases to target RNAs, and thereby guide the levels and specificity of 

methylation (Liu et al., 2014; Ping et al., 2014; Schöller et al., 2018). In Drosophila, WTAP is 

involved in sex determination and dosage compensation through regulation of Sxl alternative 

splicing (Granadino et al., 1990; Penn et al., 2008), although the extent to which this relies on its 

function in the methyltransferase complex is unclear. WTAP is also essential for proper m6A levels 

on transcripts encoding stem cell fate regulators during plant development (Shen et al., 2016). 

Similarly, conditional deletion of WTAP in mouse Sertoli cells impairs sperm stem cell self-

renewal and differentiation, again reflecting the central function of m6A in stem cell fate decisions 

and spermatogenesis (Jia et al., 2020).  
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VIRMA 

VIRMA, also called Virilizer or KIAA1429, is another methyltransferase subunit that helps 

establish the pattern of m6A through recruitment of the methylases (Hu et al., 2020; Liu et al., 

2018a; Schwartz et al., 2014). VIRMA’s function as an alternative splicing regulator is critical 

during female development. In Drosophila, VIRMA works with WTAP to regulate Sxl splicing 

and control sex determination (Hilfikert et al., 1995; Ortega et al., 2003). In mice, KIAA1429 is 

essential for oocyte competence, likely by promoting localization of SRSF3 and YTHDC1 to 

nuclear speckles, where they assist with splicing (Hu et al., 2020).  

 

RBM15 

RBM15 and its paralog RBM15b are RBPs responsible for METTL3 and WTAP 

recruitment to mRNA and the lncRNA, Xist, where RBM15 binds to U-rich sequences near 

DRACH motifs, thus helping to specify m6A target sites (Knuckles et al., 2018; Lee et al., 2020; 

Moindrot et al., 2015; Patil et al., 2016). Like other subunits in the methyltransferases complex, 

the RBM15 homolog in Drosophila (called Spenito) contributes to sex determination via 

regulation of alternative splicing of Sxl (Kan et al., 2017; Lence et al., 2016; Yan and Perrimon, 

2015). Loss of RBM15 is lethal in Drosophila and mice (Lence et al., 2016; Patil et al., 2016), 

suggesting that its functions in m6A regulation are essential for viability.  

 

ZC3H13 

Three concurrent studies revealed that ZC3H13 (also called Flacc in flies) is another 

component of the methyltransferase, functioning as an adapter protein between WTAP and 
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RBM15 in Drosophila and mice, and controlling complex nuclear localization (Guo et al., 2018; 

Knuckles et al., 2018; Wen et al., 2018). ZC3H13 regulates mESC self-renewal by promoting 

methylation of genes involved in pluripotency and differentiation, and deletion of its homolog, 

Xio in Drosophila results in female specific lethality, defects in wing development, and nervous 

system impairment (Knuckles et al., 2018; Wen et al., 2018). Unsurprisingly, absence of Xio 

phenocopies loss of other central writer complex components in Drosophila, obstructing Sxl 

alternative splicing and sex determination (Guo et al., 2018; Knuckles et al., 2018).  

 

CBLL1/HAKAI 

Known as both CBLL1 and HAKAI, this conserved E3 ubiquitin ligase is found in the 

WTAP interactome (Horiuchi et al., 2013) and its deletion reduces m6A levels in Arabidopsis, 

suggesting it is another factor involved in m6A deposition (Růžička et al., 2017). Yet, while 

HAKAI deletion causes embryonic defects, mutants are viable, unlike knockouts of METTL3, 

METTL14, VIRMA, and WTAP in Arabidopsis, indicating it may be an auxiliary factor 

controlling methyltransferase specificity (Růžička et al., 2017). Indeed, confirmation of HAKAI 

as a component of the writer complex awaits study of its impact on Sxl splicing in Drosophila.  

 

These many methyltransferase cofactors are essential to both m6A distribution and gene 

regulation. Yet, it remains unclear which subunits are necessary for all sites versus a select subset 

of modifications. Knockdowns of Fl(2)d, Nito, Flacc, and Vir in Drosophila lead to differential 

expression of both shared and unique mRNAs (Knuckles et al., 2018), suggesting that methylation 

patterns can be attuned by altering the composition of the writer complex. Even inactivation of 

METTL3 and METTL14 does not always abolition all modifications (Batista et al., 2014; Lin et 
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al., 2017), potentially due to other compensatory methyltransferases. Alternatively, incomplete 

loss of m6A upon methylase mutagenesis may reflect a hypomorphic phenotype, as partial loss of 

core writer components is frequently observed when complete knockouts are lethal (Sharpe and 

Cooper, 2017; Zaccara et al., 2019).  

While these many proteins guide and specify m6A installation, it is likely that other, yet 

unidentified cofactors also help recognize candidate methylation sites. Additionally, METTL3 and 

METTL14 may interact with indirect regulators, like TRA2A and CAPRIN1 (An et al., 2020; 

Horiuchi et al., 2013; Zhang et al., 2020b). These recently identified factors control m6A catalysis 

on specific transcripts and in select cell types, suggesting they are not constitutive subunits but 

rather transient interactors of the methylases (An et al., 2020). Because trans-factors like these can 

modulate writer activity and selectivity without being integral for methylation, the topology of 

m6A can be temporally and spatially tailored to distinct biological contexts.  

Finally, it is possible that these proteins have functions beyond their roles in the 

methyltransferase complex. For example, Fl(2)d and Nito localize outside of the complex in flies 

(Kan et al., 2017), and their depletion can result in stronger phenotypes than knockouts of 

METTL3 and METTL14 (Knuckles et al., 2018). It is often unclear if these transcriptomic and 

developmental phenotypes stem from global or transcript specific elimination of m6A, or from 

activities unrelated to RNA methylation. Further, many mutagenesis studies of the methylases rely 

on full gene knockouts and transcript dysregulation is observed for both methylated and non-

methylated transcripts. Discerning the direct versus indirect consequences of m6A absence will 

require the use of catalytically dead METTL3 and METTL14 mutants, to preserve non-methylase 

dependent functions. Regardless, it is clear that the many factors responsible for writing the m6A 

modification are crucial for gene expression regulation and developmental progressions.  
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1.2.4. Erasers of RNA methylation 

The demethylases ALKBH5 and FTO are m6A erasers that catalytically remove the 

modification from specific transcripts (Rajecka et al., 2019). Discovery of the erasers initially led 

to the view that m6A is dynamically regulated, where it is added and removed to rapidly control 

gene expression in a manner akin to epigenetic marks (Zhao et al., 2016). Yet, the scope of 

demethylase activity now appears to be limited to specific tissues, diseases, or stress responses 

(Darnell et al., 2018). Indeed, unlike m6A writers and readers, the erasers are not highly conserved 

and function only in vertebrates (Robbens et al., 2008; Zheng et al., 2013), suggesting that 

demethylation is a specific rather than universal mechanism of gene expression control (Heck and 

Wilusz, 2019).  

 

FTO 

Initially believed to be a major remover of RNA methylation, the relevance of FTO as an 

m6A demethylase is now highly debated (Jia et al., 2011; Mauer et al., 2019; Rajecka et al., 2019). 

FTO can demethylate a broad spectrum of substrates and targets m6Am with much higher affinity 

than m6A (Mauer et al., 2019; Meyer et al., 2015; Wei et al., 2018). Yet, some transcripts do exhibit 

reduced m6A levels upon FTO depletion, although FTO majorly prefers small nucleolar and 

nuclear RNAs (Koh et al., 2019; Su et al., 2018; Wei et al., 2018; Yu et al., 2018). As FTO activity 

and specificity can be modulated by protein partners, such as TRMT10A and SFPQ, RNA 

structure, subcellular distribution, and cell lineage (Ontiveros et al., 2020; Song et al., 2020a; Wei 

et al., 2018; Zhang et al., 2019b; Zou et al., 2016), it is likely that the function of FTO as an m6A 

demethylase is context dependent.  
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FTO expression is largely nuclear (Gerken et al., 2007; Jia et al., 2011), indicating that any 

demethylation will occur prior to mRNA export (Mauer and Jaffrey, 2018), and even suggesting 

that FTO prohibits m6A addition rather than actively erasing the mark (Koh et al., 2019). Yet some 

instances of FTO demethylation have been observed in the cytoplasm during heat shock, DNA 

damage responses, and cancerous states, (Cui et al., 2017; Li et al., 2017d; Xiang et al., 2017; 

Zhang et al., 2016), reflecting that this may be a highly specialized pathway.  

Disruption of FTO is linked to increased mRNA levels, potentially due to loss of 

destabilizing m6A modifications, or to defects in pre-mRNA processing and alternative splicing, 

which are likely the main FTO functions (Bartosovic et al., 2017; Louloupi et al., 2018; Mauer et 

al., 2019; Su et al., 2018; Wei et al., 2018; Zhao et al., 2014). FTO can also modulate translation 

upon cellular stress (Meyer et al., 2015; Zhou et al., 2015). 

Loss of FTO in mice is linked to reduced postnatal growth and viability (Boissel et al., 

2009; Fischer et al., 2009), disrupted neuronal development (Engel et al., 2018; Gao et al., 2010; 

Ho et al., 2010; Li et al., 2017c), impaired adipogenesis (Church et al., 2010; Gulati et al., 2013; 

Merkestein et al., 2015; Tung et al., 2015; Wang et al., 2015a; Zhang et al., 2015; Zhao et al., 

2014), and repressed sperm proliferation (Huang et al., 2019c). Thus FTO is essential for 

adipogenesis, neurogenesis, and spermatogenesis (Rajecka et al., 2019). Intriguingly, mouse 

mutant phenotypes of the m6Am methylase PCIF1 often mirror those of FTO depletion, suggesting 

that FTO function in these developmental contexts may be dependent on m6Am rather than m6A 

(Pandey et al., 2020). Yet, given that FTO targets multiple modifications as well as multiple RNA 

types (Gulati et al., 2013; Wei et al., 2018), future work is required to address whether FTO 

influences methylated RNA metabolism during development. 
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ALKBH5 

The second known demethylase ALKBH5 is more likely to serve as a specific eraser of 

m6A, as its expression consistently correlates with reduced methylation in mice and human tissues 

(Liu et al., 2020a; Zheng et al., 2013). Further, crystal structure analysis has revealed that 

ALKBH5 has an m6A-specific binding pocket and uses a distinct demethylation mechanism from 

FTO that lend it greater selectivity (Aik et al., 2014; Chen et al., 2014b; Feng et al., 2014; Toh et 

al., 2020; Xu et al., 2014a; Zhang et al., 2019b). These structural and mechanistic differences 

between FTO and ALKBH5 likely reflect unique substrate preferences, which in turn increase the 

breadth of spatiotemporal dynamics through which m6A is removed from RNAs. Similar to FTO, 

ALKBH5 exhibits nuclear localization, indicating that cytoplasmic demethylation is largely 

nonexistent (Thalhammer et al., 2011; Zheng et al., 2013). 

 Yet, while ALKBH5 is more specific for m6A than FTO, methylation increases by only 

about 10% upon its knockdown in mice, indicating that it is not a global regulator of methylated 

mRNAs (Zheng et al., 2013). Depletion of murine ALKBH5 results in misregulated mRNA 

processing and export (Zheng et al., 2013), and in spermatocytes, aberrant splicing and 3’UTR 

usage, as well as accelerated transcript degradation due to higher m6A levels (Tang et al., 2017). 

These molecular defects in ALKBH5 mouse mutants manifest as smaller testes, abnormal 

spermatozoa, and sterility, indicating that this eraser is essential for spermatogenesis, although the 

mice are viable (Tang et al., 2017; Zheng et al., 2013). ALKBH5 also functions during the 

development of many cancers, in which it frequently contributes to hypoxia response (Chen et al., 

2019; Ma et al., 2018; Shen et al., 2020; Wang et al., 2020a; Zhang et al., 2016, 2017b). Given the 

lack of overt phenotypes for most tissues upon loss of ALKBH5, this demethylase may have a 

narrow regulatory focus for select cellular and physiologically processes. Ultimately, future 
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research is needed to determine the extent to which the m6A erasers contribute to gene expression 

changes during development.  

 

1.2.5. Shared and unique features of the YTH m6A readers 

While m6A does not disrupt the coding capacity of mRNA, its presence dramatically 

expands the functional diversity of RNA, allowing for dynamic regulation of gene expression 

(Lence et al., 2019). The operational significance of m6A is dictated by the reader proteins, which 

recognize and bind to the mark, and subsequently employ effectors to specify transcript splicing, 

processing, stability, translation, and localization (Patil et al., 2018). While many proteins mediate 

methylated transcript regulation, only a few are bona fide readers, with the capacity for direct 

binding (Patil et al., 2018; Zaccara et al., 2019). These include the YTH-domain containing family, 

which rely on specific residues and conformations of their YTH domain to interact with the methyl 

moiety on the RNA molecule, as demonstrated through crystal structure studies (Li et al., 2014, 

2021; Luo and Tong, 2014; Theler et al., 2014; Xu et al., 2014b, 2015; Zhu et al., 2014). Other 

m6A regulators act indirectly, either through weak binding to m6A (as well as non-methylated 

mRNAs) as is the case for FMRP (Edupuganti et al., 2017; Worpenberg et al., 2021; Zhang et al., 

2018), or via m6A-structural switches, where presence of the mark induces conformational changes 

favorable to protein binding, as observed for IGF2BPs (Edupuganti et al., 2017; Huang et al., 2018) 

and HNRNPs (Alarcón et al., 2015a; Liu et al., 2015, 2017; Roost et al., 2015; Wu et al., 2018). 

Regardless of the mechanism by which m6A interpreters engage with the transcript, these factors 

are known to play pivotal roles in transcriptome remodeling.  

The YTH family of readers contain five central factors, YTHDF1, YTHDF2, YTHDF3, 

YTHDC1, and YTHDC2. These factors are highly conserved, with YTHDF and YTHDC1-like 
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proteins found in organisms ranging from plants to humans (Patil et al., 2018), although YTHDC2 

is largely limited to mammals (Jain et al., 2018). In vertebrates, amino acid sequence homology is 

high within the YTH domains for all five readers, but YTHDC1 and YTHDC2 also exhibit distinct 

sequences and domain organization, suggesting they may have additional unique roles (Patil et al., 

2016). Lower organisms, like Drosophila express only one YTHDF protein (and one DC1), instead 

of three separate paralogs as in vertebrates (Kan et al., 2017), suggesting that the DFs share a single 

conserved function. Indeed, the sequence homology of the YTHDFs is extensive both within the 

YTH domains and within their low complexity regions (Patil et al., 2018), indicating that 

differences in m6A-recognition may stem from distinctive expression patterns rather than 

individual binding profiles. Transcriptome-wide binding analyses by CLIP-sequencing 

demonstrate that all YTHs bind to the m6A motif (Hsu et al., 2017; Li et al., 2017a; Patil et al., 

2016; Wang et al., 2014a, 2015b; Xiao et al., 2016), but whether each reader has additional 

sequence preferences is yet to be determined. Across multiple cell types, the YTHDFs consistently 

recognize the same sites throughout the transcriptome (Li et al., 2017a; Patil et al., 2016; Shi et 

al., 2017), again suggestive of potentially redundant functions. YTHDC1 largely binds to nuclear 

methylated mRNAs, including lncRNAs, while YTHDC2 has a unique binding profile that 

includes some non-modified transcripts (Patil et al., 2016; Xiao et al., 2016). It is possible that the 

unique regions of the YTHDCs confer their specificity for certain RNAs, in addition to differences 

in subcellular localization or interacting partners (Kasowitz et al., 2018; Li et al., 2014; Wojtas et 

al., 2017; Xu et al., 2014b, 2015; Zhu et al., 2014). Indeed, YTHDC1 exhibits nuclear localization 

(Xiao et al., 2016), the YTHDFs are largely cytoplasmic (Shi et al., 2017; Wang et al., 2014a, 

2015b), and YTHDC2 is found in both the nucleus and cytoplasm (Hsu et al., 2017). Finally, the 

DFs and YTHDC1 contain low complexity regions (Patil et al., 2018), which enable the proteins 
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to undergo phase separation, allowing them to target methylated transcripts to non-membrane 

organelles like P-bodies, stress granules, and other ribonucleoprotein (RNP) complex granules (Fu 

and Zhuang, 2020; Gao et al., 2019; Ries et al., 2019; Wang et al., 2020b, 2014a).  

 Yet, whether the YTHDF readers have shared or independent functions remains debated 

(Fig. 1.4.) (Patil et al., 2018; Shi et al., 2019). The extensive overlap in protein sequence and 

structure, shared sets of m6A targets, overlapping interactomes, and similar cytoplasmic 

distributions, indicate that the YTHDFs have the capacity to regulate methylated mRNAs through 

common mechanisms (Zaccara and Jaffrey, 2020). Further, double or triple YTHDF depletion 

often results in more severe phenotypes than single mutants, potentially owing to compensation 

upon loss of a single reader (Lasman et al., 2020a; Li et al., 2017a; Zaccara and Jaffrey, 2020). 

Additionally, the YTHDFs interact within the cell (Jin et al., 2020; Shi et al., 2017), but 

whether this reflects overlapping functions, competition, or ordered binding remains unclear. For 

instance, all three YTHDFs can induce phase separations (Ries et al., 2019), suggesting that any 

combination of readers is acceptable to partition modified mRNAs, as long as they meet the 

threshold for phase transition to occur. Alternatively, binding by one reader may recruit a second 

reader, allowing them to target a single transcript with multiple regulatory mechanisms (Liu et al., 

2020b; Shi et al., 2017).  

Some studies have uncovered specific roles for each reader (Liu et al., 2018b), as well as 

different degrees to which each factor is required for development (Lasman et al., 2020a). This 

may indicate that the cell type or physiological state determines the reader activity (Shi et al., 

2019). Alternatively, these differences may reflect distinct expression patterns between the readers 

(Lasman et al., 2020a). Moreover, many studies limit their assessment to a single reader, and thus 

common functions may be overlooked. Ultimately, a thorough analysis of all three YTHDF 
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proteins and their interactions is essential to test if their roles converge or diverge to control m6A-

mediated cell fate decisions.  

 
 

Figure 1.4. The two predominant models of YTHDF reader function 
The degree to which the YTHDF m6A readers share common functions can be explained by two main 
models: (A) the YTHDFs exert unique functions to regulate methylated mRNAs, with YTHDF1 
promoting translation, YTHDF2 facilitating decay, and YTHDF3 contributing to both enhanced 
translation and degradation, or (B) the YTHDFs functional redundantly, as observed in their 
regulation of mRNA destabilization through localization to decay granules or interaction with 
deadenylases. 
 

1.2.6. YTHDF reader function in mRNA decay 

Upon its discovery, RNA methylation was quickly linked to transcript instability (Sommer 

et al., 1978). Now, m6A is cemented as a central regulator of decay, with numerous studies showing 

that mRNA half-lives increase upon loss of methyltransferase function (Batista et al., 2014; Ke et 

al., 2017; Liu et al., 2014; Schwartz et al., 2014). YTHDF2 was the first identified mediator of 

methylated transcript degradation (Wang, et al., 2014a), but all three YTHDFs and YTHDC2 are 

now known regulators of mRNA decay (Patil et al., 2018). In some contexts, the YTHDFs exert 

redundant functions on methylated transcript elimination (Kennedy et al., 2016; Lasman et al., 

2020a; Lu et al., 2018; Tirumuru et al., 2016; Zaccara and Jaffrey, 2020), although YTHDF2 is 

the dominant or sole regulator in others (Park et al., 2019; Wang et al., 2014a; Zhao et al., 2017). 

Mechanistically, the YTHDFs can promote transcript elimination through three main pathways: 

deadenylation, endoribonucleolytic cleavage, and localization to P-bodies (Du et al., 2016; Lee et 

al., 2020; Park et al., 2019; Wang et al., 2014a). This YTHDF triggered decay is especially 
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important during developmental transitions (Huang et al., 2020; Paris et al., 2019; Zhang et al., 

2017a; Zhao et al., 2017), where recognition of m6A enables rapid changes in mRNA fate and gene 

expression.  

 

Localization to phase separated granules 

 The first mechanism used by the YTHDF readers to ensure short mRNA half-lives is 

sequestration of methylated transcripts into phase-separated compartments (Fu and Zhuang, 2020; 

Gao et al., 2019; Ries et al., 2019; Wang et al., 2020b, 2014a). In human cells, YTHDF2 induces 

modified mRNA degradation through targeting to P-bodies (Wang et al., 2014a), which are 

enriched in decapping and decay machinery (Luo et al., 2018). Similarly, YTHDF1, 2, and 3 drive 

methylated transcript localization to stress granules upon heat shock, where their translation is 

inhibited (Ries et al., 2019). Notably, transcripts with multiple, clustered m6A residues exhibit the 

greatest decay, potentially because they attract more YTHDF readers and thus enhance their own 

entrapment to repressive, phase-separated compartments (Zaccara et al., 2019). Because all three 

YTHDF readers share the capacity to partition methylated transcripts into RNA-protein droplets 

(Ries et al., 2019), it is likely to be a universal mechanism for clearance.  

 

Deadenylation 

 The second mechanism of the YTHDFs is recruitment of deadenylation machinery to 

promote poly(A) tail removal (Du et al., 2016). All three YTHDFs interact with the CCR4-NOT 

deadenylase complex (Zaccara and Jaffrey, 2020), and tethering of each reader accelerates reporter 

deadenylation in human cells (Du et al., 2016). Yet, in somatic reprogramming of mouse 

embryonic fibroblasts (MEFs), YTHDF2 and YTHDF3 function by independent deadenylation 
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mechanisms, with YTHDF2 again interacting with CCR4-NOT and YTHDF3 exclusively 

recruiting the PAN2-PAN3 deadenylase complex (Liu et al., 2020b). Given that these 

deadenylases exhibit distinct tail length substrates and rates of tail removal (Wahle and Winkler, 

2013), these unique YTHDF interactions may help target multiple machineries to shared 

methylated targets and ensure their complete deadenylation. Future work should address how the 

YTHDFs achieve specificity in deadenylation machinery recruitment, especially given the high 

degree of protein homology and common m6A targets (Zaccara et al., 2019). 

 

Other decay pathways 

 Third, the YTH readers can facilitate cleavage of target transcripts. For instance, YTHDF2 

promotes endoribonucleolytic cleavage of m6A-containing mRNAs and circRNAs through 

recruitment of the adapter protein HRSP12 and subsequent binding of the endoribonuclease RNase 

P/MRP in human cells (Park et al., 2019). YTHDF1 and YTHDF3 can also interact with HRSP12, 

suggesting this may be a common mechanism (Park et al., 2019). The extent to which this program 

is employed is unclear, but HRSP12 binds preferentially to specific motifs (Park et al., 2019), 

suggesting that m6A sequence context helps determine how degradation will proceed. YTHDC2 

also expedites cleavage, by recruiting the cytoplasmic 5’-3’ exoribonuclease XRN1 (Kretschmer 

et al., 2018; Wojtas et al., 2017), which was also recovered in the YTHDFs’ interactomes (Zaccara 

and Jaffrey, 2020) 

Finally, although initially believed to be inconsequential for mRNA abundance, (Wang et 

al., 2015b), YTHDF1 also promotes destabilization in some contexts. In human cancer cells, 

YTHDF1 facilitates m6A-dependent Epstein-Barr viral RNA decay through recruitment of 

degradation machinery DCP2, DDX17, and ZAP, demonstrating that this factor has the capacity 
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to downregulate transcript expression (Xia et al., 2021). Whether other readers also encourage 

decapping is unknown, although some m6A marked transcripts are dependent on Dcp2 activity for 

their destabilization (Luo et al., 2020b). Additionally, some factors, like HuR, TRA2A, ZFP217, 

and SMAD2/3 modulate methylated mRNA stability by manipulating methyltransferase activity, 

thereby increasing or decreasing m6A levels on specific transcripts to flag them for downstream 

regulation (Aguilo et al., 2015; An et al., 2020; Bertero et al., 2018; Panneerdoss et al., 2018). 

The extent to which these clearance pathways are used by the m6A readers is unknown, as 

is how specific mRNAs are selected for each mode of regulation, and how the YTHDFs coordinate 

message removal. It is likely that the YTHDFs share redundant roles in transcript destabilization, 

especially considering that triple depletion is often necessary to inhibit methylated mRNA 

clearance to the same degree as METTL3 mutation (Lasman et al., 2020a; Zaccara and Jaffrey, 

2020). Further, precisely how stability is influenced by methylation sequence and structural 

context, cooperation with other decay pathways, and physiological state remains undefined.  

 

mRNA Stability 

Rather than promoting transcript clearance, several readers have been identified as 

methylated mRNA stabilizers. The IGF2BP family helps maintain modified transcript abundance 

(Huang et al., 2018), and are known to shield mRNAs from decay in cytoplasmic granules, 

although it is unknown if this particular function is m6A-dependent (Bell et al., 2013). IGF2BPs 

act during numerous developmental transitions, including embryogenesis in mice and flies (Boylan 

et al., 2008; Geng and Macdonald, 2006; Munro et al., 2006; Nielsen et al., 1999), as well as 

zebrafish, where IGF2BP3 is proposed to promote maternal mRNA stability during the MZT (Ren 

et al., 2020). Yet, whether the IGF2BPs are true “readers” of methylation is debated. IGF2BP3 
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was initially proposed to directly recognize m6A (Huang et al., 2018), but other work finds that 

IGF2BP3 binds nonspecifically to regions of high mRNA accessibility (Sun et al., 2019), such as 

those as induced by m6A (Liu et al., 2015; Roost et al., 2015). Because IGF2BPs can also bind in 

the absence of methylation (Huang et al., 2018; Müller et al., 2019), it is likely that these factors 

are indirect modulators of methylated mRNAs rather than specific readers. 

 FMRP is another indirect m6A regulator, as its sequence preference overlaps the DRACH 

motif, but the factor itself does not require m6A for binding (Worpenberg et al., 2021; Zhang et 

al., 2018). In Drosophila, YTHDF recruits the FMRP homolog FMR1 to methylated transcripts, 

where it represses translation to restrict axonal growth (Worpenberg et al., 2021). FMRP also co-

binds with YTHDF2 in the mouse cerebral cortex, although here it competes promote stability 

while YTHDF2 engenders decay (Zhang et al., 2018). Additionally, PRRC2A stabilizes 

methylated mRNAs in mouse oligodendrocytes (Wu et al., 2019b), although it too binds 

unmethylated transcripts. Another indirect regulator is the mRNA-stabilizing stress granule 

protein G3BP1, which is repelled by m6A, and thus absence of its stabilizing effect results in 

enhanced degradation (Edupuganti et al., 2017). ELAVL1, or HuR, functions through a similar 

mechanism; when it binds to its AU-rich recognition elements near m6A sites, transcript stability 

increases likely because interaction with decay inducing readers is blocked (Wang et al., 2014b).  

While these indirect effectors promote stability, it remains unclear how opposite 

consequences can be incurred on the same methylated transcripts, especially in conditions where 

readers with contrasting functions are simultaneously expressed, such as early embryogenesis (Ren 

et al., 2020; Zhao et al., 2017). It is possible that stabilizing factors occupy unique localities within 

the cell, antagonize the YTHDFs, or recognize distinct m6A sequences, as suggested for the 

IGF2BPs versus YTHDF2 (Huang et al., 2018). Careful comparison of each reader’s methylome 



 28 

preferences and cellular activities is required to better dissect the roles of m6A effectors on 

transcript clearance. 

 

1.2.7. m6A and YTHDF regulation of translation 

RNA methylation is capable of both stimulating and inhibiting global mRNA translation 

across organisms and cellular contexts (Meyer, 2019). The cellular conditions, location of the 

methylation within the transcript, local secondary structure, codon identity, ribosomal interactions, 

and association with different trans factors all shape how m6A will modulate translation. These 

regulatory functions of m6A on translation and protein synthesis have a developmental impact, 

including on embryogenesis, oogenesis, spermatogenesis, cancer cells, and neurons. 

 

m6A in the 5’UTR 

The position of m6A within the transcript dictates its role in translation. Methylation in the 

5’UTR represents only about 10% of the total m6A along the transcript body (Mao et al., 2019). 

Yet these 5’UTR residues enable ribosome loading and promote non-canonical translation in the 

absence of cap-binding proteins, especially in response to stressors like heat shock (Meyer et al., 

2015; Zhou et al., 2015). This mechanism appears specific to 5’UTR methylation (Zhou et al., 

2015), and may impact only a select handful of mRNAs (Luo et al., 2020a), but it represents a 

unique means by which m6A ensures protein synthesis from transcripts when traditional 

translational pathways are impaired. m6A in the 5’UTR can also downregulate translation. In 

human cancer cells, methylation in the 5’UTR of transcripts lengthens ribosomal dwell time 

around the start codon, delaying initiation and restricting translational output (Dong et al., 2021). 
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As YTH reader binding was not detected around these 5’UTR m6A sites, it remains unclear which 

factor mediates these inhibitory effects on translation. 

 

m6A in the CDS 

An estimated 36% to 52% of m6A residues are located within the CDS in human cells, 

which impact translation in multiple ways (Louloupi et al., 2018; Mao et al., 2019). First, higher 

m6A levels in the CDS correlate with decreased translation efficiency in MEF cells (Mao et al., 

2019), and with lower protein production from reporters in human cells (Slobodin et al., 2017). 

Indeed, clustered or multiple marks have even greater inhibitory effects (Hoernes et al., 2019; Luo 

et al., 2020a; Slobodin et al., 2017). Inactive translation of these transcripts may be explained by 

the observation that coding region m6A delays tRNA accommodation and thus slows translational 

elongation, as determined from single molecule measurements in vitro (Choi et al., 2016) and 

transcriptomic analysis in cell culture (Mao et al., 2019).  

Conversely, m6A in the CDS also correlates with enhanced translation. Loss of coding 

region m6A through METTL3 knockdown reduces translation efficiency in mouse and human cells 

(Mao et al., 2019). This discrepancy may reflect the effect of the RNA structure underlying the 

modification (Mao et al., 2019). When methylation helps resolve highly structured CDSs, 

ribosome pausing is alleviated and translation efficiency increases. Alternatively, m6A in 

unstructured transcripts slows tRNA accommodation and impedes translation. RNA unfolding is 

mediated by YTHDC2, indicating that the presence of specific readers also helps modulate 

translation (Mao et al., 2019). The codon identity and position of m6A within codons also 

influences translation, with different codons exhibiting different degrees of ribosome pausing and 

occupancy, and evolutionary conservation patterns, indicating that m6A-codon interactions may 
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affect ribosomal decoding (Barbieri et al., 2017; Choi et al., 2016; Hoernes et al., 2019; Liu et al., 

2018c; Mao et al., 2019). Thus, the effects of CDS m6A on translation appear to be context 

dependent, where the codon identity, local structure, recruited factors, and ribosomal interactions 

dictate the translational output for each transcript.  

 

m6A in the 3’UTR 

Up to 55% of methylated residues are harbored in the 3’UTR, and these modifications are 

largely linked to enhanced translation (Meyer, 2019). Loss of 3’UTR methylation through 

METTL3 depletion decreases mRNA translation efficiency (Mao et al., 2019), and YTHDF1 and 

YTHDF3 are thought to promote cap-dependent translation via marks in this region (Shi et al., 

2017; Wang et al., 2015b). How these factors facilitate translation through the 3’UTR is unclear, 

though a looping mechanism dependent on the eukaryotic translation initiation factor eIF3 has 

been proposed.  

It is possible that the effects of m6A on translation are linked to its role in mRNA 

degradation. Indeed, m6A in the 3’UTR is associated with transcript decay (Wang et al., 2014a), 

meaning m6A can attenuate the levels of transcript availabile for translation (Meyer, 2019). 

Further, some readers like YTHDC2 enhance both mRNA clearance and translation (Mao et al., 

2019; Wojtas et al., 2017), and can thus coordinate these processes to fine tune gene expression 

control. Together, these studies reveal that the consequences of methylation on mRNA translation 

are diverse and dependent on many trans factors and transcript features. 

 

YTHDFs and translation 
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As the consequences of methylation on mRNA translation vary extensively, the interacting 

reader proteins help determine the regulatory outcome. The first identified effector of m6A-

dependent translation is YTHDF1, whose depletion in human cells decreases translation efficiency 

(Wang et al., 2015b). Since then, YTHDF1 is found to upregulate translation of specific 

methylated mRNAs across cellular contexts, including in stem cells, cancer, immune response, 

and neural development, suggesting this regulatory function is conserved (Han et al., 2020, 2019a; 

Huang et al., 2018; Liu et al., 2020c; Weng et al., 2018; Wu et al., 2019c; Zhuang et al., 2019).  

YTHDF1 may regulate translation by binding to 3’UTR m6A, and looping the mRNA 

through recruitment of eIF3, to facilitate ribosome loading near the 5’end (Han et al., 2019a; Wang 

et al., 2015b). Yet, other work suggests that interactions between the YTHDFs and eIF3 are non-

specific (Zaccara and Jaffrey, 2020). YTHDF1 can also promote translation via CDS methylation, 

potentially by engaging with elongation factors, as seen in cancer cells (Lin et al., 2019). 

YTHDF1 also downregulates translation. Up to a third of YTHDF1 m6A targets increase 

in translational efficiency upon DF1 depletion (Zhang et al., 2020c), and DF1 recruits the 

translational suppressor FMR1 to methylated transcripts in Drosophila cells (Worpenberg et al., 

2021). Thus, multiple mechanisms and factors likely influence the impact of YTHDF1 on 

translation simultaneously. 

YTHDF3 is another translation regulator (Chang et al., 2020; Li et al., 2017a; Shi et al., 

2017; Wu et al., 2021; Zhang et al., 2019c), and is proposed to cooperate with YTHDF1 to enhance 

target translation (Li et al., 2017a; Shi et al., 2017). Yet, YTHDF3 may also function 

independently, as loss of DF3 alone is sufficient to drive down translation of specific transcripts 

(Chang et al., 2020; Wu et al., 2021). YTHDF3 also promotes cap-independent translation of 

methylated circRNAs (Yang et al., 2017a), and may even control protein synthesis in the absence 
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of m6A, as observed during the innate immune response (Zhang et al., 2019c), although m6A-

independent DF functions are rare.  

 Yet, it is possible that the YTHDFs do not universally influence translation, as conclusions 

from major studies of DF1 and DF3 were recently challenged (Zaccara and Jaffrey, 2020). In this 

work, neither individual nor triple YTHDF knockdowns affected translation efficiency, and 

reanalysis of ribosome profiling data from Wang et al., 2015 and Shi et al., 2017 uncovered no 

consequences of DF1 or DF3 depletion on translation (Zaccara and Jaffrey, 2020). Yet, the 

YTHDFs mediate translational output in other systems, and thus may serve as transcript specific 

if not global regulators. Future work is required to conclusively establish the impact of the 

YTHDFs in translation across unique biological contexts.  

 

YTHDC2 and translation 

 The reader YTHDC2 also promotes translation, and employs its helicase domains to 

directly unwind methylated mRNA structures in the CDS, thereby relieving ribosomal stalling 

(Mao et al., 2019). This remodeling activity of YTHDC2 is not limited to the CDS, as DC2 also 

unwinds highly structured 5’UTRs to promotes translation initiation in human cells under hypoxia 

(Tanabe et al., 2016). Further, YTHDC2 binds directly to the 40S small ribosomal subunit 

(Kretschmer et al., 2018), together suggesting a mechanism by which YTHDC2 recognizes m6A, 

unwinds RNA structures, and favorably interact with the ribosome to enhance target translation. 

Yet, how many mRNAs are subject to translational upregulation by YTHDC2 remains unclear 

(Tanabe et al., 2016), and future study is warranted to establish the prevalence of this m6A-

mediated regulatory mechanism.  
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METTL3 as a “reader” of m6A in translational control 

In addition to its function as an m6A writer, cytoplasmic METTL3 can associate with 

ribosomes to promote translation of specific mRNAs in human cancer cells (Choe et al., 2018; Lin 

et al., 2016). In this context, catalytically dead METTL3 promotes reporter translation without 

impacting mRNA abundance, indicating that METTL3 exclusively regulates translation, and does 

so independently of its methylase activity (Choe et al., 2018; Lin et al., 2016). Mechanistically, 

METTL3 facilitates translation by interacting with the cap-binding complex and eIF3, although 

how this occurs with METTL3 binding in the 3’UTR is unclear (Choe et al., 2018). This translation 

promoting function of METTL3 contributes to human lung cancer cell growth (Choe et al., 2018; 

Lin et al., 2016), but it remains to be determined if METTL3 serves as an m6A “reader” in other 

physiological states. Because METTL3 does not bind to most m6A sites, but METTL3 depletion 

does globally repress translation, downstream loss of methylation likely accounts for the majority 

of misregulation (Meyer, 2019).  

Indeed, METTL3 also promotes translation through m6A deposition. In acute myeloid 

leukemia cells, METTL3 association with transcript promoters is linked to enhanced CDS 

methylation of the corresponding mRNAs (Barbieri et al., 2017). These higher m6A levels 

correlate with greater translation, suggesting that promoter-bound METTL3 boosts protein 

synthesis by increasing methylation (Barbieri et al., 2017). The precise mechanisms underlying 

this connection between DNA binding, m6A deposition, and translation efficiency remain unclear. 

 

eif3 and non-canonical m6A translation 

eIF3 is another regulator of translation via m6A. eIF3 can directly bind methylation in the 

5’UTR and recruit translational machinery independent of cap binding proteins (Meyer et al., 
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2015). This pathway is employed in response to cell stressors, like heat shock, during which m6A 

is highly redistributed to the 5’UTR (Meyer et al., 2015; Zhou et al., 2015). The ATP-binding 

cassette protein, ABCF1 functions similarly, and recruits translation initiation machinery to 

methylated transcripts in stress conditions (Coots et al., 2017). Although eIF3 and ABCF1 

regulation is often limited to a select subset of mRNAs, m6A-dependent cap-independent 

translation is likely a universal means to control protein output when canonical pathways are 

restricted. Indeed, numerous other examples of m6A promoting non-canonical translation in 

response to cell stress are documented, although the reader responsible may vary by each case. 

(Fry et al., 2017; Miao et al., 2019; Shen et al., 2019; Xiang et al., 2017; Zhou et al., 2018).  

 

1.2.8. m6A and microRNA biogenesis and function 

RNA methylation and microRNAs interact in multiple ways. These pathways can integrate 

their functions to decay the same transcripts or indirectly control gene expression by regulating 

one another’s activities (Chen et al., 2020b; Fazi and Fatica, 2019). Thus, crosstalk between m6A 

and miRNAs can be divided into three main types: m6A controlling miRNA biogenesis and 

activity, miRNAs modulating m6A deposition and function, and miRNAs and m6A coordinately 

degrading shared targets.  

First, RNA methylation is known to modify miRNAs to regulate their maturation and 

expression (Alarcón et al., 2015b; Berulava et al., 2015; Bhat et al., 2020). Loss of m6A through 

depletion of METTL, or its homolog MTA, impairs miRNA biogenesis in human cells and 

Arabidopsis, respectively (Alarcón et al., 2015b; Bhat et al., 2020). This most likely arises from 

improper miRNA processing, as m6A stabilizes the pri-miRNA stem loop structure, and thus is 

crucial for recognition by microprocessor components (Alarcón et al., 2015b; Bhat et al., 2020). 
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Additionally, METTL3, METTL14, and the reader HNRNPA2B1 can regulate miRNA biogenesis 

directly by recruiting and interacting with the processing enzymes (Alarcón et al., 2015a, 2015b; 

Knuckles et al., 2017; Ma et al., 2017). Methylation may also modulate miRNA activity by altering 

expression of transcripts encoding other miRNA regulatory factors, like AGO2 and DROSHA 

(Min et al., 2018). It remains unclear if m6A-dependent miRNA processing is universal, as 

biogenesis of some miRNAs is unaffected by METTL3 or HNRNPA2B1 knockdown (Alarcón et 

al., 2015a, 2015b), although it appears to be a central mechanism mediating carcinogenesis (Chen 

et al., 2020a; Han et al., 2019b; Ma et al., 2017; Peng et al., 2019; Zhang et al., 2019a).  

Second, miRNAs can influence m6A deposition and function. Dicer or miRNAs may 

facilitate cellular m6A installation by promoting METTL3 binding (Chen et al., 2015), although 

how this is achieved is unclear. miRNAs also target m6A regulatory proteins to directly control 

their expression. For example, miR-33a downregulates METTL3 mRNA in non-small-cell lung 

carcinoma cells, (Du et al., 2017) and the same strategy is employed by miR-4429 in gastric cancer 

cells (He et al., 2019) and miRNA let-7g in breast cancer cells (Cai et al., 2018). Similarly, miR-

145 targets the 3’UTR of YTHDF2 in cancer cells, thereby increasing overall m6A-modified 

mRNA stability (Li et al., 2020; Yang et al., 2017b). miRNA control over m6A interpreters also 

helps regulate key developmental events, as when miR-670 targets Igf2bp1 to facilitate mouse 

embryogenesis (Hao et al., 2020). This mechanism may represent a means by which miRNAs can 

rapidly expand the pool of transcripts under their regulatory umbrella without necessitating a 

binding sequence. 

Finally, m6A and miRNAs can combinatorially regulate transcripts. Transcriptome wide 

analysis in humans and mice reveals that m6A peaks are enriched at miRNA target sites (Chen et 

al., 2015; Liu et al., 2020a). Similarly, ~60-80% of m6A-modified mRNAs are estimated to harbor 
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at least one miRNA binding site (Liu et al., 2020a; Meyer et al., 2012). miRNAs are also known 

to pair with mRNA at methylated residues, with the consensus motif inversely complementary to 

the seed of hundreds of miRNAs (Chen et al., 2015; Liu et al., 2020a). The outcome of this pairing 

is unclear, as m6A within 3’UTRs can both destabilize miRNA duplex formation (Briand et al., 

2020; Konno et al., 2019), and promote favorably interactions with miRNAs (Cheng et al., 2020). 

Thus, the nature of interaction between m6A and miRNAs on the same transcript may depend on 

the cellular context and mRNA identity.  

Together, these examples demonstrate extensive crosstalk between m6A and miRNAs to 

control gene expression at the posttranscriptional level. These collaborative interactions and cross 

regulatory pathways may help exert precise control over mRNA levels and timing of decay. The 

precise nature of m6A and miRNA regulation is likely determine by the expression and localization 

of each pathways components, and the specific cell state.  
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1.3. RNA methylation regulates developmental transitions 

RNA methylation is a regulator of message metabolism in numerous physiological 

transitions, with functions in stem cell differentiation, neuronal development, hematopoiesis, 

gametogenesis, cancer development, and immunity. These reprogramming events often rely on 

methylation to promote transcriptome turnover, where m6A helps balance expression of mRNAs 

between the old and new programs of gene expression. While the specific targets of methylation, 

and the activities of its writers and readers vary by developmental context, the universal 

importance of m6A on cell fate specification is clear, as loss of m6A writers or readers frequently 

disrupts both pluripotency and differentiation (Heck and Wilusz, 2019). Here, I will discuss the 

diverse cell state changes mediated by RNA methylation, with an emphasis on how m6A reshapes 

the posttranscriptional landscape to establish new patterns of gene expression and facilitate 

development.  

 

1.3.1. RNA methylation in stem cells 

Embryonic stem cells have the capacity to self-renew and maintain their pluripotent 

capacities, or to differentiate into the unique cell lineages that give rise to all embryonic tissues. 

The establishment, maintenance, and transition of stem cells from a pluripotent to differentiated 

state requires coordinated changes in gene expression, which are executed by transcriptional, 

epigenetic, and posttranscriptional pathways. m6A appears to contribute to stem cell fate by 

modulating the balance between self-renewal and differentiation, where it regulates expression of 

genes encoding the existing cell state. For instance, in mouse and human embryonic stem cells 

(ESCs), m6A marks mRNAs encoding core pluripotency transcription factors like Nanog, Klf4, 

and Myc for decay (Batista et al., 2014). Loss of methylation on these transcripts through genetic 



 38 

inactivation of METTL3 in mouse or human ESCs prolongs their expression and blocks the exit 

from self-renewal toward differentiation (Batista et al., 2014). Alternatively, a second study finds 

that reduction of m6A upon METTL3 knockdown causes mESCs to lose their capacity for self-

renewal, likely through repressed decay of developmental regulators and continued expression of 

pluripotency factors like Nanog and Sox2 (Wang et al., 2014b). While these studies agree that m6A 

marks and regulates determinants of both self-renewal and lineage-commitment, their findings 

regarding the role of methylation in the maintenance of pluripotency appear contradictory. This 

conflict is resolved by the discovery that the timing of m6A depletion determines the consequences 

on development, where absence of METTL3 in naïve ESCs traps cells in pluripotency, while in 

primed cells, METTL3 depletion blocks self-renewal and accelerates differentiation (Geula et al., 

2015). Because m6A controls the half-life of transcripts governing both the naïve and primed state, 

loss of METTL3 prolongs expression of whichever genes dominant the current cell state, thus 

locking cells in an either hyper differentiated or pluripotent state (Fig. 1.5.) (Geula et al., 2015).  

 
 

Figure 1.5. m6A regulates the balance between stem cell self-renewal and differentiation. 
RNA methylation and METTL3 control the balance between pluripotency and differentiation in stem 
cells by promoting degradation of transcripts maintaining the current cell state. When METTL3 is 
removed from pluripotent stem cells in the naïve state, mRNAs encoding pluripotency regulators fail 
to degrade, causing the cells to assume a hyper-pluripotent state. When METTL3 is lost in primed 
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pluripotent stem cells, transcripts for lineage determinants are stabilized, resulting in differentiation 
and cell death.  

 

These effects are not limited to core writer components, as loss of ZC3H13 also impairs 

self-renewal and triggers mESC differentiation, and knockdown of WTAP, KIAA1429, or HAKAI 

likewise alters expression of transcripts controlling pluripotency and differentiation (Wen et al., 

2018). This suggests that any misregulation of m6A deposition disrupts developmental 

determination. Similarly, in porcine iPSCs, loss of METTL3 debilitates self-renewal and enhances 

differentiation, by reducing m6A levels on JAK2 and SOCS3 mRNAs and inhibiting subsequent 

YTHDF1-dependent translation, and YTHDF2-dependent degradation, respectively (Wu et al., 

2019c). Because proper levels of these factors in the JAK-STAT pathway are needed to 

transcriptionally activate KLF4 and SOX2 for prolonged self-renewal, maintenance of iPSCs 

pluripotency is deterred (Wu et al., 2019c). This same mechanism of m6A and YTHDFs facilitating 

multipotency by regulating the JAK-STAT cascade is also observed in porcine bone marrow stem 

cells, prior to their differentiation into adipose tissue (Yao et al., 2019), in mouse neural 

stem/progenitor cells developing into neurites (Li et al., 2018), and in T cell homeostasis and 

differentiation (Li et al., 2017b), suggesting a conserved function across organisms and tissues. 

Further, loss of m6A interpretation hinders lineage determination, as triple YTHDF knockouts in 

mice are unable to differentiate due to protracted expression of pluripotency markers, closely 

paralleling the METTL3 hyperpluripotency phenotype (Lasman et al., 2020a). Yet, single YTHDF 

knockouts in mESCs differentiate properly, and m6A mRNA half-lives increase only upon triple 

reader ablation, indicating that all three readers share common roles in transcript decay during 

stem cell development (Lasman et al., 2020a).  

Additionally, some factors manipulate methyltransferase activity to control methylation 

levels and thereby transcript stability. For example, in mESCs, ZFP217 interacts with METTL3 to 
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decrease modification of pluripotency factors, enabling their persisted expression and fostering 

self-renewal (Aguilo et al., 2015). In human ESCs, SMAD2/3 interacts with METTL3-METTL14-

WTAP to upregulate methylation on pluripotency regulators, enhancing their degradation and 

facilitating differentiation in response to changes in activin/TGFb signaling (Bertero et al., 2018).  

RNA methylation also regulates efficient somatic cell reprogramming into pluripotent stem 

cells through transcriptome remodeling. In MEFs, early METTL3 knockout inhibits 

reprogramming (Geula et al., 2015), while higher m6A levels promote reprogramming (Chen et 

al., 2015). The YTHDF readers appear to be responsible for modulating these effects of m6A on 

somatic cells (Liu et al., 2020b). YTHDF2 and YTHDF3 are required to transform MEFs into 

iPSCs, by enhancing deadenylation of somatic-specific transcripts to accelerate the mesenchymal-

to-epithelial transition, a process required to initiate reprogramming (Liu et al., 2020b). YTHDF2 

has also been linked to m6A-mediated destabilization of neural-specific factors to promote 

pluripotency during neural differentiation of iPSCs (Heck et al., 2020). This indicates that the 

YTHDFs may globally regulate clearance of lineage determinants, although how they target only 

a subset of methylated transcripts to prime cells for reprogramming remains unclear.  

The impact of m6A on cell fate transitions extends into numerous other systems, including 

hematopoiesis (Vu et al., 2019; Weng et al., 2019), neural development (Livneh et al., 2020; 

Vissers et al., 2020), adipogenesis (Song et al., 2020b; Wu and Wang, 2021), muscle development 

(Zhang et al., 2020b), and cancer progression (Delaunay and Frye, 2019; Liang et al., 2020), 

reflecting the universality of this modification in balancing pluripotency and differentiation. To 

facilitate these transitions, RNA methylation primarily promotes clearance of transcripts 

establishing the current state, thus priming cells for rapid shifts in gene expression. Given that the 

timing and stage of the transition dictate which mRNAs are regulated by m6A (Geula et al., 2015), 
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understanding how the YTHDFs distinguish transcripts for degradation will be essential. Future 

research is needed to fully illuminate how RNA methylation and the YTHDFs 

posttranscriptionally regulate gene expression to potentiate stem cell fate decisions.  

 

1.3.2. RNA methylation functions in gametogenesis 

RNA methylation, its writers, and its readers play critical roles at multiple stages of 

gametogenesis, from the germ cells to fully functional oocytes and sperm (Lasman et al., 2020b). 

Similar to other cellular contexts, m6A primarily promotes gametogenesis by regulating transcript 

stability and translation (Qi et al., 2016). RNA methylation is pivotal for gametogenesis across 

organisms, as evidenced by the frequent enrichment of m6A-associated factors in reproductive 

organs, and the copious studies showing that loss of writer or reader function causes infertility 

(Hongay and Orr-Weaver, 2011; Hu et al., 2020; Jia et al., 2020; Kan et al., 2017; Lin et al., 2017; 

Pan et al., 2005; Xia et al., 2018; Xu et al., 2017; Zhong et al., 2008). For instance, almost all 

components of the methyltransferase complex are required for female development, fertility, and 

sex determination in Drosophila (Granadino et al., 1990; Guo et al., 2018; Haussmann et al., 2016; 

Hilfikert et al., 1995; Hongay and Orr-Weaver, 2011; Kan et al., 2017; Knuckles et al., 2018; 

Lence et al., 2016; Yan and Perrimon, 2015). Examples like these demonstrate that m6A is a master 

mediator of the gene expression changes required for successful reproductive development.  

 

Spermatogenesis 

Spermatogenesis is the process of producing mature sperm from the primordial germ cells, 

and it occurs continuously in the seminiferous tubules of the testes. Spermatogenesis begins with 

the spermatogonial stem cells (SSCs), which balance self-renewal with lineage commitment into 
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sperm progenitors, and undergo mitosis to form primary spermatocytes (Griswold, 2016; Holstein 

et al., 2003). The primary spermatocytes next undergo meiosis I to generate secondary 

spermatocytes, which then undergo meiosis II to form haploid spermatids. Finally, the spermatids 

transition into mature haploid spermatozoa through the process of spermiogenesis (Griswold, 

2016; Holstein et al., 2003). The methylation pathway regulates spermatogenesis in multiple 

organisms, through various effects of the m6A writers METTL3 and METTL14, the erasers, 

ALKBH5 and FTO, and the readers YTHDC1, YTHDC2, and YTHDF2 (Lasman et al., 2020b). 

 In mice, the methyltransferase complex is required in both early and late spermatogenesis. 

Early primordial germ cell knockouts of METTL3 or METTL14 reduce methylation on genes 

required for SSC proliferation and differentiation, disrupting their translation and causing sterility 

(Lin et al., 2017). Similarly, testes specific METTL3 deletion leads to infertility, reduces the 

number of germ cells, impairs spermatogonial differentiation, and disrupts meiosis initiation in 

mice, potentially through dysregulation of alternative splicing and transcript expression (Lasman 

et al., 2020a; Xu et al., 2017). Loss of Mettl3 in zebrafish also impairs sperm maturation and 

reduces motility (Xia et al., 2018). In this case, neither the germ cells nor meiosis are affected, and 

fertility decreases but is not fully compromised (Xia et al., 2018), suggesting either that Mettl3 is 

nonessential for zebrafish spermatogenesis, or that this mutant is a hypomorph, as other instances 

of Mettl3 deletion are larval lethal (see Section 4.4). Other writer components are also required for 

spermatogenesis. Like METTL3 and METTL14, WTAP in mice is necessary for SSC 

maintenance, spermatogonial differentiation, and fertility, likely through the influence of m6A on 

splicing, stability, and translation (Jia et al., 2020). Indeed, even in humans, higher m6A, METTL3, 

and METTL14 levels are associated with reduced sperm motility (Yang et al., 2016). Intriguingly, 

the writers are not required for spermiogenesis or mature sperm function, as spermatid specific 
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loss of METTL3 has no impact on fertility in mice (Lasman et al., 2020a). This is likely because 

spermatids are transcriptionally inactive and the methylases largely function co-transcriptionally. 

Together, these studies demonstrate that the m6A writers are crucial for spermatogenesis across 

organisms.  

The eraser ALKBH5 also functions in spermatogenesis, and is required for fertility and 

testes development in mice (Tang et al., 2017; Zheng et al., 2013). Loss of ALKBH5 disturbs 

mRNA export, processing, splicing, and transcript stability, and thus inhibits spermatocyte 

progression (Tang et al., 2017; Zheng et al., 2013). ALKBH5 may also influence circular RNA 

biogenesis and translation in male germ cells in mice, suggesting that demethylation controls 

spermatogenesis through multiple pathways (Tang et al., 2020). Finally, inhibition of the other 

demethylase, FTO, via meclofenamic acid treatment increases m6A modification, and thus 

enhances degradation of cyclin dependent kinases required for sperm cell proliferation during 

meiosis (Huang et al., 2019d).  

The most famous m6A-mediator in spermatogenesis is YTHDC2, which facilitates meiosis 

in both male and female mice (Bailey et al., 2017; Hsu et al., 2017; Jain et al., 2018; Wojtas et al., 

2017). Knockout of YTHDC2 causes infertility, reduces testes size, impairs differentiation of male 

germ cells, and halts the transition from mitosis to meiosis, likely through downregulation of 

meiotic genes and upregulation of mitotic genes (Bailey et al., 2017; Jain et al., 2018; Wojtas et 

al., 2017). YTHDC2 also controls transcript abundance and translation in sperm, (Hsu et al., 2017), 

interacts with the exoribonuclease Xrn1 (Wojtas et al., 2017), and localizes to RNA granules in 

the testes (Bailey et al., 2017). Whether these posttranscriptional roles of YTHDC2 in 

spermatogenesis are m6A-dependent remains unclear.  
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Other readers also guide male reproductive development. YTHDC1 deletion reduces 

mature sperm levels, and causes loss of germ cells and male sterility, potentially through its 

function as a splicing regulator (Kasowitz et al., 2018). Mouse knockouts of YTHDF2 exhibit 

disrupted sperm cell morphology, migration, and proliferation, stemming from stabilization of 

transcripts involved in sperm cell adhesion (Huang et al., 2020). Further, YTHDF2 mouse mutants 

have seminiferous tubule degeneration, loss of sperm, and hypofertility, again due to dysregulated 

transcript decay (Lasman et al., 2020a). The main functions of YTHDF2 are likely late in 

spermatogenesis, as YTHDF2 is highly expressed in spermatocytes, while YTHDF1 and YTHDF3 

expression is limited to spermatogonia (Lasman et al., 2020a). These differences in expression 

may account for differences in their activity during sperm maturation, although the role of 

YTHDF1 and YTHDF3 in male reproductive development is yet to be explored. Taken together, 

these studies demonstrate that the writers, eraser, and readers of RNA methylation are essential for 

spermatogenesis, where loss of any one factor dramatically disrupts male fertility.  

 

Oogenesis 

Generation of the mature egg, or ovum, is achieved through oogenesis. Oogenesis begins 

with mitosis of a diploid germ cell into a primary oocyte, which subsequently enters meiosis I 

(Marlow, 2018; Sánchez and Smitz, 2012). Here, the primary oocyte arrests in the germinal vesicle 

(GV) stage, until hormones trigger its re-entry into meiosis I. The oocyte then divides 

asymmetrically, forming the secondary oocyte and the first polar body. The secondary oocyte 

matures in the ovary until it begins meiosis II, where it arrests in metaphase II until fertilization 

(Marlow, 2018; Sánchez and Smitz, 2012). Because early embryogenic success depends on proper 

oocyte development and maternally supplied RNAs and proteins, the maternal transcriptome must 
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be faithfully assembled during this process (Marlow, 2018). Further, because there is no 

transcription past the GV stage, posttranscriptional regulation controls gene expression during late 

oogenesis and early zygotic development (Ivanova et al., 2017). RNA methylation greatly 

contributes to this posttranscriptional regulatory landscape, and both m6A readers and writers are 

critical to ensure production of healthy oocytes (Lasman et al., 2020b).  

The writers of m6A, METTL3 and KIAA1429, are both essential for oocyte maturation and 

competence. In zebrafish, loss of METTL3 stalls oogenesis and greatly reduces the number of 

mature oocytes produced (Xia et al., 2018). In mice, loss of METTL3 early in murine oogenesis 

results in complete sterility and abnormal ovary morphology, while later absence of METTL3 

causes failure of meiosis I and stalls oocyte maturation in the GV stage, again leading to sterility 

(Lasman et al., 2020a). Deletion of METTL3 specifically at the GV stage causes major 

transcriptomic defects, and interferes with both translational efficiency and maternal transcript 

degradation (Lasman et al., 2020a; Sui et al., 2020). In Drosophila, hypomorphs of the METTL3 

homolog IME4 exhibit oogenesis defects, which cannot be rescued by a catalytic dead IME4, 

indicating that the methylase activity is required for oogenesis (Hongay and Orr-Weaver, 2011). 

KIAA1429 is also required for oocyte competence in mice, where oocyte specific deficiency 

disrupts maturation of the ovarian follicle, a shell of somatic cells surrounding the immature oocyte 

(Hu et al., 2020). These defects may stem from abnormal RNA processing and splicing, as co-

localization between YTHDC1, SRSF3, and KIAA1429 to nuclear speckles is impaired in the 

mutants (Hu et al., 2020). YTHDC1 is also required for oogenesis, and absence of this reader 

blocks oocyte growth at the primary follicle stage (Kasowitz et al., 2018). This is likely due to 

disruptions of alternative polyadenylation and splicing, which cannot be rescued by an m6A-
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binding-deficient YTHDC1 (Kasowitz et al., 2018). These studies demonstrate that RNA 

methylation is essential to regulate maternal transcriptome assembly and secure oogenic success.  

Other m6A readers are also key mediators of oogenesis. In mice, YTHDF2 is required for 

oocyte maturation and the wave of maternal RNA degradation that establishes the meiosis II 

transcriptome (Ivanova et al., 2017). Loss of YTHDF2-dependent changes in transcript abundance 

causes oocyte incompetence, female specific infertility, and failure of early zygotic development 

(Ivanova et al., 2017; Lasman et al., 2020a). Similarly, the MZT stalls in zebrafish YTHDF2 

mutants, potentially due to delayed maternal mRNA clearance, although the extent to which this 

relies on methylation remains unclear (Kontur and Giraldez, 2017; Zhao et al., 2017). YTHDF1 

and YTHDF3 knockouts have no impact on murine oogenesis, likely because they are not highly 

expressed in the developing oocytes (Lasman et al., 2020a), although YTHDF1 is required for 

female germline stem cell self-renewal in mice (Zhao et al., 2021). The IGF2BPs are also enriched 

in mouse and zebrafish ovaries, where they are important for germline development and 

embryogenesis, although dependence on m6A for these IGF2BP functions has not been 

demonstrated (Liu et al., 2019; Ren et al., 2020; Vong et al., 2020).  

YTHDC2 is also pivotal for oogenesis in mice, and knockouts have smaller ovaries, loss 

of germinal vesicles, and infertility, likely due to transcriptome misregulation (Bailey et al., 2017; 

Hsu et al., 2017; Wojtas et al., 2017). Thus, the timing of reader mutant phenotypes in oogenesis 

correlates with the readers molecular activities. The YTHDFs impact late oocyte maturation when 

transcription has ceased and posttranscriptional regulation dominants. Alternatively, the YTHDCs 

phenocopy loss of the writers, reflecting an earlier role in oogenesis when transcription and m6A 

addition are still ongoing. Together, these studies uncover significant contributions of RNA 
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methylation, its writer, and its readers in ensuring proper maternal transcriptome establishment 

and successful oocyte generation across organisms.  

 

1.3.3. RNA methylation and embryogenesis 

Embryogenesis is the process through which multiple cell fate decisions guide an embryo 

to differentiate and create the complex tissues and organs required for life. Because embryogenesis 

parallels stem cell differentiation, development of the zygote relies on many of the same regulatory 

pathways to control transcript fate. Thus, it is unsurprising that RNA methylation is an essential 

mediator of embryogenesis.  

Across organisms, loss of the methyltransferase is embryonic lethal, including in mice 

(Geula et al., 2015; Meng et al., 2019), flies (Granadino et al., 1990; Hilfikert et al., 1995; Kan et 

al., 2017; Knuckles et al., 2018), zebrafish (Zhang et al., 2017a), pig (Cao et al., 2021), and plants 

(Bodi et al., 2012; Shen et al., 2016; Zhong et al., 2008). These dramatic phenotypes demonstrate 

that m6A is required to regulate the intricate genetic programs driving embryogenesis. For 

example, blastocysts from mice lacking METTL3 develop normally through preimplantation, after 

which they exhibit developmental defects (Batista et al., 2014; Geula et al., 2015; Wang et al., 

2014b). Transcriptome analyses of these mutant embryos show that pluripotency factors, like 

Nanog, Sox2, and Klf4 lose methylation and have sustained expression, preventing the blastocyst 

from exiting pluripotency and differentiating (Batista et al., 2014; Geula et al., 2015). Similarly, 

ablation of METTL14 traps mouse embryos in naïve pluripotency and leads to embryonic arrest, 

again due to transcriptome dysregulation (Meng et al., 2019; Wang et al., 2018). Also is mice, 

ZC3H13 is required for embryonic stem cell self-renewal (Wen et al., 2018), RBM15 knockouts 
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are lethal (Raffel et al., 2009), and WTAP is required for mesoderm and endoderm differentiation, 

although this last phenotype is not yet linked specifically to methylation (Fukusumi et al., 2008).  

Readers of methylation are also important in embryogenesis, though the degree of their 

impact varies for each reader and across organisms. For instance, in mice, YTHDC2 is dispensable 

for viability (Bailey et al., 2017; Hsu et al., 2017; Wojtas et al., 2017), but YTHDC1 deletion is 

embryonic lethal, likely because DC1 influences transcript splicing and export (Kasowitz et al., 

2018). hnRNPA2/B1 is also required for early embryonic development in mice, as its knockdown 

arrests post-implantation embryo growth, likely due to decreased expression of pluripotency 

markers (Kwon et al., 2019).  

Other readers, like YTHDF2, have a more mild impact on embryogenesis, potentially 

reflecting overlapping functions of the YTHDFs during embryogenesis. For example, in mice, 

maternal YTHDF2 is required for development past the 2-cell stage, but zygotic-only mutants are 

viable (Ivanova et al., 2017), although recovered at lower rates (Lasman et al., 2020a; Li et al., 

2018). These YTHDF2 mutant mice exhibit defects in cortical development, arising from impaired 

neural stem/progenitor cell differentiation, indicating that DF2 reader function is necessary to 

properly execute neurogenesis (Li et al., 2018). In zebrafish, maternal-zygotic YTHDF2 mutants 

fully progress through embryogenesis into adulthood, indicating that this reader is not absolutely 

required for their development (Zhang et al., 2017a; Zhao et al., 2017).  

Yet, triple YTHDF loss of function recapitulates METTL3 deletion phenotypes, and fully 

arrests embryonic growth (Lasman et al., 2020a). The YTHDF readers seem to control 

embryogenesis via a dosage dependent mechanism, as lack of YTHDF1 or YTHDF3 can be 

compensated by the remaining two readers (Lasman et al., 2020a). YTHDF2 may play a central 

role in maintaining viability, as its absence cannot be fully compensated, likely owing to its higher 
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expression level (Lasman et al., 2020a) Together, this suggests that the YTHDF readers exert 

overlapping activities during early development, and a specific threshold of their function must be 

met for embryogenesis to proceed.  

Finally, the IGF2BPs have been proposed as critical regulators of maternal transcript 

stability in early embryogenesis (Hansen et al., 2004; Huang et al., 2018; Ren et al., 2020). 

IGF2BP1 knockdown reduces global methylation levels and hinders embryogenesis in 

parthenogenically activated mouse embryos (Hao et al., 2020). Similarly, IGF2BP2 knockout 

mouse embryos arrest at the 2-cell stage, but whether these phenotypes are linked to regulation of 

m6A is unclear (Liu et al., 2019). In zebrafish, IGF2BP3 mutants are non-viable and have ectopic 

and reduced primordial germ cell development, suggesting that IGF2BPs are mandatory for 

embryogenesis across vertebrates (Vong et al., 2020). Together, these studies of RNA methylation 

and its regulatory factors demonstrate the importance of m6A in controlling transcriptome changes 

during embryonic differentiation.  

 

1.3.4. RNA methylation and the YTHDF readers role in the maternal-to-zygotic transition  

The maternal-to-zygotic transition (MZT) is an essential first step in embryogenesis, in 

which developmental control is passed from the mother to the zygote through activation of the 

zygotic genome and clearance of the established maternal transcriptome (Vastenhouw et al., 2019). 

RNA methylation, its writers, and its readers are key contributors to posttranscriptional gene 

expression changes during the MZT. For instance, METTL3 depletion in parthenogenically 

activated mouse embryos impedes transcriptional activation and maternal mRNA degradation, and 

deters embryogenesis in the 2-cell stage (Sui et al., 2020).  
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The IGF2BPs are also proposed regulators of the MZT, through transcript upregulation in 

both mice and zebrafish (Liu et al., 2019; Ren et al., 2020). In mice, loss of IGF2BP2 reduces 

transcription of factors involved in developmental competence, and arrests embryos around the 

onset of ZGA (Liu et al., 2019). In zebrafish, IGF2BP3 is suggested to promote maternal transcript 

stability (Ren et al., 2020). Loss of IGF2BP3 impairs development as early as the 8-cell stage, 

potentially due to premature maternal clearance (Ren et al., 2020). It remains unclear how the 

IGF2BPs distinguish select methylated mRNAs for stabilization while the decay-inducing YTHDF 

readers are simultaneously active.  

Finally, the reader YTHDF2 facilitates the MZT. In mice, YTHDF2 ablation blocks MZT 

progression, likely because of improper maternal transcript dosage (Ivanova et al., 2017). In goat, 

YTHDF2 mutants cannot develop past the 2-cell stage, exhibit abnormal abundances of maternal 

and zygotic transcripts, and have reduced expression of deadenylase and decapping machinery 

needed for clearance (Deng et al., 2020). In the zebrafish MZT, maternal mutants of YTHDF2 

exhibit a lag in development, which was posited to result from a corresponding delay in maternal 

mRNA clearance and inhibition of zygotic genome activation (Zhao et al., 2017). Together, these 

studies illustrate the importance of RNA methylation and its effectors in transcriptome switching 

during the MZT. Yet, this work also raises several major questions regarding the roles of each 

factor and the mechanisms underlying m6A-dependent gene expression changes.  

First, as many of these factors are also required in oocyte maturation (Ivanova et al., 2017; 

Liu et al., 2019; Sui et al., 2020), it is unknown if impaired MZT in these m6A mutants arises from 

failure to establish the maternal transcriptome versus an inability to clear maternal mRNAs. 

Further, absence of these proteins often results in both increased and decreased mRNA expression, 

convoluting the direct impact of these methylation effectors on transcript fate during the MZT. 
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Carefully controlled analyses are required to better dissect the origins of transcriptome changes 

upon loss of m6A function.  

Second, the extent to which writer or reader phenotypes depends on methylation is 

unknown. Most studies present the broad impact of methylation mutants on the maternal or zygotic 

transcriptome without assessing consequences on the pool of endogenously modified mRNAs. 

Indeed, misregulated mRNAs in zebrafish and mouse YTHDF2 mutants are both methylated and 

unmethylated (Ivanova et al., 2017; Zhao et al., 2017), suggesting that either disrupted gene 

expression resulted indirectly from loss of YTHDF2, or that YTHDF2 exerts a regulatory function 

independent of m6A. The consequences of m6A-mediator absence on methylated transcripts must 

be specifically and separately addressed.  

Third, it is unclear if m6A-dependent defects in maternal mRNA clearance subsequently 

impede ZGA, if disrupted clearance is a consequence of delayed transcriptional activation, or if 

methylation independently impacts both processes. For instance, although m6A predominantly 

drives decay, it is known to globally promote translation (Wang et al., 2015b). In the context of 

the MZT, m6A could boost translation of key activators of zygotic transcription. In the case of 

zebrafish YTHDF2 mutants, it is noted that many transcripts dependent on DF2 are also targets of 

the zygotically supplied microRNA, miR-430 (Zhao et al., 2017). Delayed ZGA would reduce 

miR-430 abundance, thus causing a lag in maternal clearance that could be misattributed to loss of 

YTHDF2 (Kontur and Giraldez, 2017). The role of methylation in maternal mRNA clearance 

versus zygotic genome awakening must be carefully dissected.  

Fourth, while many studies revolve around YTHDF2, the impact of the other YTHDF 

proteins is frequently ignored. Given that these factors can function redundantly (Lasman et al., 

2020a; Zaccara and Jaffrey, 2020), a thorough assessment of reader function is necessary to 
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comprehensively understand how methylation guides transcriptome turnover during the MZT. For 

instance, in goat, YTHDF1 and YTHDF3 exhibit dramatically higher expression than YTHDF2, 

but are neglected for mutagenesis (Deng et al., 2020). In zebrafish, 2,653 methylated transcripts 

are unaffected by loss of DF2, suggesting that other factors compensate to clear these maternal 

messages (Kontur and Giraldez, 2017). Characterizing how all of the YTHDF factors contribute 

to maternal mRNA decay during the MZT is essential to fully comprehend m6A-dependent control 

of gene expression during this foundational developmental event.  
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CHAPTER 2: RNA methylation regulates 
maternal mRNAs in early embryogenesis  

 
In early embryogenesis, animal development is initially dictated by maternally inherited 

gene products (Laver et al., 2015; Wagner et al., 2004). During the maternal-to-zygotic transition 

(MZT), developmental control shifts to the zygote through massive remodeling of the mRNA 

landscape, characterized by the awakening of the zygotic genome and clearance of maternal 

mRNAs and proteins (Lee et al., 2014; Tadros and Lipshitz, 2009; Vastenhouw et al., 2019; 

Yartseva and Giraldez, 2015). Removal of these maternal mRNAs is essential for transcriptome 

reprogramming during the MZT and thus a host of posttranscriptional decay mechanisms 

contribute to maternal clearance (DeRenzo and Seydoux, 2004; Despic and Neugebauer, 2018; 

Stitzel and Seydoux, 2007; Tadros and Lipshitz, 2009; Yartseva and Giraldez, 2015). Yet, the 

impact of RNA m6A methylation, a known regulator of decay, on the degradation of maternal 

transcripts remains undefined. 

Herein, I explored the role of the RNA modification m6A on maternal mRNA clearance 

during the MZT. Using zebrafish embryos as a model organism, I characterized m6A as a facilitator 

of maternal transcript deadenylation, decay, and translation. I identified m6A-mediated clearance 

as a component of the zygotic mode of decay, and uncovered combinatorial regulation between 

m6A and the microRNA miR-430, revealing interplay between these distinct pathways of transcript 

turnover. 

 

ATTRIBUTIONS 
This chapter is modified from my first author paper published in December, 2020 in Cell Reports 
(Kontur et al., 2020), which I wrote with input from Antonio Giraldez. Data for the zebrafish 
developmental time course mRNA-sequencing was from Vejnar et al., 2019, Beaudoin et al., 2018, 
and Bazzini et al., 2016. m6A-sequencing data, used to distinguish methylated and non-methylated 
mRNAs, was from Zhao et al., 2017 and Aanes et al., 2019, and polyadenylation data was from 
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Chang et al., 2018 and Subtelny et al., 2014. mRNA-sequencing in the MZdicer and LNA 
conditions was performed by Minsun Jeong, and mRNA-sequencing in the dominant negative Caf1 
and Dcp2 conditions (unpublished data) was done by Carter Takacs.  
 

2.1. RNA methylation promotes maternal mRNA deadenylation during 
the zebrafish MZT 
 

2.1.1. m6A-containing maternal mRNAs are differentially deadenylated 

Maternally deposited transcripts in the early embryo are known to contain m6A 

modifications, suggesting that this mark may tag specific mRNAs for tailored regulation during 

the MZT (Aanes et al., 2019; Ivanova et al., 2017; Zhao et al., 2017). Yet, whether methylation 

dictates changes in maternal mRNA abundance has not been thoroughly addressed. Thus, I sought 

to establish the effects of m6A on transcript stability directly, by examining how endogenously 

methylated mRNAs behave in vivo during the zebrafish MZT. To determine if m6A primarily 

impacts maternal mRNA decay or deadenylation, I compared the stability and polyadenylation 

status of maternal mRNAs that were found to contain m6A to a control set of mRNAs found to be 

unmodified, as detected by previously reported m6A-sequencing in zebrafish embryos (Zhao et al., 

2017). I observed that methylated transcripts were significantly more deadenylated than 

unmethylated ones when I analyzed the poly(A) tail lengths, which were determined from two 

previously published datasets in zebrafish embryos, PAL-seq (Subtelny et al., 2014) and TAIL-

seq (Chang et al., 2018) (Fig. 2.1.a) (P = 4.2e-08; P = 3.5e-03, respectively, Mann-Whitney U test 

6 hours post fertilization (hpf)). Differential deadenylation was observed for methylated mRNAs 

even upon controlling for transcript co-regulation by miR-430 (Fig. 2.1.b), which is also known 

to promote deadenylation (Bazzini et al., 2012; Giraldez et al., 2006). This data suggests that 

modification by m6A drives poly(A) tail shortening during the MZT.  
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Figure 2.1. m6A methylation correlates with shorter poly(A) tails 
(A) Correlation between m6A RNA methylation and shorter average poly(A) tail length at 6 hpf for 
maternal m6A-modified transcripts (m6A, n = 675, pink) and non-modified transcripts (non, n = 841, 
grey) for both PAL-seq and TAIL-seq datasets. P-values were computed using a Mann-Whitney U 
test. Box, first to last quartiles; whiskers, 1.5x interquartile range; center line, median; diamonds, 
outliers.  
(B) Average poly(A) tail lengths at 6 hpf for maternal mRNAs that were m6A methylated (m6A, n = 
418, pink), contain a miR-430 seed (miR-430, n = 207, blue), have both methylation and a miR-430 
seed (both, n = 229, purple), or contain neither (none, n = 519, grey) for both PAL-seq and TAIL-seq 
datasets. P-values were computed using a Mann-Whitney U test. * P < 0.05; ** P < 0.01; *** P < 
0.001. Box, first to last quartiles; whiskers, 1.5x interquartile range; center line, median; diamonds, 
outliers. 
 

2.1.2. m6A is associated with greater initial adenylation and greater deadenylation  

Next, I analyzed changes in mRNA abundance from an mRNA-sequencing time course of 

zebrafish embryos (Vejnar et al., 2019), to determine if the shorter poly(A) tails observed for 

methylated mRNAs coincide with changes in transcript levels. I found that the abundance of 

endogenous methylated mRNAs was significantly decreased over time relative to controls in the 

poly(A)-selected (poly(A)) mRNA-sequencing (P = 7.7e-21, Mann-Whitney U test, 6 vs. 2 hpf) 

(Fig. 2.2.a). The differential effect of m6A on transcript levels was less pronounced on mRNA 

decay than on deadenylation, as changes in total mRNA abundance were more similar for 

methylated and unmethylated transcripts in rRNA-depleted (ribo0) mRNA-sequencing (P = 9.6e-

04, Mann-Whitney U test, 6 vs. 2 hpf) (Fig. 2.2.b).  
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To further assess the relative impact of methylation on maternal mRNA deadenylation and 

decay, I compared the ratio of poly(A) to ribo0 (p(A)/r0) mRNA abundances for methylated and 

non-methylated transcripts (Fig 2.2.c). The p(A)/r0 ratio was initially high for m6A-modified 

mRNAs, but dramatically decreased over the course of the MZT, until the p(A)/r0 ratio of 

methylated transcripts fell below that of non-methylated transcripts at 6 hpf. This dynamic of m6A-

modified mRNAs suggests that methylated transcripts were initially more adenylated, but were 

also more actively deadenylated by 6 hpf than non-modified mRNAs. Conversely, the non-

methylated transcripts exhibited a much lower p(A)/r0 ratio over time, reflecting a lower overall 

expression, less initial adenylation, and a less rapid rate of deadenylation relative to methylated 

transcripts. 

 
Figure 2.2. m6A-containing maternal mRNAs start more adenylated but become less 
adenylated during the MZT 
(A and B) Cumulative distributions of fold change in maternal mRNA abundance (log2 RPKM) 
between 6 and 2 hpf in wild-type embryos, displaying decreased levels of m6A-modified (red, n = 708) 
relative to non-modified transcripts (black, n = 841), from poly(A) (A) or ribo0 (B) mRNA-
sequencing. P-values were computed using a Mann-Whitney U test. 
(C) The ratio of poly(A) to ribo0 mRNA abundance (log2 RPKM) at multiple time points (hpf) 
throughout the MZT for m6A-modified (red, n = 708), non-modified (blue, n = 841), and all strictly 
maternal transcripts (grey, n = 3847). 
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(D and E) Average poly(A) tail length of individual maternal transcripts for m6A-modified transcripts 
(m6A, n = 675, maroon) and non-methylated mRNAs (non-m6A, n = 841, green) from either TAIL-
seq (D) or PAL-seq (E) datasets. Solid lines represent mean value for all transcripts in each group. 
m6A-modified transcripts were significantly more adenylated at early time points, TAIL-seq (D): 0 hpf, 
P = 1.6e-15; 1 hpf, P = 1.1e-11; 2 hpf, P = 2.7e-06; PAL-seq (E): 2 hpf, P = 2.3e-17. At later time 
points, m6A-modified transcripts were significantly less adenylated than non-modified mRNAs; TAIL-
seq (D): 4 hpf, P = 2.3e-03; 6 hpf, P = 4.2e-08. PAL-seq (E); 4 hpf, P = 0.11; 6 hpf, P = 3.5e-03. 
Differences between m6A-modified and non-modified transcripts were computed by Mann-Whitney 
U test.  
 

I reasoned that this differential deadenylation of methylated mRNAs could arise from 

either stronger deadenylation by 6 hpf or from longer initial poly(A) tails, following the major 

wave of cytoplasmic polyadenylation that occurs in early embryogenesis (Chang et al., 2018; 

Subtelny et al., 2014; Ulitsky et al., 2012). To address this, I compared polyadenylation (Chang et 

al., 2018; Subtelny et al., 2014) at multiple time points throughout the MZT, which revealed that 

methylated mRNAs were more adenylated early at 0 and 2 hpf (P = 1.6e-15; P = 2.7e-06, 

respectively, from TAIL-seq, Mann-Whitney U test), and had significantly shorter tails at 6 hpf 

(average tail length of 21 vs. 25 nucleotides, m6A-modified and unmodified, respectively, P = 

4.2e-08, from TAIL-seq, Mann-Whitney U test) (Fig. 2.2.d-e). This indicates that methylation is 

associated with greater initial adenylation, in accordance with previous findings (Aanes et al., 

2019), and that it enhances later mRNA deadenylation, relative to unmodified mRNAs. 

Collectively, these analyses suggest that m6A promotes maternal mRNA deadenylation of its 

endogenous target transcripts during the MZT. 

 

2.1.3. m6A-methylation promotes deadenylation and decay of reporter mRNA 

To definitively determine if RNA methylation induces transcript deadenylation, I 

generated an mRNA reporter, made with or without m6A-modified nucleotides, but otherwise 

identical in sequence (Fig. 2.3.a). The reporter was designed without adenosines in the CDS, to 
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specifically test the effects of m6A in the 3’UTR, because this region is highly linked to regulation 

of transcript stability (Charlesworth et al., 2013; Rabani et al., 2017; Semotok et al., 2005; Vejnar 

et al., 2019; Voeltz and Steitz, 1998) and is known to harbor m6A modifications (Dominissini et 

al., 2012; Meyer et al., 2012). To test whether m6A specifically drives tail shortening, I 

polyadenylated the reporters in vitro. Prior to injection, the incorporation of m6A modification and 

poly(A) tail addition were validated using dot blot analysis and an RNase H assay with gel 

electrophoresis, respectively (Fig. 2.3.b-c). Reverse transcription followed by Sanger sequencing 

of the methylated reporter mRNA confirmed proper incorporation of m6A only as specified by the 

plasmid sequence. 

Upon injection of reporter mRNA into wild-type zebrafish embryos, I first observed 

enhanced deadenylation of the m6A-modified reporter between 0 and 4 hpf relative to the 

unmodified mRNA. Second, I noted that the m6A reporter exhibited greater degradation by 6 hpf 

than the unmethylated one (Fig. 2.3.d). Thus, m6A both accelerated deadenylation and enhanced 

subsequent reporter mRNA degradation. This supports the finding that methylation contributes to 

maternal mRNA clearance by promoting maternal transcript deadenylation, and reveals that m6A 

may also regulate mRNA decay.  
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Figure 2.3. Validation and Northern blot analysis of methylated reporter mRNA 
(A) Schematic of the methylated mRNA reporter assay. The capped mRNA reporter has a 5’UTR 
without adenines, AUG start codon, CDS without adenines, UAG stop codon, and 3’UTR with 12x 
repeats of the m6A motif (GGACT). The reporter was in vitro transcribed either with or without m6A-
modified adenines, and then polyadenylated in vitro by the poly(A) tailing enzyme. Reporter mRNA 
was injected into embryos and mRNA abundance and polyadenylation were visualized by Northern 
blotting. 
(B) Dot blot for m6A demonstrates that methylated adenines were incorporated into the m6A reporter 
but not the non-methylated reporter, for both polyadenylated and non-adenylated mRNAs. 
Unincorporated m6-ATP nucleotides were included as a positive control and unmethylated dsRed 
mRNA was included as a negative control.  
(C) RNase H assay and polyacrylamide gel electrophoresis validation of reporter (~660 nt) generation. 
The reporter, with (+) or without (-) methylation, and the adenylated reporter (+ poly(A)) were 
subjected to digestion with RNase H and run on a polyacrylamide gel to confirm that they were the 
expected size. To test for successful polyadenylation, one sample included oligo dT, to specifically 
digest away the poly(A) tail.  
(D) Northern blot (left) showing rapid deadenylation and subsequent decay of m6A-modified (+ m6A) 
versus unmodified (- m6A) reporter at respective timepoints (hpf) in untreated wild-type embryos. 
Internal 18S rRNA loading control (~1900 nt) shown along bottom. Ratio of methylated versus non-
methylated reporter mRNA abundance (normalized to 18S rRNA) quantified from five replicates is 
shown on right. A0, reporter injected without poly(A) tail. 
 

To determine if the impact of m6A extends to both deadenylation and decay, as indicated 

by the reporter assay, I assessed the abundance of methylated transcripts in two dominant negative 

(DM) conditions, where the catalytically inactive form a decay or deadenylation enzyme was 

overexpressed. These two enzymes are central components of key degradation pathways: Dcp2 is 
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part of the decapping machinery and Caf1 (also called Cnot7) is an exonuclease subunit of the 

Ccr4-Not deadenylase complex (Makino et al., 2015; Mishima and Tomari, 2016, 2017). To focus 

specifically on the consequences of m6A modification, only transcripts that are not targets of miR-

430 were included, as microRNAs often rely on the function of these enzymes to clear maternal 

transcripts (Bazzini et al., 2012; Giraldez et al., 2006). While abundance of almost all maternal 

transcripts increased in the a-amanitin, Dcp2-DM, and Caf1-DM conditions, methylated mRNAs 

were significantly, differentially more stabilized than non-methylated transcripts (Fig. 2.4.). This 

suggests that the m6A modification may indeed rely on both decay and deadenylation pathways 

for its degradation. Together, these analyses indicate that m6A methylation enhances maternal 

mRNA deadenylation and may also regulate mRNA decay, providing critical mechanistic insight 

into how m6A specifies transcript life-times during the MZT.  

 
 
Figure 2.4. Methylated mRNA abundances in Caf1 and Dcp2 dominant-negative conditions 
Fold change (log2 RPKM) of transcript abundance for maternal mRNAs that were either m6A-
modified (pink, n = 400) or not modified (blue, n = 537) from poly(A) (p(A)) or ribo0 (r0) mRNA-
sequencing. Fold change in the wild-type condition (far left) represents 6 versus 2 hpf. Fold changes 
for treated embryos represent condition versus wild-type at 6 hpf. Wild-type p(A), P = 4.1e-14; wild-
type r0, P = 1.1e-01; a-amanitin p(A), P = 3.8e-11; a-amanitin r0, P = 1.0e-07; Dcp2-DM p(A), P = 
4.8e-06; Dcp2-DM r0, P = 1.0e-09; Caf1-DM p(A), P = 5.6e-11; Caf1-DM r0, P = 1.6e-09. P-values 
were computed using Mann-Whitney U test.  
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2.2. m6A-mediated maternal mRNA clearance depends on the zygotic 
program 

It is unknown if elements of the RNA methylation pathway are part of the maternal or 

zygotic modes of gene expression. Considering the dramatic effect of methylation on maternal 

mRNA deadenylation, I sought to uncover whether this effect is mediated by maternally or 

zygotically encoded programs (Vejnar et al., 2019; Yartseva and Giraldez, 2015). I distinguished 

between these programs by blocking zygotic transcription with the RNA polymerase II inhibitor, 

⍺-amanitin (Kane et al., 1996; Lindell et al., 1970; Vejnar et al., 2019), which revealed that m6A-

modified maternal mRNAs were differentially stabilized relative to unmethylated (P = 3.2e-17; P 

= 1.7e-05; Mann-Whitney U test, untreated vs. ⍺-amanitin at 6 hpf, poly(A) and ribo0 mRNA, 

respectively) (Fig. 2.5.a-b). 

miR-430 is a zygotically encoded factor that promotes maternal clearance and significantly 

overlaps target transcripts with m6A (see Section 2.3, below). It is conceivable that the observed 

differential stabilization of methylated transcripts could have arisen from loss of miR-430 

expression upon inhibition of ZGA. To control for possible convolution from miR-430 repression, 

I divided methylated transcripts into those with a miR-430 seed in their 3’UTR and those without 

(Fig. 2.5.c). As anticipated, miR-430 only targets were differentially stabilized in ⍺-amanitin 

conditions (P = 1.0e-16; Mann-Whitney U test, untreated vs. ⍺-amanitin at 6 hpf, poly(A) mRNA). 

Yet, methylated mRNAs that are not recognized by miR-430 also increased in abundance 

compared to controls (P = 9.5e-13; Mann-Whitney U test), indicating that the m6A pathway was 

indeed differentially reliant on zygotic transcription for mRNA clearance. Transcripts controlled 

by both miR-430 and m6A were the most up-regulated relative to non-targets (P = 1.6e-36; Mann-

Whitney U test), perhaps reflecting the combined dependence of these pathways on the zygotic 
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mode. Collectively, this analysis of endogenous maternal mRNAs in ⍺-amanitin conditions shows 

that the zygotic mode contributes to m6A-mediated transcript clearance.  

Next, I tested if m6A-based degradation depends on zygotic transcription, by injecting my 

methylated reporter into ⍺-amanitin treated embryos. When zygotic transcription was blocked, I 

observed that the m6A-modified reporter was no longer decayed at 6 hpf, but unmethylated reporter 

decay was unaffected (Fig. 2.5.d). This inhibition of m6A mRNA decay suggests that methylated 

transcripts were more dependent on the zygotic program than unmethylated transcripts. Notably, 

⍺-amanitin treatment slowed but did not inhibit methylated reporter deadenylation between 0 and 

6 hpf, suggesting that both maternal and zygotic pathways control m6A-mediated tail shortening. 

Ultimately, these results indicate that a program dependent on zygotic transcription contributes to 

the degradation of methylation containing mRNAs, but that their deadenylation is regulated by 

both maternal and zygotic programs.  

 
Figure 2.5. m6A maternal mRNA clearance is differentially dependent on zygotic 
transcription 
(A and B) Cumulative distributions of fold change in maternal mRNA abundance (log2 RPKM) 
between a-amanitin treated and wild-type embryos at 6 hpf, displaying increased stabilization for m6A-
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modified (red, n = 708) relative to non-modified transcripts (black, n = 841), from poly(A) (A) or 
ribo0 (B) mRNA-sequencing. P-values were computed using a Mann-Whitney U test. 
(C) Cumulative distribution of fold changes in maternal mRNA abundance (log2 RPKM) between a-
amanitin treated and wild-type embryos at 6 hpf for poly(A) mRNA-sequencing. The combination of 
both m6A-modification and a miR-430 seed in the 3’UTR (m6A + miR-430, purple, n = 241) caused 
the greatest transcript stabilization. Transcripts that are miR-430 targets only (miR-430, blue, n = 207), 
or m6A-modified only (m6A, pink, n = 418), were less upregulated than co-target transcripts but were 
more stabilized than non-target mRNAs (none, grey, n = 537). Dots indicate which groups were 
compared to determine corresponding statistical significance. P-values were computed using a Mann-
Whitney U test. 
(D) Northern blot (left) comparing deadenylation and decay of m6A-modified (+ m6A) versus 
unmodified (- m6A) reporter at respective timepoints (hpf) in a-amanitin and untreated embryos. 
Internal 18S rRNA loading control (~1900 nt) shown along bottom. Ratio of methylated versus non-
methylated reporter mRNA abundance (normalized to 18S rRNA) for a-amanitin treated embryos 
quantified from three replicates is shown on right. A0, reporter injected without poly(A) tail. 
 

2.3. Methylation and miR-430 co-regulate maternal mRNAs 

 
2.3.1. miR-430 and m6A act independently and additively to regulate maternal transcript 

destabilization 

Given that I have demonstrated that the RNA methylation pathway exhibits a dependence 

on the zygotic mode for transcript destabilization, I sought to establish whether a prominent 

zygotically encoded factor and known regulator of maternal clearance, miR-430 (Bazzini et al., 

2012; Giraldez et al., 2006), is required to destabilize methylated maternal transcripts. Notably, I 

observed that more than a third of methylated maternal mRNAs also contain a miR-430 seed in 

their 3’UTR (Fig. 2.6.a), consistent with previous reports (Aanes et al., 2019; Zhao et al., 2017), 

and indicating that these pathways may attenuate stability of shared targets. Further, I observed a 

positive correlation between the strength of mir-430 seeds and the predicted number of m6A 

modifications in maternal transcripts (Fig. 2.6.c), again reflecting potential co-regulation. I 

hypothesized that miR-430 and m6A could act through several mechanisms to clear transcripts, 

functioning either cooperatively, resulting in a synergistic clearance of transcripts, independently, 
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wherein each mechanism separately contributes a certain degree of destabilization, or dependently, 

in which the activity of one pathway is dependent on the presence of the other (Fig. 2.6.b).  

 
Figure 2.6. miR-430 and m6A pathways share common targets 
(A) Venn diagram depicting numbers of maternal transcripts that contain a miR-430 seed in their 
3’UTR, were m6A-modified, were stabilized in MZythdf2 mutants (fold change (log2 RPKM) > 0.5) or 
have an overlapping set of these features. More transcripts were both methylated and targets of miR-
430, than were both methylated and stabilized in MZythdf2.  
(B) Schematic of potential mechanistic models by which miR-430 and m6A could co-regulate maternal 
transcripts, tested in Figure 2.7. These pathways could function cooperatively, causing enhanced decay 
of common targets, behave independently, meaning their effects would act additively on common 
targets, or m6A could be dependent on miR-430, meaning loss of miR-430 would disrupt m6A-based 
mRNA degradation.  
(C) Stacked bar plot displaying the proportion of maternal transcripts with a given number of 
predicted m6A sites, based on the strength of the miR-430 seed also present in the transcript. 8-mer 
corresponds to the strongest miR-430 site, followed by 7-mer, then 6-mer, and no-site denotes 
transcripts that are not targets of miR-430. The total number of transcripts with each miR-430 seed 
(n) is presented at the top of each bar.  
 

To disentangle these possible roles of m6A and miR-430, I first compared the abundance 

of transcripts that contained m6A marks, miR-430 seeds, both, or neither during the MZT. mRNAs 

containing both m6A sites and miR-430 seeds were the most degraded, followed sequentially by 

miR-430 only targets, methylation-only mRNAs, and non-targets (6 vs. 2 hpf in wild-type 

embryos, poly(A) and ribo0 mRNA) (Fig. 2.7.a-b). I noted that the effects of m6A and miR-430 

were greater in the poly(A) mRNA-sequencing, as changes in poly(A) mRNA abundance may 

reflect enhanced deadenylation driven by m6A and miR-430 (Bazzini et al., 2012; Giraldez et al., 

2006), combined with their effects on transcript destabilization. Further, I found that loss of miR-
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430 affected the abundance only of its cognate mRNAs and did obstruct turnover of methylation-

only mRNAs, when I compared wild-type and MZdicer or anti-sense LNA treated embryos (Fig. 

2.7.c-d). Together, this suggests that m6A drives mRNA deadenylation independently of miR-430, 

as observed in my poly(A) tail analysis (Fig. 2.1.b), and that these mechanisms function additively 

to co-regulate a subset of maternal mRNAs for stronger degradation. Thus, while miR-430 is not 

required for m6A-mediated mRNA decay, it functions as an independent pathway to regulate their 

fate, acting combinatorially alongside methylation to co-regulate a subset of highly degraded 

targets. 

 
 
Figure 2.7. miR-430 and m6A pathways are independent and additively regulate maternal 
transcripts for destabilization  
(A and B) Cumulative distributions of fold changes in maternal mRNA abundance (log2 RPKM) 
between 6 and 2 hpf in wild-type embryos, for poly(A) (A) or ribo0 (B) mRNA-sequencing, the 
combination of both m6A-modification and a miR-430 seed in the 3’UTR (m6A + miR-430, purple, n 
= 241) caused the greatest transcript destabilization. Transcripts that are miR-430 targets only (miR-
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430 only, blue, n = 207), or m6A-modified only (m6A only, pink, n = 418), were less degraded than co-
target transcripts but were more destabilized than non-target mRNAs (none, grey, n = 537).  
(C and D) Cumulative distributions of fold changes in maternal mRNA abundance (log2 RPKM) at 6 
hpf between MZdicer (C) or LNA-treated (D) embryos, which both lack functional miR-430, relative 
to wild-type, from poly(A) mRNA-sequencing. Only transcripts that are miR-430 targets (purple and 
blue) were stabilized in MZdicer or LNA-treated embryos, regardless of m6A-modification, while m6A-
modified targets (pink) were unaffected by loss of miR-430, relative to non-targets (grey).  
For (A-D): transcripts in each group and corresponding labels are the same, and are presented in the 
legend along the bottom. Colored dots indicate which groups were compared to determine 
corresponding statistical significance. P-values were computed using a Mann-Whitney U test. 
 

2.3.2. Ythdf3 is regulated by miR-430  

miRNAs are known to target the Ythdf m6A readers to modulate their expression, and 

consequently, the extent of m6A function (Li et al., 2020; Yang et al., 2017b). I noticed that the 

mRNA expression of the reader ythdf3 dramatically decreased around 4 hpf (Fig. 2.8.a, poly(A) 

and ribo0 mRNA), by which ZGA is majorly underway, and miR-430 is highly expressed. 

Examination of the ythdf3 transcript revealed two miR-430 seed sequences within the 3’UTR (Fig. 

2.8.c), suggesting that ythdf3 transcript levels are controlled by miR-430. Indeed, western blot 

analysis revealed that Ythdf3 protein expression increased in MZmiR-430 mutant embryos (Liu et 

al., 2013) relative to wild-type controls (Fig. 2.8.b). Although the effects of miR-430 inhibition on 

ythdf3 mRNA levels remain unclear, this protein analysis suggests that loss of miR-430 function 

impaired ythdf3 clearance. miR-430 regulation of Ythdf3 implies a possible feedback mechanism 

to control the balance or timing of methylated mRNA decay. Notably, ythdf2 transcription 

increases at the same time that ythdf3 levels decrease, revealing potential means through which the 

embryo modulates Ythdf reader dosage via miR-430 to ensure the proper degree of m6A-driven 

regulation. Future work should address the mechanism through which this miR-430 down-

regulation of ythdf3 is achieved.  
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Figure 2.8. Ythdf3 is a miR-430 target 
(A) ythdf3 mRNA expression (log2 RPKM) during the MZT, from poly(A) (dashed line) and ribo0 
(solid line) mRNA-sequencing, displaying a dramatic drop in expression around 4 hpf.  
(B) ythdf3 mRNA transcript contains two miR-430 seed sequences in the 3’UTR (green bars). The 
yellow arrow indicates the end of the CDS, which contains the YTH domain (maroon).  
(C) Western blot of Ythdf3 protein expression during the MZT (time, hpf) in MZmiR-430 mutant 
embryos and wild-type controls. 
(D) Genome tracks at 6 hpf of increased ythdf3 poly(A) mRNA abundance in LNA-treated embryos 
(dark purple) relative to untreated embryos (light purple).  
 

2.4. m6A influences maternal mRNA translation 

During the MZT, there is a direct correlation between maternal transcript poly(A) tail 

length and translation (Vastenhouw et al., 2019). Given that m6A modification correlates with 

higher initial polyadenylation and greater deadenylation (section 2.1.), I sought to determine if 

methylation also influences maternal mRNA translation. To achieve this, I compared global 

differences in translation efficiency between methylated and non-methylated mRNAs. Because the 

expression levels of modified and unmodified transcripts varies dramatically (Fig. 2.9.a), and 

expression is a major determinant of translation levels, I stratified transcripts by their abundance 

(ribo0 mRNA) at 2 hpf. Comparison of global translation revealed that m6A marked maternal 

mRNAs were significantly more efficiently translated at 2 hpf than unmarked ones, for all 

expression levels (Fig. 2.9.b). Yet, this differential translation largely disappeared by 6 hpf, 



 68 

perhaps because the majority of methylated transcripts were being cleared by this time point and 

were no longer available for translation (Fig. 2.9.c). Overall, this analysis suggests that m6A 

modification promotes maternal transcript translation early in the MZT, although the extent to 

which this is linked to poly(A) tail regulation should be further tested. 

 
 

Figure 2.9. m6A correlates with increased translation efficiency in the early MZT 
(A) Kernel density estimate plot of methylated (m6A, green, n = 4832) and non-methylated (non-m6A, 
blue, n = 3667) maternal transcripts, displaying relative frequency of transcripts with a given mRNA 
expression level from ribo0 mRNA-sequencing. To control for differences in expression in (B-C), 
transcripts were binned into quintiles (Q1-Q5), with roughly equal numbers of methylated transcripts 
in each bin.  
(B-C) Violin plots comparing translation efficiency (RPF / RPKM ribo0 mRNA (log2)) of methylated 
(m6A, green) and non-methylated (non-m6A, blue) maternal transcripts at 2 hpf. Transcripts were 
binned into quintiles according to mRNA abundance (log2 RPKM) from ribo0 mRNA-sequencing 
shown in (A). Expression cutoffs for each bin are shown on the x-axis and the number of transcripts 
in each bin (n) is presented along the top. P-values correspond to comparison of m6A-modified (m6A, 
green) and non-modified transcripts (non-m6A, blue) for each bin, computed by a Mann-Whitney U 
test; *** P < 0.001; * P < 0.05.  
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CHAPTER 3: Ythdf  reader regulation of  the 
maternal transcriptome during the MZT 

 

The functional consequences of m6A modification on gene expression are determined by 

the “reader” proteins, which interpret the mark and recruit regulatory effectors to the transcript. 

The YTH-domain containing family of readers is well characterized, as these proteins have the 

capacity to bind the modification directly and induce changes in mRNA splicing, export, 

localization, translation, and decay (Boo and Kim, 2020; Heck and Wilusz, 2019; Shi et al., 2019; 

Zaccara et al., 2019). All three Ythdfs in zebrafish have been identified as maternal mRNA binders 

through interactome capture experiments (Despic et al., 2017), suggesting that all three paralogs 

contribute to methylated maternal mRNA decay during the MZT. Yet, precisely how these Ythdfs 

impact m6A-modified mRNA fate to promote transcriptome reprogramming remains unclear.  

Recently, the Ythdf2 reader was linked to mRNA turnover during the MZT in zebrafish. 

In a study by Zhao et al. (2017), Ythdf2 mutants exhibited a developmental delay, which was 

posited to result from delayed maternal mRNA clearance and hindered zygotic genome activation. 

However, as only the global effect of Ythdf2 on all maternal mRNAs was addressed, how loss of 

Ythdf2 specifically impacts endogenously methylated mRNAs is yet to be determined. Further, 

both methylated and unmethylated mRNAs were misregulated in the Ythdf2 mutants, suggesting 

that either disrupted gene expression resulted indirectly from loss of Ythdf2 or that Ythdf2 exerts 

a regulatory function independent of m6A. While work by Zhao et al. (2017) suggests an important 

role for Ythdf2 in the MZT, it remains unclear if the Ythdfs specifically guide methylated transcript 

decay and whether their activity is required for global transcriptome switching.  
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In this chapter, I disentangle the contributions of the Ythdf2 reader to methylated transcript 

stability, global maternal mRNA clearance, and zygotic transcription. Through generation and 

transcriptome analysis of individual Ythdf mutants I demonstrate that no single reader is required 

for m6A-mediated mRNA degradation, although loss of Ythdf2 does minimally stabilize some 

modified transcripts. Together, this work demonstrates that the effects of m6A on maternal mRNA 

deadenylation do not exclusively depend on Ythdf2, nor any other sole reader, overturning the 

model that Ythdf2 has a unique and essential function in maternal transcript clearance during the 

zebrafish MZT. 

 
ATTRIBUTIONS 
This chapter is modified from my first author paper published in December, 2020 in Cell Reports 
(Kontur et al., 2020), which I wrote with input from Antonio Giraldez. Data for the zebrafish 
developmental time course mRNA-sequencing was from Vejnar et al., 2019, Beaudoin et al., 2018, 
and Bazzini et al., 2016. m6A-sequencing data was from Zhao et al., 2017 and Aanes et al., 2019 
and ythdf2D8/D8 mutants were obtained from Zhao et al., 2017. 
 

3.1. m6A writer, eraser, and reader expression during the MZT 

To identify which factors play a role in m6A-mediated regulation of the maternal 

transcriptome, I first sought to determine which components of the methylation life cycle (Shi et 

al., 2019; Zaccara et al., 2019) were expressed during zebrafish embryogenesis. I examined mRNA 

abundances of transcripts encoding m6A regulators during the MZT using the mRNA-sequencing 

time course (Vejnar et al., 2019, Beaudoin et al., 2018, and Bazzini et al., 2016), which yielded 

several intriguing observations regarding expression of m6A writers, readers, and erasers. 
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Figure 3.1. mRNA abundances of the m6A writers and erasers during the zebrafish MZT 
(A-C) mRNA levels (log2 RPKM) of corresponding transcripts for components of the 
methyltransferase complex (A-B) and putative m6A erasers (C) from ribo0 mRNA-sequencing.  
 

First, almost all components of the methyltransferase complex were maternally expressed 

(Fig. 3.1.a-b), including both core enzymes and cofactors, which guide writer specificity and 

activity (Garcias Morales and Reyes, 2021; Gu et al., 2021). mettl14, one half of the heterodimer 

catalyzing m6A addition (Liu et al., 2014; Wang et al., 2014b), exhibited especially high 

expression. Given that m6A is deposited co-transcriptionally (Ke et al., 2017), and the embryo is 

transcriptionally silent prior to ZGA, it will be exciting to determine the function of the writer 

complex prior to the onset of zygotic gene expression. Notably, most methyltransferase 

components increased in abundance after ZGA, around 4 hpf, suggesting that they will be required 

to methylate newly synthesized transcripts as development proceeds. Based on the observed high 

expression of mettl14, and the essential role of METTL3 and METTL14 in methylation and 

embryogenesis (Geula et al., 2015; Wang et al., 2014b), these enzymes were selected for 

mutagenesis. 

Second, expression of both putative m6A erasers, alkbh5 and fto decreased over the course 

of the MZT. While the activity of these proteins as demethylases is highly debated (Rajecka et al., 

2019), their early expression pattern poses the intriguing possibility that some maternal transcripts 

could be regulated by demethylation prior to ZGA.  
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Third, all three ythdf readers and both ythdc readers were maternally expressed (Fig. 3.2.a). 

ythdf2 displayed the greatest abundance, and ythdf2, ythdc1, and ythdf1 all increased in abundance 

following the onset of ZGA, indicating that they may have continued function in later 

development. Indeed, Ythdc1 is a largely nuclear protein, with functions in mRNA splicing and 

export (Patil et al., 2016; Roundtree et al., 2017b; Xiao et al., 2016), which may explain why it is 

required once zygotic transcription is underway. Conversely, expression of ythdf3 and ythdc2 

largely decreased following ZGA, which for ythdf3 can be explained through potential down-

regulation by miR-430 (see section 2.3.2.). Ythdc2 has been linked to mRNA degradation through 

its interaction with the 5’-3’ exoribonuclease Xrn1 (Wojtas et al., 2017) and is also known to 

regulate translation (Mao et al., 2019), but is believed to largely function in germ cells and 

reproductive organs (Bailey et al., 2017; Hsu et al., 2017; Jain et al., 2018; Wojtas et al., 2017). 

Whether Ythdc2 exerts these regulatory functions in this developmental context is unexplored. 

Although the expression patterns of all Yth readers implied functionality during early 

embryogenesis, I opted to limit my mutagenesis approach to the Ythdf readers, as they are most 

strongly linked to cytoplasmic regulation (Patil et al., 2018; Zaccara et al., 2019). To confirm that 

the Ythdf proteins were maternally supplied alongside the mRNA, I performed western blot 

analysis for the Ythdfs, which revealed that all three proteins were indeed maternally deposited 

and expressed throughout the MZT (Fig. 3.2.b). Finally, while many other potential m6A readers 

have been identified (An et al., 2020; Arguello et al., 2017; Edupuganti et al., 2017; Huang et al., 

2018; Meyer et al., 2015), their assessment is beyond the scope of the work presented here. 

Exploration of these additional m6A effectors will likely yield fruitful insights into the role of 

methylation in maternal transcriptome regulation.  
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Figure 3.2. mRNA and protein levels of the YTH m6A readers during the zebrafish MZT 
(A) ythdf1, ythdf2, ythdf3, ythdc1, and ythdc2 transcripts were all maternally expressed (log2 RPKM) during 
the MZT, from ribo0 mRNA-sequencing.  
(B) Western blotting shows that Ythdf1, Ythdf2, and Ythdf3 proteins were all maternally deposited 
(0 hpf) and expressed throughout the MZT in wild-type embryos. Injection of respective flag-tagged 
ythdf mRNAs served as positive controls (+mRNA). Actin levels were measured from 
immunoprecipitation inputs as loading controls. 
 

3.2. Role of Ythdf readers in methylated mRNA clearance 

 
3.2.1. Ythdf2 is not mandatory for global maternal mRNA clearance 

To determine whether the Ythdf readers control m6A-mediated mRNA clearance during 

the zebrafish MZT, I first looked at the role of Ythdf2, as it had the highest maternal expression  

(Fig. 3.2.a) and has been extensively linked to the regulation of transcript decay (Du et al., 2016; 

Wang et al., 2014a; Yoon et al., 2017; Zhao et al., 2017). To determine if Ythdf2 is sufficient to 

drive m6A-mediated maternal mRNA turnover, I performed poly(A) mRNA-sequencing on 

maternal-zygotic (MZ) mutant embryos with the same Ythdf2 deletion allele as in Zhao et al. and 

on related, genetic background-matched wild-type controls (Fig. 3.3.a). Though Ythdf2 was 

reportedly required for maternal mRNA clearance, I found no significant differences in abundance 

for the majority of maternal mRNAs upon loss of Ythdf2 relative to controls, regardless of their 

methylation status (4 and 6 hpf, Fig. 3.3.b-c). Indeed, of 13642 maternally expressed genes, only 
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17 were found to be differentially expressed at either 4 or 6 hpf (determined by DESeq2 (Love et 

al., 2014); Table 3.1.), of which only 11 were stabilized and only 2 were predicted to be 

methylated. Thus, although Ythdf2 was proposed as a key regulator of maternal clearance, the fact 

that maternal transcripts were not majorly stabilized in MZythdf2 mutants demonstrates that 

Ythdf2 is not obligatory for global maternal mRNA decay.  

 

 
Figure 3.3. Loss of Ythdf2 does not disrupt global maternal mRNA levels 
(A) Schematic of zebrafish crosses to generate MZythdf2 and background-matched wild-type embryos. 
Sibling parents of wild-type or ythdf2-/- homozygous genotype were incrossed to generate control and 
mutant embryos with matched backgrounds. Embryos from a cross of TU-AB strain zebrafish were 
included as an additional and unrelated wild-type control.  
(B-C) Biplots of similar expression levels (log2 RPKM) of maternal (n = 13642) and m6A-modified 
maternal mRNAs (n = 2280) between background-matched wild-type and MZythdf2 embryos at 4 hpf 
(B) or 6 hpf (C), from poly(A) mRNA. Dashed lines indicate two-fold change.  
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Table 3.1. Fold-changes and P-values for 17 differentially expressed maternal transcripts 
 

gene ID  
fold-change 
4 hpf 

P-value 
4 hpf 

fold-change 
6 hpf 

P-value 
6 hpf 

methylation 
status 

ENSDARG00000002165  -2.8 1.0E-02  -1.96 9.0E-02  
ENSDARG00000005479  -1.86 2.0E-02  -0.86 n.s.  
ENSDARG00000014498  3.26 5.4E-13  1.23 n.s. m6A 
ENSDARG00000017338  2.87 1.0E-02  1.63 n.s.  
ENSDARG00000024746  -1.09 n.s.  -2.01 4.0E-03 non-m6A 

ENSDARG00000037917  2.03 8.0E-03  1.45 n.s.  
ENSDARG00000052894  2.63 4.0E-02  0.47 n.s.  
ENSDARG00000054454  5.64 2.0E-03  0.46 n.s.  
ENSDARG00000061398  2.49 6.0E-02  0.1 n.s.  
ENSDARG00000071087  1.69 4.0E-03  -0.04 n.s. non-m6A 

ENSDARG00000077712  -0.52 n.s.  -1.69 1.0E-03  
ENSDARG00000077740  5.59 6.1E-06  6.5 1.0E-03  
ENSDARG00000078016  2.99 8.0E-03  0.35 n.s.  
ENSDARG00000087937  -2.8 8.0E-03  -0.72 n.s. non-m6A 

ENSDARG00000091111  0.21 n.s.  -1.38 8.0E-03  
ENSDARG00000091280  2.15 n.s.  3.79 1.2E-07  
ENSDARG00000094210  -2.05 4.0E-03  -0.65 n.s. m6A 

 
Differential expression determined between time-matched MZythdf2 and background-matched wild-
type embryos at either 4 or 6 hpf in poly(A) mRNA-sequencing by DESeq2 (P-value < 0.05, corrected 
for multiple testing). n.s., not significant. No value for methylation status indicates unknown status.  
 

3.2.2. Ythdf2 marginally contributes to m6A-mediated clearance 

As maternal transcript decay was largely unaffected in MZythdf2 mutants, I next addressed 

how Ythdf2 specifically affects methylated mRNAs. When I compared the abundance of m6A-

modified and unmodified transcripts, methylated mRNAs were not differentially expressed at 4 

hpf, but were marginally more stabilized in the MZythdf2 mutants at 6 hpf, relative to controls (P 

= 0.16, 4 hpf; P = 4.4e-04, 6 hpf; Mann-Whitney U test) (Fig. 3.4.a-b). While this is consistent 

with a role for Ythdf2 in methylated mRNA decay, the stabilization of m6A-mRNAs in MZythdf2 

mutants was negligible relative to the dramatic stabilization observed in the absence of other key 

decay regulators (6 hpf, Fig. 3.4.c). For instance, loss of miR-430 through antisense locked nucleic 
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acid (LNA) treatment, lead to an average 0.89-fold increase of target transcript abundance, while 

the fold-change in MZythdf2 mutants was only 0.05 for methylated mRNAs at 6 hpf. To further 

assess the effects of Ythdf2 on m6A-mRNAs, I quantified abundance of several methylated 

transcripts using qRT-PCR and visualized their expression by in situ hybridization. Loss of Ythdf2 

did not significantly alter decay of either zgc:162879 or mtus1a, both maternal, m6A-marked 

transcripts, as levels were comparable to background-matched controls (Fig. 3.4.d). Conversely, 

mtus1a, also a miR-430 target, was clearly stabilized in MZmiR-430 mutants. Together, this data 

shows that loss of Ythdf2 only nominally impedes methylated mRNA degradation, and that the 

contributions of Ythdf2 to m6A-modified maternal transcript clearance are minimal relative to 

established decay pathways. 

 
Figure 3.4. Loss of Ythdf2 marginally stabilizes methylated maternal mRNAs 
(A-B) Cumulative distributions of fold change in maternal mRNA abundance (log2 RPKM) between 
MZythdf2 and background-matched wild-type embryos at either 4 hpf (A) or 6 hpf (B), depicting slight 
stabilization of m6A-modified (red, n = 708) relative to non-modified transcripts (black, n = 841), from 
poly(A) mRNA. P-values were computed using a Mann-Whitney U test. 
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(G) Fold change (log2 RPKM) of transcript abundance for maternal mRNAs that were either m6A-
modified and contain a miR-430 seed (miR-430 + m6A, n = 241) or were not modified nor miR-430 
targets (non-target, n = 537). Fold change in wild-type condition represents 6 versus 2 hpf. Fold 
change for mutant or treated embryos represents condition versus wild-type (background-matched 
for MZythdf2 mutants) at 6 hpf. Wild-type, P = 1.1e-30; a-amanitin, P = 1.6e-36; MZdicer, P = 4.4e-34; 
LNA, P = 4.8e-39; MZythdf2, P = 7.3-04; MZythdf2,3 P = 1.1e-05. P-values were computed using 
Mann-Whitney U test.  
(E) In situ hybridization of methylated maternal transcripts mtus1a (left) and zgc:162879 (right) in wild-
type, MZythdf2, and MZmir-430 embryos at 2, 4, or 6 hpf. mtus1a, both a target of miR-430 and m6A-
modification, was stabilized in MZmiR-430 but not MZythdf2 embryos. Fold change (log2) in transcript 
abundance between 6 and 2 hpf for each genotype, as determined by qRT-PCR, is shown on the far 
right (mean ± s.d., n = 3 independent replicates). P-values were computed using a two-sided student’s 
t-test. Scale bars, 100 µM. 
 

Given the extensive effects of m6A on mRNA deadenylation (see section 2.1.), the minor 

stabilization of maternal transcripts upon loss of Ythdf2 suggests that it is not the sole regulator of 

methylated mRNA stability. Indeed, I observed significant stabilization for only 2 of 11 methylated 

transcripts that were previously defined as Ythdf2 targets (Zhao et al., 2017), as measured by qRT-

PCR in MZythdf2 mutants and control embryos (Fig. 3.5.a). To further test if methylated 

transcripts can be degraded in the absence of Ythdf2, I injected my methylated reporter into 

MZythdf2 mutants. I found no difference in the adenylation or decay dynamics of the m6A-

modified reporter between MZythdf2 and background-matched wild-type embryos (Fig. 3.5.b), 

illustrating that Ythdf2 is dispensable for methylated reporter degradation. Collectively, these 

experiments reveal that Ythdf2 is not mandatory for clearance of all methylated maternal 

transcripts, indicating that redundant mechanisms may exist to regulate m6A-mediated decay 

during the MZT in zebrafish. 
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Figure 3.5. Loss of Ythdf2 stabilizes few methylated mRNAs 
(A) Fold change from qRT-PCR measure of relative abundance of methylated maternal mRNAs 
between MZythdf2 and background-matched wild-type embryos was insignificant for most transcripts 
at 4 hpf (mean ± s.d., n = 3 independent replicates). Only two transcripts were significantly stabilized, 
brca2, P = 5.4e-03; vps26a, P = 6.3e-03.  
(B) Northern blot (left) of m6A-modified (+ m6A) versus unmodified (- m6A) reporter at respective 
timepoints (hpf) in MZythdf2 embryos. Internal 18S rRNA loading control (~1900 nt) shown on 
bottom. Ratio of methylated versus non-methylated reporter mRNA abundance (normalized to 18S 
rRNA) quantified from two replicates is shown on right. A0, reporter injected without poly(A) tail. 
 

3.2.3. Ythdf1 and Ythdf3 are not individually required for m6A-mediated clearance 

Given that Ythdf2 alone did not control methylated mRNA abundance during the MZT, I 

sought to establish whether Ythdf1 or Ythdf3 were dominant regulators of m6A-modified 

transcripts. I used CRISPR/Cas9 gene editing to individually disrupt ythdf1, ythdf2, and ythdf3 but 

deletion of any one was not sufficient to stabilize the previously defined m6A-containing mRNAs 

(Fig. 3.6.). Thus loss of neither ythdf1, ythdf2, nor ythdf3 individually prevented methylated 

transcript removal, suggesting that no single reader is required for m6A-mediated maternal mRNA 

decay.  
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Figure 3.6. Loss of Ythdf1 or Ythdf3 does not stabilize most methylated mRNAs 
Fold change from qRT-PCR measure of relative abundance of methylated maternal mRNAs between 
MZythdf1 (blue) or MZythdf3 (green) and wild-type embryos was insignificant for most transcripts at 4 
hpf (mean ± s.d., n = 3 independent replicates, * P < 0.05). Only one transcript was significantly 
stabilized, brca2 in MZythdf3 mutants, P = 4.0e-02. 
 

3.2.4. Ythdf2 and Ythdf3 together are not obligatory for m6A-mediated maternal mRNA 

clearance 

As absence of individual Ythdf readers was not sufficient to block degradation for the 

majority methylated maternal mRNAs, I aimed to determine if double loss of ythdf2 and ythdf3 

hindered maternal transcript clearance. When I performed poly(A) mRNA-sequencing on 

MZythdf2;MZythdf3 mutants (see section 4.2.2.) and analyzed maternal mRNA expression, I 

found that very few transcripts were stabilized in MZythdf2;MZythdf3 mutants relative to wild-

type controls (256 of 13642 maternal mRNAs with fold-change > 2.0 at 6 hpf), of which only 20 

were found to be methylated (Fig. 3.7.a). Thus, double ythdf2 and ythdf3 deletion did not stabilize 

most maternal mRNAs, supporting the possibility that they are not compulsory to regulate global 

maternal transcript levels during the MZT. 

To test if loss of ythdf2 and ythdf3 specifically affected decay of methylated mRNAs, I 

compared changes in maternal transcript abundance between m6A-modified and unmodified 

messages. As in MZythdf2 embryos, I found that m6A-modified transcripts were slightly stabilized 
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in MZythdf2;MZythdf3 mutants at 6 hpf relative to controls (P = 2.8e-14, Mann-Whitney U test, 

Fig. 3.7.b). Further, I did not observe significant stabilization for any of the previously defined 

m6A-containing targets in MZythdf2;MZythdf3 mutants relative to background-matched controls, 

as measured by qRT-PCR (Fig. 3.7.c). This suggests that m6A-based recognition and 

deadenylation of cognate mRNAs was not fully impaired in MZythdf2;MZythdf3 mutants.  

 
Figure 3.7. Methylated maternal mRNA clearance is unaffected by the absence of Ythdf2 
and Ythdf3 
(A) Biplot comparing similar expression levels (log2 RPKM) of maternal transcripts (blue, n = 13642) 
and m6A-modified transcripts (magenta, n = 2280) between background-matched wild-type and 
MZythdf2;MZythdf3 mutant embryos at 6 hpf, from poly(A) mRNA.  
(B) Cumulative distribution of fold changes in maternal mRNA abundance (log2 RPKM) between 
MZythdf2;MZythdf3 mutant and background-matched wild-type embryos, showing m6A-modified 
mRNAs (magenta, n = 708) were slightly stabilized relative to non-modified transcripts (black, n = 
841) at 6 hpf, from poly(A) mRNA. P-values computed by Mann-Whitney U test. 
(C) Fold change from qRT-PCR measure of relative abundance of methylated maternal mRNAs 
between MZythdf2;MZythdf3 and background matched wild-type embryos was insignificant for most 
transcripts at 4 hpf (mean ± s.d., n = 3 independent replicates, * P < 0.05).  
 

3.3. Role of Ythdf2 in zygotic genome activation 

Previous work indicated that loss of Ythdf2 delayed both zygotic genome activation (ZGA) 

and gastrulation (Zhao et al., 2017), possibly due to slowed maternal clearance. Though my 

analysis shows that loss of Ythdf2 did not prevent methylated or maternal mRNA clearance, I 

sought to inspect if zygotic transcription was disrupted in MZythdf2 mutants. To this end, I 

compared zygotic gene expression between MZythdf2 mutants and background-matched wild-type 
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control embryos. Several lines of evidence suggest that Ythdf2 deletion does not hinder the onset 

of ZGA. First, only 5 of 6477 zygotic genes were differentially expressed in MZythdf2 mutants 

relative to controls, and only one of these was downregulated (4 and 6 hpf, Fig. 3.8.a) (DESeq2 

analysis, P < 0.05, Table 3.2.). Second, when I analyzed the global proportion of intronic reads, 

used to detect zygotic transcription, I found that intron expression was unchanged in the MZythdf2 

mutants relative to wild-type controls, contrasting the sharp intronic read depletion in embryos 

treated with triptolide, an RNA Pol II inhibitor (Fig. 3.8.b). Third, I observed similar RNA levels 

for several of the earliest expressed zygotic genes including aplnrb, klf17, and miR-430, between 

MZythdf2 mutants and controls (Fig. 3.8.c) (fold-changes of 0.04, -0.21, and -0.32, respectively, 

all P < 0.05, 6 hpf). These same genes were dramatically downregulated when zygotic transcription 

was blocked with triptolide (fold-changes of -2.67, -3.08, and -3.83, for aplnrb, klf17, and miR-

430, respectively). Together, these results illustrate that loss of Ythdf2 does not disrupt zygotic 

gene expression and thus that Ythdf2 is not essential for the onset nor extent of ZGA. 

 
Figure 3.8. Loss of Ythdf2 does not hinder zygotic genome activation 
(A and B) Biplot of similar expression levels (log2 RPKM) of zygotic (magenta, n = 1760) and all 
mRNAs (grey, n = 20119) between background-matched wild-type and MZythdf2 embryos at 6 hpf 
from poly(A) mRNA. Dashed lines indicate two-fold change. 
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(C) Proportion of intronic reads relative to total number of reads for background-matched wild-type 
(green), MZythdf2 (blue), and triptolide-treated embryos at 6 hpf from ribo0 mRNA. Triptolide inhibits 
zygotic transcription, resulting in decreased count of intronic reads.  
(D) Genome tracks at 6 hpf of similar levels of zygotic transcripts between MZythdf2 mutants and 
background-matched wild-type compared to reduced mRNA levels in triptolide-treated embryos.  
 
Table 3.2. Fold-changes and P-values for 5 differentially expressed zygotic transcripts 
 

gene ID  
fold-change 
4 hpf 

P-value 
4 hpf 

fold-change 
6 hpf 

P-value 
6 hpf 

methylation 
status 

ENSDARG00000026236  0.71 n.s.  1.62 2.5E-02 non-m6A 
ENSDARG00000036107  2.05 7.8E-03  0.50 n.s. non-m6A 

ENSDARG00000073695  1.53 n.s.  3.75 2.6E-02  
ENSDARG00000077618  -1.38 1.1E-03  -1.42 n.s.  
ENSDARG00000093131  2.88 n.s.  8.16 1.2E-03  

 
Differential expression determined between time-matched MZythdf2 and background-matched wild-
type embryos at either 4 or 6 hpf in poly(A) mRNA-sequencing by DESeq2 (P-value < 0.05, corrected 
for multiple testing). n.s., not significant. No value for methylation status indicates unknown status.  
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CHAPTER 4: Redundant functions of  Ythdf  
readers in zebrafish development  

 
m6A methylation and its Ythdf readers are known to modulate mRNA fate to promote key 

developmental transitions, including stem cell differentiation, embryogenesis, and gametogenesis 

(Heck and Wilusz, 2019; Lasman et al., 2020b). For instance, m6A facilitates decay of pluripotency 

promoting mRNAs in mouse embryonic stem cells to enable the shift from self-renewal to 

differentiation (Geula et al., 2015). Similarly, YTHDF2, YTHDC1, and YTHDC2 are all found to 

be essential for oogenesis and spermatogenesis in mice, (Bailey et al., 2017; Hsu et al., 2017; 

Ivanova et al., 2017; Jain et al., 2018; Kasowitz et al., 2018; Wojtas et al., 2017), suggesting several 

factors concurrently contribute to these developmental milestones. This multi-layered regulation 

by m6A may reflect the fact that redundant mechanisms are needed to ensure robustness in gene 

expression changes during cellular reprogramming events.  

Indeed, while the three YTHDF readers were initially attributed distinct functional roles 

(Wang et al., 2014a, 2015b), new evidence indicates that their cellular activities may instead 

overlap. Recent studies have found that the YTHDFs share m6A binding sites and are 

simultaneously required for mRNA decay and cellular differentiation, demonstrating that these 

proteins function redundantly (Lasman et al., 2020a; Zaccara and Jaffrey, 2020). All three 

zebrafish Ythdfs are found to be maternally provided mRNA binders during the MZT (Despic et 

al., 2017), suggesting that the three paralogs contribute to transcriptome turnover in concert. 

Defining the exact roles of the Ythdfs during development is essential to understand precisely how 

methylation and its readers promote key cellular transitions. 

Herein, I determined that the Ythdf readers function redundantly at multiple steps in 

zebrafish development. I employed single, double, and triple Ythdf mutants to show that individual 



 84 

Ythdf readers are not required for embryogenesis, but concurrent loss of two Ythdfs impairs ovary 

development, and triple Ythdf deletion results in larval lethality. Through their overlapping 

functions, Ythdf1, Ythdf2, and Ythdf3 are likely key mediators of developmental transitions.  

 
ATTRIBUTIONS 
This chapter is modified from my first author paper published in December, 2020 in Cell Reports 
(Kontur et al., 2020), which I wrote with input from Antonio Giraldez. Daniel Cifuentes, a 
contributing author on the paper, generated the ythdf2 and ythdf3 mutant alleles.  
 

4.1. Individual Ythdf readers are not required for embryogenesis 

Previous work reported that loss of Ythdf2 delayed gastrulation of zebrafish embryos, 

potentially stemming from the corresponding lag in ZGA and maternal clearance (Zhao et al., 

2017). Given that I showed that Ythdf2 deletion did not affect the timing of zygotic transcription 

or mRNA transcript removal, I sought to test if loss of Ythdf2 disrupts developmental progression 

during the zebrafish MZT. Consistent with a lack of transcriptomic differences between MZythdf2 

mutant and control embryos, I observed no difference in the onset of gastrulation in a live imaging 

developmental time course (Fig. 4.1.a.). 

 
Figure 4.1. Loss of Ythdf2 does not delay gastrulation of zebrafish embryos 
(A) Image of zebrafish embryos where MZythdf2 and background-matched (bkgd-match) wild-type 
exhibit similar developmental delay relative to unrelated wild-type at 6 hpf. MZythdf2 embryos were 



 85 

from the same clutch and share genetic background with the background-matched wild-type embryo. 
n, replicate number of embryos at the same developmental stage. Scale bar, 500 µM. 
(B) Quantification of developmental rates of embryos in developmental time course shown in(A). Bars 
and dots indicate minutes post fertilization at which embryos reach corresponding developmental 
stage. MZythdf2 embryo 2 and 4 correspond to the MZythdf2 embryos second from the left and on the 
far right in (E), respectively. 
(C) Representative images of MZythdf2 and unrelated TU-AB wild-type embryos that were either 
uninjected or injected with ythdf2 rescue mRNA. n, replicate number of embryos from the same clutch 
and condition at the same developmental stage. Scale bar, 400 µm. 
 

 In this time course, I compared MZythdf2 mutants to both related, genetic background-

matched wild-type and to unrelated, TU-AB background wild-type embryos (see Fig. 3.3.a). All 

embryos were at the 64-cell stage at approximately 2 hpf. However, both MZythdf2 mutants and 

background-matched controls reached 50% epiboly at approximately ~5.9 hpf, while the TU-AB 

wild-type reached 50% epiboly about 40 minutes earlier, at ~5.2 hpf (Fig. 4.1.b). This ~40-minute 

delay is consistent with that observed by Zhao et al., but because this delay was exhibited by both 

MZythdf2 mutants and background-matched wild-type, it is unlikely to be linked to the ythdf2 

deletion mutation. Indeed, when I injected ythdf2 mRNA into MZythdf2 mutants, I could not 

rescue the delay in gastrulation relative to the TU-AB wild-type embryos (Fig. 4.1.c).  

To ensure that Ythdf2 deficiency does not disrupt embryonic development, I employed a 

second, independent mutant allele of ythdf2 from CRISPR-Cas9 gene editing (MZythdf2-223/-223). I 

found no difference in the onset of gastrulation or developmental timing of MZythdf2-223/-223 

mutants relative to background-matched controls (Fig. 4.2.). Thus, loss of Ythdf2 does not disrupt 

the timing of gastrulation, supporting the idea of mechanistic redundancy in regulation of m6A-

mediated changes in gene expression during the MZT.  
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Figure 4.2. Ythdf2 deletion does not disrupt zebrafish embryogenesis 
(A) Representative images of similar developmental stages of MZythdf2-223/-223, background-matched 
(bkgd-match) wild-type, and unrelated wild-type embryos at 6 hpf. n, replicate number of embryos 
from the same clutch at the same developmental stage. Scale bar, 500 µM. 
(B) Quantification of normally developing embryos was similar for each genotype. Dots indicate 
quantifications from three independent clutches and bars represent mean percentage of normally 
developed embryos at each time point (hpf) from all three clutches. 
 

Given that Ythdf2 alone did not control zebrafish embryogenesis, I sought to establish 

potentially redundant roles for the Ythdf readers during development. As in humans, zebrafish 

have three Ythdfs, which exhibit high protein sequence similarity between themselves and with 

their human orthologs (Fig. 4.3.), suggesting conserved and common functions. To determine if 

Ythdf1 or Ythdf3 drive zebrafish development, I used CRISPR/Cas9 gene editing to individually 

disrupt ythdf1 and ythdf3, but deletion of either reader did not result in developmental phenotypes 

(Fig. 4.4.). Together, this analysis demonstrates that individual Ythdf readers are not required for 

embryogenesis.  
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Figure 4.3. Zebrafish and human Ythdf homology  
(A) Alignment of protein sequences for zebrafish and human Ythdf proteins shows high sequence 
similarity between paralogs and homologs of both species, especially in the YTH domain (grey bar). 
Sequence alignment was generated by Clustal Omega, where blue shading indicates alignment to the 
consensus sequence (top row, bolded) and the consensus threshold was set to > 50%. Colored blocks 
along the top indicate percentage of sequence conservation at each residue.  
(B) Phylogenetic relationship of zebrafish and human Ythdf proteins generated from the protein 
sequence alignment. Branch lengths represent evolutionary distance in number of amino acid 
substitutions.  
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Figure 4.4. Ythdf1 and Ythdf3 mutant embryos develop normally  
Representative images of MZythdf1 (left) and MZythdf3 (right) mutants exhibiting no developmental 
differences relative to respective background-matched wild-type controls at ~6.5 hpf. n, replicate 
number of embryos from the same clutch at the same developmental stage. Scale bars, 500 µm. 
 

4.2. Ythdf2 and Ythdf3 are together required for ovary development 

 
4.2.1. Double loss of Ythdf2 and Ythdf3 disrupts female gonad development  

Because analysis of single ythdf mutants suggested that these proteins could function 

redundantly, I generated a double ythdf2 and ythdf3 mutant, as Ythdf3 is also linked to mRNA 

decay (Shi et al., 2017). Deletion of both ythdf2 and ythdf3 specifically disrupted female 

development, as no double homozygotes (ythdf2-/-;ythdf3-/-) were female, while control siblings 

(ythdf2-/+;ythdf3-/-) were an almost equal ratio of males and females (Fig. 4.5.a). This male-only 

phenotype was also observed in ythdf1-/-;ythdf2-/- mutants (Fig. 4.5.b), but appears specific to 

double ythdf deletion, as single ythdf homozygotes could still become female (Fig. 4.5.c). As sex 

determination and gonad development are interdependent in zebrafish (Santos et al., 2017), I 

hypothesized that loss of ythdf2 and ythdf3 prevented proper establishment of the ovaries. 

Histological staining of gonads from double ythdf2-/-;ythdf3-/- mutants revealed underdeveloped 

juvenile ovaries at 27 days post fertilization (dpf) relative to sibling controls (Fig. 4.5.d). By 34 

dpf, all homozygous ythdf2-/-;ythdf3-/- mutants had developed testes, the default gonad upon 

disruption of ovary development (Nagabhushana and Mishra, 2016), whereas controls exhibited 
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both ovaries and testes (Fig. 4.5.d). Loss of ythdf2 and ythdf3 specifically affected ovaries, as male 

fish developed healthy testes and were fertile at rates similar to wild-type (Fig. 4.6.). Together, 

this phenotype of inhibited female gonad development provides evidence for redundant functions 

of ythdf2 and ythdf3 in the establishment of the ovary prior to the MZT.  

 
 
Figure 4.5. Double loss of Ythdf2 and Ythdf3 disrupts female gonad development 
(A-B) Numbers of male and female fish of each genotype, quantifying male-only phenotype of double 
ythdf2;ythdf3 (A) and ythdf1;ythdf2 (B) homozygous mutants. Sibling controls and double homozygotes 
were offspring from the same crosses, depicted on top.  
(C) Numbers of male and female fish of each genotype. Homozygous mutants of ythdf2 (both D8 and 
D223 alleles) and ythdf3 (D365) can develop into females. 
(D) Gonad histology of ythdf2-/-;ythdf3-/- mutant fish and sibling controls (ythdf2+/-;ythdf3-/-) from same 
cross in (A). At 27 dpf, mutants exhibit less developed juvenile ovaries than siblings. At 34 dpf, 6 
sibling fish had adult ovaries and 8 had testes, while all 12 ythdf2-/-;ythdf3-/- fish had developed testes. I, 
stage I oocytes; II, stage II oocytes; triangle, apoptotic oocyte; sg, spermatogonia; sc, spermatocytes. 
n, replicate number of each genotype with similar gonads. Scale bars, 40 µm. 
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Figure 4.6. Testes develop normally in ythdf2;ythdf3 double mutants 
(A) Embryos from ythdf2;ythdf3 homozygous males and unrelated TU-AB wild-type males were 
fertilized at similar rates (mean ± s.d., n = 3 independent biological clutches of each genotype).  
(B) Testes histology from ythdf2-/-;ythdf3-/- mutant fish and sibling controls (ythdf2+/-;ythdf3-/-). At 34 dpf, 
both sibling and mutant fish exhibited healthy developing testes. triangle, apoptotic oocyte; sg, 
spermatogonia; sc, spermatocytes. n, replicate number of each genotype with similar gonads; for 
sibling the remaining six were ovaries. Scale bars, 40 µm. 
 

4.2.2. Ythdf2 and Ythdf3 together are not mandatory for embryonic development 

Though ythdf2 and ythdf3 function redundantly to establish the ovary, the extent of overlap 

in Ythdf reader function during embryogenesis remains unclear. To test the maternal function of 

ythdf2 and ythdf3, I first had to overcome the defect in ovarian development. To this end, I treated 

growing double ythdf2-/-;ythdf3-/- mutants with 17⍺-ethinylestradiol (EE2), a synthetic estrogen 

agonist that promotes ovarian development and subsequently increases the number of female 

offspring (Örn et al., 2003). Double homozygous females were recovered following EE2 treatment 

(Fig. 4.7.a), enabling study of ythdf2 and ythdf3 during methylated RNA decay and embryonic 

development. MZythdf2;MZythdf3 mutants appeared to be phenotypically normal relative to EE2-

treated background-matched controls, as mutant embryos exhibited normal gastrulation, 

morphology, and developmental timing (Fig. 4.7.b).  
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Figure 4.7. Embryonic morphology was normal in double ythdf2;ythdf3 mutants 
(A) Numbers of male and female fish of each genotype, following rescue of male-only phenotype in 
double ythdf2;ythdf3 homozygous mutants by treatment with 17 a-ethinylestradiol (EE2). Sibling 
control and homozygous fish were offspring from the same cross as in (Fig. 4.5.a). 
(B) MZythdf2;MZythdf3 mutants, background-matched wild-type, and unrelated wild-type zebrafish 
embryos develop at similar rates. Parents of mutant or background-matched control embryos were 17 
a-ethynylestradiol treated. n, replicate number of embryos of each genotype at the same 
developmental stage. Scale bars, 500 µm. 
 
 
4.3. Triple Ythdf loss of function is lethal to zebrafish 

Given that ythdf2 and ythdf3 double deletion did not stabilize methylated mRNAs or disturb 

embryogenesis, I generated a triple Ythdf loss of function mutant (Fig. 4.8.a). Triple ythdf 

disruption was lethal, as triple homozygous larvae could only survive until 9 dpf, likely due to 

maternally contributed Ythdf proteins (Fig. 4.8.b). Triple ythdf mutants were never observed in 

adulthood, and I recovered fewer zebrafish double homozygous for two ythdfs and heterozygous 

for the remaining ythdf than expected (Fig. 4.8.c). This suggests that the Ythdf proteins act 

redundantly to ensure zebrafish viability, likely in a dosage dependent manner, as fewer fish with 

only one functional ythdf copy survived. Unfortunately, the lethality phenotype prohibits analysis 

of triple Ythdf depletion on methylated mRNA stability and assessment of redundancy during the 

MZT. Yet, my double and triple Ythdf mutants demonstrate that dual loss of both Ythdf2 and 

Ythdf2 was not enough to disrupt preferential deadenylation of methylated mRNAs, and reveals 

that the redundant functions of all three Ythdf readers are required during early development. 
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Figure 4.8. Triple loss of Ythdfs disrupts zebrafish development 
(A) Schematic of cross and genotyping strategy to characterize triple Ythdf mutants. Female fish 
(genotype ythdf1+/-;ythdf2-/-;ythdf3+/-) were crossed to males (genotype ythdf1-/-;ythdf-+/-;ythdf3-/-) to 
generate triple homozygous embryos (1 out of 8 possible genotypes). Every 3 days, 48 larvae were 
genotyped, and 200 additional fish were genotyped at 30 dpf to identify triple homozygotes.  
(B) Percentage of triple heterozygous (dark blue, ythdf1+/-;ythdf2+/-;ythdf3+/-) or triple homozygous (light 
blue, ythdf1-/-;ythdf2-/-;ythdf3-/-) fish during development. Grey dotted line, expected percentage (12.5%) 
of fish with each possible genotype produced from cross in (D). 
(C) Number of fish observed with each genotype produced from the cross in (D) at 30 dpf. For each 
ythdf allele: open squares, heterozygous allele (+/-); m, homozygous allele (-/-). Grey dotted line 
indicates expected number of fish (25), equal for all genotypes. 
 

4.4. Mettl3 or Mettl14 loss of function is lethal to zebrafish 

To assess the role of m6A globally in embryogenesis, I generated mutants of the core 

enzymes of the methyltransferase complex, mettl3 and mettl14, aiming to determine if 

development can proceed in the complete absence of maternal m6A modifications. Loss of function 

of Mettl3 or Mettl14 resulted in late stage larval lethality, in which no fish homozygous for the 

mutant alleles could be recovered past 35 days post fertilization (Fig. 4.9.). This suggests that some 

function of the methyltransferases is essential during zebrafish development, but prevents analysis 

of the maternal functions of m6A during early embryogenesis  
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Figure 4.9. Mettl3 or Mettl14 loss of function is larval lethal 
Percentage of fish homozygous for the corresponding mutant allele surviving over time during 
development. Grey dotted line, expected percentage (25%) of fish with homozygous genotype 
produced from in cross of two heterozygous fish.  
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CHAPTER 5: Discussion and Future Outlook  
 

This work aimed to understand how RNA methylation and its reader proteins guide 

maternal transcriptome remodeling during early embryonic development. Here, I showed that m6A 

modification promotes mRNA deadenylation during the MZT, establishing it as an additional facet 

of control over maternal transcript fate. Although the importance of m6A is clear, future 

investigations are necessary to understand how this pathway integrates into the larger landscape 

of posttranscriptional regulation during embryogenesis. 

To characterize the role of the Ythdf s, oogenesis, and zebrafish viability. Given that m6A 

and its readers influence global changes in gene expression across developmental transitions, this 

study strengthens the model of RNA methylation as a universal mechanism to promote 

reprogramming.  

 

5.1. RNA methylation contributes to maternal mRNA clearance 

 
5.1.1. Discussion on the unknowns of m6A-mediated maternal mRNA deadenylation 

My analysis of maternal mRNA stability in zebrafish embryos revealed that RNA 

methylation contributes to transcript degradation during the vertebrate MZT and promotes poly(A) 

tail shortening of maternal mRNAs. This is consistent with early studies proposing m6A as a key 

determinant of transcript lifetimes (Batista et al., 2014; Liu et al., 2014; Schwartz et al., 2014), and 

more recent findings that show m6A promotes deadenylation in cell culture (Du et al., 2016).  

Thus, methylation may serve as a universal regulator of transcript stability, especially in the 

context of cell fate determination (Heck and Wilusz, 2019). Yet, the potential mechanisms 

underlying this activity are not fully clear, as the impact of m6A on deadenylation and decay are 
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often intertwined. Indeed, I observed that the effects of m6A were greater on deadenylation than 

decay for endogenously methylated mRNAs (Fig. 2.2.), which may be due to the combined effects 

of poly(A) tail-shortening and mRNA decay driven by m6A when assaying poly(A)-selected 

mRNA. Further, the rapid deadenylation and enhanced degradation of the methylated reporter 

(Fig. 2.3.) may reflect its hypermethylated state, or indicate that m6A-mediated deadenylation 

enables subsequent and rapid decay. Thus, it remains difficult to determine the extent to which 

methylation driven deadenylation and decay are connected. Given that poly(A) tail shortening 

often proceeds decapping and decay (Chen and Shyu, 2011; Zheng et al., 2008), a stepwise 

pathway beginning with m6A-mediated deadenylation is likely, but this must be more thoroughly 

investigated.  

The enzymes on which m6A relies to control mRNA deadenylation and decay during the 

zebrafish MZT also remain unclear. Methylation readers of the YTH family are associated with 

both the Pan2-Pan3 and Ccr4-Not deadenylase complexes, the 5’-to-3’exoribonuclease XRN1, and 

stress granule components (Du et al., 2016; Kretschmer et al., 2018; Liu et al., 2020b; Zaccara and 

Jaffrey, 2020), suggesting m6A may degrade transcripts through parallel pathways. Destabilization 

of m6A marked transcripts was demonstrated here to differentially depend on Dcp2 and Caf1, 

although whether this is a direct or indirect dependence is yet to be tested. The modification has 

also been linked to additional decay mechanisms, including endoribonucleolytic cleavage (Park et 

al., 2019) and localization to P-bodies and stress granules (Fu and Zhuang, 2020; Gao et al., 2019; 

Ries et al., 2019; Wang et al., 2014a). Future work should address which deadenylases control 

methylation-dependent deadenylation during the MZT and whether it is uncoupled or 

interconnected with the contributions of m6A to these other pathways. Further, the extent to which 

m6A-based deadenylation is essential for maternal mRNA clearance is unknown, as my attempts 
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to remove methylation from the maternal transcriptome were frustrated by the lethal phenotype 

exhibited by mutants of the methyltransferase complex, Mettl3 and Mettl14 (see section 4.4.). 

Despite this limitation, my work provides mechanistic insight that m6A fosters mRNA 

destabilization via deadenylation, establishing it as an important regulator of maternal mRNA 

clearance. 

 

5.1.2. Zygotic mode dependence of m6A methylation 

Analysis of m6A-modified messages upon failure of ZGA has revealed that methylated 

mRNA clearance is reliant on zygotic transcription. This reliance is unlikely to be a total 

dependency, as methylated reporter abundance did decrease somewhat by 2 hpf before ZGA, 

reflecting some maternal contributions. Further, methylated reporter deadenylation was unaffected 

by RNA PolII inhibition, suggesting that poly(A) tail modulation pre-MZT is executed by maternal 

elements. This is consistent with prior reports of polyadenylated mRNA abundance fluctuating 

prior to ZGA (Aanes et al., 2011; Eichhorn et al., 2016; Mathavan et al., 2005; Rabani et al., 2014; 

Subtelny et al., 2014; Winata et al., 2018). Indeed, this mechanism of deadenylating transcripts 

early, but delaying decay, was previously observed in embryogenesis, and may serve to carefully 

control maternal protein output from key developmental genes without necessitating transcript 

turnover (Despic and Neugebauer, 2018; Graindorge et al., 2008; Voeltz and Steitz, 1998).  

A clearer understanding of the relative dependence of m6A-mediated decay on the maternal 

and zygotic programs may be achieved through a deep investigation of m6A-interactors. For 

instance, the Ythdf readers are all maternally supplied (see Section 3.1.) and thus have the capacity 

to influence early adenylation. Yet, their activity may be regulated by ZGA-dependent alterations 

in posttranslational modifications (Hou et al., 2021), localization, or protein partners (Vejnar et al., 
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2019), enabling them to control downstream decay. Further study is required to illuminate the 

precise nature of the maternal and zygotic mode contributions to methylated mRNA clearance.  

 

5.1.3. Interaction between m6A and other decay pathways  

My dissection of the relation between m6A and miR-430 demonstrated that RNA 

methylation functions independently but additively with the miR-430 pathway to target maternal 

mRNAs for clearance. This is coherent with the observation that most unstable maternal mRNAs 

depend on multiple decay programs (Rabani et al., 2017; Thomsen et al., 2010; Vejnar et al., 2019). 

This sort of combinatorial regulation is thought to serve as a mechanism to ensure that selected 

transcripts are rapidly and robustly eliminated (Vejnar et al., 2019; Yartseva and Giraldez, 2015). 

Indeed, I found that those mRNAs targeted by both m6A and miR-430 were the most degraded 

(Fig. 2.7.a), reflecting faster elimination due to co-regulation. Thus, by combining multiple 

pathways, different transcripts are conferred different degrees of destabilization, allowing for 

dynamic regulation in the timing and extent of mRNA decay.  

Given the extensive catalog of posttranscriptional pathways that contribute to maternal 

clearance, it will be exciting to establish possible interactions with m6A for each of them. For 

instance, co-occurrence of the m6A consensus site with other RBP binding motifs (Zhang et al., 

2020c) could reflect coordinated regulation or indicate that these trans factors help specify the 

functional output of m6A on its targets. Methylated maternal transcripts in zebrafish were found to 

be enriched in sequence motifs similar to those bound by Dazl and Unr, two RBPs involved in 

translational regulation via the poly(A) tail (Aanes et al., 2019), suggesting potential co-regulation. 

Another intriguing possibility is that m6A modulates RBP binding through its function as a 

structural switch, either by masking or unmasking motifs, or creating favorable conformations for 
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RBP recognition, as it does for HNRNP proteins (Liu et al., 2015, 2017; Wu et al., 2018). 

Similarly, codon optimality is known to modulate poly(A) length through the translation of optimal 

and suboptimal codons (Bazzini et al., 2016; Buschauer et al., 2020; Mishima and Tomari, 2016; 

Presnyak et al., 2015), and m6A can disrupt tRNA selection and translation elongation (Choi et al., 

2016). Whether RNA methylation enhances the effects of codon optimality by contributing to 

ribosome pausing remains to be determined.  

Finally, m6A-dependent regulation may also cooperate with other RNA modifications. 

Ybx1, a reader of 5-methylcytosine (m5C), is linked to the regulation of mRNA stability and 

translation during early embryogenesis (Sun et al., 2018; Yang et al., 2019), and the Ythdf proteins 

were recently implicated as readers and destabilizers of N1-methyladenosine (m1A) marked 

mRNAs (Dai et al., 2018; Seo and Kleiner, 2020; Zheng et al., 2020). Dual modification by m1A 

and m6A may enhance transcript recognition by the Ythdfs, guaranteeing down-regulation. 

Additionally, terminal uridylation is known to help degrade maternal transcripts with short poly(A) 

tails (Chang et al., 2018) during the MZT. m6A may induce deadenylation of maternal mRNAs, 

after which uridylation facilitates their degradation. Simultaneous analysis of all RNA 

modifications decorating maternal transcripts will provide key insights into how m6A function is 

integrated into the larger posttranscriptional regulatory landscape. 

 

5.1.4. m6A and the regulation of mRNA translation 

Ribosome profiling analysis indicated that m6A modification correlated with early 

maternal mRNA translation. This raises the intriguing possibility that translational regulation by 

methylation is linked to its modulation of polyadenylation, especially given that poly(A) tail length 

is a major determinant of translation during embryogenesis (Eichhorn et al., 2016; Subtelny et al., 
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2014; Vastenhouw et al., 2019; Winata et al., 2018). Indeed, at 2 hpf, methylation was associated 

with both greater adenylation and enhanced translation efficiency, but these relations dissolved by 

6 hpf, when modified mRNAs were instead differentially deadenylated. This pattern of dynamic 

regulation exhibited by methylated transcripts is consistent with the finding that the correlation 

between poly(A) tail length and translation efficiency diminishes following ZGA (Subtelny et al., 

2014; Vastenhouw et al., 2019). Thus it is possible that m6A contributes to the coupling of 

translation and adenylation during the MZT, although this mechanism requires further 

investigation of the connection between tail length, translation, and m6A levels. Additionally, the 

factors mediating the effects of methylation on translation have yet to be identified. Studies in 

human cells link Ythdf1 and Ythdf3 to translational upregulation (Shi et al., 2017; Wang et al., 

2015b), although other work suggests that the Ythdf readers have no impact on translation (Zaccara 

and Jaffrey, 2020), meaning the Ythdfs’ role must be further explored. Ythdc2 is also found to 

promote translation, although it employs its helicase domains (not present in the DFs) to unwind 

mRNA structures and facilitate ribosome translocation (Mao et al., 2019). Finally, it will be 

worthwhile to assess how the fate of maternal mRNAs varies based on the location of m6A within 

the transcript, as where the mark is deposited may help to determine the downstream translational 

consequences (Mao et al., 2019). 

 

5.2. Ythdf2 is not the sole driver of methylated transcript turnover 

Although my study showed that m6A promotes maternal mRNA clearance, I could not 

establish Ythdf2, the proposed driver of methylated transcript turnover (Lee et al., 2020; Wang et 

al., 2014a; Zhao et al., 2017), as the sole mediator of these effects. Further, I found that Ythdf2 is 

not obligatory for the timing or success of maternal mRNA decay or zygotic genome activation, 
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in contrast to work that presents Ythdf2 as a critical regulator of mRNA fate during the zebrafish 

MZT (Zhao et al., 2017). Differences in the observed MZythdf2 phenotype may arise from 

differences in the genetic background of control embryos (Fig. 3.3.a). Indeed, I found that the 

delay phenotype did not segregate with the ythdf2 mutation, as it was no longer observed when the 

genetic background between MZythdf2 mutants and wild-type controls was matched. Comparison 

of MZythdf2 mutants to unrelated wild-type embryos also accounts for the transcriptomic 

phenotype; if the mutant embryos are a stage behind developmentally, their gene expression 

profiles will be consistent with that earlier developmental stage, rather than arising from mRNA 

dysregulation due to loss of ythdf2. Thus, my data challenges the view that Ythdf2 is required for 

proper transcript clearance and ZGA, and instead indicates that Ythdf2 is not obligatory to direct 

the MZT.  

Additionally, I found only a minor role for Ythdf2 in the clearance of methylated 

transcripts. RNA-sequencing data from both this study and Zhao et al. (2017) demonstrates that 

loss of Ythdf2 stabilized only a small number of methylated transcripts, suggesting that other 

factors are required for turnover of most m6A targets. Individual deletion of Ythdf1 and Ythdf3 

was also unable to significantly stabilize select m6A-modified transcripts, suggesting that no single 

Ythdf reader is sufficient to control methylated mRNA clearance. Notably, limitations from the 

technique used to map m6A in the zebrafish embryos preclude knowledge of what fraction of a 

given transcript is methylated. This means that m6A reader removal could have an appreciable 

impact on a small fraction of methylated transcripts, but that these effects would be masked by the 

unchanged stability for the larger, unmodified fraction of the same transcript. As m6A-mapping 

techniques become more quantitative and precise (Linder and Jaffrey, 2019; McIntyre et al., 2020), 
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reader specificity for methylated maternal mRNAs should be carefully assessed, to fully resolve if 

the Ythdfs redundantly control m6A-modified maternal transcript turnover.  

 

5.3. Ythdf functional redundancy during development 

My analysis of double and triple Ythdf mutants demonstrated that these factors work in 

concert to control mRNA fate during multiple developmental transitions (Figure 5.1.). This 

finding aligns with the newly emerged model of functional redundancy between the Ythdfs, and 

challenges the traditional view that each reader has a distinct regulatory role (Lasman et al., 2020a; 

Patil et al., 2018; Shi et al., 2019; Zaccara and Jaffrey, 2020; Zaccara et al., 2019). Indeed, recent 

evidence supports interchangeable activities for the Ythdfs. First, the Ythdfs contain the same 

protein domains across vertebrates, and some invertebrates, like Drosophila, have only one YTH 

homolog, reflecting a shared capacity for overlapping functions (Kan et al., 2017; Patil et al., 

2018). Second, all three proteins are known to bind the same m6A sites in multiple physiological 

contexts, suggesting that co-targeting between the readers is universal (Lasman et al., 2020a; Lu 

et al., 2018; Shi et al., 2017; Tirumuru et al., 2016; Zaccara and Jaffrey, 2020). Third, the 

interactomes of the Ythdfs markedly coincide, with key decay and deadenylation machinery 

associating with Ythdf1, Ythdf2, and Ythdf3 (Zaccara and Jaffrey, 2020). Fourth, significant 

stabilization of methylated transcripts is observed only upon triple Ythdf knockdown in cell 

culture, while individual knockdowns have minimal impact on m6A-modified mRNAs, mirroring 

my observations in zebrafish embryos (Zaccara and Jaffrey, 2020). Together, these studies and my 

work affirm a model of functional redundancy between the Ythdfs in regulation of the methylated 

transcriptome.  
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Figure 5.1. Single, double, and triple Ythdf zebrafish mutants reveal redundant functions in 
multiple stages of development. 
My study shows that in zebrafish, single Ythdf knockouts of Ythdf1, Ythdf2, or Ythdf3 do not impact 
the maternal-to-zygotic transition (MZT) or embryogenesis. However, double loss of Ythdf2 and 
Ythdf3 impairs oogenesis and inhibits ovary development. Triple Ythdf deletion disrupts larval 
viability.  
 
 
 Notably, the Ythdf readers are found to target unique transcripts or exert distinctive 

functions in some biological contexts (Liu et al., 2018b; Wang et al., 2014a, 2015b). While this 

could arise from exclusive expression of a single paralog in a given cell or tissue type (Shi et al., 

2019), compartmentalization of readers is unlikely during the zebrafish MZT, as all three Ythdf 

proteins are simultaneously expressed in the early embryo.  

Indeed, redundant Ythdf activity is consistently observed in instances of cellular 

reprogramming (Lasman et al., 2020a; Zaccara and Jaffrey, 2020), suggesting that this multi-

layered regulation is important to ensure robust changes in gene expression. For instance, a dosage-

dependent mechanism controls embryonic viability in mice, as determined through single, double, 

and triple Ythdf knockouts (Lasman et al., 2020a). This is consistent with my results that individual 

knockouts did not impede maternal mRNA decay or embryonic development, but that dual loss of 

Ythdf2 and Ythdf3 impaired oogenesis, and triple Ythdf loss led to lethality. Indeed, I found that 

only triple reader deletion phenocopied Mettl3 or Mettl14 knockouts, suggesting that the 
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developmental impact of full reader absence is proportional to complete loss of methylation. This 

has also been similarly observed in mESCs, where triple YTHDF mutagenesis impairs 

differentiation to the same extent as METTL3 depletion (Lasman et al., 2020a). Together, this 

evidence supports a dosage-dependent functional redundancy of the Ythdf readers during 

development. Given that combinatorial decay is frequently employed to clear messages in the early 

embryo (Yartseva and Giraldez, 2015), redundant regulation by the Ythdfs may guarantee specific, 

timely, and orchestrated transcript turnover during key cellular transitions. 

 Finally, although it is clear that the Ythdfs coordinate their activity during early 

development, the impact of maternal Ythdf loss of function could not be assessed due to the non-

viable phenotype. Ultimately, loss of all three Ythdf readers during the MZT is required to 

determine if these factors act redundantly to modulate methylated maternal mRNA fate. 

Additionally, recent work has greatly expanded the list of m6A-associated factors (Arguello et al., 

2017; Edupuganti et al., 2017), whose role in cellular transitions must be explored. For instance, 

the RBP IGF2BP3 was found to maintain maternal mRNA stability prior to transcript clearance 

during the zebrafish MZT (Huang et al., 2018), although the extent to which this relies on m6A is 

debated (Sun et al., 2019). Given that multiple readers may contribute to equilibrium between 

methylated mRNA decay and stability, the specific role of each factor, especially the remaining 

YTH proteins, must be fully defined to completely understand how methylation governs maternal 

mRNA clearance. 

 

5.4. The m6A pathway regulates reproductive development 

The m6A modification pathway is increasingly recognized as a central regulator of stem 

cell differentiation and gametogenesis (Lasman et al., 2020b). I found that simultaneous mutation 
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of Ythdf2 and Ythdf3 impaired female gonad development, demonstrating an essential function of 

these proteins in zebrafish oogenesis. Intriguingly, this phenotype was restricted to female 

development, as spermatogenesis and male fertility were unaffected by loss of two Ythdfs, 

suggesting requirement for these readers arises after the germ cells are established. Consistent with 

my study in zebrafish, this role of m6A and its effectors as regulators of gametogenesis is observed 

across organisms. YTHDF2 is required for murine oocyte maturation (Ivanova et al., 2017) and 

depletion of the m6A writer, Mettl3, inhibits gamete maturation in zebrafish (Xia et al., 2018). 

Additionally, both YTHDC1 and YTHDC2, are found to be essential for proper spermatogenesis 

and oogenesis in mice (Bailey et al., 2017; Hsu et al., 2017; Jain et al., 2018; Kasowitz et al., 2018; 

Wojtas et al., 2017). It remains unclear exactly how YTHDF readers regulate mRNA stability 

during oogenesis, as loss of YTHDF2 in mouse oocytes results in both up- and downregulation of 

different transcripts (Ivanova et al., 2017). Alternatively, the YTHDFs may impact mRNA 

translation, as modulation of m6A levels through methyltransferase mutants dysregulates 

translation in mouse and Xenopus oocytes (Qi et al., 2016; Sui et al., 2020), and other male-only 

phenotypes in zebrafish stem from defects in translation (Miao et al., 2017). Future work is needed 

to define exactly how m6A readers govern transcriptome changes during gametogenesis.  

Finally, it is notable that the dosage dependency of the Ythdfs extends to their function in 

reproductive development. I observed that single Ythdf mutants did not exhibit the male-only 

phenotype, and only upon double disruption was oogenesis repressed. Similarly, the severity of 

defects in mouse gametes depends on the extent of m6A dysregulation. Knockout of Ythdf1 or 

Ythdf3 causes no reproductive defects, loss of Ythdf2 destroys oocyte competence and decreases 

sperm count, and early METTL3 mutation completely halts sperm and oocyte development 

(Huang et al., 2020; Ivanova et al., 2017; Lasman et al., 2020a; Lin et al., 2017; Xu et al., 2017). 
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Intriguingly, Ythdf2 appears to be the principal Ythdf controlling gametogenesis, as other readers 

cannot compensate for its loss in mice (Ivanova et al., 2017; Lasman et al., 2020a). Similarly, both 

of my double mutants included Ythdf2, although the combination of Ythdf1 and Ythdf3 was not 

tested. Why is Ythdf2 more essential than the other readers? This is likely attributable to expression 

or localization differences between Ythdfs in the developing gonads; in mice, only Ythdf2 

expression persists between spermatogonia and spermatocytes, and it is the only reader with both 

nuclear and cytoplasmic distribution in developing oocytes (Lasman et al., 2020a). Thus, variation 

in the required dosage of the Ythdfs across various organisms and cellular contexts may reflect 

expression changes, although this is yet to be confirmed in zebrafish reproductive development.  

 

5.5. Conclusions and perspective: RNA methylation as a master 

regulator of transcriptome switching 

RNA modifications have become regarded as pivotal posttranscriptional regulators during 

cellular transitions (Frye et al., 2018). Because chemical marks offer a unique means to tie 

transcripts together for similar fates, m6A has been proposed as a universal regulator of 

transcriptome switching during developmental reprogramming (Darnell et al., 2018; Frye et al., 

2018; Heck et al., 2020; Roundtree et al., 2017a; Simen Zhao et al., 2018). Indeed, as one of the 

most abundant mRNA modifications, m6A is known to control gene expression changes during 

stem cell differentiation, neurogenesis, cancer development, hematopoiesis, gametogenesis, and 

embryogenesis (Heck and Wilusz, 2019; Lasman et al., 2020b; Zhang et al., 2020b). Across these 

physiological contexts, m6A tags specific sets of transcripts for coordinated regulation, and its 

effectors mediate the downstream consequences on mRNA metabolism. Thus m6A ensures the 

proper genetic program is realized efficiently and correctly without requiring new transcription.  
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It is possible that RNA methylation and the Ythdf readers play a similar role in 

transcriptome remodeling and embryonic development in zebrafish (Zhao et al., 2017). My study 

demonstrated that the m6A modification promotes maternal transcript removal, and that the Ythdf 

proteins are redundantly required at multiple stages of development, including oogenesis and larval 

viability. Thus methylation is another pathway woven into the landscape of posttranscriptional 

regulation orchestrating the MZT, functioning alongside RBPs, microRNAs, codon optimality, 

secondary structures, and other mechanisms to control maternal mRNA clearance and facilitate 

early embryogenesis.  

Yet, interpretation of RNA methylation as a universal mediator of development must be 

considered cautiously, as it hinges on the capacity of m6A to both promote and repress mRNA 

stability and translation, and to quickly switch its regulatory capacity while relying on the same 

effector proteins. Indeed the dynamic nature of m6A deposition has been challenged (Darnell et 

al., 2018; Mauer and Jaffrey, 2018; Simen Zhao et al., 2018), and the directionality of m6A’s 

consequences on mRNA decay and translation vastly differ across physiological conditions (Patil 

et al., 2018; Shi et al., 2019; Zaccara et al., 2019). Future research regarding the full profile of 

mechanisms used by RNA methylation to control transcript fate across biological contexts will 

clarify the role of in reprogramming. Similarly, future work on how the Ythdfs achieve specificity 

yet function coherently to interpret the mark is required. Finally, understanding how methylation 

is connected to other regulatory pathways will be fundamental to comprehend how the activity of 

multiple posttranscriptional regulators is coordinated. Addressing these questions will provide 

pivotal information regarding the function and universality of RNA modifications in shaping gene 

expression changes during essential developmental transitions. 
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Chapter 6: Methods 
 

6.1. Methylated mRNA analysis and reporters 

Reporter construction and injection 

The methylated reporter was generated as follows: DNA fragments for the CDS and 3’UTR 

were ordered as gBlocks Gene Fragments from IDT. The CDS was designed without adenine in 

the sequence (with the exception of the ATG start codon, TGA stop codon, and HA tag) to limit 

incorporation of m6A to the 3’UTR. The 3’UTR was designed with 12 copies of GGACT 

methylation motif. DNA fragments were PCR amplified for In-Fusion cloning. The pCS2+ vector 

was linearized with BamHI, and fragments were ligated with the In-Fusion HD enzyme (Takara, 

639642). Adenines in the 5’UTR were converted to thymines using site directed mutagenesis with 

oligos 5’- TTTCTTGCTTCTTGTTCTTTTTGCTGGTTCCATGGCCCGCCTTTGTGCTGC-3’ 

and 5’ GGAACCAGCAAAAAGAACAAGAAGCAAGAAATCTATAGTGTCACCTAAAT-3’ 

followed by DpnI digest to remove non-mutated plasmid. Plasmids were linearized with XbaI. 

Capped reporter mRNA was generated by IVT using the HiScribe SP6 RNA Synthesis Kit (New 

England BioLabs, E2070S) with the addition of 40 mM m7G(5')ppp(5')G RNA cap structure 

analog (New England BioLabs, S1404S). For methylation containing reporters, 50 mM of N6-

methyladenosine 5’triphosphate (TriLink, N-1013-5) was added to the IVT in place of adenine. 

m6A-IP verified the presence of m6A modifications in the reporter mRNA. mRNAs were DNase 

treated following IVT. The poly(A) tail was added after IVT using the Poly(A) tailing kit 

(Invitrogen, AM1350) according to the manufacturer’s instructions. Resultant mRNA was purified 

using the RNeasy RNA extraction kit (Qiagen, 74104). Reverse transcription followed by Sanger 

sequencing of the methylated reporter mRNA confirmed proper incorporation of m6A only as 
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specified by the plasmid sequence. Zebrafish embryos were injected with 35 pg of either m6A-

modified or unmodified reporter mRNA. Thirty embryos were collected for each condition at 

different timepoints during the MZT for RNA extraction and subsequent Northern blot analysis. 

 

RNA isolation 

Total RNA was extracted from zebrafish embryos using the TRIzol reagent Invitrogen 

(15596-018) according to the manufacturer’s protocol and eluted in RNase-free water. RNA 

isolated for qRT-PCR was treated with TURBO DNase (Invitrogen, AM2238) at 37°C for 20 

minutes following RNA extraction and purified using phenol chloroform extraction.  

 

Northern blot analysis 

Briefly, 3 µg of total RNA was resuspended in formamide and 2x tracking dye (1mM 

EDTA, 60 mM triethanolamine, 60 mM tricine, 0.04% bromophenol blue, 2.5% formaldehyde) 

and heated at 65°C for 10 minutes to denature the RNA. Samples were separated by electrophoresis 

using a 1.5% agarose/1.25% formaldehyde gel in 1x Tri/Tri buffer (30 mM triethanolamine, 30 

mM tricine). The gel was capillary transferred to a Nytran SPC membrane (Whatman, 10416294). 

RNA was crosslinked to the membrane with 254 nm UV light at 1200 mJ. Membranes were 

prehybridized with 5 mL of ExpressHyb hybridization solution (Clontech, 686831) for 1 hour at 

68°C with constant rotation. RNA species were detected by either cDNA or oligonucleotide probes 

hybridized at 68°C or 42°C, respectively, overnight with 5 mL of ExpressHyb solution and 

5,000,000 cpm of either the reporter or the 18S control radiolabeled probes:reporter mRNA 5’-

GTCCTTTCTGCTGGTCCTTCCTGTGGGGGTGTCCTGTGTGGGGCCGTGCTTTGGGCTG

CCGTGCTGTCTGCTGGCCCCCTCTGCGCTGGTCCGCTTTGCGGGGGTCGCCTGTTGGC
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TGCCCGTCTCTGCGGGGGTCGTCTGTTGGGGGGCCCTCTCTGGGCTGGCGTTTCCTCT

GCTGGTCCGTCCTTGTTCGGCGTTCTCTGTT- 3’ Internal 18S maternal rRNA 5’CGTTCG 

TTATCGGAATCAACCAGACAAATCGCTCCACCAACTACGAACGG- 3’ Internal 18S 

somatic rRNA 5’-CCGTTCTTAGTTGGTGGAGCGATTTGTCTGGTTCATTCCGATAACGA 

ACGAG- 3’. 

cDNA probes were radiolabeled with ⍺-P32-dATP using the Nick Translation Kit (Sigma-

Aldrich, 10976776001) according to the manufacturer’s protocol. Oligo probes were radiolabeled 

by T4 PNK end labeling (New England BioLabs, M0201S) with g-P32-ATP. Radiolabeled probes 

were purified using ProbeQuant G-50 Micro Columns (GE Healthcare, 28903408) and cDNA 

probes were heated at 95°C for 5 minutes prior to hybridization. Membranes probed by cDNA 

were washed three times with 2x SSC/0.05% SDS for 15 minutes and twice with 0.1x SSC/0.1% 

SDS for 20 minutes at 50°C. Membranes probed with oligos were washed once with 2x SSC/0.05% 

SDS for 10 minutes at room temperature and once with 0.1x SSC/0.1% SDS for 2 minutes at 42°C. 

Northern blots were quantitated using a phosphorimager (Bio-Rad Personal Molecular Imager). 

Levels of reporter mRNA were normalized to 18S rRNA controls.  

 

Poly(A) tail length analysis 

Datasets for poly(A) tail length were downloaded from public repositories. PAL-

sequencing (Subtelny et al., 2014) was downloaded from GEO accession number GSE52809 and 

TAIL-sequencing data (Chang et al., 2018) was downloaded from Zenodo doi: 

10.5281/zenodo.2640028. For each dataset, the average poly(A) tail length was calculated by 

averaging counts for the poly(A) tail reads for each gene at each timepoint. The same sets of 

methylated and non-methylated transcripts were used to analyze each poly(A) tail dataset.  
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6.2. Transcriptomic and molecular analyses of Ythdf mutants 

In situ hybridization 

In situ hybridization was performed as in Thisse & Thisse, 2014. To generate antisense 

RNA in situ probes, transcript regions were amplified from zebrafish cDNA using the oligos listed 

in Table 6.1. The reverse-orientation oligo contained a T7 promoter overhang for probe synthesis 

by IVT using T7 polymerase. Probes were purified using the RNeasy RNA extraction kit (Qiagen, 

74104). Each 200 µL hybridization reaction used 20 ng of DIG-labeled RNA probe. Before 

imaging, embryos were cleared with 2:1 benzyl benzoate:benzyl alcohol solution. For each 

condition, at least 20 embryos were analyzed and all displayed comparable levels of staining 

following equal stain time. Imaging was performed using a Zeiss Discovery V12 stereo 

microscope. Maternal-zygotic mutant embryos of miR-430 were collected from an incross of 

homozygous miR-430 deletion fish from Y. Liu et al., 2013. Wild-type control embryos used for 

in situ experiments were background-matched wild-type relatives of MZythdf2 embryos.  

 

qRT-PCR measure of RNA abundance 

Total RNA was extracted from 20 embryos per experimental condition and DNase treated. 

cDNA was synthesized from 1 µg of total RNA using reverse transcription with random hexamers 

and the Superscript III reverse transcriptase kit (Invitrogen, 18080093). cDNA was diluted 1:20 

and 10 µl reactions for PCR reactions were prepared with 5 ml of Power SYBR Green PCR Master 

Mix (Applied Biosystems, 4368706), 4.5 µl of 1:100 diluted cDNA, and 0.5 µl of 10 mM forward 

and reverse primer mix. At least two biological and two technical replicates were performed for 

each sample. Relative expression was measured with ViiA 7 software v1.2.2 using the DDCT 
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method, with dcun15d as a reference control. Oligonucleotides used for qRT-PCR are listed in 

Table 6.1.  

 

Immunoprecipitation and western blotting 

Fifty embryos were collected, flash frozen in liquid nitrogen, and resuspended in lysis 

buffer (150 mM NaCl, 25 mM Tris-HCl, 1 mM EDTA, 1% Igepal CA-630, 0.1% SDS) with 1X 

protease inhibitor cocktail (Roche, 11873580001). Lysates were incubated at 4°C for 10 minutes, 

followed by centrifugation at 14000 rpm for 15 minutes at 4°C. Supernatants were added to 

antibody-coupled Protein A Dynabeads (Invitrogen, 10008D) (10 µl of beads and 1.5 µg of 

antibody, coupled according to manufacturer’s protocol). Lysates and antibodies were incubated 

at 4°C for at least two hours, with rotation. Prior to washes, 20 µl of supernatant was removed for 

input control. Beads were then washed three times in lysis buffer and resuspended in sample buffer 

(7.5 µl of 4x NuPAGE LDS Sample Buffer (Invitrogen, NP0321PK2), 3 µl of 1 M DTT (Sigma-

Aldrich, 43816), 19.5 µl of nuclease-free water). Samples were heated at 70°C for 10 minutes and 

separated on a 1.0 mm 4-12% Bis-Tris NuPAGE mini protein gel (Invitrogen) at 180 V for 50 

minutes and wet transferred onto a nitrocellulose membrane (GE LifeSciences) at 20 V for 4 hours. 

Membranes were blocked in 5% milk, 1% Tween-20 in PBS for 1 hour and then incubated 

overnight at 4°C with constant rotation in anti- Ythdf1, Ythdf2, or Ythdf3 antibody diluted 1:1000 

or in anti-Actin diluted 1:5000 in block buffer. Secondary antibody Goat Anti-rabbit IgG antibody 

(H+L) HRP conjugate (Millipore, AP307P) was diluted 1:10,000 in block buffer and the 

membrane was incubated for one hour at room temperature. Membranes were washed three times 

for 5-10 minutes after each antibody incubation. Membranes were developed by chemiluminescent 

detection using ECL Western blotting substrate (Thermo Fisher, 34095) and imaged by and X-ray 
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film (Denville Scientific, E3012). Actin was used as a loading control for input for 

immunoprecipitated samples. 

Antibodies against Ythdf1, Ythdf2, and Ythdf3 were custom generated by YenZyme by 

raising antibodies in rabbit against amino acid sequences as follows: 

CKNLEPAPIQNRSRLDQERQ for Ythdf1, PQQTSLPTNGQPPNQSSPQ for Ythdf2, 

RNRGTMFNQNSGMDN for (amino acid sequences are listed from N to C terminus).  

 

RNA-sequencing library preparation 

For RNA-sequencing in ythdf mutants, 20 embryos per condition were collected at 

indicated developmental time points and snap frozen in liquid nitrogen. Embryo collections for 

mutants and background-matched wild-type were performed at the same time (time-matched), 

with synchronously developing embryos. Total RNA was subjected to either poly(A)-selection by 

oligo(dT) beads or to ribosomal RNA-depletion with Epicentre Ribo-Zero Gold, according to 

manufacturer’s instructions. Strand-specific TruSeq Illumina RNA-sequencing libraries were then 

constructed, and samples were multiplexed and sequenced on Illumina HiSeq 2500 machines to 

generate 76-nucleotide single-end reads. Library preparation and mRNA sequencing was 

performed by the Yale Center for Genome Analysis.  

 

RNA-sequencing analysis 

The zebrafish mRNA sequencing embryonic development time course datasets were from 

previously published SRP189512 (Vejnar et al., 2019), SRP149556 (Beaudoin et al., 2018), and 

SRP072296 (Bazzini et al., 2016). MZdicer fish were obtained from Giraldez et al., 2006. Re-
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analysis of published MZythdf2 RNA-sequencing data was performed on dataset from Zhao et al., 

2017, from GEO accession number GSE79213.  

 

Mapping reads 

Raw reads were mapped using STAR (Dobin et al., 2013) version 2.7.1a to the zebrafish 

GRCz11 reference genome. Genomic sequence indices for STAR were built including exon-

junction coordinates from Ensembl v92 (Aken et al., 2017). Gene annotations were created by 

concatenating all Ensembl transcript isoforms together. To calculate read counts per gene, all reads 

that mapped uniquely to the genome and overlapped at least ten nucleotides of the gene annotation 

were summed. Because the miR-430 locus is internally repetitive, genome tracks for miR-430 were 

generated by allowing up to 900 alignments per read. To calculate per gene RPKMs, the total 

number of RNA reads mapped to each gene were summed and normalized by gene length and the 

total numbers of reads mapped to the zebrafish transcriptome per million.  

 

Differential gene expression analysis 

To identify significantly differentially expressed genes between background-matched 

wild-type controls and MZythdf2 mutants, read counts were compared using the R package 

DESeq2 (Love et al., 2014). Genes were excluded from the analysis if the gene count was below 

one for both replicates in either condition. To get DE genes, counts for all Ensembl genes were 

input to the results function with the options pAdjustMethod = ‘fdr’ and independentFiltering = 

FALSE. P-values reported from DESeq2 are adjusted P-values corrected for multiple testing.  

 

Determination of maternal and zygotic genes 
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Maternal, maternal-zygotic, and zygotic genes were previously defined in Lee et al., 2013. 

For analyses directly comparing maternal mRNA abundance between m6A-modified and 

unmodified mRNAs, only strictly maternal transcripts were included. For analyses analyzing 

global abundance of maternal mRNAs, both exclusively maternally expressed and maternal-

zygotic mRNAs were included.  

 

Methylated and unmethylated gene definition 

Datasets for m6A-methylation in zebrafish (Zhao et al., 2017) are available from GEO 

accession number GSE79213. Genes found to have transcript methylation were defined previously 

from Zhao et al., 2017, and were taken directly from the provided table of processed data. Maternal 

m6A-modified transcripts used for analysis here included those that were found to contain m6A-

modification in both the m6A-seq and m6A-CLIP-seq from Zhao et al., 2017 at either 0 hpf or 2 

hpf.  

 

6.3. Generation of zebrafish mutants and phenotype analysis  

Zebrafish maintenance and embryo production 

Danio rerio (zebrafish) embryos were obtained from natural matings of adult fish of mixed 

wild-type backgrounds (TU-AB and TLF strains) of mixed ages. Embryos from multiple wild-

type crosses were pooled, unless performing experiments on mutant and background-matched 

controls, in which case clutches from individual pairs were analyzed separately. Embryos were 

grown and staged according to published standards (Kimmel et al., 1995) and all zebrafish and 

embryo experiments were performed at 28°C. For experiments involving mutants and wild-type 

controls, fish pairs were mated at the same time to generate synchronously growing embryos. 
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Embryo collections of mutants and background-matched controls were then performed at the same 

time to ensure that all embryos were time-matched for all experiments.  

 

Treatment of juvenile fish with EE2  

17 a-ethynylestradiol (EE2) (Sigma-Aldrich, E4876) was diluted with system water to 

make a 100,000X stock. Approximately 40 fish were raised in a 10-liter tank with EE2 solution at 

a final concentration of 10 ng/L. Fish water was renewed by dripping 40 L of EE2 solution per 

day. Fish were treated from 22 to 60 days post fertilization and were sexed 30 days later.  

 

Embryo treatments and injections 

All injections into zebrafish embryos were performed on chorionated, one-cell stage 

embryos with 1 nL volumes, unless otherwise stated. To inhibit RNA Polymerase II, embryos were 

bathed in 5.8 mM of triptolide (Sigma-Aldrich, T3652) or injected with 0.2 ng of a-amanitin 

(Sigma-Aldrich, A2263) re-suspended in nuclease-free water.  

To generate rescue constructs, zebrafish ythdf1, ythdf2, and ythdf3 were PCR amplified 

from cDNA from 2 hpf embryos. DNA was ligated into a pHA-SP vector containing a 3x-flag 

sequence using EcoRI and XhoI restriction sites and In-Fusion cloning (Takara, 639642). Final 

constructs were confirmed by Sanger sequencing. Constructs were linearized with SalI restriction 

digest and purified using QIAquick PCR purification kit (Qiagen, 28104). Linearized DNA was 

used as a template for in vitro transcription (IVT) using the mMessage mMachine SP6 

Transcription Kit (Invitrogen, AM1340) to generate capped reporter mRNA. Resultant mRNA was 

DNase treated and purified using the RNeasy RNA extraction kit (Qiagen, 74104). Zebrafish 
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embryos were injected with 100 pg of mRNA and expression of the flag-tagged protein was 

confirmed by Western blotting. 

 

Gene editing and maternal-zygotic mutants 

CRISPR-Cas9 gene editing in zebrafish was performed as described in Vejnar et al., 2016. 

sgRNAs targeting each gene were designed using the CRISPRscan tool (crisprscan.org) (Moreno-

Mateos et al., 2015). Guides are listed in Table 6.1. For gene editing to generate ythdf2-223/-223 and 

ythdf3 mutants, 30 pg of each sgRNA was co-injected with 150 pg of Cas9 (plasmid pT3TS-

nCas9n, Addgene #46757, (Jao et al., 2013)) capped mRNA synthesized using mMessage 

mMachine T3 Transcription kit (Thermo Fisher Scientific, AM1340). For mutagenesis of ythdf1, 

20 pg of each sgRNA and 150 pg of Cas9 mRNA was co-injected with 20 pg of a single-stranded 

DNA template (ythdf1 5’- gggcagccattgctagcaaaccggccaagcctcagcaactgaaggtgaagagtaagccaggga 

tgcccatgtagtagtagaccaactcgcgtgacacacaggaggtgcctctggaa-3’) to facilitate large deletion and 

insertion of a stop codon cassette (TAGATAGATAG) by homologous recombination. Mosaic F0 

founders were identified by genotyping, using the oligos in Table 6.1. Fish were backcrossed twice 

to wild-type fish before incrossing heterozygous adults to generate homozygous mutants. 

Homozygous fish were then incrossed to generate maternal-zygotic mutant embryos. Homozygous 

ythdf2-8/-8 zebrafish were generated by Zhao et al., 2017 and were obtained from the laboratory of 

Robert Ho. Double and triple mutants were generated by crossing fish heterozygous for each gene 

mutation, and then incrossing double or triple heterozygous. These fish were subject to EE2 

treatment, to generate both male and female double or triple homozygous. Males and females with 

double homozygous genotypes were subsequently incrossed to generate maternal-zygotic 

embryos.  
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To genotype zebrafish, DNA was extracted from embryos or tissue clipped from the end 

of the zebrafish tail. Samples were incubated in 100 ml of 100 mM NaOH at 95°C for 20 minutes 

and neutralized with 40 ml of 1 M Tris, pH 7.4 (AmericanBio, AB14044). 1 µl of crude DNA 

extraction was used as a template for PCR using Taq polymerase and indicated genotyping oligos. 

For the genotyping time course of triple ythdf mutants, 48 embryos were removed at random from 

the pool of offspring every 3 days and subject to genotyping, without being returned to the pool. 

At 30 dpf, an additional 200 fish were also genotyped. 

For experiments comparing MZ mutants to wild-type embryos, wild-type controls were 

generated from incrossing background-matched wild-type adults that were siblings with 

homozygous mutants. This was done to homogenize the genetic background between homozygous 

MZ mutants and wild-type controls. Background-matched wild-type embryos were used as wild-

type controls for all experiments involving MZ mutants, unless otherwise noted. As an additional 

control, some experiments included embryos generated by crossing unrelated, wild-type fish from 

TU-AB stock.  

 

Microscopy 

All imaging was observed using a Zeiss Discovery V12 stereo microscope and images were 

captured with an AxioCam MRc digital camera (Carl Zeiss). All imaging experiments were 

performed at a monitored temperature of 28°C and were repeated with at least three biological 

samples for each condition. For live imaging time course assays, live dechorionated embryos were 

mounted in 0.25% low melt agarose (AmericanBio, CAS: 9012-36-6) and imaged at least every 

two minutes. All image analysis was performed using ImageJ (Schneider et al., 2012). 
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Histology 

For juvenile fish aged either 27- or 34-days post fertilization, heads and tails were removed 

and the middle body section containing the gonads were fixed in Bouin’s solution (Sigma-Aldrich, 

HT10132) overnight at 4°C. Fixed tissues were embedded in paraffin and sectioned at 10 mm. 

Hematoxylin and Eosin (H&E) staining was performed on the sections according to standard 

protocols. Slides were mounted in Omnimount (National Diagnostics, 17997-01) and imaged 

using a Zeiss Axio Imager M1 and an AxioCam MRc digital camera (Carl Zeiss).  

 

Ythdf protein sequence alignments 

Protein sequence alignment was generated using SnapGene® software (GSL Biotech, 

available at snapgene.com), with Clustal Omega alignment, made relative to the consensus 

sequence with a consensus threshold of > 50%. Phylogenetic tree was generated from the protein 

sequence alignment described above using Clustal W2 and neighbor-joining clustering.  
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Table 6.1. Oligonucleotide sequences for gene-editing, genotyping, in situs, and qRT-PCR.  
 
 

CRISPR-cas9 guide RNAs 
ythdf1 sgRNA 1 taatacgactcactatagggtcacgcgagttggtcacgttttagagctagaa 
ythdf1 sgRNA 2 taatacgactcactataggcagggtgcctccagccatgttttagagctagaa 
ythdf2 sgRNA 1 taatacgactcactatagggcatgtaggagtcggacagttttagagctagaa 
ythdf2 sgRNA 2 taatacgactcactataggcttcaacttctttcccaggttttagagctagaa 
ythdf3 sgRNA 1 taatacgactcactatagggcgtgttgcctaaagcacgttttagagctagaa 
ythdf3 sgRNA 2 taatacgactcactataggtgcagaggagctgacagggttttagagctagaa 
mettl3 sgRNA 1 taatacgactcactatagggagatgcactggggccacgttttagagctagaa 
mettl14 sgRNA 1 taatacgactcactatagggtttggctgacaggtttggttttagagctagaa 
mettl14 sgRNA 2 taatacgactcactatagggatcgagggggattcaggttttagagctagaa 
Genotyping zebrafish mutants  
ythdf1 pair 1 atgaccgacccatacctgtc agcgatgatcttcagcacct 
ythdf1 pair 2 aacagtcagctcaggcacatc catcgaagatggaggttgtgt 
ythdf2 D223  gggagcaattgtcacctg gggagactgtccgtcaatca 
ythdf2 D8  tgctgttccacctcaactctc ttaccatgcgcagtttttct 
ythdf3  ggacagatgagcaatggtga caaaatcatgttgggcttcg 
mettl3  gcttccacatggacacctg ttctaaatcacaagattcaaatcca 
mettl14 pair 1 atcggggtcgagagagaaat attgaaccccatccctaacc 
mettl14 pair 2 tattgccagcactttgtgga ttggcacgttgcagactatc 
in situ hybridization probe amplification  
mtus1a gactatttaggtgacactatagatgctgcttgtctagcgtttg gacttaatacgactcactatagggcaagcactcgtccgtttaca 
zgc:162879 gactatttaggtgacactatagaatatggccacctctcctgtg gacttaatacgactcactatagggcagcaacgtcatgaggaaaa 
qRT-PCR oligos  
buc caagttactggacctcaggatc ggcagtaggtaaattcggtctc 
brca2 ttgtaaagccacgagcactg ccgcaaggttgaaaaactgt 
dcun1d5 agagtggctgaagggaatga ccaacatggattttgcagtg 
mtus1a aaggatggagcttgctgaga tctggctttgaggtcttcgt 
mylipa gggaggctctgctctgtatg cgccaatggtcaggtttagt 
otx1b tacatttacgcgctcacagc gctgacgacatttagcacga 
setdb1a cttctcaacccaaaacactgc ctatctgaagagacgggtgaaac 
tdrd1 ccctgcctttaagtgtcagc caagcaggagaaccaactcc 
ticrr tcaccagttcggcttctttt caactgtccggtttggagtt 
uspl1 ctgtgtttgcgttgcacttt tcaagttccagccaaaatcc 
vps26a aatggaagtgggcattgaag tgactggtgctccatccata 
zgc:162879 cgaggcaagtgctaaagagg acagcagttgctcagggtct 
ythdf1 aacggtccacgacaatgact tgatggtctccattgctgag 
ythdf2 ttcgagccttacctgaatgc taggggcataggcgtaactg 
ythdf3 gaatggcaggactgaagctc tctctaggggcacttcctga 

 
All oligonucleotides are listed 5’-3’. The two columns for corresponding to the genotyping, in situ, 
and qRT-PCR entries correspond to the forward (left) and reverse (right) oligos. 
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